1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
32 #include "coretypes.h"
38 #include "hard-reg-set.h"
46 #include "dominance.h"
49 #include "basic-block.h"
50 #include "insn-config.h"
55 #include "diagnostic-core.h"
64 #include "tree-ssa-alias.h"
65 #include "internal-fn.h"
66 #include "gimple-expr.h"
69 #include "gimple-iterator.h"
70 #include "gimple-ssa.h"
71 #include "plugin-api.h"
75 #include "tree-phinodes.h"
76 #include "ssa-iterators.h"
77 #include "tree-ssa-loop-niter.h"
78 #include "tree-ssa-loop.h"
79 #include "tree-pass.h"
80 #include "tree-scalar-evolution.h"
83 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
84 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
85 static sreal real_zero
, real_one
, real_almost_one
, real_br_prob_base
,
86 real_inv_br_prob_base
, real_one_half
, real_bb_freq_max
;
88 static void combine_predictions_for_insn (rtx_insn
*, basic_block
);
89 static void dump_prediction (FILE *, enum br_predictor
, int, basic_block
, int);
90 static void predict_paths_leading_to (basic_block
, enum br_predictor
, enum prediction
);
91 static void predict_paths_leading_to_edge (edge
, enum br_predictor
, enum prediction
);
92 static bool can_predict_insn_p (const rtx_insn
*);
94 /* Information we hold about each branch predictor.
95 Filled using information from predict.def. */
99 const char *const name
; /* Name used in the debugging dumps. */
100 const int hitrate
; /* Expected hitrate used by
101 predict_insn_def call. */
105 /* Use given predictor without Dempster-Shaffer theory if it matches
106 using first_match heuristics. */
107 #define PRED_FLAG_FIRST_MATCH 1
109 /* Recompute hitrate in percent to our representation. */
111 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
113 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
114 static const struct predictor_info predictor_info
[]= {
115 #include "predict.def"
117 /* Upper bound on predictors. */
122 /* Return TRUE if frequency FREQ is considered to be hot. */
125 maybe_hot_frequency_p (struct function
*fun
, int freq
)
127 struct cgraph_node
*node
= cgraph_node::get (fun
->decl
);
128 if (!profile_info
|| !flag_branch_probabilities
)
130 if (node
->frequency
== NODE_FREQUENCY_UNLIKELY_EXECUTED
)
132 if (node
->frequency
== NODE_FREQUENCY_HOT
)
135 if (profile_status_for_fn (fun
) == PROFILE_ABSENT
)
137 if (node
->frequency
== NODE_FREQUENCY_EXECUTED_ONCE
138 && freq
< (ENTRY_BLOCK_PTR_FOR_FN (fun
)->frequency
* 2 / 3))
140 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION
) == 0)
142 if (freq
< (ENTRY_BLOCK_PTR_FOR_FN (fun
)->frequency
143 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION
)))
148 static gcov_type min_count
= -1;
150 /* Determine the threshold for hot BB counts. */
153 get_hot_bb_threshold ()
155 gcov_working_set_t
*ws
;
158 ws
= find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE
));
160 min_count
= ws
->min_counter
;
165 /* Set the threshold for hot BB counts. */
168 set_hot_bb_threshold (gcov_type min
)
173 /* Return TRUE if frequency FREQ is considered to be hot. */
176 maybe_hot_count_p (struct function
*fun
, gcov_type count
)
178 if (fun
&& profile_status_for_fn (fun
) != PROFILE_READ
)
180 /* Code executed at most once is not hot. */
181 if (profile_info
->runs
>= count
)
183 return (count
>= get_hot_bb_threshold ());
186 /* Return true in case BB can be CPU intensive and should be optimized
187 for maximal performance. */
190 maybe_hot_bb_p (struct function
*fun
, const_basic_block bb
)
192 gcc_checking_assert (fun
);
193 if (profile_status_for_fn (fun
) == PROFILE_READ
)
194 return maybe_hot_count_p (fun
, bb
->count
);
195 return maybe_hot_frequency_p (fun
, bb
->frequency
);
198 /* Return true in case BB can be CPU intensive and should be optimized
199 for maximal performance. */
202 maybe_hot_edge_p (edge e
)
204 if (profile_status_for_fn (cfun
) == PROFILE_READ
)
205 return maybe_hot_count_p (cfun
, e
->count
);
206 return maybe_hot_frequency_p (cfun
, EDGE_FREQUENCY (e
));
209 /* Return true if profile COUNT and FREQUENCY, or function FUN static
210 node frequency reflects never being executed. */
213 probably_never_executed (struct function
*fun
,
214 gcov_type count
, int frequency
)
216 gcc_checking_assert (fun
);
217 if (profile_status_for_fn (cfun
) == PROFILE_READ
)
219 int unlikely_count_fraction
= PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION
);
220 if (count
* unlikely_count_fraction
>= profile_info
->runs
)
224 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun
)->frequency
)
226 if (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
)
228 gcov_type computed_count
;
229 /* Check for possibility of overflow, in which case entry bb count
230 is large enough to do the division first without losing much
232 if (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
< REG_BR_PROB_BASE
*
235 gcov_type scaled_count
236 = frequency
* ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
*
237 unlikely_count_fraction
;
238 computed_count
= RDIV (scaled_count
,
239 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->frequency
);
243 computed_count
= RDIV (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
,
244 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->frequency
);
245 computed_count
*= frequency
* unlikely_count_fraction
;
247 if (computed_count
>= profile_info
->runs
)
252 if ((!profile_info
|| !flag_branch_probabilities
)
253 && (cgraph_node::get (fun
->decl
)->frequency
254 == NODE_FREQUENCY_UNLIKELY_EXECUTED
))
260 /* Return true in case BB is probably never executed. */
263 probably_never_executed_bb_p (struct function
*fun
, const_basic_block bb
)
265 return probably_never_executed (fun
, bb
->count
, bb
->frequency
);
269 /* Return true in case edge E is probably never executed. */
272 probably_never_executed_edge_p (struct function
*fun
, edge e
)
274 return probably_never_executed (fun
, e
->count
, EDGE_FREQUENCY (e
));
277 /* Return true when current function should always be optimized for size. */
280 optimize_function_for_size_p (struct function
*fun
)
284 if (!fun
|| !fun
->decl
)
287 cgraph_node
*n
= cgraph_node::get (fun
->decl
);
288 return n
&& n
->optimize_for_size_p ();
291 /* Return true when current function should always be optimized for speed. */
294 optimize_function_for_speed_p (struct function
*fun
)
296 return !optimize_function_for_size_p (fun
);
299 /* Return TRUE when BB should be optimized for size. */
302 optimize_bb_for_size_p (const_basic_block bb
)
304 return (optimize_function_for_size_p (cfun
)
305 || (bb
&& !maybe_hot_bb_p (cfun
, bb
)));
308 /* Return TRUE when BB should be optimized for speed. */
311 optimize_bb_for_speed_p (const_basic_block bb
)
313 return !optimize_bb_for_size_p (bb
);
316 /* Return TRUE when BB should be optimized for size. */
319 optimize_edge_for_size_p (edge e
)
321 return optimize_function_for_size_p (cfun
) || !maybe_hot_edge_p (e
);
324 /* Return TRUE when BB should be optimized for speed. */
327 optimize_edge_for_speed_p (edge e
)
329 return !optimize_edge_for_size_p (e
);
332 /* Return TRUE when BB should be optimized for size. */
335 optimize_insn_for_size_p (void)
337 return optimize_function_for_size_p (cfun
) || !crtl
->maybe_hot_insn_p
;
340 /* Return TRUE when BB should be optimized for speed. */
343 optimize_insn_for_speed_p (void)
345 return !optimize_insn_for_size_p ();
348 /* Return TRUE when LOOP should be optimized for size. */
351 optimize_loop_for_size_p (struct loop
*loop
)
353 return optimize_bb_for_size_p (loop
->header
);
356 /* Return TRUE when LOOP should be optimized for speed. */
359 optimize_loop_for_speed_p (struct loop
*loop
)
361 return optimize_bb_for_speed_p (loop
->header
);
364 /* Return TRUE when LOOP nest should be optimized for speed. */
367 optimize_loop_nest_for_speed_p (struct loop
*loop
)
369 struct loop
*l
= loop
;
370 if (optimize_loop_for_speed_p (loop
))
373 while (l
&& l
!= loop
)
375 if (optimize_loop_for_speed_p (l
))
383 while (l
!= loop
&& !l
->next
)
392 /* Return TRUE when LOOP nest should be optimized for size. */
395 optimize_loop_nest_for_size_p (struct loop
*loop
)
397 return !optimize_loop_nest_for_speed_p (loop
);
400 /* Return true when edge E is likely to be well predictable by branch
404 predictable_edge_p (edge e
)
406 if (profile_status_for_fn (cfun
) == PROFILE_ABSENT
)
409 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME
) * REG_BR_PROB_BASE
/ 100)
410 || (REG_BR_PROB_BASE
- e
->probability
411 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME
) * REG_BR_PROB_BASE
/ 100))
417 /* Set RTL expansion for BB profile. */
420 rtl_profile_for_bb (basic_block bb
)
422 crtl
->maybe_hot_insn_p
= maybe_hot_bb_p (cfun
, bb
);
425 /* Set RTL expansion for edge profile. */
428 rtl_profile_for_edge (edge e
)
430 crtl
->maybe_hot_insn_p
= maybe_hot_edge_p (e
);
433 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
435 default_rtl_profile (void)
437 crtl
->maybe_hot_insn_p
= true;
440 /* Return true if the one of outgoing edges is already predicted by
444 rtl_predicted_by_p (const_basic_block bb
, enum br_predictor predictor
)
447 if (!INSN_P (BB_END (bb
)))
449 for (note
= REG_NOTES (BB_END (bb
)); note
; note
= XEXP (note
, 1))
450 if (REG_NOTE_KIND (note
) == REG_BR_PRED
451 && INTVAL (XEXP (XEXP (note
, 0), 0)) == (int)predictor
)
456 /* Structure representing predictions in tree level. */
458 struct edge_prediction
{
459 struct edge_prediction
*ep_next
;
461 enum br_predictor ep_predictor
;
465 /* This map contains for a basic block the list of predictions for the
468 static hash_map
<const_basic_block
, edge_prediction
*> *bb_predictions
;
470 /* Return true if the one of outgoing edges is already predicted by
474 gimple_predicted_by_p (const_basic_block bb
, enum br_predictor predictor
)
476 struct edge_prediction
*i
;
477 edge_prediction
**preds
= bb_predictions
->get (bb
);
482 for (i
= *preds
; i
; i
= i
->ep_next
)
483 if (i
->ep_predictor
== predictor
)
488 /* Return true when the probability of edge is reliable.
490 The profile guessing code is good at predicting branch outcome (ie.
491 taken/not taken), that is predicted right slightly over 75% of time.
492 It is however notoriously poor on predicting the probability itself.
493 In general the profile appear a lot flatter (with probabilities closer
494 to 50%) than the reality so it is bad idea to use it to drive optimization
495 such as those disabling dynamic branch prediction for well predictable
498 There are two exceptions - edges leading to noreturn edges and edges
499 predicted by number of iterations heuristics are predicted well. This macro
500 should be able to distinguish those, but at the moment it simply check for
501 noreturn heuristic that is only one giving probability over 99% or bellow
502 1%. In future we might want to propagate reliability information across the
503 CFG if we find this information useful on multiple places. */
505 probability_reliable_p (int prob
)
507 return (profile_status_for_fn (cfun
) == PROFILE_READ
508 || (profile_status_for_fn (cfun
) == PROFILE_GUESSED
509 && (prob
<= HITRATE (1) || prob
>= HITRATE (99))));
512 /* Same predicate as above, working on edges. */
514 edge_probability_reliable_p (const_edge e
)
516 return probability_reliable_p (e
->probability
);
519 /* Same predicate as edge_probability_reliable_p, working on notes. */
521 br_prob_note_reliable_p (const_rtx note
)
523 gcc_assert (REG_NOTE_KIND (note
) == REG_BR_PROB
);
524 return probability_reliable_p (XINT (note
, 0));
528 predict_insn (rtx_insn
*insn
, enum br_predictor predictor
, int probability
)
530 gcc_assert (any_condjump_p (insn
));
531 if (!flag_guess_branch_prob
)
534 add_reg_note (insn
, REG_BR_PRED
,
535 gen_rtx_CONCAT (VOIDmode
,
536 GEN_INT ((int) predictor
),
537 GEN_INT ((int) probability
)));
540 /* Predict insn by given predictor. */
543 predict_insn_def (rtx_insn
*insn
, enum br_predictor predictor
,
544 enum prediction taken
)
546 int probability
= predictor_info
[(int) predictor
].hitrate
;
549 probability
= REG_BR_PROB_BASE
- probability
;
551 predict_insn (insn
, predictor
, probability
);
554 /* Predict edge E with given probability if possible. */
557 rtl_predict_edge (edge e
, enum br_predictor predictor
, int probability
)
560 last_insn
= BB_END (e
->src
);
562 /* We can store the branch prediction information only about
563 conditional jumps. */
564 if (!any_condjump_p (last_insn
))
567 /* We always store probability of branching. */
568 if (e
->flags
& EDGE_FALLTHRU
)
569 probability
= REG_BR_PROB_BASE
- probability
;
571 predict_insn (last_insn
, predictor
, probability
);
574 /* Predict edge E with the given PROBABILITY. */
576 gimple_predict_edge (edge e
, enum br_predictor predictor
, int probability
)
578 gcc_assert (profile_status_for_fn (cfun
) != PROFILE_GUESSED
);
579 if ((e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
) && EDGE_COUNT (e
->src
->succs
) >
581 && flag_guess_branch_prob
&& optimize
)
583 struct edge_prediction
*i
= XNEW (struct edge_prediction
);
584 edge_prediction
*&preds
= bb_predictions
->get_or_insert (e
->src
);
588 i
->ep_probability
= probability
;
589 i
->ep_predictor
= predictor
;
594 /* Remove all predictions on given basic block that are attached
597 remove_predictions_associated_with_edge (edge e
)
602 edge_prediction
**preds
= bb_predictions
->get (e
->src
);
606 struct edge_prediction
**prediction
= preds
;
607 struct edge_prediction
*next
;
611 if ((*prediction
)->ep_edge
== e
)
613 next
= (*prediction
)->ep_next
;
618 prediction
= &((*prediction
)->ep_next
);
623 /* Clears the list of predictions stored for BB. */
626 clear_bb_predictions (basic_block bb
)
628 edge_prediction
**preds
= bb_predictions
->get (bb
);
629 struct edge_prediction
*pred
, *next
;
634 for (pred
= *preds
; pred
; pred
= next
)
636 next
= pred
->ep_next
;
642 /* Return true when we can store prediction on insn INSN.
643 At the moment we represent predictions only on conditional
644 jumps, not at computed jump or other complicated cases. */
646 can_predict_insn_p (const rtx_insn
*insn
)
648 return (JUMP_P (insn
)
649 && any_condjump_p (insn
)
650 && EDGE_COUNT (BLOCK_FOR_INSN (insn
)->succs
) >= 2);
653 /* Predict edge E by given predictor if possible. */
656 predict_edge_def (edge e
, enum br_predictor predictor
,
657 enum prediction taken
)
659 int probability
= predictor_info
[(int) predictor
].hitrate
;
662 probability
= REG_BR_PROB_BASE
- probability
;
664 predict_edge (e
, predictor
, probability
);
667 /* Invert all branch predictions or probability notes in the INSN. This needs
668 to be done each time we invert the condition used by the jump. */
671 invert_br_probabilities (rtx insn
)
675 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
676 if (REG_NOTE_KIND (note
) == REG_BR_PROB
)
677 XINT (note
, 0) = REG_BR_PROB_BASE
- XINT (note
, 0);
678 else if (REG_NOTE_KIND (note
) == REG_BR_PRED
)
679 XEXP (XEXP (note
, 0), 1)
680 = GEN_INT (REG_BR_PROB_BASE
- INTVAL (XEXP (XEXP (note
, 0), 1)));
683 /* Dump information about the branch prediction to the output file. */
686 dump_prediction (FILE *file
, enum br_predictor predictor
, int probability
,
687 basic_block bb
, int used
)
695 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
696 if (! (e
->flags
& EDGE_FALLTHRU
))
699 fprintf (file
, " %s heuristics%s: %.1f%%",
700 predictor_info
[predictor
].name
,
701 used
? "" : " (ignored)", probability
* 100.0 / REG_BR_PROB_BASE
);
705 fprintf (file
, " exec %"PRId64
, bb
->count
);
708 fprintf (file
, " hit %"PRId64
, e
->count
);
709 fprintf (file
, " (%.1f%%)", e
->count
* 100.0 / bb
->count
);
713 fprintf (file
, "\n");
716 /* We can not predict the probabilities of outgoing edges of bb. Set them
717 evenly and hope for the best. */
719 set_even_probabilities (basic_block bb
)
725 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
726 if (!(e
->flags
& (EDGE_EH
| EDGE_FAKE
)))
728 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
729 if (!(e
->flags
& (EDGE_EH
| EDGE_FAKE
)))
730 e
->probability
= (REG_BR_PROB_BASE
+ nedges
/ 2) / nedges
;
735 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
736 note if not already present. Remove now useless REG_BR_PRED notes. */
739 combine_predictions_for_insn (rtx_insn
*insn
, basic_block bb
)
744 int best_probability
= PROB_EVEN
;
745 enum br_predictor best_predictor
= END_PREDICTORS
;
746 int combined_probability
= REG_BR_PROB_BASE
/ 2;
748 bool first_match
= false;
751 if (!can_predict_insn_p (insn
))
753 set_even_probabilities (bb
);
757 prob_note
= find_reg_note (insn
, REG_BR_PROB
, 0);
758 pnote
= ®_NOTES (insn
);
760 fprintf (dump_file
, "Predictions for insn %i bb %i\n", INSN_UID (insn
),
763 /* We implement "first match" heuristics and use probability guessed
764 by predictor with smallest index. */
765 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
766 if (REG_NOTE_KIND (note
) == REG_BR_PRED
)
768 enum br_predictor predictor
= ((enum br_predictor
)
769 INTVAL (XEXP (XEXP (note
, 0), 0)));
770 int probability
= INTVAL (XEXP (XEXP (note
, 0), 1));
773 if (best_predictor
> predictor
)
774 best_probability
= probability
, best_predictor
= predictor
;
776 d
= (combined_probability
* probability
777 + (REG_BR_PROB_BASE
- combined_probability
)
778 * (REG_BR_PROB_BASE
- probability
));
780 /* Use FP math to avoid overflows of 32bit integers. */
782 /* If one probability is 0% and one 100%, avoid division by zero. */
783 combined_probability
= REG_BR_PROB_BASE
/ 2;
785 combined_probability
= (((double) combined_probability
) * probability
786 * REG_BR_PROB_BASE
/ d
+ 0.5);
789 /* Decide which heuristic to use. In case we didn't match anything,
790 use no_prediction heuristic, in case we did match, use either
791 first match or Dempster-Shaffer theory depending on the flags. */
793 if (predictor_info
[best_predictor
].flags
& PRED_FLAG_FIRST_MATCH
)
797 dump_prediction (dump_file
, PRED_NO_PREDICTION
,
798 combined_probability
, bb
, true);
801 dump_prediction (dump_file
, PRED_DS_THEORY
, combined_probability
,
803 dump_prediction (dump_file
, PRED_FIRST_MATCH
, best_probability
,
808 combined_probability
= best_probability
;
809 dump_prediction (dump_file
, PRED_COMBINED
, combined_probability
, bb
, true);
813 if (REG_NOTE_KIND (*pnote
) == REG_BR_PRED
)
815 enum br_predictor predictor
= ((enum br_predictor
)
816 INTVAL (XEXP (XEXP (*pnote
, 0), 0)));
817 int probability
= INTVAL (XEXP (XEXP (*pnote
, 0), 1));
819 dump_prediction (dump_file
, predictor
, probability
, bb
,
820 !first_match
|| best_predictor
== predictor
);
821 *pnote
= XEXP (*pnote
, 1);
824 pnote
= &XEXP (*pnote
, 1);
829 add_int_reg_note (insn
, REG_BR_PROB
, combined_probability
);
831 /* Save the prediction into CFG in case we are seeing non-degenerated
833 if (!single_succ_p (bb
))
835 BRANCH_EDGE (bb
)->probability
= combined_probability
;
836 FALLTHRU_EDGE (bb
)->probability
837 = REG_BR_PROB_BASE
- combined_probability
;
840 else if (!single_succ_p (bb
))
842 int prob
= XINT (prob_note
, 0);
844 BRANCH_EDGE (bb
)->probability
= prob
;
845 FALLTHRU_EDGE (bb
)->probability
= REG_BR_PROB_BASE
- prob
;
848 single_succ_edge (bb
)->probability
= REG_BR_PROB_BASE
;
851 /* Combine predictions into single probability and store them into CFG.
852 Remove now useless prediction entries. */
855 combine_predictions_for_bb (basic_block bb
)
857 int best_probability
= PROB_EVEN
;
858 enum br_predictor best_predictor
= END_PREDICTORS
;
859 int combined_probability
= REG_BR_PROB_BASE
/ 2;
861 bool first_match
= false;
863 struct edge_prediction
*pred
;
865 edge e
, first
= NULL
, second
= NULL
;
868 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
869 if (!(e
->flags
& (EDGE_EH
| EDGE_FAKE
)))
872 if (first
&& !second
)
878 /* When there is no successor or only one choice, prediction is easy.
880 We are lazy for now and predict only basic blocks with two outgoing
881 edges. It is possible to predict generic case too, but we have to
882 ignore first match heuristics and do more involved combining. Implement
887 set_even_probabilities (bb
);
888 clear_bb_predictions (bb
);
890 fprintf (dump_file
, "%i edges in bb %i predicted to even probabilities\n",
896 fprintf (dump_file
, "Predictions for bb %i\n", bb
->index
);
898 edge_prediction
**preds
= bb_predictions
->get (bb
);
901 /* We implement "first match" heuristics and use probability guessed
902 by predictor with smallest index. */
903 for (pred
= *preds
; pred
; pred
= pred
->ep_next
)
905 enum br_predictor predictor
= pred
->ep_predictor
;
906 int probability
= pred
->ep_probability
;
908 if (pred
->ep_edge
!= first
)
909 probability
= REG_BR_PROB_BASE
- probability
;
912 /* First match heuristics would be widly confused if we predicted
914 if (best_predictor
> predictor
)
916 struct edge_prediction
*pred2
;
917 int prob
= probability
;
919 for (pred2
= (struct edge_prediction
*) *preds
;
920 pred2
; pred2
= pred2
->ep_next
)
921 if (pred2
!= pred
&& pred2
->ep_predictor
== pred
->ep_predictor
)
923 int probability2
= pred
->ep_probability
;
925 if (pred2
->ep_edge
!= first
)
926 probability2
= REG_BR_PROB_BASE
- probability2
;
928 if ((probability
< REG_BR_PROB_BASE
/ 2) !=
929 (probability2
< REG_BR_PROB_BASE
/ 2))
932 /* If the same predictor later gave better result, go for it! */
933 if ((probability
>= REG_BR_PROB_BASE
/ 2 && (probability2
> probability
))
934 || (probability
<= REG_BR_PROB_BASE
/ 2 && (probability2
< probability
)))
938 best_probability
= prob
, best_predictor
= predictor
;
941 d
= (combined_probability
* probability
942 + (REG_BR_PROB_BASE
- combined_probability
)
943 * (REG_BR_PROB_BASE
- probability
));
945 /* Use FP math to avoid overflows of 32bit integers. */
947 /* If one probability is 0% and one 100%, avoid division by zero. */
948 combined_probability
= REG_BR_PROB_BASE
/ 2;
950 combined_probability
= (((double) combined_probability
)
952 * REG_BR_PROB_BASE
/ d
+ 0.5);
956 /* Decide which heuristic to use. In case we didn't match anything,
957 use no_prediction heuristic, in case we did match, use either
958 first match or Dempster-Shaffer theory depending on the flags. */
960 if (predictor_info
[best_predictor
].flags
& PRED_FLAG_FIRST_MATCH
)
964 dump_prediction (dump_file
, PRED_NO_PREDICTION
, combined_probability
, bb
, true);
967 dump_prediction (dump_file
, PRED_DS_THEORY
, combined_probability
, bb
,
969 dump_prediction (dump_file
, PRED_FIRST_MATCH
, best_probability
, bb
,
974 combined_probability
= best_probability
;
975 dump_prediction (dump_file
, PRED_COMBINED
, combined_probability
, bb
, true);
979 for (pred
= (struct edge_prediction
*) *preds
; pred
; pred
= pred
->ep_next
)
981 enum br_predictor predictor
= pred
->ep_predictor
;
982 int probability
= pred
->ep_probability
;
984 if (pred
->ep_edge
!= EDGE_SUCC (bb
, 0))
985 probability
= REG_BR_PROB_BASE
- probability
;
986 dump_prediction (dump_file
, predictor
, probability
, bb
,
987 !first_match
|| best_predictor
== predictor
);
990 clear_bb_predictions (bb
);
994 first
->probability
= combined_probability
;
995 second
->probability
= REG_BR_PROB_BASE
- combined_probability
;
999 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
1000 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1002 T1 and T2 should be one of the following cases:
1003 1. T1 is SSA_NAME, T2 is NULL
1004 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1005 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1008 strips_small_constant (tree t1
, tree t2
)
1015 else if (TREE_CODE (t1
) == SSA_NAME
)
1017 else if (tree_fits_shwi_p (t1
))
1018 value
= tree_to_shwi (t1
);
1024 else if (tree_fits_shwi_p (t2
))
1025 value
= tree_to_shwi (t2
);
1026 else if (TREE_CODE (t2
) == SSA_NAME
)
1034 if (value
<= 4 && value
>= -4)
1040 /* Return the SSA_NAME in T or T's operands.
1041 Return NULL if SSA_NAME cannot be found. */
1044 get_base_value (tree t
)
1046 if (TREE_CODE (t
) == SSA_NAME
)
1049 if (!BINARY_CLASS_P (t
))
1052 switch (TREE_OPERAND_LENGTH (t
))
1055 return strips_small_constant (TREE_OPERAND (t
, 0), NULL
);
1057 return strips_small_constant (TREE_OPERAND (t
, 0),
1058 TREE_OPERAND (t
, 1));
1064 /* Check the compare STMT in LOOP. If it compares an induction
1065 variable to a loop invariant, return true, and save
1066 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1067 Otherwise return false and set LOOP_INVAIANT to NULL. */
1070 is_comparison_with_loop_invariant_p (gimple stmt
, struct loop
*loop
,
1071 tree
*loop_invariant
,
1072 enum tree_code
*compare_code
,
1076 tree op0
, op1
, bound
, base
;
1078 enum tree_code code
;
1081 code
= gimple_cond_code (stmt
);
1082 *loop_invariant
= NULL
;
1098 op0
= gimple_cond_lhs (stmt
);
1099 op1
= gimple_cond_rhs (stmt
);
1101 if ((TREE_CODE (op0
) != SSA_NAME
&& TREE_CODE (op0
) != INTEGER_CST
)
1102 || (TREE_CODE (op1
) != SSA_NAME
&& TREE_CODE (op1
) != INTEGER_CST
))
1104 if (!simple_iv (loop
, loop_containing_stmt (stmt
), op0
, &iv0
, true))
1106 if (!simple_iv (loop
, loop_containing_stmt (stmt
), op1
, &iv1
, true))
1108 if (TREE_CODE (iv0
.step
) != INTEGER_CST
1109 || TREE_CODE (iv1
.step
) != INTEGER_CST
)
1111 if ((integer_zerop (iv0
.step
) && integer_zerop (iv1
.step
))
1112 || (!integer_zerop (iv0
.step
) && !integer_zerop (iv1
.step
)))
1115 if (integer_zerop (iv0
.step
))
1117 if (code
!= NE_EXPR
&& code
!= EQ_EXPR
)
1118 code
= invert_tree_comparison (code
, false);
1121 if (tree_fits_shwi_p (iv1
.step
))
1130 if (tree_fits_shwi_p (iv0
.step
))
1136 if (TREE_CODE (bound
) != INTEGER_CST
)
1137 bound
= get_base_value (bound
);
1140 if (TREE_CODE (base
) != INTEGER_CST
)
1141 base
= get_base_value (base
);
1145 *loop_invariant
= bound
;
1146 *compare_code
= code
;
1148 *loop_iv_base
= base
;
1152 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1155 expr_coherent_p (tree t1
, tree t2
)
1158 tree ssa_name_1
= NULL
;
1159 tree ssa_name_2
= NULL
;
1161 gcc_assert (TREE_CODE (t1
) == SSA_NAME
|| TREE_CODE (t1
) == INTEGER_CST
);
1162 gcc_assert (TREE_CODE (t2
) == SSA_NAME
|| TREE_CODE (t2
) == INTEGER_CST
);
1167 if (TREE_CODE (t1
) == INTEGER_CST
&& TREE_CODE (t2
) == INTEGER_CST
)
1169 if (TREE_CODE (t1
) == INTEGER_CST
|| TREE_CODE (t2
) == INTEGER_CST
)
1172 /* Check to see if t1 is expressed/defined with t2. */
1173 stmt
= SSA_NAME_DEF_STMT (t1
);
1174 gcc_assert (stmt
!= NULL
);
1175 if (is_gimple_assign (stmt
))
1177 ssa_name_1
= SINGLE_SSA_TREE_OPERAND (stmt
, SSA_OP_USE
);
1178 if (ssa_name_1
&& ssa_name_1
== t2
)
1182 /* Check to see if t2 is expressed/defined with t1. */
1183 stmt
= SSA_NAME_DEF_STMT (t2
);
1184 gcc_assert (stmt
!= NULL
);
1185 if (is_gimple_assign (stmt
))
1187 ssa_name_2
= SINGLE_SSA_TREE_OPERAND (stmt
, SSA_OP_USE
);
1188 if (ssa_name_2
&& ssa_name_2
== t1
)
1192 /* Compare if t1 and t2's def_stmts are identical. */
1193 if (ssa_name_2
!= NULL
&& ssa_name_1
== ssa_name_2
)
1199 /* Predict branch probability of BB when BB contains a branch that compares
1200 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1201 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1204 for (int i = 0; i < bound; i++) {
1211 In this loop, we will predict the branch inside the loop to be taken. */
1214 predict_iv_comparison (struct loop
*loop
, basic_block bb
,
1215 tree loop_bound_var
,
1216 tree loop_iv_base_var
,
1217 enum tree_code loop_bound_code
,
1218 int loop_bound_step
)
1221 tree compare_var
, compare_base
;
1222 enum tree_code compare_code
;
1223 tree compare_step_var
;
1227 if (predicted_by_p (bb
, PRED_LOOP_ITERATIONS_GUESSED
)
1228 || predicted_by_p (bb
, PRED_LOOP_ITERATIONS
)
1229 || predicted_by_p (bb
, PRED_LOOP_EXIT
))
1232 stmt
= last_stmt (bb
);
1233 if (!stmt
|| gimple_code (stmt
) != GIMPLE_COND
)
1235 if (!is_comparison_with_loop_invariant_p (stmt
, loop
, &compare_var
,
1241 /* Find the taken edge. */
1242 FOR_EACH_EDGE (then_edge
, ei
, bb
->succs
)
1243 if (then_edge
->flags
& EDGE_TRUE_VALUE
)
1246 /* When comparing an IV to a loop invariant, NE is more likely to be
1247 taken while EQ is more likely to be not-taken. */
1248 if (compare_code
== NE_EXPR
)
1250 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1253 else if (compare_code
== EQ_EXPR
)
1255 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, NOT_TAKEN
);
1259 if (!expr_coherent_p (loop_iv_base_var
, compare_base
))
1262 /* If loop bound, base and compare bound are all constants, we can
1263 calculate the probability directly. */
1264 if (tree_fits_shwi_p (loop_bound_var
)
1265 && tree_fits_shwi_p (compare_var
)
1266 && tree_fits_shwi_p (compare_base
))
1269 bool overflow
, overall_overflow
= false;
1270 widest_int compare_count
, tem
;
1272 /* (loop_bound - base) / compare_step */
1273 tem
= wi::sub (wi::to_widest (loop_bound_var
),
1274 wi::to_widest (compare_base
), SIGNED
, &overflow
);
1275 overall_overflow
|= overflow
;
1276 widest_int loop_count
= wi::div_trunc (tem
,
1277 wi::to_widest (compare_step_var
),
1279 overall_overflow
|= overflow
;
1281 if (!wi::neg_p (wi::to_widest (compare_step_var
))
1282 ^ (compare_code
== LT_EXPR
|| compare_code
== LE_EXPR
))
1284 /* (loop_bound - compare_bound) / compare_step */
1285 tem
= wi::sub (wi::to_widest (loop_bound_var
),
1286 wi::to_widest (compare_var
), SIGNED
, &overflow
);
1287 overall_overflow
|= overflow
;
1288 compare_count
= wi::div_trunc (tem
, wi::to_widest (compare_step_var
),
1290 overall_overflow
|= overflow
;
1294 /* (compare_bound - base) / compare_step */
1295 tem
= wi::sub (wi::to_widest (compare_var
),
1296 wi::to_widest (compare_base
), SIGNED
, &overflow
);
1297 overall_overflow
|= overflow
;
1298 compare_count
= wi::div_trunc (tem
, wi::to_widest (compare_step_var
),
1300 overall_overflow
|= overflow
;
1302 if (compare_code
== LE_EXPR
|| compare_code
== GE_EXPR
)
1304 if (loop_bound_code
== LE_EXPR
|| loop_bound_code
== GE_EXPR
)
1306 if (wi::neg_p (compare_count
))
1308 if (wi::neg_p (loop_count
))
1310 if (loop_count
== 0)
1312 else if (wi::cmps (compare_count
, loop_count
) == 1)
1313 probability
= REG_BR_PROB_BASE
;
1316 tem
= compare_count
* REG_BR_PROB_BASE
;
1317 tem
= wi::udiv_trunc (tem
, loop_count
);
1318 probability
= tem
.to_uhwi ();
1321 if (!overall_overflow
)
1322 predict_edge (then_edge
, PRED_LOOP_IV_COMPARE
, probability
);
1327 if (expr_coherent_p (loop_bound_var
, compare_var
))
1329 if ((loop_bound_code
== LT_EXPR
|| loop_bound_code
== LE_EXPR
)
1330 && (compare_code
== LT_EXPR
|| compare_code
== LE_EXPR
))
1331 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1332 else if ((loop_bound_code
== GT_EXPR
|| loop_bound_code
== GE_EXPR
)
1333 && (compare_code
== GT_EXPR
|| compare_code
== GE_EXPR
))
1334 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1335 else if (loop_bound_code
== NE_EXPR
)
1337 /* If the loop backedge condition is "(i != bound)", we do
1338 the comparison based on the step of IV:
1339 * step < 0 : backedge condition is like (i > bound)
1340 * step > 0 : backedge condition is like (i < bound) */
1341 gcc_assert (loop_bound_step
!= 0);
1342 if (loop_bound_step
> 0
1343 && (compare_code
== LT_EXPR
1344 || compare_code
== LE_EXPR
))
1345 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1346 else if (loop_bound_step
< 0
1347 && (compare_code
== GT_EXPR
1348 || compare_code
== GE_EXPR
))
1349 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1351 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, NOT_TAKEN
);
1354 /* The branch is predicted not-taken if loop_bound_code is
1355 opposite with compare_code. */
1356 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, NOT_TAKEN
);
1358 else if (expr_coherent_p (loop_iv_base_var
, compare_var
))
1361 for (i = s; i < h; i++)
1363 The branch should be predicted taken. */
1364 if (loop_bound_step
> 0
1365 && (compare_code
== GT_EXPR
|| compare_code
== GE_EXPR
))
1366 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1367 else if (loop_bound_step
< 0
1368 && (compare_code
== LT_EXPR
|| compare_code
== LE_EXPR
))
1369 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1371 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, NOT_TAKEN
);
1375 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1376 exits are resulted from short-circuit conditions that will generate an
1379 if (foo() || global > 10)
1382 This will be translated into:
1387 if foo() goto BB6 else goto BB5
1389 if global > 10 goto BB6 else goto BB7
1393 iftmp = (PHI 0(BB5), 1(BB6))
1394 if iftmp == 1 goto BB8 else goto BB3
1396 outside of the loop...
1398 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1399 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1400 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1401 exits to predict them using PRED_LOOP_EXIT. */
1404 predict_extra_loop_exits (edge exit_edge
)
1407 bool check_value_one
;
1409 tree cmp_rhs
, cmp_lhs
;
1410 gimple cmp_stmt
= last_stmt (exit_edge
->src
);
1412 if (!cmp_stmt
|| gimple_code (cmp_stmt
) != GIMPLE_COND
)
1414 cmp_rhs
= gimple_cond_rhs (cmp_stmt
);
1415 cmp_lhs
= gimple_cond_lhs (cmp_stmt
);
1416 if (!TREE_CONSTANT (cmp_rhs
)
1417 || !(integer_zerop (cmp_rhs
) || integer_onep (cmp_rhs
)))
1419 if (TREE_CODE (cmp_lhs
) != SSA_NAME
)
1422 /* If check_value_one is true, only the phi_args with value '1' will lead
1423 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1425 check_value_one
= (((integer_onep (cmp_rhs
))
1426 ^ (gimple_cond_code (cmp_stmt
) == EQ_EXPR
))
1427 ^ ((exit_edge
->flags
& EDGE_TRUE_VALUE
) != 0));
1429 phi_stmt
= SSA_NAME_DEF_STMT (cmp_lhs
);
1430 if (!phi_stmt
|| gimple_code (phi_stmt
) != GIMPLE_PHI
)
1433 for (i
= 0; i
< gimple_phi_num_args (phi_stmt
); i
++)
1437 tree val
= gimple_phi_arg_def (phi_stmt
, i
);
1438 edge e
= gimple_phi_arg_edge (phi_stmt
, i
);
1440 if (!TREE_CONSTANT (val
) || !(integer_zerop (val
) || integer_onep (val
)))
1442 if ((check_value_one
^ integer_onep (val
)) == 1)
1444 if (EDGE_COUNT (e
->src
->succs
) != 1)
1446 predict_paths_leading_to_edge (e
, PRED_LOOP_EXIT
, NOT_TAKEN
);
1450 FOR_EACH_EDGE (e1
, ei
, e
->src
->preds
)
1451 predict_paths_leading_to_edge (e1
, PRED_LOOP_EXIT
, NOT_TAKEN
);
1455 /* Predict edge probabilities by exploiting loop structure. */
1458 predict_loops (void)
1462 /* Try to predict out blocks in a loop that are not part of a
1464 FOR_EACH_LOOP (loop
, 0)
1466 basic_block bb
, *bbs
;
1467 unsigned j
, n_exits
;
1469 struct tree_niter_desc niter_desc
;
1471 struct nb_iter_bound
*nb_iter
;
1472 enum tree_code loop_bound_code
= ERROR_MARK
;
1473 tree loop_bound_step
= NULL
;
1474 tree loop_bound_var
= NULL
;
1475 tree loop_iv_base
= NULL
;
1478 exits
= get_loop_exit_edges (loop
);
1479 n_exits
= exits
.length ();
1486 FOR_EACH_VEC_ELT (exits
, j
, ex
)
1489 HOST_WIDE_INT nitercst
;
1490 int max
= PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS
);
1492 enum br_predictor predictor
;
1494 predict_extra_loop_exits (ex
);
1496 if (number_of_iterations_exit (loop
, ex
, &niter_desc
, false, false))
1497 niter
= niter_desc
.niter
;
1498 if (!niter
|| TREE_CODE (niter_desc
.niter
) != INTEGER_CST
)
1499 niter
= loop_niter_by_eval (loop
, ex
);
1501 if (TREE_CODE (niter
) == INTEGER_CST
)
1503 if (tree_fits_uhwi_p (niter
)
1505 && compare_tree_int (niter
, max
- 1) == -1)
1506 nitercst
= tree_to_uhwi (niter
) + 1;
1509 predictor
= PRED_LOOP_ITERATIONS
;
1511 /* If we have just one exit and we can derive some information about
1512 the number of iterations of the loop from the statements inside
1513 the loop, use it to predict this exit. */
1514 else if (n_exits
== 1)
1516 nitercst
= estimated_stmt_executions_int (loop
);
1522 predictor
= PRED_LOOP_ITERATIONS_GUESSED
;
1527 /* If the prediction for number of iterations is zero, do not
1528 predict the exit edges. */
1532 probability
= ((REG_BR_PROB_BASE
+ nitercst
/ 2) / nitercst
);
1533 predict_edge (ex
, predictor
, probability
);
1537 /* Find information about loop bound variables. */
1538 for (nb_iter
= loop
->bounds
; nb_iter
;
1539 nb_iter
= nb_iter
->next
)
1541 && gimple_code (nb_iter
->stmt
) == GIMPLE_COND
)
1543 stmt
= nb_iter
->stmt
;
1546 if (!stmt
&& last_stmt (loop
->header
)
1547 && gimple_code (last_stmt (loop
->header
)) == GIMPLE_COND
)
1548 stmt
= last_stmt (loop
->header
);
1550 is_comparison_with_loop_invariant_p (stmt
, loop
,
1556 bbs
= get_loop_body (loop
);
1558 for (j
= 0; j
< loop
->num_nodes
; j
++)
1560 int header_found
= 0;
1566 /* Bypass loop heuristics on continue statement. These
1567 statements construct loops via "non-loop" constructs
1568 in the source language and are better to be handled
1570 if (predicted_by_p (bb
, PRED_CONTINUE
))
1573 /* Loop branch heuristics - predict an edge back to a
1574 loop's head as taken. */
1575 if (bb
== loop
->latch
)
1577 e
= find_edge (loop
->latch
, loop
->header
);
1581 predict_edge_def (e
, PRED_LOOP_BRANCH
, TAKEN
);
1585 /* Loop exit heuristics - predict an edge exiting the loop if the
1586 conditional has no loop header successors as not taken. */
1588 /* If we already used more reliable loop exit predictors, do not
1589 bother with PRED_LOOP_EXIT. */
1590 && !predicted_by_p (bb
, PRED_LOOP_ITERATIONS_GUESSED
)
1591 && !predicted_by_p (bb
, PRED_LOOP_ITERATIONS
))
1593 /* For loop with many exits we don't want to predict all exits
1594 with the pretty large probability, because if all exits are
1595 considered in row, the loop would be predicted to iterate
1596 almost never. The code to divide probability by number of
1597 exits is very rough. It should compute the number of exits
1598 taken in each patch through function (not the overall number
1599 of exits that might be a lot higher for loops with wide switch
1600 statements in them) and compute n-th square root.
1602 We limit the minimal probability by 2% to avoid
1603 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1604 as this was causing regression in perl benchmark containing such
1607 int probability
= ((REG_BR_PROB_BASE
1608 - predictor_info
[(int) PRED_LOOP_EXIT
].hitrate
)
1610 if (probability
< HITRATE (2))
1611 probability
= HITRATE (2);
1612 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1613 if (e
->dest
->index
< NUM_FIXED_BLOCKS
1614 || !flow_bb_inside_loop_p (loop
, e
->dest
))
1615 predict_edge (e
, PRED_LOOP_EXIT
, probability
);
1618 predict_iv_comparison (loop
, bb
, loop_bound_var
, loop_iv_base
,
1620 tree_to_shwi (loop_bound_step
));
1623 /* Free basic blocks from get_loop_body. */
1628 /* Attempt to predict probabilities of BB outgoing edges using local
1631 bb_estimate_probability_locally (basic_block bb
)
1633 rtx_insn
*last_insn
= BB_END (bb
);
1636 if (! can_predict_insn_p (last_insn
))
1638 cond
= get_condition (last_insn
, NULL
, false, false);
1642 /* Try "pointer heuristic."
1643 A comparison ptr == 0 is predicted as false.
1644 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1645 if (COMPARISON_P (cond
)
1646 && ((REG_P (XEXP (cond
, 0)) && REG_POINTER (XEXP (cond
, 0)))
1647 || (REG_P (XEXP (cond
, 1)) && REG_POINTER (XEXP (cond
, 1)))))
1649 if (GET_CODE (cond
) == EQ
)
1650 predict_insn_def (last_insn
, PRED_POINTER
, NOT_TAKEN
);
1651 else if (GET_CODE (cond
) == NE
)
1652 predict_insn_def (last_insn
, PRED_POINTER
, TAKEN
);
1656 /* Try "opcode heuristic."
1657 EQ tests are usually false and NE tests are usually true. Also,
1658 most quantities are positive, so we can make the appropriate guesses
1659 about signed comparisons against zero. */
1660 switch (GET_CODE (cond
))
1663 /* Unconditional branch. */
1664 predict_insn_def (last_insn
, PRED_UNCONDITIONAL
,
1665 cond
== const0_rtx
? NOT_TAKEN
: TAKEN
);
1670 /* Floating point comparisons appears to behave in a very
1671 unpredictable way because of special role of = tests in
1673 if (FLOAT_MODE_P (GET_MODE (XEXP (cond
, 0))))
1675 /* Comparisons with 0 are often used for booleans and there is
1676 nothing useful to predict about them. */
1677 else if (XEXP (cond
, 1) == const0_rtx
1678 || XEXP (cond
, 0) == const0_rtx
)
1681 predict_insn_def (last_insn
, PRED_OPCODE_NONEQUAL
, NOT_TAKEN
);
1686 /* Floating point comparisons appears to behave in a very
1687 unpredictable way because of special role of = tests in
1689 if (FLOAT_MODE_P (GET_MODE (XEXP (cond
, 0))))
1691 /* Comparisons with 0 are often used for booleans and there is
1692 nothing useful to predict about them. */
1693 else if (XEXP (cond
, 1) == const0_rtx
1694 || XEXP (cond
, 0) == const0_rtx
)
1697 predict_insn_def (last_insn
, PRED_OPCODE_NONEQUAL
, TAKEN
);
1701 predict_insn_def (last_insn
, PRED_FPOPCODE
, TAKEN
);
1705 predict_insn_def (last_insn
, PRED_FPOPCODE
, NOT_TAKEN
);
1710 if (XEXP (cond
, 1) == const0_rtx
|| XEXP (cond
, 1) == const1_rtx
1711 || XEXP (cond
, 1) == constm1_rtx
)
1712 predict_insn_def (last_insn
, PRED_OPCODE_POSITIVE
, NOT_TAKEN
);
1717 if (XEXP (cond
, 1) == const0_rtx
|| XEXP (cond
, 1) == const1_rtx
1718 || XEXP (cond
, 1) == constm1_rtx
)
1719 predict_insn_def (last_insn
, PRED_OPCODE_POSITIVE
, TAKEN
);
1727 /* Set edge->probability for each successor edge of BB. */
1729 guess_outgoing_edge_probabilities (basic_block bb
)
1731 bb_estimate_probability_locally (bb
);
1732 combine_predictions_for_insn (BB_END (bb
), bb
);
1735 static tree
expr_expected_value (tree
, bitmap
, enum br_predictor
*predictor
);
1737 /* Helper function for expr_expected_value. */
1740 expr_expected_value_1 (tree type
, tree op0
, enum tree_code code
,
1741 tree op1
, bitmap visited
, enum br_predictor
*predictor
)
1746 *predictor
= PRED_UNCONDITIONAL
;
1748 if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
)
1750 if (TREE_CONSTANT (op0
))
1753 if (code
!= SSA_NAME
)
1756 def
= SSA_NAME_DEF_STMT (op0
);
1758 /* If we were already here, break the infinite cycle. */
1759 if (!bitmap_set_bit (visited
, SSA_NAME_VERSION (op0
)))
1762 if (gimple_code (def
) == GIMPLE_PHI
)
1764 /* All the arguments of the PHI node must have the same constant
1766 int i
, n
= gimple_phi_num_args (def
);
1767 tree val
= NULL
, new_val
;
1769 for (i
= 0; i
< n
; i
++)
1771 tree arg
= PHI_ARG_DEF (def
, i
);
1772 enum br_predictor predictor2
;
1774 /* If this PHI has itself as an argument, we cannot
1775 determine the string length of this argument. However,
1776 if we can find an expected constant value for the other
1777 PHI args then we can still be sure that this is
1778 likely a constant. So be optimistic and just
1779 continue with the next argument. */
1780 if (arg
== PHI_RESULT (def
))
1783 new_val
= expr_expected_value (arg
, visited
, &predictor2
);
1785 /* It is difficult to combine value predictors. Simply assume
1786 that later predictor is weaker and take its prediction. */
1787 if (predictor
&& *predictor
< predictor2
)
1788 *predictor
= predictor2
;
1793 else if (!operand_equal_p (val
, new_val
, false))
1798 if (is_gimple_assign (def
))
1800 if (gimple_assign_lhs (def
) != op0
)
1803 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def
)),
1804 gimple_assign_rhs1 (def
),
1805 gimple_assign_rhs_code (def
),
1806 gimple_assign_rhs2 (def
),
1807 visited
, predictor
);
1810 if (is_gimple_call (def
))
1812 tree decl
= gimple_call_fndecl (def
);
1815 if (gimple_call_internal_p (def
)
1816 && gimple_call_internal_fn (def
) == IFN_BUILTIN_EXPECT
)
1818 gcc_assert (gimple_call_num_args (def
) == 3);
1819 tree val
= gimple_call_arg (def
, 0);
1820 if (TREE_CONSTANT (val
))
1824 tree val2
= gimple_call_arg (def
, 2);
1825 gcc_assert (TREE_CODE (val2
) == INTEGER_CST
1826 && tree_fits_uhwi_p (val2
)
1827 && tree_to_uhwi (val2
) < END_PREDICTORS
);
1828 *predictor
= (enum br_predictor
) tree_to_uhwi (val2
);
1830 return gimple_call_arg (def
, 1);
1834 if (DECL_BUILT_IN_CLASS (decl
) == BUILT_IN_NORMAL
)
1835 switch (DECL_FUNCTION_CODE (decl
))
1837 case BUILT_IN_EXPECT
:
1840 if (gimple_call_num_args (def
) != 2)
1842 val
= gimple_call_arg (def
, 0);
1843 if (TREE_CONSTANT (val
))
1846 *predictor
= PRED_BUILTIN_EXPECT
;
1847 return gimple_call_arg (def
, 1);
1850 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N
:
1851 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1
:
1852 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2
:
1853 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4
:
1854 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8
:
1855 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16
:
1856 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE
:
1857 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N
:
1858 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1
:
1859 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2
:
1860 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4
:
1861 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8
:
1862 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16
:
1863 /* Assume that any given atomic operation has low contention,
1864 and thus the compare-and-swap operation succeeds. */
1866 *predictor
= PRED_COMPARE_AND_SWAP
;
1867 return boolean_true_node
;
1876 if (get_gimple_rhs_class (code
) == GIMPLE_BINARY_RHS
)
1879 enum br_predictor predictor2
;
1880 op0
= expr_expected_value (op0
, visited
, predictor
);
1883 op1
= expr_expected_value (op1
, visited
, &predictor2
);
1884 if (predictor
&& *predictor
< predictor2
)
1885 *predictor
= predictor2
;
1888 res
= fold_build2 (code
, type
, op0
, op1
);
1889 if (TREE_CONSTANT (res
))
1893 if (get_gimple_rhs_class (code
) == GIMPLE_UNARY_RHS
)
1896 op0
= expr_expected_value (op0
, visited
, predictor
);
1899 res
= fold_build1 (code
, type
, op0
);
1900 if (TREE_CONSTANT (res
))
1907 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1908 The function is used by builtin_expect branch predictor so the evidence
1909 must come from this construct and additional possible constant folding.
1911 We may want to implement more involved value guess (such as value range
1912 propagation based prediction), but such tricks shall go to new
1916 expr_expected_value (tree expr
, bitmap visited
,
1917 enum br_predictor
*predictor
)
1919 enum tree_code code
;
1922 if (TREE_CONSTANT (expr
))
1925 *predictor
= PRED_UNCONDITIONAL
;
1929 extract_ops_from_tree (expr
, &code
, &op0
, &op1
);
1930 return expr_expected_value_1 (TREE_TYPE (expr
),
1931 op0
, code
, op1
, visited
, predictor
);
1934 /* Predict using opcode of the last statement in basic block. */
1936 tree_predict_by_opcode (basic_block bb
)
1938 gimple stmt
= last_stmt (bb
);
1946 enum br_predictor predictor
;
1948 if (!stmt
|| gimple_code (stmt
) != GIMPLE_COND
)
1950 FOR_EACH_EDGE (then_edge
, ei
, bb
->succs
)
1951 if (then_edge
->flags
& EDGE_TRUE_VALUE
)
1953 op0
= gimple_cond_lhs (stmt
);
1954 op1
= gimple_cond_rhs (stmt
);
1955 cmp
= gimple_cond_code (stmt
);
1956 type
= TREE_TYPE (op0
);
1957 visited
= BITMAP_ALLOC (NULL
);
1958 val
= expr_expected_value_1 (boolean_type_node
, op0
, cmp
, op1
, visited
,
1960 BITMAP_FREE (visited
);
1961 if (val
&& TREE_CODE (val
) == INTEGER_CST
)
1963 if (predictor
== PRED_BUILTIN_EXPECT
)
1965 int percent
= PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY
);
1967 gcc_assert (percent
>= 0 && percent
<= 100);
1968 if (integer_zerop (val
))
1969 percent
= 100 - percent
;
1970 predict_edge (then_edge
, PRED_BUILTIN_EXPECT
, HITRATE (percent
));
1973 predict_edge (then_edge
, predictor
,
1974 integer_zerop (val
) ? NOT_TAKEN
: TAKEN
);
1976 /* Try "pointer heuristic."
1977 A comparison ptr == 0 is predicted as false.
1978 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1979 if (POINTER_TYPE_P (type
))
1982 predict_edge_def (then_edge
, PRED_TREE_POINTER
, NOT_TAKEN
);
1983 else if (cmp
== NE_EXPR
)
1984 predict_edge_def (then_edge
, PRED_TREE_POINTER
, TAKEN
);
1988 /* Try "opcode heuristic."
1989 EQ tests are usually false and NE tests are usually true. Also,
1990 most quantities are positive, so we can make the appropriate guesses
1991 about signed comparisons against zero. */
1996 /* Floating point comparisons appears to behave in a very
1997 unpredictable way because of special role of = tests in
1999 if (FLOAT_TYPE_P (type
))
2001 /* Comparisons with 0 are often used for booleans and there is
2002 nothing useful to predict about them. */
2003 else if (integer_zerop (op0
) || integer_zerop (op1
))
2006 predict_edge_def (then_edge
, PRED_TREE_OPCODE_NONEQUAL
, NOT_TAKEN
);
2011 /* Floating point comparisons appears to behave in a very
2012 unpredictable way because of special role of = tests in
2014 if (FLOAT_TYPE_P (type
))
2016 /* Comparisons with 0 are often used for booleans and there is
2017 nothing useful to predict about them. */
2018 else if (integer_zerop (op0
)
2019 || integer_zerop (op1
))
2022 predict_edge_def (then_edge
, PRED_TREE_OPCODE_NONEQUAL
, TAKEN
);
2026 predict_edge_def (then_edge
, PRED_TREE_FPOPCODE
, TAKEN
);
2029 case UNORDERED_EXPR
:
2030 predict_edge_def (then_edge
, PRED_TREE_FPOPCODE
, NOT_TAKEN
);
2035 if (integer_zerop (op1
)
2036 || integer_onep (op1
)
2037 || integer_all_onesp (op1
)
2040 || real_minus_onep (op1
))
2041 predict_edge_def (then_edge
, PRED_TREE_OPCODE_POSITIVE
, NOT_TAKEN
);
2046 if (integer_zerop (op1
)
2047 || integer_onep (op1
)
2048 || integer_all_onesp (op1
)
2051 || real_minus_onep (op1
))
2052 predict_edge_def (then_edge
, PRED_TREE_OPCODE_POSITIVE
, TAKEN
);
2060 /* Try to guess whether the value of return means error code. */
2062 static enum br_predictor
2063 return_prediction (tree val
, enum prediction
*prediction
)
2067 return PRED_NO_PREDICTION
;
2068 /* Different heuristics for pointers and scalars. */
2069 if (POINTER_TYPE_P (TREE_TYPE (val
)))
2071 /* NULL is usually not returned. */
2072 if (integer_zerop (val
))
2074 *prediction
= NOT_TAKEN
;
2075 return PRED_NULL_RETURN
;
2078 else if (INTEGRAL_TYPE_P (TREE_TYPE (val
)))
2080 /* Negative return values are often used to indicate
2082 if (TREE_CODE (val
) == INTEGER_CST
2083 && tree_int_cst_sgn (val
) < 0)
2085 *prediction
= NOT_TAKEN
;
2086 return PRED_NEGATIVE_RETURN
;
2088 /* Constant return values seems to be commonly taken.
2089 Zero/one often represent booleans so exclude them from the
2091 if (TREE_CONSTANT (val
)
2092 && (!integer_zerop (val
) && !integer_onep (val
)))
2094 *prediction
= TAKEN
;
2095 return PRED_CONST_RETURN
;
2098 return PRED_NO_PREDICTION
;
2101 /* Find the basic block with return expression and look up for possible
2102 return value trying to apply RETURN_PREDICTION heuristics. */
2104 apply_return_prediction (void)
2106 gimple return_stmt
= NULL
;
2110 int phi_num_args
, i
;
2111 enum br_predictor pred
;
2112 enum prediction direction
;
2115 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
2117 return_stmt
= last_stmt (e
->src
);
2119 && gimple_code (return_stmt
) == GIMPLE_RETURN
)
2124 return_val
= gimple_return_retval (return_stmt
);
2127 if (TREE_CODE (return_val
) != SSA_NAME
2128 || !SSA_NAME_DEF_STMT (return_val
)
2129 || gimple_code (SSA_NAME_DEF_STMT (return_val
)) != GIMPLE_PHI
)
2131 phi
= SSA_NAME_DEF_STMT (return_val
);
2132 phi_num_args
= gimple_phi_num_args (phi
);
2133 pred
= return_prediction (PHI_ARG_DEF (phi
, 0), &direction
);
2135 /* Avoid the degenerate case where all return values form the function
2136 belongs to same category (ie they are all positive constants)
2137 so we can hardly say something about them. */
2138 for (i
= 1; i
< phi_num_args
; i
++)
2139 if (pred
!= return_prediction (PHI_ARG_DEF (phi
, i
), &direction
))
2141 if (i
!= phi_num_args
)
2142 for (i
= 0; i
< phi_num_args
; i
++)
2144 pred
= return_prediction (PHI_ARG_DEF (phi
, i
), &direction
);
2145 if (pred
!= PRED_NO_PREDICTION
)
2146 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi
, i
), pred
,
2151 /* Look for basic block that contains unlikely to happen events
2152 (such as noreturn calls) and mark all paths leading to execution
2153 of this basic blocks as unlikely. */
2156 tree_bb_level_predictions (void)
2159 bool has_return_edges
= false;
2163 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
2164 if (!(e
->flags
& (EDGE_ABNORMAL
| EDGE_FAKE
| EDGE_EH
)))
2166 has_return_edges
= true;
2170 apply_return_prediction ();
2172 FOR_EACH_BB_FN (bb
, cfun
)
2174 gimple_stmt_iterator gsi
;
2176 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2178 gimple stmt
= gsi_stmt (gsi
);
2181 if (is_gimple_call (stmt
))
2183 if ((gimple_call_flags (stmt
) & ECF_NORETURN
)
2184 && has_return_edges
)
2185 predict_paths_leading_to (bb
, PRED_NORETURN
,
2187 decl
= gimple_call_fndecl (stmt
);
2189 && lookup_attribute ("cold",
2190 DECL_ATTRIBUTES (decl
)))
2191 predict_paths_leading_to (bb
, PRED_COLD_FUNCTION
,
2194 else if (gimple_code (stmt
) == GIMPLE_PREDICT
)
2196 predict_paths_leading_to (bb
, gimple_predict_predictor (stmt
),
2197 gimple_predict_outcome (stmt
));
2198 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2199 hints to callers. */
2205 #ifdef ENABLE_CHECKING
2207 /* Callback for hash_map::traverse, asserts that the pointer map is
2211 assert_is_empty (const_basic_block
const &, edge_prediction
*const &value
,
2214 gcc_assert (!value
);
2219 /* Predict branch probabilities and estimate profile for basic block BB. */
2222 tree_estimate_probability_bb (basic_block bb
)
2228 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2230 /* Predict edges to user labels with attributes. */
2231 if (e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
2233 gimple_stmt_iterator gi
;
2234 for (gi
= gsi_start_bb (e
->dest
); !gsi_end_p (gi
); gsi_next (&gi
))
2236 gimple stmt
= gsi_stmt (gi
);
2239 if (gimple_code (stmt
) != GIMPLE_LABEL
)
2241 decl
= gimple_label_label (stmt
);
2242 if (DECL_ARTIFICIAL (decl
))
2245 /* Finally, we have a user-defined label. */
2246 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl
)))
2247 predict_edge_def (e
, PRED_COLD_LABEL
, NOT_TAKEN
);
2248 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl
)))
2249 predict_edge_def (e
, PRED_HOT_LABEL
, TAKEN
);
2253 /* Predict early returns to be probable, as we've already taken
2254 care for error returns and other cases are often used for
2255 fast paths through function.
2257 Since we've already removed the return statements, we are
2258 looking for CFG like:
2268 if (e
->dest
!= bb
->next_bb
2269 && e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
2270 && single_succ_p (e
->dest
)
2271 && single_succ_edge (e
->dest
)->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
2272 && (last
= last_stmt (e
->dest
)) != NULL
2273 && gimple_code (last
) == GIMPLE_RETURN
)
2278 if (single_succ_p (bb
))
2280 FOR_EACH_EDGE (e1
, ei1
, bb
->preds
)
2281 if (!predicted_by_p (e1
->src
, PRED_NULL_RETURN
)
2282 && !predicted_by_p (e1
->src
, PRED_CONST_RETURN
)
2283 && !predicted_by_p (e1
->src
, PRED_NEGATIVE_RETURN
))
2284 predict_edge_def (e1
, PRED_TREE_EARLY_RETURN
, NOT_TAKEN
);
2287 if (!predicted_by_p (e
->src
, PRED_NULL_RETURN
)
2288 && !predicted_by_p (e
->src
, PRED_CONST_RETURN
)
2289 && !predicted_by_p (e
->src
, PRED_NEGATIVE_RETURN
))
2290 predict_edge_def (e
, PRED_TREE_EARLY_RETURN
, NOT_TAKEN
);
2293 /* Look for block we are guarding (ie we dominate it,
2294 but it doesn't postdominate us). */
2295 if (e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
) && e
->dest
!= bb
2296 && dominated_by_p (CDI_DOMINATORS
, e
->dest
, e
->src
)
2297 && !dominated_by_p (CDI_POST_DOMINATORS
, e
->src
, e
->dest
))
2299 gimple_stmt_iterator bi
;
2301 /* The call heuristic claims that a guarded function call
2302 is improbable. This is because such calls are often used
2303 to signal exceptional situations such as printing error
2305 for (bi
= gsi_start_bb (e
->dest
); !gsi_end_p (bi
);
2308 gimple stmt
= gsi_stmt (bi
);
2309 if (is_gimple_call (stmt
)
2310 /* Constant and pure calls are hardly used to signalize
2311 something exceptional. */
2312 && gimple_has_side_effects (stmt
))
2314 predict_edge_def (e
, PRED_CALL
, NOT_TAKEN
);
2320 tree_predict_by_opcode (bb
);
2323 /* Predict branch probabilities and estimate profile of the tree CFG.
2324 This function can be called from the loop optimizers to recompute
2325 the profile information. */
2328 tree_estimate_probability (void)
2332 add_noreturn_fake_exit_edges ();
2333 connect_infinite_loops_to_exit ();
2334 /* We use loop_niter_by_eval, which requires that the loops have
2336 create_preheaders (CP_SIMPLE_PREHEADERS
);
2337 calculate_dominance_info (CDI_POST_DOMINATORS
);
2339 bb_predictions
= new hash_map
<const_basic_block
, edge_prediction
*>;
2340 tree_bb_level_predictions ();
2341 record_loop_exits ();
2343 if (number_of_loops (cfun
) > 1)
2346 FOR_EACH_BB_FN (bb
, cfun
)
2347 tree_estimate_probability_bb (bb
);
2349 FOR_EACH_BB_FN (bb
, cfun
)
2350 combine_predictions_for_bb (bb
);
2352 #ifdef ENABLE_CHECKING
2353 bb_predictions
->traverse
<void *, assert_is_empty
> (NULL
);
2355 delete bb_predictions
;
2356 bb_predictions
= NULL
;
2358 estimate_bb_frequencies (false);
2359 free_dominance_info (CDI_POST_DOMINATORS
);
2360 remove_fake_exit_edges ();
2363 /* Predict edges to successors of CUR whose sources are not postdominated by
2364 BB by PRED and recurse to all postdominators. */
2367 predict_paths_for_bb (basic_block cur
, basic_block bb
,
2368 enum br_predictor pred
,
2369 enum prediction taken
,
2376 /* We are looking for all edges forming edge cut induced by
2377 set of all blocks postdominated by BB. */
2378 FOR_EACH_EDGE (e
, ei
, cur
->preds
)
2379 if (e
->src
->index
>= NUM_FIXED_BLOCKS
2380 && !dominated_by_p (CDI_POST_DOMINATORS
, e
->src
, bb
))
2386 /* Ignore fake edges and eh, we predict them as not taken anyway. */
2387 if (e
->flags
& (EDGE_EH
| EDGE_FAKE
))
2389 gcc_assert (bb
== cur
|| dominated_by_p (CDI_POST_DOMINATORS
, cur
, bb
));
2391 /* See if there is an edge from e->src that is not abnormal
2392 and does not lead to BB. */
2393 FOR_EACH_EDGE (e2
, ei2
, e
->src
->succs
)
2395 && !(e2
->flags
& (EDGE_EH
| EDGE_FAKE
))
2396 && !dominated_by_p (CDI_POST_DOMINATORS
, e2
->dest
, bb
))
2402 /* If there is non-abnormal path leaving e->src, predict edge
2403 using predictor. Otherwise we need to look for paths
2406 The second may lead to infinite loop in the case we are predicitng
2407 regions that are only reachable by abnormal edges. We simply
2408 prevent visiting given BB twice. */
2410 predict_edge_def (e
, pred
, taken
);
2411 else if (bitmap_set_bit (visited
, e
->src
->index
))
2412 predict_paths_for_bb (e
->src
, e
->src
, pred
, taken
, visited
);
2414 for (son
= first_dom_son (CDI_POST_DOMINATORS
, cur
);
2416 son
= next_dom_son (CDI_POST_DOMINATORS
, son
))
2417 predict_paths_for_bb (son
, bb
, pred
, taken
, visited
);
2420 /* Sets branch probabilities according to PREDiction and
2424 predict_paths_leading_to (basic_block bb
, enum br_predictor pred
,
2425 enum prediction taken
)
2427 bitmap visited
= BITMAP_ALLOC (NULL
);
2428 predict_paths_for_bb (bb
, bb
, pred
, taken
, visited
);
2429 BITMAP_FREE (visited
);
2432 /* Like predict_paths_leading_to but take edge instead of basic block. */
2435 predict_paths_leading_to_edge (edge e
, enum br_predictor pred
,
2436 enum prediction taken
)
2438 bool has_nonloop_edge
= false;
2442 basic_block bb
= e
->src
;
2443 FOR_EACH_EDGE (e2
, ei
, bb
->succs
)
2444 if (e2
->dest
!= e
->src
&& e2
->dest
!= e
->dest
2445 && !(e
->flags
& (EDGE_EH
| EDGE_FAKE
))
2446 && !dominated_by_p (CDI_POST_DOMINATORS
, e
->src
, e2
->dest
))
2448 has_nonloop_edge
= true;
2451 if (!has_nonloop_edge
)
2453 bitmap visited
= BITMAP_ALLOC (NULL
);
2454 predict_paths_for_bb (bb
, bb
, pred
, taken
, visited
);
2455 BITMAP_FREE (visited
);
2458 predict_edge_def (e
, pred
, taken
);
2461 /* This is used to carry information about basic blocks. It is
2462 attached to the AUX field of the standard CFG block. */
2466 /* Estimated frequency of execution of basic_block. */
2469 /* To keep queue of basic blocks to process. */
2472 /* Number of predecessors we need to visit first. */
2476 /* Similar information for edges. */
2477 struct edge_prob_info
2479 /* In case edge is a loopback edge, the probability edge will be reached
2480 in case header is. Estimated number of iterations of the loop can be
2481 then computed as 1 / (1 - back_edge_prob). */
2482 sreal back_edge_prob
;
2483 /* True if the edge is a loopback edge in the natural loop. */
2484 unsigned int back_edge
:1;
2487 #define BLOCK_INFO(B) ((block_info *) (B)->aux)
2489 #define EDGE_INFO(E) ((edge_prob_info *) (E)->aux)
2491 /* Helper function for estimate_bb_frequencies.
2492 Propagate the frequencies in blocks marked in
2493 TOVISIT, starting in HEAD. */
2496 propagate_freq (basic_block head
, bitmap tovisit
)
2505 /* For each basic block we need to visit count number of his predecessors
2506 we need to visit first. */
2507 EXECUTE_IF_SET_IN_BITMAP (tovisit
, 0, i
, bi
)
2512 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
2514 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2516 bool visit
= bitmap_bit_p (tovisit
, e
->src
->index
);
2518 if (visit
&& !(e
->flags
& EDGE_DFS_BACK
))
2520 else if (visit
&& dump_file
&& !EDGE_INFO (e
)->back_edge
)
2522 "Irreducible region hit, ignoring edge to %i->%i\n",
2523 e
->src
->index
, bb
->index
);
2525 BLOCK_INFO (bb
)->npredecessors
= count
;
2526 /* When function never returns, we will never process exit block. */
2527 if (!count
&& bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
2528 bb
->count
= bb
->frequency
= 0;
2531 BLOCK_INFO (head
)->frequency
= real_one
;
2533 for (bb
= head
; bb
; bb
= nextbb
)
2536 sreal cyclic_probability
= real_zero
;
2537 sreal frequency
= real_zero
;
2539 nextbb
= BLOCK_INFO (bb
)->next
;
2540 BLOCK_INFO (bb
)->next
= NULL
;
2542 /* Compute frequency of basic block. */
2545 #ifdef ENABLE_CHECKING
2546 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2547 gcc_assert (!bitmap_bit_p (tovisit
, e
->src
->index
)
2548 || (e
->flags
& EDGE_DFS_BACK
));
2551 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2552 if (EDGE_INFO (e
)->back_edge
)
2554 cyclic_probability
+= EDGE_INFO (e
)->back_edge_prob
;
2556 else if (!(e
->flags
& EDGE_DFS_BACK
))
2558 /* frequency += (e->probability
2559 * BLOCK_INFO (e->src)->frequency /
2560 REG_BR_PROB_BASE); */
2562 sreal
tmp (e
->probability
, 0);
2563 tmp
*= BLOCK_INFO (e
->src
)->frequency
;
2564 tmp
*= real_inv_br_prob_base
;
2568 if (cyclic_probability
== real_zero
)
2570 BLOCK_INFO (bb
)->frequency
= frequency
;
2574 if (cyclic_probability
> real_almost_one
)
2575 cyclic_probability
= real_almost_one
;
2577 /* BLOCK_INFO (bb)->frequency = frequency
2578 / (1 - cyclic_probability) */
2580 cyclic_probability
= real_one
- cyclic_probability
;
2581 BLOCK_INFO (bb
)->frequency
= frequency
/ cyclic_probability
;
2585 bitmap_clear_bit (tovisit
, bb
->index
);
2587 e
= find_edge (bb
, head
);
2590 /* EDGE_INFO (e)->back_edge_prob
2591 = ((e->probability * BLOCK_INFO (bb)->frequency)
2592 / REG_BR_PROB_BASE); */
2594 sreal
tmp (e
->probability
, 0);
2595 tmp
*= BLOCK_INFO (bb
)->frequency
;
2596 EDGE_INFO (e
)->back_edge_prob
= tmp
* real_inv_br_prob_base
;
2599 /* Propagate to successor blocks. */
2600 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2601 if (!(e
->flags
& EDGE_DFS_BACK
)
2602 && BLOCK_INFO (e
->dest
)->npredecessors
)
2604 BLOCK_INFO (e
->dest
)->npredecessors
--;
2605 if (!BLOCK_INFO (e
->dest
)->npredecessors
)
2610 BLOCK_INFO (last
)->next
= e
->dest
;
2618 /* Estimate frequencies in loops at same nest level. */
2621 estimate_loops_at_level (struct loop
*first_loop
)
2625 for (loop
= first_loop
; loop
; loop
= loop
->next
)
2630 bitmap tovisit
= BITMAP_ALLOC (NULL
);
2632 estimate_loops_at_level (loop
->inner
);
2634 /* Find current loop back edge and mark it. */
2635 e
= loop_latch_edge (loop
);
2636 EDGE_INFO (e
)->back_edge
= 1;
2638 bbs
= get_loop_body (loop
);
2639 for (i
= 0; i
< loop
->num_nodes
; i
++)
2640 bitmap_set_bit (tovisit
, bbs
[i
]->index
);
2642 propagate_freq (loop
->header
, tovisit
);
2643 BITMAP_FREE (tovisit
);
2647 /* Propagates frequencies through structure of loops. */
2650 estimate_loops (void)
2652 bitmap tovisit
= BITMAP_ALLOC (NULL
);
2655 /* Start by estimating the frequencies in the loops. */
2656 if (number_of_loops (cfun
) > 1)
2657 estimate_loops_at_level (current_loops
->tree_root
->inner
);
2659 /* Now propagate the frequencies through all the blocks. */
2660 FOR_ALL_BB_FN (bb
, cfun
)
2662 bitmap_set_bit (tovisit
, bb
->index
);
2664 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun
), tovisit
);
2665 BITMAP_FREE (tovisit
);
2668 /* Drop the profile for NODE to guessed, and update its frequency based on
2669 whether it is expected to be hot given the CALL_COUNT. */
2672 drop_profile (struct cgraph_node
*node
, gcov_type call_count
)
2674 struct function
*fn
= DECL_STRUCT_FUNCTION (node
->decl
);
2675 /* In the case where this was called by another function with a
2676 dropped profile, call_count will be 0. Since there are no
2677 non-zero call counts to this function, we don't know for sure
2678 whether it is hot, and therefore it will be marked normal below. */
2679 bool hot
= maybe_hot_count_p (NULL
, call_count
);
2683 "Dropping 0 profile for %s/%i. %s based on calls.\n",
2684 node
->name (), node
->order
,
2685 hot
? "Function is hot" : "Function is normal");
2686 /* We only expect to miss profiles for functions that are reached
2687 via non-zero call edges in cases where the function may have
2688 been linked from another module or library (COMDATs and extern
2689 templates). See the comments below for handle_missing_profiles.
2690 Also, only warn in cases where the missing counts exceed the
2691 number of training runs. In certain cases with an execv followed
2692 by a no-return call the profile for the no-return call is not
2693 dumped and there can be a mismatch. */
2694 if (!DECL_COMDAT (node
->decl
) && !DECL_EXTERNAL (node
->decl
)
2695 && call_count
> profile_info
->runs
)
2697 if (flag_profile_correction
)
2701 "Missing counts for called function %s/%i\n",
2702 node
->name (), node
->order
);
2705 warning (0, "Missing counts for called function %s/%i",
2706 node
->name (), node
->order
);
2709 profile_status_for_fn (fn
)
2710 = (flag_guess_branch_prob
? PROFILE_GUESSED
: PROFILE_ABSENT
);
2712 = hot
? NODE_FREQUENCY_HOT
: NODE_FREQUENCY_NORMAL
;
2715 /* In the case of COMDAT routines, multiple object files will contain the same
2716 function and the linker will select one for the binary. In that case
2717 all the other copies from the profile instrument binary will be missing
2718 profile counts. Look for cases where this happened, due to non-zero
2719 call counts going to 0-count functions, and drop the profile to guessed
2720 so that we can use the estimated probabilities and avoid optimizing only
2723 The other case where the profile may be missing is when the routine
2724 is not going to be emitted to the object file, e.g. for "extern template"
2725 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
2726 all other cases of non-zero calls to 0-count functions. */
2729 handle_missing_profiles (void)
2731 struct cgraph_node
*node
;
2732 int unlikely_count_fraction
= PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION
);
2733 vec
<struct cgraph_node
*> worklist
;
2734 worklist
.create (64);
2736 /* See if 0 count function has non-0 count callers. In this case we
2737 lost some profile. Drop its function profile to PROFILE_GUESSED. */
2738 FOR_EACH_DEFINED_FUNCTION (node
)
2740 struct cgraph_edge
*e
;
2741 gcov_type call_count
= 0;
2742 gcov_type max_tp_first_run
= 0;
2743 struct function
*fn
= DECL_STRUCT_FUNCTION (node
->decl
);
2747 for (e
= node
->callers
; e
; e
= e
->next_caller
)
2749 call_count
+= e
->count
;
2751 if (e
->caller
->tp_first_run
> max_tp_first_run
)
2752 max_tp_first_run
= e
->caller
->tp_first_run
;
2755 /* If time profile is missing, let assign the maximum that comes from
2756 caller functions. */
2757 if (!node
->tp_first_run
&& max_tp_first_run
)
2758 node
->tp_first_run
= max_tp_first_run
+ 1;
2762 && (call_count
* unlikely_count_fraction
>= profile_info
->runs
))
2764 drop_profile (node
, call_count
);
2765 worklist
.safe_push (node
);
2769 /* Propagate the profile dropping to other 0-count COMDATs that are
2770 potentially called by COMDATs we already dropped the profile on. */
2771 while (worklist
.length () > 0)
2773 struct cgraph_edge
*e
;
2775 node
= worklist
.pop ();
2776 for (e
= node
->callees
; e
; e
= e
->next_caller
)
2778 struct cgraph_node
*callee
= e
->callee
;
2779 struct function
*fn
= DECL_STRUCT_FUNCTION (callee
->decl
);
2781 if (callee
->count
> 0)
2783 if (DECL_COMDAT (callee
->decl
) && fn
&& fn
->cfg
2784 && profile_status_for_fn (fn
) == PROFILE_READ
)
2786 drop_profile (node
, 0);
2787 worklist
.safe_push (callee
);
2791 worklist
.release ();
2794 /* Convert counts measured by profile driven feedback to frequencies.
2795 Return nonzero iff there was any nonzero execution count. */
2798 counts_to_freqs (void)
2800 gcov_type count_max
, true_count_max
= 0;
2803 /* Don't overwrite the estimated frequencies when the profile for
2804 the function is missing. We may drop this function PROFILE_GUESSED
2805 later in drop_profile (). */
2806 if (!flag_auto_profile
&& !ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
)
2809 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
), NULL
, next_bb
)
2810 true_count_max
= MAX (bb
->count
, true_count_max
);
2812 count_max
= MAX (true_count_max
, 1);
2813 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
), NULL
, next_bb
)
2814 bb
->frequency
= (bb
->count
* BB_FREQ_MAX
+ count_max
/ 2) / count_max
;
2816 return true_count_max
;
2819 /* Return true if function is likely to be expensive, so there is no point to
2820 optimize performance of prologue, epilogue or do inlining at the expense
2821 of code size growth. THRESHOLD is the limit of number of instructions
2822 function can execute at average to be still considered not expensive. */
2825 expensive_function_p (int threshold
)
2827 unsigned int sum
= 0;
2831 /* We can not compute accurately for large thresholds due to scaled
2833 gcc_assert (threshold
<= BB_FREQ_MAX
);
2835 /* Frequencies are out of range. This either means that function contains
2836 internal loop executing more than BB_FREQ_MAX times or profile feedback
2837 is available and function has not been executed at all. */
2838 if (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->frequency
== 0)
2841 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2842 limit
= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->frequency
* threshold
;
2843 FOR_EACH_BB_FN (bb
, cfun
)
2847 FOR_BB_INSNS (bb
, insn
)
2848 if (active_insn_p (insn
))
2850 sum
+= bb
->frequency
;
2859 /* Estimate and propagate basic block frequencies using the given branch
2860 probabilities. If FORCE is true, the frequencies are used to estimate
2861 the counts even when there are already non-zero profile counts. */
2864 estimate_bb_frequencies (bool force
)
2869 if (force
|| profile_status_for_fn (cfun
) != PROFILE_READ
|| !counts_to_freqs ())
2871 static int real_values_initialized
= 0;
2873 if (!real_values_initialized
)
2875 real_values_initialized
= 1;
2876 real_zero
= sreal (0, 0);
2877 real_one
= sreal (1, 0);
2878 real_br_prob_base
= sreal (REG_BR_PROB_BASE
, 0);
2879 real_bb_freq_max
= sreal (BB_FREQ_MAX
, 0);
2880 real_one_half
= sreal (1, -1);
2881 real_inv_br_prob_base
= real_one
/ real_br_prob_base
;
2882 real_almost_one
= real_one
- real_inv_br_prob_base
;
2885 mark_dfs_back_edges ();
2887 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->probability
=
2890 /* Set up block info for each basic block. */
2891 alloc_aux_for_blocks (sizeof (block_info
));
2892 alloc_aux_for_edges (sizeof (edge_prob_info
));
2893 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
), NULL
, next_bb
)
2898 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2900 EDGE_INFO (e
)->back_edge_prob
= sreal (e
->probability
, 0);
2901 EDGE_INFO (e
)->back_edge_prob
*= real_inv_br_prob_base
;
2905 /* First compute frequencies locally for each loop from innermost
2906 to outermost to examine frequencies for back edges. */
2909 freq_max
= real_zero
;
2910 FOR_EACH_BB_FN (bb
, cfun
)
2911 if (freq_max
< BLOCK_INFO (bb
)->frequency
)
2912 freq_max
= BLOCK_INFO (bb
)->frequency
;
2914 freq_max
= real_bb_freq_max
/ freq_max
;
2915 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
), NULL
, next_bb
)
2917 sreal tmp
= BLOCK_INFO (bb
)->frequency
* freq_max
+ real_one_half
;
2918 bb
->frequency
= tmp
.to_int ();
2921 free_aux_for_blocks ();
2922 free_aux_for_edges ();
2924 compute_function_frequency ();
2927 /* Decide whether function is hot, cold or unlikely executed. */
2929 compute_function_frequency (void)
2932 struct cgraph_node
*node
= cgraph_node::get (current_function_decl
);
2934 if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
2935 || MAIN_NAME_P (DECL_NAME (current_function_decl
)))
2936 node
->only_called_at_startup
= true;
2937 if (DECL_STATIC_DESTRUCTOR (current_function_decl
))
2938 node
->only_called_at_exit
= true;
2940 if (profile_status_for_fn (cfun
) != PROFILE_READ
)
2942 int flags
= flags_from_decl_or_type (current_function_decl
);
2943 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl
))
2945 node
->frequency
= NODE_FREQUENCY_UNLIKELY_EXECUTED
;
2946 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl
))
2948 node
->frequency
= NODE_FREQUENCY_HOT
;
2949 else if (flags
& ECF_NORETURN
)
2950 node
->frequency
= NODE_FREQUENCY_EXECUTED_ONCE
;
2951 else if (MAIN_NAME_P (DECL_NAME (current_function_decl
)))
2952 node
->frequency
= NODE_FREQUENCY_EXECUTED_ONCE
;
2953 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
2954 || DECL_STATIC_DESTRUCTOR (current_function_decl
))
2955 node
->frequency
= NODE_FREQUENCY_EXECUTED_ONCE
;
2959 /* Only first time try to drop function into unlikely executed.
2960 After inlining the roundoff errors may confuse us.
2961 Ipa-profile pass will drop functions only called from unlikely
2962 functions to unlikely and that is most of what we care about. */
2963 if (!cfun
->after_inlining
)
2964 node
->frequency
= NODE_FREQUENCY_UNLIKELY_EXECUTED
;
2965 FOR_EACH_BB_FN (bb
, cfun
)
2967 if (maybe_hot_bb_p (cfun
, bb
))
2969 node
->frequency
= NODE_FREQUENCY_HOT
;
2972 if (!probably_never_executed_bb_p (cfun
, bb
))
2973 node
->frequency
= NODE_FREQUENCY_NORMAL
;
2977 /* Build PREDICT_EXPR. */
2979 build_predict_expr (enum br_predictor predictor
, enum prediction taken
)
2981 tree t
= build1 (PREDICT_EXPR
, void_type_node
,
2982 build_int_cst (integer_type_node
, predictor
));
2983 SET_PREDICT_EXPR_OUTCOME (t
, taken
);
2988 predictor_name (enum br_predictor predictor
)
2990 return predictor_info
[predictor
].name
;
2993 /* Predict branch probabilities and estimate profile of the tree CFG. */
2997 const pass_data pass_data_profile
=
2999 GIMPLE_PASS
, /* type */
3000 "profile_estimate", /* name */
3001 OPTGROUP_NONE
, /* optinfo_flags */
3002 TV_BRANCH_PROB
, /* tv_id */
3003 PROP_cfg
, /* properties_required */
3004 0, /* properties_provided */
3005 0, /* properties_destroyed */
3006 0, /* todo_flags_start */
3007 0, /* todo_flags_finish */
3010 class pass_profile
: public gimple_opt_pass
3013 pass_profile (gcc::context
*ctxt
)
3014 : gimple_opt_pass (pass_data_profile
, ctxt
)
3017 /* opt_pass methods: */
3018 virtual bool gate (function
*) { return flag_guess_branch_prob
; }
3019 virtual unsigned int execute (function
*);
3021 }; // class pass_profile
3024 pass_profile::execute (function
*fun
)
3028 loop_optimizer_init (LOOPS_NORMAL
);
3029 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3030 flow_loops_dump (dump_file
, NULL
, 0);
3032 mark_irreducible_loops ();
3034 nb_loops
= number_of_loops (fun
);
3038 tree_estimate_probability ();
3043 loop_optimizer_finalize ();
3044 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3045 gimple_dump_cfg (dump_file
, dump_flags
);
3046 if (profile_status_for_fn (fun
) == PROFILE_ABSENT
)
3047 profile_status_for_fn (fun
) = PROFILE_GUESSED
;
3054 make_pass_profile (gcc::context
*ctxt
)
3056 return new pass_profile (ctxt
);
3061 const pass_data pass_data_strip_predict_hints
=
3063 GIMPLE_PASS
, /* type */
3064 "*strip_predict_hints", /* name */
3065 OPTGROUP_NONE
, /* optinfo_flags */
3066 TV_BRANCH_PROB
, /* tv_id */
3067 PROP_cfg
, /* properties_required */
3068 0, /* properties_provided */
3069 0, /* properties_destroyed */
3070 0, /* todo_flags_start */
3071 0, /* todo_flags_finish */
3074 class pass_strip_predict_hints
: public gimple_opt_pass
3077 pass_strip_predict_hints (gcc::context
*ctxt
)
3078 : gimple_opt_pass (pass_data_strip_predict_hints
, ctxt
)
3081 /* opt_pass methods: */
3082 opt_pass
* clone () { return new pass_strip_predict_hints (m_ctxt
); }
3083 virtual unsigned int execute (function
*);
3085 }; // class pass_strip_predict_hints
3087 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
3088 we no longer need. */
3090 pass_strip_predict_hints::execute (function
*fun
)
3096 FOR_EACH_BB_FN (bb
, fun
)
3098 gimple_stmt_iterator bi
;
3099 for (bi
= gsi_start_bb (bb
); !gsi_end_p (bi
);)
3101 gimple stmt
= gsi_stmt (bi
);
3103 if (gimple_code (stmt
) == GIMPLE_PREDICT
)
3105 gsi_remove (&bi
, true);
3108 else if (is_gimple_call (stmt
))
3110 tree fndecl
= gimple_call_fndecl (stmt
);
3113 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
3114 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_EXPECT
3115 && gimple_call_num_args (stmt
) == 2)
3116 || (gimple_call_internal_p (stmt
)
3117 && gimple_call_internal_fn (stmt
) == IFN_BUILTIN_EXPECT
))
3119 var
= gimple_call_lhs (stmt
);
3123 = gimple_build_assign (var
, gimple_call_arg (stmt
, 0));
3124 gsi_replace (&bi
, ass_stmt
, true);
3128 gsi_remove (&bi
, true);
3142 make_pass_strip_predict_hints (gcc::context
*ctxt
)
3144 return new pass_strip_predict_hints (ctxt
);
3147 /* Rebuild function frequencies. Passes are in general expected to
3148 maintain profile by hand, however in some cases this is not possible:
3149 for example when inlining several functions with loops freuqencies might run
3150 out of scale and thus needs to be recomputed. */
3153 rebuild_frequencies (void)
3155 timevar_push (TV_REBUILD_FREQUENCIES
);
3157 /* When the max bb count in the function is small, there is a higher
3158 chance that there were truncation errors in the integer scaling
3159 of counts by inlining and other optimizations. This could lead
3160 to incorrect classification of code as being cold when it isn't.
3161 In that case, force the estimation of bb counts/frequencies from the
3162 branch probabilities, rather than computing frequencies from counts,
3163 which may also lead to frequencies incorrectly reduced to 0. There
3164 is less precision in the probabilities, so we only do this for small
3166 gcov_type count_max
= 0;
3168 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
), NULL
, next_bb
)
3169 count_max
= MAX (bb
->count
, count_max
);
3171 if (profile_status_for_fn (cfun
) == PROFILE_GUESSED
3172 || (!flag_auto_profile
&& profile_status_for_fn (cfun
) == PROFILE_READ
3173 && count_max
< REG_BR_PROB_BASE
/10))
3175 loop_optimizer_init (0);
3176 add_noreturn_fake_exit_edges ();
3177 mark_irreducible_loops ();
3178 connect_infinite_loops_to_exit ();
3179 estimate_bb_frequencies (true);
3180 remove_fake_exit_edges ();
3181 loop_optimizer_finalize ();
3183 else if (profile_status_for_fn (cfun
) == PROFILE_READ
)
3187 timevar_pop (TV_REBUILD_FREQUENCIES
);