2009-01-26 Richard Guenther <rguenther@suse.de>
[official-gcc.git] / gcc / tree-cfg.c
blob875d123244d07adb2a0ce6622307e13854606f8b
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "ggc.h"
36 #include "langhooks.h"
37 #include "diagnostic.h"
38 #include "tree-flow.h"
39 #include "timevar.h"
40 #include "tree-dump.h"
41 #include "tree-pass.h"
42 #include "toplev.h"
43 #include "except.h"
44 #include "cfgloop.h"
45 #include "cfglayout.h"
46 #include "tree-ssa-propagate.h"
47 #include "value-prof.h"
48 #include "pointer-set.h"
49 #include "tree-inline.h"
51 /* This file contains functions for building the Control Flow Graph (CFG)
52 for a function tree. */
54 /* Local declarations. */
56 /* Initial capacity for the basic block array. */
57 static const int initial_cfg_capacity = 20;
59 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
60 which use a particular edge. The CASE_LABEL_EXPRs are chained together
61 via their TREE_CHAIN field, which we clear after we're done with the
62 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
64 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
65 update the case vector in response to edge redirections.
67 Right now this table is set up and torn down at key points in the
68 compilation process. It would be nice if we could make the table
69 more persistent. The key is getting notification of changes to
70 the CFG (particularly edge removal, creation and redirection). */
72 static struct pointer_map_t *edge_to_cases;
74 /* CFG statistics. */
75 struct cfg_stats_d
77 long num_merged_labels;
80 static struct cfg_stats_d cfg_stats;
82 /* Nonzero if we found a computed goto while building basic blocks. */
83 static bool found_computed_goto;
85 /* Basic blocks and flowgraphs. */
86 static void make_blocks (gimple_seq);
87 static void factor_computed_gotos (void);
89 /* Edges. */
90 static void make_edges (void);
91 static void make_cond_expr_edges (basic_block);
92 static void make_gimple_switch_edges (basic_block);
93 static void make_goto_expr_edges (basic_block);
94 static edge gimple_redirect_edge_and_branch (edge, basic_block);
95 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
96 static unsigned int split_critical_edges (void);
98 /* Various helpers. */
99 static inline bool stmt_starts_bb_p (gimple, gimple);
100 static int gimple_verify_flow_info (void);
101 static void gimple_make_forwarder_block (edge);
102 static void gimple_cfg2vcg (FILE *);
104 /* Flowgraph optimization and cleanup. */
105 static void gimple_merge_blocks (basic_block, basic_block);
106 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
107 static void remove_bb (basic_block);
108 static edge find_taken_edge_computed_goto (basic_block, tree);
109 static edge find_taken_edge_cond_expr (basic_block, tree);
110 static edge find_taken_edge_switch_expr (basic_block, tree);
111 static tree find_case_label_for_value (gimple, tree);
113 void
114 init_empty_tree_cfg_for_function (struct function *fn)
116 /* Initialize the basic block array. */
117 init_flow (fn);
118 profile_status_for_function (fn) = PROFILE_ABSENT;
119 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
120 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
121 basic_block_info_for_function (fn)
122 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
123 VEC_safe_grow_cleared (basic_block, gc,
124 basic_block_info_for_function (fn),
125 initial_cfg_capacity);
127 /* Build a mapping of labels to their associated blocks. */
128 label_to_block_map_for_function (fn)
129 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
130 VEC_safe_grow_cleared (basic_block, gc,
131 label_to_block_map_for_function (fn),
132 initial_cfg_capacity);
134 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
135 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
136 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
137 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
139 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
140 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
141 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
142 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
145 void
146 init_empty_tree_cfg (void)
148 init_empty_tree_cfg_for_function (cfun);
151 /*---------------------------------------------------------------------------
152 Create basic blocks
153 ---------------------------------------------------------------------------*/
155 /* Entry point to the CFG builder for trees. SEQ is the sequence of
156 statements to be added to the flowgraph. */
158 static void
159 build_gimple_cfg (gimple_seq seq)
161 /* Register specific gimple functions. */
162 gimple_register_cfg_hooks ();
164 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
166 init_empty_tree_cfg ();
168 found_computed_goto = 0;
169 make_blocks (seq);
171 /* Computed gotos are hell to deal with, especially if there are
172 lots of them with a large number of destinations. So we factor
173 them to a common computed goto location before we build the
174 edge list. After we convert back to normal form, we will un-factor
175 the computed gotos since factoring introduces an unwanted jump. */
176 if (found_computed_goto)
177 factor_computed_gotos ();
179 /* Make sure there is always at least one block, even if it's empty. */
180 if (n_basic_blocks == NUM_FIXED_BLOCKS)
181 create_empty_bb (ENTRY_BLOCK_PTR);
183 /* Adjust the size of the array. */
184 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
185 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
187 /* To speed up statement iterator walks, we first purge dead labels. */
188 cleanup_dead_labels ();
190 /* Group case nodes to reduce the number of edges.
191 We do this after cleaning up dead labels because otherwise we miss
192 a lot of obvious case merging opportunities. */
193 group_case_labels ();
195 /* Create the edges of the flowgraph. */
196 make_edges ();
197 cleanup_dead_labels ();
199 /* Debugging dumps. */
201 /* Write the flowgraph to a VCG file. */
203 int local_dump_flags;
204 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
205 if (vcg_file)
207 gimple_cfg2vcg (vcg_file);
208 dump_end (TDI_vcg, vcg_file);
212 #ifdef ENABLE_CHECKING
213 verify_stmts ();
214 #endif
217 static unsigned int
218 execute_build_cfg (void)
220 gimple_seq body = gimple_body (current_function_decl);
222 build_gimple_cfg (body);
223 gimple_set_body (current_function_decl, NULL);
224 return 0;
227 struct gimple_opt_pass pass_build_cfg =
230 GIMPLE_PASS,
231 "cfg", /* name */
232 NULL, /* gate */
233 execute_build_cfg, /* execute */
234 NULL, /* sub */
235 NULL, /* next */
236 0, /* static_pass_number */
237 TV_TREE_CFG, /* tv_id */
238 PROP_gimple_leh, /* properties_required */
239 PROP_cfg, /* properties_provided */
240 0, /* properties_destroyed */
241 0, /* todo_flags_start */
242 TODO_verify_stmts | TODO_cleanup_cfg
243 | TODO_dump_func /* todo_flags_finish */
248 /* Return true if T is a computed goto. */
250 static bool
251 computed_goto_p (gimple t)
253 return (gimple_code (t) == GIMPLE_GOTO
254 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
258 /* Search the CFG for any computed gotos. If found, factor them to a
259 common computed goto site. Also record the location of that site so
260 that we can un-factor the gotos after we have converted back to
261 normal form. */
263 static void
264 factor_computed_gotos (void)
266 basic_block bb;
267 tree factored_label_decl = NULL;
268 tree var = NULL;
269 gimple factored_computed_goto_label = NULL;
270 gimple factored_computed_goto = NULL;
272 /* We know there are one or more computed gotos in this function.
273 Examine the last statement in each basic block to see if the block
274 ends with a computed goto. */
276 FOR_EACH_BB (bb)
278 gimple_stmt_iterator gsi = gsi_last_bb (bb);
279 gimple last;
281 if (gsi_end_p (gsi))
282 continue;
284 last = gsi_stmt (gsi);
286 /* Ignore the computed goto we create when we factor the original
287 computed gotos. */
288 if (last == factored_computed_goto)
289 continue;
291 /* If the last statement is a computed goto, factor it. */
292 if (computed_goto_p (last))
294 gimple assignment;
296 /* The first time we find a computed goto we need to create
297 the factored goto block and the variable each original
298 computed goto will use for their goto destination. */
299 if (!factored_computed_goto)
301 basic_block new_bb = create_empty_bb (bb);
302 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
304 /* Create the destination of the factored goto. Each original
305 computed goto will put its desired destination into this
306 variable and jump to the label we create immediately
307 below. */
308 var = create_tmp_var (ptr_type_node, "gotovar");
310 /* Build a label for the new block which will contain the
311 factored computed goto. */
312 factored_label_decl = create_artificial_label ();
313 factored_computed_goto_label
314 = gimple_build_label (factored_label_decl);
315 gsi_insert_after (&new_gsi, factored_computed_goto_label,
316 GSI_NEW_STMT);
318 /* Build our new computed goto. */
319 factored_computed_goto = gimple_build_goto (var);
320 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
323 /* Copy the original computed goto's destination into VAR. */
324 assignment = gimple_build_assign (var, gimple_goto_dest (last));
325 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
327 /* And re-vector the computed goto to the new destination. */
328 gimple_goto_set_dest (last, factored_label_decl);
334 /* Build a flowgraph for the sequence of stmts SEQ. */
336 static void
337 make_blocks (gimple_seq seq)
339 gimple_stmt_iterator i = gsi_start (seq);
340 gimple stmt = NULL;
341 bool start_new_block = true;
342 bool first_stmt_of_seq = true;
343 basic_block bb = ENTRY_BLOCK_PTR;
345 while (!gsi_end_p (i))
347 gimple prev_stmt;
349 prev_stmt = stmt;
350 stmt = gsi_stmt (i);
352 /* If the statement starts a new basic block or if we have determined
353 in a previous pass that we need to create a new block for STMT, do
354 so now. */
355 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
357 if (!first_stmt_of_seq)
358 seq = gsi_split_seq_before (&i);
359 bb = create_basic_block (seq, NULL, bb);
360 start_new_block = false;
363 /* Now add STMT to BB and create the subgraphs for special statement
364 codes. */
365 gimple_set_bb (stmt, bb);
367 if (computed_goto_p (stmt))
368 found_computed_goto = true;
370 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
371 next iteration. */
372 if (stmt_ends_bb_p (stmt))
373 start_new_block = true;
375 gsi_next (&i);
376 first_stmt_of_seq = false;
381 /* Create and return a new empty basic block after bb AFTER. */
383 static basic_block
384 create_bb (void *h, void *e, basic_block after)
386 basic_block bb;
388 gcc_assert (!e);
390 /* Create and initialize a new basic block. Since alloc_block uses
391 ggc_alloc_cleared to allocate a basic block, we do not have to
392 clear the newly allocated basic block here. */
393 bb = alloc_block ();
395 bb->index = last_basic_block;
396 bb->flags = BB_NEW;
397 bb->il.gimple = GGC_CNEW (struct gimple_bb_info);
398 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
400 /* Add the new block to the linked list of blocks. */
401 link_block (bb, after);
403 /* Grow the basic block array if needed. */
404 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
406 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
407 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
410 /* Add the newly created block to the array. */
411 SET_BASIC_BLOCK (last_basic_block, bb);
413 n_basic_blocks++;
414 last_basic_block++;
416 return bb;
420 /*---------------------------------------------------------------------------
421 Edge creation
422 ---------------------------------------------------------------------------*/
424 /* Fold COND_EXPR_COND of each COND_EXPR. */
426 void
427 fold_cond_expr_cond (void)
429 basic_block bb;
431 FOR_EACH_BB (bb)
433 gimple stmt = last_stmt (bb);
435 if (stmt && gimple_code (stmt) == GIMPLE_COND)
437 tree cond;
438 bool zerop, onep;
440 fold_defer_overflow_warnings ();
441 cond = fold_binary (gimple_cond_code (stmt), boolean_type_node,
442 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
443 if (cond)
445 zerop = integer_zerop (cond);
446 onep = integer_onep (cond);
448 else
449 zerop = onep = false;
451 fold_undefer_overflow_warnings (zerop || onep,
452 stmt,
453 WARN_STRICT_OVERFLOW_CONDITIONAL);
454 if (zerop)
455 gimple_cond_make_false (stmt);
456 else if (onep)
457 gimple_cond_make_true (stmt);
462 /* Join all the blocks in the flowgraph. */
464 static void
465 make_edges (void)
467 basic_block bb;
468 struct omp_region *cur_region = NULL;
470 /* Create an edge from entry to the first block with executable
471 statements in it. */
472 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
474 /* Traverse the basic block array placing edges. */
475 FOR_EACH_BB (bb)
477 gimple last = last_stmt (bb);
478 bool fallthru;
480 if (last)
482 enum gimple_code code = gimple_code (last);
483 switch (code)
485 case GIMPLE_GOTO:
486 make_goto_expr_edges (bb);
487 fallthru = false;
488 break;
489 case GIMPLE_RETURN:
490 make_edge (bb, EXIT_BLOCK_PTR, 0);
491 fallthru = false;
492 break;
493 case GIMPLE_COND:
494 make_cond_expr_edges (bb);
495 fallthru = false;
496 break;
497 case GIMPLE_SWITCH:
498 make_gimple_switch_edges (bb);
499 fallthru = false;
500 break;
501 case GIMPLE_RESX:
502 make_eh_edges (last);
503 fallthru = false;
504 break;
506 case GIMPLE_CALL:
507 /* If this function receives a nonlocal goto, then we need to
508 make edges from this call site to all the nonlocal goto
509 handlers. */
510 if (stmt_can_make_abnormal_goto (last))
511 make_abnormal_goto_edges (bb, true);
513 /* If this statement has reachable exception handlers, then
514 create abnormal edges to them. */
515 make_eh_edges (last);
517 /* Some calls are known not to return. */
518 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
519 break;
521 case GIMPLE_ASSIGN:
522 /* A GIMPLE_ASSIGN may throw internally and thus be considered
523 control-altering. */
524 if (is_ctrl_altering_stmt (last))
526 make_eh_edges (last);
528 fallthru = true;
529 break;
531 case GIMPLE_OMP_PARALLEL:
532 case GIMPLE_OMP_TASK:
533 case GIMPLE_OMP_FOR:
534 case GIMPLE_OMP_SINGLE:
535 case GIMPLE_OMP_MASTER:
536 case GIMPLE_OMP_ORDERED:
537 case GIMPLE_OMP_CRITICAL:
538 case GIMPLE_OMP_SECTION:
539 cur_region = new_omp_region (bb, code, cur_region);
540 fallthru = true;
541 break;
543 case GIMPLE_OMP_SECTIONS:
544 cur_region = new_omp_region (bb, code, cur_region);
545 fallthru = true;
546 break;
548 case GIMPLE_OMP_SECTIONS_SWITCH:
549 fallthru = false;
550 break;
553 case GIMPLE_OMP_ATOMIC_LOAD:
554 case GIMPLE_OMP_ATOMIC_STORE:
555 fallthru = true;
556 break;
559 case GIMPLE_OMP_RETURN:
560 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
561 somewhere other than the next block. This will be
562 created later. */
563 cur_region->exit = bb;
564 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
565 cur_region = cur_region->outer;
566 break;
568 case GIMPLE_OMP_CONTINUE:
569 cur_region->cont = bb;
570 switch (cur_region->type)
572 case GIMPLE_OMP_FOR:
573 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
574 succs edges as abnormal to prevent splitting
575 them. */
576 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
577 /* Make the loopback edge. */
578 make_edge (bb, single_succ (cur_region->entry),
579 EDGE_ABNORMAL);
581 /* Create an edge from GIMPLE_OMP_FOR to exit, which
582 corresponds to the case that the body of the loop
583 is not executed at all. */
584 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
585 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
586 fallthru = false;
587 break;
589 case GIMPLE_OMP_SECTIONS:
590 /* Wire up the edges into and out of the nested sections. */
592 basic_block switch_bb = single_succ (cur_region->entry);
594 struct omp_region *i;
595 for (i = cur_region->inner; i ; i = i->next)
597 gcc_assert (i->type == GIMPLE_OMP_SECTION);
598 make_edge (switch_bb, i->entry, 0);
599 make_edge (i->exit, bb, EDGE_FALLTHRU);
602 /* Make the loopback edge to the block with
603 GIMPLE_OMP_SECTIONS_SWITCH. */
604 make_edge (bb, switch_bb, 0);
606 /* Make the edge from the switch to exit. */
607 make_edge (switch_bb, bb->next_bb, 0);
608 fallthru = false;
610 break;
612 default:
613 gcc_unreachable ();
615 break;
617 default:
618 gcc_assert (!stmt_ends_bb_p (last));
619 fallthru = true;
622 else
623 fallthru = true;
625 if (fallthru)
626 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
629 if (root_omp_region)
630 free_omp_regions ();
632 /* Fold COND_EXPR_COND of each COND_EXPR. */
633 fold_cond_expr_cond ();
637 /* Create the edges for a GIMPLE_COND starting at block BB. */
639 static void
640 make_cond_expr_edges (basic_block bb)
642 gimple entry = last_stmt (bb);
643 gimple then_stmt, else_stmt;
644 basic_block then_bb, else_bb;
645 tree then_label, else_label;
646 edge e;
648 gcc_assert (entry);
649 gcc_assert (gimple_code (entry) == GIMPLE_COND);
651 /* Entry basic blocks for each component. */
652 then_label = gimple_cond_true_label (entry);
653 else_label = gimple_cond_false_label (entry);
654 then_bb = label_to_block (then_label);
655 else_bb = label_to_block (else_label);
656 then_stmt = first_stmt (then_bb);
657 else_stmt = first_stmt (else_bb);
659 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
660 e->goto_locus = gimple_location (then_stmt);
661 if (e->goto_locus)
662 e->goto_block = gimple_block (then_stmt);
663 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
664 if (e)
666 e->goto_locus = gimple_location (else_stmt);
667 if (e->goto_locus)
668 e->goto_block = gimple_block (else_stmt);
671 /* We do not need the labels anymore. */
672 gimple_cond_set_true_label (entry, NULL_TREE);
673 gimple_cond_set_false_label (entry, NULL_TREE);
677 /* Called for each element in the hash table (P) as we delete the
678 edge to cases hash table.
680 Clear all the TREE_CHAINs to prevent problems with copying of
681 SWITCH_EXPRs and structure sharing rules, then free the hash table
682 element. */
684 static bool
685 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
686 void *data ATTRIBUTE_UNUSED)
688 tree t, next;
690 for (t = (tree) *value; t; t = next)
692 next = TREE_CHAIN (t);
693 TREE_CHAIN (t) = NULL;
696 *value = NULL;
697 return false;
700 /* Start recording information mapping edges to case labels. */
702 void
703 start_recording_case_labels (void)
705 gcc_assert (edge_to_cases == NULL);
706 edge_to_cases = pointer_map_create ();
709 /* Return nonzero if we are recording information for case labels. */
711 static bool
712 recording_case_labels_p (void)
714 return (edge_to_cases != NULL);
717 /* Stop recording information mapping edges to case labels and
718 remove any information we have recorded. */
719 void
720 end_recording_case_labels (void)
722 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
723 pointer_map_destroy (edge_to_cases);
724 edge_to_cases = NULL;
727 /* If we are inside a {start,end}_recording_cases block, then return
728 a chain of CASE_LABEL_EXPRs from T which reference E.
730 Otherwise return NULL. */
732 static tree
733 get_cases_for_edge (edge e, gimple t)
735 void **slot;
736 size_t i, n;
738 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
739 chains available. Return NULL so the caller can detect this case. */
740 if (!recording_case_labels_p ())
741 return NULL;
743 slot = pointer_map_contains (edge_to_cases, e);
744 if (slot)
745 return (tree) *slot;
747 /* If we did not find E in the hash table, then this must be the first
748 time we have been queried for information about E & T. Add all the
749 elements from T to the hash table then perform the query again. */
751 n = gimple_switch_num_labels (t);
752 for (i = 0; i < n; i++)
754 tree elt = gimple_switch_label (t, i);
755 tree lab = CASE_LABEL (elt);
756 basic_block label_bb = label_to_block (lab);
757 edge this_edge = find_edge (e->src, label_bb);
759 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
760 a new chain. */
761 slot = pointer_map_insert (edge_to_cases, this_edge);
762 TREE_CHAIN (elt) = (tree) *slot;
763 *slot = elt;
766 return (tree) *pointer_map_contains (edge_to_cases, e);
769 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
771 static void
772 make_gimple_switch_edges (basic_block bb)
774 gimple entry = last_stmt (bb);
775 size_t i, n;
777 n = gimple_switch_num_labels (entry);
779 for (i = 0; i < n; ++i)
781 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
782 basic_block label_bb = label_to_block (lab);
783 make_edge (bb, label_bb, 0);
788 /* Return the basic block holding label DEST. */
790 basic_block
791 label_to_block_fn (struct function *ifun, tree dest)
793 int uid = LABEL_DECL_UID (dest);
795 /* We would die hard when faced by an undefined label. Emit a label to
796 the very first basic block. This will hopefully make even the dataflow
797 and undefined variable warnings quite right. */
798 if ((errorcount || sorrycount) && uid < 0)
800 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
801 gimple stmt;
803 stmt = gimple_build_label (dest);
804 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
805 uid = LABEL_DECL_UID (dest);
807 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
808 <= (unsigned int) uid)
809 return NULL;
810 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
813 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
814 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
816 void
817 make_abnormal_goto_edges (basic_block bb, bool for_call)
819 basic_block target_bb;
820 gimple_stmt_iterator gsi;
822 FOR_EACH_BB (target_bb)
823 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
825 gimple label_stmt = gsi_stmt (gsi);
826 tree target;
828 if (gimple_code (label_stmt) != GIMPLE_LABEL)
829 break;
831 target = gimple_label_label (label_stmt);
833 /* Make an edge to every label block that has been marked as a
834 potential target for a computed goto or a non-local goto. */
835 if ((FORCED_LABEL (target) && !for_call)
836 || (DECL_NONLOCAL (target) && for_call))
838 make_edge (bb, target_bb, EDGE_ABNORMAL);
839 break;
844 /* Create edges for a goto statement at block BB. */
846 static void
847 make_goto_expr_edges (basic_block bb)
849 gimple_stmt_iterator last = gsi_last_bb (bb);
850 gimple goto_t = gsi_stmt (last);
852 /* A simple GOTO creates normal edges. */
853 if (simple_goto_p (goto_t))
855 tree dest = gimple_goto_dest (goto_t);
856 edge e = make_edge (bb, label_to_block (dest), EDGE_FALLTHRU);
857 e->goto_locus = gimple_location (goto_t);
858 if (e->goto_locus)
859 e->goto_block = gimple_block (goto_t);
860 gsi_remove (&last, true);
861 return;
864 /* A computed GOTO creates abnormal edges. */
865 make_abnormal_goto_edges (bb, false);
869 /*---------------------------------------------------------------------------
870 Flowgraph analysis
871 ---------------------------------------------------------------------------*/
873 /* Cleanup useless labels in basic blocks. This is something we wish
874 to do early because it allows us to group case labels before creating
875 the edges for the CFG, and it speeds up block statement iterators in
876 all passes later on.
877 We rerun this pass after CFG is created, to get rid of the labels that
878 are no longer referenced. After then we do not run it any more, since
879 (almost) no new labels should be created. */
881 /* A map from basic block index to the leading label of that block. */
882 static struct label_record
884 /* The label. */
885 tree label;
887 /* True if the label is referenced from somewhere. */
888 bool used;
889 } *label_for_bb;
891 /* Callback for for_each_eh_region. Helper for cleanup_dead_labels. */
892 static void
893 update_eh_label (struct eh_region *region)
895 tree old_label = get_eh_region_tree_label (region);
896 if (old_label)
898 tree new_label;
899 basic_block bb = label_to_block (old_label);
901 /* ??? After optimizing, there may be EH regions with labels
902 that have already been removed from the function body, so
903 there is no basic block for them. */
904 if (! bb)
905 return;
907 new_label = label_for_bb[bb->index].label;
908 label_for_bb[bb->index].used = true;
909 set_eh_region_tree_label (region, new_label);
914 /* Given LABEL return the first label in the same basic block. */
916 static tree
917 main_block_label (tree label)
919 basic_block bb = label_to_block (label);
920 tree main_label = label_for_bb[bb->index].label;
922 /* label_to_block possibly inserted undefined label into the chain. */
923 if (!main_label)
925 label_for_bb[bb->index].label = label;
926 main_label = label;
929 label_for_bb[bb->index].used = true;
930 return main_label;
933 /* Cleanup redundant labels. This is a three-step process:
934 1) Find the leading label for each block.
935 2) Redirect all references to labels to the leading labels.
936 3) Cleanup all useless labels. */
938 void
939 cleanup_dead_labels (void)
941 basic_block bb;
942 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
944 /* Find a suitable label for each block. We use the first user-defined
945 label if there is one, or otherwise just the first label we see. */
946 FOR_EACH_BB (bb)
948 gimple_stmt_iterator i;
950 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
952 tree label;
953 gimple stmt = gsi_stmt (i);
955 if (gimple_code (stmt) != GIMPLE_LABEL)
956 break;
958 label = gimple_label_label (stmt);
960 /* If we have not yet seen a label for the current block,
961 remember this one and see if there are more labels. */
962 if (!label_for_bb[bb->index].label)
964 label_for_bb[bb->index].label = label;
965 continue;
968 /* If we did see a label for the current block already, but it
969 is an artificially created label, replace it if the current
970 label is a user defined label. */
971 if (!DECL_ARTIFICIAL (label)
972 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
974 label_for_bb[bb->index].label = label;
975 break;
980 /* Now redirect all jumps/branches to the selected label.
981 First do so for each block ending in a control statement. */
982 FOR_EACH_BB (bb)
984 gimple stmt = last_stmt (bb);
985 if (!stmt)
986 continue;
988 switch (gimple_code (stmt))
990 case GIMPLE_COND:
992 tree true_label = gimple_cond_true_label (stmt);
993 tree false_label = gimple_cond_false_label (stmt);
995 if (true_label)
996 gimple_cond_set_true_label (stmt, main_block_label (true_label));
997 if (false_label)
998 gimple_cond_set_false_label (stmt, main_block_label (false_label));
999 break;
1002 case GIMPLE_SWITCH:
1004 size_t i, n = gimple_switch_num_labels (stmt);
1006 /* Replace all destination labels. */
1007 for (i = 0; i < n; ++i)
1009 tree case_label = gimple_switch_label (stmt, i);
1010 tree label = main_block_label (CASE_LABEL (case_label));
1011 CASE_LABEL (case_label) = label;
1013 break;
1016 /* We have to handle gotos until they're removed, and we don't
1017 remove them until after we've created the CFG edges. */
1018 case GIMPLE_GOTO:
1019 if (!computed_goto_p (stmt))
1021 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1022 gimple_goto_set_dest (stmt, new_dest);
1023 break;
1026 default:
1027 break;
1031 for_each_eh_region (update_eh_label);
1033 /* Finally, purge dead labels. All user-defined labels and labels that
1034 can be the target of non-local gotos and labels which have their
1035 address taken are preserved. */
1036 FOR_EACH_BB (bb)
1038 gimple_stmt_iterator i;
1039 tree label_for_this_bb = label_for_bb[bb->index].label;
1041 if (!label_for_this_bb)
1042 continue;
1044 /* If the main label of the block is unused, we may still remove it. */
1045 if (!label_for_bb[bb->index].used)
1046 label_for_this_bb = NULL;
1048 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1050 tree label;
1051 gimple stmt = gsi_stmt (i);
1053 if (gimple_code (stmt) != GIMPLE_LABEL)
1054 break;
1056 label = gimple_label_label (stmt);
1058 if (label == label_for_this_bb
1059 || !DECL_ARTIFICIAL (label)
1060 || DECL_NONLOCAL (label)
1061 || FORCED_LABEL (label))
1062 gsi_next (&i);
1063 else
1064 gsi_remove (&i, true);
1068 free (label_for_bb);
1071 /* Look for blocks ending in a multiway branch (a SWITCH_EXPR in GIMPLE),
1072 and scan the sorted vector of cases. Combine the ones jumping to the
1073 same label.
1074 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1076 void
1077 group_case_labels (void)
1079 basic_block bb;
1081 FOR_EACH_BB (bb)
1083 gimple stmt = last_stmt (bb);
1084 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1086 int old_size = gimple_switch_num_labels (stmt);
1087 int i, j, new_size = old_size;
1088 tree default_case = NULL_TREE;
1089 tree default_label = NULL_TREE;
1090 bool has_default;
1092 /* The default label is always the first case in a switch
1093 statement after gimplification if it was not optimized
1094 away */
1095 if (!CASE_LOW (gimple_switch_default_label (stmt))
1096 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1098 default_case = gimple_switch_default_label (stmt);
1099 default_label = CASE_LABEL (default_case);
1100 has_default = true;
1102 else
1103 has_default = false;
1105 /* Look for possible opportunities to merge cases. */
1106 if (has_default)
1107 i = 1;
1108 else
1109 i = 0;
1110 while (i < old_size)
1112 tree base_case, base_label, base_high;
1113 base_case = gimple_switch_label (stmt, i);
1115 gcc_assert (base_case);
1116 base_label = CASE_LABEL (base_case);
1118 /* Discard cases that have the same destination as the
1119 default case. */
1120 if (base_label == default_label)
1122 gimple_switch_set_label (stmt, i, NULL_TREE);
1123 i++;
1124 new_size--;
1125 continue;
1128 base_high = CASE_HIGH (base_case)
1129 ? CASE_HIGH (base_case)
1130 : CASE_LOW (base_case);
1131 i++;
1133 /* Try to merge case labels. Break out when we reach the end
1134 of the label vector or when we cannot merge the next case
1135 label with the current one. */
1136 while (i < old_size)
1138 tree merge_case = gimple_switch_label (stmt, i);
1139 tree merge_label = CASE_LABEL (merge_case);
1140 tree t = int_const_binop (PLUS_EXPR, base_high,
1141 integer_one_node, 1);
1143 /* Merge the cases if they jump to the same place,
1144 and their ranges are consecutive. */
1145 if (merge_label == base_label
1146 && tree_int_cst_equal (CASE_LOW (merge_case), t))
1148 base_high = CASE_HIGH (merge_case) ?
1149 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1150 CASE_HIGH (base_case) = base_high;
1151 gimple_switch_set_label (stmt, i, NULL_TREE);
1152 new_size--;
1153 i++;
1155 else
1156 break;
1160 /* Compress the case labels in the label vector, and adjust the
1161 length of the vector. */
1162 for (i = 0, j = 0; i < new_size; i++)
1164 while (! gimple_switch_label (stmt, j))
1165 j++;
1166 gimple_switch_set_label (stmt, i,
1167 gimple_switch_label (stmt, j++));
1170 gcc_assert (new_size <= old_size);
1171 gimple_switch_set_num_labels (stmt, new_size);
1176 /* Checks whether we can merge block B into block A. */
1178 static bool
1179 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1181 gimple stmt;
1182 gimple_stmt_iterator gsi;
1183 gimple_seq phis;
1185 if (!single_succ_p (a))
1186 return false;
1188 if (single_succ_edge (a)->flags & EDGE_ABNORMAL)
1189 return false;
1191 if (single_succ (a) != b)
1192 return false;
1194 if (!single_pred_p (b))
1195 return false;
1197 if (b == EXIT_BLOCK_PTR)
1198 return false;
1200 /* If A ends by a statement causing exceptions or something similar, we
1201 cannot merge the blocks. */
1202 stmt = last_stmt (a);
1203 if (stmt && stmt_ends_bb_p (stmt))
1204 return false;
1206 /* Do not allow a block with only a non-local label to be merged. */
1207 if (stmt
1208 && gimple_code (stmt) == GIMPLE_LABEL
1209 && DECL_NONLOCAL (gimple_label_label (stmt)))
1210 return false;
1212 /* It must be possible to eliminate all phi nodes in B. If ssa form
1213 is not up-to-date, we cannot eliminate any phis; however, if only
1214 some symbols as whole are marked for renaming, this is not a problem,
1215 as phi nodes for those symbols are irrelevant in updating anyway. */
1216 phis = phi_nodes (b);
1217 if (!gimple_seq_empty_p (phis))
1219 gimple_stmt_iterator i;
1221 if (name_mappings_registered_p ())
1222 return false;
1224 for (i = gsi_start (phis); !gsi_end_p (i); gsi_next (&i))
1226 gimple phi = gsi_stmt (i);
1228 if (!is_gimple_reg (gimple_phi_result (phi))
1229 && !may_propagate_copy (gimple_phi_result (phi),
1230 gimple_phi_arg_def (phi, 0)))
1231 return false;
1235 /* Do not remove user labels. */
1236 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1238 stmt = gsi_stmt (gsi);
1239 if (gimple_code (stmt) != GIMPLE_LABEL)
1240 break;
1241 if (!DECL_ARTIFICIAL (gimple_label_label (stmt)))
1242 return false;
1245 /* Protect the loop latches. */
1246 if (current_loops
1247 && b->loop_father->latch == b)
1248 return false;
1250 return true;
1253 /* Replaces all uses of NAME by VAL. */
1255 void
1256 replace_uses_by (tree name, tree val)
1258 imm_use_iterator imm_iter;
1259 use_operand_p use;
1260 gimple stmt;
1261 edge e;
1263 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1265 if (gimple_code (stmt) != GIMPLE_PHI)
1266 push_stmt_changes (&stmt);
1268 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1270 replace_exp (use, val);
1272 if (gimple_code (stmt) == GIMPLE_PHI)
1274 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1275 if (e->flags & EDGE_ABNORMAL)
1277 /* This can only occur for virtual operands, since
1278 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1279 would prevent replacement. */
1280 gcc_assert (!is_gimple_reg (name));
1281 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1286 if (gimple_code (stmt) != GIMPLE_PHI)
1288 size_t i;
1290 fold_stmt_inplace (stmt);
1291 if (cfgcleanup_altered_bbs)
1292 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1294 /* FIXME. This should go in pop_stmt_changes. */
1295 for (i = 0; i < gimple_num_ops (stmt); i++)
1297 tree op = gimple_op (stmt, i);
1298 /* Operands may be empty here. For example, the labels
1299 of a GIMPLE_COND are nulled out following the creation
1300 of the corresponding CFG edges. */
1301 if (op && TREE_CODE (op) == ADDR_EXPR)
1302 recompute_tree_invariant_for_addr_expr (op);
1305 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1307 pop_stmt_changes (&stmt);
1311 gcc_assert (has_zero_uses (name));
1313 /* Also update the trees stored in loop structures. */
1314 if (current_loops)
1316 struct loop *loop;
1317 loop_iterator li;
1319 FOR_EACH_LOOP (li, loop, 0)
1321 substitute_in_loop_info (loop, name, val);
1326 /* Merge block B into block A. */
1328 static void
1329 gimple_merge_blocks (basic_block a, basic_block b)
1331 gimple_stmt_iterator last, gsi, psi;
1332 gimple_seq phis = phi_nodes (b);
1334 if (dump_file)
1335 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1337 /* Remove all single-valued PHI nodes from block B of the form
1338 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1339 gsi = gsi_last_bb (a);
1340 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1342 gimple phi = gsi_stmt (psi);
1343 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1344 gimple copy;
1345 bool may_replace_uses = !is_gimple_reg (def)
1346 || may_propagate_copy (def, use);
1348 /* In case we maintain loop closed ssa form, do not propagate arguments
1349 of loop exit phi nodes. */
1350 if (current_loops
1351 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1352 && is_gimple_reg (def)
1353 && TREE_CODE (use) == SSA_NAME
1354 && a->loop_father != b->loop_father)
1355 may_replace_uses = false;
1357 if (!may_replace_uses)
1359 gcc_assert (is_gimple_reg (def));
1361 /* Note that just emitting the copies is fine -- there is no problem
1362 with ordering of phi nodes. This is because A is the single
1363 predecessor of B, therefore results of the phi nodes cannot
1364 appear as arguments of the phi nodes. */
1365 copy = gimple_build_assign (def, use);
1366 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1367 remove_phi_node (&psi, false);
1369 else
1371 /* If we deal with a PHI for virtual operands, we can simply
1372 propagate these without fussing with folding or updating
1373 the stmt. */
1374 if (!is_gimple_reg (def))
1376 imm_use_iterator iter;
1377 use_operand_p use_p;
1378 gimple stmt;
1380 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1381 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1382 SET_USE (use_p, use);
1384 else
1385 replace_uses_by (def, use);
1387 remove_phi_node (&psi, true);
1391 /* Ensure that B follows A. */
1392 move_block_after (b, a);
1394 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1395 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1397 /* Remove labels from B and set gimple_bb to A for other statements. */
1398 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1400 if (gimple_code (gsi_stmt (gsi)) == GIMPLE_LABEL)
1402 gimple label = gsi_stmt (gsi);
1404 gsi_remove (&gsi, false);
1406 /* Now that we can thread computed gotos, we might have
1407 a situation where we have a forced label in block B
1408 However, the label at the start of block B might still be
1409 used in other ways (think about the runtime checking for
1410 Fortran assigned gotos). So we can not just delete the
1411 label. Instead we move the label to the start of block A. */
1412 if (FORCED_LABEL (gimple_label_label (label)))
1414 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1415 gsi_insert_before (&dest_gsi, label, GSI_NEW_STMT);
1418 else
1420 gimple_set_bb (gsi_stmt (gsi), a);
1421 gsi_next (&gsi);
1425 /* Merge the sequences. */
1426 last = gsi_last_bb (a);
1427 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1428 set_bb_seq (b, NULL);
1430 if (cfgcleanup_altered_bbs)
1431 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1435 /* Return the one of two successors of BB that is not reachable by a
1436 reached by a complex edge, if there is one. Else, return BB. We use
1437 this in optimizations that use post-dominators for their heuristics,
1438 to catch the cases in C++ where function calls are involved. */
1440 basic_block
1441 single_noncomplex_succ (basic_block bb)
1443 edge e0, e1;
1444 if (EDGE_COUNT (bb->succs) != 2)
1445 return bb;
1447 e0 = EDGE_SUCC (bb, 0);
1448 e1 = EDGE_SUCC (bb, 1);
1449 if (e0->flags & EDGE_COMPLEX)
1450 return e1->dest;
1451 if (e1->flags & EDGE_COMPLEX)
1452 return e0->dest;
1454 return bb;
1458 /* Walk the function tree removing unnecessary statements.
1460 * Empty statement nodes are removed
1462 * Unnecessary TRY_FINALLY and TRY_CATCH blocks are removed
1464 * Unnecessary COND_EXPRs are removed
1466 * Some unnecessary BIND_EXPRs are removed
1468 * GOTO_EXPRs immediately preceding destination are removed.
1470 Clearly more work could be done. The trick is doing the analysis
1471 and removal fast enough to be a net improvement in compile times.
1473 Note that when we remove a control structure such as a COND_EXPR
1474 BIND_EXPR, or TRY block, we will need to repeat this optimization pass
1475 to ensure we eliminate all the useless code. */
1477 struct rus_data
1479 bool repeat;
1480 bool may_throw;
1481 bool may_branch;
1482 bool has_label;
1483 bool last_was_goto;
1484 gimple_stmt_iterator last_goto_gsi;
1488 static void remove_useless_stmts_1 (gimple_stmt_iterator *gsi, struct rus_data *);
1490 /* Given a statement sequence, find the first executable statement with
1491 location information, and warn that it is unreachable. When searching,
1492 descend into containers in execution order. */
1494 static bool
1495 remove_useless_stmts_warn_notreached (gimple_seq stmts)
1497 gimple_stmt_iterator gsi;
1499 for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
1501 gimple stmt = gsi_stmt (gsi);
1503 if (gimple_has_location (stmt))
1505 location_t loc = gimple_location (stmt);
1506 if (LOCATION_LINE (loc) > 0)
1508 warning (OPT_Wunreachable_code, "%Hwill never be executed", &loc);
1509 return true;
1513 switch (gimple_code (stmt))
1515 /* Unfortunately, we need the CFG now to detect unreachable
1516 branches in a conditional, so conditionals are not handled here. */
1518 case GIMPLE_TRY:
1519 if (remove_useless_stmts_warn_notreached (gimple_try_eval (stmt)))
1520 return true;
1521 if (remove_useless_stmts_warn_notreached (gimple_try_cleanup (stmt)))
1522 return true;
1523 break;
1525 case GIMPLE_CATCH:
1526 return remove_useless_stmts_warn_notreached (gimple_catch_handler (stmt));
1528 case GIMPLE_EH_FILTER:
1529 return remove_useless_stmts_warn_notreached (gimple_eh_filter_failure (stmt));
1531 case GIMPLE_BIND:
1532 return remove_useless_stmts_warn_notreached (gimple_bind_body (stmt));
1534 default:
1535 break;
1539 return false;
1542 /* Helper for remove_useless_stmts_1. Handle GIMPLE_COND statements. */
1544 static void
1545 remove_useless_stmts_cond (gimple_stmt_iterator *gsi, struct rus_data *data)
1547 gimple stmt = gsi_stmt (*gsi);
1549 /* The folded result must still be a conditional statement. */
1550 fold_stmt_inplace (stmt);
1552 data->may_branch = true;
1554 /* Replace trivial conditionals with gotos. */
1555 if (gimple_cond_true_p (stmt))
1557 /* Goto THEN label. */
1558 tree then_label = gimple_cond_true_label (stmt);
1560 gsi_replace (gsi, gimple_build_goto (then_label), false);
1561 data->last_goto_gsi = *gsi;
1562 data->last_was_goto = true;
1563 data->repeat = true;
1565 else if (gimple_cond_false_p (stmt))
1567 /* Goto ELSE label. */
1568 tree else_label = gimple_cond_false_label (stmt);
1570 gsi_replace (gsi, gimple_build_goto (else_label), false);
1571 data->last_goto_gsi = *gsi;
1572 data->last_was_goto = true;
1573 data->repeat = true;
1575 else
1577 tree then_label = gimple_cond_true_label (stmt);
1578 tree else_label = gimple_cond_false_label (stmt);
1580 if (then_label == else_label)
1582 /* Goto common destination. */
1583 gsi_replace (gsi, gimple_build_goto (then_label), false);
1584 data->last_goto_gsi = *gsi;
1585 data->last_was_goto = true;
1586 data->repeat = true;
1590 gsi_next (gsi);
1592 data->last_was_goto = false;
1595 /* Helper for remove_useless_stmts_1.
1596 Handle the try-finally case for GIMPLE_TRY statements. */
1598 static void
1599 remove_useless_stmts_tf (gimple_stmt_iterator *gsi, struct rus_data *data)
1601 bool save_may_branch, save_may_throw;
1602 bool this_may_branch, this_may_throw;
1604 gimple_seq eval_seq, cleanup_seq;
1605 gimple_stmt_iterator eval_gsi, cleanup_gsi;
1607 gimple stmt = gsi_stmt (*gsi);
1609 /* Collect may_branch and may_throw information for the body only. */
1610 save_may_branch = data->may_branch;
1611 save_may_throw = data->may_throw;
1612 data->may_branch = false;
1613 data->may_throw = false;
1614 data->last_was_goto = false;
1616 eval_seq = gimple_try_eval (stmt);
1617 eval_gsi = gsi_start (eval_seq);
1618 remove_useless_stmts_1 (&eval_gsi, data);
1620 this_may_branch = data->may_branch;
1621 this_may_throw = data->may_throw;
1622 data->may_branch |= save_may_branch;
1623 data->may_throw |= save_may_throw;
1624 data->last_was_goto = false;
1626 cleanup_seq = gimple_try_cleanup (stmt);
1627 cleanup_gsi = gsi_start (cleanup_seq);
1628 remove_useless_stmts_1 (&cleanup_gsi, data);
1630 /* If the body is empty, then we can emit the FINALLY block without
1631 the enclosing TRY_FINALLY_EXPR. */
1632 if (gimple_seq_empty_p (eval_seq))
1634 gsi_insert_seq_before (gsi, cleanup_seq, GSI_SAME_STMT);
1635 gsi_remove (gsi, false);
1636 data->repeat = true;
1639 /* If the handler is empty, then we can emit the TRY block without
1640 the enclosing TRY_FINALLY_EXPR. */
1641 else if (gimple_seq_empty_p (cleanup_seq))
1643 gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
1644 gsi_remove (gsi, false);
1645 data->repeat = true;
1648 /* If the body neither throws, nor branches, then we can safely
1649 string the TRY and FINALLY blocks together. */
1650 else if (!this_may_branch && !this_may_throw)
1652 gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
1653 gsi_insert_seq_before (gsi, cleanup_seq, GSI_SAME_STMT);
1654 gsi_remove (gsi, false);
1655 data->repeat = true;
1657 else
1658 gsi_next (gsi);
1661 /* Helper for remove_useless_stmts_1.
1662 Handle the try-catch case for GIMPLE_TRY statements. */
1664 static void
1665 remove_useless_stmts_tc (gimple_stmt_iterator *gsi, struct rus_data *data)
1667 bool save_may_throw, this_may_throw;
1669 gimple_seq eval_seq, cleanup_seq, handler_seq, failure_seq;
1670 gimple_stmt_iterator eval_gsi, cleanup_gsi, handler_gsi, failure_gsi;
1672 gimple stmt = gsi_stmt (*gsi);
1674 /* Collect may_throw information for the body only. */
1675 save_may_throw = data->may_throw;
1676 data->may_throw = false;
1677 data->last_was_goto = false;
1679 eval_seq = gimple_try_eval (stmt);
1680 eval_gsi = gsi_start (eval_seq);
1681 remove_useless_stmts_1 (&eval_gsi, data);
1683 this_may_throw = data->may_throw;
1684 data->may_throw = save_may_throw;
1686 cleanup_seq = gimple_try_cleanup (stmt);
1688 /* If the body cannot throw, then we can drop the entire TRY_CATCH_EXPR. */
1689 if (!this_may_throw)
1691 if (warn_notreached)
1693 remove_useless_stmts_warn_notreached (cleanup_seq);
1695 gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
1696 gsi_remove (gsi, false);
1697 data->repeat = true;
1698 return;
1701 /* Process the catch clause specially. We may be able to tell that
1702 no exceptions propagate past this point. */
1704 this_may_throw = true;
1705 cleanup_gsi = gsi_start (cleanup_seq);
1706 stmt = gsi_stmt (cleanup_gsi);
1707 data->last_was_goto = false;
1709 switch (gimple_code (stmt))
1711 case GIMPLE_CATCH:
1712 /* If the first element is a catch, they all must be. */
1713 while (!gsi_end_p (cleanup_gsi))
1715 stmt = gsi_stmt (cleanup_gsi);
1716 /* If we catch all exceptions, then the body does not
1717 propagate exceptions past this point. */
1718 if (gimple_catch_types (stmt) == NULL)
1719 this_may_throw = false;
1720 data->last_was_goto = false;
1721 handler_seq = gimple_catch_handler (stmt);
1722 handler_gsi = gsi_start (handler_seq);
1723 remove_useless_stmts_1 (&handler_gsi, data);
1724 gsi_next (&cleanup_gsi);
1726 gsi_next (gsi);
1727 break;
1729 case GIMPLE_EH_FILTER:
1730 /* If the first element is an eh_filter, it should stand alone. */
1731 if (gimple_eh_filter_must_not_throw (stmt))
1732 this_may_throw = false;
1733 else if (gimple_eh_filter_types (stmt) == NULL)
1734 this_may_throw = false;
1735 failure_seq = gimple_eh_filter_failure (stmt);
1736 failure_gsi = gsi_start (failure_seq);
1737 remove_useless_stmts_1 (&failure_gsi, data);
1738 gsi_next (gsi);
1739 break;
1741 default:
1742 /* Otherwise this is a list of cleanup statements. */
1743 remove_useless_stmts_1 (&cleanup_gsi, data);
1745 /* If the cleanup is empty, then we can emit the TRY block without
1746 the enclosing TRY_CATCH_EXPR. */
1747 if (gimple_seq_empty_p (cleanup_seq))
1749 gsi_insert_seq_before (gsi, eval_seq, GSI_SAME_STMT);
1750 gsi_remove(gsi, false);
1751 data->repeat = true;
1753 else
1754 gsi_next (gsi);
1755 break;
1758 data->may_throw |= this_may_throw;
1761 /* Helper for remove_useless_stmts_1. Handle GIMPLE_BIND statements. */
1763 static void
1764 remove_useless_stmts_bind (gimple_stmt_iterator *gsi, struct rus_data *data ATTRIBUTE_UNUSED)
1766 tree block;
1767 gimple_seq body_seq, fn_body_seq;
1768 gimple_stmt_iterator body_gsi;
1770 gimple stmt = gsi_stmt (*gsi);
1772 /* First remove anything underneath the BIND_EXPR. */
1774 body_seq = gimple_bind_body (stmt);
1775 body_gsi = gsi_start (body_seq);
1776 remove_useless_stmts_1 (&body_gsi, data);
1778 /* If the GIMPLE_BIND has no variables, then we can pull everything
1779 up one level and remove the GIMPLE_BIND, unless this is the toplevel
1780 GIMPLE_BIND for the current function or an inlined function.
1782 When this situation occurs we will want to apply this
1783 optimization again. */
1784 block = gimple_bind_block (stmt);
1785 fn_body_seq = gimple_body (current_function_decl);
1786 if (gimple_bind_vars (stmt) == NULL_TREE
1787 && (gimple_seq_empty_p (fn_body_seq)
1788 || stmt != gimple_seq_first_stmt (fn_body_seq))
1789 && (! block
1790 || ! BLOCK_ABSTRACT_ORIGIN (block)
1791 || (TREE_CODE (BLOCK_ABSTRACT_ORIGIN (block))
1792 != FUNCTION_DECL)))
1794 gsi_insert_seq_before (gsi, body_seq, GSI_SAME_STMT);
1795 gsi_remove (gsi, false);
1796 data->repeat = true;
1798 else
1799 gsi_next (gsi);
1802 /* Helper for remove_useless_stmts_1. Handle GIMPLE_GOTO statements. */
1804 static void
1805 remove_useless_stmts_goto (gimple_stmt_iterator *gsi, struct rus_data *data)
1807 gimple stmt = gsi_stmt (*gsi);
1809 tree dest = gimple_goto_dest (stmt);
1811 data->may_branch = true;
1812 data->last_was_goto = false;
1814 /* Record iterator for last goto expr, so that we can delete it if unnecessary. */
1815 if (TREE_CODE (dest) == LABEL_DECL)
1817 data->last_goto_gsi = *gsi;
1818 data->last_was_goto = true;
1821 gsi_next(gsi);
1824 /* Helper for remove_useless_stmts_1. Handle GIMPLE_LABEL statements. */
1826 static void
1827 remove_useless_stmts_label (gimple_stmt_iterator *gsi, struct rus_data *data)
1829 gimple stmt = gsi_stmt (*gsi);
1831 tree label = gimple_label_label (stmt);
1833 data->has_label = true;
1835 /* We do want to jump across non-local label receiver code. */
1836 if (DECL_NONLOCAL (label))
1837 data->last_was_goto = false;
1839 else if (data->last_was_goto
1840 && gimple_goto_dest (gsi_stmt (data->last_goto_gsi)) == label)
1842 /* Replace the preceding GIMPLE_GOTO statement with
1843 a GIMPLE_NOP, which will be subsequently removed.
1844 In this way, we avoid invalidating other iterators
1845 active on the statement sequence. */
1846 gsi_replace(&data->last_goto_gsi, gimple_build_nop(), false);
1847 data->last_was_goto = false;
1848 data->repeat = true;
1851 /* ??? Add something here to delete unused labels. */
1853 gsi_next (gsi);
1857 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1859 void
1860 notice_special_calls (gimple call)
1862 int flags = gimple_call_flags (call);
1864 if (flags & ECF_MAY_BE_ALLOCA)
1865 cfun->calls_alloca = true;
1866 if (flags & ECF_RETURNS_TWICE)
1867 cfun->calls_setjmp = true;
1871 /* Clear flags set by notice_special_calls. Used by dead code removal
1872 to update the flags. */
1874 void
1875 clear_special_calls (void)
1877 cfun->calls_alloca = false;
1878 cfun->calls_setjmp = false;
1881 /* Remove useless statements from a statement sequence, and perform
1882 some preliminary simplifications. */
1884 static void
1885 remove_useless_stmts_1 (gimple_stmt_iterator *gsi, struct rus_data *data)
1887 while (!gsi_end_p (*gsi))
1889 gimple stmt = gsi_stmt (*gsi);
1891 switch (gimple_code (stmt))
1893 case GIMPLE_COND:
1894 remove_useless_stmts_cond (gsi, data);
1895 break;
1897 case GIMPLE_GOTO:
1898 remove_useless_stmts_goto (gsi, data);
1899 break;
1901 case GIMPLE_LABEL:
1902 remove_useless_stmts_label (gsi, data);
1903 break;
1905 case GIMPLE_ASSIGN:
1906 fold_stmt (gsi);
1907 stmt = gsi_stmt (*gsi);
1908 data->last_was_goto = false;
1909 if (stmt_could_throw_p (stmt))
1910 data->may_throw = true;
1911 gsi_next (gsi);
1912 break;
1914 case GIMPLE_ASM:
1915 fold_stmt (gsi);
1916 data->last_was_goto = false;
1917 gsi_next (gsi);
1918 break;
1920 case GIMPLE_CALL:
1921 fold_stmt (gsi);
1922 stmt = gsi_stmt (*gsi);
1923 data->last_was_goto = false;
1924 if (is_gimple_call (stmt))
1925 notice_special_calls (stmt);
1927 /* We used to call update_gimple_call_flags here,
1928 which copied side-effects and nothrows status
1929 from the function decl to the call. In the new
1930 tuplified GIMPLE, the accessors for this information
1931 always consult the function decl, so this copying
1932 is no longer necessary. */
1933 if (stmt_could_throw_p (stmt))
1934 data->may_throw = true;
1935 gsi_next (gsi);
1936 break;
1938 case GIMPLE_RETURN:
1939 fold_stmt (gsi);
1940 data->last_was_goto = false;
1941 data->may_branch = true;
1942 gsi_next (gsi);
1943 break;
1945 case GIMPLE_BIND:
1946 remove_useless_stmts_bind (gsi, data);
1947 break;
1949 case GIMPLE_TRY:
1950 if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
1951 remove_useless_stmts_tc (gsi, data);
1952 else if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
1953 remove_useless_stmts_tf (gsi, data);
1954 else
1955 gcc_unreachable ();
1956 break;
1958 case GIMPLE_CATCH:
1959 gcc_unreachable ();
1960 break;
1962 case GIMPLE_NOP:
1963 gsi_remove (gsi, false);
1964 break;
1966 case GIMPLE_OMP_FOR:
1968 gimple_seq pre_body_seq = gimple_omp_for_pre_body (stmt);
1969 gimple_stmt_iterator pre_body_gsi = gsi_start (pre_body_seq);
1971 remove_useless_stmts_1 (&pre_body_gsi, data);
1972 data->last_was_goto = false;
1974 /* FALLTHROUGH */
1975 case GIMPLE_OMP_CRITICAL:
1976 case GIMPLE_OMP_CONTINUE:
1977 case GIMPLE_OMP_MASTER:
1978 case GIMPLE_OMP_ORDERED:
1979 case GIMPLE_OMP_SECTION:
1980 case GIMPLE_OMP_SECTIONS:
1981 case GIMPLE_OMP_SINGLE:
1983 gimple_seq body_seq = gimple_omp_body (stmt);
1984 gimple_stmt_iterator body_gsi = gsi_start (body_seq);
1986 remove_useless_stmts_1 (&body_gsi, data);
1987 data->last_was_goto = false;
1988 gsi_next (gsi);
1990 break;
1992 case GIMPLE_OMP_PARALLEL:
1993 case GIMPLE_OMP_TASK:
1995 /* Make sure the outermost GIMPLE_BIND isn't removed
1996 as useless. */
1997 gimple_seq body_seq = gimple_omp_body (stmt);
1998 gimple bind = gimple_seq_first_stmt (body_seq);
1999 gimple_seq bind_seq = gimple_bind_body (bind);
2000 gimple_stmt_iterator bind_gsi = gsi_start (bind_seq);
2002 remove_useless_stmts_1 (&bind_gsi, data);
2003 data->last_was_goto = false;
2004 gsi_next (gsi);
2006 break;
2008 case GIMPLE_CHANGE_DYNAMIC_TYPE:
2009 /* If we do not optimize remove GIMPLE_CHANGE_DYNAMIC_TYPE as
2010 expansion is confused about them and we only remove them
2011 during alias computation otherwise. */
2012 if (!optimize)
2014 data->last_was_goto = false;
2015 gsi_remove (gsi, false);
2016 break;
2018 /* Fallthru. */
2020 default:
2021 data->last_was_goto = false;
2022 gsi_next (gsi);
2023 break;
2028 /* Walk the function tree, removing useless statements and performing
2029 some preliminary simplifications. */
2031 static unsigned int
2032 remove_useless_stmts (void)
2034 struct rus_data data;
2036 clear_special_calls ();
2040 gimple_stmt_iterator gsi;
2042 gsi = gsi_start (gimple_body (current_function_decl));
2043 memset (&data, 0, sizeof (data));
2044 remove_useless_stmts_1 (&gsi, &data);
2046 while (data.repeat);
2047 return 0;
2051 struct gimple_opt_pass pass_remove_useless_stmts =
2054 GIMPLE_PASS,
2055 "useless", /* name */
2056 NULL, /* gate */
2057 remove_useless_stmts, /* execute */
2058 NULL, /* sub */
2059 NULL, /* next */
2060 0, /* static_pass_number */
2061 0, /* tv_id */
2062 PROP_gimple_any, /* properties_required */
2063 0, /* properties_provided */
2064 0, /* properties_destroyed */
2065 0, /* todo_flags_start */
2066 TODO_dump_func /* todo_flags_finish */
2070 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2072 static void
2073 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
2075 /* Since this block is no longer reachable, we can just delete all
2076 of its PHI nodes. */
2077 remove_phi_nodes (bb);
2079 /* Remove edges to BB's successors. */
2080 while (EDGE_COUNT (bb->succs) > 0)
2081 remove_edge (EDGE_SUCC (bb, 0));
2085 /* Remove statements of basic block BB. */
2087 static void
2088 remove_bb (basic_block bb)
2090 gimple_stmt_iterator i;
2091 source_location loc = UNKNOWN_LOCATION;
2093 if (dump_file)
2095 fprintf (dump_file, "Removing basic block %d\n", bb->index);
2096 if (dump_flags & TDF_DETAILS)
2098 dump_bb (bb, dump_file, 0);
2099 fprintf (dump_file, "\n");
2103 if (current_loops)
2105 struct loop *loop = bb->loop_father;
2107 /* If a loop gets removed, clean up the information associated
2108 with it. */
2109 if (loop->latch == bb
2110 || loop->header == bb)
2111 free_numbers_of_iterations_estimates_loop (loop);
2114 /* Remove all the instructions in the block. */
2115 if (bb_seq (bb) != NULL)
2117 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2119 gimple stmt = gsi_stmt (i);
2120 if (gimple_code (stmt) == GIMPLE_LABEL
2121 && (FORCED_LABEL (gimple_label_label (stmt))
2122 || DECL_NONLOCAL (gimple_label_label (stmt))))
2124 basic_block new_bb;
2125 gimple_stmt_iterator new_gsi;
2127 /* A non-reachable non-local label may still be referenced.
2128 But it no longer needs to carry the extra semantics of
2129 non-locality. */
2130 if (DECL_NONLOCAL (gimple_label_label (stmt)))
2132 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
2133 FORCED_LABEL (gimple_label_label (stmt)) = 1;
2136 new_bb = bb->prev_bb;
2137 new_gsi = gsi_start_bb (new_bb);
2138 gsi_remove (&i, false);
2139 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2141 else
2143 /* Release SSA definitions if we are in SSA. Note that we
2144 may be called when not in SSA. For example,
2145 final_cleanup calls this function via
2146 cleanup_tree_cfg. */
2147 if (gimple_in_ssa_p (cfun))
2148 release_defs (stmt);
2150 gsi_remove (&i, true);
2153 /* Don't warn for removed gotos. Gotos are often removed due to
2154 jump threading, thus resulting in bogus warnings. Not great,
2155 since this way we lose warnings for gotos in the original
2156 program that are indeed unreachable. */
2157 if (gimple_code (stmt) != GIMPLE_GOTO
2158 && gimple_has_location (stmt)
2159 && !loc)
2160 loc = gimple_location (stmt);
2164 /* If requested, give a warning that the first statement in the
2165 block is unreachable. We walk statements backwards in the
2166 loop above, so the last statement we process is the first statement
2167 in the block. */
2168 if (loc > BUILTINS_LOCATION && LOCATION_LINE (loc) > 0)
2169 warning (OPT_Wunreachable_code, "%Hwill never be executed", &loc);
2171 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2172 bb->il.gimple = NULL;
2176 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2177 predicate VAL, return the edge that will be taken out of the block.
2178 If VAL does not match a unique edge, NULL is returned. */
2180 edge
2181 find_taken_edge (basic_block bb, tree val)
2183 gimple stmt;
2185 stmt = last_stmt (bb);
2187 gcc_assert (stmt);
2188 gcc_assert (is_ctrl_stmt (stmt));
2190 if (val == NULL)
2191 return NULL;
2193 if (!is_gimple_min_invariant (val))
2194 return NULL;
2196 if (gimple_code (stmt) == GIMPLE_COND)
2197 return find_taken_edge_cond_expr (bb, val);
2199 if (gimple_code (stmt) == GIMPLE_SWITCH)
2200 return find_taken_edge_switch_expr (bb, val);
2202 if (computed_goto_p (stmt))
2204 /* Only optimize if the argument is a label, if the argument is
2205 not a label then we can not construct a proper CFG.
2207 It may be the case that we only need to allow the LABEL_REF to
2208 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2209 appear inside a LABEL_EXPR just to be safe. */
2210 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2211 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2212 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2213 return NULL;
2216 gcc_unreachable ();
2219 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2220 statement, determine which of the outgoing edges will be taken out of the
2221 block. Return NULL if either edge may be taken. */
2223 static edge
2224 find_taken_edge_computed_goto (basic_block bb, tree val)
2226 basic_block dest;
2227 edge e = NULL;
2229 dest = label_to_block (val);
2230 if (dest)
2232 e = find_edge (bb, dest);
2233 gcc_assert (e != NULL);
2236 return e;
2239 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2240 statement, determine which of the two edges will be taken out of the
2241 block. Return NULL if either edge may be taken. */
2243 static edge
2244 find_taken_edge_cond_expr (basic_block bb, tree val)
2246 edge true_edge, false_edge;
2248 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2250 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2251 return (integer_zerop (val) ? false_edge : true_edge);
2254 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2255 statement, determine which edge will be taken out of the block. Return
2256 NULL if any edge may be taken. */
2258 static edge
2259 find_taken_edge_switch_expr (basic_block bb, tree val)
2261 basic_block dest_bb;
2262 edge e;
2263 gimple switch_stmt;
2264 tree taken_case;
2266 switch_stmt = last_stmt (bb);
2267 taken_case = find_case_label_for_value (switch_stmt, val);
2268 dest_bb = label_to_block (CASE_LABEL (taken_case));
2270 e = find_edge (bb, dest_bb);
2271 gcc_assert (e);
2272 return e;
2276 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2277 We can make optimal use here of the fact that the case labels are
2278 sorted: We can do a binary search for a case matching VAL. */
2280 static tree
2281 find_case_label_for_value (gimple switch_stmt, tree val)
2283 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2284 tree default_case = gimple_switch_default_label (switch_stmt);
2286 for (low = 0, high = n; high - low > 1; )
2288 size_t i = (high + low) / 2;
2289 tree t = gimple_switch_label (switch_stmt, i);
2290 int cmp;
2292 /* Cache the result of comparing CASE_LOW and val. */
2293 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2295 if (cmp > 0)
2296 high = i;
2297 else
2298 low = i;
2300 if (CASE_HIGH (t) == NULL)
2302 /* A singe-valued case label. */
2303 if (cmp == 0)
2304 return t;
2306 else
2308 /* A case range. We can only handle integer ranges. */
2309 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2310 return t;
2314 return default_case;
2318 /* Dump a basic block on stderr. */
2320 void
2321 gimple_debug_bb (basic_block bb)
2323 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2327 /* Dump basic block with index N on stderr. */
2329 basic_block
2330 gimple_debug_bb_n (int n)
2332 gimple_debug_bb (BASIC_BLOCK (n));
2333 return BASIC_BLOCK (n);
2337 /* Dump the CFG on stderr.
2339 FLAGS are the same used by the tree dumping functions
2340 (see TDF_* in tree-pass.h). */
2342 void
2343 gimple_debug_cfg (int flags)
2345 gimple_dump_cfg (stderr, flags);
2349 /* Dump the program showing basic block boundaries on the given FILE.
2351 FLAGS are the same used by the tree dumping functions (see TDF_* in
2352 tree.h). */
2354 void
2355 gimple_dump_cfg (FILE *file, int flags)
2357 if (flags & TDF_DETAILS)
2359 const char *funcname
2360 = lang_hooks.decl_printable_name (current_function_decl, 2);
2362 fputc ('\n', file);
2363 fprintf (file, ";; Function %s\n\n", funcname);
2364 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2365 n_basic_blocks, n_edges, last_basic_block);
2367 brief_dump_cfg (file);
2368 fprintf (file, "\n");
2371 if (flags & TDF_STATS)
2372 dump_cfg_stats (file);
2374 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2378 /* Dump CFG statistics on FILE. */
2380 void
2381 dump_cfg_stats (FILE *file)
2383 static long max_num_merged_labels = 0;
2384 unsigned long size, total = 0;
2385 long num_edges;
2386 basic_block bb;
2387 const char * const fmt_str = "%-30s%-13s%12s\n";
2388 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2389 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2390 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2391 const char *funcname
2392 = lang_hooks.decl_printable_name (current_function_decl, 2);
2395 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2397 fprintf (file, "---------------------------------------------------------\n");
2398 fprintf (file, fmt_str, "", " Number of ", "Memory");
2399 fprintf (file, fmt_str, "", " instances ", "used ");
2400 fprintf (file, "---------------------------------------------------------\n");
2402 size = n_basic_blocks * sizeof (struct basic_block_def);
2403 total += size;
2404 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2405 SCALE (size), LABEL (size));
2407 num_edges = 0;
2408 FOR_EACH_BB (bb)
2409 num_edges += EDGE_COUNT (bb->succs);
2410 size = num_edges * sizeof (struct edge_def);
2411 total += size;
2412 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2414 fprintf (file, "---------------------------------------------------------\n");
2415 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2416 LABEL (total));
2417 fprintf (file, "---------------------------------------------------------\n");
2418 fprintf (file, "\n");
2420 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2421 max_num_merged_labels = cfg_stats.num_merged_labels;
2423 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2424 cfg_stats.num_merged_labels, max_num_merged_labels);
2426 fprintf (file, "\n");
2430 /* Dump CFG statistics on stderr. Keep extern so that it's always
2431 linked in the final executable. */
2433 void
2434 debug_cfg_stats (void)
2436 dump_cfg_stats (stderr);
2440 /* Dump the flowgraph to a .vcg FILE. */
2442 static void
2443 gimple_cfg2vcg (FILE *file)
2445 edge e;
2446 edge_iterator ei;
2447 basic_block bb;
2448 const char *funcname
2449 = lang_hooks.decl_printable_name (current_function_decl, 2);
2451 /* Write the file header. */
2452 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2453 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2454 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2456 /* Write blocks and edges. */
2457 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2459 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2460 e->dest->index);
2462 if (e->flags & EDGE_FAKE)
2463 fprintf (file, " linestyle: dotted priority: 10");
2464 else
2465 fprintf (file, " linestyle: solid priority: 100");
2467 fprintf (file, " }\n");
2469 fputc ('\n', file);
2471 FOR_EACH_BB (bb)
2473 enum gimple_code head_code, end_code;
2474 const char *head_name, *end_name;
2475 int head_line = 0;
2476 int end_line = 0;
2477 gimple first = first_stmt (bb);
2478 gimple last = last_stmt (bb);
2480 if (first)
2482 head_code = gimple_code (first);
2483 head_name = gimple_code_name[head_code];
2484 head_line = get_lineno (first);
2486 else
2487 head_name = "no-statement";
2489 if (last)
2491 end_code = gimple_code (last);
2492 end_name = gimple_code_name[end_code];
2493 end_line = get_lineno (last);
2495 else
2496 end_name = "no-statement";
2498 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2499 bb->index, bb->index, head_name, head_line, end_name,
2500 end_line);
2502 FOR_EACH_EDGE (e, ei, bb->succs)
2504 if (e->dest == EXIT_BLOCK_PTR)
2505 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2506 else
2507 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2509 if (e->flags & EDGE_FAKE)
2510 fprintf (file, " priority: 10 linestyle: dotted");
2511 else
2512 fprintf (file, " priority: 100 linestyle: solid");
2514 fprintf (file, " }\n");
2517 if (bb->next_bb != EXIT_BLOCK_PTR)
2518 fputc ('\n', file);
2521 fputs ("}\n\n", file);
2526 /*---------------------------------------------------------------------------
2527 Miscellaneous helpers
2528 ---------------------------------------------------------------------------*/
2530 /* Return true if T represents a stmt that always transfers control. */
2532 bool
2533 is_ctrl_stmt (gimple t)
2535 return gimple_code (t) == GIMPLE_COND
2536 || gimple_code (t) == GIMPLE_SWITCH
2537 || gimple_code (t) == GIMPLE_GOTO
2538 || gimple_code (t) == GIMPLE_RETURN
2539 || gimple_code (t) == GIMPLE_RESX;
2543 /* Return true if T is a statement that may alter the flow of control
2544 (e.g., a call to a non-returning function). */
2546 bool
2547 is_ctrl_altering_stmt (gimple t)
2549 gcc_assert (t);
2551 if (is_gimple_call (t))
2553 int flags = gimple_call_flags (t);
2555 /* A non-pure/const call alters flow control if the current
2556 function has nonlocal labels. */
2557 if (!(flags & (ECF_CONST | ECF_PURE))
2558 && cfun->has_nonlocal_label)
2559 return true;
2561 /* A call also alters control flow if it does not return. */
2562 if (gimple_call_flags (t) & ECF_NORETURN)
2563 return true;
2566 /* OpenMP directives alter control flow. */
2567 if (is_gimple_omp (t))
2568 return true;
2570 /* If a statement can throw, it alters control flow. */
2571 return stmt_can_throw_internal (t);
2575 /* Return true if T is a simple local goto. */
2577 bool
2578 simple_goto_p (gimple t)
2580 return (gimple_code (t) == GIMPLE_GOTO
2581 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2585 /* Return true if T can make an abnormal transfer of control flow.
2586 Transfers of control flow associated with EH are excluded. */
2588 bool
2589 stmt_can_make_abnormal_goto (gimple t)
2591 if (computed_goto_p (t))
2592 return true;
2593 if (is_gimple_call (t))
2594 return gimple_has_side_effects (t) && cfun->has_nonlocal_label;
2595 return false;
2599 /* Return true if STMT should start a new basic block. PREV_STMT is
2600 the statement preceding STMT. It is used when STMT is a label or a
2601 case label. Labels should only start a new basic block if their
2602 previous statement wasn't a label. Otherwise, sequence of labels
2603 would generate unnecessary basic blocks that only contain a single
2604 label. */
2606 static inline bool
2607 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2609 if (stmt == NULL)
2610 return false;
2612 /* Labels start a new basic block only if the preceding statement
2613 wasn't a label of the same type. This prevents the creation of
2614 consecutive blocks that have nothing but a single label. */
2615 if (gimple_code (stmt) == GIMPLE_LABEL)
2617 /* Nonlocal and computed GOTO targets always start a new block. */
2618 if (DECL_NONLOCAL (gimple_label_label (stmt))
2619 || FORCED_LABEL (gimple_label_label (stmt)))
2620 return true;
2622 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2624 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2625 return true;
2627 cfg_stats.num_merged_labels++;
2628 return false;
2630 else
2631 return true;
2634 return false;
2638 /* Return true if T should end a basic block. */
2640 bool
2641 stmt_ends_bb_p (gimple t)
2643 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2646 /* Remove block annotations and other data structures. */
2648 void
2649 delete_tree_cfg_annotations (void)
2651 label_to_block_map = NULL;
2655 /* Return the first statement in basic block BB. */
2657 gimple
2658 first_stmt (basic_block bb)
2660 gimple_stmt_iterator i = gsi_start_bb (bb);
2661 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2664 /* Return the last statement in basic block BB. */
2666 gimple
2667 last_stmt (basic_block bb)
2669 gimple_stmt_iterator b = gsi_last_bb (bb);
2670 return !gsi_end_p (b) ? gsi_stmt (b) : NULL;
2673 /* Return the last statement of an otherwise empty block. Return NULL
2674 if the block is totally empty, or if it contains more than one
2675 statement. */
2677 gimple
2678 last_and_only_stmt (basic_block bb)
2680 gimple_stmt_iterator i = gsi_last_bb (bb);
2681 gimple last, prev;
2683 if (gsi_end_p (i))
2684 return NULL;
2686 last = gsi_stmt (i);
2687 gsi_prev (&i);
2688 if (gsi_end_p (i))
2689 return last;
2691 /* Empty statements should no longer appear in the instruction stream.
2692 Everything that might have appeared before should be deleted by
2693 remove_useless_stmts, and the optimizers should just gsi_remove
2694 instead of smashing with build_empty_stmt.
2696 Thus the only thing that should appear here in a block containing
2697 one executable statement is a label. */
2698 prev = gsi_stmt (i);
2699 if (gimple_code (prev) == GIMPLE_LABEL)
2700 return last;
2701 else
2702 return NULL;
2705 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2707 static void
2708 reinstall_phi_args (edge new_edge, edge old_edge)
2710 edge_var_map_vector v;
2711 edge_var_map *vm;
2712 int i;
2713 gimple_stmt_iterator phis;
2715 v = redirect_edge_var_map_vector (old_edge);
2716 if (!v)
2717 return;
2719 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2720 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2721 i++, gsi_next (&phis))
2723 gimple phi = gsi_stmt (phis);
2724 tree result = redirect_edge_var_map_result (vm);
2725 tree arg = redirect_edge_var_map_def (vm);
2727 gcc_assert (result == gimple_phi_result (phi));
2729 add_phi_arg (phi, arg, new_edge);
2732 redirect_edge_var_map_clear (old_edge);
2735 /* Returns the basic block after which the new basic block created
2736 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2737 near its "logical" location. This is of most help to humans looking
2738 at debugging dumps. */
2740 static basic_block
2741 split_edge_bb_loc (edge edge_in)
2743 basic_block dest = edge_in->dest;
2745 if (dest->prev_bb && find_edge (dest->prev_bb, dest))
2746 return edge_in->src;
2747 else
2748 return dest->prev_bb;
2751 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2752 Abort on abnormal edges. */
2754 static basic_block
2755 gimple_split_edge (edge edge_in)
2757 basic_block new_bb, after_bb, dest;
2758 edge new_edge, e;
2760 /* Abnormal edges cannot be split. */
2761 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2763 dest = edge_in->dest;
2765 after_bb = split_edge_bb_loc (edge_in);
2767 new_bb = create_empty_bb (after_bb);
2768 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2769 new_bb->count = edge_in->count;
2770 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2771 new_edge->probability = REG_BR_PROB_BASE;
2772 new_edge->count = edge_in->count;
2774 e = redirect_edge_and_branch (edge_in, new_bb);
2775 gcc_assert (e == edge_in);
2776 reinstall_phi_args (new_edge, e);
2778 return new_bb;
2781 /* Callback for walk_tree, check that all elements with address taken are
2782 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2783 inside a PHI node. */
2785 static tree
2786 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2788 tree t = *tp, x;
2790 if (TYPE_P (t))
2791 *walk_subtrees = 0;
2793 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2794 #define CHECK_OP(N, MSG) \
2795 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2796 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2798 switch (TREE_CODE (t))
2800 case SSA_NAME:
2801 if (SSA_NAME_IN_FREE_LIST (t))
2803 error ("SSA name in freelist but still referenced");
2804 return *tp;
2806 break;
2808 case INDIRECT_REF:
2809 x = TREE_OPERAND (t, 0);
2810 if (!is_gimple_reg (x) && !is_gimple_min_invariant (x))
2812 error ("Indirect reference's operand is not a register or a constant.");
2813 return x;
2815 break;
2817 case ASSERT_EXPR:
2818 x = fold (ASSERT_EXPR_COND (t));
2819 if (x == boolean_false_node)
2821 error ("ASSERT_EXPR with an always-false condition");
2822 return *tp;
2824 break;
2826 case MODIFY_EXPR:
2827 error ("MODIFY_EXPR not expected while having tuples.");
2828 return *tp;
2830 case ADDR_EXPR:
2832 bool old_constant;
2833 bool old_side_effects;
2834 bool new_constant;
2835 bool new_side_effects;
2837 gcc_assert (is_gimple_address (t));
2839 old_constant = TREE_CONSTANT (t);
2840 old_side_effects = TREE_SIDE_EFFECTS (t);
2842 recompute_tree_invariant_for_addr_expr (t);
2843 new_side_effects = TREE_SIDE_EFFECTS (t);
2844 new_constant = TREE_CONSTANT (t);
2846 if (old_constant != new_constant)
2848 error ("constant not recomputed when ADDR_EXPR changed");
2849 return t;
2851 if (old_side_effects != new_side_effects)
2853 error ("side effects not recomputed when ADDR_EXPR changed");
2854 return t;
2857 /* Skip any references (they will be checked when we recurse down the
2858 tree) and ensure that any variable used as a prefix is marked
2859 addressable. */
2860 for (x = TREE_OPERAND (t, 0);
2861 handled_component_p (x);
2862 x = TREE_OPERAND (x, 0))
2865 if (TREE_CODE (x) != VAR_DECL && TREE_CODE (x) != PARM_DECL)
2866 return NULL;
2867 if (!TREE_ADDRESSABLE (x))
2869 error ("address taken, but ADDRESSABLE bit not set");
2870 return x;
2873 break;
2876 case COND_EXPR:
2877 x = COND_EXPR_COND (t);
2878 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2880 error ("non-integral used in condition");
2881 return x;
2883 if (!is_gimple_condexpr (x))
2885 error ("invalid conditional operand");
2886 return x;
2888 break;
2890 case NON_LVALUE_EXPR:
2891 gcc_unreachable ();
2893 CASE_CONVERT:
2894 case FIX_TRUNC_EXPR:
2895 case FLOAT_EXPR:
2896 case NEGATE_EXPR:
2897 case ABS_EXPR:
2898 case BIT_NOT_EXPR:
2899 case TRUTH_NOT_EXPR:
2900 CHECK_OP (0, "invalid operand to unary operator");
2901 break;
2903 case REALPART_EXPR:
2904 case IMAGPART_EXPR:
2905 case COMPONENT_REF:
2906 case ARRAY_REF:
2907 case ARRAY_RANGE_REF:
2908 case BIT_FIELD_REF:
2909 case VIEW_CONVERT_EXPR:
2910 /* We have a nest of references. Verify that each of the operands
2911 that determine where to reference is either a constant or a variable,
2912 verify that the base is valid, and then show we've already checked
2913 the subtrees. */
2914 while (handled_component_p (t))
2916 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2917 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2918 else if (TREE_CODE (t) == ARRAY_REF
2919 || TREE_CODE (t) == ARRAY_RANGE_REF)
2921 CHECK_OP (1, "invalid array index");
2922 if (TREE_OPERAND (t, 2))
2923 CHECK_OP (2, "invalid array lower bound");
2924 if (TREE_OPERAND (t, 3))
2925 CHECK_OP (3, "invalid array stride");
2927 else if (TREE_CODE (t) == BIT_FIELD_REF)
2929 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2930 || !host_integerp (TREE_OPERAND (t, 2), 1))
2932 error ("invalid position or size operand to BIT_FIELD_REF");
2933 return t;
2935 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2936 && (TYPE_PRECISION (TREE_TYPE (t))
2937 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2939 error ("integral result type precision does not match "
2940 "field size of BIT_FIELD_REF");
2941 return t;
2943 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2944 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2945 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2947 error ("mode precision of non-integral result does not "
2948 "match field size of BIT_FIELD_REF");
2949 return t;
2953 t = TREE_OPERAND (t, 0);
2956 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2958 error ("invalid reference prefix");
2959 return t;
2961 *walk_subtrees = 0;
2962 break;
2963 case PLUS_EXPR:
2964 case MINUS_EXPR:
2965 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2966 POINTER_PLUS_EXPR. */
2967 if (POINTER_TYPE_P (TREE_TYPE (t)))
2969 error ("invalid operand to plus/minus, type is a pointer");
2970 return t;
2972 CHECK_OP (0, "invalid operand to binary operator");
2973 CHECK_OP (1, "invalid operand to binary operator");
2974 break;
2976 case POINTER_PLUS_EXPR:
2977 /* Check to make sure the first operand is a pointer or reference type. */
2978 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2980 error ("invalid operand to pointer plus, first operand is not a pointer");
2981 return t;
2983 /* Check to make sure the second operand is an integer with type of
2984 sizetype. */
2985 if (!useless_type_conversion_p (sizetype,
2986 TREE_TYPE (TREE_OPERAND (t, 1))))
2988 error ("invalid operand to pointer plus, second operand is not an "
2989 "integer with type of sizetype.");
2990 return t;
2992 /* FALLTHROUGH */
2993 case LT_EXPR:
2994 case LE_EXPR:
2995 case GT_EXPR:
2996 case GE_EXPR:
2997 case EQ_EXPR:
2998 case NE_EXPR:
2999 case UNORDERED_EXPR:
3000 case ORDERED_EXPR:
3001 case UNLT_EXPR:
3002 case UNLE_EXPR:
3003 case UNGT_EXPR:
3004 case UNGE_EXPR:
3005 case UNEQ_EXPR:
3006 case LTGT_EXPR:
3007 case MULT_EXPR:
3008 case TRUNC_DIV_EXPR:
3009 case CEIL_DIV_EXPR:
3010 case FLOOR_DIV_EXPR:
3011 case ROUND_DIV_EXPR:
3012 case TRUNC_MOD_EXPR:
3013 case CEIL_MOD_EXPR:
3014 case FLOOR_MOD_EXPR:
3015 case ROUND_MOD_EXPR:
3016 case RDIV_EXPR:
3017 case EXACT_DIV_EXPR:
3018 case MIN_EXPR:
3019 case MAX_EXPR:
3020 case LSHIFT_EXPR:
3021 case RSHIFT_EXPR:
3022 case LROTATE_EXPR:
3023 case RROTATE_EXPR:
3024 case BIT_IOR_EXPR:
3025 case BIT_XOR_EXPR:
3026 case BIT_AND_EXPR:
3027 CHECK_OP (0, "invalid operand to binary operator");
3028 CHECK_OP (1, "invalid operand to binary operator");
3029 break;
3031 case CONSTRUCTOR:
3032 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
3033 *walk_subtrees = 0;
3034 break;
3036 default:
3037 break;
3039 return NULL;
3041 #undef CHECK_OP
3045 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3046 Returns true if there is an error, otherwise false. */
3048 static bool
3049 verify_types_in_gimple_min_lval (tree expr)
3051 tree op;
3053 if (is_gimple_id (expr))
3054 return false;
3056 if (!INDIRECT_REF_P (expr)
3057 && TREE_CODE (expr) != TARGET_MEM_REF)
3059 error ("invalid expression for min lvalue");
3060 return true;
3063 /* TARGET_MEM_REFs are strange beasts. */
3064 if (TREE_CODE (expr) == TARGET_MEM_REF)
3065 return false;
3067 op = TREE_OPERAND (expr, 0);
3068 if (!is_gimple_val (op))
3070 error ("invalid operand in indirect reference");
3071 debug_generic_stmt (op);
3072 return true;
3074 if (!useless_type_conversion_p (TREE_TYPE (expr),
3075 TREE_TYPE (TREE_TYPE (op))))
3077 error ("type mismatch in indirect reference");
3078 debug_generic_stmt (TREE_TYPE (expr));
3079 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3080 return true;
3083 return false;
3086 /* Verify if EXPR is a valid GIMPLE reference expression. Returns true
3087 if there is an error, otherwise false. */
3089 static bool
3090 verify_types_in_gimple_reference (tree expr)
3092 while (handled_component_p (expr))
3094 tree op = TREE_OPERAND (expr, 0);
3096 if (TREE_CODE (expr) == ARRAY_REF
3097 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3099 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3100 || (TREE_OPERAND (expr, 2)
3101 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3102 || (TREE_OPERAND (expr, 3)
3103 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3105 error ("invalid operands to array reference");
3106 debug_generic_stmt (expr);
3107 return true;
3111 /* Verify if the reference array element types are compatible. */
3112 if (TREE_CODE (expr) == ARRAY_REF
3113 && !useless_type_conversion_p (TREE_TYPE (expr),
3114 TREE_TYPE (TREE_TYPE (op))))
3116 error ("type mismatch in array reference");
3117 debug_generic_stmt (TREE_TYPE (expr));
3118 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3119 return true;
3121 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3122 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3123 TREE_TYPE (TREE_TYPE (op))))
3125 error ("type mismatch in array range reference");
3126 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3127 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3128 return true;
3131 if ((TREE_CODE (expr) == REALPART_EXPR
3132 || TREE_CODE (expr) == IMAGPART_EXPR)
3133 && !useless_type_conversion_p (TREE_TYPE (expr),
3134 TREE_TYPE (TREE_TYPE (op))))
3136 error ("type mismatch in real/imagpart reference");
3137 debug_generic_stmt (TREE_TYPE (expr));
3138 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3139 return true;
3142 if (TREE_CODE (expr) == COMPONENT_REF
3143 && !useless_type_conversion_p (TREE_TYPE (expr),
3144 TREE_TYPE (TREE_OPERAND (expr, 1))))
3146 error ("type mismatch in component reference");
3147 debug_generic_stmt (TREE_TYPE (expr));
3148 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3149 return true;
3152 /* For VIEW_CONVERT_EXPRs which are allowed here, too, there
3153 is nothing to verify. Gross mismatches at most invoke
3154 undefined behavior. */
3155 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR
3156 && !handled_component_p (op))
3157 return false;
3159 expr = op;
3162 return verify_types_in_gimple_min_lval (expr);
3165 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3166 list of pointer-to types that is trivially convertible to DEST. */
3168 static bool
3169 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3171 tree src;
3173 if (!TYPE_POINTER_TO (src_obj))
3174 return true;
3176 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3177 if (useless_type_conversion_p (dest, src))
3178 return true;
3180 return false;
3183 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3184 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3186 static bool
3187 valid_fixed_convert_types_p (tree type1, tree type2)
3189 return (FIXED_POINT_TYPE_P (type1)
3190 && (INTEGRAL_TYPE_P (type2)
3191 || SCALAR_FLOAT_TYPE_P (type2)
3192 || FIXED_POINT_TYPE_P (type2)));
3195 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3196 is a problem, otherwise false. */
3198 static bool
3199 verify_gimple_call (gimple stmt)
3201 tree fn = gimple_call_fn (stmt);
3202 tree fntype;
3204 if (!POINTER_TYPE_P (TREE_TYPE (fn))
3205 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3206 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE))
3208 error ("non-function in gimple call");
3209 return true;
3212 if (gimple_call_lhs (stmt)
3213 && !is_gimple_lvalue (gimple_call_lhs (stmt)))
3215 error ("invalid LHS in gimple call");
3216 return true;
3219 fntype = TREE_TYPE (TREE_TYPE (fn));
3220 if (gimple_call_lhs (stmt)
3221 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3222 TREE_TYPE (fntype))
3223 /* ??? At least C++ misses conversions at assignments from
3224 void * call results.
3225 ??? Java is completely off. Especially with functions
3226 returning java.lang.Object.
3227 For now simply allow arbitrary pointer type conversions. */
3228 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3229 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3231 error ("invalid conversion in gimple call");
3232 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3233 debug_generic_stmt (TREE_TYPE (fntype));
3234 return true;
3237 /* ??? The C frontend passes unpromoted arguments in case it
3238 didn't see a function declaration before the call. So for now
3239 leave the call arguments unverified. Once we gimplify
3240 unit-at-a-time we have a chance to fix this. */
3242 return false;
3245 /* Verifies the gimple comparison with the result type TYPE and
3246 the operands OP0 and OP1. */
3248 static bool
3249 verify_gimple_comparison (tree type, tree op0, tree op1)
3251 tree op0_type = TREE_TYPE (op0);
3252 tree op1_type = TREE_TYPE (op1);
3254 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3256 error ("invalid operands in gimple comparison");
3257 return true;
3260 /* For comparisons we do not have the operations type as the
3261 effective type the comparison is carried out in. Instead
3262 we require that either the first operand is trivially
3263 convertible into the second, or the other way around.
3264 The resulting type of a comparison may be any integral type.
3265 Because we special-case pointers to void we allow
3266 comparisons of pointers with the same mode as well. */
3267 if ((!useless_type_conversion_p (op0_type, op1_type)
3268 && !useless_type_conversion_p (op1_type, op0_type)
3269 && (!POINTER_TYPE_P (op0_type)
3270 || !POINTER_TYPE_P (op1_type)
3271 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3272 || !INTEGRAL_TYPE_P (type))
3274 error ("type mismatch in comparison expression");
3275 debug_generic_expr (type);
3276 debug_generic_expr (op0_type);
3277 debug_generic_expr (op1_type);
3278 return true;
3281 return false;
3284 /* Verify a gimple assignment statement STMT with an unary rhs.
3285 Returns true if anything is wrong. */
3287 static bool
3288 verify_gimple_assign_unary (gimple stmt)
3290 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3291 tree lhs = gimple_assign_lhs (stmt);
3292 tree lhs_type = TREE_TYPE (lhs);
3293 tree rhs1 = gimple_assign_rhs1 (stmt);
3294 tree rhs1_type = TREE_TYPE (rhs1);
3296 if (!is_gimple_reg (lhs)
3297 && !(optimize == 0
3298 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3300 error ("non-register as LHS of unary operation");
3301 return true;
3304 if (!is_gimple_val (rhs1))
3306 error ("invalid operand in unary operation");
3307 return true;
3310 /* First handle conversions. */
3311 switch (rhs_code)
3313 CASE_CONVERT:
3315 /* Allow conversions between integral types and pointers only if
3316 there is no sign or zero extension involved.
3317 For targets were the precision of sizetype doesn't match that
3318 of pointers we need to allow arbitrary conversions from and
3319 to sizetype. */
3320 if ((POINTER_TYPE_P (lhs_type)
3321 && INTEGRAL_TYPE_P (rhs1_type)
3322 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3323 || rhs1_type == sizetype))
3324 || (POINTER_TYPE_P (rhs1_type)
3325 && INTEGRAL_TYPE_P (lhs_type)
3326 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3327 || lhs_type == sizetype)))
3328 return false;
3330 /* Allow conversion from integer to offset type and vice versa. */
3331 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3332 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3333 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3334 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3335 return false;
3337 /* Otherwise assert we are converting between types of the
3338 same kind. */
3339 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3341 error ("invalid types in nop conversion");
3342 debug_generic_expr (lhs_type);
3343 debug_generic_expr (rhs1_type);
3344 return true;
3347 return false;
3350 case FIXED_CONVERT_EXPR:
3352 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3353 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3355 error ("invalid types in fixed-point conversion");
3356 debug_generic_expr (lhs_type);
3357 debug_generic_expr (rhs1_type);
3358 return true;
3361 return false;
3364 case FLOAT_EXPR:
3366 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3368 error ("invalid types in conversion to floating point");
3369 debug_generic_expr (lhs_type);
3370 debug_generic_expr (rhs1_type);
3371 return true;
3374 return false;
3377 case FIX_TRUNC_EXPR:
3379 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3381 error ("invalid types in conversion to integer");
3382 debug_generic_expr (lhs_type);
3383 debug_generic_expr (rhs1_type);
3384 return true;
3387 return false;
3390 case TRUTH_NOT_EXPR:
3394 case NEGATE_EXPR:
3395 case ABS_EXPR:
3396 case BIT_NOT_EXPR:
3397 case PAREN_EXPR:
3398 case NON_LVALUE_EXPR:
3399 case CONJ_EXPR:
3400 case REDUC_MAX_EXPR:
3401 case REDUC_MIN_EXPR:
3402 case REDUC_PLUS_EXPR:
3403 case VEC_UNPACK_HI_EXPR:
3404 case VEC_UNPACK_LO_EXPR:
3405 case VEC_UNPACK_FLOAT_HI_EXPR:
3406 case VEC_UNPACK_FLOAT_LO_EXPR:
3407 break;
3409 default:
3410 gcc_unreachable ();
3413 /* For the remaining codes assert there is no conversion involved. */
3414 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3416 error ("non-trivial conversion in unary operation");
3417 debug_generic_expr (lhs_type);
3418 debug_generic_expr (rhs1_type);
3419 return true;
3422 return false;
3425 /* Verify a gimple assignment statement STMT with a binary rhs.
3426 Returns true if anything is wrong. */
3428 static bool
3429 verify_gimple_assign_binary (gimple stmt)
3431 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3432 tree lhs = gimple_assign_lhs (stmt);
3433 tree lhs_type = TREE_TYPE (lhs);
3434 tree rhs1 = gimple_assign_rhs1 (stmt);
3435 tree rhs1_type = TREE_TYPE (rhs1);
3436 tree rhs2 = gimple_assign_rhs2 (stmt);
3437 tree rhs2_type = TREE_TYPE (rhs2);
3439 if (!is_gimple_reg (lhs)
3440 && !(optimize == 0
3441 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3443 error ("non-register as LHS of binary operation");
3444 return true;
3447 if (!is_gimple_val (rhs1)
3448 || !is_gimple_val (rhs2))
3450 error ("invalid operands in binary operation");
3451 return true;
3454 /* First handle operations that involve different types. */
3455 switch (rhs_code)
3457 case COMPLEX_EXPR:
3459 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3460 || !(INTEGRAL_TYPE_P (rhs1_type)
3461 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3462 || !(INTEGRAL_TYPE_P (rhs2_type)
3463 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3465 error ("type mismatch in complex expression");
3466 debug_generic_expr (lhs_type);
3467 debug_generic_expr (rhs1_type);
3468 debug_generic_expr (rhs2_type);
3469 return true;
3472 return false;
3475 case LSHIFT_EXPR:
3476 case RSHIFT_EXPR:
3477 if (FIXED_POINT_TYPE_P (rhs1_type)
3478 && INTEGRAL_TYPE_P (rhs2_type)
3479 && useless_type_conversion_p (lhs_type, rhs1_type))
3480 return false;
3481 /* Fall through. */
3483 case LROTATE_EXPR:
3484 case RROTATE_EXPR:
3486 if (!INTEGRAL_TYPE_P (rhs1_type)
3487 || !INTEGRAL_TYPE_P (rhs2_type)
3488 || !useless_type_conversion_p (lhs_type, rhs1_type))
3490 error ("type mismatch in shift expression");
3491 debug_generic_expr (lhs_type);
3492 debug_generic_expr (rhs1_type);
3493 debug_generic_expr (rhs2_type);
3494 return true;
3497 return false;
3500 case VEC_LSHIFT_EXPR:
3501 case VEC_RSHIFT_EXPR:
3503 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3504 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3505 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type)))
3506 || (!INTEGRAL_TYPE_P (rhs2_type)
3507 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3508 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3509 || !useless_type_conversion_p (lhs_type, rhs1_type))
3511 error ("type mismatch in vector shift expression");
3512 debug_generic_expr (lhs_type);
3513 debug_generic_expr (rhs1_type);
3514 debug_generic_expr (rhs2_type);
3515 return true;
3518 return false;
3521 case POINTER_PLUS_EXPR:
3523 if (!POINTER_TYPE_P (rhs1_type)
3524 || !useless_type_conversion_p (lhs_type, rhs1_type)
3525 || !useless_type_conversion_p (sizetype, rhs2_type))
3527 error ("type mismatch in pointer plus expression");
3528 debug_generic_stmt (lhs_type);
3529 debug_generic_stmt (rhs1_type);
3530 debug_generic_stmt (rhs2_type);
3531 return true;
3534 return false;
3537 case TRUTH_ANDIF_EXPR:
3538 case TRUTH_ORIF_EXPR:
3539 gcc_unreachable ();
3541 case TRUTH_AND_EXPR:
3542 case TRUTH_OR_EXPR:
3543 case TRUTH_XOR_EXPR:
3545 /* We allow any kind of integral typed argument and result. */
3546 if (!INTEGRAL_TYPE_P (rhs1_type)
3547 || !INTEGRAL_TYPE_P (rhs2_type)
3548 || !INTEGRAL_TYPE_P (lhs_type))
3550 error ("type mismatch in binary truth expression");
3551 debug_generic_expr (lhs_type);
3552 debug_generic_expr (rhs1_type);
3553 debug_generic_expr (rhs2_type);
3554 return true;
3557 return false;
3560 case LT_EXPR:
3561 case LE_EXPR:
3562 case GT_EXPR:
3563 case GE_EXPR:
3564 case EQ_EXPR:
3565 case NE_EXPR:
3566 case UNORDERED_EXPR:
3567 case ORDERED_EXPR:
3568 case UNLT_EXPR:
3569 case UNLE_EXPR:
3570 case UNGT_EXPR:
3571 case UNGE_EXPR:
3572 case UNEQ_EXPR:
3573 case LTGT_EXPR:
3574 /* Comparisons are also binary, but the result type is not
3575 connected to the operand types. */
3576 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3578 case PLUS_EXPR:
3579 case MINUS_EXPR:
3581 if (POINTER_TYPE_P (lhs_type)
3582 || POINTER_TYPE_P (rhs1_type)
3583 || POINTER_TYPE_P (rhs2_type))
3585 error ("invalid (pointer) operands to plus/minus");
3586 return true;
3589 /* Continue with generic binary expression handling. */
3590 break;
3593 case MULT_EXPR:
3594 case TRUNC_DIV_EXPR:
3595 case CEIL_DIV_EXPR:
3596 case FLOOR_DIV_EXPR:
3597 case ROUND_DIV_EXPR:
3598 case TRUNC_MOD_EXPR:
3599 case CEIL_MOD_EXPR:
3600 case FLOOR_MOD_EXPR:
3601 case ROUND_MOD_EXPR:
3602 case RDIV_EXPR:
3603 case EXACT_DIV_EXPR:
3604 case MIN_EXPR:
3605 case MAX_EXPR:
3606 case BIT_IOR_EXPR:
3607 case BIT_XOR_EXPR:
3608 case BIT_AND_EXPR:
3609 case WIDEN_SUM_EXPR:
3610 case WIDEN_MULT_EXPR:
3611 case VEC_WIDEN_MULT_HI_EXPR:
3612 case VEC_WIDEN_MULT_LO_EXPR:
3613 case VEC_PACK_TRUNC_EXPR:
3614 case VEC_PACK_SAT_EXPR:
3615 case VEC_PACK_FIX_TRUNC_EXPR:
3616 case VEC_EXTRACT_EVEN_EXPR:
3617 case VEC_EXTRACT_ODD_EXPR:
3618 case VEC_INTERLEAVE_HIGH_EXPR:
3619 case VEC_INTERLEAVE_LOW_EXPR:
3620 /* Continue with generic binary expression handling. */
3621 break;
3623 default:
3624 gcc_unreachable ();
3627 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3628 || !useless_type_conversion_p (lhs_type, rhs2_type))
3630 error ("type mismatch in binary expression");
3631 debug_generic_stmt (lhs_type);
3632 debug_generic_stmt (rhs1_type);
3633 debug_generic_stmt (rhs2_type);
3634 return true;
3637 return false;
3640 /* Verify a gimple assignment statement STMT with a single rhs.
3641 Returns true if anything is wrong. */
3643 static bool
3644 verify_gimple_assign_single (gimple stmt)
3646 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3647 tree lhs = gimple_assign_lhs (stmt);
3648 tree lhs_type = TREE_TYPE (lhs);
3649 tree rhs1 = gimple_assign_rhs1 (stmt);
3650 tree rhs1_type = TREE_TYPE (rhs1);
3651 bool res = false;
3653 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3655 error ("non-trivial conversion at assignment");
3656 debug_generic_expr (lhs_type);
3657 debug_generic_expr (rhs1_type);
3658 return true;
3661 if (handled_component_p (lhs))
3662 res |= verify_types_in_gimple_reference (lhs);
3664 /* Special codes we cannot handle via their class. */
3665 switch (rhs_code)
3667 case ADDR_EXPR:
3669 tree op = TREE_OPERAND (rhs1, 0);
3670 if (!is_gimple_addressable (op))
3672 error ("invalid operand in unary expression");
3673 return true;
3676 if (!one_pointer_to_useless_type_conversion_p (lhs_type, TREE_TYPE (op))
3677 /* FIXME: a longstanding wart, &a == &a[0]. */
3678 && (TREE_CODE (TREE_TYPE (op)) != ARRAY_TYPE
3679 || !one_pointer_to_useless_type_conversion_p (lhs_type,
3680 TREE_TYPE (TREE_TYPE (op)))))
3682 error ("type mismatch in address expression");
3683 debug_generic_stmt (lhs_type);
3684 debug_generic_stmt (TYPE_POINTER_TO (TREE_TYPE (op)));
3685 return true;
3688 return verify_types_in_gimple_reference (op);
3691 /* tcc_reference */
3692 case COMPONENT_REF:
3693 case BIT_FIELD_REF:
3694 case INDIRECT_REF:
3695 case ALIGN_INDIRECT_REF:
3696 case MISALIGNED_INDIRECT_REF:
3697 case ARRAY_REF:
3698 case ARRAY_RANGE_REF:
3699 case VIEW_CONVERT_EXPR:
3700 case REALPART_EXPR:
3701 case IMAGPART_EXPR:
3702 case TARGET_MEM_REF:
3703 if (!is_gimple_reg (lhs)
3704 && is_gimple_reg_type (TREE_TYPE (lhs)))
3706 error ("invalid rhs for gimple memory store");
3707 debug_generic_stmt (lhs);
3708 debug_generic_stmt (rhs1);
3709 return true;
3711 return res || verify_types_in_gimple_reference (rhs1);
3713 /* tcc_constant */
3714 case SSA_NAME:
3715 case INTEGER_CST:
3716 case REAL_CST:
3717 case FIXED_CST:
3718 case COMPLEX_CST:
3719 case VECTOR_CST:
3720 case STRING_CST:
3721 return res;
3723 /* tcc_declaration */
3724 case CONST_DECL:
3725 return res;
3726 case VAR_DECL:
3727 case PARM_DECL:
3728 if (!is_gimple_reg (lhs)
3729 && !is_gimple_reg (rhs1)
3730 && is_gimple_reg_type (TREE_TYPE (lhs)))
3732 error ("invalid rhs for gimple memory store");
3733 debug_generic_stmt (lhs);
3734 debug_generic_stmt (rhs1);
3735 return true;
3737 return res;
3739 case COND_EXPR:
3740 case CONSTRUCTOR:
3741 case OBJ_TYPE_REF:
3742 case ASSERT_EXPR:
3743 case WITH_SIZE_EXPR:
3744 case EXC_PTR_EXPR:
3745 case FILTER_EXPR:
3746 case POLYNOMIAL_CHREC:
3747 case DOT_PROD_EXPR:
3748 case VEC_COND_EXPR:
3749 case REALIGN_LOAD_EXPR:
3750 /* FIXME. */
3751 return res;
3753 default:;
3756 return res;
3759 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3760 is a problem, otherwise false. */
3762 static bool
3763 verify_gimple_assign (gimple stmt)
3765 switch (gimple_assign_rhs_class (stmt))
3767 case GIMPLE_SINGLE_RHS:
3768 return verify_gimple_assign_single (stmt);
3770 case GIMPLE_UNARY_RHS:
3771 return verify_gimple_assign_unary (stmt);
3773 case GIMPLE_BINARY_RHS:
3774 return verify_gimple_assign_binary (stmt);
3776 default:
3777 gcc_unreachable ();
3781 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3782 is a problem, otherwise false. */
3784 static bool
3785 verify_gimple_return (gimple stmt)
3787 tree op = gimple_return_retval (stmt);
3788 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3790 /* We cannot test for present return values as we do not fix up missing
3791 return values from the original source. */
3792 if (op == NULL)
3793 return false;
3795 if (!is_gimple_val (op)
3796 && TREE_CODE (op) != RESULT_DECL)
3798 error ("invalid operand in return statement");
3799 debug_generic_stmt (op);
3800 return true;
3803 if (!useless_type_conversion_p (restype, TREE_TYPE (op))
3804 /* ??? With C++ we can have the situation that the result
3805 decl is a reference type while the return type is an aggregate. */
3806 && !(TREE_CODE (op) == RESULT_DECL
3807 && TREE_CODE (TREE_TYPE (op)) == REFERENCE_TYPE
3808 && useless_type_conversion_p (restype, TREE_TYPE (TREE_TYPE (op)))))
3810 error ("invalid conversion in return statement");
3811 debug_generic_stmt (restype);
3812 debug_generic_stmt (TREE_TYPE (op));
3813 return true;
3816 return false;
3820 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3821 is a problem, otherwise false. */
3823 static bool
3824 verify_gimple_goto (gimple stmt)
3826 tree dest = gimple_goto_dest (stmt);
3828 /* ??? We have two canonical forms of direct goto destinations, a
3829 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3830 if (TREE_CODE (dest) != LABEL_DECL
3831 && (!is_gimple_val (dest)
3832 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3834 error ("goto destination is neither a label nor a pointer");
3835 return true;
3838 return false;
3841 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3842 is a problem, otherwise false. */
3844 static bool
3845 verify_gimple_switch (gimple stmt)
3847 if (!is_gimple_val (gimple_switch_index (stmt)))
3849 error ("invalid operand to switch statement");
3850 debug_generic_stmt (gimple_switch_index (stmt));
3851 return true;
3854 return false;
3858 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
3859 and false otherwise. */
3861 static bool
3862 verify_gimple_phi (gimple stmt)
3864 tree type = TREE_TYPE (gimple_phi_result (stmt));
3865 unsigned i;
3867 if (!is_gimple_variable (gimple_phi_result (stmt)))
3869 error ("Invalid PHI result");
3870 return true;
3873 for (i = 0; i < gimple_phi_num_args (stmt); i++)
3875 tree arg = gimple_phi_arg_def (stmt, i);
3876 if ((is_gimple_reg (gimple_phi_result (stmt))
3877 && !is_gimple_val (arg))
3878 || (!is_gimple_reg (gimple_phi_result (stmt))
3879 && !is_gimple_addressable (arg)))
3881 error ("Invalid PHI argument");
3882 debug_generic_stmt (arg);
3883 return true;
3885 if (!useless_type_conversion_p (type, TREE_TYPE (arg)))
3887 error ("Incompatible types in PHI argument");
3888 debug_generic_stmt (type);
3889 debug_generic_stmt (TREE_TYPE (arg));
3890 return true;
3894 return false;
3898 /* Verify the GIMPLE statement STMT. Returns true if there is an
3899 error, otherwise false. */
3901 static bool
3902 verify_types_in_gimple_stmt (gimple stmt)
3904 if (is_gimple_omp (stmt))
3906 /* OpenMP directives are validated by the FE and never operated
3907 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
3908 non-gimple expressions when the main index variable has had
3909 its address taken. This does not affect the loop itself
3910 because the header of an GIMPLE_OMP_FOR is merely used to determine
3911 how to setup the parallel iteration. */
3912 return false;
3915 switch (gimple_code (stmt))
3917 case GIMPLE_ASSIGN:
3918 return verify_gimple_assign (stmt);
3920 case GIMPLE_LABEL:
3921 return TREE_CODE (gimple_label_label (stmt)) != LABEL_DECL;
3923 case GIMPLE_CALL:
3924 return verify_gimple_call (stmt);
3926 case GIMPLE_COND:
3927 return verify_gimple_comparison (boolean_type_node,
3928 gimple_cond_lhs (stmt),
3929 gimple_cond_rhs (stmt));
3931 case GIMPLE_GOTO:
3932 return verify_gimple_goto (stmt);
3934 case GIMPLE_SWITCH:
3935 return verify_gimple_switch (stmt);
3937 case GIMPLE_RETURN:
3938 return verify_gimple_return (stmt);
3940 case GIMPLE_ASM:
3941 return false;
3943 case GIMPLE_CHANGE_DYNAMIC_TYPE:
3944 return (!is_gimple_val (gimple_cdt_location (stmt))
3945 || !POINTER_TYPE_P (TREE_TYPE (gimple_cdt_location (stmt))));
3947 case GIMPLE_PHI:
3948 return verify_gimple_phi (stmt);
3950 /* Tuples that do not have tree operands. */
3951 case GIMPLE_NOP:
3952 case GIMPLE_RESX:
3953 case GIMPLE_PREDICT:
3954 return false;
3956 default:
3957 gcc_unreachable ();
3961 /* Verify the GIMPLE statements inside the sequence STMTS. */
3963 static bool
3964 verify_types_in_gimple_seq_2 (gimple_seq stmts)
3966 gimple_stmt_iterator ittr;
3967 bool err = false;
3969 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
3971 gimple stmt = gsi_stmt (ittr);
3973 switch (gimple_code (stmt))
3975 case GIMPLE_BIND:
3976 err |= verify_types_in_gimple_seq_2 (gimple_bind_body (stmt));
3977 break;
3979 case GIMPLE_TRY:
3980 err |= verify_types_in_gimple_seq_2 (gimple_try_eval (stmt));
3981 err |= verify_types_in_gimple_seq_2 (gimple_try_cleanup (stmt));
3982 break;
3984 case GIMPLE_EH_FILTER:
3985 err |= verify_types_in_gimple_seq_2 (gimple_eh_filter_failure (stmt));
3986 break;
3988 case GIMPLE_CATCH:
3989 err |= verify_types_in_gimple_seq_2 (gimple_catch_handler (stmt));
3990 break;
3992 default:
3994 bool err2 = verify_types_in_gimple_stmt (stmt);
3995 if (err2)
3996 debug_gimple_stmt (stmt);
3997 err |= err2;
4002 return err;
4006 /* Verify the GIMPLE statements inside the statement list STMTS. */
4008 void
4009 verify_types_in_gimple_seq (gimple_seq stmts)
4011 if (verify_types_in_gimple_seq_2 (stmts))
4012 internal_error ("verify_gimple failed");
4016 /* Verify STMT, return true if STMT is not in GIMPLE form.
4017 TODO: Implement type checking. */
4019 static bool
4020 verify_stmt (gimple_stmt_iterator *gsi)
4022 tree addr;
4023 struct walk_stmt_info wi;
4024 bool last_in_block = gsi_one_before_end_p (*gsi);
4025 gimple stmt = gsi_stmt (*gsi);
4027 if (is_gimple_omp (stmt))
4029 /* OpenMP directives are validated by the FE and never operated
4030 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4031 non-gimple expressions when the main index variable has had
4032 its address taken. This does not affect the loop itself
4033 because the header of an GIMPLE_OMP_FOR is merely used to determine
4034 how to setup the parallel iteration. */
4035 return false;
4038 /* FIXME. The C frontend passes unpromoted arguments in case it
4039 didn't see a function declaration before the call. */
4040 if (is_gimple_call (stmt))
4042 tree decl;
4044 if (!is_gimple_call_addr (gimple_call_fn (stmt)))
4046 error ("invalid function in call statement");
4047 return true;
4050 decl = gimple_call_fndecl (stmt);
4051 if (decl
4052 && TREE_CODE (decl) == FUNCTION_DECL
4053 && DECL_LOOPING_CONST_OR_PURE_P (decl)
4054 && (!DECL_PURE_P (decl))
4055 && (!TREE_READONLY (decl)))
4057 error ("invalid pure const state for function");
4058 return true;
4062 memset (&wi, 0, sizeof (wi));
4063 addr = walk_gimple_op (gsi_stmt (*gsi), verify_expr, &wi);
4064 if (addr)
4066 debug_generic_expr (addr);
4067 inform (input_location, "in statement");
4068 debug_gimple_stmt (stmt);
4069 return true;
4072 /* If the statement is marked as part of an EH region, then it is
4073 expected that the statement could throw. Verify that when we
4074 have optimizations that simplify statements such that we prove
4075 that they cannot throw, that we update other data structures
4076 to match. */
4077 if (lookup_stmt_eh_region (stmt) >= 0)
4079 if (!stmt_could_throw_p (stmt))
4081 error ("statement marked for throw, but doesn%'t");
4082 goto fail;
4084 if (!last_in_block && stmt_can_throw_internal (stmt))
4086 error ("statement marked for throw in middle of block");
4087 goto fail;
4091 return false;
4093 fail:
4094 debug_gimple_stmt (stmt);
4095 return true;
4099 /* Return true when the T can be shared. */
4101 static bool
4102 tree_node_can_be_shared (tree t)
4104 if (IS_TYPE_OR_DECL_P (t)
4105 || is_gimple_min_invariant (t)
4106 || TREE_CODE (t) == SSA_NAME
4107 || t == error_mark_node
4108 || TREE_CODE (t) == IDENTIFIER_NODE)
4109 return true;
4111 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4112 return true;
4114 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4115 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4116 || TREE_CODE (t) == COMPONENT_REF
4117 || TREE_CODE (t) == REALPART_EXPR
4118 || TREE_CODE (t) == IMAGPART_EXPR)
4119 t = TREE_OPERAND (t, 0);
4121 if (DECL_P (t))
4122 return true;
4124 return false;
4128 /* Called via walk_gimple_stmt. Verify tree sharing. */
4130 static tree
4131 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4133 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4134 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4136 if (tree_node_can_be_shared (*tp))
4138 *walk_subtrees = false;
4139 return NULL;
4142 if (pointer_set_insert (visited, *tp))
4143 return *tp;
4145 return NULL;
4149 static bool eh_error_found;
4150 static int
4151 verify_eh_throw_stmt_node (void **slot, void *data)
4153 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4154 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4156 if (!pointer_set_contains (visited, node->stmt))
4158 error ("Dead STMT in EH table");
4159 debug_gimple_stmt (node->stmt);
4160 eh_error_found = true;
4162 return 1;
4166 /* Verify the GIMPLE statements in every basic block. */
4168 void
4169 verify_stmts (void)
4171 basic_block bb;
4172 gimple_stmt_iterator gsi;
4173 bool err = false;
4174 struct pointer_set_t *visited, *visited_stmts;
4175 tree addr;
4176 struct walk_stmt_info wi;
4178 timevar_push (TV_TREE_STMT_VERIFY);
4179 visited = pointer_set_create ();
4180 visited_stmts = pointer_set_create ();
4182 memset (&wi, 0, sizeof (wi));
4183 wi.info = (void *) visited;
4185 FOR_EACH_BB (bb)
4187 gimple phi;
4188 size_t i;
4190 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4192 phi = gsi_stmt (gsi);
4193 pointer_set_insert (visited_stmts, phi);
4194 if (gimple_bb (phi) != bb)
4196 error ("gimple_bb (phi) is set to a wrong basic block");
4197 err |= true;
4200 for (i = 0; i < gimple_phi_num_args (phi); i++)
4202 tree t = gimple_phi_arg_def (phi, i);
4203 tree addr;
4205 if (!t)
4207 error ("missing PHI def");
4208 debug_gimple_stmt (phi);
4209 err |= true;
4210 continue;
4212 /* Addressable variables do have SSA_NAMEs but they
4213 are not considered gimple values. */
4214 else if (TREE_CODE (t) != SSA_NAME
4215 && TREE_CODE (t) != FUNCTION_DECL
4216 && !is_gimple_min_invariant (t))
4218 error ("PHI argument is not a GIMPLE value");
4219 debug_gimple_stmt (phi);
4220 debug_generic_expr (t);
4221 err |= true;
4224 addr = walk_tree (&t, verify_node_sharing, visited, NULL);
4225 if (addr)
4227 error ("incorrect sharing of tree nodes");
4228 debug_gimple_stmt (phi);
4229 debug_generic_expr (addr);
4230 err |= true;
4235 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
4237 gimple stmt = gsi_stmt (gsi);
4239 if (gimple_code (stmt) == GIMPLE_WITH_CLEANUP_EXPR
4240 || gimple_code (stmt) == GIMPLE_BIND)
4242 error ("invalid GIMPLE statement");
4243 debug_gimple_stmt (stmt);
4244 err |= true;
4247 pointer_set_insert (visited_stmts, stmt);
4249 if (gimple_bb (stmt) != bb)
4251 error ("gimple_bb (stmt) is set to a wrong basic block");
4252 err |= true;
4255 if (gimple_code (stmt) == GIMPLE_LABEL)
4257 tree decl = gimple_label_label (stmt);
4258 int uid = LABEL_DECL_UID (decl);
4260 if (uid == -1
4261 || VEC_index (basic_block, label_to_block_map, uid) != bb)
4263 error ("incorrect entry in label_to_block_map.\n");
4264 err |= true;
4268 err |= verify_stmt (&gsi);
4269 addr = walk_gimple_op (gsi_stmt (gsi), verify_node_sharing, &wi);
4270 if (addr)
4272 error ("incorrect sharing of tree nodes");
4273 debug_gimple_stmt (stmt);
4274 debug_generic_expr (addr);
4275 err |= true;
4277 gsi_next (&gsi);
4281 eh_error_found = false;
4282 if (get_eh_throw_stmt_table (cfun))
4283 htab_traverse (get_eh_throw_stmt_table (cfun),
4284 verify_eh_throw_stmt_node,
4285 visited_stmts);
4287 if (err | eh_error_found)
4288 internal_error ("verify_stmts failed");
4290 pointer_set_destroy (visited);
4291 pointer_set_destroy (visited_stmts);
4292 verify_histograms ();
4293 timevar_pop (TV_TREE_STMT_VERIFY);
4297 /* Verifies that the flow information is OK. */
4299 static int
4300 gimple_verify_flow_info (void)
4302 int err = 0;
4303 basic_block bb;
4304 gimple_stmt_iterator gsi;
4305 gimple stmt;
4306 edge e;
4307 edge_iterator ei;
4309 if (ENTRY_BLOCK_PTR->il.gimple)
4311 error ("ENTRY_BLOCK has IL associated with it");
4312 err = 1;
4315 if (EXIT_BLOCK_PTR->il.gimple)
4317 error ("EXIT_BLOCK has IL associated with it");
4318 err = 1;
4321 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4322 if (e->flags & EDGE_FALLTHRU)
4324 error ("fallthru to exit from bb %d", e->src->index);
4325 err = 1;
4328 FOR_EACH_BB (bb)
4330 bool found_ctrl_stmt = false;
4332 stmt = NULL;
4334 /* Skip labels on the start of basic block. */
4335 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4337 tree label;
4338 gimple prev_stmt = stmt;
4340 stmt = gsi_stmt (gsi);
4342 if (gimple_code (stmt) != GIMPLE_LABEL)
4343 break;
4345 label = gimple_label_label (stmt);
4346 if (prev_stmt && DECL_NONLOCAL (label))
4348 error ("nonlocal label ");
4349 print_generic_expr (stderr, label, 0);
4350 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4351 bb->index);
4352 err = 1;
4355 if (label_to_block (label) != bb)
4357 error ("label ");
4358 print_generic_expr (stderr, label, 0);
4359 fprintf (stderr, " to block does not match in bb %d",
4360 bb->index);
4361 err = 1;
4364 if (decl_function_context (label) != current_function_decl)
4366 error ("label ");
4367 print_generic_expr (stderr, label, 0);
4368 fprintf (stderr, " has incorrect context in bb %d",
4369 bb->index);
4370 err = 1;
4374 /* Verify that body of basic block BB is free of control flow. */
4375 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4377 gimple stmt = gsi_stmt (gsi);
4379 if (found_ctrl_stmt)
4381 error ("control flow in the middle of basic block %d",
4382 bb->index);
4383 err = 1;
4386 if (stmt_ends_bb_p (stmt))
4387 found_ctrl_stmt = true;
4389 if (gimple_code (stmt) == GIMPLE_LABEL)
4391 error ("label ");
4392 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4393 fprintf (stderr, " in the middle of basic block %d", bb->index);
4394 err = 1;
4398 gsi = gsi_last_bb (bb);
4399 if (gsi_end_p (gsi))
4400 continue;
4402 stmt = gsi_stmt (gsi);
4404 err |= verify_eh_edges (stmt);
4406 if (is_ctrl_stmt (stmt))
4408 FOR_EACH_EDGE (e, ei, bb->succs)
4409 if (e->flags & EDGE_FALLTHRU)
4411 error ("fallthru edge after a control statement in bb %d",
4412 bb->index);
4413 err = 1;
4417 if (gimple_code (stmt) != GIMPLE_COND)
4419 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4420 after anything else but if statement. */
4421 FOR_EACH_EDGE (e, ei, bb->succs)
4422 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4424 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4425 bb->index);
4426 err = 1;
4430 switch (gimple_code (stmt))
4432 case GIMPLE_COND:
4434 edge true_edge;
4435 edge false_edge;
4437 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4439 if (!true_edge
4440 || !false_edge
4441 || !(true_edge->flags & EDGE_TRUE_VALUE)
4442 || !(false_edge->flags & EDGE_FALSE_VALUE)
4443 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4444 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4445 || EDGE_COUNT (bb->succs) >= 3)
4447 error ("wrong outgoing edge flags at end of bb %d",
4448 bb->index);
4449 err = 1;
4452 break;
4454 case GIMPLE_GOTO:
4455 if (simple_goto_p (stmt))
4457 error ("explicit goto at end of bb %d", bb->index);
4458 err = 1;
4460 else
4462 /* FIXME. We should double check that the labels in the
4463 destination blocks have their address taken. */
4464 FOR_EACH_EDGE (e, ei, bb->succs)
4465 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4466 | EDGE_FALSE_VALUE))
4467 || !(e->flags & EDGE_ABNORMAL))
4469 error ("wrong outgoing edge flags at end of bb %d",
4470 bb->index);
4471 err = 1;
4474 break;
4476 case GIMPLE_RETURN:
4477 if (!single_succ_p (bb)
4478 || (single_succ_edge (bb)->flags
4479 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4480 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4482 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4483 err = 1;
4485 if (single_succ (bb) != EXIT_BLOCK_PTR)
4487 error ("return edge does not point to exit in bb %d",
4488 bb->index);
4489 err = 1;
4491 break;
4493 case GIMPLE_SWITCH:
4495 tree prev;
4496 edge e;
4497 size_t i, n;
4499 n = gimple_switch_num_labels (stmt);
4501 /* Mark all the destination basic blocks. */
4502 for (i = 0; i < n; ++i)
4504 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4505 basic_block label_bb = label_to_block (lab);
4506 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4507 label_bb->aux = (void *)1;
4510 /* Verify that the case labels are sorted. */
4511 prev = gimple_switch_label (stmt, 0);
4512 for (i = 1; i < n; ++i)
4514 tree c = gimple_switch_label (stmt, i);
4515 if (!CASE_LOW (c))
4517 error ("found default case not at the start of "
4518 "case vector");
4519 err = 1;
4520 continue;
4522 if (CASE_LOW (prev)
4523 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4525 error ("case labels not sorted: ");
4526 print_generic_expr (stderr, prev, 0);
4527 fprintf (stderr," is greater than ");
4528 print_generic_expr (stderr, c, 0);
4529 fprintf (stderr," but comes before it.\n");
4530 err = 1;
4532 prev = c;
4534 /* VRP will remove the default case if it can prove it will
4535 never be executed. So do not verify there always exists
4536 a default case here. */
4538 FOR_EACH_EDGE (e, ei, bb->succs)
4540 if (!e->dest->aux)
4542 error ("extra outgoing edge %d->%d",
4543 bb->index, e->dest->index);
4544 err = 1;
4547 e->dest->aux = (void *)2;
4548 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4549 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4551 error ("wrong outgoing edge flags at end of bb %d",
4552 bb->index);
4553 err = 1;
4557 /* Check that we have all of them. */
4558 for (i = 0; i < n; ++i)
4560 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4561 basic_block label_bb = label_to_block (lab);
4563 if (label_bb->aux != (void *)2)
4565 error ("missing edge %i->%i", bb->index, label_bb->index);
4566 err = 1;
4570 FOR_EACH_EDGE (e, ei, bb->succs)
4571 e->dest->aux = (void *)0;
4574 default: ;
4578 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4579 verify_dominators (CDI_DOMINATORS);
4581 return err;
4585 /* Updates phi nodes after creating a forwarder block joined
4586 by edge FALLTHRU. */
4588 static void
4589 gimple_make_forwarder_block (edge fallthru)
4591 edge e;
4592 edge_iterator ei;
4593 basic_block dummy, bb;
4594 tree var;
4595 gimple_stmt_iterator gsi;
4597 dummy = fallthru->src;
4598 bb = fallthru->dest;
4600 if (single_pred_p (bb))
4601 return;
4603 /* If we redirected a branch we must create new PHI nodes at the
4604 start of BB. */
4605 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4607 gimple phi, new_phi;
4609 phi = gsi_stmt (gsi);
4610 var = gimple_phi_result (phi);
4611 new_phi = create_phi_node (var, bb);
4612 SSA_NAME_DEF_STMT (var) = new_phi;
4613 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4614 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru);
4617 /* Add the arguments we have stored on edges. */
4618 FOR_EACH_EDGE (e, ei, bb->preds)
4620 if (e == fallthru)
4621 continue;
4623 flush_pending_stmts (e);
4628 /* Return a non-special label in the head of basic block BLOCK.
4629 Create one if it doesn't exist. */
4631 tree
4632 gimple_block_label (basic_block bb)
4634 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4635 bool first = true;
4636 tree label;
4637 gimple stmt;
4639 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4641 stmt = gsi_stmt (i);
4642 if (gimple_code (stmt) != GIMPLE_LABEL)
4643 break;
4644 label = gimple_label_label (stmt);
4645 if (!DECL_NONLOCAL (label))
4647 if (!first)
4648 gsi_move_before (&i, &s);
4649 return label;
4653 label = create_artificial_label ();
4654 stmt = gimple_build_label (label);
4655 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4656 return label;
4660 /* Attempt to perform edge redirection by replacing a possibly complex
4661 jump instruction by a goto or by removing the jump completely.
4662 This can apply only if all edges now point to the same block. The
4663 parameters and return values are equivalent to
4664 redirect_edge_and_branch. */
4666 static edge
4667 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4669 basic_block src = e->src;
4670 gimple_stmt_iterator i;
4671 gimple stmt;
4673 /* We can replace or remove a complex jump only when we have exactly
4674 two edges. */
4675 if (EDGE_COUNT (src->succs) != 2
4676 /* Verify that all targets will be TARGET. Specifically, the
4677 edge that is not E must also go to TARGET. */
4678 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4679 return NULL;
4681 i = gsi_last_bb (src);
4682 if (gsi_end_p (i))
4683 return NULL;
4685 stmt = gsi_stmt (i);
4687 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4689 gsi_remove (&i, true);
4690 e = ssa_redirect_edge (e, target);
4691 e->flags = EDGE_FALLTHRU;
4692 return e;
4695 return NULL;
4699 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4700 edge representing the redirected branch. */
4702 static edge
4703 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4705 basic_block bb = e->src;
4706 gimple_stmt_iterator gsi;
4707 edge ret;
4708 gimple stmt;
4710 if (e->flags & EDGE_ABNORMAL)
4711 return NULL;
4713 if (e->src != ENTRY_BLOCK_PTR
4714 && (ret = gimple_try_redirect_by_replacing_jump (e, dest)))
4715 return ret;
4717 if (e->dest == dest)
4718 return NULL;
4720 gsi = gsi_last_bb (bb);
4721 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4723 switch (stmt ? gimple_code (stmt) : ERROR_MARK)
4725 case GIMPLE_COND:
4726 /* For COND_EXPR, we only need to redirect the edge. */
4727 break;
4729 case GIMPLE_GOTO:
4730 /* No non-abnormal edges should lead from a non-simple goto, and
4731 simple ones should be represented implicitly. */
4732 gcc_unreachable ();
4734 case GIMPLE_SWITCH:
4736 tree label = gimple_block_label (dest);
4737 tree cases = get_cases_for_edge (e, stmt);
4739 /* If we have a list of cases associated with E, then use it
4740 as it's a lot faster than walking the entire case vector. */
4741 if (cases)
4743 edge e2 = find_edge (e->src, dest);
4744 tree last, first;
4746 first = cases;
4747 while (cases)
4749 last = cases;
4750 CASE_LABEL (cases) = label;
4751 cases = TREE_CHAIN (cases);
4754 /* If there was already an edge in the CFG, then we need
4755 to move all the cases associated with E to E2. */
4756 if (e2)
4758 tree cases2 = get_cases_for_edge (e2, stmt);
4760 TREE_CHAIN (last) = TREE_CHAIN (cases2);
4761 TREE_CHAIN (cases2) = first;
4764 else
4766 size_t i, n = gimple_switch_num_labels (stmt);
4768 for (i = 0; i < n; i++)
4770 tree elt = gimple_switch_label (stmt, i);
4771 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4772 CASE_LABEL (elt) = label;
4776 break;
4779 case GIMPLE_RETURN:
4780 gsi_remove (&gsi, true);
4781 e->flags |= EDGE_FALLTHRU;
4782 break;
4784 case GIMPLE_OMP_RETURN:
4785 case GIMPLE_OMP_CONTINUE:
4786 case GIMPLE_OMP_SECTIONS_SWITCH:
4787 case GIMPLE_OMP_FOR:
4788 /* The edges from OMP constructs can be simply redirected. */
4789 break;
4791 default:
4792 /* Otherwise it must be a fallthru edge, and we don't need to
4793 do anything besides redirecting it. */
4794 gcc_assert (e->flags & EDGE_FALLTHRU);
4795 break;
4798 /* Update/insert PHI nodes as necessary. */
4800 /* Now update the edges in the CFG. */
4801 e = ssa_redirect_edge (e, dest);
4803 return e;
4806 /* Returns true if it is possible to remove edge E by redirecting
4807 it to the destination of the other edge from E->src. */
4809 static bool
4810 gimple_can_remove_branch_p (const_edge e)
4812 if (e->flags & EDGE_ABNORMAL)
4813 return false;
4815 return true;
4818 /* Simple wrapper, as we can always redirect fallthru edges. */
4820 static basic_block
4821 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
4823 e = gimple_redirect_edge_and_branch (e, dest);
4824 gcc_assert (e);
4826 return NULL;
4830 /* Splits basic block BB after statement STMT (but at least after the
4831 labels). If STMT is NULL, BB is split just after the labels. */
4833 static basic_block
4834 gimple_split_block (basic_block bb, void *stmt)
4836 gimple_stmt_iterator gsi;
4837 gimple_stmt_iterator gsi_tgt;
4838 gimple act;
4839 gimple_seq list;
4840 basic_block new_bb;
4841 edge e;
4842 edge_iterator ei;
4844 new_bb = create_empty_bb (bb);
4846 /* Redirect the outgoing edges. */
4847 new_bb->succs = bb->succs;
4848 bb->succs = NULL;
4849 FOR_EACH_EDGE (e, ei, new_bb->succs)
4850 e->src = new_bb;
4852 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
4853 stmt = NULL;
4855 /* Move everything from GSI to the new basic block. */
4856 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4858 act = gsi_stmt (gsi);
4859 if (gimple_code (act) == GIMPLE_LABEL)
4860 continue;
4862 if (!stmt)
4863 break;
4865 if (stmt == act)
4867 gsi_next (&gsi);
4868 break;
4872 if (gsi_end_p (gsi))
4873 return new_bb;
4875 /* Split the statement list - avoid re-creating new containers as this
4876 brings ugly quadratic memory consumption in the inliner.
4877 (We are still quadratic since we need to update stmt BB pointers,
4878 sadly.) */
4879 list = gsi_split_seq_before (&gsi);
4880 set_bb_seq (new_bb, list);
4881 for (gsi_tgt = gsi_start (list);
4882 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
4883 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
4885 return new_bb;
4889 /* Moves basic block BB after block AFTER. */
4891 static bool
4892 gimple_move_block_after (basic_block bb, basic_block after)
4894 if (bb->prev_bb == after)
4895 return true;
4897 unlink_block (bb);
4898 link_block (bb, after);
4900 return true;
4904 /* Return true if basic_block can be duplicated. */
4906 static bool
4907 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
4909 return true;
4912 /* Create a duplicate of the basic block BB. NOTE: This does not
4913 preserve SSA form. */
4915 static basic_block
4916 gimple_duplicate_bb (basic_block bb)
4918 basic_block new_bb;
4919 gimple_stmt_iterator gsi, gsi_tgt;
4920 gimple_seq phis = phi_nodes (bb);
4921 gimple phi, stmt, copy;
4923 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
4925 /* Copy the PHI nodes. We ignore PHI node arguments here because
4926 the incoming edges have not been setup yet. */
4927 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
4929 phi = gsi_stmt (gsi);
4930 copy = create_phi_node (gimple_phi_result (phi), new_bb);
4931 create_new_def_for (gimple_phi_result (copy), copy,
4932 gimple_phi_result_ptr (copy));
4935 gsi_tgt = gsi_start_bb (new_bb);
4936 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4938 def_operand_p def_p;
4939 ssa_op_iter op_iter;
4940 int region;
4942 stmt = gsi_stmt (gsi);
4943 if (gimple_code (stmt) == GIMPLE_LABEL)
4944 continue;
4946 /* Create a new copy of STMT and duplicate STMT's virtual
4947 operands. */
4948 copy = gimple_copy (stmt);
4949 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
4950 copy_virtual_operands (copy, stmt);
4951 region = lookup_stmt_eh_region (stmt);
4952 if (region >= 0)
4953 add_stmt_to_eh_region (copy, region);
4954 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
4956 /* Create new names for all the definitions created by COPY and
4957 add replacement mappings for each new name. */
4958 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
4959 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
4962 return new_bb;
4965 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
4967 static void
4968 add_phi_args_after_copy_edge (edge e_copy)
4970 basic_block bb, bb_copy = e_copy->src, dest;
4971 edge e;
4972 edge_iterator ei;
4973 gimple phi, phi_copy;
4974 tree def;
4975 gimple_stmt_iterator psi, psi_copy;
4977 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
4978 return;
4980 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
4982 if (e_copy->dest->flags & BB_DUPLICATED)
4983 dest = get_bb_original (e_copy->dest);
4984 else
4985 dest = e_copy->dest;
4987 e = find_edge (bb, dest);
4988 if (!e)
4990 /* During loop unrolling the target of the latch edge is copied.
4991 In this case we are not looking for edge to dest, but to
4992 duplicated block whose original was dest. */
4993 FOR_EACH_EDGE (e, ei, bb->succs)
4995 if ((e->dest->flags & BB_DUPLICATED)
4996 && get_bb_original (e->dest) == dest)
4997 break;
5000 gcc_assert (e != NULL);
5003 for (psi = gsi_start_phis (e->dest),
5004 psi_copy = gsi_start_phis (e_copy->dest);
5005 !gsi_end_p (psi);
5006 gsi_next (&psi), gsi_next (&psi_copy))
5008 phi = gsi_stmt (psi);
5009 phi_copy = gsi_stmt (psi_copy);
5010 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5011 add_phi_arg (phi_copy, def, e_copy);
5016 /* Basic block BB_COPY was created by code duplication. Add phi node
5017 arguments for edges going out of BB_COPY. The blocks that were
5018 duplicated have BB_DUPLICATED set. */
5020 void
5021 add_phi_args_after_copy_bb (basic_block bb_copy)
5023 edge e_copy;
5024 edge_iterator ei;
5026 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5028 add_phi_args_after_copy_edge (e_copy);
5032 /* Blocks in REGION_COPY array of length N_REGION were created by
5033 duplication of basic blocks. Add phi node arguments for edges
5034 going from these blocks. If E_COPY is not NULL, also add
5035 phi node arguments for its destination.*/
5037 void
5038 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5039 edge e_copy)
5041 unsigned i;
5043 for (i = 0; i < n_region; i++)
5044 region_copy[i]->flags |= BB_DUPLICATED;
5046 for (i = 0; i < n_region; i++)
5047 add_phi_args_after_copy_bb (region_copy[i]);
5048 if (e_copy)
5049 add_phi_args_after_copy_edge (e_copy);
5051 for (i = 0; i < n_region; i++)
5052 region_copy[i]->flags &= ~BB_DUPLICATED;
5055 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5056 important exit edge EXIT. By important we mean that no SSA name defined
5057 inside region is live over the other exit edges of the region. All entry
5058 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5059 to the duplicate of the region. SSA form, dominance and loop information
5060 is updated. The new basic blocks are stored to REGION_COPY in the same
5061 order as they had in REGION, provided that REGION_COPY is not NULL.
5062 The function returns false if it is unable to copy the region,
5063 true otherwise. */
5065 bool
5066 gimple_duplicate_sese_region (edge entry, edge exit,
5067 basic_block *region, unsigned n_region,
5068 basic_block *region_copy)
5070 unsigned i;
5071 bool free_region_copy = false, copying_header = false;
5072 struct loop *loop = entry->dest->loop_father;
5073 edge exit_copy;
5074 VEC (basic_block, heap) *doms;
5075 edge redirected;
5076 int total_freq = 0, entry_freq = 0;
5077 gcov_type total_count = 0, entry_count = 0;
5079 if (!can_copy_bbs_p (region, n_region))
5080 return false;
5082 /* Some sanity checking. Note that we do not check for all possible
5083 missuses of the functions. I.e. if you ask to copy something weird,
5084 it will work, but the state of structures probably will not be
5085 correct. */
5086 for (i = 0; i < n_region; i++)
5088 /* We do not handle subloops, i.e. all the blocks must belong to the
5089 same loop. */
5090 if (region[i]->loop_father != loop)
5091 return false;
5093 if (region[i] != entry->dest
5094 && region[i] == loop->header)
5095 return false;
5098 set_loop_copy (loop, loop);
5100 /* In case the function is used for loop header copying (which is the primary
5101 use), ensure that EXIT and its copy will be new latch and entry edges. */
5102 if (loop->header == entry->dest)
5104 copying_header = true;
5105 set_loop_copy (loop, loop_outer (loop));
5107 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5108 return false;
5110 for (i = 0; i < n_region; i++)
5111 if (region[i] != exit->src
5112 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5113 return false;
5116 if (!region_copy)
5118 region_copy = XNEWVEC (basic_block, n_region);
5119 free_region_copy = true;
5122 gcc_assert (!need_ssa_update_p ());
5124 /* Record blocks outside the region that are dominated by something
5125 inside. */
5126 doms = NULL;
5127 initialize_original_copy_tables ();
5129 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5131 if (entry->dest->count)
5133 total_count = entry->dest->count;
5134 entry_count = entry->count;
5135 /* Fix up corner cases, to avoid division by zero or creation of negative
5136 frequencies. */
5137 if (entry_count > total_count)
5138 entry_count = total_count;
5140 else
5142 total_freq = entry->dest->frequency;
5143 entry_freq = EDGE_FREQUENCY (entry);
5144 /* Fix up corner cases, to avoid division by zero or creation of negative
5145 frequencies. */
5146 if (total_freq == 0)
5147 total_freq = 1;
5148 else if (entry_freq > total_freq)
5149 entry_freq = total_freq;
5152 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5153 split_edge_bb_loc (entry));
5154 if (total_count)
5156 scale_bbs_frequencies_gcov_type (region, n_region,
5157 total_count - entry_count,
5158 total_count);
5159 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5160 total_count);
5162 else
5164 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5165 total_freq);
5166 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5169 if (copying_header)
5171 loop->header = exit->dest;
5172 loop->latch = exit->src;
5175 /* Redirect the entry and add the phi node arguments. */
5176 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5177 gcc_assert (redirected != NULL);
5178 flush_pending_stmts (entry);
5180 /* Concerning updating of dominators: We must recount dominators
5181 for entry block and its copy. Anything that is outside of the
5182 region, but was dominated by something inside needs recounting as
5183 well. */
5184 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5185 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5186 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5187 VEC_free (basic_block, heap, doms);
5189 /* Add the other PHI node arguments. */
5190 add_phi_args_after_copy (region_copy, n_region, NULL);
5192 /* Update the SSA web. */
5193 update_ssa (TODO_update_ssa);
5195 if (free_region_copy)
5196 free (region_copy);
5198 free_original_copy_tables ();
5199 return true;
5202 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5203 are stored to REGION_COPY in the same order in that they appear
5204 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5205 the region, EXIT an exit from it. The condition guarding EXIT
5206 is moved to ENTRY. Returns true if duplication succeeds, false
5207 otherwise.
5209 For example,
5211 some_code;
5212 if (cond)
5214 else
5217 is transformed to
5219 if (cond)
5221 some_code;
5224 else
5226 some_code;
5231 bool
5232 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5233 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5234 basic_block *region_copy ATTRIBUTE_UNUSED)
5236 unsigned i;
5237 bool free_region_copy = false;
5238 struct loop *loop = exit->dest->loop_father;
5239 struct loop *orig_loop = entry->dest->loop_father;
5240 basic_block switch_bb, entry_bb, nentry_bb;
5241 VEC (basic_block, heap) *doms;
5242 int total_freq = 0, exit_freq = 0;
5243 gcov_type total_count = 0, exit_count = 0;
5244 edge exits[2], nexits[2], e;
5245 gimple_stmt_iterator gsi;
5246 gimple cond_stmt;
5247 edge sorig, snew;
5249 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5250 exits[0] = exit;
5251 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5253 if (!can_copy_bbs_p (region, n_region))
5254 return false;
5256 /* Some sanity checking. Note that we do not check for all possible
5257 missuses of the functions. I.e. if you ask to copy something weird
5258 (e.g., in the example, if there is a jump from inside to the middle
5259 of some_code, or come_code defines some of the values used in cond)
5260 it will work, but the resulting code will not be correct. */
5261 for (i = 0; i < n_region; i++)
5263 /* We do not handle subloops, i.e. all the blocks must belong to the
5264 same loop. */
5265 if (region[i]->loop_father != orig_loop)
5266 return false;
5268 if (region[i] == orig_loop->latch)
5269 return false;
5272 initialize_original_copy_tables ();
5273 set_loop_copy (orig_loop, loop);
5275 if (!region_copy)
5277 region_copy = XNEWVEC (basic_block, n_region);
5278 free_region_copy = true;
5281 gcc_assert (!need_ssa_update_p ());
5283 /* Record blocks outside the region that are dominated by something
5284 inside. */
5285 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5287 if (exit->src->count)
5289 total_count = exit->src->count;
5290 exit_count = exit->count;
5291 /* Fix up corner cases, to avoid division by zero or creation of negative
5292 frequencies. */
5293 if (exit_count > total_count)
5294 exit_count = total_count;
5296 else
5298 total_freq = exit->src->frequency;
5299 exit_freq = EDGE_FREQUENCY (exit);
5300 /* Fix up corner cases, to avoid division by zero or creation of negative
5301 frequencies. */
5302 if (total_freq == 0)
5303 total_freq = 1;
5304 if (exit_freq > total_freq)
5305 exit_freq = total_freq;
5308 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5309 split_edge_bb_loc (exit));
5310 if (total_count)
5312 scale_bbs_frequencies_gcov_type (region, n_region,
5313 total_count - exit_count,
5314 total_count);
5315 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5316 total_count);
5318 else
5320 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5321 total_freq);
5322 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5325 /* Create the switch block, and put the exit condition to it. */
5326 entry_bb = entry->dest;
5327 nentry_bb = get_bb_copy (entry_bb);
5328 if (!last_stmt (entry->src)
5329 || !stmt_ends_bb_p (last_stmt (entry->src)))
5330 switch_bb = entry->src;
5331 else
5332 switch_bb = split_edge (entry);
5333 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5335 gsi = gsi_last_bb (switch_bb);
5336 cond_stmt = last_stmt (exit->src);
5337 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5338 cond_stmt = gimple_copy (cond_stmt);
5339 gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
5340 gimple_cond_set_rhs (cond_stmt, unshare_expr (gimple_cond_rhs (cond_stmt)));
5341 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5343 sorig = single_succ_edge (switch_bb);
5344 sorig->flags = exits[1]->flags;
5345 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5347 /* Register the new edge from SWITCH_BB in loop exit lists. */
5348 rescan_loop_exit (snew, true, false);
5350 /* Add the PHI node arguments. */
5351 add_phi_args_after_copy (region_copy, n_region, snew);
5353 /* Get rid of now superfluous conditions and associated edges (and phi node
5354 arguments). */
5355 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5356 PENDING_STMT (e) = NULL;
5357 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
5358 PENDING_STMT (e) = NULL;
5360 /* Anything that is outside of the region, but was dominated by something
5361 inside needs to update dominance info. */
5362 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5363 VEC_free (basic_block, heap, doms);
5365 /* Update the SSA web. */
5366 update_ssa (TODO_update_ssa);
5368 if (free_region_copy)
5369 free (region_copy);
5371 free_original_copy_tables ();
5372 return true;
5375 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5376 adding blocks when the dominator traversal reaches EXIT. This
5377 function silently assumes that ENTRY strictly dominates EXIT. */
5379 void
5380 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5381 VEC(basic_block,heap) **bbs_p)
5383 basic_block son;
5385 for (son = first_dom_son (CDI_DOMINATORS, entry);
5386 son;
5387 son = next_dom_son (CDI_DOMINATORS, son))
5389 VEC_safe_push (basic_block, heap, *bbs_p, son);
5390 if (son != exit)
5391 gather_blocks_in_sese_region (son, exit, bbs_p);
5395 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5396 The duplicates are recorded in VARS_MAP. */
5398 static void
5399 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5400 tree to_context)
5402 tree t = *tp, new_t;
5403 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5404 void **loc;
5406 if (DECL_CONTEXT (t) == to_context)
5407 return;
5409 loc = pointer_map_contains (vars_map, t);
5411 if (!loc)
5413 loc = pointer_map_insert (vars_map, t);
5415 if (SSA_VAR_P (t))
5417 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5418 f->local_decls = tree_cons (NULL_TREE, new_t, f->local_decls);
5420 else
5422 gcc_assert (TREE_CODE (t) == CONST_DECL);
5423 new_t = copy_node (t);
5425 DECL_CONTEXT (new_t) = to_context;
5427 *loc = new_t;
5429 else
5430 new_t = (tree) *loc;
5432 *tp = new_t;
5436 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5437 VARS_MAP maps old ssa names and var_decls to the new ones. */
5439 static tree
5440 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5441 tree to_context)
5443 void **loc;
5444 tree new_name, decl = SSA_NAME_VAR (name);
5446 gcc_assert (is_gimple_reg (name));
5448 loc = pointer_map_contains (vars_map, name);
5450 if (!loc)
5452 replace_by_duplicate_decl (&decl, vars_map, to_context);
5454 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5455 if (gimple_in_ssa_p (cfun))
5456 add_referenced_var (decl);
5458 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5459 if (SSA_NAME_IS_DEFAULT_DEF (name))
5460 set_default_def (decl, new_name);
5461 pop_cfun ();
5463 loc = pointer_map_insert (vars_map, name);
5464 *loc = new_name;
5466 else
5467 new_name = (tree) *loc;
5469 return new_name;
5472 struct move_stmt_d
5474 tree orig_block;
5475 tree new_block;
5476 tree from_context;
5477 tree to_context;
5478 struct pointer_map_t *vars_map;
5479 htab_t new_label_map;
5480 bool remap_decls_p;
5483 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5484 contained in *TP if it has been ORIG_BLOCK previously and change the
5485 DECL_CONTEXT of every local variable referenced in *TP. */
5487 static tree
5488 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5490 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5491 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5492 tree t = *tp;
5494 if (EXPR_P (t))
5495 /* We should never have TREE_BLOCK set on non-statements. */
5496 gcc_assert (!TREE_BLOCK (t));
5498 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5500 if (TREE_CODE (t) == SSA_NAME)
5501 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5502 else if (TREE_CODE (t) == LABEL_DECL)
5504 if (p->new_label_map)
5506 struct tree_map in, *out;
5507 in.base.from = t;
5508 out = (struct tree_map *)
5509 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5510 if (out)
5511 *tp = t = out->to;
5514 DECL_CONTEXT (t) = p->to_context;
5516 else if (p->remap_decls_p)
5518 /* Replace T with its duplicate. T should no longer appear in the
5519 parent function, so this looks wasteful; however, it may appear
5520 in referenced_vars, and more importantly, as virtual operands of
5521 statements, and in alias lists of other variables. It would be
5522 quite difficult to expunge it from all those places. ??? It might
5523 suffice to do this for addressable variables. */
5524 if ((TREE_CODE (t) == VAR_DECL
5525 && !is_global_var (t))
5526 || TREE_CODE (t) == CONST_DECL)
5527 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5529 if (SSA_VAR_P (t)
5530 && gimple_in_ssa_p (cfun))
5532 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5533 add_referenced_var (*tp);
5534 pop_cfun ();
5537 *walk_subtrees = 0;
5539 else if (TYPE_P (t))
5540 *walk_subtrees = 0;
5542 return NULL_TREE;
5545 /* Like move_stmt_op, but for gimple statements.
5547 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5548 contained in the current statement in *GSI_P and change the
5549 DECL_CONTEXT of every local variable referenced in the current
5550 statement. */
5552 static tree
5553 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5554 struct walk_stmt_info *wi)
5556 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5557 gimple stmt = gsi_stmt (*gsi_p);
5558 tree block = gimple_block (stmt);
5560 if (p->orig_block == NULL_TREE
5561 || block == p->orig_block
5562 || block == NULL_TREE)
5563 gimple_set_block (stmt, p->new_block);
5564 #ifdef ENABLE_CHECKING
5565 else if (block != p->new_block)
5567 while (block && block != p->orig_block)
5568 block = BLOCK_SUPERCONTEXT (block);
5569 gcc_assert (block);
5571 #endif
5573 if (is_gimple_omp (stmt)
5574 && gimple_code (stmt) != GIMPLE_OMP_RETURN
5575 && gimple_code (stmt) != GIMPLE_OMP_CONTINUE)
5577 /* Do not remap variables inside OMP directives. Variables
5578 referenced in clauses and directive header belong to the
5579 parent function and should not be moved into the child
5580 function. */
5581 bool save_remap_decls_p = p->remap_decls_p;
5582 p->remap_decls_p = false;
5583 *handled_ops_p = true;
5585 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r, move_stmt_op, wi);
5587 p->remap_decls_p = save_remap_decls_p;
5590 return NULL_TREE;
5593 /* Marks virtual operands of all statements in basic blocks BBS for
5594 renaming. */
5596 void
5597 mark_virtual_ops_in_bb (basic_block bb)
5599 gimple_stmt_iterator gsi;
5601 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5602 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
5604 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5605 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
5608 /* Marks virtual operands of all statements in basic blocks BBS for
5609 renaming. */
5611 static void
5612 mark_virtual_ops_in_region (VEC (basic_block,heap) *bbs)
5614 basic_block bb;
5615 unsigned i;
5617 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
5618 mark_virtual_ops_in_bb (bb);
5621 /* Move basic block BB from function CFUN to function DEST_FN. The
5622 block is moved out of the original linked list and placed after
5623 block AFTER in the new list. Also, the block is removed from the
5624 original array of blocks and placed in DEST_FN's array of blocks.
5625 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5626 updated to reflect the moved edges.
5628 The local variables are remapped to new instances, VARS_MAP is used
5629 to record the mapping. */
5631 static void
5632 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5633 basic_block after, bool update_edge_count_p,
5634 struct move_stmt_d *d, int eh_offset)
5636 struct control_flow_graph *cfg;
5637 edge_iterator ei;
5638 edge e;
5639 gimple_stmt_iterator si;
5640 unsigned old_len, new_len;
5642 /* Remove BB from dominance structures. */
5643 delete_from_dominance_info (CDI_DOMINATORS, bb);
5644 if (current_loops)
5645 remove_bb_from_loops (bb);
5647 /* Link BB to the new linked list. */
5648 move_block_after (bb, after);
5650 /* Update the edge count in the corresponding flowgraphs. */
5651 if (update_edge_count_p)
5652 FOR_EACH_EDGE (e, ei, bb->succs)
5654 cfun->cfg->x_n_edges--;
5655 dest_cfun->cfg->x_n_edges++;
5658 /* Remove BB from the original basic block array. */
5659 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5660 cfun->cfg->x_n_basic_blocks--;
5662 /* Grow DEST_CFUN's basic block array if needed. */
5663 cfg = dest_cfun->cfg;
5664 cfg->x_n_basic_blocks++;
5665 if (bb->index >= cfg->x_last_basic_block)
5666 cfg->x_last_basic_block = bb->index + 1;
5668 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5669 if ((unsigned) cfg->x_last_basic_block >= old_len)
5671 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5672 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5673 new_len);
5676 VEC_replace (basic_block, cfg->x_basic_block_info,
5677 bb->index, bb);
5679 /* Remap the variables in phi nodes. */
5680 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5682 gimple phi = gsi_stmt (si);
5683 use_operand_p use;
5684 tree op = PHI_RESULT (phi);
5685 ssa_op_iter oi;
5687 if (!is_gimple_reg (op))
5689 /* Remove the phi nodes for virtual operands (alias analysis will be
5690 run for the new function, anyway). */
5691 remove_phi_node (&si, true);
5692 continue;
5695 SET_PHI_RESULT (phi,
5696 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5697 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5699 op = USE_FROM_PTR (use);
5700 if (TREE_CODE (op) == SSA_NAME)
5701 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5704 gsi_next (&si);
5707 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5709 gimple stmt = gsi_stmt (si);
5710 int region;
5711 struct walk_stmt_info wi;
5713 memset (&wi, 0, sizeof (wi));
5714 wi.info = d;
5715 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5717 if (gimple_code (stmt) == GIMPLE_LABEL)
5719 tree label = gimple_label_label (stmt);
5720 int uid = LABEL_DECL_UID (label);
5722 gcc_assert (uid > -1);
5724 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5725 if (old_len <= (unsigned) uid)
5727 new_len = 3 * uid / 2;
5728 VEC_safe_grow_cleared (basic_block, gc,
5729 cfg->x_label_to_block_map, new_len);
5732 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5733 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5735 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
5737 if (uid >= dest_cfun->cfg->last_label_uid)
5738 dest_cfun->cfg->last_label_uid = uid + 1;
5740 else if (gimple_code (stmt) == GIMPLE_RESX && eh_offset != 0)
5741 gimple_resx_set_region (stmt, gimple_resx_region (stmt) + eh_offset);
5743 region = lookup_stmt_eh_region (stmt);
5744 if (region >= 0)
5746 add_stmt_to_eh_region_fn (dest_cfun, stmt, region + eh_offset);
5747 remove_stmt_from_eh_region (stmt);
5748 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
5749 gimple_remove_stmt_histograms (cfun, stmt);
5752 /* We cannot leave any operands allocated from the operand caches of
5753 the current function. */
5754 free_stmt_operands (stmt);
5755 push_cfun (dest_cfun);
5756 update_stmt (stmt);
5757 pop_cfun ();
5760 FOR_EACH_EDGE (e, ei, bb->succs)
5761 if (e->goto_locus)
5763 tree block = e->goto_block;
5764 if (d->orig_block == NULL_TREE
5765 || block == d->orig_block)
5766 e->goto_block = d->new_block;
5767 #ifdef ENABLE_CHECKING
5768 else if (block != d->new_block)
5770 while (block && block != d->orig_block)
5771 block = BLOCK_SUPERCONTEXT (block);
5772 gcc_assert (block);
5774 #endif
5778 /* Examine the statements in BB (which is in SRC_CFUN); find and return
5779 the outermost EH region. Use REGION as the incoming base EH region. */
5781 static int
5782 find_outermost_region_in_block (struct function *src_cfun,
5783 basic_block bb, int region)
5785 gimple_stmt_iterator si;
5787 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5789 gimple stmt = gsi_stmt (si);
5790 int stmt_region;
5792 if (gimple_code (stmt) == GIMPLE_RESX)
5793 stmt_region = gimple_resx_region (stmt);
5794 else
5795 stmt_region = lookup_stmt_eh_region_fn (src_cfun, stmt);
5796 if (stmt_region > 0)
5798 if (region < 0)
5799 region = stmt_region;
5800 else if (stmt_region != region)
5802 region = eh_region_outermost (src_cfun, stmt_region, region);
5803 gcc_assert (region != -1);
5808 return region;
5811 static tree
5812 new_label_mapper (tree decl, void *data)
5814 htab_t hash = (htab_t) data;
5815 struct tree_map *m;
5816 void **slot;
5818 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
5820 m = XNEW (struct tree_map);
5821 m->hash = DECL_UID (decl);
5822 m->base.from = decl;
5823 m->to = create_artificial_label ();
5824 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
5825 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
5826 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
5828 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
5829 gcc_assert (*slot == NULL);
5831 *slot = m;
5833 return m->to;
5836 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
5837 subblocks. */
5839 static void
5840 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
5841 tree to_context)
5843 tree *tp, t;
5845 for (tp = &BLOCK_VARS (block); *tp; tp = &TREE_CHAIN (*tp))
5847 t = *tp;
5848 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
5849 continue;
5850 replace_by_duplicate_decl (&t, vars_map, to_context);
5851 if (t != *tp)
5853 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
5855 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
5856 DECL_HAS_VALUE_EXPR_P (t) = 1;
5858 TREE_CHAIN (t) = TREE_CHAIN (*tp);
5859 *tp = t;
5863 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
5864 replace_block_vars_by_duplicates (block, vars_map, to_context);
5867 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
5868 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
5869 single basic block in the original CFG and the new basic block is
5870 returned. DEST_CFUN must not have a CFG yet.
5872 Note that the region need not be a pure SESE region. Blocks inside
5873 the region may contain calls to abort/exit. The only restriction
5874 is that ENTRY_BB should be the only entry point and it must
5875 dominate EXIT_BB.
5877 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
5878 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
5879 to the new function.
5881 All local variables referenced in the region are assumed to be in
5882 the corresponding BLOCK_VARS and unexpanded variable lists
5883 associated with DEST_CFUN. */
5885 basic_block
5886 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
5887 basic_block exit_bb, tree orig_block)
5889 VEC(basic_block,heap) *bbs, *dom_bbs;
5890 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
5891 basic_block after, bb, *entry_pred, *exit_succ, abb;
5892 struct function *saved_cfun = cfun;
5893 int *entry_flag, *exit_flag, eh_offset;
5894 unsigned *entry_prob, *exit_prob;
5895 unsigned i, num_entry_edges, num_exit_edges;
5896 edge e;
5897 edge_iterator ei;
5898 htab_t new_label_map;
5899 struct pointer_map_t *vars_map;
5900 struct loop *loop = entry_bb->loop_father;
5901 struct move_stmt_d d;
5903 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
5904 region. */
5905 gcc_assert (entry_bb != exit_bb
5906 && (!exit_bb
5907 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
5909 /* Collect all the blocks in the region. Manually add ENTRY_BB
5910 because it won't be added by dfs_enumerate_from. */
5911 bbs = NULL;
5912 VEC_safe_push (basic_block, heap, bbs, entry_bb);
5913 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
5915 /* The blocks that used to be dominated by something in BBS will now be
5916 dominated by the new block. */
5917 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
5918 VEC_address (basic_block, bbs),
5919 VEC_length (basic_block, bbs));
5921 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
5922 the predecessor edges to ENTRY_BB and the successor edges to
5923 EXIT_BB so that we can re-attach them to the new basic block that
5924 will replace the region. */
5925 num_entry_edges = EDGE_COUNT (entry_bb->preds);
5926 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
5927 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
5928 entry_prob = XNEWVEC (unsigned, num_entry_edges);
5929 i = 0;
5930 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
5932 entry_prob[i] = e->probability;
5933 entry_flag[i] = e->flags;
5934 entry_pred[i++] = e->src;
5935 remove_edge (e);
5938 if (exit_bb)
5940 num_exit_edges = EDGE_COUNT (exit_bb->succs);
5941 exit_succ = (basic_block *) xcalloc (num_exit_edges,
5942 sizeof (basic_block));
5943 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
5944 exit_prob = XNEWVEC (unsigned, num_exit_edges);
5945 i = 0;
5946 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
5948 exit_prob[i] = e->probability;
5949 exit_flag[i] = e->flags;
5950 exit_succ[i++] = e->dest;
5951 remove_edge (e);
5954 else
5956 num_exit_edges = 0;
5957 exit_succ = NULL;
5958 exit_flag = NULL;
5959 exit_prob = NULL;
5962 /* Switch context to the child function to initialize DEST_FN's CFG. */
5963 gcc_assert (dest_cfun->cfg == NULL);
5964 push_cfun (dest_cfun);
5966 init_empty_tree_cfg ();
5968 /* Initialize EH information for the new function. */
5969 eh_offset = 0;
5970 new_label_map = NULL;
5971 if (saved_cfun->eh)
5973 int region = -1;
5975 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
5976 region = find_outermost_region_in_block (saved_cfun, bb, region);
5978 init_eh_for_function ();
5979 if (region != -1)
5981 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
5982 eh_offset = duplicate_eh_regions (saved_cfun, new_label_mapper,
5983 new_label_map, region, 0);
5987 pop_cfun ();
5989 /* The ssa form for virtual operands in the source function will have to
5990 be repaired. We do not care for the real operands -- the sese region
5991 must be closed with respect to those. */
5992 mark_virtual_ops_in_region (bbs);
5994 /* Move blocks from BBS into DEST_CFUN. */
5995 gcc_assert (VEC_length (basic_block, bbs) >= 2);
5996 after = dest_cfun->cfg->x_entry_block_ptr;
5997 vars_map = pointer_map_create ();
5999 memset (&d, 0, sizeof (d));
6000 d.vars_map = vars_map;
6001 d.from_context = cfun->decl;
6002 d.to_context = dest_cfun->decl;
6003 d.new_label_map = new_label_map;
6004 d.remap_decls_p = true;
6005 d.orig_block = orig_block;
6006 d.new_block = DECL_INITIAL (dest_cfun->decl);
6008 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
6010 /* No need to update edge counts on the last block. It has
6011 already been updated earlier when we detached the region from
6012 the original CFG. */
6013 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d, eh_offset);
6014 after = bb;
6017 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6018 if (orig_block)
6020 tree block;
6021 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6022 == NULL_TREE);
6023 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6024 = BLOCK_SUBBLOCKS (orig_block);
6025 for (block = BLOCK_SUBBLOCKS (orig_block);
6026 block; block = BLOCK_CHAIN (block))
6027 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6028 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6031 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6032 vars_map, dest_cfun->decl);
6034 if (new_label_map)
6035 htab_delete (new_label_map);
6036 pointer_map_destroy (vars_map);
6038 /* Rewire the entry and exit blocks. The successor to the entry
6039 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6040 the child function. Similarly, the predecessor of DEST_FN's
6041 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6042 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6043 various CFG manipulation function get to the right CFG.
6045 FIXME, this is silly. The CFG ought to become a parameter to
6046 these helpers. */
6047 push_cfun (dest_cfun);
6048 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6049 if (exit_bb)
6050 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6051 pop_cfun ();
6053 /* Back in the original function, the SESE region has disappeared,
6054 create a new basic block in its place. */
6055 bb = create_empty_bb (entry_pred[0]);
6056 if (current_loops)
6057 add_bb_to_loop (bb, loop);
6058 for (i = 0; i < num_entry_edges; i++)
6060 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6061 e->probability = entry_prob[i];
6064 for (i = 0; i < num_exit_edges; i++)
6066 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6067 e->probability = exit_prob[i];
6070 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6071 for (i = 0; VEC_iterate (basic_block, dom_bbs, i, abb); i++)
6072 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6073 VEC_free (basic_block, heap, dom_bbs);
6075 if (exit_bb)
6077 free (exit_prob);
6078 free (exit_flag);
6079 free (exit_succ);
6081 free (entry_prob);
6082 free (entry_flag);
6083 free (entry_pred);
6084 VEC_free (basic_block, heap, bbs);
6086 return bb;
6090 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6093 void
6094 dump_function_to_file (tree fn, FILE *file, int flags)
6096 tree arg, vars, var;
6097 struct function *dsf;
6098 bool ignore_topmost_bind = false, any_var = false;
6099 basic_block bb;
6100 tree chain;
6102 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6104 arg = DECL_ARGUMENTS (fn);
6105 while (arg)
6107 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6108 fprintf (file, " ");
6109 print_generic_expr (file, arg, dump_flags);
6110 if (flags & TDF_VERBOSE)
6111 print_node (file, "", arg, 4);
6112 if (TREE_CHAIN (arg))
6113 fprintf (file, ", ");
6114 arg = TREE_CHAIN (arg);
6116 fprintf (file, ")\n");
6118 if (flags & TDF_VERBOSE)
6119 print_node (file, "", fn, 2);
6121 dsf = DECL_STRUCT_FUNCTION (fn);
6122 if (dsf && (flags & TDF_DETAILS))
6123 dump_eh_tree (file, dsf);
6125 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6127 dump_node (fn, TDF_SLIM | flags, file);
6128 return;
6131 /* Switch CFUN to point to FN. */
6132 push_cfun (DECL_STRUCT_FUNCTION (fn));
6134 /* When GIMPLE is lowered, the variables are no longer available in
6135 BIND_EXPRs, so display them separately. */
6136 if (cfun && cfun->decl == fn && cfun->local_decls)
6138 ignore_topmost_bind = true;
6140 fprintf (file, "{\n");
6141 for (vars = cfun->local_decls; vars; vars = TREE_CHAIN (vars))
6143 var = TREE_VALUE (vars);
6145 print_generic_decl (file, var, flags);
6146 if (flags & TDF_VERBOSE)
6147 print_node (file, "", var, 4);
6148 fprintf (file, "\n");
6150 any_var = true;
6154 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6156 /* If the CFG has been built, emit a CFG-based dump. */
6157 check_bb_profile (ENTRY_BLOCK_PTR, file);
6158 if (!ignore_topmost_bind)
6159 fprintf (file, "{\n");
6161 if (any_var && n_basic_blocks)
6162 fprintf (file, "\n");
6164 FOR_EACH_BB (bb)
6165 gimple_dump_bb (bb, file, 2, flags);
6167 fprintf (file, "}\n");
6168 check_bb_profile (EXIT_BLOCK_PTR, file);
6170 else if (DECL_SAVED_TREE (fn) == NULL)
6172 /* The function is now in GIMPLE form but the CFG has not been
6173 built yet. Emit the single sequence of GIMPLE statements
6174 that make up its body. */
6175 gimple_seq body = gimple_body (fn);
6177 if (gimple_seq_first_stmt (body)
6178 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6179 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6180 print_gimple_seq (file, body, 0, flags);
6181 else
6183 if (!ignore_topmost_bind)
6184 fprintf (file, "{\n");
6186 if (any_var)
6187 fprintf (file, "\n");
6189 print_gimple_seq (file, body, 2, flags);
6190 fprintf (file, "}\n");
6193 else
6195 int indent;
6197 /* Make a tree based dump. */
6198 chain = DECL_SAVED_TREE (fn);
6200 if (chain && TREE_CODE (chain) == BIND_EXPR)
6202 if (ignore_topmost_bind)
6204 chain = BIND_EXPR_BODY (chain);
6205 indent = 2;
6207 else
6208 indent = 0;
6210 else
6212 if (!ignore_topmost_bind)
6213 fprintf (file, "{\n");
6214 indent = 2;
6217 if (any_var)
6218 fprintf (file, "\n");
6220 print_generic_stmt_indented (file, chain, flags, indent);
6221 if (ignore_topmost_bind)
6222 fprintf (file, "}\n");
6225 fprintf (file, "\n\n");
6227 /* Restore CFUN. */
6228 pop_cfun ();
6232 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6234 void
6235 debug_function (tree fn, int flags)
6237 dump_function_to_file (fn, stderr, flags);
6241 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6243 static void
6244 print_pred_bbs (FILE *file, basic_block bb)
6246 edge e;
6247 edge_iterator ei;
6249 FOR_EACH_EDGE (e, ei, bb->preds)
6250 fprintf (file, "bb_%d ", e->src->index);
6254 /* Print on FILE the indexes for the successors of basic_block BB. */
6256 static void
6257 print_succ_bbs (FILE *file, basic_block bb)
6259 edge e;
6260 edge_iterator ei;
6262 FOR_EACH_EDGE (e, ei, bb->succs)
6263 fprintf (file, "bb_%d ", e->dest->index);
6266 /* Print to FILE the basic block BB following the VERBOSITY level. */
6268 void
6269 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6271 char *s_indent = (char *) alloca ((size_t) indent + 1);
6272 memset ((void *) s_indent, ' ', (size_t) indent);
6273 s_indent[indent] = '\0';
6275 /* Print basic_block's header. */
6276 if (verbosity >= 2)
6278 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6279 print_pred_bbs (file, bb);
6280 fprintf (file, "}, succs = {");
6281 print_succ_bbs (file, bb);
6282 fprintf (file, "})\n");
6285 /* Print basic_block's body. */
6286 if (verbosity >= 3)
6288 fprintf (file, "%s {\n", s_indent);
6289 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6290 fprintf (file, "%s }\n", s_indent);
6294 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6296 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6297 VERBOSITY level this outputs the contents of the loop, or just its
6298 structure. */
6300 static void
6301 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6303 char *s_indent;
6304 basic_block bb;
6306 if (loop == NULL)
6307 return;
6309 s_indent = (char *) alloca ((size_t) indent + 1);
6310 memset ((void *) s_indent, ' ', (size_t) indent);
6311 s_indent[indent] = '\0';
6313 /* Print loop's header. */
6314 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6315 loop->num, loop->header->index, loop->latch->index);
6316 fprintf (file, ", niter = ");
6317 print_generic_expr (file, loop->nb_iterations, 0);
6319 if (loop->any_upper_bound)
6321 fprintf (file, ", upper_bound = ");
6322 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6325 if (loop->any_estimate)
6327 fprintf (file, ", estimate = ");
6328 dump_double_int (file, loop->nb_iterations_estimate, true);
6330 fprintf (file, ")\n");
6332 /* Print loop's body. */
6333 if (verbosity >= 1)
6335 fprintf (file, "%s{\n", s_indent);
6336 FOR_EACH_BB (bb)
6337 if (bb->loop_father == loop)
6338 print_loops_bb (file, bb, indent, verbosity);
6340 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6341 fprintf (file, "%s}\n", s_indent);
6345 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6346 spaces. Following VERBOSITY level this outputs the contents of the
6347 loop, or just its structure. */
6349 static void
6350 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6352 if (loop == NULL)
6353 return;
6355 print_loop (file, loop, indent, verbosity);
6356 print_loop_and_siblings (file, loop->next, indent, verbosity);
6359 /* Follow a CFG edge from the entry point of the program, and on entry
6360 of a loop, pretty print the loop structure on FILE. */
6362 void
6363 print_loops (FILE *file, int verbosity)
6365 basic_block bb;
6367 bb = ENTRY_BLOCK_PTR;
6368 if (bb && bb->loop_father)
6369 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6373 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6375 void
6376 debug_loops (int verbosity)
6378 print_loops (stderr, verbosity);
6381 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6383 void
6384 debug_loop (struct loop *loop, int verbosity)
6386 print_loop (stderr, loop, 0, verbosity);
6389 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6390 level. */
6392 void
6393 debug_loop_num (unsigned num, int verbosity)
6395 debug_loop (get_loop (num), verbosity);
6398 /* Return true if BB ends with a call, possibly followed by some
6399 instructions that must stay with the call. Return false,
6400 otherwise. */
6402 static bool
6403 gimple_block_ends_with_call_p (basic_block bb)
6405 gimple_stmt_iterator gsi = gsi_last_bb (bb);
6406 return is_gimple_call (gsi_stmt (gsi));
6410 /* Return true if BB ends with a conditional branch. Return false,
6411 otherwise. */
6413 static bool
6414 gimple_block_ends_with_condjump_p (const_basic_block bb)
6416 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6417 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6421 /* Return true if we need to add fake edge to exit at statement T.
6422 Helper function for gimple_flow_call_edges_add. */
6424 static bool
6425 need_fake_edge_p (gimple t)
6427 tree fndecl = NULL_TREE;
6428 int call_flags = 0;
6430 /* NORETURN and LONGJMP calls already have an edge to exit.
6431 CONST and PURE calls do not need one.
6432 We don't currently check for CONST and PURE here, although
6433 it would be a good idea, because those attributes are
6434 figured out from the RTL in mark_constant_function, and
6435 the counter incrementation code from -fprofile-arcs
6436 leads to different results from -fbranch-probabilities. */
6437 if (is_gimple_call (t))
6439 fndecl = gimple_call_fndecl (t);
6440 call_flags = gimple_call_flags (t);
6443 if (is_gimple_call (t)
6444 && fndecl
6445 && DECL_BUILT_IN (fndecl)
6446 && (call_flags & ECF_NOTHROW)
6447 && !(call_flags & ECF_NORETURN)
6448 && !(call_flags & ECF_RETURNS_TWICE))
6449 return false;
6451 if (is_gimple_call (t)
6452 && !(call_flags & ECF_NORETURN))
6453 return true;
6455 if (gimple_code (t) == GIMPLE_ASM
6456 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6457 return true;
6459 return false;
6463 /* Add fake edges to the function exit for any non constant and non
6464 noreturn calls, volatile inline assembly in the bitmap of blocks
6465 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6466 the number of blocks that were split.
6468 The goal is to expose cases in which entering a basic block does
6469 not imply that all subsequent instructions must be executed. */
6471 static int
6472 gimple_flow_call_edges_add (sbitmap blocks)
6474 int i;
6475 int blocks_split = 0;
6476 int last_bb = last_basic_block;
6477 bool check_last_block = false;
6479 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6480 return 0;
6482 if (! blocks)
6483 check_last_block = true;
6484 else
6485 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6487 /* In the last basic block, before epilogue generation, there will be
6488 a fallthru edge to EXIT. Special care is required if the last insn
6489 of the last basic block is a call because make_edge folds duplicate
6490 edges, which would result in the fallthru edge also being marked
6491 fake, which would result in the fallthru edge being removed by
6492 remove_fake_edges, which would result in an invalid CFG.
6494 Moreover, we can't elide the outgoing fake edge, since the block
6495 profiler needs to take this into account in order to solve the minimal
6496 spanning tree in the case that the call doesn't return.
6498 Handle this by adding a dummy instruction in a new last basic block. */
6499 if (check_last_block)
6501 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6502 gimple_stmt_iterator gsi = gsi_last_bb (bb);
6503 gimple t = NULL;
6505 if (!gsi_end_p (gsi))
6506 t = gsi_stmt (gsi);
6508 if (t && need_fake_edge_p (t))
6510 edge e;
6512 e = find_edge (bb, EXIT_BLOCK_PTR);
6513 if (e)
6515 gsi_insert_on_edge (e, gimple_build_nop ());
6516 gsi_commit_edge_inserts ();
6521 /* Now add fake edges to the function exit for any non constant
6522 calls since there is no way that we can determine if they will
6523 return or not... */
6524 for (i = 0; i < last_bb; i++)
6526 basic_block bb = BASIC_BLOCK (i);
6527 gimple_stmt_iterator gsi;
6528 gimple stmt, last_stmt;
6530 if (!bb)
6531 continue;
6533 if (blocks && !TEST_BIT (blocks, i))
6534 continue;
6536 gsi = gsi_last_bb (bb);
6537 if (!gsi_end_p (gsi))
6539 last_stmt = gsi_stmt (gsi);
6542 stmt = gsi_stmt (gsi);
6543 if (need_fake_edge_p (stmt))
6545 edge e;
6547 /* The handling above of the final block before the
6548 epilogue should be enough to verify that there is
6549 no edge to the exit block in CFG already.
6550 Calling make_edge in such case would cause us to
6551 mark that edge as fake and remove it later. */
6552 #ifdef ENABLE_CHECKING
6553 if (stmt == last_stmt)
6555 e = find_edge (bb, EXIT_BLOCK_PTR);
6556 gcc_assert (e == NULL);
6558 #endif
6560 /* Note that the following may create a new basic block
6561 and renumber the existing basic blocks. */
6562 if (stmt != last_stmt)
6564 e = split_block (bb, stmt);
6565 if (e)
6566 blocks_split++;
6568 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6570 gsi_prev (&gsi);
6572 while (!gsi_end_p (gsi));
6576 if (blocks_split)
6577 verify_flow_info ();
6579 return blocks_split;
6582 /* Purge dead abnormal call edges from basic block BB. */
6584 bool
6585 gimple_purge_dead_abnormal_call_edges (basic_block bb)
6587 bool changed = gimple_purge_dead_eh_edges (bb);
6589 if (cfun->has_nonlocal_label)
6591 gimple stmt = last_stmt (bb);
6592 edge_iterator ei;
6593 edge e;
6595 if (!(stmt && stmt_can_make_abnormal_goto (stmt)))
6596 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6598 if (e->flags & EDGE_ABNORMAL)
6600 remove_edge (e);
6601 changed = true;
6603 else
6604 ei_next (&ei);
6607 /* See gimple_purge_dead_eh_edges below. */
6608 if (changed)
6609 free_dominance_info (CDI_DOMINATORS);
6612 return changed;
6615 /* Stores all basic blocks dominated by BB to DOM_BBS. */
6617 static void
6618 get_all_dominated_blocks (basic_block bb, VEC (basic_block, heap) **dom_bbs)
6620 basic_block son;
6622 VEC_safe_push (basic_block, heap, *dom_bbs, bb);
6623 for (son = first_dom_son (CDI_DOMINATORS, bb);
6624 son;
6625 son = next_dom_son (CDI_DOMINATORS, son))
6626 get_all_dominated_blocks (son, dom_bbs);
6629 /* Removes edge E and all the blocks dominated by it, and updates dominance
6630 information. The IL in E->src needs to be updated separately.
6631 If dominance info is not available, only the edge E is removed.*/
6633 void
6634 remove_edge_and_dominated_blocks (edge e)
6636 VEC (basic_block, heap) *bbs_to_remove = NULL;
6637 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6638 bitmap df, df_idom;
6639 edge f;
6640 edge_iterator ei;
6641 bool none_removed = false;
6642 unsigned i;
6643 basic_block bb, dbb;
6644 bitmap_iterator bi;
6646 if (!dom_info_available_p (CDI_DOMINATORS))
6648 remove_edge (e);
6649 return;
6652 /* No updating is needed for edges to exit. */
6653 if (e->dest == EXIT_BLOCK_PTR)
6655 if (cfgcleanup_altered_bbs)
6656 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6657 remove_edge (e);
6658 return;
6661 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6662 that is not dominated by E->dest, then this set is empty. Otherwise,
6663 all the basic blocks dominated by E->dest are removed.
6665 Also, to DF_IDOM we store the immediate dominators of the blocks in
6666 the dominance frontier of E (i.e., of the successors of the
6667 removed blocks, if there are any, and of E->dest otherwise). */
6668 FOR_EACH_EDGE (f, ei, e->dest->preds)
6670 if (f == e)
6671 continue;
6673 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6675 none_removed = true;
6676 break;
6680 df = BITMAP_ALLOC (NULL);
6681 df_idom = BITMAP_ALLOC (NULL);
6683 if (none_removed)
6684 bitmap_set_bit (df_idom,
6685 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6686 else
6688 get_all_dominated_blocks (e->dest, &bbs_to_remove);
6689 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6691 FOR_EACH_EDGE (f, ei, bb->succs)
6693 if (f->dest != EXIT_BLOCK_PTR)
6694 bitmap_set_bit (df, f->dest->index);
6697 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6698 bitmap_clear_bit (df, bb->index);
6700 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6702 bb = BASIC_BLOCK (i);
6703 bitmap_set_bit (df_idom,
6704 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6708 if (cfgcleanup_altered_bbs)
6710 /* Record the set of the altered basic blocks. */
6711 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6712 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6715 /* Remove E and the cancelled blocks. */
6716 if (none_removed)
6717 remove_edge (e);
6718 else
6720 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
6721 delete_basic_block (bb);
6724 /* Update the dominance information. The immediate dominator may change only
6725 for blocks whose immediate dominator belongs to DF_IDOM:
6727 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6728 removal. Let Z the arbitrary block such that idom(Z) = Y and
6729 Z dominates X after the removal. Before removal, there exists a path P
6730 from Y to X that avoids Z. Let F be the last edge on P that is
6731 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6732 dominates W, and because of P, Z does not dominate W), and W belongs to
6733 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6734 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6736 bb = BASIC_BLOCK (i);
6737 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6738 dbb;
6739 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6740 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6743 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6745 BITMAP_FREE (df);
6746 BITMAP_FREE (df_idom);
6747 VEC_free (basic_block, heap, bbs_to_remove);
6748 VEC_free (basic_block, heap, bbs_to_fix_dom);
6751 /* Purge dead EH edges from basic block BB. */
6753 bool
6754 gimple_purge_dead_eh_edges (basic_block bb)
6756 bool changed = false;
6757 edge e;
6758 edge_iterator ei;
6759 gimple stmt = last_stmt (bb);
6761 if (stmt && stmt_can_throw_internal (stmt))
6762 return false;
6764 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6766 if (e->flags & EDGE_EH)
6768 remove_edge_and_dominated_blocks (e);
6769 changed = true;
6771 else
6772 ei_next (&ei);
6775 return changed;
6778 bool
6779 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
6781 bool changed = false;
6782 unsigned i;
6783 bitmap_iterator bi;
6785 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
6787 basic_block bb = BASIC_BLOCK (i);
6789 /* Earlier gimple_purge_dead_eh_edges could have removed
6790 this basic block already. */
6791 gcc_assert (bb || changed);
6792 if (bb != NULL)
6793 changed |= gimple_purge_dead_eh_edges (bb);
6796 return changed;
6799 /* This function is called whenever a new edge is created or
6800 redirected. */
6802 static void
6803 gimple_execute_on_growing_pred (edge e)
6805 basic_block bb = e->dest;
6807 if (phi_nodes (bb))
6808 reserve_phi_args_for_new_edge (bb);
6811 /* This function is called immediately before edge E is removed from
6812 the edge vector E->dest->preds. */
6814 static void
6815 gimple_execute_on_shrinking_pred (edge e)
6817 if (phi_nodes (e->dest))
6818 remove_phi_args (e);
6821 /*---------------------------------------------------------------------------
6822 Helper functions for Loop versioning
6823 ---------------------------------------------------------------------------*/
6825 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
6826 of 'first'. Both of them are dominated by 'new_head' basic block. When
6827 'new_head' was created by 'second's incoming edge it received phi arguments
6828 on the edge by split_edge(). Later, additional edge 'e' was created to
6829 connect 'new_head' and 'first'. Now this routine adds phi args on this
6830 additional edge 'e' that new_head to second edge received as part of edge
6831 splitting. */
6833 static void
6834 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
6835 basic_block new_head, edge e)
6837 gimple phi1, phi2;
6838 gimple_stmt_iterator psi1, psi2;
6839 tree def;
6840 edge e2 = find_edge (new_head, second);
6842 /* Because NEW_HEAD has been created by splitting SECOND's incoming
6843 edge, we should always have an edge from NEW_HEAD to SECOND. */
6844 gcc_assert (e2 != NULL);
6846 /* Browse all 'second' basic block phi nodes and add phi args to
6847 edge 'e' for 'first' head. PHI args are always in correct order. */
6849 for (psi2 = gsi_start_phis (second),
6850 psi1 = gsi_start_phis (first);
6851 !gsi_end_p (psi2) && !gsi_end_p (psi1);
6852 gsi_next (&psi2), gsi_next (&psi1))
6854 phi1 = gsi_stmt (psi1);
6855 phi2 = gsi_stmt (psi2);
6856 def = PHI_ARG_DEF (phi2, e2->dest_idx);
6857 add_phi_arg (phi1, def, e);
6862 /* Adds a if else statement to COND_BB with condition COND_EXPR.
6863 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
6864 the destination of the ELSE part. */
6866 static void
6867 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
6868 basic_block second_head ATTRIBUTE_UNUSED,
6869 basic_block cond_bb, void *cond_e)
6871 gimple_stmt_iterator gsi;
6872 gimple new_cond_expr;
6873 tree cond_expr = (tree) cond_e;
6874 edge e0;
6876 /* Build new conditional expr */
6877 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
6878 NULL_TREE, NULL_TREE);
6880 /* Add new cond in cond_bb. */
6881 gsi = gsi_last_bb (cond_bb);
6882 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
6884 /* Adjust edges appropriately to connect new head with first head
6885 as well as second head. */
6886 e0 = single_succ_edge (cond_bb);
6887 e0->flags &= ~EDGE_FALLTHRU;
6888 e0->flags |= EDGE_FALSE_VALUE;
6891 struct cfg_hooks gimple_cfg_hooks = {
6892 "gimple",
6893 gimple_verify_flow_info,
6894 gimple_dump_bb, /* dump_bb */
6895 create_bb, /* create_basic_block */
6896 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
6897 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
6898 gimple_can_remove_branch_p, /* can_remove_branch_p */
6899 remove_bb, /* delete_basic_block */
6900 gimple_split_block, /* split_block */
6901 gimple_move_block_after, /* move_block_after */
6902 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
6903 gimple_merge_blocks, /* merge_blocks */
6904 gimple_predict_edge, /* predict_edge */
6905 gimple_predicted_by_p, /* predicted_by_p */
6906 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
6907 gimple_duplicate_bb, /* duplicate_block */
6908 gimple_split_edge, /* split_edge */
6909 gimple_make_forwarder_block, /* make_forward_block */
6910 NULL, /* tidy_fallthru_edge */
6911 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
6912 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
6913 gimple_flow_call_edges_add, /* flow_call_edges_add */
6914 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
6915 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
6916 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
6917 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
6918 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
6919 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
6920 flush_pending_stmts /* flush_pending_stmts */
6924 /* Split all critical edges. */
6926 static unsigned int
6927 split_critical_edges (void)
6929 basic_block bb;
6930 edge e;
6931 edge_iterator ei;
6933 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
6934 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
6935 mappings around the calls to split_edge. */
6936 start_recording_case_labels ();
6937 FOR_ALL_BB (bb)
6939 FOR_EACH_EDGE (e, ei, bb->succs)
6940 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
6942 split_edge (e);
6945 end_recording_case_labels ();
6946 return 0;
6949 struct gimple_opt_pass pass_split_crit_edges =
6952 GIMPLE_PASS,
6953 "crited", /* name */
6954 NULL, /* gate */
6955 split_critical_edges, /* execute */
6956 NULL, /* sub */
6957 NULL, /* next */
6958 0, /* static_pass_number */
6959 TV_TREE_SPLIT_EDGES, /* tv_id */
6960 PROP_cfg, /* properties required */
6961 PROP_no_crit_edges, /* properties_provided */
6962 0, /* properties_destroyed */
6963 0, /* todo_flags_start */
6964 TODO_dump_func /* todo_flags_finish */
6969 /* Build a ternary operation and gimplify it. Emit code before GSI.
6970 Return the gimple_val holding the result. */
6972 tree
6973 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
6974 tree type, tree a, tree b, tree c)
6976 tree ret;
6978 ret = fold_build3 (code, type, a, b, c);
6979 STRIP_NOPS (ret);
6981 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
6982 GSI_SAME_STMT);
6985 /* Build a binary operation and gimplify it. Emit code before GSI.
6986 Return the gimple_val holding the result. */
6988 tree
6989 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
6990 tree type, tree a, tree b)
6992 tree ret;
6994 ret = fold_build2 (code, type, a, b);
6995 STRIP_NOPS (ret);
6997 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
6998 GSI_SAME_STMT);
7001 /* Build a unary operation and gimplify it. Emit code before GSI.
7002 Return the gimple_val holding the result. */
7004 tree
7005 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7006 tree a)
7008 tree ret;
7010 ret = fold_build1 (code, type, a);
7011 STRIP_NOPS (ret);
7013 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7014 GSI_SAME_STMT);
7019 /* Emit return warnings. */
7021 static unsigned int
7022 execute_warn_function_return (void)
7024 source_location location;
7025 gimple last;
7026 edge e;
7027 edge_iterator ei;
7029 /* If we have a path to EXIT, then we do return. */
7030 if (TREE_THIS_VOLATILE (cfun->decl)
7031 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7033 location = UNKNOWN_LOCATION;
7034 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7036 last = last_stmt (e->src);
7037 if (gimple_code (last) == GIMPLE_RETURN
7038 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7039 break;
7041 if (location == UNKNOWN_LOCATION)
7042 location = cfun->function_end_locus;
7043 warning (0, "%H%<noreturn%> function does return", &location);
7046 /* If we see "return;" in some basic block, then we do reach the end
7047 without returning a value. */
7048 else if (warn_return_type
7049 && !TREE_NO_WARNING (cfun->decl)
7050 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7051 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7053 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7055 gimple last = last_stmt (e->src);
7056 if (gimple_code (last) == GIMPLE_RETURN
7057 && gimple_return_retval (last) == NULL
7058 && !gimple_no_warning_p (last))
7060 location = gimple_location (last);
7061 if (location == UNKNOWN_LOCATION)
7062 location = cfun->function_end_locus;
7063 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7064 TREE_NO_WARNING (cfun->decl) = 1;
7065 break;
7069 return 0;
7073 /* Given a basic block B which ends with a conditional and has
7074 precisely two successors, determine which of the edges is taken if
7075 the conditional is true and which is taken if the conditional is
7076 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7078 void
7079 extract_true_false_edges_from_block (basic_block b,
7080 edge *true_edge,
7081 edge *false_edge)
7083 edge e = EDGE_SUCC (b, 0);
7085 if (e->flags & EDGE_TRUE_VALUE)
7087 *true_edge = e;
7088 *false_edge = EDGE_SUCC (b, 1);
7090 else
7092 *false_edge = e;
7093 *true_edge = EDGE_SUCC (b, 1);
7097 struct gimple_opt_pass pass_warn_function_return =
7100 GIMPLE_PASS,
7101 NULL, /* name */
7102 NULL, /* gate */
7103 execute_warn_function_return, /* execute */
7104 NULL, /* sub */
7105 NULL, /* next */
7106 0, /* static_pass_number */
7107 0, /* tv_id */
7108 PROP_cfg, /* properties_required */
7109 0, /* properties_provided */
7110 0, /* properties_destroyed */
7111 0, /* todo_flags_start */
7112 0 /* todo_flags_finish */
7116 /* Emit noreturn warnings. */
7118 static unsigned int
7119 execute_warn_function_noreturn (void)
7121 if (warn_missing_noreturn
7122 && !TREE_THIS_VOLATILE (cfun->decl)
7123 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0
7124 && !lang_hooks.missing_noreturn_ok_p (cfun->decl))
7125 warning (OPT_Wmissing_noreturn, "%Jfunction might be possible candidate "
7126 "for attribute %<noreturn%>",
7127 cfun->decl);
7128 return 0;
7131 struct gimple_opt_pass pass_warn_function_noreturn =
7134 GIMPLE_PASS,
7135 NULL, /* name */
7136 NULL, /* gate */
7137 execute_warn_function_noreturn, /* execute */
7138 NULL, /* sub */
7139 NULL, /* next */
7140 0, /* static_pass_number */
7141 0, /* tv_id */
7142 PROP_cfg, /* properties_required */
7143 0, /* properties_provided */
7144 0, /* properties_destroyed */
7145 0, /* todo_flags_start */
7146 0 /* todo_flags_finish */