* c-parse.in (array_declarator): New. Handle C99 constructs.
[official-gcc.git] / gcc / reload1.c
blobccf7619df845b73ef29ad41fe0ae3f56e0b470f1
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "regs.h"
35 #include "basic-block.h"
36 #include "reload.h"
37 #include "recog.h"
38 #include "output.h"
39 #include "cselib.h"
40 #include "real.h"
41 #include "toplev.h"
43 #if !defined PREFERRED_STACK_BOUNDARY && defined STACK_BOUNDARY
44 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
45 #endif
47 /* This file contains the reload pass of the compiler, which is
48 run after register allocation has been done. It checks that
49 each insn is valid (operands required to be in registers really
50 are in registers of the proper class) and fixes up invalid ones
51 by copying values temporarily into registers for the insns
52 that need them.
54 The results of register allocation are described by the vector
55 reg_renumber; the insns still contain pseudo regs, but reg_renumber
56 can be used to find which hard reg, if any, a pseudo reg is in.
58 The technique we always use is to free up a few hard regs that are
59 called ``reload regs'', and for each place where a pseudo reg
60 must be in a hard reg, copy it temporarily into one of the reload regs.
62 Reload regs are allocated locally for every instruction that needs
63 reloads. When there are pseudos which are allocated to a register that
64 has been chosen as a reload reg, such pseudos must be ``spilled''.
65 This means that they go to other hard regs, or to stack slots if no other
66 available hard regs can be found. Spilling can invalidate more
67 insns, requiring additional need for reloads, so we must keep checking
68 until the process stabilizes.
70 For machines with different classes of registers, we must keep track
71 of the register class needed for each reload, and make sure that
72 we allocate enough reload registers of each class.
74 The file reload.c contains the code that checks one insn for
75 validity and reports the reloads that it needs. This file
76 is in charge of scanning the entire rtl code, accumulating the
77 reload needs, spilling, assigning reload registers to use for
78 fixing up each insn, and generating the new insns to copy values
79 into the reload registers. */
81 #ifndef REGISTER_MOVE_COST
82 #define REGISTER_MOVE_COST(m, x, y) 2
83 #endif
85 #ifndef LOCAL_REGNO
86 #define LOCAL_REGNO(REGNO) 0
87 #endif
89 /* During reload_as_needed, element N contains a REG rtx for the hard reg
90 into which reg N has been reloaded (perhaps for a previous insn). */
91 static rtx *reg_last_reload_reg;
93 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
94 for an output reload that stores into reg N. */
95 static char *reg_has_output_reload;
97 /* Indicates which hard regs are reload-registers for an output reload
98 in the current insn. */
99 static HARD_REG_SET reg_is_output_reload;
101 /* Element N is the constant value to which pseudo reg N is equivalent,
102 or zero if pseudo reg N is not equivalent to a constant.
103 find_reloads looks at this in order to replace pseudo reg N
104 with the constant it stands for. */
105 rtx *reg_equiv_constant;
107 /* Element N is a memory location to which pseudo reg N is equivalent,
108 prior to any register elimination (such as frame pointer to stack
109 pointer). Depending on whether or not it is a valid address, this value
110 is transferred to either reg_equiv_address or reg_equiv_mem. */
111 rtx *reg_equiv_memory_loc;
113 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
114 This is used when the address is not valid as a memory address
115 (because its displacement is too big for the machine.) */
116 rtx *reg_equiv_address;
118 /* Element N is the memory slot to which pseudo reg N is equivalent,
119 or zero if pseudo reg N is not equivalent to a memory slot. */
120 rtx *reg_equiv_mem;
122 /* Widest width in which each pseudo reg is referred to (via subreg). */
123 static unsigned int *reg_max_ref_width;
125 /* Element N is the list of insns that initialized reg N from its equivalent
126 constant or memory slot. */
127 static rtx *reg_equiv_init;
129 /* Vector to remember old contents of reg_renumber before spilling. */
130 static short *reg_old_renumber;
132 /* During reload_as_needed, element N contains the last pseudo regno reloaded
133 into hard register N. If that pseudo reg occupied more than one register,
134 reg_reloaded_contents points to that pseudo for each spill register in
135 use; all of these must remain set for an inheritance to occur. */
136 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
138 /* During reload_as_needed, element N contains the insn for which
139 hard register N was last used. Its contents are significant only
140 when reg_reloaded_valid is set for this register. */
141 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
143 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid */
144 static HARD_REG_SET reg_reloaded_valid;
145 /* Indicate if the register was dead at the end of the reload.
146 This is only valid if reg_reloaded_contents is set and valid. */
147 static HARD_REG_SET reg_reloaded_dead;
149 /* Number of spill-regs so far; number of valid elements of spill_regs. */
150 static int n_spills;
152 /* In parallel with spill_regs, contains REG rtx's for those regs.
153 Holds the last rtx used for any given reg, or 0 if it has never
154 been used for spilling yet. This rtx is reused, provided it has
155 the proper mode. */
156 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
158 /* In parallel with spill_regs, contains nonzero for a spill reg
159 that was stored after the last time it was used.
160 The precise value is the insn generated to do the store. */
161 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
163 /* This is the register that was stored with spill_reg_store. This is a
164 copy of reload_out / reload_out_reg when the value was stored; if
165 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
166 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
168 /* This table is the inverse mapping of spill_regs:
169 indexed by hard reg number,
170 it contains the position of that reg in spill_regs,
171 or -1 for something that is not in spill_regs.
173 ?!? This is no longer accurate. */
174 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
176 /* This reg set indicates registers that can't be used as spill registers for
177 the currently processed insn. These are the hard registers which are live
178 during the insn, but not allocated to pseudos, as well as fixed
179 registers. */
180 static HARD_REG_SET bad_spill_regs;
182 /* These are the hard registers that can't be used as spill register for any
183 insn. This includes registers used for user variables and registers that
184 we can't eliminate. A register that appears in this set also can't be used
185 to retry register allocation. */
186 static HARD_REG_SET bad_spill_regs_global;
188 /* Describes order of use of registers for reloading
189 of spilled pseudo-registers. `n_spills' is the number of
190 elements that are actually valid; new ones are added at the end.
192 Both spill_regs and spill_reg_order are used on two occasions:
193 once during find_reload_regs, where they keep track of the spill registers
194 for a single insn, but also during reload_as_needed where they show all
195 the registers ever used by reload. For the latter case, the information
196 is calculated during finish_spills. */
197 static short spill_regs[FIRST_PSEUDO_REGISTER];
199 /* This vector of reg sets indicates, for each pseudo, which hard registers
200 may not be used for retrying global allocation because the register was
201 formerly spilled from one of them. If we allowed reallocating a pseudo to
202 a register that it was already allocated to, reload might not
203 terminate. */
204 static HARD_REG_SET *pseudo_previous_regs;
206 /* This vector of reg sets indicates, for each pseudo, which hard
207 registers may not be used for retrying global allocation because they
208 are used as spill registers during one of the insns in which the
209 pseudo is live. */
210 static HARD_REG_SET *pseudo_forbidden_regs;
212 /* All hard regs that have been used as spill registers for any insn are
213 marked in this set. */
214 static HARD_REG_SET used_spill_regs;
216 /* Index of last register assigned as a spill register. We allocate in
217 a round-robin fashion. */
218 static int last_spill_reg;
220 /* Nonzero if indirect addressing is supported on the machine; this means
221 that spilling (REG n) does not require reloading it into a register in
222 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
223 value indicates the level of indirect addressing supported, e.g., two
224 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
225 a hard register. */
226 static char spill_indirect_levels;
228 /* Nonzero if indirect addressing is supported when the innermost MEM is
229 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
230 which these are valid is the same as spill_indirect_levels, above. */
231 char indirect_symref_ok;
233 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
234 char double_reg_address_ok;
236 /* Record the stack slot for each spilled hard register. */
237 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
239 /* Width allocated so far for that stack slot. */
240 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
242 /* Record which pseudos needed to be spilled. */
243 static regset_head spilled_pseudos;
245 /* Used for communication between order_regs_for_reload and count_pseudo.
246 Used to avoid counting one pseudo twice. */
247 static regset_head pseudos_counted;
249 /* First uid used by insns created by reload in this function.
250 Used in find_equiv_reg. */
251 int reload_first_uid;
253 /* Flag set by local-alloc or global-alloc if anything is live in
254 a call-clobbered reg across calls. */
255 int caller_save_needed;
257 /* Set to 1 while reload_as_needed is operating.
258 Required by some machines to handle any generated moves differently. */
259 int reload_in_progress = 0;
261 /* These arrays record the insn_code of insns that may be needed to
262 perform input and output reloads of special objects. They provide a
263 place to pass a scratch register. */
264 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
265 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
267 /* This obstack is used for allocation of rtl during register elimination.
268 The allocated storage can be freed once find_reloads has processed the
269 insn. */
270 struct obstack reload_obstack;
272 /* Points to the beginning of the reload_obstack. All insn_chain structures
273 are allocated first. */
274 char *reload_startobj;
276 /* The point after all insn_chain structures. Used to quickly deallocate
277 memory allocated in copy_reloads during calculate_needs_all_insns. */
278 char *reload_firstobj;
280 /* This points before all local rtl generated by register elimination.
281 Used to quickly free all memory after processing one insn. */
282 static char *reload_insn_firstobj;
284 #define obstack_chunk_alloc xmalloc
285 #define obstack_chunk_free free
287 /* List of insn_chain instructions, one for every insn that reload needs to
288 examine. */
289 struct insn_chain *reload_insn_chain;
291 #ifdef TREE_CODE
292 extern tree current_function_decl;
293 #else
294 extern union tree_node *current_function_decl;
295 #endif
297 /* List of all insns needing reloads. */
298 static struct insn_chain *insns_need_reload;
300 /* This structure is used to record information about register eliminations.
301 Each array entry describes one possible way of eliminating a register
302 in favor of another. If there is more than one way of eliminating a
303 particular register, the most preferred should be specified first. */
305 struct elim_table
307 int from; /* Register number to be eliminated. */
308 int to; /* Register number used as replacement. */
309 int initial_offset; /* Initial difference between values. */
310 int can_eliminate; /* Non-zero if this elimination can be done. */
311 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
312 insns made by reload. */
313 int offset; /* Current offset between the two regs. */
314 int previous_offset; /* Offset at end of previous insn. */
315 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
316 rtx from_rtx; /* REG rtx for the register to be eliminated.
317 We cannot simply compare the number since
318 we might then spuriously replace a hard
319 register corresponding to a pseudo
320 assigned to the reg to be eliminated. */
321 rtx to_rtx; /* REG rtx for the replacement. */
324 static struct elim_table *reg_eliminate = 0;
326 /* This is an intermediate structure to initialize the table. It has
327 exactly the members provided by ELIMINABLE_REGS. */
328 static struct elim_table_1
330 int from;
331 int to;
332 } reg_eliminate_1[] =
334 /* If a set of eliminable registers was specified, define the table from it.
335 Otherwise, default to the normal case of the frame pointer being
336 replaced by the stack pointer. */
338 #ifdef ELIMINABLE_REGS
339 ELIMINABLE_REGS;
340 #else
341 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
342 #endif
344 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
346 /* Record the number of pending eliminations that have an offset not equal
347 to their initial offset. If non-zero, we use a new copy of each
348 replacement result in any insns encountered. */
349 int num_not_at_initial_offset;
351 /* Count the number of registers that we may be able to eliminate. */
352 static int num_eliminable;
353 /* And the number of registers that are equivalent to a constant that
354 can be eliminated to frame_pointer / arg_pointer + constant. */
355 static int num_eliminable_invariants;
357 /* For each label, we record the offset of each elimination. If we reach
358 a label by more than one path and an offset differs, we cannot do the
359 elimination. This information is indexed by the number of the label.
360 The first table is an array of flags that records whether we have yet
361 encountered a label and the second table is an array of arrays, one
362 entry in the latter array for each elimination. */
364 static char *offsets_known_at;
365 static int (*offsets_at)[NUM_ELIMINABLE_REGS];
367 /* Number of labels in the current function. */
369 static int num_labels;
371 static void replace_pseudos_in_call_usage PARAMS((rtx *,
372 enum machine_mode,
373 rtx));
374 static void maybe_fix_stack_asms PARAMS ((void));
375 static void copy_reloads PARAMS ((struct insn_chain *));
376 static void calculate_needs_all_insns PARAMS ((int));
377 static int find_reg PARAMS ((struct insn_chain *, int));
378 static void find_reload_regs PARAMS ((struct insn_chain *));
379 static void select_reload_regs PARAMS ((void));
380 static void delete_caller_save_insns PARAMS ((void));
382 static void spill_failure PARAMS ((rtx, enum reg_class));
383 static void count_spilled_pseudo PARAMS ((int, int, int));
384 static void delete_dead_insn PARAMS ((rtx));
385 static void alter_reg PARAMS ((int, int));
386 static void set_label_offsets PARAMS ((rtx, rtx, int));
387 static void check_eliminable_occurrences PARAMS ((rtx));
388 static void elimination_effects PARAMS ((rtx, enum machine_mode));
389 static int eliminate_regs_in_insn PARAMS ((rtx, int));
390 static void update_eliminable_offsets PARAMS ((void));
391 static void mark_not_eliminable PARAMS ((rtx, rtx, void *));
392 static void set_initial_elim_offsets PARAMS ((void));
393 static void verify_initial_elim_offsets PARAMS ((void));
394 static void set_initial_label_offsets PARAMS ((void));
395 static void set_offsets_for_label PARAMS ((rtx));
396 static void init_elim_table PARAMS ((void));
397 static void update_eliminables PARAMS ((HARD_REG_SET *));
398 static void spill_hard_reg PARAMS ((unsigned int, int));
399 static int finish_spills PARAMS ((int));
400 static void ior_hard_reg_set PARAMS ((HARD_REG_SET *, HARD_REG_SET *));
401 static void scan_paradoxical_subregs PARAMS ((rtx));
402 static void count_pseudo PARAMS ((int));
403 static void order_regs_for_reload PARAMS ((struct insn_chain *));
404 static void reload_as_needed PARAMS ((int));
405 static void forget_old_reloads_1 PARAMS ((rtx, rtx, void *));
406 static int reload_reg_class_lower PARAMS ((const PTR, const PTR));
407 static void mark_reload_reg_in_use PARAMS ((unsigned int, int,
408 enum reload_type,
409 enum machine_mode));
410 static void clear_reload_reg_in_use PARAMS ((unsigned int, int,
411 enum reload_type,
412 enum machine_mode));
413 static int reload_reg_free_p PARAMS ((unsigned int, int,
414 enum reload_type));
415 static int reload_reg_free_for_value_p PARAMS ((int, int, int,
416 enum reload_type,
417 rtx, rtx, int, int));
418 static int free_for_value_p PARAMS ((int, enum machine_mode, int,
419 enum reload_type, rtx, rtx,
420 int, int));
421 static int reload_reg_reaches_end_p PARAMS ((unsigned int, int,
422 enum reload_type));
423 static int allocate_reload_reg PARAMS ((struct insn_chain *, int,
424 int));
425 static int conflicts_with_override PARAMS ((rtx));
426 static void failed_reload PARAMS ((rtx, int));
427 static int set_reload_reg PARAMS ((int, int));
428 static void choose_reload_regs_init PARAMS ((struct insn_chain *, rtx *));
429 static void choose_reload_regs PARAMS ((struct insn_chain *));
430 static void merge_assigned_reloads PARAMS ((rtx));
431 static void emit_input_reload_insns PARAMS ((struct insn_chain *,
432 struct reload *, rtx, int));
433 static void emit_output_reload_insns PARAMS ((struct insn_chain *,
434 struct reload *, int));
435 static void do_input_reload PARAMS ((struct insn_chain *,
436 struct reload *, int));
437 static void do_output_reload PARAMS ((struct insn_chain *,
438 struct reload *, int));
439 static void emit_reload_insns PARAMS ((struct insn_chain *));
440 static void delete_output_reload PARAMS ((rtx, int, int));
441 static void delete_address_reloads PARAMS ((rtx, rtx));
442 static void delete_address_reloads_1 PARAMS ((rtx, rtx, rtx));
443 static rtx inc_for_reload PARAMS ((rtx, rtx, rtx, int));
444 static int constraint_accepts_reg_p PARAMS ((const char *, rtx));
445 static void reload_cse_regs_1 PARAMS ((rtx));
446 static int reload_cse_noop_set_p PARAMS ((rtx));
447 static int reload_cse_simplify_set PARAMS ((rtx, rtx));
448 static int reload_cse_simplify_operands PARAMS ((rtx));
449 static void reload_combine PARAMS ((void));
450 static void reload_combine_note_use PARAMS ((rtx *, rtx));
451 static void reload_combine_note_store PARAMS ((rtx, rtx, void *));
452 static void reload_cse_move2add PARAMS ((rtx));
453 static void move2add_note_store PARAMS ((rtx, rtx, void *));
454 #ifdef AUTO_INC_DEC
455 static void add_auto_inc_notes PARAMS ((rtx, rtx));
456 #endif
457 static void copy_eh_notes PARAMS ((rtx, rtx));
458 static HOST_WIDE_INT sext_for_mode PARAMS ((enum machine_mode,
459 HOST_WIDE_INT));
460 static void failed_reload PARAMS ((rtx, int));
461 static int set_reload_reg PARAMS ((int, int));
462 static void reload_cse_delete_noop_set PARAMS ((rtx, rtx));
463 static void reload_cse_simplify PARAMS ((rtx));
464 extern void dump_needs PARAMS ((struct insn_chain *));
466 /* Initialize the reload pass once per compilation. */
468 void
469 init_reload ()
471 register int i;
473 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
474 Set spill_indirect_levels to the number of levels such addressing is
475 permitted, zero if it is not permitted at all. */
477 register rtx tem
478 = gen_rtx_MEM (Pmode,
479 gen_rtx_PLUS (Pmode,
480 gen_rtx_REG (Pmode,
481 LAST_VIRTUAL_REGISTER + 1),
482 GEN_INT (4)));
483 spill_indirect_levels = 0;
485 while (memory_address_p (QImode, tem))
487 spill_indirect_levels++;
488 tem = gen_rtx_MEM (Pmode, tem);
491 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
493 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
494 indirect_symref_ok = memory_address_p (QImode, tem);
496 /* See if reg+reg is a valid (and offsettable) address. */
498 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
500 tem = gen_rtx_PLUS (Pmode,
501 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
502 gen_rtx_REG (Pmode, i));
504 /* This way, we make sure that reg+reg is an offsettable address. */
505 tem = plus_constant (tem, 4);
507 if (memory_address_p (QImode, tem))
509 double_reg_address_ok = 1;
510 break;
514 /* Initialize obstack for our rtl allocation. */
515 gcc_obstack_init (&reload_obstack);
516 reload_startobj = (char *) obstack_alloc (&reload_obstack, 0);
518 INIT_REG_SET (&spilled_pseudos);
519 INIT_REG_SET (&pseudos_counted);
522 /* List of insn chains that are currently unused. */
523 static struct insn_chain *unused_insn_chains = 0;
525 /* Allocate an empty insn_chain structure. */
526 struct insn_chain *
527 new_insn_chain ()
529 struct insn_chain *c;
531 if (unused_insn_chains == 0)
533 c = (struct insn_chain *)
534 obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
535 INIT_REG_SET (&c->live_throughout);
536 INIT_REG_SET (&c->dead_or_set);
538 else
540 c = unused_insn_chains;
541 unused_insn_chains = c->next;
543 c->is_caller_save_insn = 0;
544 c->need_operand_change = 0;
545 c->need_reload = 0;
546 c->need_elim = 0;
547 return c;
550 /* Small utility function to set all regs in hard reg set TO which are
551 allocated to pseudos in regset FROM. */
553 void
554 compute_use_by_pseudos (to, from)
555 HARD_REG_SET *to;
556 regset from;
558 unsigned int regno;
560 EXECUTE_IF_SET_IN_REG_SET
561 (from, FIRST_PSEUDO_REGISTER, regno,
563 int r = reg_renumber[regno];
564 int nregs;
566 if (r < 0)
568 /* reload_combine uses the information from
569 BASIC_BLOCK->global_live_at_start, which might still
570 contain registers that have not actually been allocated
571 since they have an equivalence. */
572 if (! reload_completed)
573 abort ();
575 else
577 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
578 while (nregs-- > 0)
579 SET_HARD_REG_BIT (*to, r + nregs);
584 /* Replace all pseudos found in LOC with their corresponding
585 equivalences. */
587 static void
588 replace_pseudos_in_call_usage (loc, mem_mode, usage)
589 rtx *loc;
590 enum machine_mode mem_mode;
591 rtx usage;
593 rtx x = *loc;
594 enum rtx_code code;
595 const char *fmt;
596 int i, j;
598 if (! x)
599 return;
601 code = GET_CODE (x);
602 if (code == REG)
604 int regno = REGNO (x);
606 if (regno < FIRST_PSEUDO_REGISTER)
607 return;
609 x = eliminate_regs (x, mem_mode, usage);
610 if (x != *loc)
612 *loc = x;
613 replace_pseudos_in_call_usage (loc, mem_mode, usage);
614 return;
617 if (reg_equiv_constant[regno])
618 *loc = reg_equiv_constant[regno];
619 else if (reg_equiv_mem[regno])
620 *loc = reg_equiv_mem[regno];
621 else if (reg_equiv_address[regno])
622 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
623 else if (GET_CODE (regno_reg_rtx[regno]) != REG
624 || REGNO (regno_reg_rtx[regno]) != regno)
625 *loc = regno_reg_rtx[regno];
626 else
627 abort ();
629 return;
631 else if (code == MEM)
633 replace_pseudos_in_call_usage (& XEXP (x, 0), GET_MODE (x), usage);
634 return;
637 /* Process each of our operands recursively. */
638 fmt = GET_RTX_FORMAT (code);
639 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
640 if (*fmt == 'e')
641 replace_pseudos_in_call_usage (&XEXP (x, i), mem_mode, usage);
642 else if (*fmt == 'E')
643 for (j = 0; j < XVECLEN (x, i); j++)
644 replace_pseudos_in_call_usage (& XVECEXP (x, i, j), mem_mode, usage);
648 /* Global variables used by reload and its subroutines. */
650 /* Set during calculate_needs if an insn needs register elimination. */
651 static int something_needs_elimination;
652 /* Set during calculate_needs if an insn needs an operand changed. */
653 int something_needs_operands_changed;
655 /* Nonzero means we couldn't get enough spill regs. */
656 static int failure;
658 /* Main entry point for the reload pass.
660 FIRST is the first insn of the function being compiled.
662 GLOBAL nonzero means we were called from global_alloc
663 and should attempt to reallocate any pseudoregs that we
664 displace from hard regs we will use for reloads.
665 If GLOBAL is zero, we do not have enough information to do that,
666 so any pseudo reg that is spilled must go to the stack.
668 Return value is nonzero if reload failed
669 and we must not do any more for this function. */
672 reload (first, global)
673 rtx first;
674 int global;
676 register int i;
677 register rtx insn;
678 register struct elim_table *ep;
680 /* The two pointers used to track the true location of the memory used
681 for label offsets. */
682 char *real_known_ptr = NULL;
683 int (*real_at_ptr)[NUM_ELIMINABLE_REGS];
685 /* Make sure even insns with volatile mem refs are recognizable. */
686 init_recog ();
688 failure = 0;
690 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
692 /* Make sure that the last insn in the chain
693 is not something that needs reloading. */
694 emit_note (NULL, NOTE_INSN_DELETED);
696 /* Enable find_equiv_reg to distinguish insns made by reload. */
697 reload_first_uid = get_max_uid ();
699 #ifdef SECONDARY_MEMORY_NEEDED
700 /* Initialize the secondary memory table. */
701 clear_secondary_mem ();
702 #endif
704 /* We don't have a stack slot for any spill reg yet. */
705 memset ((char *) spill_stack_slot, 0, sizeof spill_stack_slot);
706 memset ((char *) spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
708 /* Initialize the save area information for caller-save, in case some
709 are needed. */
710 init_save_areas ();
712 /* Compute which hard registers are now in use
713 as homes for pseudo registers.
714 This is done here rather than (eg) in global_alloc
715 because this point is reached even if not optimizing. */
716 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
717 mark_home_live (i);
719 /* A function that receives a nonlocal goto must save all call-saved
720 registers. */
721 if (current_function_has_nonlocal_label)
722 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
723 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
724 regs_ever_live[i] = 1;
726 /* Find all the pseudo registers that didn't get hard regs
727 but do have known equivalent constants or memory slots.
728 These include parameters (known equivalent to parameter slots)
729 and cse'd or loop-moved constant memory addresses.
731 Record constant equivalents in reg_equiv_constant
732 so they will be substituted by find_reloads.
733 Record memory equivalents in reg_mem_equiv so they can
734 be substituted eventually by altering the REG-rtx's. */
736 reg_equiv_constant = (rtx *) xcalloc (max_regno, sizeof (rtx));
737 reg_equiv_memory_loc = (rtx *) xcalloc (max_regno, sizeof (rtx));
738 reg_equiv_mem = (rtx *) xcalloc (max_regno, sizeof (rtx));
739 reg_equiv_init = (rtx *) xcalloc (max_regno, sizeof (rtx));
740 reg_equiv_address = (rtx *) xcalloc (max_regno, sizeof (rtx));
741 reg_max_ref_width = (unsigned int *) xcalloc (max_regno, sizeof (int));
742 reg_old_renumber = (short *) xcalloc (max_regno, sizeof (short));
743 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
744 pseudo_forbidden_regs
745 = (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
746 pseudo_previous_regs
747 = (HARD_REG_SET *) xcalloc (max_regno, sizeof (HARD_REG_SET));
749 CLEAR_HARD_REG_SET (bad_spill_regs_global);
751 /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
752 Also find all paradoxical subregs and find largest such for each pseudo.
753 On machines with small register classes, record hard registers that
754 are used for user variables. These can never be used for spills.
755 Also look for a "constant" NOTE_INSN_SETJMP. This means that all
756 caller-saved registers must be marked live. */
758 num_eliminable_invariants = 0;
759 for (insn = first; insn; insn = NEXT_INSN (insn))
761 rtx set = single_set (insn);
763 if (GET_CODE (insn) == NOTE && CONST_CALL_P (insn)
764 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
765 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
766 if (! call_used_regs[i])
767 regs_ever_live[i] = 1;
769 if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
771 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
772 if (note
773 #ifdef LEGITIMATE_PIC_OPERAND_P
774 && (! function_invariant_p (XEXP (note, 0))
775 || ! flag_pic
776 || LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0)))
777 #endif
780 rtx x = XEXP (note, 0);
781 i = REGNO (SET_DEST (set));
782 if (i > LAST_VIRTUAL_REGISTER)
784 if (GET_CODE (x) == MEM)
786 /* If the operand is a PLUS, the MEM may be shared,
787 so make sure we have an unshared copy here. */
788 if (GET_CODE (XEXP (x, 0)) == PLUS)
789 x = copy_rtx (x);
791 reg_equiv_memory_loc[i] = x;
793 else if (function_invariant_p (x))
795 if (GET_CODE (x) == PLUS)
797 /* This is PLUS of frame pointer and a constant,
798 and might be shared. Unshare it. */
799 reg_equiv_constant[i] = copy_rtx (x);
800 num_eliminable_invariants++;
802 else if (x == frame_pointer_rtx
803 || x == arg_pointer_rtx)
805 reg_equiv_constant[i] = x;
806 num_eliminable_invariants++;
808 else if (LEGITIMATE_CONSTANT_P (x))
809 reg_equiv_constant[i] = x;
810 else
811 reg_equiv_memory_loc[i]
812 = force_const_mem (GET_MODE (SET_DEST (set)), x);
814 else
815 continue;
817 /* If this register is being made equivalent to a MEM
818 and the MEM is not SET_SRC, the equivalencing insn
819 is one with the MEM as a SET_DEST and it occurs later.
820 So don't mark this insn now. */
821 if (GET_CODE (x) != MEM
822 || rtx_equal_p (SET_SRC (set), x))
823 reg_equiv_init[i]
824 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
829 /* If this insn is setting a MEM from a register equivalent to it,
830 this is the equivalencing insn. */
831 else if (set && GET_CODE (SET_DEST (set)) == MEM
832 && GET_CODE (SET_SRC (set)) == REG
833 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
834 && rtx_equal_p (SET_DEST (set),
835 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
836 reg_equiv_init[REGNO (SET_SRC (set))]
837 = gen_rtx_INSN_LIST (VOIDmode, insn,
838 reg_equiv_init[REGNO (SET_SRC (set))]);
840 if (INSN_P (insn))
841 scan_paradoxical_subregs (PATTERN (insn));
844 init_elim_table ();
846 num_labels = max_label_num () - get_first_label_num ();
848 /* Allocate the tables used to store offset information at labels. */
849 /* We used to use alloca here, but the size of what it would try to
850 allocate would occasionally cause it to exceed the stack limit and
851 cause a core dump. */
852 real_known_ptr = xmalloc (num_labels);
853 real_at_ptr
854 = (int (*)[NUM_ELIMINABLE_REGS])
855 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
857 offsets_known_at = real_known_ptr - get_first_label_num ();
858 offsets_at
859 = (int (*)[NUM_ELIMINABLE_REGS]) (real_at_ptr - get_first_label_num ());
861 /* Alter each pseudo-reg rtx to contain its hard reg number.
862 Assign stack slots to the pseudos that lack hard regs or equivalents.
863 Do not touch virtual registers. */
865 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
866 alter_reg (i, -1);
868 /* If we have some registers we think can be eliminated, scan all insns to
869 see if there is an insn that sets one of these registers to something
870 other than itself plus a constant. If so, the register cannot be
871 eliminated. Doing this scan here eliminates an extra pass through the
872 main reload loop in the most common case where register elimination
873 cannot be done. */
874 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
875 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
876 || GET_CODE (insn) == CALL_INSN)
877 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
879 maybe_fix_stack_asms ();
881 insns_need_reload = 0;
882 something_needs_elimination = 0;
884 /* Initialize to -1, which means take the first spill register. */
885 last_spill_reg = -1;
887 /* Spill any hard regs that we know we can't eliminate. */
888 CLEAR_HARD_REG_SET (used_spill_regs);
889 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
890 if (! ep->can_eliminate)
891 spill_hard_reg (ep->from, 1);
893 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
894 if (frame_pointer_needed)
895 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
896 #endif
897 finish_spills (global);
899 /* From now on, we may need to generate moves differently. We may also
900 allow modifications of insns which cause them to not be recognized.
901 Any such modifications will be cleaned up during reload itself. */
902 reload_in_progress = 1;
904 /* This loop scans the entire function each go-round
905 and repeats until one repetition spills no additional hard regs. */
906 for (;;)
908 int something_changed;
909 int did_spill;
911 HOST_WIDE_INT starting_frame_size;
913 /* Round size of stack frame to stack_alignment_needed. This must be done
914 here because the stack size may be a part of the offset computation
915 for register elimination, and there might have been new stack slots
916 created in the last iteration of this loop. */
917 if (cfun->stack_alignment_needed)
918 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
920 starting_frame_size = get_frame_size ();
922 set_initial_elim_offsets ();
923 set_initial_label_offsets ();
925 /* For each pseudo register that has an equivalent location defined,
926 try to eliminate any eliminable registers (such as the frame pointer)
927 assuming initial offsets for the replacement register, which
928 is the normal case.
930 If the resulting location is directly addressable, substitute
931 the MEM we just got directly for the old REG.
933 If it is not addressable but is a constant or the sum of a hard reg
934 and constant, it is probably not addressable because the constant is
935 out of range, in that case record the address; we will generate
936 hairy code to compute the address in a register each time it is
937 needed. Similarly if it is a hard register, but one that is not
938 valid as an address register.
940 If the location is not addressable, but does not have one of the
941 above forms, assign a stack slot. We have to do this to avoid the
942 potential of producing lots of reloads if, e.g., a location involves
943 a pseudo that didn't get a hard register and has an equivalent memory
944 location that also involves a pseudo that didn't get a hard register.
946 Perhaps at some point we will improve reload_when_needed handling
947 so this problem goes away. But that's very hairy. */
949 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
950 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
952 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
954 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
955 XEXP (x, 0)))
956 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
957 else if (CONSTANT_P (XEXP (x, 0))
958 || (GET_CODE (XEXP (x, 0)) == REG
959 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
960 || (GET_CODE (XEXP (x, 0)) == PLUS
961 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
962 && (REGNO (XEXP (XEXP (x, 0), 0))
963 < FIRST_PSEUDO_REGISTER)
964 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
965 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
966 else
968 /* Make a new stack slot. Then indicate that something
969 changed so we go back and recompute offsets for
970 eliminable registers because the allocation of memory
971 below might change some offset. reg_equiv_{mem,address}
972 will be set up for this pseudo on the next pass around
973 the loop. */
974 reg_equiv_memory_loc[i] = 0;
975 reg_equiv_init[i] = 0;
976 alter_reg (i, -1);
980 if (caller_save_needed)
981 setup_save_areas ();
983 /* If we allocated another stack slot, redo elimination bookkeeping. */
984 if (starting_frame_size != get_frame_size ())
985 continue;
987 if (caller_save_needed)
989 save_call_clobbered_regs ();
990 /* That might have allocated new insn_chain structures. */
991 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
994 calculate_needs_all_insns (global);
996 CLEAR_REG_SET (&spilled_pseudos);
997 did_spill = 0;
999 something_changed = 0;
1001 /* If we allocated any new memory locations, make another pass
1002 since it might have changed elimination offsets. */
1003 if (starting_frame_size != get_frame_size ())
1004 something_changed = 1;
1007 HARD_REG_SET to_spill;
1008 CLEAR_HARD_REG_SET (to_spill);
1009 update_eliminables (&to_spill);
1010 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1011 if (TEST_HARD_REG_BIT (to_spill, i))
1013 spill_hard_reg (i, 1);
1014 did_spill = 1;
1016 /* Regardless of the state of spills, if we previously had
1017 a register that we thought we could eliminate, but no can
1018 not eliminate, we must run another pass.
1020 Consider pseudos which have an entry in reg_equiv_* which
1021 reference an eliminable register. We must make another pass
1022 to update reg_equiv_* so that we do not substitute in the
1023 old value from when we thought the elimination could be
1024 performed. */
1025 something_changed = 1;
1029 select_reload_regs ();
1030 if (failure)
1031 goto failed;
1033 if (insns_need_reload != 0 || did_spill)
1034 something_changed |= finish_spills (global);
1036 if (! something_changed)
1037 break;
1039 if (caller_save_needed)
1040 delete_caller_save_insns ();
1042 obstack_free (&reload_obstack, reload_firstobj);
1045 /* If global-alloc was run, notify it of any register eliminations we have
1046 done. */
1047 if (global)
1048 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1049 if (ep->can_eliminate)
1050 mark_elimination (ep->from, ep->to);
1052 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1053 If that insn didn't set the register (i.e., it copied the register to
1054 memory), just delete that insn instead of the equivalencing insn plus
1055 anything now dead. If we call delete_dead_insn on that insn, we may
1056 delete the insn that actually sets the register if the register dies
1057 there and that is incorrect. */
1059 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1061 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1063 rtx list;
1064 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1066 rtx equiv_insn = XEXP (list, 0);
1067 if (GET_CODE (equiv_insn) == NOTE)
1068 continue;
1069 if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1070 delete_dead_insn (equiv_insn);
1071 else
1073 PUT_CODE (equiv_insn, NOTE);
1074 NOTE_SOURCE_FILE (equiv_insn) = 0;
1075 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1081 /* Use the reload registers where necessary
1082 by generating move instructions to move the must-be-register
1083 values into or out of the reload registers. */
1085 if (insns_need_reload != 0 || something_needs_elimination
1086 || something_needs_operands_changed)
1088 HOST_WIDE_INT old_frame_size = get_frame_size ();
1090 reload_as_needed (global);
1092 if (old_frame_size != get_frame_size ())
1093 abort ();
1095 if (num_eliminable)
1096 verify_initial_elim_offsets ();
1099 /* If we were able to eliminate the frame pointer, show that it is no
1100 longer live at the start of any basic block. If it ls live by
1101 virtue of being in a pseudo, that pseudo will be marked live
1102 and hence the frame pointer will be known to be live via that
1103 pseudo. */
1105 if (! frame_pointer_needed)
1106 for (i = 0; i < n_basic_blocks; i++)
1107 CLEAR_REGNO_REG_SET (BASIC_BLOCK (i)->global_live_at_start,
1108 HARD_FRAME_POINTER_REGNUM);
1110 /* Come here (with failure set nonzero) if we can't get enough spill regs
1111 and we decide not to abort about it. */
1112 failed:
1114 CLEAR_REG_SET (&spilled_pseudos);
1115 reload_in_progress = 0;
1117 /* Now eliminate all pseudo regs by modifying them into
1118 their equivalent memory references.
1119 The REG-rtx's for the pseudos are modified in place,
1120 so all insns that used to refer to them now refer to memory.
1122 For a reg that has a reg_equiv_address, all those insns
1123 were changed by reloading so that no insns refer to it any longer;
1124 but the DECL_RTL of a variable decl may refer to it,
1125 and if so this causes the debugging info to mention the variable. */
1127 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1129 rtx addr = 0;
1130 int in_struct = 0;
1131 int is_scalar = 0;
1132 int is_readonly = 0;
1134 if (reg_equiv_memory_loc[i])
1136 in_struct = MEM_IN_STRUCT_P (reg_equiv_memory_loc[i]);
1137 is_scalar = MEM_SCALAR_P (reg_equiv_memory_loc[i]);
1138 is_readonly = RTX_UNCHANGING_P (reg_equiv_memory_loc[i]);
1141 if (reg_equiv_mem[i])
1142 addr = XEXP (reg_equiv_mem[i], 0);
1144 if (reg_equiv_address[i])
1145 addr = reg_equiv_address[i];
1147 if (addr)
1149 if (reg_renumber[i] < 0)
1151 rtx reg = regno_reg_rtx[i];
1152 PUT_CODE (reg, MEM);
1153 XEXP (reg, 0) = addr;
1154 REG_USERVAR_P (reg) = 0;
1155 RTX_UNCHANGING_P (reg) = is_readonly;
1156 MEM_IN_STRUCT_P (reg) = in_struct;
1157 MEM_SCALAR_P (reg) = is_scalar;
1158 /* We have no alias information about this newly created
1159 MEM. */
1160 MEM_ALIAS_SET (reg) = 0;
1162 else if (reg_equiv_mem[i])
1163 XEXP (reg_equiv_mem[i], 0) = addr;
1167 /* We must set reload_completed now since the cleanup_subreg_operands call
1168 below will re-recognize each insn and reload may have generated insns
1169 which are only valid during and after reload. */
1170 reload_completed = 1;
1172 /* Make a pass over all the insns and delete all USEs which we inserted
1173 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1174 notes. Delete all CLOBBER insns that don't refer to the return value
1175 and simplify (subreg (reg)) operands. Also remove all REG_RETVAL and
1176 REG_LIBCALL notes since they are no longer useful or accurate. Strip
1177 and regenerate REG_INC notes that may have been moved around. */
1179 for (insn = first; insn; insn = NEXT_INSN (insn))
1180 if (INSN_P (insn))
1182 rtx *pnote;
1184 if (GET_CODE (insn) == CALL_INSN)
1185 replace_pseudos_in_call_usage (& CALL_INSN_FUNCTION_USAGE (insn),
1186 VOIDmode,
1187 CALL_INSN_FUNCTION_USAGE (insn));
1189 if ((GET_CODE (PATTERN (insn)) == USE
1190 && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1191 || (GET_CODE (PATTERN (insn)) == CLOBBER
1192 && (GET_CODE (XEXP (PATTERN (insn), 0)) != REG
1193 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1195 PUT_CODE (insn, NOTE);
1196 NOTE_SOURCE_FILE (insn) = 0;
1197 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1198 continue;
1201 pnote = &REG_NOTES (insn);
1202 while (*pnote != 0)
1204 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1205 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1206 || REG_NOTE_KIND (*pnote) == REG_INC
1207 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1208 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1209 *pnote = XEXP (*pnote, 1);
1210 else
1211 pnote = &XEXP (*pnote, 1);
1214 #ifdef AUTO_INC_DEC
1215 add_auto_inc_notes (insn, PATTERN (insn));
1216 #endif
1218 /* And simplify (subreg (reg)) if it appears as an operand. */
1219 cleanup_subreg_operands (insn);
1222 /* If we are doing stack checking, give a warning if this function's
1223 frame size is larger than we expect. */
1224 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1226 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1227 static int verbose_warned = 0;
1229 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1230 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1231 size += UNITS_PER_WORD;
1233 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1235 warning ("frame size too large for reliable stack checking");
1236 if (! verbose_warned)
1238 warning ("try reducing the number of local variables");
1239 verbose_warned = 1;
1244 /* Indicate that we no longer have known memory locations or constants. */
1245 if (reg_equiv_constant)
1246 free (reg_equiv_constant);
1247 reg_equiv_constant = 0;
1248 if (reg_equiv_memory_loc)
1249 free (reg_equiv_memory_loc);
1250 reg_equiv_memory_loc = 0;
1252 if (real_known_ptr)
1253 free (real_known_ptr);
1254 if (real_at_ptr)
1255 free (real_at_ptr);
1257 free (reg_equiv_mem);
1258 free (reg_equiv_init);
1259 free (reg_equiv_address);
1260 free (reg_max_ref_width);
1261 free (reg_old_renumber);
1262 free (pseudo_previous_regs);
1263 free (pseudo_forbidden_regs);
1265 CLEAR_HARD_REG_SET (used_spill_regs);
1266 for (i = 0; i < n_spills; i++)
1267 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1269 /* Free all the insn_chain structures at once. */
1270 obstack_free (&reload_obstack, reload_startobj);
1271 unused_insn_chains = 0;
1273 return failure;
1276 /* Yet another special case. Unfortunately, reg-stack forces people to
1277 write incorrect clobbers in asm statements. These clobbers must not
1278 cause the register to appear in bad_spill_regs, otherwise we'll call
1279 fatal_insn later. We clear the corresponding regnos in the live
1280 register sets to avoid this.
1281 The whole thing is rather sick, I'm afraid. */
1283 static void
1284 maybe_fix_stack_asms ()
1286 #ifdef STACK_REGS
1287 const char *constraints[MAX_RECOG_OPERANDS];
1288 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1289 struct insn_chain *chain;
1291 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1293 int i, noperands;
1294 HARD_REG_SET clobbered, allowed;
1295 rtx pat;
1297 if (! INSN_P (chain->insn)
1298 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1299 continue;
1300 pat = PATTERN (chain->insn);
1301 if (GET_CODE (pat) != PARALLEL)
1302 continue;
1304 CLEAR_HARD_REG_SET (clobbered);
1305 CLEAR_HARD_REG_SET (allowed);
1307 /* First, make a mask of all stack regs that are clobbered. */
1308 for (i = 0; i < XVECLEN (pat, 0); i++)
1310 rtx t = XVECEXP (pat, 0, i);
1311 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1312 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1315 /* Get the operand values and constraints out of the insn. */
1316 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1317 constraints, operand_mode);
1319 /* For every operand, see what registers are allowed. */
1320 for (i = 0; i < noperands; i++)
1322 const char *p = constraints[i];
1323 /* For every alternative, we compute the class of registers allowed
1324 for reloading in CLS, and merge its contents into the reg set
1325 ALLOWED. */
1326 int cls = (int) NO_REGS;
1328 for (;;)
1330 char c = *p++;
1332 if (c == '\0' || c == ',' || c == '#')
1334 /* End of one alternative - mark the regs in the current
1335 class, and reset the class. */
1336 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1337 cls = NO_REGS;
1338 if (c == '#')
1339 do {
1340 c = *p++;
1341 } while (c != '\0' && c != ',');
1342 if (c == '\0')
1343 break;
1344 continue;
1347 switch (c)
1349 case '=': case '+': case '*': case '%': case '?': case '!':
1350 case '0': case '1': case '2': case '3': case '4': case 'm':
1351 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1352 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1353 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1354 case 'P':
1355 break;
1357 case 'p':
1358 cls = (int) reg_class_subunion[cls][(int) BASE_REG_CLASS];
1359 break;
1361 case 'g':
1362 case 'r':
1363 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1364 break;
1366 default:
1367 cls = (int) reg_class_subunion[cls][(int) REG_CLASS_FROM_LETTER (c)];
1372 /* Those of the registers which are clobbered, but allowed by the
1373 constraints, must be usable as reload registers. So clear them
1374 out of the life information. */
1375 AND_HARD_REG_SET (allowed, clobbered);
1376 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1377 if (TEST_HARD_REG_BIT (allowed, i))
1379 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1380 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1384 #endif
1387 /* Copy the global variables n_reloads and rld into the corresponding elts
1388 of CHAIN. */
1389 static void
1390 copy_reloads (chain)
1391 struct insn_chain *chain;
1393 chain->n_reloads = n_reloads;
1394 chain->rld
1395 = (struct reload *) obstack_alloc (&reload_obstack,
1396 n_reloads * sizeof (struct reload));
1397 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1398 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1401 /* Walk the chain of insns, and determine for each whether it needs reloads
1402 and/or eliminations. Build the corresponding insns_need_reload list, and
1403 set something_needs_elimination as appropriate. */
1404 static void
1405 calculate_needs_all_insns (global)
1406 int global;
1408 struct insn_chain **pprev_reload = &insns_need_reload;
1409 struct insn_chain *chain, *next = 0;
1411 something_needs_elimination = 0;
1413 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1414 for (chain = reload_insn_chain; chain != 0; chain = next)
1416 rtx insn = chain->insn;
1418 next = chain->next;
1420 /* Clear out the shortcuts. */
1421 chain->n_reloads = 0;
1422 chain->need_elim = 0;
1423 chain->need_reload = 0;
1424 chain->need_operand_change = 0;
1426 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1427 include REG_LABEL), we need to see what effects this has on the
1428 known offsets at labels. */
1430 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
1431 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1432 set_label_offsets (insn, insn, 0);
1434 if (INSN_P (insn))
1436 rtx old_body = PATTERN (insn);
1437 int old_code = INSN_CODE (insn);
1438 rtx old_notes = REG_NOTES (insn);
1439 int did_elimination = 0;
1440 int operands_changed = 0;
1441 rtx set = single_set (insn);
1443 /* Skip insns that only set an equivalence. */
1444 if (set && GET_CODE (SET_DEST (set)) == REG
1445 && reg_renumber[REGNO (SET_DEST (set))] < 0
1446 && reg_equiv_constant[REGNO (SET_DEST (set))])
1447 continue;
1449 /* If needed, eliminate any eliminable registers. */
1450 if (num_eliminable || num_eliminable_invariants)
1451 did_elimination = eliminate_regs_in_insn (insn, 0);
1453 /* Analyze the instruction. */
1454 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1455 global, spill_reg_order);
1457 /* If a no-op set needs more than one reload, this is likely
1458 to be something that needs input address reloads. We
1459 can't get rid of this cleanly later, and it is of no use
1460 anyway, so discard it now.
1461 We only do this when expensive_optimizations is enabled,
1462 since this complements reload inheritance / output
1463 reload deletion, and it can make debugging harder. */
1464 if (flag_expensive_optimizations && n_reloads > 1)
1466 rtx set = single_set (insn);
1467 if (set
1468 && SET_SRC (set) == SET_DEST (set)
1469 && GET_CODE (SET_SRC (set)) == REG
1470 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1472 PUT_CODE (insn, NOTE);
1473 NOTE_SOURCE_FILE (insn) = 0;
1474 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1475 /* Delete it from the reload chain */
1476 if (chain->prev)
1477 chain->prev->next = next;
1478 else
1479 reload_insn_chain = next;
1480 if (next)
1481 next->prev = chain->prev;
1482 chain->next = unused_insn_chains;
1483 unused_insn_chains = chain;
1484 continue;
1487 if (num_eliminable)
1488 update_eliminable_offsets ();
1490 /* Remember for later shortcuts which insns had any reloads or
1491 register eliminations. */
1492 chain->need_elim = did_elimination;
1493 chain->need_reload = n_reloads > 0;
1494 chain->need_operand_change = operands_changed;
1496 /* Discard any register replacements done. */
1497 if (did_elimination)
1499 obstack_free (&reload_obstack, reload_insn_firstobj);
1500 PATTERN (insn) = old_body;
1501 INSN_CODE (insn) = old_code;
1502 REG_NOTES (insn) = old_notes;
1503 something_needs_elimination = 1;
1506 something_needs_operands_changed |= operands_changed;
1508 if (n_reloads != 0)
1510 copy_reloads (chain);
1511 *pprev_reload = chain;
1512 pprev_reload = &chain->next_need_reload;
1516 *pprev_reload = 0;
1519 /* Comparison function for qsort to decide which of two reloads
1520 should be handled first. *P1 and *P2 are the reload numbers. */
1522 static int
1523 reload_reg_class_lower (r1p, r2p)
1524 const PTR r1p;
1525 const PTR r2p;
1527 register int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1528 register int t;
1530 /* Consider required reloads before optional ones. */
1531 t = rld[r1].optional - rld[r2].optional;
1532 if (t != 0)
1533 return t;
1535 /* Count all solitary classes before non-solitary ones. */
1536 t = ((reg_class_size[(int) rld[r2].class] == 1)
1537 - (reg_class_size[(int) rld[r1].class] == 1));
1538 if (t != 0)
1539 return t;
1541 /* Aside from solitaires, consider all multi-reg groups first. */
1542 t = rld[r2].nregs - rld[r1].nregs;
1543 if (t != 0)
1544 return t;
1546 /* Consider reloads in order of increasing reg-class number. */
1547 t = (int) rld[r1].class - (int) rld[r2].class;
1548 if (t != 0)
1549 return t;
1551 /* If reloads are equally urgent, sort by reload number,
1552 so that the results of qsort leave nothing to chance. */
1553 return r1 - r2;
1556 /* The cost of spilling each hard reg. */
1557 static int spill_cost[FIRST_PSEUDO_REGISTER];
1559 /* When spilling multiple hard registers, we use SPILL_COST for the first
1560 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1561 only the first hard reg for a multi-reg pseudo. */
1562 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1564 /* Update the spill cost arrays, considering that pseudo REG is live. */
1566 static void
1567 count_pseudo (reg)
1568 int reg;
1570 int n_refs = REG_N_REFS (reg);
1571 int r = reg_renumber[reg];
1572 int nregs;
1574 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1575 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1576 return;
1578 SET_REGNO_REG_SET (&pseudos_counted, reg);
1580 if (r < 0)
1581 abort ();
1583 spill_add_cost[r] += n_refs;
1585 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1586 while (nregs-- > 0)
1587 spill_cost[r + nregs] += n_refs;
1590 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1591 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1593 static void
1594 order_regs_for_reload (chain)
1595 struct insn_chain *chain;
1597 int i;
1598 HARD_REG_SET used_by_pseudos;
1599 HARD_REG_SET used_by_pseudos2;
1601 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1603 memset (spill_cost, 0, sizeof spill_cost);
1604 memset (spill_add_cost, 0, sizeof spill_add_cost);
1606 /* Count number of uses of each hard reg by pseudo regs allocated to it
1607 and then order them by decreasing use. First exclude hard registers
1608 that are live in or across this insn. */
1610 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1611 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1612 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1613 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1615 /* Now find out which pseudos are allocated to it, and update
1616 hard_reg_n_uses. */
1617 CLEAR_REG_SET (&pseudos_counted);
1619 EXECUTE_IF_SET_IN_REG_SET
1620 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
1622 count_pseudo (i);
1624 EXECUTE_IF_SET_IN_REG_SET
1625 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
1627 count_pseudo (i);
1629 CLEAR_REG_SET (&pseudos_counted);
1632 /* Vector of reload-numbers showing the order in which the reloads should
1633 be processed. */
1634 static short reload_order[MAX_RELOADS];
1636 /* This is used to keep track of the spill regs used in one insn. */
1637 static HARD_REG_SET used_spill_regs_local;
1639 /* We decided to spill hard register SPILLED, which has a size of
1640 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1641 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1642 update SPILL_COST/SPILL_ADD_COST. */
1644 static void
1645 count_spilled_pseudo (spilled, spilled_nregs, reg)
1646 int spilled, spilled_nregs, reg;
1648 int r = reg_renumber[reg];
1649 int nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1651 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1652 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1653 return;
1655 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1657 spill_add_cost[r] -= REG_N_REFS (reg);
1658 while (nregs-- > 0)
1659 spill_cost[r + nregs] -= REG_N_REFS (reg);
1662 /* Find reload register to use for reload number ORDER. */
1664 static int
1665 find_reg (chain, order)
1666 struct insn_chain *chain;
1667 int order;
1669 int rnum = reload_order[order];
1670 struct reload *rl = rld + rnum;
1671 int best_cost = INT_MAX;
1672 int best_reg = -1;
1673 unsigned int i, j;
1674 int k;
1675 HARD_REG_SET not_usable;
1676 HARD_REG_SET used_by_other_reload;
1678 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1679 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1680 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1682 CLEAR_HARD_REG_SET (used_by_other_reload);
1683 for (k = 0; k < order; k++)
1685 int other = reload_order[k];
1687 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1688 for (j = 0; j < rld[other].nregs; j++)
1689 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1692 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1694 unsigned int regno = i;
1696 if (! TEST_HARD_REG_BIT (not_usable, regno)
1697 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1698 && HARD_REGNO_MODE_OK (regno, rl->mode))
1700 int this_cost = spill_cost[regno];
1701 int ok = 1;
1702 unsigned int this_nregs = HARD_REGNO_NREGS (regno, rl->mode);
1704 for (j = 1; j < this_nregs; j++)
1706 this_cost += spill_add_cost[regno + j];
1707 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1708 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1709 ok = 0;
1711 if (! ok)
1712 continue;
1713 if (rl->in && GET_CODE (rl->in) == REG && REGNO (rl->in) == regno)
1714 this_cost--;
1715 if (rl->out && GET_CODE (rl->out) == REG && REGNO (rl->out) == regno)
1716 this_cost--;
1717 if (this_cost < best_cost
1718 /* Among registers with equal cost, prefer caller-saved ones, or
1719 use REG_ALLOC_ORDER if it is defined. */
1720 || (this_cost == best_cost
1721 #ifdef REG_ALLOC_ORDER
1722 && (inv_reg_alloc_order[regno]
1723 < inv_reg_alloc_order[best_reg])
1724 #else
1725 && call_used_regs[regno]
1726 && ! call_used_regs[best_reg]
1727 #endif
1730 best_reg = regno;
1731 best_cost = this_cost;
1735 if (best_reg == -1)
1736 return 0;
1738 if (rtl_dump_file)
1739 fprintf (rtl_dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1741 rl->nregs = HARD_REGNO_NREGS (best_reg, rl->mode);
1742 rl->regno = best_reg;
1744 EXECUTE_IF_SET_IN_REG_SET
1745 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j,
1747 count_spilled_pseudo (best_reg, rl->nregs, j);
1750 EXECUTE_IF_SET_IN_REG_SET
1751 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j,
1753 count_spilled_pseudo (best_reg, rl->nregs, j);
1756 for (i = 0; i < rl->nregs; i++)
1758 if (spill_cost[best_reg + i] != 0
1759 || spill_add_cost[best_reg + i] != 0)
1760 abort ();
1761 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1763 return 1;
1766 /* Find more reload regs to satisfy the remaining need of an insn, which
1767 is given by CHAIN.
1768 Do it by ascending class number, since otherwise a reg
1769 might be spilled for a big class and might fail to count
1770 for a smaller class even though it belongs to that class. */
1772 static void
1773 find_reload_regs (chain)
1774 struct insn_chain *chain;
1776 int i;
1778 /* In order to be certain of getting the registers we need,
1779 we must sort the reloads into order of increasing register class.
1780 Then our grabbing of reload registers will parallel the process
1781 that provided the reload registers. */
1782 for (i = 0; i < chain->n_reloads; i++)
1784 /* Show whether this reload already has a hard reg. */
1785 if (chain->rld[i].reg_rtx)
1787 int regno = REGNO (chain->rld[i].reg_rtx);
1788 chain->rld[i].regno = regno;
1789 chain->rld[i].nregs
1790 = HARD_REGNO_NREGS (regno, GET_MODE (chain->rld[i].reg_rtx));
1792 else
1793 chain->rld[i].regno = -1;
1794 reload_order[i] = i;
1797 n_reloads = chain->n_reloads;
1798 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1800 CLEAR_HARD_REG_SET (used_spill_regs_local);
1802 if (rtl_dump_file)
1803 fprintf (rtl_dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1805 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1807 /* Compute the order of preference for hard registers to spill. */
1809 order_regs_for_reload (chain);
1811 for (i = 0; i < n_reloads; i++)
1813 int r = reload_order[i];
1815 /* Ignore reloads that got marked inoperative. */
1816 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1817 && ! rld[r].optional
1818 && rld[r].regno == -1)
1819 if (! find_reg (chain, i))
1821 spill_failure (chain->insn, rld[r].class);
1822 failure = 1;
1823 return;
1827 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1828 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1830 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1833 static void
1834 select_reload_regs ()
1836 struct insn_chain *chain;
1838 /* Try to satisfy the needs for each insn. */
1839 for (chain = insns_need_reload; chain != 0;
1840 chain = chain->next_need_reload)
1841 find_reload_regs (chain);
1844 /* Delete all insns that were inserted by emit_caller_save_insns during
1845 this iteration. */
1846 static void
1847 delete_caller_save_insns ()
1849 struct insn_chain *c = reload_insn_chain;
1851 while (c != 0)
1853 while (c != 0 && c->is_caller_save_insn)
1855 struct insn_chain *next = c->next;
1856 rtx insn = c->insn;
1858 if (insn == BLOCK_HEAD (c->block))
1859 BLOCK_HEAD (c->block) = NEXT_INSN (insn);
1860 if (insn == BLOCK_END (c->block))
1861 BLOCK_END (c->block) = PREV_INSN (insn);
1862 if (c == reload_insn_chain)
1863 reload_insn_chain = next;
1865 if (NEXT_INSN (insn) != 0)
1866 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
1867 if (PREV_INSN (insn) != 0)
1868 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1870 if (next)
1871 next->prev = c->prev;
1872 if (c->prev)
1873 c->prev->next = next;
1874 c->next = unused_insn_chains;
1875 unused_insn_chains = c;
1876 c = next;
1878 if (c != 0)
1879 c = c->next;
1883 /* Handle the failure to find a register to spill.
1884 INSN should be one of the insns which needed this particular spill reg. */
1886 static void
1887 spill_failure (insn, class)
1888 rtx insn;
1889 enum reg_class class;
1891 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1892 if (asm_noperands (PATTERN (insn)) >= 0)
1893 error_for_asm (insn, "Can't find a register in class `%s' while reloading `asm'.",
1894 reg_class_names[class]);
1895 else
1897 error ("Unable to find a register to spill in class `%s'.",
1898 reg_class_names[class]);
1899 fatal_insn ("This is the insn:", insn);
1903 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1904 data that is dead in INSN. */
1906 static void
1907 delete_dead_insn (insn)
1908 rtx insn;
1910 rtx prev = prev_real_insn (insn);
1911 rtx prev_dest;
1913 /* If the previous insn sets a register that dies in our insn, delete it
1914 too. */
1915 if (prev && GET_CODE (PATTERN (prev)) == SET
1916 && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
1917 && reg_mentioned_p (prev_dest, PATTERN (insn))
1918 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1919 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1920 delete_dead_insn (prev);
1922 PUT_CODE (insn, NOTE);
1923 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1924 NOTE_SOURCE_FILE (insn) = 0;
1927 /* Modify the home of pseudo-reg I.
1928 The new home is present in reg_renumber[I].
1930 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1931 or it may be -1, meaning there is none or it is not relevant.
1932 This is used so that all pseudos spilled from a given hard reg
1933 can share one stack slot. */
1935 static void
1936 alter_reg (i, from_reg)
1937 register int i;
1938 int from_reg;
1940 /* When outputting an inline function, this can happen
1941 for a reg that isn't actually used. */
1942 if (regno_reg_rtx[i] == 0)
1943 return;
1945 /* If the reg got changed to a MEM at rtl-generation time,
1946 ignore it. */
1947 if (GET_CODE (regno_reg_rtx[i]) != REG)
1948 return;
1950 /* Modify the reg-rtx to contain the new hard reg
1951 number or else to contain its pseudo reg number. */
1952 REGNO (regno_reg_rtx[i])
1953 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1955 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1956 allocate a stack slot for it. */
1958 if (reg_renumber[i] < 0
1959 && REG_N_REFS (i) > 0
1960 && reg_equiv_constant[i] == 0
1961 && reg_equiv_memory_loc[i] == 0)
1963 register rtx x;
1964 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1965 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
1966 int adjust = 0;
1968 /* Each pseudo reg has an inherent size which comes from its own mode,
1969 and a total size which provides room for paradoxical subregs
1970 which refer to the pseudo reg in wider modes.
1972 We can use a slot already allocated if it provides both
1973 enough inherent space and enough total space.
1974 Otherwise, we allocate a new slot, making sure that it has no less
1975 inherent space, and no less total space, then the previous slot. */
1976 if (from_reg == -1)
1978 /* No known place to spill from => no slot to reuse. */
1979 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
1980 inherent_size == total_size ? 0 : -1);
1981 if (BYTES_BIG_ENDIAN)
1982 /* Cancel the big-endian correction done in assign_stack_local.
1983 Get the address of the beginning of the slot.
1984 This is so we can do a big-endian correction unconditionally
1985 below. */
1986 adjust = inherent_size - total_size;
1988 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
1990 /* Nothing can alias this slot except this pseudo. */
1991 MEM_ALIAS_SET (x) = new_alias_set ();
1994 /* Reuse a stack slot if possible. */
1995 else if (spill_stack_slot[from_reg] != 0
1996 && spill_stack_slot_width[from_reg] >= total_size
1997 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1998 >= inherent_size))
1999 x = spill_stack_slot[from_reg];
2001 /* Allocate a bigger slot. */
2002 else
2004 /* Compute maximum size needed, both for inherent size
2005 and for total size. */
2006 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2007 rtx stack_slot;
2009 if (spill_stack_slot[from_reg])
2011 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2012 > inherent_size)
2013 mode = GET_MODE (spill_stack_slot[from_reg]);
2014 if (spill_stack_slot_width[from_reg] > total_size)
2015 total_size = spill_stack_slot_width[from_reg];
2018 /* Make a slot with that size. */
2019 x = assign_stack_local (mode, total_size,
2020 inherent_size == total_size ? 0 : -1);
2021 stack_slot = x;
2023 /* All pseudos mapped to this slot can alias each other. */
2024 if (spill_stack_slot[from_reg])
2025 MEM_ALIAS_SET (x) = MEM_ALIAS_SET (spill_stack_slot[from_reg]);
2026 else
2027 MEM_ALIAS_SET (x) = new_alias_set ();
2029 if (BYTES_BIG_ENDIAN)
2031 /* Cancel the big-endian correction done in assign_stack_local.
2032 Get the address of the beginning of the slot.
2033 This is so we can do a big-endian correction unconditionally
2034 below. */
2035 adjust = GET_MODE_SIZE (mode) - total_size;
2036 if (adjust)
2037 stack_slot = gen_rtx_MEM (mode_for_size (total_size
2038 * BITS_PER_UNIT,
2039 MODE_INT, 1),
2040 plus_constant (XEXP (x, 0), adjust));
2043 spill_stack_slot[from_reg] = stack_slot;
2044 spill_stack_slot_width[from_reg] = total_size;
2047 /* On a big endian machine, the "address" of the slot
2048 is the address of the low part that fits its inherent mode. */
2049 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2050 adjust += (total_size - inherent_size);
2052 /* If we have any adjustment to make, or if the stack slot is the
2053 wrong mode, make a new stack slot. */
2054 if (adjust != 0 || GET_MODE (x) != GET_MODE (regno_reg_rtx[i]))
2056 rtx new = gen_rtx_MEM (GET_MODE (regno_reg_rtx[i]),
2057 plus_constant (XEXP (x, 0), adjust));
2059 MEM_COPY_ATTRIBUTES (new, x);
2060 x = new;
2063 /* Save the stack slot for later. */
2064 reg_equiv_memory_loc[i] = x;
2068 /* Mark the slots in regs_ever_live for the hard regs
2069 used by pseudo-reg number REGNO. */
2071 void
2072 mark_home_live (regno)
2073 int regno;
2075 register int i, lim;
2077 i = reg_renumber[regno];
2078 if (i < 0)
2079 return;
2080 lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
2081 while (i < lim)
2082 regs_ever_live[i++] = 1;
2085 /* This function handles the tracking of elimination offsets around branches.
2087 X is a piece of RTL being scanned.
2089 INSN is the insn that it came from, if any.
2091 INITIAL_P is non-zero if we are to set the offset to be the initial
2092 offset and zero if we are setting the offset of the label to be the
2093 current offset. */
2095 static void
2096 set_label_offsets (x, insn, initial_p)
2097 rtx x;
2098 rtx insn;
2099 int initial_p;
2101 enum rtx_code code = GET_CODE (x);
2102 rtx tem;
2103 unsigned int i;
2104 struct elim_table *p;
2106 switch (code)
2108 case LABEL_REF:
2109 if (LABEL_REF_NONLOCAL_P (x))
2110 return;
2112 x = XEXP (x, 0);
2114 /* ... fall through ... */
2116 case CODE_LABEL:
2117 /* If we know nothing about this label, set the desired offsets. Note
2118 that this sets the offset at a label to be the offset before a label
2119 if we don't know anything about the label. This is not correct for
2120 the label after a BARRIER, but is the best guess we can make. If
2121 we guessed wrong, we will suppress an elimination that might have
2122 been possible had we been able to guess correctly. */
2124 if (! offsets_known_at[CODE_LABEL_NUMBER (x)])
2126 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2127 offsets_at[CODE_LABEL_NUMBER (x)][i]
2128 = (initial_p ? reg_eliminate[i].initial_offset
2129 : reg_eliminate[i].offset);
2130 offsets_known_at[CODE_LABEL_NUMBER (x)] = 1;
2133 /* Otherwise, if this is the definition of a label and it is
2134 preceded by a BARRIER, set our offsets to the known offset of
2135 that label. */
2137 else if (x == insn
2138 && (tem = prev_nonnote_insn (insn)) != 0
2139 && GET_CODE (tem) == BARRIER)
2140 set_offsets_for_label (insn);
2141 else
2142 /* If neither of the above cases is true, compare each offset
2143 with those previously recorded and suppress any eliminations
2144 where the offsets disagree. */
2146 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2147 if (offsets_at[CODE_LABEL_NUMBER (x)][i]
2148 != (initial_p ? reg_eliminate[i].initial_offset
2149 : reg_eliminate[i].offset))
2150 reg_eliminate[i].can_eliminate = 0;
2152 return;
2154 case JUMP_INSN:
2155 set_label_offsets (PATTERN (insn), insn, initial_p);
2157 /* ... fall through ... */
2159 case INSN:
2160 case CALL_INSN:
2161 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2162 and hence must have all eliminations at their initial offsets. */
2163 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2164 if (REG_NOTE_KIND (tem) == REG_LABEL)
2165 set_label_offsets (XEXP (tem, 0), insn, 1);
2166 return;
2168 case PARALLEL:
2169 case ADDR_VEC:
2170 case ADDR_DIFF_VEC:
2171 /* Each of the labels in the parallel or address vector must be
2172 at their initial offsets. We want the first field for PARALLEL
2173 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2175 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2176 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2177 insn, initial_p);
2178 return;
2180 case SET:
2181 /* We only care about setting PC. If the source is not RETURN,
2182 IF_THEN_ELSE, or a label, disable any eliminations not at
2183 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2184 isn't one of those possibilities. For branches to a label,
2185 call ourselves recursively.
2187 Note that this can disable elimination unnecessarily when we have
2188 a non-local goto since it will look like a non-constant jump to
2189 someplace in the current function. This isn't a significant
2190 problem since such jumps will normally be when all elimination
2191 pairs are back to their initial offsets. */
2193 if (SET_DEST (x) != pc_rtx)
2194 return;
2196 switch (GET_CODE (SET_SRC (x)))
2198 case PC:
2199 case RETURN:
2200 return;
2202 case LABEL_REF:
2203 set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
2204 return;
2206 case IF_THEN_ELSE:
2207 tem = XEXP (SET_SRC (x), 1);
2208 if (GET_CODE (tem) == LABEL_REF)
2209 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2210 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2211 break;
2213 tem = XEXP (SET_SRC (x), 2);
2214 if (GET_CODE (tem) == LABEL_REF)
2215 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2216 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2217 break;
2218 return;
2220 default:
2221 break;
2224 /* If we reach here, all eliminations must be at their initial
2225 offset because we are doing a jump to a variable address. */
2226 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2227 if (p->offset != p->initial_offset)
2228 p->can_eliminate = 0;
2229 break;
2231 default:
2232 break;
2236 /* Scan X and replace any eliminable registers (such as fp) with a
2237 replacement (such as sp), plus an offset.
2239 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2240 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2241 MEM, we are allowed to replace a sum of a register and the constant zero
2242 with the register, which we cannot do outside a MEM. In addition, we need
2243 to record the fact that a register is referenced outside a MEM.
2245 If INSN is an insn, it is the insn containing X. If we replace a REG
2246 in a SET_DEST with an equivalent MEM and INSN is non-zero, write a
2247 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2248 the REG is being modified.
2250 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2251 That's used when we eliminate in expressions stored in notes.
2252 This means, do not set ref_outside_mem even if the reference
2253 is outside of MEMs.
2255 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2256 replacements done assuming all offsets are at their initial values. If
2257 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2258 encounter, return the actual location so that find_reloads will do
2259 the proper thing. */
2262 eliminate_regs (x, mem_mode, insn)
2263 rtx x;
2264 enum machine_mode mem_mode;
2265 rtx insn;
2267 enum rtx_code code = GET_CODE (x);
2268 struct elim_table *ep;
2269 int regno;
2270 rtx new;
2271 int i, j;
2272 const char *fmt;
2273 int copied = 0;
2275 if (! current_function_decl)
2276 return x;
2278 switch (code)
2280 case CONST_INT:
2281 case CONST_DOUBLE:
2282 case CONST:
2283 case SYMBOL_REF:
2284 case CODE_LABEL:
2285 case PC:
2286 case CC0:
2287 case ASM_INPUT:
2288 case ADDR_VEC:
2289 case ADDR_DIFF_VEC:
2290 case RETURN:
2291 return x;
2293 case ADDRESSOF:
2294 /* This is only for the benefit of the debugging backends, which call
2295 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2296 removed after CSE. */
2297 new = eliminate_regs (XEXP (x, 0), 0, insn);
2298 if (GET_CODE (new) == MEM)
2299 return XEXP (new, 0);
2300 return x;
2302 case REG:
2303 regno = REGNO (x);
2305 /* First handle the case where we encounter a bare register that
2306 is eliminable. Replace it with a PLUS. */
2307 if (regno < FIRST_PSEUDO_REGISTER)
2309 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2310 ep++)
2311 if (ep->from_rtx == x && ep->can_eliminate)
2312 return plus_constant (ep->to_rtx, ep->previous_offset);
2315 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2316 && reg_equiv_constant[regno]
2317 && ! CONSTANT_P (reg_equiv_constant[regno]))
2318 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2319 mem_mode, insn);
2320 return x;
2322 /* You might think handling MINUS in a manner similar to PLUS is a
2323 good idea. It is not. It has been tried multiple times and every
2324 time the change has had to have been reverted.
2326 Other parts of reload know a PLUS is special (gen_reload for example)
2327 and require special code to handle code a reloaded PLUS operand.
2329 Also consider backends where the flags register is clobbered by a
2330 MINUS, but we can emit a PLUS that does not clobber flags (ia32,
2331 lea instruction comes to mind). If we try to reload a MINUS, we
2332 may kill the flags register that was holding a useful value.
2334 So, please before trying to handle MINUS, consider reload as a
2335 whole instead of this little section as well as the backend issues. */
2336 case PLUS:
2337 /* If this is the sum of an eliminable register and a constant, rework
2338 the sum. */
2339 if (GET_CODE (XEXP (x, 0)) == REG
2340 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2341 && CONSTANT_P (XEXP (x, 1)))
2343 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2344 ep++)
2345 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2347 /* The only time we want to replace a PLUS with a REG (this
2348 occurs when the constant operand of the PLUS is the negative
2349 of the offset) is when we are inside a MEM. We won't want
2350 to do so at other times because that would change the
2351 structure of the insn in a way that reload can't handle.
2352 We special-case the commonest situation in
2353 eliminate_regs_in_insn, so just replace a PLUS with a
2354 PLUS here, unless inside a MEM. */
2355 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2356 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2357 return ep->to_rtx;
2358 else
2359 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2360 plus_constant (XEXP (x, 1),
2361 ep->previous_offset));
2364 /* If the register is not eliminable, we are done since the other
2365 operand is a constant. */
2366 return x;
2369 /* If this is part of an address, we want to bring any constant to the
2370 outermost PLUS. We will do this by doing register replacement in
2371 our operands and seeing if a constant shows up in one of them.
2373 Note that there is no risk of modifying the structure of the insn,
2374 since we only get called for its operands, thus we are either
2375 modifying the address inside a MEM, or something like an address
2376 operand of a load-address insn. */
2379 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2380 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2382 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2384 /* If one side is a PLUS and the other side is a pseudo that
2385 didn't get a hard register but has a reg_equiv_constant,
2386 we must replace the constant here since it may no longer
2387 be in the position of any operand. */
2388 if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
2389 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2390 && reg_renumber[REGNO (new1)] < 0
2391 && reg_equiv_constant != 0
2392 && reg_equiv_constant[REGNO (new1)] != 0)
2393 new1 = reg_equiv_constant[REGNO (new1)];
2394 else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
2395 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2396 && reg_renumber[REGNO (new0)] < 0
2397 && reg_equiv_constant[REGNO (new0)] != 0)
2398 new0 = reg_equiv_constant[REGNO (new0)];
2400 new = form_sum (new0, new1);
2402 /* As above, if we are not inside a MEM we do not want to
2403 turn a PLUS into something else. We might try to do so here
2404 for an addition of 0 if we aren't optimizing. */
2405 if (! mem_mode && GET_CODE (new) != PLUS)
2406 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2407 else
2408 return new;
2411 return x;
2413 case MULT:
2414 /* If this is the product of an eliminable register and a
2415 constant, apply the distribute law and move the constant out
2416 so that we have (plus (mult ..) ..). This is needed in order
2417 to keep load-address insns valid. This case is pathological.
2418 We ignore the possibility of overflow here. */
2419 if (GET_CODE (XEXP (x, 0)) == REG
2420 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2421 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2422 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2423 ep++)
2424 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2426 if (! mem_mode
2427 /* Refs inside notes don't count for this purpose. */
2428 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2429 || GET_CODE (insn) == INSN_LIST)))
2430 ep->ref_outside_mem = 1;
2432 return
2433 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2434 ep->previous_offset * INTVAL (XEXP (x, 1)));
2437 /* ... fall through ... */
2439 case CALL:
2440 case COMPARE:
2441 /* See comments before PLUS about handling MINUS. */
2442 case MINUS:
2443 case DIV: case UDIV:
2444 case MOD: case UMOD:
2445 case AND: case IOR: case XOR:
2446 case ROTATERT: case ROTATE:
2447 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2448 case NE: case EQ:
2449 case GE: case GT: case GEU: case GTU:
2450 case LE: case LT: case LEU: case LTU:
2452 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2453 rtx new1
2454 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
2456 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2457 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2459 return x;
2461 case EXPR_LIST:
2462 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2463 if (XEXP (x, 0))
2465 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2466 if (new != XEXP (x, 0))
2468 /* If this is a REG_DEAD note, it is not valid anymore.
2469 Using the eliminated version could result in creating a
2470 REG_DEAD note for the stack or frame pointer. */
2471 if (GET_MODE (x) == REG_DEAD)
2472 return (XEXP (x, 1)
2473 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2474 : NULL_RTX);
2476 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2480 /* ... fall through ... */
2482 case INSN_LIST:
2483 /* Now do eliminations in the rest of the chain. If this was
2484 an EXPR_LIST, this might result in allocating more memory than is
2485 strictly needed, but it simplifies the code. */
2486 if (XEXP (x, 1))
2488 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2489 if (new != XEXP (x, 1))
2490 return gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2492 return x;
2494 case PRE_INC:
2495 case POST_INC:
2496 case PRE_DEC:
2497 case POST_DEC:
2498 case STRICT_LOW_PART:
2499 case NEG: case NOT:
2500 case SIGN_EXTEND: case ZERO_EXTEND:
2501 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2502 case FLOAT: case FIX:
2503 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2504 case ABS:
2505 case SQRT:
2506 case FFS:
2507 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2508 if (new != XEXP (x, 0))
2509 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2510 return x;
2512 case SUBREG:
2513 /* Similar to above processing, but preserve SUBREG_BYTE.
2514 Convert (subreg (mem)) to (mem) if not paradoxical.
2515 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2516 pseudo didn't get a hard reg, we must replace this with the
2517 eliminated version of the memory location because push_reloads
2518 may do the replacement in certain circumstances. */
2519 if (GET_CODE (SUBREG_REG (x)) == REG
2520 && (GET_MODE_SIZE (GET_MODE (x))
2521 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2522 && reg_equiv_memory_loc != 0
2523 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2525 new = SUBREG_REG (x);
2527 else
2528 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
2530 if (new != SUBREG_REG (x))
2532 int x_size = GET_MODE_SIZE (GET_MODE (x));
2533 int new_size = GET_MODE_SIZE (GET_MODE (new));
2535 if (GET_CODE (new) == MEM
2536 && ((x_size < new_size
2537 #ifdef WORD_REGISTER_OPERATIONS
2538 /* On these machines, combine can create rtl of the form
2539 (set (subreg:m1 (reg:m2 R) 0) ...)
2540 where m1 < m2, and expects something interesting to
2541 happen to the entire word. Moreover, it will use the
2542 (reg:m2 R) later, expecting all bits to be preserved.
2543 So if the number of words is the same, preserve the
2544 subreg so that push_reloads can see it. */
2545 && ! ((x_size-1)/UNITS_PER_WORD == (new_size-1)/UNITS_PER_WORD)
2546 #endif
2548 || (x_size == new_size))
2551 int offset = SUBREG_BYTE (x);
2552 enum machine_mode mode = GET_MODE (x);
2554 PUT_MODE (new, mode);
2555 XEXP (new, 0) = plus_constant (XEXP (new, 0), offset);
2556 return new;
2558 else
2559 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2562 return x;
2564 case MEM:
2565 /* This is only for the benefit of the debugging backends, which call
2566 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2567 removed after CSE. */
2568 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2569 return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
2571 /* Our only special processing is to pass the mode of the MEM to our
2572 recursive call and copy the flags. While we are here, handle this
2573 case more efficiently. */
2574 new = eliminate_regs (XEXP (x, 0), GET_MODE (x), insn);
2575 if (new != XEXP (x, 0))
2577 new = gen_rtx_MEM (GET_MODE (x), new);
2578 MEM_COPY_ATTRIBUTES (new, x);
2579 return new;
2581 else
2582 return x;
2584 case USE:
2585 /* Handle insn_list USE that a call to a pure function may generate. */
2586 new = eliminate_regs (XEXP (x, 0), 0, insn);
2587 if (new != XEXP (x, 0))
2588 return gen_rtx_USE (GET_MODE (x), new);
2589 return x;
2591 case CLOBBER:
2592 case ASM_OPERANDS:
2593 case SET:
2594 abort ();
2596 default:
2597 break;
2600 /* Process each of our operands recursively. If any have changed, make a
2601 copy of the rtx. */
2602 fmt = GET_RTX_FORMAT (code);
2603 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2605 if (*fmt == 'e')
2607 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
2608 if (new != XEXP (x, i) && ! copied)
2610 rtx new_x = rtx_alloc (code);
2611 memcpy (new_x, x,
2612 (sizeof (*new_x) - sizeof (new_x->fld)
2613 + sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code)));
2614 x = new_x;
2615 copied = 1;
2617 XEXP (x, i) = new;
2619 else if (*fmt == 'E')
2621 int copied_vec = 0;
2622 for (j = 0; j < XVECLEN (x, i); j++)
2624 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
2625 if (new != XVECEXP (x, i, j) && ! copied_vec)
2627 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2628 XVEC (x, i)->elem);
2629 if (! copied)
2631 rtx new_x = rtx_alloc (code);
2632 memcpy (new_x, x,
2633 (sizeof (*new_x) - sizeof (new_x->fld)
2634 + (sizeof (new_x->fld[0])
2635 * GET_RTX_LENGTH (code))));
2636 x = new_x;
2637 copied = 1;
2639 XVEC (x, i) = new_v;
2640 copied_vec = 1;
2642 XVECEXP (x, i, j) = new;
2647 return x;
2650 /* Scan rtx X for modifications of elimination target registers. Update
2651 the table of eliminables to reflect the changed state. MEM_MODE is
2652 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2654 static void
2655 elimination_effects (x, mem_mode)
2656 rtx x;
2657 enum machine_mode mem_mode;
2660 enum rtx_code code = GET_CODE (x);
2661 struct elim_table *ep;
2662 int regno;
2663 int i, j;
2664 const char *fmt;
2666 switch (code)
2668 case CONST_INT:
2669 case CONST_DOUBLE:
2670 case CONST:
2671 case SYMBOL_REF:
2672 case CODE_LABEL:
2673 case PC:
2674 case CC0:
2675 case ASM_INPUT:
2676 case ADDR_VEC:
2677 case ADDR_DIFF_VEC:
2678 case RETURN:
2679 return;
2681 case ADDRESSOF:
2682 abort ();
2684 case REG:
2685 regno = REGNO (x);
2687 /* First handle the case where we encounter a bare register that
2688 is eliminable. Replace it with a PLUS. */
2689 if (regno < FIRST_PSEUDO_REGISTER)
2691 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2692 ep++)
2693 if (ep->from_rtx == x && ep->can_eliminate)
2695 if (! mem_mode)
2696 ep->ref_outside_mem = 1;
2697 return;
2701 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2702 && reg_equiv_constant[regno]
2703 && ! CONSTANT_P (reg_equiv_constant[regno]))
2704 elimination_effects (reg_equiv_constant[regno], mem_mode);
2705 return;
2707 case PRE_INC:
2708 case POST_INC:
2709 case PRE_DEC:
2710 case POST_DEC:
2711 case POST_MODIFY:
2712 case PRE_MODIFY:
2713 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2714 if (ep->to_rtx == XEXP (x, 0))
2716 int size = GET_MODE_SIZE (mem_mode);
2718 /* If more bytes than MEM_MODE are pushed, account for them. */
2719 #ifdef PUSH_ROUNDING
2720 if (ep->to_rtx == stack_pointer_rtx)
2721 size = PUSH_ROUNDING (size);
2722 #endif
2723 if (code == PRE_DEC || code == POST_DEC)
2724 ep->offset += size;
2725 else if (code == PRE_INC || code == POST_INC)
2726 ep->offset -= size;
2727 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2728 && GET_CODE (XEXP (x, 1)) == PLUS
2729 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2730 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2731 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2734 /* These two aren't unary operators. */
2735 if (code == POST_MODIFY || code == PRE_MODIFY)
2736 break;
2738 /* Fall through to generic unary operation case. */
2739 case STRICT_LOW_PART:
2740 case NEG: case NOT:
2741 case SIGN_EXTEND: case ZERO_EXTEND:
2742 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2743 case FLOAT: case FIX:
2744 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2745 case ABS:
2746 case SQRT:
2747 case FFS:
2748 elimination_effects (XEXP (x, 0), mem_mode);
2749 return;
2751 case SUBREG:
2752 if (GET_CODE (SUBREG_REG (x)) == REG
2753 && (GET_MODE_SIZE (GET_MODE (x))
2754 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2755 && reg_equiv_memory_loc != 0
2756 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2757 return;
2759 elimination_effects (SUBREG_REG (x), mem_mode);
2760 return;
2762 case USE:
2763 /* If using a register that is the source of an eliminate we still
2764 think can be performed, note it cannot be performed since we don't
2765 know how this register is used. */
2766 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2767 if (ep->from_rtx == XEXP (x, 0))
2768 ep->can_eliminate = 0;
2770 elimination_effects (XEXP (x, 0), mem_mode);
2771 return;
2773 case CLOBBER:
2774 /* If clobbering a register that is the replacement register for an
2775 elimination we still think can be performed, note that it cannot
2776 be performed. Otherwise, we need not be concerned about it. */
2777 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2778 if (ep->to_rtx == XEXP (x, 0))
2779 ep->can_eliminate = 0;
2781 elimination_effects (XEXP (x, 0), mem_mode);
2782 return;
2784 case SET:
2785 /* Check for setting a register that we know about. */
2786 if (GET_CODE (SET_DEST (x)) == REG)
2788 /* See if this is setting the replacement register for an
2789 elimination.
2791 If DEST is the hard frame pointer, we do nothing because we
2792 assume that all assignments to the frame pointer are for
2793 non-local gotos and are being done at a time when they are valid
2794 and do not disturb anything else. Some machines want to
2795 eliminate a fake argument pointer (or even a fake frame pointer)
2796 with either the real frame or the stack pointer. Assignments to
2797 the hard frame pointer must not prevent this elimination. */
2799 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2800 ep++)
2801 if (ep->to_rtx == SET_DEST (x)
2802 && SET_DEST (x) != hard_frame_pointer_rtx)
2804 /* If it is being incremented, adjust the offset. Otherwise,
2805 this elimination can't be done. */
2806 rtx src = SET_SRC (x);
2808 if (GET_CODE (src) == PLUS
2809 && XEXP (src, 0) == SET_DEST (x)
2810 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2811 ep->offset -= INTVAL (XEXP (src, 1));
2812 else
2813 ep->can_eliminate = 0;
2817 elimination_effects (SET_DEST (x), 0);
2818 elimination_effects (SET_SRC (x), 0);
2819 return;
2821 case MEM:
2822 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2823 abort ();
2825 /* Our only special processing is to pass the mode of the MEM to our
2826 recursive call. */
2827 elimination_effects (XEXP (x, 0), GET_MODE (x));
2828 return;
2830 default:
2831 break;
2834 fmt = GET_RTX_FORMAT (code);
2835 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2837 if (*fmt == 'e')
2838 elimination_effects (XEXP (x, i), mem_mode);
2839 else if (*fmt == 'E')
2840 for (j = 0; j < XVECLEN (x, i); j++)
2841 elimination_effects (XVECEXP (x, i, j), mem_mode);
2845 /* Descend through rtx X and verify that no references to eliminable registers
2846 remain. If any do remain, mark the involved register as not
2847 eliminable. */
2849 static void
2850 check_eliminable_occurrences (x)
2851 rtx x;
2853 const char *fmt;
2854 int i;
2855 enum rtx_code code;
2857 if (x == 0)
2858 return;
2860 code = GET_CODE (x);
2862 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2864 struct elim_table *ep;
2866 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2867 if (ep->from_rtx == x && ep->can_eliminate)
2868 ep->can_eliminate = 0;
2869 return;
2872 fmt = GET_RTX_FORMAT (code);
2873 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2875 if (*fmt == 'e')
2876 check_eliminable_occurrences (XEXP (x, i));
2877 else if (*fmt == 'E')
2879 int j;
2880 for (j = 0; j < XVECLEN (x, i); j++)
2881 check_eliminable_occurrences (XVECEXP (x, i, j));
2886 /* Scan INSN and eliminate all eliminable registers in it.
2888 If REPLACE is nonzero, do the replacement destructively. Also
2889 delete the insn as dead it if it is setting an eliminable register.
2891 If REPLACE is zero, do all our allocations in reload_obstack.
2893 If no eliminations were done and this insn doesn't require any elimination
2894 processing (these are not identical conditions: it might be updating sp,
2895 but not referencing fp; this needs to be seen during reload_as_needed so
2896 that the offset between fp and sp can be taken into consideration), zero
2897 is returned. Otherwise, 1 is returned. */
2899 static int
2900 eliminate_regs_in_insn (insn, replace)
2901 rtx insn;
2902 int replace;
2904 int icode = recog_memoized (insn);
2905 rtx old_body = PATTERN (insn);
2906 int insn_is_asm = asm_noperands (old_body) >= 0;
2907 rtx old_set = single_set (insn);
2908 rtx new_body;
2909 int val = 0;
2910 int i, any_changes;
2911 rtx substed_operand[MAX_RECOG_OPERANDS];
2912 rtx orig_operand[MAX_RECOG_OPERANDS];
2913 struct elim_table *ep;
2915 if (! insn_is_asm && icode < 0)
2917 if (GET_CODE (PATTERN (insn)) == USE
2918 || GET_CODE (PATTERN (insn)) == CLOBBER
2919 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2920 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2921 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
2922 return 0;
2923 abort ();
2926 if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
2927 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2929 /* Check for setting an eliminable register. */
2930 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2931 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2933 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2934 /* If this is setting the frame pointer register to the
2935 hardware frame pointer register and this is an elimination
2936 that will be done (tested above), this insn is really
2937 adjusting the frame pointer downward to compensate for
2938 the adjustment done before a nonlocal goto. */
2939 if (ep->from == FRAME_POINTER_REGNUM
2940 && ep->to == HARD_FRAME_POINTER_REGNUM)
2942 rtx src = SET_SRC (old_set);
2943 int offset = 0, ok = 0;
2944 rtx prev_insn, prev_set;
2946 if (src == ep->to_rtx)
2947 offset = 0, ok = 1;
2948 else if (GET_CODE (src) == PLUS
2949 && GET_CODE (XEXP (src, 0)) == CONST_INT
2950 && XEXP (src, 1) == ep->to_rtx)
2951 offset = INTVAL (XEXP (src, 0)), ok = 1;
2952 else if (GET_CODE (src) == PLUS
2953 && GET_CODE (XEXP (src, 1)) == CONST_INT
2954 && XEXP (src, 0) == ep->to_rtx)
2955 offset = INTVAL (XEXP (src, 1)), ok = 1;
2956 else if ((prev_insn = prev_nonnote_insn (insn)) != 0
2957 && (prev_set = single_set (prev_insn)) != 0
2958 && rtx_equal_p (SET_DEST (prev_set), src))
2960 src = SET_SRC (prev_set);
2961 if (src == ep->to_rtx)
2962 offset = 0, ok = 1;
2963 else if (GET_CODE (src) == PLUS
2964 && GET_CODE (XEXP (src, 0)) == CONST_INT
2965 && XEXP (src, 1) == ep->to_rtx)
2966 offset = INTVAL (XEXP (src, 0)), ok = 1;
2967 else if (GET_CODE (src) == PLUS
2968 && GET_CODE (XEXP (src, 1)) == CONST_INT
2969 && XEXP (src, 0) == ep->to_rtx)
2970 offset = INTVAL (XEXP (src, 1)), ok = 1;
2973 if (ok)
2975 if (replace)
2977 rtx src
2978 = plus_constant (ep->to_rtx, offset - ep->offset);
2980 /* First see if this insn remains valid when we
2981 make the change. If not, keep the INSN_CODE
2982 the same and let reload fit it up. */
2983 validate_change (insn, &SET_SRC (old_set), src, 1);
2984 validate_change (insn, &SET_DEST (old_set),
2985 ep->to_rtx, 1);
2986 if (! apply_change_group ())
2988 SET_SRC (old_set) = src;
2989 SET_DEST (old_set) = ep->to_rtx;
2993 val = 1;
2994 goto done;
2997 #endif
2999 /* In this case this insn isn't serving a useful purpose. We
3000 will delete it in reload_as_needed once we know that this
3001 elimination is, in fact, being done.
3003 If REPLACE isn't set, we can't delete this insn, but needn't
3004 process it since it won't be used unless something changes. */
3005 if (replace)
3007 delete_dead_insn (insn);
3008 return 1;
3010 val = 1;
3011 goto done;
3015 /* We allow one special case which happens to work on all machines we
3016 currently support: a single set with the source being a PLUS of an
3017 eliminable register and a constant. */
3018 if (old_set
3019 && GET_CODE (SET_DEST (old_set)) == REG
3020 && GET_CODE (SET_SRC (old_set)) == PLUS
3021 && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
3022 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
3023 && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
3025 rtx reg = XEXP (SET_SRC (old_set), 0);
3026 int offset = INTVAL (XEXP (SET_SRC (old_set), 1));
3028 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3029 if (ep->from_rtx == reg && ep->can_eliminate)
3031 offset += ep->offset;
3033 if (offset == 0)
3035 int num_clobbers;
3036 /* We assume here that if we need a PARALLEL with
3037 CLOBBERs for this assignment, we can do with the
3038 MATCH_SCRATCHes that add_clobbers allocates.
3039 There's not much we can do if that doesn't work. */
3040 PATTERN (insn) = gen_rtx_SET (VOIDmode,
3041 SET_DEST (old_set),
3042 ep->to_rtx);
3043 num_clobbers = 0;
3044 INSN_CODE (insn) = recog (PATTERN (insn), insn, &num_clobbers);
3045 if (num_clobbers)
3047 rtvec vec = rtvec_alloc (num_clobbers + 1);
3049 vec->elem[0] = PATTERN (insn);
3050 PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
3051 add_clobbers (PATTERN (insn), INSN_CODE (insn));
3053 if (INSN_CODE (insn) < 0)
3054 abort ();
3056 else
3058 new_body = old_body;
3059 if (! replace)
3061 new_body = copy_insn (old_body);
3062 if (REG_NOTES (insn))
3063 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3065 PATTERN (insn) = new_body;
3066 old_set = single_set (insn);
3068 XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
3069 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
3071 val = 1;
3072 /* This can't have an effect on elimination offsets, so skip right
3073 to the end. */
3074 goto done;
3078 /* Determine the effects of this insn on elimination offsets. */
3079 elimination_effects (old_body, 0);
3081 /* Eliminate all eliminable registers occurring in operands that
3082 can be handled by reload. */
3083 extract_insn (insn);
3084 any_changes = 0;
3085 for (i = 0; i < recog_data.n_operands; i++)
3087 orig_operand[i] = recog_data.operand[i];
3088 substed_operand[i] = recog_data.operand[i];
3090 /* For an asm statement, every operand is eliminable. */
3091 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3093 /* Check for setting a register that we know about. */
3094 if (recog_data.operand_type[i] != OP_IN
3095 && GET_CODE (orig_operand[i]) == REG)
3097 /* If we are assigning to a register that can be eliminated, it
3098 must be as part of a PARALLEL, since the code above handles
3099 single SETs. We must indicate that we can no longer
3100 eliminate this reg. */
3101 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3102 ep++)
3103 if (ep->from_rtx == orig_operand[i] && ep->can_eliminate)
3104 ep->can_eliminate = 0;
3107 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3108 replace ? insn : NULL_RTX);
3109 if (substed_operand[i] != orig_operand[i])
3110 val = any_changes = 1;
3111 /* Terminate the search in check_eliminable_occurrences at
3112 this point. */
3113 *recog_data.operand_loc[i] = 0;
3115 /* If an output operand changed from a REG to a MEM and INSN is an
3116 insn, write a CLOBBER insn. */
3117 if (recog_data.operand_type[i] != OP_IN
3118 && GET_CODE (orig_operand[i]) == REG
3119 && GET_CODE (substed_operand[i]) == MEM
3120 && replace)
3121 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3122 insn);
3126 for (i = 0; i < recog_data.n_dups; i++)
3127 *recog_data.dup_loc[i]
3128 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3130 /* If any eliminable remain, they aren't eliminable anymore. */
3131 check_eliminable_occurrences (old_body);
3133 /* Substitute the operands; the new values are in the substed_operand
3134 array. */
3135 for (i = 0; i < recog_data.n_operands; i++)
3136 *recog_data.operand_loc[i] = substed_operand[i];
3137 for (i = 0; i < recog_data.n_dups; i++)
3138 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3140 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3141 re-recognize the insn. We do this in case we had a simple addition
3142 but now can do this as a load-address. This saves an insn in this
3143 common case.
3144 If re-recognition fails, the old insn code number will still be used,
3145 and some register operands may have changed into PLUS expressions.
3146 These will be handled by find_reloads by loading them into a register
3147 again. */
3149 if (val)
3151 /* If we aren't replacing things permanently and we changed something,
3152 make another copy to ensure that all the RTL is new. Otherwise
3153 things can go wrong if find_reload swaps commutative operands
3154 and one is inside RTL that has been copied while the other is not. */
3155 new_body = old_body;
3156 if (! replace)
3158 new_body = copy_insn (old_body);
3159 if (REG_NOTES (insn))
3160 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3162 PATTERN (insn) = new_body;
3164 /* If we had a move insn but now we don't, rerecognize it. This will
3165 cause spurious re-recognition if the old move had a PARALLEL since
3166 the new one still will, but we can't call single_set without
3167 having put NEW_BODY into the insn and the re-recognition won't
3168 hurt in this rare case. */
3169 /* ??? Why this huge if statement - why don't we just rerecognize the
3170 thing always? */
3171 if (! insn_is_asm
3172 && old_set != 0
3173 && ((GET_CODE (SET_SRC (old_set)) == REG
3174 && (GET_CODE (new_body) != SET
3175 || GET_CODE (SET_SRC (new_body)) != REG))
3176 /* If this was a load from or store to memory, compare
3177 the MEM in recog_data.operand to the one in the insn.
3178 If they are not equal, then rerecognize the insn. */
3179 || (old_set != 0
3180 && ((GET_CODE (SET_SRC (old_set)) == MEM
3181 && SET_SRC (old_set) != recog_data.operand[1])
3182 || (GET_CODE (SET_DEST (old_set)) == MEM
3183 && SET_DEST (old_set) != recog_data.operand[0])))
3184 /* If this was an add insn before, rerecognize. */
3185 || GET_CODE (SET_SRC (old_set)) == PLUS))
3187 int new_icode = recog (PATTERN (insn), insn, 0);
3188 if (new_icode < 0)
3189 INSN_CODE (insn) = icode;
3193 /* Restore the old body. If there were any changes to it, we made a copy
3194 of it while the changes were still in place, so we'll correctly return
3195 a modified insn below. */
3196 if (! replace)
3198 /* Restore the old body. */
3199 for (i = 0; i < recog_data.n_operands; i++)
3200 *recog_data.operand_loc[i] = orig_operand[i];
3201 for (i = 0; i < recog_data.n_dups; i++)
3202 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3205 /* Update all elimination pairs to reflect the status after the current
3206 insn. The changes we make were determined by the earlier call to
3207 elimination_effects.
3209 We also detect a cases where register elimination cannot be done,
3210 namely, if a register would be both changed and referenced outside a MEM
3211 in the resulting insn since such an insn is often undefined and, even if
3212 not, we cannot know what meaning will be given to it. Note that it is
3213 valid to have a register used in an address in an insn that changes it
3214 (presumably with a pre- or post-increment or decrement).
3216 If anything changes, return nonzero. */
3218 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3220 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3221 ep->can_eliminate = 0;
3223 ep->ref_outside_mem = 0;
3225 if (ep->previous_offset != ep->offset)
3226 val = 1;
3229 done:
3230 /* If we changed something, perform elimination in REG_NOTES. This is
3231 needed even when REPLACE is zero because a REG_DEAD note might refer
3232 to a register that we eliminate and could cause a different number
3233 of spill registers to be needed in the final reload pass than in
3234 the pre-passes. */
3235 if (val && REG_NOTES (insn) != 0)
3236 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
3238 return val;
3241 /* Loop through all elimination pairs.
3242 Recalculate the number not at initial offset.
3244 Compute the maximum offset (minimum offset if the stack does not
3245 grow downward) for each elimination pair. */
3247 static void
3248 update_eliminable_offsets ()
3250 struct elim_table *ep;
3252 num_not_at_initial_offset = 0;
3253 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3255 ep->previous_offset = ep->offset;
3256 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3257 num_not_at_initial_offset++;
3261 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3262 replacement we currently believe is valid, mark it as not eliminable if X
3263 modifies DEST in any way other than by adding a constant integer to it.
3265 If DEST is the frame pointer, we do nothing because we assume that
3266 all assignments to the hard frame pointer are nonlocal gotos and are being
3267 done at a time when they are valid and do not disturb anything else.
3268 Some machines want to eliminate a fake argument pointer with either the
3269 frame or stack pointer. Assignments to the hard frame pointer must not
3270 prevent this elimination.
3272 Called via note_stores from reload before starting its passes to scan
3273 the insns of the function. */
3275 static void
3276 mark_not_eliminable (dest, x, data)
3277 rtx dest;
3278 rtx x;
3279 void *data ATTRIBUTE_UNUSED;
3281 register unsigned int i;
3283 /* A SUBREG of a hard register here is just changing its mode. We should
3284 not see a SUBREG of an eliminable hard register, but check just in
3285 case. */
3286 if (GET_CODE (dest) == SUBREG)
3287 dest = SUBREG_REG (dest);
3289 if (dest == hard_frame_pointer_rtx)
3290 return;
3292 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3293 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3294 && (GET_CODE (x) != SET
3295 || GET_CODE (SET_SRC (x)) != PLUS
3296 || XEXP (SET_SRC (x), 0) != dest
3297 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3299 reg_eliminate[i].can_eliminate_previous
3300 = reg_eliminate[i].can_eliminate = 0;
3301 num_eliminable--;
3305 /* Verify that the initial elimination offsets did not change since the
3306 last call to set_initial_elim_offsets. This is used to catch cases
3307 where something illegal happened during reload_as_needed that could
3308 cause incorrect code to be generated if we did not check for it. */
3310 static void
3311 verify_initial_elim_offsets ()
3313 int t;
3315 #ifdef ELIMINABLE_REGS
3316 struct elim_table *ep;
3318 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3320 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3321 if (t != ep->initial_offset)
3322 abort ();
3324 #else
3325 INITIAL_FRAME_POINTER_OFFSET (t);
3326 if (t != reg_eliminate[0].initial_offset)
3327 abort ();
3328 #endif
3331 /* Reset all offsets on eliminable registers to their initial values. */
3333 static void
3334 set_initial_elim_offsets ()
3336 struct elim_table *ep = reg_eliminate;
3338 #ifdef ELIMINABLE_REGS
3339 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3341 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3342 ep->previous_offset = ep->offset = ep->initial_offset;
3344 #else
3345 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3346 ep->previous_offset = ep->offset = ep->initial_offset;
3347 #endif
3349 num_not_at_initial_offset = 0;
3352 /* Initialize the known label offsets.
3353 Set a known offset for each forced label to be at the initial offset
3354 of each elimination. We do this because we assume that all
3355 computed jumps occur from a location where each elimination is
3356 at its initial offset.
3357 For all other labels, show that we don't know the offsets. */
3359 static void
3360 set_initial_label_offsets ()
3362 rtx x;
3363 memset ((char *) &offsets_known_at[get_first_label_num ()], 0, num_labels);
3365 for (x = forced_labels; x; x = XEXP (x, 1))
3366 if (XEXP (x, 0))
3367 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3370 /* Set all elimination offsets to the known values for the code label given
3371 by INSN. */
3373 static void
3374 set_offsets_for_label (insn)
3375 rtx insn;
3377 unsigned int i;
3378 int label_nr = CODE_LABEL_NUMBER (insn);
3379 struct elim_table *ep;
3381 num_not_at_initial_offset = 0;
3382 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3384 ep->offset = ep->previous_offset = offsets_at[label_nr][i];
3385 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3386 num_not_at_initial_offset++;
3390 /* See if anything that happened changes which eliminations are valid.
3391 For example, on the Sparc, whether or not the frame pointer can
3392 be eliminated can depend on what registers have been used. We need
3393 not check some conditions again (such as flag_omit_frame_pointer)
3394 since they can't have changed. */
3396 static void
3397 update_eliminables (pset)
3398 HARD_REG_SET *pset;
3400 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3401 int previous_frame_pointer_needed = frame_pointer_needed;
3402 #endif
3403 struct elim_table *ep;
3405 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3406 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3407 #ifdef ELIMINABLE_REGS
3408 || ! CAN_ELIMINATE (ep->from, ep->to)
3409 #endif
3411 ep->can_eliminate = 0;
3413 /* Look for the case where we have discovered that we can't replace
3414 register A with register B and that means that we will now be
3415 trying to replace register A with register C. This means we can
3416 no longer replace register C with register B and we need to disable
3417 such an elimination, if it exists. This occurs often with A == ap,
3418 B == sp, and C == fp. */
3420 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3422 struct elim_table *op;
3423 register int new_to = -1;
3425 if (! ep->can_eliminate && ep->can_eliminate_previous)
3427 /* Find the current elimination for ep->from, if there is a
3428 new one. */
3429 for (op = reg_eliminate;
3430 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3431 if (op->from == ep->from && op->can_eliminate)
3433 new_to = op->to;
3434 break;
3437 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3438 disable it. */
3439 for (op = reg_eliminate;
3440 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3441 if (op->from == new_to && op->to == ep->to)
3442 op->can_eliminate = 0;
3446 /* See if any registers that we thought we could eliminate the previous
3447 time are no longer eliminable. If so, something has changed and we
3448 must spill the register. Also, recompute the number of eliminable
3449 registers and see if the frame pointer is needed; it is if there is
3450 no elimination of the frame pointer that we can perform. */
3452 frame_pointer_needed = 1;
3453 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3455 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3456 && ep->to != HARD_FRAME_POINTER_REGNUM)
3457 frame_pointer_needed = 0;
3459 if (! ep->can_eliminate && ep->can_eliminate_previous)
3461 ep->can_eliminate_previous = 0;
3462 SET_HARD_REG_BIT (*pset, ep->from);
3463 num_eliminable--;
3467 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3468 /* If we didn't need a frame pointer last time, but we do now, spill
3469 the hard frame pointer. */
3470 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3471 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3472 #endif
3475 /* Initialize the table of registers to eliminate. */
3477 static void
3478 init_elim_table ()
3480 struct elim_table *ep;
3481 #ifdef ELIMINABLE_REGS
3482 struct elim_table_1 *ep1;
3483 #endif
3485 if (!reg_eliminate)
3486 reg_eliminate = (struct elim_table *)
3487 xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3489 /* Does this function require a frame pointer? */
3491 frame_pointer_needed = (! flag_omit_frame_pointer
3492 #ifdef EXIT_IGNORE_STACK
3493 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3494 and restore sp for alloca. So we can't eliminate
3495 the frame pointer in that case. At some point,
3496 we should improve this by emitting the
3497 sp-adjusting insns for this case. */
3498 || (current_function_calls_alloca
3499 && EXIT_IGNORE_STACK)
3500 #endif
3501 || FRAME_POINTER_REQUIRED);
3503 num_eliminable = 0;
3505 #ifdef ELIMINABLE_REGS
3506 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3507 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3509 ep->from = ep1->from;
3510 ep->to = ep1->to;
3511 ep->can_eliminate = ep->can_eliminate_previous
3512 = (CAN_ELIMINATE (ep->from, ep->to)
3513 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3515 #else
3516 reg_eliminate[0].from = reg_eliminate_1[0].from;
3517 reg_eliminate[0].to = reg_eliminate_1[0].to;
3518 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3519 = ! frame_pointer_needed;
3520 #endif
3522 /* Count the number of eliminable registers and build the FROM and TO
3523 REG rtx's. Note that code in gen_rtx will cause, e.g.,
3524 gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3525 We depend on this. */
3526 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3528 num_eliminable += ep->can_eliminate;
3529 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3530 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3534 /* Kick all pseudos out of hard register REGNO.
3536 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3537 because we found we can't eliminate some register. In the case, no pseudos
3538 are allowed to be in the register, even if they are only in a block that
3539 doesn't require spill registers, unlike the case when we are spilling this
3540 hard reg to produce another spill register.
3542 Return nonzero if any pseudos needed to be kicked out. */
3544 static void
3545 spill_hard_reg (regno, cant_eliminate)
3546 unsigned int regno;
3547 int cant_eliminate;
3549 register int i;
3551 if (cant_eliminate)
3553 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3554 regs_ever_live[regno] = 1;
3557 /* Spill every pseudo reg that was allocated to this reg
3558 or to something that overlaps this reg. */
3560 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3561 if (reg_renumber[i] >= 0
3562 && (unsigned int) reg_renumber[i] <= regno
3563 && ((unsigned int) reg_renumber[i]
3564 + HARD_REGNO_NREGS ((unsigned int) reg_renumber[i],
3565 PSEUDO_REGNO_MODE (i))
3566 > regno))
3567 SET_REGNO_REG_SET (&spilled_pseudos, i);
3570 /* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
3571 from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
3573 static void
3574 ior_hard_reg_set (set1, set2)
3575 HARD_REG_SET *set1, *set2;
3577 IOR_HARD_REG_SET (*set1, *set2);
3580 /* After find_reload_regs has been run for all insn that need reloads,
3581 and/or spill_hard_regs was called, this function is used to actually
3582 spill pseudo registers and try to reallocate them. It also sets up the
3583 spill_regs array for use by choose_reload_regs. */
3585 static int
3586 finish_spills (global)
3587 int global;
3589 struct insn_chain *chain;
3590 int something_changed = 0;
3591 int i;
3593 /* Build the spill_regs array for the function. */
3594 /* If there are some registers still to eliminate and one of the spill regs
3595 wasn't ever used before, additional stack space may have to be
3596 allocated to store this register. Thus, we may have changed the offset
3597 between the stack and frame pointers, so mark that something has changed.
3599 One might think that we need only set VAL to 1 if this is a call-used
3600 register. However, the set of registers that must be saved by the
3601 prologue is not identical to the call-used set. For example, the
3602 register used by the call insn for the return PC is a call-used register,
3603 but must be saved by the prologue. */
3605 n_spills = 0;
3606 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3607 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3609 spill_reg_order[i] = n_spills;
3610 spill_regs[n_spills++] = i;
3611 if (num_eliminable && ! regs_ever_live[i])
3612 something_changed = 1;
3613 regs_ever_live[i] = 1;
3615 else
3616 spill_reg_order[i] = -1;
3618 EXECUTE_IF_SET_IN_REG_SET
3619 (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i,
3621 /* Record the current hard register the pseudo is allocated to in
3622 pseudo_previous_regs so we avoid reallocating it to the same
3623 hard reg in a later pass. */
3624 if (reg_renumber[i] < 0)
3625 abort ();
3627 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3628 /* Mark it as no longer having a hard register home. */
3629 reg_renumber[i] = -1;
3630 /* We will need to scan everything again. */
3631 something_changed = 1;
3634 /* Retry global register allocation if possible. */
3635 if (global)
3637 memset ((char *) pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3638 /* For every insn that needs reloads, set the registers used as spill
3639 regs in pseudo_forbidden_regs for every pseudo live across the
3640 insn. */
3641 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3643 EXECUTE_IF_SET_IN_REG_SET
3644 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
3646 ior_hard_reg_set (pseudo_forbidden_regs + i,
3647 &chain->used_spill_regs);
3649 EXECUTE_IF_SET_IN_REG_SET
3650 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
3652 ior_hard_reg_set (pseudo_forbidden_regs + i,
3653 &chain->used_spill_regs);
3657 /* Retry allocating the spilled pseudos. For each reg, merge the
3658 various reg sets that indicate which hard regs can't be used,
3659 and call retry_global_alloc.
3660 We change spill_pseudos here to only contain pseudos that did not
3661 get a new hard register. */
3662 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3663 if (reg_old_renumber[i] != reg_renumber[i])
3665 HARD_REG_SET forbidden;
3666 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3667 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3668 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3669 retry_global_alloc (i, forbidden);
3670 if (reg_renumber[i] >= 0)
3671 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3675 /* Fix up the register information in the insn chain.
3676 This involves deleting those of the spilled pseudos which did not get
3677 a new hard register home from the live_{before,after} sets. */
3678 for (chain = reload_insn_chain; chain; chain = chain->next)
3680 HARD_REG_SET used_by_pseudos;
3681 HARD_REG_SET used_by_pseudos2;
3683 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3684 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3686 /* Mark any unallocated hard regs as available for spills. That
3687 makes inheritance work somewhat better. */
3688 if (chain->need_reload)
3690 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3691 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3692 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3694 /* Save the old value for the sanity test below. */
3695 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3697 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3698 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3699 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3700 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3702 /* Make sure we only enlarge the set. */
3703 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3704 abort ();
3705 ok:;
3709 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3710 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3712 int regno = reg_renumber[i];
3713 if (reg_old_renumber[i] == regno)
3714 continue;
3716 alter_reg (i, reg_old_renumber[i]);
3717 reg_old_renumber[i] = regno;
3718 if (rtl_dump_file)
3720 if (regno == -1)
3721 fprintf (rtl_dump_file, " Register %d now on stack.\n\n", i);
3722 else
3723 fprintf (rtl_dump_file, " Register %d now in %d.\n\n",
3724 i, reg_renumber[i]);
3728 return something_changed;
3731 /* Find all paradoxical subregs within X and update reg_max_ref_width.
3732 Also mark any hard registers used to store user variables as
3733 forbidden from being used for spill registers. */
3735 static void
3736 scan_paradoxical_subregs (x)
3737 register rtx x;
3739 register int i;
3740 register const char *fmt;
3741 register enum rtx_code code = GET_CODE (x);
3743 switch (code)
3745 case REG:
3746 #if 0
3747 if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
3748 && REG_USERVAR_P (x))
3749 SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
3750 #endif
3751 return;
3753 case CONST_INT:
3754 case CONST:
3755 case SYMBOL_REF:
3756 case LABEL_REF:
3757 case CONST_DOUBLE:
3758 case CC0:
3759 case PC:
3760 case USE:
3761 case CLOBBER:
3762 return;
3764 case SUBREG:
3765 if (GET_CODE (SUBREG_REG (x)) == REG
3766 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3767 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3768 = GET_MODE_SIZE (GET_MODE (x));
3769 return;
3771 default:
3772 break;
3775 fmt = GET_RTX_FORMAT (code);
3776 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3778 if (fmt[i] == 'e')
3779 scan_paradoxical_subregs (XEXP (x, i));
3780 else if (fmt[i] == 'E')
3782 register int j;
3783 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3784 scan_paradoxical_subregs (XVECEXP (x, i, j));
3789 /* Reload pseudo-registers into hard regs around each insn as needed.
3790 Additional register load insns are output before the insn that needs it
3791 and perhaps store insns after insns that modify the reloaded pseudo reg.
3793 reg_last_reload_reg and reg_reloaded_contents keep track of
3794 which registers are already available in reload registers.
3795 We update these for the reloads that we perform,
3796 as the insns are scanned. */
3798 static void
3799 reload_as_needed (live_known)
3800 int live_known;
3802 struct insn_chain *chain;
3803 #if defined (AUTO_INC_DEC)
3804 register int i;
3805 #endif
3806 rtx x;
3808 memset ((char *) spill_reg_rtx, 0, sizeof spill_reg_rtx);
3809 memset ((char *) spill_reg_store, 0, sizeof spill_reg_store);
3810 reg_last_reload_reg = (rtx *) xcalloc (max_regno, sizeof (rtx));
3811 reg_has_output_reload = (char *) xmalloc (max_regno);
3812 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3814 set_initial_elim_offsets ();
3816 for (chain = reload_insn_chain; chain; chain = chain->next)
3818 rtx prev;
3819 rtx insn = chain->insn;
3820 rtx old_next = NEXT_INSN (insn);
3822 /* If we pass a label, copy the offsets from the label information
3823 into the current offsets of each elimination. */
3824 if (GET_CODE (insn) == CODE_LABEL)
3825 set_offsets_for_label (insn);
3827 else if (INSN_P (insn))
3829 rtx oldpat = PATTERN (insn);
3831 /* If this is a USE and CLOBBER of a MEM, ensure that any
3832 references to eliminable registers have been removed. */
3834 if ((GET_CODE (PATTERN (insn)) == USE
3835 || GET_CODE (PATTERN (insn)) == CLOBBER)
3836 && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
3837 XEXP (XEXP (PATTERN (insn), 0), 0)
3838 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3839 GET_MODE (XEXP (PATTERN (insn), 0)),
3840 NULL_RTX);
3842 /* If we need to do register elimination processing, do so.
3843 This might delete the insn, in which case we are done. */
3844 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3846 eliminate_regs_in_insn (insn, 1);
3847 if (GET_CODE (insn) == NOTE)
3849 update_eliminable_offsets ();
3850 continue;
3854 /* If need_elim is nonzero but need_reload is zero, one might think
3855 that we could simply set n_reloads to 0. However, find_reloads
3856 could have done some manipulation of the insn (such as swapping
3857 commutative operands), and these manipulations are lost during
3858 the first pass for every insn that needs register elimination.
3859 So the actions of find_reloads must be redone here. */
3861 if (! chain->need_elim && ! chain->need_reload
3862 && ! chain->need_operand_change)
3863 n_reloads = 0;
3864 /* First find the pseudo regs that must be reloaded for this insn.
3865 This info is returned in the tables reload_... (see reload.h).
3866 Also modify the body of INSN by substituting RELOAD
3867 rtx's for those pseudo regs. */
3868 else
3870 memset (reg_has_output_reload, 0, max_regno);
3871 CLEAR_HARD_REG_SET (reg_is_output_reload);
3873 find_reloads (insn, 1, spill_indirect_levels, live_known,
3874 spill_reg_order);
3877 if (n_reloads > 0)
3879 rtx next = NEXT_INSN (insn);
3880 rtx p;
3882 prev = PREV_INSN (insn);
3884 /* Now compute which reload regs to reload them into. Perhaps
3885 reusing reload regs from previous insns, or else output
3886 load insns to reload them. Maybe output store insns too.
3887 Record the choices of reload reg in reload_reg_rtx. */
3888 choose_reload_regs (chain);
3890 /* Merge any reloads that we didn't combine for fear of
3891 increasing the number of spill registers needed but now
3892 discover can be safely merged. */
3893 if (SMALL_REGISTER_CLASSES)
3894 merge_assigned_reloads (insn);
3896 /* Generate the insns to reload operands into or out of
3897 their reload regs. */
3898 emit_reload_insns (chain);
3900 /* Substitute the chosen reload regs from reload_reg_rtx
3901 into the insn's body (or perhaps into the bodies of other
3902 load and store insn that we just made for reloading
3903 and that we moved the structure into). */
3904 subst_reloads (insn);
3906 /* If this was an ASM, make sure that all the reload insns
3907 we have generated are valid. If not, give an error
3908 and delete them. */
3910 if (asm_noperands (PATTERN (insn)) >= 0)
3911 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
3912 if (p != insn && INSN_P (p)
3913 && (recog_memoized (p) < 0
3914 || (extract_insn (p), ! constrain_operands (1))))
3916 error_for_asm (insn,
3917 "`asm' operand requires impossible reload");
3918 PUT_CODE (p, NOTE);
3919 NOTE_SOURCE_FILE (p) = 0;
3920 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
3924 if (num_eliminable && chain->need_elim)
3925 update_eliminable_offsets ();
3927 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3928 is no longer validly lying around to save a future reload.
3929 Note that this does not detect pseudos that were reloaded
3930 for this insn in order to be stored in
3931 (obeying register constraints). That is correct; such reload
3932 registers ARE still valid. */
3933 note_stores (oldpat, forget_old_reloads_1, NULL);
3935 /* There may have been CLOBBER insns placed after INSN. So scan
3936 between INSN and NEXT and use them to forget old reloads. */
3937 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
3938 if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
3939 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
3941 #ifdef AUTO_INC_DEC
3942 /* Likewise for regs altered by auto-increment in this insn.
3943 REG_INC notes have been changed by reloading:
3944 find_reloads_address_1 records substitutions for them,
3945 which have been performed by subst_reloads above. */
3946 for (i = n_reloads - 1; i >= 0; i--)
3948 rtx in_reg = rld[i].in_reg;
3949 if (in_reg)
3951 enum rtx_code code = GET_CODE (in_reg);
3952 /* PRE_INC / PRE_DEC will have the reload register ending up
3953 with the same value as the stack slot, but that doesn't
3954 hold true for POST_INC / POST_DEC. Either we have to
3955 convert the memory access to a true POST_INC / POST_DEC,
3956 or we can't use the reload register for inheritance. */
3957 if ((code == POST_INC || code == POST_DEC)
3958 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3959 REGNO (rld[i].reg_rtx))
3960 /* Make sure it is the inc/dec pseudo, and not
3961 some other (e.g. output operand) pseudo. */
3962 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3963 == REGNO (XEXP (in_reg, 0))))
3966 rtx reload_reg = rld[i].reg_rtx;
3967 enum machine_mode mode = GET_MODE (reload_reg);
3968 int n = 0;
3969 rtx p;
3971 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
3973 /* We really want to ignore REG_INC notes here, so
3974 use PATTERN (p) as argument to reg_set_p . */
3975 if (reg_set_p (reload_reg, PATTERN (p)))
3976 break;
3977 n = count_occurrences (PATTERN (p), reload_reg, 0);
3978 if (! n)
3979 continue;
3980 if (n == 1)
3982 n = validate_replace_rtx (reload_reg,
3983 gen_rtx (code, mode,
3984 reload_reg),
3987 /* We must also verify that the constraints
3988 are met after the replacement. */
3989 extract_insn (p);
3990 if (n)
3991 n = constrain_operands (1);
3992 else
3993 break;
3995 /* If the constraints were not met, then
3996 undo the replacement. */
3997 if (!n)
3999 validate_replace_rtx (gen_rtx (code, mode,
4000 reload_reg),
4001 reload_reg, p);
4002 break;
4006 break;
4008 if (n == 1)
4010 REG_NOTES (p)
4011 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
4012 REG_NOTES (p));
4013 /* Mark this as having an output reload so that the
4014 REG_INC processing code below won't invalidate
4015 the reload for inheritance. */
4016 SET_HARD_REG_BIT (reg_is_output_reload,
4017 REGNO (reload_reg));
4018 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4020 else
4021 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4022 NULL);
4024 else if ((code == PRE_INC || code == PRE_DEC)
4025 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4026 REGNO (rld[i].reg_rtx))
4027 /* Make sure it is the inc/dec pseudo, and not
4028 some other (e.g. output operand) pseudo. */
4029 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4030 == REGNO (XEXP (in_reg, 0))))
4032 SET_HARD_REG_BIT (reg_is_output_reload,
4033 REGNO (rld[i].reg_rtx));
4034 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4038 /* If a pseudo that got a hard register is auto-incremented,
4039 we must purge records of copying it into pseudos without
4040 hard registers. */
4041 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4042 if (REG_NOTE_KIND (x) == REG_INC)
4044 /* See if this pseudo reg was reloaded in this insn.
4045 If so, its last-reload info is still valid
4046 because it is based on this insn's reload. */
4047 for (i = 0; i < n_reloads; i++)
4048 if (rld[i].out == XEXP (x, 0))
4049 break;
4051 if (i == n_reloads)
4052 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4054 #endif
4056 /* A reload reg's contents are unknown after a label. */
4057 if (GET_CODE (insn) == CODE_LABEL)
4058 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4060 /* Don't assume a reload reg is still good after a call insn
4061 if it is a call-used reg. */
4062 else if (GET_CODE (insn) == CALL_INSN)
4063 AND_COMPL_HARD_REG_SET(reg_reloaded_valid, call_used_reg_set);
4066 /* Clean up. */
4067 free (reg_last_reload_reg);
4068 free (reg_has_output_reload);
4071 /* Discard all record of any value reloaded from X,
4072 or reloaded in X from someplace else;
4073 unless X is an output reload reg of the current insn.
4075 X may be a hard reg (the reload reg)
4076 or it may be a pseudo reg that was reloaded from. */
4078 static void
4079 forget_old_reloads_1 (x, ignored, data)
4080 rtx x;
4081 rtx ignored ATTRIBUTE_UNUSED;
4082 void *data ATTRIBUTE_UNUSED;
4084 unsigned int regno;
4085 unsigned int nr;
4086 int offset = 0;
4088 /* note_stores does give us subregs of hard regs,
4089 subreg_regno_offset will abort if it is not a hard reg. */
4090 while (GET_CODE (x) == SUBREG)
4092 offset += subreg_regno_offset (REGNO (SUBREG_REG (x)),
4093 GET_MODE (SUBREG_REG (x)),
4094 SUBREG_BYTE (x),
4095 GET_MODE (x));
4096 x = SUBREG_REG (x);
4099 if (GET_CODE (x) != REG)
4100 return;
4102 regno = REGNO (x) + offset;
4104 if (regno >= FIRST_PSEUDO_REGISTER)
4105 nr = 1;
4106 else
4108 unsigned int i;
4110 nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
4111 /* Storing into a spilled-reg invalidates its contents.
4112 This can happen if a block-local pseudo is allocated to that reg
4113 and it wasn't spilled because this block's total need is 0.
4114 Then some insn might have an optional reload and use this reg. */
4115 for (i = 0; i < nr; i++)
4116 /* But don't do this if the reg actually serves as an output
4117 reload reg in the current instruction. */
4118 if (n_reloads == 0
4119 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4121 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4122 spill_reg_store[regno + i] = 0;
4126 /* Since value of X has changed,
4127 forget any value previously copied from it. */
4129 while (nr-- > 0)
4130 /* But don't forget a copy if this is the output reload
4131 that establishes the copy's validity. */
4132 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4133 reg_last_reload_reg[regno + nr] = 0;
4136 /* The following HARD_REG_SETs indicate when each hard register is
4137 used for a reload of various parts of the current insn. */
4139 /* If reg is unavailable for all reloads. */
4140 static HARD_REG_SET reload_reg_unavailable;
4141 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4142 static HARD_REG_SET reload_reg_used;
4143 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4144 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4145 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4146 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4147 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4148 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4149 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4150 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4151 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4152 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4153 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4154 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4155 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4156 static HARD_REG_SET reload_reg_used_in_op_addr;
4157 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4158 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4159 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4160 static HARD_REG_SET reload_reg_used_in_insn;
4161 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4162 static HARD_REG_SET reload_reg_used_in_other_addr;
4164 /* If reg is in use as a reload reg for any sort of reload. */
4165 static HARD_REG_SET reload_reg_used_at_all;
4167 /* If reg is use as an inherited reload. We just mark the first register
4168 in the group. */
4169 static HARD_REG_SET reload_reg_used_for_inherit;
4171 /* Records which hard regs are used in any way, either as explicit use or
4172 by being allocated to a pseudo during any point of the current insn. */
4173 static HARD_REG_SET reg_used_in_insn;
4175 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4176 TYPE. MODE is used to indicate how many consecutive regs are
4177 actually used. */
4179 static void
4180 mark_reload_reg_in_use (regno, opnum, type, mode)
4181 unsigned int regno;
4182 int opnum;
4183 enum reload_type type;
4184 enum machine_mode mode;
4186 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4187 unsigned int i;
4189 for (i = regno; i < nregs + regno; i++)
4191 switch (type)
4193 case RELOAD_OTHER:
4194 SET_HARD_REG_BIT (reload_reg_used, i);
4195 break;
4197 case RELOAD_FOR_INPUT_ADDRESS:
4198 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4199 break;
4201 case RELOAD_FOR_INPADDR_ADDRESS:
4202 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4203 break;
4205 case RELOAD_FOR_OUTPUT_ADDRESS:
4206 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4207 break;
4209 case RELOAD_FOR_OUTADDR_ADDRESS:
4210 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4211 break;
4213 case RELOAD_FOR_OPERAND_ADDRESS:
4214 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4215 break;
4217 case RELOAD_FOR_OPADDR_ADDR:
4218 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4219 break;
4221 case RELOAD_FOR_OTHER_ADDRESS:
4222 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4223 break;
4225 case RELOAD_FOR_INPUT:
4226 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4227 break;
4229 case RELOAD_FOR_OUTPUT:
4230 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4231 break;
4233 case RELOAD_FOR_INSN:
4234 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4235 break;
4238 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4242 /* Similarly, but show REGNO is no longer in use for a reload. */
4244 static void
4245 clear_reload_reg_in_use (regno, opnum, type, mode)
4246 unsigned int regno;
4247 int opnum;
4248 enum reload_type type;
4249 enum machine_mode mode;
4251 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4252 unsigned int start_regno, end_regno, r;
4253 int i;
4254 /* A complication is that for some reload types, inheritance might
4255 allow multiple reloads of the same types to share a reload register.
4256 We set check_opnum if we have to check only reloads with the same
4257 operand number, and check_any if we have to check all reloads. */
4258 int check_opnum = 0;
4259 int check_any = 0;
4260 HARD_REG_SET *used_in_set;
4262 switch (type)
4264 case RELOAD_OTHER:
4265 used_in_set = &reload_reg_used;
4266 break;
4268 case RELOAD_FOR_INPUT_ADDRESS:
4269 used_in_set = &reload_reg_used_in_input_addr[opnum];
4270 break;
4272 case RELOAD_FOR_INPADDR_ADDRESS:
4273 check_opnum = 1;
4274 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4275 break;
4277 case RELOAD_FOR_OUTPUT_ADDRESS:
4278 used_in_set = &reload_reg_used_in_output_addr[opnum];
4279 break;
4281 case RELOAD_FOR_OUTADDR_ADDRESS:
4282 check_opnum = 1;
4283 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4284 break;
4286 case RELOAD_FOR_OPERAND_ADDRESS:
4287 used_in_set = &reload_reg_used_in_op_addr;
4288 break;
4290 case RELOAD_FOR_OPADDR_ADDR:
4291 check_any = 1;
4292 used_in_set = &reload_reg_used_in_op_addr_reload;
4293 break;
4295 case RELOAD_FOR_OTHER_ADDRESS:
4296 used_in_set = &reload_reg_used_in_other_addr;
4297 check_any = 1;
4298 break;
4300 case RELOAD_FOR_INPUT:
4301 used_in_set = &reload_reg_used_in_input[opnum];
4302 break;
4304 case RELOAD_FOR_OUTPUT:
4305 used_in_set = &reload_reg_used_in_output[opnum];
4306 break;
4308 case RELOAD_FOR_INSN:
4309 used_in_set = &reload_reg_used_in_insn;
4310 break;
4311 default:
4312 abort ();
4314 /* We resolve conflicts with remaining reloads of the same type by
4315 excluding the intervals of of reload registers by them from the
4316 interval of freed reload registers. Since we only keep track of
4317 one set of interval bounds, we might have to exclude somewhat
4318 more then what would be necessary if we used a HARD_REG_SET here.
4319 But this should only happen very infrequently, so there should
4320 be no reason to worry about it. */
4322 start_regno = regno;
4323 end_regno = regno + nregs;
4324 if (check_opnum || check_any)
4326 for (i = n_reloads - 1; i >= 0; i--)
4328 if (rld[i].when_needed == type
4329 && (check_any || rld[i].opnum == opnum)
4330 && rld[i].reg_rtx)
4332 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4333 unsigned int conflict_end
4334 = (conflict_start
4335 + HARD_REGNO_NREGS (conflict_start, rld[i].mode));
4337 /* If there is an overlap with the first to-be-freed register,
4338 adjust the interval start. */
4339 if (conflict_start <= start_regno && conflict_end > start_regno)
4340 start_regno = conflict_end;
4341 /* Otherwise, if there is a conflict with one of the other
4342 to-be-freed registers, adjust the interval end. */
4343 if (conflict_start > start_regno && conflict_start < end_regno)
4344 end_regno = conflict_start;
4349 for (r = start_regno; r < end_regno; r++)
4350 CLEAR_HARD_REG_BIT (*used_in_set, r);
4353 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4354 specified by OPNUM and TYPE. */
4356 static int
4357 reload_reg_free_p (regno, opnum, type)
4358 unsigned int regno;
4359 int opnum;
4360 enum reload_type type;
4362 int i;
4364 /* In use for a RELOAD_OTHER means it's not available for anything. */
4365 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4366 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4367 return 0;
4369 switch (type)
4371 case RELOAD_OTHER:
4372 /* In use for anything means we can't use it for RELOAD_OTHER. */
4373 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4374 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4375 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4376 return 0;
4378 for (i = 0; i < reload_n_operands; i++)
4379 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4380 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4381 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4382 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4383 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4384 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4385 return 0;
4387 return 1;
4389 case RELOAD_FOR_INPUT:
4390 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4391 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4392 return 0;
4394 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4395 return 0;
4397 /* If it is used for some other input, can't use it. */
4398 for (i = 0; i < reload_n_operands; i++)
4399 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4400 return 0;
4402 /* If it is used in a later operand's address, can't use it. */
4403 for (i = opnum + 1; i < reload_n_operands; i++)
4404 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4405 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4406 return 0;
4408 return 1;
4410 case RELOAD_FOR_INPUT_ADDRESS:
4411 /* Can't use a register if it is used for an input address for this
4412 operand or used as an input in an earlier one. */
4413 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4414 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4415 return 0;
4417 for (i = 0; i < opnum; i++)
4418 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4419 return 0;
4421 return 1;
4423 case RELOAD_FOR_INPADDR_ADDRESS:
4424 /* Can't use a register if it is used for an input address
4425 for this operand or used as an input in an earlier
4426 one. */
4427 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4428 return 0;
4430 for (i = 0; i < opnum; i++)
4431 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4432 return 0;
4434 return 1;
4436 case RELOAD_FOR_OUTPUT_ADDRESS:
4437 /* Can't use a register if it is used for an output address for this
4438 operand or used as an output in this or a later operand. */
4439 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4440 return 0;
4442 for (i = opnum; i < reload_n_operands; i++)
4443 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4444 return 0;
4446 return 1;
4448 case RELOAD_FOR_OUTADDR_ADDRESS:
4449 /* Can't use a register if it is used for an output address
4450 for this operand or used as an output in this or a
4451 later operand. */
4452 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4453 return 0;
4455 for (i = opnum; i < reload_n_operands; i++)
4456 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4457 return 0;
4459 return 1;
4461 case RELOAD_FOR_OPERAND_ADDRESS:
4462 for (i = 0; i < reload_n_operands; i++)
4463 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4464 return 0;
4466 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4467 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4469 case RELOAD_FOR_OPADDR_ADDR:
4470 for (i = 0; i < reload_n_operands; i++)
4471 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4472 return 0;
4474 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4476 case RELOAD_FOR_OUTPUT:
4477 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4478 outputs, or an operand address for this or an earlier output. */
4479 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4480 return 0;
4482 for (i = 0; i < reload_n_operands; i++)
4483 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4484 return 0;
4486 for (i = 0; i <= opnum; i++)
4487 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4488 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4489 return 0;
4491 return 1;
4493 case RELOAD_FOR_INSN:
4494 for (i = 0; i < reload_n_operands; i++)
4495 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4496 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4497 return 0;
4499 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4500 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4502 case RELOAD_FOR_OTHER_ADDRESS:
4503 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4505 abort ();
4508 /* Return 1 if the value in reload reg REGNO, as used by a reload
4509 needed for the part of the insn specified by OPNUM and TYPE,
4510 is still available in REGNO at the end of the insn.
4512 We can assume that the reload reg was already tested for availability
4513 at the time it is needed, and we should not check this again,
4514 in case the reg has already been marked in use. */
4516 static int
4517 reload_reg_reaches_end_p (regno, opnum, type)
4518 unsigned int regno;
4519 int opnum;
4520 enum reload_type type;
4522 int i;
4524 switch (type)
4526 case RELOAD_OTHER:
4527 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4528 its value must reach the end. */
4529 return 1;
4531 /* If this use is for part of the insn,
4532 its value reaches if no subsequent part uses the same register.
4533 Just like the above function, don't try to do this with lots
4534 of fallthroughs. */
4536 case RELOAD_FOR_OTHER_ADDRESS:
4537 /* Here we check for everything else, since these don't conflict
4538 with anything else and everything comes later. */
4540 for (i = 0; i < reload_n_operands; i++)
4541 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4542 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4543 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4544 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4545 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4546 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4547 return 0;
4549 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4550 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4551 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4553 case RELOAD_FOR_INPUT_ADDRESS:
4554 case RELOAD_FOR_INPADDR_ADDRESS:
4555 /* Similar, except that we check only for this and subsequent inputs
4556 and the address of only subsequent inputs and we do not need
4557 to check for RELOAD_OTHER objects since they are known not to
4558 conflict. */
4560 for (i = opnum; i < reload_n_operands; i++)
4561 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4562 return 0;
4564 for (i = opnum + 1; i < reload_n_operands; i++)
4565 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4566 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4567 return 0;
4569 for (i = 0; i < reload_n_operands; i++)
4570 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4571 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4572 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4573 return 0;
4575 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4576 return 0;
4578 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4579 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4580 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4582 case RELOAD_FOR_INPUT:
4583 /* Similar to input address, except we start at the next operand for
4584 both input and input address and we do not check for
4585 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4586 would conflict. */
4588 for (i = opnum + 1; i < reload_n_operands; i++)
4589 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4590 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4591 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4592 return 0;
4594 /* ... fall through ... */
4596 case RELOAD_FOR_OPERAND_ADDRESS:
4597 /* Check outputs and their addresses. */
4599 for (i = 0; i < reload_n_operands; i++)
4600 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4601 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4602 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4603 return 0;
4605 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4607 case RELOAD_FOR_OPADDR_ADDR:
4608 for (i = 0; i < reload_n_operands; i++)
4609 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4610 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4611 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4612 return 0;
4614 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4615 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4616 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4618 case RELOAD_FOR_INSN:
4619 /* These conflict with other outputs with RELOAD_OTHER. So
4620 we need only check for output addresses. */
4622 opnum = -1;
4624 /* ... fall through ... */
4626 case RELOAD_FOR_OUTPUT:
4627 case RELOAD_FOR_OUTPUT_ADDRESS:
4628 case RELOAD_FOR_OUTADDR_ADDRESS:
4629 /* We already know these can't conflict with a later output. So the
4630 only thing to check are later output addresses. */
4631 for (i = opnum + 1; i < reload_n_operands; i++)
4632 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4633 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4634 return 0;
4636 return 1;
4639 abort ();
4642 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4643 Return 0 otherwise.
4645 This function uses the same algorithm as reload_reg_free_p above. */
4648 reloads_conflict (r1, r2)
4649 int r1, r2;
4651 enum reload_type r1_type = rld[r1].when_needed;
4652 enum reload_type r2_type = rld[r2].when_needed;
4653 int r1_opnum = rld[r1].opnum;
4654 int r2_opnum = rld[r2].opnum;
4656 /* RELOAD_OTHER conflicts with everything. */
4657 if (r2_type == RELOAD_OTHER)
4658 return 1;
4660 /* Otherwise, check conflicts differently for each type. */
4662 switch (r1_type)
4664 case RELOAD_FOR_INPUT:
4665 return (r2_type == RELOAD_FOR_INSN
4666 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4667 || r2_type == RELOAD_FOR_OPADDR_ADDR
4668 || r2_type == RELOAD_FOR_INPUT
4669 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4670 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4671 && r2_opnum > r1_opnum));
4673 case RELOAD_FOR_INPUT_ADDRESS:
4674 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4675 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4677 case RELOAD_FOR_INPADDR_ADDRESS:
4678 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4679 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4681 case RELOAD_FOR_OUTPUT_ADDRESS:
4682 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4683 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum));
4685 case RELOAD_FOR_OUTADDR_ADDRESS:
4686 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4687 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum));
4689 case RELOAD_FOR_OPERAND_ADDRESS:
4690 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4691 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4693 case RELOAD_FOR_OPADDR_ADDR:
4694 return (r2_type == RELOAD_FOR_INPUT
4695 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4697 case RELOAD_FOR_OUTPUT:
4698 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4699 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4700 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4701 && r2_opnum <= r1_opnum));
4703 case RELOAD_FOR_INSN:
4704 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4705 || r2_type == RELOAD_FOR_INSN
4706 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4708 case RELOAD_FOR_OTHER_ADDRESS:
4709 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4711 case RELOAD_OTHER:
4712 return 1;
4714 default:
4715 abort ();
4719 /* Indexed by reload number, 1 if incoming value
4720 inherited from previous insns. */
4721 char reload_inherited[MAX_RELOADS];
4723 /* For an inherited reload, this is the insn the reload was inherited from,
4724 if we know it. Otherwise, this is 0. */
4725 rtx reload_inheritance_insn[MAX_RELOADS];
4727 /* If non-zero, this is a place to get the value of the reload,
4728 rather than using reload_in. */
4729 rtx reload_override_in[MAX_RELOADS];
4731 /* For each reload, the hard register number of the register used,
4732 or -1 if we did not need a register for this reload. */
4733 int reload_spill_index[MAX_RELOADS];
4735 /* Subroutine of free_for_value_p, used to check a single register.
4736 START_REGNO is the starting regno of the full reload register
4737 (possibly comprising multiple hard registers) that we are considering. */
4739 static int
4740 reload_reg_free_for_value_p (start_regno, regno, opnum, type, value, out,
4741 reloadnum, ignore_address_reloads)
4742 int start_regno, regno;
4743 int opnum;
4744 enum reload_type type;
4745 rtx value, out;
4746 int reloadnum;
4747 int ignore_address_reloads;
4749 int time1;
4750 /* Set if we see an input reload that must not share its reload register
4751 with any new earlyclobber, but might otherwise share the reload
4752 register with an output or input-output reload. */
4753 int check_earlyclobber = 0;
4754 int i;
4755 int copy = 0;
4757 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4758 return 0;
4760 if (out == const0_rtx)
4762 copy = 1;
4763 out = NULL_RTX;
4766 /* We use some pseudo 'time' value to check if the lifetimes of the
4767 new register use would overlap with the one of a previous reload
4768 that is not read-only or uses a different value.
4769 The 'time' used doesn't have to be linear in any shape or form, just
4770 monotonic.
4771 Some reload types use different 'buckets' for each operand.
4772 So there are MAX_RECOG_OPERANDS different time values for each
4773 such reload type.
4774 We compute TIME1 as the time when the register for the prospective
4775 new reload ceases to be live, and TIME2 for each existing
4776 reload as the time when that the reload register of that reload
4777 becomes live.
4778 Where there is little to be gained by exact lifetime calculations,
4779 we just make conservative assumptions, i.e. a longer lifetime;
4780 this is done in the 'default:' cases. */
4781 switch (type)
4783 case RELOAD_FOR_OTHER_ADDRESS:
4784 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4785 time1 = copy ? 0 : 1;
4786 break;
4787 case RELOAD_OTHER:
4788 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4789 break;
4790 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4791 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4792 respectively, to the time values for these, we get distinct time
4793 values. To get distinct time values for each operand, we have to
4794 multiply opnum by at least three. We round that up to four because
4795 multiply by four is often cheaper. */
4796 case RELOAD_FOR_INPADDR_ADDRESS:
4797 time1 = opnum * 4 + 2;
4798 break;
4799 case RELOAD_FOR_INPUT_ADDRESS:
4800 time1 = opnum * 4 + 3;
4801 break;
4802 case RELOAD_FOR_INPUT:
4803 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4804 executes (inclusive). */
4805 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4806 break;
4807 case RELOAD_FOR_OPADDR_ADDR:
4808 /* opnum * 4 + 4
4809 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4810 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4811 break;
4812 case RELOAD_FOR_OPERAND_ADDRESS:
4813 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4814 is executed. */
4815 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4816 break;
4817 case RELOAD_FOR_OUTADDR_ADDRESS:
4818 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4819 break;
4820 case RELOAD_FOR_OUTPUT_ADDRESS:
4821 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4822 break;
4823 default:
4824 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4827 for (i = 0; i < n_reloads; i++)
4829 rtx reg = rld[i].reg_rtx;
4830 if (reg && GET_CODE (reg) == REG
4831 && ((unsigned) regno - true_regnum (reg)
4832 <= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned)1)
4833 && i != reloadnum)
4835 rtx other_input = rld[i].in;
4837 /* If the other reload loads the same input value, that
4838 will not cause a conflict only if it's loading it into
4839 the same register. */
4840 if (true_regnum (reg) != start_regno)
4841 other_input = NULL_RTX;
4842 if (! other_input || ! rtx_equal_p (other_input, value)
4843 || rld[i].out || out)
4845 int time2;
4846 switch (rld[i].when_needed)
4848 case RELOAD_FOR_OTHER_ADDRESS:
4849 time2 = 0;
4850 break;
4851 case RELOAD_FOR_INPADDR_ADDRESS:
4852 /* find_reloads makes sure that a
4853 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4854 by at most one - the first -
4855 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4856 address reload is inherited, the address address reload
4857 goes away, so we can ignore this conflict. */
4858 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4859 && ignore_address_reloads
4860 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4861 Then the address address is still needed to store
4862 back the new address. */
4863 && ! rld[reloadnum].out)
4864 continue;
4865 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4866 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4867 reloads go away. */
4868 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4869 && ignore_address_reloads
4870 /* Unless we are reloading an auto_inc expression. */
4871 && ! rld[reloadnum].out)
4872 continue;
4873 time2 = rld[i].opnum * 4 + 2;
4874 break;
4875 case RELOAD_FOR_INPUT_ADDRESS:
4876 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4877 && ignore_address_reloads
4878 && ! rld[reloadnum].out)
4879 continue;
4880 time2 = rld[i].opnum * 4 + 3;
4881 break;
4882 case RELOAD_FOR_INPUT:
4883 time2 = rld[i].opnum * 4 + 4;
4884 check_earlyclobber = 1;
4885 break;
4886 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
4887 == MAX_RECOG_OPERAND * 4 */
4888 case RELOAD_FOR_OPADDR_ADDR:
4889 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4890 && ignore_address_reloads
4891 && ! rld[reloadnum].out)
4892 continue;
4893 time2 = MAX_RECOG_OPERANDS * 4 + 1;
4894 break;
4895 case RELOAD_FOR_OPERAND_ADDRESS:
4896 time2 = MAX_RECOG_OPERANDS * 4 + 2;
4897 check_earlyclobber = 1;
4898 break;
4899 case RELOAD_FOR_INSN:
4900 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4901 break;
4902 case RELOAD_FOR_OUTPUT:
4903 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4904 instruction is executed. */
4905 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4906 break;
4907 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4908 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4909 value. */
4910 case RELOAD_FOR_OUTADDR_ADDRESS:
4911 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4912 && ignore_address_reloads
4913 && ! rld[reloadnum].out)
4914 continue;
4915 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
4916 break;
4917 case RELOAD_FOR_OUTPUT_ADDRESS:
4918 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
4919 break;
4920 case RELOAD_OTHER:
4921 /* If there is no conflict in the input part, handle this
4922 like an output reload. */
4923 if (! rld[i].in || rtx_equal_p (other_input, value))
4925 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4926 /* Earlyclobbered outputs must conflict with inputs. */
4927 if (earlyclobber_operand_p (rld[i].out))
4928 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4930 break;
4932 time2 = 1;
4933 /* RELOAD_OTHER might be live beyond instruction execution,
4934 but this is not obvious when we set time2 = 1. So check
4935 here if there might be a problem with the new reload
4936 clobbering the register used by the RELOAD_OTHER. */
4937 if (out)
4938 return 0;
4939 break;
4940 default:
4941 return 0;
4943 if ((time1 >= time2
4944 && (! rld[i].in || rld[i].out
4945 || ! rtx_equal_p (other_input, value)))
4946 || (out && rld[reloadnum].out_reg
4947 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
4948 return 0;
4953 /* Earlyclobbered outputs must conflict with inputs. */
4954 if (check_earlyclobber && out && earlyclobber_operand_p (out))
4955 return 0;
4957 return 1;
4960 /* Return 1 if the value in reload reg REGNO, as used by a reload
4961 needed for the part of the insn specified by OPNUM and TYPE,
4962 may be used to load VALUE into it.
4964 MODE is the mode in which the register is used, this is needed to
4965 determine how many hard regs to test.
4967 Other read-only reloads with the same value do not conflict
4968 unless OUT is non-zero and these other reloads have to live while
4969 output reloads live.
4970 If OUT is CONST0_RTX, this is a special case: it means that the
4971 test should not be for using register REGNO as reload register, but
4972 for copying from register REGNO into the reload register.
4974 RELOADNUM is the number of the reload we want to load this value for;
4975 a reload does not conflict with itself.
4977 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
4978 reloads that load an address for the very reload we are considering.
4980 The caller has to make sure that there is no conflict with the return
4981 register. */
4983 static int
4984 free_for_value_p (regno, mode, opnum, type, value, out, reloadnum,
4985 ignore_address_reloads)
4986 int regno;
4987 enum machine_mode mode;
4988 int opnum;
4989 enum reload_type type;
4990 rtx value, out;
4991 int reloadnum;
4992 int ignore_address_reloads;
4994 int nregs = HARD_REGNO_NREGS (regno, mode);
4995 while (nregs-- > 0)
4996 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
4997 value, out, reloadnum,
4998 ignore_address_reloads))
4999 return 0;
5000 return 1;
5003 /* Determine whether the reload reg X overlaps any rtx'es used for
5004 overriding inheritance. Return nonzero if so. */
5006 static int
5007 conflicts_with_override (x)
5008 rtx x;
5010 int i;
5011 for (i = 0; i < n_reloads; i++)
5012 if (reload_override_in[i]
5013 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5014 return 1;
5015 return 0;
5018 /* Give an error message saying we failed to find a reload for INSN,
5019 and clear out reload R. */
5020 static void
5021 failed_reload (insn, r)
5022 rtx insn;
5023 int r;
5025 if (asm_noperands (PATTERN (insn)) < 0)
5026 /* It's the compiler's fault. */
5027 fatal_insn ("Could not find a spill register", insn);
5029 /* It's the user's fault; the operand's mode and constraint
5030 don't match. Disable this reload so we don't crash in final. */
5031 error_for_asm (insn,
5032 "`asm' operand constraint incompatible with operand size");
5033 rld[r].in = 0;
5034 rld[r].out = 0;
5035 rld[r].reg_rtx = 0;
5036 rld[r].optional = 1;
5037 rld[r].secondary_p = 1;
5040 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5041 for reload R. If it's valid, get an rtx for it. Return nonzero if
5042 successful. */
5043 static int
5044 set_reload_reg (i, r)
5045 int i, r;
5047 int regno;
5048 rtx reg = spill_reg_rtx[i];
5050 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5051 spill_reg_rtx[i] = reg
5052 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5054 regno = true_regnum (reg);
5056 /* Detect when the reload reg can't hold the reload mode.
5057 This used to be one `if', but Sequent compiler can't handle that. */
5058 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5060 enum machine_mode test_mode = VOIDmode;
5061 if (rld[r].in)
5062 test_mode = GET_MODE (rld[r].in);
5063 /* If rld[r].in has VOIDmode, it means we will load it
5064 in whatever mode the reload reg has: to wit, rld[r].mode.
5065 We have already tested that for validity. */
5066 /* Aside from that, we need to test that the expressions
5067 to reload from or into have modes which are valid for this
5068 reload register. Otherwise the reload insns would be invalid. */
5069 if (! (rld[r].in != 0 && test_mode != VOIDmode
5070 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5071 if (! (rld[r].out != 0
5072 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5074 /* The reg is OK. */
5075 last_spill_reg = i;
5077 /* Mark as in use for this insn the reload regs we use
5078 for this. */
5079 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5080 rld[r].when_needed, rld[r].mode);
5082 rld[r].reg_rtx = reg;
5083 reload_spill_index[r] = spill_regs[i];
5084 return 1;
5087 return 0;
5090 /* Find a spill register to use as a reload register for reload R.
5091 LAST_RELOAD is non-zero if this is the last reload for the insn being
5092 processed.
5094 Set rld[R].reg_rtx to the register allocated.
5096 We return 1 if successful, or 0 if we couldn't find a spill reg and
5097 we didn't change anything. */
5099 static int
5100 allocate_reload_reg (chain, r, last_reload)
5101 struct insn_chain *chain ATTRIBUTE_UNUSED;
5102 int r;
5103 int last_reload;
5105 int i, pass, count;
5107 /* If we put this reload ahead, thinking it is a group,
5108 then insist on finding a group. Otherwise we can grab a
5109 reg that some other reload needs.
5110 (That can happen when we have a 68000 DATA_OR_FP_REG
5111 which is a group of data regs or one fp reg.)
5112 We need not be so restrictive if there are no more reloads
5113 for this insn.
5115 ??? Really it would be nicer to have smarter handling
5116 for that kind of reg class, where a problem like this is normal.
5117 Perhaps those classes should be avoided for reloading
5118 by use of more alternatives. */
5120 int force_group = rld[r].nregs > 1 && ! last_reload;
5122 /* If we want a single register and haven't yet found one,
5123 take any reg in the right class and not in use.
5124 If we want a consecutive group, here is where we look for it.
5126 We use two passes so we can first look for reload regs to
5127 reuse, which are already in use for other reloads in this insn,
5128 and only then use additional registers.
5129 I think that maximizing reuse is needed to make sure we don't
5130 run out of reload regs. Suppose we have three reloads, and
5131 reloads A and B can share regs. These need two regs.
5132 Suppose A and B are given different regs.
5133 That leaves none for C. */
5134 for (pass = 0; pass < 2; pass++)
5136 /* I is the index in spill_regs.
5137 We advance it round-robin between insns to use all spill regs
5138 equally, so that inherited reloads have a chance
5139 of leapfrogging each other. */
5141 i = last_spill_reg;
5143 for (count = 0; count < n_spills; count++)
5145 int class = (int) rld[r].class;
5146 int regnum;
5148 i++;
5149 if (i >= n_spills)
5150 i -= n_spills;
5151 regnum = spill_regs[i];
5153 if ((reload_reg_free_p (regnum, rld[r].opnum,
5154 rld[r].when_needed)
5155 || (rld[r].in
5156 /* We check reload_reg_used to make sure we
5157 don't clobber the return register. */
5158 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5159 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5160 rld[r].when_needed, rld[r].in,
5161 rld[r].out, r, 1)))
5162 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5163 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5164 /* Look first for regs to share, then for unshared. But
5165 don't share regs used for inherited reloads; they are
5166 the ones we want to preserve. */
5167 && (pass
5168 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5169 regnum)
5170 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5171 regnum))))
5173 int nr = HARD_REGNO_NREGS (regnum, rld[r].mode);
5174 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5175 (on 68000) got us two FP regs. If NR is 1,
5176 we would reject both of them. */
5177 if (force_group)
5178 nr = rld[r].nregs;
5179 /* If we need only one reg, we have already won. */
5180 if (nr == 1)
5182 /* But reject a single reg if we demand a group. */
5183 if (force_group)
5184 continue;
5185 break;
5187 /* Otherwise check that as many consecutive regs as we need
5188 are available here. */
5189 while (nr > 1)
5191 int regno = regnum + nr - 1;
5192 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5193 && spill_reg_order[regno] >= 0
5194 && reload_reg_free_p (regno, rld[r].opnum,
5195 rld[r].when_needed)))
5196 break;
5197 nr--;
5199 if (nr == 1)
5200 break;
5204 /* If we found something on pass 1, omit pass 2. */
5205 if (count < n_spills)
5206 break;
5209 /* We should have found a spill register by now. */
5210 if (count >= n_spills)
5211 return 0;
5213 /* I is the index in SPILL_REG_RTX of the reload register we are to
5214 allocate. Get an rtx for it and find its register number. */
5216 return set_reload_reg (i, r);
5219 /* Initialize all the tables needed to allocate reload registers.
5220 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5221 is the array we use to restore the reg_rtx field for every reload. */
5223 static void
5224 choose_reload_regs_init (chain, save_reload_reg_rtx)
5225 struct insn_chain *chain;
5226 rtx *save_reload_reg_rtx;
5228 int i;
5230 for (i = 0; i < n_reloads; i++)
5231 rld[i].reg_rtx = save_reload_reg_rtx[i];
5233 memset (reload_inherited, 0, MAX_RELOADS);
5234 memset ((char *) reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5235 memset ((char *) reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5237 CLEAR_HARD_REG_SET (reload_reg_used);
5238 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5239 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5240 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5241 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5242 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5244 CLEAR_HARD_REG_SET (reg_used_in_insn);
5246 HARD_REG_SET tmp;
5247 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5248 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5249 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5250 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5251 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5252 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5255 for (i = 0; i < reload_n_operands; i++)
5257 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5258 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5259 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5260 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5261 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5262 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5265 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5267 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5269 for (i = 0; i < n_reloads; i++)
5270 /* If we have already decided to use a certain register,
5271 don't use it in another way. */
5272 if (rld[i].reg_rtx)
5273 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5274 rld[i].when_needed, rld[i].mode);
5277 /* Assign hard reg targets for the pseudo-registers we must reload
5278 into hard regs for this insn.
5279 Also output the instructions to copy them in and out of the hard regs.
5281 For machines with register classes, we are responsible for
5282 finding a reload reg in the proper class. */
5284 static void
5285 choose_reload_regs (chain)
5286 struct insn_chain *chain;
5288 rtx insn = chain->insn;
5289 register int i, j;
5290 unsigned int max_group_size = 1;
5291 enum reg_class group_class = NO_REGS;
5292 int pass, win, inheritance;
5294 rtx save_reload_reg_rtx[MAX_RELOADS];
5296 /* In order to be certain of getting the registers we need,
5297 we must sort the reloads into order of increasing register class.
5298 Then our grabbing of reload registers will parallel the process
5299 that provided the reload registers.
5301 Also note whether any of the reloads wants a consecutive group of regs.
5302 If so, record the maximum size of the group desired and what
5303 register class contains all the groups needed by this insn. */
5305 for (j = 0; j < n_reloads; j++)
5307 reload_order[j] = j;
5308 reload_spill_index[j] = -1;
5310 if (rld[j].nregs > 1)
5312 max_group_size = MAX (rld[j].nregs, max_group_size);
5313 group_class
5314 = reg_class_superunion[(int) rld[j].class][(int)group_class];
5317 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5320 if (n_reloads > 1)
5321 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5323 /* If -O, try first with inheritance, then turning it off.
5324 If not -O, don't do inheritance.
5325 Using inheritance when not optimizing leads to paradoxes
5326 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5327 because one side of the comparison might be inherited. */
5328 win = 0;
5329 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5331 choose_reload_regs_init (chain, save_reload_reg_rtx);
5333 /* Process the reloads in order of preference just found.
5334 Beyond this point, subregs can be found in reload_reg_rtx.
5336 This used to look for an existing reloaded home for all of the
5337 reloads, and only then perform any new reloads. But that could lose
5338 if the reloads were done out of reg-class order because a later
5339 reload with a looser constraint might have an old home in a register
5340 needed by an earlier reload with a tighter constraint.
5342 To solve this, we make two passes over the reloads, in the order
5343 described above. In the first pass we try to inherit a reload
5344 from a previous insn. If there is a later reload that needs a
5345 class that is a proper subset of the class being processed, we must
5346 also allocate a spill register during the first pass.
5348 Then make a second pass over the reloads to allocate any reloads
5349 that haven't been given registers yet. */
5351 for (j = 0; j < n_reloads; j++)
5353 register int r = reload_order[j];
5354 rtx search_equiv = NULL_RTX;
5356 /* Ignore reloads that got marked inoperative. */
5357 if (rld[r].out == 0 && rld[r].in == 0
5358 && ! rld[r].secondary_p)
5359 continue;
5361 /* If find_reloads chose to use reload_in or reload_out as a reload
5362 register, we don't need to chose one. Otherwise, try even if it
5363 found one since we might save an insn if we find the value lying
5364 around.
5365 Try also when reload_in is a pseudo without a hard reg. */
5366 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5367 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5368 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5369 && GET_CODE (rld[r].in) != MEM
5370 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5371 continue;
5373 #if 0 /* No longer needed for correct operation.
5374 It might give better code, or might not; worth an experiment? */
5375 /* If this is an optional reload, we can't inherit from earlier insns
5376 until we are sure that any non-optional reloads have been allocated.
5377 The following code takes advantage of the fact that optional reloads
5378 are at the end of reload_order. */
5379 if (rld[r].optional != 0)
5380 for (i = 0; i < j; i++)
5381 if ((rld[reload_order[i]].out != 0
5382 || rld[reload_order[i]].in != 0
5383 || rld[reload_order[i]].secondary_p)
5384 && ! rld[reload_order[i]].optional
5385 && rld[reload_order[i]].reg_rtx == 0)
5386 allocate_reload_reg (chain, reload_order[i], 0);
5387 #endif
5389 /* First see if this pseudo is already available as reloaded
5390 for a previous insn. We cannot try to inherit for reloads
5391 that are smaller than the maximum number of registers needed
5392 for groups unless the register we would allocate cannot be used
5393 for the groups.
5395 We could check here to see if this is a secondary reload for
5396 an object that is already in a register of the desired class.
5397 This would avoid the need for the secondary reload register.
5398 But this is complex because we can't easily determine what
5399 objects might want to be loaded via this reload. So let a
5400 register be allocated here. In `emit_reload_insns' we suppress
5401 one of the loads in the case described above. */
5403 if (inheritance)
5405 int byte = 0;
5406 register int regno = -1;
5407 enum machine_mode mode = VOIDmode;
5409 if (rld[r].in == 0)
5411 else if (GET_CODE (rld[r].in) == REG)
5413 regno = REGNO (rld[r].in);
5414 mode = GET_MODE (rld[r].in);
5416 else if (GET_CODE (rld[r].in_reg) == REG)
5418 regno = REGNO (rld[r].in_reg);
5419 mode = GET_MODE (rld[r].in_reg);
5421 else if (GET_CODE (rld[r].in_reg) == SUBREG
5422 && GET_CODE (SUBREG_REG (rld[r].in_reg)) == REG)
5424 byte = SUBREG_BYTE (rld[r].in_reg);
5425 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5426 if (regno < FIRST_PSEUDO_REGISTER)
5427 regno = subreg_regno (rld[r].in_reg);
5428 mode = GET_MODE (rld[r].in_reg);
5430 #ifdef AUTO_INC_DEC
5431 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5432 || GET_CODE (rld[r].in_reg) == PRE_DEC
5433 || GET_CODE (rld[r].in_reg) == POST_INC
5434 || GET_CODE (rld[r].in_reg) == POST_DEC)
5435 && GET_CODE (XEXP (rld[r].in_reg, 0)) == REG)
5437 regno = REGNO (XEXP (rld[r].in_reg, 0));
5438 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5439 rld[r].out = rld[r].in;
5441 #endif
5442 #if 0
5443 /* This won't work, since REGNO can be a pseudo reg number.
5444 Also, it takes much more hair to keep track of all the things
5445 that can invalidate an inherited reload of part of a pseudoreg. */
5446 else if (GET_CODE (rld[r].in) == SUBREG
5447 && GET_CODE (SUBREG_REG (rld[r].in)) == REG)
5448 regno = subreg_regno (rld[r].in);
5449 #endif
5451 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5453 enum reg_class class = rld[r].class, last_class;
5454 rtx last_reg = reg_last_reload_reg[regno];
5455 enum machine_mode need_mode;
5457 i = REGNO (last_reg);
5458 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5459 last_class = REGNO_REG_CLASS (i);
5461 if (byte == 0)
5462 need_mode = mode;
5463 else
5464 need_mode
5465 = smallest_mode_for_size (GET_MODE_SIZE (mode) + byte,
5466 GET_MODE_CLASS (mode));
5468 if (
5469 #ifdef CLASS_CANNOT_CHANGE_MODE
5470 (TEST_HARD_REG_BIT
5471 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE], i)
5472 ? ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (last_reg),
5473 need_mode)
5474 : (GET_MODE_SIZE (GET_MODE (last_reg))
5475 >= GET_MODE_SIZE (need_mode)))
5476 #else
5477 (GET_MODE_SIZE (GET_MODE (last_reg))
5478 >= GET_MODE_SIZE (need_mode))
5479 #endif
5480 && reg_reloaded_contents[i] == regno
5481 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5482 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5483 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5484 /* Even if we can't use this register as a reload
5485 register, we might use it for reload_override_in,
5486 if copying it to the desired class is cheap
5487 enough. */
5488 || ((REGISTER_MOVE_COST (mode, last_class, class)
5489 < MEMORY_MOVE_COST (mode, class, 1))
5490 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5491 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5492 last_reg)
5493 == NO_REGS)
5494 #endif
5495 #ifdef SECONDARY_MEMORY_NEEDED
5496 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5497 mode)
5498 #endif
5501 && (rld[r].nregs == max_group_size
5502 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5504 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5505 rld[r].when_needed, rld[r].in,
5506 const0_rtx, r, 1))
5508 /* If a group is needed, verify that all the subsequent
5509 registers still have their values intact. */
5510 int nr = HARD_REGNO_NREGS (i, rld[r].mode);
5511 int k;
5513 for (k = 1; k < nr; k++)
5514 if (reg_reloaded_contents[i + k] != regno
5515 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5516 break;
5518 if (k == nr)
5520 int i1;
5522 last_reg = (GET_MODE (last_reg) == mode
5523 ? last_reg : gen_rtx_REG (mode, i));
5525 /* We found a register that contains the
5526 value we need. If this register is the
5527 same as an `earlyclobber' operand of the
5528 current insn, just mark it as a place to
5529 reload from since we can't use it as the
5530 reload register itself. */
5532 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5533 if (reg_overlap_mentioned_for_reload_p
5534 (reg_last_reload_reg[regno],
5535 reload_earlyclobbers[i1]))
5536 break;
5538 if (i1 != n_earlyclobbers
5539 || ! (free_for_value_p (i, rld[r].mode,
5540 rld[r].opnum,
5541 rld[r].when_needed, rld[r].in,
5542 rld[r].out, r, 1))
5543 /* Don't use it if we'd clobber a pseudo reg. */
5544 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5545 && rld[r].out
5546 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5547 /* Don't clobber the frame pointer. */
5548 || (i == HARD_FRAME_POINTER_REGNUM
5549 && rld[r].out)
5550 /* Don't really use the inherited spill reg
5551 if we need it wider than we've got it. */
5552 || (GET_MODE_SIZE (rld[r].mode)
5553 > GET_MODE_SIZE (mode))
5554 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5557 /* If find_reloads chose reload_out as reload
5558 register, stay with it - that leaves the
5559 inherited register for subsequent reloads. */
5560 || (rld[r].out && rld[r].reg_rtx
5561 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5563 if (! rld[r].optional)
5565 reload_override_in[r] = last_reg;
5566 reload_inheritance_insn[r]
5567 = reg_reloaded_insn[i];
5570 else
5572 int k;
5573 /* We can use this as a reload reg. */
5574 /* Mark the register as in use for this part of
5575 the insn. */
5576 mark_reload_reg_in_use (i,
5577 rld[r].opnum,
5578 rld[r].when_needed,
5579 rld[r].mode);
5580 rld[r].reg_rtx = last_reg;
5581 reload_inherited[r] = 1;
5582 reload_inheritance_insn[r]
5583 = reg_reloaded_insn[i];
5584 reload_spill_index[r] = i;
5585 for (k = 0; k < nr; k++)
5586 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5587 i + k);
5594 /* Here's another way to see if the value is already lying around. */
5595 if (inheritance
5596 && rld[r].in != 0
5597 && ! reload_inherited[r]
5598 && rld[r].out == 0
5599 && (CONSTANT_P (rld[r].in)
5600 || GET_CODE (rld[r].in) == PLUS
5601 || GET_CODE (rld[r].in) == REG
5602 || GET_CODE (rld[r].in) == MEM)
5603 && (rld[r].nregs == max_group_size
5604 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5605 search_equiv = rld[r].in;
5606 /* If this is an output reload from a simple move insn, look
5607 if an equivalence for the input is available. */
5608 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5610 rtx set = single_set (insn);
5612 if (set
5613 && rtx_equal_p (rld[r].out, SET_DEST (set))
5614 && CONSTANT_P (SET_SRC (set)))
5615 search_equiv = SET_SRC (set);
5618 if (search_equiv)
5620 register rtx equiv
5621 = find_equiv_reg (search_equiv, insn, rld[r].class,
5622 -1, NULL, 0, rld[r].mode);
5623 int regno = 0;
5625 if (equiv != 0)
5627 if (GET_CODE (equiv) == REG)
5628 regno = REGNO (equiv);
5629 else if (GET_CODE (equiv) == SUBREG)
5631 /* This must be a SUBREG of a hard register.
5632 Make a new REG since this might be used in an
5633 address and not all machines support SUBREGs
5634 there. */
5635 regno = subreg_regno (equiv);
5636 equiv = gen_rtx_REG (rld[r].mode, regno);
5638 else
5639 abort ();
5642 /* If we found a spill reg, reject it unless it is free
5643 and of the desired class. */
5644 if (equiv != 0
5645 && ((TEST_HARD_REG_BIT (reload_reg_used_at_all, regno)
5646 && ! free_for_value_p (regno, rld[r].mode,
5647 rld[r].opnum, rld[r].when_needed,
5648 rld[r].in, rld[r].out, r, 1))
5649 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5650 regno)))
5651 equiv = 0;
5653 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5654 equiv = 0;
5656 /* We found a register that contains the value we need.
5657 If this register is the same as an `earlyclobber' operand
5658 of the current insn, just mark it as a place to reload from
5659 since we can't use it as the reload register itself. */
5661 if (equiv != 0)
5662 for (i = 0; i < n_earlyclobbers; i++)
5663 if (reg_overlap_mentioned_for_reload_p (equiv,
5664 reload_earlyclobbers[i]))
5666 if (! rld[r].optional)
5667 reload_override_in[r] = equiv;
5668 equiv = 0;
5669 break;
5672 /* If the equiv register we have found is explicitly clobbered
5673 in the current insn, it depends on the reload type if we
5674 can use it, use it for reload_override_in, or not at all.
5675 In particular, we then can't use EQUIV for a
5676 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5678 if (equiv != 0)
5680 if (regno_clobbered_p (regno, insn, rld[r].mode, 0))
5681 switch (rld[r].when_needed)
5683 case RELOAD_FOR_OTHER_ADDRESS:
5684 case RELOAD_FOR_INPADDR_ADDRESS:
5685 case RELOAD_FOR_INPUT_ADDRESS:
5686 case RELOAD_FOR_OPADDR_ADDR:
5687 break;
5688 case RELOAD_OTHER:
5689 case RELOAD_FOR_INPUT:
5690 case RELOAD_FOR_OPERAND_ADDRESS:
5691 if (! rld[r].optional)
5692 reload_override_in[r] = equiv;
5693 /* Fall through. */
5694 default:
5695 equiv = 0;
5696 break;
5698 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5699 switch (rld[r].when_needed)
5701 case RELOAD_FOR_OTHER_ADDRESS:
5702 case RELOAD_FOR_INPADDR_ADDRESS:
5703 case RELOAD_FOR_INPUT_ADDRESS:
5704 case RELOAD_FOR_OPADDR_ADDR:
5705 case RELOAD_FOR_OPERAND_ADDRESS:
5706 case RELOAD_FOR_INPUT:
5707 break;
5708 case RELOAD_OTHER:
5709 if (! rld[r].optional)
5710 reload_override_in[r] = equiv;
5711 /* Fall through. */
5712 default:
5713 equiv = 0;
5714 break;
5718 /* If we found an equivalent reg, say no code need be generated
5719 to load it, and use it as our reload reg. */
5720 if (equiv != 0 && regno != HARD_FRAME_POINTER_REGNUM)
5722 int nr = HARD_REGNO_NREGS (regno, rld[r].mode);
5723 int k;
5724 rld[r].reg_rtx = equiv;
5725 reload_inherited[r] = 1;
5727 /* If reg_reloaded_valid is not set for this register,
5728 there might be a stale spill_reg_store lying around.
5729 We must clear it, since otherwise emit_reload_insns
5730 might delete the store. */
5731 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5732 spill_reg_store[regno] = NULL_RTX;
5733 /* If any of the hard registers in EQUIV are spill
5734 registers, mark them as in use for this insn. */
5735 for (k = 0; k < nr; k++)
5737 i = spill_reg_order[regno + k];
5738 if (i >= 0)
5740 mark_reload_reg_in_use (regno, rld[r].opnum,
5741 rld[r].when_needed,
5742 rld[r].mode);
5743 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5744 regno + k);
5750 /* If we found a register to use already, or if this is an optional
5751 reload, we are done. */
5752 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5753 continue;
5755 #if 0
5756 /* No longer needed for correct operation. Might or might
5757 not give better code on the average. Want to experiment? */
5759 /* See if there is a later reload that has a class different from our
5760 class that intersects our class or that requires less register
5761 than our reload. If so, we must allocate a register to this
5762 reload now, since that reload might inherit a previous reload
5763 and take the only available register in our class. Don't do this
5764 for optional reloads since they will force all previous reloads
5765 to be allocated. Also don't do this for reloads that have been
5766 turned off. */
5768 for (i = j + 1; i < n_reloads; i++)
5770 int s = reload_order[i];
5772 if ((rld[s].in == 0 && rld[s].out == 0
5773 && ! rld[s].secondary_p)
5774 || rld[s].optional)
5775 continue;
5777 if ((rld[s].class != rld[r].class
5778 && reg_classes_intersect_p (rld[r].class,
5779 rld[s].class))
5780 || rld[s].nregs < rld[r].nregs)
5781 break;
5784 if (i == n_reloads)
5785 continue;
5787 allocate_reload_reg (chain, r, j == n_reloads - 1);
5788 #endif
5791 /* Now allocate reload registers for anything non-optional that
5792 didn't get one yet. */
5793 for (j = 0; j < n_reloads; j++)
5795 register int r = reload_order[j];
5797 /* Ignore reloads that got marked inoperative. */
5798 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5799 continue;
5801 /* Skip reloads that already have a register allocated or are
5802 optional. */
5803 if (rld[r].reg_rtx != 0 || rld[r].optional)
5804 continue;
5806 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5807 break;
5810 /* If that loop got all the way, we have won. */
5811 if (j == n_reloads)
5813 win = 1;
5814 break;
5817 /* Loop around and try without any inheritance. */
5820 if (! win)
5822 /* First undo everything done by the failed attempt
5823 to allocate with inheritance. */
5824 choose_reload_regs_init (chain, save_reload_reg_rtx);
5826 /* Some sanity tests to verify that the reloads found in the first
5827 pass are identical to the ones we have now. */
5828 if (chain->n_reloads != n_reloads)
5829 abort ();
5831 for (i = 0; i < n_reloads; i++)
5833 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5834 continue;
5835 if (chain->rld[i].when_needed != rld[i].when_needed)
5836 abort ();
5837 for (j = 0; j < n_spills; j++)
5838 if (spill_regs[j] == chain->rld[i].regno)
5839 if (! set_reload_reg (j, i))
5840 failed_reload (chain->insn, i);
5844 /* If we thought we could inherit a reload, because it seemed that
5845 nothing else wanted the same reload register earlier in the insn,
5846 verify that assumption, now that all reloads have been assigned.
5847 Likewise for reloads where reload_override_in has been set. */
5849 /* If doing expensive optimizations, do one preliminary pass that doesn't
5850 cancel any inheritance, but removes reloads that have been needed only
5851 for reloads that we know can be inherited. */
5852 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
5854 for (j = 0; j < n_reloads; j++)
5856 register int r = reload_order[j];
5857 rtx check_reg;
5858 if (reload_inherited[r] && rld[r].reg_rtx)
5859 check_reg = rld[r].reg_rtx;
5860 else if (reload_override_in[r]
5861 && (GET_CODE (reload_override_in[r]) == REG
5862 || GET_CODE (reload_override_in[r]) == SUBREG))
5863 check_reg = reload_override_in[r];
5864 else
5865 continue;
5866 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
5867 rld[r].opnum, rld[r].when_needed, rld[r].in,
5868 (reload_inherited[r]
5869 ? rld[r].out : const0_rtx),
5870 r, 1))
5872 if (pass)
5873 continue;
5874 reload_inherited[r] = 0;
5875 reload_override_in[r] = 0;
5877 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5878 reload_override_in, then we do not need its related
5879 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5880 likewise for other reload types.
5881 We handle this by removing a reload when its only replacement
5882 is mentioned in reload_in of the reload we are going to inherit.
5883 A special case are auto_inc expressions; even if the input is
5884 inherited, we still need the address for the output. We can
5885 recognize them because they have RELOAD_OUT set to RELOAD_IN.
5886 If we suceeded removing some reload and we are doing a preliminary
5887 pass just to remove such reloads, make another pass, since the
5888 removal of one reload might allow us to inherit another one. */
5889 else if (rld[r].in
5890 && rld[r].out != rld[r].in
5891 && remove_address_replacements (rld[r].in) && pass)
5892 pass = 2;
5896 /* Now that reload_override_in is known valid,
5897 actually override reload_in. */
5898 for (j = 0; j < n_reloads; j++)
5899 if (reload_override_in[j])
5900 rld[j].in = reload_override_in[j];
5902 /* If this reload won't be done because it has been cancelled or is
5903 optional and not inherited, clear reload_reg_rtx so other
5904 routines (such as subst_reloads) don't get confused. */
5905 for (j = 0; j < n_reloads; j++)
5906 if (rld[j].reg_rtx != 0
5907 && ((rld[j].optional && ! reload_inherited[j])
5908 || (rld[j].in == 0 && rld[j].out == 0
5909 && ! rld[j].secondary_p)))
5911 int regno = true_regnum (rld[j].reg_rtx);
5913 if (spill_reg_order[regno] >= 0)
5914 clear_reload_reg_in_use (regno, rld[j].opnum,
5915 rld[j].when_needed, rld[j].mode);
5916 rld[j].reg_rtx = 0;
5917 reload_spill_index[j] = -1;
5920 /* Record which pseudos and which spill regs have output reloads. */
5921 for (j = 0; j < n_reloads; j++)
5923 register int r = reload_order[j];
5925 i = reload_spill_index[r];
5927 /* I is nonneg if this reload uses a register.
5928 If rld[r].reg_rtx is 0, this is an optional reload
5929 that we opted to ignore. */
5930 if (rld[r].out_reg != 0 && GET_CODE (rld[r].out_reg) == REG
5931 && rld[r].reg_rtx != 0)
5933 register int nregno = REGNO (rld[r].out_reg);
5934 int nr = 1;
5936 if (nregno < FIRST_PSEUDO_REGISTER)
5937 nr = HARD_REGNO_NREGS (nregno, rld[r].mode);
5939 while (--nr >= 0)
5940 reg_has_output_reload[nregno + nr] = 1;
5942 if (i >= 0)
5944 nr = HARD_REGNO_NREGS (i, rld[r].mode);
5945 while (--nr >= 0)
5946 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
5949 if (rld[r].when_needed != RELOAD_OTHER
5950 && rld[r].when_needed != RELOAD_FOR_OUTPUT
5951 && rld[r].when_needed != RELOAD_FOR_INSN)
5952 abort ();
5957 /* Deallocate the reload register for reload R. This is called from
5958 remove_address_replacements. */
5960 void
5961 deallocate_reload_reg (r)
5962 int r;
5964 int regno;
5966 if (! rld[r].reg_rtx)
5967 return;
5968 regno = true_regnum (rld[r].reg_rtx);
5969 rld[r].reg_rtx = 0;
5970 if (spill_reg_order[regno] >= 0)
5971 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
5972 rld[r].mode);
5973 reload_spill_index[r] = -1;
5976 /* If SMALL_REGISTER_CLASSES is non-zero, we may not have merged two
5977 reloads of the same item for fear that we might not have enough reload
5978 registers. However, normally they will get the same reload register
5979 and hence actually need not be loaded twice.
5981 Here we check for the most common case of this phenomenon: when we have
5982 a number of reloads for the same object, each of which were allocated
5983 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
5984 reload, and is not modified in the insn itself. If we find such,
5985 merge all the reloads and set the resulting reload to RELOAD_OTHER.
5986 This will not increase the number of spill registers needed and will
5987 prevent redundant code. */
5989 static void
5990 merge_assigned_reloads (insn)
5991 rtx insn;
5993 int i, j;
5995 /* Scan all the reloads looking for ones that only load values and
5996 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
5997 assigned and not modified by INSN. */
5999 for (i = 0; i < n_reloads; i++)
6001 int conflicting_input = 0;
6002 int max_input_address_opnum = -1;
6003 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6005 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6006 || rld[i].out != 0 || rld[i].reg_rtx == 0
6007 || reg_set_p (rld[i].reg_rtx, insn))
6008 continue;
6010 /* Look at all other reloads. Ensure that the only use of this
6011 reload_reg_rtx is in a reload that just loads the same value
6012 as we do. Note that any secondary reloads must be of the identical
6013 class since the values, modes, and result registers are the
6014 same, so we need not do anything with any secondary reloads. */
6016 for (j = 0; j < n_reloads; j++)
6018 if (i == j || rld[j].reg_rtx == 0
6019 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6020 rld[i].reg_rtx))
6021 continue;
6023 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6024 && rld[j].opnum > max_input_address_opnum)
6025 max_input_address_opnum = rld[j].opnum;
6027 /* If the reload regs aren't exactly the same (e.g, different modes)
6028 or if the values are different, we can't merge this reload.
6029 But if it is an input reload, we might still merge
6030 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6032 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6033 || rld[j].out != 0 || rld[j].in == 0
6034 || ! rtx_equal_p (rld[i].in, rld[j].in))
6036 if (rld[j].when_needed != RELOAD_FOR_INPUT
6037 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6038 || rld[i].opnum > rld[j].opnum)
6039 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6040 break;
6041 conflicting_input = 1;
6042 if (min_conflicting_input_opnum > rld[j].opnum)
6043 min_conflicting_input_opnum = rld[j].opnum;
6047 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6048 we, in fact, found any matching reloads. */
6050 if (j == n_reloads
6051 && max_input_address_opnum <= min_conflicting_input_opnum)
6053 for (j = 0; j < n_reloads; j++)
6054 if (i != j && rld[j].reg_rtx != 0
6055 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6056 && (! conflicting_input
6057 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6058 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6060 rld[i].when_needed = RELOAD_OTHER;
6061 rld[j].in = 0;
6062 reload_spill_index[j] = -1;
6063 transfer_replacements (i, j);
6066 /* If this is now RELOAD_OTHER, look for any reloads that load
6067 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6068 if they were for inputs, RELOAD_OTHER for outputs. Note that
6069 this test is equivalent to looking for reloads for this operand
6070 number. */
6072 if (rld[i].when_needed == RELOAD_OTHER)
6073 for (j = 0; j < n_reloads; j++)
6074 if (rld[j].in != 0
6075 && rld[i].when_needed != RELOAD_OTHER
6076 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6077 rld[i].in))
6078 rld[j].when_needed
6079 = ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
6080 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6081 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6086 /* These arrays are filled by emit_reload_insns and its subroutines. */
6087 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6088 static rtx other_input_address_reload_insns = 0;
6089 static rtx other_input_reload_insns = 0;
6090 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6091 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6092 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6093 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6094 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6095 static rtx operand_reload_insns = 0;
6096 static rtx other_operand_reload_insns = 0;
6097 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6099 /* Values to be put in spill_reg_store are put here first. */
6100 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6101 static HARD_REG_SET reg_reloaded_died;
6103 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6104 has the number J. OLD contains the value to be used as input. */
6106 static void
6107 emit_input_reload_insns (chain, rl, old, j)
6108 struct insn_chain *chain;
6109 struct reload *rl;
6110 rtx old;
6111 int j;
6113 rtx insn = chain->insn;
6114 register rtx reloadreg = rl->reg_rtx;
6115 rtx oldequiv_reg = 0;
6116 rtx oldequiv = 0;
6117 int special = 0;
6118 enum machine_mode mode;
6119 rtx *where;
6121 /* Determine the mode to reload in.
6122 This is very tricky because we have three to choose from.
6123 There is the mode the insn operand wants (rl->inmode).
6124 There is the mode of the reload register RELOADREG.
6125 There is the intrinsic mode of the operand, which we could find
6126 by stripping some SUBREGs.
6127 It turns out that RELOADREG's mode is irrelevant:
6128 we can change that arbitrarily.
6130 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6131 then the reload reg may not support QImode moves, so use SImode.
6132 If foo is in memory due to spilling a pseudo reg, this is safe,
6133 because the QImode value is in the least significant part of a
6134 slot big enough for a SImode. If foo is some other sort of
6135 memory reference, then it is impossible to reload this case,
6136 so previous passes had better make sure this never happens.
6138 Then consider a one-word union which has SImode and one of its
6139 members is a float, being fetched as (SUBREG:SF union:SI).
6140 We must fetch that as SFmode because we could be loading into
6141 a float-only register. In this case OLD's mode is correct.
6143 Consider an immediate integer: it has VOIDmode. Here we need
6144 to get a mode from something else.
6146 In some cases, there is a fourth mode, the operand's
6147 containing mode. If the insn specifies a containing mode for
6148 this operand, it overrides all others.
6150 I am not sure whether the algorithm here is always right,
6151 but it does the right things in those cases. */
6153 mode = GET_MODE (old);
6154 if (mode == VOIDmode)
6155 mode = rl->inmode;
6157 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6158 /* If we need a secondary register for this operation, see if
6159 the value is already in a register in that class. Don't
6160 do this if the secondary register will be used as a scratch
6161 register. */
6163 if (rl->secondary_in_reload >= 0
6164 && rl->secondary_in_icode == CODE_FOR_nothing
6165 && optimize)
6166 oldequiv
6167 = find_equiv_reg (old, insn,
6168 rld[rl->secondary_in_reload].class,
6169 -1, NULL, 0, mode);
6170 #endif
6172 /* If reloading from memory, see if there is a register
6173 that already holds the same value. If so, reload from there.
6174 We can pass 0 as the reload_reg_p argument because
6175 any other reload has either already been emitted,
6176 in which case find_equiv_reg will see the reload-insn,
6177 or has yet to be emitted, in which case it doesn't matter
6178 because we will use this equiv reg right away. */
6180 if (oldequiv == 0 && optimize
6181 && (GET_CODE (old) == MEM
6182 || (GET_CODE (old) == REG
6183 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6184 && reg_renumber[REGNO (old)] < 0)))
6185 oldequiv = find_equiv_reg (old, insn, ALL_REGS, -1, NULL, 0, mode);
6187 if (oldequiv)
6189 unsigned int regno = true_regnum (oldequiv);
6191 /* Don't use OLDEQUIV if any other reload changes it at an
6192 earlier stage of this insn or at this stage. */
6193 if (! free_for_value_p (regno, rl->mode, rl->opnum, rl->when_needed,
6194 rl->in, const0_rtx, j, 0))
6195 oldequiv = 0;
6197 /* If it is no cheaper to copy from OLDEQUIV into the
6198 reload register than it would be to move from memory,
6199 don't use it. Likewise, if we need a secondary register
6200 or memory. */
6202 if (oldequiv != 0
6203 && ((REGNO_REG_CLASS (regno) != rl->class
6204 && (REGISTER_MOVE_COST (mode, REGNO_REG_CLASS (regno),
6205 rl->class)
6206 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6207 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6208 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6209 mode, oldequiv)
6210 != NO_REGS)
6211 #endif
6212 #ifdef SECONDARY_MEMORY_NEEDED
6213 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6214 rl->class,
6215 mode)
6216 #endif
6218 oldequiv = 0;
6221 /* delete_output_reload is only invoked properly if old contains
6222 the original pseudo register. Since this is replaced with a
6223 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6224 find the pseudo in RELOAD_IN_REG. */
6225 if (oldequiv == 0
6226 && reload_override_in[j]
6227 && GET_CODE (rl->in_reg) == REG)
6229 oldequiv = old;
6230 old = rl->in_reg;
6232 if (oldequiv == 0)
6233 oldequiv = old;
6234 else if (GET_CODE (oldequiv) == REG)
6235 oldequiv_reg = oldequiv;
6236 else if (GET_CODE (oldequiv) == SUBREG)
6237 oldequiv_reg = SUBREG_REG (oldequiv);
6239 /* If we are reloading from a register that was recently stored in
6240 with an output-reload, see if we can prove there was
6241 actually no need to store the old value in it. */
6243 if (optimize && GET_CODE (oldequiv) == REG
6244 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6245 && spill_reg_store[REGNO (oldequiv)]
6246 && GET_CODE (old) == REG
6247 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6248 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6249 rl->out_reg)))
6250 delete_output_reload (insn, j, REGNO (oldequiv));
6252 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6253 then load RELOADREG from OLDEQUIV. Note that we cannot use
6254 gen_lowpart_common since it can do the wrong thing when
6255 RELOADREG has a multi-word mode. Note that RELOADREG
6256 must always be a REG here. */
6258 if (GET_MODE (reloadreg) != mode)
6259 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6260 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6261 oldequiv = SUBREG_REG (oldequiv);
6262 if (GET_MODE (oldequiv) != VOIDmode
6263 && mode != GET_MODE (oldequiv))
6264 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6266 /* Switch to the right place to emit the reload insns. */
6267 switch (rl->when_needed)
6269 case RELOAD_OTHER:
6270 where = &other_input_reload_insns;
6271 break;
6272 case RELOAD_FOR_INPUT:
6273 where = &input_reload_insns[rl->opnum];
6274 break;
6275 case RELOAD_FOR_INPUT_ADDRESS:
6276 where = &input_address_reload_insns[rl->opnum];
6277 break;
6278 case RELOAD_FOR_INPADDR_ADDRESS:
6279 where = &inpaddr_address_reload_insns[rl->opnum];
6280 break;
6281 case RELOAD_FOR_OUTPUT_ADDRESS:
6282 where = &output_address_reload_insns[rl->opnum];
6283 break;
6284 case RELOAD_FOR_OUTADDR_ADDRESS:
6285 where = &outaddr_address_reload_insns[rl->opnum];
6286 break;
6287 case RELOAD_FOR_OPERAND_ADDRESS:
6288 where = &operand_reload_insns;
6289 break;
6290 case RELOAD_FOR_OPADDR_ADDR:
6291 where = &other_operand_reload_insns;
6292 break;
6293 case RELOAD_FOR_OTHER_ADDRESS:
6294 where = &other_input_address_reload_insns;
6295 break;
6296 default:
6297 abort ();
6300 push_to_sequence (*where);
6302 /* Auto-increment addresses must be reloaded in a special way. */
6303 if (rl->out && ! rl->out_reg)
6305 /* We are not going to bother supporting the case where a
6306 incremented register can't be copied directly from
6307 OLDEQUIV since this seems highly unlikely. */
6308 if (rl->secondary_in_reload >= 0)
6309 abort ();
6311 if (reload_inherited[j])
6312 oldequiv = reloadreg;
6314 old = XEXP (rl->in_reg, 0);
6316 if (optimize && GET_CODE (oldequiv) == REG
6317 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6318 && spill_reg_store[REGNO (oldequiv)]
6319 && GET_CODE (old) == REG
6320 && (dead_or_set_p (insn,
6321 spill_reg_stored_to[REGNO (oldequiv)])
6322 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6323 old)))
6324 delete_output_reload (insn, j, REGNO (oldequiv));
6326 /* Prevent normal processing of this reload. */
6327 special = 1;
6328 /* Output a special code sequence for this case. */
6329 new_spill_reg_store[REGNO (reloadreg)]
6330 = inc_for_reload (reloadreg, oldequiv, rl->out,
6331 rl->inc);
6334 /* If we are reloading a pseudo-register that was set by the previous
6335 insn, see if we can get rid of that pseudo-register entirely
6336 by redirecting the previous insn into our reload register. */
6338 else if (optimize && GET_CODE (old) == REG
6339 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6340 && dead_or_set_p (insn, old)
6341 /* This is unsafe if some other reload
6342 uses the same reg first. */
6343 && ! conflicts_with_override (reloadreg)
6344 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6345 rl->when_needed, old, rl->out, j, 0))
6347 rtx temp = PREV_INSN (insn);
6348 while (temp && GET_CODE (temp) == NOTE)
6349 temp = PREV_INSN (temp);
6350 if (temp
6351 && GET_CODE (temp) == INSN
6352 && GET_CODE (PATTERN (temp)) == SET
6353 && SET_DEST (PATTERN (temp)) == old
6354 /* Make sure we can access insn_operand_constraint. */
6355 && asm_noperands (PATTERN (temp)) < 0
6356 /* This is unsafe if prev insn rejects our reload reg. */
6357 && constraint_accepts_reg_p (insn_data[recog_memoized (temp)].operand[0].constraint,
6358 reloadreg)
6359 /* This is unsafe if operand occurs more than once in current
6360 insn. Perhaps some occurrences aren't reloaded. */
6361 && count_occurrences (PATTERN (insn), old, 0) == 1
6362 /* Don't risk splitting a matching pair of operands. */
6363 && ! reg_mentioned_p (old, SET_SRC (PATTERN (temp))))
6365 /* Store into the reload register instead of the pseudo. */
6366 SET_DEST (PATTERN (temp)) = reloadreg;
6368 /* If the previous insn is an output reload, the source is
6369 a reload register, and its spill_reg_store entry will
6370 contain the previous destination. This is now
6371 invalid. */
6372 if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
6373 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6375 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6376 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6379 /* If these are the only uses of the pseudo reg,
6380 pretend for GDB it lives in the reload reg we used. */
6381 if (REG_N_DEATHS (REGNO (old)) == 1
6382 && REG_N_SETS (REGNO (old)) == 1)
6384 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6385 alter_reg (REGNO (old), -1);
6387 special = 1;
6391 /* We can't do that, so output an insn to load RELOADREG. */
6393 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6394 /* If we have a secondary reload, pick up the secondary register
6395 and icode, if any. If OLDEQUIV and OLD are different or
6396 if this is an in-out reload, recompute whether or not we
6397 still need a secondary register and what the icode should
6398 be. If we still need a secondary register and the class or
6399 icode is different, go back to reloading from OLD if using
6400 OLDEQUIV means that we got the wrong type of register. We
6401 cannot have different class or icode due to an in-out reload
6402 because we don't make such reloads when both the input and
6403 output need secondary reload registers. */
6405 if (! special && rl->secondary_in_reload >= 0)
6407 rtx second_reload_reg = 0;
6408 int secondary_reload = rl->secondary_in_reload;
6409 rtx real_oldequiv = oldequiv;
6410 rtx real_old = old;
6411 rtx tmp;
6412 enum insn_code icode;
6414 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6415 and similarly for OLD.
6416 See comments in get_secondary_reload in reload.c. */
6417 /* If it is a pseudo that cannot be replaced with its
6418 equivalent MEM, we must fall back to reload_in, which
6419 will have all the necessary substitutions registered.
6420 Likewise for a pseudo that can't be replaced with its
6421 equivalent constant.
6423 Take extra care for subregs of such pseudos. Note that
6424 we cannot use reg_equiv_mem in this case because it is
6425 not in the right mode. */
6427 tmp = oldequiv;
6428 if (GET_CODE (tmp) == SUBREG)
6429 tmp = SUBREG_REG (tmp);
6430 if (GET_CODE (tmp) == REG
6431 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6432 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6433 || reg_equiv_constant[REGNO (tmp)] != 0))
6435 if (! reg_equiv_mem[REGNO (tmp)]
6436 || num_not_at_initial_offset
6437 || GET_CODE (oldequiv) == SUBREG)
6438 real_oldequiv = rl->in;
6439 else
6440 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6443 tmp = old;
6444 if (GET_CODE (tmp) == SUBREG)
6445 tmp = SUBREG_REG (tmp);
6446 if (GET_CODE (tmp) == REG
6447 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6448 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6449 || reg_equiv_constant[REGNO (tmp)] != 0))
6451 if (! reg_equiv_mem[REGNO (tmp)]
6452 || num_not_at_initial_offset
6453 || GET_CODE (old) == SUBREG)
6454 real_old = rl->in;
6455 else
6456 real_old = reg_equiv_mem[REGNO (tmp)];
6459 second_reload_reg = rld[secondary_reload].reg_rtx;
6460 icode = rl->secondary_in_icode;
6462 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6463 || (rl->in != 0 && rl->out != 0))
6465 enum reg_class new_class
6466 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6467 mode, real_oldequiv);
6469 if (new_class == NO_REGS)
6470 second_reload_reg = 0;
6471 else
6473 enum insn_code new_icode;
6474 enum machine_mode new_mode;
6476 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6477 REGNO (second_reload_reg)))
6478 oldequiv = old, real_oldequiv = real_old;
6479 else
6481 new_icode = reload_in_optab[(int) mode];
6482 if (new_icode != CODE_FOR_nothing
6483 && ((insn_data[(int) new_icode].operand[0].predicate
6484 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6485 (reloadreg, mode)))
6486 || (insn_data[(int) new_icode].operand[1].predicate
6487 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6488 (real_oldequiv, mode)))))
6489 new_icode = CODE_FOR_nothing;
6491 if (new_icode == CODE_FOR_nothing)
6492 new_mode = mode;
6493 else
6494 new_mode = insn_data[(int) new_icode].operand[2].mode;
6496 if (GET_MODE (second_reload_reg) != new_mode)
6498 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6499 new_mode))
6500 oldequiv = old, real_oldequiv = real_old;
6501 else
6502 second_reload_reg
6503 = gen_rtx_REG (new_mode,
6504 REGNO (second_reload_reg));
6510 /* If we still need a secondary reload register, check
6511 to see if it is being used as a scratch or intermediate
6512 register and generate code appropriately. If we need
6513 a scratch register, use REAL_OLDEQUIV since the form of
6514 the insn may depend on the actual address if it is
6515 a MEM. */
6517 if (second_reload_reg)
6519 if (icode != CODE_FOR_nothing)
6521 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6522 second_reload_reg));
6523 special = 1;
6525 else
6527 /* See if we need a scratch register to load the
6528 intermediate register (a tertiary reload). */
6529 enum insn_code tertiary_icode
6530 = rld[secondary_reload].secondary_in_icode;
6532 if (tertiary_icode != CODE_FOR_nothing)
6534 rtx third_reload_reg
6535 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
6537 emit_insn ((GEN_FCN (tertiary_icode)
6538 (second_reload_reg, real_oldequiv,
6539 third_reload_reg)));
6541 else
6542 gen_reload (second_reload_reg, real_oldequiv,
6543 rl->opnum,
6544 rl->when_needed);
6546 oldequiv = second_reload_reg;
6550 #endif
6552 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6554 rtx real_oldequiv = oldequiv;
6556 if ((GET_CODE (oldequiv) == REG
6557 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6558 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6559 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6560 || (GET_CODE (oldequiv) == SUBREG
6561 && GET_CODE (SUBREG_REG (oldequiv)) == REG
6562 && (REGNO (SUBREG_REG (oldequiv))
6563 >= FIRST_PSEUDO_REGISTER)
6564 && ((reg_equiv_memory_loc
6565 [REGNO (SUBREG_REG (oldequiv))] != 0)
6566 || (reg_equiv_constant
6567 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6568 || (CONSTANT_P (oldequiv)
6569 && PREFERRED_RELOAD_CLASS (oldequiv,
6570 REGNO_REG_CLASS (REGNO (reloadreg))) == NO_REGS))
6571 real_oldequiv = rl->in;
6572 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6573 rl->when_needed);
6576 if (flag_non_call_exceptions)
6577 copy_eh_notes (insn, get_insns ());
6579 /* End this sequence. */
6580 *where = get_insns ();
6581 end_sequence ();
6583 /* Update reload_override_in so that delete_address_reloads_1
6584 can see the actual register usage. */
6585 if (oldequiv_reg)
6586 reload_override_in[j] = oldequiv;
6589 /* Generate insns to for the output reload RL, which is for the insn described
6590 by CHAIN and has the number J. */
6591 static void
6592 emit_output_reload_insns (chain, rl, j)
6593 struct insn_chain *chain;
6594 struct reload *rl;
6595 int j;
6597 rtx reloadreg = rl->reg_rtx;
6598 rtx insn = chain->insn;
6599 int special = 0;
6600 rtx old = rl->out;
6601 enum machine_mode mode = GET_MODE (old);
6602 rtx p;
6604 if (rl->when_needed == RELOAD_OTHER)
6605 start_sequence ();
6606 else
6607 push_to_sequence (output_reload_insns[rl->opnum]);
6609 /* Determine the mode to reload in.
6610 See comments above (for input reloading). */
6612 if (mode == VOIDmode)
6614 /* VOIDmode should never happen for an output. */
6615 if (asm_noperands (PATTERN (insn)) < 0)
6616 /* It's the compiler's fault. */
6617 fatal_insn ("VOIDmode on an output", insn);
6618 error_for_asm (insn, "output operand is constant in `asm'");
6619 /* Prevent crash--use something we know is valid. */
6620 mode = word_mode;
6621 old = gen_rtx_REG (mode, REGNO (reloadreg));
6624 if (GET_MODE (reloadreg) != mode)
6625 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6627 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
6629 /* If we need two reload regs, set RELOADREG to the intermediate
6630 one, since it will be stored into OLD. We might need a secondary
6631 register only for an input reload, so check again here. */
6633 if (rl->secondary_out_reload >= 0)
6635 rtx real_old = old;
6637 if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
6638 && reg_equiv_mem[REGNO (old)] != 0)
6639 real_old = reg_equiv_mem[REGNO (old)];
6641 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6642 mode, real_old)
6643 != NO_REGS))
6645 rtx second_reloadreg = reloadreg;
6646 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
6648 /* See if RELOADREG is to be used as a scratch register
6649 or as an intermediate register. */
6650 if (rl->secondary_out_icode != CODE_FOR_nothing)
6652 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6653 (real_old, second_reloadreg, reloadreg)));
6654 special = 1;
6656 else
6658 /* See if we need both a scratch and intermediate reload
6659 register. */
6661 int secondary_reload = rl->secondary_out_reload;
6662 enum insn_code tertiary_icode
6663 = rld[secondary_reload].secondary_out_icode;
6665 if (GET_MODE (reloadreg) != mode)
6666 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6668 if (tertiary_icode != CODE_FOR_nothing)
6670 rtx third_reloadreg
6671 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6672 rtx tem;
6674 /* Copy primary reload reg to secondary reload reg.
6675 (Note that these have been swapped above, then
6676 secondary reload reg to OLD using our insn.) */
6678 /* If REAL_OLD is a paradoxical SUBREG, remove it
6679 and try to put the opposite SUBREG on
6680 RELOADREG. */
6681 if (GET_CODE (real_old) == SUBREG
6682 && (GET_MODE_SIZE (GET_MODE (real_old))
6683 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6684 && 0 != (tem = gen_lowpart_common
6685 (GET_MODE (SUBREG_REG (real_old)),
6686 reloadreg)))
6687 real_old = SUBREG_REG (real_old), reloadreg = tem;
6689 gen_reload (reloadreg, second_reloadreg,
6690 rl->opnum, rl->when_needed);
6691 emit_insn ((GEN_FCN (tertiary_icode)
6692 (real_old, reloadreg, third_reloadreg)));
6693 special = 1;
6696 else
6697 /* Copy between the reload regs here and then to
6698 OUT later. */
6700 gen_reload (reloadreg, second_reloadreg,
6701 rl->opnum, rl->when_needed);
6705 #endif
6707 /* Output the last reload insn. */
6708 if (! special)
6710 rtx set;
6712 /* Don't output the last reload if OLD is not the dest of
6713 INSN and is in the src and is clobbered by INSN. */
6714 if (! flag_expensive_optimizations
6715 || GET_CODE (old) != REG
6716 || !(set = single_set (insn))
6717 || rtx_equal_p (old, SET_DEST (set))
6718 || !reg_mentioned_p (old, SET_SRC (set))
6719 || !regno_clobbered_p (REGNO (old), insn, rl->mode, 0))
6720 gen_reload (old, reloadreg, rl->opnum,
6721 rl->when_needed);
6724 /* Look at all insns we emitted, just to be safe. */
6725 for (p = get_insns (); p; p = NEXT_INSN (p))
6726 if (INSN_P (p))
6728 rtx pat = PATTERN (p);
6730 /* If this output reload doesn't come from a spill reg,
6731 clear any memory of reloaded copies of the pseudo reg.
6732 If this output reload comes from a spill reg,
6733 reg_has_output_reload will make this do nothing. */
6734 note_stores (pat, forget_old_reloads_1, NULL);
6736 if (reg_mentioned_p (rl->reg_rtx, pat))
6738 rtx set = single_set (insn);
6739 if (reload_spill_index[j] < 0
6740 && set
6741 && SET_SRC (set) == rl->reg_rtx)
6743 int src = REGNO (SET_SRC (set));
6745 reload_spill_index[j] = src;
6746 SET_HARD_REG_BIT (reg_is_output_reload, src);
6747 if (find_regno_note (insn, REG_DEAD, src))
6748 SET_HARD_REG_BIT (reg_reloaded_died, src);
6750 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6752 int s = rl->secondary_out_reload;
6753 set = single_set (p);
6754 /* If this reload copies only to the secondary reload
6755 register, the secondary reload does the actual
6756 store. */
6757 if (s >= 0 && set == NULL_RTX)
6758 /* We can't tell what function the secondary reload
6759 has and where the actual store to the pseudo is
6760 made; leave new_spill_reg_store alone. */
6762 else if (s >= 0
6763 && SET_SRC (set) == rl->reg_rtx
6764 && SET_DEST (set) == rld[s].reg_rtx)
6766 /* Usually the next instruction will be the
6767 secondary reload insn; if we can confirm
6768 that it is, setting new_spill_reg_store to
6769 that insn will allow an extra optimization. */
6770 rtx s_reg = rld[s].reg_rtx;
6771 rtx next = NEXT_INSN (p);
6772 rld[s].out = rl->out;
6773 rld[s].out_reg = rl->out_reg;
6774 set = single_set (next);
6775 if (set && SET_SRC (set) == s_reg
6776 && ! new_spill_reg_store[REGNO (s_reg)])
6778 SET_HARD_REG_BIT (reg_is_output_reload,
6779 REGNO (s_reg));
6780 new_spill_reg_store[REGNO (s_reg)] = next;
6783 else
6784 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6789 if (rl->when_needed == RELOAD_OTHER)
6791 emit_insns (other_output_reload_insns[rl->opnum]);
6792 other_output_reload_insns[rl->opnum] = get_insns ();
6794 else
6795 output_reload_insns[rl->opnum] = get_insns ();
6797 if (flag_non_call_exceptions)
6798 copy_eh_notes (insn, get_insns ());
6800 end_sequence ();
6803 /* Do input reloading for reload RL, which is for the insn described by CHAIN
6804 and has the number J. */
6805 static void
6806 do_input_reload (chain, rl, j)
6807 struct insn_chain *chain;
6808 struct reload *rl;
6809 int j;
6811 int expect_occurrences = 1;
6812 rtx insn = chain->insn;
6813 rtx old = (rl->in && GET_CODE (rl->in) == MEM
6814 ? rl->in_reg : rl->in);
6816 if (old != 0
6817 /* AUTO_INC reloads need to be handled even if inherited. We got an
6818 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6819 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6820 && ! rtx_equal_p (rl->reg_rtx, old)
6821 && rl->reg_rtx != 0)
6822 emit_input_reload_insns (chain, rld + j, old, j);
6824 /* When inheriting a wider reload, we have a MEM in rl->in,
6825 e.g. inheriting a SImode output reload for
6826 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6827 if (optimize && reload_inherited[j] && rl->in
6828 && GET_CODE (rl->in) == MEM
6829 && GET_CODE (rl->in_reg) == MEM
6830 && reload_spill_index[j] >= 0
6831 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6833 expect_occurrences
6834 = count_occurrences (PATTERN (insn), rl->in, 0) == 1 ? 0 : -1;
6835 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
6838 /* If we are reloading a register that was recently stored in with an
6839 output-reload, see if we can prove there was
6840 actually no need to store the old value in it. */
6842 if (optimize
6843 && (reload_inherited[j] || reload_override_in[j])
6844 && rl->reg_rtx
6845 && GET_CODE (rl->reg_rtx) == REG
6846 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6847 #if 0
6848 /* There doesn't seem to be any reason to restrict this to pseudos
6849 and doing so loses in the case where we are copying from a
6850 register of the wrong class. */
6851 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6852 >= FIRST_PSEUDO_REGISTER)
6853 #endif
6854 /* The insn might have already some references to stackslots
6855 replaced by MEMs, while reload_out_reg still names the
6856 original pseudo. */
6857 && (dead_or_set_p (insn,
6858 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6859 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6860 rl->out_reg)))
6861 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6864 /* Do output reloading for reload RL, which is for the insn described by
6865 CHAIN and has the number J.
6866 ??? At some point we need to support handling output reloads of
6867 JUMP_INSNs or insns that set cc0. */
6868 static void
6869 do_output_reload (chain, rl, j)
6870 struct insn_chain *chain;
6871 struct reload *rl;
6872 int j;
6874 rtx note, old;
6875 rtx insn = chain->insn;
6876 /* If this is an output reload that stores something that is
6877 not loaded in this same reload, see if we can eliminate a previous
6878 store. */
6879 rtx pseudo = rl->out_reg;
6881 if (pseudo
6882 && GET_CODE (pseudo) == REG
6883 && ! rtx_equal_p (rl->in_reg, pseudo)
6884 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6885 && reg_last_reload_reg[REGNO (pseudo)])
6887 int pseudo_no = REGNO (pseudo);
6888 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
6890 /* We don't need to test full validity of last_regno for
6891 inherit here; we only want to know if the store actually
6892 matches the pseudo. */
6893 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
6894 && reg_reloaded_contents[last_regno] == pseudo_no
6895 && spill_reg_store[last_regno]
6896 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
6897 delete_output_reload (insn, j, last_regno);
6900 old = rl->out_reg;
6901 if (old == 0
6902 || rl->reg_rtx == old
6903 || rl->reg_rtx == 0)
6904 return;
6906 /* An output operand that dies right away does need a reload,
6907 but need not be copied from it. Show the new location in the
6908 REG_UNUSED note. */
6909 if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
6910 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
6912 XEXP (note, 0) = rl->reg_rtx;
6913 return;
6915 /* Likewise for a SUBREG of an operand that dies. */
6916 else if (GET_CODE (old) == SUBREG
6917 && GET_CODE (SUBREG_REG (old)) == REG
6918 && 0 != (note = find_reg_note (insn, REG_UNUSED,
6919 SUBREG_REG (old))))
6921 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
6922 rl->reg_rtx);
6923 return;
6925 else if (GET_CODE (old) == SCRATCH)
6926 /* If we aren't optimizing, there won't be a REG_UNUSED note,
6927 but we don't want to make an output reload. */
6928 return;
6930 /* If is a JUMP_INSN, we can't support output reloads yet. */
6931 if (GET_CODE (insn) == JUMP_INSN)
6932 abort ();
6934 emit_output_reload_insns (chain, rld + j, j);
6937 /* Output insns to reload values in and out of the chosen reload regs. */
6939 static void
6940 emit_reload_insns (chain)
6941 struct insn_chain *chain;
6943 rtx insn = chain->insn;
6945 register int j;
6946 rtx following_insn = NEXT_INSN (insn);
6947 rtx before_insn = PREV_INSN (insn);
6949 CLEAR_HARD_REG_SET (reg_reloaded_died);
6951 for (j = 0; j < reload_n_operands; j++)
6952 input_reload_insns[j] = input_address_reload_insns[j]
6953 = inpaddr_address_reload_insns[j]
6954 = output_reload_insns[j] = output_address_reload_insns[j]
6955 = outaddr_address_reload_insns[j]
6956 = other_output_reload_insns[j] = 0;
6957 other_input_address_reload_insns = 0;
6958 other_input_reload_insns = 0;
6959 operand_reload_insns = 0;
6960 other_operand_reload_insns = 0;
6962 /* Dump reloads into the dump file. */
6963 if (rtl_dump_file)
6965 fprintf (rtl_dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
6966 debug_reload_to_stream (rtl_dump_file);
6969 /* Now output the instructions to copy the data into and out of the
6970 reload registers. Do these in the order that the reloads were reported,
6971 since reloads of base and index registers precede reloads of operands
6972 and the operands may need the base and index registers reloaded. */
6974 for (j = 0; j < n_reloads; j++)
6976 if (rld[j].reg_rtx
6977 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
6978 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
6980 do_input_reload (chain, rld + j, j);
6981 do_output_reload (chain, rld + j, j);
6984 /* Now write all the insns we made for reloads in the order expected by
6985 the allocation functions. Prior to the insn being reloaded, we write
6986 the following reloads:
6988 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
6990 RELOAD_OTHER reloads.
6992 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
6993 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
6994 RELOAD_FOR_INPUT reload for the operand.
6996 RELOAD_FOR_OPADDR_ADDRS reloads.
6998 RELOAD_FOR_OPERAND_ADDRESS reloads.
7000 After the insn being reloaded, we write the following:
7002 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7003 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7004 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7005 reloads for the operand. The RELOAD_OTHER output reloads are
7006 output in descending order by reload number. */
7008 emit_insns_before (other_input_address_reload_insns, insn);
7009 emit_insns_before (other_input_reload_insns, insn);
7011 for (j = 0; j < reload_n_operands; j++)
7013 emit_insns_before (inpaddr_address_reload_insns[j], insn);
7014 emit_insns_before (input_address_reload_insns[j], insn);
7015 emit_insns_before (input_reload_insns[j], insn);
7018 emit_insns_before (other_operand_reload_insns, insn);
7019 emit_insns_before (operand_reload_insns, insn);
7021 for (j = 0; j < reload_n_operands; j++)
7023 emit_insns_before (outaddr_address_reload_insns[j], following_insn);
7024 emit_insns_before (output_address_reload_insns[j], following_insn);
7025 emit_insns_before (output_reload_insns[j], following_insn);
7026 emit_insns_before (other_output_reload_insns[j], following_insn);
7029 /* Keep basic block info up to date. */
7030 if (n_basic_blocks)
7032 if (BLOCK_HEAD (chain->block) == insn)
7033 BLOCK_HEAD (chain->block) = NEXT_INSN (before_insn);
7034 if (BLOCK_END (chain->block) == insn)
7035 BLOCK_END (chain->block) = PREV_INSN (following_insn);
7038 /* For all the spill regs newly reloaded in this instruction,
7039 record what they were reloaded from, so subsequent instructions
7040 can inherit the reloads.
7042 Update spill_reg_store for the reloads of this insn.
7043 Copy the elements that were updated in the loop above. */
7045 for (j = 0; j < n_reloads; j++)
7047 register int r = reload_order[j];
7048 register int i = reload_spill_index[r];
7050 /* If this is a non-inherited input reload from a pseudo, we must
7051 clear any memory of a previous store to the same pseudo. Only do
7052 something if there will not be an output reload for the pseudo
7053 being reloaded. */
7054 if (rld[r].in_reg != 0
7055 && ! (reload_inherited[r] || reload_override_in[r]))
7057 rtx reg = rld[r].in_reg;
7059 if (GET_CODE (reg) == SUBREG)
7060 reg = SUBREG_REG (reg);
7062 if (GET_CODE (reg) == REG
7063 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7064 && ! reg_has_output_reload[REGNO (reg)])
7066 int nregno = REGNO (reg);
7068 if (reg_last_reload_reg[nregno])
7070 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7072 if (reg_reloaded_contents[last_regno] == nregno)
7073 spill_reg_store[last_regno] = 0;
7078 /* I is nonneg if this reload used a register.
7079 If rld[r].reg_rtx is 0, this is an optional reload
7080 that we opted to ignore. */
7082 if (i >= 0 && rld[r].reg_rtx != 0)
7084 int nr = HARD_REGNO_NREGS (i, GET_MODE (rld[r].reg_rtx));
7085 int k;
7086 int part_reaches_end = 0;
7087 int all_reaches_end = 1;
7089 /* For a multi register reload, we need to check if all or part
7090 of the value lives to the end. */
7091 for (k = 0; k < nr; k++)
7093 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7094 rld[r].when_needed))
7095 part_reaches_end = 1;
7096 else
7097 all_reaches_end = 0;
7100 /* Ignore reloads that don't reach the end of the insn in
7101 entirety. */
7102 if (all_reaches_end)
7104 /* First, clear out memory of what used to be in this spill reg.
7105 If consecutive registers are used, clear them all. */
7107 for (k = 0; k < nr; k++)
7108 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7110 /* Maybe the spill reg contains a copy of reload_out. */
7111 if (rld[r].out != 0
7112 && (GET_CODE (rld[r].out) == REG
7113 #ifdef AUTO_INC_DEC
7114 || ! rld[r].out_reg
7115 #endif
7116 || GET_CODE (rld[r].out_reg) == REG))
7118 rtx out = (GET_CODE (rld[r].out) == REG
7119 ? rld[r].out
7120 : rld[r].out_reg
7121 ? rld[r].out_reg
7122 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7123 register int nregno = REGNO (out);
7124 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7125 : HARD_REGNO_NREGS (nregno,
7126 GET_MODE (rld[r].reg_rtx)));
7128 spill_reg_store[i] = new_spill_reg_store[i];
7129 spill_reg_stored_to[i] = out;
7130 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7132 /* If NREGNO is a hard register, it may occupy more than
7133 one register. If it does, say what is in the
7134 rest of the registers assuming that both registers
7135 agree on how many words the object takes. If not,
7136 invalidate the subsequent registers. */
7138 if (nregno < FIRST_PSEUDO_REGISTER)
7139 for (k = 1; k < nnr; k++)
7140 reg_last_reload_reg[nregno + k]
7141 = (nr == nnr
7142 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
7143 REGNO (rld[r].reg_rtx) + k)
7144 : 0);
7146 /* Now do the inverse operation. */
7147 for (k = 0; k < nr; k++)
7149 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7150 reg_reloaded_contents[i + k]
7151 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7152 ? nregno
7153 : nregno + k);
7154 reg_reloaded_insn[i + k] = insn;
7155 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7159 /* Maybe the spill reg contains a copy of reload_in. Only do
7160 something if there will not be an output reload for
7161 the register being reloaded. */
7162 else if (rld[r].out_reg == 0
7163 && rld[r].in != 0
7164 && ((GET_CODE (rld[r].in) == REG
7165 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7166 && ! reg_has_output_reload[REGNO (rld[r].in)])
7167 || (GET_CODE (rld[r].in_reg) == REG
7168 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
7169 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7171 register int nregno;
7172 int nnr;
7174 if (GET_CODE (rld[r].in) == REG
7175 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7176 nregno = REGNO (rld[r].in);
7177 else if (GET_CODE (rld[r].in_reg) == REG)
7178 nregno = REGNO (rld[r].in_reg);
7179 else
7180 nregno = REGNO (XEXP (rld[r].in_reg, 0));
7182 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7183 : HARD_REGNO_NREGS (nregno,
7184 GET_MODE (rld[r].reg_rtx)));
7186 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7188 if (nregno < FIRST_PSEUDO_REGISTER)
7189 for (k = 1; k < nnr; k++)
7190 reg_last_reload_reg[nregno + k]
7191 = (nr == nnr
7192 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
7193 REGNO (rld[r].reg_rtx) + k)
7194 : 0);
7196 /* Unless we inherited this reload, show we haven't
7197 recently done a store.
7198 Previous stores of inherited auto_inc expressions
7199 also have to be discarded. */
7200 if (! reload_inherited[r]
7201 || (rld[r].out && ! rld[r].out_reg))
7202 spill_reg_store[i] = 0;
7204 for (k = 0; k < nr; k++)
7206 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7207 reg_reloaded_contents[i + k]
7208 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7209 ? nregno
7210 : nregno + k);
7211 reg_reloaded_insn[i + k] = insn;
7212 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7217 /* However, if part of the reload reaches the end, then we must
7218 invalidate the old info for the part that survives to the end. */
7219 else if (part_reaches_end)
7221 for (k = 0; k < nr; k++)
7222 if (reload_reg_reaches_end_p (i + k,
7223 rld[r].opnum,
7224 rld[r].when_needed))
7225 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7229 /* The following if-statement was #if 0'd in 1.34 (or before...).
7230 It's reenabled in 1.35 because supposedly nothing else
7231 deals with this problem. */
7233 /* If a register gets output-reloaded from a non-spill register,
7234 that invalidates any previous reloaded copy of it.
7235 But forget_old_reloads_1 won't get to see it, because
7236 it thinks only about the original insn. So invalidate it here. */
7237 if (i < 0 && rld[r].out != 0
7238 && (GET_CODE (rld[r].out) == REG
7239 || (GET_CODE (rld[r].out) == MEM
7240 && GET_CODE (rld[r].out_reg) == REG)))
7242 rtx out = (GET_CODE (rld[r].out) == REG
7243 ? rld[r].out : rld[r].out_reg);
7244 register int nregno = REGNO (out);
7245 if (nregno >= FIRST_PSEUDO_REGISTER)
7247 rtx src_reg, store_insn = NULL_RTX;
7249 reg_last_reload_reg[nregno] = 0;
7251 /* If we can find a hard register that is stored, record
7252 the storing insn so that we may delete this insn with
7253 delete_output_reload. */
7254 src_reg = rld[r].reg_rtx;
7256 /* If this is an optional reload, try to find the source reg
7257 from an input reload. */
7258 if (! src_reg)
7260 rtx set = single_set (insn);
7261 if (set && SET_DEST (set) == rld[r].out)
7263 int k;
7265 src_reg = SET_SRC (set);
7266 store_insn = insn;
7267 for (k = 0; k < n_reloads; k++)
7269 if (rld[k].in == src_reg)
7271 src_reg = rld[k].reg_rtx;
7272 break;
7277 else
7278 store_insn = new_spill_reg_store[REGNO (src_reg)];
7279 if (src_reg && GET_CODE (src_reg) == REG
7280 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7282 int src_regno = REGNO (src_reg);
7283 int nr = HARD_REGNO_NREGS (src_regno, rld[r].mode);
7284 /* The place where to find a death note varies with
7285 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7286 necessarily checked exactly in the code that moves
7287 notes, so just check both locations. */
7288 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7289 if (! note)
7290 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7291 while (nr-- > 0)
7293 spill_reg_store[src_regno + nr] = store_insn;
7294 spill_reg_stored_to[src_regno + nr] = out;
7295 reg_reloaded_contents[src_regno + nr] = nregno;
7296 reg_reloaded_insn[src_regno + nr] = store_insn;
7297 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7298 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7299 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7300 if (note)
7301 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7302 else
7303 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7305 reg_last_reload_reg[nregno] = src_reg;
7308 else
7310 int num_regs = HARD_REGNO_NREGS (nregno, GET_MODE (rld[r].out));
7312 while (num_regs-- > 0)
7313 reg_last_reload_reg[nregno + num_regs] = 0;
7317 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7320 /* Emit code to perform a reload from IN (which may be a reload register) to
7321 OUT (which may also be a reload register). IN or OUT is from operand
7322 OPNUM with reload type TYPE.
7324 Returns first insn emitted. */
7327 gen_reload (out, in, opnum, type)
7328 rtx out;
7329 rtx in;
7330 int opnum;
7331 enum reload_type type;
7333 rtx last = get_last_insn ();
7334 rtx tem;
7336 /* If IN is a paradoxical SUBREG, remove it and try to put the
7337 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7338 if (GET_CODE (in) == SUBREG
7339 && (GET_MODE_SIZE (GET_MODE (in))
7340 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7341 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7342 in = SUBREG_REG (in), out = tem;
7343 else if (GET_CODE (out) == SUBREG
7344 && (GET_MODE_SIZE (GET_MODE (out))
7345 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7346 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7347 out = SUBREG_REG (out), in = tem;
7349 /* How to do this reload can get quite tricky. Normally, we are being
7350 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7351 register that didn't get a hard register. In that case we can just
7352 call emit_move_insn.
7354 We can also be asked to reload a PLUS that adds a register or a MEM to
7355 another register, constant or MEM. This can occur during frame pointer
7356 elimination and while reloading addresses. This case is handled by
7357 trying to emit a single insn to perform the add. If it is not valid,
7358 we use a two insn sequence.
7360 Finally, we could be called to handle an 'o' constraint by putting
7361 an address into a register. In that case, we first try to do this
7362 with a named pattern of "reload_load_address". If no such pattern
7363 exists, we just emit a SET insn and hope for the best (it will normally
7364 be valid on machines that use 'o').
7366 This entire process is made complex because reload will never
7367 process the insns we generate here and so we must ensure that
7368 they will fit their constraints and also by the fact that parts of
7369 IN might be being reloaded separately and replaced with spill registers.
7370 Because of this, we are, in some sense, just guessing the right approach
7371 here. The one listed above seems to work.
7373 ??? At some point, this whole thing needs to be rethought. */
7375 if (GET_CODE (in) == PLUS
7376 && (GET_CODE (XEXP (in, 0)) == REG
7377 || GET_CODE (XEXP (in, 0)) == SUBREG
7378 || GET_CODE (XEXP (in, 0)) == MEM)
7379 && (GET_CODE (XEXP (in, 1)) == REG
7380 || GET_CODE (XEXP (in, 1)) == SUBREG
7381 || CONSTANT_P (XEXP (in, 1))
7382 || GET_CODE (XEXP (in, 1)) == MEM))
7384 /* We need to compute the sum of a register or a MEM and another
7385 register, constant, or MEM, and put it into the reload
7386 register. The best possible way of doing this is if the machine
7387 has a three-operand ADD insn that accepts the required operands.
7389 The simplest approach is to try to generate such an insn and see if it
7390 is recognized and matches its constraints. If so, it can be used.
7392 It might be better not to actually emit the insn unless it is valid,
7393 but we need to pass the insn as an operand to `recog' and
7394 `extract_insn' and it is simpler to emit and then delete the insn if
7395 not valid than to dummy things up. */
7397 rtx op0, op1, tem, insn;
7398 int code;
7400 op0 = find_replacement (&XEXP (in, 0));
7401 op1 = find_replacement (&XEXP (in, 1));
7403 /* Since constraint checking is strict, commutativity won't be
7404 checked, so we need to do that here to avoid spurious failure
7405 if the add instruction is two-address and the second operand
7406 of the add is the same as the reload reg, which is frequently
7407 the case. If the insn would be A = B + A, rearrange it so
7408 it will be A = A + B as constrain_operands expects. */
7410 if (GET_CODE (XEXP (in, 1)) == REG
7411 && REGNO (out) == REGNO (XEXP (in, 1)))
7412 tem = op0, op0 = op1, op1 = tem;
7414 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7415 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7417 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
7418 code = recog_memoized (insn);
7420 if (code >= 0)
7422 extract_insn (insn);
7423 /* We want constrain operands to treat this insn strictly in
7424 its validity determination, i.e., the way it would after reload
7425 has completed. */
7426 if (constrain_operands (1))
7427 return insn;
7430 delete_insns_since (last);
7432 /* If that failed, we must use a conservative two-insn sequence.
7434 Use a move to copy one operand into the reload register. Prefer
7435 to reload a constant, MEM or pseudo since the move patterns can
7436 handle an arbitrary operand. If OP1 is not a constant, MEM or
7437 pseudo and OP1 is not a valid operand for an add instruction, then
7438 reload OP1.
7440 After reloading one of the operands into the reload register, add
7441 the reload register to the output register.
7443 If there is another way to do this for a specific machine, a
7444 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7445 we emit below. */
7447 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7449 if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
7450 || (GET_CODE (op1) == REG
7451 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7452 || (code != CODE_FOR_nothing
7453 && ! ((*insn_data[code].operand[2].predicate)
7454 (op1, insn_data[code].operand[2].mode))))
7455 tem = op0, op0 = op1, op1 = tem;
7457 gen_reload (out, op0, opnum, type);
7459 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7460 This fixes a problem on the 32K where the stack pointer cannot
7461 be used as an operand of an add insn. */
7463 if (rtx_equal_p (op0, op1))
7464 op1 = out;
7466 insn = emit_insn (gen_add2_insn (out, op1));
7468 /* If that failed, copy the address register to the reload register.
7469 Then add the constant to the reload register. */
7471 code = recog_memoized (insn);
7473 if (code >= 0)
7475 extract_insn (insn);
7476 /* We want constrain operands to treat this insn strictly in
7477 its validity determination, i.e., the way it would after reload
7478 has completed. */
7479 if (constrain_operands (1))
7481 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7482 REG_NOTES (insn)
7483 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7484 return insn;
7488 delete_insns_since (last);
7490 gen_reload (out, op1, opnum, type);
7491 insn = emit_insn (gen_add2_insn (out, op0));
7492 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7495 #ifdef SECONDARY_MEMORY_NEEDED
7496 /* If we need a memory location to do the move, do it that way. */
7497 else if (GET_CODE (in) == REG && REGNO (in) < FIRST_PSEUDO_REGISTER
7498 && GET_CODE (out) == REG && REGNO (out) < FIRST_PSEUDO_REGISTER
7499 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
7500 REGNO_REG_CLASS (REGNO (out)),
7501 GET_MODE (out)))
7503 /* Get the memory to use and rewrite both registers to its mode. */
7504 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7506 if (GET_MODE (loc) != GET_MODE (out))
7507 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7509 if (GET_MODE (loc) != GET_MODE (in))
7510 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7512 gen_reload (loc, in, opnum, type);
7513 gen_reload (out, loc, opnum, type);
7515 #endif
7517 /* If IN is a simple operand, use gen_move_insn. */
7518 else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
7519 emit_insn (gen_move_insn (out, in));
7521 #ifdef HAVE_reload_load_address
7522 else if (HAVE_reload_load_address)
7523 emit_insn (gen_reload_load_address (out, in));
7524 #endif
7526 /* Otherwise, just write (set OUT IN) and hope for the best. */
7527 else
7528 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7530 /* Return the first insn emitted.
7531 We can not just return get_last_insn, because there may have
7532 been multiple instructions emitted. Also note that gen_move_insn may
7533 emit more than one insn itself, so we can not assume that there is one
7534 insn emitted per emit_insn_before call. */
7536 return last ? NEXT_INSN (last) : get_insns ();
7539 /* Delete a previously made output-reload
7540 whose result we now believe is not needed.
7541 First we double-check.
7543 INSN is the insn now being processed.
7544 LAST_RELOAD_REG is the hard register number for which we want to delete
7545 the last output reload.
7546 J is the reload-number that originally used REG. The caller has made
7547 certain that reload J doesn't use REG any longer for input. */
7549 static void
7550 delete_output_reload (insn, j, last_reload_reg)
7551 rtx insn;
7552 int j;
7553 int last_reload_reg;
7555 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7556 rtx reg = spill_reg_stored_to[last_reload_reg];
7557 int k;
7558 int n_occurrences;
7559 int n_inherited = 0;
7560 register rtx i1;
7561 rtx substed;
7563 /* Get the raw pseudo-register referred to. */
7565 while (GET_CODE (reg) == SUBREG)
7566 reg = SUBREG_REG (reg);
7567 substed = reg_equiv_memory_loc[REGNO (reg)];
7569 /* This is unsafe if the operand occurs more often in the current
7570 insn than it is inherited. */
7571 for (k = n_reloads - 1; k >= 0; k--)
7573 rtx reg2 = rld[k].in;
7574 if (! reg2)
7575 continue;
7576 if (GET_CODE (reg2) == MEM || reload_override_in[k])
7577 reg2 = rld[k].in_reg;
7578 #ifdef AUTO_INC_DEC
7579 if (rld[k].out && ! rld[k].out_reg)
7580 reg2 = XEXP (rld[k].in_reg, 0);
7581 #endif
7582 while (GET_CODE (reg2) == SUBREG)
7583 reg2 = SUBREG_REG (reg2);
7584 if (rtx_equal_p (reg2, reg))
7586 if (reload_inherited[k] || reload_override_in[k] || k == j)
7588 n_inherited++;
7589 reg2 = rld[k].out_reg;
7590 if (! reg2)
7591 continue;
7592 while (GET_CODE (reg2) == SUBREG)
7593 reg2 = XEXP (reg2, 0);
7594 if (rtx_equal_p (reg2, reg))
7595 n_inherited++;
7597 else
7598 return;
7601 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7602 if (substed)
7603 n_occurrences += count_occurrences (PATTERN (insn),
7604 eliminate_regs (substed, 0,
7605 NULL_RTX), 0);
7606 if (n_occurrences > n_inherited)
7607 return;
7609 /* If the pseudo-reg we are reloading is no longer referenced
7610 anywhere between the store into it and here,
7611 and no jumps or labels intervene, then the value can get
7612 here through the reload reg alone.
7613 Otherwise, give up--return. */
7614 for (i1 = NEXT_INSN (output_reload_insn);
7615 i1 != insn; i1 = NEXT_INSN (i1))
7617 if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
7618 return;
7619 if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
7620 && reg_mentioned_p (reg, PATTERN (i1)))
7622 /* If this is USE in front of INSN, we only have to check that
7623 there are no more references than accounted for by inheritance. */
7624 while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
7626 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7627 i1 = NEXT_INSN (i1);
7629 if (n_occurrences <= n_inherited && i1 == insn)
7630 break;
7631 return;
7635 /* The caller has already checked that REG dies or is set in INSN.
7636 It has also checked that we are optimizing, and thus some inaccurancies
7637 in the debugging information are acceptable.
7638 So we could just delete output_reload_insn.
7639 But in some cases we can improve the debugging information without
7640 sacrificing optimization - maybe even improving the code:
7641 See if the pseudo reg has been completely replaced
7642 with reload regs. If so, delete the store insn
7643 and forget we had a stack slot for the pseudo. */
7644 if (rld[j].out != rld[j].in
7645 && REG_N_DEATHS (REGNO (reg)) == 1
7646 && REG_N_SETS (REGNO (reg)) == 1
7647 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7648 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7650 rtx i2;
7652 /* We know that it was used only between here
7653 and the beginning of the current basic block.
7654 (We also know that the last use before INSN was
7655 the output reload we are thinking of deleting, but never mind that.)
7656 Search that range; see if any ref remains. */
7657 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7659 rtx set = single_set (i2);
7661 /* Uses which just store in the pseudo don't count,
7662 since if they are the only uses, they are dead. */
7663 if (set != 0 && SET_DEST (set) == reg)
7664 continue;
7665 if (GET_CODE (i2) == CODE_LABEL
7666 || GET_CODE (i2) == JUMP_INSN)
7667 break;
7668 if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
7669 && reg_mentioned_p (reg, PATTERN (i2)))
7671 /* Some other ref remains; just delete the output reload we
7672 know to be dead. */
7673 delete_address_reloads (output_reload_insn, insn);
7674 PUT_CODE (output_reload_insn, NOTE);
7675 NOTE_SOURCE_FILE (output_reload_insn) = 0;
7676 NOTE_LINE_NUMBER (output_reload_insn) = NOTE_INSN_DELETED;
7677 return;
7681 /* Delete the now-dead stores into this pseudo. */
7682 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7684 rtx set = single_set (i2);
7686 if (set != 0 && SET_DEST (set) == reg)
7688 delete_address_reloads (i2, insn);
7689 /* This might be a basic block head,
7690 thus don't use delete_insn. */
7691 PUT_CODE (i2, NOTE);
7692 NOTE_SOURCE_FILE (i2) = 0;
7693 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
7695 if (GET_CODE (i2) == CODE_LABEL
7696 || GET_CODE (i2) == JUMP_INSN)
7697 break;
7700 /* For the debugging info,
7701 say the pseudo lives in this reload reg. */
7702 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
7703 alter_reg (REGNO (reg), -1);
7705 delete_address_reloads (output_reload_insn, insn);
7706 PUT_CODE (output_reload_insn, NOTE);
7707 NOTE_SOURCE_FILE (output_reload_insn) = 0;
7708 NOTE_LINE_NUMBER (output_reload_insn) = NOTE_INSN_DELETED;
7712 /* We are going to delete DEAD_INSN. Recursively delete loads of
7713 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7714 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7715 static void
7716 delete_address_reloads (dead_insn, current_insn)
7717 rtx dead_insn, current_insn;
7719 rtx set = single_set (dead_insn);
7720 rtx set2, dst, prev, next;
7721 if (set)
7723 rtx dst = SET_DEST (set);
7724 if (GET_CODE (dst) == MEM)
7725 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7727 /* If we deleted the store from a reloaded post_{in,de}c expression,
7728 we can delete the matching adds. */
7729 prev = PREV_INSN (dead_insn);
7730 next = NEXT_INSN (dead_insn);
7731 if (! prev || ! next)
7732 return;
7733 set = single_set (next);
7734 set2 = single_set (prev);
7735 if (! set || ! set2
7736 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7737 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7738 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7739 return;
7740 dst = SET_DEST (set);
7741 if (! rtx_equal_p (dst, SET_DEST (set2))
7742 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7743 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7744 || (INTVAL (XEXP (SET_SRC (set), 1))
7745 != -INTVAL (XEXP (SET_SRC (set2), 1))))
7746 return;
7747 delete_insn (prev);
7748 delete_insn (next);
7751 /* Subfunction of delete_address_reloads: process registers found in X. */
7752 static void
7753 delete_address_reloads_1 (dead_insn, x, current_insn)
7754 rtx dead_insn, x, current_insn;
7756 rtx prev, set, dst, i2;
7757 int i, j;
7758 enum rtx_code code = GET_CODE (x);
7760 if (code != REG)
7762 const char *fmt = GET_RTX_FORMAT (code);
7763 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7765 if (fmt[i] == 'e')
7766 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7767 else if (fmt[i] == 'E')
7769 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7770 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7771 current_insn);
7774 return;
7777 if (spill_reg_order[REGNO (x)] < 0)
7778 return;
7780 /* Scan backwards for the insn that sets x. This might be a way back due
7781 to inheritance. */
7782 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7784 code = GET_CODE (prev);
7785 if (code == CODE_LABEL || code == JUMP_INSN)
7786 return;
7787 if (GET_RTX_CLASS (code) != 'i')
7788 continue;
7789 if (reg_set_p (x, PATTERN (prev)))
7790 break;
7791 if (reg_referenced_p (x, PATTERN (prev)))
7792 return;
7794 if (! prev || INSN_UID (prev) < reload_first_uid)
7795 return;
7796 /* Check that PREV only sets the reload register. */
7797 set = single_set (prev);
7798 if (! set)
7799 return;
7800 dst = SET_DEST (set);
7801 if (GET_CODE (dst) != REG
7802 || ! rtx_equal_p (dst, x))
7803 return;
7804 if (! reg_set_p (dst, PATTERN (dead_insn)))
7806 /* Check if DST was used in a later insn -
7807 it might have been inherited. */
7808 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7810 if (GET_CODE (i2) == CODE_LABEL)
7811 break;
7812 if (! INSN_P (i2))
7813 continue;
7814 if (reg_referenced_p (dst, PATTERN (i2)))
7816 /* If there is a reference to the register in the current insn,
7817 it might be loaded in a non-inherited reload. If no other
7818 reload uses it, that means the register is set before
7819 referenced. */
7820 if (i2 == current_insn)
7822 for (j = n_reloads - 1; j >= 0; j--)
7823 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7824 || reload_override_in[j] == dst)
7825 return;
7826 for (j = n_reloads - 1; j >= 0; j--)
7827 if (rld[j].in && rld[j].reg_rtx == dst)
7828 break;
7829 if (j >= 0)
7830 break;
7832 return;
7834 if (GET_CODE (i2) == JUMP_INSN)
7835 break;
7836 /* If DST is still live at CURRENT_INSN, check if it is used for
7837 any reload. Note that even if CURRENT_INSN sets DST, we still
7838 have to check the reloads. */
7839 if (i2 == current_insn)
7841 for (j = n_reloads - 1; j >= 0; j--)
7842 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7843 || reload_override_in[j] == dst)
7844 return;
7845 /* ??? We can't finish the loop here, because dst might be
7846 allocated to a pseudo in this block if no reload in this
7847 block needs any of the clsses containing DST - see
7848 spill_hard_reg. There is no easy way to tell this, so we
7849 have to scan till the end of the basic block. */
7851 if (reg_set_p (dst, PATTERN (i2)))
7852 break;
7855 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
7856 reg_reloaded_contents[REGNO (dst)] = -1;
7857 /* Can't use delete_insn here because PREV might be a basic block head. */
7858 PUT_CODE (prev, NOTE);
7859 NOTE_LINE_NUMBER (prev) = NOTE_INSN_DELETED;
7860 NOTE_SOURCE_FILE (prev) = 0;
7863 /* Output reload-insns to reload VALUE into RELOADREG.
7864 VALUE is an autoincrement or autodecrement RTX whose operand
7865 is a register or memory location;
7866 so reloading involves incrementing that location.
7867 IN is either identical to VALUE, or some cheaper place to reload from.
7869 INC_AMOUNT is the number to increment or decrement by (always positive).
7870 This cannot be deduced from VALUE.
7872 Return the instruction that stores into RELOADREG. */
7874 static rtx
7875 inc_for_reload (reloadreg, in, value, inc_amount)
7876 rtx reloadreg;
7877 rtx in, value;
7878 int inc_amount;
7880 /* REG or MEM to be copied and incremented. */
7881 rtx incloc = XEXP (value, 0);
7882 /* Nonzero if increment after copying. */
7883 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
7884 rtx last;
7885 rtx inc;
7886 rtx add_insn;
7887 int code;
7888 rtx store;
7889 rtx real_in = in == value ? XEXP (in, 0) : in;
7891 /* No hard register is equivalent to this register after
7892 inc/dec operation. If REG_LAST_RELOAD_REG were non-zero,
7893 we could inc/dec that register as well (maybe even using it for
7894 the source), but I'm not sure it's worth worrying about. */
7895 if (GET_CODE (incloc) == REG)
7896 reg_last_reload_reg[REGNO (incloc)] = 0;
7898 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
7899 inc_amount = -inc_amount;
7901 inc = GEN_INT (inc_amount);
7903 /* If this is post-increment, first copy the location to the reload reg. */
7904 if (post && real_in != reloadreg)
7905 emit_insn (gen_move_insn (reloadreg, real_in));
7907 if (in == value)
7909 /* See if we can directly increment INCLOC. Use a method similar to
7910 that in gen_reload. */
7912 last = get_last_insn ();
7913 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
7914 gen_rtx_PLUS (GET_MODE (incloc),
7915 incloc, inc)));
7917 code = recog_memoized (add_insn);
7918 if (code >= 0)
7920 extract_insn (add_insn);
7921 if (constrain_operands (1))
7923 /* If this is a pre-increment and we have incremented the value
7924 where it lives, copy the incremented value to RELOADREG to
7925 be used as an address. */
7927 if (! post)
7928 emit_insn (gen_move_insn (reloadreg, incloc));
7930 return add_insn;
7933 delete_insns_since (last);
7936 /* If couldn't do the increment directly, must increment in RELOADREG.
7937 The way we do this depends on whether this is pre- or post-increment.
7938 For pre-increment, copy INCLOC to the reload register, increment it
7939 there, then save back. */
7941 if (! post)
7943 if (in != reloadreg)
7944 emit_insn (gen_move_insn (reloadreg, real_in));
7945 emit_insn (gen_add2_insn (reloadreg, inc));
7946 store = emit_insn (gen_move_insn (incloc, reloadreg));
7948 else
7950 /* Postincrement.
7951 Because this might be a jump insn or a compare, and because RELOADREG
7952 may not be available after the insn in an input reload, we must do
7953 the incrementation before the insn being reloaded for.
7955 We have already copied IN to RELOADREG. Increment the copy in
7956 RELOADREG, save that back, then decrement RELOADREG so it has
7957 the original value. */
7959 emit_insn (gen_add2_insn (reloadreg, inc));
7960 store = emit_insn (gen_move_insn (incloc, reloadreg));
7961 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
7964 return store;
7967 /* Return 1 if we are certain that the constraint-string STRING allows
7968 the hard register REG. Return 0 if we can't be sure of this. */
7970 static int
7971 constraint_accepts_reg_p (string, reg)
7972 const char *string;
7973 rtx reg;
7975 int value = 0;
7976 int regno = true_regnum (reg);
7977 int c;
7979 /* Initialize for first alternative. */
7980 value = 0;
7981 /* Check that each alternative contains `g' or `r'. */
7982 while (1)
7983 switch (c = *string++)
7985 case 0:
7986 /* If an alternative lacks `g' or `r', we lose. */
7987 return value;
7988 case ',':
7989 /* If an alternative lacks `g' or `r', we lose. */
7990 if (value == 0)
7991 return 0;
7992 /* Initialize for next alternative. */
7993 value = 0;
7994 break;
7995 case 'g':
7996 case 'r':
7997 /* Any general reg wins for this alternative. */
7998 if (TEST_HARD_REG_BIT (reg_class_contents[(int) GENERAL_REGS], regno))
7999 value = 1;
8000 break;
8001 default:
8002 /* Any reg in specified class wins for this alternative. */
8004 enum reg_class class = REG_CLASS_FROM_LETTER (c);
8006 if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno))
8007 value = 1;
8012 /* INSN is a no-op; delete it.
8013 If this sets the return value of the function, we must keep a USE around,
8014 in case this is in a different basic block than the final USE. Otherwise,
8015 we could loose important register lifeness information on
8016 SMALL_REGISTER_CLASSES machines, where return registers might be used as
8017 spills: subsequent passes assume that spill registers are dead at the end
8018 of a basic block.
8019 VALUE must be the return value in such a case, NULL otherwise. */
8020 static void
8021 reload_cse_delete_noop_set (insn, value)
8022 rtx insn, value;
8024 if (value)
8026 PATTERN (insn) = gen_rtx_USE (VOIDmode, value);
8027 INSN_CODE (insn) = -1;
8028 REG_NOTES (insn) = NULL_RTX;
8030 else
8032 PUT_CODE (insn, NOTE);
8033 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
8034 NOTE_SOURCE_FILE (insn) = 0;
8038 /* See whether a single set SET is a noop. */
8039 static int
8040 reload_cse_noop_set_p (set)
8041 rtx set;
8043 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
8046 /* Try to simplify INSN. */
8047 static void
8048 reload_cse_simplify (insn)
8049 rtx insn;
8051 rtx body = PATTERN (insn);
8053 if (GET_CODE (body) == SET)
8055 int count = 0;
8057 /* Simplify even if we may think it is a no-op.
8058 We may think a memory load of a value smaller than WORD_SIZE
8059 is redundant because we haven't taken into account possible
8060 implicit extension. reload_cse_simplify_set() will bring
8061 this out, so it's safer to simplify before we delete. */
8062 count += reload_cse_simplify_set (body, insn);
8064 if (!count && reload_cse_noop_set_p (body))
8066 rtx value = SET_DEST (body);
8067 if (! REG_FUNCTION_VALUE_P (SET_DEST (body)))
8068 value = 0;
8069 reload_cse_delete_noop_set (insn, value);
8070 return;
8073 if (count > 0)
8074 apply_change_group ();
8075 else
8076 reload_cse_simplify_operands (insn);
8078 else if (GET_CODE (body) == PARALLEL)
8080 int i;
8081 int count = 0;
8082 rtx value = NULL_RTX;
8084 /* If every action in a PARALLEL is a noop, we can delete
8085 the entire PARALLEL. */
8086 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8088 rtx part = XVECEXP (body, 0, i);
8089 if (GET_CODE (part) == SET)
8091 if (! reload_cse_noop_set_p (part))
8092 break;
8093 if (REG_FUNCTION_VALUE_P (SET_DEST (part)))
8095 if (value)
8096 break;
8097 value = SET_DEST (part);
8100 else if (GET_CODE (part) != CLOBBER)
8101 break;
8104 if (i < 0)
8106 reload_cse_delete_noop_set (insn, value);
8107 /* We're done with this insn. */
8108 return;
8111 /* It's not a no-op, but we can try to simplify it. */
8112 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8113 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
8114 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
8116 if (count > 0)
8117 apply_change_group ();
8118 else
8119 reload_cse_simplify_operands (insn);
8123 /* Do a very simple CSE pass over the hard registers.
8125 This function detects no-op moves where we happened to assign two
8126 different pseudo-registers to the same hard register, and then
8127 copied one to the other. Reload will generate a useless
8128 instruction copying a register to itself.
8130 This function also detects cases where we load a value from memory
8131 into two different registers, and (if memory is more expensive than
8132 registers) changes it to simply copy the first register into the
8133 second register.
8135 Another optimization is performed that scans the operands of each
8136 instruction to see whether the value is already available in a
8137 hard register. It then replaces the operand with the hard register
8138 if possible, much like an optional reload would. */
8140 static void
8141 reload_cse_regs_1 (first)
8142 rtx first;
8144 rtx insn;
8146 cselib_init ();
8147 init_alias_analysis ();
8149 for (insn = first; insn; insn = NEXT_INSN (insn))
8151 if (INSN_P (insn))
8152 reload_cse_simplify (insn);
8154 cselib_process_insn (insn);
8157 /* Clean up. */
8158 end_alias_analysis ();
8159 cselib_finish ();
8162 /* Call cse / combine like post-reload optimization phases.
8163 FIRST is the first instruction. */
8164 void
8165 reload_cse_regs (first)
8166 rtx first;
8168 reload_cse_regs_1 (first);
8169 reload_combine ();
8170 reload_cse_move2add (first);
8171 if (flag_expensive_optimizations)
8172 reload_cse_regs_1 (first);
8175 /* Try to simplify a single SET instruction. SET is the set pattern.
8176 INSN is the instruction it came from.
8177 This function only handles one case: if we set a register to a value
8178 which is not a register, we try to find that value in some other register
8179 and change the set into a register copy. */
8181 static int
8182 reload_cse_simplify_set (set, insn)
8183 rtx set;
8184 rtx insn;
8186 int did_change = 0;
8187 int dreg;
8188 rtx src;
8189 enum reg_class dclass;
8190 int old_cost;
8191 cselib_val *val;
8192 struct elt_loc_list *l;
8193 #ifdef LOAD_EXTEND_OP
8194 enum rtx_code extend_op = NIL;
8195 #endif
8197 dreg = true_regnum (SET_DEST (set));
8198 if (dreg < 0)
8199 return 0;
8201 src = SET_SRC (set);
8202 if (side_effects_p (src) || true_regnum (src) >= 0)
8203 return 0;
8205 dclass = REGNO_REG_CLASS (dreg);
8207 #ifdef LOAD_EXTEND_OP
8208 /* When replacing a memory with a register, we need to honor assumptions
8209 that combine made wrt the contents of sign bits. We'll do this by
8210 generating an extend instruction instead of a reg->reg copy. Thus
8211 the destination must be a register that we can widen. */
8212 if (GET_CODE (src) == MEM
8213 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
8214 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != NIL
8215 && GET_CODE (SET_DEST (set)) != REG)
8216 return 0;
8217 #endif
8219 /* If memory loads are cheaper than register copies, don't change them. */
8220 if (GET_CODE (src) == MEM)
8221 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
8222 else if (CONSTANT_P (src))
8223 old_cost = rtx_cost (src, SET);
8224 else if (GET_CODE (src) == REG)
8225 old_cost = REGISTER_MOVE_COST (GET_MODE (src),
8226 REGNO_REG_CLASS (REGNO (src)), dclass);
8227 else
8228 /* ??? */
8229 old_cost = rtx_cost (src, SET);
8231 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
8232 if (! val)
8233 return 0;
8234 for (l = val->locs; l; l = l->next)
8236 rtx this_rtx = l->loc;
8237 int this_cost;
8239 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
8241 #ifdef LOAD_EXTEND_OP
8242 if (extend_op != NIL)
8244 HOST_WIDE_INT this_val;
8246 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
8247 constants, such as SYMBOL_REF, cannot be extended. */
8248 if (GET_CODE (this_rtx) != CONST_INT)
8249 continue;
8251 this_val = INTVAL (this_rtx);
8252 switch (extend_op)
8254 case ZERO_EXTEND:
8255 this_val &= GET_MODE_MASK (GET_MODE (src));
8256 break;
8257 case SIGN_EXTEND:
8258 /* ??? In theory we're already extended. */
8259 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
8260 break;
8261 default:
8262 abort ();
8264 this_rtx = GEN_INT (this_val);
8266 #endif
8267 this_cost = rtx_cost (this_rtx, SET);
8269 else if (GET_CODE (this_rtx) == REG)
8271 #ifdef LOAD_EXTEND_OP
8272 if (extend_op != NIL)
8274 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
8275 this_cost = rtx_cost (this_rtx, SET);
8277 else
8278 #endif
8279 this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx),
8280 REGNO_REG_CLASS (REGNO (this_rtx)),
8281 dclass);
8283 else
8284 continue;
8286 /* If equal costs, prefer registers over anything else. That
8287 tends to lead to smaller instructions on some machines. */
8288 if (this_cost < old_cost
8289 || (this_cost == old_cost
8290 && GET_CODE (this_rtx) == REG
8291 && GET_CODE (SET_SRC (set)) != REG))
8293 #ifdef LOAD_EXTEND_OP
8294 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
8295 && extend_op != NIL)
8297 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
8298 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
8299 validate_change (insn, &SET_DEST (set), wide_dest, 1);
8301 #endif
8303 validate_change (insn, &SET_SRC (set), copy_rtx (this_rtx), 1);
8304 old_cost = this_cost, did_change = 1;
8308 return did_change;
8311 /* Try to replace operands in INSN with equivalent values that are already
8312 in registers. This can be viewed as optional reloading.
8314 For each non-register operand in the insn, see if any hard regs are
8315 known to be equivalent to that operand. Record the alternatives which
8316 can accept these hard registers. Among all alternatives, select the
8317 ones which are better or equal to the one currently matching, where
8318 "better" is in terms of '?' and '!' constraints. Among the remaining
8319 alternatives, select the one which replaces most operands with
8320 hard registers. */
8322 static int
8323 reload_cse_simplify_operands (insn)
8324 rtx insn;
8326 int i, j;
8328 /* For each operand, all registers that are equivalent to it. */
8329 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
8331 const char *constraints[MAX_RECOG_OPERANDS];
8333 /* Vector recording how bad an alternative is. */
8334 int *alternative_reject;
8335 /* Vector recording how many registers can be introduced by choosing
8336 this alternative. */
8337 int *alternative_nregs;
8338 /* Array of vectors recording, for each operand and each alternative,
8339 which hard register to substitute, or -1 if the operand should be
8340 left as it is. */
8341 int *op_alt_regno[MAX_RECOG_OPERANDS];
8342 /* Array of alternatives, sorted in order of decreasing desirability. */
8343 int *alternative_order;
8344 rtx reg = gen_rtx_REG (VOIDmode, -1);
8346 extract_insn (insn);
8348 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
8349 return 0;
8351 /* Figure out which alternative currently matches. */
8352 if (! constrain_operands (1))
8353 fatal_insn_not_found (insn);
8355 alternative_reject = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8356 alternative_nregs = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8357 alternative_order = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8358 memset ((char *)alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
8359 memset ((char *)alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
8361 /* For each operand, find out which regs are equivalent. */
8362 for (i = 0; i < recog_data.n_operands; i++)
8364 cselib_val *v;
8365 struct elt_loc_list *l;
8367 CLEAR_HARD_REG_SET (equiv_regs[i]);
8369 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
8370 right, so avoid the problem here. Likewise if we have a constant
8371 and the insn pattern doesn't tell us the mode we need. */
8372 if (GET_CODE (recog_data.operand[i]) == CODE_LABEL
8373 || (CONSTANT_P (recog_data.operand[i])
8374 && recog_data.operand_mode[i] == VOIDmode))
8375 continue;
8377 v = cselib_lookup (recog_data.operand[i], recog_data.operand_mode[i], 0);
8378 if (! v)
8379 continue;
8381 for (l = v->locs; l; l = l->next)
8382 if (GET_CODE (l->loc) == REG)
8383 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
8386 for (i = 0; i < recog_data.n_operands; i++)
8388 enum machine_mode mode;
8389 int regno;
8390 const char *p;
8392 op_alt_regno[i] = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8393 for (j = 0; j < recog_data.n_alternatives; j++)
8394 op_alt_regno[i][j] = -1;
8396 p = constraints[i] = recog_data.constraints[i];
8397 mode = recog_data.operand_mode[i];
8399 /* Add the reject values for each alternative given by the constraints
8400 for this operand. */
8401 j = 0;
8402 while (*p != '\0')
8404 char c = *p++;
8405 if (c == ',')
8406 j++;
8407 else if (c == '?')
8408 alternative_reject[j] += 3;
8409 else if (c == '!')
8410 alternative_reject[j] += 300;
8413 /* We won't change operands which are already registers. We
8414 also don't want to modify output operands. */
8415 regno = true_regnum (recog_data.operand[i]);
8416 if (regno >= 0
8417 || constraints[i][0] == '='
8418 || constraints[i][0] == '+')
8419 continue;
8421 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
8423 int class = (int) NO_REGS;
8425 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
8426 continue;
8428 REGNO (reg) = regno;
8429 PUT_MODE (reg, mode);
8431 /* We found a register equal to this operand. Now look for all
8432 alternatives that can accept this register and have not been
8433 assigned a register they can use yet. */
8434 j = 0;
8435 p = constraints[i];
8436 for (;;)
8438 char c = *p++;
8440 switch (c)
8442 case '=': case '+': case '?':
8443 case '#': case '&': case '!':
8444 case '*': case '%':
8445 case '0': case '1': case '2': case '3': case '4':
8446 case '5': case '6': case '7': case '8': case '9':
8447 case 'm': case '<': case '>': case 'V': case 'o':
8448 case 'E': case 'F': case 'G': case 'H':
8449 case 's': case 'i': case 'n':
8450 case 'I': case 'J': case 'K': case 'L':
8451 case 'M': case 'N': case 'O': case 'P':
8452 case 'p': case 'X':
8453 /* These don't say anything we care about. */
8454 break;
8456 case 'g': case 'r':
8457 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
8458 break;
8460 default:
8461 class
8462 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER ((unsigned char)c)];
8463 break;
8465 case ',': case '\0':
8466 /* See if REGNO fits this alternative, and set it up as the
8467 replacement register if we don't have one for this
8468 alternative yet and the operand being replaced is not
8469 a cheap CONST_INT. */
8470 if (op_alt_regno[i][j] == -1
8471 && reg_fits_class_p (reg, class, 0, mode)
8472 && (GET_CODE (recog_data.operand[i]) != CONST_INT
8473 || (rtx_cost (recog_data.operand[i], SET)
8474 > rtx_cost (reg, SET))))
8476 alternative_nregs[j]++;
8477 op_alt_regno[i][j] = regno;
8479 j++;
8480 break;
8483 if (c == '\0')
8484 break;
8489 /* Record all alternatives which are better or equal to the currently
8490 matching one in the alternative_order array. */
8491 for (i = j = 0; i < recog_data.n_alternatives; i++)
8492 if (alternative_reject[i] <= alternative_reject[which_alternative])
8493 alternative_order[j++] = i;
8494 recog_data.n_alternatives = j;
8496 /* Sort it. Given a small number of alternatives, a dumb algorithm
8497 won't hurt too much. */
8498 for (i = 0; i < recog_data.n_alternatives - 1; i++)
8500 int best = i;
8501 int best_reject = alternative_reject[alternative_order[i]];
8502 int best_nregs = alternative_nregs[alternative_order[i]];
8503 int tmp;
8505 for (j = i + 1; j < recog_data.n_alternatives; j++)
8507 int this_reject = alternative_reject[alternative_order[j]];
8508 int this_nregs = alternative_nregs[alternative_order[j]];
8510 if (this_reject < best_reject
8511 || (this_reject == best_reject && this_nregs < best_nregs))
8513 best = j;
8514 best_reject = this_reject;
8515 best_nregs = this_nregs;
8519 tmp = alternative_order[best];
8520 alternative_order[best] = alternative_order[i];
8521 alternative_order[i] = tmp;
8524 /* Substitute the operands as determined by op_alt_regno for the best
8525 alternative. */
8526 j = alternative_order[0];
8528 for (i = 0; i < recog_data.n_operands; i++)
8530 enum machine_mode mode = recog_data.operand_mode[i];
8531 if (op_alt_regno[i][j] == -1)
8532 continue;
8534 validate_change (insn, recog_data.operand_loc[i],
8535 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
8538 for (i = recog_data.n_dups - 1; i >= 0; i--)
8540 int op = recog_data.dup_num[i];
8541 enum machine_mode mode = recog_data.operand_mode[op];
8543 if (op_alt_regno[op][j] == -1)
8544 continue;
8546 validate_change (insn, recog_data.dup_loc[i],
8547 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
8550 return apply_change_group ();
8553 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
8554 addressing now.
8555 This code might also be useful when reload gave up on reg+reg addresssing
8556 because of clashes between the return register and INDEX_REG_CLASS. */
8558 /* The maximum number of uses of a register we can keep track of to
8559 replace them with reg+reg addressing. */
8560 #define RELOAD_COMBINE_MAX_USES 6
8562 /* INSN is the insn where a register has ben used, and USEP points to the
8563 location of the register within the rtl. */
8564 struct reg_use { rtx insn, *usep; };
8566 /* If the register is used in some unknown fashion, USE_INDEX is negative.
8567 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
8568 indicates where it becomes live again.
8569 Otherwise, USE_INDEX is the index of the last encountered use of the
8570 register (which is first among these we have seen since we scan backwards),
8571 OFFSET contains the constant offset that is added to the register in
8572 all encountered uses, and USE_RUID indicates the first encountered, i.e.
8573 last, of these uses.
8574 STORE_RUID is always meaningful if we only want to use a value in a
8575 register in a different place: it denotes the next insn in the insn
8576 stream (i.e. the last ecountered) that sets or clobbers the register. */
8577 static struct
8579 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
8580 int use_index;
8581 rtx offset;
8582 int store_ruid;
8583 int use_ruid;
8584 } reg_state[FIRST_PSEUDO_REGISTER];
8586 /* Reverse linear uid. This is increased in reload_combine while scanning
8587 the instructions from last to first. It is used to set last_label_ruid
8588 and the store_ruid / use_ruid fields in reg_state. */
8589 static int reload_combine_ruid;
8591 #define LABEL_LIVE(LABEL) \
8592 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
8594 static void
8595 reload_combine ()
8597 rtx insn, set;
8598 int first_index_reg = -1, last_index_reg;
8599 int i;
8600 unsigned int r;
8601 int last_label_ruid;
8602 int min_labelno, n_labels;
8603 HARD_REG_SET ever_live_at_start, *label_live;
8605 /* If reg+reg can be used in offsetable memory adresses, the main chunk of
8606 reload has already used it where appropriate, so there is no use in
8607 trying to generate it now. */
8608 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
8609 return;
8611 /* To avoid wasting too much time later searching for an index register,
8612 determine the minimum and maximum index register numbers. */
8613 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8614 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
8616 if (first_index_reg == -1)
8617 first_index_reg = r;
8619 last_index_reg = r;
8622 /* If no index register is available, we can quit now. */
8623 if (first_index_reg == -1)
8624 return;
8626 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
8627 information is a bit fuzzy immediately after reload, but it's
8628 still good enough to determine which registers are live at a jump
8629 destination. */
8630 min_labelno = get_first_label_num ();
8631 n_labels = max_label_num () - min_labelno;
8632 label_live = (HARD_REG_SET *) xmalloc (n_labels * sizeof (HARD_REG_SET));
8633 CLEAR_HARD_REG_SET (ever_live_at_start);
8635 for (i = n_basic_blocks - 1; i >= 0; i--)
8637 insn = BLOCK_HEAD (i);
8638 if (GET_CODE (insn) == CODE_LABEL)
8640 HARD_REG_SET live;
8642 REG_SET_TO_HARD_REG_SET (live,
8643 BASIC_BLOCK (i)->global_live_at_start);
8644 compute_use_by_pseudos (&live,
8645 BASIC_BLOCK (i)->global_live_at_start);
8646 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
8647 IOR_HARD_REG_SET (ever_live_at_start, live);
8651 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
8652 last_label_ruid = reload_combine_ruid = 0;
8653 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8655 reg_state[r].store_ruid = reload_combine_ruid;
8656 if (fixed_regs[r])
8657 reg_state[r].use_index = -1;
8658 else
8659 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8662 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
8664 rtx note;
8666 /* We cannot do our optimization across labels. Invalidating all the use
8667 information we have would be costly, so we just note where the label
8668 is and then later disable any optimization that would cross it. */
8669 if (GET_CODE (insn) == CODE_LABEL)
8670 last_label_ruid = reload_combine_ruid;
8671 else if (GET_CODE (insn) == BARRIER)
8672 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8673 if (! fixed_regs[r])
8674 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8676 if (! INSN_P (insn))
8677 continue;
8679 reload_combine_ruid++;
8681 /* Look for (set (REGX) (CONST_INT))
8682 (set (REGX) (PLUS (REGX) (REGY)))
8684 ... (MEM (REGX)) ...
8685 and convert it to
8686 (set (REGZ) (CONST_INT))
8688 ... (MEM (PLUS (REGZ) (REGY)))... .
8690 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
8691 and that we know all uses of REGX before it dies. */
8692 set = single_set (insn);
8693 if (set != NULL_RTX
8694 && GET_CODE (SET_DEST (set)) == REG
8695 && (HARD_REGNO_NREGS (REGNO (SET_DEST (set)),
8696 GET_MODE (SET_DEST (set)))
8697 == 1)
8698 && GET_CODE (SET_SRC (set)) == PLUS
8699 && GET_CODE (XEXP (SET_SRC (set), 1)) == REG
8700 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
8701 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
8703 rtx reg = SET_DEST (set);
8704 rtx plus = SET_SRC (set);
8705 rtx base = XEXP (plus, 1);
8706 rtx prev = prev_nonnote_insn (insn);
8707 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
8708 unsigned int regno = REGNO (reg);
8709 rtx const_reg = NULL_RTX;
8710 rtx reg_sum = NULL_RTX;
8712 /* Now, we need an index register.
8713 We'll set index_reg to this index register, const_reg to the
8714 register that is to be loaded with the constant
8715 (denoted as REGZ in the substitution illustration above),
8716 and reg_sum to the register-register that we want to use to
8717 substitute uses of REG (typically in MEMs) with.
8718 First check REG and BASE for being index registers;
8719 we can use them even if they are not dead. */
8720 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
8721 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8722 REGNO (base)))
8724 const_reg = reg;
8725 reg_sum = plus;
8727 else
8729 /* Otherwise, look for a free index register. Since we have
8730 checked above that neiter REG nor BASE are index registers,
8731 if we find anything at all, it will be different from these
8732 two registers. */
8733 for (i = first_index_reg; i <= last_index_reg; i++)
8735 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8737 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
8738 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
8739 && HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1)
8741 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
8743 const_reg = index_reg;
8744 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
8745 break;
8750 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
8751 (REGY), i.e. BASE, is not clobbered before the last use we'll
8752 create. */
8753 if (prev_set != 0
8754 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
8755 && rtx_equal_p (SET_DEST (prev_set), reg)
8756 && reg_state[regno].use_index >= 0
8757 && (reg_state[REGNO (base)].store_ruid
8758 <= reg_state[regno].use_ruid)
8759 && reg_sum != 0)
8761 int i;
8763 /* Change destination register and, if necessary, the
8764 constant value in PREV, the constant loading instruction. */
8765 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
8766 if (reg_state[regno].offset != const0_rtx)
8767 validate_change (prev,
8768 &SET_SRC (prev_set),
8769 GEN_INT (INTVAL (SET_SRC (prev_set))
8770 + INTVAL (reg_state[regno].offset)),
8773 /* Now for every use of REG that we have recorded, replace REG
8774 with REG_SUM. */
8775 for (i = reg_state[regno].use_index;
8776 i < RELOAD_COMBINE_MAX_USES; i++)
8777 validate_change (reg_state[regno].reg_use[i].insn,
8778 reg_state[regno].reg_use[i].usep,
8779 reg_sum, 1);
8781 if (apply_change_group ())
8783 rtx *np;
8785 /* Delete the reg-reg addition. */
8786 PUT_CODE (insn, NOTE);
8787 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
8788 NOTE_SOURCE_FILE (insn) = 0;
8790 if (reg_state[regno].offset != const0_rtx)
8791 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
8792 are now invalid. */
8793 for (np = &REG_NOTES (prev); *np;)
8795 if (REG_NOTE_KIND (*np) == REG_EQUAL
8796 || REG_NOTE_KIND (*np) == REG_EQUIV)
8797 *np = XEXP (*np, 1);
8798 else
8799 np = &XEXP (*np, 1);
8802 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
8803 reg_state[REGNO (const_reg)].store_ruid
8804 = reload_combine_ruid;
8805 continue;
8810 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
8812 if (GET_CODE (insn) == CALL_INSN)
8814 rtx link;
8816 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8817 if (call_used_regs[r])
8819 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8820 reg_state[r].store_ruid = reload_combine_ruid;
8823 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
8824 link = XEXP (link, 1))
8826 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
8827 if (GET_CODE (usage_rtx) == REG)
8829 int i;
8830 unsigned int start_reg = REGNO (usage_rtx);
8831 unsigned int num_regs =
8832 HARD_REGNO_NREGS (start_reg, GET_MODE (usage_rtx));
8833 unsigned int end_reg = start_reg + num_regs - 1;
8834 for (i = start_reg; i <= end_reg; i++)
8835 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
8837 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8838 reg_state[i].store_ruid = reload_combine_ruid;
8840 else
8841 reg_state[i].use_index = -1;
8846 else if (GET_CODE (insn) == JUMP_INSN
8847 && GET_CODE (PATTERN (insn)) != RETURN)
8849 /* Non-spill registers might be used at the call destination in
8850 some unknown fashion, so we have to mark the unknown use. */
8851 HARD_REG_SET *live;
8853 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
8854 && JUMP_LABEL (insn))
8855 live = &LABEL_LIVE (JUMP_LABEL (insn));
8856 else
8857 live = &ever_live_at_start;
8859 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
8860 if (TEST_HARD_REG_BIT (*live, i))
8861 reg_state[i].use_index = -1;
8864 reload_combine_note_use (&PATTERN (insn), insn);
8865 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
8867 if (REG_NOTE_KIND (note) == REG_INC
8868 && GET_CODE (XEXP (note, 0)) == REG)
8870 int regno = REGNO (XEXP (note, 0));
8872 reg_state[regno].store_ruid = reload_combine_ruid;
8873 reg_state[regno].use_index = -1;
8878 free (label_live);
8881 /* Check if DST is a register or a subreg of a register; if it is,
8882 update reg_state[regno].store_ruid and reg_state[regno].use_index
8883 accordingly. Called via note_stores from reload_combine. */
8885 static void
8886 reload_combine_note_store (dst, set, data)
8887 rtx dst, set;
8888 void *data ATTRIBUTE_UNUSED;
8890 int regno = 0;
8891 int i;
8892 enum machine_mode mode = GET_MODE (dst);
8894 if (GET_CODE (dst) == SUBREG)
8896 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
8897 GET_MODE (SUBREG_REG (dst)),
8898 SUBREG_BYTE (dst),
8899 GET_MODE (dst));
8900 dst = SUBREG_REG (dst);
8902 if (GET_CODE (dst) != REG)
8903 return;
8904 regno += REGNO (dst);
8906 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
8907 careful with registers / register parts that are not full words.
8909 Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
8910 if (GET_CODE (set) != SET
8911 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
8912 || GET_CODE (SET_DEST (set)) == SIGN_EXTRACT
8913 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
8915 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8917 reg_state[i].use_index = -1;
8918 reg_state[i].store_ruid = reload_combine_ruid;
8921 else
8923 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8925 reg_state[i].store_ruid = reload_combine_ruid;
8926 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8931 /* XP points to a piece of rtl that has to be checked for any uses of
8932 registers.
8933 *XP is the pattern of INSN, or a part of it.
8934 Called from reload_combine, and recursively by itself. */
8935 static void
8936 reload_combine_note_use (xp, insn)
8937 rtx *xp, insn;
8939 rtx x = *xp;
8940 enum rtx_code code = x->code;
8941 const char *fmt;
8942 int i, j;
8943 rtx offset = const0_rtx; /* For the REG case below. */
8945 switch (code)
8947 case SET:
8948 if (GET_CODE (SET_DEST (x)) == REG)
8950 reload_combine_note_use (&SET_SRC (x), insn);
8951 return;
8953 break;
8955 case USE:
8956 /* If this is the USE of a return value, we can't change it. */
8957 if (GET_CODE (XEXP (x, 0)) == REG && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
8959 /* Mark the return register as used in an unknown fashion. */
8960 rtx reg = XEXP (x, 0);
8961 int regno = REGNO (reg);
8962 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
8964 while (--nregs >= 0)
8965 reg_state[regno + nregs].use_index = -1;
8966 return;
8968 break;
8970 case CLOBBER:
8971 if (GET_CODE (SET_DEST (x)) == REG)
8972 return;
8973 break;
8975 case PLUS:
8976 /* We are interested in (plus (reg) (const_int)) . */
8977 if (GET_CODE (XEXP (x, 0)) != REG
8978 || GET_CODE (XEXP (x, 1)) != CONST_INT)
8979 break;
8980 offset = XEXP (x, 1);
8981 x = XEXP (x, 0);
8982 /* Fall through. */
8983 case REG:
8985 int regno = REGNO (x);
8986 int use_index;
8987 int nregs;
8989 /* Some spurious USEs of pseudo registers might remain.
8990 Just ignore them. */
8991 if (regno >= FIRST_PSEUDO_REGISTER)
8992 return;
8994 nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
8996 /* We can't substitute into multi-hard-reg uses. */
8997 if (nregs > 1)
8999 while (--nregs >= 0)
9000 reg_state[regno + nregs].use_index = -1;
9001 return;
9004 /* If this register is already used in some unknown fashion, we
9005 can't do anything.
9006 If we decrement the index from zero to -1, we can't store more
9007 uses, so this register becomes used in an unknown fashion. */
9008 use_index = --reg_state[regno].use_index;
9009 if (use_index < 0)
9010 return;
9012 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
9014 /* We have found another use for a register that is already
9015 used later. Check if the offsets match; if not, mark the
9016 register as used in an unknown fashion. */
9017 if (! rtx_equal_p (offset, reg_state[regno].offset))
9019 reg_state[regno].use_index = -1;
9020 return;
9023 else
9025 /* This is the first use of this register we have seen since we
9026 marked it as dead. */
9027 reg_state[regno].offset = offset;
9028 reg_state[regno].use_ruid = reload_combine_ruid;
9030 reg_state[regno].reg_use[use_index].insn = insn;
9031 reg_state[regno].reg_use[use_index].usep = xp;
9032 return;
9035 default:
9036 break;
9039 /* Recursively process the components of X. */
9040 fmt = GET_RTX_FORMAT (code);
9041 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9043 if (fmt[i] == 'e')
9044 reload_combine_note_use (&XEXP (x, i), insn);
9045 else if (fmt[i] == 'E')
9047 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9048 reload_combine_note_use (&XVECEXP (x, i, j), insn);
9053 /* See if we can reduce the cost of a constant by replacing a move
9054 with an add. We track situations in which a register is set to a
9055 constant or to a register plus a constant. */
9056 /* We cannot do our optimization across labels. Invalidating all the
9057 information about register contents we have would be costly, so we
9058 use move2add_last_label_luid to note where the label is and then
9059 later disable any optimization that would cross it.
9060 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
9061 reg_set_luid[n] is greater than last_label_luid[n] . */
9062 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
9064 /* If reg_base_reg[n] is negative, register n has been set to
9065 reg_offset[n] in mode reg_mode[n] .
9066 If reg_base_reg[n] is non-negative, register n has been set to the
9067 sum of reg_offset[n] and the value of register reg_base_reg[n]
9068 before reg_set_luid[n], calculated in mode reg_mode[n] . */
9069 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
9070 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
9071 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
9073 /* move2add_luid is linearily increased while scanning the instructions
9074 from first to last. It is used to set reg_set_luid in
9075 reload_cse_move2add and move2add_note_store. */
9076 static int move2add_luid;
9078 /* move2add_last_label_luid is set whenever a label is found. Labels
9079 invalidate all previously collected reg_offset data. */
9080 static int move2add_last_label_luid;
9082 /* Generate a CONST_INT and force it in the range of MODE. */
9084 static HOST_WIDE_INT
9085 sext_for_mode (mode, value)
9086 enum machine_mode mode;
9087 HOST_WIDE_INT value;
9089 HOST_WIDE_INT cval = value & GET_MODE_MASK (mode);
9090 int width = GET_MODE_BITSIZE (mode);
9092 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative number,
9093 sign extend it. */
9094 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
9095 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
9096 cval |= (HOST_WIDE_INT) -1 << width;
9098 return cval;
9101 /* ??? We don't know how zero / sign extension is handled, hence we
9102 can't go from a narrower to a wider mode. */
9103 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
9104 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
9105 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
9106 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
9107 GET_MODE_BITSIZE (INMODE))))
9109 static void
9110 reload_cse_move2add (first)
9111 rtx first;
9113 int i;
9114 rtx insn;
9116 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
9117 reg_set_luid[i] = 0;
9119 move2add_last_label_luid = 0;
9120 move2add_luid = 2;
9121 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
9123 rtx pat, note;
9125 if (GET_CODE (insn) == CODE_LABEL)
9127 move2add_last_label_luid = move2add_luid;
9128 /* We're going to increment move2add_luid twice after a
9129 label, so that we can use move2add_last_label_luid + 1 as
9130 the luid for constants. */
9131 move2add_luid++;
9132 continue;
9134 if (! INSN_P (insn))
9135 continue;
9136 pat = PATTERN (insn);
9137 /* For simplicity, we only perform this optimization on
9138 straightforward SETs. */
9139 if (GET_CODE (pat) == SET
9140 && GET_CODE (SET_DEST (pat)) == REG)
9142 rtx reg = SET_DEST (pat);
9143 int regno = REGNO (reg);
9144 rtx src = SET_SRC (pat);
9146 /* Check if we have valid information on the contents of this
9147 register in the mode of REG. */
9148 if (reg_set_luid[regno] > move2add_last_label_luid
9149 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno]))
9151 /* Try to transform (set (REGX) (CONST_INT A))
9153 (set (REGX) (CONST_INT B))
9155 (set (REGX) (CONST_INT A))
9157 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9159 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
9161 int success = 0;
9162 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9163 INTVAL (src)
9164 - reg_offset[regno]));
9165 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
9166 use (set (reg) (reg)) instead.
9167 We don't delete this insn, nor do we convert it into a
9168 note, to avoid losing register notes or the return
9169 value flag. jump2 already knowns how to get rid of
9170 no-op moves. */
9171 if (new_src == const0_rtx)
9172 success = validate_change (insn, &SET_SRC (pat), reg, 0);
9173 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
9174 && have_add2_insn (GET_MODE (reg)))
9175 success = validate_change (insn, &PATTERN (insn),
9176 gen_add2_insn (reg, new_src), 0);
9177 reg_set_luid[regno] = move2add_luid;
9178 reg_mode[regno] = GET_MODE (reg);
9179 reg_offset[regno] = INTVAL (src);
9180 continue;
9183 /* Try to transform (set (REGX) (REGY))
9184 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9186 (set (REGX) (REGY))
9187 (set (REGX) (PLUS (REGX) (CONST_INT B)))
9189 (REGX) (REGY))
9190 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9192 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9193 else if (GET_CODE (src) == REG
9194 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
9195 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
9196 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
9197 reg_mode[REGNO (src)]))
9199 rtx next = next_nonnote_insn (insn);
9200 rtx set = NULL_RTX;
9201 if (next)
9202 set = single_set (next);
9203 if (set
9204 && SET_DEST (set) == reg
9205 && GET_CODE (SET_SRC (set)) == PLUS
9206 && XEXP (SET_SRC (set), 0) == reg
9207 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
9209 rtx src3 = XEXP (SET_SRC (set), 1);
9210 HOST_WIDE_INT added_offset = INTVAL (src3);
9211 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
9212 HOST_WIDE_INT regno_offset = reg_offset[regno];
9213 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9214 added_offset
9215 + base_offset
9216 - regno_offset));
9217 int success = 0;
9219 if (new_src == const0_rtx)
9220 /* See above why we create (set (reg) (reg)) here. */
9221 success
9222 = validate_change (next, &SET_SRC (set), reg, 0);
9223 else if ((rtx_cost (new_src, PLUS)
9224 < COSTS_N_INSNS (1) + rtx_cost (src3, SET))
9225 && have_add2_insn (GET_MODE (reg)))
9226 success
9227 = validate_change (next, &PATTERN (next),
9228 gen_add2_insn (reg, new_src), 0);
9229 if (success)
9231 /* INSN might be the first insn in a basic block
9232 if the preceding insn is a conditional jump
9233 or a possible-throwing call. */
9234 PUT_CODE (insn, NOTE);
9235 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
9236 NOTE_SOURCE_FILE (insn) = 0;
9238 insn = next;
9239 reg_mode[regno] = GET_MODE (reg);
9240 reg_offset[regno] = sext_for_mode (GET_MODE (reg),
9241 added_offset
9242 + base_offset);
9243 continue;
9249 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
9251 if (REG_NOTE_KIND (note) == REG_INC
9252 && GET_CODE (XEXP (note, 0)) == REG)
9254 /* Reset the information about this register. */
9255 int regno = REGNO (XEXP (note, 0));
9256 if (regno < FIRST_PSEUDO_REGISTER)
9257 reg_set_luid[regno] = 0;
9260 note_stores (PATTERN (insn), move2add_note_store, NULL);
9261 /* If this is a CALL_INSN, all call used registers are stored with
9262 unknown values. */
9263 if (GET_CODE (insn) == CALL_INSN)
9265 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
9267 if (call_used_regs[i])
9268 /* Reset the information about this register. */
9269 reg_set_luid[i] = 0;
9275 /* SET is a SET or CLOBBER that sets DST.
9276 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
9277 Called from reload_cse_move2add via note_stores. */
9279 static void
9280 move2add_note_store (dst, set, data)
9281 rtx dst, set;
9282 void *data ATTRIBUTE_UNUSED;
9284 unsigned int regno = 0;
9285 unsigned int i;
9286 enum machine_mode mode = GET_MODE (dst);
9288 if (GET_CODE (dst) == SUBREG)
9290 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
9291 GET_MODE (SUBREG_REG (dst)),
9292 SUBREG_BYTE (dst),
9293 GET_MODE (dst));
9294 dst = SUBREG_REG (dst);
9297 /* Some targets do argument pushes without adding REG_INC notes. */
9299 if (GET_CODE (dst) == MEM)
9301 dst = XEXP (dst, 0);
9302 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_DEC
9303 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
9304 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
9305 return;
9307 if (GET_CODE (dst) != REG)
9308 return;
9310 regno += REGNO (dst);
9312 if (HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET
9313 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
9314 && GET_CODE (SET_DEST (set)) != SIGN_EXTRACT
9315 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
9317 rtx src = SET_SRC (set);
9318 rtx base_reg;
9319 HOST_WIDE_INT offset;
9320 int base_regno;
9321 /* This may be different from mode, if SET_DEST (set) is a
9322 SUBREG. */
9323 enum machine_mode dst_mode = GET_MODE (dst);
9325 switch (GET_CODE (src))
9327 case PLUS:
9328 if (GET_CODE (XEXP (src, 0)) == REG)
9330 base_reg = XEXP (src, 0);
9332 if (GET_CODE (XEXP (src, 1)) == CONST_INT)
9333 offset = INTVAL (XEXP (src, 1));
9334 else if (GET_CODE (XEXP (src, 1)) == REG
9335 && (reg_set_luid[REGNO (XEXP (src, 1))]
9336 > move2add_last_label_luid)
9337 && (MODES_OK_FOR_MOVE2ADD
9338 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
9340 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0)
9341 offset = reg_offset[REGNO (XEXP (src, 1))];
9342 /* Maybe the first register is known to be a
9343 constant. */
9344 else if (reg_set_luid[REGNO (base_reg)]
9345 > move2add_last_label_luid
9346 && (MODES_OK_FOR_MOVE2ADD
9347 (dst_mode, reg_mode[REGNO (XEXP (src, 1))]))
9348 && reg_base_reg[REGNO (base_reg)] < 0)
9350 offset = reg_offset[REGNO (base_reg)];
9351 base_reg = XEXP (src, 1);
9353 else
9354 goto invalidate;
9356 else
9357 goto invalidate;
9359 break;
9362 goto invalidate;
9364 case REG:
9365 base_reg = src;
9366 offset = 0;
9367 break;
9369 case CONST_INT:
9370 /* Start tracking the register as a constant. */
9371 reg_base_reg[regno] = -1;
9372 reg_offset[regno] = INTVAL (SET_SRC (set));
9373 /* We assign the same luid to all registers set to constants. */
9374 reg_set_luid[regno] = move2add_last_label_luid + 1;
9375 reg_mode[regno] = mode;
9376 return;
9378 default:
9379 invalidate:
9380 /* Invalidate the contents of the register. */
9381 reg_set_luid[regno] = 0;
9382 return;
9385 base_regno = REGNO (base_reg);
9386 /* If information about the base register is not valid, set it
9387 up as a new base register, pretending its value is known
9388 starting from the current insn. */
9389 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
9391 reg_base_reg[base_regno] = base_regno;
9392 reg_offset[base_regno] = 0;
9393 reg_set_luid[base_regno] = move2add_luid;
9394 reg_mode[base_regno] = mode;
9396 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
9397 reg_mode[base_regno]))
9398 goto invalidate;
9400 reg_mode[regno] = mode;
9402 /* Copy base information from our base register. */
9403 reg_set_luid[regno] = reg_set_luid[base_regno];
9404 reg_base_reg[regno] = reg_base_reg[base_regno];
9406 /* Compute the sum of the offsets or constants. */
9407 reg_offset[regno] = sext_for_mode (dst_mode,
9408 offset
9409 + reg_offset[base_regno]);
9411 else
9413 unsigned int endregno = regno + HARD_REGNO_NREGS (regno, mode);
9415 for (i = regno; i < endregno; i++)
9416 /* Reset the information about this register. */
9417 reg_set_luid[i] = 0;
9421 #ifdef AUTO_INC_DEC
9422 static void
9423 add_auto_inc_notes (insn, x)
9424 rtx insn;
9425 rtx x;
9427 enum rtx_code code = GET_CODE (x);
9428 const char *fmt;
9429 int i, j;
9431 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9433 REG_NOTES (insn)
9434 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
9435 return;
9438 /* Scan all the operand sub-expressions. */
9439 fmt = GET_RTX_FORMAT (code);
9440 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9442 if (fmt[i] == 'e')
9443 add_auto_inc_notes (insn, XEXP (x, i));
9444 else if (fmt[i] == 'E')
9445 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9446 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9449 #endif
9451 /* Copy EH notes from an insn to its reloads. */
9452 static void
9453 copy_eh_notes (insn, x)
9454 rtx insn;
9455 rtx x;
9457 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
9458 if (eh_note)
9460 for (; x != 0; x = NEXT_INSN (x))
9462 if (may_trap_p (PATTERN (x)))
9463 REG_NOTES (x)
9464 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
9465 REG_NOTES (x));