1 //===-- hwasan_allocator.cpp ------------------------ ---------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file is a part of HWAddressSanitizer.
11 // HWAddressSanitizer allocator.
12 //===----------------------------------------------------------------------===//
14 #include "sanitizer_common/sanitizer_atomic.h"
15 #include "sanitizer_common/sanitizer_errno.h"
16 #include "sanitizer_common/sanitizer_stackdepot.h"
18 #include "hwasan_allocator.h"
19 #include "hwasan_checks.h"
20 #include "hwasan_mapping.h"
21 #include "hwasan_malloc_bisect.h"
22 #include "hwasan_thread.h"
23 #include "hwasan_report.h"
24 #include "lsan/lsan_common.h"
28 static Allocator allocator
;
29 static AllocatorCache fallback_allocator_cache
;
30 static SpinMutex fallback_mutex
;
31 static atomic_uint8_t hwasan_allocator_tagging_enabled
;
33 static constexpr tag_t kFallbackAllocTag
= 0xBB & kTagMask
;
34 static constexpr tag_t kFallbackFreeTag
= 0xBC;
37 // Either just allocated by underlying allocator, but AsanChunk is not yet
38 // ready, or almost returned to undelying allocator and AsanChunk is already
41 // The chunk is allocated and not yet freed.
46 // Initialized in HwasanAllocatorInit, an never changed.
47 static ALIGNED(16) u8 tail_magic
[kShadowAlignment
- 1];
48 static uptr max_malloc_size
;
50 bool HwasanChunkView::IsAllocated() const {
51 return metadata_
&& metadata_
->IsAllocated();
54 uptr
HwasanChunkView::Beg() const {
57 uptr
HwasanChunkView::End() const {
58 return Beg() + UsedSize();
60 uptr
HwasanChunkView::UsedSize() const {
61 return metadata_
->GetRequestedSize();
63 u32
HwasanChunkView::GetAllocStackId() const {
64 return metadata_
->GetAllocStackId();
67 u32
HwasanChunkView::GetAllocThreadId() const {
68 return metadata_
->GetAllocThreadId();
71 uptr
HwasanChunkView::ActualSize() const {
72 return allocator
.GetActuallyAllocatedSize(reinterpret_cast<void *>(block_
));
75 bool HwasanChunkView::FromSmallHeap() const {
76 return allocator
.FromPrimary(reinterpret_cast<void *>(block_
));
79 bool HwasanChunkView::AddrIsInside(uptr addr
) const {
80 return (addr
>= Beg()) && (addr
< Beg() + UsedSize());
83 inline void Metadata::SetAllocated(u32 stack
, u64 size
) {
84 Thread
*t
= GetCurrentThread();
85 u64 context
= t
? t
->unique_id() : kMainTid
;
88 requested_size_low
= size
& ((1ul << 32) - 1);
89 requested_size_high
= size
>> 32;
90 atomic_store(&alloc_context_id
, context
, memory_order_relaxed
);
91 atomic_store(&chunk_state
, CHUNK_ALLOCATED
, memory_order_release
);
94 inline void Metadata::SetUnallocated() {
95 atomic_store(&chunk_state
, CHUNK_INVALID
, memory_order_release
);
96 requested_size_low
= 0;
97 requested_size_high
= 0;
98 atomic_store(&alloc_context_id
, 0, memory_order_relaxed
);
101 inline bool Metadata::IsAllocated() const {
102 return atomic_load(&chunk_state
, memory_order_relaxed
) == CHUNK_ALLOCATED
;
105 inline u64
Metadata::GetRequestedSize() const {
106 return (static_cast<u64
>(requested_size_high
) << 32) + requested_size_low
;
109 inline u32
Metadata::GetAllocStackId() const {
110 return atomic_load(&alloc_context_id
, memory_order_relaxed
);
113 inline u32
Metadata::GetAllocThreadId() const {
114 u64 context
= atomic_load(&alloc_context_id
, memory_order_relaxed
);
115 u32 tid
= context
>> 32;
119 void GetAllocatorStats(AllocatorStatCounters s
) {
120 allocator
.GetStats(s
);
123 inline void Metadata::SetLsanTag(__lsan::ChunkTag tag
) {
127 inline __lsan::ChunkTag
Metadata::GetLsanTag() const {
128 return static_cast<__lsan::ChunkTag
>(lsan_tag
);
131 uptr
GetAliasRegionStart() {
132 #if defined(HWASAN_ALIASING_MODE)
133 constexpr uptr kAliasRegionOffset
= 1ULL << (kTaggableRegionCheckShift
- 1);
134 uptr AliasRegionStart
=
135 __hwasan_shadow_memory_dynamic_address
+ kAliasRegionOffset
;
137 CHECK_EQ(AliasRegionStart
>> kTaggableRegionCheckShift
,
138 __hwasan_shadow_memory_dynamic_address
>> kTaggableRegionCheckShift
);
140 (AliasRegionStart
+ kAliasRegionOffset
- 1) >> kTaggableRegionCheckShift
,
141 __hwasan_shadow_memory_dynamic_address
>> kTaggableRegionCheckShift
);
142 return AliasRegionStart
;
148 void HwasanAllocatorInit() {
149 atomic_store_relaxed(&hwasan_allocator_tagging_enabled
,
150 !flags()->disable_allocator_tagging
);
151 SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null
);
152 allocator
.Init(common_flags()->allocator_release_to_os_interval_ms
,
153 GetAliasRegionStart());
154 for (uptr i
= 0; i
< sizeof(tail_magic
); i
++)
155 tail_magic
[i
] = GetCurrentThread()->GenerateRandomTag();
156 if (common_flags()->max_allocation_size_mb
) {
157 max_malloc_size
= common_flags()->max_allocation_size_mb
<< 20;
158 max_malloc_size
= Min(max_malloc_size
, kMaxAllowedMallocSize
);
160 max_malloc_size
= kMaxAllowedMallocSize
;
164 void HwasanAllocatorLock() { allocator
.ForceLock(); }
166 void HwasanAllocatorUnlock() { allocator
.ForceUnlock(); }
168 void AllocatorSwallowThreadLocalCache(AllocatorCache
*cache
) {
169 allocator
.SwallowCache(cache
);
172 static uptr
TaggedSize(uptr size
) {
174 uptr new_size
= RoundUpTo(size
, kShadowAlignment
);
175 CHECK_GE(new_size
, size
);
179 static void *HwasanAllocate(StackTrace
*stack
, uptr orig_size
, uptr alignment
,
181 // Keep this consistent with LSAN and ASAN behavior.
182 if (UNLIKELY(orig_size
== 0))
184 if (UNLIKELY(orig_size
> max_malloc_size
)) {
185 if (AllocatorMayReturnNull()) {
186 Report("WARNING: HWAddressSanitizer failed to allocate 0x%zx bytes\n",
190 ReportAllocationSizeTooBig(orig_size
, max_malloc_size
, stack
);
192 if (UNLIKELY(IsRssLimitExceeded())) {
193 if (AllocatorMayReturnNull())
195 ReportRssLimitExceeded(stack
);
198 alignment
= Max(alignment
, kShadowAlignment
);
199 uptr size
= TaggedSize(orig_size
);
200 Thread
*t
= GetCurrentThread();
203 allocated
= allocator
.Allocate(t
->allocator_cache(), size
, alignment
);
205 SpinMutexLock
l(&fallback_mutex
);
206 AllocatorCache
*cache
= &fallback_allocator_cache
;
207 allocated
= allocator
.Allocate(cache
, size
, alignment
);
209 if (UNLIKELY(!allocated
)) {
210 SetAllocatorOutOfMemory();
211 if (AllocatorMayReturnNull())
213 ReportOutOfMemory(size
, stack
);
216 // The secondary allocator mmaps memory, which should be zero-inited so we
217 // don't need to explicitly clear it.
218 if (allocator
.FromPrimary(allocated
))
219 internal_memset(allocated
, 0, size
);
220 } else if (flags()->max_malloc_fill_size
> 0) {
221 uptr fill_size
= Min(size
, (uptr
)flags()->max_malloc_fill_size
);
222 internal_memset(allocated
, flags()->malloc_fill_byte
, fill_size
);
224 if (size
!= orig_size
) {
225 u8
*tail
= reinterpret_cast<u8
*>(allocated
) + orig_size
;
226 uptr tail_length
= size
- orig_size
;
227 internal_memcpy(tail
, tail_magic
, tail_length
- 1);
228 // Short granule is excluded from magic tail, so we explicitly untag.
229 tail
[tail_length
- 1] = 0;
232 void *user_ptr
= allocated
;
233 // Tagging can only be skipped when both tag_in_malloc and tag_in_free are
234 // false. When tag_in_malloc = false and tag_in_free = true malloc needs to
236 if (InTaggableRegion(reinterpret_cast<uptr
>(user_ptr
)) &&
237 (flags()->tag_in_malloc
|| flags()->tag_in_free
) &&
238 atomic_load_relaxed(&hwasan_allocator_tagging_enabled
)) {
239 if (flags()->tag_in_malloc
&& malloc_bisect(stack
, orig_size
)) {
240 tag_t tag
= t
? t
->GenerateRandomTag() : kFallbackAllocTag
;
241 uptr tag_size
= orig_size
? orig_size
: 1;
242 uptr full_granule_size
= RoundDownTo(tag_size
, kShadowAlignment
);
244 (void *)TagMemoryAligned((uptr
)user_ptr
, full_granule_size
, tag
);
245 if (full_granule_size
!= tag_size
) {
247 reinterpret_cast<u8
*>(allocated
) + full_granule_size
;
248 TagMemoryAligned((uptr
)short_granule
, kShadowAlignment
,
249 tag_size
% kShadowAlignment
);
250 short_granule
[kShadowAlignment
- 1] = tag
;
253 user_ptr
= (void *)TagMemoryAligned((uptr
)user_ptr
, size
, 0);
258 reinterpret_cast<Metadata
*>(allocator
.GetMetaData(allocated
));
259 #if CAN_SANITIZE_LEAKS
260 meta
->SetLsanTag(__lsan::DisabledInThisThread() ? __lsan::kIgnored
261 : __lsan::kDirectlyLeaked
);
263 meta
->SetAllocated(StackDepotPut(*stack
), orig_size
);
264 RunMallocHooks(user_ptr
, size
);
268 static bool PointerAndMemoryTagsMatch(void *tagged_ptr
) {
270 uptr tagged_uptr
= reinterpret_cast<uptr
>(tagged_ptr
);
271 if (!InTaggableRegion(tagged_uptr
))
273 tag_t mem_tag
= *reinterpret_cast<tag_t
*>(
274 MemToShadow(reinterpret_cast<uptr
>(UntagPtr(tagged_ptr
))));
275 return PossiblyShortTagMatches(mem_tag
, tagged_uptr
, 1);
278 static bool CheckInvalidFree(StackTrace
*stack
, void *untagged_ptr
,
280 // This function can return true if halt_on_error is false.
281 if (!MemIsApp(reinterpret_cast<uptr
>(untagged_ptr
)) ||
282 !PointerAndMemoryTagsMatch(tagged_ptr
)) {
283 ReportInvalidFree(stack
, reinterpret_cast<uptr
>(tagged_ptr
));
289 static void HwasanDeallocate(StackTrace
*stack
, void *tagged_ptr
) {
291 RunFreeHooks(tagged_ptr
);
293 void *untagged_ptr
= UntagPtr(tagged_ptr
);
295 if (CheckInvalidFree(stack
, untagged_ptr
, tagged_ptr
))
298 void *aligned_ptr
= reinterpret_cast<void *>(
299 RoundDownTo(reinterpret_cast<uptr
>(untagged_ptr
), kShadowAlignment
));
300 tag_t pointer_tag
= GetTagFromPointer(reinterpret_cast<uptr
>(tagged_ptr
));
302 reinterpret_cast<Metadata
*>(allocator
.GetMetaData(aligned_ptr
));
304 ReportInvalidFree(stack
, reinterpret_cast<uptr
>(tagged_ptr
));
307 uptr orig_size
= meta
->GetRequestedSize();
308 u32 free_context_id
= StackDepotPut(*stack
);
309 u32 alloc_context_id
= meta
->GetAllocStackId();
310 u32 alloc_thread_id
= meta
->GetAllocThreadId();
312 bool in_taggable_region
=
313 InTaggableRegion(reinterpret_cast<uptr
>(tagged_ptr
));
316 uptr tagged_size
= TaggedSize(orig_size
);
317 if (flags()->free_checks_tail_magic
&& orig_size
&&
318 tagged_size
!= orig_size
) {
319 uptr tail_size
= tagged_size
- orig_size
- 1;
320 CHECK_LT(tail_size
, kShadowAlignment
);
321 void *tail_beg
= reinterpret_cast<void *>(
322 reinterpret_cast<uptr
>(aligned_ptr
) + orig_size
);
323 tag_t short_granule_memtag
= *(reinterpret_cast<tag_t
*>(
324 reinterpret_cast<uptr
>(tail_beg
) + tail_size
));
326 (internal_memcmp(tail_beg
, tail_magic
, tail_size
) ||
327 (in_taggable_region
&& pointer_tag
!= short_granule_memtag
)))
328 ReportTailOverwritten(stack
, reinterpret_cast<uptr
>(tagged_ptr
),
329 orig_size
, tail_magic
);
332 // TODO(kstoimenov): consider meta->SetUnallocated(free_context_id).
333 meta
->SetUnallocated();
334 // This memory will not be reused by anyone else, so we are free to keep it
336 Thread
*t
= GetCurrentThread();
337 if (flags()->max_free_fill_size
> 0) {
339 Min(TaggedSize(orig_size
), (uptr
)flags()->max_free_fill_size
);
340 internal_memset(aligned_ptr
, flags()->free_fill_byte
, fill_size
);
342 if (in_taggable_region
&& flags()->tag_in_free
&& malloc_bisect(stack
, 0) &&
343 atomic_load_relaxed(&hwasan_allocator_tagging_enabled
)) {
344 // Always store full 8-bit tags on free to maximize UAF detection.
347 // Make sure we are not using a short granule tag as a poison tag. This
348 // would make us attempt to read the memory on a UaF.
349 // The tag can be zero if tagging is disabled on this thread.
351 tag
= t
->GenerateRandomTag(/*num_bits=*/8);
353 UNLIKELY((tag
< kShadowAlignment
|| tag
== pointer_tag
) && tag
!= 0));
355 static_assert(kFallbackFreeTag
>= kShadowAlignment
,
356 "fallback tag must not be a short granule tag.");
357 tag
= kFallbackFreeTag
;
359 TagMemoryAligned(reinterpret_cast<uptr
>(aligned_ptr
), TaggedSize(orig_size
),
363 allocator
.Deallocate(t
->allocator_cache(), aligned_ptr
);
364 if (auto *ha
= t
->heap_allocations())
365 ha
->push({reinterpret_cast<uptr
>(tagged_ptr
), alloc_thread_id
,
366 alloc_context_id
, free_context_id
,
367 static_cast<u32
>(orig_size
)});
369 SpinMutexLock
l(&fallback_mutex
);
370 AllocatorCache
*cache
= &fallback_allocator_cache
;
371 allocator
.Deallocate(cache
, aligned_ptr
);
375 static void *HwasanReallocate(StackTrace
*stack
, void *tagged_ptr_old
,
376 uptr new_size
, uptr alignment
) {
377 void *untagged_ptr_old
= UntagPtr(tagged_ptr_old
);
378 if (CheckInvalidFree(stack
, untagged_ptr_old
, tagged_ptr_old
))
380 void *tagged_ptr_new
=
381 HwasanAllocate(stack
, new_size
, alignment
, false /*zeroise*/);
382 if (tagged_ptr_old
&& tagged_ptr_new
) {
384 reinterpret_cast<Metadata
*>(allocator
.GetMetaData(untagged_ptr_old
));
385 void *untagged_ptr_new
= UntagPtr(tagged_ptr_new
);
386 internal_memcpy(untagged_ptr_new
, untagged_ptr_old
,
387 Min(new_size
, static_cast<uptr
>(meta
->GetRequestedSize())));
388 HwasanDeallocate(stack
, tagged_ptr_old
);
390 return tagged_ptr_new
;
393 static void *HwasanCalloc(StackTrace
*stack
, uptr nmemb
, uptr size
) {
394 if (UNLIKELY(CheckForCallocOverflow(size
, nmemb
))) {
395 if (AllocatorMayReturnNull())
397 ReportCallocOverflow(nmemb
, size
, stack
);
399 return HwasanAllocate(stack
, nmemb
* size
, sizeof(u64
), true);
402 HwasanChunkView
FindHeapChunkByAddress(uptr address
) {
403 if (!allocator
.PointerIsMine(reinterpret_cast<void *>(address
)))
404 return HwasanChunkView();
405 void *block
= allocator
.GetBlockBegin(reinterpret_cast<void*>(address
));
407 return HwasanChunkView();
409 reinterpret_cast<Metadata
*>(allocator
.GetMetaData(block
));
410 return HwasanChunkView(reinterpret_cast<uptr
>(block
), metadata
);
413 static const void *AllocationBegin(const void *p
) {
414 const void *untagged_ptr
= UntagPtr(p
);
418 const void *beg
= allocator
.GetBlockBegin(untagged_ptr
);
422 Metadata
*b
= (Metadata
*)allocator
.GetMetaData(beg
);
423 if (b
->GetRequestedSize() == 0)
426 tag_t tag
= GetTagFromPointer((uptr
)p
);
427 return (const void *)AddTagToPointer((uptr
)beg
, tag
);
430 static uptr
AllocationSize(const void *p
) {
431 const void *untagged_ptr
= UntagPtr(p
);
432 if (!untagged_ptr
) return 0;
433 const void *beg
= allocator
.GetBlockBegin(untagged_ptr
);
436 Metadata
*b
= (Metadata
*)allocator
.GetMetaData(beg
);
437 return b
->GetRequestedSize();
440 void *hwasan_malloc(uptr size
, StackTrace
*stack
) {
441 return SetErrnoOnNull(HwasanAllocate(stack
, size
, sizeof(u64
), false));
444 void *hwasan_calloc(uptr nmemb
, uptr size
, StackTrace
*stack
) {
445 return SetErrnoOnNull(HwasanCalloc(stack
, nmemb
, size
));
448 void *hwasan_realloc(void *ptr
, uptr size
, StackTrace
*stack
) {
450 return SetErrnoOnNull(HwasanAllocate(stack
, size
, sizeof(u64
), false));
452 HwasanDeallocate(stack
, ptr
);
455 return SetErrnoOnNull(HwasanReallocate(stack
, ptr
, size
, sizeof(u64
)));
458 void *hwasan_reallocarray(void *ptr
, uptr nmemb
, uptr size
, StackTrace
*stack
) {
459 if (UNLIKELY(CheckForCallocOverflow(size
, nmemb
))) {
460 errno
= errno_ENOMEM
;
461 if (AllocatorMayReturnNull())
463 ReportReallocArrayOverflow(nmemb
, size
, stack
);
465 return hwasan_realloc(ptr
, nmemb
* size
, stack
);
468 void *hwasan_valloc(uptr size
, StackTrace
*stack
) {
469 return SetErrnoOnNull(
470 HwasanAllocate(stack
, size
, GetPageSizeCached(), false));
473 void *hwasan_pvalloc(uptr size
, StackTrace
*stack
) {
474 uptr PageSize
= GetPageSizeCached();
475 if (UNLIKELY(CheckForPvallocOverflow(size
, PageSize
))) {
476 errno
= errno_ENOMEM
;
477 if (AllocatorMayReturnNull())
479 ReportPvallocOverflow(size
, stack
);
481 // pvalloc(0) should allocate one page.
482 size
= size
? RoundUpTo(size
, PageSize
) : PageSize
;
483 return SetErrnoOnNull(HwasanAllocate(stack
, size
, PageSize
, false));
486 void *hwasan_aligned_alloc(uptr alignment
, uptr size
, StackTrace
*stack
) {
487 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment
, size
))) {
488 errno
= errno_EINVAL
;
489 if (AllocatorMayReturnNull())
491 ReportInvalidAlignedAllocAlignment(size
, alignment
, stack
);
493 return SetErrnoOnNull(HwasanAllocate(stack
, size
, alignment
, false));
496 void *hwasan_memalign(uptr alignment
, uptr size
, StackTrace
*stack
) {
497 if (UNLIKELY(!IsPowerOfTwo(alignment
))) {
498 errno
= errno_EINVAL
;
499 if (AllocatorMayReturnNull())
501 ReportInvalidAllocationAlignment(alignment
, stack
);
503 return SetErrnoOnNull(HwasanAllocate(stack
, size
, alignment
, false));
506 int hwasan_posix_memalign(void **memptr
, uptr alignment
, uptr size
,
508 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment
))) {
509 if (AllocatorMayReturnNull())
511 ReportInvalidPosixMemalignAlignment(alignment
, stack
);
513 void *ptr
= HwasanAllocate(stack
, size
, alignment
, false);
515 // OOM error is already taken care of by HwasanAllocate.
517 CHECK(IsAligned((uptr
)ptr
, alignment
));
522 void hwasan_free(void *ptr
, StackTrace
*stack
) {
523 return HwasanDeallocate(stack
, ptr
);
526 } // namespace __hwasan
528 // --- Implementation of LSan-specific functions --- {{{1
531 void LockAllocator() {
532 __hwasan::HwasanAllocatorLock();
535 void UnlockAllocator() {
536 __hwasan::HwasanAllocatorUnlock();
539 void GetAllocatorGlobalRange(uptr
*begin
, uptr
*end
) {
540 *begin
= (uptr
)&__hwasan::allocator
;
541 *end
= *begin
+ sizeof(__hwasan::allocator
);
544 uptr
PointsIntoChunk(void *p
) {
546 uptr addr
= reinterpret_cast<uptr
>(p
);
548 reinterpret_cast<uptr
>(__hwasan::allocator
.GetBlockBeginFastLocked(p
));
551 __hwasan::Metadata
*metadata
= reinterpret_cast<__hwasan::Metadata
*>(
552 __hwasan::allocator
.GetMetaData(reinterpret_cast<void *>(chunk
)));
553 if (!metadata
|| !metadata
->IsAllocated())
555 if (addr
< chunk
+ metadata
->GetRequestedSize())
557 if (IsSpecialCaseOfOperatorNew0(chunk
, metadata
->GetRequestedSize(), addr
))
562 uptr
GetUserBegin(uptr chunk
) {
563 CHECK_EQ(UntagAddr(chunk
), chunk
);
564 void *block
= __hwasan::allocator
.GetBlockBeginFastLocked(
565 reinterpret_cast<void *>(chunk
));
568 __hwasan::Metadata
*metadata
= reinterpret_cast<__hwasan::Metadata
*>(
569 __hwasan::allocator
.GetMetaData(block
));
570 if (!metadata
|| !metadata
->IsAllocated())
573 return reinterpret_cast<uptr
>(block
);
576 uptr
GetUserAddr(uptr chunk
) {
577 if (!InTaggableRegion(chunk
))
579 tag_t mem_tag
= *(tag_t
*)__hwasan::MemToShadow(chunk
);
580 return AddTagToPointer(chunk
, mem_tag
);
583 LsanMetadata::LsanMetadata(uptr chunk
) {
584 CHECK_EQ(UntagAddr(chunk
), chunk
);
586 chunk
? __hwasan::allocator
.GetMetaData(reinterpret_cast<void *>(chunk
))
590 bool LsanMetadata::allocated() const {
593 __hwasan::Metadata
*m
= reinterpret_cast<__hwasan::Metadata
*>(metadata_
);
594 return m
->IsAllocated();
597 ChunkTag
LsanMetadata::tag() const {
598 __hwasan::Metadata
*m
= reinterpret_cast<__hwasan::Metadata
*>(metadata_
);
599 return m
->GetLsanTag();
602 void LsanMetadata::set_tag(ChunkTag value
) {
603 __hwasan::Metadata
*m
= reinterpret_cast<__hwasan::Metadata
*>(metadata_
);
604 m
->SetLsanTag(value
);
607 uptr
LsanMetadata::requested_size() const {
608 __hwasan::Metadata
*m
= reinterpret_cast<__hwasan::Metadata
*>(metadata_
);
609 return m
->GetRequestedSize();
612 u32
LsanMetadata::stack_trace_id() const {
613 __hwasan::Metadata
*m
= reinterpret_cast<__hwasan::Metadata
*>(metadata_
);
614 return m
->GetAllocStackId();
617 void ForEachChunk(ForEachChunkCallback callback
, void *arg
) {
618 __hwasan::allocator
.ForEachChunk(callback
, arg
);
621 IgnoreObjectResult
IgnoreObject(const void *p
) {
623 uptr addr
= reinterpret_cast<uptr
>(p
);
624 uptr chunk
= reinterpret_cast<uptr
>(__hwasan::allocator
.GetBlockBegin(p
));
626 return kIgnoreObjectInvalid
;
627 __hwasan::Metadata
*metadata
= reinterpret_cast<__hwasan::Metadata
*>(
628 __hwasan::allocator
.GetMetaData(reinterpret_cast<void *>(chunk
)));
629 if (!metadata
|| !metadata
->IsAllocated())
630 return kIgnoreObjectInvalid
;
631 if (addr
>= chunk
+ metadata
->GetRequestedSize())
632 return kIgnoreObjectInvalid
;
633 if (metadata
->GetLsanTag() == kIgnored
)
634 return kIgnoreObjectAlreadyIgnored
;
636 metadata
->SetLsanTag(kIgnored
);
637 return kIgnoreObjectSuccess
;
640 } // namespace __lsan
642 using namespace __hwasan
;
644 void __hwasan_enable_allocator_tagging() {
645 atomic_store_relaxed(&hwasan_allocator_tagging_enabled
, 1);
648 void __hwasan_disable_allocator_tagging() {
649 atomic_store_relaxed(&hwasan_allocator_tagging_enabled
, 0);
652 uptr
__sanitizer_get_current_allocated_bytes() {
653 uptr stats
[AllocatorStatCount
];
654 allocator
.GetStats(stats
);
655 return stats
[AllocatorStatAllocated
];
658 uptr
__sanitizer_get_heap_size() {
659 uptr stats
[AllocatorStatCount
];
660 allocator
.GetStats(stats
);
661 return stats
[AllocatorStatMapped
];
664 uptr
__sanitizer_get_free_bytes() { return 1; }
666 uptr
__sanitizer_get_unmapped_bytes() { return 1; }
668 uptr
__sanitizer_get_estimated_allocated_size(uptr size
) { return size
; }
670 int __sanitizer_get_ownership(const void *p
) { return AllocationSize(p
) != 0; }
672 const void *__sanitizer_get_allocated_begin(const void *p
) {
673 return AllocationBegin(p
);
676 uptr
__sanitizer_get_allocated_size(const void *p
) { return AllocationSize(p
); }
678 void __sanitizer_purge_allocator() { allocator
.ForceReleaseToOS(); }