gfortran.h (gfc_expr): Remove from_H, add "representation" struct.
[official-gcc.git] / gcc / loop-unroll.c
blobc5653b2c0515a5721890790921ebcfcaafd0e0de
1 /* Loop unrolling and peeling.
2 Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "params.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "hashtab.h"
35 #include "recog.h"
37 /* This pass performs loop unrolling and peeling. We only perform these
38 optimizations on innermost loops (with single exception) because
39 the impact on performance is greatest here, and we want to avoid
40 unnecessary code size growth. The gain is caused by greater sequentiality
41 of code, better code to optimize for further passes and in some cases
42 by fewer testings of exit conditions. The main problem is code growth,
43 that impacts performance negatively due to effect of caches.
45 What we do:
47 -- complete peeling of once-rolling loops; this is the above mentioned
48 exception, as this causes loop to be cancelled completely and
49 does not cause code growth
50 -- complete peeling of loops that roll (small) constant times.
51 -- simple peeling of first iterations of loops that do not roll much
52 (according to profile feedback)
53 -- unrolling of loops that roll constant times; this is almost always
54 win, as we get rid of exit condition tests.
55 -- unrolling of loops that roll number of times that we can compute
56 in runtime; we also get rid of exit condition tests here, but there
57 is the extra expense for calculating the number of iterations
58 -- simple unrolling of remaining loops; this is performed only if we
59 are asked to, as the gain is questionable in this case and often
60 it may even slow down the code
61 For more detailed descriptions of each of those, see comments at
62 appropriate function below.
64 There is a lot of parameters (defined and described in params.def) that
65 control how much we unroll/peel.
67 ??? A great problem is that we don't have a good way how to determine
68 how many times we should unroll the loop; the experiments I have made
69 showed that this choice may affect performance in order of several %.
72 /* Information about induction variables to split. */
74 struct iv_to_split
76 rtx insn; /* The insn in that the induction variable occurs. */
77 rtx base_var; /* The variable on that the values in the further
78 iterations are based. */
79 rtx step; /* Step of the induction variable. */
80 unsigned n_loc;
81 unsigned loc[3]; /* Location where the definition of the induction
82 variable occurs in the insn. For example if
83 N_LOC is 2, the expression is located at
84 XEXP (XEXP (single_set, loc[0]), loc[1]). */
87 /* Information about accumulators to expand. */
89 struct var_to_expand
91 rtx insn; /* The insn in that the variable expansion occurs. */
92 rtx reg; /* The accumulator which is expanded. */
93 VEC(rtx,heap) *var_expansions; /* The copies of the accumulator which is expanded. */
94 enum rtx_code op; /* The type of the accumulation - addition, subtraction
95 or multiplication. */
96 int expansion_count; /* Count the number of expansions generated so far. */
97 int reuse_expansion; /* The expansion we intend to reuse to expand
98 the accumulator. If REUSE_EXPANSION is 0 reuse
99 the original accumulator. Else use
100 var_expansions[REUSE_EXPANSION - 1]. */
101 unsigned accum_pos; /* The position in which the accumulator is placed in
102 the insn src. For example in x = x + something
103 accum_pos is 0 while in x = something + x accum_pos
104 is 1. */
107 /* Information about optimization applied in
108 the unrolled loop. */
110 struct opt_info
112 htab_t insns_to_split; /* A hashtable of insns to split. */
113 htab_t insns_with_var_to_expand; /* A hashtable of insns with accumulators
114 to expand. */
115 unsigned first_new_block; /* The first basic block that was
116 duplicated. */
117 basic_block loop_exit; /* The loop exit basic block. */
118 basic_block loop_preheader; /* The loop preheader basic block. */
121 static void decide_unrolling_and_peeling (int);
122 static void peel_loops_completely (int);
123 static void decide_peel_simple (struct loop *, int);
124 static void decide_peel_once_rolling (struct loop *, int);
125 static void decide_peel_completely (struct loop *, int);
126 static void decide_unroll_stupid (struct loop *, int);
127 static void decide_unroll_constant_iterations (struct loop *, int);
128 static void decide_unroll_runtime_iterations (struct loop *, int);
129 static void peel_loop_simple (struct loop *);
130 static void peel_loop_completely (struct loop *);
131 static void unroll_loop_stupid (struct loop *);
132 static void unroll_loop_constant_iterations (struct loop *);
133 static void unroll_loop_runtime_iterations (struct loop *);
134 static struct opt_info *analyze_insns_in_loop (struct loop *);
135 static void opt_info_start_duplication (struct opt_info *);
136 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
137 static void free_opt_info (struct opt_info *);
138 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx);
139 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx);
140 static struct iv_to_split *analyze_iv_to_split_insn (rtx);
141 static void expand_var_during_unrolling (struct var_to_expand *, rtx);
142 static int insert_var_expansion_initialization (void **, void *);
143 static int combine_var_copies_in_loop_exit (void **, void *);
144 static int release_var_copies (void **, void *);
145 static rtx get_expansion (struct var_to_expand *);
147 /* Unroll and/or peel (depending on FLAGS) LOOPS. */
148 void
149 unroll_and_peel_loops (int flags)
151 struct loop *loop;
152 bool check;
153 loop_iterator li;
155 /* First perform complete loop peeling (it is almost surely a win,
156 and affects parameters for further decision a lot). */
157 peel_loops_completely (flags);
159 /* Now decide rest of unrolling and peeling. */
160 decide_unrolling_and_peeling (flags);
162 /* Scan the loops, inner ones first. */
163 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
165 check = true;
166 /* And perform the appropriate transformations. */
167 switch (loop->lpt_decision.decision)
169 case LPT_PEEL_COMPLETELY:
170 /* Already done. */
171 gcc_unreachable ();
172 case LPT_PEEL_SIMPLE:
173 peel_loop_simple (loop);
174 break;
175 case LPT_UNROLL_CONSTANT:
176 unroll_loop_constant_iterations (loop);
177 break;
178 case LPT_UNROLL_RUNTIME:
179 unroll_loop_runtime_iterations (loop);
180 break;
181 case LPT_UNROLL_STUPID:
182 unroll_loop_stupid (loop);
183 break;
184 case LPT_NONE:
185 check = false;
186 break;
187 default:
188 gcc_unreachable ();
190 if (check)
192 #ifdef ENABLE_CHECKING
193 verify_dominators (CDI_DOMINATORS);
194 verify_loop_structure ();
195 #endif
199 iv_analysis_done ();
202 /* Check whether exit of the LOOP is at the end of loop body. */
204 static bool
205 loop_exit_at_end_p (struct loop *loop)
207 struct niter_desc *desc = get_simple_loop_desc (loop);
208 rtx insn;
210 if (desc->in_edge->dest != loop->latch)
211 return false;
213 /* Check that the latch is empty. */
214 FOR_BB_INSNS (loop->latch, insn)
216 if (INSN_P (insn))
217 return false;
220 return true;
223 /* Depending on FLAGS, check whether to peel loops completely and do so. */
224 static void
225 peel_loops_completely (int flags)
227 struct loop *loop;
228 loop_iterator li;
230 /* Scan the loops, the inner ones first. */
231 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
233 loop->lpt_decision.decision = LPT_NONE;
235 if (dump_file)
236 fprintf (dump_file,
237 "\n;; *** Considering loop %d for complete peeling ***\n",
238 loop->num);
240 loop->ninsns = num_loop_insns (loop);
242 decide_peel_once_rolling (loop, flags);
243 if (loop->lpt_decision.decision == LPT_NONE)
244 decide_peel_completely (loop, flags);
246 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
248 peel_loop_completely (loop);
249 #ifdef ENABLE_CHECKING
250 verify_dominators (CDI_DOMINATORS);
251 verify_loop_structure ();
252 #endif
257 /* Decide whether unroll or peel loops (depending on FLAGS) and how much. */
258 static void
259 decide_unrolling_and_peeling (int flags)
261 struct loop *loop;
262 loop_iterator li;
264 /* Scan the loops, inner ones first. */
265 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
267 loop->lpt_decision.decision = LPT_NONE;
269 if (dump_file)
270 fprintf (dump_file, "\n;; *** Considering loop %d ***\n", loop->num);
272 /* Do not peel cold areas. */
273 if (!maybe_hot_bb_p (loop->header))
275 if (dump_file)
276 fprintf (dump_file, ";; Not considering loop, cold area\n");
277 continue;
280 /* Can the loop be manipulated? */
281 if (!can_duplicate_loop_p (loop))
283 if (dump_file)
284 fprintf (dump_file,
285 ";; Not considering loop, cannot duplicate\n");
286 continue;
289 /* Skip non-innermost loops. */
290 if (loop->inner)
292 if (dump_file)
293 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
294 continue;
297 loop->ninsns = num_loop_insns (loop);
298 loop->av_ninsns = average_num_loop_insns (loop);
300 /* Try transformations one by one in decreasing order of
301 priority. */
303 decide_unroll_constant_iterations (loop, flags);
304 if (loop->lpt_decision.decision == LPT_NONE)
305 decide_unroll_runtime_iterations (loop, flags);
306 if (loop->lpt_decision.decision == LPT_NONE)
307 decide_unroll_stupid (loop, flags);
308 if (loop->lpt_decision.decision == LPT_NONE)
309 decide_peel_simple (loop, flags);
313 /* Decide whether the LOOP is once rolling and suitable for complete
314 peeling. */
315 static void
316 decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
318 struct niter_desc *desc;
320 if (dump_file)
321 fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
323 /* Is the loop small enough? */
324 if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
326 if (dump_file)
327 fprintf (dump_file, ";; Not considering loop, is too big\n");
328 return;
331 /* Check for simple loops. */
332 desc = get_simple_loop_desc (loop);
334 /* Check number of iterations. */
335 if (!desc->simple_p
336 || desc->assumptions
337 || desc->infinite
338 || !desc->const_iter
339 || desc->niter != 0)
341 if (dump_file)
342 fprintf (dump_file,
343 ";; Unable to prove that the loop rolls exactly once\n");
344 return;
347 /* Success. */
348 if (dump_file)
349 fprintf (dump_file, ";; Decided to peel exactly once rolling loop\n");
350 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
353 /* Decide whether the LOOP is suitable for complete peeling. */
354 static void
355 decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
357 unsigned npeel;
358 struct niter_desc *desc;
360 if (dump_file)
361 fprintf (dump_file, "\n;; Considering peeling completely\n");
363 /* Skip non-innermost loops. */
364 if (loop->inner)
366 if (dump_file)
367 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
368 return;
371 /* Do not peel cold areas. */
372 if (!maybe_hot_bb_p (loop->header))
374 if (dump_file)
375 fprintf (dump_file, ";; Not considering loop, cold area\n");
376 return;
379 /* Can the loop be manipulated? */
380 if (!can_duplicate_loop_p (loop))
382 if (dump_file)
383 fprintf (dump_file,
384 ";; Not considering loop, cannot duplicate\n");
385 return;
388 /* npeel = number of iterations to peel. */
389 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
390 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
391 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
393 /* Is the loop small enough? */
394 if (!npeel)
396 if (dump_file)
397 fprintf (dump_file, ";; Not considering loop, is too big\n");
398 return;
401 /* Check for simple loops. */
402 desc = get_simple_loop_desc (loop);
404 /* Check number of iterations. */
405 if (!desc->simple_p
406 || desc->assumptions
407 || !desc->const_iter
408 || desc->infinite)
410 if (dump_file)
411 fprintf (dump_file,
412 ";; Unable to prove that the loop iterates constant times\n");
413 return;
416 if (desc->niter > npeel - 1)
418 if (dump_file)
420 fprintf (dump_file,
421 ";; Not peeling loop completely, rolls too much (");
422 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter);
423 fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
425 return;
428 /* Success. */
429 if (dump_file)
430 fprintf (dump_file, ";; Decided to peel loop completely\n");
431 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
434 /* Peel all iterations of LOOP, remove exit edges and cancel the loop
435 completely. The transformation done:
437 for (i = 0; i < 4; i++)
438 body;
442 i = 0;
443 body; i++;
444 body; i++;
445 body; i++;
446 body; i++;
448 static void
449 peel_loop_completely (struct loop *loop)
451 sbitmap wont_exit;
452 unsigned HOST_WIDE_INT npeel;
453 unsigned i;
454 VEC (edge, heap) *remove_edges;
455 edge ein;
456 struct niter_desc *desc = get_simple_loop_desc (loop);
457 struct opt_info *opt_info = NULL;
459 npeel = desc->niter;
461 if (npeel)
463 bool ok;
465 wont_exit = sbitmap_alloc (npeel + 1);
466 sbitmap_ones (wont_exit);
467 RESET_BIT (wont_exit, 0);
468 if (desc->noloop_assumptions)
469 RESET_BIT (wont_exit, 1);
471 remove_edges = NULL;
473 if (flag_split_ivs_in_unroller)
474 opt_info = analyze_insns_in_loop (loop);
476 opt_info_start_duplication (opt_info);
477 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
478 npeel,
479 wont_exit, desc->out_edge,
480 &remove_edges,
481 DLTHE_FLAG_UPDATE_FREQ
482 | DLTHE_FLAG_COMPLETTE_PEEL
483 | (opt_info
484 ? DLTHE_RECORD_COPY_NUMBER : 0));
485 gcc_assert (ok);
487 free (wont_exit);
489 if (opt_info)
491 apply_opt_in_copies (opt_info, npeel, false, true);
492 free_opt_info (opt_info);
495 /* Remove the exit edges. */
496 for (i = 0; VEC_iterate (edge, remove_edges, i, ein); i++)
497 remove_path (ein);
498 VEC_free (edge, heap, remove_edges);
501 ein = desc->in_edge;
502 free_simple_loop_desc (loop);
504 /* Now remove the unreachable part of the last iteration and cancel
505 the loop. */
506 remove_path (ein);
508 if (dump_file)
509 fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
512 /* Decide whether to unroll LOOP iterating constant number of times
513 and how much. */
515 static void
516 decide_unroll_constant_iterations (struct loop *loop, int flags)
518 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
519 struct niter_desc *desc;
521 if (!(flags & UAP_UNROLL))
523 /* We were not asked to, just return back silently. */
524 return;
527 if (dump_file)
528 fprintf (dump_file,
529 "\n;; Considering unrolling loop with constant "
530 "number of iterations\n");
532 /* nunroll = total number of copies of the original loop body in
533 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
534 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
535 nunroll_by_av
536 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
537 if (nunroll > nunroll_by_av)
538 nunroll = nunroll_by_av;
539 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
540 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
542 /* Skip big loops. */
543 if (nunroll <= 1)
545 if (dump_file)
546 fprintf (dump_file, ";; Not considering loop, is too big\n");
547 return;
550 /* Check for simple loops. */
551 desc = get_simple_loop_desc (loop);
553 /* Check number of iterations. */
554 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
556 if (dump_file)
557 fprintf (dump_file,
558 ";; Unable to prove that the loop iterates constant times\n");
559 return;
562 /* Check whether the loop rolls enough to consider. */
563 if (desc->niter < 2 * nunroll)
565 if (dump_file)
566 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
567 return;
570 /* Success; now compute number of iterations to unroll. We alter
571 nunroll so that as few as possible copies of loop body are
572 necessary, while still not decreasing the number of unrollings
573 too much (at most by 1). */
574 best_copies = 2 * nunroll + 10;
576 i = 2 * nunroll + 2;
577 if (i - 1 >= desc->niter)
578 i = desc->niter - 2;
580 for (; i >= nunroll - 1; i--)
582 unsigned exit_mod = desc->niter % (i + 1);
584 if (!loop_exit_at_end_p (loop))
585 n_copies = exit_mod + i + 1;
586 else if (exit_mod != (unsigned) i
587 || desc->noloop_assumptions != NULL_RTX)
588 n_copies = exit_mod + i + 2;
589 else
590 n_copies = i + 1;
592 if (n_copies < best_copies)
594 best_copies = n_copies;
595 best_unroll = i;
599 if (dump_file)
600 fprintf (dump_file, ";; max_unroll %d (%d copies, initial %d).\n",
601 best_unroll + 1, best_copies, nunroll);
603 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
604 loop->lpt_decision.times = best_unroll;
606 if (dump_file)
607 fprintf (dump_file,
608 ";; Decided to unroll the constant times rolling loop, %d times.\n",
609 loop->lpt_decision.times);
612 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES + 1
613 times. The transformation does this:
615 for (i = 0; i < 102; i++)
616 body;
620 i = 0;
621 body; i++;
622 body; i++;
623 while (i < 102)
625 body; i++;
626 body; i++;
627 body; i++;
628 body; i++;
631 static void
632 unroll_loop_constant_iterations (struct loop *loop)
634 unsigned HOST_WIDE_INT niter;
635 unsigned exit_mod;
636 sbitmap wont_exit;
637 unsigned i;
638 VEC (edge, heap) *remove_edges;
639 edge e;
640 unsigned max_unroll = loop->lpt_decision.times;
641 struct niter_desc *desc = get_simple_loop_desc (loop);
642 bool exit_at_end = loop_exit_at_end_p (loop);
643 struct opt_info *opt_info = NULL;
644 bool ok;
646 niter = desc->niter;
648 /* Should not get here (such loop should be peeled instead). */
649 gcc_assert (niter > max_unroll + 1);
651 exit_mod = niter % (max_unroll + 1);
653 wont_exit = sbitmap_alloc (max_unroll + 1);
654 sbitmap_ones (wont_exit);
656 remove_edges = NULL;
657 if (flag_split_ivs_in_unroller
658 || flag_variable_expansion_in_unroller)
659 opt_info = analyze_insns_in_loop (loop);
661 if (!exit_at_end)
663 /* The exit is not at the end of the loop; leave exit test
664 in the first copy, so that the loops that start with test
665 of exit condition have continuous body after unrolling. */
667 if (dump_file)
668 fprintf (dump_file, ";; Condition on beginning of loop.\n");
670 /* Peel exit_mod iterations. */
671 RESET_BIT (wont_exit, 0);
672 if (desc->noloop_assumptions)
673 RESET_BIT (wont_exit, 1);
675 if (exit_mod)
677 opt_info_start_duplication (opt_info);
678 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
679 exit_mod,
680 wont_exit, desc->out_edge,
681 &remove_edges,
682 DLTHE_FLAG_UPDATE_FREQ
683 | (opt_info && exit_mod > 1
684 ? DLTHE_RECORD_COPY_NUMBER
685 : 0));
686 gcc_assert (ok);
688 if (opt_info && exit_mod > 1)
689 apply_opt_in_copies (opt_info, exit_mod, false, false);
691 desc->noloop_assumptions = NULL_RTX;
692 desc->niter -= exit_mod;
693 desc->niter_max -= exit_mod;
696 SET_BIT (wont_exit, 1);
698 else
700 /* Leave exit test in last copy, for the same reason as above if
701 the loop tests the condition at the end of loop body. */
703 if (dump_file)
704 fprintf (dump_file, ";; Condition on end of loop.\n");
706 /* We know that niter >= max_unroll + 2; so we do not need to care of
707 case when we would exit before reaching the loop. So just peel
708 exit_mod + 1 iterations. */
709 if (exit_mod != max_unroll
710 || desc->noloop_assumptions)
712 RESET_BIT (wont_exit, 0);
713 if (desc->noloop_assumptions)
714 RESET_BIT (wont_exit, 1);
716 opt_info_start_duplication (opt_info);
717 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
718 exit_mod + 1,
719 wont_exit, desc->out_edge,
720 &remove_edges,
721 DLTHE_FLAG_UPDATE_FREQ
722 | (opt_info && exit_mod > 0
723 ? DLTHE_RECORD_COPY_NUMBER
724 : 0));
725 gcc_assert (ok);
727 if (opt_info && exit_mod > 0)
728 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
730 desc->niter -= exit_mod + 1;
731 desc->niter_max -= exit_mod + 1;
732 desc->noloop_assumptions = NULL_RTX;
734 SET_BIT (wont_exit, 0);
735 SET_BIT (wont_exit, 1);
738 RESET_BIT (wont_exit, max_unroll);
741 /* Now unroll the loop. */
743 opt_info_start_duplication (opt_info);
744 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
745 max_unroll,
746 wont_exit, desc->out_edge,
747 &remove_edges,
748 DLTHE_FLAG_UPDATE_FREQ
749 | (opt_info
750 ? DLTHE_RECORD_COPY_NUMBER
751 : 0));
752 gcc_assert (ok);
754 if (opt_info)
756 apply_opt_in_copies (opt_info, max_unroll, true, true);
757 free_opt_info (opt_info);
760 free (wont_exit);
762 if (exit_at_end)
764 basic_block exit_block = get_bb_copy (desc->in_edge->src);
765 /* Find a new in and out edge; they are in the last copy we have made. */
767 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
769 desc->out_edge = EDGE_SUCC (exit_block, 0);
770 desc->in_edge = EDGE_SUCC (exit_block, 1);
772 else
774 desc->out_edge = EDGE_SUCC (exit_block, 1);
775 desc->in_edge = EDGE_SUCC (exit_block, 0);
779 desc->niter /= max_unroll + 1;
780 desc->niter_max /= max_unroll + 1;
781 desc->niter_expr = GEN_INT (desc->niter);
783 /* Remove the edges. */
784 for (i = 0; VEC_iterate (edge, remove_edges, i, e); i++)
785 remove_path (e);
786 VEC_free (edge, heap, remove_edges);
788 if (dump_file)
789 fprintf (dump_file,
790 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
791 max_unroll, num_loop_insns (loop));
794 /* Decide whether to unroll LOOP iterating runtime computable number of times
795 and how much. */
796 static void
797 decide_unroll_runtime_iterations (struct loop *loop, int flags)
799 unsigned nunroll, nunroll_by_av, i;
800 struct niter_desc *desc;
802 if (!(flags & UAP_UNROLL))
804 /* We were not asked to, just return back silently. */
805 return;
808 if (dump_file)
809 fprintf (dump_file,
810 "\n;; Considering unrolling loop with runtime "
811 "computable number of iterations\n");
813 /* nunroll = total number of copies of the original loop body in
814 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
815 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
816 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
817 if (nunroll > nunroll_by_av)
818 nunroll = nunroll_by_av;
819 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
820 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
822 /* Skip big loops. */
823 if (nunroll <= 1)
825 if (dump_file)
826 fprintf (dump_file, ";; Not considering loop, is too big\n");
827 return;
830 /* Check for simple loops. */
831 desc = get_simple_loop_desc (loop);
833 /* Check simpleness. */
834 if (!desc->simple_p || desc->assumptions)
836 if (dump_file)
837 fprintf (dump_file,
838 ";; Unable to prove that the number of iterations "
839 "can be counted in runtime\n");
840 return;
843 if (desc->const_iter)
845 if (dump_file)
846 fprintf (dump_file, ";; Loop iterates constant times\n");
847 return;
850 /* If we have profile feedback, check whether the loop rolls. */
851 if (loop->header->count && expected_loop_iterations (loop) < 2 * nunroll)
853 if (dump_file)
854 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
855 return;
858 /* Success; now force nunroll to be power of 2, as we are unable to
859 cope with overflows in computation of number of iterations. */
860 for (i = 1; 2 * i <= nunroll; i *= 2)
861 continue;
863 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
864 loop->lpt_decision.times = i - 1;
866 if (dump_file)
867 fprintf (dump_file,
868 ";; Decided to unroll the runtime computable "
869 "times rolling loop, %d times.\n",
870 loop->lpt_decision.times);
873 /* Splits edge E and inserts the sequence of instructions INSNS on it, and
874 returns the newly created block. If INSNS is NULL_RTX, nothing is changed
875 and NULL is returned instead. */
877 basic_block
878 split_edge_and_insert (edge e, rtx insns)
880 basic_block bb;
882 if (!insns)
883 return NULL;
884 bb = split_edge (e);
885 emit_insn_after (insns, BB_END (bb));
887 /* ??? We used to assume that INSNS can contain control flow insns, and
888 that we had to try to find sub basic blocks in BB to maintain a valid
889 CFG. For this purpose we used to set the BB_SUPERBLOCK flag on BB
890 and call break_superblocks when going out of cfglayout mode. But it
891 turns out that this never happens; and that if it does ever happen,
892 the verify_flow_info call in loop_optimizer_finalize would fail.
894 There are two reasons why we expected we could have control flow insns
895 in INSNS. The first is when a comparison has to be done in parts, and
896 the second is when the number of iterations is computed for loops with
897 the number of iterations known at runtime. In both cases, test cases
898 to get control flow in INSNS appear to be impossible to construct:
900 * If do_compare_rtx_and_jump needs several branches to do comparison
901 in a mode that needs comparison by parts, we cannot analyze the
902 number of iterations of the loop, and we never get to unrolling it.
904 * The code in expand_divmod that was suspected to cause creation of
905 branching code seems to be only accessed for signed division. The
906 divisions used by # of iterations analysis are always unsigned.
907 Problems might arise on architectures that emits branching code
908 for some operations that may appear in the unroller (especially
909 for division), but we have no such architectures.
911 Considering all this, it was decided that we should for now assume
912 that INSNS can in theory contain control flow insns, but in practice
913 it never does. So we don't handle the theoretical case, and should
914 a real failure ever show up, we have a pretty good clue for how to
915 fix it. */
917 return bb;
920 /* Unroll LOOP for that we are able to count number of iterations in runtime
921 LOOP->LPT_DECISION.TIMES + 1 times. The transformation does this (with some
922 extra care for case n < 0):
924 for (i = 0; i < n; i++)
925 body;
929 i = 0;
930 mod = n % 4;
932 switch (mod)
934 case 3:
935 body; i++;
936 case 2:
937 body; i++;
938 case 1:
939 body; i++;
940 case 0: ;
943 while (i < n)
945 body; i++;
946 body; i++;
947 body; i++;
948 body; i++;
951 static void
952 unroll_loop_runtime_iterations (struct loop *loop)
954 rtx old_niter, niter, init_code, branch_code, tmp;
955 unsigned i, j, p;
956 basic_block preheader, *body, *dom_bbs, swtch, ezc_swtch;
957 unsigned n_dom_bbs;
958 sbitmap wont_exit;
959 int may_exit_copy;
960 unsigned n_peel;
961 VEC (edge, heap) *remove_edges;
962 edge e;
963 bool extra_zero_check, last_may_exit;
964 unsigned max_unroll = loop->lpt_decision.times;
965 struct niter_desc *desc = get_simple_loop_desc (loop);
966 bool exit_at_end = loop_exit_at_end_p (loop);
967 struct opt_info *opt_info = NULL;
968 bool ok;
970 if (flag_split_ivs_in_unroller
971 || flag_variable_expansion_in_unroller)
972 opt_info = analyze_insns_in_loop (loop);
974 /* Remember blocks whose dominators will have to be updated. */
975 dom_bbs = XCNEWVEC (basic_block, n_basic_blocks);
976 n_dom_bbs = 0;
978 body = get_loop_body (loop);
979 for (i = 0; i < loop->num_nodes; i++)
981 unsigned nldom;
982 basic_block *ldom;
984 nldom = get_dominated_by (CDI_DOMINATORS, body[i], &ldom);
985 for (j = 0; j < nldom; j++)
986 if (!flow_bb_inside_loop_p (loop, ldom[j]))
987 dom_bbs[n_dom_bbs++] = ldom[j];
989 free (ldom);
991 free (body);
993 if (!exit_at_end)
995 /* Leave exit in first copy (for explanation why see comment in
996 unroll_loop_constant_iterations). */
997 may_exit_copy = 0;
998 n_peel = max_unroll - 1;
999 extra_zero_check = true;
1000 last_may_exit = false;
1002 else
1004 /* Leave exit in last copy (for explanation why see comment in
1005 unroll_loop_constant_iterations). */
1006 may_exit_copy = max_unroll;
1007 n_peel = max_unroll;
1008 extra_zero_check = false;
1009 last_may_exit = true;
1012 /* Get expression for number of iterations. */
1013 start_sequence ();
1014 old_niter = niter = gen_reg_rtx (desc->mode);
1015 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
1016 if (tmp != niter)
1017 emit_move_insn (niter, tmp);
1019 /* Count modulo by ANDing it with max_unroll; we use the fact that
1020 the number of unrollings is a power of two, and thus this is correct
1021 even if there is overflow in the computation. */
1022 niter = expand_simple_binop (desc->mode, AND,
1023 niter,
1024 GEN_INT (max_unroll),
1025 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1027 init_code = get_insns ();
1028 end_sequence ();
1030 /* Precondition the loop. */
1031 split_edge_and_insert (loop_preheader_edge (loop), init_code);
1033 remove_edges = NULL;
1035 wont_exit = sbitmap_alloc (max_unroll + 2);
1037 /* Peel the first copy of loop body (almost always we must leave exit test
1038 here; the only exception is when we have extra zero check and the number
1039 of iterations is reliable. Also record the place of (possible) extra
1040 zero check. */
1041 sbitmap_zero (wont_exit);
1042 if (extra_zero_check
1043 && !desc->noloop_assumptions)
1044 SET_BIT (wont_exit, 1);
1045 ezc_swtch = loop_preheader_edge (loop)->src;
1046 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1047 1, wont_exit, desc->out_edge,
1048 &remove_edges,
1049 DLTHE_FLAG_UPDATE_FREQ);
1050 gcc_assert (ok);
1052 /* Record the place where switch will be built for preconditioning. */
1053 swtch = split_edge (loop_preheader_edge (loop));
1055 for (i = 0; i < n_peel; i++)
1057 /* Peel the copy. */
1058 sbitmap_zero (wont_exit);
1059 if (i != n_peel - 1 || !last_may_exit)
1060 SET_BIT (wont_exit, 1);
1061 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1062 1, wont_exit, desc->out_edge,
1063 &remove_edges,
1064 DLTHE_FLAG_UPDATE_FREQ);
1065 gcc_assert (ok);
1067 /* Create item for switch. */
1068 j = n_peel - i - (extra_zero_check ? 0 : 1);
1069 p = REG_BR_PROB_BASE / (i + 2);
1071 preheader = split_edge (loop_preheader_edge (loop));
1072 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
1073 block_label (preheader), p,
1074 NULL_RTX);
1076 /* We rely on the fact that the compare and jump cannot be optimized out,
1077 and hence the cfg we create is correct. */
1078 gcc_assert (branch_code != NULL_RTX);
1080 swtch = split_edge_and_insert (single_pred_edge (swtch), branch_code);
1081 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1082 single_pred_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1083 e = make_edge (swtch, preheader,
1084 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1085 e->probability = p;
1088 if (extra_zero_check)
1090 /* Add branch for zero iterations. */
1091 p = REG_BR_PROB_BASE / (max_unroll + 1);
1092 swtch = ezc_swtch;
1093 preheader = split_edge (loop_preheader_edge (loop));
1094 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1095 block_label (preheader), p,
1096 NULL_RTX);
1097 gcc_assert (branch_code != NULL_RTX);
1099 swtch = split_edge_and_insert (single_succ_edge (swtch), branch_code);
1100 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1101 single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1102 e = make_edge (swtch, preheader,
1103 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1104 e->probability = p;
1107 /* Recount dominators for outer blocks. */
1108 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
1110 /* And unroll loop. */
1112 sbitmap_ones (wont_exit);
1113 RESET_BIT (wont_exit, may_exit_copy);
1114 opt_info_start_duplication (opt_info);
1116 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1117 max_unroll,
1118 wont_exit, desc->out_edge,
1119 &remove_edges,
1120 DLTHE_FLAG_UPDATE_FREQ
1121 | (opt_info
1122 ? DLTHE_RECORD_COPY_NUMBER
1123 : 0));
1124 gcc_assert (ok);
1126 if (opt_info)
1128 apply_opt_in_copies (opt_info, max_unroll, true, true);
1129 free_opt_info (opt_info);
1132 free (wont_exit);
1134 if (exit_at_end)
1136 basic_block exit_block = get_bb_copy (desc->in_edge->src);
1137 /* Find a new in and out edge; they are in the last copy we have
1138 made. */
1140 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1142 desc->out_edge = EDGE_SUCC (exit_block, 0);
1143 desc->in_edge = EDGE_SUCC (exit_block, 1);
1145 else
1147 desc->out_edge = EDGE_SUCC (exit_block, 1);
1148 desc->in_edge = EDGE_SUCC (exit_block, 0);
1152 /* Remove the edges. */
1153 for (i = 0; VEC_iterate (edge, remove_edges, i, e); i++)
1154 remove_path (e);
1155 VEC_free (edge, heap, remove_edges);
1157 /* We must be careful when updating the number of iterations due to
1158 preconditioning and the fact that the value must be valid at entry
1159 of the loop. After passing through the above code, we see that
1160 the correct new number of iterations is this: */
1161 gcc_assert (!desc->const_iter);
1162 desc->niter_expr =
1163 simplify_gen_binary (UDIV, desc->mode, old_niter,
1164 GEN_INT (max_unroll + 1));
1165 desc->niter_max /= max_unroll + 1;
1166 if (exit_at_end)
1168 desc->niter_expr =
1169 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1170 desc->noloop_assumptions = NULL_RTX;
1171 desc->niter_max--;
1174 if (dump_file)
1175 fprintf (dump_file,
1176 ";; Unrolled loop %d times, counting # of iterations "
1177 "in runtime, %i insns\n",
1178 max_unroll, num_loop_insns (loop));
1180 if (dom_bbs)
1181 free (dom_bbs);
1184 /* Decide whether to simply peel LOOP and how much. */
1185 static void
1186 decide_peel_simple (struct loop *loop, int flags)
1188 unsigned npeel;
1189 struct niter_desc *desc;
1191 if (!(flags & UAP_PEEL))
1193 /* We were not asked to, just return back silently. */
1194 return;
1197 if (dump_file)
1198 fprintf (dump_file, "\n;; Considering simply peeling loop\n");
1200 /* npeel = number of iterations to peel. */
1201 npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
1202 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
1203 npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
1205 /* Skip big loops. */
1206 if (!npeel)
1208 if (dump_file)
1209 fprintf (dump_file, ";; Not considering loop, is too big\n");
1210 return;
1213 /* Check for simple loops. */
1214 desc = get_simple_loop_desc (loop);
1216 /* Check number of iterations. */
1217 if (desc->simple_p && !desc->assumptions && desc->const_iter)
1219 if (dump_file)
1220 fprintf (dump_file, ";; Loop iterates constant times\n");
1221 return;
1224 /* Do not simply peel loops with branches inside -- it increases number
1225 of mispredicts. */
1226 if (num_loop_branches (loop) > 1)
1228 if (dump_file)
1229 fprintf (dump_file, ";; Not peeling, contains branches\n");
1230 return;
1233 if (loop->header->count)
1235 unsigned niter = expected_loop_iterations (loop);
1236 if (niter + 1 > npeel)
1238 if (dump_file)
1240 fprintf (dump_file, ";; Not peeling loop, rolls too much (");
1241 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1242 (HOST_WIDEST_INT) (niter + 1));
1243 fprintf (dump_file, " iterations > %d [maximum peelings])\n",
1244 npeel);
1246 return;
1248 npeel = niter + 1;
1250 else
1252 /* For now we have no good heuristics to decide whether loop peeling
1253 will be effective, so disable it. */
1254 if (dump_file)
1255 fprintf (dump_file,
1256 ";; Not peeling loop, no evidence it will be profitable\n");
1257 return;
1260 /* Success. */
1261 loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
1262 loop->lpt_decision.times = npeel;
1264 if (dump_file)
1265 fprintf (dump_file, ";; Decided to simply peel the loop, %d times.\n",
1266 loop->lpt_decision.times);
1269 /* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1270 while (cond)
1271 body;
1275 if (!cond) goto end;
1276 body;
1277 if (!cond) goto end;
1278 body;
1279 while (cond)
1280 body;
1281 end: ;
1283 static void
1284 peel_loop_simple (struct loop *loop)
1286 sbitmap wont_exit;
1287 unsigned npeel = loop->lpt_decision.times;
1288 struct niter_desc *desc = get_simple_loop_desc (loop);
1289 struct opt_info *opt_info = NULL;
1290 bool ok;
1292 if (flag_split_ivs_in_unroller && npeel > 1)
1293 opt_info = analyze_insns_in_loop (loop);
1295 wont_exit = sbitmap_alloc (npeel + 1);
1296 sbitmap_zero (wont_exit);
1298 opt_info_start_duplication (opt_info);
1300 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1301 npeel, wont_exit, NULL,
1302 NULL, DLTHE_FLAG_UPDATE_FREQ
1303 | (opt_info
1304 ? DLTHE_RECORD_COPY_NUMBER
1305 : 0));
1306 gcc_assert (ok);
1308 free (wont_exit);
1310 if (opt_info)
1312 apply_opt_in_copies (opt_info, npeel, false, false);
1313 free_opt_info (opt_info);
1316 if (desc->simple_p)
1318 if (desc->const_iter)
1320 desc->niter -= npeel;
1321 desc->niter_expr = GEN_INT (desc->niter);
1322 desc->noloop_assumptions = NULL_RTX;
1324 else
1326 /* We cannot just update niter_expr, as its value might be clobbered
1327 inside loop. We could handle this by counting the number into
1328 temporary just like we do in runtime unrolling, but it does not
1329 seem worthwhile. */
1330 free_simple_loop_desc (loop);
1333 if (dump_file)
1334 fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
1337 /* Decide whether to unroll LOOP stupidly and how much. */
1338 static void
1339 decide_unroll_stupid (struct loop *loop, int flags)
1341 unsigned nunroll, nunroll_by_av, i;
1342 struct niter_desc *desc;
1344 if (!(flags & UAP_UNROLL_ALL))
1346 /* We were not asked to, just return back silently. */
1347 return;
1350 if (dump_file)
1351 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1353 /* nunroll = total number of copies of the original loop body in
1354 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1355 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1356 nunroll_by_av
1357 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1358 if (nunroll > nunroll_by_av)
1359 nunroll = nunroll_by_av;
1360 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1361 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1363 /* Skip big loops. */
1364 if (nunroll <= 1)
1366 if (dump_file)
1367 fprintf (dump_file, ";; Not considering loop, is too big\n");
1368 return;
1371 /* Check for simple loops. */
1372 desc = get_simple_loop_desc (loop);
1374 /* Check simpleness. */
1375 if (desc->simple_p && !desc->assumptions)
1377 if (dump_file)
1378 fprintf (dump_file, ";; The loop is simple\n");
1379 return;
1382 /* Do not unroll loops with branches inside -- it increases number
1383 of mispredicts. */
1384 if (num_loop_branches (loop) > 1)
1386 if (dump_file)
1387 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1388 return;
1391 /* If we have profile feedback, check whether the loop rolls. */
1392 if (loop->header->count
1393 && expected_loop_iterations (loop) < 2 * nunroll)
1395 if (dump_file)
1396 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1397 return;
1400 /* Success. Now force nunroll to be power of 2, as it seems that this
1401 improves results (partially because of better alignments, partially
1402 because of some dark magic). */
1403 for (i = 1; 2 * i <= nunroll; i *= 2)
1404 continue;
1406 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1407 loop->lpt_decision.times = i - 1;
1409 if (dump_file)
1410 fprintf (dump_file,
1411 ";; Decided to unroll the loop stupidly, %d times.\n",
1412 loop->lpt_decision.times);
1415 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1416 while (cond)
1417 body;
1421 while (cond)
1423 body;
1424 if (!cond) break;
1425 body;
1426 if (!cond) break;
1427 body;
1428 if (!cond) break;
1429 body;
1432 static void
1433 unroll_loop_stupid (struct loop *loop)
1435 sbitmap wont_exit;
1436 unsigned nunroll = loop->lpt_decision.times;
1437 struct niter_desc *desc = get_simple_loop_desc (loop);
1438 struct opt_info *opt_info = NULL;
1439 bool ok;
1441 if (flag_split_ivs_in_unroller
1442 || flag_variable_expansion_in_unroller)
1443 opt_info = analyze_insns_in_loop (loop);
1446 wont_exit = sbitmap_alloc (nunroll + 1);
1447 sbitmap_zero (wont_exit);
1448 opt_info_start_duplication (opt_info);
1450 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1451 nunroll, wont_exit,
1452 NULL, NULL,
1453 DLTHE_FLAG_UPDATE_FREQ
1454 | (opt_info
1455 ? DLTHE_RECORD_COPY_NUMBER
1456 : 0));
1457 gcc_assert (ok);
1459 if (opt_info)
1461 apply_opt_in_copies (opt_info, nunroll, true, true);
1462 free_opt_info (opt_info);
1465 free (wont_exit);
1467 if (desc->simple_p)
1469 /* We indeed may get here provided that there are nontrivial assumptions
1470 for a loop to be really simple. We could update the counts, but the
1471 problem is that we are unable to decide which exit will be taken
1472 (not really true in case the number of iterations is constant,
1473 but noone will do anything with this information, so we do not
1474 worry about it). */
1475 desc->simple_p = false;
1478 if (dump_file)
1479 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1480 nunroll, num_loop_insns (loop));
1483 /* A hash function for information about insns to split. */
1485 static hashval_t
1486 si_info_hash (const void *ivts)
1488 return (hashval_t) INSN_UID (((struct iv_to_split *) ivts)->insn);
1491 /* An equality functions for information about insns to split. */
1493 static int
1494 si_info_eq (const void *ivts1, const void *ivts2)
1496 const struct iv_to_split *i1 = ivts1;
1497 const struct iv_to_split *i2 = ivts2;
1499 return i1->insn == i2->insn;
1502 /* Return a hash for VES, which is really a "var_to_expand *". */
1504 static hashval_t
1505 ve_info_hash (const void *ves)
1507 return (hashval_t) INSN_UID (((struct var_to_expand *) ves)->insn);
1510 /* Return true if IVTS1 and IVTS2 (which are really both of type
1511 "var_to_expand *") refer to the same instruction. */
1513 static int
1514 ve_info_eq (const void *ivts1, const void *ivts2)
1516 const struct var_to_expand *i1 = ivts1;
1517 const struct var_to_expand *i2 = ivts2;
1519 return i1->insn == i2->insn;
1522 /* Returns true if REG is referenced in one insn in LOOP. */
1524 bool
1525 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg)
1527 basic_block *body, bb;
1528 unsigned i;
1529 int count_ref = 0;
1530 rtx insn;
1532 body = get_loop_body (loop);
1533 for (i = 0; i < loop->num_nodes; i++)
1535 bb = body[i];
1537 FOR_BB_INSNS (bb, insn)
1539 if (rtx_referenced_p (reg, insn))
1540 count_ref++;
1543 return (count_ref == 1);
1546 /* Determine whether INSN contains an accumulator
1547 which can be expanded into separate copies,
1548 one for each copy of the LOOP body.
1550 for (i = 0 ; i < n; i++)
1551 sum += a[i];
1555 sum += a[i]
1556 ....
1557 i = i+1;
1558 sum1 += a[i]
1559 ....
1560 i = i+1
1561 sum2 += a[i];
1562 ....
1564 Return NULL if INSN contains no opportunity for expansion of accumulator.
1565 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1566 information and return a pointer to it.
1569 static struct var_to_expand *
1570 analyze_insn_to_expand_var (struct loop *loop, rtx insn)
1572 rtx set, dest, src, op1, op2, something;
1573 struct var_to_expand *ves;
1574 enum machine_mode mode1, mode2;
1575 unsigned accum_pos;
1577 set = single_set (insn);
1578 if (!set)
1579 return NULL;
1581 dest = SET_DEST (set);
1582 src = SET_SRC (set);
1584 if (GET_CODE (src) != PLUS
1585 && GET_CODE (src) != MINUS
1586 && GET_CODE (src) != MULT)
1587 return NULL;
1589 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1590 in MD. But if there is no optab to generate the insn, we can not
1591 perform the variable expansion. This can happen if an MD provides
1592 an insn but not a named pattern to generate it, for example to avoid
1593 producing code that needs additional mode switches like for x87/mmx.
1595 So we check have_insn_for which looks for an optab for the operation
1596 in SRC. If it doesn't exist, we can't perform the expansion even
1597 though INSN is valid. */
1598 if (!have_insn_for (GET_CODE (src), GET_MODE (src)))
1599 return NULL;
1601 op1 = XEXP (src, 0);
1602 op2 = XEXP (src, 1);
1604 if (!REG_P (dest)
1605 && !(GET_CODE (dest) == SUBREG
1606 && REG_P (SUBREG_REG (dest))))
1607 return NULL;
1609 if (rtx_equal_p (dest, op1))
1610 accum_pos = 0;
1611 else if (rtx_equal_p (dest, op2))
1612 accum_pos = 1;
1613 else
1614 return NULL;
1616 /* The method of expansion that we are using; which includes
1617 the initialization of the expansions with zero and the summation of
1618 the expansions at the end of the computation will yield wrong results
1619 for (x = something - x) thus avoid using it in that case. */
1620 if (accum_pos == 1
1621 && GET_CODE (src) == MINUS)
1622 return NULL;
1624 something = (accum_pos == 0)? op2 : op1;
1626 if (!referenced_in_one_insn_in_loop_p (loop, dest))
1627 return NULL;
1629 if (rtx_referenced_p (dest, something))
1630 return NULL;
1632 mode1 = GET_MODE (dest);
1633 mode2 = GET_MODE (something);
1634 if ((FLOAT_MODE_P (mode1)
1635 || FLOAT_MODE_P (mode2))
1636 && !flag_unsafe_math_optimizations)
1637 return NULL;
1639 if (dump_file)
1641 fprintf (dump_file,
1642 "\n;; Expanding Accumulator ");
1643 print_rtl (dump_file, dest);
1644 fprintf (dump_file, "\n");
1647 /* Record the accumulator to expand. */
1648 ves = XNEW (struct var_to_expand);
1649 ves->insn = insn;
1650 ves->var_expansions = VEC_alloc (rtx, heap, 1);
1651 ves->reg = copy_rtx (dest);
1652 ves->op = GET_CODE (src);
1653 ves->expansion_count = 0;
1654 ves->reuse_expansion = 0;
1655 ves->accum_pos = accum_pos;
1656 return ves;
1659 /* Determine whether there is an induction variable in INSN that
1660 we would like to split during unrolling.
1662 I.e. replace
1664 i = i + 1;
1666 i = i + 1;
1668 i = i + 1;
1671 type chains by
1673 i0 = i + 1
1675 i = i0 + 1
1677 i = i0 + 2
1680 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1681 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1682 pointer to it. */
1684 static struct iv_to_split *
1685 analyze_iv_to_split_insn (rtx insn)
1687 rtx set, dest;
1688 struct rtx_iv iv;
1689 struct iv_to_split *ivts;
1690 bool ok;
1692 /* For now we just split the basic induction variables. Later this may be
1693 extended for example by selecting also addresses of memory references. */
1694 set = single_set (insn);
1695 if (!set)
1696 return NULL;
1698 dest = SET_DEST (set);
1699 if (!REG_P (dest))
1700 return NULL;
1702 if (!biv_p (insn, dest))
1703 return NULL;
1705 ok = iv_analyze_result (insn, dest, &iv);
1707 /* This used to be an assert under the assumption that if biv_p returns
1708 true that iv_analyze_result must also return true. However, that
1709 assumption is not strictly correct as evidenced by pr25569.
1711 Returning NULL when iv_analyze_result returns false is safe and
1712 avoids the problems in pr25569 until the iv_analyze_* routines
1713 can be fixed, which is apparently hard and time consuming
1714 according to their author. */
1715 if (! ok)
1716 return NULL;
1718 if (iv.step == const0_rtx
1719 || iv.mode != iv.extend_mode)
1720 return NULL;
1722 /* Record the insn to split. */
1723 ivts = XNEW (struct iv_to_split);
1724 ivts->insn = insn;
1725 ivts->base_var = NULL_RTX;
1726 ivts->step = iv.step;
1727 ivts->n_loc = 1;
1728 ivts->loc[0] = 1;
1730 return ivts;
1733 /* Determines which of insns in LOOP can be optimized.
1734 Return a OPT_INFO struct with the relevant hash tables filled
1735 with all insns to be optimized. The FIRST_NEW_BLOCK field
1736 is undefined for the return value. */
1738 static struct opt_info *
1739 analyze_insns_in_loop (struct loop *loop)
1741 basic_block *body, bb;
1742 unsigned i;
1743 struct opt_info *opt_info = XCNEW (struct opt_info);
1744 rtx insn;
1745 struct iv_to_split *ivts = NULL;
1746 struct var_to_expand *ves = NULL;
1747 PTR *slot1;
1748 PTR *slot2;
1749 VEC (edge, heap) *edges = get_loop_exit_edges (loop);
1750 edge exit;
1751 bool can_apply = false;
1753 iv_analysis_loop_init (loop);
1755 body = get_loop_body (loop);
1757 if (flag_split_ivs_in_unroller)
1758 opt_info->insns_to_split = htab_create (5 * loop->num_nodes,
1759 si_info_hash, si_info_eq, free);
1761 /* Record the loop exit bb and loop preheader before the unrolling. */
1762 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1764 if (VEC_length (edge, edges) == 1)
1766 exit = VEC_index (edge, edges, 0);
1767 if (!(exit->flags & EDGE_COMPLEX))
1769 opt_info->loop_exit = split_edge (exit);
1770 can_apply = true;
1774 if (flag_variable_expansion_in_unroller
1775 && can_apply)
1776 opt_info->insns_with_var_to_expand = htab_create (5 * loop->num_nodes,
1777 ve_info_hash, ve_info_eq, free);
1779 for (i = 0; i < loop->num_nodes; i++)
1781 bb = body[i];
1782 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1783 continue;
1785 FOR_BB_INSNS (bb, insn)
1787 if (!INSN_P (insn))
1788 continue;
1790 if (opt_info->insns_to_split)
1791 ivts = analyze_iv_to_split_insn (insn);
1793 if (ivts)
1795 slot1 = htab_find_slot (opt_info->insns_to_split, ivts, INSERT);
1796 *slot1 = ivts;
1797 continue;
1800 if (opt_info->insns_with_var_to_expand)
1801 ves = analyze_insn_to_expand_var (loop, insn);
1803 if (ves)
1805 slot2 = htab_find_slot (opt_info->insns_with_var_to_expand, ves, INSERT);
1806 *slot2 = ves;
1811 VEC_free (edge, heap, edges);
1812 free (body);
1813 return opt_info;
1816 /* Called just before loop duplication. Records start of duplicated area
1817 to OPT_INFO. */
1819 static void
1820 opt_info_start_duplication (struct opt_info *opt_info)
1822 if (opt_info)
1823 opt_info->first_new_block = last_basic_block;
1826 /* Determine the number of iterations between initialization of the base
1827 variable and the current copy (N_COPY). N_COPIES is the total number
1828 of newly created copies. UNROLLING is true if we are unrolling
1829 (not peeling) the loop. */
1831 static unsigned
1832 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
1834 if (unrolling)
1836 /* If we are unrolling, initialization is done in the original loop
1837 body (number 0). */
1838 return n_copy;
1840 else
1842 /* If we are peeling, the copy in that the initialization occurs has
1843 number 1. The original loop (number 0) is the last. */
1844 if (n_copy)
1845 return n_copy - 1;
1846 else
1847 return n_copies;
1851 /* Locate in EXPR the expression corresponding to the location recorded
1852 in IVTS, and return a pointer to the RTX for this location. */
1854 static rtx *
1855 get_ivts_expr (rtx expr, struct iv_to_split *ivts)
1857 unsigned i;
1858 rtx *ret = &expr;
1860 for (i = 0; i < ivts->n_loc; i++)
1861 ret = &XEXP (*ret, ivts->loc[i]);
1863 return ret;
1866 /* Allocate basic variable for the induction variable chain. Callback for
1867 htab_traverse. */
1869 static int
1870 allocate_basic_variable (void **slot, void *data ATTRIBUTE_UNUSED)
1872 struct iv_to_split *ivts = *slot;
1873 rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
1875 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
1877 return 1;
1880 /* Insert initialization of basic variable of IVTS before INSN, taking
1881 the initial value from INSN. */
1883 static void
1884 insert_base_initialization (struct iv_to_split *ivts, rtx insn)
1886 rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
1887 rtx seq;
1889 start_sequence ();
1890 expr = force_operand (expr, ivts->base_var);
1891 if (expr != ivts->base_var)
1892 emit_move_insn (ivts->base_var, expr);
1893 seq = get_insns ();
1894 end_sequence ();
1896 emit_insn_before (seq, insn);
1899 /* Replace the use of induction variable described in IVTS in INSN
1900 by base variable + DELTA * step. */
1902 static void
1903 split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
1905 rtx expr, *loc, seq, incr, var;
1906 enum machine_mode mode = GET_MODE (ivts->base_var);
1907 rtx src, dest, set;
1909 /* Construct base + DELTA * step. */
1910 if (!delta)
1911 expr = ivts->base_var;
1912 else
1914 incr = simplify_gen_binary (MULT, mode,
1915 ivts->step, gen_int_mode (delta, mode));
1916 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
1917 ivts->base_var, incr);
1920 /* Figure out where to do the replacement. */
1921 loc = get_ivts_expr (single_set (insn), ivts);
1923 /* If we can make the replacement right away, we're done. */
1924 if (validate_change (insn, loc, expr, 0))
1925 return;
1927 /* Otherwise, force EXPR into a register and try again. */
1928 start_sequence ();
1929 var = gen_reg_rtx (mode);
1930 expr = force_operand (expr, var);
1931 if (expr != var)
1932 emit_move_insn (var, expr);
1933 seq = get_insns ();
1934 end_sequence ();
1935 emit_insn_before (seq, insn);
1937 if (validate_change (insn, loc, var, 0))
1938 return;
1940 /* The last chance. Try recreating the assignment in insn
1941 completely from scratch. */
1942 set = single_set (insn);
1943 gcc_assert (set);
1945 start_sequence ();
1946 *loc = var;
1947 src = copy_rtx (SET_SRC (set));
1948 dest = copy_rtx (SET_DEST (set));
1949 src = force_operand (src, dest);
1950 if (src != dest)
1951 emit_move_insn (dest, src);
1952 seq = get_insns ();
1953 end_sequence ();
1955 emit_insn_before (seq, insn);
1956 delete_insn (insn);
1960 /* Return one expansion of the accumulator recorded in struct VE. */
1962 static rtx
1963 get_expansion (struct var_to_expand *ve)
1965 rtx reg;
1967 if (ve->reuse_expansion == 0)
1968 reg = ve->reg;
1969 else
1970 reg = VEC_index (rtx, ve->var_expansions, ve->reuse_expansion - 1);
1972 if (VEC_length (rtx, ve->var_expansions) == (unsigned) ve->reuse_expansion)
1973 ve->reuse_expansion = 0;
1974 else
1975 ve->reuse_expansion++;
1977 return reg;
1981 /* Given INSN replace the uses of the accumulator recorded in VE
1982 with a new register. */
1984 static void
1985 expand_var_during_unrolling (struct var_to_expand *ve, rtx insn)
1987 rtx new_reg, set;
1988 bool really_new_expansion = false;
1990 set = single_set (insn);
1991 gcc_assert (set);
1993 /* Generate a new register only if the expansion limit has not been
1994 reached. Else reuse an already existing expansion. */
1995 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
1997 really_new_expansion = true;
1998 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
2000 else
2001 new_reg = get_expansion (ve);
2003 validate_change (insn, &SET_DEST (set), new_reg, 1);
2004 validate_change (insn, &XEXP (SET_SRC (set), ve->accum_pos), new_reg, 1);
2006 if (apply_change_group ())
2007 if (really_new_expansion)
2009 VEC_safe_push (rtx, heap, ve->var_expansions, new_reg);
2010 ve->expansion_count++;
2014 /* Initialize the variable expansions in loop preheader.
2015 Callbacks for htab_traverse. PLACE_P is the loop-preheader
2016 basic block where the initialization of the expansions
2017 should take place. The expansions are initialized with (-0)
2018 when the operation is plus or minus to honor sign zero.
2019 This way we can prevent cases where the sign of the final result is
2020 effected by the sign of the expansion.
2021 Here is an example to demonstrate this:
2023 for (i = 0 ; i < n; i++)
2024 sum += something;
2028 sum += something
2029 ....
2030 i = i+1;
2031 sum1 += something
2032 ....
2033 i = i+1
2034 sum2 += something;
2035 ....
2037 When SUM is initialized with -zero and SOMETHING is also -zero; the
2038 final result of sum should be -zero thus the expansions sum1 and sum2
2039 should be initialized with -zero as well (otherwise we will get +zero
2040 as the final result). */
2042 static int
2043 insert_var_expansion_initialization (void **slot, void *place_p)
2045 struct var_to_expand *ve = *slot;
2046 basic_block place = (basic_block)place_p;
2047 rtx seq, var, zero_init, insn;
2048 unsigned i;
2049 enum machine_mode mode = GET_MODE (ve->reg);
2050 bool honor_signed_zero_p = HONOR_SIGNED_ZEROS (mode);
2052 if (VEC_length (rtx, ve->var_expansions) == 0)
2053 return 1;
2055 start_sequence ();
2056 if (ve->op == PLUS || ve->op == MINUS)
2057 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2059 if (honor_signed_zero_p)
2060 zero_init = simplify_gen_unary (NEG, mode, CONST0_RTX (mode), mode);
2061 else
2062 zero_init = CONST0_RTX (mode);
2064 emit_move_insn (var, zero_init);
2066 else if (ve->op == MULT)
2067 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2069 zero_init = CONST1_RTX (GET_MODE (var));
2070 emit_move_insn (var, zero_init);
2073 seq = get_insns ();
2074 end_sequence ();
2076 insn = BB_HEAD (place);
2077 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2078 insn = NEXT_INSN (insn);
2080 emit_insn_after (seq, insn);
2081 /* Continue traversing the hash table. */
2082 return 1;
2085 /* Combine the variable expansions at the loop exit.
2086 Callbacks for htab_traverse. PLACE_P is the loop exit
2087 basic block where the summation of the expansions should
2088 take place. */
2090 static int
2091 combine_var_copies_in_loop_exit (void **slot, void *place_p)
2093 struct var_to_expand *ve = *slot;
2094 basic_block place = (basic_block)place_p;
2095 rtx sum = ve->reg;
2096 rtx expr, seq, var, insn;
2097 unsigned i;
2099 if (VEC_length (rtx, ve->var_expansions) == 0)
2100 return 1;
2102 start_sequence ();
2103 if (ve->op == PLUS || ve->op == MINUS)
2104 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2106 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg),
2107 var, sum);
2109 else if (ve->op == MULT)
2110 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2112 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg),
2113 var, sum);
2116 expr = force_operand (sum, ve->reg);
2117 if (expr != ve->reg)
2118 emit_move_insn (ve->reg, expr);
2119 seq = get_insns ();
2120 end_sequence ();
2122 insn = BB_HEAD (place);
2123 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2124 insn = NEXT_INSN (insn);
2126 emit_insn_after (seq, insn);
2128 /* Continue traversing the hash table. */
2129 return 1;
2132 /* Apply loop optimizations in loop copies using the
2133 data which gathered during the unrolling. Structure
2134 OPT_INFO record that data.
2136 UNROLLING is true if we unrolled (not peeled) the loop.
2137 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
2138 the loop (as it should happen in complete unrolling, but not in ordinary
2139 peeling of the loop). */
2141 static void
2142 apply_opt_in_copies (struct opt_info *opt_info,
2143 unsigned n_copies, bool unrolling,
2144 bool rewrite_original_loop)
2146 unsigned i, delta;
2147 basic_block bb, orig_bb;
2148 rtx insn, orig_insn, next;
2149 struct iv_to_split ivts_templ, *ivts;
2150 struct var_to_expand ve_templ, *ves;
2152 /* Sanity check -- we need to put initialization in the original loop
2153 body. */
2154 gcc_assert (!unrolling || rewrite_original_loop);
2156 /* Allocate the basic variables (i0). */
2157 if (opt_info->insns_to_split)
2158 htab_traverse (opt_info->insns_to_split, allocate_basic_variable, NULL);
2160 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2162 bb = BASIC_BLOCK (i);
2163 orig_bb = get_bb_original (bb);
2165 /* bb->aux holds position in copy sequence initialized by
2166 duplicate_loop_to_header_edge. */
2167 delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
2168 unrolling);
2169 bb->aux = 0;
2170 orig_insn = BB_HEAD (orig_bb);
2171 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
2173 next = NEXT_INSN (insn);
2174 if (!INSN_P (insn))
2175 continue;
2177 while (!INSN_P (orig_insn))
2178 orig_insn = NEXT_INSN (orig_insn);
2180 ivts_templ.insn = orig_insn;
2181 ve_templ.insn = orig_insn;
2183 /* Apply splitting iv optimization. */
2184 if (opt_info->insns_to_split)
2186 ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
2188 if (ivts)
2190 gcc_assert (GET_CODE (PATTERN (insn))
2191 == GET_CODE (PATTERN (orig_insn)));
2193 if (!delta)
2194 insert_base_initialization (ivts, insn);
2195 split_iv (ivts, insn, delta);
2198 /* Apply variable expansion optimization. */
2199 if (unrolling && opt_info->insns_with_var_to_expand)
2201 ves = htab_find (opt_info->insns_with_var_to_expand, &ve_templ);
2202 if (ves)
2204 gcc_assert (GET_CODE (PATTERN (insn))
2205 == GET_CODE (PATTERN (orig_insn)));
2206 expand_var_during_unrolling (ves, insn);
2209 orig_insn = NEXT_INSN (orig_insn);
2213 if (!rewrite_original_loop)
2214 return;
2216 /* Initialize the variable expansions in the loop preheader
2217 and take care of combining them at the loop exit. */
2218 if (opt_info->insns_with_var_to_expand)
2220 htab_traverse (opt_info->insns_with_var_to_expand,
2221 insert_var_expansion_initialization,
2222 opt_info->loop_preheader);
2223 htab_traverse (opt_info->insns_with_var_to_expand,
2224 combine_var_copies_in_loop_exit,
2225 opt_info->loop_exit);
2228 /* Rewrite also the original loop body. Find them as originals of the blocks
2229 in the last copied iteration, i.e. those that have
2230 get_bb_copy (get_bb_original (bb)) == bb. */
2231 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2233 bb = BASIC_BLOCK (i);
2234 orig_bb = get_bb_original (bb);
2235 if (get_bb_copy (orig_bb) != bb)
2236 continue;
2238 delta = determine_split_iv_delta (0, n_copies, unrolling);
2239 for (orig_insn = BB_HEAD (orig_bb);
2240 orig_insn != NEXT_INSN (BB_END (bb));
2241 orig_insn = next)
2243 next = NEXT_INSN (orig_insn);
2245 if (!INSN_P (orig_insn))
2246 continue;
2248 ivts_templ.insn = orig_insn;
2249 if (opt_info->insns_to_split)
2251 ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
2252 if (ivts)
2254 if (!delta)
2255 insert_base_initialization (ivts, orig_insn);
2256 split_iv (ivts, orig_insn, delta);
2257 continue;
2265 /* Release the data structures used for the variable expansion
2266 optimization. Callbacks for htab_traverse. */
2268 static int
2269 release_var_copies (void **slot, void *data ATTRIBUTE_UNUSED)
2271 struct var_to_expand *ve = *slot;
2273 VEC_free (rtx, heap, ve->var_expansions);
2275 /* Continue traversing the hash table. */
2276 return 1;
2279 /* Release OPT_INFO. */
2281 static void
2282 free_opt_info (struct opt_info *opt_info)
2284 if (opt_info->insns_to_split)
2285 htab_delete (opt_info->insns_to_split);
2286 if (opt_info->insns_with_var_to_expand)
2288 htab_traverse (opt_info->insns_with_var_to_expand,
2289 release_var_copies, NULL);
2290 htab_delete (opt_info->insns_with_var_to_expand);
2292 free (opt_info);