2010-07-19 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / fortran / module.c
blob426a17c5cdff78336641acc94f33af7de202f3de
1 /* Handle modules, which amounts to loading and saving symbols and
2 their attendant structures.
3 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009, 2010
5 Free Software Foundation, Inc.
6 Contributed by Andy Vaught
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* The syntax of gfortran modules resembles that of lisp lists, i.e. a
25 sequence of atoms, which can be left or right parenthesis, names,
26 integers or strings. Parenthesis are always matched which allows
27 us to skip over sections at high speed without having to know
28 anything about the internal structure of the lists. A "name" is
29 usually a fortran 95 identifier, but can also start with '@' in
30 order to reference a hidden symbol.
32 The first line of a module is an informational message about what
33 created the module, the file it came from and when it was created.
34 The second line is a warning for people not to edit the module.
35 The rest of the module looks like:
37 ( ( <Interface info for UPLUS> )
38 ( <Interface info for UMINUS> )
39 ...
41 ( ( <name of operator interface> <module of op interface> <i/f1> ... )
42 ...
44 ( ( <name of generic interface> <module of generic interface> <i/f1> ... )
45 ...
47 ( ( <common name> <symbol> <saved flag>)
48 ...
51 ( equivalence list )
53 ( <Symbol Number (in no particular order)>
54 <True name of symbol>
55 <Module name of symbol>
56 ( <symbol information> )
57 ...
59 ( <Symtree name>
60 <Ambiguous flag>
61 <Symbol number>
62 ...
65 In general, symbols refer to other symbols by their symbol number,
66 which are zero based. Symbols are written to the module in no
67 particular order. */
69 #include "config.h"
70 #include "system.h"
71 #include "gfortran.h"
72 #include "arith.h"
73 #include "match.h"
74 #include "parse.h" /* FIXME */
75 #include "md5.h"
76 #include "constructor.h"
77 #include "cpp.h"
79 #define MODULE_EXTENSION ".mod"
81 /* Don't put any single quote (') in MOD_VERSION,
82 if yout want it to be recognized. */
83 #define MOD_VERSION "6"
86 /* Structure that describes a position within a module file. */
88 typedef struct
90 int column, line;
91 fpos_t pos;
93 module_locus;
95 /* Structure for list of symbols of intrinsic modules. */
96 typedef struct
98 int id;
99 const char *name;
100 int value;
101 int standard;
103 intmod_sym;
106 typedef enum
108 P_UNKNOWN = 0, P_OTHER, P_NAMESPACE, P_COMPONENT, P_SYMBOL
110 pointer_t;
112 /* The fixup structure lists pointers to pointers that have to
113 be updated when a pointer value becomes known. */
115 typedef struct fixup_t
117 void **pointer;
118 struct fixup_t *next;
120 fixup_t;
123 /* Structure for holding extra info needed for pointers being read. */
125 enum gfc_rsym_state
127 UNUSED,
128 NEEDED,
129 USED
132 enum gfc_wsym_state
134 UNREFERENCED = 0,
135 NEEDS_WRITE,
136 WRITTEN
139 typedef struct pointer_info
141 BBT_HEADER (pointer_info);
142 int integer;
143 pointer_t type;
145 /* The first component of each member of the union is the pointer
146 being stored. */
148 fixup_t *fixup;
150 union
152 void *pointer; /* Member for doing pointer searches. */
154 struct
156 gfc_symbol *sym;
157 char true_name[GFC_MAX_SYMBOL_LEN + 1], module[GFC_MAX_SYMBOL_LEN + 1];
158 enum gfc_rsym_state state;
159 int ns, referenced, renamed;
160 module_locus where;
161 fixup_t *stfixup;
162 gfc_symtree *symtree;
163 char binding_label[GFC_MAX_SYMBOL_LEN + 1];
165 rsym;
167 struct
169 gfc_symbol *sym;
170 enum gfc_wsym_state state;
172 wsym;
177 pointer_info;
179 #define gfc_get_pointer_info() XCNEW (pointer_info)
182 /* Local variables */
184 /* The FILE for the module we're reading or writing. */
185 static FILE *module_fp;
187 /* MD5 context structure. */
188 static struct md5_ctx ctx;
190 /* The name of the module we're reading (USE'ing) or writing. */
191 static char module_name[GFC_MAX_SYMBOL_LEN + 1];
193 /* The way the module we're reading was specified. */
194 static bool specified_nonint, specified_int;
196 static int module_line, module_column, only_flag;
197 static enum
198 { IO_INPUT, IO_OUTPUT }
199 iomode;
201 static gfc_use_rename *gfc_rename_list;
202 static pointer_info *pi_root;
203 static int symbol_number; /* Counter for assigning symbol numbers */
205 /* Tells mio_expr_ref to make symbols for unused equivalence members. */
206 static bool in_load_equiv;
208 static locus use_locus;
212 /*****************************************************************/
214 /* Pointer/integer conversion. Pointers between structures are stored
215 as integers in the module file. The next couple of subroutines
216 handle this translation for reading and writing. */
218 /* Recursively free the tree of pointer structures. */
220 static void
221 free_pi_tree (pointer_info *p)
223 if (p == NULL)
224 return;
226 if (p->fixup != NULL)
227 gfc_internal_error ("free_pi_tree(): Unresolved fixup");
229 free_pi_tree (p->left);
230 free_pi_tree (p->right);
232 gfc_free (p);
236 /* Compare pointers when searching by pointer. Used when writing a
237 module. */
239 static int
240 compare_pointers (void *_sn1, void *_sn2)
242 pointer_info *sn1, *sn2;
244 sn1 = (pointer_info *) _sn1;
245 sn2 = (pointer_info *) _sn2;
247 if (sn1->u.pointer < sn2->u.pointer)
248 return -1;
249 if (sn1->u.pointer > sn2->u.pointer)
250 return 1;
252 return 0;
256 /* Compare integers when searching by integer. Used when reading a
257 module. */
259 static int
260 compare_integers (void *_sn1, void *_sn2)
262 pointer_info *sn1, *sn2;
264 sn1 = (pointer_info *) _sn1;
265 sn2 = (pointer_info *) _sn2;
267 if (sn1->integer < sn2->integer)
268 return -1;
269 if (sn1->integer > sn2->integer)
270 return 1;
272 return 0;
276 /* Initialize the pointer_info tree. */
278 static void
279 init_pi_tree (void)
281 compare_fn compare;
282 pointer_info *p;
284 pi_root = NULL;
285 compare = (iomode == IO_INPUT) ? compare_integers : compare_pointers;
287 /* Pointer 0 is the NULL pointer. */
288 p = gfc_get_pointer_info ();
289 p->u.pointer = NULL;
290 p->integer = 0;
291 p->type = P_OTHER;
293 gfc_insert_bbt (&pi_root, p, compare);
295 /* Pointer 1 is the current namespace. */
296 p = gfc_get_pointer_info ();
297 p->u.pointer = gfc_current_ns;
298 p->integer = 1;
299 p->type = P_NAMESPACE;
301 gfc_insert_bbt (&pi_root, p, compare);
303 symbol_number = 2;
307 /* During module writing, call here with a pointer to something,
308 returning the pointer_info node. */
310 static pointer_info *
311 find_pointer (void *gp)
313 pointer_info *p;
315 p = pi_root;
316 while (p != NULL)
318 if (p->u.pointer == gp)
319 break;
320 p = (gp < p->u.pointer) ? p->left : p->right;
323 return p;
327 /* Given a pointer while writing, returns the pointer_info tree node,
328 creating it if it doesn't exist. */
330 static pointer_info *
331 get_pointer (void *gp)
333 pointer_info *p;
335 p = find_pointer (gp);
336 if (p != NULL)
337 return p;
339 /* Pointer doesn't have an integer. Give it one. */
340 p = gfc_get_pointer_info ();
342 p->u.pointer = gp;
343 p->integer = symbol_number++;
345 gfc_insert_bbt (&pi_root, p, compare_pointers);
347 return p;
351 /* Given an integer during reading, find it in the pointer_info tree,
352 creating the node if not found. */
354 static pointer_info *
355 get_integer (int integer)
357 pointer_info *p, t;
358 int c;
360 t.integer = integer;
362 p = pi_root;
363 while (p != NULL)
365 c = compare_integers (&t, p);
366 if (c == 0)
367 break;
369 p = (c < 0) ? p->left : p->right;
372 if (p != NULL)
373 return p;
375 p = gfc_get_pointer_info ();
376 p->integer = integer;
377 p->u.pointer = NULL;
379 gfc_insert_bbt (&pi_root, p, compare_integers);
381 return p;
385 /* Recursive function to find a pointer within a tree by brute force. */
387 static pointer_info *
388 fp2 (pointer_info *p, const void *target)
390 pointer_info *q;
392 if (p == NULL)
393 return NULL;
395 if (p->u.pointer == target)
396 return p;
398 q = fp2 (p->left, target);
399 if (q != NULL)
400 return q;
402 return fp2 (p->right, target);
406 /* During reading, find a pointer_info node from the pointer value.
407 This amounts to a brute-force search. */
409 static pointer_info *
410 find_pointer2 (void *p)
412 return fp2 (pi_root, p);
416 /* Resolve any fixups using a known pointer. */
418 static void
419 resolve_fixups (fixup_t *f, void *gp)
421 fixup_t *next;
423 for (; f; f = next)
425 next = f->next;
426 *(f->pointer) = gp;
427 gfc_free (f);
432 /* Call here during module reading when we know what pointer to
433 associate with an integer. Any fixups that exist are resolved at
434 this time. */
436 static void
437 associate_integer_pointer (pointer_info *p, void *gp)
439 if (p->u.pointer != NULL)
440 gfc_internal_error ("associate_integer_pointer(): Already associated");
442 p->u.pointer = gp;
444 resolve_fixups (p->fixup, gp);
446 p->fixup = NULL;
450 /* During module reading, given an integer and a pointer to a pointer,
451 either store the pointer from an already-known value or create a
452 fixup structure in order to store things later. Returns zero if
453 the reference has been actually stored, or nonzero if the reference
454 must be fixed later (i.e., associate_integer_pointer must be called
455 sometime later. Returns the pointer_info structure. */
457 static pointer_info *
458 add_fixup (int integer, void *gp)
460 pointer_info *p;
461 fixup_t *f;
462 char **cp;
464 p = get_integer (integer);
466 if (p->integer == 0 || p->u.pointer != NULL)
468 cp = (char **) gp;
469 *cp = (char *) p->u.pointer;
471 else
473 f = XCNEW (fixup_t);
475 f->next = p->fixup;
476 p->fixup = f;
478 f->pointer = (void **) gp;
481 return p;
485 /*****************************************************************/
487 /* Parser related subroutines */
489 /* Free the rename list left behind by a USE statement. */
491 static void
492 free_rename (void)
494 gfc_use_rename *next;
496 for (; gfc_rename_list; gfc_rename_list = next)
498 next = gfc_rename_list->next;
499 gfc_free (gfc_rename_list);
504 /* Match a USE statement. */
506 match
507 gfc_match_use (void)
509 char name[GFC_MAX_SYMBOL_LEN + 1], module_nature[GFC_MAX_SYMBOL_LEN + 1];
510 gfc_use_rename *tail = NULL, *new_use;
511 interface_type type, type2;
512 gfc_intrinsic_op op;
513 match m;
515 specified_int = false;
516 specified_nonint = false;
518 if (gfc_match (" , ") == MATCH_YES)
520 if ((m = gfc_match (" %n ::", module_nature)) == MATCH_YES)
522 if (gfc_notify_std (GFC_STD_F2003, "Fortran 2003: module "
523 "nature in USE statement at %C") == FAILURE)
524 return MATCH_ERROR;
526 if (strcmp (module_nature, "intrinsic") == 0)
527 specified_int = true;
528 else
530 if (strcmp (module_nature, "non_intrinsic") == 0)
531 specified_nonint = true;
532 else
534 gfc_error ("Module nature in USE statement at %C shall "
535 "be either INTRINSIC or NON_INTRINSIC");
536 return MATCH_ERROR;
540 else
542 /* Help output a better error message than "Unclassifiable
543 statement". */
544 gfc_match (" %n", module_nature);
545 if (strcmp (module_nature, "intrinsic") == 0
546 || strcmp (module_nature, "non_intrinsic") == 0)
547 gfc_error ("\"::\" was expected after module nature at %C "
548 "but was not found");
549 return m;
552 else
554 m = gfc_match (" ::");
555 if (m == MATCH_YES &&
556 gfc_notify_std (GFC_STD_F2003, "Fortran 2003: "
557 "\"USE :: module\" at %C") == FAILURE)
558 return MATCH_ERROR;
560 if (m != MATCH_YES)
562 m = gfc_match ("% ");
563 if (m != MATCH_YES)
564 return m;
568 use_locus = gfc_current_locus;
570 m = gfc_match_name (module_name);
571 if (m != MATCH_YES)
572 return m;
574 free_rename ();
575 only_flag = 0;
577 if (gfc_match_eos () == MATCH_YES)
578 return MATCH_YES;
579 if (gfc_match_char (',') != MATCH_YES)
580 goto syntax;
582 if (gfc_match (" only :") == MATCH_YES)
583 only_flag = 1;
585 if (gfc_match_eos () == MATCH_YES)
586 return MATCH_YES;
588 for (;;)
590 /* Get a new rename struct and add it to the rename list. */
591 new_use = gfc_get_use_rename ();
592 new_use->where = gfc_current_locus;
593 new_use->found = 0;
595 if (gfc_rename_list == NULL)
596 gfc_rename_list = new_use;
597 else
598 tail->next = new_use;
599 tail = new_use;
601 /* See what kind of interface we're dealing with. Assume it is
602 not an operator. */
603 new_use->op = INTRINSIC_NONE;
604 if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
605 goto cleanup;
607 switch (type)
609 case INTERFACE_NAMELESS:
610 gfc_error ("Missing generic specification in USE statement at %C");
611 goto cleanup;
613 case INTERFACE_USER_OP:
614 case INTERFACE_GENERIC:
615 m = gfc_match (" =>");
617 if (type == INTERFACE_USER_OP && m == MATCH_YES
618 && (gfc_notify_std (GFC_STD_F2003, "Fortran 2003: Renaming "
619 "operators in USE statements at %C")
620 == FAILURE))
621 goto cleanup;
623 if (type == INTERFACE_USER_OP)
624 new_use->op = INTRINSIC_USER;
626 if (only_flag)
628 if (m != MATCH_YES)
629 strcpy (new_use->use_name, name);
630 else
632 strcpy (new_use->local_name, name);
633 m = gfc_match_generic_spec (&type2, new_use->use_name, &op);
634 if (type != type2)
635 goto syntax;
636 if (m == MATCH_NO)
637 goto syntax;
638 if (m == MATCH_ERROR)
639 goto cleanup;
642 else
644 if (m != MATCH_YES)
645 goto syntax;
646 strcpy (new_use->local_name, name);
648 m = gfc_match_generic_spec (&type2, new_use->use_name, &op);
649 if (type != type2)
650 goto syntax;
651 if (m == MATCH_NO)
652 goto syntax;
653 if (m == MATCH_ERROR)
654 goto cleanup;
657 if (strcmp (new_use->use_name, module_name) == 0
658 || strcmp (new_use->local_name, module_name) == 0)
660 gfc_error ("The name '%s' at %C has already been used as "
661 "an external module name.", module_name);
662 goto cleanup;
664 break;
666 case INTERFACE_INTRINSIC_OP:
667 new_use->op = op;
668 break;
670 default:
671 gcc_unreachable ();
674 if (gfc_match_eos () == MATCH_YES)
675 break;
676 if (gfc_match_char (',') != MATCH_YES)
677 goto syntax;
680 return MATCH_YES;
682 syntax:
683 gfc_syntax_error (ST_USE);
685 cleanup:
686 free_rename ();
687 return MATCH_ERROR;
691 /* Given a name and a number, inst, return the inst name
692 under which to load this symbol. Returns NULL if this
693 symbol shouldn't be loaded. If inst is zero, returns
694 the number of instances of this name. If interface is
695 true, a user-defined operator is sought, otherwise only
696 non-operators are sought. */
698 static const char *
699 find_use_name_n (const char *name, int *inst, bool interface)
701 gfc_use_rename *u;
702 int i;
704 i = 0;
705 for (u = gfc_rename_list; u; u = u->next)
707 if (strcmp (u->use_name, name) != 0
708 || (u->op == INTRINSIC_USER && !interface)
709 || (u->op != INTRINSIC_USER && interface))
710 continue;
711 if (++i == *inst)
712 break;
715 if (!*inst)
717 *inst = i;
718 return NULL;
721 if (u == NULL)
722 return only_flag ? NULL : name;
724 u->found = 1;
726 return (u->local_name[0] != '\0') ? u->local_name : name;
730 /* Given a name, return the name under which to load this symbol.
731 Returns NULL if this symbol shouldn't be loaded. */
733 static const char *
734 find_use_name (const char *name, bool interface)
736 int i = 1;
737 return find_use_name_n (name, &i, interface);
741 /* Given a real name, return the number of use names associated with it. */
743 static int
744 number_use_names (const char *name, bool interface)
746 int i = 0;
747 find_use_name_n (name, &i, interface);
748 return i;
752 /* Try to find the operator in the current list. */
754 static gfc_use_rename *
755 find_use_operator (gfc_intrinsic_op op)
757 gfc_use_rename *u;
759 for (u = gfc_rename_list; u; u = u->next)
760 if (u->op == op)
761 return u;
763 return NULL;
767 /*****************************************************************/
769 /* The next couple of subroutines maintain a tree used to avoid a
770 brute-force search for a combination of true name and module name.
771 While symtree names, the name that a particular symbol is known by
772 can changed with USE statements, we still have to keep track of the
773 true names to generate the correct reference, and also avoid
774 loading the same real symbol twice in a program unit.
776 When we start reading, the true name tree is built and maintained
777 as symbols are read. The tree is searched as we load new symbols
778 to see if it already exists someplace in the namespace. */
780 typedef struct true_name
782 BBT_HEADER (true_name);
783 gfc_symbol *sym;
785 true_name;
787 static true_name *true_name_root;
790 /* Compare two true_name structures. */
792 static int
793 compare_true_names (void *_t1, void *_t2)
795 true_name *t1, *t2;
796 int c;
798 t1 = (true_name *) _t1;
799 t2 = (true_name *) _t2;
801 c = ((t1->sym->module > t2->sym->module)
802 - (t1->sym->module < t2->sym->module));
803 if (c != 0)
804 return c;
806 return strcmp (t1->sym->name, t2->sym->name);
810 /* Given a true name, search the true name tree to see if it exists
811 within the main namespace. */
813 static gfc_symbol *
814 find_true_name (const char *name, const char *module)
816 true_name t, *p;
817 gfc_symbol sym;
818 int c;
820 sym.name = gfc_get_string (name);
821 if (module != NULL)
822 sym.module = gfc_get_string (module);
823 else
824 sym.module = NULL;
825 t.sym = &sym;
827 p = true_name_root;
828 while (p != NULL)
830 c = compare_true_names ((void *) (&t), (void *) p);
831 if (c == 0)
832 return p->sym;
834 p = (c < 0) ? p->left : p->right;
837 return NULL;
841 /* Given a gfc_symbol pointer that is not in the true name tree, add it. */
843 static void
844 add_true_name (gfc_symbol *sym)
846 true_name *t;
848 t = XCNEW (true_name);
849 t->sym = sym;
851 gfc_insert_bbt (&true_name_root, t, compare_true_names);
855 /* Recursive function to build the initial true name tree by
856 recursively traversing the current namespace. */
858 static void
859 build_tnt (gfc_symtree *st)
861 if (st == NULL)
862 return;
864 build_tnt (st->left);
865 build_tnt (st->right);
867 if (find_true_name (st->n.sym->name, st->n.sym->module) != NULL)
868 return;
870 add_true_name (st->n.sym);
874 /* Initialize the true name tree with the current namespace. */
876 static void
877 init_true_name_tree (void)
879 true_name_root = NULL;
880 build_tnt (gfc_current_ns->sym_root);
884 /* Recursively free a true name tree node. */
886 static void
887 free_true_name (true_name *t)
889 if (t == NULL)
890 return;
891 free_true_name (t->left);
892 free_true_name (t->right);
894 gfc_free (t);
898 /*****************************************************************/
900 /* Module reading and writing. */
902 typedef enum
904 ATOM_NAME, ATOM_LPAREN, ATOM_RPAREN, ATOM_INTEGER, ATOM_STRING
906 atom_type;
908 static atom_type last_atom;
911 /* The name buffer must be at least as long as a symbol name. Right
912 now it's not clear how we're going to store numeric constants--
913 probably as a hexadecimal string, since this will allow the exact
914 number to be preserved (this can't be done by a decimal
915 representation). Worry about that later. TODO! */
917 #define MAX_ATOM_SIZE 100
919 static int atom_int;
920 static char *atom_string, atom_name[MAX_ATOM_SIZE];
923 /* Report problems with a module. Error reporting is not very
924 elaborate, since this sorts of errors shouldn't really happen.
925 This subroutine never returns. */
927 static void bad_module (const char *) ATTRIBUTE_NORETURN;
929 static void
930 bad_module (const char *msgid)
932 fclose (module_fp);
934 switch (iomode)
936 case IO_INPUT:
937 gfc_fatal_error ("Reading module %s at line %d column %d: %s",
938 module_name, module_line, module_column, msgid);
939 break;
940 case IO_OUTPUT:
941 gfc_fatal_error ("Writing module %s at line %d column %d: %s",
942 module_name, module_line, module_column, msgid);
943 break;
944 default:
945 gfc_fatal_error ("Module %s at line %d column %d: %s",
946 module_name, module_line, module_column, msgid);
947 break;
952 /* Set the module's input pointer. */
954 static void
955 set_module_locus (module_locus *m)
957 module_column = m->column;
958 module_line = m->line;
959 fsetpos (module_fp, &m->pos);
963 /* Get the module's input pointer so that we can restore it later. */
965 static void
966 get_module_locus (module_locus *m)
968 m->column = module_column;
969 m->line = module_line;
970 fgetpos (module_fp, &m->pos);
974 /* Get the next character in the module, updating our reckoning of
975 where we are. */
977 static int
978 module_char (void)
980 int c;
982 c = getc (module_fp);
984 if (c == EOF)
985 bad_module ("Unexpected EOF");
987 if (c == '\n')
989 module_line++;
990 module_column = 0;
993 module_column++;
994 return c;
998 /* Parse a string constant. The delimiter is guaranteed to be a
999 single quote. */
1001 static void
1002 parse_string (void)
1004 module_locus start;
1005 int len, c;
1006 char *p;
1008 get_module_locus (&start);
1010 len = 0;
1012 /* See how long the string is. */
1013 for ( ; ; )
1015 c = module_char ();
1016 if (c == EOF)
1017 bad_module ("Unexpected end of module in string constant");
1019 if (c != '\'')
1021 len++;
1022 continue;
1025 c = module_char ();
1026 if (c == '\'')
1028 len++;
1029 continue;
1032 break;
1035 set_module_locus (&start);
1037 atom_string = p = XCNEWVEC (char, len + 1);
1039 for (; len > 0; len--)
1041 c = module_char ();
1042 if (c == '\'')
1043 module_char (); /* Guaranteed to be another \'. */
1044 *p++ = c;
1047 module_char (); /* Terminating \'. */
1048 *p = '\0'; /* C-style string for debug purposes. */
1052 /* Parse a small integer. */
1054 static void
1055 parse_integer (int c)
1057 module_locus m;
1059 atom_int = c - '0';
1061 for (;;)
1063 get_module_locus (&m);
1065 c = module_char ();
1066 if (!ISDIGIT (c))
1067 break;
1069 atom_int = 10 * atom_int + c - '0';
1070 if (atom_int > 99999999)
1071 bad_module ("Integer overflow");
1074 set_module_locus (&m);
1078 /* Parse a name. */
1080 static void
1081 parse_name (int c)
1083 module_locus m;
1084 char *p;
1085 int len;
1087 p = atom_name;
1089 *p++ = c;
1090 len = 1;
1092 get_module_locus (&m);
1094 for (;;)
1096 c = module_char ();
1097 if (!ISALNUM (c) && c != '_' && c != '-')
1098 break;
1100 *p++ = c;
1101 if (++len > GFC_MAX_SYMBOL_LEN)
1102 bad_module ("Name too long");
1105 *p = '\0';
1107 fseek (module_fp, -1, SEEK_CUR);
1108 module_column = m.column + len - 1;
1110 if (c == '\n')
1111 module_line--;
1115 /* Read the next atom in the module's input stream. */
1117 static atom_type
1118 parse_atom (void)
1120 int c;
1124 c = module_char ();
1126 while (c == ' ' || c == '\r' || c == '\n');
1128 switch (c)
1130 case '(':
1131 return ATOM_LPAREN;
1133 case ')':
1134 return ATOM_RPAREN;
1136 case '\'':
1137 parse_string ();
1138 return ATOM_STRING;
1140 case '0':
1141 case '1':
1142 case '2':
1143 case '3':
1144 case '4':
1145 case '5':
1146 case '6':
1147 case '7':
1148 case '8':
1149 case '9':
1150 parse_integer (c);
1151 return ATOM_INTEGER;
1153 case 'a':
1154 case 'b':
1155 case 'c':
1156 case 'd':
1157 case 'e':
1158 case 'f':
1159 case 'g':
1160 case 'h':
1161 case 'i':
1162 case 'j':
1163 case 'k':
1164 case 'l':
1165 case 'm':
1166 case 'n':
1167 case 'o':
1168 case 'p':
1169 case 'q':
1170 case 'r':
1171 case 's':
1172 case 't':
1173 case 'u':
1174 case 'v':
1175 case 'w':
1176 case 'x':
1177 case 'y':
1178 case 'z':
1179 case 'A':
1180 case 'B':
1181 case 'C':
1182 case 'D':
1183 case 'E':
1184 case 'F':
1185 case 'G':
1186 case 'H':
1187 case 'I':
1188 case 'J':
1189 case 'K':
1190 case 'L':
1191 case 'M':
1192 case 'N':
1193 case 'O':
1194 case 'P':
1195 case 'Q':
1196 case 'R':
1197 case 'S':
1198 case 'T':
1199 case 'U':
1200 case 'V':
1201 case 'W':
1202 case 'X':
1203 case 'Y':
1204 case 'Z':
1205 parse_name (c);
1206 return ATOM_NAME;
1208 default:
1209 bad_module ("Bad name");
1212 /* Not reached. */
1216 /* Peek at the next atom on the input. */
1218 static atom_type
1219 peek_atom (void)
1221 module_locus m;
1222 atom_type a;
1224 get_module_locus (&m);
1226 a = parse_atom ();
1227 if (a == ATOM_STRING)
1228 gfc_free (atom_string);
1230 set_module_locus (&m);
1231 return a;
1235 /* Read the next atom from the input, requiring that it be a
1236 particular kind. */
1238 static void
1239 require_atom (atom_type type)
1241 module_locus m;
1242 atom_type t;
1243 const char *p;
1245 get_module_locus (&m);
1247 t = parse_atom ();
1248 if (t != type)
1250 switch (type)
1252 case ATOM_NAME:
1253 p = _("Expected name");
1254 break;
1255 case ATOM_LPAREN:
1256 p = _("Expected left parenthesis");
1257 break;
1258 case ATOM_RPAREN:
1259 p = _("Expected right parenthesis");
1260 break;
1261 case ATOM_INTEGER:
1262 p = _("Expected integer");
1263 break;
1264 case ATOM_STRING:
1265 p = _("Expected string");
1266 break;
1267 default:
1268 gfc_internal_error ("require_atom(): bad atom type required");
1271 set_module_locus (&m);
1272 bad_module (p);
1277 /* Given a pointer to an mstring array, require that the current input
1278 be one of the strings in the array. We return the enum value. */
1280 static int
1281 find_enum (const mstring *m)
1283 int i;
1285 i = gfc_string2code (m, atom_name);
1286 if (i >= 0)
1287 return i;
1289 bad_module ("find_enum(): Enum not found");
1291 /* Not reached. */
1295 /**************** Module output subroutines ***************************/
1297 /* Output a character to a module file. */
1299 static void
1300 write_char (char out)
1302 if (putc (out, module_fp) == EOF)
1303 gfc_fatal_error ("Error writing modules file: %s", xstrerror (errno));
1305 /* Add this to our MD5. */
1306 md5_process_bytes (&out, sizeof (out), &ctx);
1308 if (out != '\n')
1309 module_column++;
1310 else
1312 module_column = 1;
1313 module_line++;
1318 /* Write an atom to a module. The line wrapping isn't perfect, but it
1319 should work most of the time. This isn't that big of a deal, since
1320 the file really isn't meant to be read by people anyway. */
1322 static void
1323 write_atom (atom_type atom, const void *v)
1325 char buffer[20];
1326 int i, len;
1327 const char *p;
1329 switch (atom)
1331 case ATOM_STRING:
1332 case ATOM_NAME:
1333 p = (const char *) v;
1334 break;
1336 case ATOM_LPAREN:
1337 p = "(";
1338 break;
1340 case ATOM_RPAREN:
1341 p = ")";
1342 break;
1344 case ATOM_INTEGER:
1345 i = *((const int *) v);
1346 if (i < 0)
1347 gfc_internal_error ("write_atom(): Writing negative integer");
1349 sprintf (buffer, "%d", i);
1350 p = buffer;
1351 break;
1353 default:
1354 gfc_internal_error ("write_atom(): Trying to write dab atom");
1358 if(p == NULL || *p == '\0')
1359 len = 0;
1360 else
1361 len = strlen (p);
1363 if (atom != ATOM_RPAREN)
1365 if (module_column + len > 72)
1366 write_char ('\n');
1367 else
1370 if (last_atom != ATOM_LPAREN && module_column != 1)
1371 write_char (' ');
1375 if (atom == ATOM_STRING)
1376 write_char ('\'');
1378 while (p != NULL && *p)
1380 if (atom == ATOM_STRING && *p == '\'')
1381 write_char ('\'');
1382 write_char (*p++);
1385 if (atom == ATOM_STRING)
1386 write_char ('\'');
1388 last_atom = atom;
1393 /***************** Mid-level I/O subroutines *****************/
1395 /* These subroutines let their caller read or write atoms without
1396 caring about which of the two is actually happening. This lets a
1397 subroutine concentrate on the actual format of the data being
1398 written. */
1400 static void mio_expr (gfc_expr **);
1401 pointer_info *mio_symbol_ref (gfc_symbol **);
1402 pointer_info *mio_interface_rest (gfc_interface **);
1403 static void mio_symtree_ref (gfc_symtree **);
1405 /* Read or write an enumerated value. On writing, we return the input
1406 value for the convenience of callers. We avoid using an integer
1407 pointer because enums are sometimes inside bitfields. */
1409 static int
1410 mio_name (int t, const mstring *m)
1412 if (iomode == IO_OUTPUT)
1413 write_atom (ATOM_NAME, gfc_code2string (m, t));
1414 else
1416 require_atom (ATOM_NAME);
1417 t = find_enum (m);
1420 return t;
1423 /* Specialization of mio_name. */
1425 #define DECL_MIO_NAME(TYPE) \
1426 static inline TYPE \
1427 MIO_NAME(TYPE) (TYPE t, const mstring *m) \
1429 return (TYPE) mio_name ((int) t, m); \
1431 #define MIO_NAME(TYPE) mio_name_##TYPE
1433 static void
1434 mio_lparen (void)
1436 if (iomode == IO_OUTPUT)
1437 write_atom (ATOM_LPAREN, NULL);
1438 else
1439 require_atom (ATOM_LPAREN);
1443 static void
1444 mio_rparen (void)
1446 if (iomode == IO_OUTPUT)
1447 write_atom (ATOM_RPAREN, NULL);
1448 else
1449 require_atom (ATOM_RPAREN);
1453 static void
1454 mio_integer (int *ip)
1456 if (iomode == IO_OUTPUT)
1457 write_atom (ATOM_INTEGER, ip);
1458 else
1460 require_atom (ATOM_INTEGER);
1461 *ip = atom_int;
1466 /* Read or write a gfc_intrinsic_op value. */
1468 static void
1469 mio_intrinsic_op (gfc_intrinsic_op* op)
1471 /* FIXME: Would be nicer to do this via the operators symbolic name. */
1472 if (iomode == IO_OUTPUT)
1474 int converted = (int) *op;
1475 write_atom (ATOM_INTEGER, &converted);
1477 else
1479 require_atom (ATOM_INTEGER);
1480 *op = (gfc_intrinsic_op) atom_int;
1485 /* Read or write a character pointer that points to a string on the heap. */
1487 static const char *
1488 mio_allocated_string (const char *s)
1490 if (iomode == IO_OUTPUT)
1492 write_atom (ATOM_STRING, s);
1493 return s;
1495 else
1497 require_atom (ATOM_STRING);
1498 return atom_string;
1503 /* Functions for quoting and unquoting strings. */
1505 static char *
1506 quote_string (const gfc_char_t *s, const size_t slength)
1508 const gfc_char_t *p;
1509 char *res, *q;
1510 size_t len = 0, i;
1512 /* Calculate the length we'll need: a backslash takes two ("\\"),
1513 non-printable characters take 10 ("\Uxxxxxxxx") and others take 1. */
1514 for (p = s, i = 0; i < slength; p++, i++)
1516 if (*p == '\\')
1517 len += 2;
1518 else if (!gfc_wide_is_printable (*p))
1519 len += 10;
1520 else
1521 len++;
1524 q = res = XCNEWVEC (char, len + 1);
1525 for (p = s, i = 0; i < slength; p++, i++)
1527 if (*p == '\\')
1528 *q++ = '\\', *q++ = '\\';
1529 else if (!gfc_wide_is_printable (*p))
1531 sprintf (q, "\\U%08" HOST_WIDE_INT_PRINT "x",
1532 (unsigned HOST_WIDE_INT) *p);
1533 q += 10;
1535 else
1536 *q++ = (unsigned char) *p;
1539 res[len] = '\0';
1540 return res;
1543 static gfc_char_t *
1544 unquote_string (const char *s)
1546 size_t len, i;
1547 const char *p;
1548 gfc_char_t *res;
1550 for (p = s, len = 0; *p; p++, len++)
1552 if (*p != '\\')
1553 continue;
1555 if (p[1] == '\\')
1556 p++;
1557 else if (p[1] == 'U')
1558 p += 9; /* That is a "\U????????". */
1559 else
1560 gfc_internal_error ("unquote_string(): got bad string");
1563 res = gfc_get_wide_string (len + 1);
1564 for (i = 0, p = s; i < len; i++, p++)
1566 gcc_assert (*p);
1568 if (*p != '\\')
1569 res[i] = (unsigned char) *p;
1570 else if (p[1] == '\\')
1572 res[i] = (unsigned char) '\\';
1573 p++;
1575 else
1577 /* We read the 8-digits hexadecimal constant that follows. */
1578 int j;
1579 unsigned n;
1580 gfc_char_t c = 0;
1582 gcc_assert (p[1] == 'U');
1583 for (j = 0; j < 8; j++)
1585 c = c << 4;
1586 gcc_assert (sscanf (&p[j+2], "%01x", &n) == 1);
1587 c += n;
1590 res[i] = c;
1591 p += 9;
1595 res[len] = '\0';
1596 return res;
1600 /* Read or write a character pointer that points to a wide string on the
1601 heap, performing quoting/unquoting of nonprintable characters using the
1602 form \U???????? (where each ? is a hexadecimal digit).
1603 Length is the length of the string, only known and used in output mode. */
1605 static const gfc_char_t *
1606 mio_allocated_wide_string (const gfc_char_t *s, const size_t length)
1608 if (iomode == IO_OUTPUT)
1610 char *quoted = quote_string (s, length);
1611 write_atom (ATOM_STRING, quoted);
1612 gfc_free (quoted);
1613 return s;
1615 else
1617 gfc_char_t *unquoted;
1619 require_atom (ATOM_STRING);
1620 unquoted = unquote_string (atom_string);
1621 gfc_free (atom_string);
1622 return unquoted;
1627 /* Read or write a string that is in static memory. */
1629 static void
1630 mio_pool_string (const char **stringp)
1632 /* TODO: one could write the string only once, and refer to it via a
1633 fixup pointer. */
1635 /* As a special case we have to deal with a NULL string. This
1636 happens for the 'module' member of 'gfc_symbol's that are not in a
1637 module. We read / write these as the empty string. */
1638 if (iomode == IO_OUTPUT)
1640 const char *p = *stringp == NULL ? "" : *stringp;
1641 write_atom (ATOM_STRING, p);
1643 else
1645 require_atom (ATOM_STRING);
1646 *stringp = atom_string[0] == '\0' ? NULL : gfc_get_string (atom_string);
1647 gfc_free (atom_string);
1652 /* Read or write a string that is inside of some already-allocated
1653 structure. */
1655 static void
1656 mio_internal_string (char *string)
1658 if (iomode == IO_OUTPUT)
1659 write_atom (ATOM_STRING, string);
1660 else
1662 require_atom (ATOM_STRING);
1663 strcpy (string, atom_string);
1664 gfc_free (atom_string);
1669 typedef enum
1670 { AB_ALLOCATABLE, AB_DIMENSION, AB_EXTERNAL, AB_INTRINSIC, AB_OPTIONAL,
1671 AB_POINTER, AB_TARGET, AB_DUMMY, AB_RESULT, AB_DATA,
1672 AB_IN_NAMELIST, AB_IN_COMMON, AB_FUNCTION, AB_SUBROUTINE, AB_SEQUENCE,
1673 AB_ELEMENTAL, AB_PURE, AB_RECURSIVE, AB_GENERIC, AB_ALWAYS_EXPLICIT,
1674 AB_CRAY_POINTER, AB_CRAY_POINTEE, AB_THREADPRIVATE, AB_ALLOC_COMP,
1675 AB_POINTER_COMP, AB_PRIVATE_COMP, AB_VALUE, AB_VOLATILE, AB_PROTECTED,
1676 AB_IS_BIND_C, AB_IS_C_INTEROP, AB_IS_ISO_C, AB_ABSTRACT, AB_ZERO_COMP,
1677 AB_IS_CLASS, AB_PROCEDURE, AB_PROC_POINTER, AB_ASYNCHRONOUS, AB_CODIMENSION,
1678 AB_COARRAY_COMP, AB_VTYPE, AB_VTAB, AB_CONTIGUOUS, AB_CLASS_POINTER
1680 ab_attribute;
1682 static const mstring attr_bits[] =
1684 minit ("ALLOCATABLE", AB_ALLOCATABLE),
1685 minit ("ASYNCHRONOUS", AB_ASYNCHRONOUS),
1686 minit ("DIMENSION", AB_DIMENSION),
1687 minit ("CODIMENSION", AB_CODIMENSION),
1688 minit ("CONTIGUOUS", AB_CONTIGUOUS),
1689 minit ("EXTERNAL", AB_EXTERNAL),
1690 minit ("INTRINSIC", AB_INTRINSIC),
1691 minit ("OPTIONAL", AB_OPTIONAL),
1692 minit ("POINTER", AB_POINTER),
1693 minit ("VOLATILE", AB_VOLATILE),
1694 minit ("TARGET", AB_TARGET),
1695 minit ("THREADPRIVATE", AB_THREADPRIVATE),
1696 minit ("DUMMY", AB_DUMMY),
1697 minit ("RESULT", AB_RESULT),
1698 minit ("DATA", AB_DATA),
1699 minit ("IN_NAMELIST", AB_IN_NAMELIST),
1700 minit ("IN_COMMON", AB_IN_COMMON),
1701 minit ("FUNCTION", AB_FUNCTION),
1702 minit ("SUBROUTINE", AB_SUBROUTINE),
1703 minit ("SEQUENCE", AB_SEQUENCE),
1704 minit ("ELEMENTAL", AB_ELEMENTAL),
1705 minit ("PURE", AB_PURE),
1706 minit ("RECURSIVE", AB_RECURSIVE),
1707 minit ("GENERIC", AB_GENERIC),
1708 minit ("ALWAYS_EXPLICIT", AB_ALWAYS_EXPLICIT),
1709 minit ("CRAY_POINTER", AB_CRAY_POINTER),
1710 minit ("CRAY_POINTEE", AB_CRAY_POINTEE),
1711 minit ("IS_BIND_C", AB_IS_BIND_C),
1712 minit ("IS_C_INTEROP", AB_IS_C_INTEROP),
1713 minit ("IS_ISO_C", AB_IS_ISO_C),
1714 minit ("VALUE", AB_VALUE),
1715 minit ("ALLOC_COMP", AB_ALLOC_COMP),
1716 minit ("COARRAY_COMP", AB_COARRAY_COMP),
1717 minit ("POINTER_COMP", AB_POINTER_COMP),
1718 minit ("PRIVATE_COMP", AB_PRIVATE_COMP),
1719 minit ("ZERO_COMP", AB_ZERO_COMP),
1720 minit ("PROTECTED", AB_PROTECTED),
1721 minit ("ABSTRACT", AB_ABSTRACT),
1722 minit ("IS_CLASS", AB_IS_CLASS),
1723 minit ("PROCEDURE", AB_PROCEDURE),
1724 minit ("PROC_POINTER", AB_PROC_POINTER),
1725 minit ("VTYPE", AB_VTYPE),
1726 minit ("VTAB", AB_VTAB),
1727 minit ("CLASS_POINTER", AB_CLASS_POINTER),
1728 minit (NULL, -1)
1731 /* For binding attributes. */
1732 static const mstring binding_passing[] =
1734 minit ("PASS", 0),
1735 minit ("NOPASS", 1),
1736 minit (NULL, -1)
1738 static const mstring binding_overriding[] =
1740 minit ("OVERRIDABLE", 0),
1741 minit ("NON_OVERRIDABLE", 1),
1742 minit ("DEFERRED", 2),
1743 minit (NULL, -1)
1745 static const mstring binding_generic[] =
1747 minit ("SPECIFIC", 0),
1748 minit ("GENERIC", 1),
1749 minit (NULL, -1)
1751 static const mstring binding_ppc[] =
1753 minit ("NO_PPC", 0),
1754 minit ("PPC", 1),
1755 minit (NULL, -1)
1758 /* Specialization of mio_name. */
1759 DECL_MIO_NAME (ab_attribute)
1760 DECL_MIO_NAME (ar_type)
1761 DECL_MIO_NAME (array_type)
1762 DECL_MIO_NAME (bt)
1763 DECL_MIO_NAME (expr_t)
1764 DECL_MIO_NAME (gfc_access)
1765 DECL_MIO_NAME (gfc_intrinsic_op)
1766 DECL_MIO_NAME (ifsrc)
1767 DECL_MIO_NAME (save_state)
1768 DECL_MIO_NAME (procedure_type)
1769 DECL_MIO_NAME (ref_type)
1770 DECL_MIO_NAME (sym_flavor)
1771 DECL_MIO_NAME (sym_intent)
1772 #undef DECL_MIO_NAME
1774 /* Symbol attributes are stored in list with the first three elements
1775 being the enumerated fields, while the remaining elements (if any)
1776 indicate the individual attribute bits. The access field is not
1777 saved-- it controls what symbols are exported when a module is
1778 written. */
1780 static void
1781 mio_symbol_attribute (symbol_attribute *attr)
1783 atom_type t;
1784 unsigned ext_attr,extension_level;
1786 mio_lparen ();
1788 attr->flavor = MIO_NAME (sym_flavor) (attr->flavor, flavors);
1789 attr->intent = MIO_NAME (sym_intent) (attr->intent, intents);
1790 attr->proc = MIO_NAME (procedure_type) (attr->proc, procedures);
1791 attr->if_source = MIO_NAME (ifsrc) (attr->if_source, ifsrc_types);
1792 attr->save = MIO_NAME (save_state) (attr->save, save_status);
1794 ext_attr = attr->ext_attr;
1795 mio_integer ((int *) &ext_attr);
1796 attr->ext_attr = ext_attr;
1798 extension_level = attr->extension;
1799 mio_integer ((int *) &extension_level);
1800 attr->extension = extension_level;
1802 if (iomode == IO_OUTPUT)
1804 if (attr->allocatable)
1805 MIO_NAME (ab_attribute) (AB_ALLOCATABLE, attr_bits);
1806 if (attr->asynchronous)
1807 MIO_NAME (ab_attribute) (AB_ASYNCHRONOUS, attr_bits);
1808 if (attr->dimension)
1809 MIO_NAME (ab_attribute) (AB_DIMENSION, attr_bits);
1810 if (attr->codimension)
1811 MIO_NAME (ab_attribute) (AB_CODIMENSION, attr_bits);
1812 if (attr->contiguous)
1813 MIO_NAME (ab_attribute) (AB_CONTIGUOUS, attr_bits);
1814 if (attr->external)
1815 MIO_NAME (ab_attribute) (AB_EXTERNAL, attr_bits);
1816 if (attr->intrinsic)
1817 MIO_NAME (ab_attribute) (AB_INTRINSIC, attr_bits);
1818 if (attr->optional)
1819 MIO_NAME (ab_attribute) (AB_OPTIONAL, attr_bits);
1820 if (attr->pointer)
1821 MIO_NAME (ab_attribute) (AB_POINTER, attr_bits);
1822 if (attr->class_pointer)
1823 MIO_NAME (ab_attribute) (AB_CLASS_POINTER, attr_bits);
1824 if (attr->is_protected)
1825 MIO_NAME (ab_attribute) (AB_PROTECTED, attr_bits);
1826 if (attr->value)
1827 MIO_NAME (ab_attribute) (AB_VALUE, attr_bits);
1828 if (attr->volatile_)
1829 MIO_NAME (ab_attribute) (AB_VOLATILE, attr_bits);
1830 if (attr->target)
1831 MIO_NAME (ab_attribute) (AB_TARGET, attr_bits);
1832 if (attr->threadprivate)
1833 MIO_NAME (ab_attribute) (AB_THREADPRIVATE, attr_bits);
1834 if (attr->dummy)
1835 MIO_NAME (ab_attribute) (AB_DUMMY, attr_bits);
1836 if (attr->result)
1837 MIO_NAME (ab_attribute) (AB_RESULT, attr_bits);
1838 /* We deliberately don't preserve the "entry" flag. */
1840 if (attr->data)
1841 MIO_NAME (ab_attribute) (AB_DATA, attr_bits);
1842 if (attr->in_namelist)
1843 MIO_NAME (ab_attribute) (AB_IN_NAMELIST, attr_bits);
1844 if (attr->in_common)
1845 MIO_NAME (ab_attribute) (AB_IN_COMMON, attr_bits);
1847 if (attr->function)
1848 MIO_NAME (ab_attribute) (AB_FUNCTION, attr_bits);
1849 if (attr->subroutine)
1850 MIO_NAME (ab_attribute) (AB_SUBROUTINE, attr_bits);
1851 if (attr->generic)
1852 MIO_NAME (ab_attribute) (AB_GENERIC, attr_bits);
1853 if (attr->abstract)
1854 MIO_NAME (ab_attribute) (AB_ABSTRACT, attr_bits);
1856 if (attr->sequence)
1857 MIO_NAME (ab_attribute) (AB_SEQUENCE, attr_bits);
1858 if (attr->elemental)
1859 MIO_NAME (ab_attribute) (AB_ELEMENTAL, attr_bits);
1860 if (attr->pure)
1861 MIO_NAME (ab_attribute) (AB_PURE, attr_bits);
1862 if (attr->recursive)
1863 MIO_NAME (ab_attribute) (AB_RECURSIVE, attr_bits);
1864 if (attr->always_explicit)
1865 MIO_NAME (ab_attribute) (AB_ALWAYS_EXPLICIT, attr_bits);
1866 if (attr->cray_pointer)
1867 MIO_NAME (ab_attribute) (AB_CRAY_POINTER, attr_bits);
1868 if (attr->cray_pointee)
1869 MIO_NAME (ab_attribute) (AB_CRAY_POINTEE, attr_bits);
1870 if (attr->is_bind_c)
1871 MIO_NAME(ab_attribute) (AB_IS_BIND_C, attr_bits);
1872 if (attr->is_c_interop)
1873 MIO_NAME(ab_attribute) (AB_IS_C_INTEROP, attr_bits);
1874 if (attr->is_iso_c)
1875 MIO_NAME(ab_attribute) (AB_IS_ISO_C, attr_bits);
1876 if (attr->alloc_comp)
1877 MIO_NAME (ab_attribute) (AB_ALLOC_COMP, attr_bits);
1878 if (attr->pointer_comp)
1879 MIO_NAME (ab_attribute) (AB_POINTER_COMP, attr_bits);
1880 if (attr->private_comp)
1881 MIO_NAME (ab_attribute) (AB_PRIVATE_COMP, attr_bits);
1882 if (attr->coarray_comp)
1883 MIO_NAME (ab_attribute) (AB_COARRAY_COMP, attr_bits);
1884 if (attr->zero_comp)
1885 MIO_NAME (ab_attribute) (AB_ZERO_COMP, attr_bits);
1886 if (attr->is_class)
1887 MIO_NAME (ab_attribute) (AB_IS_CLASS, attr_bits);
1888 if (attr->procedure)
1889 MIO_NAME (ab_attribute) (AB_PROCEDURE, attr_bits);
1890 if (attr->proc_pointer)
1891 MIO_NAME (ab_attribute) (AB_PROC_POINTER, attr_bits);
1892 if (attr->vtype)
1893 MIO_NAME (ab_attribute) (AB_VTYPE, attr_bits);
1894 if (attr->vtab)
1895 MIO_NAME (ab_attribute) (AB_VTAB, attr_bits);
1897 mio_rparen ();
1900 else
1902 for (;;)
1904 t = parse_atom ();
1905 if (t == ATOM_RPAREN)
1906 break;
1907 if (t != ATOM_NAME)
1908 bad_module ("Expected attribute bit name");
1910 switch ((ab_attribute) find_enum (attr_bits))
1912 case AB_ALLOCATABLE:
1913 attr->allocatable = 1;
1914 break;
1915 case AB_ASYNCHRONOUS:
1916 attr->asynchronous = 1;
1917 break;
1918 case AB_DIMENSION:
1919 attr->dimension = 1;
1920 break;
1921 case AB_CODIMENSION:
1922 attr->codimension = 1;
1923 break;
1924 case AB_CONTIGUOUS:
1925 attr->contiguous = 1;
1926 break;
1927 case AB_EXTERNAL:
1928 attr->external = 1;
1929 break;
1930 case AB_INTRINSIC:
1931 attr->intrinsic = 1;
1932 break;
1933 case AB_OPTIONAL:
1934 attr->optional = 1;
1935 break;
1936 case AB_POINTER:
1937 attr->pointer = 1;
1938 break;
1939 case AB_CLASS_POINTER:
1940 attr->class_pointer = 1;
1941 break;
1942 case AB_PROTECTED:
1943 attr->is_protected = 1;
1944 break;
1945 case AB_VALUE:
1946 attr->value = 1;
1947 break;
1948 case AB_VOLATILE:
1949 attr->volatile_ = 1;
1950 break;
1951 case AB_TARGET:
1952 attr->target = 1;
1953 break;
1954 case AB_THREADPRIVATE:
1955 attr->threadprivate = 1;
1956 break;
1957 case AB_DUMMY:
1958 attr->dummy = 1;
1959 break;
1960 case AB_RESULT:
1961 attr->result = 1;
1962 break;
1963 case AB_DATA:
1964 attr->data = 1;
1965 break;
1966 case AB_IN_NAMELIST:
1967 attr->in_namelist = 1;
1968 break;
1969 case AB_IN_COMMON:
1970 attr->in_common = 1;
1971 break;
1972 case AB_FUNCTION:
1973 attr->function = 1;
1974 break;
1975 case AB_SUBROUTINE:
1976 attr->subroutine = 1;
1977 break;
1978 case AB_GENERIC:
1979 attr->generic = 1;
1980 break;
1981 case AB_ABSTRACT:
1982 attr->abstract = 1;
1983 break;
1984 case AB_SEQUENCE:
1985 attr->sequence = 1;
1986 break;
1987 case AB_ELEMENTAL:
1988 attr->elemental = 1;
1989 break;
1990 case AB_PURE:
1991 attr->pure = 1;
1992 break;
1993 case AB_RECURSIVE:
1994 attr->recursive = 1;
1995 break;
1996 case AB_ALWAYS_EXPLICIT:
1997 attr->always_explicit = 1;
1998 break;
1999 case AB_CRAY_POINTER:
2000 attr->cray_pointer = 1;
2001 break;
2002 case AB_CRAY_POINTEE:
2003 attr->cray_pointee = 1;
2004 break;
2005 case AB_IS_BIND_C:
2006 attr->is_bind_c = 1;
2007 break;
2008 case AB_IS_C_INTEROP:
2009 attr->is_c_interop = 1;
2010 break;
2011 case AB_IS_ISO_C:
2012 attr->is_iso_c = 1;
2013 break;
2014 case AB_ALLOC_COMP:
2015 attr->alloc_comp = 1;
2016 break;
2017 case AB_COARRAY_COMP:
2018 attr->coarray_comp = 1;
2019 break;
2020 case AB_POINTER_COMP:
2021 attr->pointer_comp = 1;
2022 break;
2023 case AB_PRIVATE_COMP:
2024 attr->private_comp = 1;
2025 break;
2026 case AB_ZERO_COMP:
2027 attr->zero_comp = 1;
2028 break;
2029 case AB_IS_CLASS:
2030 attr->is_class = 1;
2031 break;
2032 case AB_PROCEDURE:
2033 attr->procedure = 1;
2034 break;
2035 case AB_PROC_POINTER:
2036 attr->proc_pointer = 1;
2037 break;
2038 case AB_VTYPE:
2039 attr->vtype = 1;
2040 break;
2041 case AB_VTAB:
2042 attr->vtab = 1;
2043 break;
2050 static const mstring bt_types[] = {
2051 minit ("INTEGER", BT_INTEGER),
2052 minit ("REAL", BT_REAL),
2053 minit ("COMPLEX", BT_COMPLEX),
2054 minit ("LOGICAL", BT_LOGICAL),
2055 minit ("CHARACTER", BT_CHARACTER),
2056 minit ("DERIVED", BT_DERIVED),
2057 minit ("CLASS", BT_CLASS),
2058 minit ("PROCEDURE", BT_PROCEDURE),
2059 minit ("UNKNOWN", BT_UNKNOWN),
2060 minit ("VOID", BT_VOID),
2061 minit (NULL, -1)
2065 static void
2066 mio_charlen (gfc_charlen **clp)
2068 gfc_charlen *cl;
2070 mio_lparen ();
2072 if (iomode == IO_OUTPUT)
2074 cl = *clp;
2075 if (cl != NULL)
2076 mio_expr (&cl->length);
2078 else
2080 if (peek_atom () != ATOM_RPAREN)
2082 cl = gfc_new_charlen (gfc_current_ns, NULL);
2083 mio_expr (&cl->length);
2084 *clp = cl;
2088 mio_rparen ();
2092 /* See if a name is a generated name. */
2094 static int
2095 check_unique_name (const char *name)
2097 return *name == '@';
2101 static void
2102 mio_typespec (gfc_typespec *ts)
2104 mio_lparen ();
2106 ts->type = MIO_NAME (bt) (ts->type, bt_types);
2108 if (ts->type != BT_DERIVED && ts->type != BT_CLASS)
2109 mio_integer (&ts->kind);
2110 else
2111 mio_symbol_ref (&ts->u.derived);
2113 /* Add info for C interop and is_iso_c. */
2114 mio_integer (&ts->is_c_interop);
2115 mio_integer (&ts->is_iso_c);
2117 /* If the typespec is for an identifier either from iso_c_binding, or
2118 a constant that was initialized to an identifier from it, use the
2119 f90_type. Otherwise, use the ts->type, since it shouldn't matter. */
2120 if (ts->is_iso_c)
2121 ts->f90_type = MIO_NAME (bt) (ts->f90_type, bt_types);
2122 else
2123 ts->f90_type = MIO_NAME (bt) (ts->type, bt_types);
2125 if (ts->type != BT_CHARACTER)
2127 /* ts->u.cl is only valid for BT_CHARACTER. */
2128 mio_lparen ();
2129 mio_rparen ();
2131 else
2132 mio_charlen (&ts->u.cl);
2134 mio_rparen ();
2138 static const mstring array_spec_types[] = {
2139 minit ("EXPLICIT", AS_EXPLICIT),
2140 minit ("ASSUMED_SHAPE", AS_ASSUMED_SHAPE),
2141 minit ("DEFERRED", AS_DEFERRED),
2142 minit ("ASSUMED_SIZE", AS_ASSUMED_SIZE),
2143 minit (NULL, -1)
2147 static void
2148 mio_array_spec (gfc_array_spec **asp)
2150 gfc_array_spec *as;
2151 int i;
2153 mio_lparen ();
2155 if (iomode == IO_OUTPUT)
2157 if (*asp == NULL)
2158 goto done;
2159 as = *asp;
2161 else
2163 if (peek_atom () == ATOM_RPAREN)
2165 *asp = NULL;
2166 goto done;
2169 *asp = as = gfc_get_array_spec ();
2172 mio_integer (&as->rank);
2173 mio_integer (&as->corank);
2174 as->type = MIO_NAME (array_type) (as->type, array_spec_types);
2176 for (i = 0; i < as->rank + as->corank; i++)
2178 mio_expr (&as->lower[i]);
2179 mio_expr (&as->upper[i]);
2182 done:
2183 mio_rparen ();
2187 /* Given a pointer to an array reference structure (which lives in a
2188 gfc_ref structure), find the corresponding array specification
2189 structure. Storing the pointer in the ref structure doesn't quite
2190 work when loading from a module. Generating code for an array
2191 reference also needs more information than just the array spec. */
2193 static const mstring array_ref_types[] = {
2194 minit ("FULL", AR_FULL),
2195 minit ("ELEMENT", AR_ELEMENT),
2196 minit ("SECTION", AR_SECTION),
2197 minit (NULL, -1)
2201 static void
2202 mio_array_ref (gfc_array_ref *ar)
2204 int i;
2206 mio_lparen ();
2207 ar->type = MIO_NAME (ar_type) (ar->type, array_ref_types);
2208 mio_integer (&ar->dimen);
2210 switch (ar->type)
2212 case AR_FULL:
2213 break;
2215 case AR_ELEMENT:
2216 for (i = 0; i < ar->dimen; i++)
2217 mio_expr (&ar->start[i]);
2219 break;
2221 case AR_SECTION:
2222 for (i = 0; i < ar->dimen; i++)
2224 mio_expr (&ar->start[i]);
2225 mio_expr (&ar->end[i]);
2226 mio_expr (&ar->stride[i]);
2229 break;
2231 case AR_UNKNOWN:
2232 gfc_internal_error ("mio_array_ref(): Unknown array ref");
2235 /* Unfortunately, ar->dimen_type is an anonymous enumerated type so
2236 we can't call mio_integer directly. Instead loop over each element
2237 and cast it to/from an integer. */
2238 if (iomode == IO_OUTPUT)
2240 for (i = 0; i < ar->dimen; i++)
2242 int tmp = (int)ar->dimen_type[i];
2243 write_atom (ATOM_INTEGER, &tmp);
2246 else
2248 for (i = 0; i < ar->dimen; i++)
2250 require_atom (ATOM_INTEGER);
2251 ar->dimen_type[i] = (enum gfc_array_ref_dimen_type) atom_int;
2255 if (iomode == IO_INPUT)
2257 ar->where = gfc_current_locus;
2259 for (i = 0; i < ar->dimen; i++)
2260 ar->c_where[i] = gfc_current_locus;
2263 mio_rparen ();
2267 /* Saves or restores a pointer. The pointer is converted back and
2268 forth from an integer. We return the pointer_info pointer so that
2269 the caller can take additional action based on the pointer type. */
2271 static pointer_info *
2272 mio_pointer_ref (void *gp)
2274 pointer_info *p;
2276 if (iomode == IO_OUTPUT)
2278 p = get_pointer (*((char **) gp));
2279 write_atom (ATOM_INTEGER, &p->integer);
2281 else
2283 require_atom (ATOM_INTEGER);
2284 p = add_fixup (atom_int, gp);
2287 return p;
2291 /* Save and load references to components that occur within
2292 expressions. We have to describe these references by a number and
2293 by name. The number is necessary for forward references during
2294 reading, and the name is necessary if the symbol already exists in
2295 the namespace and is not loaded again. */
2297 static void
2298 mio_component_ref (gfc_component **cp, gfc_symbol *sym)
2300 char name[GFC_MAX_SYMBOL_LEN + 1];
2301 gfc_component *q;
2302 pointer_info *p;
2304 p = mio_pointer_ref (cp);
2305 if (p->type == P_UNKNOWN)
2306 p->type = P_COMPONENT;
2308 if (iomode == IO_OUTPUT)
2309 mio_pool_string (&(*cp)->name);
2310 else
2312 mio_internal_string (name);
2314 /* It can happen that a component reference can be read before the
2315 associated derived type symbol has been loaded. Return now and
2316 wait for a later iteration of load_needed. */
2317 if (sym == NULL)
2318 return;
2320 if (sym->components != NULL && p->u.pointer == NULL)
2322 /* Symbol already loaded, so search by name. */
2323 for (q = sym->components; q; q = q->next)
2324 if (strcmp (q->name, name) == 0)
2325 break;
2327 if (q == NULL)
2328 gfc_internal_error ("mio_component_ref(): Component not found");
2330 associate_integer_pointer (p, q);
2333 /* Make sure this symbol will eventually be loaded. */
2334 p = find_pointer2 (sym);
2335 if (p->u.rsym.state == UNUSED)
2336 p->u.rsym.state = NEEDED;
2341 static void mio_namespace_ref (gfc_namespace **nsp);
2342 static void mio_formal_arglist (gfc_formal_arglist **formal);
2343 static void mio_typebound_proc (gfc_typebound_proc** proc);
2345 static void
2346 mio_component (gfc_component *c)
2348 pointer_info *p;
2349 int n;
2350 gfc_formal_arglist *formal;
2352 mio_lparen ();
2354 if (iomode == IO_OUTPUT)
2356 p = get_pointer (c);
2357 mio_integer (&p->integer);
2359 else
2361 mio_integer (&n);
2362 p = get_integer (n);
2363 associate_integer_pointer (p, c);
2366 if (p->type == P_UNKNOWN)
2367 p->type = P_COMPONENT;
2369 mio_pool_string (&c->name);
2370 mio_typespec (&c->ts);
2371 mio_array_spec (&c->as);
2373 mio_symbol_attribute (&c->attr);
2374 c->attr.access = MIO_NAME (gfc_access) (c->attr.access, access_types);
2376 mio_expr (&c->initializer);
2378 if (c->attr.proc_pointer)
2380 if (iomode == IO_OUTPUT)
2382 formal = c->formal;
2383 while (formal && !formal->sym)
2384 formal = formal->next;
2386 if (formal)
2387 mio_namespace_ref (&formal->sym->ns);
2388 else
2389 mio_namespace_ref (&c->formal_ns);
2391 else
2393 mio_namespace_ref (&c->formal_ns);
2394 /* TODO: if (c->formal_ns)
2396 c->formal_ns->proc_name = c;
2397 c->refs++;
2401 mio_formal_arglist (&c->formal);
2403 mio_typebound_proc (&c->tb);
2406 mio_rparen ();
2410 static void
2411 mio_component_list (gfc_component **cp)
2413 gfc_component *c, *tail;
2415 mio_lparen ();
2417 if (iomode == IO_OUTPUT)
2419 for (c = *cp; c; c = c->next)
2420 mio_component (c);
2422 else
2424 *cp = NULL;
2425 tail = NULL;
2427 for (;;)
2429 if (peek_atom () == ATOM_RPAREN)
2430 break;
2432 c = gfc_get_component ();
2433 mio_component (c);
2435 if (tail == NULL)
2436 *cp = c;
2437 else
2438 tail->next = c;
2440 tail = c;
2444 mio_rparen ();
2448 static void
2449 mio_actual_arg (gfc_actual_arglist *a)
2451 mio_lparen ();
2452 mio_pool_string (&a->name);
2453 mio_expr (&a->expr);
2454 mio_rparen ();
2458 static void
2459 mio_actual_arglist (gfc_actual_arglist **ap)
2461 gfc_actual_arglist *a, *tail;
2463 mio_lparen ();
2465 if (iomode == IO_OUTPUT)
2467 for (a = *ap; a; a = a->next)
2468 mio_actual_arg (a);
2471 else
2473 tail = NULL;
2475 for (;;)
2477 if (peek_atom () != ATOM_LPAREN)
2478 break;
2480 a = gfc_get_actual_arglist ();
2482 if (tail == NULL)
2483 *ap = a;
2484 else
2485 tail->next = a;
2487 tail = a;
2488 mio_actual_arg (a);
2492 mio_rparen ();
2496 /* Read and write formal argument lists. */
2498 static void
2499 mio_formal_arglist (gfc_formal_arglist **formal)
2501 gfc_formal_arglist *f, *tail;
2503 mio_lparen ();
2505 if (iomode == IO_OUTPUT)
2507 for (f = *formal; f; f = f->next)
2508 mio_symbol_ref (&f->sym);
2510 else
2512 *formal = tail = NULL;
2514 while (peek_atom () != ATOM_RPAREN)
2516 f = gfc_get_formal_arglist ();
2517 mio_symbol_ref (&f->sym);
2519 if (*formal == NULL)
2520 *formal = f;
2521 else
2522 tail->next = f;
2524 tail = f;
2528 mio_rparen ();
2532 /* Save or restore a reference to a symbol node. */
2534 pointer_info *
2535 mio_symbol_ref (gfc_symbol **symp)
2537 pointer_info *p;
2539 p = mio_pointer_ref (symp);
2540 if (p->type == P_UNKNOWN)
2541 p->type = P_SYMBOL;
2543 if (iomode == IO_OUTPUT)
2545 if (p->u.wsym.state == UNREFERENCED)
2546 p->u.wsym.state = NEEDS_WRITE;
2548 else
2550 if (p->u.rsym.state == UNUSED)
2551 p->u.rsym.state = NEEDED;
2553 return p;
2557 /* Save or restore a reference to a symtree node. */
2559 static void
2560 mio_symtree_ref (gfc_symtree **stp)
2562 pointer_info *p;
2563 fixup_t *f;
2565 if (iomode == IO_OUTPUT)
2566 mio_symbol_ref (&(*stp)->n.sym);
2567 else
2569 require_atom (ATOM_INTEGER);
2570 p = get_integer (atom_int);
2572 /* An unused equivalence member; make a symbol and a symtree
2573 for it. */
2574 if (in_load_equiv && p->u.rsym.symtree == NULL)
2576 /* Since this is not used, it must have a unique name. */
2577 p->u.rsym.symtree = gfc_get_unique_symtree (gfc_current_ns);
2579 /* Make the symbol. */
2580 if (p->u.rsym.sym == NULL)
2582 p->u.rsym.sym = gfc_new_symbol (p->u.rsym.true_name,
2583 gfc_current_ns);
2584 p->u.rsym.sym->module = gfc_get_string (p->u.rsym.module);
2587 p->u.rsym.symtree->n.sym = p->u.rsym.sym;
2588 p->u.rsym.symtree->n.sym->refs++;
2589 p->u.rsym.referenced = 1;
2591 /* If the symbol is PRIVATE and in COMMON, load_commons will
2592 generate a fixup symbol, which must be associated. */
2593 if (p->fixup)
2594 resolve_fixups (p->fixup, p->u.rsym.sym);
2595 p->fixup = NULL;
2598 if (p->type == P_UNKNOWN)
2599 p->type = P_SYMBOL;
2601 if (p->u.rsym.state == UNUSED)
2602 p->u.rsym.state = NEEDED;
2604 if (p->u.rsym.symtree != NULL)
2606 *stp = p->u.rsym.symtree;
2608 else
2610 f = XCNEW (fixup_t);
2612 f->next = p->u.rsym.stfixup;
2613 p->u.rsym.stfixup = f;
2615 f->pointer = (void **) stp;
2621 static void
2622 mio_iterator (gfc_iterator **ip)
2624 gfc_iterator *iter;
2626 mio_lparen ();
2628 if (iomode == IO_OUTPUT)
2630 if (*ip == NULL)
2631 goto done;
2633 else
2635 if (peek_atom () == ATOM_RPAREN)
2637 *ip = NULL;
2638 goto done;
2641 *ip = gfc_get_iterator ();
2644 iter = *ip;
2646 mio_expr (&iter->var);
2647 mio_expr (&iter->start);
2648 mio_expr (&iter->end);
2649 mio_expr (&iter->step);
2651 done:
2652 mio_rparen ();
2656 static void
2657 mio_constructor (gfc_constructor_base *cp)
2659 gfc_constructor *c;
2661 mio_lparen ();
2663 if (iomode == IO_OUTPUT)
2665 for (c = gfc_constructor_first (*cp); c; c = gfc_constructor_next (c))
2667 mio_lparen ();
2668 mio_expr (&c->expr);
2669 mio_iterator (&c->iterator);
2670 mio_rparen ();
2673 else
2675 while (peek_atom () != ATOM_RPAREN)
2677 c = gfc_constructor_append_expr (cp, NULL, NULL);
2679 mio_lparen ();
2680 mio_expr (&c->expr);
2681 mio_iterator (&c->iterator);
2682 mio_rparen ();
2686 mio_rparen ();
2690 static const mstring ref_types[] = {
2691 minit ("ARRAY", REF_ARRAY),
2692 minit ("COMPONENT", REF_COMPONENT),
2693 minit ("SUBSTRING", REF_SUBSTRING),
2694 minit (NULL, -1)
2698 static void
2699 mio_ref (gfc_ref **rp)
2701 gfc_ref *r;
2703 mio_lparen ();
2705 r = *rp;
2706 r->type = MIO_NAME (ref_type) (r->type, ref_types);
2708 switch (r->type)
2710 case REF_ARRAY:
2711 mio_array_ref (&r->u.ar);
2712 break;
2714 case REF_COMPONENT:
2715 mio_symbol_ref (&r->u.c.sym);
2716 mio_component_ref (&r->u.c.component, r->u.c.sym);
2717 break;
2719 case REF_SUBSTRING:
2720 mio_expr (&r->u.ss.start);
2721 mio_expr (&r->u.ss.end);
2722 mio_charlen (&r->u.ss.length);
2723 break;
2726 mio_rparen ();
2730 static void
2731 mio_ref_list (gfc_ref **rp)
2733 gfc_ref *ref, *head, *tail;
2735 mio_lparen ();
2737 if (iomode == IO_OUTPUT)
2739 for (ref = *rp; ref; ref = ref->next)
2740 mio_ref (&ref);
2742 else
2744 head = tail = NULL;
2746 while (peek_atom () != ATOM_RPAREN)
2748 if (head == NULL)
2749 head = tail = gfc_get_ref ();
2750 else
2752 tail->next = gfc_get_ref ();
2753 tail = tail->next;
2756 mio_ref (&tail);
2759 *rp = head;
2762 mio_rparen ();
2766 /* Read and write an integer value. */
2768 static void
2769 mio_gmp_integer (mpz_t *integer)
2771 char *p;
2773 if (iomode == IO_INPUT)
2775 if (parse_atom () != ATOM_STRING)
2776 bad_module ("Expected integer string");
2778 mpz_init (*integer);
2779 if (mpz_set_str (*integer, atom_string, 10))
2780 bad_module ("Error converting integer");
2782 gfc_free (atom_string);
2784 else
2786 p = mpz_get_str (NULL, 10, *integer);
2787 write_atom (ATOM_STRING, p);
2788 gfc_free (p);
2793 static void
2794 mio_gmp_real (mpfr_t *real)
2796 mp_exp_t exponent;
2797 char *p;
2799 if (iomode == IO_INPUT)
2801 if (parse_atom () != ATOM_STRING)
2802 bad_module ("Expected real string");
2804 mpfr_init (*real);
2805 mpfr_set_str (*real, atom_string, 16, GFC_RND_MODE);
2806 gfc_free (atom_string);
2808 else
2810 p = mpfr_get_str (NULL, &exponent, 16, 0, *real, GFC_RND_MODE);
2812 if (mpfr_nan_p (*real) || mpfr_inf_p (*real))
2814 write_atom (ATOM_STRING, p);
2815 gfc_free (p);
2816 return;
2819 atom_string = XCNEWVEC (char, strlen (p) + 20);
2821 sprintf (atom_string, "0.%s@%ld", p, exponent);
2823 /* Fix negative numbers. */
2824 if (atom_string[2] == '-')
2826 atom_string[0] = '-';
2827 atom_string[1] = '0';
2828 atom_string[2] = '.';
2831 write_atom (ATOM_STRING, atom_string);
2833 gfc_free (atom_string);
2834 gfc_free (p);
2839 /* Save and restore the shape of an array constructor. */
2841 static void
2842 mio_shape (mpz_t **pshape, int rank)
2844 mpz_t *shape;
2845 atom_type t;
2846 int n;
2848 /* A NULL shape is represented by (). */
2849 mio_lparen ();
2851 if (iomode == IO_OUTPUT)
2853 shape = *pshape;
2854 if (!shape)
2856 mio_rparen ();
2857 return;
2860 else
2862 t = peek_atom ();
2863 if (t == ATOM_RPAREN)
2865 *pshape = NULL;
2866 mio_rparen ();
2867 return;
2870 shape = gfc_get_shape (rank);
2871 *pshape = shape;
2874 for (n = 0; n < rank; n++)
2875 mio_gmp_integer (&shape[n]);
2877 mio_rparen ();
2881 static const mstring expr_types[] = {
2882 minit ("OP", EXPR_OP),
2883 minit ("FUNCTION", EXPR_FUNCTION),
2884 minit ("CONSTANT", EXPR_CONSTANT),
2885 minit ("VARIABLE", EXPR_VARIABLE),
2886 minit ("SUBSTRING", EXPR_SUBSTRING),
2887 minit ("STRUCTURE", EXPR_STRUCTURE),
2888 minit ("ARRAY", EXPR_ARRAY),
2889 minit ("NULL", EXPR_NULL),
2890 minit ("COMPCALL", EXPR_COMPCALL),
2891 minit (NULL, -1)
2894 /* INTRINSIC_ASSIGN is missing because it is used as an index for
2895 generic operators, not in expressions. INTRINSIC_USER is also
2896 replaced by the correct function name by the time we see it. */
2898 static const mstring intrinsics[] =
2900 minit ("UPLUS", INTRINSIC_UPLUS),
2901 minit ("UMINUS", INTRINSIC_UMINUS),
2902 minit ("PLUS", INTRINSIC_PLUS),
2903 minit ("MINUS", INTRINSIC_MINUS),
2904 minit ("TIMES", INTRINSIC_TIMES),
2905 minit ("DIVIDE", INTRINSIC_DIVIDE),
2906 minit ("POWER", INTRINSIC_POWER),
2907 minit ("CONCAT", INTRINSIC_CONCAT),
2908 minit ("AND", INTRINSIC_AND),
2909 minit ("OR", INTRINSIC_OR),
2910 minit ("EQV", INTRINSIC_EQV),
2911 minit ("NEQV", INTRINSIC_NEQV),
2912 minit ("EQ_SIGN", INTRINSIC_EQ),
2913 minit ("EQ", INTRINSIC_EQ_OS),
2914 minit ("NE_SIGN", INTRINSIC_NE),
2915 minit ("NE", INTRINSIC_NE_OS),
2916 minit ("GT_SIGN", INTRINSIC_GT),
2917 minit ("GT", INTRINSIC_GT_OS),
2918 minit ("GE_SIGN", INTRINSIC_GE),
2919 minit ("GE", INTRINSIC_GE_OS),
2920 minit ("LT_SIGN", INTRINSIC_LT),
2921 minit ("LT", INTRINSIC_LT_OS),
2922 minit ("LE_SIGN", INTRINSIC_LE),
2923 minit ("LE", INTRINSIC_LE_OS),
2924 minit ("NOT", INTRINSIC_NOT),
2925 minit ("PARENTHESES", INTRINSIC_PARENTHESES),
2926 minit (NULL, -1)
2930 /* Remedy a couple of situations where the gfc_expr's can be defective. */
2932 static void
2933 fix_mio_expr (gfc_expr *e)
2935 gfc_symtree *ns_st = NULL;
2936 const char *fname;
2938 if (iomode != IO_OUTPUT)
2939 return;
2941 if (e->symtree)
2943 /* If this is a symtree for a symbol that came from a contained module
2944 namespace, it has a unique name and we should look in the current
2945 namespace to see if the required, non-contained symbol is available
2946 yet. If so, the latter should be written. */
2947 if (e->symtree->n.sym && check_unique_name (e->symtree->name))
2948 ns_st = gfc_find_symtree (gfc_current_ns->sym_root,
2949 e->symtree->n.sym->name);
2951 /* On the other hand, if the existing symbol is the module name or the
2952 new symbol is a dummy argument, do not do the promotion. */
2953 if (ns_st && ns_st->n.sym
2954 && ns_st->n.sym->attr.flavor != FL_MODULE
2955 && !e->symtree->n.sym->attr.dummy)
2956 e->symtree = ns_st;
2958 else if (e->expr_type == EXPR_FUNCTION && e->value.function.name)
2960 gfc_symbol *sym;
2962 /* In some circumstances, a function used in an initialization
2963 expression, in one use associated module, can fail to be
2964 coupled to its symtree when used in a specification
2965 expression in another module. */
2966 fname = e->value.function.esym ? e->value.function.esym->name
2967 : e->value.function.isym->name;
2968 e->symtree = gfc_find_symtree (gfc_current_ns->sym_root, fname);
2970 if (e->symtree)
2971 return;
2973 /* This is probably a reference to a private procedure from another
2974 module. To prevent a segfault, make a generic with no specific
2975 instances. If this module is used, without the required
2976 specific coming from somewhere, the appropriate error message
2977 is issued. */
2978 gfc_get_symbol (fname, gfc_current_ns, &sym);
2979 sym->attr.flavor = FL_PROCEDURE;
2980 sym->attr.generic = 1;
2981 e->symtree = gfc_find_symtree (gfc_current_ns->sym_root, fname);
2986 /* Read and write expressions. The form "()" is allowed to indicate a
2987 NULL expression. */
2989 static void
2990 mio_expr (gfc_expr **ep)
2992 gfc_expr *e;
2993 atom_type t;
2994 int flag;
2996 mio_lparen ();
2998 if (iomode == IO_OUTPUT)
3000 if (*ep == NULL)
3002 mio_rparen ();
3003 return;
3006 e = *ep;
3007 MIO_NAME (expr_t) (e->expr_type, expr_types);
3009 else
3011 t = parse_atom ();
3012 if (t == ATOM_RPAREN)
3014 *ep = NULL;
3015 return;
3018 if (t != ATOM_NAME)
3019 bad_module ("Expected expression type");
3021 e = *ep = gfc_get_expr ();
3022 e->where = gfc_current_locus;
3023 e->expr_type = (expr_t) find_enum (expr_types);
3026 mio_typespec (&e->ts);
3027 mio_integer (&e->rank);
3029 fix_mio_expr (e);
3031 switch (e->expr_type)
3033 case EXPR_OP:
3034 e->value.op.op
3035 = MIO_NAME (gfc_intrinsic_op) (e->value.op.op, intrinsics);
3037 switch (e->value.op.op)
3039 case INTRINSIC_UPLUS:
3040 case INTRINSIC_UMINUS:
3041 case INTRINSIC_NOT:
3042 case INTRINSIC_PARENTHESES:
3043 mio_expr (&e->value.op.op1);
3044 break;
3046 case INTRINSIC_PLUS:
3047 case INTRINSIC_MINUS:
3048 case INTRINSIC_TIMES:
3049 case INTRINSIC_DIVIDE:
3050 case INTRINSIC_POWER:
3051 case INTRINSIC_CONCAT:
3052 case INTRINSIC_AND:
3053 case INTRINSIC_OR:
3054 case INTRINSIC_EQV:
3055 case INTRINSIC_NEQV:
3056 case INTRINSIC_EQ:
3057 case INTRINSIC_EQ_OS:
3058 case INTRINSIC_NE:
3059 case INTRINSIC_NE_OS:
3060 case INTRINSIC_GT:
3061 case INTRINSIC_GT_OS:
3062 case INTRINSIC_GE:
3063 case INTRINSIC_GE_OS:
3064 case INTRINSIC_LT:
3065 case INTRINSIC_LT_OS:
3066 case INTRINSIC_LE:
3067 case INTRINSIC_LE_OS:
3068 mio_expr (&e->value.op.op1);
3069 mio_expr (&e->value.op.op2);
3070 break;
3072 default:
3073 bad_module ("Bad operator");
3076 break;
3078 case EXPR_FUNCTION:
3079 mio_symtree_ref (&e->symtree);
3080 mio_actual_arglist (&e->value.function.actual);
3082 if (iomode == IO_OUTPUT)
3084 e->value.function.name
3085 = mio_allocated_string (e->value.function.name);
3086 flag = e->value.function.esym != NULL;
3087 mio_integer (&flag);
3088 if (flag)
3089 mio_symbol_ref (&e->value.function.esym);
3090 else
3091 write_atom (ATOM_STRING, e->value.function.isym->name);
3093 else
3095 require_atom (ATOM_STRING);
3096 e->value.function.name = gfc_get_string (atom_string);
3097 gfc_free (atom_string);
3099 mio_integer (&flag);
3100 if (flag)
3101 mio_symbol_ref (&e->value.function.esym);
3102 else
3104 require_atom (ATOM_STRING);
3105 e->value.function.isym = gfc_find_function (atom_string);
3106 gfc_free (atom_string);
3110 break;
3112 case EXPR_VARIABLE:
3113 mio_symtree_ref (&e->symtree);
3114 mio_ref_list (&e->ref);
3115 break;
3117 case EXPR_SUBSTRING:
3118 e->value.character.string
3119 = CONST_CAST (gfc_char_t *,
3120 mio_allocated_wide_string (e->value.character.string,
3121 e->value.character.length));
3122 mio_ref_list (&e->ref);
3123 break;
3125 case EXPR_STRUCTURE:
3126 case EXPR_ARRAY:
3127 mio_constructor (&e->value.constructor);
3128 mio_shape (&e->shape, e->rank);
3129 break;
3131 case EXPR_CONSTANT:
3132 switch (e->ts.type)
3134 case BT_INTEGER:
3135 mio_gmp_integer (&e->value.integer);
3136 break;
3138 case BT_REAL:
3139 gfc_set_model_kind (e->ts.kind);
3140 mio_gmp_real (&e->value.real);
3141 break;
3143 case BT_COMPLEX:
3144 gfc_set_model_kind (e->ts.kind);
3145 mio_gmp_real (&mpc_realref (e->value.complex));
3146 mio_gmp_real (&mpc_imagref (e->value.complex));
3147 break;
3149 case BT_LOGICAL:
3150 mio_integer (&e->value.logical);
3151 break;
3153 case BT_CHARACTER:
3154 mio_integer (&e->value.character.length);
3155 e->value.character.string
3156 = CONST_CAST (gfc_char_t *,
3157 mio_allocated_wide_string (e->value.character.string,
3158 e->value.character.length));
3159 break;
3161 default:
3162 bad_module ("Bad type in constant expression");
3165 break;
3167 case EXPR_NULL:
3168 break;
3170 case EXPR_COMPCALL:
3171 case EXPR_PPC:
3172 gcc_unreachable ();
3173 break;
3176 mio_rparen ();
3180 /* Read and write namelists. */
3182 static void
3183 mio_namelist (gfc_symbol *sym)
3185 gfc_namelist *n, *m;
3186 const char *check_name;
3188 mio_lparen ();
3190 if (iomode == IO_OUTPUT)
3192 for (n = sym->namelist; n; n = n->next)
3193 mio_symbol_ref (&n->sym);
3195 else
3197 /* This departure from the standard is flagged as an error.
3198 It does, in fact, work correctly. TODO: Allow it
3199 conditionally? */
3200 if (sym->attr.flavor == FL_NAMELIST)
3202 check_name = find_use_name (sym->name, false);
3203 if (check_name && strcmp (check_name, sym->name) != 0)
3204 gfc_error ("Namelist %s cannot be renamed by USE "
3205 "association to %s", sym->name, check_name);
3208 m = NULL;
3209 while (peek_atom () != ATOM_RPAREN)
3211 n = gfc_get_namelist ();
3212 mio_symbol_ref (&n->sym);
3214 if (sym->namelist == NULL)
3215 sym->namelist = n;
3216 else
3217 m->next = n;
3219 m = n;
3221 sym->namelist_tail = m;
3224 mio_rparen ();
3228 /* Save/restore lists of gfc_interface structures. When loading an
3229 interface, we are really appending to the existing list of
3230 interfaces. Checking for duplicate and ambiguous interfaces has to
3231 be done later when all symbols have been loaded. */
3233 pointer_info *
3234 mio_interface_rest (gfc_interface **ip)
3236 gfc_interface *tail, *p;
3237 pointer_info *pi = NULL;
3239 if (iomode == IO_OUTPUT)
3241 if (ip != NULL)
3242 for (p = *ip; p; p = p->next)
3243 mio_symbol_ref (&p->sym);
3245 else
3247 if (*ip == NULL)
3248 tail = NULL;
3249 else
3251 tail = *ip;
3252 while (tail->next)
3253 tail = tail->next;
3256 for (;;)
3258 if (peek_atom () == ATOM_RPAREN)
3259 break;
3261 p = gfc_get_interface ();
3262 p->where = gfc_current_locus;
3263 pi = mio_symbol_ref (&p->sym);
3265 if (tail == NULL)
3266 *ip = p;
3267 else
3268 tail->next = p;
3270 tail = p;
3274 mio_rparen ();
3275 return pi;
3279 /* Save/restore a nameless operator interface. */
3281 static void
3282 mio_interface (gfc_interface **ip)
3284 mio_lparen ();
3285 mio_interface_rest (ip);
3289 /* Save/restore a named operator interface. */
3291 static void
3292 mio_symbol_interface (const char **name, const char **module,
3293 gfc_interface **ip)
3295 mio_lparen ();
3296 mio_pool_string (name);
3297 mio_pool_string (module);
3298 mio_interface_rest (ip);
3302 static void
3303 mio_namespace_ref (gfc_namespace **nsp)
3305 gfc_namespace *ns;
3306 pointer_info *p;
3308 p = mio_pointer_ref (nsp);
3310 if (p->type == P_UNKNOWN)
3311 p->type = P_NAMESPACE;
3313 if (iomode == IO_INPUT && p->integer != 0)
3315 ns = (gfc_namespace *) p->u.pointer;
3316 if (ns == NULL)
3318 ns = gfc_get_namespace (NULL, 0);
3319 associate_integer_pointer (p, ns);
3321 else
3322 ns->refs++;
3327 /* Save/restore the f2k_derived namespace of a derived-type symbol. */
3329 static gfc_namespace* current_f2k_derived;
3331 static void
3332 mio_typebound_proc (gfc_typebound_proc** proc)
3334 int flag;
3335 int overriding_flag;
3337 if (iomode == IO_INPUT)
3339 *proc = gfc_get_typebound_proc (NULL);
3340 (*proc)->where = gfc_current_locus;
3342 gcc_assert (*proc);
3344 mio_lparen ();
3346 (*proc)->access = MIO_NAME (gfc_access) ((*proc)->access, access_types);
3348 /* IO the NON_OVERRIDABLE/DEFERRED combination. */
3349 gcc_assert (!((*proc)->deferred && (*proc)->non_overridable));
3350 overriding_flag = ((*proc)->deferred << 1) | (*proc)->non_overridable;
3351 overriding_flag = mio_name (overriding_flag, binding_overriding);
3352 (*proc)->deferred = ((overriding_flag & 2) != 0);
3353 (*proc)->non_overridable = ((overriding_flag & 1) != 0);
3354 gcc_assert (!((*proc)->deferred && (*proc)->non_overridable));
3356 (*proc)->nopass = mio_name ((*proc)->nopass, binding_passing);
3357 (*proc)->is_generic = mio_name ((*proc)->is_generic, binding_generic);
3358 (*proc)->ppc = mio_name((*proc)->ppc, binding_ppc);
3360 mio_pool_string (&((*proc)->pass_arg));
3362 flag = (int) (*proc)->pass_arg_num;
3363 mio_integer (&flag);
3364 (*proc)->pass_arg_num = (unsigned) flag;
3366 if ((*proc)->is_generic)
3368 gfc_tbp_generic* g;
3370 mio_lparen ();
3372 if (iomode == IO_OUTPUT)
3373 for (g = (*proc)->u.generic; g; g = g->next)
3374 mio_allocated_string (g->specific_st->name);
3375 else
3377 (*proc)->u.generic = NULL;
3378 while (peek_atom () != ATOM_RPAREN)
3380 gfc_symtree** sym_root;
3382 g = gfc_get_tbp_generic ();
3383 g->specific = NULL;
3385 require_atom (ATOM_STRING);
3386 sym_root = &current_f2k_derived->tb_sym_root;
3387 g->specific_st = gfc_get_tbp_symtree (sym_root, atom_string);
3388 gfc_free (atom_string);
3390 g->next = (*proc)->u.generic;
3391 (*proc)->u.generic = g;
3395 mio_rparen ();
3397 else if (!(*proc)->ppc)
3398 mio_symtree_ref (&(*proc)->u.specific);
3400 mio_rparen ();
3403 /* Walker-callback function for this purpose. */
3404 static void
3405 mio_typebound_symtree (gfc_symtree* st)
3407 if (iomode == IO_OUTPUT && !st->n.tb)
3408 return;
3410 if (iomode == IO_OUTPUT)
3412 mio_lparen ();
3413 mio_allocated_string (st->name);
3415 /* For IO_INPUT, the above is done in mio_f2k_derived. */
3417 mio_typebound_proc (&st->n.tb);
3418 mio_rparen ();
3421 /* IO a full symtree (in all depth). */
3422 static void
3423 mio_full_typebound_tree (gfc_symtree** root)
3425 mio_lparen ();
3427 if (iomode == IO_OUTPUT)
3428 gfc_traverse_symtree (*root, &mio_typebound_symtree);
3429 else
3431 while (peek_atom () == ATOM_LPAREN)
3433 gfc_symtree* st;
3435 mio_lparen ();
3437 require_atom (ATOM_STRING);
3438 st = gfc_get_tbp_symtree (root, atom_string);
3439 gfc_free (atom_string);
3441 mio_typebound_symtree (st);
3445 mio_rparen ();
3448 static void
3449 mio_finalizer (gfc_finalizer **f)
3451 if (iomode == IO_OUTPUT)
3453 gcc_assert (*f);
3454 gcc_assert ((*f)->proc_tree); /* Should already be resolved. */
3455 mio_symtree_ref (&(*f)->proc_tree);
3457 else
3459 *f = gfc_get_finalizer ();
3460 (*f)->where = gfc_current_locus; /* Value should not matter. */
3461 (*f)->next = NULL;
3463 mio_symtree_ref (&(*f)->proc_tree);
3464 (*f)->proc_sym = NULL;
3468 static void
3469 mio_f2k_derived (gfc_namespace *f2k)
3471 current_f2k_derived = f2k;
3473 /* Handle the list of finalizer procedures. */
3474 mio_lparen ();
3475 if (iomode == IO_OUTPUT)
3477 gfc_finalizer *f;
3478 for (f = f2k->finalizers; f; f = f->next)
3479 mio_finalizer (&f);
3481 else
3483 f2k->finalizers = NULL;
3484 while (peek_atom () != ATOM_RPAREN)
3486 gfc_finalizer *cur = NULL;
3487 mio_finalizer (&cur);
3488 cur->next = f2k->finalizers;
3489 f2k->finalizers = cur;
3492 mio_rparen ();
3494 /* Handle type-bound procedures. */
3495 mio_full_typebound_tree (&f2k->tb_sym_root);
3497 /* Type-bound user operators. */
3498 mio_full_typebound_tree (&f2k->tb_uop_root);
3500 /* Type-bound intrinsic operators. */
3501 mio_lparen ();
3502 if (iomode == IO_OUTPUT)
3504 int op;
3505 for (op = GFC_INTRINSIC_BEGIN; op != GFC_INTRINSIC_END; ++op)
3507 gfc_intrinsic_op realop;
3509 if (op == INTRINSIC_USER || !f2k->tb_op[op])
3510 continue;
3512 mio_lparen ();
3513 realop = (gfc_intrinsic_op) op;
3514 mio_intrinsic_op (&realop);
3515 mio_typebound_proc (&f2k->tb_op[op]);
3516 mio_rparen ();
3519 else
3520 while (peek_atom () != ATOM_RPAREN)
3522 gfc_intrinsic_op op = GFC_INTRINSIC_BEGIN; /* Silence GCC. */
3524 mio_lparen ();
3525 mio_intrinsic_op (&op);
3526 mio_typebound_proc (&f2k->tb_op[op]);
3527 mio_rparen ();
3529 mio_rparen ();
3532 static void
3533 mio_full_f2k_derived (gfc_symbol *sym)
3535 mio_lparen ();
3537 if (iomode == IO_OUTPUT)
3539 if (sym->f2k_derived)
3540 mio_f2k_derived (sym->f2k_derived);
3542 else
3544 if (peek_atom () != ATOM_RPAREN)
3546 sym->f2k_derived = gfc_get_namespace (NULL, 0);
3547 mio_f2k_derived (sym->f2k_derived);
3549 else
3550 gcc_assert (!sym->f2k_derived);
3553 mio_rparen ();
3557 /* Unlike most other routines, the address of the symbol node is already
3558 fixed on input and the name/module has already been filled in. */
3560 static void
3561 mio_symbol (gfc_symbol *sym)
3563 int intmod = INTMOD_NONE;
3565 mio_lparen ();
3567 mio_symbol_attribute (&sym->attr);
3568 mio_typespec (&sym->ts);
3570 if (iomode == IO_OUTPUT)
3571 mio_namespace_ref (&sym->formal_ns);
3572 else
3574 mio_namespace_ref (&sym->formal_ns);
3575 if (sym->formal_ns)
3577 sym->formal_ns->proc_name = sym;
3578 sym->refs++;
3582 /* Save/restore common block links. */
3583 mio_symbol_ref (&sym->common_next);
3585 mio_formal_arglist (&sym->formal);
3587 if (sym->attr.flavor == FL_PARAMETER)
3588 mio_expr (&sym->value);
3590 mio_array_spec (&sym->as);
3592 mio_symbol_ref (&sym->result);
3594 if (sym->attr.cray_pointee)
3595 mio_symbol_ref (&sym->cp_pointer);
3597 /* Note that components are always saved, even if they are supposed
3598 to be private. Component access is checked during searching. */
3600 mio_component_list (&sym->components);
3602 if (sym->components != NULL)
3603 sym->component_access
3604 = MIO_NAME (gfc_access) (sym->component_access, access_types);
3606 /* Load/save the f2k_derived namespace of a derived-type symbol. */
3607 mio_full_f2k_derived (sym);
3609 mio_namelist (sym);
3611 /* Add the fields that say whether this is from an intrinsic module,
3612 and if so, what symbol it is within the module. */
3613 /* mio_integer (&(sym->from_intmod)); */
3614 if (iomode == IO_OUTPUT)
3616 intmod = sym->from_intmod;
3617 mio_integer (&intmod);
3619 else
3621 mio_integer (&intmod);
3622 sym->from_intmod = (intmod_id) intmod;
3625 mio_integer (&(sym->intmod_sym_id));
3627 if (sym->attr.flavor == FL_DERIVED)
3628 mio_integer (&(sym->hash_value));
3630 mio_rparen ();
3634 /************************* Top level subroutines *************************/
3636 /* Given a root symtree node and a symbol, try to find a symtree that
3637 references the symbol that is not a unique name. */
3639 static gfc_symtree *
3640 find_symtree_for_symbol (gfc_symtree *st, gfc_symbol *sym)
3642 gfc_symtree *s = NULL;
3644 if (st == NULL)
3645 return s;
3647 s = find_symtree_for_symbol (st->right, sym);
3648 if (s != NULL)
3649 return s;
3650 s = find_symtree_for_symbol (st->left, sym);
3651 if (s != NULL)
3652 return s;
3654 if (st->n.sym == sym && !check_unique_name (st->name))
3655 return st;
3657 return s;
3661 /* A recursive function to look for a specific symbol by name and by
3662 module. Whilst several symtrees might point to one symbol, its
3663 is sufficient for the purposes here than one exist. Note that
3664 generic interfaces are distinguished as are symbols that have been
3665 renamed in another module. */
3666 static gfc_symtree *
3667 find_symbol (gfc_symtree *st, const char *name,
3668 const char *module, int generic)
3670 int c;
3671 gfc_symtree *retval, *s;
3673 if (st == NULL || st->n.sym == NULL)
3674 return NULL;
3676 c = strcmp (name, st->n.sym->name);
3677 if (c == 0 && st->n.sym->module
3678 && strcmp (module, st->n.sym->module) == 0
3679 && !check_unique_name (st->name))
3681 s = gfc_find_symtree (gfc_current_ns->sym_root, name);
3683 /* Detect symbols that are renamed by use association in another
3684 module by the absence of a symtree and null attr.use_rename,
3685 since the latter is not transmitted in the module file. */
3686 if (((!generic && !st->n.sym->attr.generic)
3687 || (generic && st->n.sym->attr.generic))
3688 && !(s == NULL && !st->n.sym->attr.use_rename))
3689 return st;
3692 retval = find_symbol (st->left, name, module, generic);
3694 if (retval == NULL)
3695 retval = find_symbol (st->right, name, module, generic);
3697 return retval;
3701 /* Skip a list between balanced left and right parens. */
3703 static void
3704 skip_list (void)
3706 int level;
3708 level = 0;
3711 switch (parse_atom ())
3713 case ATOM_LPAREN:
3714 level++;
3715 break;
3717 case ATOM_RPAREN:
3718 level--;
3719 break;
3721 case ATOM_STRING:
3722 gfc_free (atom_string);
3723 break;
3725 case ATOM_NAME:
3726 case ATOM_INTEGER:
3727 break;
3730 while (level > 0);
3734 /* Load operator interfaces from the module. Interfaces are unusual
3735 in that they attach themselves to existing symbols. */
3737 static void
3738 load_operator_interfaces (void)
3740 const char *p;
3741 char name[GFC_MAX_SYMBOL_LEN + 1], module[GFC_MAX_SYMBOL_LEN + 1];
3742 gfc_user_op *uop;
3743 pointer_info *pi = NULL;
3744 int n, i;
3746 mio_lparen ();
3748 while (peek_atom () != ATOM_RPAREN)
3750 mio_lparen ();
3752 mio_internal_string (name);
3753 mio_internal_string (module);
3755 n = number_use_names (name, true);
3756 n = n ? n : 1;
3758 for (i = 1; i <= n; i++)
3760 /* Decide if we need to load this one or not. */
3761 p = find_use_name_n (name, &i, true);
3763 if (p == NULL)
3765 while (parse_atom () != ATOM_RPAREN);
3766 continue;
3769 if (i == 1)
3771 uop = gfc_get_uop (p);
3772 pi = mio_interface_rest (&uop->op);
3774 else
3776 if (gfc_find_uop (p, NULL))
3777 continue;
3778 uop = gfc_get_uop (p);
3779 uop->op = gfc_get_interface ();
3780 uop->op->where = gfc_current_locus;
3781 add_fixup (pi->integer, &uop->op->sym);
3786 mio_rparen ();
3790 /* Load interfaces from the module. Interfaces are unusual in that
3791 they attach themselves to existing symbols. */
3793 static void
3794 load_generic_interfaces (void)
3796 const char *p;
3797 char name[GFC_MAX_SYMBOL_LEN + 1], module[GFC_MAX_SYMBOL_LEN + 1];
3798 gfc_symbol *sym;
3799 gfc_interface *generic = NULL, *gen = NULL;
3800 int n, i, renamed;
3801 bool ambiguous_set = false;
3803 mio_lparen ();
3805 while (peek_atom () != ATOM_RPAREN)
3807 mio_lparen ();
3809 mio_internal_string (name);
3810 mio_internal_string (module);
3812 n = number_use_names (name, false);
3813 renamed = n ? 1 : 0;
3814 n = n ? n : 1;
3816 for (i = 1; i <= n; i++)
3818 gfc_symtree *st;
3819 /* Decide if we need to load this one or not. */
3820 p = find_use_name_n (name, &i, false);
3822 st = find_symbol (gfc_current_ns->sym_root,
3823 name, module_name, 1);
3825 if (!p || gfc_find_symbol (p, NULL, 0, &sym))
3827 /* Skip the specific names for these cases. */
3828 while (i == 1 && parse_atom () != ATOM_RPAREN);
3830 continue;
3833 /* If the symbol exists already and is being USEd without being
3834 in an ONLY clause, do not load a new symtree(11.3.2). */
3835 if (!only_flag && st)
3836 sym = st->n.sym;
3838 if (!sym)
3840 /* Make the symbol inaccessible if it has been added by a USE
3841 statement without an ONLY(11.3.2). */
3842 if (st && only_flag
3843 && !st->n.sym->attr.use_only
3844 && !st->n.sym->attr.use_rename
3845 && strcmp (st->n.sym->module, module_name) == 0)
3847 sym = st->n.sym;
3848 gfc_delete_symtree (&gfc_current_ns->sym_root, name);
3849 st = gfc_get_unique_symtree (gfc_current_ns);
3850 st->n.sym = sym;
3851 sym = NULL;
3853 else if (st)
3855 sym = st->n.sym;
3856 if (strcmp (st->name, p) != 0)
3858 st = gfc_new_symtree (&gfc_current_ns->sym_root, p);
3859 st->n.sym = sym;
3860 sym->refs++;
3864 /* Since we haven't found a valid generic interface, we had
3865 better make one. */
3866 if (!sym)
3868 gfc_get_symbol (p, NULL, &sym);
3869 sym->name = gfc_get_string (name);
3870 sym->module = gfc_get_string (module_name);
3871 sym->attr.flavor = FL_PROCEDURE;
3872 sym->attr.generic = 1;
3873 sym->attr.use_assoc = 1;
3876 else
3878 /* Unless sym is a generic interface, this reference
3879 is ambiguous. */
3880 if (st == NULL)
3881 st = gfc_find_symtree (gfc_current_ns->sym_root, p);
3883 sym = st->n.sym;
3885 if (st && !sym->attr.generic
3886 && !st->ambiguous
3887 && sym->module
3888 && strcmp(module, sym->module))
3890 ambiguous_set = true;
3891 st->ambiguous = 1;
3895 sym->attr.use_only = only_flag;
3896 sym->attr.use_rename = renamed;
3898 if (i == 1)
3900 mio_interface_rest (&sym->generic);
3901 generic = sym->generic;
3903 else if (!sym->generic)
3905 sym->generic = generic;
3906 sym->attr.generic_copy = 1;
3909 /* If a procedure that is not generic has generic interfaces
3910 that include itself, it is generic! We need to take care
3911 to retain symbols ambiguous that were already so. */
3912 if (sym->attr.use_assoc
3913 && !sym->attr.generic
3914 && sym->attr.flavor == FL_PROCEDURE)
3916 for (gen = generic; gen; gen = gen->next)
3918 if (gen->sym == sym)
3920 sym->attr.generic = 1;
3921 if (ambiguous_set)
3922 st->ambiguous = 0;
3923 break;
3931 mio_rparen ();
3935 /* Load common blocks. */
3937 static void
3938 load_commons (void)
3940 char name[GFC_MAX_SYMBOL_LEN + 1];
3941 gfc_common_head *p;
3943 mio_lparen ();
3945 while (peek_atom () != ATOM_RPAREN)
3947 int flags;
3948 mio_lparen ();
3949 mio_internal_string (name);
3951 p = gfc_get_common (name, 1);
3953 mio_symbol_ref (&p->head);
3954 mio_integer (&flags);
3955 if (flags & 1)
3956 p->saved = 1;
3957 if (flags & 2)
3958 p->threadprivate = 1;
3959 p->use_assoc = 1;
3961 /* Get whether this was a bind(c) common or not. */
3962 mio_integer (&p->is_bind_c);
3963 /* Get the binding label. */
3964 mio_internal_string (p->binding_label);
3966 mio_rparen ();
3969 mio_rparen ();
3973 /* Load equivalences. The flag in_load_equiv informs mio_expr_ref of this
3974 so that unused variables are not loaded and so that the expression can
3975 be safely freed. */
3977 static void
3978 load_equiv (void)
3980 gfc_equiv *head, *tail, *end, *eq;
3981 bool unused;
3983 mio_lparen ();
3984 in_load_equiv = true;
3986 end = gfc_current_ns->equiv;
3987 while (end != NULL && end->next != NULL)
3988 end = end->next;
3990 while (peek_atom () != ATOM_RPAREN) {
3991 mio_lparen ();
3992 head = tail = NULL;
3994 while(peek_atom () != ATOM_RPAREN)
3996 if (head == NULL)
3997 head = tail = gfc_get_equiv ();
3998 else
4000 tail->eq = gfc_get_equiv ();
4001 tail = tail->eq;
4004 mio_pool_string (&tail->module);
4005 mio_expr (&tail->expr);
4008 /* Unused equivalence members have a unique name. In addition, it
4009 must be checked that the symbols are from the same module. */
4010 unused = true;
4011 for (eq = head; eq; eq = eq->eq)
4013 if (eq->expr->symtree->n.sym->module
4014 && head->expr->symtree->n.sym->module
4015 && strcmp (head->expr->symtree->n.sym->module,
4016 eq->expr->symtree->n.sym->module) == 0
4017 && !check_unique_name (eq->expr->symtree->name))
4019 unused = false;
4020 break;
4024 if (unused)
4026 for (eq = head; eq; eq = head)
4028 head = eq->eq;
4029 gfc_free_expr (eq->expr);
4030 gfc_free (eq);
4034 if (end == NULL)
4035 gfc_current_ns->equiv = head;
4036 else
4037 end->next = head;
4039 if (head != NULL)
4040 end = head;
4042 mio_rparen ();
4045 mio_rparen ();
4046 in_load_equiv = false;
4050 /* This function loads the sym_root of f2k_derived with the extensions to
4051 the derived type. */
4052 static void
4053 load_derived_extensions (void)
4055 int symbol, j;
4056 gfc_symbol *derived;
4057 gfc_symbol *dt;
4058 gfc_symtree *st;
4059 pointer_info *info;
4060 char name[GFC_MAX_SYMBOL_LEN + 1];
4061 char module[GFC_MAX_SYMBOL_LEN + 1];
4062 const char *p;
4064 mio_lparen ();
4065 while (peek_atom () != ATOM_RPAREN)
4067 mio_lparen ();
4068 mio_integer (&symbol);
4069 info = get_integer (symbol);
4070 derived = info->u.rsym.sym;
4072 /* This one is not being loaded. */
4073 if (!info || !derived)
4075 while (peek_atom () != ATOM_RPAREN)
4076 skip_list ();
4077 continue;
4080 gcc_assert (derived->attr.flavor == FL_DERIVED);
4081 if (derived->f2k_derived == NULL)
4082 derived->f2k_derived = gfc_get_namespace (NULL, 0);
4084 while (peek_atom () != ATOM_RPAREN)
4086 mio_lparen ();
4087 mio_internal_string (name);
4088 mio_internal_string (module);
4090 /* Only use one use name to find the symbol. */
4091 j = 1;
4092 p = find_use_name_n (name, &j, false);
4093 if (p)
4095 st = gfc_find_symtree (gfc_current_ns->sym_root, p);
4096 dt = st->n.sym;
4097 st = gfc_find_symtree (derived->f2k_derived->sym_root, name);
4098 if (st == NULL)
4100 /* Only use the real name in f2k_derived to ensure a single
4101 symtree. */
4102 st = gfc_new_symtree (&derived->f2k_derived->sym_root, name);
4103 st->n.sym = dt;
4104 st->n.sym->refs++;
4107 mio_rparen ();
4109 mio_rparen ();
4111 mio_rparen ();
4115 /* Recursive function to traverse the pointer_info tree and load a
4116 needed symbol. We return nonzero if we load a symbol and stop the
4117 traversal, because the act of loading can alter the tree. */
4119 static int
4120 load_needed (pointer_info *p)
4122 gfc_namespace *ns;
4123 pointer_info *q;
4124 gfc_symbol *sym;
4125 int rv;
4127 rv = 0;
4128 if (p == NULL)
4129 return rv;
4131 rv |= load_needed (p->left);
4132 rv |= load_needed (p->right);
4134 if (p->type != P_SYMBOL || p->u.rsym.state != NEEDED)
4135 return rv;
4137 p->u.rsym.state = USED;
4139 set_module_locus (&p->u.rsym.where);
4141 sym = p->u.rsym.sym;
4142 if (sym == NULL)
4144 q = get_integer (p->u.rsym.ns);
4146 ns = (gfc_namespace *) q->u.pointer;
4147 if (ns == NULL)
4149 /* Create an interface namespace if necessary. These are
4150 the namespaces that hold the formal parameters of module
4151 procedures. */
4153 ns = gfc_get_namespace (NULL, 0);
4154 associate_integer_pointer (q, ns);
4157 /* Use the module sym as 'proc_name' so that gfc_get_symbol_decl
4158 doesn't go pear-shaped if the symbol is used. */
4159 if (!ns->proc_name)
4160 gfc_find_symbol (p->u.rsym.module, gfc_current_ns,
4161 1, &ns->proc_name);
4163 sym = gfc_new_symbol (p->u.rsym.true_name, ns);
4164 sym->module = gfc_get_string (p->u.rsym.module);
4165 strcpy (sym->binding_label, p->u.rsym.binding_label);
4167 associate_integer_pointer (p, sym);
4170 mio_symbol (sym);
4171 sym->attr.use_assoc = 1;
4172 if (only_flag)
4173 sym->attr.use_only = 1;
4174 if (p->u.rsym.renamed)
4175 sym->attr.use_rename = 1;
4177 return 1;
4181 /* Recursive function for cleaning up things after a module has been read. */
4183 static void
4184 read_cleanup (pointer_info *p)
4186 gfc_symtree *st;
4187 pointer_info *q;
4189 if (p == NULL)
4190 return;
4192 read_cleanup (p->left);
4193 read_cleanup (p->right);
4195 if (p->type == P_SYMBOL && p->u.rsym.state == USED && !p->u.rsym.referenced)
4197 /* Add hidden symbols to the symtree. */
4198 q = get_integer (p->u.rsym.ns);
4199 st = gfc_get_unique_symtree ((gfc_namespace *) q->u.pointer);
4201 st->n.sym = p->u.rsym.sym;
4202 st->n.sym->refs++;
4204 /* Fixup any symtree references. */
4205 p->u.rsym.symtree = st;
4206 resolve_fixups (p->u.rsym.stfixup, st);
4207 p->u.rsym.stfixup = NULL;
4210 /* Free unused symbols. */
4211 if (p->type == P_SYMBOL && p->u.rsym.state == UNUSED)
4212 gfc_free_symbol (p->u.rsym.sym);
4216 /* It is not quite enough to check for ambiguity in the symbols by
4217 the loaded symbol and the new symbol not being identical. */
4218 static bool
4219 check_for_ambiguous (gfc_symbol *st_sym, pointer_info *info)
4221 gfc_symbol *rsym;
4222 module_locus locus;
4223 symbol_attribute attr;
4225 rsym = info->u.rsym.sym;
4226 if (st_sym == rsym)
4227 return false;
4229 if (st_sym->attr.vtab || st_sym->attr.vtype)
4230 return false;
4232 /* If the existing symbol is generic from a different module and
4233 the new symbol is generic there can be no ambiguity. */
4234 if (st_sym->attr.generic
4235 && st_sym->module
4236 && strcmp (st_sym->module, module_name))
4238 /* The new symbol's attributes have not yet been read. Since
4239 we need attr.generic, read it directly. */
4240 get_module_locus (&locus);
4241 set_module_locus (&info->u.rsym.where);
4242 mio_lparen ();
4243 attr.generic = 0;
4244 mio_symbol_attribute (&attr);
4245 set_module_locus (&locus);
4246 if (attr.generic)
4247 return false;
4250 return true;
4254 /* Read a module file. */
4256 static void
4257 read_module (void)
4259 module_locus operator_interfaces, user_operators, extensions;
4260 const char *p;
4261 char name[GFC_MAX_SYMBOL_LEN + 1];
4262 int i;
4263 int ambiguous, j, nuse, symbol;
4264 pointer_info *info, *q;
4265 gfc_use_rename *u;
4266 gfc_symtree *st;
4267 gfc_symbol *sym;
4269 get_module_locus (&operator_interfaces); /* Skip these for now. */
4270 skip_list ();
4272 get_module_locus (&user_operators);
4273 skip_list ();
4274 skip_list ();
4276 /* Skip commons, equivalences and derived type extensions for now. */
4277 skip_list ();
4278 skip_list ();
4280 get_module_locus (&extensions);
4281 skip_list ();
4283 mio_lparen ();
4285 /* Create the fixup nodes for all the symbols. */
4287 while (peek_atom () != ATOM_RPAREN)
4289 require_atom (ATOM_INTEGER);
4290 info = get_integer (atom_int);
4292 info->type = P_SYMBOL;
4293 info->u.rsym.state = UNUSED;
4295 mio_internal_string (info->u.rsym.true_name);
4296 mio_internal_string (info->u.rsym.module);
4297 mio_internal_string (info->u.rsym.binding_label);
4300 require_atom (ATOM_INTEGER);
4301 info->u.rsym.ns = atom_int;
4303 get_module_locus (&info->u.rsym.where);
4304 skip_list ();
4306 /* See if the symbol has already been loaded by a previous module.
4307 If so, we reference the existing symbol and prevent it from
4308 being loaded again. This should not happen if the symbol being
4309 read is an index for an assumed shape dummy array (ns != 1). */
4311 sym = find_true_name (info->u.rsym.true_name, info->u.rsym.module);
4313 if (sym == NULL
4314 || (sym->attr.flavor == FL_VARIABLE && info->u.rsym.ns !=1))
4315 continue;
4317 info->u.rsym.state = USED;
4318 info->u.rsym.sym = sym;
4320 /* Some symbols do not have a namespace (eg. formal arguments),
4321 so the automatic "unique symtree" mechanism must be suppressed
4322 by marking them as referenced. */
4323 q = get_integer (info->u.rsym.ns);
4324 if (q->u.pointer == NULL)
4326 info->u.rsym.referenced = 1;
4327 continue;
4330 /* If possible recycle the symtree that references the symbol.
4331 If a symtree is not found and the module does not import one,
4332 a unique-name symtree is found by read_cleanup. */
4333 st = find_symtree_for_symbol (gfc_current_ns->sym_root, sym);
4334 if (st != NULL)
4336 info->u.rsym.symtree = st;
4337 info->u.rsym.referenced = 1;
4341 mio_rparen ();
4343 /* Parse the symtree lists. This lets us mark which symbols need to
4344 be loaded. Renaming is also done at this point by replacing the
4345 symtree name. */
4347 mio_lparen ();
4349 while (peek_atom () != ATOM_RPAREN)
4351 mio_internal_string (name);
4352 mio_integer (&ambiguous);
4353 mio_integer (&symbol);
4355 info = get_integer (symbol);
4357 /* See how many use names there are. If none, go through the start
4358 of the loop at least once. */
4359 nuse = number_use_names (name, false);
4360 info->u.rsym.renamed = nuse ? 1 : 0;
4362 if (nuse == 0)
4363 nuse = 1;
4365 for (j = 1; j <= nuse; j++)
4367 /* Get the jth local name for this symbol. */
4368 p = find_use_name_n (name, &j, false);
4370 if (p == NULL && strcmp (name, module_name) == 0)
4371 p = name;
4373 /* Skip symtree nodes not in an ONLY clause, unless there
4374 is an existing symtree loaded from another USE statement. */
4375 if (p == NULL)
4377 st = gfc_find_symtree (gfc_current_ns->sym_root, name);
4378 if (st != NULL)
4379 info->u.rsym.symtree = st;
4380 continue;
4383 /* If a symbol of the same name and module exists already,
4384 this symbol, which is not in an ONLY clause, must not be
4385 added to the namespace(11.3.2). Note that find_symbol
4386 only returns the first occurrence that it finds. */
4387 if (!only_flag && !info->u.rsym.renamed
4388 && strcmp (name, module_name) != 0
4389 && find_symbol (gfc_current_ns->sym_root, name,
4390 module_name, 0))
4391 continue;
4393 st = gfc_find_symtree (gfc_current_ns->sym_root, p);
4395 if (st != NULL)
4397 /* Check for ambiguous symbols. */
4398 if (check_for_ambiguous (st->n.sym, info))
4399 st->ambiguous = 1;
4400 info->u.rsym.symtree = st;
4402 else
4404 st = gfc_find_symtree (gfc_current_ns->sym_root, name);
4406 /* Delete the symtree if the symbol has been added by a USE
4407 statement without an ONLY(11.3.2). Remember that the rsym
4408 will be the same as the symbol found in the symtree, for
4409 this case. */
4410 if (st && (only_flag || info->u.rsym.renamed)
4411 && !st->n.sym->attr.use_only
4412 && !st->n.sym->attr.use_rename
4413 && info->u.rsym.sym == st->n.sym)
4414 gfc_delete_symtree (&gfc_current_ns->sym_root, name);
4416 /* Create a symtree node in the current namespace for this
4417 symbol. */
4418 st = check_unique_name (p)
4419 ? gfc_get_unique_symtree (gfc_current_ns)
4420 : gfc_new_symtree (&gfc_current_ns->sym_root, p);
4421 st->ambiguous = ambiguous;
4423 sym = info->u.rsym.sym;
4425 /* Create a symbol node if it doesn't already exist. */
4426 if (sym == NULL)
4428 info->u.rsym.sym = gfc_new_symbol (info->u.rsym.true_name,
4429 gfc_current_ns);
4430 sym = info->u.rsym.sym;
4431 sym->module = gfc_get_string (info->u.rsym.module);
4433 /* TODO: hmm, can we test this? Do we know it will be
4434 initialized to zeros? */
4435 if (info->u.rsym.binding_label[0] != '\0')
4436 strcpy (sym->binding_label, info->u.rsym.binding_label);
4439 st->n.sym = sym;
4440 st->n.sym->refs++;
4442 if (strcmp (name, p) != 0)
4443 sym->attr.use_rename = 1;
4445 /* We need to set the only_flag here so that symbols from the
4446 same USE...ONLY but earlier are not deleted from the tree in
4447 the gfc_delete_symtree above. */
4448 sym->attr.use_only = only_flag;
4450 /* Store the symtree pointing to this symbol. */
4451 info->u.rsym.symtree = st;
4453 if (info->u.rsym.state == UNUSED)
4454 info->u.rsym.state = NEEDED;
4455 info->u.rsym.referenced = 1;
4460 mio_rparen ();
4462 /* Load intrinsic operator interfaces. */
4463 set_module_locus (&operator_interfaces);
4464 mio_lparen ();
4466 for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
4468 if (i == INTRINSIC_USER)
4469 continue;
4471 if (only_flag)
4473 u = find_use_operator ((gfc_intrinsic_op) i);
4475 if (u == NULL)
4477 skip_list ();
4478 continue;
4481 u->found = 1;
4484 mio_interface (&gfc_current_ns->op[i]);
4487 mio_rparen ();
4489 /* Load generic and user operator interfaces. These must follow the
4490 loading of symtree because otherwise symbols can be marked as
4491 ambiguous. */
4493 set_module_locus (&user_operators);
4495 load_operator_interfaces ();
4496 load_generic_interfaces ();
4498 load_commons ();
4499 load_equiv ();
4501 /* At this point, we read those symbols that are needed but haven't
4502 been loaded yet. If one symbol requires another, the other gets
4503 marked as NEEDED if its previous state was UNUSED. */
4505 while (load_needed (pi_root));
4507 /* Make sure all elements of the rename-list were found in the module. */
4509 for (u = gfc_rename_list; u; u = u->next)
4511 if (u->found)
4512 continue;
4514 if (u->op == INTRINSIC_NONE)
4516 gfc_error ("Symbol '%s' referenced at %L not found in module '%s'",
4517 u->use_name, &u->where, module_name);
4518 continue;
4521 if (u->op == INTRINSIC_USER)
4523 gfc_error ("User operator '%s' referenced at %L not found "
4524 "in module '%s'", u->use_name, &u->where, module_name);
4525 continue;
4528 gfc_error ("Intrinsic operator '%s' referenced at %L not found "
4529 "in module '%s'", gfc_op2string (u->op), &u->where,
4530 module_name);
4533 /* Now we should be in a position to fill f2k_derived with derived type
4534 extensions, since everything has been loaded. */
4535 set_module_locus (&extensions);
4536 load_derived_extensions ();
4538 /* Clean up symbol nodes that were never loaded, create references
4539 to hidden symbols. */
4541 read_cleanup (pi_root);
4545 /* Given an access type that is specific to an entity and the default
4546 access, return nonzero if the entity is publicly accessible. If the
4547 element is declared as PUBLIC, then it is public; if declared
4548 PRIVATE, then private, and otherwise it is public unless the default
4549 access in this context has been declared PRIVATE. */
4551 bool
4552 gfc_check_access (gfc_access specific_access, gfc_access default_access)
4554 if (specific_access == ACCESS_PUBLIC)
4555 return TRUE;
4556 if (specific_access == ACCESS_PRIVATE)
4557 return FALSE;
4559 if (gfc_option.flag_module_private)
4560 return default_access == ACCESS_PUBLIC;
4561 else
4562 return default_access != ACCESS_PRIVATE;
4566 /* A structure to remember which commons we've already written. */
4568 struct written_common
4570 BBT_HEADER(written_common);
4571 const char *name, *label;
4574 static struct written_common *written_commons = NULL;
4576 /* Comparison function used for balancing the binary tree. */
4578 static int
4579 compare_written_commons (void *a1, void *b1)
4581 const char *aname = ((struct written_common *) a1)->name;
4582 const char *alabel = ((struct written_common *) a1)->label;
4583 const char *bname = ((struct written_common *) b1)->name;
4584 const char *blabel = ((struct written_common *) b1)->label;
4585 int c = strcmp (aname, bname);
4587 return (c != 0 ? c : strcmp (alabel, blabel));
4590 /* Free a list of written commons. */
4592 static void
4593 free_written_common (struct written_common *w)
4595 if (!w)
4596 return;
4598 if (w->left)
4599 free_written_common (w->left);
4600 if (w->right)
4601 free_written_common (w->right);
4603 gfc_free (w);
4606 /* Write a common block to the module -- recursive helper function. */
4608 static void
4609 write_common_0 (gfc_symtree *st, bool this_module)
4611 gfc_common_head *p;
4612 const char * name;
4613 int flags;
4614 const char *label;
4615 struct written_common *w;
4616 bool write_me = true;
4618 if (st == NULL)
4619 return;
4621 write_common_0 (st->left, this_module);
4623 /* We will write out the binding label, or the name if no label given. */
4624 name = st->n.common->name;
4625 p = st->n.common;
4626 label = p->is_bind_c ? p->binding_label : p->name;
4628 /* Check if we've already output this common. */
4629 w = written_commons;
4630 while (w)
4632 int c = strcmp (name, w->name);
4633 c = (c != 0 ? c : strcmp (label, w->label));
4634 if (c == 0)
4635 write_me = false;
4637 w = (c < 0) ? w->left : w->right;
4640 if (this_module && p->use_assoc)
4641 write_me = false;
4643 if (write_me)
4645 /* Write the common to the module. */
4646 mio_lparen ();
4647 mio_pool_string (&name);
4649 mio_symbol_ref (&p->head);
4650 flags = p->saved ? 1 : 0;
4651 if (p->threadprivate)
4652 flags |= 2;
4653 mio_integer (&flags);
4655 /* Write out whether the common block is bind(c) or not. */
4656 mio_integer (&(p->is_bind_c));
4658 mio_pool_string (&label);
4659 mio_rparen ();
4661 /* Record that we have written this common. */
4662 w = XCNEW (struct written_common);
4663 w->name = p->name;
4664 w->label = label;
4665 gfc_insert_bbt (&written_commons, w, compare_written_commons);
4668 write_common_0 (st->right, this_module);
4672 /* Write a common, by initializing the list of written commons, calling
4673 the recursive function write_common_0() and cleaning up afterwards. */
4675 static void
4676 write_common (gfc_symtree *st)
4678 written_commons = NULL;
4679 write_common_0 (st, true);
4680 write_common_0 (st, false);
4681 free_written_common (written_commons);
4682 written_commons = NULL;
4686 /* Write the blank common block to the module. */
4688 static void
4689 write_blank_common (void)
4691 const char * name = BLANK_COMMON_NAME;
4692 int saved;
4693 /* TODO: Blank commons are not bind(c). The F2003 standard probably says
4694 this, but it hasn't been checked. Just making it so for now. */
4695 int is_bind_c = 0;
4697 if (gfc_current_ns->blank_common.head == NULL)
4698 return;
4700 mio_lparen ();
4702 mio_pool_string (&name);
4704 mio_symbol_ref (&gfc_current_ns->blank_common.head);
4705 saved = gfc_current_ns->blank_common.saved;
4706 mio_integer (&saved);
4708 /* Write out whether the common block is bind(c) or not. */
4709 mio_integer (&is_bind_c);
4711 /* Write out the binding label, which is BLANK_COMMON_NAME, though
4712 it doesn't matter because the label isn't used. */
4713 mio_pool_string (&name);
4715 mio_rparen ();
4719 /* Write equivalences to the module. */
4721 static void
4722 write_equiv (void)
4724 gfc_equiv *eq, *e;
4725 int num;
4727 num = 0;
4728 for (eq = gfc_current_ns->equiv; eq; eq = eq->next)
4730 mio_lparen ();
4732 for (e = eq; e; e = e->eq)
4734 if (e->module == NULL)
4735 e->module = gfc_get_string ("%s.eq.%d", module_name, num);
4736 mio_allocated_string (e->module);
4737 mio_expr (&e->expr);
4740 num++;
4741 mio_rparen ();
4746 /* Write derived type extensions to the module. */
4748 static void
4749 write_dt_extensions (gfc_symtree *st)
4751 if (!gfc_check_access (st->n.sym->attr.access,
4752 st->n.sym->ns->default_access))
4753 return;
4755 mio_lparen ();
4756 mio_pool_string (&st->n.sym->name);
4757 if (st->n.sym->module != NULL)
4758 mio_pool_string (&st->n.sym->module);
4759 else
4760 mio_internal_string (module_name);
4761 mio_rparen ();
4764 static void
4765 write_derived_extensions (gfc_symtree *st)
4767 if (!((st->n.sym->attr.flavor == FL_DERIVED)
4768 && (st->n.sym->f2k_derived != NULL)
4769 && (st->n.sym->f2k_derived->sym_root != NULL)))
4770 return;
4772 mio_lparen ();
4773 mio_symbol_ref (&(st->n.sym));
4774 gfc_traverse_symtree (st->n.sym->f2k_derived->sym_root,
4775 write_dt_extensions);
4776 mio_rparen ();
4780 /* Write a symbol to the module. */
4782 static void
4783 write_symbol (int n, gfc_symbol *sym)
4785 const char *label;
4787 if (sym->attr.flavor == FL_UNKNOWN || sym->attr.flavor == FL_LABEL)
4788 gfc_internal_error ("write_symbol(): bad module symbol '%s'", sym->name);
4790 mio_integer (&n);
4791 mio_pool_string (&sym->name);
4793 mio_pool_string (&sym->module);
4794 if (sym->attr.is_bind_c || sym->attr.is_iso_c)
4796 label = sym->binding_label;
4797 mio_pool_string (&label);
4799 else
4800 mio_pool_string (&sym->name);
4802 mio_pointer_ref (&sym->ns);
4804 mio_symbol (sym);
4805 write_char ('\n');
4809 /* Recursive traversal function to write the initial set of symbols to
4810 the module. We check to see if the symbol should be written
4811 according to the access specification. */
4813 static void
4814 write_symbol0 (gfc_symtree *st)
4816 gfc_symbol *sym;
4817 pointer_info *p;
4818 bool dont_write = false;
4820 if (st == NULL)
4821 return;
4823 write_symbol0 (st->left);
4825 sym = st->n.sym;
4826 if (sym->module == NULL)
4827 sym->module = gfc_get_string (module_name);
4829 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.generic
4830 && !sym->attr.subroutine && !sym->attr.function)
4831 dont_write = true;
4833 if (!gfc_check_access (sym->attr.access, sym->ns->default_access))
4834 dont_write = true;
4836 if (!dont_write)
4838 p = get_pointer (sym);
4839 if (p->type == P_UNKNOWN)
4840 p->type = P_SYMBOL;
4842 if (p->u.wsym.state != WRITTEN)
4844 write_symbol (p->integer, sym);
4845 p->u.wsym.state = WRITTEN;
4849 write_symbol0 (st->right);
4853 /* Recursive traversal function to write the secondary set of symbols
4854 to the module file. These are symbols that were not public yet are
4855 needed by the public symbols or another dependent symbol. The act
4856 of writing a symbol can modify the pointer_info tree, so we cease
4857 traversal if we find a symbol to write. We return nonzero if a
4858 symbol was written and pass that information upwards. */
4860 static int
4861 write_symbol1 (pointer_info *p)
4863 int result;
4865 if (!p)
4866 return 0;
4868 result = write_symbol1 (p->left);
4870 if (!(p->type != P_SYMBOL || p->u.wsym.state != NEEDS_WRITE))
4872 p->u.wsym.state = WRITTEN;
4873 write_symbol (p->integer, p->u.wsym.sym);
4874 result = 1;
4877 result |= write_symbol1 (p->right);
4878 return result;
4882 /* Write operator interfaces associated with a symbol. */
4884 static void
4885 write_operator (gfc_user_op *uop)
4887 static char nullstring[] = "";
4888 const char *p = nullstring;
4890 if (uop->op == NULL
4891 || !gfc_check_access (uop->access, uop->ns->default_access))
4892 return;
4894 mio_symbol_interface (&uop->name, &p, &uop->op);
4898 /* Write generic interfaces from the namespace sym_root. */
4900 static void
4901 write_generic (gfc_symtree *st)
4903 gfc_symbol *sym;
4905 if (st == NULL)
4906 return;
4908 write_generic (st->left);
4909 write_generic (st->right);
4911 sym = st->n.sym;
4912 if (!sym || check_unique_name (st->name))
4913 return;
4915 if (sym->generic == NULL
4916 || !gfc_check_access (sym->attr.access, sym->ns->default_access))
4917 return;
4919 if (sym->module == NULL)
4920 sym->module = gfc_get_string (module_name);
4922 mio_symbol_interface (&st->name, &sym->module, &sym->generic);
4926 static void
4927 write_symtree (gfc_symtree *st)
4929 gfc_symbol *sym;
4930 pointer_info *p;
4932 sym = st->n.sym;
4934 /* A symbol in an interface body must not be visible in the
4935 module file. */
4936 if (sym->ns != gfc_current_ns
4937 && sym->ns->proc_name
4938 && sym->ns->proc_name->attr.if_source == IFSRC_IFBODY)
4939 return;
4941 if (!gfc_check_access (sym->attr.access, sym->ns->default_access)
4942 || (sym->attr.flavor == FL_PROCEDURE && sym->attr.generic
4943 && !sym->attr.subroutine && !sym->attr.function))
4944 return;
4946 if (check_unique_name (st->name))
4947 return;
4949 p = find_pointer (sym);
4950 if (p == NULL)
4951 gfc_internal_error ("write_symtree(): Symbol not written");
4953 mio_pool_string (&st->name);
4954 mio_integer (&st->ambiguous);
4955 mio_integer (&p->integer);
4959 static void
4960 write_module (void)
4962 int i;
4964 /* Write the operator interfaces. */
4965 mio_lparen ();
4967 for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
4969 if (i == INTRINSIC_USER)
4970 continue;
4972 mio_interface (gfc_check_access (gfc_current_ns->operator_access[i],
4973 gfc_current_ns->default_access)
4974 ? &gfc_current_ns->op[i] : NULL);
4977 mio_rparen ();
4978 write_char ('\n');
4979 write_char ('\n');
4981 mio_lparen ();
4982 gfc_traverse_user_op (gfc_current_ns, write_operator);
4983 mio_rparen ();
4984 write_char ('\n');
4985 write_char ('\n');
4987 mio_lparen ();
4988 write_generic (gfc_current_ns->sym_root);
4989 mio_rparen ();
4990 write_char ('\n');
4991 write_char ('\n');
4993 mio_lparen ();
4994 write_blank_common ();
4995 write_common (gfc_current_ns->common_root);
4996 mio_rparen ();
4997 write_char ('\n');
4998 write_char ('\n');
5000 mio_lparen ();
5001 write_equiv ();
5002 mio_rparen ();
5003 write_char ('\n');
5004 write_char ('\n');
5006 mio_lparen ();
5007 gfc_traverse_symtree (gfc_current_ns->sym_root,
5008 write_derived_extensions);
5009 mio_rparen ();
5010 write_char ('\n');
5011 write_char ('\n');
5013 /* Write symbol information. First we traverse all symbols in the
5014 primary namespace, writing those that need to be written.
5015 Sometimes writing one symbol will cause another to need to be
5016 written. A list of these symbols ends up on the write stack, and
5017 we end by popping the bottom of the stack and writing the symbol
5018 until the stack is empty. */
5020 mio_lparen ();
5022 write_symbol0 (gfc_current_ns->sym_root);
5023 while (write_symbol1 (pi_root))
5024 /* Nothing. */;
5026 mio_rparen ();
5028 write_char ('\n');
5029 write_char ('\n');
5031 mio_lparen ();
5032 gfc_traverse_symtree (gfc_current_ns->sym_root, write_symtree);
5033 mio_rparen ();
5037 /* Read a MD5 sum from the header of a module file. If the file cannot
5038 be opened, or we have any other error, we return -1. */
5040 static int
5041 read_md5_from_module_file (const char * filename, unsigned char md5[16])
5043 FILE *file;
5044 char buf[1024];
5045 int n;
5047 /* Open the file. */
5048 if ((file = fopen (filename, "r")) == NULL)
5049 return -1;
5051 /* Read the first line. */
5052 if (fgets (buf, sizeof (buf) - 1, file) == NULL)
5054 fclose (file);
5055 return -1;
5058 /* The file also needs to be overwritten if the version number changed. */
5059 n = strlen ("GFORTRAN module version '" MOD_VERSION "' created");
5060 if (strncmp (buf, "GFORTRAN module version '" MOD_VERSION "' created", n) != 0)
5062 fclose (file);
5063 return -1;
5066 /* Read a second line. */
5067 if (fgets (buf, sizeof (buf) - 1, file) == NULL)
5069 fclose (file);
5070 return -1;
5073 /* Close the file. */
5074 fclose (file);
5076 /* If the header is not what we expect, or is too short, bail out. */
5077 if (strncmp (buf, "MD5:", 4) != 0 || strlen (buf) < 4 + 16)
5078 return -1;
5080 /* Now, we have a real MD5, read it into the array. */
5081 for (n = 0; n < 16; n++)
5083 unsigned int x;
5085 if (sscanf (&(buf[4+2*n]), "%02x", &x) != 1)
5086 return -1;
5088 md5[n] = x;
5091 return 0;
5095 /* Given module, dump it to disk. If there was an error while
5096 processing the module, dump_flag will be set to zero and we delete
5097 the module file, even if it was already there. */
5099 void
5100 gfc_dump_module (const char *name, int dump_flag)
5102 int n;
5103 char *filename, *filename_tmp, *p;
5104 time_t now;
5105 fpos_t md5_pos;
5106 unsigned char md5_new[16], md5_old[16];
5108 n = strlen (name) + strlen (MODULE_EXTENSION) + 1;
5109 if (gfc_option.module_dir != NULL)
5111 n += strlen (gfc_option.module_dir);
5112 filename = (char *) alloca (n);
5113 strcpy (filename, gfc_option.module_dir);
5114 strcat (filename, name);
5116 else
5118 filename = (char *) alloca (n);
5119 strcpy (filename, name);
5121 strcat (filename, MODULE_EXTENSION);
5123 /* Name of the temporary file used to write the module. */
5124 filename_tmp = (char *) alloca (n + 1);
5125 strcpy (filename_tmp, filename);
5126 strcat (filename_tmp, "0");
5128 /* There was an error while processing the module. We delete the
5129 module file, even if it was already there. */
5130 if (!dump_flag)
5132 unlink (filename);
5133 return;
5136 if (gfc_cpp_makedep ())
5137 gfc_cpp_add_target (filename);
5139 /* Write the module to the temporary file. */
5140 module_fp = fopen (filename_tmp, "w");
5141 if (module_fp == NULL)
5142 gfc_fatal_error ("Can't open module file '%s' for writing at %C: %s",
5143 filename_tmp, xstrerror (errno));
5145 /* Write the header, including space reserved for the MD5 sum. */
5146 now = time (NULL);
5147 p = ctime (&now);
5149 *strchr (p, '\n') = '\0';
5151 fprintf (module_fp, "GFORTRAN module version '%s' created from %s on %s\n"
5152 "MD5:", MOD_VERSION, gfc_source_file, p);
5153 fgetpos (module_fp, &md5_pos);
5154 fputs ("00000000000000000000000000000000 -- "
5155 "If you edit this, you'll get what you deserve.\n\n", module_fp);
5157 /* Initialize the MD5 context that will be used for output. */
5158 md5_init_ctx (&ctx);
5160 /* Write the module itself. */
5161 iomode = IO_OUTPUT;
5162 strcpy (module_name, name);
5164 init_pi_tree ();
5166 write_module ();
5168 free_pi_tree (pi_root);
5169 pi_root = NULL;
5171 write_char ('\n');
5173 /* Write the MD5 sum to the header of the module file. */
5174 md5_finish_ctx (&ctx, md5_new);
5175 fsetpos (module_fp, &md5_pos);
5176 for (n = 0; n < 16; n++)
5177 fprintf (module_fp, "%02x", md5_new[n]);
5179 if (fclose (module_fp))
5180 gfc_fatal_error ("Error writing module file '%s' for writing: %s",
5181 filename_tmp, xstrerror (errno));
5183 /* Read the MD5 from the header of the old module file and compare. */
5184 if (read_md5_from_module_file (filename, md5_old) != 0
5185 || memcmp (md5_old, md5_new, sizeof (md5_old)) != 0)
5187 /* Module file have changed, replace the old one. */
5188 if (unlink (filename) && errno != ENOENT)
5189 gfc_fatal_error ("Can't delete module file '%s': %s", filename,
5190 xstrerror (errno));
5191 if (rename (filename_tmp, filename))
5192 gfc_fatal_error ("Can't rename module file '%s' to '%s': %s",
5193 filename_tmp, filename, xstrerror (errno));
5195 else
5197 if (unlink (filename_tmp))
5198 gfc_fatal_error ("Can't delete temporary module file '%s': %s",
5199 filename_tmp, xstrerror (errno));
5204 /* Import the intrinsic ISO_C_BINDING module, generating symbols in
5205 the current namespace for all named constants, pointer types, and
5206 procedures in the module unless the only clause was used or a rename
5207 list was provided. */
5209 static void
5210 import_iso_c_binding_module (void)
5212 gfc_symbol *mod_sym = NULL;
5213 gfc_symtree *mod_symtree = NULL;
5214 const char *iso_c_module_name = "__iso_c_binding";
5215 gfc_use_rename *u;
5216 int i;
5218 /* Look only in the current namespace. */
5219 mod_symtree = gfc_find_symtree (gfc_current_ns->sym_root, iso_c_module_name);
5221 if (mod_symtree == NULL)
5223 /* symtree doesn't already exist in current namespace. */
5224 gfc_get_sym_tree (iso_c_module_name, gfc_current_ns, &mod_symtree,
5225 false);
5227 if (mod_symtree != NULL)
5228 mod_sym = mod_symtree->n.sym;
5229 else
5230 gfc_internal_error ("import_iso_c_binding_module(): Unable to "
5231 "create symbol for %s", iso_c_module_name);
5233 mod_sym->attr.flavor = FL_MODULE;
5234 mod_sym->attr.intrinsic = 1;
5235 mod_sym->module = gfc_get_string (iso_c_module_name);
5236 mod_sym->from_intmod = INTMOD_ISO_C_BINDING;
5239 /* Generate the symbols for the named constants representing
5240 the kinds for intrinsic data types. */
5241 for (i = 0; i < ISOCBINDING_NUMBER; i++)
5243 bool found = false;
5244 for (u = gfc_rename_list; u; u = u->next)
5245 if (strcmp (c_interop_kinds_table[i].name, u->use_name) == 0)
5247 u->found = 1;
5248 found = true;
5249 generate_isocbinding_symbol (iso_c_module_name,
5250 (iso_c_binding_symbol) i,
5251 u->local_name);
5254 if (!found && !only_flag)
5255 generate_isocbinding_symbol (iso_c_module_name,
5256 (iso_c_binding_symbol) i, NULL);
5259 for (u = gfc_rename_list; u; u = u->next)
5261 if (u->found)
5262 continue;
5264 gfc_error ("Symbol '%s' referenced at %L not found in intrinsic "
5265 "module ISO_C_BINDING", u->use_name, &u->where);
5270 /* Add an integer named constant from a given module. */
5272 static void
5273 create_int_parameter (const char *name, int value, const char *modname,
5274 intmod_id module, int id)
5276 gfc_symtree *tmp_symtree;
5277 gfc_symbol *sym;
5279 tmp_symtree = gfc_find_symtree (gfc_current_ns->sym_root, name);
5280 if (tmp_symtree != NULL)
5282 if (strcmp (modname, tmp_symtree->n.sym->module) == 0)
5283 return;
5284 else
5285 gfc_error ("Symbol '%s' already declared", name);
5288 gfc_get_sym_tree (name, gfc_current_ns, &tmp_symtree, false);
5289 sym = tmp_symtree->n.sym;
5291 sym->module = gfc_get_string (modname);
5292 sym->attr.flavor = FL_PARAMETER;
5293 sym->ts.type = BT_INTEGER;
5294 sym->ts.kind = gfc_default_integer_kind;
5295 sym->value = gfc_get_int_expr (gfc_default_integer_kind, NULL, value);
5296 sym->attr.use_assoc = 1;
5297 sym->from_intmod = module;
5298 sym->intmod_sym_id = id;
5302 /* USE the ISO_FORTRAN_ENV intrinsic module. */
5304 static void
5305 use_iso_fortran_env_module (void)
5307 static char mod[] = "iso_fortran_env";
5308 gfc_use_rename *u;
5309 gfc_symbol *mod_sym;
5310 gfc_symtree *mod_symtree;
5311 int i;
5313 intmod_sym symbol[] = {
5314 #define NAMED_INTCST(a,b,c,d) { a, b, 0, d },
5315 #include "iso-fortran-env.def"
5316 #undef NAMED_INTCST
5317 { ISOFORTRANENV_INVALID, NULL, -1234, 0 } };
5319 i = 0;
5320 #define NAMED_INTCST(a,b,c,d) symbol[i++].value = c;
5321 #include "iso-fortran-env.def"
5322 #undef NAMED_INTCST
5324 /* Generate the symbol for the module itself. */
5325 mod_symtree = gfc_find_symtree (gfc_current_ns->sym_root, mod);
5326 if (mod_symtree == NULL)
5328 gfc_get_sym_tree (mod, gfc_current_ns, &mod_symtree, false);
5329 gcc_assert (mod_symtree);
5330 mod_sym = mod_symtree->n.sym;
5332 mod_sym->attr.flavor = FL_MODULE;
5333 mod_sym->attr.intrinsic = 1;
5334 mod_sym->module = gfc_get_string (mod);
5335 mod_sym->from_intmod = INTMOD_ISO_FORTRAN_ENV;
5337 else
5338 if (!mod_symtree->n.sym->attr.intrinsic)
5339 gfc_error ("Use of intrinsic module '%s' at %C conflicts with "
5340 "non-intrinsic module name used previously", mod);
5342 /* Generate the symbols for the module integer named constants. */
5344 for (i = 0; symbol[i].name; i++)
5346 bool found = false;
5347 for (u = gfc_rename_list; u; u = u->next)
5349 if (strcmp (symbol[i].name, u->use_name) == 0)
5351 found = true;
5352 u->found = 1;
5354 if (gfc_notify_std (symbol[i].standard, "The symbol '%s', "
5355 "referrenced at %C, is not in the selected "
5356 "standard", symbol[i].name) == FAILURE)
5357 continue;
5359 if ((gfc_option.flag_default_integer || gfc_option.flag_default_real)
5360 && symbol[i].id == ISOFORTRANENV_NUMERIC_STORAGE_SIZE)
5361 gfc_warning_now ("Use of the NUMERIC_STORAGE_SIZE named "
5362 "constant from intrinsic module "
5363 "ISO_FORTRAN_ENV at %C is incompatible with "
5364 "option %s",
5365 gfc_option.flag_default_integer
5366 ? "-fdefault-integer-8"
5367 : "-fdefault-real-8");
5369 create_int_parameter (u->local_name[0] ? u->local_name : u->use_name,
5370 symbol[i].value, mod,
5371 INTMOD_ISO_FORTRAN_ENV, symbol[i].id);
5375 if (!found && !only_flag)
5377 if ((gfc_option.allow_std & symbol[i].standard) == 0)
5378 continue;
5380 if ((gfc_option.flag_default_integer || gfc_option.flag_default_real)
5381 && symbol[i].id == ISOFORTRANENV_NUMERIC_STORAGE_SIZE)
5382 gfc_warning_now ("Use of the NUMERIC_STORAGE_SIZE named constant "
5383 "from intrinsic module ISO_FORTRAN_ENV at %C is "
5384 "incompatible with option %s",
5385 gfc_option.flag_default_integer
5386 ? "-fdefault-integer-8" : "-fdefault-real-8");
5388 create_int_parameter (symbol[i].name, symbol[i].value, mod,
5389 INTMOD_ISO_FORTRAN_ENV, symbol[i].id);
5393 for (u = gfc_rename_list; u; u = u->next)
5395 if (u->found)
5396 continue;
5398 gfc_error ("Symbol '%s' referenced at %L not found in intrinsic "
5399 "module ISO_FORTRAN_ENV", u->use_name, &u->where);
5404 /* Process a USE directive. */
5406 void
5407 gfc_use_module (void)
5409 char *filename;
5410 gfc_state_data *p;
5411 int c, line, start;
5412 gfc_symtree *mod_symtree;
5413 gfc_use_list *use_stmt;
5415 filename = (char *) alloca (strlen (module_name) + strlen (MODULE_EXTENSION)
5416 + 1);
5417 strcpy (filename, module_name);
5418 strcat (filename, MODULE_EXTENSION);
5420 /* First, try to find an non-intrinsic module, unless the USE statement
5421 specified that the module is intrinsic. */
5422 module_fp = NULL;
5423 if (!specified_int)
5424 module_fp = gfc_open_included_file (filename, true, true);
5426 /* Then, see if it's an intrinsic one, unless the USE statement
5427 specified that the module is non-intrinsic. */
5428 if (module_fp == NULL && !specified_nonint)
5430 if (strcmp (module_name, "iso_fortran_env") == 0
5431 && gfc_notify_std (GFC_STD_F2003, "Fortran 2003: ISO_FORTRAN_ENV "
5432 "intrinsic module at %C") != FAILURE)
5434 use_iso_fortran_env_module ();
5435 return;
5438 if (strcmp (module_name, "iso_c_binding") == 0
5439 && gfc_notify_std (GFC_STD_F2003, "Fortran 2003: "
5440 "ISO_C_BINDING module at %C") != FAILURE)
5442 import_iso_c_binding_module();
5443 return;
5446 module_fp = gfc_open_intrinsic_module (filename);
5448 if (module_fp == NULL && specified_int)
5449 gfc_fatal_error ("Can't find an intrinsic module named '%s' at %C",
5450 module_name);
5453 if (module_fp == NULL)
5454 gfc_fatal_error ("Can't open module file '%s' for reading at %C: %s",
5455 filename, xstrerror (errno));
5457 /* Check that we haven't already USEd an intrinsic module with the
5458 same name. */
5460 mod_symtree = gfc_find_symtree (gfc_current_ns->sym_root, module_name);
5461 if (mod_symtree && mod_symtree->n.sym->attr.intrinsic)
5462 gfc_error ("Use of non-intrinsic module '%s' at %C conflicts with "
5463 "intrinsic module name used previously", module_name);
5465 iomode = IO_INPUT;
5466 module_line = 1;
5467 module_column = 1;
5468 start = 0;
5470 /* Skip the first two lines of the module, after checking that this is
5471 a gfortran module file. */
5472 line = 0;
5473 while (line < 2)
5475 c = module_char ();
5476 if (c == EOF)
5477 bad_module ("Unexpected end of module");
5478 if (start++ < 3)
5479 parse_name (c);
5480 if ((start == 1 && strcmp (atom_name, "GFORTRAN") != 0)
5481 || (start == 2 && strcmp (atom_name, " module") != 0))
5482 gfc_fatal_error ("File '%s' opened at %C is not a GFORTRAN module "
5483 "file", filename);
5484 if (start == 3)
5486 if (strcmp (atom_name, " version") != 0
5487 || module_char () != ' '
5488 || parse_atom () != ATOM_STRING)
5489 gfc_fatal_error ("Parse error when checking module version"
5490 " for file '%s' opened at %C", filename);
5492 if (strcmp (atom_string, MOD_VERSION))
5494 gfc_fatal_error ("Wrong module version '%s' (expected '%s') "
5495 "for file '%s' opened at %C", atom_string,
5496 MOD_VERSION, filename);
5500 if (c == '\n')
5501 line++;
5504 /* Make sure we're not reading the same module that we may be building. */
5505 for (p = gfc_state_stack; p; p = p->previous)
5506 if (p->state == COMP_MODULE && strcmp (p->sym->name, module_name) == 0)
5507 gfc_fatal_error ("Can't USE the same module we're building!");
5509 init_pi_tree ();
5510 init_true_name_tree ();
5512 read_module ();
5514 free_true_name (true_name_root);
5515 true_name_root = NULL;
5517 free_pi_tree (pi_root);
5518 pi_root = NULL;
5520 fclose (module_fp);
5522 use_stmt = gfc_get_use_list ();
5523 use_stmt->module_name = gfc_get_string (module_name);
5524 use_stmt->only_flag = only_flag;
5525 use_stmt->rename = gfc_rename_list;
5526 use_stmt->where = use_locus;
5527 gfc_rename_list = NULL;
5528 use_stmt->next = gfc_current_ns->use_stmts;
5529 gfc_current_ns->use_stmts = use_stmt;
5533 void
5534 gfc_free_use_stmts (gfc_use_list *use_stmts)
5536 gfc_use_list *next;
5537 for (; use_stmts; use_stmts = next)
5539 gfc_use_rename *next_rename;
5541 for (; use_stmts->rename; use_stmts->rename = next_rename)
5543 next_rename = use_stmts->rename->next;
5544 gfc_free (use_stmts->rename);
5546 next = use_stmts->next;
5547 gfc_free (use_stmts);
5552 void
5553 gfc_module_init_2 (void)
5555 last_atom = ATOM_LPAREN;
5559 void
5560 gfc_module_done_2 (void)
5562 free_rename ();