* asan.c (create_cond_insert_point): Maintain profile.
[official-gcc.git] / gcc / haifa-sched.c
blobf5c06a95bb6742475bf7d1f2c5ea16456fa21efe
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2017 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Instruction scheduling pass. This file, along with sched-deps.c,
23 contains the generic parts. The actual entry point for
24 the normal instruction scheduling pass is found in sched-rgn.c.
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
53 remaining slots.
55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
58 1. choose insn with the longest path to end of bb, ties
59 broken by
60 2. choose insn with least contribution to register pressure,
61 ties broken by
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
65 broken by
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
80 compute_block_dependences ().
82 Dependencies set up by memory references are treated in exactly the
83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
85 INSN_FORW_DEPS for the purpose of forward list scheduling.
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
94 utilization.
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
99 of this case.
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
123 beginning of basic blocks and regions that have been scheduled. */
125 #include "config.h"
126 #include "system.h"
127 #include "coretypes.h"
128 #include "backend.h"
129 #include "target.h"
130 #include "rtl.h"
131 #include "cfghooks.h"
132 #include "df.h"
133 #include "memmodel.h"
134 #include "tm_p.h"
135 #include "insn-config.h"
136 #include "regs.h"
137 #include "ira.h"
138 #include "recog.h"
139 #include "insn-attr.h"
140 #include "cfgrtl.h"
141 #include "cfgbuild.h"
142 #include "sched-int.h"
143 #include "common/common-target.h"
144 #include "params.h"
145 #include "dbgcnt.h"
146 #include "cfgloop.h"
147 #include "dumpfile.h"
148 #include "print-rtl.h"
150 #ifdef INSN_SCHEDULING
152 /* True if we do register pressure relief through live-range
153 shrinkage. */
154 static bool live_range_shrinkage_p;
156 /* Switch on live range shrinkage. */
157 void
158 initialize_live_range_shrinkage (void)
160 live_range_shrinkage_p = true;
163 /* Switch off live range shrinkage. */
164 void
165 finish_live_range_shrinkage (void)
167 live_range_shrinkage_p = false;
170 /* issue_rate is the number of insns that can be scheduled in the same
171 machine cycle. It can be defined in the config/mach/mach.h file,
172 otherwise we set it to 1. */
174 int issue_rate;
176 /* This can be set to true by a backend if the scheduler should not
177 enable a DCE pass. */
178 bool sched_no_dce;
180 /* The current initiation interval used when modulo scheduling. */
181 static int modulo_ii;
183 /* The maximum number of stages we are prepared to handle. */
184 static int modulo_max_stages;
186 /* The number of insns that exist in each iteration of the loop. We use this
187 to detect when we've scheduled all insns from the first iteration. */
188 static int modulo_n_insns;
190 /* The current count of insns in the first iteration of the loop that have
191 already been scheduled. */
192 static int modulo_insns_scheduled;
194 /* The maximum uid of insns from the first iteration of the loop. */
195 static int modulo_iter0_max_uid;
197 /* The number of times we should attempt to backtrack when modulo scheduling.
198 Decreased each time we have to backtrack. */
199 static int modulo_backtracks_left;
201 /* The stage in which the last insn from the original loop was
202 scheduled. */
203 static int modulo_last_stage;
205 /* sched-verbose controls the amount of debugging output the
206 scheduler prints. It is controlled by -fsched-verbose=N:
207 N=0: no debugging output.
208 N=1: default value.
209 N=2: bb's probabilities, detailed ready list info, unit/insn info.
210 N=3: rtl at abort point, control-flow, regions info.
211 N=5: dependences info. */
212 int sched_verbose = 0;
214 /* Debugging file. All printouts are sent to dump. */
215 FILE *sched_dump = 0;
217 /* This is a placeholder for the scheduler parameters common
218 to all schedulers. */
219 struct common_sched_info_def *common_sched_info;
221 #define INSN_TICK(INSN) (HID (INSN)->tick)
222 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
223 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
224 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
225 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
226 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
227 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
228 /* Cached cost of the instruction. Use insn_sched_cost to get cost of the
229 insn. -1 here means that the field is not initialized. */
230 #define INSN_COST(INSN) (HID (INSN)->cost)
232 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
233 then it should be recalculated from scratch. */
234 #define INVALID_TICK (-(max_insn_queue_index + 1))
235 /* The minimal value of the INSN_TICK of an instruction. */
236 #define MIN_TICK (-max_insn_queue_index)
238 /* Original order of insns in the ready list.
239 Used to keep order of normal insns while separating DEBUG_INSNs. */
240 #define INSN_RFS_DEBUG_ORIG_ORDER(INSN) (HID (INSN)->rfs_debug_orig_order)
242 /* The deciding reason for INSN's place in the ready list. */
243 #define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win)
245 /* List of important notes we must keep around. This is a pointer to the
246 last element in the list. */
247 rtx_insn *note_list;
249 static struct spec_info_def spec_info_var;
250 /* Description of the speculative part of the scheduling.
251 If NULL - no speculation. */
252 spec_info_t spec_info = NULL;
254 /* True, if recovery block was added during scheduling of current block.
255 Used to determine, if we need to fix INSN_TICKs. */
256 static bool haifa_recovery_bb_recently_added_p;
258 /* True, if recovery block was added during this scheduling pass.
259 Used to determine if we should have empty memory pools of dependencies
260 after finishing current region. */
261 bool haifa_recovery_bb_ever_added_p;
263 /* Counters of different types of speculative instructions. */
264 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
266 /* Array used in {unlink, restore}_bb_notes. */
267 static rtx_insn **bb_header = 0;
269 /* Basic block after which recovery blocks will be created. */
270 static basic_block before_recovery;
272 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
273 created it. */
274 basic_block after_recovery;
276 /* FALSE if we add bb to another region, so we don't need to initialize it. */
277 bool adding_bb_to_current_region_p = true;
279 /* Queues, etc. */
281 /* An instruction is ready to be scheduled when all insns preceding it
282 have already been scheduled. It is important to ensure that all
283 insns which use its result will not be executed until its result
284 has been computed. An insn is maintained in one of four structures:
286 (P) the "Pending" set of insns which cannot be scheduled until
287 their dependencies have been satisfied.
288 (Q) the "Queued" set of insns that can be scheduled when sufficient
289 time has passed.
290 (R) the "Ready" list of unscheduled, uncommitted insns.
291 (S) the "Scheduled" list of insns.
293 Initially, all insns are either "Pending" or "Ready" depending on
294 whether their dependencies are satisfied.
296 Insns move from the "Ready" list to the "Scheduled" list as they
297 are committed to the schedule. As this occurs, the insns in the
298 "Pending" list have their dependencies satisfied and move to either
299 the "Ready" list or the "Queued" set depending on whether
300 sufficient time has passed to make them ready. As time passes,
301 insns move from the "Queued" set to the "Ready" list.
303 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
304 unscheduled insns, i.e., those that are ready, queued, and pending.
305 The "Queued" set (Q) is implemented by the variable `insn_queue'.
306 The "Ready" list (R) is implemented by the variables `ready' and
307 `n_ready'.
308 The "Scheduled" list (S) is the new insn chain built by this pass.
310 The transition (R->S) is implemented in the scheduling loop in
311 `schedule_block' when the best insn to schedule is chosen.
312 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
313 insns move from the ready list to the scheduled list.
314 The transition (Q->R) is implemented in 'queue_to_insn' as time
315 passes or stalls are introduced. */
317 /* Implement a circular buffer to delay instructions until sufficient
318 time has passed. For the new pipeline description interface,
319 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
320 than maximal time of instruction execution computed by genattr.c on
321 the base maximal time of functional unit reservations and getting a
322 result. This is the longest time an insn may be queued. */
324 static rtx_insn_list **insn_queue;
325 static int q_ptr = 0;
326 static int q_size = 0;
327 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
328 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
330 #define QUEUE_SCHEDULED (-3)
331 #define QUEUE_NOWHERE (-2)
332 #define QUEUE_READY (-1)
333 /* QUEUE_SCHEDULED - INSN is scheduled.
334 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
335 queue or ready list.
336 QUEUE_READY - INSN is in ready list.
337 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
339 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
341 /* The following variable value refers for all current and future
342 reservations of the processor units. */
343 state_t curr_state;
345 /* The following variable value is size of memory representing all
346 current and future reservations of the processor units. */
347 size_t dfa_state_size;
349 /* The following array is used to find the best insn from ready when
350 the automaton pipeline interface is used. */
351 signed char *ready_try = NULL;
353 /* The ready list. */
354 struct ready_list ready = {NULL, 0, 0, 0, 0};
356 /* The pointer to the ready list (to be removed). */
357 static struct ready_list *readyp = &ready;
359 /* Scheduling clock. */
360 static int clock_var;
362 /* Clock at which the previous instruction was issued. */
363 static int last_clock_var;
365 /* Set to true if, when queuing a shadow insn, we discover that it would be
366 scheduled too late. */
367 static bool must_backtrack;
369 /* The following variable value is number of essential insns issued on
370 the current cycle. An insn is essential one if it changes the
371 processors state. */
372 int cycle_issued_insns;
374 /* This records the actual schedule. It is built up during the main phase
375 of schedule_block, and afterwards used to reorder the insns in the RTL. */
376 static vec<rtx_insn *> scheduled_insns;
378 static int may_trap_exp (const_rtx, int);
380 /* Nonzero iff the address is comprised from at most 1 register. */
381 #define CONST_BASED_ADDRESS_P(x) \
382 (REG_P (x) \
383 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
384 || (GET_CODE (x) == LO_SUM)) \
385 && (CONSTANT_P (XEXP (x, 0)) \
386 || CONSTANT_P (XEXP (x, 1)))))
388 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
389 as found by analyzing insn's expression. */
392 static int haifa_luid_for_non_insn (rtx x);
394 /* Haifa version of sched_info hooks common to all headers. */
395 const struct common_sched_info_def haifa_common_sched_info =
397 NULL, /* fix_recovery_cfg */
398 NULL, /* add_block */
399 NULL, /* estimate_number_of_insns */
400 haifa_luid_for_non_insn, /* luid_for_non_insn */
401 SCHED_PASS_UNKNOWN /* sched_pass_id */
404 /* Mapping from instruction UID to its Logical UID. */
405 vec<int> sched_luids;
407 /* Next LUID to assign to an instruction. */
408 int sched_max_luid = 1;
410 /* Haifa Instruction Data. */
411 vec<haifa_insn_data_def> h_i_d;
413 void (* sched_init_only_bb) (basic_block, basic_block);
415 /* Split block function. Different schedulers might use different functions
416 to handle their internal data consistent. */
417 basic_block (* sched_split_block) (basic_block, rtx);
419 /* Create empty basic block after the specified block. */
420 basic_block (* sched_create_empty_bb) (basic_block);
422 /* Return the number of cycles until INSN is expected to be ready.
423 Return zero if it already is. */
424 static int
425 insn_delay (rtx_insn *insn)
427 return MAX (INSN_TICK (insn) - clock_var, 0);
430 static int
431 may_trap_exp (const_rtx x, int is_store)
433 enum rtx_code code;
435 if (x == 0)
436 return TRAP_FREE;
437 code = GET_CODE (x);
438 if (is_store)
440 if (code == MEM && may_trap_p (x))
441 return TRAP_RISKY;
442 else
443 return TRAP_FREE;
445 if (code == MEM)
447 /* The insn uses memory: a volatile load. */
448 if (MEM_VOLATILE_P (x))
449 return IRISKY;
450 /* An exception-free load. */
451 if (!may_trap_p (x))
452 return IFREE;
453 /* A load with 1 base register, to be further checked. */
454 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
455 return PFREE_CANDIDATE;
456 /* No info on the load, to be further checked. */
457 return PRISKY_CANDIDATE;
459 else
461 const char *fmt;
462 int i, insn_class = TRAP_FREE;
464 /* Neither store nor load, check if it may cause a trap. */
465 if (may_trap_p (x))
466 return TRAP_RISKY;
467 /* Recursive step: walk the insn... */
468 fmt = GET_RTX_FORMAT (code);
469 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
471 if (fmt[i] == 'e')
473 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
474 insn_class = WORST_CLASS (insn_class, tmp_class);
476 else if (fmt[i] == 'E')
478 int j;
479 for (j = 0; j < XVECLEN (x, i); j++)
481 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
482 insn_class = WORST_CLASS (insn_class, tmp_class);
483 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
484 break;
487 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
488 break;
490 return insn_class;
494 /* Classifies rtx X of an insn for the purpose of verifying that X can be
495 executed speculatively (and consequently the insn can be moved
496 speculatively), by examining X, returning:
497 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
498 TRAP_FREE: non-load insn.
499 IFREE: load from a globally safe location.
500 IRISKY: volatile load.
501 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
502 being either PFREE or PRISKY. */
504 static int
505 haifa_classify_rtx (const_rtx x)
507 int tmp_class = TRAP_FREE;
508 int insn_class = TRAP_FREE;
509 enum rtx_code code;
511 if (GET_CODE (x) == PARALLEL)
513 int i, len = XVECLEN (x, 0);
515 for (i = len - 1; i >= 0; i--)
517 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
518 insn_class = WORST_CLASS (insn_class, tmp_class);
519 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
520 break;
523 else
525 code = GET_CODE (x);
526 switch (code)
528 case CLOBBER:
529 /* Test if it is a 'store'. */
530 tmp_class = may_trap_exp (XEXP (x, 0), 1);
531 break;
532 case SET:
533 /* Test if it is a store. */
534 tmp_class = may_trap_exp (SET_DEST (x), 1);
535 if (tmp_class == TRAP_RISKY)
536 break;
537 /* Test if it is a load. */
538 tmp_class =
539 WORST_CLASS (tmp_class,
540 may_trap_exp (SET_SRC (x), 0));
541 break;
542 case COND_EXEC:
543 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
544 if (tmp_class == TRAP_RISKY)
545 break;
546 tmp_class = WORST_CLASS (tmp_class,
547 may_trap_exp (COND_EXEC_TEST (x), 0));
548 break;
549 case TRAP_IF:
550 tmp_class = TRAP_RISKY;
551 break;
552 default:;
554 insn_class = tmp_class;
557 return insn_class;
561 haifa_classify_insn (const_rtx insn)
563 return haifa_classify_rtx (PATTERN (insn));
566 /* After the scheduler initialization function has been called, this function
567 can be called to enable modulo scheduling. II is the initiation interval
568 we should use, it affects the delays for delay_pairs that were recorded as
569 separated by a given number of stages.
571 MAX_STAGES provides us with a limit
572 after which we give up scheduling; the caller must have unrolled at least
573 as many copies of the loop body and recorded delay_pairs for them.
575 INSNS is the number of real (non-debug) insns in one iteration of
576 the loop. MAX_UID can be used to test whether an insn belongs to
577 the first iteration of the loop; all of them have a uid lower than
578 MAX_UID. */
579 void
580 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
582 modulo_ii = ii;
583 modulo_max_stages = max_stages;
584 modulo_n_insns = insns;
585 modulo_iter0_max_uid = max_uid;
586 modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
589 /* A structure to record a pair of insns where the first one is a real
590 insn that has delay slots, and the second is its delayed shadow.
591 I1 is scheduled normally and will emit an assembly instruction,
592 while I2 describes the side effect that takes place at the
593 transition between cycles CYCLES and (CYCLES + 1) after I1. */
594 struct delay_pair
596 struct delay_pair *next_same_i1;
597 rtx_insn *i1, *i2;
598 int cycles;
599 /* When doing modulo scheduling, we a delay_pair can also be used to
600 show that I1 and I2 are the same insn in a different stage. If that
601 is the case, STAGES will be nonzero. */
602 int stages;
605 /* Helpers for delay hashing. */
607 struct delay_i1_hasher : nofree_ptr_hash <delay_pair>
609 typedef void *compare_type;
610 static inline hashval_t hash (const delay_pair *);
611 static inline bool equal (const delay_pair *, const void *);
614 /* Returns a hash value for X, based on hashing just I1. */
616 inline hashval_t
617 delay_i1_hasher::hash (const delay_pair *x)
619 return htab_hash_pointer (x->i1);
622 /* Return true if I1 of pair X is the same as that of pair Y. */
624 inline bool
625 delay_i1_hasher::equal (const delay_pair *x, const void *y)
627 return x->i1 == y;
630 struct delay_i2_hasher : free_ptr_hash <delay_pair>
632 typedef void *compare_type;
633 static inline hashval_t hash (const delay_pair *);
634 static inline bool equal (const delay_pair *, const void *);
637 /* Returns a hash value for X, based on hashing just I2. */
639 inline hashval_t
640 delay_i2_hasher::hash (const delay_pair *x)
642 return htab_hash_pointer (x->i2);
645 /* Return true if I2 of pair X is the same as that of pair Y. */
647 inline bool
648 delay_i2_hasher::equal (const delay_pair *x, const void *y)
650 return x->i2 == y;
653 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
654 indexed by I2. */
655 static hash_table<delay_i1_hasher> *delay_htab;
656 static hash_table<delay_i2_hasher> *delay_htab_i2;
658 /* Called through htab_traverse. Walk the hashtable using I2 as
659 index, and delete all elements involving an UID higher than
660 that pointed to by *DATA. */
662 haifa_htab_i2_traverse (delay_pair **slot, int *data)
664 int maxuid = *data;
665 struct delay_pair *p = *slot;
666 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
668 delay_htab_i2->clear_slot (slot);
670 return 1;
673 /* Called through htab_traverse. Walk the hashtable using I2 as
674 index, and delete all elements involving an UID higher than
675 that pointed to by *DATA. */
677 haifa_htab_i1_traverse (delay_pair **pslot, int *data)
679 int maxuid = *data;
680 struct delay_pair *p, *first, **pprev;
682 if (INSN_UID ((*pslot)->i1) >= maxuid)
684 delay_htab->clear_slot (pslot);
685 return 1;
687 pprev = &first;
688 for (p = *pslot; p; p = p->next_same_i1)
690 if (INSN_UID (p->i2) < maxuid)
692 *pprev = p;
693 pprev = &p->next_same_i1;
696 *pprev = NULL;
697 if (first == NULL)
698 delay_htab->clear_slot (pslot);
699 else
700 *pslot = first;
701 return 1;
704 /* Discard all delay pairs which involve an insn with an UID higher
705 than MAX_UID. */
706 void
707 discard_delay_pairs_above (int max_uid)
709 delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
710 delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
713 /* This function can be called by a port just before it starts the final
714 scheduling pass. It records the fact that an instruction with delay
715 slots has been split into two insns, I1 and I2. The first one will be
716 scheduled normally and initiates the operation. The second one is a
717 shadow which must follow a specific number of cycles after I1; its only
718 purpose is to show the side effect that occurs at that cycle in the RTL.
719 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
720 while I2 retains the original insn type.
722 There are two ways in which the number of cycles can be specified,
723 involving the CYCLES and STAGES arguments to this function. If STAGES
724 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
725 which is multiplied by MODULO_II to give the number of cycles. This is
726 only useful if the caller also calls set_modulo_params to enable modulo
727 scheduling. */
729 void
730 record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages)
732 struct delay_pair *p = XNEW (struct delay_pair);
733 struct delay_pair **slot;
735 p->i1 = i1;
736 p->i2 = i2;
737 p->cycles = cycles;
738 p->stages = stages;
740 if (!delay_htab)
742 delay_htab = new hash_table<delay_i1_hasher> (10);
743 delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
745 slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
746 p->next_same_i1 = *slot;
747 *slot = p;
748 slot = delay_htab_i2->find_slot (p, INSERT);
749 *slot = p;
752 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
753 and return the other insn if so. Return NULL otherwise. */
754 rtx_insn *
755 real_insn_for_shadow (rtx_insn *insn)
757 struct delay_pair *pair;
759 if (!delay_htab)
760 return NULL;
762 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
763 if (!pair || pair->stages > 0)
764 return NULL;
765 return pair->i1;
768 /* For a pair P of insns, return the fixed distance in cycles from the first
769 insn after which the second must be scheduled. */
770 static int
771 pair_delay (struct delay_pair *p)
773 if (p->stages == 0)
774 return p->cycles;
775 else
776 return p->stages * modulo_ii;
779 /* Given an insn INSN, add a dependence on its delayed shadow if it
780 has one. Also try to find situations where shadows depend on each other
781 and add dependencies to the real insns to limit the amount of backtracking
782 needed. */
783 void
784 add_delay_dependencies (rtx_insn *insn)
786 struct delay_pair *pair;
787 sd_iterator_def sd_it;
788 dep_t dep;
790 if (!delay_htab)
791 return;
793 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
794 if (!pair)
795 return;
796 add_dependence (insn, pair->i1, REG_DEP_ANTI);
797 if (pair->stages)
798 return;
800 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
802 rtx_insn *pro = DEP_PRO (dep);
803 struct delay_pair *other_pair
804 = delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
805 if (!other_pair || other_pair->stages)
806 continue;
807 if (pair_delay (other_pair) >= pair_delay (pair))
809 if (sched_verbose >= 4)
811 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
812 INSN_UID (other_pair->i1),
813 INSN_UID (pair->i1));
814 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
815 INSN_UID (pair->i1),
816 INSN_UID (pair->i2),
817 pair_delay (pair));
818 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
819 INSN_UID (other_pair->i1),
820 INSN_UID (other_pair->i2),
821 pair_delay (other_pair));
823 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
828 /* Forward declarations. */
830 static int priority (rtx_insn *);
831 static int autopref_rank_for_schedule (const rtx_insn *, const rtx_insn *);
832 static int rank_for_schedule (const void *, const void *);
833 static void swap_sort (rtx_insn **, int);
834 static void queue_insn (rtx_insn *, int, const char *);
835 static int schedule_insn (rtx_insn *);
836 static void adjust_priority (rtx_insn *);
837 static void advance_one_cycle (void);
838 static void extend_h_i_d (void);
841 /* Notes handling mechanism:
842 =========================
843 Generally, NOTES are saved before scheduling and restored after scheduling.
844 The scheduler distinguishes between two types of notes:
846 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
847 Before scheduling a region, a pointer to the note is added to the insn
848 that follows or precedes it. (This happens as part of the data dependence
849 computation). After scheduling an insn, the pointer contained in it is
850 used for regenerating the corresponding note (in reemit_notes).
852 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
853 these notes are put in a list (in rm_other_notes() and
854 unlink_other_notes ()). After scheduling the block, these notes are
855 inserted at the beginning of the block (in schedule_block()). */
857 static void ready_add (struct ready_list *, rtx_insn *, bool);
858 static rtx_insn *ready_remove_first (struct ready_list *);
859 static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready);
861 static void queue_to_ready (struct ready_list *);
862 static int early_queue_to_ready (state_t, struct ready_list *);
864 /* The following functions are used to implement multi-pass scheduling
865 on the first cycle. */
866 static rtx_insn *ready_remove (struct ready_list *, int);
867 static void ready_remove_insn (rtx_insn *);
869 static void fix_inter_tick (rtx_insn *, rtx_insn *);
870 static int fix_tick_ready (rtx_insn *);
871 static void change_queue_index (rtx_insn *, int);
873 /* The following functions are used to implement scheduling of data/control
874 speculative instructions. */
876 static void extend_h_i_d (void);
877 static void init_h_i_d (rtx_insn *);
878 static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *);
879 static void generate_recovery_code (rtx_insn *);
880 static void process_insn_forw_deps_be_in_spec (rtx_insn *, rtx_insn *, ds_t);
881 static void begin_speculative_block (rtx_insn *);
882 static void add_to_speculative_block (rtx_insn *);
883 static void init_before_recovery (basic_block *);
884 static void create_check_block_twin (rtx_insn *, bool);
885 static void fix_recovery_deps (basic_block);
886 static bool haifa_change_pattern (rtx_insn *, rtx);
887 static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *);
888 static void restore_bb_notes (basic_block);
889 static void fix_jump_move (rtx_insn *);
890 static void move_block_after_check (rtx_insn *);
891 static void move_succs (vec<edge, va_gc> **, basic_block);
892 static void sched_remove_insn (rtx_insn *);
893 static void clear_priorities (rtx_insn *, rtx_vec_t *);
894 static void calc_priorities (rtx_vec_t);
895 static void add_jump_dependencies (rtx_insn *, rtx_insn *);
897 #endif /* INSN_SCHEDULING */
899 /* Point to state used for the current scheduling pass. */
900 struct haifa_sched_info *current_sched_info;
902 #ifndef INSN_SCHEDULING
903 void
904 schedule_insns (void)
907 #else
909 /* Do register pressure sensitive insn scheduling if the flag is set
910 up. */
911 enum sched_pressure_algorithm sched_pressure;
913 /* Map regno -> its pressure class. The map defined only when
914 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
915 enum reg_class *sched_regno_pressure_class;
917 /* The current register pressure. Only elements corresponding pressure
918 classes are defined. */
919 static int curr_reg_pressure[N_REG_CLASSES];
921 /* Saved value of the previous array. */
922 static int saved_reg_pressure[N_REG_CLASSES];
924 /* Register living at given scheduling point. */
925 static bitmap curr_reg_live;
927 /* Saved value of the previous array. */
928 static bitmap saved_reg_live;
930 /* Registers mentioned in the current region. */
931 static bitmap region_ref_regs;
933 /* Temporary bitmap used for SCHED_PRESSURE_MODEL. */
934 static bitmap tmp_bitmap;
936 /* Effective number of available registers of a given class (see comment
937 in sched_pressure_start_bb). */
938 static int sched_class_regs_num[N_REG_CLASSES];
939 /* Number of call_saved_regs and fixed_regs. Helpers for calculating of
940 sched_class_regs_num. */
941 static int call_saved_regs_num[N_REG_CLASSES];
942 static int fixed_regs_num[N_REG_CLASSES];
944 /* Initiate register pressure relative info for scheduling the current
945 region. Currently it is only clearing register mentioned in the
946 current region. */
947 void
948 sched_init_region_reg_pressure_info (void)
950 bitmap_clear (region_ref_regs);
953 /* PRESSURE[CL] describes the pressure on register class CL. Update it
954 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
955 LIVE tracks the set of live registers; if it is null, assume that
956 every birth or death is genuine. */
957 static inline void
958 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
960 enum reg_class pressure_class;
962 pressure_class = sched_regno_pressure_class[regno];
963 if (regno >= FIRST_PSEUDO_REGISTER)
965 if (pressure_class != NO_REGS)
967 if (birth_p)
969 if (!live || bitmap_set_bit (live, regno))
970 pressure[pressure_class]
971 += (ira_reg_class_max_nregs
972 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
974 else
976 if (!live || bitmap_clear_bit (live, regno))
977 pressure[pressure_class]
978 -= (ira_reg_class_max_nregs
979 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
983 else if (pressure_class != NO_REGS
984 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
986 if (birth_p)
988 if (!live || bitmap_set_bit (live, regno))
989 pressure[pressure_class]++;
991 else
993 if (!live || bitmap_clear_bit (live, regno))
994 pressure[pressure_class]--;
999 /* Initiate current register pressure related info from living
1000 registers given by LIVE. */
1001 static void
1002 initiate_reg_pressure_info (bitmap live)
1004 int i;
1005 unsigned int j;
1006 bitmap_iterator bi;
1008 for (i = 0; i < ira_pressure_classes_num; i++)
1009 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1010 bitmap_clear (curr_reg_live);
1011 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
1012 if (sched_pressure == SCHED_PRESSURE_MODEL
1013 || current_nr_blocks == 1
1014 || bitmap_bit_p (region_ref_regs, j))
1015 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
1018 /* Mark registers in X as mentioned in the current region. */
1019 static void
1020 setup_ref_regs (rtx x)
1022 int i, j;
1023 const RTX_CODE code = GET_CODE (x);
1024 const char *fmt;
1026 if (REG_P (x))
1028 bitmap_set_range (region_ref_regs, REGNO (x), REG_NREGS (x));
1029 return;
1031 fmt = GET_RTX_FORMAT (code);
1032 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1033 if (fmt[i] == 'e')
1034 setup_ref_regs (XEXP (x, i));
1035 else if (fmt[i] == 'E')
1037 for (j = 0; j < XVECLEN (x, i); j++)
1038 setup_ref_regs (XVECEXP (x, i, j));
1042 /* Initiate current register pressure related info at the start of
1043 basic block BB. */
1044 static void
1045 initiate_bb_reg_pressure_info (basic_block bb)
1047 unsigned int i ATTRIBUTE_UNUSED;
1048 rtx_insn *insn;
1050 if (current_nr_blocks > 1)
1051 FOR_BB_INSNS (bb, insn)
1052 if (NONDEBUG_INSN_P (insn))
1053 setup_ref_regs (PATTERN (insn));
1054 initiate_reg_pressure_info (df_get_live_in (bb));
1055 if (bb_has_eh_pred (bb))
1056 for (i = 0; ; ++i)
1058 unsigned int regno = EH_RETURN_DATA_REGNO (i);
1060 if (regno == INVALID_REGNUM)
1061 break;
1062 if (! bitmap_bit_p (df_get_live_in (bb), regno))
1063 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1064 regno, true);
1068 /* Save current register pressure related info. */
1069 static void
1070 save_reg_pressure (void)
1072 int i;
1074 for (i = 0; i < ira_pressure_classes_num; i++)
1075 saved_reg_pressure[ira_pressure_classes[i]]
1076 = curr_reg_pressure[ira_pressure_classes[i]];
1077 bitmap_copy (saved_reg_live, curr_reg_live);
1080 /* Restore saved register pressure related info. */
1081 static void
1082 restore_reg_pressure (void)
1084 int i;
1086 for (i = 0; i < ira_pressure_classes_num; i++)
1087 curr_reg_pressure[ira_pressure_classes[i]]
1088 = saved_reg_pressure[ira_pressure_classes[i]];
1089 bitmap_copy (curr_reg_live, saved_reg_live);
1092 /* Return TRUE if the register is dying after its USE. */
1093 static bool
1094 dying_use_p (struct reg_use_data *use)
1096 struct reg_use_data *next;
1098 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1099 if (NONDEBUG_INSN_P (next->insn)
1100 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1101 return false;
1102 return true;
1105 /* Print info about the current register pressure and its excess for
1106 each pressure class. */
1107 static void
1108 print_curr_reg_pressure (void)
1110 int i;
1111 enum reg_class cl;
1113 fprintf (sched_dump, ";;\t");
1114 for (i = 0; i < ira_pressure_classes_num; i++)
1116 cl = ira_pressure_classes[i];
1117 gcc_assert (curr_reg_pressure[cl] >= 0);
1118 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1119 curr_reg_pressure[cl],
1120 curr_reg_pressure[cl] - sched_class_regs_num[cl]);
1122 fprintf (sched_dump, "\n");
1125 /* Determine if INSN has a condition that is clobbered if a register
1126 in SET_REGS is modified. */
1127 static bool
1128 cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs)
1130 rtx pat = PATTERN (insn);
1131 gcc_assert (GET_CODE (pat) == COND_EXEC);
1132 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1134 sd_iterator_def sd_it;
1135 dep_t dep;
1136 haifa_change_pattern (insn, ORIG_PAT (insn));
1137 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1138 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1139 TODO_SPEC (insn) = HARD_DEP;
1140 if (sched_verbose >= 2)
1141 fprintf (sched_dump,
1142 ";;\t\tdequeue insn %s because of clobbered condition\n",
1143 (*current_sched_info->print_insn) (insn, 0));
1144 return true;
1147 return false;
1150 /* This function should be called after modifying the pattern of INSN,
1151 to update scheduler data structures as needed. */
1152 static void
1153 update_insn_after_change (rtx_insn *insn)
1155 sd_iterator_def sd_it;
1156 dep_t dep;
1158 dfa_clear_single_insn_cache (insn);
1160 sd_it = sd_iterator_start (insn,
1161 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1162 while (sd_iterator_cond (&sd_it, &dep))
1164 DEP_COST (dep) = UNKNOWN_DEP_COST;
1165 sd_iterator_next (&sd_it);
1168 /* Invalidate INSN_COST, so it'll be recalculated. */
1169 INSN_COST (insn) = -1;
1170 /* Invalidate INSN_TICK, so it'll be recalculated. */
1171 INSN_TICK (insn) = INVALID_TICK;
1173 /* Invalidate autoprefetch data entry. */
1174 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
1175 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1176 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
1177 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1181 /* Two VECs, one to hold dependencies for which pattern replacements
1182 need to be applied or restored at the start of the next cycle, and
1183 another to hold an integer that is either one, to apply the
1184 corresponding replacement, or zero to restore it. */
1185 static vec<dep_t> next_cycle_replace_deps;
1186 static vec<int> next_cycle_apply;
1188 static void apply_replacement (dep_t, bool);
1189 static void restore_pattern (dep_t, bool);
1191 /* Look at the remaining dependencies for insn NEXT, and compute and return
1192 the TODO_SPEC value we should use for it. This is called after one of
1193 NEXT's dependencies has been resolved.
1194 We also perform pattern replacements for predication, and for broken
1195 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1196 false. */
1198 static ds_t
1199 recompute_todo_spec (rtx_insn *next, bool for_backtrack)
1201 ds_t new_ds;
1202 sd_iterator_def sd_it;
1203 dep_t dep, modify_dep = NULL;
1204 int n_spec = 0;
1205 int n_control = 0;
1206 int n_replace = 0;
1207 bool first_p = true;
1209 if (sd_lists_empty_p (next, SD_LIST_BACK))
1210 /* NEXT has all its dependencies resolved. */
1211 return 0;
1213 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1214 return HARD_DEP;
1216 /* If NEXT is intended to sit adjacent to this instruction, we don't
1217 want to try to break any dependencies. Treat it as a HARD_DEP. */
1218 if (SCHED_GROUP_P (next))
1219 return HARD_DEP;
1221 /* Now we've got NEXT with speculative deps only.
1222 1. Look at the deps to see what we have to do.
1223 2. Check if we can do 'todo'. */
1224 new_ds = 0;
1226 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1228 rtx_insn *pro = DEP_PRO (dep);
1229 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1231 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
1232 continue;
1234 if (ds)
1236 n_spec++;
1237 if (first_p)
1239 first_p = false;
1241 new_ds = ds;
1243 else
1244 new_ds = ds_merge (new_ds, ds);
1246 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1248 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1250 n_control++;
1251 modify_dep = dep;
1253 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1255 else if (DEP_REPLACE (dep) != NULL)
1257 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1259 n_replace++;
1260 modify_dep = dep;
1262 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1266 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1268 if (!dbg_cnt (sched_breakdep))
1269 return HARD_DEP;
1270 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1272 struct dep_replacement *desc = DEP_REPLACE (dep);
1273 if (desc != NULL)
1275 if (desc->insn == next && !for_backtrack)
1277 gcc_assert (n_replace == 1);
1278 apply_replacement (dep, true);
1280 DEP_STATUS (dep) |= DEP_CANCELLED;
1283 return 0;
1286 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
1288 rtx_insn *pro, *other;
1289 rtx new_pat;
1290 rtx cond = NULL_RTX;
1291 bool success;
1292 rtx_insn *prev = NULL;
1293 int i;
1294 unsigned regno;
1296 if ((current_sched_info->flags & DO_PREDICATION) == 0
1297 || (ORIG_PAT (next) != NULL_RTX
1298 && PREDICATED_PAT (next) == NULL_RTX))
1299 return HARD_DEP;
1301 pro = DEP_PRO (modify_dep);
1302 other = real_insn_for_shadow (pro);
1303 if (other != NULL_RTX)
1304 pro = other;
1306 cond = sched_get_reverse_condition_uncached (pro);
1307 regno = REGNO (XEXP (cond, 0));
1309 /* Find the last scheduled insn that modifies the condition register.
1310 We can stop looking once we find the insn we depend on through the
1311 REG_DEP_CONTROL; if the condition register isn't modified after it,
1312 we know that it still has the right value. */
1313 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1314 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
1316 HARD_REG_SET t;
1318 find_all_hard_reg_sets (prev, &t, true);
1319 if (TEST_HARD_REG_BIT (t, regno))
1320 return HARD_DEP;
1321 if (prev == pro)
1322 break;
1324 if (ORIG_PAT (next) == NULL_RTX)
1326 ORIG_PAT (next) = PATTERN (next);
1328 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1329 success = haifa_change_pattern (next, new_pat);
1330 if (!success)
1331 return HARD_DEP;
1332 PREDICATED_PAT (next) = new_pat;
1334 else if (PATTERN (next) != PREDICATED_PAT (next))
1336 bool success = haifa_change_pattern (next,
1337 PREDICATED_PAT (next));
1338 gcc_assert (success);
1340 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
1341 return DEP_CONTROL;
1344 if (PREDICATED_PAT (next) != NULL_RTX)
1346 int tick = INSN_TICK (next);
1347 bool success = haifa_change_pattern (next,
1348 ORIG_PAT (next));
1349 INSN_TICK (next) = tick;
1350 gcc_assert (success);
1353 /* We can't handle the case where there are both speculative and control
1354 dependencies, so we return HARD_DEP in such a case. Also fail if
1355 we have speculative dependencies with not enough points, or more than
1356 one control dependency. */
1357 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
1358 || (n_spec > 0
1359 /* Too few points? */
1360 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1361 || n_control > 0
1362 || n_replace > 0)
1363 return HARD_DEP;
1365 return new_ds;
1368 /* Pointer to the last instruction scheduled. */
1369 static rtx_insn *last_scheduled_insn;
1371 /* Pointer to the last nondebug instruction scheduled within the
1372 block, or the prev_head of the scheduling block. Used by
1373 rank_for_schedule, so that insns independent of the last scheduled
1374 insn will be preferred over dependent instructions. */
1375 static rtx_insn *last_nondebug_scheduled_insn;
1377 /* Pointer that iterates through the list of unscheduled insns if we
1378 have a dbg_cnt enabled. It always points at an insn prior to the
1379 first unscheduled one. */
1380 static rtx_insn *nonscheduled_insns_begin;
1382 /* Compute cost of executing INSN.
1383 This is the number of cycles between instruction issue and
1384 instruction results. */
1386 insn_sched_cost (rtx_insn *insn)
1388 int cost;
1390 if (sched_fusion)
1391 return 0;
1393 if (sel_sched_p ())
1395 if (recog_memoized (insn) < 0)
1396 return 0;
1398 cost = insn_default_latency (insn);
1399 if (cost < 0)
1400 cost = 0;
1402 return cost;
1405 cost = INSN_COST (insn);
1407 if (cost < 0)
1409 /* A USE insn, or something else we don't need to
1410 understand. We can't pass these directly to
1411 result_ready_cost or insn_default_latency because it will
1412 trigger a fatal error for unrecognizable insns. */
1413 if (recog_memoized (insn) < 0)
1415 INSN_COST (insn) = 0;
1416 return 0;
1418 else
1420 cost = insn_default_latency (insn);
1421 if (cost < 0)
1422 cost = 0;
1424 INSN_COST (insn) = cost;
1428 return cost;
1431 /* Compute cost of dependence LINK.
1432 This is the number of cycles between instruction issue and
1433 instruction results.
1434 ??? We also use this function to call recog_memoized on all insns. */
1436 dep_cost_1 (dep_t link, dw_t dw)
1438 rtx_insn *insn = DEP_PRO (link);
1439 rtx_insn *used = DEP_CON (link);
1440 int cost;
1442 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1443 return DEP_COST (link);
1445 if (delay_htab)
1447 struct delay_pair *delay_entry;
1448 delay_entry
1449 = delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
1450 if (delay_entry)
1452 if (delay_entry->i1 == insn)
1454 DEP_COST (link) = pair_delay (delay_entry);
1455 return DEP_COST (link);
1460 /* A USE insn should never require the value used to be computed.
1461 This allows the computation of a function's result and parameter
1462 values to overlap the return and call. We don't care about the
1463 dependence cost when only decreasing register pressure. */
1464 if (recog_memoized (used) < 0)
1466 cost = 0;
1467 recog_memoized (insn);
1469 else
1471 enum reg_note dep_type = DEP_TYPE (link);
1473 cost = insn_sched_cost (insn);
1475 if (INSN_CODE (insn) >= 0)
1477 if (dep_type == REG_DEP_ANTI)
1478 cost = 0;
1479 else if (dep_type == REG_DEP_OUTPUT)
1481 cost = (insn_default_latency (insn)
1482 - insn_default_latency (used));
1483 if (cost <= 0)
1484 cost = 1;
1486 else if (bypass_p (insn))
1487 cost = insn_latency (insn, used);
1491 if (targetm.sched.adjust_cost)
1492 cost = targetm.sched.adjust_cost (used, (int) dep_type, insn, cost,
1493 dw);
1495 if (cost < 0)
1496 cost = 0;
1499 DEP_COST (link) = cost;
1500 return cost;
1503 /* Compute cost of dependence LINK.
1504 This is the number of cycles between instruction issue and
1505 instruction results. */
1507 dep_cost (dep_t link)
1509 return dep_cost_1 (link, 0);
1512 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1513 INSN_PRIORITY explicitly. */
1514 void
1515 increase_insn_priority (rtx_insn *insn, int amount)
1517 if (!sel_sched_p ())
1519 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1520 if (INSN_PRIORITY_KNOWN (insn))
1521 INSN_PRIORITY (insn) += amount;
1523 else
1525 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1526 Use EXPR_PRIORITY instead. */
1527 sel_add_to_insn_priority (insn, amount);
1531 /* Return 'true' if DEP should be included in priority calculations. */
1532 static bool
1533 contributes_to_priority_p (dep_t dep)
1535 if (DEBUG_INSN_P (DEP_CON (dep))
1536 || DEBUG_INSN_P (DEP_PRO (dep)))
1537 return false;
1539 /* Critical path is meaningful in block boundaries only. */
1540 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1541 DEP_PRO (dep)))
1542 return false;
1544 if (DEP_REPLACE (dep) != NULL)
1545 return false;
1547 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1548 then speculative instructions will less likely be
1549 scheduled. That is because the priority of
1550 their producers will increase, and, thus, the
1551 producers will more likely be scheduled, thus,
1552 resolving the dependence. */
1553 if (sched_deps_info->generate_spec_deps
1554 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1555 && (DEP_STATUS (dep) & SPECULATIVE))
1556 return false;
1558 return true;
1561 /* Compute the number of nondebug deps in list LIST for INSN. */
1563 static int
1564 dep_list_size (rtx_insn *insn, sd_list_types_def list)
1566 sd_iterator_def sd_it;
1567 dep_t dep;
1568 int dbgcount = 0, nodbgcount = 0;
1570 if (!MAY_HAVE_DEBUG_INSNS)
1571 return sd_lists_size (insn, list);
1573 FOR_EACH_DEP (insn, list, sd_it, dep)
1575 if (DEBUG_INSN_P (DEP_CON (dep)))
1576 dbgcount++;
1577 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1578 nodbgcount++;
1581 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1583 return nodbgcount;
1586 bool sched_fusion;
1588 /* Compute the priority number for INSN. */
1589 static int
1590 priority (rtx_insn *insn)
1592 if (! INSN_P (insn))
1593 return 0;
1595 /* We should not be interested in priority of an already scheduled insn. */
1596 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1598 if (!INSN_PRIORITY_KNOWN (insn))
1600 int this_priority = -1;
1602 if (sched_fusion)
1604 int this_fusion_priority;
1606 targetm.sched.fusion_priority (insn, FUSION_MAX_PRIORITY,
1607 &this_fusion_priority, &this_priority);
1608 INSN_FUSION_PRIORITY (insn) = this_fusion_priority;
1610 else if (dep_list_size (insn, SD_LIST_FORW) == 0)
1611 /* ??? We should set INSN_PRIORITY to insn_sched_cost when and insn
1612 has some forward deps but all of them are ignored by
1613 contributes_to_priority hook. At the moment we set priority of
1614 such insn to 0. */
1615 this_priority = insn_sched_cost (insn);
1616 else
1618 rtx_insn *prev_first, *twin;
1619 basic_block rec;
1621 /* For recovery check instructions we calculate priority slightly
1622 different than that of normal instructions. Instead of walking
1623 through INSN_FORW_DEPS (check) list, we walk through
1624 INSN_FORW_DEPS list of each instruction in the corresponding
1625 recovery block. */
1627 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1628 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1629 if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
1631 prev_first = PREV_INSN (insn);
1632 twin = insn;
1634 else
1636 prev_first = NEXT_INSN (BB_HEAD (rec));
1637 twin = PREV_INSN (BB_END (rec));
1642 sd_iterator_def sd_it;
1643 dep_t dep;
1645 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1647 rtx_insn *next;
1648 int next_priority;
1650 next = DEP_CON (dep);
1652 if (BLOCK_FOR_INSN (next) != rec)
1654 int cost;
1656 if (!contributes_to_priority_p (dep))
1657 continue;
1659 if (twin == insn)
1660 cost = dep_cost (dep);
1661 else
1663 struct _dep _dep1, *dep1 = &_dep1;
1665 init_dep (dep1, insn, next, REG_DEP_ANTI);
1667 cost = dep_cost (dep1);
1670 next_priority = cost + priority (next);
1672 if (next_priority > this_priority)
1673 this_priority = next_priority;
1677 twin = PREV_INSN (twin);
1679 while (twin != prev_first);
1682 if (this_priority < 0)
1684 gcc_assert (this_priority == -1);
1686 this_priority = insn_sched_cost (insn);
1689 INSN_PRIORITY (insn) = this_priority;
1690 INSN_PRIORITY_STATUS (insn) = 1;
1693 return INSN_PRIORITY (insn);
1696 /* Macros and functions for keeping the priority queue sorted, and
1697 dealing with queuing and dequeuing of instructions. */
1699 /* For each pressure class CL, set DEATH[CL] to the number of registers
1700 in that class that die in INSN. */
1702 static void
1703 calculate_reg_deaths (rtx_insn *insn, int *death)
1705 int i;
1706 struct reg_use_data *use;
1708 for (i = 0; i < ira_pressure_classes_num; i++)
1709 death[ira_pressure_classes[i]] = 0;
1710 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1711 if (dying_use_p (use))
1712 mark_regno_birth_or_death (0, death, use->regno, true);
1715 /* Setup info about the current register pressure impact of scheduling
1716 INSN at the current scheduling point. */
1717 static void
1718 setup_insn_reg_pressure_info (rtx_insn *insn)
1720 int i, change, before, after, hard_regno;
1721 int excess_cost_change;
1722 machine_mode mode;
1723 enum reg_class cl;
1724 struct reg_pressure_data *pressure_info;
1725 int *max_reg_pressure;
1726 static int death[N_REG_CLASSES];
1728 gcc_checking_assert (!DEBUG_INSN_P (insn));
1730 excess_cost_change = 0;
1731 calculate_reg_deaths (insn, death);
1732 pressure_info = INSN_REG_PRESSURE (insn);
1733 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1734 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1735 for (i = 0; i < ira_pressure_classes_num; i++)
1737 cl = ira_pressure_classes[i];
1738 gcc_assert (curr_reg_pressure[cl] >= 0);
1739 change = (int) pressure_info[i].set_increase - death[cl];
1740 before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]);
1741 after = MAX (0, max_reg_pressure[i] + change
1742 - sched_class_regs_num[cl]);
1743 hard_regno = ira_class_hard_regs[cl][0];
1744 gcc_assert (hard_regno >= 0);
1745 mode = reg_raw_mode[hard_regno];
1746 excess_cost_change += ((after - before)
1747 * (ira_memory_move_cost[mode][cl][0]
1748 + ira_memory_move_cost[mode][cl][1]));
1750 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1753 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1754 It tries to make the scheduler take register pressure into account
1755 without introducing too many unnecessary stalls. It hooks into the
1756 main scheduling algorithm at several points:
1758 - Before scheduling starts, model_start_schedule constructs a
1759 "model schedule" for the current block. This model schedule is
1760 chosen solely to keep register pressure down. It does not take the
1761 target's pipeline or the original instruction order into account,
1762 except as a tie-breaker. It also doesn't work to a particular
1763 pressure limit.
1765 This model schedule gives us an idea of what pressure can be
1766 achieved for the block and gives us an example of a schedule that
1767 keeps to that pressure. It also makes the final schedule less
1768 dependent on the original instruction order. This is important
1769 because the original order can either be "wide" (many values live
1770 at once, such as in user-scheduled code) or "narrow" (few values
1771 live at once, such as after loop unrolling, where several
1772 iterations are executed sequentially).
1774 We do not apply this model schedule to the rtx stream. We simply
1775 record it in model_schedule. We also compute the maximum pressure,
1776 MP, that was seen during this schedule.
1778 - Instructions are added to the ready queue even if they require
1779 a stall. The length of the stall is instead computed as:
1781 MAX (INSN_TICK (INSN) - clock_var, 0)
1783 (= insn_delay). This allows rank_for_schedule to choose between
1784 introducing a deliberate stall or increasing pressure.
1786 - Before sorting the ready queue, model_set_excess_costs assigns
1787 a pressure-based cost to each ready instruction in the queue.
1788 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1789 (ECC for short) and is effectively measured in cycles.
1791 - rank_for_schedule ranks instructions based on:
1793 ECC (insn) + insn_delay (insn)
1795 then as:
1797 insn_delay (insn)
1799 So, for example, an instruction X1 with an ECC of 1 that can issue
1800 now will win over an instruction X0 with an ECC of zero that would
1801 introduce a stall of one cycle. However, an instruction X2 with an
1802 ECC of 2 that can issue now will lose to both X0 and X1.
1804 - When an instruction is scheduled, model_recompute updates the model
1805 schedule with the new pressures (some of which might now exceed the
1806 original maximum pressure MP). model_update_limit_points then searches
1807 for the new point of maximum pressure, if not already known. */
1809 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1810 from surrounding debug information. */
1811 #define MODEL_BAR \
1812 ";;\t\t+------------------------------------------------------\n"
1814 /* Information about the pressure on a particular register class at a
1815 particular point of the model schedule. */
1816 struct model_pressure_data {
1817 /* The pressure at this point of the model schedule, or -1 if the
1818 point is associated with an instruction that has already been
1819 scheduled. */
1820 int ref_pressure;
1822 /* The maximum pressure during or after this point of the model schedule. */
1823 int max_pressure;
1826 /* Per-instruction information that is used while building the model
1827 schedule. Here, "schedule" refers to the model schedule rather
1828 than the main schedule. */
1829 struct model_insn_info {
1830 /* The instruction itself. */
1831 rtx_insn *insn;
1833 /* If this instruction is in model_worklist, these fields link to the
1834 previous (higher-priority) and next (lower-priority) instructions
1835 in the list. */
1836 struct model_insn_info *prev;
1837 struct model_insn_info *next;
1839 /* While constructing the schedule, QUEUE_INDEX describes whether an
1840 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1841 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1842 old_queue records the value that QUEUE_INDEX had before scheduling
1843 started, so that we can restore it once the schedule is complete. */
1844 int old_queue;
1846 /* The relative importance of an unscheduled instruction. Higher
1847 values indicate greater importance. */
1848 unsigned int model_priority;
1850 /* The length of the longest path of satisfied true dependencies
1851 that leads to this instruction. */
1852 unsigned int depth;
1854 /* The length of the longest path of dependencies of any kind
1855 that leads from this instruction. */
1856 unsigned int alap;
1858 /* The number of predecessor nodes that must still be scheduled. */
1859 int unscheduled_preds;
1862 /* Information about the pressure limit for a particular register class.
1863 This structure is used when applying a model schedule to the main
1864 schedule. */
1865 struct model_pressure_limit {
1866 /* The maximum register pressure seen in the original model schedule. */
1867 int orig_pressure;
1869 /* The maximum register pressure seen in the current model schedule
1870 (which excludes instructions that have already been scheduled). */
1871 int pressure;
1873 /* The point of the current model schedule at which PRESSURE is first
1874 reached. It is set to -1 if the value needs to be recomputed. */
1875 int point;
1878 /* Describes a particular way of measuring register pressure. */
1879 struct model_pressure_group {
1880 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1881 struct model_pressure_limit limits[N_REG_CLASSES];
1883 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1884 on register class ira_pressure_classes[PCI] at point POINT of the
1885 current model schedule. A POINT of model_num_insns describes the
1886 pressure at the end of the schedule. */
1887 struct model_pressure_data *model;
1890 /* Index POINT gives the instruction at point POINT of the model schedule.
1891 This array doesn't change during main scheduling. */
1892 static vec<rtx_insn *> model_schedule;
1894 /* The list of instructions in the model worklist, sorted in order of
1895 decreasing priority. */
1896 static struct model_insn_info *model_worklist;
1898 /* Index I describes the instruction with INSN_LUID I. */
1899 static struct model_insn_info *model_insns;
1901 /* The number of instructions in the model schedule. */
1902 static int model_num_insns;
1904 /* The index of the first instruction in model_schedule that hasn't yet been
1905 added to the main schedule, or model_num_insns if all of them have. */
1906 static int model_curr_point;
1908 /* Describes the pressure before each instruction in the model schedule. */
1909 static struct model_pressure_group model_before_pressure;
1911 /* The first unused model_priority value (as used in model_insn_info). */
1912 static unsigned int model_next_priority;
1915 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1916 at point POINT of the model schedule. */
1917 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1918 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1920 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1921 after point POINT of the model schedule. */
1922 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1923 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1925 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1926 of the model schedule. */
1927 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1928 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1930 /* Information about INSN that is used when creating the model schedule. */
1931 #define MODEL_INSN_INFO(INSN) \
1932 (&model_insns[INSN_LUID (INSN)])
1934 /* The instruction at point POINT of the model schedule. */
1935 #define MODEL_INSN(POINT) \
1936 (model_schedule[POINT])
1939 /* Return INSN's index in the model schedule, or model_num_insns if it
1940 doesn't belong to that schedule. */
1942 static int
1943 model_index (rtx_insn *insn)
1945 if (INSN_MODEL_INDEX (insn) == 0)
1946 return model_num_insns;
1947 return INSN_MODEL_INDEX (insn) - 1;
1950 /* Make sure that GROUP->limits is up-to-date for the current point
1951 of the model schedule. */
1953 static void
1954 model_update_limit_points_in_group (struct model_pressure_group *group)
1956 int pci, max_pressure, point;
1958 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1960 /* We may have passed the final point at which the pressure in
1961 group->limits[pci].pressure was reached. Update the limit if so. */
1962 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
1963 group->limits[pci].pressure = max_pressure;
1965 /* Find the point at which MAX_PRESSURE is first reached. We need
1966 to search in three cases:
1968 - We've already moved past the previous pressure point.
1969 In this case we search forward from model_curr_point.
1971 - We scheduled the previous point of maximum pressure ahead of
1972 its position in the model schedule, but doing so didn't bring
1973 the pressure point earlier. In this case we search forward
1974 from that previous pressure point.
1976 - Scheduling an instruction early caused the maximum pressure
1977 to decrease. In this case we will have set the pressure
1978 point to -1, and we search forward from model_curr_point. */
1979 point = MAX (group->limits[pci].point, model_curr_point);
1980 while (point < model_num_insns
1981 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
1982 point++;
1983 group->limits[pci].point = point;
1985 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
1986 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
1990 /* Make sure that all register-pressure limits are up-to-date for the
1991 current position in the model schedule. */
1993 static void
1994 model_update_limit_points (void)
1996 model_update_limit_points_in_group (&model_before_pressure);
1999 /* Return the model_index of the last unscheduled use in chain USE
2000 outside of USE's instruction. Return -1 if there are no other uses,
2001 or model_num_insns if the register is live at the end of the block. */
2003 static int
2004 model_last_use_except (struct reg_use_data *use)
2006 struct reg_use_data *next;
2007 int last, index;
2009 last = -1;
2010 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
2011 if (NONDEBUG_INSN_P (next->insn)
2012 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2014 index = model_index (next->insn);
2015 if (index == model_num_insns)
2016 return model_num_insns;
2017 if (last < index)
2018 last = index;
2020 return last;
2023 /* An instruction with model_index POINT has just been scheduled, and it
2024 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2025 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2026 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2028 static void
2029 model_start_update_pressure (struct model_pressure_group *group,
2030 int point, int pci, int delta)
2032 int next_max_pressure;
2034 if (point == model_num_insns)
2036 /* The instruction wasn't part of the model schedule; it was moved
2037 from a different block. Update the pressure for the end of
2038 the model schedule. */
2039 MODEL_REF_PRESSURE (group, point, pci) += delta;
2040 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2042 else
2044 /* Record that this instruction has been scheduled. Nothing now
2045 changes between POINT and POINT + 1, so get the maximum pressure
2046 from the latter. If the maximum pressure decreases, the new
2047 pressure point may be before POINT. */
2048 MODEL_REF_PRESSURE (group, point, pci) = -1;
2049 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2050 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2052 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2053 if (group->limits[pci].point == point)
2054 group->limits[pci].point = -1;
2059 /* Record that scheduling a later instruction has changed the pressure
2060 at point POINT of the model schedule by DELTA (which might be 0).
2061 Update GROUP accordingly. Return nonzero if these changes might
2062 trigger changes to previous points as well. */
2064 static int
2065 model_update_pressure (struct model_pressure_group *group,
2066 int point, int pci, int delta)
2068 int ref_pressure, max_pressure, next_max_pressure;
2070 /* If POINT hasn't yet been scheduled, update its pressure. */
2071 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2072 if (ref_pressure >= 0 && delta != 0)
2074 ref_pressure += delta;
2075 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2077 /* Check whether the maximum pressure in the overall schedule
2078 has increased. (This means that the MODEL_MAX_PRESSURE of
2079 every point <= POINT will need to increase too; see below.) */
2080 if (group->limits[pci].pressure < ref_pressure)
2081 group->limits[pci].pressure = ref_pressure;
2083 /* If we are at maximum pressure, and the maximum pressure
2084 point was previously unknown or later than POINT,
2085 bring it forward. */
2086 if (group->limits[pci].pressure == ref_pressure
2087 && !IN_RANGE (group->limits[pci].point, 0, point))
2088 group->limits[pci].point = point;
2090 /* If POINT used to be the point of maximum pressure, but isn't
2091 any longer, we need to recalculate it using a forward walk. */
2092 if (group->limits[pci].pressure > ref_pressure
2093 && group->limits[pci].point == point)
2094 group->limits[pci].point = -1;
2097 /* Update the maximum pressure at POINT. Changes here might also
2098 affect the maximum pressure at POINT - 1. */
2099 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2100 max_pressure = MAX (ref_pressure, next_max_pressure);
2101 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2103 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2104 return 1;
2106 return 0;
2109 /* INSN has just been scheduled. Update the model schedule accordingly. */
2111 static void
2112 model_recompute (rtx_insn *insn)
2114 struct {
2115 int last_use;
2116 int regno;
2117 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2118 struct reg_use_data *use;
2119 struct reg_pressure_data *reg_pressure;
2120 int delta[N_REG_CLASSES];
2121 int pci, point, mix, new_last, cl, ref_pressure, queue;
2122 unsigned int i, num_uses, num_pending_births;
2123 bool print_p;
2125 /* The destinations of INSN were previously live from POINT onwards, but are
2126 now live from model_curr_point onwards. Set up DELTA accordingly. */
2127 point = model_index (insn);
2128 reg_pressure = INSN_REG_PRESSURE (insn);
2129 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2131 cl = ira_pressure_classes[pci];
2132 delta[cl] = reg_pressure[pci].set_increase;
2135 /* Record which registers previously died at POINT, but which now die
2136 before POINT. Adjust DELTA so that it represents the effect of
2137 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2138 registers that will be born in the range [model_curr_point, POINT). */
2139 num_uses = 0;
2140 num_pending_births = 0;
2141 bitmap_clear (tmp_bitmap);
2142 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2144 new_last = model_last_use_except (use);
2145 if (new_last < point && bitmap_set_bit (tmp_bitmap, use->regno))
2147 gcc_assert (num_uses < ARRAY_SIZE (uses));
2148 uses[num_uses].last_use = new_last;
2149 uses[num_uses].regno = use->regno;
2150 /* This register is no longer live after POINT - 1. */
2151 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2152 num_uses++;
2153 if (new_last >= 0)
2154 num_pending_births++;
2158 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2159 Also set each group pressure limit for POINT. */
2160 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2162 cl = ira_pressure_classes[pci];
2163 model_start_update_pressure (&model_before_pressure,
2164 point, pci, delta[cl]);
2167 /* Walk the model schedule backwards, starting immediately before POINT. */
2168 print_p = false;
2169 if (point != model_curr_point)
2172 point--;
2173 insn = MODEL_INSN (point);
2174 queue = QUEUE_INDEX (insn);
2176 if (queue != QUEUE_SCHEDULED)
2178 /* DELTA describes the effect of the move on the register pressure
2179 after POINT. Make it describe the effect on the pressure
2180 before POINT. */
2181 i = 0;
2182 while (i < num_uses)
2184 if (uses[i].last_use == point)
2186 /* This register is now live again. */
2187 mark_regno_birth_or_death (NULL, delta,
2188 uses[i].regno, true);
2190 /* Remove this use from the array. */
2191 uses[i] = uses[num_uses - 1];
2192 num_uses--;
2193 num_pending_births--;
2195 else
2196 i++;
2199 if (sched_verbose >= 5)
2201 if (!print_p)
2203 fprintf (sched_dump, MODEL_BAR);
2204 fprintf (sched_dump, ";;\t\t| New pressure for model"
2205 " schedule\n");
2206 fprintf (sched_dump, MODEL_BAR);
2207 print_p = true;
2210 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2211 point, INSN_UID (insn),
2212 str_pattern_slim (PATTERN (insn)));
2213 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2215 cl = ira_pressure_classes[pci];
2216 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2217 point, pci);
2218 fprintf (sched_dump, " %s:[%d->%d]",
2219 reg_class_names[ira_pressure_classes[pci]],
2220 ref_pressure, ref_pressure + delta[cl]);
2222 fprintf (sched_dump, "\n");
2226 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2227 might have changed as well. */
2228 mix = num_pending_births;
2229 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2231 cl = ira_pressure_classes[pci];
2232 mix |= delta[cl];
2233 mix |= model_update_pressure (&model_before_pressure,
2234 point, pci, delta[cl]);
2237 while (mix && point > model_curr_point);
2239 if (print_p)
2240 fprintf (sched_dump, MODEL_BAR);
2243 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2244 check whether the insn's pattern needs restoring. */
2245 static bool
2246 must_restore_pattern_p (rtx_insn *next, dep_t dep)
2248 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2249 return false;
2251 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2253 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2254 gcc_assert (next == DEP_CON (dep));
2256 else
2258 struct dep_replacement *desc = DEP_REPLACE (dep);
2259 if (desc->insn != next)
2261 gcc_assert (*desc->loc == desc->orig);
2262 return false;
2265 return true;
2268 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2269 pressure on CL from P to P'. We use this to calculate a "base ECC",
2270 baseECC (CL, X), for each pressure class CL and each instruction X.
2271 Supposing X changes the pressure on CL from P to P', and that the
2272 maximum pressure on CL in the current model schedule is MP', then:
2274 * if X occurs before or at the next point of maximum pressure in
2275 the model schedule and P' > MP', then:
2277 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2279 The idea is that the pressure after scheduling a fixed set of
2280 instructions -- in this case, the set up to and including the
2281 next maximum pressure point -- is going to be the same regardless
2282 of the order; we simply want to keep the intermediate pressure
2283 under control. Thus X has a cost of zero unless scheduling it
2284 now would exceed MP'.
2286 If all increases in the set are by the same amount, no zero-cost
2287 instruction will ever cause the pressure to exceed MP'. However,
2288 if X is instead moved past an instruction X' with pressure in the
2289 range (MP' - (P' - P), MP'), the pressure at X' will increase
2290 beyond MP'. Since baseECC is very much a heuristic anyway,
2291 it doesn't seem worth the overhead of tracking cases like these.
2293 The cost of exceeding MP' is always based on the original maximum
2294 pressure MP. This is so that going 2 registers over the original
2295 limit has the same cost regardless of whether it comes from two
2296 separate +1 deltas or from a single +2 delta.
2298 * if X occurs after the next point of maximum pressure in the model
2299 schedule and P' > P, then:
2301 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2303 That is, if we move X forward across a point of maximum pressure,
2304 and if X increases the pressure by P' - P, then we conservatively
2305 assume that scheduling X next would increase the maximum pressure
2306 by P' - P. Again, the cost of doing this is based on the original
2307 maximum pressure MP, for the same reason as above.
2309 * if P' < P, P > MP, and X occurs at or after the next point of
2310 maximum pressure, then:
2312 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2314 That is, if we have already exceeded the original maximum pressure MP,
2315 and if X might reduce the maximum pressure again -- or at least push
2316 it further back, and thus allow more scheduling freedom -- it is given
2317 a negative cost to reflect the improvement.
2319 * otherwise,
2321 baseECC (CL, X) = 0
2323 In this case, X is not expected to affect the maximum pressure MP',
2324 so it has zero cost.
2326 We then create a combined value baseECC (X) that is the sum of
2327 baseECC (CL, X) for each pressure class CL.
2329 baseECC (X) could itself be used as the ECC value described above.
2330 However, this is often too conservative, in the sense that it
2331 tends to make high-priority instructions that increase pressure
2332 wait too long in cases where introducing a spill would be better.
2333 For this reason the final ECC is a priority-adjusted form of
2334 baseECC (X). Specifically, we calculate:
2336 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2337 baseP = MAX { P (X) | baseECC (X) <= 0 }
2339 Then:
2341 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2343 Thus an instruction's effect on pressure is ignored if it has a high
2344 enough priority relative to the ones that don't increase pressure.
2345 Negative values of baseECC (X) do not increase the priority of X
2346 itself, but they do make it harder for other instructions to
2347 increase the pressure further.
2349 This pressure cost is deliberately timid. The intention has been
2350 to choose a heuristic that rarely interferes with the normal list
2351 scheduler in cases where that scheduler would produce good code.
2352 We simply want to curb some of its worst excesses. */
2354 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2356 Here we use the very simplistic cost model that every register above
2357 sched_class_regs_num[CL] has a spill cost of 1. We could use other
2358 measures instead, such as one based on MEMORY_MOVE_COST. However:
2360 (1) In order for an instruction to be scheduled, the higher cost
2361 would need to be justified in a single saving of that many stalls.
2362 This is overly pessimistic, because the benefit of spilling is
2363 often to avoid a sequence of several short stalls rather than
2364 a single long one.
2366 (2) The cost is still arbitrary. Because we are not allocating
2367 registers during scheduling, we have no way of knowing for
2368 sure how many memory accesses will be required by each spill,
2369 where the spills will be placed within the block, or even
2370 which block(s) will contain the spills.
2372 So a higher cost than 1 is often too conservative in practice,
2373 forcing blocks to contain unnecessary stalls instead of spill code.
2374 The simple cost below seems to be the best compromise. It reduces
2375 the interference with the normal list scheduler, which helps make
2376 it more suitable for a default-on option. */
2378 static int
2379 model_spill_cost (int cl, int from, int to)
2381 from = MAX (from, sched_class_regs_num[cl]);
2382 return MAX (to, from) - from;
2385 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2386 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2387 P' = P + DELTA. */
2389 static int
2390 model_excess_group_cost (struct model_pressure_group *group,
2391 int point, int pci, int delta)
2393 int pressure, cl;
2395 cl = ira_pressure_classes[pci];
2396 if (delta < 0 && point >= group->limits[pci].point)
2398 pressure = MAX (group->limits[pci].orig_pressure,
2399 curr_reg_pressure[cl] + delta);
2400 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2403 if (delta > 0)
2405 if (point > group->limits[pci].point)
2406 pressure = group->limits[pci].pressure + delta;
2407 else
2408 pressure = curr_reg_pressure[cl] + delta;
2410 if (pressure > group->limits[pci].pressure)
2411 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2412 pressure);
2415 return 0;
2418 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2419 if PRINT_P. */
2421 static int
2422 model_excess_cost (rtx_insn *insn, bool print_p)
2424 int point, pci, cl, cost, this_cost, delta;
2425 struct reg_pressure_data *insn_reg_pressure;
2426 int insn_death[N_REG_CLASSES];
2428 calculate_reg_deaths (insn, insn_death);
2429 point = model_index (insn);
2430 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2431 cost = 0;
2433 if (print_p)
2434 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2435 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2437 /* Sum up the individual costs for each register class. */
2438 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2440 cl = ira_pressure_classes[pci];
2441 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2442 this_cost = model_excess_group_cost (&model_before_pressure,
2443 point, pci, delta);
2444 cost += this_cost;
2445 if (print_p)
2446 fprintf (sched_dump, " %s:[%d base cost %d]",
2447 reg_class_names[cl], delta, this_cost);
2450 if (print_p)
2451 fprintf (sched_dump, "\n");
2453 return cost;
2456 /* Dump the next points of maximum pressure for GROUP. */
2458 static void
2459 model_dump_pressure_points (struct model_pressure_group *group)
2461 int pci, cl;
2463 fprintf (sched_dump, ";;\t\t| pressure points");
2464 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2466 cl = ira_pressure_classes[pci];
2467 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2468 curr_reg_pressure[cl], group->limits[pci].pressure);
2469 if (group->limits[pci].point < model_num_insns)
2470 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2471 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2472 else
2473 fprintf (sched_dump, "end]");
2475 fprintf (sched_dump, "\n");
2478 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2480 static void
2481 model_set_excess_costs (rtx_insn **insns, int count)
2483 int i, cost, priority_base, priority;
2484 bool print_p;
2486 /* Record the baseECC value for each instruction in the model schedule,
2487 except that negative costs are converted to zero ones now rather than
2488 later. Do not assign a cost to debug instructions, since they must
2489 not change code-generation decisions. Experiments suggest we also
2490 get better results by not assigning a cost to instructions from
2491 a different block.
2493 Set PRIORITY_BASE to baseP in the block comment above. This is the
2494 maximum priority of the "cheap" instructions, which should always
2495 include the next model instruction. */
2496 priority_base = 0;
2497 print_p = false;
2498 for (i = 0; i < count; i++)
2499 if (INSN_MODEL_INDEX (insns[i]))
2501 if (sched_verbose >= 6 && !print_p)
2503 fprintf (sched_dump, MODEL_BAR);
2504 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2505 model_dump_pressure_points (&model_before_pressure);
2506 fprintf (sched_dump, MODEL_BAR);
2507 print_p = true;
2509 cost = model_excess_cost (insns[i], print_p);
2510 if (cost <= 0)
2512 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2513 priority_base = MAX (priority_base, priority);
2514 cost = 0;
2516 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2518 if (print_p)
2519 fprintf (sched_dump, MODEL_BAR);
2521 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2522 instruction. */
2523 for (i = 0; i < count; i++)
2525 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2526 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2527 if (cost > 0 && priority > priority_base)
2529 cost += priority_base - priority;
2530 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2536 /* Enum of rank_for_schedule heuristic decisions. */
2537 enum rfs_decision {
2538 RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
2539 RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
2540 RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_SPECULATION,
2541 RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
2542 RFS_DEP_COUNT, RFS_TIE, RFS_FUSION, RFS_N };
2544 /* Corresponding strings for print outs. */
2545 static const char *rfs_str[RFS_N] = {
2546 "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
2547 "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
2548 "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_SPECULATION",
2549 "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
2550 "RFS_DEP_COUNT", "RFS_TIE", "RFS_FUSION" };
2552 /* Statistical breakdown of rank_for_schedule decisions. */
2553 struct rank_for_schedule_stats_t { unsigned stats[RFS_N]; };
2554 static rank_for_schedule_stats_t rank_for_schedule_stats;
2556 /* Return the result of comparing insns TMP and TMP2 and update
2557 Rank_For_Schedule statistics. */
2558 static int
2559 rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2)
2561 ++rank_for_schedule_stats.stats[decision];
2562 if (result < 0)
2563 INSN_LAST_RFS_WIN (tmp) = decision;
2564 else if (result > 0)
2565 INSN_LAST_RFS_WIN (tmp2) = decision;
2566 else
2567 gcc_unreachable ();
2568 return result;
2571 /* Sorting predicate to move DEBUG_INSNs to the top of ready list, while
2572 keeping normal insns in original order. */
2574 static int
2575 rank_for_schedule_debug (const void *x, const void *y)
2577 rtx_insn *tmp = *(rtx_insn * const *) y;
2578 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2580 /* Schedule debug insns as early as possible. */
2581 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2582 return -1;
2583 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2584 return 1;
2585 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2586 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2587 else
2588 return INSN_RFS_DEBUG_ORIG_ORDER (tmp2) - INSN_RFS_DEBUG_ORIG_ORDER (tmp);
2591 /* Returns a positive value if x is preferred; returns a negative value if
2592 y is preferred. Should never return 0, since that will make the sort
2593 unstable. */
2595 static int
2596 rank_for_schedule (const void *x, const void *y)
2598 rtx_insn *tmp = *(rtx_insn * const *) y;
2599 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2600 int tmp_class, tmp2_class;
2601 int val, priority_val, info_val, diff;
2603 if (live_range_shrinkage_p)
2605 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2606 code. */
2607 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2608 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2609 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2610 && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2611 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
2612 return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2);
2613 /* Sort by INSN_LUID (original insn order), so that we make the
2614 sort stable. This minimizes instruction movement, thus
2615 minimizing sched's effect on debugging and cross-jumping. */
2616 return rfs_result (RFS_LIVE_RANGE_SHRINK2,
2617 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2620 /* The insn in a schedule group should be issued the first. */
2621 if (flag_sched_group_heuristic &&
2622 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2623 return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1,
2624 tmp, tmp2);
2626 /* Make sure that priority of TMP and TMP2 are initialized. */
2627 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2629 if (sched_fusion)
2631 /* The instruction that has the same fusion priority as the last
2632 instruction is the instruction we picked next. If that is not
2633 the case, we sort ready list firstly by fusion priority, then
2634 by priority, and at last by INSN_LUID. */
2635 int a = INSN_FUSION_PRIORITY (tmp);
2636 int b = INSN_FUSION_PRIORITY (tmp2);
2637 int last = -1;
2639 if (last_nondebug_scheduled_insn
2640 && !NOTE_P (last_nondebug_scheduled_insn)
2641 && BLOCK_FOR_INSN (tmp)
2642 == BLOCK_FOR_INSN (last_nondebug_scheduled_insn))
2643 last = INSN_FUSION_PRIORITY (last_nondebug_scheduled_insn);
2645 if (a != last && b != last)
2647 if (a == b)
2649 a = INSN_PRIORITY (tmp);
2650 b = INSN_PRIORITY (tmp2);
2652 if (a != b)
2653 return rfs_result (RFS_FUSION, b - a, tmp, tmp2);
2654 else
2655 return rfs_result (RFS_FUSION,
2656 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2658 else if (a == b)
2660 gcc_assert (last_nondebug_scheduled_insn
2661 && !NOTE_P (last_nondebug_scheduled_insn));
2662 last = INSN_PRIORITY (last_nondebug_scheduled_insn);
2664 a = abs (INSN_PRIORITY (tmp) - last);
2665 b = abs (INSN_PRIORITY (tmp2) - last);
2666 if (a != b)
2667 return rfs_result (RFS_FUSION, a - b, tmp, tmp2);
2668 else
2669 return rfs_result (RFS_FUSION,
2670 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2672 else if (a == last)
2673 return rfs_result (RFS_FUSION, -1, tmp, tmp2);
2674 else
2675 return rfs_result (RFS_FUSION, 1, tmp, tmp2);
2678 if (sched_pressure != SCHED_PRESSURE_NONE)
2680 /* Prefer insn whose scheduling results in the smallest register
2681 pressure excess. */
2682 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2683 + insn_delay (tmp)
2684 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2685 - insn_delay (tmp2))))
2686 return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2);
2689 if (sched_pressure != SCHED_PRESSURE_NONE
2690 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
2691 && INSN_TICK (tmp2) != INSN_TICK (tmp))
2693 diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
2694 return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2);
2697 /* If we are doing backtracking in this schedule, prefer insns that
2698 have forward dependencies with negative cost against an insn that
2699 was already scheduled. */
2700 if (current_sched_info->flags & DO_BACKTRACKING)
2702 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2703 if (priority_val)
2704 return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2);
2707 /* Prefer insn with higher priority. */
2708 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2710 if (flag_sched_critical_path_heuristic && priority_val)
2711 return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2);
2713 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) >= 0)
2715 int autopref = autopref_rank_for_schedule (tmp, tmp2);
2716 if (autopref != 0)
2717 return autopref;
2720 /* Prefer speculative insn with greater dependencies weakness. */
2721 if (flag_sched_spec_insn_heuristic && spec_info)
2723 ds_t ds1, ds2;
2724 dw_t dw1, dw2;
2725 int dw;
2727 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2728 if (ds1)
2729 dw1 = ds_weak (ds1);
2730 else
2731 dw1 = NO_DEP_WEAK;
2733 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2734 if (ds2)
2735 dw2 = ds_weak (ds2);
2736 else
2737 dw2 = NO_DEP_WEAK;
2739 dw = dw2 - dw1;
2740 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2741 return rfs_result (RFS_SPECULATION, dw, tmp, tmp2);
2744 info_val = (*current_sched_info->rank) (tmp, tmp2);
2745 if (flag_sched_rank_heuristic && info_val)
2746 return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2);
2748 /* Compare insns based on their relation to the last scheduled
2749 non-debug insn. */
2750 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2752 dep_t dep1;
2753 dep_t dep2;
2754 rtx_insn *last = last_nondebug_scheduled_insn;
2756 /* Classify the instructions into three classes:
2757 1) Data dependent on last schedule insn.
2758 2) Anti/Output dependent on last scheduled insn.
2759 3) Independent of last scheduled insn, or has latency of one.
2760 Choose the insn from the highest numbered class if different. */
2761 dep1 = sd_find_dep_between (last, tmp, true);
2763 if (dep1 == NULL || dep_cost (dep1) == 1)
2764 tmp_class = 3;
2765 else if (/* Data dependence. */
2766 DEP_TYPE (dep1) == REG_DEP_TRUE)
2767 tmp_class = 1;
2768 else
2769 tmp_class = 2;
2771 dep2 = sd_find_dep_between (last, tmp2, true);
2773 if (dep2 == NULL || dep_cost (dep2) == 1)
2774 tmp2_class = 3;
2775 else if (/* Data dependence. */
2776 DEP_TYPE (dep2) == REG_DEP_TRUE)
2777 tmp2_class = 1;
2778 else
2779 tmp2_class = 2;
2781 if ((val = tmp2_class - tmp_class))
2782 return rfs_result (RFS_LAST_INSN, val, tmp, tmp2);
2785 /* Prefer instructions that occur earlier in the model schedule. */
2786 if (sched_pressure == SCHED_PRESSURE_MODEL
2787 && INSN_BB (tmp) == target_bb && INSN_BB (tmp2) == target_bb)
2789 diff = model_index (tmp) - model_index (tmp2);
2790 gcc_assert (diff != 0);
2791 return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2);
2794 /* Prefer the insn which has more later insns that depend on it.
2795 This gives the scheduler more freedom when scheduling later
2796 instructions at the expense of added register pressure. */
2798 val = (dep_list_size (tmp2, SD_LIST_FORW)
2799 - dep_list_size (tmp, SD_LIST_FORW));
2801 if (flag_sched_dep_count_heuristic && val != 0)
2802 return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2);
2804 /* If insns are equally good, sort by INSN_LUID (original insn order),
2805 so that we make the sort stable. This minimizes instruction movement,
2806 thus minimizing sched's effect on debugging and cross-jumping. */
2807 return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2810 /* Resort the array A in which only element at index N may be out of order. */
2812 HAIFA_INLINE static void
2813 swap_sort (rtx_insn **a, int n)
2815 rtx_insn *insn = a[n - 1];
2816 int i = n - 2;
2818 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2820 a[i + 1] = a[i];
2821 i -= 1;
2823 a[i + 1] = insn;
2826 /* Add INSN to the insn queue so that it can be executed at least
2827 N_CYCLES after the currently executing insn. Preserve insns
2828 chain for debugging purposes. REASON will be printed in debugging
2829 output. */
2831 HAIFA_INLINE static void
2832 queue_insn (rtx_insn *insn, int n_cycles, const char *reason)
2834 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2835 rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2836 int new_tick;
2838 gcc_assert (n_cycles <= max_insn_queue_index);
2839 gcc_assert (!DEBUG_INSN_P (insn));
2841 insn_queue[next_q] = link;
2842 q_size += 1;
2844 if (sched_verbose >= 2)
2846 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2847 (*current_sched_info->print_insn) (insn, 0));
2849 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2852 QUEUE_INDEX (insn) = next_q;
2854 if (current_sched_info->flags & DO_BACKTRACKING)
2856 new_tick = clock_var + n_cycles;
2857 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2858 INSN_TICK (insn) = new_tick;
2860 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2861 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2863 must_backtrack = true;
2864 if (sched_verbose >= 2)
2865 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2870 /* Remove INSN from queue. */
2871 static void
2872 queue_remove (rtx_insn *insn)
2874 gcc_assert (QUEUE_INDEX (insn) >= 0);
2875 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2876 q_size--;
2877 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2880 /* Return a pointer to the bottom of the ready list, i.e. the insn
2881 with the lowest priority. */
2883 rtx_insn **
2884 ready_lastpos (struct ready_list *ready)
2886 gcc_assert (ready->n_ready >= 1);
2887 return ready->vec + ready->first - ready->n_ready + 1;
2890 /* Add an element INSN to the ready list so that it ends up with the
2891 lowest/highest priority depending on FIRST_P. */
2893 HAIFA_INLINE static void
2894 ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p)
2896 if (!first_p)
2898 if (ready->first == ready->n_ready)
2900 memmove (ready->vec + ready->veclen - ready->n_ready,
2901 ready_lastpos (ready),
2902 ready->n_ready * sizeof (rtx));
2903 ready->first = ready->veclen - 1;
2905 ready->vec[ready->first - ready->n_ready] = insn;
2907 else
2909 if (ready->first == ready->veclen - 1)
2911 if (ready->n_ready)
2912 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2913 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2914 ready_lastpos (ready),
2915 ready->n_ready * sizeof (rtx));
2916 ready->first = ready->veclen - 2;
2918 ready->vec[++(ready->first)] = insn;
2921 ready->n_ready++;
2922 if (DEBUG_INSN_P (insn))
2923 ready->n_debug++;
2925 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2926 QUEUE_INDEX (insn) = QUEUE_READY;
2928 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2929 && INSN_EXACT_TICK (insn) < clock_var)
2931 must_backtrack = true;
2935 /* Remove the element with the highest priority from the ready list and
2936 return it. */
2938 HAIFA_INLINE static rtx_insn *
2939 ready_remove_first (struct ready_list *ready)
2941 rtx_insn *t;
2943 gcc_assert (ready->n_ready);
2944 t = ready->vec[ready->first--];
2945 ready->n_ready--;
2946 if (DEBUG_INSN_P (t))
2947 ready->n_debug--;
2948 /* If the queue becomes empty, reset it. */
2949 if (ready->n_ready == 0)
2950 ready->first = ready->veclen - 1;
2952 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2953 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2955 return t;
2958 /* The following code implements multi-pass scheduling for the first
2959 cycle. In other words, we will try to choose ready insn which
2960 permits to start maximum number of insns on the same cycle. */
2962 /* Return a pointer to the element INDEX from the ready. INDEX for
2963 insn with the highest priority is 0, and the lowest priority has
2964 N_READY - 1. */
2966 rtx_insn *
2967 ready_element (struct ready_list *ready, int index)
2969 gcc_assert (ready->n_ready && index < ready->n_ready);
2971 return ready->vec[ready->first - index];
2974 /* Remove the element INDEX from the ready list and return it. INDEX
2975 for insn with the highest priority is 0, and the lowest priority
2976 has N_READY - 1. */
2978 HAIFA_INLINE static rtx_insn *
2979 ready_remove (struct ready_list *ready, int index)
2981 rtx_insn *t;
2982 int i;
2984 if (index == 0)
2985 return ready_remove_first (ready);
2986 gcc_assert (ready->n_ready && index < ready->n_ready);
2987 t = ready->vec[ready->first - index];
2988 ready->n_ready--;
2989 if (DEBUG_INSN_P (t))
2990 ready->n_debug--;
2991 for (i = index; i < ready->n_ready; i++)
2992 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
2993 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2994 return t;
2997 /* Remove INSN from the ready list. */
2998 static void
2999 ready_remove_insn (rtx_insn *insn)
3001 int i;
3003 for (i = 0; i < readyp->n_ready; i++)
3004 if (ready_element (readyp, i) == insn)
3006 ready_remove (readyp, i);
3007 return;
3009 gcc_unreachable ();
3012 /* Calculate difference of two statistics set WAS and NOW.
3013 Result returned in WAS. */
3014 static void
3015 rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
3016 const rank_for_schedule_stats_t *now)
3018 for (int i = 0; i < RFS_N; ++i)
3019 was->stats[i] = now->stats[i] - was->stats[i];
3022 /* Print rank_for_schedule statistics. */
3023 static void
3024 print_rank_for_schedule_stats (const char *prefix,
3025 const rank_for_schedule_stats_t *stats,
3026 struct ready_list *ready)
3028 for (int i = 0; i < RFS_N; ++i)
3029 if (stats->stats[i])
3031 fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]);
3033 if (ready != NULL)
3034 /* Print out insns that won due to RFS_<I>. */
3036 rtx_insn **p = ready_lastpos (ready);
3038 fprintf (sched_dump, ":");
3039 /* Start with 1 since least-priority insn didn't have any wins. */
3040 for (int j = 1; j < ready->n_ready; ++j)
3041 if (INSN_LAST_RFS_WIN (p[j]) == i)
3042 fprintf (sched_dump, " %s",
3043 (*current_sched_info->print_insn) (p[j], 0));
3045 fprintf (sched_dump, "\n");
3049 /* Separate DEBUG_INSNS from normal insns. DEBUG_INSNs go to the end
3050 of array. */
3051 static void
3052 ready_sort_debug (struct ready_list *ready)
3054 int i;
3055 rtx_insn **first = ready_lastpos (ready);
3057 for (i = 0; i < ready->n_ready; ++i)
3058 if (!DEBUG_INSN_P (first[i]))
3059 INSN_RFS_DEBUG_ORIG_ORDER (first[i]) = i;
3061 qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule_debug);
3064 /* Sort non-debug insns in the ready list READY by ascending priority.
3065 Assumes that all debug insns are separated from the real insns. */
3066 static void
3067 ready_sort_real (struct ready_list *ready)
3069 int i;
3070 rtx_insn **first = ready_lastpos (ready);
3071 int n_ready_real = ready->n_ready - ready->n_debug;
3073 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3074 for (i = 0; i < n_ready_real; ++i)
3075 setup_insn_reg_pressure_info (first[i]);
3076 else if (sched_pressure == SCHED_PRESSURE_MODEL
3077 && model_curr_point < model_num_insns)
3078 model_set_excess_costs (first, n_ready_real);
3080 rank_for_schedule_stats_t stats1;
3081 if (sched_verbose >= 4)
3082 stats1 = rank_for_schedule_stats;
3084 if (n_ready_real == 2)
3085 swap_sort (first, n_ready_real);
3086 else if (n_ready_real > 2)
3087 qsort (first, n_ready_real, sizeof (rtx), rank_for_schedule);
3089 if (sched_verbose >= 4)
3091 rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
3092 print_rank_for_schedule_stats (";;\t\t", &stats1, ready);
3096 /* Sort the ready list READY by ascending priority. */
3097 static void
3098 ready_sort (struct ready_list *ready)
3100 if (ready->n_debug > 0)
3101 ready_sort_debug (ready);
3102 else
3103 ready_sort_real (ready);
3106 /* PREV is an insn that is ready to execute. Adjust its priority if that
3107 will help shorten or lengthen register lifetimes as appropriate. Also
3108 provide a hook for the target to tweak itself. */
3110 HAIFA_INLINE static void
3111 adjust_priority (rtx_insn *prev)
3113 /* ??? There used to be code here to try and estimate how an insn
3114 affected register lifetimes, but it did it by looking at REG_DEAD
3115 notes, which we removed in schedule_region. Nor did it try to
3116 take into account register pressure or anything useful like that.
3118 Revisit when we have a machine model to work with and not before. */
3120 if (targetm.sched.adjust_priority)
3121 INSN_PRIORITY (prev) =
3122 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
3125 /* Advance DFA state STATE on one cycle. */
3126 void
3127 advance_state (state_t state)
3129 if (targetm.sched.dfa_pre_advance_cycle)
3130 targetm.sched.dfa_pre_advance_cycle ();
3132 if (targetm.sched.dfa_pre_cycle_insn)
3133 state_transition (state,
3134 targetm.sched.dfa_pre_cycle_insn ());
3136 state_transition (state, NULL);
3138 if (targetm.sched.dfa_post_cycle_insn)
3139 state_transition (state,
3140 targetm.sched.dfa_post_cycle_insn ());
3142 if (targetm.sched.dfa_post_advance_cycle)
3143 targetm.sched.dfa_post_advance_cycle ();
3146 /* Advance time on one cycle. */
3147 HAIFA_INLINE static void
3148 advance_one_cycle (void)
3150 advance_state (curr_state);
3151 if (sched_verbose >= 4)
3152 fprintf (sched_dump, ";;\tAdvance the current state.\n");
3155 /* Update register pressure after scheduling INSN. */
3156 static void
3157 update_register_pressure (rtx_insn *insn)
3159 struct reg_use_data *use;
3160 struct reg_set_data *set;
3162 gcc_checking_assert (!DEBUG_INSN_P (insn));
3164 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
3165 if (dying_use_p (use))
3166 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3167 use->regno, false);
3168 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
3169 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3170 set->regno, true);
3173 /* Set up or update (if UPDATE_P) max register pressure (see its
3174 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
3175 after insn AFTER. */
3176 static void
3177 setup_insn_max_reg_pressure (rtx_insn *after, bool update_p)
3179 int i, p;
3180 bool eq_p;
3181 rtx_insn *insn;
3182 static int max_reg_pressure[N_REG_CLASSES];
3184 save_reg_pressure ();
3185 for (i = 0; i < ira_pressure_classes_num; i++)
3186 max_reg_pressure[ira_pressure_classes[i]]
3187 = curr_reg_pressure[ira_pressure_classes[i]];
3188 for (insn = NEXT_INSN (after);
3189 insn != NULL_RTX && ! BARRIER_P (insn)
3190 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
3191 insn = NEXT_INSN (insn))
3192 if (NONDEBUG_INSN_P (insn))
3194 eq_p = true;
3195 for (i = 0; i < ira_pressure_classes_num; i++)
3197 p = max_reg_pressure[ira_pressure_classes[i]];
3198 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3200 eq_p = false;
3201 INSN_MAX_REG_PRESSURE (insn)[i]
3202 = max_reg_pressure[ira_pressure_classes[i]];
3205 if (update_p && eq_p)
3206 break;
3207 update_register_pressure (insn);
3208 for (i = 0; i < ira_pressure_classes_num; i++)
3209 if (max_reg_pressure[ira_pressure_classes[i]]
3210 < curr_reg_pressure[ira_pressure_classes[i]])
3211 max_reg_pressure[ira_pressure_classes[i]]
3212 = curr_reg_pressure[ira_pressure_classes[i]];
3214 restore_reg_pressure ();
3217 /* Update the current register pressure after scheduling INSN. Update
3218 also max register pressure for unscheduled insns of the current
3219 BB. */
3220 static void
3221 update_reg_and_insn_max_reg_pressure (rtx_insn *insn)
3223 int i;
3224 int before[N_REG_CLASSES];
3226 for (i = 0; i < ira_pressure_classes_num; i++)
3227 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
3228 update_register_pressure (insn);
3229 for (i = 0; i < ira_pressure_classes_num; i++)
3230 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
3231 break;
3232 if (i < ira_pressure_classes_num)
3233 setup_insn_max_reg_pressure (insn, true);
3236 /* Set up register pressure at the beginning of basic block BB whose
3237 insns starting after insn AFTER. Set up also max register pressure
3238 for all insns of the basic block. */
3239 void
3240 sched_setup_bb_reg_pressure_info (basic_block bb, rtx_insn *after)
3242 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3243 initiate_bb_reg_pressure_info (bb);
3244 setup_insn_max_reg_pressure (after, false);
3247 /* If doing predication while scheduling, verify whether INSN, which
3248 has just been scheduled, clobbers the conditions of any
3249 instructions that must be predicated in order to break their
3250 dependencies. If so, remove them from the queues so that they will
3251 only be scheduled once their control dependency is resolved. */
3253 static void
3254 check_clobbered_conditions (rtx_insn *insn)
3256 HARD_REG_SET t;
3257 int i;
3259 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3260 return;
3262 find_all_hard_reg_sets (insn, &t, true);
3264 restart:
3265 for (i = 0; i < ready.n_ready; i++)
3267 rtx_insn *x = ready_element (&ready, i);
3268 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3270 ready_remove_insn (x);
3271 goto restart;
3274 for (i = 0; i <= max_insn_queue_index; i++)
3276 rtx_insn_list *link;
3277 int q = NEXT_Q_AFTER (q_ptr, i);
3279 restart_queue:
3280 for (link = insn_queue[q]; link; link = link->next ())
3282 rtx_insn *x = link->insn ();
3283 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3285 queue_remove (x);
3286 goto restart_queue;
3292 /* Return (in order):
3294 - positive if INSN adversely affects the pressure on one
3295 register class
3297 - negative if INSN reduces the pressure on one register class
3299 - 0 if INSN doesn't affect the pressure on any register class. */
3301 static int
3302 model_classify_pressure (struct model_insn_info *insn)
3304 struct reg_pressure_data *reg_pressure;
3305 int death[N_REG_CLASSES];
3306 int pci, cl, sum;
3308 calculate_reg_deaths (insn->insn, death);
3309 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3310 sum = 0;
3311 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3313 cl = ira_pressure_classes[pci];
3314 if (death[cl] < reg_pressure[pci].set_increase)
3315 return 1;
3316 sum += reg_pressure[pci].set_increase - death[cl];
3318 return sum;
3321 /* Return true if INSN1 should come before INSN2 in the model schedule. */
3323 static int
3324 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3326 unsigned int height1, height2;
3327 unsigned int priority1, priority2;
3329 /* Prefer instructions with a higher model priority. */
3330 if (insn1->model_priority != insn2->model_priority)
3331 return insn1->model_priority > insn2->model_priority;
3333 /* Combine the length of the longest path of satisfied true dependencies
3334 that leads to each instruction (depth) with the length of the longest
3335 path of any dependencies that leads from the instruction (alap).
3336 Prefer instructions with the greatest combined length. If the combined
3337 lengths are equal, prefer instructions with the greatest depth.
3339 The idea is that, if we have a set S of "equal" instructions that each
3340 have ALAP value X, and we pick one such instruction I, any true-dependent
3341 successors of I that have ALAP value X - 1 should be preferred over S.
3342 This encourages the schedule to be "narrow" rather than "wide".
3343 However, if I is a low-priority instruction that we decided to
3344 schedule because of its model_classify_pressure, and if there
3345 is a set of higher-priority instructions T, the aforementioned
3346 successors of I should not have the edge over T. */
3347 height1 = insn1->depth + insn1->alap;
3348 height2 = insn2->depth + insn2->alap;
3349 if (height1 != height2)
3350 return height1 > height2;
3351 if (insn1->depth != insn2->depth)
3352 return insn1->depth > insn2->depth;
3354 /* We have no real preference between INSN1 an INSN2 as far as attempts
3355 to reduce pressure go. Prefer instructions with higher priorities. */
3356 priority1 = INSN_PRIORITY (insn1->insn);
3357 priority2 = INSN_PRIORITY (insn2->insn);
3358 if (priority1 != priority2)
3359 return priority1 > priority2;
3361 /* Use the original rtl sequence as a tie-breaker. */
3362 return insn1 < insn2;
3365 /* Add INSN to the model worklist immediately after PREV. Add it to the
3366 beginning of the list if PREV is null. */
3368 static void
3369 model_add_to_worklist_at (struct model_insn_info *insn,
3370 struct model_insn_info *prev)
3372 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3373 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3375 insn->prev = prev;
3376 if (prev)
3378 insn->next = prev->next;
3379 prev->next = insn;
3381 else
3383 insn->next = model_worklist;
3384 model_worklist = insn;
3386 if (insn->next)
3387 insn->next->prev = insn;
3390 /* Remove INSN from the model worklist. */
3392 static void
3393 model_remove_from_worklist (struct model_insn_info *insn)
3395 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3396 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3398 if (insn->prev)
3399 insn->prev->next = insn->next;
3400 else
3401 model_worklist = insn->next;
3402 if (insn->next)
3403 insn->next->prev = insn->prev;
3406 /* Add INSN to the model worklist. Start looking for a suitable position
3407 between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3408 insns either side. A null PREV indicates the beginning of the list and
3409 a null NEXT indicates the end. */
3411 static void
3412 model_add_to_worklist (struct model_insn_info *insn,
3413 struct model_insn_info *prev,
3414 struct model_insn_info *next)
3416 int count;
3418 count = MAX_SCHED_READY_INSNS;
3419 if (count > 0 && prev && model_order_p (insn, prev))
3422 count--;
3423 prev = prev->prev;
3425 while (count > 0 && prev && model_order_p (insn, prev));
3426 else
3427 while (count > 0 && next && model_order_p (next, insn))
3429 count--;
3430 prev = next;
3431 next = next->next;
3433 model_add_to_worklist_at (insn, prev);
3436 /* INSN may now have a higher priority (in the model_order_p sense)
3437 than before. Move it up the worklist if necessary. */
3439 static void
3440 model_promote_insn (struct model_insn_info *insn)
3442 struct model_insn_info *prev;
3443 int count;
3445 prev = insn->prev;
3446 count = MAX_SCHED_READY_INSNS;
3447 while (count > 0 && prev && model_order_p (insn, prev))
3449 count--;
3450 prev = prev->prev;
3452 if (prev != insn->prev)
3454 model_remove_from_worklist (insn);
3455 model_add_to_worklist_at (insn, prev);
3459 /* Add INSN to the end of the model schedule. */
3461 static void
3462 model_add_to_schedule (rtx_insn *insn)
3464 unsigned int point;
3466 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3467 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3469 point = model_schedule.length ();
3470 model_schedule.quick_push (insn);
3471 INSN_MODEL_INDEX (insn) = point + 1;
3474 /* Analyze the instructions that are to be scheduled, setting up
3475 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3476 instructions to model_worklist. */
3478 static void
3479 model_analyze_insns (void)
3481 rtx_insn *start, *end, *iter;
3482 sd_iterator_def sd_it;
3483 dep_t dep;
3484 struct model_insn_info *insn, *con;
3486 model_num_insns = 0;
3487 start = PREV_INSN (current_sched_info->next_tail);
3488 end = current_sched_info->prev_head;
3489 for (iter = start; iter != end; iter = PREV_INSN (iter))
3490 if (NONDEBUG_INSN_P (iter))
3492 insn = MODEL_INSN_INFO (iter);
3493 insn->insn = iter;
3494 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3496 con = MODEL_INSN_INFO (DEP_CON (dep));
3497 if (con->insn && insn->alap < con->alap + 1)
3498 insn->alap = con->alap + 1;
3501 insn->old_queue = QUEUE_INDEX (iter);
3502 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3504 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3505 if (insn->unscheduled_preds == 0)
3506 model_add_to_worklist (insn, NULL, model_worklist);
3508 model_num_insns++;
3512 /* The global state describes the register pressure at the start of the
3513 model schedule. Initialize GROUP accordingly. */
3515 static void
3516 model_init_pressure_group (struct model_pressure_group *group)
3518 int pci, cl;
3520 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3522 cl = ira_pressure_classes[pci];
3523 group->limits[pci].pressure = curr_reg_pressure[cl];
3524 group->limits[pci].point = 0;
3526 /* Use index model_num_insns to record the state after the last
3527 instruction in the model schedule. */
3528 group->model = XNEWVEC (struct model_pressure_data,
3529 (model_num_insns + 1) * ira_pressure_classes_num);
3532 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3533 Update the maximum pressure for the whole schedule. */
3535 static void
3536 model_record_pressure (struct model_pressure_group *group,
3537 int point, int pci, int pressure)
3539 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3540 if (group->limits[pci].pressure < pressure)
3542 group->limits[pci].pressure = pressure;
3543 group->limits[pci].point = point;
3547 /* INSN has just been added to the end of the model schedule. Record its
3548 register-pressure information. */
3550 static void
3551 model_record_pressures (struct model_insn_info *insn)
3553 struct reg_pressure_data *reg_pressure;
3554 int point, pci, cl, delta;
3555 int death[N_REG_CLASSES];
3557 point = model_index (insn->insn);
3558 if (sched_verbose >= 2)
3560 if (point == 0)
3562 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3563 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3565 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3566 point, INSN_UID (insn->insn), insn->model_priority,
3567 insn->depth + insn->alap, insn->depth,
3568 INSN_PRIORITY (insn->insn),
3569 str_pattern_slim (PATTERN (insn->insn)));
3571 calculate_reg_deaths (insn->insn, death);
3572 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3573 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3575 cl = ira_pressure_classes[pci];
3576 delta = reg_pressure[pci].set_increase - death[cl];
3577 if (sched_verbose >= 2)
3578 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3579 curr_reg_pressure[cl], delta);
3580 model_record_pressure (&model_before_pressure, point, pci,
3581 curr_reg_pressure[cl]);
3583 if (sched_verbose >= 2)
3584 fprintf (sched_dump, "\n");
3587 /* All instructions have been added to the model schedule. Record the
3588 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3590 static void
3591 model_record_final_pressures (struct model_pressure_group *group)
3593 int point, pci, max_pressure, ref_pressure, cl;
3595 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3597 /* Record the final pressure for this class. */
3598 cl = ira_pressure_classes[pci];
3599 point = model_num_insns;
3600 ref_pressure = curr_reg_pressure[cl];
3601 model_record_pressure (group, point, pci, ref_pressure);
3603 /* Record the original maximum pressure. */
3604 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3606 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3607 max_pressure = ref_pressure;
3608 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3609 while (point > 0)
3611 point--;
3612 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3613 max_pressure = MAX (max_pressure, ref_pressure);
3614 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3619 /* Update all successors of INSN, given that INSN has just been scheduled. */
3621 static void
3622 model_add_successors_to_worklist (struct model_insn_info *insn)
3624 sd_iterator_def sd_it;
3625 struct model_insn_info *con;
3626 dep_t dep;
3628 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3630 con = MODEL_INSN_INFO (DEP_CON (dep));
3631 /* Ignore debug instructions, and instructions from other blocks. */
3632 if (con->insn)
3634 con->unscheduled_preds--;
3636 /* Update the depth field of each true-dependent successor.
3637 Increasing the depth gives them a higher priority than
3638 before. */
3639 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3641 con->depth = insn->depth + 1;
3642 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3643 model_promote_insn (con);
3646 /* If this is a true dependency, or if there are no remaining
3647 dependencies for CON (meaning that CON only had non-true
3648 dependencies), make sure that CON is on the worklist.
3649 We don't bother otherwise because it would tend to fill the
3650 worklist with a lot of low-priority instructions that are not
3651 yet ready to issue. */
3652 if ((con->depth > 0 || con->unscheduled_preds == 0)
3653 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3654 model_add_to_worklist (con, insn, insn->next);
3659 /* Give INSN a higher priority than any current instruction, then give
3660 unscheduled predecessors of INSN a higher priority still. If any of
3661 those predecessors are not on the model worklist, do the same for its
3662 predecessors, and so on. */
3664 static void
3665 model_promote_predecessors (struct model_insn_info *insn)
3667 struct model_insn_info *pro, *first;
3668 sd_iterator_def sd_it;
3669 dep_t dep;
3671 if (sched_verbose >= 7)
3672 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3673 INSN_UID (insn->insn), model_next_priority);
3674 insn->model_priority = model_next_priority++;
3675 model_remove_from_worklist (insn);
3676 model_add_to_worklist_at (insn, NULL);
3678 first = NULL;
3679 for (;;)
3681 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3683 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3684 /* The first test is to ignore debug instructions, and instructions
3685 from other blocks. */
3686 if (pro->insn
3687 && pro->model_priority != model_next_priority
3688 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3690 pro->model_priority = model_next_priority;
3691 if (sched_verbose >= 7)
3692 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3693 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3695 /* PRO is already in the worklist, but it now has
3696 a higher priority than before. Move it at the
3697 appropriate place. */
3698 model_remove_from_worklist (pro);
3699 model_add_to_worklist (pro, NULL, model_worklist);
3701 else
3703 /* PRO isn't in the worklist. Recursively process
3704 its predecessors until we find one that is. */
3705 pro->next = first;
3706 first = pro;
3710 if (!first)
3711 break;
3712 insn = first;
3713 first = insn->next;
3715 if (sched_verbose >= 7)
3716 fprintf (sched_dump, " = %d\n", model_next_priority);
3717 model_next_priority++;
3720 /* Pick one instruction from model_worklist and process it. */
3722 static void
3723 model_choose_insn (void)
3725 struct model_insn_info *insn, *fallback;
3726 int count;
3728 if (sched_verbose >= 7)
3730 fprintf (sched_dump, ";;\t+--- worklist:\n");
3731 insn = model_worklist;
3732 count = MAX_SCHED_READY_INSNS;
3733 while (count > 0 && insn)
3735 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3736 INSN_UID (insn->insn), insn->model_priority,
3737 insn->depth + insn->alap, insn->depth,
3738 INSN_PRIORITY (insn->insn));
3739 count--;
3740 insn = insn->next;
3744 /* Look for a ready instruction whose model_classify_priority is zero
3745 or negative, picking the highest-priority one. Adding such an
3746 instruction to the schedule now should do no harm, and may actually
3747 do some good.
3749 Failing that, see whether there is an instruction with the highest
3750 extant model_priority that is not yet ready, but which would reduce
3751 pressure if it became ready. This is designed to catch cases like:
3753 (set (mem (reg R1)) (reg R2))
3755 where the instruction is the last remaining use of R1 and where the
3756 value of R2 is not yet available (or vice versa). The death of R1
3757 means that this instruction already reduces pressure. It is of
3758 course possible that the computation of R2 involves other registers
3759 that are hard to kill, but such cases are rare enough for this
3760 heuristic to be a win in general.
3762 Failing that, just pick the highest-priority instruction in the
3763 worklist. */
3764 count = MAX_SCHED_READY_INSNS;
3765 insn = model_worklist;
3766 fallback = 0;
3767 for (;;)
3769 if (count == 0 || !insn)
3771 insn = fallback ? fallback : model_worklist;
3772 break;
3774 if (insn->unscheduled_preds)
3776 if (model_worklist->model_priority == insn->model_priority
3777 && !fallback
3778 && model_classify_pressure (insn) < 0)
3779 fallback = insn;
3781 else
3783 if (model_classify_pressure (insn) <= 0)
3784 break;
3786 count--;
3787 insn = insn->next;
3790 if (sched_verbose >= 7 && insn != model_worklist)
3792 if (insn->unscheduled_preds)
3793 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3794 INSN_UID (insn->insn));
3795 else
3796 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3797 INSN_UID (insn->insn));
3799 if (insn->unscheduled_preds)
3800 /* INSN isn't yet ready to issue. Give all its predecessors the
3801 highest priority. */
3802 model_promote_predecessors (insn);
3803 else
3805 /* INSN is ready. Add it to the end of model_schedule and
3806 process its successors. */
3807 model_add_successors_to_worklist (insn);
3808 model_remove_from_worklist (insn);
3809 model_add_to_schedule (insn->insn);
3810 model_record_pressures (insn);
3811 update_register_pressure (insn->insn);
3815 /* Restore all QUEUE_INDEXs to the values that they had before
3816 model_start_schedule was called. */
3818 static void
3819 model_reset_queue_indices (void)
3821 unsigned int i;
3822 rtx_insn *insn;
3824 FOR_EACH_VEC_ELT (model_schedule, i, insn)
3825 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3828 /* We have calculated the model schedule and spill costs. Print a summary
3829 to sched_dump. */
3831 static void
3832 model_dump_pressure_summary (void)
3834 int pci, cl;
3836 fprintf (sched_dump, ";; Pressure summary:");
3837 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3839 cl = ira_pressure_classes[pci];
3840 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3841 model_before_pressure.limits[pci].pressure);
3843 fprintf (sched_dump, "\n\n");
3846 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3847 scheduling region. */
3849 static void
3850 model_start_schedule (basic_block bb)
3852 model_next_priority = 1;
3853 model_schedule.create (sched_max_luid);
3854 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3856 gcc_assert (bb == BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head)));
3857 initiate_reg_pressure_info (df_get_live_in (bb));
3859 model_analyze_insns ();
3860 model_init_pressure_group (&model_before_pressure);
3861 while (model_worklist)
3862 model_choose_insn ();
3863 gcc_assert (model_num_insns == (int) model_schedule.length ());
3864 if (sched_verbose >= 2)
3865 fprintf (sched_dump, "\n");
3867 model_record_final_pressures (&model_before_pressure);
3868 model_reset_queue_indices ();
3870 XDELETEVEC (model_insns);
3872 model_curr_point = 0;
3873 initiate_reg_pressure_info (df_get_live_in (bb));
3874 if (sched_verbose >= 1)
3875 model_dump_pressure_summary ();
3878 /* Free the information associated with GROUP. */
3880 static void
3881 model_finalize_pressure_group (struct model_pressure_group *group)
3883 XDELETEVEC (group->model);
3886 /* Free the information created by model_start_schedule. */
3888 static void
3889 model_end_schedule (void)
3891 model_finalize_pressure_group (&model_before_pressure);
3892 model_schedule.release ();
3895 /* Prepare reg pressure scheduling for basic block BB. */
3896 static void
3897 sched_pressure_start_bb (basic_block bb)
3899 /* Set the number of available registers for each class taking into account
3900 relative probability of current basic block versus function prologue and
3901 epilogue.
3902 * If the basic block executes much more often than the prologue/epilogue
3903 (e.g., inside a hot loop), then cost of spill in the prologue is close to
3904 nil, so the effective number of available registers is
3905 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl] - 0).
3906 * If the basic block executes as often as the prologue/epilogue,
3907 then spill in the block is as costly as in the prologue, so the effective
3908 number of available registers is
3909 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl]
3910 - call_saved_regs_num[cl]).
3911 Note that all-else-equal, we prefer to spill in the prologue, since that
3912 allows "extra" registers for other basic blocks of the function.
3913 * If the basic block is on the cold path of the function and executes
3914 rarely, then we should always prefer to spill in the block, rather than
3915 in the prologue/epilogue. The effective number of available register is
3916 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl]
3917 - call_saved_regs_num[cl]). */
3919 int i;
3920 int entry_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.to_frequency (cfun);
3921 int bb_freq = bb->count.to_frequency (cfun);
3923 if (bb_freq == 0)
3925 if (entry_freq == 0)
3926 entry_freq = bb_freq = 1;
3928 if (bb_freq < entry_freq)
3929 bb_freq = entry_freq;
3931 for (i = 0; i < ira_pressure_classes_num; ++i)
3933 enum reg_class cl = ira_pressure_classes[i];
3934 sched_class_regs_num[cl] = ira_class_hard_regs_num[cl]
3935 - fixed_regs_num[cl];
3936 sched_class_regs_num[cl]
3937 -= (call_saved_regs_num[cl] * entry_freq) / bb_freq;
3941 if (sched_pressure == SCHED_PRESSURE_MODEL)
3942 model_start_schedule (bb);
3945 /* A structure that holds local state for the loop in schedule_block. */
3946 struct sched_block_state
3948 /* True if no real insns have been scheduled in the current cycle. */
3949 bool first_cycle_insn_p;
3950 /* True if a shadow insn has been scheduled in the current cycle, which
3951 means that no more normal insns can be issued. */
3952 bool shadows_only_p;
3953 /* True if we're winding down a modulo schedule, which means that we only
3954 issue insns with INSN_EXACT_TICK set. */
3955 bool modulo_epilogue;
3956 /* Initialized with the machine's issue rate every cycle, and updated
3957 by calls to the variable_issue hook. */
3958 int can_issue_more;
3961 /* INSN is the "currently executing insn". Launch each insn which was
3962 waiting on INSN. READY is the ready list which contains the insns
3963 that are ready to fire. CLOCK is the current cycle. The function
3964 returns necessary cycle advance after issuing the insn (it is not
3965 zero for insns in a schedule group). */
3967 static int
3968 schedule_insn (rtx_insn *insn)
3970 sd_iterator_def sd_it;
3971 dep_t dep;
3972 int i;
3973 int advance = 0;
3975 if (sched_verbose >= 1)
3977 struct reg_pressure_data *pressure_info;
3978 fprintf (sched_dump, ";;\t%3i--> %s %-40s:",
3979 clock_var, (*current_sched_info->print_insn) (insn, 1),
3980 str_pattern_slim (PATTERN (insn)));
3982 if (recog_memoized (insn) < 0)
3983 fprintf (sched_dump, "nothing");
3984 else
3985 print_reservation (sched_dump, insn);
3986 pressure_info = INSN_REG_PRESSURE (insn);
3987 if (pressure_info != NULL)
3989 fputc (':', sched_dump);
3990 for (i = 0; i < ira_pressure_classes_num; i++)
3991 fprintf (sched_dump, "%s%s%+d(%d)",
3992 scheduled_insns.length () > 1
3993 && INSN_LUID (insn)
3994 < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
3995 reg_class_names[ira_pressure_classes[i]],
3996 pressure_info[i].set_increase, pressure_info[i].change);
3998 if (sched_pressure == SCHED_PRESSURE_MODEL
3999 && model_curr_point < model_num_insns
4000 && model_index (insn) == model_curr_point)
4001 fprintf (sched_dump, ":model %d", model_curr_point);
4002 fputc ('\n', sched_dump);
4005 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
4006 update_reg_and_insn_max_reg_pressure (insn);
4008 /* Scheduling instruction should have all its dependencies resolved and
4009 should have been removed from the ready list. */
4010 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
4012 /* Reset debug insns invalidated by moving this insn. */
4013 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
4014 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
4015 sd_iterator_cond (&sd_it, &dep);)
4017 rtx_insn *dbg = DEP_PRO (dep);
4018 struct reg_use_data *use, *next;
4020 if (DEP_STATUS (dep) & DEP_CANCELLED)
4022 sd_iterator_next (&sd_it);
4023 continue;
4026 gcc_assert (DEBUG_INSN_P (dbg));
4028 if (sched_verbose >= 6)
4029 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
4030 INSN_UID (dbg));
4032 /* ??? Rather than resetting the debug insn, we might be able
4033 to emit a debug temp before the just-scheduled insn, but
4034 this would involve checking that the expression at the
4035 point of the debug insn is equivalent to the expression
4036 before the just-scheduled insn. They might not be: the
4037 expression in the debug insn may depend on other insns not
4038 yet scheduled that set MEMs, REGs or even other debug
4039 insns. It's not clear that attempting to preserve debug
4040 information in these cases is worth the effort, given how
4041 uncommon these resets are and the likelihood that the debug
4042 temps introduced won't survive the schedule change. */
4043 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
4044 df_insn_rescan (dbg);
4046 /* Unknown location doesn't use any registers. */
4047 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
4049 struct reg_use_data *prev = use;
4051 /* Remove use from the cyclic next_regno_use chain first. */
4052 while (prev->next_regno_use != use)
4053 prev = prev->next_regno_use;
4054 prev->next_regno_use = use->next_regno_use;
4055 next = use->next_insn_use;
4056 free (use);
4058 INSN_REG_USE_LIST (dbg) = NULL;
4060 /* We delete rather than resolve these deps, otherwise we
4061 crash in sched_free_deps(), because forward deps are
4062 expected to be released before backward deps. */
4063 sd_delete_dep (sd_it);
4066 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
4067 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
4069 if (sched_pressure == SCHED_PRESSURE_MODEL
4070 && model_curr_point < model_num_insns
4071 && NONDEBUG_INSN_P (insn))
4073 if (model_index (insn) == model_curr_point)
4075 model_curr_point++;
4076 while (model_curr_point < model_num_insns
4077 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
4078 == QUEUE_SCHEDULED));
4079 else
4080 model_recompute (insn);
4081 model_update_limit_points ();
4082 update_register_pressure (insn);
4083 if (sched_verbose >= 2)
4084 print_curr_reg_pressure ();
4087 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
4088 if (INSN_TICK (insn) > clock_var)
4089 /* INSN has been prematurely moved from the queue to the ready list.
4090 This is possible only if following flags are set. */
4091 gcc_assert (flag_sched_stalled_insns || sched_fusion);
4093 /* ??? Probably, if INSN is scheduled prematurely, we should leave
4094 INSN_TICK untouched. This is a machine-dependent issue, actually. */
4095 INSN_TICK (insn) = clock_var;
4097 check_clobbered_conditions (insn);
4099 /* Update dependent instructions. First, see if by scheduling this insn
4100 now we broke a dependence in a way that requires us to change another
4101 insn. */
4102 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4103 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4105 struct dep_replacement *desc = DEP_REPLACE (dep);
4106 rtx_insn *pro = DEP_PRO (dep);
4107 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
4108 && desc != NULL && desc->insn == pro)
4109 apply_replacement (dep, false);
4112 /* Go through and resolve forward dependencies. */
4113 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4114 sd_iterator_cond (&sd_it, &dep);)
4116 rtx_insn *next = DEP_CON (dep);
4117 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
4119 /* Resolve the dependence between INSN and NEXT.
4120 sd_resolve_dep () moves current dep to another list thus
4121 advancing the iterator. */
4122 sd_resolve_dep (sd_it);
4124 if (cancelled)
4126 if (must_restore_pattern_p (next, dep))
4127 restore_pattern (dep, false);
4128 continue;
4131 /* Don't bother trying to mark next as ready if insn is a debug
4132 insn. If insn is the last hard dependency, it will have
4133 already been discounted. */
4134 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
4135 continue;
4137 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4139 int effective_cost;
4141 effective_cost = try_ready (next);
4143 if (effective_cost >= 0
4144 && SCHED_GROUP_P (next)
4145 && advance < effective_cost)
4146 advance = effective_cost;
4148 else
4149 /* Check always has only one forward dependence (to the first insn in
4150 the recovery block), therefore, this will be executed only once. */
4152 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4153 fix_recovery_deps (RECOVERY_BLOCK (insn));
4157 /* Annotate the instruction with issue information -- TImode
4158 indicates that the instruction is expected not to be able
4159 to issue on the same cycle as the previous insn. A machine
4160 may use this information to decide how the instruction should
4161 be aligned. */
4162 if (issue_rate > 1
4163 && GET_CODE (PATTERN (insn)) != USE
4164 && GET_CODE (PATTERN (insn)) != CLOBBER
4165 && !DEBUG_INSN_P (insn))
4167 if (reload_completed)
4168 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
4169 last_clock_var = clock_var;
4172 if (nonscheduled_insns_begin != NULL_RTX)
4173 /* Indicate to debug counters that INSN is scheduled. */
4174 nonscheduled_insns_begin = insn;
4176 return advance;
4179 /* Functions for handling of notes. */
4181 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
4182 void
4183 concat_note_lists (rtx_insn *from_end, rtx_insn **to_endp)
4185 rtx_insn *from_start;
4187 /* It's easy when have nothing to concat. */
4188 if (from_end == NULL)
4189 return;
4191 /* It's also easy when destination is empty. */
4192 if (*to_endp == NULL)
4194 *to_endp = from_end;
4195 return;
4198 from_start = from_end;
4199 while (PREV_INSN (from_start) != NULL)
4200 from_start = PREV_INSN (from_start);
4202 SET_PREV_INSN (from_start) = *to_endp;
4203 SET_NEXT_INSN (*to_endp) = from_start;
4204 *to_endp = from_end;
4207 /* Delete notes between HEAD and TAIL and put them in the chain
4208 of notes ended by NOTE_LIST. */
4209 void
4210 remove_notes (rtx_insn *head, rtx_insn *tail)
4212 rtx_insn *next_tail, *insn, *next;
4214 note_list = 0;
4215 if (head == tail && !INSN_P (head))
4216 return;
4218 next_tail = NEXT_INSN (tail);
4219 for (insn = head; insn != next_tail; insn = next)
4221 next = NEXT_INSN (insn);
4222 if (!NOTE_P (insn))
4223 continue;
4225 switch (NOTE_KIND (insn))
4227 case NOTE_INSN_BASIC_BLOCK:
4228 continue;
4230 case NOTE_INSN_EPILOGUE_BEG:
4231 if (insn != tail)
4233 remove_insn (insn);
4234 add_reg_note (next, REG_SAVE_NOTE,
4235 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4236 break;
4238 /* FALLTHRU */
4240 default:
4241 remove_insn (insn);
4243 /* Add the note to list that ends at NOTE_LIST. */
4244 SET_PREV_INSN (insn) = note_list;
4245 SET_NEXT_INSN (insn) = NULL_RTX;
4246 if (note_list)
4247 SET_NEXT_INSN (note_list) = insn;
4248 note_list = insn;
4249 break;
4252 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4256 /* A structure to record enough data to allow us to backtrack the scheduler to
4257 a previous state. */
4258 struct haifa_saved_data
4260 /* Next entry on the list. */
4261 struct haifa_saved_data *next;
4263 /* Backtracking is associated with scheduling insns that have delay slots.
4264 DELAY_PAIR points to the structure that contains the insns involved, and
4265 the number of cycles between them. */
4266 struct delay_pair *delay_pair;
4268 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4269 void *fe_saved_data;
4270 /* Data used by the backend. */
4271 void *be_saved_data;
4273 /* Copies of global state. */
4274 int clock_var, last_clock_var;
4275 struct ready_list ready;
4276 state_t curr_state;
4278 rtx_insn *last_scheduled_insn;
4279 rtx_insn *last_nondebug_scheduled_insn;
4280 rtx_insn *nonscheduled_insns_begin;
4281 int cycle_issued_insns;
4283 /* Copies of state used in the inner loop of schedule_block. */
4284 struct sched_block_state sched_block;
4286 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4287 to 0 when restoring. */
4288 int q_size;
4289 rtx_insn_list **insn_queue;
4291 /* Describe pattern replacements that occurred since this backtrack point
4292 was queued. */
4293 vec<dep_t> replacement_deps;
4294 vec<int> replace_apply;
4296 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4297 point. */
4298 vec<dep_t> next_cycle_deps;
4299 vec<int> next_cycle_apply;
4302 /* A record, in reverse order, of all scheduled insns which have delay slots
4303 and may require backtracking. */
4304 static struct haifa_saved_data *backtrack_queue;
4306 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4307 to SET_P. */
4308 static void
4309 mark_backtrack_feeds (rtx_insn *insn, int set_p)
4311 sd_iterator_def sd_it;
4312 dep_t dep;
4313 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4315 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4319 /* Save the current scheduler state so that we can backtrack to it
4320 later if necessary. PAIR gives the insns that make it necessary to
4321 save this point. SCHED_BLOCK is the local state of schedule_block
4322 that need to be saved. */
4323 static void
4324 save_backtrack_point (struct delay_pair *pair,
4325 struct sched_block_state sched_block)
4327 int i;
4328 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4330 save->curr_state = xmalloc (dfa_state_size);
4331 memcpy (save->curr_state, curr_state, dfa_state_size);
4333 save->ready.first = ready.first;
4334 save->ready.n_ready = ready.n_ready;
4335 save->ready.n_debug = ready.n_debug;
4336 save->ready.veclen = ready.veclen;
4337 save->ready.vec = XNEWVEC (rtx_insn *, ready.veclen);
4338 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4340 save->insn_queue = XNEWVEC (rtx_insn_list *, max_insn_queue_index + 1);
4341 save->q_size = q_size;
4342 for (i = 0; i <= max_insn_queue_index; i++)
4344 int q = NEXT_Q_AFTER (q_ptr, i);
4345 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
4348 save->clock_var = clock_var;
4349 save->last_clock_var = last_clock_var;
4350 save->cycle_issued_insns = cycle_issued_insns;
4351 save->last_scheduled_insn = last_scheduled_insn;
4352 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4353 save->nonscheduled_insns_begin = nonscheduled_insns_begin;
4355 save->sched_block = sched_block;
4357 save->replacement_deps.create (0);
4358 save->replace_apply.create (0);
4359 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4360 save->next_cycle_apply = next_cycle_apply.copy ();
4362 if (current_sched_info->save_state)
4363 save->fe_saved_data = (*current_sched_info->save_state) ();
4365 if (targetm.sched.alloc_sched_context)
4367 save->be_saved_data = targetm.sched.alloc_sched_context ();
4368 targetm.sched.init_sched_context (save->be_saved_data, false);
4370 else
4371 save->be_saved_data = NULL;
4373 save->delay_pair = pair;
4375 save->next = backtrack_queue;
4376 backtrack_queue = save;
4378 while (pair)
4380 mark_backtrack_feeds (pair->i2, 1);
4381 INSN_TICK (pair->i2) = INVALID_TICK;
4382 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
4383 SHADOW_P (pair->i2) = pair->stages == 0;
4384 pair = pair->next_same_i1;
4388 /* Walk the ready list and all queues. If any insns have unresolved backwards
4389 dependencies, these must be cancelled deps, broken by predication. Set or
4390 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4392 static void
4393 toggle_cancelled_flags (bool set)
4395 int i;
4396 sd_iterator_def sd_it;
4397 dep_t dep;
4399 if (ready.n_ready > 0)
4401 rtx_insn **first = ready_lastpos (&ready);
4402 for (i = 0; i < ready.n_ready; i++)
4403 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4404 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4406 if (set)
4407 DEP_STATUS (dep) |= DEP_CANCELLED;
4408 else
4409 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4412 for (i = 0; i <= max_insn_queue_index; i++)
4414 int q = NEXT_Q_AFTER (q_ptr, i);
4415 rtx_insn_list *link;
4416 for (link = insn_queue[q]; link; link = link->next ())
4418 rtx_insn *insn = link->insn ();
4419 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4420 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4422 if (set)
4423 DEP_STATUS (dep) |= DEP_CANCELLED;
4424 else
4425 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4431 /* Undo the replacements that have occurred after backtrack point SAVE
4432 was placed. */
4433 static void
4434 undo_replacements_for_backtrack (struct haifa_saved_data *save)
4436 while (!save->replacement_deps.is_empty ())
4438 dep_t dep = save->replacement_deps.pop ();
4439 int apply_p = save->replace_apply.pop ();
4441 if (apply_p)
4442 restore_pattern (dep, true);
4443 else
4444 apply_replacement (dep, true);
4446 save->replacement_deps.release ();
4447 save->replace_apply.release ();
4450 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4451 Restore their dependencies to an unresolved state, and mark them as
4452 queued nowhere. */
4454 static void
4455 unschedule_insns_until (rtx_insn *insn)
4457 auto_vec<rtx_insn *> recompute_vec;
4459 /* Make two passes over the insns to be unscheduled. First, we clear out
4460 dependencies and other trivial bookkeeping. */
4461 for (;;)
4463 rtx_insn *last;
4464 sd_iterator_def sd_it;
4465 dep_t dep;
4467 last = scheduled_insns.pop ();
4469 /* This will be changed by restore_backtrack_point if the insn is in
4470 any queue. */
4471 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4472 if (last != insn)
4473 INSN_TICK (last) = INVALID_TICK;
4475 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4476 modulo_insns_scheduled--;
4478 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4479 sd_iterator_cond (&sd_it, &dep);)
4481 rtx_insn *con = DEP_CON (dep);
4482 sd_unresolve_dep (sd_it);
4483 if (!MUST_RECOMPUTE_SPEC_P (con))
4485 MUST_RECOMPUTE_SPEC_P (con) = 1;
4486 recompute_vec.safe_push (con);
4490 if (last == insn)
4491 break;
4494 /* A second pass, to update ready and speculation status for insns
4495 depending on the unscheduled ones. The first pass must have
4496 popped the scheduled_insns vector up to the point where we
4497 restart scheduling, as recompute_todo_spec requires it to be
4498 up-to-date. */
4499 while (!recompute_vec.is_empty ())
4501 rtx_insn *con;
4503 con = recompute_vec.pop ();
4504 MUST_RECOMPUTE_SPEC_P (con) = 0;
4505 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4507 TODO_SPEC (con) = HARD_DEP;
4508 INSN_TICK (con) = INVALID_TICK;
4509 if (PREDICATED_PAT (con) != NULL_RTX)
4510 haifa_change_pattern (con, ORIG_PAT (con));
4512 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4513 TODO_SPEC (con) = recompute_todo_spec (con, true);
4517 /* Restore scheduler state from the topmost entry on the backtracking queue.
4518 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4519 overwrite with the saved data.
4520 The caller must already have called unschedule_insns_until. */
4522 static void
4523 restore_last_backtrack_point (struct sched_block_state *psched_block)
4525 int i;
4526 struct haifa_saved_data *save = backtrack_queue;
4528 backtrack_queue = save->next;
4530 if (current_sched_info->restore_state)
4531 (*current_sched_info->restore_state) (save->fe_saved_data);
4533 if (targetm.sched.alloc_sched_context)
4535 targetm.sched.set_sched_context (save->be_saved_data);
4536 targetm.sched.free_sched_context (save->be_saved_data);
4539 /* Do this first since it clobbers INSN_TICK of the involved
4540 instructions. */
4541 undo_replacements_for_backtrack (save);
4543 /* Clear the QUEUE_INDEX of everything in the ready list or one
4544 of the queues. */
4545 if (ready.n_ready > 0)
4547 rtx_insn **first = ready_lastpos (&ready);
4548 for (i = 0; i < ready.n_ready; i++)
4550 rtx_insn *insn = first[i];
4551 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4552 INSN_TICK (insn) = INVALID_TICK;
4555 for (i = 0; i <= max_insn_queue_index; i++)
4557 int q = NEXT_Q_AFTER (q_ptr, i);
4559 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4561 rtx_insn *x = link->insn ();
4562 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4563 INSN_TICK (x) = INVALID_TICK;
4565 free_INSN_LIST_list (&insn_queue[q]);
4568 free (ready.vec);
4569 ready = save->ready;
4571 if (ready.n_ready > 0)
4573 rtx_insn **first = ready_lastpos (&ready);
4574 for (i = 0; i < ready.n_ready; i++)
4576 rtx_insn *insn = first[i];
4577 QUEUE_INDEX (insn) = QUEUE_READY;
4578 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
4579 INSN_TICK (insn) = save->clock_var;
4583 q_ptr = 0;
4584 q_size = save->q_size;
4585 for (i = 0; i <= max_insn_queue_index; i++)
4587 int q = NEXT_Q_AFTER (q_ptr, i);
4589 insn_queue[q] = save->insn_queue[q];
4591 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4593 rtx_insn *x = link->insn ();
4594 QUEUE_INDEX (x) = i;
4595 TODO_SPEC (x) = recompute_todo_spec (x, true);
4596 INSN_TICK (x) = save->clock_var + i;
4599 free (save->insn_queue);
4601 toggle_cancelled_flags (true);
4603 clock_var = save->clock_var;
4604 last_clock_var = save->last_clock_var;
4605 cycle_issued_insns = save->cycle_issued_insns;
4606 last_scheduled_insn = save->last_scheduled_insn;
4607 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4608 nonscheduled_insns_begin = save->nonscheduled_insns_begin;
4610 *psched_block = save->sched_block;
4612 memcpy (curr_state, save->curr_state, dfa_state_size);
4613 free (save->curr_state);
4615 mark_backtrack_feeds (save->delay_pair->i2, 0);
4617 gcc_assert (next_cycle_replace_deps.is_empty ());
4618 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4619 next_cycle_apply = save->next_cycle_apply.copy ();
4621 free (save);
4623 for (save = backtrack_queue; save; save = save->next)
4625 mark_backtrack_feeds (save->delay_pair->i2, 1);
4629 /* Discard all data associated with the topmost entry in the backtrack
4630 queue. If RESET_TICK is false, we just want to free the data. If true,
4631 we are doing this because we discovered a reason to backtrack. In the
4632 latter case, also reset the INSN_TICK for the shadow insn. */
4633 static void
4634 free_topmost_backtrack_point (bool reset_tick)
4636 struct haifa_saved_data *save = backtrack_queue;
4637 int i;
4639 backtrack_queue = save->next;
4641 if (reset_tick)
4643 struct delay_pair *pair = save->delay_pair;
4644 while (pair)
4646 INSN_TICK (pair->i2) = INVALID_TICK;
4647 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4648 pair = pair->next_same_i1;
4650 undo_replacements_for_backtrack (save);
4652 else
4654 save->replacement_deps.release ();
4655 save->replace_apply.release ();
4658 if (targetm.sched.free_sched_context)
4659 targetm.sched.free_sched_context (save->be_saved_data);
4660 if (current_sched_info->restore_state)
4661 free (save->fe_saved_data);
4662 for (i = 0; i <= max_insn_queue_index; i++)
4663 free_INSN_LIST_list (&save->insn_queue[i]);
4664 free (save->insn_queue);
4665 free (save->curr_state);
4666 free (save->ready.vec);
4667 free (save);
4670 /* Free the entire backtrack queue. */
4671 static void
4672 free_backtrack_queue (void)
4674 while (backtrack_queue)
4675 free_topmost_backtrack_point (false);
4678 /* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4679 may have to postpone the replacement until the start of the next cycle,
4680 at which point we will be called again with IMMEDIATELY true. This is
4681 only done for machines which have instruction packets with explicit
4682 parallelism however. */
4683 static void
4684 apply_replacement (dep_t dep, bool immediately)
4686 struct dep_replacement *desc = DEP_REPLACE (dep);
4687 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4689 next_cycle_replace_deps.safe_push (dep);
4690 next_cycle_apply.safe_push (1);
4692 else
4694 bool success;
4696 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4697 return;
4699 if (sched_verbose >= 5)
4700 fprintf (sched_dump, "applying replacement for insn %d\n",
4701 INSN_UID (desc->insn));
4703 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4704 gcc_assert (success);
4706 update_insn_after_change (desc->insn);
4707 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4708 fix_tick_ready (desc->insn);
4710 if (backtrack_queue != NULL)
4712 backtrack_queue->replacement_deps.safe_push (dep);
4713 backtrack_queue->replace_apply.safe_push (1);
4718 /* We have determined that a pattern involved in DEP must be restored.
4719 If IMMEDIATELY is false, we may have to postpone the replacement
4720 until the start of the next cycle, at which point we will be called
4721 again with IMMEDIATELY true. */
4722 static void
4723 restore_pattern (dep_t dep, bool immediately)
4725 rtx_insn *next = DEP_CON (dep);
4726 int tick = INSN_TICK (next);
4728 /* If we already scheduled the insn, the modified version is
4729 correct. */
4730 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4731 return;
4733 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4735 next_cycle_replace_deps.safe_push (dep);
4736 next_cycle_apply.safe_push (0);
4737 return;
4741 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4743 if (sched_verbose >= 5)
4744 fprintf (sched_dump, "restoring pattern for insn %d\n",
4745 INSN_UID (next));
4746 haifa_change_pattern (next, ORIG_PAT (next));
4748 else
4750 struct dep_replacement *desc = DEP_REPLACE (dep);
4751 bool success;
4753 if (sched_verbose >= 5)
4754 fprintf (sched_dump, "restoring pattern for insn %d\n",
4755 INSN_UID (desc->insn));
4756 tick = INSN_TICK (desc->insn);
4758 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4759 gcc_assert (success);
4760 update_insn_after_change (desc->insn);
4761 if (backtrack_queue != NULL)
4763 backtrack_queue->replacement_deps.safe_push (dep);
4764 backtrack_queue->replace_apply.safe_push (0);
4767 INSN_TICK (next) = tick;
4768 if (TODO_SPEC (next) == DEP_POSTPONED)
4769 return;
4771 if (sd_lists_empty_p (next, SD_LIST_BACK))
4772 TODO_SPEC (next) = 0;
4773 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4774 TODO_SPEC (next) = HARD_DEP;
4777 /* Perform pattern replacements that were queued up until the next
4778 cycle. */
4779 static void
4780 perform_replacements_new_cycle (void)
4782 int i;
4783 dep_t dep;
4784 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
4786 int apply_p = next_cycle_apply[i];
4787 if (apply_p)
4788 apply_replacement (dep, true);
4789 else
4790 restore_pattern (dep, true);
4792 next_cycle_replace_deps.truncate (0);
4793 next_cycle_apply.truncate (0);
4796 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4797 instructions we've previously encountered, a set bit prevents
4798 recursion. BUDGET is a limit on how far ahead we look, it is
4799 reduced on recursive calls. Return true if we produced a good
4800 estimate, or false if we exceeded the budget. */
4801 static bool
4802 estimate_insn_tick (bitmap processed, rtx_insn *insn, int budget)
4804 sd_iterator_def sd_it;
4805 dep_t dep;
4806 int earliest = INSN_TICK (insn);
4808 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4810 rtx_insn *pro = DEP_PRO (dep);
4811 int t;
4813 if (DEP_STATUS (dep) & DEP_CANCELLED)
4814 continue;
4816 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4817 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4818 else
4820 int cost = dep_cost (dep);
4821 if (cost >= budget)
4822 return false;
4823 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4825 if (!estimate_insn_tick (processed, pro, budget - cost))
4826 return false;
4828 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4829 t = INSN_TICK_ESTIMATE (pro) + cost;
4830 if (earliest == INVALID_TICK || t > earliest)
4831 earliest = t;
4834 bitmap_set_bit (processed, INSN_LUID (insn));
4835 INSN_TICK_ESTIMATE (insn) = earliest;
4836 return true;
4839 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4840 infinite resources) the cycle in which the delayed shadow can be issued.
4841 Return the number of cycles that must pass before the real insn can be
4842 issued in order to meet this constraint. */
4843 static int
4844 estimate_shadow_tick (struct delay_pair *p)
4846 auto_bitmap processed;
4847 int t;
4848 bool cutoff;
4850 cutoff = !estimate_insn_tick (processed, p->i2,
4851 max_insn_queue_index + pair_delay (p));
4852 if (cutoff)
4853 return max_insn_queue_index;
4854 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4855 if (t > 0)
4856 return t;
4857 return 0;
4860 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4861 recursively resolve all its forward dependencies. */
4862 static void
4863 resolve_dependencies (rtx_insn *insn)
4865 sd_iterator_def sd_it;
4866 dep_t dep;
4868 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4869 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4870 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4871 return;
4873 if (sched_verbose >= 4)
4874 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4876 if (QUEUE_INDEX (insn) >= 0)
4877 queue_remove (insn);
4879 scheduled_insns.safe_push (insn);
4881 /* Update dependent instructions. */
4882 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4883 sd_iterator_cond (&sd_it, &dep);)
4885 rtx_insn *next = DEP_CON (dep);
4887 if (sched_verbose >= 4)
4888 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4889 INSN_UID (next));
4891 /* Resolve the dependence between INSN and NEXT.
4892 sd_resolve_dep () moves current dep to another list thus
4893 advancing the iterator. */
4894 sd_resolve_dep (sd_it);
4896 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4898 resolve_dependencies (next);
4900 else
4901 /* Check always has only one forward dependence (to the first insn in
4902 the recovery block), therefore, this will be executed only once. */
4904 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4910 /* Return the head and tail pointers of ebb starting at BEG and ending
4911 at END. */
4912 void
4913 get_ebb_head_tail (basic_block beg, basic_block end,
4914 rtx_insn **headp, rtx_insn **tailp)
4916 rtx_insn *beg_head = BB_HEAD (beg);
4917 rtx_insn * beg_tail = BB_END (beg);
4918 rtx_insn * end_head = BB_HEAD (end);
4919 rtx_insn * end_tail = BB_END (end);
4921 /* Don't include any notes or labels at the beginning of the BEG
4922 basic block, or notes at the end of the END basic blocks. */
4924 if (LABEL_P (beg_head))
4925 beg_head = NEXT_INSN (beg_head);
4927 while (beg_head != beg_tail)
4928 if (NOTE_P (beg_head))
4929 beg_head = NEXT_INSN (beg_head);
4930 else if (DEBUG_INSN_P (beg_head))
4932 rtx_insn * note, *next;
4934 for (note = NEXT_INSN (beg_head);
4935 note != beg_tail;
4936 note = next)
4938 next = NEXT_INSN (note);
4939 if (NOTE_P (note))
4941 if (sched_verbose >= 9)
4942 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4944 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4946 if (BLOCK_FOR_INSN (note) != beg)
4947 df_insn_change_bb (note, beg);
4949 else if (!DEBUG_INSN_P (note))
4950 break;
4953 break;
4955 else
4956 break;
4958 *headp = beg_head;
4960 if (beg == end)
4961 end_head = beg_head;
4962 else if (LABEL_P (end_head))
4963 end_head = NEXT_INSN (end_head);
4965 while (end_head != end_tail)
4966 if (NOTE_P (end_tail))
4967 end_tail = PREV_INSN (end_tail);
4968 else if (DEBUG_INSN_P (end_tail))
4970 rtx_insn * note, *prev;
4972 for (note = PREV_INSN (end_tail);
4973 note != end_head;
4974 note = prev)
4976 prev = PREV_INSN (note);
4977 if (NOTE_P (note))
4979 if (sched_verbose >= 9)
4980 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4982 reorder_insns_nobb (note, note, end_tail);
4984 if (end_tail == BB_END (end))
4985 BB_END (end) = note;
4987 if (BLOCK_FOR_INSN (note) != end)
4988 df_insn_change_bb (note, end);
4990 else if (!DEBUG_INSN_P (note))
4991 break;
4994 break;
4996 else
4997 break;
4999 *tailp = end_tail;
5002 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
5005 no_real_insns_p (const rtx_insn *head, const rtx_insn *tail)
5007 while (head != NEXT_INSN (tail))
5009 if (!NOTE_P (head) && !LABEL_P (head))
5010 return 0;
5011 head = NEXT_INSN (head);
5013 return 1;
5016 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
5017 previously found among the insns. Insert them just before HEAD. */
5018 rtx_insn *
5019 restore_other_notes (rtx_insn *head, basic_block head_bb)
5021 if (note_list != 0)
5023 rtx_insn *note_head = note_list;
5025 if (head)
5026 head_bb = BLOCK_FOR_INSN (head);
5027 else
5028 head = NEXT_INSN (bb_note (head_bb));
5030 while (PREV_INSN (note_head))
5032 set_block_for_insn (note_head, head_bb);
5033 note_head = PREV_INSN (note_head);
5035 /* In the above cycle we've missed this note. */
5036 set_block_for_insn (note_head, head_bb);
5038 SET_PREV_INSN (note_head) = PREV_INSN (head);
5039 SET_NEXT_INSN (PREV_INSN (head)) = note_head;
5040 SET_PREV_INSN (head) = note_list;
5041 SET_NEXT_INSN (note_list) = head;
5043 if (BLOCK_FOR_INSN (head) != head_bb)
5044 BB_END (head_bb) = note_list;
5046 head = note_head;
5049 return head;
5052 /* When we know we are going to discard the schedule due to a failed attempt
5053 at modulo scheduling, undo all replacements. */
5054 static void
5055 undo_all_replacements (void)
5057 rtx_insn *insn;
5058 int i;
5060 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
5062 sd_iterator_def sd_it;
5063 dep_t dep;
5065 /* See if we must undo a replacement. */
5066 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
5067 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
5069 struct dep_replacement *desc = DEP_REPLACE (dep);
5070 if (desc != NULL)
5071 validate_change (desc->insn, desc->loc, desc->orig, 0);
5076 /* Return first non-scheduled insn in the current scheduling block.
5077 This is mostly used for debug-counter purposes. */
5078 static rtx_insn *
5079 first_nonscheduled_insn (void)
5081 rtx_insn *insn = (nonscheduled_insns_begin != NULL_RTX
5082 ? nonscheduled_insns_begin
5083 : current_sched_info->prev_head);
5087 insn = next_nonnote_nondebug_insn (insn);
5089 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5091 return insn;
5094 /* Move insns that became ready to fire from queue to ready list. */
5096 static void
5097 queue_to_ready (struct ready_list *ready)
5099 rtx_insn *insn;
5100 rtx_insn_list *link;
5101 rtx_insn *skip_insn;
5103 q_ptr = NEXT_Q (q_ptr);
5105 if (dbg_cnt (sched_insn) == false)
5106 /* If debug counter is activated do not requeue the first
5107 nonscheduled insn. */
5108 skip_insn = first_nonscheduled_insn ();
5109 else
5110 skip_insn = NULL;
5112 /* Add all pending insns that can be scheduled without stalls to the
5113 ready list. */
5114 for (link = insn_queue[q_ptr]; link; link = link->next ())
5116 insn = link->insn ();
5117 q_size -= 1;
5119 if (sched_verbose >= 2)
5120 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5121 (*current_sched_info->print_insn) (insn, 0));
5123 /* If the ready list is full, delay the insn for 1 cycle.
5124 See the comment in schedule_block for the rationale. */
5125 if (!reload_completed
5126 && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
5127 || (sched_pressure == SCHED_PRESSURE_MODEL
5128 /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
5129 instructions too. */
5130 && model_index (insn) > (model_curr_point
5131 + MAX_SCHED_READY_INSNS)))
5132 && !(sched_pressure == SCHED_PRESSURE_MODEL
5133 && model_curr_point < model_num_insns
5134 /* Always allow the next model instruction to issue. */
5135 && model_index (insn) == model_curr_point)
5136 && !SCHED_GROUP_P (insn)
5137 && insn != skip_insn)
5139 if (sched_verbose >= 2)
5140 fprintf (sched_dump, "keeping in queue, ready full\n");
5141 queue_insn (insn, 1, "ready full");
5143 else
5145 ready_add (ready, insn, false);
5146 if (sched_verbose >= 2)
5147 fprintf (sched_dump, "moving to ready without stalls\n");
5150 free_INSN_LIST_list (&insn_queue[q_ptr]);
5152 /* If there are no ready insns, stall until one is ready and add all
5153 of the pending insns at that point to the ready list. */
5154 if (ready->n_ready == 0)
5156 int stalls;
5158 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
5160 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5162 for (; link; link = link->next ())
5164 insn = link->insn ();
5165 q_size -= 1;
5167 if (sched_verbose >= 2)
5168 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5169 (*current_sched_info->print_insn) (insn, 0));
5171 ready_add (ready, insn, false);
5172 if (sched_verbose >= 2)
5173 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
5175 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
5177 advance_one_cycle ();
5179 break;
5182 advance_one_cycle ();
5185 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5186 clock_var += stalls;
5187 if (sched_verbose >= 2)
5188 fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n",
5189 stalls, clock_var);
5193 /* Used by early_queue_to_ready. Determines whether it is "ok" to
5194 prematurely move INSN from the queue to the ready list. Currently,
5195 if a target defines the hook 'is_costly_dependence', this function
5196 uses the hook to check whether there exist any dependences which are
5197 considered costly by the target, between INSN and other insns that
5198 have already been scheduled. Dependences are checked up to Y cycles
5199 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
5200 controlling this value.
5201 (Other considerations could be taken into account instead (or in
5202 addition) depending on user flags and target hooks. */
5204 static bool
5205 ok_for_early_queue_removal (rtx_insn *insn)
5207 if (targetm.sched.is_costly_dependence)
5209 int n_cycles;
5210 int i = scheduled_insns.length ();
5211 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
5213 while (i-- > 0)
5215 int cost;
5217 rtx_insn *prev_insn = scheduled_insns[i];
5219 if (!NOTE_P (prev_insn))
5221 dep_t dep;
5223 dep = sd_find_dep_between (prev_insn, insn, true);
5225 if (dep != NULL)
5227 cost = dep_cost (dep);
5229 if (targetm.sched.is_costly_dependence (dep, cost,
5230 flag_sched_stalled_insns_dep - n_cycles))
5231 return false;
5235 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
5236 break;
5239 if (i == 0)
5240 break;
5244 return true;
5248 /* Remove insns from the queue, before they become "ready" with respect
5249 to FU latency considerations. */
5251 static int
5252 early_queue_to_ready (state_t state, struct ready_list *ready)
5254 rtx_insn *insn;
5255 rtx_insn_list *link;
5256 rtx_insn_list *next_link;
5257 rtx_insn_list *prev_link;
5258 bool move_to_ready;
5259 int cost;
5260 state_t temp_state = alloca (dfa_state_size);
5261 int stalls;
5262 int insns_removed = 0;
5265 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5266 function:
5268 X == 0: There is no limit on how many queued insns can be removed
5269 prematurely. (flag_sched_stalled_insns = -1).
5271 X >= 1: Only X queued insns can be removed prematurely in each
5272 invocation. (flag_sched_stalled_insns = X).
5274 Otherwise: Early queue removal is disabled.
5275 (flag_sched_stalled_insns = 0)
5278 if (! flag_sched_stalled_insns)
5279 return 0;
5281 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
5283 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5285 if (sched_verbose > 6)
5286 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5288 prev_link = 0;
5289 while (link)
5291 next_link = link->next ();
5292 insn = link->insn ();
5293 if (insn && sched_verbose > 6)
5294 print_rtl_single (sched_dump, insn);
5296 memcpy (temp_state, state, dfa_state_size);
5297 if (recog_memoized (insn) < 0)
5298 /* non-negative to indicate that it's not ready
5299 to avoid infinite Q->R->Q->R... */
5300 cost = 0;
5301 else
5302 cost = state_transition (temp_state, insn);
5304 if (sched_verbose >= 6)
5305 fprintf (sched_dump, "transition cost = %d\n", cost);
5307 move_to_ready = false;
5308 if (cost < 0)
5310 move_to_ready = ok_for_early_queue_removal (insn);
5311 if (move_to_ready == true)
5313 /* move from Q to R */
5314 q_size -= 1;
5315 ready_add (ready, insn, false);
5317 if (prev_link)
5318 XEXP (prev_link, 1) = next_link;
5319 else
5320 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5322 free_INSN_LIST_node (link);
5324 if (sched_verbose >= 2)
5325 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5326 (*current_sched_info->print_insn) (insn, 0));
5328 insns_removed++;
5329 if (insns_removed == flag_sched_stalled_insns)
5330 /* Remove no more than flag_sched_stalled_insns insns
5331 from Q at a time. */
5332 return insns_removed;
5336 if (move_to_ready == false)
5337 prev_link = link;
5339 link = next_link;
5340 } /* while link */
5341 } /* if link */
5343 } /* for stalls.. */
5345 return insns_removed;
5349 /* Print the ready list for debugging purposes.
5350 If READY_TRY is non-zero then only print insns that max_issue
5351 will consider. */
5352 static void
5353 debug_ready_list_1 (struct ready_list *ready, signed char *ready_try)
5355 rtx_insn **p;
5356 int i;
5358 if (ready->n_ready == 0)
5360 fprintf (sched_dump, "\n");
5361 return;
5364 p = ready_lastpos (ready);
5365 for (i = 0; i < ready->n_ready; i++)
5367 if (ready_try != NULL && ready_try[ready->n_ready - i - 1])
5368 continue;
5370 fprintf (sched_dump, " %s:%d",
5371 (*current_sched_info->print_insn) (p[i], 0),
5372 INSN_LUID (p[i]));
5373 if (sched_pressure != SCHED_PRESSURE_NONE)
5374 fprintf (sched_dump, "(cost=%d",
5375 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5376 fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i]));
5377 if (INSN_TICK (p[i]) > clock_var)
5378 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
5379 if (sched_pressure == SCHED_PRESSURE_MODEL)
5380 fprintf (sched_dump, ":idx=%d",
5381 model_index (p[i]));
5382 if (sched_pressure != SCHED_PRESSURE_NONE)
5383 fprintf (sched_dump, ")");
5385 fprintf (sched_dump, "\n");
5388 /* Print the ready list. Callable from debugger. */
5389 static void
5390 debug_ready_list (struct ready_list *ready)
5392 debug_ready_list_1 (ready, NULL);
5395 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5396 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5397 replaces the epilogue note in the correct basic block. */
5398 void
5399 reemit_notes (rtx_insn *insn)
5401 rtx note;
5402 rtx_insn *last = insn;
5404 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5406 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
5408 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
5410 last = emit_note_before (note_type, last);
5411 remove_note (insn, note);
5416 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5417 static void
5418 move_insn (rtx_insn *insn, rtx_insn *last, rtx nt)
5420 if (PREV_INSN (insn) != last)
5422 basic_block bb;
5423 rtx_insn *note;
5424 int jump_p = 0;
5426 bb = BLOCK_FOR_INSN (insn);
5428 /* BB_HEAD is either LABEL or NOTE. */
5429 gcc_assert (BB_HEAD (bb) != insn);
5431 if (BB_END (bb) == insn)
5432 /* If this is last instruction in BB, move end marker one
5433 instruction up. */
5435 /* Jumps are always placed at the end of basic block. */
5436 jump_p = control_flow_insn_p (insn);
5438 gcc_assert (!jump_p
5439 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
5440 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
5441 || (common_sched_info->sched_pass_id
5442 == SCHED_EBB_PASS));
5444 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5446 BB_END (bb) = PREV_INSN (insn);
5449 gcc_assert (BB_END (bb) != last);
5451 if (jump_p)
5452 /* We move the block note along with jump. */
5454 gcc_assert (nt);
5456 note = NEXT_INSN (insn);
5457 while (NOTE_NOT_BB_P (note) && note != nt)
5458 note = NEXT_INSN (note);
5460 if (note != nt
5461 && (LABEL_P (note)
5462 || BARRIER_P (note)))
5463 note = NEXT_INSN (note);
5465 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5467 else
5468 note = insn;
5470 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5471 SET_PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5473 SET_NEXT_INSN (note) = NEXT_INSN (last);
5474 SET_PREV_INSN (NEXT_INSN (last)) = note;
5476 SET_NEXT_INSN (last) = insn;
5477 SET_PREV_INSN (insn) = last;
5479 bb = BLOCK_FOR_INSN (last);
5481 if (jump_p)
5483 fix_jump_move (insn);
5485 if (BLOCK_FOR_INSN (insn) != bb)
5486 move_block_after_check (insn);
5488 gcc_assert (BB_END (bb) == last);
5491 df_insn_change_bb (insn, bb);
5493 /* Update BB_END, if needed. */
5494 if (BB_END (bb) == last)
5495 BB_END (bb) = insn;
5498 SCHED_GROUP_P (insn) = 0;
5501 /* Return true if scheduling INSN will finish current clock cycle. */
5502 static bool
5503 insn_finishes_cycle_p (rtx_insn *insn)
5505 if (SCHED_GROUP_P (insn))
5506 /* After issuing INSN, rest of the sched_group will be forced to issue
5507 in order. Don't make any plans for the rest of cycle. */
5508 return true;
5510 /* Finishing the block will, apparently, finish the cycle. */
5511 if (current_sched_info->insn_finishes_block_p
5512 && current_sched_info->insn_finishes_block_p (insn))
5513 return true;
5515 return false;
5518 /* Helper for autopref_multipass_init. Given a SET in PAT and whether
5519 we're expecting a memory WRITE or not, check that the insn is relevant to
5520 the autoprefetcher modelling code. Return true iff that is the case.
5521 If it is relevant, record the base register of the memory op in BASE and
5522 the offset in OFFSET. */
5524 static bool
5525 analyze_set_insn_for_autopref (rtx pat, bool write, rtx *base, int *offset)
5527 if (GET_CODE (pat) != SET)
5528 return false;
5530 rtx mem = write ? SET_DEST (pat) : SET_SRC (pat);
5531 if (!MEM_P (mem))
5532 return false;
5534 struct address_info info;
5535 decompose_mem_address (&info, mem);
5537 /* TODO: Currently only (base+const) addressing is supported. */
5538 if (info.base == NULL || !REG_P (*info.base)
5539 || (info.disp != NULL && !CONST_INT_P (*info.disp)))
5540 return false;
5542 *base = *info.base;
5543 *offset = info.disp ? INTVAL (*info.disp) : 0;
5544 return true;
5547 /* Functions to model cache auto-prefetcher.
5549 Some of the CPUs have cache auto-prefetcher, which /seems/ to initiate
5550 memory prefetches if it sees instructions with consequitive memory accesses
5551 in the instruction stream. Details of such hardware units are not published,
5552 so we can only guess what exactly is going on there.
5553 In the scheduler, we model abstract auto-prefetcher. If there are memory
5554 insns in the ready list (or the queue) that have same memory base, but
5555 different offsets, then we delay the insns with larger offsets until insns
5556 with smaller offsets get scheduled. If PARAM_SCHED_AUTOPREF_QUEUE_DEPTH
5557 is "1", then we look at the ready list; if it is N>1, then we also look
5558 through N-1 queue entries.
5559 If the param is N>=0, then rank_for_schedule will consider auto-prefetching
5560 among its heuristics.
5561 Param value of "-1" disables modelling of the auto-prefetcher. */
5563 /* Initialize autoprefetcher model data for INSN. */
5564 static void
5565 autopref_multipass_init (const rtx_insn *insn, int write)
5567 autopref_multipass_data_t data = &INSN_AUTOPREF_MULTIPASS_DATA (insn)[write];
5569 gcc_assert (data->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED);
5570 data->base = NULL_RTX;
5571 data->offset = 0;
5572 /* Set insn entry initialized, but not relevant for auto-prefetcher. */
5573 data->status = AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5575 rtx pat = PATTERN (insn);
5577 /* We have a multi-set insn like a load-multiple or store-multiple.
5578 We care about these as long as all the memory ops inside the PARALLEL
5579 have the same base register. We care about the minimum and maximum
5580 offsets from that base but don't check for the order of those offsets
5581 within the PARALLEL insn itself. */
5582 if (GET_CODE (pat) == PARALLEL)
5584 int n_elems = XVECLEN (pat, 0);
5586 int i, offset;
5587 rtx base, prev_base = NULL_RTX;
5588 int min_offset = INT_MAX;
5590 for (i = 0; i < n_elems; i++)
5592 rtx set = XVECEXP (pat, 0, i);
5593 if (GET_CODE (set) != SET)
5594 return;
5596 if (!analyze_set_insn_for_autopref (set, write, &base, &offset))
5597 return;
5599 /* Ensure that all memory operations in the PARALLEL use the same
5600 base register. */
5601 if (i > 0 && REGNO (base) != REGNO (prev_base))
5602 return;
5603 prev_base = base;
5604 min_offset = MIN (min_offset, offset);
5607 /* If we reached here then we have a valid PARALLEL of multiple memory ops
5608 with prev_base as the base and min_offset containing the offset. */
5609 gcc_assert (prev_base);
5610 data->base = prev_base;
5611 data->offset = min_offset;
5612 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5613 return;
5616 /* Otherwise this is a single set memory operation. */
5617 rtx set = single_set (insn);
5618 if (set == NULL_RTX)
5619 return;
5621 if (!analyze_set_insn_for_autopref (set, write, &data->base,
5622 &data->offset))
5623 return;
5625 /* This insn is relevant for the auto-prefetcher.
5626 The base and offset fields will have been filled in the
5627 analyze_set_insn_for_autopref call above. */
5628 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5631 /* Helper function for rank_for_schedule sorting. */
5632 static int
5633 autopref_rank_for_schedule (const rtx_insn *insn1, const rtx_insn *insn2)
5635 int r = 0;
5636 for (int write = 0; write < 2 && !r; ++write)
5638 autopref_multipass_data_t data1
5639 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5640 autopref_multipass_data_t data2
5641 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5643 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5644 autopref_multipass_init (insn1, write);
5646 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5647 autopref_multipass_init (insn2, write);
5649 int irrel1 = data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5650 int irrel2 = data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5652 if (!irrel1 && !irrel2)
5653 r = data1->offset - data2->offset;
5654 else
5655 r = irrel2 - irrel1;
5658 return r;
5661 /* True if header of debug dump was printed. */
5662 static bool autopref_multipass_dfa_lookahead_guard_started_dump_p;
5664 /* Helper for autopref_multipass_dfa_lookahead_guard.
5665 Return "1" if INSN1 should be delayed in favor of INSN2. */
5666 static int
5667 autopref_multipass_dfa_lookahead_guard_1 (const rtx_insn *insn1,
5668 const rtx_insn *insn2, int write)
5670 autopref_multipass_data_t data1
5671 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5672 autopref_multipass_data_t data2
5673 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5675 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5676 autopref_multipass_init (insn2, write);
5677 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5678 return 0;
5680 if (rtx_equal_p (data1->base, data2->base)
5681 && data1->offset > data2->offset)
5683 if (sched_verbose >= 2)
5685 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5687 fprintf (sched_dump,
5688 ";;\t\tnot trying in max_issue due to autoprefetch "
5689 "model: ");
5690 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5693 fprintf (sched_dump, " %d(%d)", INSN_UID (insn1), INSN_UID (insn2));
5696 return 1;
5699 return 0;
5702 /* General note:
5704 We could have also hooked autoprefetcher model into
5705 first_cycle_multipass_backtrack / first_cycle_multipass_issue hooks
5706 to enable intelligent selection of "[r1+0]=r2; [r1+4]=r3" on the same cycle
5707 (e.g., once "[r1+0]=r2" is issued in max_issue(), "[r1+4]=r3" gets
5708 unblocked). We don't bother about this yet because target of interest
5709 (ARM Cortex-A15) can issue only 1 memory operation per cycle. */
5711 /* Implementation of first_cycle_multipass_dfa_lookahead_guard hook.
5712 Return "1" if INSN1 should not be considered in max_issue due to
5713 auto-prefetcher considerations. */
5715 autopref_multipass_dfa_lookahead_guard (rtx_insn *insn1, int ready_index)
5717 int r = 0;
5719 /* Exit early if the param forbids this or if we're not entering here through
5720 normal haifa scheduling. This can happen if selective scheduling is
5721 explicitly enabled. */
5722 if (!insn_queue || PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) <= 0)
5723 return 0;
5725 if (sched_verbose >= 2 && ready_index == 0)
5726 autopref_multipass_dfa_lookahead_guard_started_dump_p = false;
5728 for (int write = 0; write < 2; ++write)
5730 autopref_multipass_data_t data1
5731 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5733 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5734 autopref_multipass_init (insn1, write);
5735 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5736 continue;
5738 if (ready_index == 0
5739 && data1->status == AUTOPREF_MULTIPASS_DATA_DONT_DELAY)
5740 /* We allow only a single delay on priviledged instructions.
5741 Doing otherwise would cause infinite loop. */
5743 if (sched_verbose >= 2)
5745 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5747 fprintf (sched_dump,
5748 ";;\t\tnot trying in max_issue due to autoprefetch "
5749 "model: ");
5750 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5753 fprintf (sched_dump, " *%d*", INSN_UID (insn1));
5755 continue;
5758 for (int i2 = 0; i2 < ready.n_ready; ++i2)
5760 rtx_insn *insn2 = get_ready_element (i2);
5761 if (insn1 == insn2)
5762 continue;
5763 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2, write);
5764 if (r)
5766 if (ready_index == 0)
5768 r = -1;
5769 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5771 goto finish;
5775 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) == 1)
5776 continue;
5778 /* Everything from the current queue slot should have been moved to
5779 the ready list. */
5780 gcc_assert (insn_queue[NEXT_Q_AFTER (q_ptr, 0)] == NULL_RTX);
5782 int n_stalls = PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) - 1;
5783 if (n_stalls > max_insn_queue_index)
5784 n_stalls = max_insn_queue_index;
5786 for (int stalls = 1; stalls <= n_stalls; ++stalls)
5788 for (rtx_insn_list *link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)];
5789 link != NULL_RTX;
5790 link = link->next ())
5792 rtx_insn *insn2 = link->insn ();
5793 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2,
5794 write);
5795 if (r)
5797 /* Queue INSN1 until INSN2 can issue. */
5798 r = -stalls;
5799 if (ready_index == 0)
5800 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5801 goto finish;
5807 finish:
5808 if (sched_verbose >= 2
5809 && autopref_multipass_dfa_lookahead_guard_started_dump_p
5810 && (ready_index == ready.n_ready - 1 || r < 0))
5811 /* This does not /always/ trigger. We don't output EOL if the last
5812 insn is not recognized (INSN_CODE < 0) and lookahead_guard is not
5813 called. We can live with this. */
5814 fprintf (sched_dump, "\n");
5816 return r;
5819 /* Define type for target data used in multipass scheduling. */
5820 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5821 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5822 #endif
5823 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5825 /* The following structure describe an entry of the stack of choices. */
5826 struct choice_entry
5828 /* Ordinal number of the issued insn in the ready queue. */
5829 int index;
5830 /* The number of the rest insns whose issues we should try. */
5831 int rest;
5832 /* The number of issued essential insns. */
5833 int n;
5834 /* State after issuing the insn. */
5835 state_t state;
5836 /* Target-specific data. */
5837 first_cycle_multipass_data_t target_data;
5840 /* The following array is used to implement a stack of choices used in
5841 function max_issue. */
5842 static struct choice_entry *choice_stack;
5844 /* This holds the value of the target dfa_lookahead hook. */
5845 int dfa_lookahead;
5847 /* The following variable value is maximal number of tries of issuing
5848 insns for the first cycle multipass insn scheduling. We define
5849 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5850 need this constraint if all real insns (with non-negative codes)
5851 had reservations because in this case the algorithm complexity is
5852 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5853 might be incomplete and such insn might occur. For such
5854 descriptions, the complexity of algorithm (without the constraint)
5855 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5856 static int max_lookahead_tries;
5858 /* The following function returns maximal (or close to maximal) number
5859 of insns which can be issued on the same cycle and one of which
5860 insns is insns with the best rank (the first insn in READY). To
5861 make this function tries different samples of ready insns. READY
5862 is current queue `ready'. Global array READY_TRY reflects what
5863 insns are already issued in this try. The function stops immediately,
5864 if it reached the such a solution, that all instruction can be issued.
5865 INDEX will contain index of the best insn in READY. The following
5866 function is used only for first cycle multipass scheduling.
5868 PRIVILEGED_N >= 0
5870 This function expects recognized insns only. All USEs,
5871 CLOBBERs, etc must be filtered elsewhere. */
5873 max_issue (struct ready_list *ready, int privileged_n, state_t state,
5874 bool first_cycle_insn_p, int *index)
5876 int n, i, all, n_ready, best, delay, tries_num;
5877 int more_issue;
5878 struct choice_entry *top;
5879 rtx_insn *insn;
5881 if (sched_fusion)
5882 return 0;
5884 n_ready = ready->n_ready;
5885 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5886 && privileged_n <= n_ready);
5888 /* Init MAX_LOOKAHEAD_TRIES. */
5889 if (max_lookahead_tries == 0)
5891 max_lookahead_tries = 100;
5892 for (i = 0; i < issue_rate; i++)
5893 max_lookahead_tries *= dfa_lookahead;
5896 /* Init max_points. */
5897 more_issue = issue_rate - cycle_issued_insns;
5898 gcc_assert (more_issue >= 0);
5900 /* The number of the issued insns in the best solution. */
5901 best = 0;
5903 top = choice_stack;
5905 /* Set initial state of the search. */
5906 memcpy (top->state, state, dfa_state_size);
5907 top->rest = dfa_lookahead;
5908 top->n = 0;
5909 if (targetm.sched.first_cycle_multipass_begin)
5910 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5911 ready_try, n_ready,
5912 first_cycle_insn_p);
5914 /* Count the number of the insns to search among. */
5915 for (all = i = 0; i < n_ready; i++)
5916 if (!ready_try [i])
5917 all++;
5919 if (sched_verbose >= 2)
5921 fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all);
5922 debug_ready_list_1 (ready, ready_try);
5925 /* I is the index of the insn to try next. */
5926 i = 0;
5927 tries_num = 0;
5928 for (;;)
5930 if (/* If we've reached a dead end or searched enough of what we have
5931 been asked... */
5932 top->rest == 0
5933 /* or have nothing else to try... */
5934 || i >= n_ready
5935 /* or should not issue more. */
5936 || top->n >= more_issue)
5938 /* ??? (... || i == n_ready). */
5939 gcc_assert (i <= n_ready);
5941 /* We should not issue more than issue_rate instructions. */
5942 gcc_assert (top->n <= more_issue);
5944 if (top == choice_stack)
5945 break;
5947 if (best < top - choice_stack)
5949 if (privileged_n)
5951 n = privileged_n;
5952 /* Try to find issued privileged insn. */
5953 while (n && !ready_try[--n])
5957 if (/* If all insns are equally good... */
5958 privileged_n == 0
5959 /* Or a privileged insn will be issued. */
5960 || ready_try[n])
5961 /* Then we have a solution. */
5963 best = top - choice_stack;
5964 /* This is the index of the insn issued first in this
5965 solution. */
5966 *index = choice_stack [1].index;
5967 if (top->n == more_issue || best == all)
5968 break;
5972 /* Set ready-list index to point to the last insn
5973 ('i++' below will advance it to the next insn). */
5974 i = top->index;
5976 /* Backtrack. */
5977 ready_try [i] = 0;
5979 if (targetm.sched.first_cycle_multipass_backtrack)
5980 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
5981 ready_try, n_ready);
5983 top--;
5984 memcpy (state, top->state, dfa_state_size);
5986 else if (!ready_try [i])
5988 tries_num++;
5989 if (tries_num > max_lookahead_tries)
5990 break;
5991 insn = ready_element (ready, i);
5992 delay = state_transition (state, insn);
5993 if (delay < 0)
5995 if (state_dead_lock_p (state)
5996 || insn_finishes_cycle_p (insn))
5997 /* We won't issue any more instructions in the next
5998 choice_state. */
5999 top->rest = 0;
6000 else
6001 top->rest--;
6003 n = top->n;
6004 if (memcmp (top->state, state, dfa_state_size) != 0)
6005 n++;
6007 /* Advance to the next choice_entry. */
6008 top++;
6009 /* Initialize it. */
6010 top->rest = dfa_lookahead;
6011 top->index = i;
6012 top->n = n;
6013 memcpy (top->state, state, dfa_state_size);
6014 ready_try [i] = 1;
6016 if (targetm.sched.first_cycle_multipass_issue)
6017 targetm.sched.first_cycle_multipass_issue (&top->target_data,
6018 ready_try, n_ready,
6019 insn,
6020 &((top - 1)
6021 ->target_data));
6023 i = -1;
6027 /* Increase ready-list index. */
6028 i++;
6031 if (targetm.sched.first_cycle_multipass_end)
6032 targetm.sched.first_cycle_multipass_end (best != 0
6033 ? &choice_stack[1].target_data
6034 : NULL);
6036 /* Restore the original state of the DFA. */
6037 memcpy (state, choice_stack->state, dfa_state_size);
6039 return best;
6042 /* The following function chooses insn from READY and modifies
6043 READY. The following function is used only for first
6044 cycle multipass scheduling.
6045 Return:
6046 -1 if cycle should be advanced,
6047 0 if INSN_PTR is set to point to the desirable insn,
6048 1 if choose_ready () should be restarted without advancing the cycle. */
6049 static int
6050 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
6051 rtx_insn **insn_ptr)
6053 if (dbg_cnt (sched_insn) == false)
6055 if (nonscheduled_insns_begin == NULL_RTX)
6056 nonscheduled_insns_begin = current_sched_info->prev_head;
6058 rtx_insn *insn = first_nonscheduled_insn ();
6060 if (QUEUE_INDEX (insn) == QUEUE_READY)
6061 /* INSN is in the ready_list. */
6063 ready_remove_insn (insn);
6064 *insn_ptr = insn;
6065 return 0;
6068 /* INSN is in the queue. Advance cycle to move it to the ready list. */
6069 gcc_assert (QUEUE_INDEX (insn) >= 0);
6070 return -1;
6073 if (dfa_lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
6074 || DEBUG_INSN_P (ready_element (ready, 0)))
6076 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6077 *insn_ptr = ready_remove_first_dispatch (ready);
6078 else
6079 *insn_ptr = ready_remove_first (ready);
6081 return 0;
6083 else
6085 /* Try to choose the best insn. */
6086 int index = 0, i;
6087 rtx_insn *insn;
6089 insn = ready_element (ready, 0);
6090 if (INSN_CODE (insn) < 0)
6092 *insn_ptr = ready_remove_first (ready);
6093 return 0;
6096 /* Filter the search space. */
6097 for (i = 0; i < ready->n_ready; i++)
6099 ready_try[i] = 0;
6101 insn = ready_element (ready, i);
6103 /* If this insn is recognizable we should have already
6104 recognized it earlier.
6105 ??? Not very clear where this is supposed to be done.
6106 See dep_cost_1. */
6107 gcc_checking_assert (INSN_CODE (insn) >= 0
6108 || recog_memoized (insn) < 0);
6109 if (INSN_CODE (insn) < 0)
6111 /* Non-recognized insns at position 0 are handled above. */
6112 gcc_assert (i > 0);
6113 ready_try[i] = 1;
6114 continue;
6117 if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard)
6119 ready_try[i]
6120 = (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
6121 (insn, i));
6123 if (ready_try[i] < 0)
6124 /* Queue instruction for several cycles.
6125 We need to restart choose_ready as we have changed
6126 the ready list. */
6128 change_queue_index (insn, -ready_try[i]);
6129 return 1;
6132 /* Make sure that we didn't end up with 0'th insn filtered out.
6133 Don't be tempted to make life easier for backends and just
6134 requeue 0'th insn if (ready_try[0] == 0) and restart
6135 choose_ready. Backends should be very considerate about
6136 requeueing instructions -- especially the highest priority
6137 one at position 0. */
6138 gcc_assert (ready_try[i] == 0 || i > 0);
6139 if (ready_try[i])
6140 continue;
6143 gcc_assert (ready_try[i] == 0);
6144 /* INSN made it through the scrutiny of filters! */
6147 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
6149 *insn_ptr = ready_remove_first (ready);
6150 if (sched_verbose >= 4)
6151 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
6152 (*current_sched_info->print_insn) (*insn_ptr, 0));
6153 return 0;
6155 else
6157 if (sched_verbose >= 4)
6158 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
6159 (*current_sched_info->print_insn)
6160 (ready_element (ready, index), 0));
6162 *insn_ptr = ready_remove (ready, index);
6163 return 0;
6168 /* This function is called when we have successfully scheduled a
6169 block. It uses the schedule stored in the scheduled_insns vector
6170 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
6171 append the scheduled insns; TAIL is the insn after the scheduled
6172 block. TARGET_BB is the argument passed to schedule_block. */
6174 static void
6175 commit_schedule (rtx_insn *prev_head, rtx_insn *tail, basic_block *target_bb)
6177 unsigned int i;
6178 rtx_insn *insn;
6180 last_scheduled_insn = prev_head;
6181 for (i = 0;
6182 scheduled_insns.iterate (i, &insn);
6183 i++)
6185 if (control_flow_insn_p (last_scheduled_insn)
6186 || current_sched_info->advance_target_bb (*target_bb, insn))
6188 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
6190 if (sched_verbose)
6192 rtx_insn *x;
6194 x = next_real_insn (last_scheduled_insn);
6195 gcc_assert (x);
6196 dump_new_block_header (1, *target_bb, x, tail);
6199 last_scheduled_insn = bb_note (*target_bb);
6202 if (current_sched_info->begin_move_insn)
6203 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
6204 move_insn (insn, last_scheduled_insn,
6205 current_sched_info->next_tail);
6206 if (!DEBUG_INSN_P (insn))
6207 reemit_notes (insn);
6208 last_scheduled_insn = insn;
6211 scheduled_insns.truncate (0);
6214 /* Examine all insns on the ready list and queue those which can't be
6215 issued in this cycle. TEMP_STATE is temporary scheduler state we
6216 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
6217 have been issued for the current cycle, which means it is valid to
6218 issue an asm statement.
6220 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
6221 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
6222 we only leave insns which have an INSN_EXACT_TICK. */
6224 static void
6225 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
6226 bool shadows_only_p, bool modulo_epilogue_p)
6228 int i, pass;
6229 bool sched_group_found = false;
6230 int min_cost_group = 0;
6232 if (sched_fusion)
6233 return;
6235 for (i = 0; i < ready.n_ready; i++)
6237 rtx_insn *insn = ready_element (&ready, i);
6238 if (SCHED_GROUP_P (insn))
6240 sched_group_found = true;
6241 break;
6245 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
6246 such an insn first and note its cost. If at least one SCHED_GROUP_P insn
6247 gets queued, then all other insns get queued for one cycle later. */
6248 for (pass = sched_group_found ? 0 : 1; pass < 2; )
6250 int n = ready.n_ready;
6251 for (i = 0; i < n; i++)
6253 rtx_insn *insn = ready_element (&ready, i);
6254 int cost = 0;
6255 const char *reason = "resource conflict";
6257 if (DEBUG_INSN_P (insn))
6258 continue;
6260 if (sched_group_found && !SCHED_GROUP_P (insn)
6261 && ((pass == 0) || (min_cost_group >= 1)))
6263 if (pass == 0)
6264 continue;
6265 cost = min_cost_group;
6266 reason = "not in sched group";
6268 else if (modulo_epilogue_p
6269 && INSN_EXACT_TICK (insn) == INVALID_TICK)
6271 cost = max_insn_queue_index;
6272 reason = "not an epilogue insn";
6274 else if (shadows_only_p && !SHADOW_P (insn))
6276 cost = 1;
6277 reason = "not a shadow";
6279 else if (recog_memoized (insn) < 0)
6281 if (!first_cycle_insn_p
6282 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
6283 || asm_noperands (PATTERN (insn)) >= 0))
6284 cost = 1;
6285 reason = "asm";
6287 else if (sched_pressure != SCHED_PRESSURE_NONE)
6289 if (sched_pressure == SCHED_PRESSURE_MODEL
6290 && INSN_TICK (insn) <= clock_var)
6292 memcpy (temp_state, curr_state, dfa_state_size);
6293 if (state_transition (temp_state, insn) >= 0)
6294 INSN_TICK (insn) = clock_var + 1;
6296 cost = 0;
6298 else
6300 int delay_cost = 0;
6302 if (delay_htab)
6304 struct delay_pair *delay_entry;
6305 delay_entry
6306 = delay_htab->find_with_hash (insn,
6307 htab_hash_pointer (insn));
6308 while (delay_entry && delay_cost == 0)
6310 delay_cost = estimate_shadow_tick (delay_entry);
6311 if (delay_cost > max_insn_queue_index)
6312 delay_cost = max_insn_queue_index;
6313 delay_entry = delay_entry->next_same_i1;
6317 memcpy (temp_state, curr_state, dfa_state_size);
6318 cost = state_transition (temp_state, insn);
6319 if (cost < 0)
6320 cost = 0;
6321 else if (cost == 0)
6322 cost = 1;
6323 if (cost < delay_cost)
6325 cost = delay_cost;
6326 reason = "shadow tick";
6329 if (cost >= 1)
6331 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
6332 min_cost_group = cost;
6333 ready_remove (&ready, i);
6334 /* Normally we'd want to queue INSN for COST cycles. However,
6335 if SCHED_GROUP_P is set, then we must ensure that nothing
6336 else comes between INSN and its predecessor. If there is
6337 some other insn ready to fire on the next cycle, then that
6338 invariant would be broken.
6340 So when SCHED_GROUP_P is set, just queue this insn for a
6341 single cycle. */
6342 queue_insn (insn, SCHED_GROUP_P (insn) ? 1 : cost, reason);
6343 if (i + 1 < n)
6344 break;
6347 if (i == n)
6348 pass++;
6352 /* Called when we detect that the schedule is impossible. We examine the
6353 backtrack queue to find the earliest insn that caused this condition. */
6355 static struct haifa_saved_data *
6356 verify_shadows (void)
6358 struct haifa_saved_data *save, *earliest_fail = NULL;
6359 for (save = backtrack_queue; save; save = save->next)
6361 int t;
6362 struct delay_pair *pair = save->delay_pair;
6363 rtx_insn *i1 = pair->i1;
6365 for (; pair; pair = pair->next_same_i1)
6367 rtx_insn *i2 = pair->i2;
6369 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
6370 continue;
6372 t = INSN_TICK (i1) + pair_delay (pair);
6373 if (t < clock_var)
6375 if (sched_verbose >= 2)
6376 fprintf (sched_dump,
6377 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
6378 ", not ready\n",
6379 INSN_UID (pair->i1), INSN_UID (pair->i2),
6380 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6381 earliest_fail = save;
6382 break;
6384 if (QUEUE_INDEX (i2) >= 0)
6386 int queued_for = INSN_TICK (i2);
6388 if (t < queued_for)
6390 if (sched_verbose >= 2)
6391 fprintf (sched_dump,
6392 ";;\t\tfailed delay requirements for %d/%d"
6393 " (%d->%d), queued too late\n",
6394 INSN_UID (pair->i1), INSN_UID (pair->i2),
6395 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6396 earliest_fail = save;
6397 break;
6403 return earliest_fail;
6406 /* Print instructions together with useful scheduling information between
6407 HEAD and TAIL (inclusive). */
6408 static void
6409 dump_insn_stream (rtx_insn *head, rtx_insn *tail)
6411 fprintf (sched_dump, ";;\t| insn | prio |\n");
6413 rtx_insn *next_tail = NEXT_INSN (tail);
6414 for (rtx_insn *insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6416 int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn);
6417 const char *pattern = (NOTE_P (insn)
6418 ? "note"
6419 : str_pattern_slim (PATTERN (insn)));
6421 fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ",
6422 INSN_UID (insn), priority, pattern);
6424 if (sched_verbose >= 4)
6426 if (NOTE_P (insn) || LABEL_P (insn) || recog_memoized (insn) < 0)
6427 fprintf (sched_dump, "nothing");
6428 else
6429 print_reservation (sched_dump, insn);
6431 fprintf (sched_dump, "\n");
6435 /* Use forward list scheduling to rearrange insns of block pointed to by
6436 TARGET_BB, possibly bringing insns from subsequent blocks in the same
6437 region. */
6439 bool
6440 schedule_block (basic_block *target_bb, state_t init_state)
6442 int i;
6443 bool success = modulo_ii == 0;
6444 struct sched_block_state ls;
6445 state_t temp_state = NULL; /* It is used for multipass scheduling. */
6446 int sort_p, advance, start_clock_var;
6448 /* Head/tail info for this block. */
6449 rtx_insn *prev_head = current_sched_info->prev_head;
6450 rtx_insn *next_tail = current_sched_info->next_tail;
6451 rtx_insn *head = NEXT_INSN (prev_head);
6452 rtx_insn *tail = PREV_INSN (next_tail);
6454 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
6455 && sched_pressure != SCHED_PRESSURE_MODEL && !sched_fusion)
6456 find_modifiable_mems (head, tail);
6458 /* We used to have code to avoid getting parameters moved from hard
6459 argument registers into pseudos.
6461 However, it was removed when it proved to be of marginal benefit
6462 and caused problems because schedule_block and compute_forward_dependences
6463 had different notions of what the "head" insn was. */
6465 gcc_assert (head != tail || INSN_P (head));
6467 haifa_recovery_bb_recently_added_p = false;
6469 backtrack_queue = NULL;
6471 /* Debug info. */
6472 if (sched_verbose)
6474 dump_new_block_header (0, *target_bb, head, tail);
6476 if (sched_verbose >= 2)
6478 dump_insn_stream (head, tail);
6479 memset (&rank_for_schedule_stats, 0,
6480 sizeof (rank_for_schedule_stats));
6484 if (init_state == NULL)
6485 state_reset (curr_state);
6486 else
6487 memcpy (curr_state, init_state, dfa_state_size);
6489 /* Clear the ready list. */
6490 ready.first = ready.veclen - 1;
6491 ready.n_ready = 0;
6492 ready.n_debug = 0;
6494 /* It is used for first cycle multipass scheduling. */
6495 temp_state = alloca (dfa_state_size);
6497 if (targetm.sched.init)
6498 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
6500 /* We start inserting insns after PREV_HEAD. */
6501 last_scheduled_insn = prev_head;
6502 last_nondebug_scheduled_insn = NULL;
6503 nonscheduled_insns_begin = NULL;
6505 gcc_assert ((NOTE_P (last_scheduled_insn)
6506 || DEBUG_INSN_P (last_scheduled_insn))
6507 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
6509 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
6510 queue. */
6511 q_ptr = 0;
6512 q_size = 0;
6514 insn_queue = XALLOCAVEC (rtx_insn_list *, max_insn_queue_index + 1);
6515 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
6517 /* Start just before the beginning of time. */
6518 clock_var = -1;
6520 /* We need queue and ready lists and clock_var be initialized
6521 in try_ready () (which is called through init_ready_list ()). */
6522 (*current_sched_info->init_ready_list) ();
6524 if (sched_pressure)
6525 sched_pressure_start_bb (*target_bb);
6527 /* The algorithm is O(n^2) in the number of ready insns at any given
6528 time in the worst case. Before reload we are more likely to have
6529 big lists so truncate them to a reasonable size. */
6530 if (!reload_completed
6531 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
6533 ready_sort_debug (&ready);
6534 ready_sort_real (&ready);
6536 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
6537 If there are debug insns, we know they're first. */
6538 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
6539 if (!SCHED_GROUP_P (ready_element (&ready, i)))
6540 break;
6542 if (sched_verbose >= 2)
6544 fprintf (sched_dump,
6545 ";;\t\tReady list on entry: %d insns: ", ready.n_ready);
6546 debug_ready_list (&ready);
6547 fprintf (sched_dump,
6548 ";;\t\t before reload => truncated to %d insns\n", i);
6551 /* Delay all insns past it for 1 cycle. If debug counter is
6552 activated make an exception for the insn right after
6553 nonscheduled_insns_begin. */
6555 rtx_insn *skip_insn;
6557 if (dbg_cnt (sched_insn) == false)
6558 skip_insn = first_nonscheduled_insn ();
6559 else
6560 skip_insn = NULL;
6562 while (i < ready.n_ready)
6564 rtx_insn *insn;
6566 insn = ready_remove (&ready, i);
6568 if (insn != skip_insn)
6569 queue_insn (insn, 1, "list truncated");
6571 if (skip_insn)
6572 ready_add (&ready, skip_insn, true);
6576 /* Now we can restore basic block notes and maintain precise cfg. */
6577 restore_bb_notes (*target_bb);
6579 last_clock_var = -1;
6581 advance = 0;
6583 gcc_assert (scheduled_insns.length () == 0);
6584 sort_p = TRUE;
6585 must_backtrack = false;
6586 modulo_insns_scheduled = 0;
6588 ls.modulo_epilogue = false;
6589 ls.first_cycle_insn_p = true;
6591 /* Loop until all the insns in BB are scheduled. */
6592 while ((*current_sched_info->schedule_more_p) ())
6594 perform_replacements_new_cycle ();
6597 start_clock_var = clock_var;
6599 clock_var++;
6601 advance_one_cycle ();
6603 /* Add to the ready list all pending insns that can be issued now.
6604 If there are no ready insns, increment clock until one
6605 is ready and add all pending insns at that point to the ready
6606 list. */
6607 queue_to_ready (&ready);
6609 gcc_assert (ready.n_ready);
6611 if (sched_verbose >= 2)
6613 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:");
6614 debug_ready_list (&ready);
6616 advance -= clock_var - start_clock_var;
6618 while (advance > 0);
6620 if (ls.modulo_epilogue)
6622 int stage = clock_var / modulo_ii;
6623 if (stage > modulo_last_stage * 2 + 2)
6625 if (sched_verbose >= 2)
6626 fprintf (sched_dump,
6627 ";;\t\tmodulo scheduled succeeded at II %d\n",
6628 modulo_ii);
6629 success = true;
6630 goto end_schedule;
6633 else if (modulo_ii > 0)
6635 int stage = clock_var / modulo_ii;
6636 if (stage > modulo_max_stages)
6638 if (sched_verbose >= 2)
6639 fprintf (sched_dump,
6640 ";;\t\tfailing schedule due to excessive stages\n");
6641 goto end_schedule;
6643 if (modulo_n_insns == modulo_insns_scheduled
6644 && stage > modulo_last_stage)
6646 if (sched_verbose >= 2)
6647 fprintf (sched_dump,
6648 ";;\t\tfound kernel after %d stages, II %d\n",
6649 stage, modulo_ii);
6650 ls.modulo_epilogue = true;
6654 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
6655 if (ready.n_ready == 0)
6656 continue;
6657 if (must_backtrack)
6658 goto do_backtrack;
6660 ls.shadows_only_p = false;
6661 cycle_issued_insns = 0;
6662 ls.can_issue_more = issue_rate;
6663 for (;;)
6665 rtx_insn *insn;
6666 int cost;
6667 bool asm_p;
6669 if (sort_p && ready.n_ready > 0)
6671 /* Sort the ready list based on priority. This must be
6672 done every iteration through the loop, as schedule_insn
6673 may have readied additional insns that will not be
6674 sorted correctly. */
6675 ready_sort (&ready);
6677 if (sched_verbose >= 2)
6679 fprintf (sched_dump,
6680 ";;\t\tReady list after ready_sort: ");
6681 debug_ready_list (&ready);
6685 /* We don't want md sched reorder to even see debug isns, so put
6686 them out right away. */
6687 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6688 && (*current_sched_info->schedule_more_p) ())
6690 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6692 rtx_insn *insn = ready_remove_first (&ready);
6693 gcc_assert (DEBUG_INSN_P (insn));
6694 (*current_sched_info->begin_schedule_ready) (insn);
6695 scheduled_insns.safe_push (insn);
6696 last_scheduled_insn = insn;
6697 advance = schedule_insn (insn);
6698 gcc_assert (advance == 0);
6699 if (ready.n_ready > 0)
6700 ready_sort (&ready);
6704 if (ls.first_cycle_insn_p && !ready.n_ready)
6705 break;
6707 resume_after_backtrack:
6708 /* Allow the target to reorder the list, typically for
6709 better instruction bundling. */
6710 if (sort_p
6711 && (ready.n_ready == 0
6712 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6714 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6715 ls.can_issue_more
6716 = targetm.sched.reorder (sched_dump, sched_verbose,
6717 ready_lastpos (&ready),
6718 &ready.n_ready, clock_var);
6719 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6720 ls.can_issue_more
6721 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6722 ready.n_ready
6723 ? ready_lastpos (&ready) : NULL,
6724 &ready.n_ready, clock_var);
6727 restart_choose_ready:
6728 if (sched_verbose >= 2)
6730 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
6731 clock_var);
6732 debug_ready_list (&ready);
6733 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6734 print_curr_reg_pressure ();
6737 if (ready.n_ready == 0
6738 && ls.can_issue_more
6739 && reload_completed)
6741 /* Allow scheduling insns directly from the queue in case
6742 there's nothing better to do (ready list is empty) but
6743 there are still vacant dispatch slots in the current cycle. */
6744 if (sched_verbose >= 6)
6745 fprintf (sched_dump,";;\t\tSecond chance\n");
6746 memcpy (temp_state, curr_state, dfa_state_size);
6747 if (early_queue_to_ready (temp_state, &ready))
6748 ready_sort (&ready);
6751 if (ready.n_ready == 0
6752 || !ls.can_issue_more
6753 || state_dead_lock_p (curr_state)
6754 || !(*current_sched_info->schedule_more_p) ())
6755 break;
6757 /* Select and remove the insn from the ready list. */
6758 if (sort_p)
6760 int res;
6762 insn = NULL;
6763 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
6765 if (res < 0)
6766 /* Finish cycle. */
6767 break;
6768 if (res > 0)
6769 goto restart_choose_ready;
6771 gcc_assert (insn != NULL_RTX);
6773 else
6774 insn = ready_remove_first (&ready);
6776 if (sched_pressure != SCHED_PRESSURE_NONE
6777 && INSN_TICK (insn) > clock_var)
6779 ready_add (&ready, insn, true);
6780 advance = 1;
6781 break;
6784 if (targetm.sched.dfa_new_cycle
6785 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6786 insn, last_clock_var,
6787 clock_var, &sort_p))
6788 /* SORT_P is used by the target to override sorting
6789 of the ready list. This is needed when the target
6790 has modified its internal structures expecting that
6791 the insn will be issued next. As we need the insn
6792 to have the highest priority (so it will be returned by
6793 the ready_remove_first call above), we invoke
6794 ready_add (&ready, insn, true).
6795 But, still, there is one issue: INSN can be later
6796 discarded by scheduler's front end through
6797 current_sched_info->can_schedule_ready_p, hence, won't
6798 be issued next. */
6800 ready_add (&ready, insn, true);
6801 break;
6804 sort_p = TRUE;
6806 if (current_sched_info->can_schedule_ready_p
6807 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6808 /* We normally get here only if we don't want to move
6809 insn from the split block. */
6811 TODO_SPEC (insn) = DEP_POSTPONED;
6812 goto restart_choose_ready;
6815 if (delay_htab)
6817 /* If this insn is the first part of a delay-slot pair, record a
6818 backtrack point. */
6819 struct delay_pair *delay_entry;
6820 delay_entry
6821 = delay_htab->find_with_hash (insn, htab_hash_pointer (insn));
6822 if (delay_entry)
6824 save_backtrack_point (delay_entry, ls);
6825 if (sched_verbose >= 2)
6826 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6830 /* DECISION is made. */
6832 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6834 modulo_insns_scheduled++;
6835 modulo_last_stage = clock_var / modulo_ii;
6837 if (TODO_SPEC (insn) & SPECULATIVE)
6838 generate_recovery_code (insn);
6840 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6841 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6843 /* Update counters, etc in the scheduler's front end. */
6844 (*current_sched_info->begin_schedule_ready) (insn);
6845 scheduled_insns.safe_push (insn);
6846 gcc_assert (NONDEBUG_INSN_P (insn));
6847 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
6849 if (recog_memoized (insn) >= 0)
6851 memcpy (temp_state, curr_state, dfa_state_size);
6852 cost = state_transition (curr_state, insn);
6853 if (sched_pressure != SCHED_PRESSURE_WEIGHTED && !sched_fusion)
6854 gcc_assert (cost < 0);
6855 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6856 cycle_issued_insns++;
6857 asm_p = false;
6859 else
6860 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6861 || asm_noperands (PATTERN (insn)) >= 0);
6863 if (targetm.sched.variable_issue)
6864 ls.can_issue_more =
6865 targetm.sched.variable_issue (sched_dump, sched_verbose,
6866 insn, ls.can_issue_more);
6867 /* A naked CLOBBER or USE generates no instruction, so do
6868 not count them against the issue rate. */
6869 else if (GET_CODE (PATTERN (insn)) != USE
6870 && GET_CODE (PATTERN (insn)) != CLOBBER)
6871 ls.can_issue_more--;
6872 advance = schedule_insn (insn);
6874 if (SHADOW_P (insn))
6875 ls.shadows_only_p = true;
6877 /* After issuing an asm insn we should start a new cycle. */
6878 if (advance == 0 && asm_p)
6879 advance = 1;
6881 if (must_backtrack)
6882 break;
6884 if (advance != 0)
6885 break;
6887 ls.first_cycle_insn_p = false;
6888 if (ready.n_ready > 0)
6889 prune_ready_list (temp_state, false, ls.shadows_only_p,
6890 ls.modulo_epilogue);
6893 do_backtrack:
6894 if (!must_backtrack)
6895 for (i = 0; i < ready.n_ready; i++)
6897 rtx_insn *insn = ready_element (&ready, i);
6898 if (INSN_EXACT_TICK (insn) == clock_var)
6900 must_backtrack = true;
6901 clock_var++;
6902 break;
6905 if (must_backtrack && modulo_ii > 0)
6907 if (modulo_backtracks_left == 0)
6908 goto end_schedule;
6909 modulo_backtracks_left--;
6911 while (must_backtrack)
6913 struct haifa_saved_data *failed;
6914 rtx_insn *failed_insn;
6916 must_backtrack = false;
6917 failed = verify_shadows ();
6918 gcc_assert (failed);
6920 failed_insn = failed->delay_pair->i1;
6921 /* Clear these queues. */
6922 perform_replacements_new_cycle ();
6923 toggle_cancelled_flags (false);
6924 unschedule_insns_until (failed_insn);
6925 while (failed != backtrack_queue)
6926 free_topmost_backtrack_point (true);
6927 restore_last_backtrack_point (&ls);
6928 if (sched_verbose >= 2)
6929 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
6930 /* Delay by at least a cycle. This could cause additional
6931 backtracking. */
6932 queue_insn (failed_insn, 1, "backtracked");
6933 advance = 0;
6934 if (must_backtrack)
6935 continue;
6936 if (ready.n_ready > 0)
6937 goto resume_after_backtrack;
6938 else
6940 if (clock_var == 0 && ls.first_cycle_insn_p)
6941 goto end_schedule;
6942 advance = 1;
6943 break;
6946 ls.first_cycle_insn_p = true;
6948 if (ls.modulo_epilogue)
6949 success = true;
6950 end_schedule:
6951 if (!ls.first_cycle_insn_p || advance)
6952 advance_one_cycle ();
6953 perform_replacements_new_cycle ();
6954 if (modulo_ii > 0)
6956 /* Once again, debug insn suckiness: they can be on the ready list
6957 even if they have unresolved dependencies. To make our view
6958 of the world consistent, remove such "ready" insns. */
6959 restart_debug_insn_loop:
6960 for (i = ready.n_ready - 1; i >= 0; i--)
6962 rtx_insn *x;
6964 x = ready_element (&ready, i);
6965 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
6966 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
6968 ready_remove (&ready, i);
6969 goto restart_debug_insn_loop;
6972 for (i = ready.n_ready - 1; i >= 0; i--)
6974 rtx_insn *x;
6976 x = ready_element (&ready, i);
6977 resolve_dependencies (x);
6979 for (i = 0; i <= max_insn_queue_index; i++)
6981 rtx_insn_list *link;
6982 while ((link = insn_queue[i]) != NULL)
6984 rtx_insn *x = link->insn ();
6985 insn_queue[i] = link->next ();
6986 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6987 free_INSN_LIST_node (link);
6988 resolve_dependencies (x);
6993 if (!success)
6994 undo_all_replacements ();
6996 /* Debug info. */
6997 if (sched_verbose)
6999 fprintf (sched_dump, ";;\tReady list (final): ");
7000 debug_ready_list (&ready);
7003 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
7004 /* Sanity check -- queue must be empty now. Meaningless if region has
7005 multiple bbs. */
7006 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
7007 else if (modulo_ii == 0)
7009 /* We must maintain QUEUE_INDEX between blocks in region. */
7010 for (i = ready.n_ready - 1; i >= 0; i--)
7012 rtx_insn *x;
7014 x = ready_element (&ready, i);
7015 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7016 TODO_SPEC (x) = HARD_DEP;
7019 if (q_size)
7020 for (i = 0; i <= max_insn_queue_index; i++)
7022 rtx_insn_list *link;
7023 for (link = insn_queue[i]; link; link = link->next ())
7025 rtx_insn *x;
7027 x = link->insn ();
7028 QUEUE_INDEX (x) = QUEUE_NOWHERE;
7029 TODO_SPEC (x) = HARD_DEP;
7031 free_INSN_LIST_list (&insn_queue[i]);
7035 if (sched_pressure == SCHED_PRESSURE_MODEL)
7036 model_end_schedule ();
7038 if (success)
7040 commit_schedule (prev_head, tail, target_bb);
7041 if (sched_verbose)
7042 fprintf (sched_dump, ";; total time = %d\n", clock_var);
7044 else
7045 last_scheduled_insn = tail;
7047 scheduled_insns.truncate (0);
7049 if (!current_sched_info->queue_must_finish_empty
7050 || haifa_recovery_bb_recently_added_p)
7052 /* INSN_TICK (minimum clock tick at which the insn becomes
7053 ready) may be not correct for the insn in the subsequent
7054 blocks of the region. We should use a correct value of
7055 `clock_var' or modify INSN_TICK. It is better to keep
7056 clock_var value equal to 0 at the start of a basic block.
7057 Therefore we modify INSN_TICK here. */
7058 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
7061 if (targetm.sched.finish)
7063 targetm.sched.finish (sched_dump, sched_verbose);
7064 /* Target might have added some instructions to the scheduled block
7065 in its md_finish () hook. These new insns don't have any data
7066 initialized and to identify them we extend h_i_d so that they'll
7067 get zero luids. */
7068 sched_extend_luids ();
7071 /* Update head/tail boundaries. */
7072 head = NEXT_INSN (prev_head);
7073 tail = last_scheduled_insn;
7075 if (sched_verbose)
7077 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n",
7078 INSN_UID (head), INSN_UID (tail));
7080 if (sched_verbose >= 2)
7082 dump_insn_stream (head, tail);
7083 print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats,
7084 NULL);
7087 fprintf (sched_dump, "\n");
7090 head = restore_other_notes (head, NULL);
7092 current_sched_info->head = head;
7093 current_sched_info->tail = tail;
7095 free_backtrack_queue ();
7097 return success;
7100 /* Set_priorities: compute priority of each insn in the block. */
7103 set_priorities (rtx_insn *head, rtx_insn *tail)
7105 rtx_insn *insn;
7106 int n_insn;
7107 int sched_max_insns_priority =
7108 current_sched_info->sched_max_insns_priority;
7109 rtx_insn *prev_head;
7111 if (head == tail && ! INSN_P (head))
7112 gcc_unreachable ();
7114 n_insn = 0;
7116 prev_head = PREV_INSN (head);
7117 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
7119 if (!INSN_P (insn))
7120 continue;
7122 n_insn++;
7123 (void) priority (insn);
7125 gcc_assert (INSN_PRIORITY_KNOWN (insn));
7127 sched_max_insns_priority = MAX (sched_max_insns_priority,
7128 INSN_PRIORITY (insn));
7131 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
7133 return n_insn;
7136 /* Set sched_dump and sched_verbose for the desired debugging output. */
7137 void
7138 setup_sched_dump (void)
7140 sched_verbose = sched_verbose_param;
7141 sched_dump = dump_file;
7142 if (!dump_file)
7143 sched_verbose = 0;
7146 /* Allocate data for register pressure sensitive scheduling. */
7147 static void
7148 alloc_global_sched_pressure_data (void)
7150 if (sched_pressure != SCHED_PRESSURE_NONE)
7152 int i, max_regno = max_reg_num ();
7154 if (sched_dump != NULL)
7155 /* We need info about pseudos for rtl dumps about pseudo
7156 classes and costs. */
7157 regstat_init_n_sets_and_refs ();
7158 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
7159 sched_regno_pressure_class
7160 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
7161 for (i = 0; i < max_regno; i++)
7162 sched_regno_pressure_class[i]
7163 = (i < FIRST_PSEUDO_REGISTER
7164 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
7165 : ira_pressure_class_translate[reg_allocno_class (i)]);
7166 curr_reg_live = BITMAP_ALLOC (NULL);
7167 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7169 saved_reg_live = BITMAP_ALLOC (NULL);
7170 region_ref_regs = BITMAP_ALLOC (NULL);
7172 if (sched_pressure == SCHED_PRESSURE_MODEL)
7173 tmp_bitmap = BITMAP_ALLOC (NULL);
7175 /* Calculate number of CALL_SAVED_REGS and FIXED_REGS in register classes
7176 that we calculate register pressure for. */
7177 for (int c = 0; c < ira_pressure_classes_num; ++c)
7179 enum reg_class cl = ira_pressure_classes[c];
7181 call_saved_regs_num[cl] = 0;
7182 fixed_regs_num[cl] = 0;
7184 for (int i = 0; i < ira_class_hard_regs_num[cl]; ++i)
7185 if (!call_used_regs[ira_class_hard_regs[cl][i]])
7186 ++call_saved_regs_num[cl];
7187 else if (fixed_regs[ira_class_hard_regs[cl][i]])
7188 ++fixed_regs_num[cl];
7193 /* Free data for register pressure sensitive scheduling. Also called
7194 from schedule_region when stopping sched-pressure early. */
7195 void
7196 free_global_sched_pressure_data (void)
7198 if (sched_pressure != SCHED_PRESSURE_NONE)
7200 if (regstat_n_sets_and_refs != NULL)
7201 regstat_free_n_sets_and_refs ();
7202 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7204 BITMAP_FREE (region_ref_regs);
7205 BITMAP_FREE (saved_reg_live);
7207 if (sched_pressure == SCHED_PRESSURE_MODEL)
7208 BITMAP_FREE (tmp_bitmap);
7209 BITMAP_FREE (curr_reg_live);
7210 free (sched_regno_pressure_class);
7214 /* Initialize some global state for the scheduler. This function works
7215 with the common data shared between all the schedulers. It is called
7216 from the scheduler specific initialization routine. */
7218 void
7219 sched_init (void)
7221 /* Disable speculative loads in their presence if cc0 defined. */
7222 if (HAVE_cc0)
7223 flag_schedule_speculative_load = 0;
7225 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
7226 targetm.sched.dispatch_do (NULL, DISPATCH_INIT);
7228 if (live_range_shrinkage_p)
7229 sched_pressure = SCHED_PRESSURE_WEIGHTED;
7230 else if (flag_sched_pressure
7231 && !reload_completed
7232 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
7233 sched_pressure = ((enum sched_pressure_algorithm)
7234 PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM));
7235 else
7236 sched_pressure = SCHED_PRESSURE_NONE;
7238 if (sched_pressure != SCHED_PRESSURE_NONE)
7239 ira_setup_eliminable_regset ();
7241 /* Initialize SPEC_INFO. */
7242 if (targetm.sched.set_sched_flags)
7244 spec_info = &spec_info_var;
7245 targetm.sched.set_sched_flags (spec_info);
7247 if (spec_info->mask != 0)
7249 spec_info->data_weakness_cutoff =
7250 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
7251 spec_info->control_weakness_cutoff =
7252 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
7253 * REG_BR_PROB_BASE) / 100;
7255 else
7256 /* So we won't read anything accidentally. */
7257 spec_info = NULL;
7260 else
7261 /* So we won't read anything accidentally. */
7262 spec_info = 0;
7264 /* Initialize issue_rate. */
7265 if (targetm.sched.issue_rate)
7266 issue_rate = targetm.sched.issue_rate ();
7267 else
7268 issue_rate = 1;
7270 if (targetm.sched.first_cycle_multipass_dfa_lookahead
7271 /* Don't use max_issue with reg_pressure scheduling. Multipass
7272 scheduling and reg_pressure scheduling undo each other's decisions. */
7273 && sched_pressure == SCHED_PRESSURE_NONE)
7274 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
7275 else
7276 dfa_lookahead = 0;
7278 /* Set to "0" so that we recalculate. */
7279 max_lookahead_tries = 0;
7281 if (targetm.sched.init_dfa_pre_cycle_insn)
7282 targetm.sched.init_dfa_pre_cycle_insn ();
7284 if (targetm.sched.init_dfa_post_cycle_insn)
7285 targetm.sched.init_dfa_post_cycle_insn ();
7287 dfa_start ();
7288 dfa_state_size = state_size ();
7290 init_alias_analysis ();
7292 if (!sched_no_dce)
7293 df_set_flags (DF_LR_RUN_DCE);
7294 df_note_add_problem ();
7296 /* More problems needed for interloop dep calculation in SMS. */
7297 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
7299 df_rd_add_problem ();
7300 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
7303 df_analyze ();
7305 /* Do not run DCE after reload, as this can kill nops inserted
7306 by bundling. */
7307 if (reload_completed)
7308 df_clear_flags (DF_LR_RUN_DCE);
7310 regstat_compute_calls_crossed ();
7312 if (targetm.sched.init_global)
7313 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
7315 alloc_global_sched_pressure_data ();
7317 curr_state = xmalloc (dfa_state_size);
7320 static void haifa_init_only_bb (basic_block, basic_block);
7322 /* Initialize data structures specific to the Haifa scheduler. */
7323 void
7324 haifa_sched_init (void)
7326 setup_sched_dump ();
7327 sched_init ();
7329 scheduled_insns.create (0);
7331 if (spec_info != NULL)
7333 sched_deps_info->use_deps_list = 1;
7334 sched_deps_info->generate_spec_deps = 1;
7337 /* Initialize luids, dependency caches, target and h_i_d for the
7338 whole function. */
7340 sched_init_bbs ();
7342 auto_vec<basic_block> bbs (n_basic_blocks_for_fn (cfun));
7343 basic_block bb;
7344 FOR_EACH_BB_FN (bb, cfun)
7345 bbs.quick_push (bb);
7346 sched_init_luids (bbs);
7347 sched_deps_init (true);
7348 sched_extend_target ();
7349 haifa_init_h_i_d (bbs);
7352 sched_init_only_bb = haifa_init_only_bb;
7353 sched_split_block = sched_split_block_1;
7354 sched_create_empty_bb = sched_create_empty_bb_1;
7355 haifa_recovery_bb_ever_added_p = false;
7357 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
7358 before_recovery = 0;
7359 after_recovery = 0;
7361 modulo_ii = 0;
7364 /* Finish work with the data specific to the Haifa scheduler. */
7365 void
7366 haifa_sched_finish (void)
7368 sched_create_empty_bb = NULL;
7369 sched_split_block = NULL;
7370 sched_init_only_bb = NULL;
7372 if (spec_info && spec_info->dump)
7374 char c = reload_completed ? 'a' : 'b';
7376 fprintf (spec_info->dump,
7377 ";; %s:\n", current_function_name ());
7379 fprintf (spec_info->dump,
7380 ";; Procedure %cr-begin-data-spec motions == %d\n",
7381 c, nr_begin_data);
7382 fprintf (spec_info->dump,
7383 ";; Procedure %cr-be-in-data-spec motions == %d\n",
7384 c, nr_be_in_data);
7385 fprintf (spec_info->dump,
7386 ";; Procedure %cr-begin-control-spec motions == %d\n",
7387 c, nr_begin_control);
7388 fprintf (spec_info->dump,
7389 ";; Procedure %cr-be-in-control-spec motions == %d\n",
7390 c, nr_be_in_control);
7393 scheduled_insns.release ();
7395 /* Finalize h_i_d, dependency caches, and luids for the whole
7396 function. Target will be finalized in md_global_finish (). */
7397 sched_deps_finish ();
7398 sched_finish_luids ();
7399 current_sched_info = NULL;
7400 insn_queue = NULL;
7401 sched_finish ();
7404 /* Free global data used during insn scheduling. This function works with
7405 the common data shared between the schedulers. */
7407 void
7408 sched_finish (void)
7410 haifa_finish_h_i_d ();
7411 free_global_sched_pressure_data ();
7412 free (curr_state);
7414 if (targetm.sched.finish_global)
7415 targetm.sched.finish_global (sched_dump, sched_verbose);
7417 end_alias_analysis ();
7419 regstat_free_calls_crossed ();
7421 dfa_finish ();
7424 /* Free all delay_pair structures that were recorded. */
7425 void
7426 free_delay_pairs (void)
7428 if (delay_htab)
7430 delay_htab->empty ();
7431 delay_htab_i2->empty ();
7435 /* Fix INSN_TICKs of the instructions in the current block as well as
7436 INSN_TICKs of their dependents.
7437 HEAD and TAIL are the begin and the end of the current scheduled block. */
7438 static void
7439 fix_inter_tick (rtx_insn *head, rtx_insn *tail)
7441 /* Set of instructions with corrected INSN_TICK. */
7442 auto_bitmap processed;
7443 /* ??? It is doubtful if we should assume that cycle advance happens on
7444 basic block boundaries. Basically insns that are unconditionally ready
7445 on the start of the block are more preferable then those which have
7446 a one cycle dependency over insn from the previous block. */
7447 int next_clock = clock_var + 1;
7449 /* Iterates over scheduled instructions and fix their INSN_TICKs and
7450 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
7451 across different blocks. */
7452 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
7454 if (INSN_P (head))
7456 int tick;
7457 sd_iterator_def sd_it;
7458 dep_t dep;
7460 tick = INSN_TICK (head);
7461 gcc_assert (tick >= MIN_TICK);
7463 /* Fix INSN_TICK of instruction from just scheduled block. */
7464 if (bitmap_set_bit (processed, INSN_LUID (head)))
7466 tick -= next_clock;
7468 if (tick < MIN_TICK)
7469 tick = MIN_TICK;
7471 INSN_TICK (head) = tick;
7474 if (DEBUG_INSN_P (head))
7475 continue;
7477 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
7479 rtx_insn *next;
7481 next = DEP_CON (dep);
7482 tick = INSN_TICK (next);
7484 if (tick != INVALID_TICK
7485 /* If NEXT has its INSN_TICK calculated, fix it.
7486 If not - it will be properly calculated from
7487 scratch later in fix_tick_ready. */
7488 && bitmap_set_bit (processed, INSN_LUID (next)))
7490 tick -= next_clock;
7492 if (tick < MIN_TICK)
7493 tick = MIN_TICK;
7495 if (tick > INTER_TICK (next))
7496 INTER_TICK (next) = tick;
7497 else
7498 tick = INTER_TICK (next);
7500 INSN_TICK (next) = tick;
7507 /* Check if NEXT is ready to be added to the ready or queue list.
7508 If "yes", add it to the proper list.
7509 Returns:
7510 -1 - is not ready yet,
7511 0 - added to the ready list,
7512 0 < N - queued for N cycles. */
7514 try_ready (rtx_insn *next)
7516 ds_t old_ts, new_ts;
7518 old_ts = TODO_SPEC (next);
7520 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
7521 && (old_ts == HARD_DEP
7522 || old_ts == DEP_POSTPONED
7523 || (old_ts & SPECULATIVE)
7524 || old_ts == DEP_CONTROL));
7526 new_ts = recompute_todo_spec (next, false);
7528 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7529 gcc_assert (new_ts == old_ts
7530 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
7531 else if (current_sched_info->new_ready)
7532 new_ts = current_sched_info->new_ready (next, new_ts);
7534 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
7535 have its original pattern or changed (speculative) one. This is due
7536 to changing ebb in region scheduling.
7537 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
7538 has speculative pattern.
7540 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
7541 control-speculative NEXT could have been discarded by sched-rgn.c
7542 (the same case as when discarded by can_schedule_ready_p ()). */
7544 if ((new_ts & SPECULATIVE)
7545 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
7546 need to change anything. */
7547 && new_ts != old_ts)
7549 int res;
7550 rtx new_pat;
7552 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
7554 res = haifa_speculate_insn (next, new_ts, &new_pat);
7556 switch (res)
7558 case -1:
7559 /* It would be nice to change DEP_STATUS of all dependences,
7560 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
7561 so we won't reanalyze anything. */
7562 new_ts = HARD_DEP;
7563 break;
7565 case 0:
7566 /* We follow the rule, that every speculative insn
7567 has non-null ORIG_PAT. */
7568 if (!ORIG_PAT (next))
7569 ORIG_PAT (next) = PATTERN (next);
7570 break;
7572 case 1:
7573 if (!ORIG_PAT (next))
7574 /* If we gonna to overwrite the original pattern of insn,
7575 save it. */
7576 ORIG_PAT (next) = PATTERN (next);
7578 res = haifa_change_pattern (next, new_pat);
7579 gcc_assert (res);
7580 break;
7582 default:
7583 gcc_unreachable ();
7587 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
7588 either correct (new_ts & SPECULATIVE),
7589 or we simply don't care (new_ts & HARD_DEP). */
7591 gcc_assert (!ORIG_PAT (next)
7592 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
7594 TODO_SPEC (next) = new_ts;
7596 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7598 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
7599 control-speculative NEXT could have been discarded by sched-rgn.c
7600 (the same case as when discarded by can_schedule_ready_p ()). */
7601 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
7603 change_queue_index (next, QUEUE_NOWHERE);
7605 return -1;
7607 else if (!(new_ts & BEGIN_SPEC)
7608 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
7609 && !IS_SPECULATION_CHECK_P (next))
7610 /* We should change pattern of every previously speculative
7611 instruction - and we determine if NEXT was speculative by using
7612 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
7613 pat too, so skip them. */
7615 bool success = haifa_change_pattern (next, ORIG_PAT (next));
7616 gcc_assert (success);
7617 ORIG_PAT (next) = 0;
7620 if (sched_verbose >= 2)
7622 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7623 (*current_sched_info->print_insn) (next, 0));
7625 if (spec_info && spec_info->dump)
7627 if (new_ts & BEGIN_DATA)
7628 fprintf (spec_info->dump, "; data-spec;");
7629 if (new_ts & BEGIN_CONTROL)
7630 fprintf (spec_info->dump, "; control-spec;");
7631 if (new_ts & BE_IN_CONTROL)
7632 fprintf (spec_info->dump, "; in-control-spec;");
7634 if (TODO_SPEC (next) & DEP_CONTROL)
7635 fprintf (sched_dump, " predicated");
7636 fprintf (sched_dump, "\n");
7639 adjust_priority (next);
7641 return fix_tick_ready (next);
7644 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
7645 static int
7646 fix_tick_ready (rtx_insn *next)
7648 int tick, delay;
7650 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
7652 int full_p;
7653 sd_iterator_def sd_it;
7654 dep_t dep;
7656 tick = INSN_TICK (next);
7657 /* if tick is not equal to INVALID_TICK, then update
7658 INSN_TICK of NEXT with the most recent resolved dependence
7659 cost. Otherwise, recalculate from scratch. */
7660 full_p = (tick == INVALID_TICK);
7662 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
7664 rtx_insn *pro = DEP_PRO (dep);
7665 int tick1;
7667 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
7669 tick1 = INSN_TICK (pro) + dep_cost (dep);
7670 if (tick1 > tick)
7671 tick = tick1;
7673 if (!full_p)
7674 break;
7677 else
7678 tick = -1;
7680 INSN_TICK (next) = tick;
7682 delay = tick - clock_var;
7683 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE || sched_fusion)
7684 delay = QUEUE_READY;
7686 change_queue_index (next, delay);
7688 return delay;
7691 /* Move NEXT to the proper queue list with (DELAY >= 1),
7692 or add it to the ready list (DELAY == QUEUE_READY),
7693 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7694 static void
7695 change_queue_index (rtx_insn *next, int delay)
7697 int i = QUEUE_INDEX (next);
7699 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
7700 && delay != 0);
7701 gcc_assert (i != QUEUE_SCHEDULED);
7703 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7704 || (delay < 0 && delay == i))
7705 /* We have nothing to do. */
7706 return;
7708 /* Remove NEXT from wherever it is now. */
7709 if (i == QUEUE_READY)
7710 ready_remove_insn (next);
7711 else if (i >= 0)
7712 queue_remove (next);
7714 /* Add it to the proper place. */
7715 if (delay == QUEUE_READY)
7716 ready_add (readyp, next, false);
7717 else if (delay >= 1)
7718 queue_insn (next, delay, "change queue index");
7720 if (sched_verbose >= 2)
7722 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7723 (*current_sched_info->print_insn) (next, 0));
7725 if (delay == QUEUE_READY)
7726 fprintf (sched_dump, " into ready\n");
7727 else if (delay >= 1)
7728 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7729 else
7730 fprintf (sched_dump, " removed from ready or queue lists\n");
7734 static int sched_ready_n_insns = -1;
7736 /* Initialize per region data structures. */
7737 void
7738 sched_extend_ready_list (int new_sched_ready_n_insns)
7740 int i;
7742 if (sched_ready_n_insns == -1)
7743 /* At the first call we need to initialize one more choice_stack
7744 entry. */
7746 i = 0;
7747 sched_ready_n_insns = 0;
7748 scheduled_insns.reserve (new_sched_ready_n_insns);
7750 else
7751 i = sched_ready_n_insns + 1;
7753 ready.veclen = new_sched_ready_n_insns + issue_rate;
7754 ready.vec = XRESIZEVEC (rtx_insn *, ready.vec, ready.veclen);
7756 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
7758 ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7759 sched_ready_n_insns,
7760 sizeof (*ready_try));
7762 /* We allocate +1 element to save initial state in the choice_stack[0]
7763 entry. */
7764 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7765 new_sched_ready_n_insns + 1);
7767 for (; i <= new_sched_ready_n_insns; i++)
7769 choice_stack[i].state = xmalloc (dfa_state_size);
7771 if (targetm.sched.first_cycle_multipass_init)
7772 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7773 .target_data));
7776 sched_ready_n_insns = new_sched_ready_n_insns;
7779 /* Free per region data structures. */
7780 void
7781 sched_finish_ready_list (void)
7783 int i;
7785 free (ready.vec);
7786 ready.vec = NULL;
7787 ready.veclen = 0;
7789 free (ready_try);
7790 ready_try = NULL;
7792 for (i = 0; i <= sched_ready_n_insns; i++)
7794 if (targetm.sched.first_cycle_multipass_fini)
7795 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7796 .target_data));
7798 free (choice_stack [i].state);
7800 free (choice_stack);
7801 choice_stack = NULL;
7803 sched_ready_n_insns = -1;
7806 static int
7807 haifa_luid_for_non_insn (rtx x)
7809 gcc_assert (NOTE_P (x) || LABEL_P (x));
7811 return 0;
7814 /* Generates recovery code for INSN. */
7815 static void
7816 generate_recovery_code (rtx_insn *insn)
7818 if (TODO_SPEC (insn) & BEGIN_SPEC)
7819 begin_speculative_block (insn);
7821 /* Here we have insn with no dependencies to
7822 instructions other then CHECK_SPEC ones. */
7824 if (TODO_SPEC (insn) & BE_IN_SPEC)
7825 add_to_speculative_block (insn);
7828 /* Helper function.
7829 Tries to add speculative dependencies of type FS between instructions
7830 in deps_list L and TWIN. */
7831 static void
7832 process_insn_forw_deps_be_in_spec (rtx_insn *insn, rtx_insn *twin, ds_t fs)
7834 sd_iterator_def sd_it;
7835 dep_t dep;
7837 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
7839 ds_t ds;
7840 rtx_insn *consumer;
7842 consumer = DEP_CON (dep);
7844 ds = DEP_STATUS (dep);
7846 if (/* If we want to create speculative dep. */
7848 /* And we can do that because this is a true dep. */
7849 && (ds & DEP_TYPES) == DEP_TRUE)
7851 gcc_assert (!(ds & BE_IN_SPEC));
7853 if (/* If this dep can be overcome with 'begin speculation'. */
7854 ds & BEGIN_SPEC)
7855 /* Then we have a choice: keep the dep 'begin speculative'
7856 or transform it into 'be in speculative'. */
7858 if (/* In try_ready we assert that if insn once became ready
7859 it can be removed from the ready (or queue) list only
7860 due to backend decision. Hence we can't let the
7861 probability of the speculative dep to decrease. */
7862 ds_weak (ds) <= ds_weak (fs))
7864 ds_t new_ds;
7866 new_ds = (ds & ~BEGIN_SPEC) | fs;
7868 if (/* consumer can 'be in speculative'. */
7869 sched_insn_is_legitimate_for_speculation_p (consumer,
7870 new_ds))
7871 /* Transform it to be in speculative. */
7872 ds = new_ds;
7875 else
7876 /* Mark the dep as 'be in speculative'. */
7877 ds |= fs;
7881 dep_def _new_dep, *new_dep = &_new_dep;
7883 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7884 sd_add_dep (new_dep, false);
7889 /* Generates recovery code for BEGIN speculative INSN. */
7890 static void
7891 begin_speculative_block (rtx_insn *insn)
7893 if (TODO_SPEC (insn) & BEGIN_DATA)
7894 nr_begin_data++;
7895 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7896 nr_begin_control++;
7898 create_check_block_twin (insn, false);
7900 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7903 static void haifa_init_insn (rtx_insn *);
7905 /* Generates recovery code for BE_IN speculative INSN. */
7906 static void
7907 add_to_speculative_block (rtx_insn *insn)
7909 ds_t ts;
7910 sd_iterator_def sd_it;
7911 dep_t dep;
7912 auto_vec<rtx_insn *, 10> twins;
7914 ts = TODO_SPEC (insn);
7915 gcc_assert (!(ts & ~BE_IN_SPEC));
7917 if (ts & BE_IN_DATA)
7918 nr_be_in_data++;
7919 if (ts & BE_IN_CONTROL)
7920 nr_be_in_control++;
7922 TODO_SPEC (insn) &= ~BE_IN_SPEC;
7923 gcc_assert (!TODO_SPEC (insn));
7925 DONE_SPEC (insn) |= ts;
7927 /* First we convert all simple checks to branchy. */
7928 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7929 sd_iterator_cond (&sd_it, &dep);)
7931 rtx_insn *check = DEP_PRO (dep);
7933 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
7935 create_check_block_twin (check, true);
7937 /* Restart search. */
7938 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7940 else
7941 /* Continue search. */
7942 sd_iterator_next (&sd_it);
7945 auto_vec<rtx_insn *> priorities_roots;
7946 clear_priorities (insn, &priorities_roots);
7948 while (1)
7950 rtx_insn *check, *twin;
7951 basic_block rec;
7953 /* Get the first backward dependency of INSN. */
7954 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7955 if (!sd_iterator_cond (&sd_it, &dep))
7956 /* INSN has no backward dependencies left. */
7957 break;
7959 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
7960 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
7961 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
7963 check = DEP_PRO (dep);
7965 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
7966 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
7968 rec = BLOCK_FOR_INSN (check);
7970 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
7971 haifa_init_insn (twin);
7973 sd_copy_back_deps (twin, insn, true);
7975 if (sched_verbose && spec_info->dump)
7976 /* INSN_BB (insn) isn't determined for twin insns yet.
7977 So we can't use current_sched_info->print_insn. */
7978 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7979 INSN_UID (twin), rec->index);
7981 twins.safe_push (twin);
7983 /* Add dependences between TWIN and all appropriate
7984 instructions from REC. */
7985 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
7987 rtx_insn *pro = DEP_PRO (dep);
7989 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
7991 /* INSN might have dependencies from the instructions from
7992 several recovery blocks. At this iteration we process those
7993 producers that reside in REC. */
7994 if (BLOCK_FOR_INSN (pro) == rec)
7996 dep_def _new_dep, *new_dep = &_new_dep;
7998 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
7999 sd_add_dep (new_dep, false);
8003 process_insn_forw_deps_be_in_spec (insn, twin, ts);
8005 /* Remove all dependencies between INSN and insns in REC. */
8006 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8007 sd_iterator_cond (&sd_it, &dep);)
8009 rtx_insn *pro = DEP_PRO (dep);
8011 if (BLOCK_FOR_INSN (pro) == rec)
8012 sd_delete_dep (sd_it);
8013 else
8014 sd_iterator_next (&sd_it);
8018 /* We couldn't have added the dependencies between INSN and TWINS earlier
8019 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
8020 unsigned int i;
8021 rtx_insn *twin;
8022 FOR_EACH_VEC_ELT_REVERSE (twins, i, twin)
8024 dep_def _new_dep, *new_dep = &_new_dep;
8026 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8027 sd_add_dep (new_dep, false);
8030 calc_priorities (priorities_roots);
8033 /* Extends and fills with zeros (only the new part) array pointed to by P. */
8034 void *
8035 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
8037 gcc_assert (new_nmemb >= old_nmemb);
8038 p = XRESIZEVAR (void, p, new_nmemb * size);
8039 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
8040 return p;
8043 /* Helper function.
8044 Find fallthru edge from PRED. */
8045 edge
8046 find_fallthru_edge_from (basic_block pred)
8048 edge e;
8049 basic_block succ;
8051 succ = pred->next_bb;
8052 gcc_assert (succ->prev_bb == pred);
8054 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
8056 e = find_fallthru_edge (pred->succs);
8058 if (e)
8060 gcc_assert (e->dest == succ);
8061 return e;
8064 else
8066 e = find_fallthru_edge (succ->preds);
8068 if (e)
8070 gcc_assert (e->src == pred);
8071 return e;
8075 return NULL;
8078 /* Extend per basic block data structures. */
8079 static void
8080 sched_extend_bb (void)
8082 /* The following is done to keep current_sched_info->next_tail non null. */
8083 rtx_insn *end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
8084 rtx_insn *insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
8085 if (NEXT_INSN (end) == 0
8086 || (!NOTE_P (insn)
8087 && !LABEL_P (insn)
8088 /* Don't emit a NOTE if it would end up before a BARRIER. */
8089 && !BARRIER_P (NEXT_INSN (end))))
8091 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
8092 /* Make note appear outside BB. */
8093 set_block_for_insn (note, NULL);
8094 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
8098 /* Init per basic block data structures. */
8099 void
8100 sched_init_bbs (void)
8102 sched_extend_bb ();
8105 /* Initialize BEFORE_RECOVERY variable. */
8106 static void
8107 init_before_recovery (basic_block *before_recovery_ptr)
8109 basic_block last;
8110 edge e;
8112 last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8113 e = find_fallthru_edge_from (last);
8115 if (e)
8117 /* We create two basic blocks:
8118 1. Single instruction block is inserted right after E->SRC
8119 and has jump to
8120 2. Empty block right before EXIT_BLOCK.
8121 Between these two blocks recovery blocks will be emitted. */
8123 basic_block single, empty;
8125 /* If the fallthrough edge to exit we've found is from the block we've
8126 created before, don't do anything more. */
8127 if (last == after_recovery)
8128 return;
8130 adding_bb_to_current_region_p = false;
8132 single = sched_create_empty_bb (last);
8133 empty = sched_create_empty_bb (single);
8135 /* Add new blocks to the root loop. */
8136 if (current_loops != NULL)
8138 add_bb_to_loop (single, (*current_loops->larray)[0]);
8139 add_bb_to_loop (empty, (*current_loops->larray)[0]);
8142 single->count = last->count;
8143 empty->count = last->count;
8144 BB_COPY_PARTITION (single, last);
8145 BB_COPY_PARTITION (empty, last);
8147 redirect_edge_succ (e, single);
8148 make_single_succ_edge (single, empty, 0);
8149 make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
8150 EDGE_FALLTHRU);
8152 rtx_code_label *label = block_label (empty);
8153 rtx_jump_insn *x = emit_jump_insn_after (targetm.gen_jump (label),
8154 BB_END (single));
8155 JUMP_LABEL (x) = label;
8156 LABEL_NUSES (label)++;
8157 haifa_init_insn (x);
8159 emit_barrier_after (x);
8161 sched_init_only_bb (empty, NULL);
8162 sched_init_only_bb (single, NULL);
8163 sched_extend_bb ();
8165 adding_bb_to_current_region_p = true;
8166 before_recovery = single;
8167 after_recovery = empty;
8169 if (before_recovery_ptr)
8170 *before_recovery_ptr = before_recovery;
8172 if (sched_verbose >= 2 && spec_info->dump)
8173 fprintf (spec_info->dump,
8174 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
8175 last->index, single->index, empty->index);
8177 else
8178 before_recovery = last;
8181 /* Returns new recovery block. */
8182 basic_block
8183 sched_create_recovery_block (basic_block *before_recovery_ptr)
8185 rtx_insn *barrier;
8186 basic_block rec;
8188 haifa_recovery_bb_recently_added_p = true;
8189 haifa_recovery_bb_ever_added_p = true;
8191 init_before_recovery (before_recovery_ptr);
8193 barrier = get_last_bb_insn (before_recovery);
8194 gcc_assert (BARRIER_P (barrier));
8196 rtx_insn *label = emit_label_after (gen_label_rtx (), barrier);
8198 rec = create_basic_block (label, label, before_recovery);
8200 /* A recovery block always ends with an unconditional jump. */
8201 emit_barrier_after (BB_END (rec));
8203 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
8204 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
8206 if (sched_verbose && spec_info->dump)
8207 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
8208 rec->index);
8210 return rec;
8213 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
8214 and emit necessary jumps. */
8215 void
8216 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
8217 basic_block second_bb)
8219 int edge_flags;
8221 /* This is fixing of incoming edge. */
8222 /* ??? Which other flags should be specified? */
8223 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
8224 /* Partition type is the same, if it is "unpartitioned". */
8225 edge_flags = EDGE_CROSSING;
8226 else
8227 edge_flags = 0;
8229 edge e2 = single_succ_edge (first_bb);
8230 edge e = make_edge (first_bb, rec, edge_flags);
8232 /* TODO: The actual probability can be determined and is computed as
8233 'todo_spec' variable in create_check_block_twin and
8234 in sel-sched.c `check_ds' in create_speculation_check. */
8235 e->probability = profile_probability::very_unlikely ();
8236 rec->count = e->count ();
8237 e2->probability = e->probability.invert ();
8239 rtx_code_label *label = block_label (second_bb);
8240 rtx_jump_insn *jump = emit_jump_insn_after (targetm.gen_jump (label),
8241 BB_END (rec));
8242 JUMP_LABEL (jump) = label;
8243 LABEL_NUSES (label)++;
8245 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
8246 /* Partition type is the same, if it is "unpartitioned". */
8248 /* Rewritten from cfgrtl.c. */
8249 if (crtl->has_bb_partition && targetm_common.have_named_sections)
8251 /* We don't need the same note for the check because
8252 any_condjump_p (check) == true. */
8253 CROSSING_JUMP_P (jump) = 1;
8255 edge_flags = EDGE_CROSSING;
8257 else
8258 edge_flags = 0;
8260 make_single_succ_edge (rec, second_bb, edge_flags);
8261 if (dom_info_available_p (CDI_DOMINATORS))
8262 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
8265 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
8266 INSN is a simple check, that should be converted to branchy one. */
8267 static void
8268 create_check_block_twin (rtx_insn *insn, bool mutate_p)
8270 basic_block rec;
8271 rtx_insn *label, *check, *twin;
8272 rtx check_pat;
8273 ds_t fs;
8274 sd_iterator_def sd_it;
8275 dep_t dep;
8276 dep_def _new_dep, *new_dep = &_new_dep;
8277 ds_t todo_spec;
8279 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
8281 if (!mutate_p)
8282 todo_spec = TODO_SPEC (insn);
8283 else
8285 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
8286 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
8288 todo_spec = CHECK_SPEC (insn);
8291 todo_spec &= SPECULATIVE;
8293 /* Create recovery block. */
8294 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
8296 rec = sched_create_recovery_block (NULL);
8297 label = BB_HEAD (rec);
8299 else
8301 rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
8302 label = NULL;
8305 /* Emit CHECK. */
8306 check_pat = targetm.sched.gen_spec_check (insn, label, todo_spec);
8308 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8310 /* To have mem_reg alive at the beginning of second_bb,
8311 we emit check BEFORE insn, so insn after splitting
8312 insn will be at the beginning of second_bb, which will
8313 provide us with the correct life information. */
8314 check = emit_jump_insn_before (check_pat, insn);
8315 JUMP_LABEL (check) = label;
8316 LABEL_NUSES (label)++;
8318 else
8319 check = emit_insn_before (check_pat, insn);
8321 /* Extend data structures. */
8322 haifa_init_insn (check);
8324 /* CHECK is being added to current region. Extend ready list. */
8325 gcc_assert (sched_ready_n_insns != -1);
8326 sched_extend_ready_list (sched_ready_n_insns + 1);
8328 if (current_sched_info->add_remove_insn)
8329 current_sched_info->add_remove_insn (insn, 0);
8331 RECOVERY_BLOCK (check) = rec;
8333 if (sched_verbose && spec_info->dump)
8334 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
8335 (*current_sched_info->print_insn) (check, 0));
8337 gcc_assert (ORIG_PAT (insn));
8339 /* Initialize TWIN (twin is a duplicate of original instruction
8340 in the recovery block). */
8341 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8343 sd_iterator_def sd_it;
8344 dep_t dep;
8346 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
8347 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
8349 struct _dep _dep2, *dep2 = &_dep2;
8351 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
8353 sd_add_dep (dep2, true);
8356 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
8357 haifa_init_insn (twin);
8359 if (sched_verbose && spec_info->dump)
8360 /* INSN_BB (insn) isn't determined for twin insns yet.
8361 So we can't use current_sched_info->print_insn. */
8362 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8363 INSN_UID (twin), rec->index);
8365 else
8367 ORIG_PAT (check) = ORIG_PAT (insn);
8368 HAS_INTERNAL_DEP (check) = 1;
8369 twin = check;
8370 /* ??? We probably should change all OUTPUT dependencies to
8371 (TRUE | OUTPUT). */
8374 /* Copy all resolved back dependencies of INSN to TWIN. This will
8375 provide correct value for INSN_TICK (TWIN). */
8376 sd_copy_back_deps (twin, insn, true);
8378 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8379 /* In case of branchy check, fix CFG. */
8381 basic_block first_bb, second_bb;
8382 rtx_insn *jump;
8384 first_bb = BLOCK_FOR_INSN (check);
8385 second_bb = sched_split_block (first_bb, check);
8387 sched_create_recovery_edges (first_bb, rec, second_bb);
8389 sched_init_only_bb (second_bb, first_bb);
8390 sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
8392 jump = BB_END (rec);
8393 haifa_init_insn (jump);
8396 /* Move backward dependences from INSN to CHECK and
8397 move forward dependences from INSN to TWIN. */
8399 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
8400 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8402 rtx_insn *pro = DEP_PRO (dep);
8403 ds_t ds;
8405 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
8406 check --TRUE--> producer ??? or ANTI ???
8407 twin --TRUE--> producer
8408 twin --ANTI--> check
8410 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
8411 check --ANTI--> producer
8412 twin --ANTI--> producer
8413 twin --ANTI--> check
8415 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
8416 check ~~TRUE~~> producer
8417 twin ~~TRUE~~> producer
8418 twin --ANTI--> check */
8420 ds = DEP_STATUS (dep);
8422 if (ds & BEGIN_SPEC)
8424 gcc_assert (!mutate_p);
8425 ds &= ~BEGIN_SPEC;
8428 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
8429 sd_add_dep (new_dep, false);
8431 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8433 DEP_CON (new_dep) = twin;
8434 sd_add_dep (new_dep, false);
8438 /* Second, remove backward dependencies of INSN. */
8439 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8440 sd_iterator_cond (&sd_it, &dep);)
8442 if ((DEP_STATUS (dep) & BEGIN_SPEC)
8443 || mutate_p)
8444 /* We can delete this dep because we overcome it with
8445 BEGIN_SPECULATION. */
8446 sd_delete_dep (sd_it);
8447 else
8448 sd_iterator_next (&sd_it);
8451 /* Future Speculations. Determine what BE_IN speculations will be like. */
8452 fs = 0;
8454 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
8455 here. */
8457 gcc_assert (!DONE_SPEC (insn));
8459 if (!mutate_p)
8461 ds_t ts = TODO_SPEC (insn);
8463 DONE_SPEC (insn) = ts & BEGIN_SPEC;
8464 CHECK_SPEC (check) = ts & BEGIN_SPEC;
8466 /* Luckiness of future speculations solely depends upon initial
8467 BEGIN speculation. */
8468 if (ts & BEGIN_DATA)
8469 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
8470 if (ts & BEGIN_CONTROL)
8471 fs = set_dep_weak (fs, BE_IN_CONTROL,
8472 get_dep_weak (ts, BEGIN_CONTROL));
8474 else
8475 CHECK_SPEC (check) = CHECK_SPEC (insn);
8477 /* Future speculations: call the helper. */
8478 process_insn_forw_deps_be_in_spec (insn, twin, fs);
8480 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8482 /* Which types of dependencies should we use here is,
8483 generally, machine-dependent question... But, for now,
8484 it is not. */
8486 if (!mutate_p)
8488 init_dep (new_dep, insn, check, REG_DEP_TRUE);
8489 sd_add_dep (new_dep, false);
8491 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8492 sd_add_dep (new_dep, false);
8494 else
8496 if (spec_info->dump)
8497 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
8498 (*current_sched_info->print_insn) (insn, 0));
8500 /* Remove all dependencies of the INSN. */
8502 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
8503 | SD_LIST_BACK
8504 | SD_LIST_RES_BACK));
8505 while (sd_iterator_cond (&sd_it, &dep))
8506 sd_delete_dep (sd_it);
8509 /* If former check (INSN) already was moved to the ready (or queue)
8510 list, add new check (CHECK) there too. */
8511 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
8512 try_ready (check);
8514 /* Remove old check from instruction stream and free its
8515 data. */
8516 sched_remove_insn (insn);
8519 init_dep (new_dep, check, twin, REG_DEP_ANTI);
8520 sd_add_dep (new_dep, false);
8522 else
8524 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
8525 sd_add_dep (new_dep, false);
8528 if (!mutate_p)
8529 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
8530 because it'll be done later in add_to_speculative_block. */
8532 auto_vec<rtx_insn *> priorities_roots;
8534 clear_priorities (twin, &priorities_roots);
8535 calc_priorities (priorities_roots);
8539 /* Removes dependency between instructions in the recovery block REC
8540 and usual region instructions. It keeps inner dependences so it
8541 won't be necessary to recompute them. */
8542 static void
8543 fix_recovery_deps (basic_block rec)
8545 rtx_insn *note, *insn, *jump;
8546 auto_vec<rtx_insn *, 10> ready_list;
8547 auto_bitmap in_ready;
8549 /* NOTE - a basic block note. */
8550 note = NEXT_INSN (BB_HEAD (rec));
8551 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8552 insn = BB_END (rec);
8553 gcc_assert (JUMP_P (insn));
8554 insn = PREV_INSN (insn);
8558 sd_iterator_def sd_it;
8559 dep_t dep;
8561 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
8562 sd_iterator_cond (&sd_it, &dep);)
8564 rtx_insn *consumer = DEP_CON (dep);
8566 if (BLOCK_FOR_INSN (consumer) != rec)
8568 sd_delete_dep (sd_it);
8570 if (bitmap_set_bit (in_ready, INSN_LUID (consumer)))
8571 ready_list.safe_push (consumer);
8573 else
8575 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8577 sd_iterator_next (&sd_it);
8581 insn = PREV_INSN (insn);
8583 while (insn != note);
8585 /* Try to add instructions to the ready or queue list. */
8586 unsigned int i;
8587 rtx_insn *temp;
8588 FOR_EACH_VEC_ELT_REVERSE (ready_list, i, temp)
8589 try_ready (temp);
8591 /* Fixing jump's dependences. */
8592 insn = BB_HEAD (rec);
8593 jump = BB_END (rec);
8595 gcc_assert (LABEL_P (insn));
8596 insn = NEXT_INSN (insn);
8598 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
8599 add_jump_dependencies (insn, jump);
8602 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
8603 instruction data. */
8604 static bool
8605 haifa_change_pattern (rtx_insn *insn, rtx new_pat)
8607 int t;
8609 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
8610 if (!t)
8611 return false;
8613 update_insn_after_change (insn);
8614 return true;
8617 /* -1 - can't speculate,
8618 0 - for speculation with REQUEST mode it is OK to use
8619 current instruction pattern,
8620 1 - need to change pattern for *NEW_PAT to be speculative. */
8622 sched_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8624 gcc_assert (current_sched_info->flags & DO_SPECULATION
8625 && (request & SPECULATIVE)
8626 && sched_insn_is_legitimate_for_speculation_p (insn, request));
8628 if ((request & spec_info->mask) != request)
8629 return -1;
8631 if (request & BE_IN_SPEC
8632 && !(request & BEGIN_SPEC))
8633 return 0;
8635 return targetm.sched.speculate_insn (insn, request, new_pat);
8638 static int
8639 haifa_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8641 gcc_assert (sched_deps_info->generate_spec_deps
8642 && !IS_SPECULATION_CHECK_P (insn));
8644 if (HAS_INTERNAL_DEP (insn)
8645 || SCHED_GROUP_P (insn))
8646 return -1;
8648 return sched_speculate_insn (insn, request, new_pat);
8651 /* Print some information about block BB, which starts with HEAD and
8652 ends with TAIL, before scheduling it.
8653 I is zero, if scheduler is about to start with the fresh ebb. */
8654 static void
8655 dump_new_block_header (int i, basic_block bb, rtx_insn *head, rtx_insn *tail)
8657 if (!i)
8658 fprintf (sched_dump,
8659 ";; ======================================================\n");
8660 else
8661 fprintf (sched_dump,
8662 ";; =====================ADVANCING TO=====================\n");
8663 fprintf (sched_dump,
8664 ";; -- basic block %d from %d to %d -- %s reload\n",
8665 bb->index, INSN_UID (head), INSN_UID (tail),
8666 (reload_completed ? "after" : "before"));
8667 fprintf (sched_dump,
8668 ";; ======================================================\n");
8669 fprintf (sched_dump, "\n");
8672 /* Unlink basic block notes and labels and saves them, so they
8673 can be easily restored. We unlink basic block notes in EBB to
8674 provide back-compatibility with the previous code, as target backends
8675 assume, that there'll be only instructions between
8676 current_sched_info->{head and tail}. We restore these notes as soon
8677 as we can.
8678 FIRST (LAST) is the first (last) basic block in the ebb.
8679 NB: In usual case (FIRST == LAST) nothing is really done. */
8680 void
8681 unlink_bb_notes (basic_block first, basic_block last)
8683 /* We DON'T unlink basic block notes of the first block in the ebb. */
8684 if (first == last)
8685 return;
8687 bb_header = XNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));
8689 /* Make a sentinel. */
8690 if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
8691 bb_header[last->next_bb->index] = 0;
8693 first = first->next_bb;
8696 rtx_insn *prev, *label, *note, *next;
8698 label = BB_HEAD (last);
8699 if (LABEL_P (label))
8700 note = NEXT_INSN (label);
8701 else
8702 note = label;
8703 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8705 prev = PREV_INSN (label);
8706 next = NEXT_INSN (note);
8707 gcc_assert (prev && next);
8709 SET_NEXT_INSN (prev) = next;
8710 SET_PREV_INSN (next) = prev;
8712 bb_header[last->index] = label;
8714 if (last == first)
8715 break;
8717 last = last->prev_bb;
8719 while (1);
8722 /* Restore basic block notes.
8723 FIRST is the first basic block in the ebb. */
8724 static void
8725 restore_bb_notes (basic_block first)
8727 if (!bb_header)
8728 return;
8730 /* We DON'T unlink basic block notes of the first block in the ebb. */
8731 first = first->next_bb;
8732 /* Remember: FIRST is actually a second basic block in the ebb. */
8734 while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
8735 && bb_header[first->index])
8737 rtx_insn *prev, *label, *note, *next;
8739 label = bb_header[first->index];
8740 prev = PREV_INSN (label);
8741 next = NEXT_INSN (prev);
8743 if (LABEL_P (label))
8744 note = NEXT_INSN (label);
8745 else
8746 note = label;
8747 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8749 bb_header[first->index] = 0;
8751 SET_NEXT_INSN (prev) = label;
8752 SET_NEXT_INSN (note) = next;
8753 SET_PREV_INSN (next) = note;
8755 first = first->next_bb;
8758 free (bb_header);
8759 bb_header = 0;
8762 /* Helper function.
8763 Fix CFG after both in- and inter-block movement of
8764 control_flow_insn_p JUMP. */
8765 static void
8766 fix_jump_move (rtx_insn *jump)
8768 basic_block bb, jump_bb, jump_bb_next;
8770 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8771 jump_bb = BLOCK_FOR_INSN (jump);
8772 jump_bb_next = jump_bb->next_bb;
8774 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
8775 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
8777 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8778 /* if jump_bb_next is not empty. */
8779 BB_END (jump_bb) = BB_END (jump_bb_next);
8781 if (BB_END (bb) != PREV_INSN (jump))
8782 /* Then there are instruction after jump that should be placed
8783 to jump_bb_next. */
8784 BB_END (jump_bb_next) = BB_END (bb);
8785 else
8786 /* Otherwise jump_bb_next is empty. */
8787 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8789 /* To make assertion in move_insn happy. */
8790 BB_END (bb) = PREV_INSN (jump);
8792 update_bb_for_insn (jump_bb_next);
8795 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8796 static void
8797 move_block_after_check (rtx_insn *jump)
8799 basic_block bb, jump_bb, jump_bb_next;
8800 vec<edge, va_gc> *t;
8802 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8803 jump_bb = BLOCK_FOR_INSN (jump);
8804 jump_bb_next = jump_bb->next_bb;
8806 update_bb_for_insn (jump_bb);
8808 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8809 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
8811 unlink_block (jump_bb_next);
8812 link_block (jump_bb_next, bb);
8814 t = bb->succs;
8815 bb->succs = 0;
8816 move_succs (&(jump_bb->succs), bb);
8817 move_succs (&(jump_bb_next->succs), jump_bb);
8818 move_succs (&t, jump_bb_next);
8820 df_mark_solutions_dirty ();
8822 common_sched_info->fix_recovery_cfg
8823 (bb->index, jump_bb->index, jump_bb_next->index);
8826 /* Helper function for move_block_after_check.
8827 This functions attaches edge vector pointed to by SUCCSP to
8828 block TO. */
8829 static void
8830 move_succs (vec<edge, va_gc> **succsp, basic_block to)
8832 edge e;
8833 edge_iterator ei;
8835 gcc_assert (to->succs == 0);
8837 to->succs = *succsp;
8839 FOR_EACH_EDGE (e, ei, to->succs)
8840 e->src = to;
8842 *succsp = 0;
8845 /* Remove INSN from the instruction stream.
8846 INSN should have any dependencies. */
8847 static void
8848 sched_remove_insn (rtx_insn *insn)
8850 sd_finish_insn (insn);
8852 change_queue_index (insn, QUEUE_NOWHERE);
8853 current_sched_info->add_remove_insn (insn, 1);
8854 delete_insn (insn);
8857 /* Clear priorities of all instructions, that are forward dependent on INSN.
8858 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8859 be invoked to initialize all cleared priorities. */
8860 static void
8861 clear_priorities (rtx_insn *insn, rtx_vec_t *roots_ptr)
8863 sd_iterator_def sd_it;
8864 dep_t dep;
8865 bool insn_is_root_p = true;
8867 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
8869 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8871 rtx_insn *pro = DEP_PRO (dep);
8873 if (INSN_PRIORITY_STATUS (pro) >= 0
8874 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
8876 /* If DEP doesn't contribute to priority then INSN itself should
8877 be added to priority roots. */
8878 if (contributes_to_priority_p (dep))
8879 insn_is_root_p = false;
8881 INSN_PRIORITY_STATUS (pro) = -1;
8882 clear_priorities (pro, roots_ptr);
8886 if (insn_is_root_p)
8887 roots_ptr->safe_push (insn);
8890 /* Recompute priorities of instructions, whose priorities might have been
8891 changed. ROOTS is a vector of instructions whose priority computation will
8892 trigger initialization of all cleared priorities. */
8893 static void
8894 calc_priorities (rtx_vec_t roots)
8896 int i;
8897 rtx_insn *insn;
8899 FOR_EACH_VEC_ELT (roots, i, insn)
8900 priority (insn);
8904 /* Add dependences between JUMP and other instructions in the recovery
8905 block. INSN is the first insn the recovery block. */
8906 static void
8907 add_jump_dependencies (rtx_insn *insn, rtx_insn *jump)
8911 insn = NEXT_INSN (insn);
8912 if (insn == jump)
8913 break;
8915 if (dep_list_size (insn, SD_LIST_FORW) == 0)
8917 dep_def _new_dep, *new_dep = &_new_dep;
8919 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8920 sd_add_dep (new_dep, false);
8923 while (1);
8925 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
8928 /* Extend data structures for logical insn UID. */
8929 void
8930 sched_extend_luids (void)
8932 int new_luids_max_uid = get_max_uid () + 1;
8934 sched_luids.safe_grow_cleared (new_luids_max_uid);
8937 /* Initialize LUID for INSN. */
8938 void
8939 sched_init_insn_luid (rtx_insn *insn)
8941 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
8942 int luid;
8944 if (i >= 0)
8946 luid = sched_max_luid;
8947 sched_max_luid += i;
8949 else
8950 luid = -1;
8952 SET_INSN_LUID (insn, luid);
8955 /* Initialize luids for BBS.
8956 The hook common_sched_info->luid_for_non_insn () is used to determine
8957 if notes, labels, etc. need luids. */
8958 void
8959 sched_init_luids (bb_vec_t bbs)
8961 int i;
8962 basic_block bb;
8964 sched_extend_luids ();
8965 FOR_EACH_VEC_ELT (bbs, i, bb)
8967 rtx_insn *insn;
8969 FOR_BB_INSNS (bb, insn)
8970 sched_init_insn_luid (insn);
8974 /* Free LUIDs. */
8975 void
8976 sched_finish_luids (void)
8978 sched_luids.release ();
8979 sched_max_luid = 1;
8982 /* Return logical uid of INSN. Helpful while debugging. */
8984 insn_luid (rtx_insn *insn)
8986 return INSN_LUID (insn);
8989 /* Extend per insn data in the target. */
8990 void
8991 sched_extend_target (void)
8993 if (targetm.sched.h_i_d_extended)
8994 targetm.sched.h_i_d_extended ();
8997 /* Extend global scheduler structures (those, that live across calls to
8998 schedule_block) to include information about just emitted INSN. */
8999 static void
9000 extend_h_i_d (void)
9002 int reserve = (get_max_uid () + 1 - h_i_d.length ());
9003 if (reserve > 0
9004 && ! h_i_d.space (reserve))
9006 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
9007 sched_extend_target ();
9011 /* Initialize h_i_d entry of the INSN with default values.
9012 Values, that are not explicitly initialized here, hold zero. */
9013 static void
9014 init_h_i_d (rtx_insn *insn)
9016 if (INSN_LUID (insn) > 0)
9018 INSN_COST (insn) = -1;
9019 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
9020 INSN_TICK (insn) = INVALID_TICK;
9021 INSN_EXACT_TICK (insn) = INVALID_TICK;
9022 INTER_TICK (insn) = INVALID_TICK;
9023 TODO_SPEC (insn) = HARD_DEP;
9024 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
9025 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9026 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
9027 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9031 /* Initialize haifa_insn_data for BBS. */
9032 void
9033 haifa_init_h_i_d (bb_vec_t bbs)
9035 int i;
9036 basic_block bb;
9038 extend_h_i_d ();
9039 FOR_EACH_VEC_ELT (bbs, i, bb)
9041 rtx_insn *insn;
9043 FOR_BB_INSNS (bb, insn)
9044 init_h_i_d (insn);
9048 /* Finalize haifa_insn_data. */
9049 void
9050 haifa_finish_h_i_d (void)
9052 int i;
9053 haifa_insn_data_t data;
9054 reg_use_data *use, *next_use;
9055 reg_set_data *set, *next_set;
9057 FOR_EACH_VEC_ELT (h_i_d, i, data)
9059 free (data->max_reg_pressure);
9060 free (data->reg_pressure);
9061 for (use = data->reg_use_list; use != NULL; use = next_use)
9063 next_use = use->next_insn_use;
9064 free (use);
9066 for (set = data->reg_set_list; set != NULL; set = next_set)
9068 next_set = set->next_insn_set;
9069 free (set);
9073 h_i_d.release ();
9076 /* Init data for the new insn INSN. */
9077 static void
9078 haifa_init_insn (rtx_insn *insn)
9080 gcc_assert (insn != NULL);
9082 sched_extend_luids ();
9083 sched_init_insn_luid (insn);
9084 sched_extend_target ();
9085 sched_deps_init (false);
9086 extend_h_i_d ();
9087 init_h_i_d (insn);
9089 if (adding_bb_to_current_region_p)
9091 sd_init_insn (insn);
9093 /* Extend dependency caches by one element. */
9094 extend_dependency_caches (1, false);
9096 if (sched_pressure != SCHED_PRESSURE_NONE)
9097 init_insn_reg_pressure_info (insn);
9100 /* Init data for the new basic block BB which comes after AFTER. */
9101 static void
9102 haifa_init_only_bb (basic_block bb, basic_block after)
9104 gcc_assert (bb != NULL);
9106 sched_init_bbs ();
9108 if (common_sched_info->add_block)
9109 /* This changes only data structures of the front-end. */
9110 common_sched_info->add_block (bb, after);
9113 /* A generic version of sched_split_block (). */
9114 basic_block
9115 sched_split_block_1 (basic_block first_bb, rtx after)
9117 edge e;
9119 e = split_block (first_bb, after);
9120 gcc_assert (e->src == first_bb);
9122 /* sched_split_block emits note if *check == BB_END. Probably it
9123 is better to rip that note off. */
9125 return e->dest;
9128 /* A generic version of sched_create_empty_bb (). */
9129 basic_block
9130 sched_create_empty_bb_1 (basic_block after)
9132 return create_empty_bb (after);
9135 /* Insert PAT as an INSN into the schedule and update the necessary data
9136 structures to account for it. */
9137 rtx_insn *
9138 sched_emit_insn (rtx pat)
9140 rtx_insn *insn = emit_insn_before (pat, first_nonscheduled_insn ());
9141 haifa_init_insn (insn);
9143 if (current_sched_info->add_remove_insn)
9144 current_sched_info->add_remove_insn (insn, 0);
9146 (*current_sched_info->begin_schedule_ready) (insn);
9147 scheduled_insns.safe_push (insn);
9149 last_scheduled_insn = insn;
9150 return insn;
9153 /* This function returns a candidate satisfying dispatch constraints from
9154 the ready list. */
9156 static rtx_insn *
9157 ready_remove_first_dispatch (struct ready_list *ready)
9159 int i;
9160 rtx_insn *insn = ready_element (ready, 0);
9162 if (ready->n_ready == 1
9163 || !INSN_P (insn)
9164 || INSN_CODE (insn) < 0
9165 || !active_insn_p (insn)
9166 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9167 return ready_remove_first (ready);
9169 for (i = 1; i < ready->n_ready; i++)
9171 insn = ready_element (ready, i);
9173 if (!INSN_P (insn)
9174 || INSN_CODE (insn) < 0
9175 || !active_insn_p (insn))
9176 continue;
9178 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9180 /* Return ith element of ready. */
9181 insn = ready_remove (ready, i);
9182 return insn;
9186 if (targetm.sched.dispatch (NULL, DISPATCH_VIOLATION))
9187 return ready_remove_first (ready);
9189 for (i = 1; i < ready->n_ready; i++)
9191 insn = ready_element (ready, i);
9193 if (!INSN_P (insn)
9194 || INSN_CODE (insn) < 0
9195 || !active_insn_p (insn))
9196 continue;
9198 /* Return i-th element of ready. */
9199 if (targetm.sched.dispatch (insn, IS_CMP))
9200 return ready_remove (ready, i);
9203 return ready_remove_first (ready);
9206 /* Get number of ready insn in the ready list. */
9209 number_in_ready (void)
9211 return ready.n_ready;
9214 /* Get number of ready's in the ready list. */
9216 rtx_insn *
9217 get_ready_element (int i)
9219 return ready_element (&ready, i);
9222 #endif /* INSN_SCHEDULING */