* asan.c (create_cond_insert_point): Maintain profile.
[official-gcc.git] / gcc / tree-ssa-sink.c
blob1c5d7dd7556172e8913581bf4c8bf5fb9d1e01d4
1 /* Code sinking for trees
2 Copyright (C) 2001-2017 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dan@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "tree-pass.h"
29 #include "ssa.h"
30 #include "gimple-pretty-print.h"
31 #include "fold-const.h"
32 #include "stor-layout.h"
33 #include "cfganal.h"
34 #include "gimple-iterator.h"
35 #include "tree-cfg.h"
36 #include "cfgloop.h"
37 #include "params.h"
39 /* TODO:
40 1. Sinking store only using scalar promotion (IE without moving the RHS):
42 *q = p;
43 p = p + 1;
44 if (something)
45 *q = <not p>;
46 else
47 y = *q;
50 should become
51 sinktemp = p;
52 p = p + 1;
53 if (something)
54 *q = <not p>;
55 else
57 *q = sinktemp;
58 y = *q
60 Store copy propagation will take care of the store elimination above.
63 2. Sinking using Partial Dead Code Elimination. */
66 static struct
68 /* The number of statements sunk down the flowgraph by code sinking. */
69 int sunk;
71 } sink_stats;
74 /* Given a PHI, and one of its arguments (DEF), find the edge for
75 that argument and return it. If the argument occurs twice in the PHI node,
76 we return NULL. */
78 static basic_block
79 find_bb_for_arg (gphi *phi, tree def)
81 size_t i;
82 bool foundone = false;
83 basic_block result = NULL;
84 for (i = 0; i < gimple_phi_num_args (phi); i++)
85 if (PHI_ARG_DEF (phi, i) == def)
87 if (foundone)
88 return NULL;
89 foundone = true;
90 result = gimple_phi_arg_edge (phi, i)->src;
92 return result;
95 /* When the first immediate use is in a statement, then return true if all
96 immediate uses in IMM are in the same statement.
97 We could also do the case where the first immediate use is in a phi node,
98 and all the other uses are in phis in the same basic block, but this
99 requires some expensive checking later (you have to make sure no def/vdef
100 in the statement occurs for multiple edges in the various phi nodes it's
101 used in, so that you only have one place you can sink it to. */
103 static bool
104 all_immediate_uses_same_place (def_operand_p def_p)
106 tree var = DEF_FROM_PTR (def_p);
107 imm_use_iterator imm_iter;
108 use_operand_p use_p;
110 gimple *firstuse = NULL;
111 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var)
113 if (is_gimple_debug (USE_STMT (use_p)))
114 continue;
115 if (firstuse == NULL)
116 firstuse = USE_STMT (use_p);
117 else
118 if (firstuse != USE_STMT (use_p))
119 return false;
122 return true;
125 /* Find the nearest common dominator of all of the immediate uses in IMM. */
127 static basic_block
128 nearest_common_dominator_of_uses (def_operand_p def_p, bool *debug_stmts)
130 tree var = DEF_FROM_PTR (def_p);
131 auto_bitmap blocks;
132 basic_block commondom;
133 unsigned int j;
134 bitmap_iterator bi;
135 imm_use_iterator imm_iter;
136 use_operand_p use_p;
138 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, var)
140 gimple *usestmt = USE_STMT (use_p);
141 basic_block useblock;
143 if (gphi *phi = dyn_cast <gphi *> (usestmt))
145 int idx = PHI_ARG_INDEX_FROM_USE (use_p);
147 useblock = gimple_phi_arg_edge (phi, idx)->src;
149 else if (is_gimple_debug (usestmt))
151 *debug_stmts = true;
152 continue;
154 else
156 useblock = gimple_bb (usestmt);
159 /* Short circuit. Nothing dominates the entry block. */
160 if (useblock == ENTRY_BLOCK_PTR_FOR_FN (cfun))
161 return NULL;
163 bitmap_set_bit (blocks, useblock->index);
165 commondom = BASIC_BLOCK_FOR_FN (cfun, bitmap_first_set_bit (blocks));
166 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, j, bi)
167 commondom = nearest_common_dominator (CDI_DOMINATORS, commondom,
168 BASIC_BLOCK_FOR_FN (cfun, j));
169 return commondom;
172 /* Given EARLY_BB and LATE_BB, two blocks in a path through the dominator
173 tree, return the best basic block between them (inclusive) to place
174 statements.
176 We want the most control dependent block in the shallowest loop nest.
178 If the resulting block is in a shallower loop nest, then use it. Else
179 only use the resulting block if it has significantly lower execution
180 frequency than EARLY_BB to avoid gratutious statement movement. We
181 consider statements with VOPS more desirable to move.
183 This pass would obviously benefit from PDO as it utilizes block
184 frequencies. It would also benefit from recomputing frequencies
185 if profile data is not available since frequencies often get out
186 of sync with reality. */
188 static basic_block
189 select_best_block (basic_block early_bb,
190 basic_block late_bb,
191 gimple *stmt)
193 basic_block best_bb = late_bb;
194 basic_block temp_bb = late_bb;
195 int threshold;
197 while (temp_bb != early_bb)
199 /* If we've moved into a lower loop nest, then that becomes
200 our best block. */
201 if (bb_loop_depth (temp_bb) < bb_loop_depth (best_bb))
202 best_bb = temp_bb;
204 /* Walk up the dominator tree, hopefully we'll find a shallower
205 loop nest. */
206 temp_bb = get_immediate_dominator (CDI_DOMINATORS, temp_bb);
209 /* If we found a shallower loop nest, then we always consider that
210 a win. This will always give us the most control dependent block
211 within that loop nest. */
212 if (bb_loop_depth (best_bb) < bb_loop_depth (early_bb))
213 return best_bb;
215 /* Get the sinking threshold. If the statement to be moved has memory
216 operands, then increase the threshold by 7% as those are even more
217 profitable to avoid, clamping at 100%. */
218 threshold = PARAM_VALUE (PARAM_SINK_FREQUENCY_THRESHOLD);
219 if (gimple_vuse (stmt) || gimple_vdef (stmt))
221 threshold += 7;
222 if (threshold > 100)
223 threshold = 100;
226 /* If BEST_BB is at the same nesting level, then require it to have
227 significantly lower execution frequency to avoid gratutious movement. */
228 if (bb_loop_depth (best_bb) == bb_loop_depth (early_bb)
229 && best_bb->count.to_frequency (cfun)
230 < (early_bb->count.to_frequency (cfun) * threshold / 100.0))
231 return best_bb;
233 /* No better block found, so return EARLY_BB, which happens to be the
234 statement's original block. */
235 return early_bb;
238 /* Given a statement (STMT) and the basic block it is currently in (FROMBB),
239 determine the location to sink the statement to, if any.
240 Returns true if there is such location; in that case, TOGSI points to the
241 statement before that STMT should be moved. */
243 static bool
244 statement_sink_location (gimple *stmt, basic_block frombb,
245 gimple_stmt_iterator *togsi, bool *zero_uses_p)
247 gimple *use;
248 use_operand_p one_use = NULL_USE_OPERAND_P;
249 basic_block sinkbb;
250 use_operand_p use_p;
251 def_operand_p def_p;
252 ssa_op_iter iter;
253 imm_use_iterator imm_iter;
255 *zero_uses_p = false;
257 /* We only can sink assignments and non-looping const/pure calls. */
258 int cf;
259 if (!is_gimple_assign (stmt)
260 && (!is_gimple_call (stmt)
261 || !((cf = gimple_call_flags (stmt)) & (ECF_CONST|ECF_PURE))
262 || (cf & ECF_LOOPING_CONST_OR_PURE)))
263 return false;
265 /* We only can sink stmts with a single definition. */
266 def_p = single_ssa_def_operand (stmt, SSA_OP_ALL_DEFS);
267 if (def_p == NULL_DEF_OPERAND_P)
268 return false;
270 /* There are a few classes of things we can't or don't move, some because we
271 don't have code to handle it, some because it's not profitable and some
272 because it's not legal.
274 We can't sink things that may be global stores, at least not without
275 calculating a lot more information, because we may cause it to no longer
276 be seen by an external routine that needs it depending on where it gets
277 moved to.
279 We can't sink statements that end basic blocks without splitting the
280 incoming edge for the sink location to place it there.
282 We can't sink statements that have volatile operands.
284 We don't want to sink dead code, so anything with 0 immediate uses is not
285 sunk.
287 Don't sink BLKmode assignments if current function has any local explicit
288 register variables, as BLKmode assignments may involve memcpy or memset
289 calls or, on some targets, inline expansion thereof that sometimes need
290 to use specific hard registers.
293 if (stmt_ends_bb_p (stmt)
294 || gimple_has_side_effects (stmt)
295 || (cfun->has_local_explicit_reg_vars
296 && TYPE_MODE (TREE_TYPE (gimple_get_lhs (stmt))) == BLKmode))
297 return false;
299 /* Return if there are no immediate uses of this stmt. */
300 if (has_zero_uses (DEF_FROM_PTR (def_p)))
302 *zero_uses_p = true;
303 return false;
306 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (DEF_FROM_PTR (def_p)))
307 return false;
309 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
311 tree use = USE_FROM_PTR (use_p);
312 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use))
313 return false;
316 use = NULL;
318 /* If stmt is a store the one and only use needs to be the VOP
319 merging PHI node. */
320 if (virtual_operand_p (DEF_FROM_PTR (def_p)))
322 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, DEF_FROM_PTR (def_p))
324 gimple *use_stmt = USE_STMT (use_p);
326 /* A killing definition is not a use. */
327 if ((gimple_has_lhs (use_stmt)
328 && operand_equal_p (gimple_get_lhs (stmt),
329 gimple_get_lhs (use_stmt), 0))
330 || stmt_kills_ref_p (use_stmt, gimple_get_lhs (stmt)))
332 /* If use_stmt is or might be a nop assignment then USE_STMT
333 acts as a use as well as definition. */
334 if (stmt != use_stmt
335 && ref_maybe_used_by_stmt_p (use_stmt,
336 gimple_get_lhs (stmt)))
337 return false;
338 continue;
341 if (gimple_code (use_stmt) != GIMPLE_PHI)
342 return false;
344 if (use
345 && use != use_stmt)
346 return false;
348 use = use_stmt;
350 if (!use)
351 return false;
353 /* If all the immediate uses are not in the same place, find the nearest
354 common dominator of all the immediate uses. For PHI nodes, we have to
355 find the nearest common dominator of all of the predecessor blocks, since
356 that is where insertion would have to take place. */
357 else if (gimple_vuse (stmt)
358 || !all_immediate_uses_same_place (def_p))
360 bool debug_stmts = false;
361 basic_block commondom = nearest_common_dominator_of_uses (def_p,
362 &debug_stmts);
364 if (commondom == frombb)
365 return false;
367 /* If this is a load then do not sink past any stores.
368 ??? This is overly simple but cheap. We basically look
369 for an existing load with the same VUSE in the path to one
370 of the sink candidate blocks and we adjust commondom to the
371 nearest to commondom. */
372 if (gimple_vuse (stmt))
374 /* Do not sink loads from hard registers. */
375 if (gimple_assign_single_p (stmt)
376 && TREE_CODE (gimple_assign_rhs1 (stmt)) == VAR_DECL
377 && DECL_HARD_REGISTER (gimple_assign_rhs1 (stmt)))
378 return false;
380 imm_use_iterator imm_iter;
381 use_operand_p use_p;
382 basic_block found = NULL;
383 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_vuse (stmt))
385 gimple *use_stmt = USE_STMT (use_p);
386 basic_block bb = gimple_bb (use_stmt);
387 /* For PHI nodes the block we know sth about
388 is the incoming block with the use. */
389 if (gimple_code (use_stmt) == GIMPLE_PHI)
390 bb = EDGE_PRED (bb, PHI_ARG_INDEX_FROM_USE (use_p))->src;
391 /* Any dominator of commondom would be ok with
392 adjusting commondom to that block. */
393 bb = nearest_common_dominator (CDI_DOMINATORS, bb, commondom);
394 if (!found)
395 found = bb;
396 else if (dominated_by_p (CDI_DOMINATORS, bb, found))
397 found = bb;
398 /* If we can't improve, stop. */
399 if (found == commondom)
400 break;
402 commondom = found;
403 if (commondom == frombb)
404 return false;
407 /* Our common dominator has to be dominated by frombb in order to be a
408 trivially safe place to put this statement, since it has multiple
409 uses. */
410 if (!dominated_by_p (CDI_DOMINATORS, commondom, frombb))
411 return false;
413 commondom = select_best_block (frombb, commondom, stmt);
415 if (commondom == frombb)
416 return false;
418 *togsi = gsi_after_labels (commondom);
420 return true;
422 else
424 FOR_EACH_IMM_USE_FAST (one_use, imm_iter, DEF_FROM_PTR (def_p))
426 if (is_gimple_debug (USE_STMT (one_use)))
427 continue;
428 break;
430 use = USE_STMT (one_use);
432 if (gimple_code (use) != GIMPLE_PHI)
434 sinkbb = gimple_bb (use);
435 sinkbb = select_best_block (frombb, gimple_bb (use), stmt);
437 if (sinkbb == frombb)
438 return false;
440 *togsi = gsi_for_stmt (use);
442 return true;
446 sinkbb = find_bb_for_arg (as_a <gphi *> (use), DEF_FROM_PTR (def_p));
448 /* This can happen if there are multiple uses in a PHI. */
449 if (!sinkbb)
450 return false;
452 sinkbb = select_best_block (frombb, sinkbb, stmt);
453 if (!sinkbb || sinkbb == frombb)
454 return false;
456 /* If the latch block is empty, don't make it non-empty by sinking
457 something into it. */
458 if (sinkbb == frombb->loop_father->latch
459 && empty_block_p (sinkbb))
460 return false;
462 *togsi = gsi_after_labels (sinkbb);
464 return true;
467 /* Perform code sinking on BB */
469 static void
470 sink_code_in_bb (basic_block bb)
472 basic_block son;
473 gimple_stmt_iterator gsi;
474 edge_iterator ei;
475 edge e;
476 bool last = true;
478 /* If this block doesn't dominate anything, there can't be any place to sink
479 the statements to. */
480 if (first_dom_son (CDI_DOMINATORS, bb) == NULL)
481 goto earlyout;
483 /* We can't move things across abnormal edges, so don't try. */
484 FOR_EACH_EDGE (e, ei, bb->succs)
485 if (e->flags & EDGE_ABNORMAL)
486 goto earlyout;
488 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
490 gimple *stmt = gsi_stmt (gsi);
491 gimple_stmt_iterator togsi;
492 bool zero_uses_p;
494 if (!statement_sink_location (stmt, bb, &togsi, &zero_uses_p))
496 gimple_stmt_iterator saved = gsi;
497 if (!gsi_end_p (gsi))
498 gsi_prev (&gsi);
499 /* If we face a dead stmt remove it as it possibly blocks
500 sinking of uses. */
501 if (zero_uses_p
502 && ! gimple_vdef (stmt))
504 gsi_remove (&saved, true);
505 release_defs (stmt);
507 else
508 last = false;
509 continue;
511 if (dump_file)
513 fprintf (dump_file, "Sinking ");
514 print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS);
515 fprintf (dump_file, " from bb %d to bb %d\n",
516 bb->index, (gsi_bb (togsi))->index);
519 /* Update virtual operands of statements in the path we
520 do not sink to. */
521 if (gimple_vdef (stmt))
523 imm_use_iterator iter;
524 use_operand_p use_p;
525 gimple *vuse_stmt;
527 FOR_EACH_IMM_USE_STMT (vuse_stmt, iter, gimple_vdef (stmt))
528 if (gimple_code (vuse_stmt) != GIMPLE_PHI)
529 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
530 SET_USE (use_p, gimple_vuse (stmt));
533 /* If this is the end of the basic block, we need to insert at the end
534 of the basic block. */
535 if (gsi_end_p (togsi))
536 gsi_move_to_bb_end (&gsi, gsi_bb (togsi));
537 else
538 gsi_move_before (&gsi, &togsi);
540 sink_stats.sunk++;
542 /* If we've just removed the last statement of the BB, the
543 gsi_end_p() test below would fail, but gsi_prev() would have
544 succeeded, and we want it to succeed. So we keep track of
545 whether we're at the last statement and pick up the new last
546 statement. */
547 if (last)
549 gsi = gsi_last_bb (bb);
550 continue;
553 last = false;
554 if (!gsi_end_p (gsi))
555 gsi_prev (&gsi);
558 earlyout:
559 for (son = first_dom_son (CDI_POST_DOMINATORS, bb);
560 son;
561 son = next_dom_son (CDI_POST_DOMINATORS, son))
563 sink_code_in_bb (son);
567 /* Perform code sinking.
568 This moves code down the flowgraph when we know it would be
569 profitable to do so, or it wouldn't increase the number of
570 executions of the statement.
572 IE given
574 a_1 = b + c;
575 if (<something>)
578 else
580 foo (&b, &c);
581 a_5 = b + c;
583 a_6 = PHI (a_5, a_1);
584 USE a_6.
586 we'll transform this into:
588 if (<something>)
590 a_1 = b + c;
592 else
594 foo (&b, &c);
595 a_5 = b + c;
597 a_6 = PHI (a_5, a_1);
598 USE a_6.
600 Note that this reduces the number of computations of a = b + c to 1
601 when we take the else edge, instead of 2.
603 namespace {
605 const pass_data pass_data_sink_code =
607 GIMPLE_PASS, /* type */
608 "sink", /* name */
609 OPTGROUP_NONE, /* optinfo_flags */
610 TV_TREE_SINK, /* tv_id */
611 /* PROP_no_crit_edges is ensured by running split_critical_edges in
612 pass_data_sink_code::execute (). */
613 ( PROP_cfg | PROP_ssa ), /* properties_required */
614 0, /* properties_provided */
615 0, /* properties_destroyed */
616 0, /* todo_flags_start */
617 TODO_update_ssa, /* todo_flags_finish */
620 class pass_sink_code : public gimple_opt_pass
622 public:
623 pass_sink_code (gcc::context *ctxt)
624 : gimple_opt_pass (pass_data_sink_code, ctxt)
627 /* opt_pass methods: */
628 virtual bool gate (function *) { return flag_tree_sink != 0; }
629 virtual unsigned int execute (function *);
631 }; // class pass_sink_code
633 unsigned int
634 pass_sink_code::execute (function *fun)
636 loop_optimizer_init (LOOPS_NORMAL);
637 split_critical_edges ();
638 connect_infinite_loops_to_exit ();
639 memset (&sink_stats, 0, sizeof (sink_stats));
640 calculate_dominance_info (CDI_DOMINATORS);
641 calculate_dominance_info (CDI_POST_DOMINATORS);
642 sink_code_in_bb (EXIT_BLOCK_PTR_FOR_FN (fun));
643 statistics_counter_event (fun, "Sunk statements", sink_stats.sunk);
644 free_dominance_info (CDI_POST_DOMINATORS);
645 remove_fake_exit_edges ();
646 loop_optimizer_finalize ();
648 return 0;
651 } // anon namespace
653 gimple_opt_pass *
654 make_pass_sink_code (gcc::context *ctxt)
656 return new pass_sink_code (ctxt);