Revert:
[official-gcc.git] / gcc / cse.c
blobc26c6e73efc9504c53e08796a4b08b5942b8386f
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 /* stdio.h must precede rtl.h for FFS. */
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "regs.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "real.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "function.h"
37 #include "expr.h"
38 #include "toplev.h"
39 #include "output.h"
40 #include "ggc.h"
41 #include "timevar.h"
42 #include "except.h"
43 #include "target.h"
44 #include "params.h"
45 #include "rtlhooks-def.h"
46 #include "tree-pass.h"
47 #include "df.h"
48 #include "dbgcnt.h"
50 /* The basic idea of common subexpression elimination is to go
51 through the code, keeping a record of expressions that would
52 have the same value at the current scan point, and replacing
53 expressions encountered with the cheapest equivalent expression.
55 It is too complicated to keep track of the different possibilities
56 when control paths merge in this code; so, at each label, we forget all
57 that is known and start fresh. This can be described as processing each
58 extended basic block separately. We have a separate pass to perform
59 global CSE.
61 Note CSE can turn a conditional or computed jump into a nop or
62 an unconditional jump. When this occurs we arrange to run the jump
63 optimizer after CSE to delete the unreachable code.
65 We use two data structures to record the equivalent expressions:
66 a hash table for most expressions, and a vector of "quantity
67 numbers" to record equivalent (pseudo) registers.
69 The use of the special data structure for registers is desirable
70 because it is faster. It is possible because registers references
71 contain a fairly small number, the register number, taken from
72 a contiguously allocated series, and two register references are
73 identical if they have the same number. General expressions
74 do not have any such thing, so the only way to retrieve the
75 information recorded on an expression other than a register
76 is to keep it in a hash table.
78 Registers and "quantity numbers":
80 At the start of each basic block, all of the (hardware and pseudo)
81 registers used in the function are given distinct quantity
82 numbers to indicate their contents. During scan, when the code
83 copies one register into another, we copy the quantity number.
84 When a register is loaded in any other way, we allocate a new
85 quantity number to describe the value generated by this operation.
86 `REG_QTY (N)' records what quantity register N is currently thought
87 of as containing.
89 All real quantity numbers are greater than or equal to zero.
90 If register N has not been assigned a quantity, `REG_QTY (N)' will
91 equal -N - 1, which is always negative.
93 Quantity numbers below zero do not exist and none of the `qty_table'
94 entries should be referenced with a negative index.
96 We also maintain a bidirectional chain of registers for each
97 quantity number. The `qty_table` members `first_reg' and `last_reg',
98 and `reg_eqv_table' members `next' and `prev' hold these chains.
100 The first register in a chain is the one whose lifespan is least local.
101 Among equals, it is the one that was seen first.
102 We replace any equivalent register with that one.
104 If two registers have the same quantity number, it must be true that
105 REG expressions with qty_table `mode' must be in the hash table for both
106 registers and must be in the same class.
108 The converse is not true. Since hard registers may be referenced in
109 any mode, two REG expressions might be equivalent in the hash table
110 but not have the same quantity number if the quantity number of one
111 of the registers is not the same mode as those expressions.
113 Constants and quantity numbers
115 When a quantity has a known constant value, that value is stored
116 in the appropriate qty_table `const_rtx'. This is in addition to
117 putting the constant in the hash table as is usual for non-regs.
119 Whether a reg or a constant is preferred is determined by the configuration
120 macro CONST_COSTS and will often depend on the constant value. In any
121 event, expressions containing constants can be simplified, by fold_rtx.
123 When a quantity has a known nearly constant value (such as an address
124 of a stack slot), that value is stored in the appropriate qty_table
125 `const_rtx'.
127 Integer constants don't have a machine mode. However, cse
128 determines the intended machine mode from the destination
129 of the instruction that moves the constant. The machine mode
130 is recorded in the hash table along with the actual RTL
131 constant expression so that different modes are kept separate.
133 Other expressions:
135 To record known equivalences among expressions in general
136 we use a hash table called `table'. It has a fixed number of buckets
137 that contain chains of `struct table_elt' elements for expressions.
138 These chains connect the elements whose expressions have the same
139 hash codes.
141 Other chains through the same elements connect the elements which
142 currently have equivalent values.
144 Register references in an expression are canonicalized before hashing
145 the expression. This is done using `reg_qty' and qty_table `first_reg'.
146 The hash code of a register reference is computed using the quantity
147 number, not the register number.
149 When the value of an expression changes, it is necessary to remove from the
150 hash table not just that expression but all expressions whose values
151 could be different as a result.
153 1. If the value changing is in memory, except in special cases
154 ANYTHING referring to memory could be changed. That is because
155 nobody knows where a pointer does not point.
156 The function `invalidate_memory' removes what is necessary.
158 The special cases are when the address is constant or is
159 a constant plus a fixed register such as the frame pointer
160 or a static chain pointer. When such addresses are stored in,
161 we can tell exactly which other such addresses must be invalidated
162 due to overlap. `invalidate' does this.
163 All expressions that refer to non-constant
164 memory addresses are also invalidated. `invalidate_memory' does this.
166 2. If the value changing is a register, all expressions
167 containing references to that register, and only those,
168 must be removed.
170 Because searching the entire hash table for expressions that contain
171 a register is very slow, we try to figure out when it isn't necessary.
172 Precisely, this is necessary only when expressions have been
173 entered in the hash table using this register, and then the value has
174 changed, and then another expression wants to be added to refer to
175 the register's new value. This sequence of circumstances is rare
176 within any one basic block.
178 `REG_TICK' and `REG_IN_TABLE', accessors for members of
179 cse_reg_info, are used to detect this case. REG_TICK (i) is
180 incremented whenever a value is stored in register i.
181 REG_IN_TABLE (i) holds -1 if no references to register i have been
182 entered in the table; otherwise, it contains the value REG_TICK (i)
183 had when the references were entered. If we want to enter a
184 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
185 remove old references. Until we want to enter a new entry, the
186 mere fact that the two vectors don't match makes the entries be
187 ignored if anyone tries to match them.
189 Registers themselves are entered in the hash table as well as in
190 the equivalent-register chains. However, `REG_TICK' and
191 `REG_IN_TABLE' do not apply to expressions which are simple
192 register references. These expressions are removed from the table
193 immediately when they become invalid, and this can be done even if
194 we do not immediately search for all the expressions that refer to
195 the register.
197 A CLOBBER rtx in an instruction invalidates its operand for further
198 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
199 invalidates everything that resides in memory.
201 Related expressions:
203 Constant expressions that differ only by an additive integer
204 are called related. When a constant expression is put in
205 the table, the related expression with no constant term
206 is also entered. These are made to point at each other
207 so that it is possible to find out if there exists any
208 register equivalent to an expression related to a given expression. */
210 /* Length of qty_table vector. We know in advance we will not need
211 a quantity number this big. */
213 static int max_qty;
215 /* Next quantity number to be allocated.
216 This is 1 + the largest number needed so far. */
218 static int next_qty;
220 /* Per-qty information tracking.
222 `first_reg' and `last_reg' track the head and tail of the
223 chain of registers which currently contain this quantity.
225 `mode' contains the machine mode of this quantity.
227 `const_rtx' holds the rtx of the constant value of this
228 quantity, if known. A summations of the frame/arg pointer
229 and a constant can also be entered here. When this holds
230 a known value, `const_insn' is the insn which stored the
231 constant value.
233 `comparison_{code,const,qty}' are used to track when a
234 comparison between a quantity and some constant or register has
235 been passed. In such a case, we know the results of the comparison
236 in case we see it again. These members record a comparison that
237 is known to be true. `comparison_code' holds the rtx code of such
238 a comparison, else it is set to UNKNOWN and the other two
239 comparison members are undefined. `comparison_const' holds
240 the constant being compared against, or zero if the comparison
241 is not against a constant. `comparison_qty' holds the quantity
242 being compared against when the result is known. If the comparison
243 is not with a register, `comparison_qty' is -1. */
245 struct qty_table_elem
247 rtx const_rtx;
248 rtx const_insn;
249 rtx comparison_const;
250 int comparison_qty;
251 unsigned int first_reg, last_reg;
252 /* The sizes of these fields should match the sizes of the
253 code and mode fields of struct rtx_def (see rtl.h). */
254 ENUM_BITFIELD(rtx_code) comparison_code : 16;
255 ENUM_BITFIELD(machine_mode) mode : 8;
258 /* The table of all qtys, indexed by qty number. */
259 static struct qty_table_elem *qty_table;
261 /* Structure used to pass arguments via for_each_rtx to function
262 cse_change_cc_mode. */
263 struct change_cc_mode_args
265 rtx insn;
266 rtx newreg;
269 #ifdef HAVE_cc0
270 /* For machines that have a CC0, we do not record its value in the hash
271 table since its use is guaranteed to be the insn immediately following
272 its definition and any other insn is presumed to invalidate it.
274 Instead, we store below the current and last value assigned to CC0.
275 If it should happen to be a constant, it is stored in preference
276 to the actual assigned value. In case it is a constant, we store
277 the mode in which the constant should be interpreted. */
279 static rtx this_insn_cc0, prev_insn_cc0;
280 static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
281 #endif
283 /* Insn being scanned. */
285 static rtx this_insn;
287 /* Index by register number, gives the number of the next (or
288 previous) register in the chain of registers sharing the same
289 value.
291 Or -1 if this register is at the end of the chain.
293 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
295 /* Per-register equivalence chain. */
296 struct reg_eqv_elem
298 int next, prev;
301 /* The table of all register equivalence chains. */
302 static struct reg_eqv_elem *reg_eqv_table;
304 struct cse_reg_info
306 /* The timestamp at which this register is initialized. */
307 unsigned int timestamp;
309 /* The quantity number of the register's current contents. */
310 int reg_qty;
312 /* The number of times the register has been altered in the current
313 basic block. */
314 int reg_tick;
316 /* The REG_TICK value at which rtx's containing this register are
317 valid in the hash table. If this does not equal the current
318 reg_tick value, such expressions existing in the hash table are
319 invalid. */
320 int reg_in_table;
322 /* The SUBREG that was set when REG_TICK was last incremented. Set
323 to -1 if the last store was to the whole register, not a subreg. */
324 unsigned int subreg_ticked;
327 /* A table of cse_reg_info indexed by register numbers. */
328 static struct cse_reg_info *cse_reg_info_table;
330 /* The size of the above table. */
331 static unsigned int cse_reg_info_table_size;
333 /* The index of the first entry that has not been initialized. */
334 static unsigned int cse_reg_info_table_first_uninitialized;
336 /* The timestamp at the beginning of the current run of
337 cse_extended_basic_block. We increment this variable at the beginning of
338 the current run of cse_extended_basic_block. The timestamp field of a
339 cse_reg_info entry matches the value of this variable if and only
340 if the entry has been initialized during the current run of
341 cse_extended_basic_block. */
342 static unsigned int cse_reg_info_timestamp;
344 /* A HARD_REG_SET containing all the hard registers for which there is
345 currently a REG expression in the hash table. Note the difference
346 from the above variables, which indicate if the REG is mentioned in some
347 expression in the table. */
349 static HARD_REG_SET hard_regs_in_table;
351 /* Nonzero if cse has altered conditional jump insns
352 in such a way that jump optimization should be redone. */
354 static int cse_jumps_altered;
356 /* Nonzero if we put a LABEL_REF into the hash table for an INSN without a
357 REG_LABEL, we have to rerun jump after CSE to put in the note. */
358 static int recorded_label_ref;
360 /* canon_hash stores 1 in do_not_record
361 if it notices a reference to CC0, PC, or some other volatile
362 subexpression. */
364 static int do_not_record;
366 /* canon_hash stores 1 in hash_arg_in_memory
367 if it notices a reference to memory within the expression being hashed. */
369 static int hash_arg_in_memory;
371 /* The hash table contains buckets which are chains of `struct table_elt's,
372 each recording one expression's information.
373 That expression is in the `exp' field.
375 The canon_exp field contains a canonical (from the point of view of
376 alias analysis) version of the `exp' field.
378 Those elements with the same hash code are chained in both directions
379 through the `next_same_hash' and `prev_same_hash' fields.
381 Each set of expressions with equivalent values
382 are on a two-way chain through the `next_same_value'
383 and `prev_same_value' fields, and all point with
384 the `first_same_value' field at the first element in
385 that chain. The chain is in order of increasing cost.
386 Each element's cost value is in its `cost' field.
388 The `in_memory' field is nonzero for elements that
389 involve any reference to memory. These elements are removed
390 whenever a write is done to an unidentified location in memory.
391 To be safe, we assume that a memory address is unidentified unless
392 the address is either a symbol constant or a constant plus
393 the frame pointer or argument pointer.
395 The `related_value' field is used to connect related expressions
396 (that differ by adding an integer).
397 The related expressions are chained in a circular fashion.
398 `related_value' is zero for expressions for which this
399 chain is not useful.
401 The `cost' field stores the cost of this element's expression.
402 The `regcost' field stores the value returned by approx_reg_cost for
403 this element's expression.
405 The `is_const' flag is set if the element is a constant (including
406 a fixed address).
408 The `flag' field is used as a temporary during some search routines.
410 The `mode' field is usually the same as GET_MODE (`exp'), but
411 if `exp' is a CONST_INT and has no machine mode then the `mode'
412 field is the mode it was being used as. Each constant is
413 recorded separately for each mode it is used with. */
415 struct table_elt
417 rtx exp;
418 rtx canon_exp;
419 struct table_elt *next_same_hash;
420 struct table_elt *prev_same_hash;
421 struct table_elt *next_same_value;
422 struct table_elt *prev_same_value;
423 struct table_elt *first_same_value;
424 struct table_elt *related_value;
425 int cost;
426 int regcost;
427 /* The size of this field should match the size
428 of the mode field of struct rtx_def (see rtl.h). */
429 ENUM_BITFIELD(machine_mode) mode : 8;
430 char in_memory;
431 char is_const;
432 char flag;
435 /* We don't want a lot of buckets, because we rarely have very many
436 things stored in the hash table, and a lot of buckets slows
437 down a lot of loops that happen frequently. */
438 #define HASH_SHIFT 5
439 #define HASH_SIZE (1 << HASH_SHIFT)
440 #define HASH_MASK (HASH_SIZE - 1)
442 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
443 register (hard registers may require `do_not_record' to be set). */
445 #define HASH(X, M) \
446 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
447 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
448 : canon_hash (X, M)) & HASH_MASK)
450 /* Like HASH, but without side-effects. */
451 #define SAFE_HASH(X, M) \
452 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
453 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
454 : safe_hash (X, M)) & HASH_MASK)
456 /* Determine whether register number N is considered a fixed register for the
457 purpose of approximating register costs.
458 It is desirable to replace other regs with fixed regs, to reduce need for
459 non-fixed hard regs.
460 A reg wins if it is either the frame pointer or designated as fixed. */
461 #define FIXED_REGNO_P(N) \
462 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
463 || fixed_regs[N] || global_regs[N])
465 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
466 hard registers and pointers into the frame are the cheapest with a cost
467 of 0. Next come pseudos with a cost of one and other hard registers with
468 a cost of 2. Aside from these special cases, call `rtx_cost'. */
470 #define CHEAP_REGNO(N) \
471 (REGNO_PTR_FRAME_P(N) \
472 || (HARD_REGISTER_NUM_P (N) \
473 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
475 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
476 #define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
478 /* Get the number of times this register has been updated in this
479 basic block. */
481 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
483 /* Get the point at which REG was recorded in the table. */
485 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
487 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
488 SUBREG). */
490 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
492 /* Get the quantity number for REG. */
494 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
496 /* Determine if the quantity number for register X represents a valid index
497 into the qty_table. */
499 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
501 static struct table_elt *table[HASH_SIZE];
503 /* Chain of `struct table_elt's made so far for this function
504 but currently removed from the table. */
506 static struct table_elt *free_element_chain;
508 /* Set to the cost of a constant pool reference if one was found for a
509 symbolic constant. If this was found, it means we should try to
510 convert constants into constant pool entries if they don't fit in
511 the insn. */
513 static int constant_pool_entries_cost;
514 static int constant_pool_entries_regcost;
516 /* This data describes a block that will be processed by
517 cse_extended_basic_block. */
519 struct cse_basic_block_data
521 /* Total number of SETs in block. */
522 int nsets;
523 /* Size of current branch path, if any. */
524 int path_size;
525 /* Current path, indicating which basic_blocks will be processed. */
526 struct branch_path
528 /* The basic block for this path entry. */
529 basic_block bb;
530 } *path;
534 /* Pointers to the live in/live out bitmaps for the boundaries of the
535 current EBB. */
536 static bitmap cse_ebb_live_in, cse_ebb_live_out;
538 /* A simple bitmap to track which basic blocks have been visited
539 already as part of an already processed extended basic block. */
540 static sbitmap cse_visited_basic_blocks;
542 static bool fixed_base_plus_p (rtx x);
543 static int notreg_cost (rtx, enum rtx_code);
544 static int approx_reg_cost_1 (rtx *, void *);
545 static int approx_reg_cost (rtx);
546 static int preferable (int, int, int, int);
547 static void new_basic_block (void);
548 static void make_new_qty (unsigned int, enum machine_mode);
549 static void make_regs_eqv (unsigned int, unsigned int);
550 static void delete_reg_equiv (unsigned int);
551 static int mention_regs (rtx);
552 static int insert_regs (rtx, struct table_elt *, int);
553 static void remove_from_table (struct table_elt *, unsigned);
554 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
555 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
556 static rtx lookup_as_function (rtx, enum rtx_code);
557 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
558 enum machine_mode);
559 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
560 static void invalidate (rtx, enum machine_mode);
561 static bool cse_rtx_varies_p (const_rtx, bool);
562 static void remove_invalid_refs (unsigned int);
563 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
564 enum machine_mode);
565 static void rehash_using_reg (rtx);
566 static void invalidate_memory (void);
567 static void invalidate_for_call (void);
568 static rtx use_related_value (rtx, struct table_elt *);
570 static inline unsigned canon_hash (rtx, enum machine_mode);
571 static inline unsigned safe_hash (rtx, enum machine_mode);
572 static unsigned hash_rtx_string (const char *);
574 static rtx canon_reg (rtx, rtx);
575 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
576 enum machine_mode *,
577 enum machine_mode *);
578 static rtx fold_rtx (rtx, rtx);
579 static rtx equiv_constant (rtx);
580 static void record_jump_equiv (rtx, bool);
581 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
582 int);
583 static void cse_insn (rtx, rtx);
584 static void cse_prescan_path (struct cse_basic_block_data *);
585 static void invalidate_from_clobbers (rtx);
586 static rtx cse_process_notes (rtx, rtx, bool *);
587 static void cse_extended_basic_block (struct cse_basic_block_data *);
588 static void count_reg_usage (rtx, int *, rtx, int);
589 static int check_for_label_ref (rtx *, void *);
590 extern void dump_class (struct table_elt*);
591 static void get_cse_reg_info_1 (unsigned int regno);
592 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
593 static int check_dependence (rtx *, void *);
595 static void flush_hash_table (void);
596 static bool insn_live_p (rtx, int *);
597 static bool set_live_p (rtx, rtx, int *);
598 static bool dead_libcall_p (rtx, int *);
599 static int cse_change_cc_mode (rtx *, void *);
600 static void cse_change_cc_mode_insn (rtx, rtx);
601 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
602 static enum machine_mode cse_cc_succs (basic_block, rtx, rtx, bool);
605 #undef RTL_HOOKS_GEN_LOWPART
606 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
608 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
610 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
611 virtual regs here because the simplify_*_operation routines are called
612 by integrate.c, which is called before virtual register instantiation. */
614 static bool
615 fixed_base_plus_p (rtx x)
617 switch (GET_CODE (x))
619 case REG:
620 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
621 return true;
622 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
623 return true;
624 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
625 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
626 return true;
627 return false;
629 case PLUS:
630 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
631 return false;
632 return fixed_base_plus_p (XEXP (x, 0));
634 default:
635 return false;
639 /* Dump the expressions in the equivalence class indicated by CLASSP.
640 This function is used only for debugging. */
641 void
642 dump_class (struct table_elt *classp)
644 struct table_elt *elt;
646 fprintf (stderr, "Equivalence chain for ");
647 print_rtl (stderr, classp->exp);
648 fprintf (stderr, ": \n");
650 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
652 print_rtl (stderr, elt->exp);
653 fprintf (stderr, "\n");
657 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
659 static int
660 approx_reg_cost_1 (rtx *xp, void *data)
662 rtx x = *xp;
663 int *cost_p = data;
665 if (x && REG_P (x))
667 unsigned int regno = REGNO (x);
669 if (! CHEAP_REGNO (regno))
671 if (regno < FIRST_PSEUDO_REGISTER)
673 if (SMALL_REGISTER_CLASSES)
674 return 1;
675 *cost_p += 2;
677 else
678 *cost_p += 1;
682 return 0;
685 /* Return an estimate of the cost of the registers used in an rtx.
686 This is mostly the number of different REG expressions in the rtx;
687 however for some exceptions like fixed registers we use a cost of
688 0. If any other hard register reference occurs, return MAX_COST. */
690 static int
691 approx_reg_cost (rtx x)
693 int cost = 0;
695 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
696 return MAX_COST;
698 return cost;
701 /* Return a negative value if an rtx A, whose costs are given by COST_A
702 and REGCOST_A, is more desirable than an rtx B.
703 Return a positive value if A is less desirable, or 0 if the two are
704 equally good. */
705 static int
706 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
708 /* First, get rid of cases involving expressions that are entirely
709 unwanted. */
710 if (cost_a != cost_b)
712 if (cost_a == MAX_COST)
713 return 1;
714 if (cost_b == MAX_COST)
715 return -1;
718 /* Avoid extending lifetimes of hardregs. */
719 if (regcost_a != regcost_b)
721 if (regcost_a == MAX_COST)
722 return 1;
723 if (regcost_b == MAX_COST)
724 return -1;
727 /* Normal operation costs take precedence. */
728 if (cost_a != cost_b)
729 return cost_a - cost_b;
730 /* Only if these are identical consider effects on register pressure. */
731 if (regcost_a != regcost_b)
732 return regcost_a - regcost_b;
733 return 0;
736 /* Internal function, to compute cost when X is not a register; called
737 from COST macro to keep it simple. */
739 static int
740 notreg_cost (rtx x, enum rtx_code outer)
742 return ((GET_CODE (x) == SUBREG
743 && REG_P (SUBREG_REG (x))
744 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
745 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
746 && (GET_MODE_SIZE (GET_MODE (x))
747 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
748 && subreg_lowpart_p (x)
749 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
750 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
752 : rtx_cost (x, outer) * 2);
756 /* Initialize CSE_REG_INFO_TABLE. */
758 static void
759 init_cse_reg_info (unsigned int nregs)
761 /* Do we need to grow the table? */
762 if (nregs > cse_reg_info_table_size)
764 unsigned int new_size;
766 if (cse_reg_info_table_size < 2048)
768 /* Compute a new size that is a power of 2 and no smaller
769 than the large of NREGS and 64. */
770 new_size = (cse_reg_info_table_size
771 ? cse_reg_info_table_size : 64);
773 while (new_size < nregs)
774 new_size *= 2;
776 else
778 /* If we need a big table, allocate just enough to hold
779 NREGS registers. */
780 new_size = nregs;
783 /* Reallocate the table with NEW_SIZE entries. */
784 if (cse_reg_info_table)
785 free (cse_reg_info_table);
786 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
787 cse_reg_info_table_size = new_size;
788 cse_reg_info_table_first_uninitialized = 0;
791 /* Do we have all of the first NREGS entries initialized? */
792 if (cse_reg_info_table_first_uninitialized < nregs)
794 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
795 unsigned int i;
797 /* Put the old timestamp on newly allocated entries so that they
798 will all be considered out of date. We do not touch those
799 entries beyond the first NREGS entries to be nice to the
800 virtual memory. */
801 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
802 cse_reg_info_table[i].timestamp = old_timestamp;
804 cse_reg_info_table_first_uninitialized = nregs;
808 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
810 static void
811 get_cse_reg_info_1 (unsigned int regno)
813 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
814 entry will be considered to have been initialized. */
815 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
817 /* Initialize the rest of the entry. */
818 cse_reg_info_table[regno].reg_tick = 1;
819 cse_reg_info_table[regno].reg_in_table = -1;
820 cse_reg_info_table[regno].subreg_ticked = -1;
821 cse_reg_info_table[regno].reg_qty = -regno - 1;
824 /* Find a cse_reg_info entry for REGNO. */
826 static inline struct cse_reg_info *
827 get_cse_reg_info (unsigned int regno)
829 struct cse_reg_info *p = &cse_reg_info_table[regno];
831 /* If this entry has not been initialized, go ahead and initialize
832 it. */
833 if (p->timestamp != cse_reg_info_timestamp)
834 get_cse_reg_info_1 (regno);
836 return p;
839 /* Clear the hash table and initialize each register with its own quantity,
840 for a new basic block. */
842 static void
843 new_basic_block (void)
845 int i;
847 next_qty = 0;
849 /* Invalidate cse_reg_info_table. */
850 cse_reg_info_timestamp++;
852 /* Clear out hash table state for this pass. */
853 CLEAR_HARD_REG_SET (hard_regs_in_table);
855 /* The per-quantity values used to be initialized here, but it is
856 much faster to initialize each as it is made in `make_new_qty'. */
858 for (i = 0; i < HASH_SIZE; i++)
860 struct table_elt *first;
862 first = table[i];
863 if (first != NULL)
865 struct table_elt *last = first;
867 table[i] = NULL;
869 while (last->next_same_hash != NULL)
870 last = last->next_same_hash;
872 /* Now relink this hash entire chain into
873 the free element list. */
875 last->next_same_hash = free_element_chain;
876 free_element_chain = first;
880 #ifdef HAVE_cc0
881 prev_insn_cc0 = 0;
882 #endif
885 /* Say that register REG contains a quantity in mode MODE not in any
886 register before and initialize that quantity. */
888 static void
889 make_new_qty (unsigned int reg, enum machine_mode mode)
891 int q;
892 struct qty_table_elem *ent;
893 struct reg_eqv_elem *eqv;
895 gcc_assert (next_qty < max_qty);
897 q = REG_QTY (reg) = next_qty++;
898 ent = &qty_table[q];
899 ent->first_reg = reg;
900 ent->last_reg = reg;
901 ent->mode = mode;
902 ent->const_rtx = ent->const_insn = NULL_RTX;
903 ent->comparison_code = UNKNOWN;
905 eqv = &reg_eqv_table[reg];
906 eqv->next = eqv->prev = -1;
909 /* Make reg NEW equivalent to reg OLD.
910 OLD is not changing; NEW is. */
912 static void
913 make_regs_eqv (unsigned int new, unsigned int old)
915 unsigned int lastr, firstr;
916 int q = REG_QTY (old);
917 struct qty_table_elem *ent;
919 ent = &qty_table[q];
921 /* Nothing should become eqv until it has a "non-invalid" qty number. */
922 gcc_assert (REGNO_QTY_VALID_P (old));
924 REG_QTY (new) = q;
925 firstr = ent->first_reg;
926 lastr = ent->last_reg;
928 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
929 hard regs. Among pseudos, if NEW will live longer than any other reg
930 of the same qty, and that is beyond the current basic block,
931 make it the new canonical replacement for this qty. */
932 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
933 /* Certain fixed registers might be of the class NO_REGS. This means
934 that not only can they not be allocated by the compiler, but
935 they cannot be used in substitutions or canonicalizations
936 either. */
937 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
938 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
939 || (new >= FIRST_PSEUDO_REGISTER
940 && (firstr < FIRST_PSEUDO_REGISTER
941 || (bitmap_bit_p (cse_ebb_live_out, new)
942 && !bitmap_bit_p (cse_ebb_live_out, firstr))
943 || (bitmap_bit_p (cse_ebb_live_in, new)
944 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
946 reg_eqv_table[firstr].prev = new;
947 reg_eqv_table[new].next = firstr;
948 reg_eqv_table[new].prev = -1;
949 ent->first_reg = new;
951 else
953 /* If NEW is a hard reg (known to be non-fixed), insert at end.
954 Otherwise, insert before any non-fixed hard regs that are at the
955 end. Registers of class NO_REGS cannot be used as an
956 equivalent for anything. */
957 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
958 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
959 && new >= FIRST_PSEUDO_REGISTER)
960 lastr = reg_eqv_table[lastr].prev;
961 reg_eqv_table[new].next = reg_eqv_table[lastr].next;
962 if (reg_eqv_table[lastr].next >= 0)
963 reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
964 else
965 qty_table[q].last_reg = new;
966 reg_eqv_table[lastr].next = new;
967 reg_eqv_table[new].prev = lastr;
971 /* Remove REG from its equivalence class. */
973 static void
974 delete_reg_equiv (unsigned int reg)
976 struct qty_table_elem *ent;
977 int q = REG_QTY (reg);
978 int p, n;
980 /* If invalid, do nothing. */
981 if (! REGNO_QTY_VALID_P (reg))
982 return;
984 ent = &qty_table[q];
986 p = reg_eqv_table[reg].prev;
987 n = reg_eqv_table[reg].next;
989 if (n != -1)
990 reg_eqv_table[n].prev = p;
991 else
992 ent->last_reg = p;
993 if (p != -1)
994 reg_eqv_table[p].next = n;
995 else
996 ent->first_reg = n;
998 REG_QTY (reg) = -reg - 1;
1001 /* Remove any invalid expressions from the hash table
1002 that refer to any of the registers contained in expression X.
1004 Make sure that newly inserted references to those registers
1005 as subexpressions will be considered valid.
1007 mention_regs is not called when a register itself
1008 is being stored in the table.
1010 Return 1 if we have done something that may have changed the hash code
1011 of X. */
1013 static int
1014 mention_regs (rtx x)
1016 enum rtx_code code;
1017 int i, j;
1018 const char *fmt;
1019 int changed = 0;
1021 if (x == 0)
1022 return 0;
1024 code = GET_CODE (x);
1025 if (code == REG)
1027 unsigned int regno = REGNO (x);
1028 unsigned int endregno = END_REGNO (x);
1029 unsigned int i;
1031 for (i = regno; i < endregno; i++)
1033 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1034 remove_invalid_refs (i);
1036 REG_IN_TABLE (i) = REG_TICK (i);
1037 SUBREG_TICKED (i) = -1;
1040 return 0;
1043 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1044 pseudo if they don't use overlapping words. We handle only pseudos
1045 here for simplicity. */
1046 if (code == SUBREG && REG_P (SUBREG_REG (x))
1047 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1049 unsigned int i = REGNO (SUBREG_REG (x));
1051 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1053 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1054 the last store to this register really stored into this
1055 subreg, then remove the memory of this subreg.
1056 Otherwise, remove any memory of the entire register and
1057 all its subregs from the table. */
1058 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1059 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1060 remove_invalid_refs (i);
1061 else
1062 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1065 REG_IN_TABLE (i) = REG_TICK (i);
1066 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1067 return 0;
1070 /* If X is a comparison or a COMPARE and either operand is a register
1071 that does not have a quantity, give it one. This is so that a later
1072 call to record_jump_equiv won't cause X to be assigned a different
1073 hash code and not found in the table after that call.
1075 It is not necessary to do this here, since rehash_using_reg can
1076 fix up the table later, but doing this here eliminates the need to
1077 call that expensive function in the most common case where the only
1078 use of the register is in the comparison. */
1080 if (code == COMPARE || COMPARISON_P (x))
1082 if (REG_P (XEXP (x, 0))
1083 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1084 if (insert_regs (XEXP (x, 0), NULL, 0))
1086 rehash_using_reg (XEXP (x, 0));
1087 changed = 1;
1090 if (REG_P (XEXP (x, 1))
1091 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1092 if (insert_regs (XEXP (x, 1), NULL, 0))
1094 rehash_using_reg (XEXP (x, 1));
1095 changed = 1;
1099 fmt = GET_RTX_FORMAT (code);
1100 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1101 if (fmt[i] == 'e')
1102 changed |= mention_regs (XEXP (x, i));
1103 else if (fmt[i] == 'E')
1104 for (j = 0; j < XVECLEN (x, i); j++)
1105 changed |= mention_regs (XVECEXP (x, i, j));
1107 return changed;
1110 /* Update the register quantities for inserting X into the hash table
1111 with a value equivalent to CLASSP.
1112 (If the class does not contain a REG, it is irrelevant.)
1113 If MODIFIED is nonzero, X is a destination; it is being modified.
1114 Note that delete_reg_equiv should be called on a register
1115 before insert_regs is done on that register with MODIFIED != 0.
1117 Nonzero value means that elements of reg_qty have changed
1118 so X's hash code may be different. */
1120 static int
1121 insert_regs (rtx x, struct table_elt *classp, int modified)
1123 if (REG_P (x))
1125 unsigned int regno = REGNO (x);
1126 int qty_valid;
1128 /* If REGNO is in the equivalence table already but is of the
1129 wrong mode for that equivalence, don't do anything here. */
1131 qty_valid = REGNO_QTY_VALID_P (regno);
1132 if (qty_valid)
1134 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1136 if (ent->mode != GET_MODE (x))
1137 return 0;
1140 if (modified || ! qty_valid)
1142 if (classp)
1143 for (classp = classp->first_same_value;
1144 classp != 0;
1145 classp = classp->next_same_value)
1146 if (REG_P (classp->exp)
1147 && GET_MODE (classp->exp) == GET_MODE (x))
1149 unsigned c_regno = REGNO (classp->exp);
1151 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1153 /* Suppose that 5 is hard reg and 100 and 101 are
1154 pseudos. Consider
1156 (set (reg:si 100) (reg:si 5))
1157 (set (reg:si 5) (reg:si 100))
1158 (set (reg:di 101) (reg:di 5))
1160 We would now set REG_QTY (101) = REG_QTY (5), but the
1161 entry for 5 is in SImode. When we use this later in
1162 copy propagation, we get the register in wrong mode. */
1163 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1164 continue;
1166 make_regs_eqv (regno, c_regno);
1167 return 1;
1170 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1171 than REG_IN_TABLE to find out if there was only a single preceding
1172 invalidation - for the SUBREG - or another one, which would be
1173 for the full register. However, if we find here that REG_TICK
1174 indicates that the register is invalid, it means that it has
1175 been invalidated in a separate operation. The SUBREG might be used
1176 now (then this is a recursive call), or we might use the full REG
1177 now and a SUBREG of it later. So bump up REG_TICK so that
1178 mention_regs will do the right thing. */
1179 if (! modified
1180 && REG_IN_TABLE (regno) >= 0
1181 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1182 REG_TICK (regno)++;
1183 make_new_qty (regno, GET_MODE (x));
1184 return 1;
1187 return 0;
1190 /* If X is a SUBREG, we will likely be inserting the inner register in the
1191 table. If that register doesn't have an assigned quantity number at
1192 this point but does later, the insertion that we will be doing now will
1193 not be accessible because its hash code will have changed. So assign
1194 a quantity number now. */
1196 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1197 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1199 insert_regs (SUBREG_REG (x), NULL, 0);
1200 mention_regs (x);
1201 return 1;
1203 else
1204 return mention_regs (x);
1207 /* Look in or update the hash table. */
1209 /* Remove table element ELT from use in the table.
1210 HASH is its hash code, made using the HASH macro.
1211 It's an argument because often that is known in advance
1212 and we save much time not recomputing it. */
1214 static void
1215 remove_from_table (struct table_elt *elt, unsigned int hash)
1217 if (elt == 0)
1218 return;
1220 /* Mark this element as removed. See cse_insn. */
1221 elt->first_same_value = 0;
1223 /* Remove the table element from its equivalence class. */
1226 struct table_elt *prev = elt->prev_same_value;
1227 struct table_elt *next = elt->next_same_value;
1229 if (next)
1230 next->prev_same_value = prev;
1232 if (prev)
1233 prev->next_same_value = next;
1234 else
1236 struct table_elt *newfirst = next;
1237 while (next)
1239 next->first_same_value = newfirst;
1240 next = next->next_same_value;
1245 /* Remove the table element from its hash bucket. */
1248 struct table_elt *prev = elt->prev_same_hash;
1249 struct table_elt *next = elt->next_same_hash;
1251 if (next)
1252 next->prev_same_hash = prev;
1254 if (prev)
1255 prev->next_same_hash = next;
1256 else if (table[hash] == elt)
1257 table[hash] = next;
1258 else
1260 /* This entry is not in the proper hash bucket. This can happen
1261 when two classes were merged by `merge_equiv_classes'. Search
1262 for the hash bucket that it heads. This happens only very
1263 rarely, so the cost is acceptable. */
1264 for (hash = 0; hash < HASH_SIZE; hash++)
1265 if (table[hash] == elt)
1266 table[hash] = next;
1270 /* Remove the table element from its related-value circular chain. */
1272 if (elt->related_value != 0 && elt->related_value != elt)
1274 struct table_elt *p = elt->related_value;
1276 while (p->related_value != elt)
1277 p = p->related_value;
1278 p->related_value = elt->related_value;
1279 if (p->related_value == p)
1280 p->related_value = 0;
1283 /* Now add it to the free element chain. */
1284 elt->next_same_hash = free_element_chain;
1285 free_element_chain = elt;
1288 /* Look up X in the hash table and return its table element,
1289 or 0 if X is not in the table.
1291 MODE is the machine-mode of X, or if X is an integer constant
1292 with VOIDmode then MODE is the mode with which X will be used.
1294 Here we are satisfied to find an expression whose tree structure
1295 looks like X. */
1297 static struct table_elt *
1298 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1300 struct table_elt *p;
1302 for (p = table[hash]; p; p = p->next_same_hash)
1303 if (mode == p->mode && ((x == p->exp && REG_P (x))
1304 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1305 return p;
1307 return 0;
1310 /* Like `lookup' but don't care whether the table element uses invalid regs.
1311 Also ignore discrepancies in the machine mode of a register. */
1313 static struct table_elt *
1314 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1316 struct table_elt *p;
1318 if (REG_P (x))
1320 unsigned int regno = REGNO (x);
1322 /* Don't check the machine mode when comparing registers;
1323 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1324 for (p = table[hash]; p; p = p->next_same_hash)
1325 if (REG_P (p->exp)
1326 && REGNO (p->exp) == regno)
1327 return p;
1329 else
1331 for (p = table[hash]; p; p = p->next_same_hash)
1332 if (mode == p->mode
1333 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1334 return p;
1337 return 0;
1340 /* Look for an expression equivalent to X and with code CODE.
1341 If one is found, return that expression. */
1343 static rtx
1344 lookup_as_function (rtx x, enum rtx_code code)
1346 struct table_elt *p
1347 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1349 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1350 long as we are narrowing. So if we looked in vain for a mode narrower
1351 than word_mode before, look for word_mode now. */
1352 if (p == 0 && code == CONST_INT
1353 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1355 x = copy_rtx (x);
1356 PUT_MODE (x, word_mode);
1357 p = lookup (x, SAFE_HASH (x, VOIDmode), word_mode);
1360 if (p == 0)
1361 return 0;
1363 for (p = p->first_same_value; p; p = p->next_same_value)
1364 if (GET_CODE (p->exp) == code
1365 /* Make sure this is a valid entry in the table. */
1366 && exp_equiv_p (p->exp, p->exp, 1, false))
1367 return p->exp;
1369 return 0;
1372 /* Insert X in the hash table, assuming HASH is its hash code
1373 and CLASSP is an element of the class it should go in
1374 (or 0 if a new class should be made).
1375 It is inserted at the proper position to keep the class in
1376 the order cheapest first.
1378 MODE is the machine-mode of X, or if X is an integer constant
1379 with VOIDmode then MODE is the mode with which X will be used.
1381 For elements of equal cheapness, the most recent one
1382 goes in front, except that the first element in the list
1383 remains first unless a cheaper element is added. The order of
1384 pseudo-registers does not matter, as canon_reg will be called to
1385 find the cheapest when a register is retrieved from the table.
1387 The in_memory field in the hash table element is set to 0.
1388 The caller must set it nonzero if appropriate.
1390 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1391 and if insert_regs returns a nonzero value
1392 you must then recompute its hash code before calling here.
1394 If necessary, update table showing constant values of quantities. */
1396 #define CHEAPER(X, Y) \
1397 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
1399 static struct table_elt *
1400 insert (rtx x, struct table_elt *classp, unsigned int hash, enum machine_mode mode)
1402 struct table_elt *elt;
1404 /* If X is a register and we haven't made a quantity for it,
1405 something is wrong. */
1406 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1408 /* If X is a hard register, show it is being put in the table. */
1409 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1410 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1412 /* Put an element for X into the right hash bucket. */
1414 elt = free_element_chain;
1415 if (elt)
1416 free_element_chain = elt->next_same_hash;
1417 else
1418 elt = XNEW (struct table_elt);
1420 elt->exp = x;
1421 elt->canon_exp = NULL_RTX;
1422 elt->cost = COST (x);
1423 elt->regcost = approx_reg_cost (x);
1424 elt->next_same_value = 0;
1425 elt->prev_same_value = 0;
1426 elt->next_same_hash = table[hash];
1427 elt->prev_same_hash = 0;
1428 elt->related_value = 0;
1429 elt->in_memory = 0;
1430 elt->mode = mode;
1431 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1433 if (table[hash])
1434 table[hash]->prev_same_hash = elt;
1435 table[hash] = elt;
1437 /* Put it into the proper value-class. */
1438 if (classp)
1440 classp = classp->first_same_value;
1441 if (CHEAPER (elt, classp))
1442 /* Insert at the head of the class. */
1444 struct table_elt *p;
1445 elt->next_same_value = classp;
1446 classp->prev_same_value = elt;
1447 elt->first_same_value = elt;
1449 for (p = classp; p; p = p->next_same_value)
1450 p->first_same_value = elt;
1452 else
1454 /* Insert not at head of the class. */
1455 /* Put it after the last element cheaper than X. */
1456 struct table_elt *p, *next;
1458 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1459 p = next);
1461 /* Put it after P and before NEXT. */
1462 elt->next_same_value = next;
1463 if (next)
1464 next->prev_same_value = elt;
1466 elt->prev_same_value = p;
1467 p->next_same_value = elt;
1468 elt->first_same_value = classp;
1471 else
1472 elt->first_same_value = elt;
1474 /* If this is a constant being set equivalent to a register or a register
1475 being set equivalent to a constant, note the constant equivalence.
1477 If this is a constant, it cannot be equivalent to a different constant,
1478 and a constant is the only thing that can be cheaper than a register. So
1479 we know the register is the head of the class (before the constant was
1480 inserted).
1482 If this is a register that is not already known equivalent to a
1483 constant, we must check the entire class.
1485 If this is a register that is already known equivalent to an insn,
1486 update the qtys `const_insn' to show that `this_insn' is the latest
1487 insn making that quantity equivalent to the constant. */
1489 if (elt->is_const && classp && REG_P (classp->exp)
1490 && !REG_P (x))
1492 int exp_q = REG_QTY (REGNO (classp->exp));
1493 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1495 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1496 exp_ent->const_insn = this_insn;
1499 else if (REG_P (x)
1500 && classp
1501 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1502 && ! elt->is_const)
1504 struct table_elt *p;
1506 for (p = classp; p != 0; p = p->next_same_value)
1508 if (p->is_const && !REG_P (p->exp))
1510 int x_q = REG_QTY (REGNO (x));
1511 struct qty_table_elem *x_ent = &qty_table[x_q];
1513 x_ent->const_rtx
1514 = gen_lowpart (GET_MODE (x), p->exp);
1515 x_ent->const_insn = this_insn;
1516 break;
1521 else if (REG_P (x)
1522 && qty_table[REG_QTY (REGNO (x))].const_rtx
1523 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1524 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1526 /* If this is a constant with symbolic value,
1527 and it has a term with an explicit integer value,
1528 link it up with related expressions. */
1529 if (GET_CODE (x) == CONST)
1531 rtx subexp = get_related_value (x);
1532 unsigned subhash;
1533 struct table_elt *subelt, *subelt_prev;
1535 if (subexp != 0)
1537 /* Get the integer-free subexpression in the hash table. */
1538 subhash = SAFE_HASH (subexp, mode);
1539 subelt = lookup (subexp, subhash, mode);
1540 if (subelt == 0)
1541 subelt = insert (subexp, NULL, subhash, mode);
1542 /* Initialize SUBELT's circular chain if it has none. */
1543 if (subelt->related_value == 0)
1544 subelt->related_value = subelt;
1545 /* Find the element in the circular chain that precedes SUBELT. */
1546 subelt_prev = subelt;
1547 while (subelt_prev->related_value != subelt)
1548 subelt_prev = subelt_prev->related_value;
1549 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1550 This way the element that follows SUBELT is the oldest one. */
1551 elt->related_value = subelt_prev->related_value;
1552 subelt_prev->related_value = elt;
1556 return elt;
1559 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1560 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1561 the two classes equivalent.
1563 CLASS1 will be the surviving class; CLASS2 should not be used after this
1564 call.
1566 Any invalid entries in CLASS2 will not be copied. */
1568 static void
1569 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1571 struct table_elt *elt, *next, *new;
1573 /* Ensure we start with the head of the classes. */
1574 class1 = class1->first_same_value;
1575 class2 = class2->first_same_value;
1577 /* If they were already equal, forget it. */
1578 if (class1 == class2)
1579 return;
1581 for (elt = class2; elt; elt = next)
1583 unsigned int hash;
1584 rtx exp = elt->exp;
1585 enum machine_mode mode = elt->mode;
1587 next = elt->next_same_value;
1589 /* Remove old entry, make a new one in CLASS1's class.
1590 Don't do this for invalid entries as we cannot find their
1591 hash code (it also isn't necessary). */
1592 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1594 bool need_rehash = false;
1596 hash_arg_in_memory = 0;
1597 hash = HASH (exp, mode);
1599 if (REG_P (exp))
1601 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1602 delete_reg_equiv (REGNO (exp));
1605 remove_from_table (elt, hash);
1607 if (insert_regs (exp, class1, 0) || need_rehash)
1609 rehash_using_reg (exp);
1610 hash = HASH (exp, mode);
1612 new = insert (exp, class1, hash, mode);
1613 new->in_memory = hash_arg_in_memory;
1618 /* Flush the entire hash table. */
1620 static void
1621 flush_hash_table (void)
1623 int i;
1624 struct table_elt *p;
1626 for (i = 0; i < HASH_SIZE; i++)
1627 for (p = table[i]; p; p = table[i])
1629 /* Note that invalidate can remove elements
1630 after P in the current hash chain. */
1631 if (REG_P (p->exp))
1632 invalidate (p->exp, VOIDmode);
1633 else
1634 remove_from_table (p, i);
1638 /* Function called for each rtx to check whether true dependence exist. */
1639 struct check_dependence_data
1641 enum machine_mode mode;
1642 rtx exp;
1643 rtx addr;
1646 static int
1647 check_dependence (rtx *x, void *data)
1649 struct check_dependence_data *d = (struct check_dependence_data *) data;
1650 if (*x && MEM_P (*x))
1651 return canon_true_dependence (d->exp, d->mode, d->addr, *x,
1652 cse_rtx_varies_p);
1653 else
1654 return 0;
1657 /* Remove from the hash table, or mark as invalid, all expressions whose
1658 values could be altered by storing in X. X is a register, a subreg, or
1659 a memory reference with nonvarying address (because, when a memory
1660 reference with a varying address is stored in, all memory references are
1661 removed by invalidate_memory so specific invalidation is superfluous).
1662 FULL_MODE, if not VOIDmode, indicates that this much should be
1663 invalidated instead of just the amount indicated by the mode of X. This
1664 is only used for bitfield stores into memory.
1666 A nonvarying address may be just a register or just a symbol reference,
1667 or it may be either of those plus a numeric offset. */
1669 static void
1670 invalidate (rtx x, enum machine_mode full_mode)
1672 int i;
1673 struct table_elt *p;
1674 rtx addr;
1676 switch (GET_CODE (x))
1678 case REG:
1680 /* If X is a register, dependencies on its contents are recorded
1681 through the qty number mechanism. Just change the qty number of
1682 the register, mark it as invalid for expressions that refer to it,
1683 and remove it itself. */
1684 unsigned int regno = REGNO (x);
1685 unsigned int hash = HASH (x, GET_MODE (x));
1687 /* Remove REGNO from any quantity list it might be on and indicate
1688 that its value might have changed. If it is a pseudo, remove its
1689 entry from the hash table.
1691 For a hard register, we do the first two actions above for any
1692 additional hard registers corresponding to X. Then, if any of these
1693 registers are in the table, we must remove any REG entries that
1694 overlap these registers. */
1696 delete_reg_equiv (regno);
1697 REG_TICK (regno)++;
1698 SUBREG_TICKED (regno) = -1;
1700 if (regno >= FIRST_PSEUDO_REGISTER)
1702 /* Because a register can be referenced in more than one mode,
1703 we might have to remove more than one table entry. */
1704 struct table_elt *elt;
1706 while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
1707 remove_from_table (elt, hash);
1709 else
1711 HOST_WIDE_INT in_table
1712 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1713 unsigned int endregno = END_HARD_REGNO (x);
1714 unsigned int tregno, tendregno, rn;
1715 struct table_elt *p, *next;
1717 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1719 for (rn = regno + 1; rn < endregno; rn++)
1721 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1722 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1723 delete_reg_equiv (rn);
1724 REG_TICK (rn)++;
1725 SUBREG_TICKED (rn) = -1;
1728 if (in_table)
1729 for (hash = 0; hash < HASH_SIZE; hash++)
1730 for (p = table[hash]; p; p = next)
1732 next = p->next_same_hash;
1734 if (!REG_P (p->exp)
1735 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1736 continue;
1738 tregno = REGNO (p->exp);
1739 tendregno = END_HARD_REGNO (p->exp);
1740 if (tendregno > regno && tregno < endregno)
1741 remove_from_table (p, hash);
1745 return;
1747 case SUBREG:
1748 invalidate (SUBREG_REG (x), VOIDmode);
1749 return;
1751 case PARALLEL:
1752 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1753 invalidate (XVECEXP (x, 0, i), VOIDmode);
1754 return;
1756 case EXPR_LIST:
1757 /* This is part of a disjoint return value; extract the location in
1758 question ignoring the offset. */
1759 invalidate (XEXP (x, 0), VOIDmode);
1760 return;
1762 case MEM:
1763 addr = canon_rtx (get_addr (XEXP (x, 0)));
1764 /* Calculate the canonical version of X here so that
1765 true_dependence doesn't generate new RTL for X on each call. */
1766 x = canon_rtx (x);
1768 /* Remove all hash table elements that refer to overlapping pieces of
1769 memory. */
1770 if (full_mode == VOIDmode)
1771 full_mode = GET_MODE (x);
1773 for (i = 0; i < HASH_SIZE; i++)
1775 struct table_elt *next;
1777 for (p = table[i]; p; p = next)
1779 next = p->next_same_hash;
1780 if (p->in_memory)
1782 struct check_dependence_data d;
1784 /* Just canonicalize the expression once;
1785 otherwise each time we call invalidate
1786 true_dependence will canonicalize the
1787 expression again. */
1788 if (!p->canon_exp)
1789 p->canon_exp = canon_rtx (p->exp);
1790 d.exp = x;
1791 d.addr = addr;
1792 d.mode = full_mode;
1793 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1794 remove_from_table (p, i);
1798 return;
1800 default:
1801 gcc_unreachable ();
1805 /* Remove all expressions that refer to register REGNO,
1806 since they are already invalid, and we are about to
1807 mark that register valid again and don't want the old
1808 expressions to reappear as valid. */
1810 static void
1811 remove_invalid_refs (unsigned int regno)
1813 unsigned int i;
1814 struct table_elt *p, *next;
1816 for (i = 0; i < HASH_SIZE; i++)
1817 for (p = table[i]; p; p = next)
1819 next = p->next_same_hash;
1820 if (!REG_P (p->exp)
1821 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1822 remove_from_table (p, i);
1826 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1827 and mode MODE. */
1828 static void
1829 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1830 enum machine_mode mode)
1832 unsigned int i;
1833 struct table_elt *p, *next;
1834 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
1836 for (i = 0; i < HASH_SIZE; i++)
1837 for (p = table[i]; p; p = next)
1839 rtx exp = p->exp;
1840 next = p->next_same_hash;
1842 if (!REG_P (exp)
1843 && (GET_CODE (exp) != SUBREG
1844 || !REG_P (SUBREG_REG (exp))
1845 || REGNO (SUBREG_REG (exp)) != regno
1846 || (((SUBREG_BYTE (exp)
1847 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
1848 && SUBREG_BYTE (exp) <= end))
1849 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1850 remove_from_table (p, i);
1854 /* Recompute the hash codes of any valid entries in the hash table that
1855 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1857 This is called when we make a jump equivalence. */
1859 static void
1860 rehash_using_reg (rtx x)
1862 unsigned int i;
1863 struct table_elt *p, *next;
1864 unsigned hash;
1866 if (GET_CODE (x) == SUBREG)
1867 x = SUBREG_REG (x);
1869 /* If X is not a register or if the register is known not to be in any
1870 valid entries in the table, we have no work to do. */
1872 if (!REG_P (x)
1873 || REG_IN_TABLE (REGNO (x)) < 0
1874 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
1875 return;
1877 /* Scan all hash chains looking for valid entries that mention X.
1878 If we find one and it is in the wrong hash chain, move it. */
1880 for (i = 0; i < HASH_SIZE; i++)
1881 for (p = table[i]; p; p = next)
1883 next = p->next_same_hash;
1884 if (reg_mentioned_p (x, p->exp)
1885 && exp_equiv_p (p->exp, p->exp, 1, false)
1886 && i != (hash = SAFE_HASH (p->exp, p->mode)))
1888 if (p->next_same_hash)
1889 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1891 if (p->prev_same_hash)
1892 p->prev_same_hash->next_same_hash = p->next_same_hash;
1893 else
1894 table[i] = p->next_same_hash;
1896 p->next_same_hash = table[hash];
1897 p->prev_same_hash = 0;
1898 if (table[hash])
1899 table[hash]->prev_same_hash = p;
1900 table[hash] = p;
1905 /* Remove from the hash table any expression that is a call-clobbered
1906 register. Also update their TICK values. */
1908 static void
1909 invalidate_for_call (void)
1911 unsigned int regno, endregno;
1912 unsigned int i;
1913 unsigned hash;
1914 struct table_elt *p, *next;
1915 int in_table = 0;
1917 /* Go through all the hard registers. For each that is clobbered in
1918 a CALL_INSN, remove the register from quantity chains and update
1919 reg_tick if defined. Also see if any of these registers is currently
1920 in the table. */
1922 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1923 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1925 delete_reg_equiv (regno);
1926 if (REG_TICK (regno) >= 0)
1928 REG_TICK (regno)++;
1929 SUBREG_TICKED (regno) = -1;
1932 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
1935 /* In the case where we have no call-clobbered hard registers in the
1936 table, we are done. Otherwise, scan the table and remove any
1937 entry that overlaps a call-clobbered register. */
1939 if (in_table)
1940 for (hash = 0; hash < HASH_SIZE; hash++)
1941 for (p = table[hash]; p; p = next)
1943 next = p->next_same_hash;
1945 if (!REG_P (p->exp)
1946 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1947 continue;
1949 regno = REGNO (p->exp);
1950 endregno = END_HARD_REGNO (p->exp);
1952 for (i = regno; i < endregno; i++)
1953 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1955 remove_from_table (p, hash);
1956 break;
1961 /* Given an expression X of type CONST,
1962 and ELT which is its table entry (or 0 if it
1963 is not in the hash table),
1964 return an alternate expression for X as a register plus integer.
1965 If none can be found, return 0. */
1967 static rtx
1968 use_related_value (rtx x, struct table_elt *elt)
1970 struct table_elt *relt = 0;
1971 struct table_elt *p, *q;
1972 HOST_WIDE_INT offset;
1974 /* First, is there anything related known?
1975 If we have a table element, we can tell from that.
1976 Otherwise, must look it up. */
1978 if (elt != 0 && elt->related_value != 0)
1979 relt = elt;
1980 else if (elt == 0 && GET_CODE (x) == CONST)
1982 rtx subexp = get_related_value (x);
1983 if (subexp != 0)
1984 relt = lookup (subexp,
1985 SAFE_HASH (subexp, GET_MODE (subexp)),
1986 GET_MODE (subexp));
1989 if (relt == 0)
1990 return 0;
1992 /* Search all related table entries for one that has an
1993 equivalent register. */
1995 p = relt;
1996 while (1)
1998 /* This loop is strange in that it is executed in two different cases.
1999 The first is when X is already in the table. Then it is searching
2000 the RELATED_VALUE list of X's class (RELT). The second case is when
2001 X is not in the table. Then RELT points to a class for the related
2002 value.
2004 Ensure that, whatever case we are in, that we ignore classes that have
2005 the same value as X. */
2007 if (rtx_equal_p (x, p->exp))
2008 q = 0;
2009 else
2010 for (q = p->first_same_value; q; q = q->next_same_value)
2011 if (REG_P (q->exp))
2012 break;
2014 if (q)
2015 break;
2017 p = p->related_value;
2019 /* We went all the way around, so there is nothing to be found.
2020 Alternatively, perhaps RELT was in the table for some other reason
2021 and it has no related values recorded. */
2022 if (p == relt || p == 0)
2023 break;
2026 if (q == 0)
2027 return 0;
2029 offset = (get_integer_term (x) - get_integer_term (p->exp));
2030 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2031 return plus_constant (q->exp, offset);
2034 /* Hash a string. Just add its bytes up. */
2035 static inline unsigned
2036 hash_rtx_string (const char *ps)
2038 unsigned hash = 0;
2039 const unsigned char *p = (const unsigned char *) ps;
2041 if (p)
2042 while (*p)
2043 hash += *p++;
2045 return hash;
2048 /* Hash an rtx. We are careful to make sure the value is never negative.
2049 Equivalent registers hash identically.
2050 MODE is used in hashing for CONST_INTs only;
2051 otherwise the mode of X is used.
2053 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2055 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2056 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
2058 Note that cse_insn knows that the hash code of a MEM expression
2059 is just (int) MEM plus the hash code of the address. */
2061 unsigned
2062 hash_rtx (const_rtx x, enum machine_mode mode, int *do_not_record_p,
2063 int *hash_arg_in_memory_p, bool have_reg_qty)
2065 int i, j;
2066 unsigned hash = 0;
2067 enum rtx_code code;
2068 const char *fmt;
2070 /* Used to turn recursion into iteration. We can't rely on GCC's
2071 tail-recursion elimination since we need to keep accumulating values
2072 in HASH. */
2073 repeat:
2074 if (x == 0)
2075 return hash;
2077 code = GET_CODE (x);
2078 switch (code)
2080 case REG:
2082 unsigned int regno = REGNO (x);
2084 if (!reload_completed)
2086 /* On some machines, we can't record any non-fixed hard register,
2087 because extending its life will cause reload problems. We
2088 consider ap, fp, sp, gp to be fixed for this purpose.
2090 We also consider CCmode registers to be fixed for this purpose;
2091 failure to do so leads to failure to simplify 0<100 type of
2092 conditionals.
2094 On all machines, we can't record any global registers.
2095 Nor should we record any register that is in a small
2096 class, as defined by CLASS_LIKELY_SPILLED_P. */
2097 bool record;
2099 if (regno >= FIRST_PSEUDO_REGISTER)
2100 record = true;
2101 else if (x == frame_pointer_rtx
2102 || x == hard_frame_pointer_rtx
2103 || x == arg_pointer_rtx
2104 || x == stack_pointer_rtx
2105 || x == pic_offset_table_rtx)
2106 record = true;
2107 else if (global_regs[regno])
2108 record = false;
2109 else if (fixed_regs[regno])
2110 record = true;
2111 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2112 record = true;
2113 else if (SMALL_REGISTER_CLASSES)
2114 record = false;
2115 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2116 record = false;
2117 else
2118 record = true;
2120 if (!record)
2122 *do_not_record_p = 1;
2123 return 0;
2127 hash += ((unsigned int) REG << 7);
2128 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2129 return hash;
2132 /* We handle SUBREG of a REG specially because the underlying
2133 reg changes its hash value with every value change; we don't
2134 want to have to forget unrelated subregs when one subreg changes. */
2135 case SUBREG:
2137 if (REG_P (SUBREG_REG (x)))
2139 hash += (((unsigned int) SUBREG << 7)
2140 + REGNO (SUBREG_REG (x))
2141 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2142 return hash;
2144 break;
2147 case CONST_INT:
2148 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2149 + (unsigned int) INTVAL (x));
2150 return hash;
2152 case CONST_DOUBLE:
2153 /* This is like the general case, except that it only counts
2154 the integers representing the constant. */
2155 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2156 if (GET_MODE (x) != VOIDmode)
2157 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2158 else
2159 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2160 + (unsigned int) CONST_DOUBLE_HIGH (x));
2161 return hash;
2163 case CONST_FIXED:
2164 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2165 hash += fixed_hash (CONST_FIXED_VALUE (x));
2166 return hash;
2168 case CONST_VECTOR:
2170 int units;
2171 rtx elt;
2173 units = CONST_VECTOR_NUNITS (x);
2175 for (i = 0; i < units; ++i)
2177 elt = CONST_VECTOR_ELT (x, i);
2178 hash += hash_rtx (elt, GET_MODE (elt), do_not_record_p,
2179 hash_arg_in_memory_p, have_reg_qty);
2182 return hash;
2185 /* Assume there is only one rtx object for any given label. */
2186 case LABEL_REF:
2187 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2188 differences and differences between each stage's debugging dumps. */
2189 hash += (((unsigned int) LABEL_REF << 7)
2190 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2191 return hash;
2193 case SYMBOL_REF:
2195 /* Don't hash on the symbol's address to avoid bootstrap differences.
2196 Different hash values may cause expressions to be recorded in
2197 different orders and thus different registers to be used in the
2198 final assembler. This also avoids differences in the dump files
2199 between various stages. */
2200 unsigned int h = 0;
2201 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2203 while (*p)
2204 h += (h << 7) + *p++; /* ??? revisit */
2206 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2207 return hash;
2210 case MEM:
2211 /* We don't record if marked volatile or if BLKmode since we don't
2212 know the size of the move. */
2213 if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
2215 *do_not_record_p = 1;
2216 return 0;
2218 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2219 *hash_arg_in_memory_p = 1;
2221 /* Now that we have already found this special case,
2222 might as well speed it up as much as possible. */
2223 hash += (unsigned) MEM;
2224 x = XEXP (x, 0);
2225 goto repeat;
2227 case USE:
2228 /* A USE that mentions non-volatile memory needs special
2229 handling since the MEM may be BLKmode which normally
2230 prevents an entry from being made. Pure calls are
2231 marked by a USE which mentions BLKmode memory.
2232 See calls.c:emit_call_1. */
2233 if (MEM_P (XEXP (x, 0))
2234 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2236 hash += (unsigned) USE;
2237 x = XEXP (x, 0);
2239 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2240 *hash_arg_in_memory_p = 1;
2242 /* Now that we have already found this special case,
2243 might as well speed it up as much as possible. */
2244 hash += (unsigned) MEM;
2245 x = XEXP (x, 0);
2246 goto repeat;
2248 break;
2250 case PRE_DEC:
2251 case PRE_INC:
2252 case POST_DEC:
2253 case POST_INC:
2254 case PRE_MODIFY:
2255 case POST_MODIFY:
2256 case PC:
2257 case CC0:
2258 case CALL:
2259 case UNSPEC_VOLATILE:
2260 *do_not_record_p = 1;
2261 return 0;
2263 case ASM_OPERANDS:
2264 if (MEM_VOLATILE_P (x))
2266 *do_not_record_p = 1;
2267 return 0;
2269 else
2271 /* We don't want to take the filename and line into account. */
2272 hash += (unsigned) code + (unsigned) GET_MODE (x)
2273 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2274 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2275 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2277 if (ASM_OPERANDS_INPUT_LENGTH (x))
2279 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2281 hash += (hash_rtx (ASM_OPERANDS_INPUT (x, i),
2282 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2283 do_not_record_p, hash_arg_in_memory_p,
2284 have_reg_qty)
2285 + hash_rtx_string
2286 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2289 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2290 x = ASM_OPERANDS_INPUT (x, 0);
2291 mode = GET_MODE (x);
2292 goto repeat;
2295 return hash;
2297 break;
2299 default:
2300 break;
2303 i = GET_RTX_LENGTH (code) - 1;
2304 hash += (unsigned) code + (unsigned) GET_MODE (x);
2305 fmt = GET_RTX_FORMAT (code);
2306 for (; i >= 0; i--)
2308 switch (fmt[i])
2310 case 'e':
2311 /* If we are about to do the last recursive call
2312 needed at this level, change it into iteration.
2313 This function is called enough to be worth it. */
2314 if (i == 0)
2316 x = XEXP (x, i);
2317 goto repeat;
2320 hash += hash_rtx (XEXP (x, i), 0, do_not_record_p,
2321 hash_arg_in_memory_p, have_reg_qty);
2322 break;
2324 case 'E':
2325 for (j = 0; j < XVECLEN (x, i); j++)
2326 hash += hash_rtx (XVECEXP (x, i, j), 0, do_not_record_p,
2327 hash_arg_in_memory_p, have_reg_qty);
2328 break;
2330 case 's':
2331 hash += hash_rtx_string (XSTR (x, i));
2332 break;
2334 case 'i':
2335 hash += (unsigned int) XINT (x, i);
2336 break;
2338 case '0': case 't':
2339 /* Unused. */
2340 break;
2342 default:
2343 gcc_unreachable ();
2347 return hash;
2350 /* Hash an rtx X for cse via hash_rtx.
2351 Stores 1 in do_not_record if any subexpression is volatile.
2352 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2353 does not have the RTX_UNCHANGING_P bit set. */
2355 static inline unsigned
2356 canon_hash (rtx x, enum machine_mode mode)
2358 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2361 /* Like canon_hash but with no side effects, i.e. do_not_record
2362 and hash_arg_in_memory are not changed. */
2364 static inline unsigned
2365 safe_hash (rtx x, enum machine_mode mode)
2367 int dummy_do_not_record;
2368 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2371 /* Return 1 iff X and Y would canonicalize into the same thing,
2372 without actually constructing the canonicalization of either one.
2373 If VALIDATE is nonzero,
2374 we assume X is an expression being processed from the rtl
2375 and Y was found in the hash table. We check register refs
2376 in Y for being marked as valid.
2378 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2381 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2383 int i, j;
2384 enum rtx_code code;
2385 const char *fmt;
2387 /* Note: it is incorrect to assume an expression is equivalent to itself
2388 if VALIDATE is nonzero. */
2389 if (x == y && !validate)
2390 return 1;
2392 if (x == 0 || y == 0)
2393 return x == y;
2395 code = GET_CODE (x);
2396 if (code != GET_CODE (y))
2397 return 0;
2399 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2400 if (GET_MODE (x) != GET_MODE (y))
2401 return 0;
2403 switch (code)
2405 case PC:
2406 case CC0:
2407 case CONST_INT:
2408 case CONST_DOUBLE:
2409 case CONST_FIXED:
2410 return x == y;
2412 case LABEL_REF:
2413 return XEXP (x, 0) == XEXP (y, 0);
2415 case SYMBOL_REF:
2416 return XSTR (x, 0) == XSTR (y, 0);
2418 case REG:
2419 if (for_gcse)
2420 return REGNO (x) == REGNO (y);
2421 else
2423 unsigned int regno = REGNO (y);
2424 unsigned int i;
2425 unsigned int endregno = END_REGNO (y);
2427 /* If the quantities are not the same, the expressions are not
2428 equivalent. If there are and we are not to validate, they
2429 are equivalent. Otherwise, ensure all regs are up-to-date. */
2431 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2432 return 0;
2434 if (! validate)
2435 return 1;
2437 for (i = regno; i < endregno; i++)
2438 if (REG_IN_TABLE (i) != REG_TICK (i))
2439 return 0;
2441 return 1;
2444 case MEM:
2445 if (for_gcse)
2447 /* A volatile mem should not be considered equivalent to any
2448 other. */
2449 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2450 return 0;
2452 /* Can't merge two expressions in different alias sets, since we
2453 can decide that the expression is transparent in a block when
2454 it isn't, due to it being set with the different alias set.
2456 Also, can't merge two expressions with different MEM_ATTRS.
2457 They could e.g. be two different entities allocated into the
2458 same space on the stack (see e.g. PR25130). In that case, the
2459 MEM addresses can be the same, even though the two MEMs are
2460 absolutely not equivalent.
2462 But because really all MEM attributes should be the same for
2463 equivalent MEMs, we just use the invariant that MEMs that have
2464 the same attributes share the same mem_attrs data structure. */
2465 if (MEM_ATTRS (x) != MEM_ATTRS (y))
2466 return 0;
2468 break;
2470 /* For commutative operations, check both orders. */
2471 case PLUS:
2472 case MULT:
2473 case AND:
2474 case IOR:
2475 case XOR:
2476 case NE:
2477 case EQ:
2478 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2479 validate, for_gcse)
2480 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2481 validate, for_gcse))
2482 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2483 validate, for_gcse)
2484 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2485 validate, for_gcse)));
2487 case ASM_OPERANDS:
2488 /* We don't use the generic code below because we want to
2489 disregard filename and line numbers. */
2491 /* A volatile asm isn't equivalent to any other. */
2492 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2493 return 0;
2495 if (GET_MODE (x) != GET_MODE (y)
2496 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2497 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2498 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2499 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2500 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2501 return 0;
2503 if (ASM_OPERANDS_INPUT_LENGTH (x))
2505 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2506 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2507 ASM_OPERANDS_INPUT (y, i),
2508 validate, for_gcse)
2509 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2510 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2511 return 0;
2514 return 1;
2516 default:
2517 break;
2520 /* Compare the elements. If any pair of corresponding elements
2521 fail to match, return 0 for the whole thing. */
2523 fmt = GET_RTX_FORMAT (code);
2524 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2526 switch (fmt[i])
2528 case 'e':
2529 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2530 validate, for_gcse))
2531 return 0;
2532 break;
2534 case 'E':
2535 if (XVECLEN (x, i) != XVECLEN (y, i))
2536 return 0;
2537 for (j = 0; j < XVECLEN (x, i); j++)
2538 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2539 validate, for_gcse))
2540 return 0;
2541 break;
2543 case 's':
2544 if (strcmp (XSTR (x, i), XSTR (y, i)))
2545 return 0;
2546 break;
2548 case 'i':
2549 if (XINT (x, i) != XINT (y, i))
2550 return 0;
2551 break;
2553 case 'w':
2554 if (XWINT (x, i) != XWINT (y, i))
2555 return 0;
2556 break;
2558 case '0':
2559 case 't':
2560 break;
2562 default:
2563 gcc_unreachable ();
2567 return 1;
2570 /* Return 1 if X has a value that can vary even between two
2571 executions of the program. 0 means X can be compared reliably
2572 against certain constants or near-constants. */
2574 static bool
2575 cse_rtx_varies_p (const_rtx x, bool from_alias)
2577 /* We need not check for X and the equivalence class being of the same
2578 mode because if X is equivalent to a constant in some mode, it
2579 doesn't vary in any mode. */
2581 if (REG_P (x)
2582 && REGNO_QTY_VALID_P (REGNO (x)))
2584 int x_q = REG_QTY (REGNO (x));
2585 struct qty_table_elem *x_ent = &qty_table[x_q];
2587 if (GET_MODE (x) == x_ent->mode
2588 && x_ent->const_rtx != NULL_RTX)
2589 return 0;
2592 if (GET_CODE (x) == PLUS
2593 && GET_CODE (XEXP (x, 1)) == CONST_INT
2594 && REG_P (XEXP (x, 0))
2595 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2597 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2598 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2600 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2601 && x0_ent->const_rtx != NULL_RTX)
2602 return 0;
2605 /* This can happen as the result of virtual register instantiation, if
2606 the initial constant is too large to be a valid address. This gives
2607 us a three instruction sequence, load large offset into a register,
2608 load fp minus a constant into a register, then a MEM which is the
2609 sum of the two `constant' registers. */
2610 if (GET_CODE (x) == PLUS
2611 && REG_P (XEXP (x, 0))
2612 && REG_P (XEXP (x, 1))
2613 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2614 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2616 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2617 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2618 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2619 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2621 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2622 && x0_ent->const_rtx != NULL_RTX
2623 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2624 && x1_ent->const_rtx != NULL_RTX)
2625 return 0;
2628 return rtx_varies_p (x, from_alias);
2631 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2632 the result if necessary. INSN is as for canon_reg. */
2634 static void
2635 validate_canon_reg (rtx *xloc, rtx insn)
2637 if (*xloc)
2639 rtx new = canon_reg (*xloc, insn);
2641 /* If replacing pseudo with hard reg or vice versa, ensure the
2642 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2643 gcc_assert (insn && new);
2644 validate_change (insn, xloc, new, 1);
2648 /* Canonicalize an expression:
2649 replace each register reference inside it
2650 with the "oldest" equivalent register.
2652 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2653 after we make our substitution. The calls are made with IN_GROUP nonzero
2654 so apply_change_group must be called upon the outermost return from this
2655 function (unless INSN is zero). The result of apply_change_group can
2656 generally be discarded since the changes we are making are optional. */
2658 static rtx
2659 canon_reg (rtx x, rtx insn)
2661 int i;
2662 enum rtx_code code;
2663 const char *fmt;
2665 if (x == 0)
2666 return x;
2668 code = GET_CODE (x);
2669 switch (code)
2671 case PC:
2672 case CC0:
2673 case CONST:
2674 case CONST_INT:
2675 case CONST_DOUBLE:
2676 case CONST_FIXED:
2677 case CONST_VECTOR:
2678 case SYMBOL_REF:
2679 case LABEL_REF:
2680 case ADDR_VEC:
2681 case ADDR_DIFF_VEC:
2682 return x;
2684 case REG:
2686 int first;
2687 int q;
2688 struct qty_table_elem *ent;
2690 /* Never replace a hard reg, because hard regs can appear
2691 in more than one machine mode, and we must preserve the mode
2692 of each occurrence. Also, some hard regs appear in
2693 MEMs that are shared and mustn't be altered. Don't try to
2694 replace any reg that maps to a reg of class NO_REGS. */
2695 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2696 || ! REGNO_QTY_VALID_P (REGNO (x)))
2697 return x;
2699 q = REG_QTY (REGNO (x));
2700 ent = &qty_table[q];
2701 first = ent->first_reg;
2702 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2703 : REGNO_REG_CLASS (first) == NO_REGS ? x
2704 : gen_rtx_REG (ent->mode, first));
2707 default:
2708 break;
2711 fmt = GET_RTX_FORMAT (code);
2712 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2714 int j;
2716 if (fmt[i] == 'e')
2717 validate_canon_reg (&XEXP (x, i), insn);
2718 else if (fmt[i] == 'E')
2719 for (j = 0; j < XVECLEN (x, i); j++)
2720 validate_canon_reg (&XVECEXP (x, i, j), insn);
2723 return x;
2726 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2727 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2728 what values are being compared.
2730 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2731 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2732 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2733 compared to produce cc0.
2735 The return value is the comparison operator and is either the code of
2736 A or the code corresponding to the inverse of the comparison. */
2738 static enum rtx_code
2739 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2740 enum machine_mode *pmode1, enum machine_mode *pmode2)
2742 rtx arg1, arg2;
2744 arg1 = *parg1, arg2 = *parg2;
2746 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2748 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2750 /* Set nonzero when we find something of interest. */
2751 rtx x = 0;
2752 int reverse_code = 0;
2753 struct table_elt *p = 0;
2755 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2756 On machines with CC0, this is the only case that can occur, since
2757 fold_rtx will return the COMPARE or item being compared with zero
2758 when given CC0. */
2760 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2761 x = arg1;
2763 /* If ARG1 is a comparison operator and CODE is testing for
2764 STORE_FLAG_VALUE, get the inner arguments. */
2766 else if (COMPARISON_P (arg1))
2768 #ifdef FLOAT_STORE_FLAG_VALUE
2769 REAL_VALUE_TYPE fsfv;
2770 #endif
2772 if (code == NE
2773 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2774 && code == LT && STORE_FLAG_VALUE == -1)
2775 #ifdef FLOAT_STORE_FLAG_VALUE
2776 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2777 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2778 REAL_VALUE_NEGATIVE (fsfv)))
2779 #endif
2781 x = arg1;
2782 else if (code == EQ
2783 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2784 && code == GE && STORE_FLAG_VALUE == -1)
2785 #ifdef FLOAT_STORE_FLAG_VALUE
2786 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2787 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2788 REAL_VALUE_NEGATIVE (fsfv)))
2789 #endif
2791 x = arg1, reverse_code = 1;
2794 /* ??? We could also check for
2796 (ne (and (eq (...) (const_int 1))) (const_int 0))
2798 and related forms, but let's wait until we see them occurring. */
2800 if (x == 0)
2801 /* Look up ARG1 in the hash table and see if it has an equivalence
2802 that lets us see what is being compared. */
2803 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2804 if (p)
2806 p = p->first_same_value;
2808 /* If what we compare is already known to be constant, that is as
2809 good as it gets.
2810 We need to break the loop in this case, because otherwise we
2811 can have an infinite loop when looking at a reg that is known
2812 to be a constant which is the same as a comparison of a reg
2813 against zero which appears later in the insn stream, which in
2814 turn is constant and the same as the comparison of the first reg
2815 against zero... */
2816 if (p->is_const)
2817 break;
2820 for (; p; p = p->next_same_value)
2822 enum machine_mode inner_mode = GET_MODE (p->exp);
2823 #ifdef FLOAT_STORE_FLAG_VALUE
2824 REAL_VALUE_TYPE fsfv;
2825 #endif
2827 /* If the entry isn't valid, skip it. */
2828 if (! exp_equiv_p (p->exp, p->exp, 1, false))
2829 continue;
2831 if (GET_CODE (p->exp) == COMPARE
2832 /* Another possibility is that this machine has a compare insn
2833 that includes the comparison code. In that case, ARG1 would
2834 be equivalent to a comparison operation that would set ARG1 to
2835 either STORE_FLAG_VALUE or zero. If this is an NE operation,
2836 ORIG_CODE is the actual comparison being done; if it is an EQ,
2837 we must reverse ORIG_CODE. On machine with a negative value
2838 for STORE_FLAG_VALUE, also look at LT and GE operations. */
2839 || ((code == NE
2840 || (code == LT
2841 && GET_MODE_CLASS (inner_mode) == MODE_INT
2842 && (GET_MODE_BITSIZE (inner_mode)
2843 <= HOST_BITS_PER_WIDE_INT)
2844 && (STORE_FLAG_VALUE
2845 & ((HOST_WIDE_INT) 1
2846 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2847 #ifdef FLOAT_STORE_FLAG_VALUE
2848 || (code == LT
2849 && SCALAR_FLOAT_MODE_P (inner_mode)
2850 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2851 REAL_VALUE_NEGATIVE (fsfv)))
2852 #endif
2854 && COMPARISON_P (p->exp)))
2856 x = p->exp;
2857 break;
2859 else if ((code == EQ
2860 || (code == GE
2861 && GET_MODE_CLASS (inner_mode) == MODE_INT
2862 && (GET_MODE_BITSIZE (inner_mode)
2863 <= HOST_BITS_PER_WIDE_INT)
2864 && (STORE_FLAG_VALUE
2865 & ((HOST_WIDE_INT) 1
2866 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2867 #ifdef FLOAT_STORE_FLAG_VALUE
2868 || (code == GE
2869 && SCALAR_FLOAT_MODE_P (inner_mode)
2870 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2871 REAL_VALUE_NEGATIVE (fsfv)))
2872 #endif
2874 && COMPARISON_P (p->exp))
2876 reverse_code = 1;
2877 x = p->exp;
2878 break;
2881 /* If this non-trapping address, e.g. fp + constant, the
2882 equivalent is a better operand since it may let us predict
2883 the value of the comparison. */
2884 else if (!rtx_addr_can_trap_p (p->exp))
2886 arg1 = p->exp;
2887 continue;
2891 /* If we didn't find a useful equivalence for ARG1, we are done.
2892 Otherwise, set up for the next iteration. */
2893 if (x == 0)
2894 break;
2896 /* If we need to reverse the comparison, make sure that that is
2897 possible -- we can't necessarily infer the value of GE from LT
2898 with floating-point operands. */
2899 if (reverse_code)
2901 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
2902 if (reversed == UNKNOWN)
2903 break;
2904 else
2905 code = reversed;
2907 else if (COMPARISON_P (x))
2908 code = GET_CODE (x);
2909 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
2912 /* Return our results. Return the modes from before fold_rtx
2913 because fold_rtx might produce const_int, and then it's too late. */
2914 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
2915 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
2917 return code;
2920 /* If X is a nontrivial arithmetic operation on an argument for which
2921 a constant value can be determined, return the result of operating
2922 on that value, as a constant. Otherwise, return X, possibly with
2923 one or more operands changed to a forward-propagated constant.
2925 If X is a register whose contents are known, we do NOT return
2926 those contents here; equiv_constant is called to perform that task.
2927 For SUBREGs and MEMs, we do that both here and in equiv_constant.
2929 INSN is the insn that we may be modifying. If it is 0, make a copy
2930 of X before modifying it. */
2932 static rtx
2933 fold_rtx (rtx x, rtx insn)
2935 enum rtx_code code;
2936 enum machine_mode mode;
2937 const char *fmt;
2938 int i;
2939 rtx new = 0;
2940 int changed = 0;
2942 /* Operands of X. */
2943 rtx folded_arg0;
2944 rtx folded_arg1;
2946 /* Constant equivalents of first three operands of X;
2947 0 when no such equivalent is known. */
2948 rtx const_arg0;
2949 rtx const_arg1;
2950 rtx const_arg2;
2952 /* The mode of the first operand of X. We need this for sign and zero
2953 extends. */
2954 enum machine_mode mode_arg0;
2956 if (x == 0)
2957 return x;
2959 /* Try to perform some initial simplifications on X. */
2960 code = GET_CODE (x);
2961 switch (code)
2963 case MEM:
2964 case SUBREG:
2965 if ((new = equiv_constant (x)) != NULL_RTX)
2966 return new;
2967 return x;
2969 case CONST:
2970 case CONST_INT:
2971 case CONST_DOUBLE:
2972 case CONST_FIXED:
2973 case CONST_VECTOR:
2974 case SYMBOL_REF:
2975 case LABEL_REF:
2976 case REG:
2977 case PC:
2978 /* No use simplifying an EXPR_LIST
2979 since they are used only for lists of args
2980 in a function call's REG_EQUAL note. */
2981 case EXPR_LIST:
2982 return x;
2984 #ifdef HAVE_cc0
2985 case CC0:
2986 return prev_insn_cc0;
2987 #endif
2989 case ASM_OPERANDS:
2990 if (insn)
2992 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2993 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
2994 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
2996 return x;
2998 #ifdef NO_FUNCTION_CSE
2999 case CALL:
3000 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3001 return x;
3002 break;
3003 #endif
3005 /* Anything else goes through the loop below. */
3006 default:
3007 break;
3010 mode = GET_MODE (x);
3011 const_arg0 = 0;
3012 const_arg1 = 0;
3013 const_arg2 = 0;
3014 mode_arg0 = VOIDmode;
3016 /* Try folding our operands.
3017 Then see which ones have constant values known. */
3019 fmt = GET_RTX_FORMAT (code);
3020 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3021 if (fmt[i] == 'e')
3023 rtx folded_arg = XEXP (x, i), const_arg;
3024 enum machine_mode mode_arg = GET_MODE (folded_arg);
3026 switch (GET_CODE (folded_arg))
3028 case MEM:
3029 case REG:
3030 case SUBREG:
3031 const_arg = equiv_constant (folded_arg);
3032 break;
3034 case CONST:
3035 case CONST_INT:
3036 case SYMBOL_REF:
3037 case LABEL_REF:
3038 case CONST_DOUBLE:
3039 case CONST_FIXED:
3040 case CONST_VECTOR:
3041 const_arg = folded_arg;
3042 break;
3044 #ifdef HAVE_cc0
3045 case CC0:
3046 folded_arg = prev_insn_cc0;
3047 mode_arg = prev_insn_cc0_mode;
3048 const_arg = equiv_constant (folded_arg);
3049 break;
3050 #endif
3052 default:
3053 folded_arg = fold_rtx (folded_arg, insn);
3054 const_arg = equiv_constant (folded_arg);
3055 break;
3058 /* For the first three operands, see if the operand
3059 is constant or equivalent to a constant. */
3060 switch (i)
3062 case 0:
3063 folded_arg0 = folded_arg;
3064 const_arg0 = const_arg;
3065 mode_arg0 = mode_arg;
3066 break;
3067 case 1:
3068 folded_arg1 = folded_arg;
3069 const_arg1 = const_arg;
3070 break;
3071 case 2:
3072 const_arg2 = const_arg;
3073 break;
3076 /* Pick the least expensive of the argument and an equivalent constant
3077 argument. */
3078 if (const_arg != 0
3079 && const_arg != folded_arg
3080 && COST_IN (const_arg, code) <= COST_IN (folded_arg, code)
3082 /* It's not safe to substitute the operand of a conversion
3083 operator with a constant, as the conversion's identity
3084 depends upon the mode of its operand. This optimization
3085 is handled by the call to simplify_unary_operation. */
3086 && (GET_RTX_CLASS (code) != RTX_UNARY
3087 || GET_MODE (const_arg) == mode_arg0
3088 || (code != ZERO_EXTEND
3089 && code != SIGN_EXTEND
3090 && code != TRUNCATE
3091 && code != FLOAT_TRUNCATE
3092 && code != FLOAT_EXTEND
3093 && code != FLOAT
3094 && code != FIX
3095 && code != UNSIGNED_FLOAT
3096 && code != UNSIGNED_FIX)))
3097 folded_arg = const_arg;
3099 if (folded_arg == XEXP (x, i))
3100 continue;
3102 if (insn == NULL_RTX && !changed)
3103 x = copy_rtx (x);
3104 changed = 1;
3105 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3108 if (changed)
3110 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3111 consistent with the order in X. */
3112 if (canonicalize_change_group (insn, x))
3114 rtx tem;
3115 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3116 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3119 apply_change_group ();
3122 /* If X is an arithmetic operation, see if we can simplify it. */
3124 switch (GET_RTX_CLASS (code))
3126 case RTX_UNARY:
3128 int is_const = 0;
3130 /* We can't simplify extension ops unless we know the
3131 original mode. */
3132 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3133 && mode_arg0 == VOIDmode)
3134 break;
3136 /* If we had a CONST, strip it off and put it back later if we
3137 fold. */
3138 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
3139 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
3141 new = simplify_unary_operation (code, mode,
3142 const_arg0 ? const_arg0 : folded_arg0,
3143 mode_arg0);
3144 /* NEG of PLUS could be converted into MINUS, but that causes
3145 expressions of the form
3146 (CONST (MINUS (CONST_INT) (SYMBOL_REF)))
3147 which many ports mistakenly treat as LEGITIMATE_CONSTANT_P.
3148 FIXME: those ports should be fixed. */
3149 if (new != 0 && is_const
3150 && GET_CODE (new) == PLUS
3151 && (GET_CODE (XEXP (new, 0)) == SYMBOL_REF
3152 || GET_CODE (XEXP (new, 0)) == LABEL_REF)
3153 && GET_CODE (XEXP (new, 1)) == CONST_INT)
3154 new = gen_rtx_CONST (mode, new);
3156 break;
3158 case RTX_COMPARE:
3159 case RTX_COMM_COMPARE:
3160 /* See what items are actually being compared and set FOLDED_ARG[01]
3161 to those values and CODE to the actual comparison code. If any are
3162 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3163 do anything if both operands are already known to be constant. */
3165 /* ??? Vector mode comparisons are not supported yet. */
3166 if (VECTOR_MODE_P (mode))
3167 break;
3169 if (const_arg0 == 0 || const_arg1 == 0)
3171 struct table_elt *p0, *p1;
3172 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3173 enum machine_mode mode_arg1;
3175 #ifdef FLOAT_STORE_FLAG_VALUE
3176 if (SCALAR_FLOAT_MODE_P (mode))
3178 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3179 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3180 false_rtx = CONST0_RTX (mode);
3182 #endif
3184 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3185 &mode_arg0, &mode_arg1);
3187 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3188 what kinds of things are being compared, so we can't do
3189 anything with this comparison. */
3191 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3192 break;
3194 const_arg0 = equiv_constant (folded_arg0);
3195 const_arg1 = equiv_constant (folded_arg1);
3197 /* If we do not now have two constants being compared, see
3198 if we can nevertheless deduce some things about the
3199 comparison. */
3200 if (const_arg0 == 0 || const_arg1 == 0)
3202 if (const_arg1 != NULL)
3204 rtx cheapest_simplification;
3205 int cheapest_cost;
3206 rtx simp_result;
3207 struct table_elt *p;
3209 /* See if we can find an equivalent of folded_arg0
3210 that gets us a cheaper expression, possibly a
3211 constant through simplifications. */
3212 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3213 mode_arg0);
3215 if (p != NULL)
3217 cheapest_simplification = x;
3218 cheapest_cost = COST (x);
3220 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3222 int cost;
3224 /* If the entry isn't valid, skip it. */
3225 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3226 continue;
3228 /* Try to simplify using this equivalence. */
3229 simp_result
3230 = simplify_relational_operation (code, mode,
3231 mode_arg0,
3232 p->exp,
3233 const_arg1);
3235 if (simp_result == NULL)
3236 continue;
3238 cost = COST (simp_result);
3239 if (cost < cheapest_cost)
3241 cheapest_cost = cost;
3242 cheapest_simplification = simp_result;
3246 /* If we have a cheaper expression now, use that
3247 and try folding it further, from the top. */
3248 if (cheapest_simplification != x)
3249 return fold_rtx (copy_rtx (cheapest_simplification),
3250 insn);
3254 /* Some addresses are known to be nonzero. We don't know
3255 their sign, but equality comparisons are known. */
3256 if (const_arg1 == const0_rtx
3257 && nonzero_address_p (folded_arg0))
3259 if (code == EQ)
3260 return false_rtx;
3261 else if (code == NE)
3262 return true_rtx;
3265 /* See if the two operands are the same. */
3267 if (folded_arg0 == folded_arg1
3268 || (REG_P (folded_arg0)
3269 && REG_P (folded_arg1)
3270 && (REG_QTY (REGNO (folded_arg0))
3271 == REG_QTY (REGNO (folded_arg1))))
3272 || ((p0 = lookup (folded_arg0,
3273 SAFE_HASH (folded_arg0, mode_arg0),
3274 mode_arg0))
3275 && (p1 = lookup (folded_arg1,
3276 SAFE_HASH (folded_arg1, mode_arg0),
3277 mode_arg0))
3278 && p0->first_same_value == p1->first_same_value))
3280 /* Sadly two equal NaNs are not equivalent. */
3281 if (!HONOR_NANS (mode_arg0))
3282 return ((code == EQ || code == LE || code == GE
3283 || code == LEU || code == GEU || code == UNEQ
3284 || code == UNLE || code == UNGE
3285 || code == ORDERED)
3286 ? true_rtx : false_rtx);
3287 /* Take care for the FP compares we can resolve. */
3288 if (code == UNEQ || code == UNLE || code == UNGE)
3289 return true_rtx;
3290 if (code == LTGT || code == LT || code == GT)
3291 return false_rtx;
3294 /* If FOLDED_ARG0 is a register, see if the comparison we are
3295 doing now is either the same as we did before or the reverse
3296 (we only check the reverse if not floating-point). */
3297 else if (REG_P (folded_arg0))
3299 int qty = REG_QTY (REGNO (folded_arg0));
3301 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3303 struct qty_table_elem *ent = &qty_table[qty];
3305 if ((comparison_dominates_p (ent->comparison_code, code)
3306 || (! FLOAT_MODE_P (mode_arg0)
3307 && comparison_dominates_p (ent->comparison_code,
3308 reverse_condition (code))))
3309 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3310 || (const_arg1
3311 && rtx_equal_p (ent->comparison_const,
3312 const_arg1))
3313 || (REG_P (folded_arg1)
3314 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3315 return (comparison_dominates_p (ent->comparison_code, code)
3316 ? true_rtx : false_rtx);
3322 /* If we are comparing against zero, see if the first operand is
3323 equivalent to an IOR with a constant. If so, we may be able to
3324 determine the result of this comparison. */
3326 if (const_arg1 == const0_rtx)
3328 rtx y = lookup_as_function (folded_arg0, IOR);
3329 rtx inner_const;
3331 if (y != 0
3332 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3333 && GET_CODE (inner_const) == CONST_INT
3334 && INTVAL (inner_const) != 0)
3336 int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
3337 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
3338 && (INTVAL (inner_const)
3339 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
3340 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3342 #ifdef FLOAT_STORE_FLAG_VALUE
3343 if (SCALAR_FLOAT_MODE_P (mode))
3345 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3346 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3347 false_rtx = CONST0_RTX (mode);
3349 #endif
3351 switch (code)
3353 case EQ:
3354 return false_rtx;
3355 case NE:
3356 return true_rtx;
3357 case LT: case LE:
3358 if (has_sign)
3359 return true_rtx;
3360 break;
3361 case GT: case GE:
3362 if (has_sign)
3363 return false_rtx;
3364 break;
3365 default:
3366 break;
3372 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
3373 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
3374 new = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
3376 break;
3378 case RTX_BIN_ARITH:
3379 case RTX_COMM_ARITH:
3380 switch (code)
3382 case PLUS:
3383 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3384 with that LABEL_REF as its second operand. If so, the result is
3385 the first operand of that MINUS. This handles switches with an
3386 ADDR_DIFF_VEC table. */
3387 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3389 rtx y
3390 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3391 : lookup_as_function (folded_arg0, MINUS);
3393 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3394 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3395 return XEXP (y, 0);
3397 /* Now try for a CONST of a MINUS like the above. */
3398 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3399 : lookup_as_function (folded_arg0, CONST))) != 0
3400 && GET_CODE (XEXP (y, 0)) == MINUS
3401 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3402 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
3403 return XEXP (XEXP (y, 0), 0);
3406 /* Likewise if the operands are in the other order. */
3407 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3409 rtx y
3410 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3411 : lookup_as_function (folded_arg1, MINUS);
3413 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3414 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3415 return XEXP (y, 0);
3417 /* Now try for a CONST of a MINUS like the above. */
3418 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3419 : lookup_as_function (folded_arg1, CONST))) != 0
3420 && GET_CODE (XEXP (y, 0)) == MINUS
3421 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3422 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
3423 return XEXP (XEXP (y, 0), 0);
3426 /* If second operand is a register equivalent to a negative
3427 CONST_INT, see if we can find a register equivalent to the
3428 positive constant. Make a MINUS if so. Don't do this for
3429 a non-negative constant since we might then alternate between
3430 choosing positive and negative constants. Having the positive
3431 constant previously-used is the more common case. Be sure
3432 the resulting constant is non-negative; if const_arg1 were
3433 the smallest negative number this would overflow: depending
3434 on the mode, this would either just be the same value (and
3435 hence not save anything) or be incorrect. */
3436 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
3437 && INTVAL (const_arg1) < 0
3438 /* This used to test
3440 -INTVAL (const_arg1) >= 0
3442 But The Sun V5.0 compilers mis-compiled that test. So
3443 instead we test for the problematic value in a more direct
3444 manner and hope the Sun compilers get it correct. */
3445 && INTVAL (const_arg1) !=
3446 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3447 && REG_P (folded_arg1))
3449 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3450 struct table_elt *p
3451 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3453 if (p)
3454 for (p = p->first_same_value; p; p = p->next_same_value)
3455 if (REG_P (p->exp))
3456 return simplify_gen_binary (MINUS, mode, folded_arg0,
3457 canon_reg (p->exp, NULL_RTX));
3459 goto from_plus;
3461 case MINUS:
3462 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3463 If so, produce (PLUS Z C2-C). */
3464 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
3466 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3467 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
3468 return fold_rtx (plus_constant (copy_rtx (y),
3469 -INTVAL (const_arg1)),
3470 NULL_RTX);
3473 /* Fall through. */
3475 from_plus:
3476 case SMIN: case SMAX: case UMIN: case UMAX:
3477 case IOR: case AND: case XOR:
3478 case MULT:
3479 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3480 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3481 is known to be of similar form, we may be able to replace the
3482 operation with a combined operation. This may eliminate the
3483 intermediate operation if every use is simplified in this way.
3484 Note that the similar optimization done by combine.c only works
3485 if the intermediate operation's result has only one reference. */
3487 if (REG_P (folded_arg0)
3488 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
3490 int is_shift
3491 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3492 rtx y, inner_const, new_const;
3493 enum rtx_code associate_code;
3495 if (is_shift
3496 && (INTVAL (const_arg1) >= GET_MODE_BITSIZE (mode)
3497 || INTVAL (const_arg1) < 0))
3499 if (SHIFT_COUNT_TRUNCATED)
3500 const_arg1 = GEN_INT (INTVAL (const_arg1)
3501 & (GET_MODE_BITSIZE (mode) - 1));
3502 else
3503 break;
3506 y = lookup_as_function (folded_arg0, code);
3507 if (y == 0)
3508 break;
3510 /* If we have compiled a statement like
3511 "if (x == (x & mask1))", and now are looking at
3512 "x & mask2", we will have a case where the first operand
3513 of Y is the same as our first operand. Unless we detect
3514 this case, an infinite loop will result. */
3515 if (XEXP (y, 0) == folded_arg0)
3516 break;
3518 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3519 if (!inner_const || GET_CODE (inner_const) != CONST_INT)
3520 break;
3522 /* Don't associate these operations if they are a PLUS with the
3523 same constant and it is a power of two. These might be doable
3524 with a pre- or post-increment. Similarly for two subtracts of
3525 identical powers of two with post decrement. */
3527 if (code == PLUS && const_arg1 == inner_const
3528 && ((HAVE_PRE_INCREMENT
3529 && exact_log2 (INTVAL (const_arg1)) >= 0)
3530 || (HAVE_POST_INCREMENT
3531 && exact_log2 (INTVAL (const_arg1)) >= 0)
3532 || (HAVE_PRE_DECREMENT
3533 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3534 || (HAVE_POST_DECREMENT
3535 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3536 break;
3538 if (is_shift
3539 && (INTVAL (inner_const) >= GET_MODE_BITSIZE (mode)
3540 || INTVAL (inner_const) < 0))
3542 if (SHIFT_COUNT_TRUNCATED)
3543 inner_const = GEN_INT (INTVAL (inner_const)
3544 & (GET_MODE_BITSIZE (mode) - 1));
3545 else
3546 break;
3549 /* Compute the code used to compose the constants. For example,
3550 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3552 associate_code = (is_shift || code == MINUS ? PLUS : code);
3554 new_const = simplify_binary_operation (associate_code, mode,
3555 const_arg1, inner_const);
3557 if (new_const == 0)
3558 break;
3560 /* If we are associating shift operations, don't let this
3561 produce a shift of the size of the object or larger.
3562 This could occur when we follow a sign-extend by a right
3563 shift on a machine that does a sign-extend as a pair
3564 of shifts. */
3566 if (is_shift
3567 && GET_CODE (new_const) == CONST_INT
3568 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
3570 /* As an exception, we can turn an ASHIFTRT of this
3571 form into a shift of the number of bits - 1. */
3572 if (code == ASHIFTRT)
3573 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3574 else if (!side_effects_p (XEXP (y, 0)))
3575 return CONST0_RTX (mode);
3576 else
3577 break;
3580 y = copy_rtx (XEXP (y, 0));
3582 /* If Y contains our first operand (the most common way this
3583 can happen is if Y is a MEM), we would do into an infinite
3584 loop if we tried to fold it. So don't in that case. */
3586 if (! reg_mentioned_p (folded_arg0, y))
3587 y = fold_rtx (y, insn);
3589 return simplify_gen_binary (code, mode, y, new_const);
3591 break;
3593 case DIV: case UDIV:
3594 /* ??? The associative optimization performed immediately above is
3595 also possible for DIV and UDIV using associate_code of MULT.
3596 However, we would need extra code to verify that the
3597 multiplication does not overflow, that is, there is no overflow
3598 in the calculation of new_const. */
3599 break;
3601 default:
3602 break;
3605 new = simplify_binary_operation (code, mode,
3606 const_arg0 ? const_arg0 : folded_arg0,
3607 const_arg1 ? const_arg1 : folded_arg1);
3608 break;
3610 case RTX_OBJ:
3611 /* (lo_sum (high X) X) is simply X. */
3612 if (code == LO_SUM && const_arg0 != 0
3613 && GET_CODE (const_arg0) == HIGH
3614 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3615 return const_arg1;
3616 break;
3618 case RTX_TERNARY:
3619 case RTX_BITFIELD_OPS:
3620 new = simplify_ternary_operation (code, mode, mode_arg0,
3621 const_arg0 ? const_arg0 : folded_arg0,
3622 const_arg1 ? const_arg1 : folded_arg1,
3623 const_arg2 ? const_arg2 : XEXP (x, 2));
3624 break;
3626 default:
3627 break;
3630 return new ? new : x;
3633 /* Return a constant value currently equivalent to X.
3634 Return 0 if we don't know one. */
3636 static rtx
3637 equiv_constant (rtx x)
3639 if (REG_P (x)
3640 && REGNO_QTY_VALID_P (REGNO (x)))
3642 int x_q = REG_QTY (REGNO (x));
3643 struct qty_table_elem *x_ent = &qty_table[x_q];
3645 if (x_ent->const_rtx)
3646 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3649 if (x == 0 || CONSTANT_P (x))
3650 return x;
3652 if (GET_CODE (x) == SUBREG)
3654 rtx new;
3656 /* See if we previously assigned a constant value to this SUBREG. */
3657 if ((new = lookup_as_function (x, CONST_INT)) != 0
3658 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0
3659 || (new = lookup_as_function (x, CONST_FIXED)) != 0)
3660 return new;
3662 if (REG_P (SUBREG_REG (x))
3663 && (new = equiv_constant (SUBREG_REG (x))) != 0)
3664 return simplify_subreg (GET_MODE (x), SUBREG_REG (x),
3665 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
3667 return 0;
3670 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3671 the hash table in case its value was seen before. */
3673 if (MEM_P (x))
3675 struct table_elt *elt;
3677 x = avoid_constant_pool_reference (x);
3678 if (CONSTANT_P (x))
3679 return x;
3681 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3682 if (elt == 0)
3683 return 0;
3685 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3686 if (elt->is_const && CONSTANT_P (elt->exp))
3687 return elt->exp;
3690 return 0;
3693 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3694 "taken" branch.
3696 In certain cases, this can cause us to add an equivalence. For example,
3697 if we are following the taken case of
3698 if (i == 2)
3699 we can add the fact that `i' and '2' are now equivalent.
3701 In any case, we can record that this comparison was passed. If the same
3702 comparison is seen later, we will know its value. */
3704 static void
3705 record_jump_equiv (rtx insn, bool taken)
3707 int cond_known_true;
3708 rtx op0, op1;
3709 rtx set;
3710 enum machine_mode mode, mode0, mode1;
3711 int reversed_nonequality = 0;
3712 enum rtx_code code;
3714 /* Ensure this is the right kind of insn. */
3715 gcc_assert (any_condjump_p (insn));
3717 set = pc_set (insn);
3719 /* See if this jump condition is known true or false. */
3720 if (taken)
3721 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3722 else
3723 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3725 /* Get the type of comparison being done and the operands being compared.
3726 If we had to reverse a non-equality condition, record that fact so we
3727 know that it isn't valid for floating-point. */
3728 code = GET_CODE (XEXP (SET_SRC (set), 0));
3729 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3730 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3732 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3733 if (! cond_known_true)
3735 code = reversed_comparison_code_parts (code, op0, op1, insn);
3737 /* Don't remember if we can't find the inverse. */
3738 if (code == UNKNOWN)
3739 return;
3742 /* The mode is the mode of the non-constant. */
3743 mode = mode0;
3744 if (mode1 != VOIDmode)
3745 mode = mode1;
3747 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3750 /* Yet another form of subreg creation. In this case, we want something in
3751 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3753 static rtx
3754 record_jump_cond_subreg (enum machine_mode mode, rtx op)
3756 enum machine_mode op_mode = GET_MODE (op);
3757 if (op_mode == mode || op_mode == VOIDmode)
3758 return op;
3759 return lowpart_subreg (mode, op, op_mode);
3762 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3763 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3764 Make any useful entries we can with that information. Called from
3765 above function and called recursively. */
3767 static void
3768 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3769 rtx op1, int reversed_nonequality)
3771 unsigned op0_hash, op1_hash;
3772 int op0_in_memory, op1_in_memory;
3773 struct table_elt *op0_elt, *op1_elt;
3775 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3776 we know that they are also equal in the smaller mode (this is also
3777 true for all smaller modes whether or not there is a SUBREG, but
3778 is not worth testing for with no SUBREG). */
3780 /* Note that GET_MODE (op0) may not equal MODE. */
3781 if (code == EQ && GET_CODE (op0) == SUBREG
3782 && (GET_MODE_SIZE (GET_MODE (op0))
3783 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3785 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3786 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3787 if (tem)
3788 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3789 reversed_nonequality);
3792 if (code == EQ && GET_CODE (op1) == SUBREG
3793 && (GET_MODE_SIZE (GET_MODE (op1))
3794 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3796 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3797 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3798 if (tem)
3799 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3800 reversed_nonequality);
3803 /* Similarly, if this is an NE comparison, and either is a SUBREG
3804 making a smaller mode, we know the whole thing is also NE. */
3806 /* Note that GET_MODE (op0) may not equal MODE;
3807 if we test MODE instead, we can get an infinite recursion
3808 alternating between two modes each wider than MODE. */
3810 if (code == NE && GET_CODE (op0) == SUBREG
3811 && subreg_lowpart_p (op0)
3812 && (GET_MODE_SIZE (GET_MODE (op0))
3813 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3815 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3816 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3817 if (tem)
3818 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3819 reversed_nonequality);
3822 if (code == NE && GET_CODE (op1) == SUBREG
3823 && subreg_lowpart_p (op1)
3824 && (GET_MODE_SIZE (GET_MODE (op1))
3825 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3827 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3828 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3829 if (tem)
3830 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3831 reversed_nonequality);
3834 /* Hash both operands. */
3836 do_not_record = 0;
3837 hash_arg_in_memory = 0;
3838 op0_hash = HASH (op0, mode);
3839 op0_in_memory = hash_arg_in_memory;
3841 if (do_not_record)
3842 return;
3844 do_not_record = 0;
3845 hash_arg_in_memory = 0;
3846 op1_hash = HASH (op1, mode);
3847 op1_in_memory = hash_arg_in_memory;
3849 if (do_not_record)
3850 return;
3852 /* Look up both operands. */
3853 op0_elt = lookup (op0, op0_hash, mode);
3854 op1_elt = lookup (op1, op1_hash, mode);
3856 /* If both operands are already equivalent or if they are not in the
3857 table but are identical, do nothing. */
3858 if ((op0_elt != 0 && op1_elt != 0
3859 && op0_elt->first_same_value == op1_elt->first_same_value)
3860 || op0 == op1 || rtx_equal_p (op0, op1))
3861 return;
3863 /* If we aren't setting two things equal all we can do is save this
3864 comparison. Similarly if this is floating-point. In the latter
3865 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
3866 If we record the equality, we might inadvertently delete code
3867 whose intent was to change -0 to +0. */
3869 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
3871 struct qty_table_elem *ent;
3872 int qty;
3874 /* If we reversed a floating-point comparison, if OP0 is not a
3875 register, or if OP1 is neither a register or constant, we can't
3876 do anything. */
3878 if (!REG_P (op1))
3879 op1 = equiv_constant (op1);
3881 if ((reversed_nonequality && FLOAT_MODE_P (mode))
3882 || !REG_P (op0) || op1 == 0)
3883 return;
3885 /* Put OP0 in the hash table if it isn't already. This gives it a
3886 new quantity number. */
3887 if (op0_elt == 0)
3889 if (insert_regs (op0, NULL, 0))
3891 rehash_using_reg (op0);
3892 op0_hash = HASH (op0, mode);
3894 /* If OP0 is contained in OP1, this changes its hash code
3895 as well. Faster to rehash than to check, except
3896 for the simple case of a constant. */
3897 if (! CONSTANT_P (op1))
3898 op1_hash = HASH (op1,mode);
3901 op0_elt = insert (op0, NULL, op0_hash, mode);
3902 op0_elt->in_memory = op0_in_memory;
3905 qty = REG_QTY (REGNO (op0));
3906 ent = &qty_table[qty];
3908 ent->comparison_code = code;
3909 if (REG_P (op1))
3911 /* Look it up again--in case op0 and op1 are the same. */
3912 op1_elt = lookup (op1, op1_hash, mode);
3914 /* Put OP1 in the hash table so it gets a new quantity number. */
3915 if (op1_elt == 0)
3917 if (insert_regs (op1, NULL, 0))
3919 rehash_using_reg (op1);
3920 op1_hash = HASH (op1, mode);
3923 op1_elt = insert (op1, NULL, op1_hash, mode);
3924 op1_elt->in_memory = op1_in_memory;
3927 ent->comparison_const = NULL_RTX;
3928 ent->comparison_qty = REG_QTY (REGNO (op1));
3930 else
3932 ent->comparison_const = op1;
3933 ent->comparison_qty = -1;
3936 return;
3939 /* If either side is still missing an equivalence, make it now,
3940 then merge the equivalences. */
3942 if (op0_elt == 0)
3944 if (insert_regs (op0, NULL, 0))
3946 rehash_using_reg (op0);
3947 op0_hash = HASH (op0, mode);
3950 op0_elt = insert (op0, NULL, op0_hash, mode);
3951 op0_elt->in_memory = op0_in_memory;
3954 if (op1_elt == 0)
3956 if (insert_regs (op1, NULL, 0))
3958 rehash_using_reg (op1);
3959 op1_hash = HASH (op1, mode);
3962 op1_elt = insert (op1, NULL, op1_hash, mode);
3963 op1_elt->in_memory = op1_in_memory;
3966 merge_equiv_classes (op0_elt, op1_elt);
3969 /* CSE processing for one instruction.
3970 First simplify sources and addresses of all assignments
3971 in the instruction, using previously-computed equivalents values.
3972 Then install the new sources and destinations in the table
3973 of available values.
3975 If LIBCALL_INSN is nonzero, don't record any equivalence made in
3976 the insn. It means that INSN is inside libcall block. In this
3977 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
3979 /* Data on one SET contained in the instruction. */
3981 struct set
3983 /* The SET rtx itself. */
3984 rtx rtl;
3985 /* The SET_SRC of the rtx (the original value, if it is changing). */
3986 rtx src;
3987 /* The hash-table element for the SET_SRC of the SET. */
3988 struct table_elt *src_elt;
3989 /* Hash value for the SET_SRC. */
3990 unsigned src_hash;
3991 /* Hash value for the SET_DEST. */
3992 unsigned dest_hash;
3993 /* The SET_DEST, with SUBREG, etc., stripped. */
3994 rtx inner_dest;
3995 /* Nonzero if the SET_SRC is in memory. */
3996 char src_in_memory;
3997 /* Nonzero if the SET_SRC contains something
3998 whose value cannot be predicted and understood. */
3999 char src_volatile;
4000 /* Original machine mode, in case it becomes a CONST_INT.
4001 The size of this field should match the size of the mode
4002 field of struct rtx_def (see rtl.h). */
4003 ENUM_BITFIELD(machine_mode) mode : 8;
4004 /* A constant equivalent for SET_SRC, if any. */
4005 rtx src_const;
4006 /* Original SET_SRC value used for libcall notes. */
4007 rtx orig_src;
4008 /* Hash value of constant equivalent for SET_SRC. */
4009 unsigned src_const_hash;
4010 /* Table entry for constant equivalent for SET_SRC, if any. */
4011 struct table_elt *src_const_elt;
4012 /* Table entry for the destination address. */
4013 struct table_elt *dest_addr_elt;
4016 static void
4017 cse_insn (rtx insn, rtx libcall_insn)
4019 rtx x = PATTERN (insn);
4020 int i;
4021 rtx tem;
4022 int n_sets = 0;
4024 rtx src_eqv = 0;
4025 struct table_elt *src_eqv_elt = 0;
4026 int src_eqv_volatile = 0;
4027 int src_eqv_in_memory = 0;
4028 unsigned src_eqv_hash = 0;
4030 struct set *sets = (struct set *) 0;
4032 this_insn = insn;
4033 #ifdef HAVE_cc0
4034 /* Records what this insn does to set CC0. */
4035 this_insn_cc0 = 0;
4036 this_insn_cc0_mode = VOIDmode;
4037 #endif
4039 /* Find all the SETs and CLOBBERs in this instruction.
4040 Record all the SETs in the array `set' and count them.
4041 Also determine whether there is a CLOBBER that invalidates
4042 all memory references, or all references at varying addresses. */
4044 if (CALL_P (insn))
4046 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4048 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4049 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4050 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4054 if (GET_CODE (x) == SET)
4056 sets = alloca (sizeof (struct set));
4057 sets[0].rtl = x;
4059 /* Ignore SETs that are unconditional jumps.
4060 They never need cse processing, so this does not hurt.
4061 The reason is not efficiency but rather
4062 so that we can test at the end for instructions
4063 that have been simplified to unconditional jumps
4064 and not be misled by unchanged instructions
4065 that were unconditional jumps to begin with. */
4066 if (SET_DEST (x) == pc_rtx
4067 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4070 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4071 The hard function value register is used only once, to copy to
4072 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4073 Ensure we invalidate the destination register. On the 80386 no
4074 other code would invalidate it since it is a fixed_reg.
4075 We need not check the return of apply_change_group; see canon_reg. */
4077 else if (GET_CODE (SET_SRC (x)) == CALL)
4079 canon_reg (SET_SRC (x), insn);
4080 apply_change_group ();
4081 fold_rtx (SET_SRC (x), insn);
4082 invalidate (SET_DEST (x), VOIDmode);
4084 else
4085 n_sets = 1;
4087 else if (GET_CODE (x) == PARALLEL)
4089 int lim = XVECLEN (x, 0);
4091 sets = alloca (lim * sizeof (struct set));
4093 /* Find all regs explicitly clobbered in this insn,
4094 and ensure they are not replaced with any other regs
4095 elsewhere in this insn.
4096 When a reg that is clobbered is also used for input,
4097 we should presume that that is for a reason,
4098 and we should not substitute some other register
4099 which is not supposed to be clobbered.
4100 Therefore, this loop cannot be merged into the one below
4101 because a CALL may precede a CLOBBER and refer to the
4102 value clobbered. We must not let a canonicalization do
4103 anything in that case. */
4104 for (i = 0; i < lim; i++)
4106 rtx y = XVECEXP (x, 0, i);
4107 if (GET_CODE (y) == CLOBBER)
4109 rtx clobbered = XEXP (y, 0);
4111 if (REG_P (clobbered)
4112 || GET_CODE (clobbered) == SUBREG)
4113 invalidate (clobbered, VOIDmode);
4114 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4115 || GET_CODE (clobbered) == ZERO_EXTRACT)
4116 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4120 for (i = 0; i < lim; i++)
4122 rtx y = XVECEXP (x, 0, i);
4123 if (GET_CODE (y) == SET)
4125 /* As above, we ignore unconditional jumps and call-insns and
4126 ignore the result of apply_change_group. */
4127 if (GET_CODE (SET_SRC (y)) == CALL)
4129 canon_reg (SET_SRC (y), insn);
4130 apply_change_group ();
4131 fold_rtx (SET_SRC (y), insn);
4132 invalidate (SET_DEST (y), VOIDmode);
4134 else if (SET_DEST (y) == pc_rtx
4135 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4137 else
4138 sets[n_sets++].rtl = y;
4140 else if (GET_CODE (y) == CLOBBER)
4142 /* If we clobber memory, canon the address.
4143 This does nothing when a register is clobbered
4144 because we have already invalidated the reg. */
4145 if (MEM_P (XEXP (y, 0)))
4146 canon_reg (XEXP (y, 0), insn);
4148 else if (GET_CODE (y) == USE
4149 && ! (REG_P (XEXP (y, 0))
4150 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4151 canon_reg (y, insn);
4152 else if (GET_CODE (y) == CALL)
4154 /* The result of apply_change_group can be ignored; see
4155 canon_reg. */
4156 canon_reg (y, insn);
4157 apply_change_group ();
4158 fold_rtx (y, insn);
4162 else if (GET_CODE (x) == CLOBBER)
4164 if (MEM_P (XEXP (x, 0)))
4165 canon_reg (XEXP (x, 0), insn);
4168 /* Canonicalize a USE of a pseudo register or memory location. */
4169 else if (GET_CODE (x) == USE
4170 && ! (REG_P (XEXP (x, 0))
4171 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4172 canon_reg (XEXP (x, 0), insn);
4173 else if (GET_CODE (x) == CALL)
4175 /* The result of apply_change_group can be ignored; see canon_reg. */
4176 canon_reg (x, insn);
4177 apply_change_group ();
4178 fold_rtx (x, insn);
4181 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4182 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4183 is handled specially for this case, and if it isn't set, then there will
4184 be no equivalence for the destination. */
4185 if (n_sets == 1 && REG_NOTES (insn) != 0
4186 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4187 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4188 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4190 /* The result of apply_change_group can be ignored; see canon_reg. */
4191 canon_reg (XEXP (tem, 0), insn);
4192 apply_change_group ();
4193 src_eqv = fold_rtx (XEXP (tem, 0), insn);
4194 XEXP (tem, 0) = copy_rtx (src_eqv);
4195 df_notes_rescan (insn);
4198 /* Canonicalize sources and addresses of destinations.
4199 We do this in a separate pass to avoid problems when a MATCH_DUP is
4200 present in the insn pattern. In that case, we want to ensure that
4201 we don't break the duplicate nature of the pattern. So we will replace
4202 both operands at the same time. Otherwise, we would fail to find an
4203 equivalent substitution in the loop calling validate_change below.
4205 We used to suppress canonicalization of DEST if it appears in SRC,
4206 but we don't do this any more. */
4208 for (i = 0; i < n_sets; i++)
4210 rtx dest = SET_DEST (sets[i].rtl);
4211 rtx src = SET_SRC (sets[i].rtl);
4212 rtx new = canon_reg (src, insn);
4214 sets[i].orig_src = src;
4215 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4217 if (GET_CODE (dest) == ZERO_EXTRACT)
4219 validate_change (insn, &XEXP (dest, 1),
4220 canon_reg (XEXP (dest, 1), insn), 1);
4221 validate_change (insn, &XEXP (dest, 2),
4222 canon_reg (XEXP (dest, 2), insn), 1);
4225 while (GET_CODE (dest) == SUBREG
4226 || GET_CODE (dest) == ZERO_EXTRACT
4227 || GET_CODE (dest) == STRICT_LOW_PART)
4228 dest = XEXP (dest, 0);
4230 if (MEM_P (dest))
4231 canon_reg (dest, insn);
4234 /* Now that we have done all the replacements, we can apply the change
4235 group and see if they all work. Note that this will cause some
4236 canonicalizations that would have worked individually not to be applied
4237 because some other canonicalization didn't work, but this should not
4238 occur often.
4240 The result of apply_change_group can be ignored; see canon_reg. */
4242 apply_change_group ();
4244 /* Set sets[i].src_elt to the class each source belongs to.
4245 Detect assignments from or to volatile things
4246 and set set[i] to zero so they will be ignored
4247 in the rest of this function.
4249 Nothing in this loop changes the hash table or the register chains. */
4251 for (i = 0; i < n_sets; i++)
4253 rtx src, dest;
4254 rtx src_folded;
4255 struct table_elt *elt = 0, *p;
4256 enum machine_mode mode;
4257 rtx src_eqv_here;
4258 rtx src_const = 0;
4259 rtx src_related = 0;
4260 struct table_elt *src_const_elt = 0;
4261 int src_cost = MAX_COST;
4262 int src_eqv_cost = MAX_COST;
4263 int src_folded_cost = MAX_COST;
4264 int src_related_cost = MAX_COST;
4265 int src_elt_cost = MAX_COST;
4266 int src_regcost = MAX_COST;
4267 int src_eqv_regcost = MAX_COST;
4268 int src_folded_regcost = MAX_COST;
4269 int src_related_regcost = MAX_COST;
4270 int src_elt_regcost = MAX_COST;
4271 /* Set nonzero if we need to call force_const_mem on with the
4272 contents of src_folded before using it. */
4273 int src_folded_force_flag = 0;
4275 dest = SET_DEST (sets[i].rtl);
4276 src = SET_SRC (sets[i].rtl);
4278 /* If SRC is a constant that has no machine mode,
4279 hash it with the destination's machine mode.
4280 This way we can keep different modes separate. */
4282 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4283 sets[i].mode = mode;
4285 if (src_eqv)
4287 enum machine_mode eqvmode = mode;
4288 if (GET_CODE (dest) == STRICT_LOW_PART)
4289 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4290 do_not_record = 0;
4291 hash_arg_in_memory = 0;
4292 src_eqv_hash = HASH (src_eqv, eqvmode);
4294 /* Find the equivalence class for the equivalent expression. */
4296 if (!do_not_record)
4297 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4299 src_eqv_volatile = do_not_record;
4300 src_eqv_in_memory = hash_arg_in_memory;
4303 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4304 value of the INNER register, not the destination. So it is not
4305 a valid substitution for the source. But save it for later. */
4306 if (GET_CODE (dest) == STRICT_LOW_PART)
4307 src_eqv_here = 0;
4308 else
4309 src_eqv_here = src_eqv;
4311 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4312 simplified result, which may not necessarily be valid. */
4313 src_folded = fold_rtx (src, insn);
4315 #if 0
4316 /* ??? This caused bad code to be generated for the m68k port with -O2.
4317 Suppose src is (CONST_INT -1), and that after truncation src_folded
4318 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4319 At the end we will add src and src_const to the same equivalence
4320 class. We now have 3 and -1 on the same equivalence class. This
4321 causes later instructions to be mis-optimized. */
4322 /* If storing a constant in a bitfield, pre-truncate the constant
4323 so we will be able to record it later. */
4324 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4326 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4328 if (GET_CODE (src) == CONST_INT
4329 && GET_CODE (width) == CONST_INT
4330 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4331 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4332 src_folded
4333 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4334 << INTVAL (width)) - 1));
4336 #endif
4338 /* Compute SRC's hash code, and also notice if it
4339 should not be recorded at all. In that case,
4340 prevent any further processing of this assignment. */
4341 do_not_record = 0;
4342 hash_arg_in_memory = 0;
4344 sets[i].src = src;
4345 sets[i].src_hash = HASH (src, mode);
4346 sets[i].src_volatile = do_not_record;
4347 sets[i].src_in_memory = hash_arg_in_memory;
4349 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4350 a pseudo, do not record SRC. Using SRC as a replacement for
4351 anything else will be incorrect in that situation. Note that
4352 this usually occurs only for stack slots, in which case all the
4353 RTL would be referring to SRC, so we don't lose any optimization
4354 opportunities by not having SRC in the hash table. */
4356 if (MEM_P (src)
4357 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4358 && REG_P (dest)
4359 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4360 sets[i].src_volatile = 1;
4362 #if 0
4363 /* It is no longer clear why we used to do this, but it doesn't
4364 appear to still be needed. So let's try without it since this
4365 code hurts cse'ing widened ops. */
4366 /* If source is a paradoxical subreg (such as QI treated as an SI),
4367 treat it as volatile. It may do the work of an SI in one context
4368 where the extra bits are not being used, but cannot replace an SI
4369 in general. */
4370 if (GET_CODE (src) == SUBREG
4371 && (GET_MODE_SIZE (GET_MODE (src))
4372 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
4373 sets[i].src_volatile = 1;
4374 #endif
4376 /* Locate all possible equivalent forms for SRC. Try to replace
4377 SRC in the insn with each cheaper equivalent.
4379 We have the following types of equivalents: SRC itself, a folded
4380 version, a value given in a REG_EQUAL note, or a value related
4381 to a constant.
4383 Each of these equivalents may be part of an additional class
4384 of equivalents (if more than one is in the table, they must be in
4385 the same class; we check for this).
4387 If the source is volatile, we don't do any table lookups.
4389 We note any constant equivalent for possible later use in a
4390 REG_NOTE. */
4392 if (!sets[i].src_volatile)
4393 elt = lookup (src, sets[i].src_hash, mode);
4395 sets[i].src_elt = elt;
4397 if (elt && src_eqv_here && src_eqv_elt)
4399 if (elt->first_same_value != src_eqv_elt->first_same_value)
4401 /* The REG_EQUAL is indicating that two formerly distinct
4402 classes are now equivalent. So merge them. */
4403 merge_equiv_classes (elt, src_eqv_elt);
4404 src_eqv_hash = HASH (src_eqv, elt->mode);
4405 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4408 src_eqv_here = 0;
4411 else if (src_eqv_elt)
4412 elt = src_eqv_elt;
4414 /* Try to find a constant somewhere and record it in `src_const'.
4415 Record its table element, if any, in `src_const_elt'. Look in
4416 any known equivalences first. (If the constant is not in the
4417 table, also set `sets[i].src_const_hash'). */
4418 if (elt)
4419 for (p = elt->first_same_value; p; p = p->next_same_value)
4420 if (p->is_const)
4422 src_const = p->exp;
4423 src_const_elt = elt;
4424 break;
4427 if (src_const == 0
4428 && (CONSTANT_P (src_folded)
4429 /* Consider (minus (label_ref L1) (label_ref L2)) as
4430 "constant" here so we will record it. This allows us
4431 to fold switch statements when an ADDR_DIFF_VEC is used. */
4432 || (GET_CODE (src_folded) == MINUS
4433 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4434 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4435 src_const = src_folded, src_const_elt = elt;
4436 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4437 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4439 /* If we don't know if the constant is in the table, get its
4440 hash code and look it up. */
4441 if (src_const && src_const_elt == 0)
4443 sets[i].src_const_hash = HASH (src_const, mode);
4444 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4447 sets[i].src_const = src_const;
4448 sets[i].src_const_elt = src_const_elt;
4450 /* If the constant and our source are both in the table, mark them as
4451 equivalent. Otherwise, if a constant is in the table but the source
4452 isn't, set ELT to it. */
4453 if (src_const_elt && elt
4454 && src_const_elt->first_same_value != elt->first_same_value)
4455 merge_equiv_classes (elt, src_const_elt);
4456 else if (src_const_elt && elt == 0)
4457 elt = src_const_elt;
4459 /* See if there is a register linearly related to a constant
4460 equivalent of SRC. */
4461 if (src_const
4462 && (GET_CODE (src_const) == CONST
4463 || (src_const_elt && src_const_elt->related_value != 0)))
4465 src_related = use_related_value (src_const, src_const_elt);
4466 if (src_related)
4468 struct table_elt *src_related_elt
4469 = lookup (src_related, HASH (src_related, mode), mode);
4470 if (src_related_elt && elt)
4472 if (elt->first_same_value
4473 != src_related_elt->first_same_value)
4474 /* This can occur when we previously saw a CONST
4475 involving a SYMBOL_REF and then see the SYMBOL_REF
4476 twice. Merge the involved classes. */
4477 merge_equiv_classes (elt, src_related_elt);
4479 src_related = 0;
4480 src_related_elt = 0;
4482 else if (src_related_elt && elt == 0)
4483 elt = src_related_elt;
4487 /* See if we have a CONST_INT that is already in a register in a
4488 wider mode. */
4490 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
4491 && GET_MODE_CLASS (mode) == MODE_INT
4492 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
4494 enum machine_mode wider_mode;
4496 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4497 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
4498 && src_related == 0;
4499 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4501 struct table_elt *const_elt
4502 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4504 if (const_elt == 0)
4505 continue;
4507 for (const_elt = const_elt->first_same_value;
4508 const_elt; const_elt = const_elt->next_same_value)
4509 if (REG_P (const_elt->exp))
4511 src_related = gen_lowpart (mode, const_elt->exp);
4512 break;
4517 /* Another possibility is that we have an AND with a constant in
4518 a mode narrower than a word. If so, it might have been generated
4519 as part of an "if" which would narrow the AND. If we already
4520 have done the AND in a wider mode, we can use a SUBREG of that
4521 value. */
4523 if (flag_expensive_optimizations && ! src_related
4524 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
4525 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4527 enum machine_mode tmode;
4528 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4530 for (tmode = GET_MODE_WIDER_MODE (mode);
4531 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4532 tmode = GET_MODE_WIDER_MODE (tmode))
4534 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4535 struct table_elt *larger_elt;
4537 if (inner)
4539 PUT_MODE (new_and, tmode);
4540 XEXP (new_and, 0) = inner;
4541 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4542 if (larger_elt == 0)
4543 continue;
4545 for (larger_elt = larger_elt->first_same_value;
4546 larger_elt; larger_elt = larger_elt->next_same_value)
4547 if (REG_P (larger_elt->exp))
4549 src_related
4550 = gen_lowpart (mode, larger_elt->exp);
4551 break;
4554 if (src_related)
4555 break;
4560 #ifdef LOAD_EXTEND_OP
4561 /* See if a MEM has already been loaded with a widening operation;
4562 if it has, we can use a subreg of that. Many CISC machines
4563 also have such operations, but this is only likely to be
4564 beneficial on these machines. */
4566 if (flag_expensive_optimizations && src_related == 0
4567 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4568 && GET_MODE_CLASS (mode) == MODE_INT
4569 && MEM_P (src) && ! do_not_record
4570 && LOAD_EXTEND_OP (mode) != UNKNOWN)
4572 struct rtx_def memory_extend_buf;
4573 rtx memory_extend_rtx = &memory_extend_buf;
4574 enum machine_mode tmode;
4576 /* Set what we are trying to extend and the operation it might
4577 have been extended with. */
4578 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
4579 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4580 XEXP (memory_extend_rtx, 0) = src;
4582 for (tmode = GET_MODE_WIDER_MODE (mode);
4583 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4584 tmode = GET_MODE_WIDER_MODE (tmode))
4586 struct table_elt *larger_elt;
4588 PUT_MODE (memory_extend_rtx, tmode);
4589 larger_elt = lookup (memory_extend_rtx,
4590 HASH (memory_extend_rtx, tmode), tmode);
4591 if (larger_elt == 0)
4592 continue;
4594 for (larger_elt = larger_elt->first_same_value;
4595 larger_elt; larger_elt = larger_elt->next_same_value)
4596 if (REG_P (larger_elt->exp))
4598 src_related = gen_lowpart (mode, larger_elt->exp);
4599 break;
4602 if (src_related)
4603 break;
4606 #endif /* LOAD_EXTEND_OP */
4608 if (src == src_folded)
4609 src_folded = 0;
4611 /* At this point, ELT, if nonzero, points to a class of expressions
4612 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4613 and SRC_RELATED, if nonzero, each contain additional equivalent
4614 expressions. Prune these latter expressions by deleting expressions
4615 already in the equivalence class.
4617 Check for an equivalent identical to the destination. If found,
4618 this is the preferred equivalent since it will likely lead to
4619 elimination of the insn. Indicate this by placing it in
4620 `src_related'. */
4622 if (elt)
4623 elt = elt->first_same_value;
4624 for (p = elt; p; p = p->next_same_value)
4626 enum rtx_code code = GET_CODE (p->exp);
4628 /* If the expression is not valid, ignore it. Then we do not
4629 have to check for validity below. In most cases, we can use
4630 `rtx_equal_p', since canonicalization has already been done. */
4631 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4632 continue;
4634 /* Also skip paradoxical subregs, unless that's what we're
4635 looking for. */
4636 if (code == SUBREG
4637 && (GET_MODE_SIZE (GET_MODE (p->exp))
4638 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
4639 && ! (src != 0
4640 && GET_CODE (src) == SUBREG
4641 && GET_MODE (src) == GET_MODE (p->exp)
4642 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4643 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4644 continue;
4646 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4647 src = 0;
4648 else if (src_folded && GET_CODE (src_folded) == code
4649 && rtx_equal_p (src_folded, p->exp))
4650 src_folded = 0;
4651 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4652 && rtx_equal_p (src_eqv_here, p->exp))
4653 src_eqv_here = 0;
4654 else if (src_related && GET_CODE (src_related) == code
4655 && rtx_equal_p (src_related, p->exp))
4656 src_related = 0;
4658 /* This is the same as the destination of the insns, we want
4659 to prefer it. Copy it to src_related. The code below will
4660 then give it a negative cost. */
4661 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4662 src_related = dest;
4665 /* Find the cheapest valid equivalent, trying all the available
4666 possibilities. Prefer items not in the hash table to ones
4667 that are when they are equal cost. Note that we can never
4668 worsen an insn as the current contents will also succeed.
4669 If we find an equivalent identical to the destination, use it as best,
4670 since this insn will probably be eliminated in that case. */
4671 if (src)
4673 if (rtx_equal_p (src, dest))
4674 src_cost = src_regcost = -1;
4675 else
4677 src_cost = COST (src);
4678 src_regcost = approx_reg_cost (src);
4682 if (src_eqv_here)
4684 if (rtx_equal_p (src_eqv_here, dest))
4685 src_eqv_cost = src_eqv_regcost = -1;
4686 else
4688 src_eqv_cost = COST (src_eqv_here);
4689 src_eqv_regcost = approx_reg_cost (src_eqv_here);
4693 if (src_folded)
4695 if (rtx_equal_p (src_folded, dest))
4696 src_folded_cost = src_folded_regcost = -1;
4697 else
4699 src_folded_cost = COST (src_folded);
4700 src_folded_regcost = approx_reg_cost (src_folded);
4704 if (src_related)
4706 if (rtx_equal_p (src_related, dest))
4707 src_related_cost = src_related_regcost = -1;
4708 else
4710 src_related_cost = COST (src_related);
4711 src_related_regcost = approx_reg_cost (src_related);
4715 /* If this was an indirect jump insn, a known label will really be
4716 cheaper even though it looks more expensive. */
4717 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
4718 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
4720 /* Terminate loop when replacement made. This must terminate since
4721 the current contents will be tested and will always be valid. */
4722 while (1)
4724 rtx trial;
4726 /* Skip invalid entries. */
4727 while (elt && !REG_P (elt->exp)
4728 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
4729 elt = elt->next_same_value;
4731 /* A paradoxical subreg would be bad here: it'll be the right
4732 size, but later may be adjusted so that the upper bits aren't
4733 what we want. So reject it. */
4734 if (elt != 0
4735 && GET_CODE (elt->exp) == SUBREG
4736 && (GET_MODE_SIZE (GET_MODE (elt->exp))
4737 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
4738 /* It is okay, though, if the rtx we're trying to match
4739 will ignore any of the bits we can't predict. */
4740 && ! (src != 0
4741 && GET_CODE (src) == SUBREG
4742 && GET_MODE (src) == GET_MODE (elt->exp)
4743 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4744 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
4746 elt = elt->next_same_value;
4747 continue;
4750 if (elt)
4752 src_elt_cost = elt->cost;
4753 src_elt_regcost = elt->regcost;
4756 /* Find cheapest and skip it for the next time. For items
4757 of equal cost, use this order:
4758 src_folded, src, src_eqv, src_related and hash table entry. */
4759 if (src_folded
4760 && preferable (src_folded_cost, src_folded_regcost,
4761 src_cost, src_regcost) <= 0
4762 && preferable (src_folded_cost, src_folded_regcost,
4763 src_eqv_cost, src_eqv_regcost) <= 0
4764 && preferable (src_folded_cost, src_folded_regcost,
4765 src_related_cost, src_related_regcost) <= 0
4766 && preferable (src_folded_cost, src_folded_regcost,
4767 src_elt_cost, src_elt_regcost) <= 0)
4769 trial = src_folded, src_folded_cost = MAX_COST;
4770 if (src_folded_force_flag)
4772 rtx forced = force_const_mem (mode, trial);
4773 if (forced)
4774 trial = forced;
4777 else if (src
4778 && preferable (src_cost, src_regcost,
4779 src_eqv_cost, src_eqv_regcost) <= 0
4780 && preferable (src_cost, src_regcost,
4781 src_related_cost, src_related_regcost) <= 0
4782 && preferable (src_cost, src_regcost,
4783 src_elt_cost, src_elt_regcost) <= 0)
4784 trial = src, src_cost = MAX_COST;
4785 else if (src_eqv_here
4786 && preferable (src_eqv_cost, src_eqv_regcost,
4787 src_related_cost, src_related_regcost) <= 0
4788 && preferable (src_eqv_cost, src_eqv_regcost,
4789 src_elt_cost, src_elt_regcost) <= 0)
4790 trial = src_eqv_here, src_eqv_cost = MAX_COST;
4791 else if (src_related
4792 && preferable (src_related_cost, src_related_regcost,
4793 src_elt_cost, src_elt_regcost) <= 0)
4794 trial = src_related, src_related_cost = MAX_COST;
4795 else
4797 trial = elt->exp;
4798 elt = elt->next_same_value;
4799 src_elt_cost = MAX_COST;
4802 /* We don't normally have an insn matching (set (pc) (pc)), so
4803 check for this separately here. We will delete such an
4804 insn below.
4806 For other cases such as a table jump or conditional jump
4807 where we know the ultimate target, go ahead and replace the
4808 operand. While that may not make a valid insn, we will
4809 reemit the jump below (and also insert any necessary
4810 barriers). */
4811 if (n_sets == 1 && dest == pc_rtx
4812 && (trial == pc_rtx
4813 || (GET_CODE (trial) == LABEL_REF
4814 && ! condjump_p (insn))))
4816 /* Don't substitute non-local labels, this confuses CFG. */
4817 if (GET_CODE (trial) == LABEL_REF
4818 && LABEL_REF_NONLOCAL_P (trial))
4819 continue;
4821 SET_SRC (sets[i].rtl) = trial;
4822 cse_jumps_altered = 1;
4823 break;
4826 /* Reject certain invalid forms of CONST that we create. */
4827 else if (CONSTANT_P (trial)
4828 && GET_CODE (trial) == CONST
4829 /* Reject cases that will cause decode_rtx_const to
4830 die. On the alpha when simplifying a switch, we
4831 get (const (truncate (minus (label_ref)
4832 (label_ref)))). */
4833 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
4834 /* Likewise on IA-64, except without the
4835 truncate. */
4836 || (GET_CODE (XEXP (trial, 0)) == MINUS
4837 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
4838 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
4839 /* Do nothing for this case. */
4842 /* Look for a substitution that makes a valid insn. */
4843 else if (validate_unshare_change
4844 (insn, &SET_SRC (sets[i].rtl), trial, 0))
4846 rtx new = canon_reg (SET_SRC (sets[i].rtl), insn);
4848 /* If we just made a substitution inside a libcall, then we
4849 need to make the same substitution in any notes attached
4850 to the RETVAL insn. */
4851 if (libcall_insn
4852 && (REG_P (sets[i].orig_src)
4853 || GET_CODE (sets[i].orig_src) == SUBREG
4854 || MEM_P (sets[i].orig_src)))
4856 rtx note = find_reg_equal_equiv_note (libcall_insn);
4857 if (note != 0)
4858 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0),
4859 sets[i].orig_src,
4860 copy_rtx (new));
4861 df_notes_rescan (libcall_insn);
4864 /* The result of apply_change_group can be ignored; see
4865 canon_reg. */
4867 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4868 apply_change_group ();
4870 break;
4873 /* If we previously found constant pool entries for
4874 constants and this is a constant, try making a
4875 pool entry. Put it in src_folded unless we already have done
4876 this since that is where it likely came from. */
4878 else if (constant_pool_entries_cost
4879 && CONSTANT_P (trial)
4880 && (src_folded == 0
4881 || (!MEM_P (src_folded)
4882 && ! src_folded_force_flag))
4883 && GET_MODE_CLASS (mode) != MODE_CC
4884 && mode != VOIDmode)
4886 src_folded_force_flag = 1;
4887 src_folded = trial;
4888 src_folded_cost = constant_pool_entries_cost;
4889 src_folded_regcost = constant_pool_entries_regcost;
4893 src = SET_SRC (sets[i].rtl);
4895 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
4896 However, there is an important exception: If both are registers
4897 that are not the head of their equivalence class, replace SET_SRC
4898 with the head of the class. If we do not do this, we will have
4899 both registers live over a portion of the basic block. This way,
4900 their lifetimes will likely abut instead of overlapping. */
4901 if (REG_P (dest)
4902 && REGNO_QTY_VALID_P (REGNO (dest)))
4904 int dest_q = REG_QTY (REGNO (dest));
4905 struct qty_table_elem *dest_ent = &qty_table[dest_q];
4907 if (dest_ent->mode == GET_MODE (dest)
4908 && dest_ent->first_reg != REGNO (dest)
4909 && REG_P (src) && REGNO (src) == REGNO (dest)
4910 /* Don't do this if the original insn had a hard reg as
4911 SET_SRC or SET_DEST. */
4912 && (!REG_P (sets[i].src)
4913 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
4914 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
4915 /* We can't call canon_reg here because it won't do anything if
4916 SRC is a hard register. */
4918 int src_q = REG_QTY (REGNO (src));
4919 struct qty_table_elem *src_ent = &qty_table[src_q];
4920 int first = src_ent->first_reg;
4921 rtx new_src
4922 = (first >= FIRST_PSEUDO_REGISTER
4923 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
4925 /* We must use validate-change even for this, because this
4926 might be a special no-op instruction, suitable only to
4927 tag notes onto. */
4928 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
4930 src = new_src;
4931 /* If we had a constant that is cheaper than what we are now
4932 setting SRC to, use that constant. We ignored it when we
4933 thought we could make this into a no-op. */
4934 if (src_const && COST (src_const) < COST (src)
4935 && validate_change (insn, &SET_SRC (sets[i].rtl),
4936 src_const, 0))
4937 src = src_const;
4942 /* If we made a change, recompute SRC values. */
4943 if (src != sets[i].src)
4945 do_not_record = 0;
4946 hash_arg_in_memory = 0;
4947 sets[i].src = src;
4948 sets[i].src_hash = HASH (src, mode);
4949 sets[i].src_volatile = do_not_record;
4950 sets[i].src_in_memory = hash_arg_in_memory;
4951 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
4954 /* If this is a single SET, we are setting a register, and we have an
4955 equivalent constant, we want to add a REG_NOTE. We don't want
4956 to write a REG_EQUAL note for a constant pseudo since verifying that
4957 that pseudo hasn't been eliminated is a pain. Such a note also
4958 won't help anything.
4960 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
4961 which can be created for a reference to a compile time computable
4962 entry in a jump table. */
4964 if (n_sets == 1 && src_const && REG_P (dest)
4965 && !REG_P (src_const)
4966 && ! (GET_CODE (src_const) == CONST
4967 && GET_CODE (XEXP (src_const, 0)) == MINUS
4968 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
4969 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
4971 /* We only want a REG_EQUAL note if src_const != src. */
4972 if (! rtx_equal_p (src, src_const))
4974 /* Make sure that the rtx is not shared. */
4975 src_const = copy_rtx (src_const);
4977 /* Record the actual constant value in a REG_EQUAL note,
4978 making a new one if one does not already exist. */
4979 set_unique_reg_note (insn, REG_EQUAL, src_const);
4980 df_notes_rescan (insn);
4984 /* Now deal with the destination. */
4985 do_not_record = 0;
4987 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
4988 while (GET_CODE (dest) == SUBREG
4989 || GET_CODE (dest) == ZERO_EXTRACT
4990 || GET_CODE (dest) == STRICT_LOW_PART)
4991 dest = XEXP (dest, 0);
4993 sets[i].inner_dest = dest;
4995 if (MEM_P (dest))
4997 #ifdef PUSH_ROUNDING
4998 /* Stack pushes invalidate the stack pointer. */
4999 rtx addr = XEXP (dest, 0);
5000 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5001 && XEXP (addr, 0) == stack_pointer_rtx)
5002 invalidate (stack_pointer_rtx, VOIDmode);
5003 #endif
5004 dest = fold_rtx (dest, insn);
5007 /* Compute the hash code of the destination now,
5008 before the effects of this instruction are recorded,
5009 since the register values used in the address computation
5010 are those before this instruction. */
5011 sets[i].dest_hash = HASH (dest, mode);
5013 /* Don't enter a bit-field in the hash table
5014 because the value in it after the store
5015 may not equal what was stored, due to truncation. */
5017 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5019 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5021 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
5022 && GET_CODE (width) == CONST_INT
5023 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5024 && ! (INTVAL (src_const)
5025 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5026 /* Exception: if the value is constant,
5027 and it won't be truncated, record it. */
5029 else
5031 /* This is chosen so that the destination will be invalidated
5032 but no new value will be recorded.
5033 We must invalidate because sometimes constant
5034 values can be recorded for bitfields. */
5035 sets[i].src_elt = 0;
5036 sets[i].src_volatile = 1;
5037 src_eqv = 0;
5038 src_eqv_elt = 0;
5042 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5043 the insn. */
5044 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5046 /* One less use of the label this insn used to jump to. */
5047 delete_insn_and_edges (insn);
5048 cse_jumps_altered = 1;
5049 /* No more processing for this set. */
5050 sets[i].rtl = 0;
5053 /* If this SET is now setting PC to a label, we know it used to
5054 be a conditional or computed branch. */
5055 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5056 && !LABEL_REF_NONLOCAL_P (src))
5058 /* We reemit the jump in as many cases as possible just in
5059 case the form of an unconditional jump is significantly
5060 different than a computed jump or conditional jump.
5062 If this insn has multiple sets, then reemitting the
5063 jump is nontrivial. So instead we just force rerecognition
5064 and hope for the best. */
5065 if (n_sets == 1)
5067 rtx new, note;
5069 new = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5070 JUMP_LABEL (new) = XEXP (src, 0);
5071 LABEL_NUSES (XEXP (src, 0))++;
5073 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5074 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5075 if (note)
5077 XEXP (note, 1) = NULL_RTX;
5078 REG_NOTES (new) = note;
5081 delete_insn_and_edges (insn);
5082 insn = new;
5084 else
5085 INSN_CODE (insn) = -1;
5087 /* Do not bother deleting any unreachable code,
5088 let jump/flow do that. */
5090 cse_jumps_altered = 1;
5091 sets[i].rtl = 0;
5094 /* If destination is volatile, invalidate it and then do no further
5095 processing for this assignment. */
5097 else if (do_not_record)
5099 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5100 invalidate (dest, VOIDmode);
5101 else if (MEM_P (dest))
5102 invalidate (dest, VOIDmode);
5103 else if (GET_CODE (dest) == STRICT_LOW_PART
5104 || GET_CODE (dest) == ZERO_EXTRACT)
5105 invalidate (XEXP (dest, 0), GET_MODE (dest));
5106 sets[i].rtl = 0;
5109 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5110 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5112 #ifdef HAVE_cc0
5113 /* If setting CC0, record what it was set to, or a constant, if it
5114 is equivalent to a constant. If it is being set to a floating-point
5115 value, make a COMPARE with the appropriate constant of 0. If we
5116 don't do this, later code can interpret this as a test against
5117 const0_rtx, which can cause problems if we try to put it into an
5118 insn as a floating-point operand. */
5119 if (dest == cc0_rtx)
5121 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5122 this_insn_cc0_mode = mode;
5123 if (FLOAT_MODE_P (mode))
5124 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5125 CONST0_RTX (mode));
5127 #endif
5130 /* Now enter all non-volatile source expressions in the hash table
5131 if they are not already present.
5132 Record their equivalence classes in src_elt.
5133 This way we can insert the corresponding destinations into
5134 the same classes even if the actual sources are no longer in them
5135 (having been invalidated). */
5137 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5138 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5140 struct table_elt *elt;
5141 struct table_elt *classp = sets[0].src_elt;
5142 rtx dest = SET_DEST (sets[0].rtl);
5143 enum machine_mode eqvmode = GET_MODE (dest);
5145 if (GET_CODE (dest) == STRICT_LOW_PART)
5147 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5148 classp = 0;
5150 if (insert_regs (src_eqv, classp, 0))
5152 rehash_using_reg (src_eqv);
5153 src_eqv_hash = HASH (src_eqv, eqvmode);
5155 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5156 elt->in_memory = src_eqv_in_memory;
5157 src_eqv_elt = elt;
5159 /* Check to see if src_eqv_elt is the same as a set source which
5160 does not yet have an elt, and if so set the elt of the set source
5161 to src_eqv_elt. */
5162 for (i = 0; i < n_sets; i++)
5163 if (sets[i].rtl && sets[i].src_elt == 0
5164 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5165 sets[i].src_elt = src_eqv_elt;
5168 for (i = 0; i < n_sets; i++)
5169 if (sets[i].rtl && ! sets[i].src_volatile
5170 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5172 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5174 /* REG_EQUAL in setting a STRICT_LOW_PART
5175 gives an equivalent for the entire destination register,
5176 not just for the subreg being stored in now.
5177 This is a more interesting equivalence, so we arrange later
5178 to treat the entire reg as the destination. */
5179 sets[i].src_elt = src_eqv_elt;
5180 sets[i].src_hash = src_eqv_hash;
5182 else
5184 /* Insert source and constant equivalent into hash table, if not
5185 already present. */
5186 struct table_elt *classp = src_eqv_elt;
5187 rtx src = sets[i].src;
5188 rtx dest = SET_DEST (sets[i].rtl);
5189 enum machine_mode mode
5190 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5192 /* It's possible that we have a source value known to be
5193 constant but don't have a REG_EQUAL note on the insn.
5194 Lack of a note will mean src_eqv_elt will be NULL. This
5195 can happen where we've generated a SUBREG to access a
5196 CONST_INT that is already in a register in a wider mode.
5197 Ensure that the source expression is put in the proper
5198 constant class. */
5199 if (!classp)
5200 classp = sets[i].src_const_elt;
5202 if (sets[i].src_elt == 0)
5204 /* Don't put a hard register source into the table if this is
5205 the last insn of a libcall. In this case, we only need
5206 to put src_eqv_elt in src_elt. */
5207 if (! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5209 struct table_elt *elt;
5211 /* Note that these insert_regs calls cannot remove
5212 any of the src_elt's, because they would have failed to
5213 match if not still valid. */
5214 if (insert_regs (src, classp, 0))
5216 rehash_using_reg (src);
5217 sets[i].src_hash = HASH (src, mode);
5219 elt = insert (src, classp, sets[i].src_hash, mode);
5220 elt->in_memory = sets[i].src_in_memory;
5221 sets[i].src_elt = classp = elt;
5223 else
5224 sets[i].src_elt = classp;
5226 if (sets[i].src_const && sets[i].src_const_elt == 0
5227 && src != sets[i].src_const
5228 && ! rtx_equal_p (sets[i].src_const, src))
5229 sets[i].src_elt = insert (sets[i].src_const, classp,
5230 sets[i].src_const_hash, mode);
5233 else if (sets[i].src_elt == 0)
5234 /* If we did not insert the source into the hash table (e.g., it was
5235 volatile), note the equivalence class for the REG_EQUAL value, if any,
5236 so that the destination goes into that class. */
5237 sets[i].src_elt = src_eqv_elt;
5239 /* Record destination addresses in the hash table. This allows us to
5240 check if they are invalidated by other sets. */
5241 for (i = 0; i < n_sets; i++)
5243 if (sets[i].rtl)
5245 rtx x = sets[i].inner_dest;
5246 struct table_elt *elt;
5247 enum machine_mode mode;
5248 unsigned hash;
5250 if (MEM_P (x))
5252 x = XEXP (x, 0);
5253 mode = GET_MODE (x);
5254 hash = HASH (x, mode);
5255 elt = lookup (x, hash, mode);
5256 if (!elt)
5258 if (insert_regs (x, NULL, 0))
5260 rtx dest = SET_DEST (sets[i].rtl);
5262 rehash_using_reg (x);
5263 hash = HASH (x, mode);
5264 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5266 elt = insert (x, NULL, hash, mode);
5269 sets[i].dest_addr_elt = elt;
5271 else
5272 sets[i].dest_addr_elt = NULL;
5276 invalidate_from_clobbers (x);
5278 /* Some registers are invalidated by subroutine calls. Memory is
5279 invalidated by non-constant calls. */
5281 if (CALL_P (insn))
5283 if (! CONST_OR_PURE_CALL_P (insn))
5284 invalidate_memory ();
5285 invalidate_for_call ();
5288 /* Now invalidate everything set by this instruction.
5289 If a SUBREG or other funny destination is being set,
5290 sets[i].rtl is still nonzero, so here we invalidate the reg
5291 a part of which is being set. */
5293 for (i = 0; i < n_sets; i++)
5294 if (sets[i].rtl)
5296 /* We can't use the inner dest, because the mode associated with
5297 a ZERO_EXTRACT is significant. */
5298 rtx dest = SET_DEST (sets[i].rtl);
5300 /* Needed for registers to remove the register from its
5301 previous quantity's chain.
5302 Needed for memory if this is a nonvarying address, unless
5303 we have just done an invalidate_memory that covers even those. */
5304 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5305 invalidate (dest, VOIDmode);
5306 else if (MEM_P (dest))
5307 invalidate (dest, VOIDmode);
5308 else if (GET_CODE (dest) == STRICT_LOW_PART
5309 || GET_CODE (dest) == ZERO_EXTRACT)
5310 invalidate (XEXP (dest, 0), GET_MODE (dest));
5313 /* A volatile ASM invalidates everything. */
5314 if (NONJUMP_INSN_P (insn)
5315 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5316 && MEM_VOLATILE_P (PATTERN (insn)))
5317 flush_hash_table ();
5319 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5320 the regs restored by the longjmp come from a later time
5321 than the setjmp. */
5322 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5324 flush_hash_table ();
5325 goto done;
5328 /* Make sure registers mentioned in destinations
5329 are safe for use in an expression to be inserted.
5330 This removes from the hash table
5331 any invalid entry that refers to one of these registers.
5333 We don't care about the return value from mention_regs because
5334 we are going to hash the SET_DEST values unconditionally. */
5336 for (i = 0; i < n_sets; i++)
5338 if (sets[i].rtl)
5340 rtx x = SET_DEST (sets[i].rtl);
5342 if (!REG_P (x))
5343 mention_regs (x);
5344 else
5346 /* We used to rely on all references to a register becoming
5347 inaccessible when a register changes to a new quantity,
5348 since that changes the hash code. However, that is not
5349 safe, since after HASH_SIZE new quantities we get a
5350 hash 'collision' of a register with its own invalid
5351 entries. And since SUBREGs have been changed not to
5352 change their hash code with the hash code of the register,
5353 it wouldn't work any longer at all. So we have to check
5354 for any invalid references lying around now.
5355 This code is similar to the REG case in mention_regs,
5356 but it knows that reg_tick has been incremented, and
5357 it leaves reg_in_table as -1 . */
5358 unsigned int regno = REGNO (x);
5359 unsigned int endregno = END_REGNO (x);
5360 unsigned int i;
5362 for (i = regno; i < endregno; i++)
5364 if (REG_IN_TABLE (i) >= 0)
5366 remove_invalid_refs (i);
5367 REG_IN_TABLE (i) = -1;
5374 /* We may have just removed some of the src_elt's from the hash table.
5375 So replace each one with the current head of the same class.
5376 Also check if destination addresses have been removed. */
5378 for (i = 0; i < n_sets; i++)
5379 if (sets[i].rtl)
5381 if (sets[i].dest_addr_elt
5382 && sets[i].dest_addr_elt->first_same_value == 0)
5384 /* The elt was removed, which means this destination is not
5385 valid after this instruction. */
5386 sets[i].rtl = NULL_RTX;
5388 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5389 /* If elt was removed, find current head of same class,
5390 or 0 if nothing remains of that class. */
5392 struct table_elt *elt = sets[i].src_elt;
5394 while (elt && elt->prev_same_value)
5395 elt = elt->prev_same_value;
5397 while (elt && elt->first_same_value == 0)
5398 elt = elt->next_same_value;
5399 sets[i].src_elt = elt ? elt->first_same_value : 0;
5403 /* Now insert the destinations into their equivalence classes. */
5405 for (i = 0; i < n_sets; i++)
5406 if (sets[i].rtl)
5408 rtx dest = SET_DEST (sets[i].rtl);
5409 struct table_elt *elt;
5411 /* Don't record value if we are not supposed to risk allocating
5412 floating-point values in registers that might be wider than
5413 memory. */
5414 if ((flag_float_store
5415 && MEM_P (dest)
5416 && FLOAT_MODE_P (GET_MODE (dest)))
5417 /* Don't record BLKmode values, because we don't know the
5418 size of it, and can't be sure that other BLKmode values
5419 have the same or smaller size. */
5420 || GET_MODE (dest) == BLKmode
5421 /* Don't record values of destinations set inside a libcall block
5422 since we might delete the libcall. Things should have been set
5423 up so we won't want to reuse such a value, but we play it safe
5424 here. */
5425 || libcall_insn
5426 /* If we didn't put a REG_EQUAL value or a source into the hash
5427 table, there is no point is recording DEST. */
5428 || sets[i].src_elt == 0
5429 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5430 or SIGN_EXTEND, don't record DEST since it can cause
5431 some tracking to be wrong.
5433 ??? Think about this more later. */
5434 || (GET_CODE (dest) == SUBREG
5435 && (GET_MODE_SIZE (GET_MODE (dest))
5436 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5437 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5438 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5439 continue;
5441 /* STRICT_LOW_PART isn't part of the value BEING set,
5442 and neither is the SUBREG inside it.
5443 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5444 if (GET_CODE (dest) == STRICT_LOW_PART)
5445 dest = SUBREG_REG (XEXP (dest, 0));
5447 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5448 /* Registers must also be inserted into chains for quantities. */
5449 if (insert_regs (dest, sets[i].src_elt, 1))
5451 /* If `insert_regs' changes something, the hash code must be
5452 recalculated. */
5453 rehash_using_reg (dest);
5454 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5457 elt = insert (dest, sets[i].src_elt,
5458 sets[i].dest_hash, GET_MODE (dest));
5460 elt->in_memory = (MEM_P (sets[i].inner_dest)
5461 && !MEM_READONLY_P (sets[i].inner_dest));
5463 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5464 narrower than M2, and both M1 and M2 are the same number of words,
5465 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5466 make that equivalence as well.
5468 However, BAR may have equivalences for which gen_lowpart
5469 will produce a simpler value than gen_lowpart applied to
5470 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5471 BAR's equivalences. If we don't get a simplified form, make
5472 the SUBREG. It will not be used in an equivalence, but will
5473 cause two similar assignments to be detected.
5475 Note the loop below will find SUBREG_REG (DEST) since we have
5476 already entered SRC and DEST of the SET in the table. */
5478 if (GET_CODE (dest) == SUBREG
5479 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5480 / UNITS_PER_WORD)
5481 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5482 && (GET_MODE_SIZE (GET_MODE (dest))
5483 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5484 && sets[i].src_elt != 0)
5486 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5487 struct table_elt *elt, *classp = 0;
5489 for (elt = sets[i].src_elt->first_same_value; elt;
5490 elt = elt->next_same_value)
5492 rtx new_src = 0;
5493 unsigned src_hash;
5494 struct table_elt *src_elt;
5495 int byte = 0;
5497 /* Ignore invalid entries. */
5498 if (!REG_P (elt->exp)
5499 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5500 continue;
5502 /* We may have already been playing subreg games. If the
5503 mode is already correct for the destination, use it. */
5504 if (GET_MODE (elt->exp) == new_mode)
5505 new_src = elt->exp;
5506 else
5508 /* Calculate big endian correction for the SUBREG_BYTE.
5509 We have already checked that M1 (GET_MODE (dest))
5510 is not narrower than M2 (new_mode). */
5511 if (BYTES_BIG_ENDIAN)
5512 byte = (GET_MODE_SIZE (GET_MODE (dest))
5513 - GET_MODE_SIZE (new_mode));
5515 new_src = simplify_gen_subreg (new_mode, elt->exp,
5516 GET_MODE (dest), byte);
5519 /* The call to simplify_gen_subreg fails if the value
5520 is VOIDmode, yet we can't do any simplification, e.g.
5521 for EXPR_LISTs denoting function call results.
5522 It is invalid to construct a SUBREG with a VOIDmode
5523 SUBREG_REG, hence a zero new_src means we can't do
5524 this substitution. */
5525 if (! new_src)
5526 continue;
5528 src_hash = HASH (new_src, new_mode);
5529 src_elt = lookup (new_src, src_hash, new_mode);
5531 /* Put the new source in the hash table is if isn't
5532 already. */
5533 if (src_elt == 0)
5535 if (insert_regs (new_src, classp, 0))
5537 rehash_using_reg (new_src);
5538 src_hash = HASH (new_src, new_mode);
5540 src_elt = insert (new_src, classp, src_hash, new_mode);
5541 src_elt->in_memory = elt->in_memory;
5543 else if (classp && classp != src_elt->first_same_value)
5544 /* Show that two things that we've seen before are
5545 actually the same. */
5546 merge_equiv_classes (src_elt, classp);
5548 classp = src_elt->first_same_value;
5549 /* Ignore invalid entries. */
5550 while (classp
5551 && !REG_P (classp->exp)
5552 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5553 classp = classp->next_same_value;
5558 /* Special handling for (set REG0 REG1) where REG0 is the
5559 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5560 be used in the sequel, so (if easily done) change this insn to
5561 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5562 that computed their value. Then REG1 will become a dead store
5563 and won't cloud the situation for later optimizations.
5565 Do not make this change if REG1 is a hard register, because it will
5566 then be used in the sequel and we may be changing a two-operand insn
5567 into a three-operand insn.
5569 Also do not do this if we are operating on a copy of INSN.
5571 Also don't do this if INSN ends a libcall; this would cause an unrelated
5572 register to be set in the middle of a libcall, and we then get bad code
5573 if the libcall is deleted. */
5575 if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
5576 && NEXT_INSN (PREV_INSN (insn)) == insn
5577 && REG_P (SET_SRC (sets[0].rtl))
5578 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
5579 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
5581 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
5582 struct qty_table_elem *src_ent = &qty_table[src_q];
5584 if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
5585 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5587 /* Scan for the previous nonnote insn, but stop at a basic
5588 block boundary. */
5589 rtx prev = insn;
5590 rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
5593 prev = PREV_INSN (prev);
5595 while (prev != bb_head && NOTE_P (prev));
5597 /* Do not swap the registers around if the previous instruction
5598 attaches a REG_EQUIV note to REG1.
5600 ??? It's not entirely clear whether we can transfer a REG_EQUIV
5601 from the pseudo that originally shadowed an incoming argument
5602 to another register. Some uses of REG_EQUIV might rely on it
5603 being attached to REG1 rather than REG2.
5605 This section previously turned the REG_EQUIV into a REG_EQUAL
5606 note. We cannot do that because REG_EQUIV may provide an
5607 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
5608 if (NONJUMP_INSN_P (prev)
5609 && GET_CODE (PATTERN (prev)) == SET
5610 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
5611 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
5613 rtx dest = SET_DEST (sets[0].rtl);
5614 rtx src = SET_SRC (sets[0].rtl);
5615 rtx note;
5617 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
5618 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
5619 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
5620 apply_change_group ();
5622 /* If INSN has a REG_EQUAL note, and this note mentions
5623 REG0, then we must delete it, because the value in
5624 REG0 has changed. If the note's value is REG1, we must
5625 also delete it because that is now this insn's dest. */
5626 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5627 if (note != 0
5628 && (reg_mentioned_p (dest, XEXP (note, 0))
5629 || rtx_equal_p (src, XEXP (note, 0))))
5630 remove_note (insn, note);
5635 done:;
5638 /* Remove from the hash table all expressions that reference memory. */
5640 static void
5641 invalidate_memory (void)
5643 int i;
5644 struct table_elt *p, *next;
5646 for (i = 0; i < HASH_SIZE; i++)
5647 for (p = table[i]; p; p = next)
5649 next = p->next_same_hash;
5650 if (p->in_memory)
5651 remove_from_table (p, i);
5655 /* Perform invalidation on the basis of everything about an insn
5656 except for invalidating the actual places that are SET in it.
5657 This includes the places CLOBBERed, and anything that might
5658 alias with something that is SET or CLOBBERed.
5660 X is the pattern of the insn. */
5662 static void
5663 invalidate_from_clobbers (rtx x)
5665 if (GET_CODE (x) == CLOBBER)
5667 rtx ref = XEXP (x, 0);
5668 if (ref)
5670 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5671 || MEM_P (ref))
5672 invalidate (ref, VOIDmode);
5673 else if (GET_CODE (ref) == STRICT_LOW_PART
5674 || GET_CODE (ref) == ZERO_EXTRACT)
5675 invalidate (XEXP (ref, 0), GET_MODE (ref));
5678 else if (GET_CODE (x) == PARALLEL)
5680 int i;
5681 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5683 rtx y = XVECEXP (x, 0, i);
5684 if (GET_CODE (y) == CLOBBER)
5686 rtx ref = XEXP (y, 0);
5687 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5688 || MEM_P (ref))
5689 invalidate (ref, VOIDmode);
5690 else if (GET_CODE (ref) == STRICT_LOW_PART
5691 || GET_CODE (ref) == ZERO_EXTRACT)
5692 invalidate (XEXP (ref, 0), GET_MODE (ref));
5698 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
5699 and replace any registers in them with either an equivalent constant
5700 or the canonical form of the register. If we are inside an address,
5701 only do this if the address remains valid.
5703 OBJECT is 0 except when within a MEM in which case it is the MEM.
5705 Return the replacement for X. */
5707 static rtx
5708 cse_process_notes_1 (rtx x, rtx object, bool *changed)
5710 enum rtx_code code = GET_CODE (x);
5711 const char *fmt = GET_RTX_FORMAT (code);
5712 int i;
5714 switch (code)
5716 case CONST_INT:
5717 case CONST:
5718 case SYMBOL_REF:
5719 case LABEL_REF:
5720 case CONST_DOUBLE:
5721 case CONST_FIXED:
5722 case CONST_VECTOR:
5723 case PC:
5724 case CC0:
5725 case LO_SUM:
5726 return x;
5728 case MEM:
5729 validate_change (x, &XEXP (x, 0),
5730 cse_process_notes (XEXP (x, 0), x, changed), 0);
5731 return x;
5733 case EXPR_LIST:
5734 case INSN_LIST:
5735 if (REG_NOTE_KIND (x) == REG_EQUAL)
5736 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
5737 if (XEXP (x, 1))
5738 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
5739 return x;
5741 case SIGN_EXTEND:
5742 case ZERO_EXTEND:
5743 case SUBREG:
5745 rtx new = cse_process_notes (XEXP (x, 0), object, changed);
5746 /* We don't substitute VOIDmode constants into these rtx,
5747 since they would impede folding. */
5748 if (GET_MODE (new) != VOIDmode)
5749 validate_change (object, &XEXP (x, 0), new, 0);
5750 return x;
5753 case REG:
5754 i = REG_QTY (REGNO (x));
5756 /* Return a constant or a constant register. */
5757 if (REGNO_QTY_VALID_P (REGNO (x)))
5759 struct qty_table_elem *ent = &qty_table[i];
5761 if (ent->const_rtx != NULL_RTX
5762 && (CONSTANT_P (ent->const_rtx)
5763 || REG_P (ent->const_rtx)))
5765 rtx new = gen_lowpart (GET_MODE (x), ent->const_rtx);
5766 if (new)
5767 return copy_rtx (new);
5771 /* Otherwise, canonicalize this register. */
5772 return canon_reg (x, NULL_RTX);
5774 default:
5775 break;
5778 for (i = 0; i < GET_RTX_LENGTH (code); i++)
5779 if (fmt[i] == 'e')
5780 validate_change (object, &XEXP (x, i),
5781 cse_process_notes (XEXP (x, i), object, changed), 0);
5783 return x;
5786 static rtx
5787 cse_process_notes (rtx x, rtx object, bool *changed)
5789 rtx new = cse_process_notes_1 (x, object, changed);
5790 if (new != x)
5791 *changed = true;
5792 return new;
5796 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
5798 DATA is a pointer to a struct cse_basic_block_data, that is used to
5799 describe the path.
5800 It is filled with a queue of basic blocks, starting with FIRST_BB
5801 and following a trace through the CFG.
5803 If all paths starting at FIRST_BB have been followed, or no new path
5804 starting at FIRST_BB can be constructed, this function returns FALSE.
5805 Otherwise, DATA->path is filled and the function returns TRUE indicating
5806 that a path to follow was found.
5808 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
5809 block in the path will be FIRST_BB. */
5811 static bool
5812 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
5813 int follow_jumps)
5815 basic_block bb;
5816 edge e;
5817 int path_size;
5819 SET_BIT (cse_visited_basic_blocks, first_bb->index);
5821 /* See if there is a previous path. */
5822 path_size = data->path_size;
5824 /* There is a previous path. Make sure it started with FIRST_BB. */
5825 if (path_size)
5826 gcc_assert (data->path[0].bb == first_bb);
5828 /* There was only one basic block in the last path. Clear the path and
5829 return, so that paths starting at another basic block can be tried. */
5830 if (path_size == 1)
5832 path_size = 0;
5833 goto done;
5836 /* If the path was empty from the beginning, construct a new path. */
5837 if (path_size == 0)
5838 data->path[path_size++].bb = first_bb;
5839 else
5841 /* Otherwise, path_size must be equal to or greater than 2, because
5842 a previous path exists that is at least two basic blocks long.
5844 Update the previous branch path, if any. If the last branch was
5845 previously along the branch edge, take the fallthrough edge now. */
5846 while (path_size >= 2)
5848 basic_block last_bb_in_path, previous_bb_in_path;
5849 edge e;
5851 --path_size;
5852 last_bb_in_path = data->path[path_size].bb;
5853 previous_bb_in_path = data->path[path_size - 1].bb;
5855 /* If we previously followed a path along the branch edge, try
5856 the fallthru edge now. */
5857 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
5858 && any_condjump_p (BB_END (previous_bb_in_path))
5859 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
5860 && e == BRANCH_EDGE (previous_bb_in_path))
5862 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
5863 if (bb != EXIT_BLOCK_PTR
5864 && single_pred_p (bb)
5865 /* We used to assert here that we would only see blocks
5866 that we have not visited yet. But we may end up
5867 visiting basic blocks twice if the CFG has changed
5868 in this run of cse_main, because when the CFG changes
5869 the topological sort of the CFG also changes. A basic
5870 blocks that previously had more than two predecessors
5871 may now have a single predecessor, and become part of
5872 a path that starts at another basic block.
5874 We still want to visit each basic block only once, so
5875 halt the path here if we have already visited BB. */
5876 && !TEST_BIT (cse_visited_basic_blocks, bb->index))
5878 SET_BIT (cse_visited_basic_blocks, bb->index);
5879 data->path[path_size++].bb = bb;
5880 break;
5884 data->path[path_size].bb = NULL;
5887 /* If only one block remains in the path, bail. */
5888 if (path_size == 1)
5890 path_size = 0;
5891 goto done;
5895 /* Extend the path if possible. */
5896 if (follow_jumps)
5898 bb = data->path[path_size - 1].bb;
5899 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
5901 if (single_succ_p (bb))
5902 e = single_succ_edge (bb);
5903 else if (EDGE_COUNT (bb->succs) == 2
5904 && any_condjump_p (BB_END (bb)))
5906 /* First try to follow the branch. If that doesn't lead
5907 to a useful path, follow the fallthru edge. */
5908 e = BRANCH_EDGE (bb);
5909 if (!single_pred_p (e->dest))
5910 e = FALLTHRU_EDGE (bb);
5912 else
5913 e = NULL;
5915 if (e && e->dest != EXIT_BLOCK_PTR
5916 && single_pred_p (e->dest)
5917 /* Avoid visiting basic blocks twice. The large comment
5918 above explains why this can happen. */
5919 && !TEST_BIT (cse_visited_basic_blocks, e->dest->index))
5921 basic_block bb2 = e->dest;
5922 SET_BIT (cse_visited_basic_blocks, bb2->index);
5923 data->path[path_size++].bb = bb2;
5924 bb = bb2;
5926 else
5927 bb = NULL;
5931 done:
5932 data->path_size = path_size;
5933 return path_size != 0;
5936 /* Dump the path in DATA to file F. NSETS is the number of sets
5937 in the path. */
5939 static void
5940 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
5942 int path_entry;
5944 fprintf (f, ";; Following path with %d sets: ", nsets);
5945 for (path_entry = 0; path_entry < data->path_size; path_entry++)
5946 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
5947 fputc ('\n', dump_file);
5948 fflush (f);
5952 /* Return true if BB has exception handling successor edges. */
5954 static bool
5955 have_eh_succ_edges (basic_block bb)
5957 edge e;
5958 edge_iterator ei;
5960 FOR_EACH_EDGE (e, ei, bb->succs)
5961 if (e->flags & EDGE_EH)
5962 return true;
5964 return false;
5968 /* Scan to the end of the path described by DATA. Return an estimate of
5969 the total number of SETs of all insns in the path. */
5971 static void
5972 cse_prescan_path (struct cse_basic_block_data *data)
5974 int nsets = 0;
5975 int path_size = data->path_size;
5976 int path_entry;
5978 /* Scan to end of each basic block in the path. */
5979 for (path_entry = 0; path_entry < path_size; path_entry++)
5981 basic_block bb;
5982 rtx insn;
5984 bb = data->path[path_entry].bb;
5986 FOR_BB_INSNS (bb, insn)
5988 if (!INSN_P (insn))
5989 continue;
5991 /* A PARALLEL can have lots of SETs in it,
5992 especially if it is really an ASM_OPERANDS. */
5993 if (GET_CODE (PATTERN (insn)) == PARALLEL)
5994 nsets += XVECLEN (PATTERN (insn), 0);
5995 else
5996 nsets += 1;
6000 data->nsets = nsets;
6003 /* Process a single extended basic block described by EBB_DATA. */
6005 static void
6006 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6008 int path_size = ebb_data->path_size;
6009 int path_entry;
6010 int num_insns = 0;
6012 /* Allocate the space needed by qty_table. */
6013 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6015 new_basic_block ();
6016 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6017 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6018 for (path_entry = 0; path_entry < path_size; path_entry++)
6020 basic_block bb;
6021 rtx insn;
6022 rtx libcall_insn = NULL_RTX;
6023 int no_conflict = 0;
6025 bb = ebb_data->path[path_entry].bb;
6026 FOR_BB_INSNS (bb, insn)
6028 /* If we have processed 1,000 insns, flush the hash table to
6029 avoid extreme quadratic behavior. We must not include NOTEs
6030 in the count since there may be more of them when generating
6031 debugging information. If we clear the table at different
6032 times, code generated with -g -O might be different than code
6033 generated with -O but not -g.
6035 FIXME: This is a real kludge and needs to be done some other
6036 way. */
6037 if (INSN_P (insn)
6038 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6040 flush_hash_table ();
6041 num_insns = 0;
6044 if (INSN_P (insn))
6046 /* Process notes first so we have all notes in canonical forms
6047 when looking for duplicate operations. */
6048 if (REG_NOTES (insn))
6050 bool changed = false;
6051 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6052 NULL_RTX, &changed);
6053 if (changed)
6054 df_notes_rescan (insn);
6057 /* Track when we are inside in LIBCALL block. Inside such
6058 a block we do not want to record destinations. The last
6059 insn of a LIBCALL block is not considered to be part of
6060 the block, since its destination is the result of the
6061 block and hence should be recorded. */
6062 if (REG_NOTES (insn) != 0)
6064 rtx p;
6066 if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
6067 libcall_insn = XEXP (p, 0);
6068 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6070 /* Keep libcall_insn for the last SET insn of
6071 a no-conflict block to prevent changing the
6072 destination. */
6073 if (!no_conflict)
6074 libcall_insn = NULL_RTX;
6075 else
6076 no_conflict = -1;
6078 else if (find_reg_note (insn, REG_NO_CONFLICT, NULL_RTX))
6079 no_conflict = 1;
6082 cse_insn (insn, libcall_insn);
6084 /* If we kept libcall_insn for a no-conflict bock,
6085 clear it here. */
6086 if (no_conflict == -1)
6088 libcall_insn = NULL_RTX;
6089 no_conflict = 0;
6092 /* If we haven't already found an insn where we added a LABEL_REF,
6093 check this one. */
6094 if (NONJUMP_INSN_P (insn) && ! recorded_label_ref
6095 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6096 (void *) insn))
6097 recorded_label_ref = 1;
6099 #ifdef HAVE_cc0
6100 /* If the previous insn set CC0 and this insn no longer
6101 references CC0, delete the previous insn. Here we use
6102 fact that nothing expects CC0 to be valid over an insn,
6103 which is true until the final pass. */
6105 rtx prev_insn, tem;
6107 prev_insn = PREV_INSN (insn);
6108 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6109 && (tem = single_set (prev_insn)) != 0
6110 && SET_DEST (tem) == cc0_rtx
6111 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6112 delete_insn (prev_insn);
6115 /* If this insn is not the last insn in the basic block,
6116 it will be PREV_INSN(insn) in the next iteration. If
6117 we recorded any CC0-related information for this insn,
6118 remember it. */
6119 if (insn != BB_END (bb))
6121 prev_insn_cc0 = this_insn_cc0;
6122 prev_insn_cc0_mode = this_insn_cc0_mode;
6124 #endif
6128 /* Make sure that libcalls don't span multiple basic blocks. */
6129 gcc_assert (libcall_insn == NULL_RTX);
6131 /* With non-call exceptions, we are not always able to update
6132 the CFG properly inside cse_insn. So clean up possibly
6133 redundant EH edges here. */
6134 if (flag_non_call_exceptions && have_eh_succ_edges (bb))
6135 purge_dead_edges (bb);
6137 /* If we changed a conditional jump, we may have terminated
6138 the path we are following. Check that by verifying that
6139 the edge we would take still exists. If the edge does
6140 not exist anymore, purge the remainder of the path.
6141 Note that this will cause us to return to the caller. */
6142 if (path_entry < path_size - 1)
6144 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6145 if (!find_edge (bb, next_bb))
6149 path_size--;
6151 /* If we truncate the path, we must also reset the
6152 visited bit on the remaining blocks in the path,
6153 or we will never visit them at all. */
6154 RESET_BIT (cse_visited_basic_blocks,
6155 ebb_data->path[path_size].bb->index);
6156 ebb_data->path[path_size].bb = NULL;
6158 while (path_size - 1 != path_entry);
6159 ebb_data->path_size = path_size;
6163 /* If this is a conditional jump insn, record any known
6164 equivalences due to the condition being tested. */
6165 insn = BB_END (bb);
6166 if (path_entry < path_size - 1
6167 && JUMP_P (insn)
6168 && single_set (insn)
6169 && any_condjump_p (insn))
6171 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6172 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6173 record_jump_equiv (insn, taken);
6176 #ifdef HAVE_cc0
6177 /* Clear the CC0-tracking related insns, they can't provide
6178 useful information across basic block boundaries. */
6179 prev_insn_cc0 = 0;
6180 #endif
6183 gcc_assert (next_qty <= max_qty);
6185 free (qty_table);
6189 /* Perform cse on the instructions of a function.
6190 F is the first instruction.
6191 NREGS is one plus the highest pseudo-reg number used in the instruction.
6193 Returns 1 if jump_optimize should be redone due to simplifications
6194 in conditional jump instructions. */
6197 cse_main (rtx f ATTRIBUTE_UNUSED, int nregs)
6199 struct cse_basic_block_data ebb_data;
6200 basic_block bb;
6201 int *rc_order = XNEWVEC (int, last_basic_block);
6202 int i, n_blocks;
6204 df_set_flags (DF_LR_RUN_DCE);
6205 df_analyze ();
6206 df_set_flags (DF_DEFER_INSN_RESCAN);
6208 reg_scan (get_insns (), max_reg_num ());
6209 init_cse_reg_info (nregs);
6211 ebb_data.path = XNEWVEC (struct branch_path,
6212 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6214 cse_jumps_altered = 0;
6215 recorded_label_ref = 0;
6216 constant_pool_entries_cost = 0;
6217 constant_pool_entries_regcost = 0;
6218 ebb_data.path_size = 0;
6219 ebb_data.nsets = 0;
6220 rtl_hooks = cse_rtl_hooks;
6222 init_recog ();
6223 init_alias_analysis ();
6225 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6227 /* Set up the table of already visited basic blocks. */
6228 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block);
6229 sbitmap_zero (cse_visited_basic_blocks);
6231 /* Loop over basic blocks in reverse completion order (RPO),
6232 excluding the ENTRY and EXIT blocks. */
6233 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6234 i = 0;
6235 while (i < n_blocks)
6237 /* Find the first block in the RPO queue that we have not yet
6238 processed before. */
6241 bb = BASIC_BLOCK (rc_order[i++]);
6243 while (TEST_BIT (cse_visited_basic_blocks, bb->index)
6244 && i < n_blocks);
6246 /* Find all paths starting with BB, and process them. */
6247 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6249 /* Pre-scan the path. */
6250 cse_prescan_path (&ebb_data);
6252 /* If this basic block has no sets, skip it. */
6253 if (ebb_data.nsets == 0)
6254 continue;
6256 /* Get a reasonable estimate for the maximum number of qty's
6257 needed for this path. For this, we take the number of sets
6258 and multiply that by MAX_RECOG_OPERANDS. */
6259 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6261 /* Dump the path we're about to process. */
6262 if (dump_file)
6263 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6265 cse_extended_basic_block (&ebb_data);
6269 /* Clean up. */
6270 end_alias_analysis ();
6271 free (reg_eqv_table);
6272 free (ebb_data.path);
6273 sbitmap_free (cse_visited_basic_blocks);
6274 free (rc_order);
6275 rtl_hooks = general_rtl_hooks;
6277 return cse_jumps_altered || recorded_label_ref;
6280 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for which
6281 there isn't a REG_LABEL note. Return one if so. DATA is the insn. */
6283 static int
6284 check_for_label_ref (rtx *rtl, void *data)
6286 rtx insn = (rtx) data;
6288 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL note for it,
6289 we must rerun jump since it needs to place the note. If this is a
6290 LABEL_REF for a CODE_LABEL that isn't in the insn chain, don't do this
6291 since no REG_LABEL will be added. */
6292 return (GET_CODE (*rtl) == LABEL_REF
6293 && ! LABEL_REF_NONLOCAL_P (*rtl)
6294 && LABEL_P (XEXP (*rtl, 0))
6295 && INSN_UID (XEXP (*rtl, 0)) != 0
6296 && ! find_reg_note (insn, REG_LABEL, XEXP (*rtl, 0)));
6299 /* Count the number of times registers are used (not set) in X.
6300 COUNTS is an array in which we accumulate the count, INCR is how much
6301 we count each register usage.
6303 Don't count a usage of DEST, which is the SET_DEST of a SET which
6304 contains X in its SET_SRC. This is because such a SET does not
6305 modify the liveness of DEST.
6306 DEST is set to pc_rtx for a trapping insn, which means that we must count
6307 uses of a SET_DEST regardless because the insn can't be deleted here. */
6309 static void
6310 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6312 enum rtx_code code;
6313 rtx note;
6314 const char *fmt;
6315 int i, j;
6317 if (x == 0)
6318 return;
6320 switch (code = GET_CODE (x))
6322 case REG:
6323 if (x != dest)
6324 counts[REGNO (x)] += incr;
6325 return;
6327 case PC:
6328 case CC0:
6329 case CONST:
6330 case CONST_INT:
6331 case CONST_DOUBLE:
6332 case CONST_FIXED:
6333 case CONST_VECTOR:
6334 case SYMBOL_REF:
6335 case LABEL_REF:
6336 return;
6338 case CLOBBER:
6339 /* If we are clobbering a MEM, mark any registers inside the address
6340 as being used. */
6341 if (MEM_P (XEXP (x, 0)))
6342 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6343 return;
6345 case SET:
6346 /* Unless we are setting a REG, count everything in SET_DEST. */
6347 if (!REG_P (SET_DEST (x)))
6348 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6349 count_reg_usage (SET_SRC (x), counts,
6350 dest ? dest : SET_DEST (x),
6351 incr);
6352 return;
6354 case CALL_INSN:
6355 case INSN:
6356 case JUMP_INSN:
6357 /* We expect dest to be NULL_RTX here. If the insn may trap, mark
6358 this fact by setting DEST to pc_rtx. */
6359 if (flag_non_call_exceptions && may_trap_p (PATTERN (x)))
6360 dest = pc_rtx;
6361 if (code == CALL_INSN)
6362 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6363 count_reg_usage (PATTERN (x), counts, dest, incr);
6365 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6366 use them. */
6368 note = find_reg_equal_equiv_note (x);
6369 if (note)
6371 rtx eqv = XEXP (note, 0);
6373 if (GET_CODE (eqv) == EXPR_LIST)
6374 /* This REG_EQUAL note describes the result of a function call.
6375 Process all the arguments. */
6378 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6379 eqv = XEXP (eqv, 1);
6381 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6382 else
6383 count_reg_usage (eqv, counts, dest, incr);
6385 return;
6387 case EXPR_LIST:
6388 if (REG_NOTE_KIND (x) == REG_EQUAL
6389 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6390 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6391 involving registers in the address. */
6392 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6393 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6395 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6396 return;
6398 case ASM_OPERANDS:
6399 /* If the asm is volatile, then this insn cannot be deleted,
6400 and so the inputs *must* be live. */
6401 if (MEM_VOLATILE_P (x))
6402 dest = NULL_RTX;
6403 /* Iterate over just the inputs, not the constraints as well. */
6404 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6405 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6406 return;
6408 case INSN_LIST:
6409 gcc_unreachable ();
6411 default:
6412 break;
6415 fmt = GET_RTX_FORMAT (code);
6416 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6418 if (fmt[i] == 'e')
6419 count_reg_usage (XEXP (x, i), counts, dest, incr);
6420 else if (fmt[i] == 'E')
6421 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6422 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6426 /* Return true if set is live. */
6427 static bool
6428 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6429 int *counts)
6431 #ifdef HAVE_cc0
6432 rtx tem;
6433 #endif
6435 if (set_noop_p (set))
6438 #ifdef HAVE_cc0
6439 else if (GET_CODE (SET_DEST (set)) == CC0
6440 && !side_effects_p (SET_SRC (set))
6441 && ((tem = next_nonnote_insn (insn)) == 0
6442 || !INSN_P (tem)
6443 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6444 return false;
6445 #endif
6446 else if (!REG_P (SET_DEST (set))
6447 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
6448 || counts[REGNO (SET_DEST (set))] != 0
6449 || side_effects_p (SET_SRC (set)))
6450 return true;
6451 return false;
6454 /* Return true if insn is live. */
6456 static bool
6457 insn_live_p (rtx insn, int *counts)
6459 int i;
6460 if (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
6461 return true;
6462 else if (GET_CODE (PATTERN (insn)) == SET)
6463 return set_live_p (PATTERN (insn), insn, counts);
6464 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6466 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6468 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6470 if (GET_CODE (elt) == SET)
6472 if (set_live_p (elt, insn, counts))
6473 return true;
6475 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6476 return true;
6478 return false;
6480 else
6481 return true;
6484 /* Return true if libcall is dead as a whole. */
6486 static bool
6487 dead_libcall_p (rtx insn, int *counts)
6489 rtx note, set, new;
6491 /* See if there's a REG_EQUAL note on this insn and try to
6492 replace the source with the REG_EQUAL expression.
6494 We assume that insns with REG_RETVALs can only be reg->reg
6495 copies at this point. */
6496 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
6497 if (!note)
6498 return false;
6500 set = single_set (insn);
6501 if (!set)
6502 return false;
6504 new = simplify_rtx (XEXP (note, 0));
6505 if (!new)
6506 new = XEXP (note, 0);
6508 /* While changing insn, we must update the counts accordingly. */
6509 count_reg_usage (insn, counts, NULL_RTX, -1);
6511 if (validate_change (insn, &SET_SRC (set), new, 0))
6513 count_reg_usage (insn, counts, NULL_RTX, 1);
6514 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
6515 remove_note (insn, note);
6516 return true;
6519 if (CONSTANT_P (new))
6521 new = force_const_mem (GET_MODE (SET_DEST (set)), new);
6522 if (new && validate_change (insn, &SET_SRC (set), new, 0))
6524 count_reg_usage (insn, counts, NULL_RTX, 1);
6525 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
6526 remove_note (insn, note);
6527 return true;
6531 count_reg_usage (insn, counts, NULL_RTX, 1);
6532 return false;
6535 /* Scan all the insns and delete any that are dead; i.e., they store a register
6536 that is never used or they copy a register to itself.
6538 This is used to remove insns made obviously dead by cse, loop or other
6539 optimizations. It improves the heuristics in loop since it won't try to
6540 move dead invariants out of loops or make givs for dead quantities. The
6541 remaining passes of the compilation are also sped up. */
6544 delete_trivially_dead_insns (rtx insns, int nreg)
6546 int *counts;
6547 rtx insn, prev;
6548 int in_libcall = 0, dead_libcall = 0;
6549 int ndead = 0;
6551 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6552 /* First count the number of times each register is used. */
6553 counts = XCNEWVEC (int, nreg);
6554 for (insn = insns; insn; insn = NEXT_INSN (insn))
6555 if (INSN_P (insn))
6556 count_reg_usage (insn, counts, NULL_RTX, 1);
6558 /* Go from the last insn to the first and delete insns that only set unused
6559 registers or copy a register to itself. As we delete an insn, remove
6560 usage counts for registers it uses.
6562 The first jump optimization pass may leave a real insn as the last
6563 insn in the function. We must not skip that insn or we may end
6564 up deleting code that is not really dead. */
6565 for (insn = get_last_insn (); insn; insn = prev)
6567 int live_insn = 0;
6569 prev = PREV_INSN (insn);
6570 if (!INSN_P (insn))
6571 continue;
6573 /* Don't delete any insns that are part of a libcall block unless
6574 we can delete the whole libcall block.
6576 Flow or loop might get confused if we did that. Remember
6577 that we are scanning backwards. */
6578 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6580 in_libcall = 1;
6581 live_insn = 1;
6582 dead_libcall = dead_libcall_p (insn, counts);
6584 else if (in_libcall)
6585 live_insn = ! dead_libcall;
6586 else
6587 live_insn = insn_live_p (insn, counts);
6589 /* If this is a dead insn, delete it and show registers in it aren't
6590 being used. */
6592 if (! live_insn && dbg_cnt (delete_trivial_dead))
6594 count_reg_usage (insn, counts, NULL_RTX, -1);
6595 delete_insn_and_edges (insn);
6596 ndead++;
6599 if (in_libcall && find_reg_note (insn, REG_LIBCALL, NULL_RTX))
6601 in_libcall = 0;
6602 dead_libcall = 0;
6606 if (dump_file && ndead)
6607 fprintf (dump_file, "Deleted %i trivially dead insns\n",
6608 ndead);
6609 /* Clean up. */
6610 free (counts);
6611 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
6612 return ndead;
6615 /* This function is called via for_each_rtx. The argument, NEWREG, is
6616 a condition code register with the desired mode. If we are looking
6617 at the same register in a different mode, replace it with
6618 NEWREG. */
6620 static int
6621 cse_change_cc_mode (rtx *loc, void *data)
6623 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
6625 if (*loc
6626 && REG_P (*loc)
6627 && REGNO (*loc) == REGNO (args->newreg)
6628 && GET_MODE (*loc) != GET_MODE (args->newreg))
6630 validate_change (args->insn, loc, args->newreg, 1);
6632 return -1;
6634 return 0;
6637 /* Change the mode of any reference to the register REGNO (NEWREG) to
6638 GET_MODE (NEWREG) in INSN. */
6640 static void
6641 cse_change_cc_mode_insn (rtx insn, rtx newreg)
6643 struct change_cc_mode_args args;
6644 int success;
6646 if (!INSN_P (insn))
6647 return;
6649 args.insn = insn;
6650 args.newreg = newreg;
6652 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
6653 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
6655 /* If the following assertion was triggered, there is most probably
6656 something wrong with the cc_modes_compatible back end function.
6657 CC modes only can be considered compatible if the insn - with the mode
6658 replaced by any of the compatible modes - can still be recognized. */
6659 success = apply_change_group ();
6660 gcc_assert (success);
6663 /* Change the mode of any reference to the register REGNO (NEWREG) to
6664 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
6665 any instruction which modifies NEWREG. */
6667 static void
6668 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
6670 rtx insn;
6672 for (insn = start; insn != end; insn = NEXT_INSN (insn))
6674 if (! INSN_P (insn))
6675 continue;
6677 if (reg_set_p (newreg, insn))
6678 return;
6680 cse_change_cc_mode_insn (insn, newreg);
6684 /* BB is a basic block which finishes with CC_REG as a condition code
6685 register which is set to CC_SRC. Look through the successors of BB
6686 to find blocks which have a single predecessor (i.e., this one),
6687 and look through those blocks for an assignment to CC_REG which is
6688 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
6689 permitted to change the mode of CC_SRC to a compatible mode. This
6690 returns VOIDmode if no equivalent assignments were found.
6691 Otherwise it returns the mode which CC_SRC should wind up with.
6693 The main complexity in this function is handling the mode issues.
6694 We may have more than one duplicate which we can eliminate, and we
6695 try to find a mode which will work for multiple duplicates. */
6697 static enum machine_mode
6698 cse_cc_succs (basic_block bb, rtx cc_reg, rtx cc_src, bool can_change_mode)
6700 bool found_equiv;
6701 enum machine_mode mode;
6702 unsigned int insn_count;
6703 edge e;
6704 rtx insns[2];
6705 enum machine_mode modes[2];
6706 rtx last_insns[2];
6707 unsigned int i;
6708 rtx newreg;
6709 edge_iterator ei;
6711 /* We expect to have two successors. Look at both before picking
6712 the final mode for the comparison. If we have more successors
6713 (i.e., some sort of table jump, although that seems unlikely),
6714 then we require all beyond the first two to use the same
6715 mode. */
6717 found_equiv = false;
6718 mode = GET_MODE (cc_src);
6719 insn_count = 0;
6720 FOR_EACH_EDGE (e, ei, bb->succs)
6722 rtx insn;
6723 rtx end;
6725 if (e->flags & EDGE_COMPLEX)
6726 continue;
6728 if (EDGE_COUNT (e->dest->preds) != 1
6729 || e->dest == EXIT_BLOCK_PTR)
6730 continue;
6732 end = NEXT_INSN (BB_END (e->dest));
6733 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
6735 rtx set;
6737 if (! INSN_P (insn))
6738 continue;
6740 /* If CC_SRC is modified, we have to stop looking for
6741 something which uses it. */
6742 if (modified_in_p (cc_src, insn))
6743 break;
6745 /* Check whether INSN sets CC_REG to CC_SRC. */
6746 set = single_set (insn);
6747 if (set
6748 && REG_P (SET_DEST (set))
6749 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6751 bool found;
6752 enum machine_mode set_mode;
6753 enum machine_mode comp_mode;
6755 found = false;
6756 set_mode = GET_MODE (SET_SRC (set));
6757 comp_mode = set_mode;
6758 if (rtx_equal_p (cc_src, SET_SRC (set)))
6759 found = true;
6760 else if (GET_CODE (cc_src) == COMPARE
6761 && GET_CODE (SET_SRC (set)) == COMPARE
6762 && mode != set_mode
6763 && rtx_equal_p (XEXP (cc_src, 0),
6764 XEXP (SET_SRC (set), 0))
6765 && rtx_equal_p (XEXP (cc_src, 1),
6766 XEXP (SET_SRC (set), 1)))
6769 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
6770 if (comp_mode != VOIDmode
6771 && (can_change_mode || comp_mode == mode))
6772 found = true;
6775 if (found)
6777 found_equiv = true;
6778 if (insn_count < ARRAY_SIZE (insns))
6780 insns[insn_count] = insn;
6781 modes[insn_count] = set_mode;
6782 last_insns[insn_count] = end;
6783 ++insn_count;
6785 if (mode != comp_mode)
6787 gcc_assert (can_change_mode);
6788 mode = comp_mode;
6790 /* The modified insn will be re-recognized later. */
6791 PUT_MODE (cc_src, mode);
6794 else
6796 if (set_mode != mode)
6798 /* We found a matching expression in the
6799 wrong mode, but we don't have room to
6800 store it in the array. Punt. This case
6801 should be rare. */
6802 break;
6804 /* INSN sets CC_REG to a value equal to CC_SRC
6805 with the right mode. We can simply delete
6806 it. */
6807 delete_insn (insn);
6810 /* We found an instruction to delete. Keep looking,
6811 in the hopes of finding a three-way jump. */
6812 continue;
6815 /* We found an instruction which sets the condition
6816 code, so don't look any farther. */
6817 break;
6820 /* If INSN sets CC_REG in some other way, don't look any
6821 farther. */
6822 if (reg_set_p (cc_reg, insn))
6823 break;
6826 /* If we fell off the bottom of the block, we can keep looking
6827 through successors. We pass CAN_CHANGE_MODE as false because
6828 we aren't prepared to handle compatibility between the
6829 further blocks and this block. */
6830 if (insn == end)
6832 enum machine_mode submode;
6834 submode = cse_cc_succs (e->dest, cc_reg, cc_src, false);
6835 if (submode != VOIDmode)
6837 gcc_assert (submode == mode);
6838 found_equiv = true;
6839 can_change_mode = false;
6844 if (! found_equiv)
6845 return VOIDmode;
6847 /* Now INSN_COUNT is the number of instructions we found which set
6848 CC_REG to a value equivalent to CC_SRC. The instructions are in
6849 INSNS. The modes used by those instructions are in MODES. */
6851 newreg = NULL_RTX;
6852 for (i = 0; i < insn_count; ++i)
6854 if (modes[i] != mode)
6856 /* We need to change the mode of CC_REG in INSNS[i] and
6857 subsequent instructions. */
6858 if (! newreg)
6860 if (GET_MODE (cc_reg) == mode)
6861 newreg = cc_reg;
6862 else
6863 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
6865 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
6866 newreg);
6869 delete_insn (insns[i]);
6872 return mode;
6875 /* If we have a fixed condition code register (or two), walk through
6876 the instructions and try to eliminate duplicate assignments. */
6878 static void
6879 cse_condition_code_reg (void)
6881 unsigned int cc_regno_1;
6882 unsigned int cc_regno_2;
6883 rtx cc_reg_1;
6884 rtx cc_reg_2;
6885 basic_block bb;
6887 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
6888 return;
6890 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
6891 if (cc_regno_2 != INVALID_REGNUM)
6892 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
6893 else
6894 cc_reg_2 = NULL_RTX;
6896 FOR_EACH_BB (bb)
6898 rtx last_insn;
6899 rtx cc_reg;
6900 rtx insn;
6901 rtx cc_src_insn;
6902 rtx cc_src;
6903 enum machine_mode mode;
6904 enum machine_mode orig_mode;
6906 /* Look for blocks which end with a conditional jump based on a
6907 condition code register. Then look for the instruction which
6908 sets the condition code register. Then look through the
6909 successor blocks for instructions which set the condition
6910 code register to the same value. There are other possible
6911 uses of the condition code register, but these are by far the
6912 most common and the ones which we are most likely to be able
6913 to optimize. */
6915 last_insn = BB_END (bb);
6916 if (!JUMP_P (last_insn))
6917 continue;
6919 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
6920 cc_reg = cc_reg_1;
6921 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
6922 cc_reg = cc_reg_2;
6923 else
6924 continue;
6926 cc_src_insn = NULL_RTX;
6927 cc_src = NULL_RTX;
6928 for (insn = PREV_INSN (last_insn);
6929 insn && insn != PREV_INSN (BB_HEAD (bb));
6930 insn = PREV_INSN (insn))
6932 rtx set;
6934 if (! INSN_P (insn))
6935 continue;
6936 set = single_set (insn);
6937 if (set
6938 && REG_P (SET_DEST (set))
6939 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6941 cc_src_insn = insn;
6942 cc_src = SET_SRC (set);
6943 break;
6945 else if (reg_set_p (cc_reg, insn))
6946 break;
6949 if (! cc_src_insn)
6950 continue;
6952 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
6953 continue;
6955 /* Now CC_REG is a condition code register used for a
6956 conditional jump at the end of the block, and CC_SRC, in
6957 CC_SRC_INSN, is the value to which that condition code
6958 register is set, and CC_SRC is still meaningful at the end of
6959 the basic block. */
6961 orig_mode = GET_MODE (cc_src);
6962 mode = cse_cc_succs (bb, cc_reg, cc_src, true);
6963 if (mode != VOIDmode)
6965 gcc_assert (mode == GET_MODE (cc_src));
6966 if (mode != orig_mode)
6968 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
6970 cse_change_cc_mode_insn (cc_src_insn, newreg);
6972 /* Do the same in the following insns that use the
6973 current value of CC_REG within BB. */
6974 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
6975 NEXT_INSN (last_insn),
6976 newreg);
6983 /* Perform common subexpression elimination. Nonzero value from
6984 `cse_main' means that jumps were simplified and some code may now
6985 be unreachable, so do jump optimization again. */
6986 static bool
6987 gate_handle_cse (void)
6989 return optimize > 0;
6992 static unsigned int
6993 rest_of_handle_cse (void)
6995 int tem;
6997 if (dump_file)
6998 dump_flow_info (dump_file, dump_flags);
7000 tem = cse_main (get_insns (), max_reg_num ());
7002 /* If we are not running more CSE passes, then we are no longer
7003 expecting CSE to be run. But always rerun it in a cheap mode. */
7004 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7006 if (tem)
7007 rebuild_jump_labels (get_insns ());
7009 if (tem || optimize > 1)
7010 cleanup_cfg (0);
7012 return 0;
7015 struct tree_opt_pass pass_cse =
7017 "cse1", /* name */
7018 gate_handle_cse, /* gate */
7019 rest_of_handle_cse, /* execute */
7020 NULL, /* sub */
7021 NULL, /* next */
7022 0, /* static_pass_number */
7023 TV_CSE, /* tv_id */
7024 0, /* properties_required */
7025 0, /* properties_provided */
7026 0, /* properties_destroyed */
7027 0, /* todo_flags_start */
7028 TODO_df_finish | TODO_verify_rtl_sharing |
7029 TODO_dump_func |
7030 TODO_ggc_collect |
7031 TODO_verify_flow, /* todo_flags_finish */
7032 's' /* letter */
7036 static bool
7037 gate_handle_cse2 (void)
7039 return optimize > 0 && flag_rerun_cse_after_loop;
7042 /* Run second CSE pass after loop optimizations. */
7043 static unsigned int
7044 rest_of_handle_cse2 (void)
7046 int tem;
7048 if (dump_file)
7049 dump_flow_info (dump_file, dump_flags);
7051 tem = cse_main (get_insns (), max_reg_num ());
7053 /* Run a pass to eliminate duplicated assignments to condition code
7054 registers. We have to run this after bypass_jumps, because it
7055 makes it harder for that pass to determine whether a jump can be
7056 bypassed safely. */
7057 cse_condition_code_reg ();
7059 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7061 if (tem)
7063 timevar_push (TV_JUMP);
7064 rebuild_jump_labels (get_insns ());
7065 cleanup_cfg (0);
7066 timevar_pop (TV_JUMP);
7068 cse_not_expected = 1;
7069 return 0;
7073 struct tree_opt_pass pass_cse2 =
7075 "cse2", /* name */
7076 gate_handle_cse2, /* gate */
7077 rest_of_handle_cse2, /* execute */
7078 NULL, /* sub */
7079 NULL, /* next */
7080 0, /* static_pass_number */
7081 TV_CSE2, /* tv_id */
7082 0, /* properties_required */
7083 0, /* properties_provided */
7084 0, /* properties_destroyed */
7085 0, /* todo_flags_start */
7086 TODO_df_finish | TODO_verify_rtl_sharing |
7087 TODO_dump_func |
7088 TODO_ggc_collect |
7089 TODO_verify_flow, /* todo_flags_finish */
7090 't' /* letter */