1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2014 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Instruction scheduling pass. This file, along with sched-deps.c,
23 contains the generic parts. The actual entry point for
24 the normal instruction scheduling pass is found in sched-rgn.c.
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
58 1. choose insn with the longest path to end of bb, ties
60 2. choose insn with least contribution to register pressure,
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
80 compute_block_dependences ().
82 Dependencies set up by memory references are treated in exactly the
83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
85 INSN_FORW_DEPS for the purpose of forward list scheduling.
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
123 beginning of basic blocks and regions that have been scheduled. */
127 #include "coretypes.h"
129 #include "diagnostic-core.h"
130 #include "hard-reg-set.h"
134 #include "function.h"
136 #include "insn-config.h"
137 #include "insn-attr.h"
140 #include "sched-int.h"
142 #include "common/common-target.h"
147 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
148 #include "hash-table.h"
149 #include "dumpfile.h"
151 #ifdef INSN_SCHEDULING
153 /* True if we do register pressure relief through live-range
155 static bool live_range_shrinkage_p
;
157 /* Switch on live range shrinkage. */
159 initialize_live_range_shrinkage (void)
161 live_range_shrinkage_p
= true;
164 /* Switch off live range shrinkage. */
166 finish_live_range_shrinkage (void)
168 live_range_shrinkage_p
= false;
171 /* issue_rate is the number of insns that can be scheduled in the same
172 machine cycle. It can be defined in the config/mach/mach.h file,
173 otherwise we set it to 1. */
177 /* This can be set to true by a backend if the scheduler should not
178 enable a DCE pass. */
181 /* The current initiation interval used when modulo scheduling. */
182 static int modulo_ii
;
184 /* The maximum number of stages we are prepared to handle. */
185 static int modulo_max_stages
;
187 /* The number of insns that exist in each iteration of the loop. We use this
188 to detect when we've scheduled all insns from the first iteration. */
189 static int modulo_n_insns
;
191 /* The current count of insns in the first iteration of the loop that have
192 already been scheduled. */
193 static int modulo_insns_scheduled
;
195 /* The maximum uid of insns from the first iteration of the loop. */
196 static int modulo_iter0_max_uid
;
198 /* The number of times we should attempt to backtrack when modulo scheduling.
199 Decreased each time we have to backtrack. */
200 static int modulo_backtracks_left
;
202 /* The stage in which the last insn from the original loop was
204 static int modulo_last_stage
;
206 /* sched-verbose controls the amount of debugging output the
207 scheduler prints. It is controlled by -fsched-verbose=N:
208 N>0 and no -DSR : the output is directed to stderr.
209 N>=10 will direct the printouts to stderr (regardless of -dSR).
211 N=2: bb's probabilities, detailed ready list info, unit/insn info.
212 N=3: rtl at abort point, control-flow, regions info.
213 N=5: dependences info. */
215 int sched_verbose
= 0;
217 /* Debugging file. All printouts are sent to dump, which is always set,
218 either to stderr, or to the dump listing file (-dRS). */
219 FILE *sched_dump
= 0;
221 /* This is a placeholder for the scheduler parameters common
222 to all schedulers. */
223 struct common_sched_info_def
*common_sched_info
;
225 #define INSN_TICK(INSN) (HID (INSN)->tick)
226 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
227 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
228 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
229 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
230 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
231 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
232 /* Cached cost of the instruction. Use insn_cost to get cost of the
233 insn. -1 here means that the field is not initialized. */
234 #define INSN_COST(INSN) (HID (INSN)->cost)
236 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
237 then it should be recalculated from scratch. */
238 #define INVALID_TICK (-(max_insn_queue_index + 1))
239 /* The minimal value of the INSN_TICK of an instruction. */
240 #define MIN_TICK (-max_insn_queue_index)
242 /* List of important notes we must keep around. This is a pointer to the
243 last element in the list. */
246 static struct spec_info_def spec_info_var
;
247 /* Description of the speculative part of the scheduling.
248 If NULL - no speculation. */
249 spec_info_t spec_info
= NULL
;
251 /* True, if recovery block was added during scheduling of current block.
252 Used to determine, if we need to fix INSN_TICKs. */
253 static bool haifa_recovery_bb_recently_added_p
;
255 /* True, if recovery block was added during this scheduling pass.
256 Used to determine if we should have empty memory pools of dependencies
257 after finishing current region. */
258 bool haifa_recovery_bb_ever_added_p
;
260 /* Counters of different types of speculative instructions. */
261 static int nr_begin_data
, nr_be_in_data
, nr_begin_control
, nr_be_in_control
;
263 /* Array used in {unlink, restore}_bb_notes. */
264 static rtx_insn
**bb_header
= 0;
266 /* Basic block after which recovery blocks will be created. */
267 static basic_block before_recovery
;
269 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
271 basic_block after_recovery
;
273 /* FALSE if we add bb to another region, so we don't need to initialize it. */
274 bool adding_bb_to_current_region_p
= true;
278 /* An instruction is ready to be scheduled when all insns preceding it
279 have already been scheduled. It is important to ensure that all
280 insns which use its result will not be executed until its result
281 has been computed. An insn is maintained in one of four structures:
283 (P) the "Pending" set of insns which cannot be scheduled until
284 their dependencies have been satisfied.
285 (Q) the "Queued" set of insns that can be scheduled when sufficient
287 (R) the "Ready" list of unscheduled, uncommitted insns.
288 (S) the "Scheduled" list of insns.
290 Initially, all insns are either "Pending" or "Ready" depending on
291 whether their dependencies are satisfied.
293 Insns move from the "Ready" list to the "Scheduled" list as they
294 are committed to the schedule. As this occurs, the insns in the
295 "Pending" list have their dependencies satisfied and move to either
296 the "Ready" list or the "Queued" set depending on whether
297 sufficient time has passed to make them ready. As time passes,
298 insns move from the "Queued" set to the "Ready" list.
300 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
301 unscheduled insns, i.e., those that are ready, queued, and pending.
302 The "Queued" set (Q) is implemented by the variable `insn_queue'.
303 The "Ready" list (R) is implemented by the variables `ready' and
305 The "Scheduled" list (S) is the new insn chain built by this pass.
307 The transition (R->S) is implemented in the scheduling loop in
308 `schedule_block' when the best insn to schedule is chosen.
309 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
310 insns move from the ready list to the scheduled list.
311 The transition (Q->R) is implemented in 'queue_to_insn' as time
312 passes or stalls are introduced. */
314 /* Implement a circular buffer to delay instructions until sufficient
315 time has passed. For the new pipeline description interface,
316 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
317 than maximal time of instruction execution computed by genattr.c on
318 the base maximal time of functional unit reservations and getting a
319 result. This is the longest time an insn may be queued. */
321 static rtx_insn_list
**insn_queue
;
322 static int q_ptr
= 0;
323 static int q_size
= 0;
324 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
325 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
327 #define QUEUE_SCHEDULED (-3)
328 #define QUEUE_NOWHERE (-2)
329 #define QUEUE_READY (-1)
330 /* QUEUE_SCHEDULED - INSN is scheduled.
331 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
333 QUEUE_READY - INSN is in ready list.
334 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
336 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
338 /* The following variable value refers for all current and future
339 reservations of the processor units. */
342 /* The following variable value is size of memory representing all
343 current and future reservations of the processor units. */
344 size_t dfa_state_size
;
346 /* The following array is used to find the best insn from ready when
347 the automaton pipeline interface is used. */
348 signed char *ready_try
= NULL
;
350 /* The ready list. */
351 struct ready_list ready
= {NULL
, 0, 0, 0, 0};
353 /* The pointer to the ready list (to be removed). */
354 static struct ready_list
*readyp
= &ready
;
356 /* Scheduling clock. */
357 static int clock_var
;
359 /* Clock at which the previous instruction was issued. */
360 static int last_clock_var
;
362 /* Set to true if, when queuing a shadow insn, we discover that it would be
363 scheduled too late. */
364 static bool must_backtrack
;
366 /* The following variable value is number of essential insns issued on
367 the current cycle. An insn is essential one if it changes the
369 int cycle_issued_insns
;
371 /* This records the actual schedule. It is built up during the main phase
372 of schedule_block, and afterwards used to reorder the insns in the RTL. */
373 static vec
<rtx_insn
*> scheduled_insns
;
375 static int may_trap_exp (const_rtx
, int);
377 /* Nonzero iff the address is comprised from at most 1 register. */
378 #define CONST_BASED_ADDRESS_P(x) \
380 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
381 || (GET_CODE (x) == LO_SUM)) \
382 && (CONSTANT_P (XEXP (x, 0)) \
383 || CONSTANT_P (XEXP (x, 1)))))
385 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
386 as found by analyzing insn's expression. */
389 static int haifa_luid_for_non_insn (rtx x
);
391 /* Haifa version of sched_info hooks common to all headers. */
392 const struct common_sched_info_def haifa_common_sched_info
=
394 NULL
, /* fix_recovery_cfg */
395 NULL
, /* add_block */
396 NULL
, /* estimate_number_of_insns */
397 haifa_luid_for_non_insn
, /* luid_for_non_insn */
398 SCHED_PASS_UNKNOWN
/* sched_pass_id */
401 /* Mapping from instruction UID to its Logical UID. */
402 vec
<int> sched_luids
= vNULL
;
404 /* Next LUID to assign to an instruction. */
405 int sched_max_luid
= 1;
407 /* Haifa Instruction Data. */
408 vec
<haifa_insn_data_def
> h_i_d
= vNULL
;
410 void (* sched_init_only_bb
) (basic_block
, basic_block
);
412 /* Split block function. Different schedulers might use different functions
413 to handle their internal data consistent. */
414 basic_block (* sched_split_block
) (basic_block
, rtx
);
416 /* Create empty basic block after the specified block. */
417 basic_block (* sched_create_empty_bb
) (basic_block
);
419 /* Return the number of cycles until INSN is expected to be ready.
420 Return zero if it already is. */
422 insn_delay (rtx_insn
*insn
)
424 return MAX (INSN_TICK (insn
) - clock_var
, 0);
428 may_trap_exp (const_rtx x
, int is_store
)
437 if (code
== MEM
&& may_trap_p (x
))
444 /* The insn uses memory: a volatile load. */
445 if (MEM_VOLATILE_P (x
))
447 /* An exception-free load. */
450 /* A load with 1 base register, to be further checked. */
451 if (CONST_BASED_ADDRESS_P (XEXP (x
, 0)))
452 return PFREE_CANDIDATE
;
453 /* No info on the load, to be further checked. */
454 return PRISKY_CANDIDATE
;
459 int i
, insn_class
= TRAP_FREE
;
461 /* Neither store nor load, check if it may cause a trap. */
464 /* Recursive step: walk the insn... */
465 fmt
= GET_RTX_FORMAT (code
);
466 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
470 int tmp_class
= may_trap_exp (XEXP (x
, i
), is_store
);
471 insn_class
= WORST_CLASS (insn_class
, tmp_class
);
473 else if (fmt
[i
] == 'E')
476 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
478 int tmp_class
= may_trap_exp (XVECEXP (x
, i
, j
), is_store
);
479 insn_class
= WORST_CLASS (insn_class
, tmp_class
);
480 if (insn_class
== TRAP_RISKY
|| insn_class
== IRISKY
)
484 if (insn_class
== TRAP_RISKY
|| insn_class
== IRISKY
)
491 /* Classifies rtx X of an insn for the purpose of verifying that X can be
492 executed speculatively (and consequently the insn can be moved
493 speculatively), by examining X, returning:
494 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
495 TRAP_FREE: non-load insn.
496 IFREE: load from a globally safe location.
497 IRISKY: volatile load.
498 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
499 being either PFREE or PRISKY. */
502 haifa_classify_rtx (const_rtx x
)
504 int tmp_class
= TRAP_FREE
;
505 int insn_class
= TRAP_FREE
;
508 if (GET_CODE (x
) == PARALLEL
)
510 int i
, len
= XVECLEN (x
, 0);
512 for (i
= len
- 1; i
>= 0; i
--)
514 tmp_class
= haifa_classify_rtx (XVECEXP (x
, 0, i
));
515 insn_class
= WORST_CLASS (insn_class
, tmp_class
);
516 if (insn_class
== TRAP_RISKY
|| insn_class
== IRISKY
)
526 /* Test if it is a 'store'. */
527 tmp_class
= may_trap_exp (XEXP (x
, 0), 1);
530 /* Test if it is a store. */
531 tmp_class
= may_trap_exp (SET_DEST (x
), 1);
532 if (tmp_class
== TRAP_RISKY
)
534 /* Test if it is a load. */
536 WORST_CLASS (tmp_class
,
537 may_trap_exp (SET_SRC (x
), 0));
540 tmp_class
= haifa_classify_rtx (COND_EXEC_CODE (x
));
541 if (tmp_class
== TRAP_RISKY
)
543 tmp_class
= WORST_CLASS (tmp_class
,
544 may_trap_exp (COND_EXEC_TEST (x
), 0));
547 tmp_class
= TRAP_RISKY
;
551 insn_class
= tmp_class
;
558 haifa_classify_insn (const_rtx insn
)
560 return haifa_classify_rtx (PATTERN (insn
));
563 /* After the scheduler initialization function has been called, this function
564 can be called to enable modulo scheduling. II is the initiation interval
565 we should use, it affects the delays for delay_pairs that were recorded as
566 separated by a given number of stages.
568 MAX_STAGES provides us with a limit
569 after which we give up scheduling; the caller must have unrolled at least
570 as many copies of the loop body and recorded delay_pairs for them.
572 INSNS is the number of real (non-debug) insns in one iteration of
573 the loop. MAX_UID can be used to test whether an insn belongs to
574 the first iteration of the loop; all of them have a uid lower than
577 set_modulo_params (int ii
, int max_stages
, int insns
, int max_uid
)
580 modulo_max_stages
= max_stages
;
581 modulo_n_insns
= insns
;
582 modulo_iter0_max_uid
= max_uid
;
583 modulo_backtracks_left
= PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS
);
586 /* A structure to record a pair of insns where the first one is a real
587 insn that has delay slots, and the second is its delayed shadow.
588 I1 is scheduled normally and will emit an assembly instruction,
589 while I2 describes the side effect that takes place at the
590 transition between cycles CYCLES and (CYCLES + 1) after I1. */
593 struct delay_pair
*next_same_i1
;
596 /* When doing modulo scheduling, we a delay_pair can also be used to
597 show that I1 and I2 are the same insn in a different stage. If that
598 is the case, STAGES will be nonzero. */
602 /* Helpers for delay hashing. */
604 struct delay_i1_hasher
: typed_noop_remove
<delay_pair
>
606 typedef delay_pair value_type
;
607 typedef void compare_type
;
608 static inline hashval_t
hash (const value_type
*);
609 static inline bool equal (const value_type
*, const compare_type
*);
612 /* Returns a hash value for X, based on hashing just I1. */
615 delay_i1_hasher::hash (const value_type
*x
)
617 return htab_hash_pointer (x
->i1
);
620 /* Return true if I1 of pair X is the same as that of pair Y. */
623 delay_i1_hasher::equal (const value_type
*x
, const compare_type
*y
)
628 struct delay_i2_hasher
: typed_free_remove
<delay_pair
>
630 typedef delay_pair value_type
;
631 typedef void compare_type
;
632 static inline hashval_t
hash (const value_type
*);
633 static inline bool equal (const value_type
*, const compare_type
*);
636 /* Returns a hash value for X, based on hashing just I2. */
639 delay_i2_hasher::hash (const value_type
*x
)
641 return htab_hash_pointer (x
->i2
);
644 /* Return true if I2 of pair X is the same as that of pair Y. */
647 delay_i2_hasher::equal (const value_type
*x
, const compare_type
*y
)
652 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
654 static hash_table
<delay_i1_hasher
> *delay_htab
;
655 static hash_table
<delay_i2_hasher
> *delay_htab_i2
;
657 /* Called through htab_traverse. Walk the hashtable using I2 as
658 index, and delete all elements involving an UID higher than
659 that pointed to by *DATA. */
661 haifa_htab_i2_traverse (delay_pair
**slot
, int *data
)
664 struct delay_pair
*p
= *slot
;
665 if (INSN_UID (p
->i2
) >= maxuid
|| INSN_UID (p
->i1
) >= maxuid
)
667 delay_htab_i2
->clear_slot (slot
);
672 /* Called through htab_traverse. Walk the hashtable using I2 as
673 index, and delete all elements involving an UID higher than
674 that pointed to by *DATA. */
676 haifa_htab_i1_traverse (delay_pair
**pslot
, int *data
)
679 struct delay_pair
*p
, *first
, **pprev
;
681 if (INSN_UID ((*pslot
)->i1
) >= maxuid
)
683 delay_htab
->clear_slot (pslot
);
687 for (p
= *pslot
; p
; p
= p
->next_same_i1
)
689 if (INSN_UID (p
->i2
) < maxuid
)
692 pprev
= &p
->next_same_i1
;
697 delay_htab
->clear_slot (pslot
);
703 /* Discard all delay pairs which involve an insn with an UID higher
706 discard_delay_pairs_above (int max_uid
)
708 delay_htab
->traverse
<int *, haifa_htab_i1_traverse
> (&max_uid
);
709 delay_htab_i2
->traverse
<int *, haifa_htab_i2_traverse
> (&max_uid
);
712 /* This function can be called by a port just before it starts the final
713 scheduling pass. It records the fact that an instruction with delay
714 slots has been split into two insns, I1 and I2. The first one will be
715 scheduled normally and initiates the operation. The second one is a
716 shadow which must follow a specific number of cycles after I1; its only
717 purpose is to show the side effect that occurs at that cycle in the RTL.
718 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
719 while I2 retains the original insn type.
721 There are two ways in which the number of cycles can be specified,
722 involving the CYCLES and STAGES arguments to this function. If STAGES
723 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
724 which is multiplied by MODULO_II to give the number of cycles. This is
725 only useful if the caller also calls set_modulo_params to enable modulo
729 record_delay_slot_pair (rtx_insn
*i1
, rtx_insn
*i2
, int cycles
, int stages
)
731 struct delay_pair
*p
= XNEW (struct delay_pair
);
732 struct delay_pair
**slot
;
741 delay_htab
= new hash_table
<delay_i1_hasher
> (10);
742 delay_htab_i2
= new hash_table
<delay_i2_hasher
> (10);
744 slot
= delay_htab
->find_slot_with_hash (i1
, htab_hash_pointer (i1
), INSERT
);
745 p
->next_same_i1
= *slot
;
747 slot
= delay_htab_i2
->find_slot (p
, INSERT
);
751 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
752 and return the other insn if so. Return NULL otherwise. */
754 real_insn_for_shadow (rtx_insn
*insn
)
756 struct delay_pair
*pair
;
761 pair
= delay_htab_i2
->find_with_hash (insn
, htab_hash_pointer (insn
));
762 if (!pair
|| pair
->stages
> 0)
767 /* For a pair P of insns, return the fixed distance in cycles from the first
768 insn after which the second must be scheduled. */
770 pair_delay (struct delay_pair
*p
)
775 return p
->stages
* modulo_ii
;
778 /* Given an insn INSN, add a dependence on its delayed shadow if it
779 has one. Also try to find situations where shadows depend on each other
780 and add dependencies to the real insns to limit the amount of backtracking
783 add_delay_dependencies (rtx_insn
*insn
)
785 struct delay_pair
*pair
;
786 sd_iterator_def sd_it
;
792 pair
= delay_htab_i2
->find_with_hash (insn
, htab_hash_pointer (insn
));
795 add_dependence (insn
, pair
->i1
, REG_DEP_ANTI
);
799 FOR_EACH_DEP (pair
->i2
, SD_LIST_BACK
, sd_it
, dep
)
801 rtx_insn
*pro
= DEP_PRO (dep
);
802 struct delay_pair
*other_pair
803 = delay_htab_i2
->find_with_hash (pro
, htab_hash_pointer (pro
));
804 if (!other_pair
|| other_pair
->stages
)
806 if (pair_delay (other_pair
) >= pair_delay (pair
))
808 if (sched_verbose
>= 4)
810 fprintf (sched_dump
, ";;\tadding dependence %d <- %d\n",
811 INSN_UID (other_pair
->i1
),
812 INSN_UID (pair
->i1
));
813 fprintf (sched_dump
, ";;\tpair1 %d <- %d, cost %d\n",
817 fprintf (sched_dump
, ";;\tpair2 %d <- %d, cost %d\n",
818 INSN_UID (other_pair
->i1
),
819 INSN_UID (other_pair
->i2
),
820 pair_delay (other_pair
));
822 add_dependence (pair
->i1
, other_pair
->i1
, REG_DEP_ANTI
);
827 /* Forward declarations. */
829 static int priority (rtx_insn
*);
830 static int rank_for_schedule (const void *, const void *);
831 static void swap_sort (rtx_insn
**, int);
832 static void queue_insn (rtx_insn
*, int, const char *);
833 static int schedule_insn (rtx_insn
*);
834 static void adjust_priority (rtx_insn
*);
835 static void advance_one_cycle (void);
836 static void extend_h_i_d (void);
839 /* Notes handling mechanism:
840 =========================
841 Generally, NOTES are saved before scheduling and restored after scheduling.
842 The scheduler distinguishes between two types of notes:
844 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
845 Before scheduling a region, a pointer to the note is added to the insn
846 that follows or precedes it. (This happens as part of the data dependence
847 computation). After scheduling an insn, the pointer contained in it is
848 used for regenerating the corresponding note (in reemit_notes).
850 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
851 these notes are put in a list (in rm_other_notes() and
852 unlink_other_notes ()). After scheduling the block, these notes are
853 inserted at the beginning of the block (in schedule_block()). */
855 static void ready_add (struct ready_list
*, rtx_insn
*, bool);
856 static rtx_insn
*ready_remove_first (struct ready_list
*);
857 static rtx_insn
*ready_remove_first_dispatch (struct ready_list
*ready
);
859 static void queue_to_ready (struct ready_list
*);
860 static int early_queue_to_ready (state_t
, struct ready_list
*);
862 /* The following functions are used to implement multi-pass scheduling
863 on the first cycle. */
864 static rtx_insn
*ready_remove (struct ready_list
*, int);
865 static void ready_remove_insn (rtx
);
867 static void fix_inter_tick (rtx_insn
*, rtx_insn
*);
868 static int fix_tick_ready (rtx_insn
*);
869 static void change_queue_index (rtx_insn
*, int);
871 /* The following functions are used to implement scheduling of data/control
872 speculative instructions. */
874 static void extend_h_i_d (void);
875 static void init_h_i_d (rtx_insn
*);
876 static int haifa_speculate_insn (rtx_insn
*, ds_t
, rtx
*);
877 static void generate_recovery_code (rtx_insn
*);
878 static void process_insn_forw_deps_be_in_spec (rtx
, rtx_insn
*, ds_t
);
879 static void begin_speculative_block (rtx_insn
*);
880 static void add_to_speculative_block (rtx_insn
*);
881 static void init_before_recovery (basic_block
*);
882 static void create_check_block_twin (rtx_insn
*, bool);
883 static void fix_recovery_deps (basic_block
);
884 static bool haifa_change_pattern (rtx_insn
*, rtx
);
885 static void dump_new_block_header (int, basic_block
, rtx_insn
*, rtx_insn
*);
886 static void restore_bb_notes (basic_block
);
887 static void fix_jump_move (rtx_insn
*);
888 static void move_block_after_check (rtx_insn
*);
889 static void move_succs (vec
<edge
, va_gc
> **, basic_block
);
890 static void sched_remove_insn (rtx_insn
*);
891 static void clear_priorities (rtx_insn
*, rtx_vec_t
*);
892 static void calc_priorities (rtx_vec_t
);
893 static void add_jump_dependencies (rtx_insn
*, rtx_insn
*);
895 #endif /* INSN_SCHEDULING */
897 /* Point to state used for the current scheduling pass. */
898 struct haifa_sched_info
*current_sched_info
;
900 #ifndef INSN_SCHEDULING
902 schedule_insns (void)
907 /* Do register pressure sensitive insn scheduling if the flag is set
909 enum sched_pressure_algorithm sched_pressure
;
911 /* Map regno -> its pressure class. The map defined only when
912 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
913 enum reg_class
*sched_regno_pressure_class
;
915 /* The current register pressure. Only elements corresponding pressure
916 classes are defined. */
917 static int curr_reg_pressure
[N_REG_CLASSES
];
919 /* Saved value of the previous array. */
920 static int saved_reg_pressure
[N_REG_CLASSES
];
922 /* Register living at given scheduling point. */
923 static bitmap curr_reg_live
;
925 /* Saved value of the previous array. */
926 static bitmap saved_reg_live
;
928 /* Registers mentioned in the current region. */
929 static bitmap region_ref_regs
;
931 /* Initiate register pressure relative info for scheduling the current
932 region. Currently it is only clearing register mentioned in the
935 sched_init_region_reg_pressure_info (void)
937 bitmap_clear (region_ref_regs
);
940 /* PRESSURE[CL] describes the pressure on register class CL. Update it
941 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
942 LIVE tracks the set of live registers; if it is null, assume that
943 every birth or death is genuine. */
945 mark_regno_birth_or_death (bitmap live
, int *pressure
, int regno
, bool birth_p
)
947 enum reg_class pressure_class
;
949 pressure_class
= sched_regno_pressure_class
[regno
];
950 if (regno
>= FIRST_PSEUDO_REGISTER
)
952 if (pressure_class
!= NO_REGS
)
956 if (!live
|| bitmap_set_bit (live
, regno
))
957 pressure
[pressure_class
]
958 += (ira_reg_class_max_nregs
959 [pressure_class
][PSEUDO_REGNO_MODE (regno
)]);
963 if (!live
|| bitmap_clear_bit (live
, regno
))
964 pressure
[pressure_class
]
965 -= (ira_reg_class_max_nregs
966 [pressure_class
][PSEUDO_REGNO_MODE (regno
)]);
970 else if (pressure_class
!= NO_REGS
971 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs
, regno
))
975 if (!live
|| bitmap_set_bit (live
, regno
))
976 pressure
[pressure_class
]++;
980 if (!live
|| bitmap_clear_bit (live
, regno
))
981 pressure
[pressure_class
]--;
986 /* Initiate current register pressure related info from living
987 registers given by LIVE. */
989 initiate_reg_pressure_info (bitmap live
)
995 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
996 curr_reg_pressure
[ira_pressure_classes
[i
]] = 0;
997 bitmap_clear (curr_reg_live
);
998 EXECUTE_IF_SET_IN_BITMAP (live
, 0, j
, bi
)
999 if (sched_pressure
== SCHED_PRESSURE_MODEL
1000 || current_nr_blocks
== 1
1001 || bitmap_bit_p (region_ref_regs
, j
))
1002 mark_regno_birth_or_death (curr_reg_live
, curr_reg_pressure
, j
, true);
1005 /* Mark registers in X as mentioned in the current region. */
1007 setup_ref_regs (rtx x
)
1010 const RTX_CODE code
= GET_CODE (x
);
1016 if (HARD_REGISTER_NUM_P (regno
))
1017 bitmap_set_range (region_ref_regs
, regno
,
1018 hard_regno_nregs
[regno
][GET_MODE (x
)]);
1020 bitmap_set_bit (region_ref_regs
, REGNO (x
));
1023 fmt
= GET_RTX_FORMAT (code
);
1024 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1026 setup_ref_regs (XEXP (x
, i
));
1027 else if (fmt
[i
] == 'E')
1029 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1030 setup_ref_regs (XVECEXP (x
, i
, j
));
1034 /* Initiate current register pressure related info at the start of
1037 initiate_bb_reg_pressure_info (basic_block bb
)
1039 unsigned int i ATTRIBUTE_UNUSED
;
1042 if (current_nr_blocks
> 1)
1043 FOR_BB_INSNS (bb
, insn
)
1044 if (NONDEBUG_INSN_P (insn
))
1045 setup_ref_regs (PATTERN (insn
));
1046 initiate_reg_pressure_info (df_get_live_in (bb
));
1047 #ifdef EH_RETURN_DATA_REGNO
1048 if (bb_has_eh_pred (bb
))
1051 unsigned int regno
= EH_RETURN_DATA_REGNO (i
);
1053 if (regno
== INVALID_REGNUM
)
1055 if (! bitmap_bit_p (df_get_live_in (bb
), regno
))
1056 mark_regno_birth_or_death (curr_reg_live
, curr_reg_pressure
,
1062 /* Save current register pressure related info. */
1064 save_reg_pressure (void)
1068 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
1069 saved_reg_pressure
[ira_pressure_classes
[i
]]
1070 = curr_reg_pressure
[ira_pressure_classes
[i
]];
1071 bitmap_copy (saved_reg_live
, curr_reg_live
);
1074 /* Restore saved register pressure related info. */
1076 restore_reg_pressure (void)
1080 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
1081 curr_reg_pressure
[ira_pressure_classes
[i
]]
1082 = saved_reg_pressure
[ira_pressure_classes
[i
]];
1083 bitmap_copy (curr_reg_live
, saved_reg_live
);
1086 /* Return TRUE if the register is dying after its USE. */
1088 dying_use_p (struct reg_use_data
*use
)
1090 struct reg_use_data
*next
;
1092 for (next
= use
->next_regno_use
; next
!= use
; next
= next
->next_regno_use
)
1093 if (NONDEBUG_INSN_P (next
->insn
)
1094 && QUEUE_INDEX (next
->insn
) != QUEUE_SCHEDULED
)
1099 /* Print info about the current register pressure and its excess for
1100 each pressure class. */
1102 print_curr_reg_pressure (void)
1107 fprintf (sched_dump
, ";;\t");
1108 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
1110 cl
= ira_pressure_classes
[i
];
1111 gcc_assert (curr_reg_pressure
[cl
] >= 0);
1112 fprintf (sched_dump
, " %s:%d(%d)", reg_class_names
[cl
],
1113 curr_reg_pressure
[cl
],
1114 curr_reg_pressure
[cl
] - ira_class_hard_regs_num
[cl
]);
1116 fprintf (sched_dump
, "\n");
1119 /* Determine if INSN has a condition that is clobbered if a register
1120 in SET_REGS is modified. */
1122 cond_clobbered_p (rtx_insn
*insn
, HARD_REG_SET set_regs
)
1124 rtx pat
= PATTERN (insn
);
1125 gcc_assert (GET_CODE (pat
) == COND_EXEC
);
1126 if (TEST_HARD_REG_BIT (set_regs
, REGNO (XEXP (COND_EXEC_TEST (pat
), 0))))
1128 sd_iterator_def sd_it
;
1130 haifa_change_pattern (insn
, ORIG_PAT (insn
));
1131 FOR_EACH_DEP (insn
, SD_LIST_BACK
, sd_it
, dep
)
1132 DEP_STATUS (dep
) &= ~DEP_CANCELLED
;
1133 TODO_SPEC (insn
) = HARD_DEP
;
1134 if (sched_verbose
>= 2)
1135 fprintf (sched_dump
,
1136 ";;\t\tdequeue insn %s because of clobbered condition\n",
1137 (*current_sched_info
->print_insn
) (insn
, 0));
1144 /* This function should be called after modifying the pattern of INSN,
1145 to update scheduler data structures as needed. */
1147 update_insn_after_change (rtx_insn
*insn
)
1149 sd_iterator_def sd_it
;
1152 dfa_clear_single_insn_cache (insn
);
1154 sd_it
= sd_iterator_start (insn
,
1155 SD_LIST_FORW
| SD_LIST_BACK
| SD_LIST_RES_BACK
);
1156 while (sd_iterator_cond (&sd_it
, &dep
))
1158 DEP_COST (dep
) = UNKNOWN_DEP_COST
;
1159 sd_iterator_next (&sd_it
);
1162 /* Invalidate INSN_COST, so it'll be recalculated. */
1163 INSN_COST (insn
) = -1;
1164 /* Invalidate INSN_TICK, so it'll be recalculated. */
1165 INSN_TICK (insn
) = INVALID_TICK
;
1169 /* Two VECs, one to hold dependencies for which pattern replacements
1170 need to be applied or restored at the start of the next cycle, and
1171 another to hold an integer that is either one, to apply the
1172 corresponding replacement, or zero to restore it. */
1173 static vec
<dep_t
> next_cycle_replace_deps
;
1174 static vec
<int> next_cycle_apply
;
1176 static void apply_replacement (dep_t
, bool);
1177 static void restore_pattern (dep_t
, bool);
1179 /* Look at the remaining dependencies for insn NEXT, and compute and return
1180 the TODO_SPEC value we should use for it. This is called after one of
1181 NEXT's dependencies has been resolved.
1182 We also perform pattern replacements for predication, and for broken
1183 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1187 recompute_todo_spec (rtx_insn
*next
, bool for_backtrack
)
1190 sd_iterator_def sd_it
;
1191 dep_t dep
, modify_dep
= NULL
;
1195 bool first_p
= true;
1197 if (sd_lists_empty_p (next
, SD_LIST_BACK
))
1198 /* NEXT has all its dependencies resolved. */
1201 if (!sd_lists_empty_p (next
, SD_LIST_HARD_BACK
))
1204 /* Now we've got NEXT with speculative deps only.
1205 1. Look at the deps to see what we have to do.
1206 2. Check if we can do 'todo'. */
1209 FOR_EACH_DEP (next
, SD_LIST_BACK
, sd_it
, dep
)
1211 rtx_insn
*pro
= DEP_PRO (dep
);
1212 ds_t ds
= DEP_STATUS (dep
) & SPECULATIVE
;
1214 if (DEBUG_INSN_P (pro
) && !DEBUG_INSN_P (next
))
1227 new_ds
= ds_merge (new_ds
, ds
);
1229 else if (DEP_TYPE (dep
) == REG_DEP_CONTROL
)
1231 if (QUEUE_INDEX (pro
) != QUEUE_SCHEDULED
)
1236 DEP_STATUS (dep
) &= ~DEP_CANCELLED
;
1238 else if (DEP_REPLACE (dep
) != NULL
)
1240 if (QUEUE_INDEX (pro
) != QUEUE_SCHEDULED
)
1245 DEP_STATUS (dep
) &= ~DEP_CANCELLED
;
1249 if (n_replace
> 0 && n_control
== 0 && n_spec
== 0)
1251 if (!dbg_cnt (sched_breakdep
))
1253 FOR_EACH_DEP (next
, SD_LIST_BACK
, sd_it
, dep
)
1255 struct dep_replacement
*desc
= DEP_REPLACE (dep
);
1258 if (desc
->insn
== next
&& !for_backtrack
)
1260 gcc_assert (n_replace
== 1);
1261 apply_replacement (dep
, true);
1263 DEP_STATUS (dep
) |= DEP_CANCELLED
;
1269 else if (n_control
== 1 && n_replace
== 0 && n_spec
== 0)
1271 rtx_insn
*pro
, *other
;
1273 rtx cond
= NULL_RTX
;
1275 rtx_insn
*prev
= NULL
;
1279 if ((current_sched_info
->flags
& DO_PREDICATION
) == 0
1280 || (ORIG_PAT (next
) != NULL_RTX
1281 && PREDICATED_PAT (next
) == NULL_RTX
))
1284 pro
= DEP_PRO (modify_dep
);
1285 other
= real_insn_for_shadow (pro
);
1286 if (other
!= NULL_RTX
)
1289 cond
= sched_get_reverse_condition_uncached (pro
);
1290 regno
= REGNO (XEXP (cond
, 0));
1292 /* Find the last scheduled insn that modifies the condition register.
1293 We can stop looking once we find the insn we depend on through the
1294 REG_DEP_CONTROL; if the condition register isn't modified after it,
1295 we know that it still has the right value. */
1296 if (QUEUE_INDEX (pro
) == QUEUE_SCHEDULED
)
1297 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns
, i
, prev
)
1301 find_all_hard_reg_sets (prev
, &t
, true);
1302 if (TEST_HARD_REG_BIT (t
, regno
))
1307 if (ORIG_PAT (next
) == NULL_RTX
)
1309 ORIG_PAT (next
) = PATTERN (next
);
1311 new_pat
= gen_rtx_COND_EXEC (VOIDmode
, cond
, PATTERN (next
));
1312 success
= haifa_change_pattern (next
, new_pat
);
1315 PREDICATED_PAT (next
) = new_pat
;
1317 else if (PATTERN (next
) != PREDICATED_PAT (next
))
1319 bool success
= haifa_change_pattern (next
,
1320 PREDICATED_PAT (next
));
1321 gcc_assert (success
);
1323 DEP_STATUS (modify_dep
) |= DEP_CANCELLED
;
1327 if (PREDICATED_PAT (next
) != NULL_RTX
)
1329 int tick
= INSN_TICK (next
);
1330 bool success
= haifa_change_pattern (next
,
1332 INSN_TICK (next
) = tick
;
1333 gcc_assert (success
);
1336 /* We can't handle the case where there are both speculative and control
1337 dependencies, so we return HARD_DEP in such a case. Also fail if
1338 we have speculative dependencies with not enough points, or more than
1339 one control dependency. */
1340 if ((n_spec
> 0 && (n_control
> 0 || n_replace
> 0))
1342 /* Too few points? */
1343 && ds_weak (new_ds
) < spec_info
->data_weakness_cutoff
)
1351 /* Pointer to the last instruction scheduled. */
1352 static rtx_insn
*last_scheduled_insn
;
1354 /* Pointer to the last nondebug instruction scheduled within the
1355 block, or the prev_head of the scheduling block. Used by
1356 rank_for_schedule, so that insns independent of the last scheduled
1357 insn will be preferred over dependent instructions. */
1358 static rtx last_nondebug_scheduled_insn
;
1360 /* Pointer that iterates through the list of unscheduled insns if we
1361 have a dbg_cnt enabled. It always points at an insn prior to the
1362 first unscheduled one. */
1363 static rtx_insn
*nonscheduled_insns_begin
;
1365 /* Compute cost of executing INSN.
1366 This is the number of cycles between instruction issue and
1367 instruction results. */
1369 insn_cost (rtx_insn
*insn
)
1375 if (recog_memoized (insn
) < 0)
1378 cost
= insn_default_latency (insn
);
1385 cost
= INSN_COST (insn
);
1389 /* A USE insn, or something else we don't need to
1390 understand. We can't pass these directly to
1391 result_ready_cost or insn_default_latency because it will
1392 trigger a fatal error for unrecognizable insns. */
1393 if (recog_memoized (insn
) < 0)
1395 INSN_COST (insn
) = 0;
1400 cost
= insn_default_latency (insn
);
1404 INSN_COST (insn
) = cost
;
1411 /* Compute cost of dependence LINK.
1412 This is the number of cycles between instruction issue and
1413 instruction results.
1414 ??? We also use this function to call recog_memoized on all insns. */
1416 dep_cost_1 (dep_t link
, dw_t dw
)
1418 rtx_insn
*insn
= DEP_PRO (link
);
1419 rtx_insn
*used
= DEP_CON (link
);
1422 if (DEP_COST (link
) != UNKNOWN_DEP_COST
)
1423 return DEP_COST (link
);
1427 struct delay_pair
*delay_entry
;
1429 = delay_htab_i2
->find_with_hash (used
, htab_hash_pointer (used
));
1432 if (delay_entry
->i1
== insn
)
1434 DEP_COST (link
) = pair_delay (delay_entry
);
1435 return DEP_COST (link
);
1440 /* A USE insn should never require the value used to be computed.
1441 This allows the computation of a function's result and parameter
1442 values to overlap the return and call. We don't care about the
1443 dependence cost when only decreasing register pressure. */
1444 if (recog_memoized (used
) < 0)
1447 recog_memoized (insn
);
1451 enum reg_note dep_type
= DEP_TYPE (link
);
1453 cost
= insn_cost (insn
);
1455 if (INSN_CODE (insn
) >= 0)
1457 if (dep_type
== REG_DEP_ANTI
)
1459 else if (dep_type
== REG_DEP_OUTPUT
)
1461 cost
= (insn_default_latency (insn
)
1462 - insn_default_latency (used
));
1466 else if (bypass_p (insn
))
1467 cost
= insn_latency (insn
, used
);
1471 if (targetm
.sched
.adjust_cost_2
)
1472 cost
= targetm
.sched
.adjust_cost_2 (used
, (int) dep_type
, insn
, cost
,
1474 else if (targetm
.sched
.adjust_cost
!= NULL
)
1476 /* This variable is used for backward compatibility with the
1478 rtx_insn_list
*dep_cost_rtx_link
=
1479 alloc_INSN_LIST (NULL_RTX
, NULL
);
1481 /* Make it self-cycled, so that if some tries to walk over this
1482 incomplete list he/she will be caught in an endless loop. */
1483 XEXP (dep_cost_rtx_link
, 1) = dep_cost_rtx_link
;
1485 /* Targets use only REG_NOTE_KIND of the link. */
1486 PUT_REG_NOTE_KIND (dep_cost_rtx_link
, DEP_TYPE (link
));
1488 cost
= targetm
.sched
.adjust_cost (used
, dep_cost_rtx_link
,
1491 free_INSN_LIST_node (dep_cost_rtx_link
);
1498 DEP_COST (link
) = cost
;
1502 /* Compute cost of dependence LINK.
1503 This is the number of cycles between instruction issue and
1504 instruction results. */
1506 dep_cost (dep_t link
)
1508 return dep_cost_1 (link
, 0);
1511 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1512 INSN_PRIORITY explicitly. */
1514 increase_insn_priority (rtx_insn
*insn
, int amount
)
1516 if (!sel_sched_p ())
1518 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1519 if (INSN_PRIORITY_KNOWN (insn
))
1520 INSN_PRIORITY (insn
) += amount
;
1524 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1525 Use EXPR_PRIORITY instead. */
1526 sel_add_to_insn_priority (insn
, amount
);
1530 /* Return 'true' if DEP should be included in priority calculations. */
1532 contributes_to_priority_p (dep_t dep
)
1534 if (DEBUG_INSN_P (DEP_CON (dep
))
1535 || DEBUG_INSN_P (DEP_PRO (dep
)))
1538 /* Critical path is meaningful in block boundaries only. */
1539 if (!current_sched_info
->contributes_to_priority (DEP_CON (dep
),
1543 if (DEP_REPLACE (dep
) != NULL
)
1546 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1547 then speculative instructions will less likely be
1548 scheduled. That is because the priority of
1549 their producers will increase, and, thus, the
1550 producers will more likely be scheduled, thus,
1551 resolving the dependence. */
1552 if (sched_deps_info
->generate_spec_deps
1553 && !(spec_info
->flags
& COUNT_SPEC_IN_CRITICAL_PATH
)
1554 && (DEP_STATUS (dep
) & SPECULATIVE
))
1560 /* Compute the number of nondebug deps in list LIST for INSN. */
1563 dep_list_size (rtx insn
, sd_list_types_def list
)
1565 sd_iterator_def sd_it
;
1567 int dbgcount
= 0, nodbgcount
= 0;
1569 if (!MAY_HAVE_DEBUG_INSNS
)
1570 return sd_lists_size (insn
, list
);
1572 FOR_EACH_DEP (insn
, list
, sd_it
, dep
)
1574 if (DEBUG_INSN_P (DEP_CON (dep
)))
1576 else if (!DEBUG_INSN_P (DEP_PRO (dep
)))
1580 gcc_assert (dbgcount
+ nodbgcount
== sd_lists_size (insn
, list
));
1585 /* Compute the priority number for INSN. */
1587 priority (rtx_insn
*insn
)
1589 if (! INSN_P (insn
))
1592 /* We should not be interested in priority of an already scheduled insn. */
1593 gcc_assert (QUEUE_INDEX (insn
) != QUEUE_SCHEDULED
);
1595 if (!INSN_PRIORITY_KNOWN (insn
))
1597 int this_priority
= -1;
1599 if (dep_list_size (insn
, SD_LIST_FORW
) == 0)
1600 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1601 some forward deps but all of them are ignored by
1602 contributes_to_priority hook. At the moment we set priority of
1604 this_priority
= insn_cost (insn
);
1607 rtx_insn
*prev_first
, *twin
;
1610 /* For recovery check instructions we calculate priority slightly
1611 different than that of normal instructions. Instead of walking
1612 through INSN_FORW_DEPS (check) list, we walk through
1613 INSN_FORW_DEPS list of each instruction in the corresponding
1616 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1617 rec
= sel_sched_p () ? NULL
: RECOVERY_BLOCK (insn
);
1618 if (!rec
|| rec
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1620 prev_first
= PREV_INSN (insn
);
1625 prev_first
= NEXT_INSN (BB_HEAD (rec
));
1626 twin
= PREV_INSN (BB_END (rec
));
1631 sd_iterator_def sd_it
;
1634 FOR_EACH_DEP (twin
, SD_LIST_FORW
, sd_it
, dep
)
1639 next
= DEP_CON (dep
);
1641 if (BLOCK_FOR_INSN (next
) != rec
)
1645 if (!contributes_to_priority_p (dep
))
1649 cost
= dep_cost (dep
);
1652 struct _dep _dep1
, *dep1
= &_dep1
;
1654 init_dep (dep1
, insn
, next
, REG_DEP_ANTI
);
1656 cost
= dep_cost (dep1
);
1659 next_priority
= cost
+ priority (next
);
1661 if (next_priority
> this_priority
)
1662 this_priority
= next_priority
;
1666 twin
= PREV_INSN (twin
);
1668 while (twin
!= prev_first
);
1671 if (this_priority
< 0)
1673 gcc_assert (this_priority
== -1);
1675 this_priority
= insn_cost (insn
);
1678 INSN_PRIORITY (insn
) = this_priority
;
1679 INSN_PRIORITY_STATUS (insn
) = 1;
1682 return INSN_PRIORITY (insn
);
1685 /* Macros and functions for keeping the priority queue sorted, and
1686 dealing with queuing and dequeuing of instructions. */
1688 /* For each pressure class CL, set DEATH[CL] to the number of registers
1689 in that class that die in INSN. */
1692 calculate_reg_deaths (rtx_insn
*insn
, int *death
)
1695 struct reg_use_data
*use
;
1697 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
1698 death
[ira_pressure_classes
[i
]] = 0;
1699 for (use
= INSN_REG_USE_LIST (insn
); use
!= NULL
; use
= use
->next_insn_use
)
1700 if (dying_use_p (use
))
1701 mark_regno_birth_or_death (0, death
, use
->regno
, true);
1704 /* Setup info about the current register pressure impact of scheduling
1705 INSN at the current scheduling point. */
1707 setup_insn_reg_pressure_info (rtx_insn
*insn
)
1709 int i
, change
, before
, after
, hard_regno
;
1710 int excess_cost_change
;
1711 enum machine_mode mode
;
1713 struct reg_pressure_data
*pressure_info
;
1714 int *max_reg_pressure
;
1715 static int death
[N_REG_CLASSES
];
1717 gcc_checking_assert (!DEBUG_INSN_P (insn
));
1719 excess_cost_change
= 0;
1720 calculate_reg_deaths (insn
, death
);
1721 pressure_info
= INSN_REG_PRESSURE (insn
);
1722 max_reg_pressure
= INSN_MAX_REG_PRESSURE (insn
);
1723 gcc_assert (pressure_info
!= NULL
&& max_reg_pressure
!= NULL
);
1724 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
1726 cl
= ira_pressure_classes
[i
];
1727 gcc_assert (curr_reg_pressure
[cl
] >= 0);
1728 change
= (int) pressure_info
[i
].set_increase
- death
[cl
];
1729 before
= MAX (0, max_reg_pressure
[i
] - ira_class_hard_regs_num
[cl
]);
1730 after
= MAX (0, max_reg_pressure
[i
] + change
1731 - ira_class_hard_regs_num
[cl
]);
1732 hard_regno
= ira_class_hard_regs
[cl
][0];
1733 gcc_assert (hard_regno
>= 0);
1734 mode
= reg_raw_mode
[hard_regno
];
1735 excess_cost_change
+= ((after
- before
)
1736 * (ira_memory_move_cost
[mode
][cl
][0]
1737 + ira_memory_move_cost
[mode
][cl
][1]));
1739 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn
) = excess_cost_change
;
1742 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1743 It tries to make the scheduler take register pressure into account
1744 without introducing too many unnecessary stalls. It hooks into the
1745 main scheduling algorithm at several points:
1747 - Before scheduling starts, model_start_schedule constructs a
1748 "model schedule" for the current block. This model schedule is
1749 chosen solely to keep register pressure down. It does not take the
1750 target's pipeline or the original instruction order into account,
1751 except as a tie-breaker. It also doesn't work to a particular
1754 This model schedule gives us an idea of what pressure can be
1755 achieved for the block and gives us an example of a schedule that
1756 keeps to that pressure. It also makes the final schedule less
1757 dependent on the original instruction order. This is important
1758 because the original order can either be "wide" (many values live
1759 at once, such as in user-scheduled code) or "narrow" (few values
1760 live at once, such as after loop unrolling, where several
1761 iterations are executed sequentially).
1763 We do not apply this model schedule to the rtx stream. We simply
1764 record it in model_schedule. We also compute the maximum pressure,
1765 MP, that was seen during this schedule.
1767 - Instructions are added to the ready queue even if they require
1768 a stall. The length of the stall is instead computed as:
1770 MAX (INSN_TICK (INSN) - clock_var, 0)
1772 (= insn_delay). This allows rank_for_schedule to choose between
1773 introducing a deliberate stall or increasing pressure.
1775 - Before sorting the ready queue, model_set_excess_costs assigns
1776 a pressure-based cost to each ready instruction in the queue.
1777 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1778 (ECC for short) and is effectively measured in cycles.
1780 - rank_for_schedule ranks instructions based on:
1782 ECC (insn) + insn_delay (insn)
1788 So, for example, an instruction X1 with an ECC of 1 that can issue
1789 now will win over an instruction X0 with an ECC of zero that would
1790 introduce a stall of one cycle. However, an instruction X2 with an
1791 ECC of 2 that can issue now will lose to both X0 and X1.
1793 - When an instruction is scheduled, model_recompute updates the model
1794 schedule with the new pressures (some of which might now exceed the
1795 original maximum pressure MP). model_update_limit_points then searches
1796 for the new point of maximum pressure, if not already known. */
1798 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1799 from surrounding debug information. */
1801 ";;\t\t+------------------------------------------------------\n"
1803 /* Information about the pressure on a particular register class at a
1804 particular point of the model schedule. */
1805 struct model_pressure_data
{
1806 /* The pressure at this point of the model schedule, or -1 if the
1807 point is associated with an instruction that has already been
1811 /* The maximum pressure during or after this point of the model schedule. */
1815 /* Per-instruction information that is used while building the model
1816 schedule. Here, "schedule" refers to the model schedule rather
1817 than the main schedule. */
1818 struct model_insn_info
{
1819 /* The instruction itself. */
1822 /* If this instruction is in model_worklist, these fields link to the
1823 previous (higher-priority) and next (lower-priority) instructions
1825 struct model_insn_info
*prev
;
1826 struct model_insn_info
*next
;
1828 /* While constructing the schedule, QUEUE_INDEX describes whether an
1829 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1830 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1831 old_queue records the value that QUEUE_INDEX had before scheduling
1832 started, so that we can restore it once the schedule is complete. */
1835 /* The relative importance of an unscheduled instruction. Higher
1836 values indicate greater importance. */
1837 unsigned int model_priority
;
1839 /* The length of the longest path of satisfied true dependencies
1840 that leads to this instruction. */
1843 /* The length of the longest path of dependencies of any kind
1844 that leads from this instruction. */
1847 /* The number of predecessor nodes that must still be scheduled. */
1848 int unscheduled_preds
;
1851 /* Information about the pressure limit for a particular register class.
1852 This structure is used when applying a model schedule to the main
1854 struct model_pressure_limit
{
1855 /* The maximum register pressure seen in the original model schedule. */
1858 /* The maximum register pressure seen in the current model schedule
1859 (which excludes instructions that have already been scheduled). */
1862 /* The point of the current model schedule at which PRESSURE is first
1863 reached. It is set to -1 if the value needs to be recomputed. */
1867 /* Describes a particular way of measuring register pressure. */
1868 struct model_pressure_group
{
1869 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1870 struct model_pressure_limit limits
[N_REG_CLASSES
];
1872 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1873 on register class ira_pressure_classes[PCI] at point POINT of the
1874 current model schedule. A POINT of model_num_insns describes the
1875 pressure at the end of the schedule. */
1876 struct model_pressure_data
*model
;
1879 /* Index POINT gives the instruction at point POINT of the model schedule.
1880 This array doesn't change during main scheduling. */
1881 static vec
<rtx_insn
*> model_schedule
;
1883 /* The list of instructions in the model worklist, sorted in order of
1884 decreasing priority. */
1885 static struct model_insn_info
*model_worklist
;
1887 /* Index I describes the instruction with INSN_LUID I. */
1888 static struct model_insn_info
*model_insns
;
1890 /* The number of instructions in the model schedule. */
1891 static int model_num_insns
;
1893 /* The index of the first instruction in model_schedule that hasn't yet been
1894 added to the main schedule, or model_num_insns if all of them have. */
1895 static int model_curr_point
;
1897 /* Describes the pressure before each instruction in the model schedule. */
1898 static struct model_pressure_group model_before_pressure
;
1900 /* The first unused model_priority value (as used in model_insn_info). */
1901 static unsigned int model_next_priority
;
1904 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1905 at point POINT of the model schedule. */
1906 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1907 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1909 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1910 after point POINT of the model schedule. */
1911 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1912 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1914 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1915 of the model schedule. */
1916 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1917 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1919 /* Information about INSN that is used when creating the model schedule. */
1920 #define MODEL_INSN_INFO(INSN) \
1921 (&model_insns[INSN_LUID (INSN)])
1923 /* The instruction at point POINT of the model schedule. */
1924 #define MODEL_INSN(POINT) \
1925 (model_schedule[POINT])
1928 /* Return INSN's index in the model schedule, or model_num_insns if it
1929 doesn't belong to that schedule. */
1932 model_index (rtx_insn
*insn
)
1934 if (INSN_MODEL_INDEX (insn
) == 0)
1935 return model_num_insns
;
1936 return INSN_MODEL_INDEX (insn
) - 1;
1939 /* Make sure that GROUP->limits is up-to-date for the current point
1940 of the model schedule. */
1943 model_update_limit_points_in_group (struct model_pressure_group
*group
)
1945 int pci
, max_pressure
, point
;
1947 for (pci
= 0; pci
< ira_pressure_classes_num
; pci
++)
1949 /* We may have passed the final point at which the pressure in
1950 group->limits[pci].pressure was reached. Update the limit if so. */
1951 max_pressure
= MODEL_MAX_PRESSURE (group
, model_curr_point
, pci
);
1952 group
->limits
[pci
].pressure
= max_pressure
;
1954 /* Find the point at which MAX_PRESSURE is first reached. We need
1955 to search in three cases:
1957 - We've already moved past the previous pressure point.
1958 In this case we search forward from model_curr_point.
1960 - We scheduled the previous point of maximum pressure ahead of
1961 its position in the model schedule, but doing so didn't bring
1962 the pressure point earlier. In this case we search forward
1963 from that previous pressure point.
1965 - Scheduling an instruction early caused the maximum pressure
1966 to decrease. In this case we will have set the pressure
1967 point to -1, and we search forward from model_curr_point. */
1968 point
= MAX (group
->limits
[pci
].point
, model_curr_point
);
1969 while (point
< model_num_insns
1970 && MODEL_REF_PRESSURE (group
, point
, pci
) < max_pressure
)
1972 group
->limits
[pci
].point
= point
;
1974 gcc_assert (MODEL_REF_PRESSURE (group
, point
, pci
) == max_pressure
);
1975 gcc_assert (MODEL_MAX_PRESSURE (group
, point
, pci
) == max_pressure
);
1979 /* Make sure that all register-pressure limits are up-to-date for the
1980 current position in the model schedule. */
1983 model_update_limit_points (void)
1985 model_update_limit_points_in_group (&model_before_pressure
);
1988 /* Return the model_index of the last unscheduled use in chain USE
1989 outside of USE's instruction. Return -1 if there are no other uses,
1990 or model_num_insns if the register is live at the end of the block. */
1993 model_last_use_except (struct reg_use_data
*use
)
1995 struct reg_use_data
*next
;
1999 for (next
= use
->next_regno_use
; next
!= use
; next
= next
->next_regno_use
)
2000 if (NONDEBUG_INSN_P (next
->insn
)
2001 && QUEUE_INDEX (next
->insn
) != QUEUE_SCHEDULED
)
2003 index
= model_index (next
->insn
);
2004 if (index
== model_num_insns
)
2005 return model_num_insns
;
2012 /* An instruction with model_index POINT has just been scheduled, and it
2013 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2014 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2015 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2018 model_start_update_pressure (struct model_pressure_group
*group
,
2019 int point
, int pci
, int delta
)
2021 int next_max_pressure
;
2023 if (point
== model_num_insns
)
2025 /* The instruction wasn't part of the model schedule; it was moved
2026 from a different block. Update the pressure for the end of
2027 the model schedule. */
2028 MODEL_REF_PRESSURE (group
, point
, pci
) += delta
;
2029 MODEL_MAX_PRESSURE (group
, point
, pci
) += delta
;
2033 /* Record that this instruction has been scheduled. Nothing now
2034 changes between POINT and POINT + 1, so get the maximum pressure
2035 from the latter. If the maximum pressure decreases, the new
2036 pressure point may be before POINT. */
2037 MODEL_REF_PRESSURE (group
, point
, pci
) = -1;
2038 next_max_pressure
= MODEL_MAX_PRESSURE (group
, point
+ 1, pci
);
2039 if (MODEL_MAX_PRESSURE (group
, point
, pci
) > next_max_pressure
)
2041 MODEL_MAX_PRESSURE (group
, point
, pci
) = next_max_pressure
;
2042 if (group
->limits
[pci
].point
== point
)
2043 group
->limits
[pci
].point
= -1;
2048 /* Record that scheduling a later instruction has changed the pressure
2049 at point POINT of the model schedule by DELTA (which might be 0).
2050 Update GROUP accordingly. Return nonzero if these changes might
2051 trigger changes to previous points as well. */
2054 model_update_pressure (struct model_pressure_group
*group
,
2055 int point
, int pci
, int delta
)
2057 int ref_pressure
, max_pressure
, next_max_pressure
;
2059 /* If POINT hasn't yet been scheduled, update its pressure. */
2060 ref_pressure
= MODEL_REF_PRESSURE (group
, point
, pci
);
2061 if (ref_pressure
>= 0 && delta
!= 0)
2063 ref_pressure
+= delta
;
2064 MODEL_REF_PRESSURE (group
, point
, pci
) = ref_pressure
;
2066 /* Check whether the maximum pressure in the overall schedule
2067 has increased. (This means that the MODEL_MAX_PRESSURE of
2068 every point <= POINT will need to increae too; see below.) */
2069 if (group
->limits
[pci
].pressure
< ref_pressure
)
2070 group
->limits
[pci
].pressure
= ref_pressure
;
2072 /* If we are at maximum pressure, and the maximum pressure
2073 point was previously unknown or later than POINT,
2074 bring it forward. */
2075 if (group
->limits
[pci
].pressure
== ref_pressure
2076 && !IN_RANGE (group
->limits
[pci
].point
, 0, point
))
2077 group
->limits
[pci
].point
= point
;
2079 /* If POINT used to be the point of maximum pressure, but isn't
2080 any longer, we need to recalculate it using a forward walk. */
2081 if (group
->limits
[pci
].pressure
> ref_pressure
2082 && group
->limits
[pci
].point
== point
)
2083 group
->limits
[pci
].point
= -1;
2086 /* Update the maximum pressure at POINT. Changes here might also
2087 affect the maximum pressure at POINT - 1. */
2088 next_max_pressure
= MODEL_MAX_PRESSURE (group
, point
+ 1, pci
);
2089 max_pressure
= MAX (ref_pressure
, next_max_pressure
);
2090 if (MODEL_MAX_PRESSURE (group
, point
, pci
) != max_pressure
)
2092 MODEL_MAX_PRESSURE (group
, point
, pci
) = max_pressure
;
2098 /* INSN has just been scheduled. Update the model schedule accordingly. */
2101 model_recompute (rtx_insn
*insn
)
2106 } uses
[FIRST_PSEUDO_REGISTER
+ MAX_RECOG_OPERANDS
];
2107 struct reg_use_data
*use
;
2108 struct reg_pressure_data
*reg_pressure
;
2109 int delta
[N_REG_CLASSES
];
2110 int pci
, point
, mix
, new_last
, cl
, ref_pressure
, queue
;
2111 unsigned int i
, num_uses
, num_pending_births
;
2114 /* The destinations of INSN were previously live from POINT onwards, but are
2115 now live from model_curr_point onwards. Set up DELTA accordingly. */
2116 point
= model_index (insn
);
2117 reg_pressure
= INSN_REG_PRESSURE (insn
);
2118 for (pci
= 0; pci
< ira_pressure_classes_num
; pci
++)
2120 cl
= ira_pressure_classes
[pci
];
2121 delta
[cl
] = reg_pressure
[pci
].set_increase
;
2124 /* Record which registers previously died at POINT, but which now die
2125 before POINT. Adjust DELTA so that it represents the effect of
2126 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2127 registers that will be born in the range [model_curr_point, POINT). */
2129 num_pending_births
= 0;
2130 for (use
= INSN_REG_USE_LIST (insn
); use
!= NULL
; use
= use
->next_insn_use
)
2132 new_last
= model_last_use_except (use
);
2133 if (new_last
< point
)
2135 gcc_assert (num_uses
< ARRAY_SIZE (uses
));
2136 uses
[num_uses
].last_use
= new_last
;
2137 uses
[num_uses
].regno
= use
->regno
;
2138 /* This register is no longer live after POINT - 1. */
2139 mark_regno_birth_or_death (NULL
, delta
, use
->regno
, false);
2142 num_pending_births
++;
2146 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2147 Also set each group pressure limit for POINT. */
2148 for (pci
= 0; pci
< ira_pressure_classes_num
; pci
++)
2150 cl
= ira_pressure_classes
[pci
];
2151 model_start_update_pressure (&model_before_pressure
,
2152 point
, pci
, delta
[cl
]);
2155 /* Walk the model schedule backwards, starting immediately before POINT. */
2157 if (point
!= model_curr_point
)
2161 insn
= MODEL_INSN (point
);
2162 queue
= QUEUE_INDEX (insn
);
2164 if (queue
!= QUEUE_SCHEDULED
)
2166 /* DELTA describes the effect of the move on the register pressure
2167 after POINT. Make it describe the effect on the pressure
2170 while (i
< num_uses
)
2172 if (uses
[i
].last_use
== point
)
2174 /* This register is now live again. */
2175 mark_regno_birth_or_death (NULL
, delta
,
2176 uses
[i
].regno
, true);
2178 /* Remove this use from the array. */
2179 uses
[i
] = uses
[num_uses
- 1];
2181 num_pending_births
--;
2187 if (sched_verbose
>= 5)
2191 fprintf (sched_dump
, MODEL_BAR
);
2192 fprintf (sched_dump
, ";;\t\t| New pressure for model"
2194 fprintf (sched_dump
, MODEL_BAR
);
2198 fprintf (sched_dump
, ";;\t\t| %3d %4d %-30s ",
2199 point
, INSN_UID (insn
),
2200 str_pattern_slim (PATTERN (insn
)));
2201 for (pci
= 0; pci
< ira_pressure_classes_num
; pci
++)
2203 cl
= ira_pressure_classes
[pci
];
2204 ref_pressure
= MODEL_REF_PRESSURE (&model_before_pressure
,
2206 fprintf (sched_dump
, " %s:[%d->%d]",
2207 reg_class_names
[ira_pressure_classes
[pci
]],
2208 ref_pressure
, ref_pressure
+ delta
[cl
]);
2210 fprintf (sched_dump
, "\n");
2214 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2215 might have changed as well. */
2216 mix
= num_pending_births
;
2217 for (pci
= 0; pci
< ira_pressure_classes_num
; pci
++)
2219 cl
= ira_pressure_classes
[pci
];
2221 mix
|= model_update_pressure (&model_before_pressure
,
2222 point
, pci
, delta
[cl
]);
2225 while (mix
&& point
> model_curr_point
);
2228 fprintf (sched_dump
, MODEL_BAR
);
2231 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2232 check whether the insn's pattern needs restoring. */
2234 must_restore_pattern_p (rtx_insn
*next
, dep_t dep
)
2236 if (QUEUE_INDEX (next
) == QUEUE_SCHEDULED
)
2239 if (DEP_TYPE (dep
) == REG_DEP_CONTROL
)
2241 gcc_assert (ORIG_PAT (next
) != NULL_RTX
);
2242 gcc_assert (next
== DEP_CON (dep
));
2246 struct dep_replacement
*desc
= DEP_REPLACE (dep
);
2247 if (desc
->insn
!= next
)
2249 gcc_assert (*desc
->loc
== desc
->orig
);
2256 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2257 pressure on CL from P to P'. We use this to calculate a "base ECC",
2258 baseECC (CL, X), for each pressure class CL and each instruction X.
2259 Supposing X changes the pressure on CL from P to P', and that the
2260 maximum pressure on CL in the current model schedule is MP', then:
2262 * if X occurs before or at the next point of maximum pressure in
2263 the model schedule and P' > MP', then:
2265 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2267 The idea is that the pressure after scheduling a fixed set of
2268 instructions -- in this case, the set up to and including the
2269 next maximum pressure point -- is going to be the same regardless
2270 of the order; we simply want to keep the intermediate pressure
2271 under control. Thus X has a cost of zero unless scheduling it
2272 now would exceed MP'.
2274 If all increases in the set are by the same amount, no zero-cost
2275 instruction will ever cause the pressure to exceed MP'. However,
2276 if X is instead moved past an instruction X' with pressure in the
2277 range (MP' - (P' - P), MP'), the pressure at X' will increase
2278 beyond MP'. Since baseECC is very much a heuristic anyway,
2279 it doesn't seem worth the overhead of tracking cases like these.
2281 The cost of exceeding MP' is always based on the original maximum
2282 pressure MP. This is so that going 2 registers over the original
2283 limit has the same cost regardless of whether it comes from two
2284 separate +1 deltas or from a single +2 delta.
2286 * if X occurs after the next point of maximum pressure in the model
2287 schedule and P' > P, then:
2289 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2291 That is, if we move X forward across a point of maximum pressure,
2292 and if X increases the pressure by P' - P, then we conservatively
2293 assume that scheduling X next would increase the maximum pressure
2294 by P' - P. Again, the cost of doing this is based on the original
2295 maximum pressure MP, for the same reason as above.
2297 * if P' < P, P > MP, and X occurs at or after the next point of
2298 maximum pressure, then:
2300 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2302 That is, if we have already exceeded the original maximum pressure MP,
2303 and if X might reduce the maximum pressure again -- or at least push
2304 it further back, and thus allow more scheduling freedom -- it is given
2305 a negative cost to reflect the improvement.
2311 In this case, X is not expected to affect the maximum pressure MP',
2312 so it has zero cost.
2314 We then create a combined value baseECC (X) that is the sum of
2315 baseECC (CL, X) for each pressure class CL.
2317 baseECC (X) could itself be used as the ECC value described above.
2318 However, this is often too conservative, in the sense that it
2319 tends to make high-priority instructions that increase pressure
2320 wait too long in cases where introducing a spill would be better.
2321 For this reason the final ECC is a priority-adjusted form of
2322 baseECC (X). Specifically, we calculate:
2324 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2325 baseP = MAX { P (X) | baseECC (X) <= 0 }
2329 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2331 Thus an instruction's effect on pressure is ignored if it has a high
2332 enough priority relative to the ones that don't increase pressure.
2333 Negative values of baseECC (X) do not increase the priority of X
2334 itself, but they do make it harder for other instructions to
2335 increase the pressure further.
2337 This pressure cost is deliberately timid. The intention has been
2338 to choose a heuristic that rarely interferes with the normal list
2339 scheduler in cases where that scheduler would produce good code.
2340 We simply want to curb some of its worst excesses. */
2342 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2344 Here we use the very simplistic cost model that every register above
2345 ira_class_hard_regs_num[CL] has a spill cost of 1. We could use other
2346 measures instead, such as one based on MEMORY_MOVE_COST. However:
2348 (1) In order for an instruction to be scheduled, the higher cost
2349 would need to be justified in a single saving of that many stalls.
2350 This is overly pessimistic, because the benefit of spilling is
2351 often to avoid a sequence of several short stalls rather than
2354 (2) The cost is still arbitrary. Because we are not allocating
2355 registers during scheduling, we have no way of knowing for
2356 sure how many memory accesses will be required by each spill,
2357 where the spills will be placed within the block, or even
2358 which block(s) will contain the spills.
2360 So a higher cost than 1 is often too conservative in practice,
2361 forcing blocks to contain unnecessary stalls instead of spill code.
2362 The simple cost below seems to be the best compromise. It reduces
2363 the interference with the normal list scheduler, which helps make
2364 it more suitable for a default-on option. */
2367 model_spill_cost (int cl
, int from
, int to
)
2369 from
= MAX (from
, ira_class_hard_regs_num
[cl
]);
2370 return MAX (to
, from
) - from
;
2373 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2374 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2378 model_excess_group_cost (struct model_pressure_group
*group
,
2379 int point
, int pci
, int delta
)
2383 cl
= ira_pressure_classes
[pci
];
2384 if (delta
< 0 && point
>= group
->limits
[pci
].point
)
2386 pressure
= MAX (group
->limits
[pci
].orig_pressure
,
2387 curr_reg_pressure
[cl
] + delta
);
2388 return -model_spill_cost (cl
, pressure
, curr_reg_pressure
[cl
]);
2393 if (point
> group
->limits
[pci
].point
)
2394 pressure
= group
->limits
[pci
].pressure
+ delta
;
2396 pressure
= curr_reg_pressure
[cl
] + delta
;
2398 if (pressure
> group
->limits
[pci
].pressure
)
2399 return model_spill_cost (cl
, group
->limits
[pci
].orig_pressure
,
2406 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2410 model_excess_cost (rtx_insn
*insn
, bool print_p
)
2412 int point
, pci
, cl
, cost
, this_cost
, delta
;
2413 struct reg_pressure_data
*insn_reg_pressure
;
2414 int insn_death
[N_REG_CLASSES
];
2416 calculate_reg_deaths (insn
, insn_death
);
2417 point
= model_index (insn
);
2418 insn_reg_pressure
= INSN_REG_PRESSURE (insn
);
2422 fprintf (sched_dump
, ";;\t\t| %3d %4d | %4d %+3d |", point
,
2423 INSN_UID (insn
), INSN_PRIORITY (insn
), insn_delay (insn
));
2425 /* Sum up the individual costs for each register class. */
2426 for (pci
= 0; pci
< ira_pressure_classes_num
; pci
++)
2428 cl
= ira_pressure_classes
[pci
];
2429 delta
= insn_reg_pressure
[pci
].set_increase
- insn_death
[cl
];
2430 this_cost
= model_excess_group_cost (&model_before_pressure
,
2434 fprintf (sched_dump
, " %s:[%d base cost %d]",
2435 reg_class_names
[cl
], delta
, this_cost
);
2439 fprintf (sched_dump
, "\n");
2444 /* Dump the next points of maximum pressure for GROUP. */
2447 model_dump_pressure_points (struct model_pressure_group
*group
)
2451 fprintf (sched_dump
, ";;\t\t| pressure points");
2452 for (pci
= 0; pci
< ira_pressure_classes_num
; pci
++)
2454 cl
= ira_pressure_classes
[pci
];
2455 fprintf (sched_dump
, " %s:[%d->%d at ", reg_class_names
[cl
],
2456 curr_reg_pressure
[cl
], group
->limits
[pci
].pressure
);
2457 if (group
->limits
[pci
].point
< model_num_insns
)
2458 fprintf (sched_dump
, "%d:%d]", group
->limits
[pci
].point
,
2459 INSN_UID (MODEL_INSN (group
->limits
[pci
].point
)));
2461 fprintf (sched_dump
, "end]");
2463 fprintf (sched_dump
, "\n");
2466 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2469 model_set_excess_costs (rtx_insn
**insns
, int count
)
2471 int i
, cost
, priority_base
, priority
;
2474 /* Record the baseECC value for each instruction in the model schedule,
2475 except that negative costs are converted to zero ones now rather thatn
2476 later. Do not assign a cost to debug instructions, since they must
2477 not change code-generation decisions. Experiments suggest we also
2478 get better results by not assigning a cost to instructions from
2481 Set PRIORITY_BASE to baseP in the block comment above. This is the
2482 maximum priority of the "cheap" instructions, which should always
2483 include the next model instruction. */
2486 for (i
= 0; i
< count
; i
++)
2487 if (INSN_MODEL_INDEX (insns
[i
]))
2489 if (sched_verbose
>= 6 && !print_p
)
2491 fprintf (sched_dump
, MODEL_BAR
);
2492 fprintf (sched_dump
, ";;\t\t| Pressure costs for ready queue\n");
2493 model_dump_pressure_points (&model_before_pressure
);
2494 fprintf (sched_dump
, MODEL_BAR
);
2497 cost
= model_excess_cost (insns
[i
], print_p
);
2500 priority
= INSN_PRIORITY (insns
[i
]) - insn_delay (insns
[i
]) - cost
;
2501 priority_base
= MAX (priority_base
, priority
);
2504 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns
[i
]) = cost
;
2507 fprintf (sched_dump
, MODEL_BAR
);
2509 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2511 for (i
= 0; i
< count
; i
++)
2513 cost
= INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns
[i
]);
2514 priority
= INSN_PRIORITY (insns
[i
]) - insn_delay (insns
[i
]);
2515 if (cost
> 0 && priority
> priority_base
)
2517 cost
+= priority_base
- priority
;
2518 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns
[i
]) = MAX (cost
, 0);
2524 /* Enum of rank_for_schedule heuristic decisions. */
2526 RFS_DEBUG
, RFS_LIVE_RANGE_SHRINK1
, RFS_LIVE_RANGE_SHRINK2
,
2527 RFS_SCHED_GROUP
, RFS_PRESSURE_DELAY
, RFS_PRESSURE_TICK
,
2528 RFS_FEEDS_BACKTRACK_INSN
, RFS_PRIORITY
, RFS_SPECULATION
,
2529 RFS_SCHED_RANK
, RFS_LAST_INSN
, RFS_PRESSURE_INDEX
,
2530 RFS_DEP_COUNT
, RFS_TIE
, RFS_N
};
2532 /* Corresponding strings for print outs. */
2533 static const char *rfs_str
[RFS_N
] = {
2534 "RFS_DEBUG", "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
2535 "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
2536 "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_SPECULATION",
2537 "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
2538 "RFS_DEP_COUNT", "RFS_TIE" };
2540 /* Statistical breakdown of rank_for_schedule decisions. */
2541 typedef struct { unsigned stats
[RFS_N
]; } rank_for_schedule_stats_t
;
2542 static rank_for_schedule_stats_t rank_for_schedule_stats
;
2545 rfs_result (enum rfs_decision decision
, int result
)
2547 ++rank_for_schedule_stats
.stats
[decision
];
2551 /* Returns a positive value if x is preferred; returns a negative value if
2552 y is preferred. Should never return 0, since that will make the sort
2556 rank_for_schedule (const void *x
, const void *y
)
2558 rtx_insn
*tmp
= *(rtx_insn
* const *) y
;
2559 rtx_insn
*tmp2
= *(rtx_insn
* const *) x
;
2560 int tmp_class
, tmp2_class
;
2561 int val
, priority_val
, info_val
, diff
;
2563 if (MAY_HAVE_DEBUG_INSNS
)
2565 /* Schedule debug insns as early as possible. */
2566 if (DEBUG_INSN_P (tmp
) && !DEBUG_INSN_P (tmp2
))
2567 return rfs_result (RFS_DEBUG
, -1);
2568 else if (!DEBUG_INSN_P (tmp
) && DEBUG_INSN_P (tmp2
))
2569 return rfs_result (RFS_DEBUG
, 1);
2570 else if (DEBUG_INSN_P (tmp
) && DEBUG_INSN_P (tmp2
))
2571 return rfs_result (RFS_DEBUG
, INSN_LUID (tmp
) - INSN_LUID (tmp2
));
2574 if (live_range_shrinkage_p
)
2576 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2578 gcc_assert (sched_pressure
== SCHED_PRESSURE_WEIGHTED
);
2579 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp
) < 0
2580 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2
) < 0)
2581 && (diff
= (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp
)
2582 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2
))) != 0)
2583 return rfs_result (RFS_LIVE_RANGE_SHRINK1
, diff
);
2584 /* Sort by INSN_LUID (original insn order), so that we make the
2585 sort stable. This minimizes instruction movement, thus
2586 minimizing sched's effect on debugging and cross-jumping. */
2587 return rfs_result (RFS_LIVE_RANGE_SHRINK2
,
2588 INSN_LUID (tmp
) - INSN_LUID (tmp2
));
2591 /* The insn in a schedule group should be issued the first. */
2592 if (flag_sched_group_heuristic
&&
2593 SCHED_GROUP_P (tmp
) != SCHED_GROUP_P (tmp2
))
2594 return rfs_result (RFS_SCHED_GROUP
, SCHED_GROUP_P (tmp2
) ? 1 : -1);
2596 /* Make sure that priority of TMP and TMP2 are initialized. */
2597 gcc_assert (INSN_PRIORITY_KNOWN (tmp
) && INSN_PRIORITY_KNOWN (tmp2
));
2599 if (sched_pressure
!= SCHED_PRESSURE_NONE
)
2601 /* Prefer insn whose scheduling results in the smallest register
2603 if ((diff
= (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp
)
2605 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2
)
2606 - insn_delay (tmp2
))))
2607 return rfs_result (RFS_PRESSURE_DELAY
, diff
);
2610 if (sched_pressure
!= SCHED_PRESSURE_NONE
2611 && (INSN_TICK (tmp2
) > clock_var
|| INSN_TICK (tmp
) > clock_var
)
2612 && INSN_TICK (tmp2
) != INSN_TICK (tmp
))
2614 diff
= INSN_TICK (tmp
) - INSN_TICK (tmp2
);
2615 return rfs_result (RFS_PRESSURE_TICK
, diff
);
2618 /* If we are doing backtracking in this schedule, prefer insns that
2619 have forward dependencies with negative cost against an insn that
2620 was already scheduled. */
2621 if (current_sched_info
->flags
& DO_BACKTRACKING
)
2623 priority_val
= FEEDS_BACKTRACK_INSN (tmp2
) - FEEDS_BACKTRACK_INSN (tmp
);
2625 return rfs_result (RFS_FEEDS_BACKTRACK_INSN
, priority_val
);
2628 /* Prefer insn with higher priority. */
2629 priority_val
= INSN_PRIORITY (tmp2
) - INSN_PRIORITY (tmp
);
2631 if (flag_sched_critical_path_heuristic
&& priority_val
)
2632 return rfs_result (RFS_PRIORITY
, priority_val
);
2634 /* Prefer speculative insn with greater dependencies weakness. */
2635 if (flag_sched_spec_insn_heuristic
&& spec_info
)
2641 ds1
= TODO_SPEC (tmp
) & SPECULATIVE
;
2643 dw1
= ds_weak (ds1
);
2647 ds2
= TODO_SPEC (tmp2
) & SPECULATIVE
;
2649 dw2
= ds_weak (ds2
);
2654 if (dw
> (NO_DEP_WEAK
/ 8) || dw
< -(NO_DEP_WEAK
/ 8))
2655 return rfs_result (RFS_SPECULATION
, dw
);
2658 info_val
= (*current_sched_info
->rank
) (tmp
, tmp2
);
2659 if (flag_sched_rank_heuristic
&& info_val
)
2660 return rfs_result (RFS_SCHED_RANK
, info_val
);
2662 /* Compare insns based on their relation to the last scheduled
2664 if (flag_sched_last_insn_heuristic
&& last_nondebug_scheduled_insn
)
2668 rtx last
= last_nondebug_scheduled_insn
;
2670 /* Classify the instructions into three classes:
2671 1) Data dependent on last schedule insn.
2672 2) Anti/Output dependent on last scheduled insn.
2673 3) Independent of last scheduled insn, or has latency of one.
2674 Choose the insn from the highest numbered class if different. */
2675 dep1
= sd_find_dep_between (last
, tmp
, true);
2677 if (dep1
== NULL
|| dep_cost (dep1
) == 1)
2679 else if (/* Data dependence. */
2680 DEP_TYPE (dep1
) == REG_DEP_TRUE
)
2685 dep2
= sd_find_dep_between (last
, tmp2
, true);
2687 if (dep2
== NULL
|| dep_cost (dep2
) == 1)
2689 else if (/* Data dependence. */
2690 DEP_TYPE (dep2
) == REG_DEP_TRUE
)
2695 if ((val
= tmp2_class
- tmp_class
))
2696 return rfs_result (RFS_LAST_INSN
, val
);
2699 /* Prefer instructions that occur earlier in the model schedule. */
2700 if (sched_pressure
== SCHED_PRESSURE_MODEL
2701 && INSN_BB (tmp
) == target_bb
&& INSN_BB (tmp2
) == target_bb
)
2703 diff
= model_index (tmp
) - model_index (tmp2
);
2704 gcc_assert (diff
!= 0);
2705 return rfs_result (RFS_PRESSURE_INDEX
, diff
);
2708 /* Prefer the insn which has more later insns that depend on it.
2709 This gives the scheduler more freedom when scheduling later
2710 instructions at the expense of added register pressure. */
2712 val
= (dep_list_size (tmp2
, SD_LIST_FORW
)
2713 - dep_list_size (tmp
, SD_LIST_FORW
));
2715 if (flag_sched_dep_count_heuristic
&& val
!= 0)
2716 return rfs_result (RFS_DEP_COUNT
, val
);
2718 /* If insns are equally good, sort by INSN_LUID (original insn order),
2719 so that we make the sort stable. This minimizes instruction movement,
2720 thus minimizing sched's effect on debugging and cross-jumping. */
2721 return rfs_result (RFS_TIE
, INSN_LUID (tmp
) - INSN_LUID (tmp2
));
2724 /* Resort the array A in which only element at index N may be out of order. */
2726 HAIFA_INLINE
static void
2727 swap_sort (rtx_insn
**a
, int n
)
2729 rtx_insn
*insn
= a
[n
- 1];
2732 while (i
>= 0 && rank_for_schedule (a
+ i
, &insn
) >= 0)
2740 /* Add INSN to the insn queue so that it can be executed at least
2741 N_CYCLES after the currently executing insn. Preserve insns
2742 chain for debugging purposes. REASON will be printed in debugging
2745 HAIFA_INLINE
static void
2746 queue_insn (rtx_insn
*insn
, int n_cycles
, const char *reason
)
2748 int next_q
= NEXT_Q_AFTER (q_ptr
, n_cycles
);
2749 rtx_insn_list
*link
= alloc_INSN_LIST (insn
, insn_queue
[next_q
]);
2752 gcc_assert (n_cycles
<= max_insn_queue_index
);
2753 gcc_assert (!DEBUG_INSN_P (insn
));
2755 insn_queue
[next_q
] = link
;
2758 if (sched_verbose
>= 2)
2760 fprintf (sched_dump
, ";;\t\tReady-->Q: insn %s: ",
2761 (*current_sched_info
->print_insn
) (insn
, 0));
2763 fprintf (sched_dump
, "queued for %d cycles (%s).\n", n_cycles
, reason
);
2766 QUEUE_INDEX (insn
) = next_q
;
2768 if (current_sched_info
->flags
& DO_BACKTRACKING
)
2770 new_tick
= clock_var
+ n_cycles
;
2771 if (INSN_TICK (insn
) == INVALID_TICK
|| INSN_TICK (insn
) < new_tick
)
2772 INSN_TICK (insn
) = new_tick
;
2774 if (INSN_EXACT_TICK (insn
) != INVALID_TICK
2775 && INSN_EXACT_TICK (insn
) < clock_var
+ n_cycles
)
2777 must_backtrack
= true;
2778 if (sched_verbose
>= 2)
2779 fprintf (sched_dump
, ";;\t\tcausing a backtrack.\n");
2784 /* Remove INSN from queue. */
2786 queue_remove (rtx_insn
*insn
)
2788 gcc_assert (QUEUE_INDEX (insn
) >= 0);
2789 remove_free_INSN_LIST_elem (insn
, &insn_queue
[QUEUE_INDEX (insn
)]);
2791 QUEUE_INDEX (insn
) = QUEUE_NOWHERE
;
2794 /* Return a pointer to the bottom of the ready list, i.e. the insn
2795 with the lowest priority. */
2798 ready_lastpos (struct ready_list
*ready
)
2800 gcc_assert (ready
->n_ready
>= 1);
2801 return ready
->vec
+ ready
->first
- ready
->n_ready
+ 1;
2804 /* Add an element INSN to the ready list so that it ends up with the
2805 lowest/highest priority depending on FIRST_P. */
2807 HAIFA_INLINE
static void
2808 ready_add (struct ready_list
*ready
, rtx_insn
*insn
, bool first_p
)
2812 if (ready
->first
== ready
->n_ready
)
2814 memmove (ready
->vec
+ ready
->veclen
- ready
->n_ready
,
2815 ready_lastpos (ready
),
2816 ready
->n_ready
* sizeof (rtx
));
2817 ready
->first
= ready
->veclen
- 1;
2819 ready
->vec
[ready
->first
- ready
->n_ready
] = insn
;
2823 if (ready
->first
== ready
->veclen
- 1)
2826 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2827 memmove (ready
->vec
+ ready
->veclen
- ready
->n_ready
- 1,
2828 ready_lastpos (ready
),
2829 ready
->n_ready
* sizeof (rtx
));
2830 ready
->first
= ready
->veclen
- 2;
2832 ready
->vec
[++(ready
->first
)] = insn
;
2836 if (DEBUG_INSN_P (insn
))
2839 gcc_assert (QUEUE_INDEX (insn
) != QUEUE_READY
);
2840 QUEUE_INDEX (insn
) = QUEUE_READY
;
2842 if (INSN_EXACT_TICK (insn
) != INVALID_TICK
2843 && INSN_EXACT_TICK (insn
) < clock_var
)
2845 must_backtrack
= true;
2849 /* Remove the element with the highest priority from the ready list and
2852 HAIFA_INLINE
static rtx_insn
*
2853 ready_remove_first (struct ready_list
*ready
)
2857 gcc_assert (ready
->n_ready
);
2858 t
= ready
->vec
[ready
->first
--];
2860 if (DEBUG_INSN_P (t
))
2862 /* If the queue becomes empty, reset it. */
2863 if (ready
->n_ready
== 0)
2864 ready
->first
= ready
->veclen
- 1;
2866 gcc_assert (QUEUE_INDEX (t
) == QUEUE_READY
);
2867 QUEUE_INDEX (t
) = QUEUE_NOWHERE
;
2872 /* The following code implements multi-pass scheduling for the first
2873 cycle. In other words, we will try to choose ready insn which
2874 permits to start maximum number of insns on the same cycle. */
2876 /* Return a pointer to the element INDEX from the ready. INDEX for
2877 insn with the highest priority is 0, and the lowest priority has
2881 ready_element (struct ready_list
*ready
, int index
)
2883 gcc_assert (ready
->n_ready
&& index
< ready
->n_ready
);
2885 return ready
->vec
[ready
->first
- index
];
2888 /* Remove the element INDEX from the ready list and return it. INDEX
2889 for insn with the highest priority is 0, and the lowest priority
2892 HAIFA_INLINE
static rtx_insn
*
2893 ready_remove (struct ready_list
*ready
, int index
)
2899 return ready_remove_first (ready
);
2900 gcc_assert (ready
->n_ready
&& index
< ready
->n_ready
);
2901 t
= ready
->vec
[ready
->first
- index
];
2903 if (DEBUG_INSN_P (t
))
2905 for (i
= index
; i
< ready
->n_ready
; i
++)
2906 ready
->vec
[ready
->first
- i
] = ready
->vec
[ready
->first
- i
- 1];
2907 QUEUE_INDEX (t
) = QUEUE_NOWHERE
;
2911 /* Remove INSN from the ready list. */
2913 ready_remove_insn (rtx insn
)
2917 for (i
= 0; i
< readyp
->n_ready
; i
++)
2918 if (ready_element (readyp
, i
) == insn
)
2920 ready_remove (readyp
, i
);
2926 /* Calculate difference of two statistics set WAS and NOW.
2927 Result returned in WAS. */
2929 rank_for_schedule_stats_diff (rank_for_schedule_stats_t
*was
,
2930 const rank_for_schedule_stats_t
*now
)
2932 for (int i
= 0; i
< RFS_N
; ++i
)
2933 was
->stats
[i
] = now
->stats
[i
] - was
->stats
[i
];
2936 /* Print rank_for_schedule statistics. */
2938 print_rank_for_schedule_stats (const char *prefix
,
2939 const rank_for_schedule_stats_t
*stats
)
2941 for (int i
= 0; i
< RFS_N
; ++i
)
2942 if (stats
->stats
[i
])
2943 fprintf (sched_dump
, "%s%20s: %u\n", prefix
, rfs_str
[i
], stats
->stats
[i
]);
2946 /* Sort the ready list READY by ascending priority, using the SCHED_SORT
2950 ready_sort (struct ready_list
*ready
)
2953 rtx_insn
**first
= ready_lastpos (ready
);
2955 if (sched_pressure
== SCHED_PRESSURE_WEIGHTED
)
2957 for (i
= 0; i
< ready
->n_ready
; i
++)
2958 if (!DEBUG_INSN_P (first
[i
]))
2959 setup_insn_reg_pressure_info (first
[i
]);
2961 if (sched_pressure
== SCHED_PRESSURE_MODEL
2962 && model_curr_point
< model_num_insns
)
2963 model_set_excess_costs (first
, ready
->n_ready
);
2965 rank_for_schedule_stats_t stats1
;
2966 if (sched_verbose
>= 4)
2967 stats1
= rank_for_schedule_stats
;
2969 if (ready
->n_ready
== 2)
2970 swap_sort (first
, ready
->n_ready
);
2971 else if (ready
->n_ready
> 2)
2972 qsort (first
, ready
->n_ready
, sizeof (rtx
), rank_for_schedule
);
2974 if (sched_verbose
>= 4)
2976 rank_for_schedule_stats_diff (&stats1
, &rank_for_schedule_stats
);
2977 print_rank_for_schedule_stats (";;\t\t", &stats1
);
2981 /* PREV is an insn that is ready to execute. Adjust its priority if that
2982 will help shorten or lengthen register lifetimes as appropriate. Also
2983 provide a hook for the target to tweak itself. */
2985 HAIFA_INLINE
static void
2986 adjust_priority (rtx_insn
*prev
)
2988 /* ??? There used to be code here to try and estimate how an insn
2989 affected register lifetimes, but it did it by looking at REG_DEAD
2990 notes, which we removed in schedule_region. Nor did it try to
2991 take into account register pressure or anything useful like that.
2993 Revisit when we have a machine model to work with and not before. */
2995 if (targetm
.sched
.adjust_priority
)
2996 INSN_PRIORITY (prev
) =
2997 targetm
.sched
.adjust_priority (prev
, INSN_PRIORITY (prev
));
3000 /* Advance DFA state STATE on one cycle. */
3002 advance_state (state_t state
)
3004 if (targetm
.sched
.dfa_pre_advance_cycle
)
3005 targetm
.sched
.dfa_pre_advance_cycle ();
3007 if (targetm
.sched
.dfa_pre_cycle_insn
)
3008 state_transition (state
,
3009 targetm
.sched
.dfa_pre_cycle_insn ());
3011 state_transition (state
, NULL
);
3013 if (targetm
.sched
.dfa_post_cycle_insn
)
3014 state_transition (state
,
3015 targetm
.sched
.dfa_post_cycle_insn ());
3017 if (targetm
.sched
.dfa_post_advance_cycle
)
3018 targetm
.sched
.dfa_post_advance_cycle ();
3021 /* Advance time on one cycle. */
3022 HAIFA_INLINE
static void
3023 advance_one_cycle (void)
3025 advance_state (curr_state
);
3026 if (sched_verbose
>= 4)
3027 fprintf (sched_dump
, ";;\tAdvance the current state.\n");
3030 /* Update register pressure after scheduling INSN. */
3032 update_register_pressure (rtx_insn
*insn
)
3034 struct reg_use_data
*use
;
3035 struct reg_set_data
*set
;
3037 gcc_checking_assert (!DEBUG_INSN_P (insn
));
3039 for (use
= INSN_REG_USE_LIST (insn
); use
!= NULL
; use
= use
->next_insn_use
)
3040 if (dying_use_p (use
))
3041 mark_regno_birth_or_death (curr_reg_live
, curr_reg_pressure
,
3043 for (set
= INSN_REG_SET_LIST (insn
); set
!= NULL
; set
= set
->next_insn_set
)
3044 mark_regno_birth_or_death (curr_reg_live
, curr_reg_pressure
,
3048 /* Set up or update (if UPDATE_P) max register pressure (see its
3049 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
3050 after insn AFTER. */
3052 setup_insn_max_reg_pressure (rtx_insn
*after
, bool update_p
)
3057 static int max_reg_pressure
[N_REG_CLASSES
];
3059 save_reg_pressure ();
3060 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
3061 max_reg_pressure
[ira_pressure_classes
[i
]]
3062 = curr_reg_pressure
[ira_pressure_classes
[i
]];
3063 for (insn
= NEXT_INSN (after
);
3064 insn
!= NULL_RTX
&& ! BARRIER_P (insn
)
3065 && BLOCK_FOR_INSN (insn
) == BLOCK_FOR_INSN (after
);
3066 insn
= NEXT_INSN (insn
))
3067 if (NONDEBUG_INSN_P (insn
))
3070 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
3072 p
= max_reg_pressure
[ira_pressure_classes
[i
]];
3073 if (INSN_MAX_REG_PRESSURE (insn
)[i
] != p
)
3076 INSN_MAX_REG_PRESSURE (insn
)[i
]
3077 = max_reg_pressure
[ira_pressure_classes
[i
]];
3080 if (update_p
&& eq_p
)
3082 update_register_pressure (insn
);
3083 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
3084 if (max_reg_pressure
[ira_pressure_classes
[i
]]
3085 < curr_reg_pressure
[ira_pressure_classes
[i
]])
3086 max_reg_pressure
[ira_pressure_classes
[i
]]
3087 = curr_reg_pressure
[ira_pressure_classes
[i
]];
3089 restore_reg_pressure ();
3092 /* Update the current register pressure after scheduling INSN. Update
3093 also max register pressure for unscheduled insns of the current
3096 update_reg_and_insn_max_reg_pressure (rtx_insn
*insn
)
3099 int before
[N_REG_CLASSES
];
3101 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
3102 before
[i
] = curr_reg_pressure
[ira_pressure_classes
[i
]];
3103 update_register_pressure (insn
);
3104 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
3105 if (curr_reg_pressure
[ira_pressure_classes
[i
]] != before
[i
])
3107 if (i
< ira_pressure_classes_num
)
3108 setup_insn_max_reg_pressure (insn
, true);
3111 /* Set up register pressure at the beginning of basic block BB whose
3112 insns starting after insn AFTER. Set up also max register pressure
3113 for all insns of the basic block. */
3115 sched_setup_bb_reg_pressure_info (basic_block bb
, rtx_insn
*after
)
3117 gcc_assert (sched_pressure
== SCHED_PRESSURE_WEIGHTED
);
3118 initiate_bb_reg_pressure_info (bb
);
3119 setup_insn_max_reg_pressure (after
, false);
3122 /* If doing predication while scheduling, verify whether INSN, which
3123 has just been scheduled, clobbers the conditions of any
3124 instructions that must be predicated in order to break their
3125 dependencies. If so, remove them from the queues so that they will
3126 only be scheduled once their control dependency is resolved. */
3129 check_clobbered_conditions (rtx insn
)
3134 if ((current_sched_info
->flags
& DO_PREDICATION
) == 0)
3137 find_all_hard_reg_sets (insn
, &t
, true);
3140 for (i
= 0; i
< ready
.n_ready
; i
++)
3142 rtx_insn
*x
= ready_element (&ready
, i
);
3143 if (TODO_SPEC (x
) == DEP_CONTROL
&& cond_clobbered_p (x
, t
))
3145 ready_remove_insn (x
);
3149 for (i
= 0; i
<= max_insn_queue_index
; i
++)
3152 int q
= NEXT_Q_AFTER (q_ptr
, i
);
3155 for (link
= insn_queue
[q
]; link
; link
= XEXP (link
, 1))
3157 rtx_insn
*x
= as_a
<rtx_insn
*> (XEXP (link
, 0));
3158 if (TODO_SPEC (x
) == DEP_CONTROL
&& cond_clobbered_p (x
, t
))
3167 /* Return (in order):
3169 - positive if INSN adversely affects the pressure on one
3172 - negative if INSN reduces the pressure on one register class
3174 - 0 if INSN doesn't affect the pressure on any register class. */
3177 model_classify_pressure (struct model_insn_info
*insn
)
3179 struct reg_pressure_data
*reg_pressure
;
3180 int death
[N_REG_CLASSES
];
3183 calculate_reg_deaths (insn
->insn
, death
);
3184 reg_pressure
= INSN_REG_PRESSURE (insn
->insn
);
3186 for (pci
= 0; pci
< ira_pressure_classes_num
; pci
++)
3188 cl
= ira_pressure_classes
[pci
];
3189 if (death
[cl
] < reg_pressure
[pci
].set_increase
)
3191 sum
+= reg_pressure
[pci
].set_increase
- death
[cl
];
3196 /* Return true if INSN1 should come before INSN2 in the model schedule. */
3199 model_order_p (struct model_insn_info
*insn1
, struct model_insn_info
*insn2
)
3201 unsigned int height1
, height2
;
3202 unsigned int priority1
, priority2
;
3204 /* Prefer instructions with a higher model priority. */
3205 if (insn1
->model_priority
!= insn2
->model_priority
)
3206 return insn1
->model_priority
> insn2
->model_priority
;
3208 /* Combine the length of the longest path of satisfied true dependencies
3209 that leads to each instruction (depth) with the length of the longest
3210 path of any dependencies that leads from the instruction (alap).
3211 Prefer instructions with the greatest combined length. If the combined
3212 lengths are equal, prefer instructions with the greatest depth.
3214 The idea is that, if we have a set S of "equal" instructions that each
3215 have ALAP value X, and we pick one such instruction I, any true-dependent
3216 successors of I that have ALAP value X - 1 should be preferred over S.
3217 This encourages the schedule to be "narrow" rather than "wide".
3218 However, if I is a low-priority instruction that we decided to
3219 schedule because of its model_classify_pressure, and if there
3220 is a set of higher-priority instructions T, the aforementioned
3221 successors of I should not have the edge over T. */
3222 height1
= insn1
->depth
+ insn1
->alap
;
3223 height2
= insn2
->depth
+ insn2
->alap
;
3224 if (height1
!= height2
)
3225 return height1
> height2
;
3226 if (insn1
->depth
!= insn2
->depth
)
3227 return insn1
->depth
> insn2
->depth
;
3229 /* We have no real preference between INSN1 an INSN2 as far as attempts
3230 to reduce pressure go. Prefer instructions with higher priorities. */
3231 priority1
= INSN_PRIORITY (insn1
->insn
);
3232 priority2
= INSN_PRIORITY (insn2
->insn
);
3233 if (priority1
!= priority2
)
3234 return priority1
> priority2
;
3236 /* Use the original rtl sequence as a tie-breaker. */
3237 return insn1
< insn2
;
3240 /* Add INSN to the model worklist immediately after PREV. Add it to the
3241 beginning of the list if PREV is null. */
3244 model_add_to_worklist_at (struct model_insn_info
*insn
,
3245 struct model_insn_info
*prev
)
3247 gcc_assert (QUEUE_INDEX (insn
->insn
) == QUEUE_NOWHERE
);
3248 QUEUE_INDEX (insn
->insn
) = QUEUE_READY
;
3253 insn
->next
= prev
->next
;
3258 insn
->next
= model_worklist
;
3259 model_worklist
= insn
;
3262 insn
->next
->prev
= insn
;
3265 /* Remove INSN from the model worklist. */
3268 model_remove_from_worklist (struct model_insn_info
*insn
)
3270 gcc_assert (QUEUE_INDEX (insn
->insn
) == QUEUE_READY
);
3271 QUEUE_INDEX (insn
->insn
) = QUEUE_NOWHERE
;
3274 insn
->prev
->next
= insn
->next
;
3276 model_worklist
= insn
->next
;
3278 insn
->next
->prev
= insn
->prev
;
3281 /* Add INSN to the model worklist. Start looking for a suitable position
3282 between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3283 insns either side. A null PREV indicates the beginning of the list and
3284 a null NEXT indicates the end. */
3287 model_add_to_worklist (struct model_insn_info
*insn
,
3288 struct model_insn_info
*prev
,
3289 struct model_insn_info
*next
)
3293 count
= MAX_SCHED_READY_INSNS
;
3294 if (count
> 0 && prev
&& model_order_p (insn
, prev
))
3300 while (count
> 0 && prev
&& model_order_p (insn
, prev
));
3302 while (count
> 0 && next
&& model_order_p (next
, insn
))
3308 model_add_to_worklist_at (insn
, prev
);
3311 /* INSN may now have a higher priority (in the model_order_p sense)
3312 than before. Move it up the worklist if necessary. */
3315 model_promote_insn (struct model_insn_info
*insn
)
3317 struct model_insn_info
*prev
;
3321 count
= MAX_SCHED_READY_INSNS
;
3322 while (count
> 0 && prev
&& model_order_p (insn
, prev
))
3327 if (prev
!= insn
->prev
)
3329 model_remove_from_worklist (insn
);
3330 model_add_to_worklist_at (insn
, prev
);
3334 /* Add INSN to the end of the model schedule. */
3337 model_add_to_schedule (rtx_insn
*insn
)
3341 gcc_assert (QUEUE_INDEX (insn
) == QUEUE_NOWHERE
);
3342 QUEUE_INDEX (insn
) = QUEUE_SCHEDULED
;
3344 point
= model_schedule
.length ();
3345 model_schedule
.quick_push (insn
);
3346 INSN_MODEL_INDEX (insn
) = point
+ 1;
3349 /* Analyze the instructions that are to be scheduled, setting up
3350 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3351 instructions to model_worklist. */
3354 model_analyze_insns (void)
3356 rtx_insn
*start
, *end
, *iter
;
3357 sd_iterator_def sd_it
;
3359 struct model_insn_info
*insn
, *con
;
3361 model_num_insns
= 0;
3362 start
= PREV_INSN (current_sched_info
->next_tail
);
3363 end
= current_sched_info
->prev_head
;
3364 for (iter
= start
; iter
!= end
; iter
= PREV_INSN (iter
))
3365 if (NONDEBUG_INSN_P (iter
))
3367 insn
= MODEL_INSN_INFO (iter
);
3369 FOR_EACH_DEP (iter
, SD_LIST_FORW
, sd_it
, dep
)
3371 con
= MODEL_INSN_INFO (DEP_CON (dep
));
3372 if (con
->insn
&& insn
->alap
< con
->alap
+ 1)
3373 insn
->alap
= con
->alap
+ 1;
3376 insn
->old_queue
= QUEUE_INDEX (iter
);
3377 QUEUE_INDEX (iter
) = QUEUE_NOWHERE
;
3379 insn
->unscheduled_preds
= dep_list_size (iter
, SD_LIST_HARD_BACK
);
3380 if (insn
->unscheduled_preds
== 0)
3381 model_add_to_worklist (insn
, NULL
, model_worklist
);
3387 /* The global state describes the register pressure at the start of the
3388 model schedule. Initialize GROUP accordingly. */
3391 model_init_pressure_group (struct model_pressure_group
*group
)
3395 for (pci
= 0; pci
< ira_pressure_classes_num
; pci
++)
3397 cl
= ira_pressure_classes
[pci
];
3398 group
->limits
[pci
].pressure
= curr_reg_pressure
[cl
];
3399 group
->limits
[pci
].point
= 0;
3401 /* Use index model_num_insns to record the state after the last
3402 instruction in the model schedule. */
3403 group
->model
= XNEWVEC (struct model_pressure_data
,
3404 (model_num_insns
+ 1) * ira_pressure_classes_num
);
3407 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3408 Update the maximum pressure for the whole schedule. */
3411 model_record_pressure (struct model_pressure_group
*group
,
3412 int point
, int pci
, int pressure
)
3414 MODEL_REF_PRESSURE (group
, point
, pci
) = pressure
;
3415 if (group
->limits
[pci
].pressure
< pressure
)
3417 group
->limits
[pci
].pressure
= pressure
;
3418 group
->limits
[pci
].point
= point
;
3422 /* INSN has just been added to the end of the model schedule. Record its
3423 register-pressure information. */
3426 model_record_pressures (struct model_insn_info
*insn
)
3428 struct reg_pressure_data
*reg_pressure
;
3429 int point
, pci
, cl
, delta
;
3430 int death
[N_REG_CLASSES
];
3432 point
= model_index (insn
->insn
);
3433 if (sched_verbose
>= 2)
3437 fprintf (sched_dump
, "\n;;\tModel schedule:\n;;\n");
3438 fprintf (sched_dump
, ";;\t| idx insn | mpri hght dpth prio |\n");
3440 fprintf (sched_dump
, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3441 point
, INSN_UID (insn
->insn
), insn
->model_priority
,
3442 insn
->depth
+ insn
->alap
, insn
->depth
,
3443 INSN_PRIORITY (insn
->insn
),
3444 str_pattern_slim (PATTERN (insn
->insn
)));
3446 calculate_reg_deaths (insn
->insn
, death
);
3447 reg_pressure
= INSN_REG_PRESSURE (insn
->insn
);
3448 for (pci
= 0; pci
< ira_pressure_classes_num
; pci
++)
3450 cl
= ira_pressure_classes
[pci
];
3451 delta
= reg_pressure
[pci
].set_increase
- death
[cl
];
3452 if (sched_verbose
>= 2)
3453 fprintf (sched_dump
, " %s:[%d,%+d]", reg_class_names
[cl
],
3454 curr_reg_pressure
[cl
], delta
);
3455 model_record_pressure (&model_before_pressure
, point
, pci
,
3456 curr_reg_pressure
[cl
]);
3458 if (sched_verbose
>= 2)
3459 fprintf (sched_dump
, "\n");
3462 /* All instructions have been added to the model schedule. Record the
3463 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3466 model_record_final_pressures (struct model_pressure_group
*group
)
3468 int point
, pci
, max_pressure
, ref_pressure
, cl
;
3470 for (pci
= 0; pci
< ira_pressure_classes_num
; pci
++)
3472 /* Record the final pressure for this class. */
3473 cl
= ira_pressure_classes
[pci
];
3474 point
= model_num_insns
;
3475 ref_pressure
= curr_reg_pressure
[cl
];
3476 model_record_pressure (group
, point
, pci
, ref_pressure
);
3478 /* Record the original maximum pressure. */
3479 group
->limits
[pci
].orig_pressure
= group
->limits
[pci
].pressure
;
3481 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3482 max_pressure
= ref_pressure
;
3483 MODEL_MAX_PRESSURE (group
, point
, pci
) = max_pressure
;
3487 ref_pressure
= MODEL_REF_PRESSURE (group
, point
, pci
);
3488 max_pressure
= MAX (max_pressure
, ref_pressure
);
3489 MODEL_MAX_PRESSURE (group
, point
, pci
) = max_pressure
;
3494 /* Update all successors of INSN, given that INSN has just been scheduled. */
3497 model_add_successors_to_worklist (struct model_insn_info
*insn
)
3499 sd_iterator_def sd_it
;
3500 struct model_insn_info
*con
;
3503 FOR_EACH_DEP (insn
->insn
, SD_LIST_FORW
, sd_it
, dep
)
3505 con
= MODEL_INSN_INFO (DEP_CON (dep
));
3506 /* Ignore debug instructions, and instructions from other blocks. */
3509 con
->unscheduled_preds
--;
3511 /* Update the depth field of each true-dependent successor.
3512 Increasing the depth gives them a higher priority than
3514 if (DEP_TYPE (dep
) == REG_DEP_TRUE
&& con
->depth
< insn
->depth
+ 1)
3516 con
->depth
= insn
->depth
+ 1;
3517 if (QUEUE_INDEX (con
->insn
) == QUEUE_READY
)
3518 model_promote_insn (con
);
3521 /* If this is a true dependency, or if there are no remaining
3522 dependencies for CON (meaning that CON only had non-true
3523 dependencies), make sure that CON is on the worklist.
3524 We don't bother otherwise because it would tend to fill the
3525 worklist with a lot of low-priority instructions that are not
3526 yet ready to issue. */
3527 if ((con
->depth
> 0 || con
->unscheduled_preds
== 0)
3528 && QUEUE_INDEX (con
->insn
) == QUEUE_NOWHERE
)
3529 model_add_to_worklist (con
, insn
, insn
->next
);
3534 /* Give INSN a higher priority than any current instruction, then give
3535 unscheduled predecessors of INSN a higher priority still. If any of
3536 those predecessors are not on the model worklist, do the same for its
3537 predecessors, and so on. */
3540 model_promote_predecessors (struct model_insn_info
*insn
)
3542 struct model_insn_info
*pro
, *first
;
3543 sd_iterator_def sd_it
;
3546 if (sched_verbose
>= 7)
3547 fprintf (sched_dump
, ";;\t+--- priority of %d = %d, priority of",
3548 INSN_UID (insn
->insn
), model_next_priority
);
3549 insn
->model_priority
= model_next_priority
++;
3550 model_remove_from_worklist (insn
);
3551 model_add_to_worklist_at (insn
, NULL
);
3556 FOR_EACH_DEP (insn
->insn
, SD_LIST_HARD_BACK
, sd_it
, dep
)
3558 pro
= MODEL_INSN_INFO (DEP_PRO (dep
));
3559 /* The first test is to ignore debug instructions, and instructions
3560 from other blocks. */
3562 && pro
->model_priority
!= model_next_priority
3563 && QUEUE_INDEX (pro
->insn
) != QUEUE_SCHEDULED
)
3565 pro
->model_priority
= model_next_priority
;
3566 if (sched_verbose
>= 7)
3567 fprintf (sched_dump
, " %d", INSN_UID (pro
->insn
));
3568 if (QUEUE_INDEX (pro
->insn
) == QUEUE_READY
)
3570 /* PRO is already in the worklist, but it now has
3571 a higher priority than before. Move it at the
3572 appropriate place. */
3573 model_remove_from_worklist (pro
);
3574 model_add_to_worklist (pro
, NULL
, model_worklist
);
3578 /* PRO isn't in the worklist. Recursively process
3579 its predecessors until we find one that is. */
3590 if (sched_verbose
>= 7)
3591 fprintf (sched_dump
, " = %d\n", model_next_priority
);
3592 model_next_priority
++;
3595 /* Pick one instruction from model_worklist and process it. */
3598 model_choose_insn (void)
3600 struct model_insn_info
*insn
, *fallback
;
3603 if (sched_verbose
>= 7)
3605 fprintf (sched_dump
, ";;\t+--- worklist:\n");
3606 insn
= model_worklist
;
3607 count
= MAX_SCHED_READY_INSNS
;
3608 while (count
> 0 && insn
)
3610 fprintf (sched_dump
, ";;\t+--- %d [%d, %d, %d, %d]\n",
3611 INSN_UID (insn
->insn
), insn
->model_priority
,
3612 insn
->depth
+ insn
->alap
, insn
->depth
,
3613 INSN_PRIORITY (insn
->insn
));
3619 /* Look for a ready instruction whose model_classify_priority is zero
3620 or negative, picking the highest-priority one. Adding such an
3621 instruction to the schedule now should do no harm, and may actually
3624 Failing that, see whether there is an instruction with the highest
3625 extant model_priority that is not yet ready, but which would reduce
3626 pressure if it became ready. This is designed to catch cases like:
3628 (set (mem (reg R1)) (reg R2))
3630 where the instruction is the last remaining use of R1 and where the
3631 value of R2 is not yet available (or vice versa). The death of R1
3632 means that this instruction already reduces pressure. It is of
3633 course possible that the computation of R2 involves other registers
3634 that are hard to kill, but such cases are rare enough for this
3635 heuristic to be a win in general.
3637 Failing that, just pick the highest-priority instruction in the
3639 count
= MAX_SCHED_READY_INSNS
;
3640 insn
= model_worklist
;
3644 if (count
== 0 || !insn
)
3646 insn
= fallback
? fallback
: model_worklist
;
3649 if (insn
->unscheduled_preds
)
3651 if (model_worklist
->model_priority
== insn
->model_priority
3653 && model_classify_pressure (insn
) < 0)
3658 if (model_classify_pressure (insn
) <= 0)
3665 if (sched_verbose
>= 7 && insn
!= model_worklist
)
3667 if (insn
->unscheduled_preds
)
3668 fprintf (sched_dump
, ";;\t+--- promoting insn %d, with dependencies\n",
3669 INSN_UID (insn
->insn
));
3671 fprintf (sched_dump
, ";;\t+--- promoting insn %d, which is ready\n",
3672 INSN_UID (insn
->insn
));
3674 if (insn
->unscheduled_preds
)
3675 /* INSN isn't yet ready to issue. Give all its predecessors the
3676 highest priority. */
3677 model_promote_predecessors (insn
);
3680 /* INSN is ready. Add it to the end of model_schedule and
3681 process its successors. */
3682 model_add_successors_to_worklist (insn
);
3683 model_remove_from_worklist (insn
);
3684 model_add_to_schedule (insn
->insn
);
3685 model_record_pressures (insn
);
3686 update_register_pressure (insn
->insn
);
3690 /* Restore all QUEUE_INDEXs to the values that they had before
3691 model_start_schedule was called. */
3694 model_reset_queue_indices (void)
3699 FOR_EACH_VEC_ELT (model_schedule
, i
, insn
)
3700 QUEUE_INDEX (insn
) = MODEL_INSN_INFO (insn
)->old_queue
;
3703 /* We have calculated the model schedule and spill costs. Print a summary
3707 model_dump_pressure_summary (void)
3711 fprintf (sched_dump
, ";; Pressure summary:");
3712 for (pci
= 0; pci
< ira_pressure_classes_num
; pci
++)
3714 cl
= ira_pressure_classes
[pci
];
3715 fprintf (sched_dump
, " %s:%d", reg_class_names
[cl
],
3716 model_before_pressure
.limits
[pci
].pressure
);
3718 fprintf (sched_dump
, "\n\n");
3721 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3722 scheduling region. */
3725 model_start_schedule (void)
3729 model_next_priority
= 1;
3730 model_schedule
.create (sched_max_luid
);
3731 model_insns
= XCNEWVEC (struct model_insn_info
, sched_max_luid
);
3733 bb
= BLOCK_FOR_INSN (NEXT_INSN (current_sched_info
->prev_head
));
3734 initiate_reg_pressure_info (df_get_live_in (bb
));
3736 model_analyze_insns ();
3737 model_init_pressure_group (&model_before_pressure
);
3738 while (model_worklist
)
3739 model_choose_insn ();
3740 gcc_assert (model_num_insns
== (int) model_schedule
.length ());
3741 if (sched_verbose
>= 2)
3742 fprintf (sched_dump
, "\n");
3744 model_record_final_pressures (&model_before_pressure
);
3745 model_reset_queue_indices ();
3747 XDELETEVEC (model_insns
);
3749 model_curr_point
= 0;
3750 initiate_reg_pressure_info (df_get_live_in (bb
));
3751 if (sched_verbose
>= 1)
3752 model_dump_pressure_summary ();
3755 /* Free the information associated with GROUP. */
3758 model_finalize_pressure_group (struct model_pressure_group
*group
)
3760 XDELETEVEC (group
->model
);
3763 /* Free the information created by model_start_schedule. */
3766 model_end_schedule (void)
3768 model_finalize_pressure_group (&model_before_pressure
);
3769 model_schedule
.release ();
3772 /* A structure that holds local state for the loop in schedule_block. */
3773 struct sched_block_state
3775 /* True if no real insns have been scheduled in the current cycle. */
3776 bool first_cycle_insn_p
;
3777 /* True if a shadow insn has been scheduled in the current cycle, which
3778 means that no more normal insns can be issued. */
3779 bool shadows_only_p
;
3780 /* True if we're winding down a modulo schedule, which means that we only
3781 issue insns with INSN_EXACT_TICK set. */
3782 bool modulo_epilogue
;
3783 /* Initialized with the machine's issue rate every cycle, and updated
3784 by calls to the variable_issue hook. */
3788 /* INSN is the "currently executing insn". Launch each insn which was
3789 waiting on INSN. READY is the ready list which contains the insns
3790 that are ready to fire. CLOCK is the current cycle. The function
3791 returns necessary cycle advance after issuing the insn (it is not
3792 zero for insns in a schedule group). */
3795 schedule_insn (rtx_insn
*insn
)
3797 sd_iterator_def sd_it
;
3802 if (sched_verbose
>= 1)
3804 struct reg_pressure_data
*pressure_info
;
3805 fprintf (sched_dump
, ";;\t%3i--> %s %-40s:",
3806 clock_var
, (*current_sched_info
->print_insn
) (insn
, 1),
3807 str_pattern_slim (PATTERN (insn
)));
3809 if (recog_memoized (insn
) < 0)
3810 fprintf (sched_dump
, "nothing");
3812 print_reservation (sched_dump
, insn
);
3813 pressure_info
= INSN_REG_PRESSURE (insn
);
3814 if (pressure_info
!= NULL
)
3816 fputc (':', sched_dump
);
3817 for (i
= 0; i
< ira_pressure_classes_num
; i
++)
3818 fprintf (sched_dump
, "%s%s%+d(%d)",
3819 scheduled_insns
.length () > 1
3821 < INSN_LUID (scheduled_insns
[scheduled_insns
.length () - 2]) ? "@" : "",
3822 reg_class_names
[ira_pressure_classes
[i
]],
3823 pressure_info
[i
].set_increase
, pressure_info
[i
].change
);
3825 if (sched_pressure
== SCHED_PRESSURE_MODEL
3826 && model_curr_point
< model_num_insns
3827 && model_index (insn
) == model_curr_point
)
3828 fprintf (sched_dump
, ":model %d", model_curr_point
);
3829 fputc ('\n', sched_dump
);
3832 if (sched_pressure
== SCHED_PRESSURE_WEIGHTED
&& !DEBUG_INSN_P (insn
))
3833 update_reg_and_insn_max_reg_pressure (insn
);
3835 /* Scheduling instruction should have all its dependencies resolved and
3836 should have been removed from the ready list. */
3837 gcc_assert (sd_lists_empty_p (insn
, SD_LIST_HARD_BACK
));
3839 /* Reset debug insns invalidated by moving this insn. */
3840 if (MAY_HAVE_DEBUG_INSNS
&& !DEBUG_INSN_P (insn
))
3841 for (sd_it
= sd_iterator_start (insn
, SD_LIST_BACK
);
3842 sd_iterator_cond (&sd_it
, &dep
);)
3844 rtx_insn
*dbg
= DEP_PRO (dep
);
3845 struct reg_use_data
*use
, *next
;
3847 if (DEP_STATUS (dep
) & DEP_CANCELLED
)
3849 sd_iterator_next (&sd_it
);
3853 gcc_assert (DEBUG_INSN_P (dbg
));
3855 if (sched_verbose
>= 6)
3856 fprintf (sched_dump
, ";;\t\tresetting: debug insn %d\n",
3859 /* ??? Rather than resetting the debug insn, we might be able
3860 to emit a debug temp before the just-scheduled insn, but
3861 this would involve checking that the expression at the
3862 point of the debug insn is equivalent to the expression
3863 before the just-scheduled insn. They might not be: the
3864 expression in the debug insn may depend on other insns not
3865 yet scheduled that set MEMs, REGs or even other debug
3866 insns. It's not clear that attempting to preserve debug
3867 information in these cases is worth the effort, given how
3868 uncommon these resets are and the likelihood that the debug
3869 temps introduced won't survive the schedule change. */
3870 INSN_VAR_LOCATION_LOC (dbg
) = gen_rtx_UNKNOWN_VAR_LOC ();
3871 df_insn_rescan (dbg
);
3873 /* Unknown location doesn't use any registers. */
3874 for (use
= INSN_REG_USE_LIST (dbg
); use
!= NULL
; use
= next
)
3876 struct reg_use_data
*prev
= use
;
3878 /* Remove use from the cyclic next_regno_use chain first. */
3879 while (prev
->next_regno_use
!= use
)
3880 prev
= prev
->next_regno_use
;
3881 prev
->next_regno_use
= use
->next_regno_use
;
3882 next
= use
->next_insn_use
;
3885 INSN_REG_USE_LIST (dbg
) = NULL
;
3887 /* We delete rather than resolve these deps, otherwise we
3888 crash in sched_free_deps(), because forward deps are
3889 expected to be released before backward deps. */
3890 sd_delete_dep (sd_it
);
3893 gcc_assert (QUEUE_INDEX (insn
) == QUEUE_NOWHERE
);
3894 QUEUE_INDEX (insn
) = QUEUE_SCHEDULED
;
3896 if (sched_pressure
== SCHED_PRESSURE_MODEL
3897 && model_curr_point
< model_num_insns
3898 && NONDEBUG_INSN_P (insn
))
3900 if (model_index (insn
) == model_curr_point
)
3903 while (model_curr_point
< model_num_insns
3904 && (QUEUE_INDEX (MODEL_INSN (model_curr_point
))
3905 == QUEUE_SCHEDULED
));
3907 model_recompute (insn
);
3908 model_update_limit_points ();
3909 update_register_pressure (insn
);
3910 if (sched_verbose
>= 2)
3911 print_curr_reg_pressure ();
3914 gcc_assert (INSN_TICK (insn
) >= MIN_TICK
);
3915 if (INSN_TICK (insn
) > clock_var
)
3916 /* INSN has been prematurely moved from the queue to the ready list.
3917 This is possible only if following flag is set. */
3918 gcc_assert (flag_sched_stalled_insns
);
3920 /* ??? Probably, if INSN is scheduled prematurely, we should leave
3921 INSN_TICK untouched. This is a machine-dependent issue, actually. */
3922 INSN_TICK (insn
) = clock_var
;
3924 check_clobbered_conditions (insn
);
3926 /* Update dependent instructions. First, see if by scheduling this insn
3927 now we broke a dependence in a way that requires us to change another
3929 for (sd_it
= sd_iterator_start (insn
, SD_LIST_SPEC_BACK
);
3930 sd_iterator_cond (&sd_it
, &dep
); sd_iterator_next (&sd_it
))
3932 struct dep_replacement
*desc
= DEP_REPLACE (dep
);
3933 rtx_insn
*pro
= DEP_PRO (dep
);
3934 if (QUEUE_INDEX (pro
) != QUEUE_SCHEDULED
3935 && desc
!= NULL
&& desc
->insn
== pro
)
3936 apply_replacement (dep
, false);
3939 /* Go through and resolve forward dependencies. */
3940 for (sd_it
= sd_iterator_start (insn
, SD_LIST_FORW
);
3941 sd_iterator_cond (&sd_it
, &dep
);)
3943 rtx_insn
*next
= DEP_CON (dep
);
3944 bool cancelled
= (DEP_STATUS (dep
) & DEP_CANCELLED
) != 0;
3946 /* Resolve the dependence between INSN and NEXT.
3947 sd_resolve_dep () moves current dep to another list thus
3948 advancing the iterator. */
3949 sd_resolve_dep (sd_it
);
3953 if (must_restore_pattern_p (next
, dep
))
3954 restore_pattern (dep
, false);
3958 /* Don't bother trying to mark next as ready if insn is a debug
3959 insn. If insn is the last hard dependency, it will have
3960 already been discounted. */
3961 if (DEBUG_INSN_P (insn
) && !DEBUG_INSN_P (next
))
3964 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn
))
3968 effective_cost
= try_ready (next
);
3970 if (effective_cost
>= 0
3971 && SCHED_GROUP_P (next
)
3972 && advance
< effective_cost
)
3973 advance
= effective_cost
;
3976 /* Check always has only one forward dependence (to the first insn in
3977 the recovery block), therefore, this will be executed only once. */
3979 gcc_assert (sd_lists_empty_p (insn
, SD_LIST_FORW
));
3980 fix_recovery_deps (RECOVERY_BLOCK (insn
));
3984 /* Annotate the instruction with issue information -- TImode
3985 indicates that the instruction is expected not to be able
3986 to issue on the same cycle as the previous insn. A machine
3987 may use this information to decide how the instruction should
3990 && GET_CODE (PATTERN (insn
)) != USE
3991 && GET_CODE (PATTERN (insn
)) != CLOBBER
3992 && !DEBUG_INSN_P (insn
))
3994 if (reload_completed
)
3995 PUT_MODE (insn
, clock_var
> last_clock_var
? TImode
: VOIDmode
);
3996 last_clock_var
= clock_var
;
3999 if (nonscheduled_insns_begin
!= NULL_RTX
)
4000 /* Indicate to debug counters that INSN is scheduled. */
4001 nonscheduled_insns_begin
= insn
;
4006 /* Functions for handling of notes. */
4008 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
4010 concat_note_lists (rtx_insn
*from_end
, rtx_insn
**to_endp
)
4012 rtx_insn
*from_start
;
4014 /* It's easy when have nothing to concat. */
4015 if (from_end
== NULL
)
4018 /* It's also easy when destination is empty. */
4019 if (*to_endp
== NULL
)
4021 *to_endp
= from_end
;
4025 from_start
= from_end
;
4026 while (PREV_INSN (from_start
) != NULL
)
4027 from_start
= PREV_INSN (from_start
);
4029 SET_PREV_INSN (from_start
) = *to_endp
;
4030 SET_NEXT_INSN (*to_endp
) = from_start
;
4031 *to_endp
= from_end
;
4034 /* Delete notes between HEAD and TAIL and put them in the chain
4035 of notes ended by NOTE_LIST. */
4037 remove_notes (rtx_insn
*head
, rtx_insn
*tail
)
4039 rtx_insn
*next_tail
, *insn
, *next
;
4042 if (head
== tail
&& !INSN_P (head
))
4045 next_tail
= NEXT_INSN (tail
);
4046 for (insn
= head
; insn
!= next_tail
; insn
= next
)
4048 next
= NEXT_INSN (insn
);
4052 switch (NOTE_KIND (insn
))
4054 case NOTE_INSN_BASIC_BLOCK
:
4057 case NOTE_INSN_EPILOGUE_BEG
:
4061 add_reg_note (next
, REG_SAVE_NOTE
,
4062 GEN_INT (NOTE_INSN_EPILOGUE_BEG
));
4070 /* Add the note to list that ends at NOTE_LIST. */
4071 SET_PREV_INSN (insn
) = note_list
;
4072 SET_NEXT_INSN (insn
) = NULL_RTX
;
4074 SET_NEXT_INSN (note_list
) = insn
;
4079 gcc_assert ((sel_sched_p () || insn
!= tail
) && insn
!= head
);
4083 /* A structure to record enough data to allow us to backtrack the scheduler to
4084 a previous state. */
4085 struct haifa_saved_data
4087 /* Next entry on the list. */
4088 struct haifa_saved_data
*next
;
4090 /* Backtracking is associated with scheduling insns that have delay slots.
4091 DELAY_PAIR points to the structure that contains the insns involved, and
4092 the number of cycles between them. */
4093 struct delay_pair
*delay_pair
;
4095 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4096 void *fe_saved_data
;
4097 /* Data used by the backend. */
4098 void *be_saved_data
;
4100 /* Copies of global state. */
4101 int clock_var
, last_clock_var
;
4102 struct ready_list ready
;
4105 rtx_insn
*last_scheduled_insn
;
4106 rtx last_nondebug_scheduled_insn
;
4107 rtx_insn
*nonscheduled_insns_begin
;
4108 int cycle_issued_insns
;
4110 /* Copies of state used in the inner loop of schedule_block. */
4111 struct sched_block_state sched_block
;
4113 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4114 to 0 when restoring. */
4116 rtx_insn_list
**insn_queue
;
4118 /* Describe pattern replacements that occurred since this backtrack point
4120 vec
<dep_t
> replacement_deps
;
4121 vec
<int> replace_apply
;
4123 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4125 vec
<dep_t
> next_cycle_deps
;
4126 vec
<int> next_cycle_apply
;
4129 /* A record, in reverse order, of all scheduled insns which have delay slots
4130 and may require backtracking. */
4131 static struct haifa_saved_data
*backtrack_queue
;
4133 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4136 mark_backtrack_feeds (rtx insn
, int set_p
)
4138 sd_iterator_def sd_it
;
4140 FOR_EACH_DEP (insn
, SD_LIST_HARD_BACK
, sd_it
, dep
)
4142 FEEDS_BACKTRACK_INSN (DEP_PRO (dep
)) = set_p
;
4146 /* Save the current scheduler state so that we can backtrack to it
4147 later if necessary. PAIR gives the insns that make it necessary to
4148 save this point. SCHED_BLOCK is the local state of schedule_block
4149 that need to be saved. */
4151 save_backtrack_point (struct delay_pair
*pair
,
4152 struct sched_block_state sched_block
)
4155 struct haifa_saved_data
*save
= XNEW (struct haifa_saved_data
);
4157 save
->curr_state
= xmalloc (dfa_state_size
);
4158 memcpy (save
->curr_state
, curr_state
, dfa_state_size
);
4160 save
->ready
.first
= ready
.first
;
4161 save
->ready
.n_ready
= ready
.n_ready
;
4162 save
->ready
.n_debug
= ready
.n_debug
;
4163 save
->ready
.veclen
= ready
.veclen
;
4164 save
->ready
.vec
= XNEWVEC (rtx_insn
*, ready
.veclen
);
4165 memcpy (save
->ready
.vec
, ready
.vec
, ready
.veclen
* sizeof (rtx
));
4167 save
->insn_queue
= XNEWVEC (rtx_insn_list
*, max_insn_queue_index
+ 1);
4168 save
->q_size
= q_size
;
4169 for (i
= 0; i
<= max_insn_queue_index
; i
++)
4171 int q
= NEXT_Q_AFTER (q_ptr
, i
);
4172 save
->insn_queue
[i
] = copy_INSN_LIST (insn_queue
[q
]);
4175 save
->clock_var
= clock_var
;
4176 save
->last_clock_var
= last_clock_var
;
4177 save
->cycle_issued_insns
= cycle_issued_insns
;
4178 save
->last_scheduled_insn
= last_scheduled_insn
;
4179 save
->last_nondebug_scheduled_insn
= last_nondebug_scheduled_insn
;
4180 save
->nonscheduled_insns_begin
= nonscheduled_insns_begin
;
4182 save
->sched_block
= sched_block
;
4184 save
->replacement_deps
.create (0);
4185 save
->replace_apply
.create (0);
4186 save
->next_cycle_deps
= next_cycle_replace_deps
.copy ();
4187 save
->next_cycle_apply
= next_cycle_apply
.copy ();
4189 if (current_sched_info
->save_state
)
4190 save
->fe_saved_data
= (*current_sched_info
->save_state
) ();
4192 if (targetm
.sched
.alloc_sched_context
)
4194 save
->be_saved_data
= targetm
.sched
.alloc_sched_context ();
4195 targetm
.sched
.init_sched_context (save
->be_saved_data
, false);
4198 save
->be_saved_data
= NULL
;
4200 save
->delay_pair
= pair
;
4202 save
->next
= backtrack_queue
;
4203 backtrack_queue
= save
;
4207 mark_backtrack_feeds (pair
->i2
, 1);
4208 INSN_TICK (pair
->i2
) = INVALID_TICK
;
4209 INSN_EXACT_TICK (pair
->i2
) = clock_var
+ pair_delay (pair
);
4210 SHADOW_P (pair
->i2
) = pair
->stages
== 0;
4211 pair
= pair
->next_same_i1
;
4215 /* Walk the ready list and all queues. If any insns have unresolved backwards
4216 dependencies, these must be cancelled deps, broken by predication. Set or
4217 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4220 toggle_cancelled_flags (bool set
)
4223 sd_iterator_def sd_it
;
4226 if (ready
.n_ready
> 0)
4228 rtx_insn
**first
= ready_lastpos (&ready
);
4229 for (i
= 0; i
< ready
.n_ready
; i
++)
4230 FOR_EACH_DEP (first
[i
], SD_LIST_BACK
, sd_it
, dep
)
4231 if (!DEBUG_INSN_P (DEP_PRO (dep
)))
4234 DEP_STATUS (dep
) |= DEP_CANCELLED
;
4236 DEP_STATUS (dep
) &= ~DEP_CANCELLED
;
4239 for (i
= 0; i
<= max_insn_queue_index
; i
++)
4241 int q
= NEXT_Q_AFTER (q_ptr
, i
);
4243 for (link
= insn_queue
[q
]; link
; link
= XEXP (link
, 1))
4245 rtx insn
= XEXP (link
, 0);
4246 FOR_EACH_DEP (insn
, SD_LIST_BACK
, sd_it
, dep
)
4247 if (!DEBUG_INSN_P (DEP_PRO (dep
)))
4250 DEP_STATUS (dep
) |= DEP_CANCELLED
;
4252 DEP_STATUS (dep
) &= ~DEP_CANCELLED
;
4258 /* Undo the replacements that have occurred after backtrack point SAVE
4261 undo_replacements_for_backtrack (struct haifa_saved_data
*save
)
4263 while (!save
->replacement_deps
.is_empty ())
4265 dep_t dep
= save
->replacement_deps
.pop ();
4266 int apply_p
= save
->replace_apply
.pop ();
4269 restore_pattern (dep
, true);
4271 apply_replacement (dep
, true);
4273 save
->replacement_deps
.release ();
4274 save
->replace_apply
.release ();
4277 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4278 Restore their dependencies to an unresolved state, and mark them as
4282 unschedule_insns_until (rtx insn
)
4284 auto_vec
<rtx_insn
*> recompute_vec
;
4286 /* Make two passes over the insns to be unscheduled. First, we clear out
4287 dependencies and other trivial bookkeeping. */
4291 sd_iterator_def sd_it
;
4294 last
= scheduled_insns
.pop ();
4296 /* This will be changed by restore_backtrack_point if the insn is in
4298 QUEUE_INDEX (last
) = QUEUE_NOWHERE
;
4300 INSN_TICK (last
) = INVALID_TICK
;
4302 if (modulo_ii
> 0 && INSN_UID (last
) < modulo_iter0_max_uid
)
4303 modulo_insns_scheduled
--;
4305 for (sd_it
= sd_iterator_start (last
, SD_LIST_RES_FORW
);
4306 sd_iterator_cond (&sd_it
, &dep
);)
4308 rtx_insn
*con
= DEP_CON (dep
);
4309 sd_unresolve_dep (sd_it
);
4310 if (!MUST_RECOMPUTE_SPEC_P (con
))
4312 MUST_RECOMPUTE_SPEC_P (con
) = 1;
4313 recompute_vec
.safe_push (con
);
4321 /* A second pass, to update ready and speculation status for insns
4322 depending on the unscheduled ones. The first pass must have
4323 popped the scheduled_insns vector up to the point where we
4324 restart scheduling, as recompute_todo_spec requires it to be
4326 while (!recompute_vec
.is_empty ())
4330 con
= recompute_vec
.pop ();
4331 MUST_RECOMPUTE_SPEC_P (con
) = 0;
4332 if (!sd_lists_empty_p (con
, SD_LIST_HARD_BACK
))
4334 TODO_SPEC (con
) = HARD_DEP
;
4335 INSN_TICK (con
) = INVALID_TICK
;
4336 if (PREDICATED_PAT (con
) != NULL_RTX
)
4337 haifa_change_pattern (con
, ORIG_PAT (con
));
4339 else if (QUEUE_INDEX (con
) != QUEUE_SCHEDULED
)
4340 TODO_SPEC (con
) = recompute_todo_spec (con
, true);
4344 /* Restore scheduler state from the topmost entry on the backtracking queue.
4345 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4346 overwrite with the saved data.
4347 The caller must already have called unschedule_insns_until. */
4350 restore_last_backtrack_point (struct sched_block_state
*psched_block
)
4354 struct haifa_saved_data
*save
= backtrack_queue
;
4356 backtrack_queue
= save
->next
;
4358 if (current_sched_info
->restore_state
)
4359 (*current_sched_info
->restore_state
) (save
->fe_saved_data
);
4361 if (targetm
.sched
.alloc_sched_context
)
4363 targetm
.sched
.set_sched_context (save
->be_saved_data
);
4364 targetm
.sched
.free_sched_context (save
->be_saved_data
);
4367 /* Do this first since it clobbers INSN_TICK of the involved
4369 undo_replacements_for_backtrack (save
);
4371 /* Clear the QUEUE_INDEX of everything in the ready list or one
4373 if (ready
.n_ready
> 0)
4375 rtx_insn
**first
= ready_lastpos (&ready
);
4376 for (i
= 0; i
< ready
.n_ready
; i
++)
4378 rtx_insn
*insn
= first
[i
];
4379 QUEUE_INDEX (insn
) = QUEUE_NOWHERE
;
4380 INSN_TICK (insn
) = INVALID_TICK
;
4383 for (i
= 0; i
<= max_insn_queue_index
; i
++)
4385 int q
= NEXT_Q_AFTER (q_ptr
, i
);
4387 for (link
= insn_queue
[q
]; link
; link
= XEXP (link
, 1))
4389 rtx_insn
*x
= as_a
<rtx_insn
*> (XEXP (link
, 0));
4390 QUEUE_INDEX (x
) = QUEUE_NOWHERE
;
4391 INSN_TICK (x
) = INVALID_TICK
;
4393 free_INSN_LIST_list (&insn_queue
[q
]);
4397 ready
= save
->ready
;
4399 if (ready
.n_ready
> 0)
4401 rtx_insn
**first
= ready_lastpos (&ready
);
4402 for (i
= 0; i
< ready
.n_ready
; i
++)
4404 rtx_insn
*insn
= first
[i
];
4405 QUEUE_INDEX (insn
) = QUEUE_READY
;
4406 TODO_SPEC (insn
) = recompute_todo_spec (insn
, true);
4407 INSN_TICK (insn
) = save
->clock_var
;
4412 q_size
= save
->q_size
;
4413 for (i
= 0; i
<= max_insn_queue_index
; i
++)
4415 int q
= NEXT_Q_AFTER (q_ptr
, i
);
4417 insn_queue
[q
] = save
->insn_queue
[q
];
4419 for (link
= insn_queue
[q
]; link
; link
= XEXP (link
, 1))
4421 rtx_insn
*x
= as_a
<rtx_insn
*> (XEXP (link
, 0));
4422 QUEUE_INDEX (x
) = i
;
4423 TODO_SPEC (x
) = recompute_todo_spec (x
, true);
4424 INSN_TICK (x
) = save
->clock_var
+ i
;
4427 free (save
->insn_queue
);
4429 toggle_cancelled_flags (true);
4431 clock_var
= save
->clock_var
;
4432 last_clock_var
= save
->last_clock_var
;
4433 cycle_issued_insns
= save
->cycle_issued_insns
;
4434 last_scheduled_insn
= save
->last_scheduled_insn
;
4435 last_nondebug_scheduled_insn
= save
->last_nondebug_scheduled_insn
;
4436 nonscheduled_insns_begin
= save
->nonscheduled_insns_begin
;
4438 *psched_block
= save
->sched_block
;
4440 memcpy (curr_state
, save
->curr_state
, dfa_state_size
);
4441 free (save
->curr_state
);
4443 mark_backtrack_feeds (save
->delay_pair
->i2
, 0);
4445 gcc_assert (next_cycle_replace_deps
.is_empty ());
4446 next_cycle_replace_deps
= save
->next_cycle_deps
.copy ();
4447 next_cycle_apply
= save
->next_cycle_apply
.copy ();
4451 for (save
= backtrack_queue
; save
; save
= save
->next
)
4453 mark_backtrack_feeds (save
->delay_pair
->i2
, 1);
4457 /* Discard all data associated with the topmost entry in the backtrack
4458 queue. If RESET_TICK is false, we just want to free the data. If true,
4459 we are doing this because we discovered a reason to backtrack. In the
4460 latter case, also reset the INSN_TICK for the shadow insn. */
4462 free_topmost_backtrack_point (bool reset_tick
)
4464 struct haifa_saved_data
*save
= backtrack_queue
;
4467 backtrack_queue
= save
->next
;
4471 struct delay_pair
*pair
= save
->delay_pair
;
4474 INSN_TICK (pair
->i2
) = INVALID_TICK
;
4475 INSN_EXACT_TICK (pair
->i2
) = INVALID_TICK
;
4476 pair
= pair
->next_same_i1
;
4478 undo_replacements_for_backtrack (save
);
4482 save
->replacement_deps
.release ();
4483 save
->replace_apply
.release ();
4486 if (targetm
.sched
.free_sched_context
)
4487 targetm
.sched
.free_sched_context (save
->be_saved_data
);
4488 if (current_sched_info
->restore_state
)
4489 free (save
->fe_saved_data
);
4490 for (i
= 0; i
<= max_insn_queue_index
; i
++)
4491 free_INSN_LIST_list (&save
->insn_queue
[i
]);
4492 free (save
->insn_queue
);
4493 free (save
->curr_state
);
4494 free (save
->ready
.vec
);
4498 /* Free the entire backtrack queue. */
4500 free_backtrack_queue (void)
4502 while (backtrack_queue
)
4503 free_topmost_backtrack_point (false);
4506 /* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4507 may have to postpone the replacement until the start of the next cycle,
4508 at which point we will be called again with IMMEDIATELY true. This is
4509 only done for machines which have instruction packets with explicit
4510 parallelism however. */
4512 apply_replacement (dep_t dep
, bool immediately
)
4514 struct dep_replacement
*desc
= DEP_REPLACE (dep
);
4515 if (!immediately
&& targetm
.sched
.exposed_pipeline
&& reload_completed
)
4517 next_cycle_replace_deps
.safe_push (dep
);
4518 next_cycle_apply
.safe_push (1);
4524 if (QUEUE_INDEX (desc
->insn
) == QUEUE_SCHEDULED
)
4527 if (sched_verbose
>= 5)
4528 fprintf (sched_dump
, "applying replacement for insn %d\n",
4529 INSN_UID (desc
->insn
));
4531 success
= validate_change (desc
->insn
, desc
->loc
, desc
->newval
, 0);
4532 gcc_assert (success
);
4534 update_insn_after_change (desc
->insn
);
4535 if ((TODO_SPEC (desc
->insn
) & (HARD_DEP
| DEP_POSTPONED
)) == 0)
4536 fix_tick_ready (desc
->insn
);
4538 if (backtrack_queue
!= NULL
)
4540 backtrack_queue
->replacement_deps
.safe_push (dep
);
4541 backtrack_queue
->replace_apply
.safe_push (1);
4546 /* We have determined that a pattern involved in DEP must be restored.
4547 If IMMEDIATELY is false, we may have to postpone the replacement
4548 until the start of the next cycle, at which point we will be called
4549 again with IMMEDIATELY true. */
4551 restore_pattern (dep_t dep
, bool immediately
)
4553 rtx_insn
*next
= DEP_CON (dep
);
4554 int tick
= INSN_TICK (next
);
4556 /* If we already scheduled the insn, the modified version is
4558 if (QUEUE_INDEX (next
) == QUEUE_SCHEDULED
)
4561 if (!immediately
&& targetm
.sched
.exposed_pipeline
&& reload_completed
)
4563 next_cycle_replace_deps
.safe_push (dep
);
4564 next_cycle_apply
.safe_push (0);
4569 if (DEP_TYPE (dep
) == REG_DEP_CONTROL
)
4571 if (sched_verbose
>= 5)
4572 fprintf (sched_dump
, "restoring pattern for insn %d\n",
4574 haifa_change_pattern (next
, ORIG_PAT (next
));
4578 struct dep_replacement
*desc
= DEP_REPLACE (dep
);
4581 if (sched_verbose
>= 5)
4582 fprintf (sched_dump
, "restoring pattern for insn %d\n",
4583 INSN_UID (desc
->insn
));
4584 tick
= INSN_TICK (desc
->insn
);
4586 success
= validate_change (desc
->insn
, desc
->loc
, desc
->orig
, 0);
4587 gcc_assert (success
);
4588 update_insn_after_change (desc
->insn
);
4589 if (backtrack_queue
!= NULL
)
4591 backtrack_queue
->replacement_deps
.safe_push (dep
);
4592 backtrack_queue
->replace_apply
.safe_push (0);
4595 INSN_TICK (next
) = tick
;
4596 if (TODO_SPEC (next
) == DEP_POSTPONED
)
4599 if (sd_lists_empty_p (next
, SD_LIST_BACK
))
4600 TODO_SPEC (next
) = 0;
4601 else if (!sd_lists_empty_p (next
, SD_LIST_HARD_BACK
))
4602 TODO_SPEC (next
) = HARD_DEP
;
4605 /* Perform pattern replacements that were queued up until the next
4608 perform_replacements_new_cycle (void)
4612 FOR_EACH_VEC_ELT (next_cycle_replace_deps
, i
, dep
)
4614 int apply_p
= next_cycle_apply
[i
];
4616 apply_replacement (dep
, true);
4618 restore_pattern (dep
, true);
4620 next_cycle_replace_deps
.truncate (0);
4621 next_cycle_apply
.truncate (0);
4624 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4625 instructions we've previously encountered, a set bit prevents
4626 recursion. BUDGET is a limit on how far ahead we look, it is
4627 reduced on recursive calls. Return true if we produced a good
4628 estimate, or false if we exceeded the budget. */
4630 estimate_insn_tick (bitmap processed
, rtx_insn
*insn
, int budget
)
4632 sd_iterator_def sd_it
;
4634 int earliest
= INSN_TICK (insn
);
4636 FOR_EACH_DEP (insn
, SD_LIST_BACK
, sd_it
, dep
)
4638 rtx_insn
*pro
= DEP_PRO (dep
);
4641 if (DEP_STATUS (dep
) & DEP_CANCELLED
)
4644 if (QUEUE_INDEX (pro
) == QUEUE_SCHEDULED
)
4645 gcc_assert (INSN_TICK (pro
) + dep_cost (dep
) <= INSN_TICK (insn
));
4648 int cost
= dep_cost (dep
);
4651 if (!bitmap_bit_p (processed
, INSN_LUID (pro
)))
4653 if (!estimate_insn_tick (processed
, pro
, budget
- cost
))
4656 gcc_assert (INSN_TICK_ESTIMATE (pro
) != INVALID_TICK
);
4657 t
= INSN_TICK_ESTIMATE (pro
) + cost
;
4658 if (earliest
== INVALID_TICK
|| t
> earliest
)
4662 bitmap_set_bit (processed
, INSN_LUID (insn
));
4663 INSN_TICK_ESTIMATE (insn
) = earliest
;
4667 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4668 infinite resources) the cycle in which the delayed shadow can be issued.
4669 Return the number of cycles that must pass before the real insn can be
4670 issued in order to meet this constraint. */
4672 estimate_shadow_tick (struct delay_pair
*p
)
4674 bitmap_head processed
;
4677 bitmap_initialize (&processed
, 0);
4679 cutoff
= !estimate_insn_tick (&processed
, p
->i2
,
4680 max_insn_queue_index
+ pair_delay (p
));
4681 bitmap_clear (&processed
);
4683 return max_insn_queue_index
;
4684 t
= INSN_TICK_ESTIMATE (p
->i2
) - (clock_var
+ pair_delay (p
) + 1);
4690 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4691 recursively resolve all its forward dependencies. */
4693 resolve_dependencies (rtx_insn
*insn
)
4695 sd_iterator_def sd_it
;
4698 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4699 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn
)) != NULL
4700 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn
)) != NULL
)
4703 if (sched_verbose
>= 4)
4704 fprintf (sched_dump
, ";;\tquickly resolving %d\n", INSN_UID (insn
));
4706 if (QUEUE_INDEX (insn
) >= 0)
4707 queue_remove (insn
);
4709 scheduled_insns
.safe_push (insn
);
4711 /* Update dependent instructions. */
4712 for (sd_it
= sd_iterator_start (insn
, SD_LIST_FORW
);
4713 sd_iterator_cond (&sd_it
, &dep
);)
4715 rtx_insn
*next
= DEP_CON (dep
);
4717 if (sched_verbose
>= 4)
4718 fprintf (sched_dump
, ";;\t\tdep %d against %d\n", INSN_UID (insn
),
4721 /* Resolve the dependence between INSN and NEXT.
4722 sd_resolve_dep () moves current dep to another list thus
4723 advancing the iterator. */
4724 sd_resolve_dep (sd_it
);
4726 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn
))
4728 resolve_dependencies (next
);
4731 /* Check always has only one forward dependence (to the first insn in
4732 the recovery block), therefore, this will be executed only once. */
4734 gcc_assert (sd_lists_empty_p (insn
, SD_LIST_FORW
));
4740 /* Return the head and tail pointers of ebb starting at BEG and ending
4743 get_ebb_head_tail (basic_block beg
, basic_block end
,
4744 rtx_insn
**headp
, rtx_insn
**tailp
)
4746 rtx_insn
*beg_head
= BB_HEAD (beg
);
4747 rtx_insn
* beg_tail
= BB_END (beg
);
4748 rtx_insn
* end_head
= BB_HEAD (end
);
4749 rtx_insn
* end_tail
= BB_END (end
);
4751 /* Don't include any notes or labels at the beginning of the BEG
4752 basic block, or notes at the end of the END basic blocks. */
4754 if (LABEL_P (beg_head
))
4755 beg_head
= NEXT_INSN (beg_head
);
4757 while (beg_head
!= beg_tail
)
4758 if (NOTE_P (beg_head
))
4759 beg_head
= NEXT_INSN (beg_head
);
4760 else if (DEBUG_INSN_P (beg_head
))
4762 rtx_insn
* note
, *next
;
4764 for (note
= NEXT_INSN (beg_head
);
4768 next
= NEXT_INSN (note
);
4771 if (sched_verbose
>= 9)
4772 fprintf (sched_dump
, "reorder %i\n", INSN_UID (note
));
4774 reorder_insns_nobb (note
, note
, PREV_INSN (beg_head
));
4776 if (BLOCK_FOR_INSN (note
) != beg
)
4777 df_insn_change_bb (note
, beg
);
4779 else if (!DEBUG_INSN_P (note
))
4791 end_head
= beg_head
;
4792 else if (LABEL_P (end_head
))
4793 end_head
= NEXT_INSN (end_head
);
4795 while (end_head
!= end_tail
)
4796 if (NOTE_P (end_tail
))
4797 end_tail
= PREV_INSN (end_tail
);
4798 else if (DEBUG_INSN_P (end_tail
))
4800 rtx_insn
* note
, *prev
;
4802 for (note
= PREV_INSN (end_tail
);
4806 prev
= PREV_INSN (note
);
4809 if (sched_verbose
>= 9)
4810 fprintf (sched_dump
, "reorder %i\n", INSN_UID (note
));
4812 reorder_insns_nobb (note
, note
, end_tail
);
4814 if (end_tail
== BB_END (end
))
4815 BB_END (end
) = note
;
4817 if (BLOCK_FOR_INSN (note
) != end
)
4818 df_insn_change_bb (note
, end
);
4820 else if (!DEBUG_INSN_P (note
))
4832 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
4835 no_real_insns_p (const rtx_insn
*head
, const rtx_insn
*tail
)
4837 while (head
!= NEXT_INSN (tail
))
4839 if (!NOTE_P (head
) && !LABEL_P (head
))
4841 head
= NEXT_INSN (head
);
4846 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
4847 previously found among the insns. Insert them just before HEAD. */
4849 restore_other_notes (rtx_insn
*head
, basic_block head_bb
)
4853 rtx_insn
*note_head
= note_list
;
4856 head_bb
= BLOCK_FOR_INSN (head
);
4858 head
= NEXT_INSN (bb_note (head_bb
));
4860 while (PREV_INSN (note_head
))
4862 set_block_for_insn (note_head
, head_bb
);
4863 note_head
= PREV_INSN (note_head
);
4865 /* In the above cycle we've missed this note. */
4866 set_block_for_insn (note_head
, head_bb
);
4868 SET_PREV_INSN (note_head
) = PREV_INSN (head
);
4869 SET_NEXT_INSN (PREV_INSN (head
)) = note_head
;
4870 SET_PREV_INSN (head
) = note_list
;
4871 SET_NEXT_INSN (note_list
) = head
;
4873 if (BLOCK_FOR_INSN (head
) != head_bb
)
4874 BB_END (head_bb
) = note_list
;
4882 /* When we know we are going to discard the schedule due to a failed attempt
4883 at modulo scheduling, undo all replacements. */
4885 undo_all_replacements (void)
4890 FOR_EACH_VEC_ELT (scheduled_insns
, i
, insn
)
4892 sd_iterator_def sd_it
;
4895 /* See if we must undo a replacement. */
4896 for (sd_it
= sd_iterator_start (insn
, SD_LIST_RES_FORW
);
4897 sd_iterator_cond (&sd_it
, &dep
); sd_iterator_next (&sd_it
))
4899 struct dep_replacement
*desc
= DEP_REPLACE (dep
);
4901 validate_change (desc
->insn
, desc
->loc
, desc
->orig
, 0);
4906 /* Return first non-scheduled insn in the current scheduling block.
4907 This is mostly used for debug-counter purposes. */
4909 first_nonscheduled_insn (void)
4911 rtx_insn
*insn
= (nonscheduled_insns_begin
!= NULL_RTX
4912 ? nonscheduled_insns_begin
4913 : current_sched_info
->prev_head
);
4917 insn
= next_nonnote_nondebug_insn (insn
);
4919 while (QUEUE_INDEX (insn
) == QUEUE_SCHEDULED
);
4924 /* Move insns that became ready to fire from queue to ready list. */
4927 queue_to_ready (struct ready_list
*ready
)
4930 rtx_insn_list
*link
;
4933 q_ptr
= NEXT_Q (q_ptr
);
4935 if (dbg_cnt (sched_insn
) == false)
4936 /* If debug counter is activated do not requeue the first
4937 nonscheduled insn. */
4938 skip_insn
= first_nonscheduled_insn ();
4940 skip_insn
= NULL_RTX
;
4942 /* Add all pending insns that can be scheduled without stalls to the
4944 for (link
= insn_queue
[q_ptr
]; link
; link
= link
->next ())
4946 insn
= link
->insn ();
4949 if (sched_verbose
>= 2)
4950 fprintf (sched_dump
, ";;\t\tQ-->Ready: insn %s: ",
4951 (*current_sched_info
->print_insn
) (insn
, 0));
4953 /* If the ready list is full, delay the insn for 1 cycle.
4954 See the comment in schedule_block for the rationale. */
4955 if (!reload_completed
4956 && (ready
->n_ready
- ready
->n_debug
> MAX_SCHED_READY_INSNS
4957 || (sched_pressure
== SCHED_PRESSURE_MODEL
4958 /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
4959 instructions too. */
4960 && model_index (insn
) > (model_curr_point
4961 + MAX_SCHED_READY_INSNS
)))
4962 && !(sched_pressure
== SCHED_PRESSURE_MODEL
4963 && model_curr_point
< model_num_insns
4964 /* Always allow the next model instruction to issue. */
4965 && model_index (insn
) == model_curr_point
)
4966 && !SCHED_GROUP_P (insn
)
4967 && insn
!= skip_insn
)
4969 if (sched_verbose
>= 2)
4970 fprintf (sched_dump
, "keeping in queue, ready full\n");
4971 queue_insn (insn
, 1, "ready full");
4975 ready_add (ready
, insn
, false);
4976 if (sched_verbose
>= 2)
4977 fprintf (sched_dump
, "moving to ready without stalls\n");
4980 free_INSN_LIST_list (&insn_queue
[q_ptr
]);
4982 /* If there are no ready insns, stall until one is ready and add all
4983 of the pending insns at that point to the ready list. */
4984 if (ready
->n_ready
== 0)
4988 for (stalls
= 1; stalls
<= max_insn_queue_index
; stalls
++)
4990 if ((link
= insn_queue
[NEXT_Q_AFTER (q_ptr
, stalls
)]))
4992 for (; link
; link
= link
->next ())
4994 insn
= as_a
<rtx_insn
*> (XEXP (link
, 0));
4997 if (sched_verbose
>= 2)
4998 fprintf (sched_dump
, ";;\t\tQ-->Ready: insn %s: ",
4999 (*current_sched_info
->print_insn
) (insn
, 0));
5001 ready_add (ready
, insn
, false);
5002 if (sched_verbose
>= 2)
5003 fprintf (sched_dump
, "moving to ready with %d stalls\n", stalls
);
5005 free_INSN_LIST_list (&insn_queue
[NEXT_Q_AFTER (q_ptr
, stalls
)]);
5007 advance_one_cycle ();
5012 advance_one_cycle ();
5015 q_ptr
= NEXT_Q_AFTER (q_ptr
, stalls
);
5016 clock_var
+= stalls
;
5017 if (sched_verbose
>= 2)
5018 fprintf (sched_dump
, ";;\tAdvancing clock by %d cycle[s] to %d\n",
5023 /* Used by early_queue_to_ready. Determines whether it is "ok" to
5024 prematurely move INSN from the queue to the ready list. Currently,
5025 if a target defines the hook 'is_costly_dependence', this function
5026 uses the hook to check whether there exist any dependences which are
5027 considered costly by the target, between INSN and other insns that
5028 have already been scheduled. Dependences are checked up to Y cycles
5029 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
5030 controlling this value.
5031 (Other considerations could be taken into account instead (or in
5032 addition) depending on user flags and target hooks. */
5035 ok_for_early_queue_removal (rtx insn
)
5037 if (targetm
.sched
.is_costly_dependence
)
5041 int i
= scheduled_insns
.length ();
5042 for (n_cycles
= flag_sched_stalled_insns_dep
; n_cycles
; n_cycles
--)
5048 prev_insn
= scheduled_insns
[i
];
5050 if (!NOTE_P (prev_insn
))
5054 dep
= sd_find_dep_between (prev_insn
, insn
, true);
5058 cost
= dep_cost (dep
);
5060 if (targetm
.sched
.is_costly_dependence (dep
, cost
,
5061 flag_sched_stalled_insns_dep
- n_cycles
))
5066 if (GET_MODE (prev_insn
) == TImode
) /* end of dispatch group */
5079 /* Remove insns from the queue, before they become "ready" with respect
5080 to FU latency considerations. */
5083 early_queue_to_ready (state_t state
, struct ready_list
*ready
)
5086 rtx_insn_list
*link
;
5087 rtx_insn_list
*next_link
;
5088 rtx_insn_list
*prev_link
;
5091 state_t temp_state
= alloca (dfa_state_size
);
5093 int insns_removed
= 0;
5096 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5099 X == 0: There is no limit on how many queued insns can be removed
5100 prematurely. (flag_sched_stalled_insns = -1).
5102 X >= 1: Only X queued insns can be removed prematurely in each
5103 invocation. (flag_sched_stalled_insns = X).
5105 Otherwise: Early queue removal is disabled.
5106 (flag_sched_stalled_insns = 0)
5109 if (! flag_sched_stalled_insns
)
5112 for (stalls
= 0; stalls
<= max_insn_queue_index
; stalls
++)
5114 if ((link
= insn_queue
[NEXT_Q_AFTER (q_ptr
, stalls
)]))
5116 if (sched_verbose
> 6)
5117 fprintf (sched_dump
, ";; look at index %d + %d\n", q_ptr
, stalls
);
5122 next_link
= link
->next ();
5123 insn
= link
->insn ();
5124 if (insn
&& sched_verbose
> 6)
5125 print_rtl_single (sched_dump
, insn
);
5127 memcpy (temp_state
, state
, dfa_state_size
);
5128 if (recog_memoized (insn
) < 0)
5129 /* non-negative to indicate that it's not ready
5130 to avoid infinite Q->R->Q->R... */
5133 cost
= state_transition (temp_state
, insn
);
5135 if (sched_verbose
>= 6)
5136 fprintf (sched_dump
, "transition cost = %d\n", cost
);
5138 move_to_ready
= false;
5141 move_to_ready
= ok_for_early_queue_removal (insn
);
5142 if (move_to_ready
== true)
5144 /* move from Q to R */
5146 ready_add (ready
, insn
, false);
5149 XEXP (prev_link
, 1) = next_link
;
5151 insn_queue
[NEXT_Q_AFTER (q_ptr
, stalls
)] = next_link
;
5153 free_INSN_LIST_node (link
);
5155 if (sched_verbose
>= 2)
5156 fprintf (sched_dump
, ";;\t\tEarly Q-->Ready: insn %s\n",
5157 (*current_sched_info
->print_insn
) (insn
, 0));
5160 if (insns_removed
== flag_sched_stalled_insns
)
5161 /* Remove no more than flag_sched_stalled_insns insns
5162 from Q at a time. */
5163 return insns_removed
;
5167 if (move_to_ready
== false)
5174 } /* for stalls.. */
5176 return insns_removed
;
5180 /* Print the ready list for debugging purposes.
5181 If READY_TRY is non-zero then only print insns that max_issue
5184 debug_ready_list_1 (struct ready_list
*ready
, signed char *ready_try
)
5189 if (ready
->n_ready
== 0)
5191 fprintf (sched_dump
, "\n");
5195 p
= ready_lastpos (ready
);
5196 for (i
= 0; i
< ready
->n_ready
; i
++)
5198 if (ready_try
!= NULL
&& ready_try
[ready
->n_ready
- i
- 1])
5201 fprintf (sched_dump
, " %s:%d",
5202 (*current_sched_info
->print_insn
) (p
[i
], 0),
5204 if (sched_pressure
!= SCHED_PRESSURE_NONE
)
5205 fprintf (sched_dump
, "(cost=%d",
5206 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p
[i
]));
5207 fprintf (sched_dump
, ":prio=%d", INSN_PRIORITY (p
[i
]));
5208 if (INSN_TICK (p
[i
]) > clock_var
)
5209 fprintf (sched_dump
, ":delay=%d", INSN_TICK (p
[i
]) - clock_var
);
5210 if (sched_pressure
!= SCHED_PRESSURE_NONE
)
5211 fprintf (sched_dump
, ")");
5213 fprintf (sched_dump
, "\n");
5216 /* Print the ready list. Callable from debugger. */
5218 debug_ready_list (struct ready_list
*ready
)
5220 debug_ready_list_1 (ready
, NULL
);
5223 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5224 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5225 replaces the epilogue note in the correct basic block. */
5227 reemit_notes (rtx_insn
*insn
)
5230 rtx_insn
*last
= insn
;
5232 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
5234 if (REG_NOTE_KIND (note
) == REG_SAVE_NOTE
)
5236 enum insn_note note_type
= (enum insn_note
) INTVAL (XEXP (note
, 0));
5238 last
= emit_note_before (note_type
, last
);
5239 remove_note (insn
, note
);
5244 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5246 move_insn (rtx_insn
*insn
, rtx_insn
*last
, rtx nt
)
5248 if (PREV_INSN (insn
) != last
)
5254 bb
= BLOCK_FOR_INSN (insn
);
5256 /* BB_HEAD is either LABEL or NOTE. */
5257 gcc_assert (BB_HEAD (bb
) != insn
);
5259 if (BB_END (bb
) == insn
)
5260 /* If this is last instruction in BB, move end marker one
5263 /* Jumps are always placed at the end of basic block. */
5264 jump_p
= control_flow_insn_p (insn
);
5267 || ((common_sched_info
->sched_pass_id
== SCHED_RGN_PASS
)
5268 && IS_SPECULATION_BRANCHY_CHECK_P (insn
))
5269 || (common_sched_info
->sched_pass_id
5270 == SCHED_EBB_PASS
));
5272 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn
)) == bb
);
5274 BB_END (bb
) = PREV_INSN (insn
);
5277 gcc_assert (BB_END (bb
) != last
);
5280 /* We move the block note along with jump. */
5284 note
= NEXT_INSN (insn
);
5285 while (NOTE_NOT_BB_P (note
) && note
!= nt
)
5286 note
= NEXT_INSN (note
);
5290 || BARRIER_P (note
)))
5291 note
= NEXT_INSN (note
);
5293 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note
));
5298 SET_NEXT_INSN (PREV_INSN (insn
)) = NEXT_INSN (note
);
5299 SET_PREV_INSN (NEXT_INSN (note
)) = PREV_INSN (insn
);
5301 SET_NEXT_INSN (note
) = NEXT_INSN (last
);
5302 SET_PREV_INSN (NEXT_INSN (last
)) = note
;
5304 SET_NEXT_INSN (last
) = insn
;
5305 SET_PREV_INSN (insn
) = last
;
5307 bb
= BLOCK_FOR_INSN (last
);
5311 fix_jump_move (insn
);
5313 if (BLOCK_FOR_INSN (insn
) != bb
)
5314 move_block_after_check (insn
);
5316 gcc_assert (BB_END (bb
) == last
);
5319 df_insn_change_bb (insn
, bb
);
5321 /* Update BB_END, if needed. */
5322 if (BB_END (bb
) == last
)
5326 SCHED_GROUP_P (insn
) = 0;
5329 /* Return true if scheduling INSN will finish current clock cycle. */
5331 insn_finishes_cycle_p (rtx_insn
*insn
)
5333 if (SCHED_GROUP_P (insn
))
5334 /* After issuing INSN, rest of the sched_group will be forced to issue
5335 in order. Don't make any plans for the rest of cycle. */
5338 /* Finishing the block will, apparently, finish the cycle. */
5339 if (current_sched_info
->insn_finishes_block_p
5340 && current_sched_info
->insn_finishes_block_p (insn
))
5346 /* Define type for target data used in multipass scheduling. */
5347 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5348 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5350 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t
;
5352 /* The following structure describe an entry of the stack of choices. */
5355 /* Ordinal number of the issued insn in the ready queue. */
5357 /* The number of the rest insns whose issues we should try. */
5359 /* The number of issued essential insns. */
5361 /* State after issuing the insn. */
5363 /* Target-specific data. */
5364 first_cycle_multipass_data_t target_data
;
5367 /* The following array is used to implement a stack of choices used in
5368 function max_issue. */
5369 static struct choice_entry
*choice_stack
;
5371 /* This holds the value of the target dfa_lookahead hook. */
5374 /* The following variable value is maximal number of tries of issuing
5375 insns for the first cycle multipass insn scheduling. We define
5376 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5377 need this constraint if all real insns (with non-negative codes)
5378 had reservations because in this case the algorithm complexity is
5379 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5380 might be incomplete and such insn might occur. For such
5381 descriptions, the complexity of algorithm (without the constraint)
5382 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5383 static int max_lookahead_tries
;
5385 /* The following value is value of hook
5386 `first_cycle_multipass_dfa_lookahead' at the last call of
5388 static int cached_first_cycle_multipass_dfa_lookahead
= 0;
5390 /* The following value is value of `issue_rate' at the last call of
5392 static int cached_issue_rate
= 0;
5394 /* The following function returns maximal (or close to maximal) number
5395 of insns which can be issued on the same cycle and one of which
5396 insns is insns with the best rank (the first insn in READY). To
5397 make this function tries different samples of ready insns. READY
5398 is current queue `ready'. Global array READY_TRY reflects what
5399 insns are already issued in this try. The function stops immediately,
5400 if it reached the such a solution, that all instruction can be issued.
5401 INDEX will contain index of the best insn in READY. The following
5402 function is used only for first cycle multipass scheduling.
5406 This function expects recognized insns only. All USEs,
5407 CLOBBERs, etc must be filtered elsewhere. */
5409 max_issue (struct ready_list
*ready
, int privileged_n
, state_t state
,
5410 bool first_cycle_insn_p
, int *index
)
5412 int n
, i
, all
, n_ready
, best
, delay
, tries_num
;
5414 struct choice_entry
*top
;
5417 n_ready
= ready
->n_ready
;
5418 gcc_assert (dfa_lookahead
>= 1 && privileged_n
>= 0
5419 && privileged_n
<= n_ready
);
5421 /* Init MAX_LOOKAHEAD_TRIES. */
5422 if (cached_first_cycle_multipass_dfa_lookahead
!= dfa_lookahead
)
5424 cached_first_cycle_multipass_dfa_lookahead
= dfa_lookahead
;
5425 max_lookahead_tries
= 100;
5426 for (i
= 0; i
< issue_rate
; i
++)
5427 max_lookahead_tries
*= dfa_lookahead
;
5430 /* Init max_points. */
5431 more_issue
= issue_rate
- cycle_issued_insns
;
5432 gcc_assert (more_issue
>= 0);
5434 /* The number of the issued insns in the best solution. */
5439 /* Set initial state of the search. */
5440 memcpy (top
->state
, state
, dfa_state_size
);
5441 top
->rest
= dfa_lookahead
;
5443 if (targetm
.sched
.first_cycle_multipass_begin
)
5444 targetm
.sched
.first_cycle_multipass_begin (&top
->target_data
,
5446 first_cycle_insn_p
);
5448 /* Count the number of the insns to search among. */
5449 for (all
= i
= 0; i
< n_ready
; i
++)
5453 if (sched_verbose
>= 2)
5455 fprintf (sched_dump
, ";;\t\tmax_issue among %d insns:", all
);
5456 debug_ready_list_1 (ready
, ready_try
);
5459 /* I is the index of the insn to try next. */
5464 if (/* If we've reached a dead end or searched enough of what we have
5467 /* or have nothing else to try... */
5469 /* or should not issue more. */
5470 || top
->n
>= more_issue
)
5472 /* ??? (... || i == n_ready). */
5473 gcc_assert (i
<= n_ready
);
5475 /* We should not issue more than issue_rate instructions. */
5476 gcc_assert (top
->n
<= more_issue
);
5478 if (top
== choice_stack
)
5481 if (best
< top
- choice_stack
)
5486 /* Try to find issued privileged insn. */
5487 while (n
&& !ready_try
[--n
])
5491 if (/* If all insns are equally good... */
5493 /* Or a privileged insn will be issued. */
5495 /* Then we have a solution. */
5497 best
= top
- choice_stack
;
5498 /* This is the index of the insn issued first in this
5500 *index
= choice_stack
[1].index
;
5501 if (top
->n
== more_issue
|| best
== all
)
5506 /* Set ready-list index to point to the last insn
5507 ('i++' below will advance it to the next insn). */
5513 if (targetm
.sched
.first_cycle_multipass_backtrack
)
5514 targetm
.sched
.first_cycle_multipass_backtrack (&top
->target_data
,
5515 ready_try
, n_ready
);
5518 memcpy (state
, top
->state
, dfa_state_size
);
5520 else if (!ready_try
[i
])
5523 if (tries_num
> max_lookahead_tries
)
5525 insn
= ready_element (ready
, i
);
5526 delay
= state_transition (state
, insn
);
5529 if (state_dead_lock_p (state
)
5530 || insn_finishes_cycle_p (insn
))
5531 /* We won't issue any more instructions in the next
5538 if (memcmp (top
->state
, state
, dfa_state_size
) != 0)
5541 /* Advance to the next choice_entry. */
5543 /* Initialize it. */
5544 top
->rest
= dfa_lookahead
;
5547 memcpy (top
->state
, state
, dfa_state_size
);
5550 if (targetm
.sched
.first_cycle_multipass_issue
)
5551 targetm
.sched
.first_cycle_multipass_issue (&top
->target_data
,
5561 /* Increase ready-list index. */
5565 if (targetm
.sched
.first_cycle_multipass_end
)
5566 targetm
.sched
.first_cycle_multipass_end (best
!= 0
5567 ? &choice_stack
[1].target_data
5570 /* Restore the original state of the DFA. */
5571 memcpy (state
, choice_stack
->state
, dfa_state_size
);
5576 /* The following function chooses insn from READY and modifies
5577 READY. The following function is used only for first
5578 cycle multipass scheduling.
5580 -1 if cycle should be advanced,
5581 0 if INSN_PTR is set to point to the desirable insn,
5582 1 if choose_ready () should be restarted without advancing the cycle. */
5584 choose_ready (struct ready_list
*ready
, bool first_cycle_insn_p
,
5585 rtx_insn
**insn_ptr
)
5589 if (dbg_cnt (sched_insn
) == false)
5591 if (nonscheduled_insns_begin
== NULL_RTX
)
5592 nonscheduled_insns_begin
= current_sched_info
->prev_head
;
5594 rtx_insn
*insn
= first_nonscheduled_insn ();
5596 if (QUEUE_INDEX (insn
) == QUEUE_READY
)
5597 /* INSN is in the ready_list. */
5599 ready_remove_insn (insn
);
5604 /* INSN is in the queue. Advance cycle to move it to the ready list. */
5605 gcc_assert (QUEUE_INDEX (insn
) >= 0);
5611 if (targetm
.sched
.first_cycle_multipass_dfa_lookahead
)
5612 lookahead
= targetm
.sched
.first_cycle_multipass_dfa_lookahead ();
5613 if (lookahead
<= 0 || SCHED_GROUP_P (ready_element (ready
, 0))
5614 || DEBUG_INSN_P (ready_element (ready
, 0)))
5616 if (targetm
.sched
.dispatch (NULL
, IS_DISPATCH_ON
))
5617 *insn_ptr
= ready_remove_first_dispatch (ready
);
5619 *insn_ptr
= ready_remove_first (ready
);
5625 /* Try to choose the best insn. */
5629 insn
= ready_element (ready
, 0);
5630 if (INSN_CODE (insn
) < 0)
5632 *insn_ptr
= ready_remove_first (ready
);
5636 /* Filter the search space. */
5637 for (i
= 0; i
< ready
->n_ready
; i
++)
5641 insn
= ready_element (ready
, i
);
5643 /* If this insn is recognizable we should have already
5644 recognized it earlier.
5645 ??? Not very clear where this is supposed to be done.
5647 gcc_checking_assert (INSN_CODE (insn
) >= 0
5648 || recog_memoized (insn
) < 0);
5649 if (INSN_CODE (insn
) < 0)
5651 /* Non-recognized insns at position 0 are handled above. */
5657 if (targetm
.sched
.first_cycle_multipass_dfa_lookahead_guard
)
5660 = (targetm
.sched
.first_cycle_multipass_dfa_lookahead_guard
5663 if (ready_try
[i
] < 0)
5664 /* Queue instruction for several cycles.
5665 We need to restart choose_ready as we have changed
5668 change_queue_index (insn
, -ready_try
[i
]);
5672 /* Make sure that we didn't end up with 0'th insn filtered out.
5673 Don't be tempted to make life easier for backends and just
5674 requeue 0'th insn if (ready_try[0] == 0) and restart
5675 choose_ready. Backends should be very considerate about
5676 requeueing instructions -- especially the highest priority
5677 one at position 0. */
5678 gcc_assert (ready_try
[i
] == 0 || i
> 0);
5683 gcc_assert (ready_try
[i
] == 0);
5684 /* INSN made it through the scrutiny of filters! */
5687 if (max_issue (ready
, 1, curr_state
, first_cycle_insn_p
, &index
) == 0)
5689 *insn_ptr
= ready_remove_first (ready
);
5690 if (sched_verbose
>= 4)
5691 fprintf (sched_dump
, ";;\t\tChosen insn (but can't issue) : %s \n",
5692 (*current_sched_info
->print_insn
) (*insn_ptr
, 0));
5697 if (sched_verbose
>= 4)
5698 fprintf (sched_dump
, ";;\t\tChosen insn : %s\n",
5699 (*current_sched_info
->print_insn
)
5700 (ready_element (ready
, index
), 0));
5702 *insn_ptr
= ready_remove (ready
, index
);
5708 /* This function is called when we have successfully scheduled a
5709 block. It uses the schedule stored in the scheduled_insns vector
5710 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
5711 append the scheduled insns; TAIL is the insn after the scheduled
5712 block. TARGET_BB is the argument passed to schedule_block. */
5715 commit_schedule (rtx_insn
*prev_head
, rtx_insn
*tail
, basic_block
*target_bb
)
5720 last_scheduled_insn
= prev_head
;
5722 scheduled_insns
.iterate (i
, &insn
);
5725 if (control_flow_insn_p (last_scheduled_insn
)
5726 || current_sched_info
->advance_target_bb (*target_bb
, insn
))
5728 *target_bb
= current_sched_info
->advance_target_bb (*target_bb
, 0);
5734 x
= next_real_insn (last_scheduled_insn
);
5736 dump_new_block_header (1, *target_bb
, x
, tail
);
5739 last_scheduled_insn
= bb_note (*target_bb
);
5742 if (current_sched_info
->begin_move_insn
)
5743 (*current_sched_info
->begin_move_insn
) (insn
, last_scheduled_insn
);
5744 move_insn (insn
, last_scheduled_insn
,
5745 current_sched_info
->next_tail
);
5746 if (!DEBUG_INSN_P (insn
))
5747 reemit_notes (insn
);
5748 last_scheduled_insn
= insn
;
5751 scheduled_insns
.truncate (0);
5754 /* Examine all insns on the ready list and queue those which can't be
5755 issued in this cycle. TEMP_STATE is temporary scheduler state we
5756 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
5757 have been issued for the current cycle, which means it is valid to
5758 issue an asm statement.
5760 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
5761 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
5762 we only leave insns which have an INSN_EXACT_TICK. */
5765 prune_ready_list (state_t temp_state
, bool first_cycle_insn_p
,
5766 bool shadows_only_p
, bool modulo_epilogue_p
)
5769 bool sched_group_found
= false;
5770 int min_cost_group
= 1;
5772 for (i
= 0; i
< ready
.n_ready
; i
++)
5774 rtx_insn
*insn
= ready_element (&ready
, i
);
5775 if (SCHED_GROUP_P (insn
))
5777 sched_group_found
= true;
5782 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
5783 such an insn first and note its cost, then schedule all other insns
5784 for one cycle later. */
5785 for (pass
= sched_group_found
? 0 : 1; pass
< 2; )
5787 int n
= ready
.n_ready
;
5788 for (i
= 0; i
< n
; i
++)
5790 rtx_insn
*insn
= ready_element (&ready
, i
);
5792 const char *reason
= "resource conflict";
5794 if (DEBUG_INSN_P (insn
))
5797 if (sched_group_found
&& !SCHED_GROUP_P (insn
))
5801 cost
= min_cost_group
;
5802 reason
= "not in sched group";
5804 else if (modulo_epilogue_p
5805 && INSN_EXACT_TICK (insn
) == INVALID_TICK
)
5807 cost
= max_insn_queue_index
;
5808 reason
= "not an epilogue insn";
5810 else if (shadows_only_p
&& !SHADOW_P (insn
))
5813 reason
= "not a shadow";
5815 else if (recog_memoized (insn
) < 0)
5817 if (!first_cycle_insn_p
5818 && (GET_CODE (PATTERN (insn
)) == ASM_INPUT
5819 || asm_noperands (PATTERN (insn
)) >= 0))
5823 else if (sched_pressure
!= SCHED_PRESSURE_NONE
)
5825 if (sched_pressure
== SCHED_PRESSURE_MODEL
5826 && INSN_TICK (insn
) <= clock_var
)
5828 memcpy (temp_state
, curr_state
, dfa_state_size
);
5829 if (state_transition (temp_state
, insn
) >= 0)
5830 INSN_TICK (insn
) = clock_var
+ 1;
5840 struct delay_pair
*delay_entry
;
5842 = delay_htab
->find_with_hash (insn
,
5843 htab_hash_pointer (insn
));
5844 while (delay_entry
&& delay_cost
== 0)
5846 delay_cost
= estimate_shadow_tick (delay_entry
);
5847 if (delay_cost
> max_insn_queue_index
)
5848 delay_cost
= max_insn_queue_index
;
5849 delay_entry
= delay_entry
->next_same_i1
;
5853 memcpy (temp_state
, curr_state
, dfa_state_size
);
5854 cost
= state_transition (temp_state
, insn
);
5859 if (cost
< delay_cost
)
5862 reason
= "shadow tick";
5867 if (SCHED_GROUP_P (insn
) && cost
> min_cost_group
)
5868 min_cost_group
= cost
;
5869 ready_remove (&ready
, i
);
5870 queue_insn (insn
, cost
, reason
);
5880 /* Called when we detect that the schedule is impossible. We examine the
5881 backtrack queue to find the earliest insn that caused this condition. */
5883 static struct haifa_saved_data
*
5884 verify_shadows (void)
5886 struct haifa_saved_data
*save
, *earliest_fail
= NULL
;
5887 for (save
= backtrack_queue
; save
; save
= save
->next
)
5890 struct delay_pair
*pair
= save
->delay_pair
;
5891 rtx_insn
*i1
= pair
->i1
;
5893 for (; pair
; pair
= pair
->next_same_i1
)
5895 rtx_insn
*i2
= pair
->i2
;
5897 if (QUEUE_INDEX (i2
) == QUEUE_SCHEDULED
)
5900 t
= INSN_TICK (i1
) + pair_delay (pair
);
5903 if (sched_verbose
>= 2)
5904 fprintf (sched_dump
,
5905 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
5907 INSN_UID (pair
->i1
), INSN_UID (pair
->i2
),
5908 INSN_TICK (pair
->i1
), INSN_EXACT_TICK (pair
->i2
));
5909 earliest_fail
= save
;
5912 if (QUEUE_INDEX (i2
) >= 0)
5914 int queued_for
= INSN_TICK (i2
);
5918 if (sched_verbose
>= 2)
5919 fprintf (sched_dump
,
5920 ";;\t\tfailed delay requirements for %d/%d"
5921 " (%d->%d), queued too late\n",
5922 INSN_UID (pair
->i1
), INSN_UID (pair
->i2
),
5923 INSN_TICK (pair
->i1
), INSN_EXACT_TICK (pair
->i2
));
5924 earliest_fail
= save
;
5931 return earliest_fail
;
5934 /* Print instructions together with useful scheduling information between
5935 HEAD and TAIL (inclusive). */
5937 dump_insn_stream (rtx_insn
*head
, rtx_insn
*tail
)
5939 fprintf (sched_dump
, ";;\t| insn | prio |\n");
5941 rtx_insn
*next_tail
= NEXT_INSN (tail
);
5942 for (rtx_insn
*insn
= head
; insn
!= next_tail
; insn
= NEXT_INSN (insn
))
5944 int priority
= NOTE_P (insn
) ? 0 : INSN_PRIORITY (insn
);
5945 const char *pattern
= (NOTE_P (insn
)
5947 : str_pattern_slim (PATTERN (insn
)));
5949 fprintf (sched_dump
, ";;\t| %4d | %4d | %-30s ",
5950 INSN_UID (insn
), priority
, pattern
);
5952 if (sched_verbose
>= 4)
5954 if (NOTE_P (insn
) || recog_memoized (insn
) < 0)
5955 fprintf (sched_dump
, "nothing");
5957 print_reservation (sched_dump
, insn
);
5959 fprintf (sched_dump
, "\n");
5963 /* Use forward list scheduling to rearrange insns of block pointed to by
5964 TARGET_BB, possibly bringing insns from subsequent blocks in the same
5968 schedule_block (basic_block
*target_bb
, state_t init_state
)
5971 bool success
= modulo_ii
== 0;
5972 struct sched_block_state ls
;
5973 state_t temp_state
= NULL
; /* It is used for multipass scheduling. */
5974 int sort_p
, advance
, start_clock_var
;
5976 /* Head/tail info for this block. */
5977 rtx_insn
*prev_head
= current_sched_info
->prev_head
;
5978 rtx_insn
*next_tail
= current_sched_info
->next_tail
;
5979 rtx_insn
*head
= NEXT_INSN (prev_head
);
5980 rtx_insn
*tail
= PREV_INSN (next_tail
);
5982 if ((current_sched_info
->flags
& DONT_BREAK_DEPENDENCIES
) == 0
5983 && sched_pressure
!= SCHED_PRESSURE_MODEL
)
5984 find_modifiable_mems (head
, tail
);
5986 /* We used to have code to avoid getting parameters moved from hard
5987 argument registers into pseudos.
5989 However, it was removed when it proved to be of marginal benefit
5990 and caused problems because schedule_block and compute_forward_dependences
5991 had different notions of what the "head" insn was. */
5993 gcc_assert (head
!= tail
|| INSN_P (head
));
5995 haifa_recovery_bb_recently_added_p
= false;
5997 backtrack_queue
= NULL
;
6002 dump_new_block_header (0, *target_bb
, head
, tail
);
6004 if (sched_verbose
>= 2)
6006 dump_insn_stream (head
, tail
);
6007 memset (&rank_for_schedule_stats
, 0,
6008 sizeof (rank_for_schedule_stats
));
6012 if (init_state
== NULL
)
6013 state_reset (curr_state
);
6015 memcpy (curr_state
, init_state
, dfa_state_size
);
6017 /* Clear the ready list. */
6018 ready
.first
= ready
.veclen
- 1;
6022 /* It is used for first cycle multipass scheduling. */
6023 temp_state
= alloca (dfa_state_size
);
6025 if (targetm
.sched
.init
)
6026 targetm
.sched
.init (sched_dump
, sched_verbose
, ready
.veclen
);
6028 /* We start inserting insns after PREV_HEAD. */
6029 last_scheduled_insn
= prev_head
;
6030 last_nondebug_scheduled_insn
= NULL_RTX
;
6031 nonscheduled_insns_begin
= NULL
;
6033 gcc_assert ((NOTE_P (last_scheduled_insn
)
6034 || DEBUG_INSN_P (last_scheduled_insn
))
6035 && BLOCK_FOR_INSN (last_scheduled_insn
) == *target_bb
);
6037 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
6042 insn_queue
= XALLOCAVEC (rtx_insn_list
*, max_insn_queue_index
+ 1);
6043 memset (insn_queue
, 0, (max_insn_queue_index
+ 1) * sizeof (rtx
));
6045 /* Start just before the beginning of time. */
6048 /* We need queue and ready lists and clock_var be initialized
6049 in try_ready () (which is called through init_ready_list ()). */
6050 (*current_sched_info
->init_ready_list
) ();
6052 if (sched_pressure
== SCHED_PRESSURE_MODEL
)
6053 model_start_schedule ();
6055 /* The algorithm is O(n^2) in the number of ready insns at any given
6056 time in the worst case. Before reload we are more likely to have
6057 big lists so truncate them to a reasonable size. */
6058 if (!reload_completed
6059 && ready
.n_ready
- ready
.n_debug
> MAX_SCHED_READY_INSNS
)
6061 ready_sort (&ready
);
6063 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
6064 If there are debug insns, we know they're first. */
6065 for (i
= MAX_SCHED_READY_INSNS
+ ready
.n_debug
; i
< ready
.n_ready
; i
++)
6066 if (!SCHED_GROUP_P (ready_element (&ready
, i
)))
6069 if (sched_verbose
>= 2)
6071 fprintf (sched_dump
,
6072 ";;\t\tReady list on entry: %d insns\n", ready
.n_ready
);
6073 fprintf (sched_dump
,
6074 ";;\t\t before reload => truncated to %d insns\n", i
);
6077 /* Delay all insns past it for 1 cycle. If debug counter is
6078 activated make an exception for the insn right after
6079 nonscheduled_insns_begin. */
6081 rtx_insn
*skip_insn
;
6083 if (dbg_cnt (sched_insn
) == false)
6084 skip_insn
= first_nonscheduled_insn ();
6088 while (i
< ready
.n_ready
)
6092 insn
= ready_remove (&ready
, i
);
6094 if (insn
!= skip_insn
)
6095 queue_insn (insn
, 1, "list truncated");
6098 ready_add (&ready
, skip_insn
, true);
6102 /* Now we can restore basic block notes and maintain precise cfg. */
6103 restore_bb_notes (*target_bb
);
6105 last_clock_var
= -1;
6109 gcc_assert (scheduled_insns
.length () == 0);
6111 must_backtrack
= false;
6112 modulo_insns_scheduled
= 0;
6114 ls
.modulo_epilogue
= false;
6115 ls
.first_cycle_insn_p
= true;
6117 /* Loop until all the insns in BB are scheduled. */
6118 while ((*current_sched_info
->schedule_more_p
) ())
6120 perform_replacements_new_cycle ();
6123 start_clock_var
= clock_var
;
6127 advance_one_cycle ();
6129 /* Add to the ready list all pending insns that can be issued now.
6130 If there are no ready insns, increment clock until one
6131 is ready and add all pending insns at that point to the ready
6133 queue_to_ready (&ready
);
6135 gcc_assert (ready
.n_ready
);
6137 if (sched_verbose
>= 2)
6139 fprintf (sched_dump
, ";;\t\tReady list after queue_to_ready:");
6140 debug_ready_list (&ready
);
6142 advance
-= clock_var
- start_clock_var
;
6144 while (advance
> 0);
6146 if (ls
.modulo_epilogue
)
6148 int stage
= clock_var
/ modulo_ii
;
6149 if (stage
> modulo_last_stage
* 2 + 2)
6151 if (sched_verbose
>= 2)
6152 fprintf (sched_dump
,
6153 ";;\t\tmodulo scheduled succeeded at II %d\n",
6159 else if (modulo_ii
> 0)
6161 int stage
= clock_var
/ modulo_ii
;
6162 if (stage
> modulo_max_stages
)
6164 if (sched_verbose
>= 2)
6165 fprintf (sched_dump
,
6166 ";;\t\tfailing schedule due to excessive stages\n");
6169 if (modulo_n_insns
== modulo_insns_scheduled
6170 && stage
> modulo_last_stage
)
6172 if (sched_verbose
>= 2)
6173 fprintf (sched_dump
,
6174 ";;\t\tfound kernel after %d stages, II %d\n",
6176 ls
.modulo_epilogue
= true;
6180 prune_ready_list (temp_state
, true, false, ls
.modulo_epilogue
);
6181 if (ready
.n_ready
== 0)
6186 ls
.shadows_only_p
= false;
6187 cycle_issued_insns
= 0;
6188 ls
.can_issue_more
= issue_rate
;
6195 if (sort_p
&& ready
.n_ready
> 0)
6197 /* Sort the ready list based on priority. This must be
6198 done every iteration through the loop, as schedule_insn
6199 may have readied additional insns that will not be
6200 sorted correctly. */
6201 ready_sort (&ready
);
6203 if (sched_verbose
>= 2)
6205 fprintf (sched_dump
,
6206 ";;\t\tReady list after ready_sort: ");
6207 debug_ready_list (&ready
);
6211 /* We don't want md sched reorder to even see debug isns, so put
6212 them out right away. */
6213 if (ready
.n_ready
&& DEBUG_INSN_P (ready_element (&ready
, 0))
6214 && (*current_sched_info
->schedule_more_p
) ())
6216 while (ready
.n_ready
&& DEBUG_INSN_P (ready_element (&ready
, 0)))
6218 rtx_insn
*insn
= ready_remove_first (&ready
);
6219 gcc_assert (DEBUG_INSN_P (insn
));
6220 (*current_sched_info
->begin_schedule_ready
) (insn
);
6221 scheduled_insns
.safe_push (insn
);
6222 last_scheduled_insn
= insn
;
6223 advance
= schedule_insn (insn
);
6224 gcc_assert (advance
== 0);
6225 if (ready
.n_ready
> 0)
6226 ready_sort (&ready
);
6230 if (ls
.first_cycle_insn_p
&& !ready
.n_ready
)
6233 resume_after_backtrack
:
6234 /* Allow the target to reorder the list, typically for
6235 better instruction bundling. */
6237 && (ready
.n_ready
== 0
6238 || !SCHED_GROUP_P (ready_element (&ready
, 0))))
6240 if (ls
.first_cycle_insn_p
&& targetm
.sched
.reorder
)
6242 = targetm
.sched
.reorder (sched_dump
, sched_verbose
,
6243 ready_lastpos (&ready
),
6244 &ready
.n_ready
, clock_var
);
6245 else if (!ls
.first_cycle_insn_p
&& targetm
.sched
.reorder2
)
6247 = targetm
.sched
.reorder2 (sched_dump
, sched_verbose
,
6249 ? ready_lastpos (&ready
) : NULL
,
6250 &ready
.n_ready
, clock_var
);
6253 restart_choose_ready
:
6254 if (sched_verbose
>= 2)
6256 fprintf (sched_dump
, ";;\tReady list (t = %3d): ",
6258 debug_ready_list (&ready
);
6259 if (sched_pressure
== SCHED_PRESSURE_WEIGHTED
)
6260 print_curr_reg_pressure ();
6263 if (ready
.n_ready
== 0
6264 && ls
.can_issue_more
6265 && reload_completed
)
6267 /* Allow scheduling insns directly from the queue in case
6268 there's nothing better to do (ready list is empty) but
6269 there are still vacant dispatch slots in the current cycle. */
6270 if (sched_verbose
>= 6)
6271 fprintf (sched_dump
,";;\t\tSecond chance\n");
6272 memcpy (temp_state
, curr_state
, dfa_state_size
);
6273 if (early_queue_to_ready (temp_state
, &ready
))
6274 ready_sort (&ready
);
6277 if (ready
.n_ready
== 0
6278 || !ls
.can_issue_more
6279 || state_dead_lock_p (curr_state
)
6280 || !(*current_sched_info
->schedule_more_p
) ())
6283 /* Select and remove the insn from the ready list. */
6289 res
= choose_ready (&ready
, ls
.first_cycle_insn_p
, &insn
);
6295 goto restart_choose_ready
;
6297 gcc_assert (insn
!= NULL_RTX
);
6300 insn
= ready_remove_first (&ready
);
6302 if (sched_pressure
!= SCHED_PRESSURE_NONE
6303 && INSN_TICK (insn
) > clock_var
)
6305 ready_add (&ready
, insn
, true);
6310 if (targetm
.sched
.dfa_new_cycle
6311 && targetm
.sched
.dfa_new_cycle (sched_dump
, sched_verbose
,
6312 insn
, last_clock_var
,
6313 clock_var
, &sort_p
))
6314 /* SORT_P is used by the target to override sorting
6315 of the ready list. This is needed when the target
6316 has modified its internal structures expecting that
6317 the insn will be issued next. As we need the insn
6318 to have the highest priority (so it will be returned by
6319 the ready_remove_first call above), we invoke
6320 ready_add (&ready, insn, true).
6321 But, still, there is one issue: INSN can be later
6322 discarded by scheduler's front end through
6323 current_sched_info->can_schedule_ready_p, hence, won't
6326 ready_add (&ready
, insn
, true);
6332 if (current_sched_info
->can_schedule_ready_p
6333 && ! (*current_sched_info
->can_schedule_ready_p
) (insn
))
6334 /* We normally get here only if we don't want to move
6335 insn from the split block. */
6337 TODO_SPEC (insn
) = DEP_POSTPONED
;
6338 goto restart_choose_ready
;
6343 /* If this insn is the first part of a delay-slot pair, record a
6345 struct delay_pair
*delay_entry
;
6347 = delay_htab
->find_with_hash (insn
, htab_hash_pointer (insn
));
6350 save_backtrack_point (delay_entry
, ls
);
6351 if (sched_verbose
>= 2)
6352 fprintf (sched_dump
, ";;\t\tsaving backtrack point\n");
6356 /* DECISION is made. */
6358 if (modulo_ii
> 0 && INSN_UID (insn
) < modulo_iter0_max_uid
)
6360 modulo_insns_scheduled
++;
6361 modulo_last_stage
= clock_var
/ modulo_ii
;
6363 if (TODO_SPEC (insn
) & SPECULATIVE
)
6364 generate_recovery_code (insn
);
6366 if (targetm
.sched
.dispatch (NULL
, IS_DISPATCH_ON
))
6367 targetm
.sched
.dispatch_do (insn
, ADD_TO_DISPATCH_WINDOW
);
6369 /* Update counters, etc in the scheduler's front end. */
6370 (*current_sched_info
->begin_schedule_ready
) (insn
);
6371 scheduled_insns
.safe_push (insn
);
6372 gcc_assert (NONDEBUG_INSN_P (insn
));
6373 last_nondebug_scheduled_insn
= last_scheduled_insn
= insn
;
6375 if (recog_memoized (insn
) >= 0)
6377 memcpy (temp_state
, curr_state
, dfa_state_size
);
6378 cost
= state_transition (curr_state
, insn
);
6379 if (sched_pressure
!= SCHED_PRESSURE_WEIGHTED
)
6380 gcc_assert (cost
< 0);
6381 if (memcmp (temp_state
, curr_state
, dfa_state_size
) != 0)
6382 cycle_issued_insns
++;
6386 asm_p
= (GET_CODE (PATTERN (insn
)) == ASM_INPUT
6387 || asm_noperands (PATTERN (insn
)) >= 0);
6389 if (targetm
.sched
.variable_issue
)
6391 targetm
.sched
.variable_issue (sched_dump
, sched_verbose
,
6392 insn
, ls
.can_issue_more
);
6393 /* A naked CLOBBER or USE generates no instruction, so do
6394 not count them against the issue rate. */
6395 else if (GET_CODE (PATTERN (insn
)) != USE
6396 && GET_CODE (PATTERN (insn
)) != CLOBBER
)
6397 ls
.can_issue_more
--;
6398 advance
= schedule_insn (insn
);
6400 if (SHADOW_P (insn
))
6401 ls
.shadows_only_p
= true;
6403 /* After issuing an asm insn we should start a new cycle. */
6404 if (advance
== 0 && asm_p
)
6413 ls
.first_cycle_insn_p
= false;
6414 if (ready
.n_ready
> 0)
6415 prune_ready_list (temp_state
, false, ls
.shadows_only_p
,
6416 ls
.modulo_epilogue
);
6420 if (!must_backtrack
)
6421 for (i
= 0; i
< ready
.n_ready
; i
++)
6423 rtx_insn
*insn
= ready_element (&ready
, i
);
6424 if (INSN_EXACT_TICK (insn
) == clock_var
)
6426 must_backtrack
= true;
6431 if (must_backtrack
&& modulo_ii
> 0)
6433 if (modulo_backtracks_left
== 0)
6435 modulo_backtracks_left
--;
6437 while (must_backtrack
)
6439 struct haifa_saved_data
*failed
;
6440 rtx_insn
*failed_insn
;
6442 must_backtrack
= false;
6443 failed
= verify_shadows ();
6444 gcc_assert (failed
);
6446 failed_insn
= failed
->delay_pair
->i1
;
6447 /* Clear these queues. */
6448 perform_replacements_new_cycle ();
6449 toggle_cancelled_flags (false);
6450 unschedule_insns_until (failed_insn
);
6451 while (failed
!= backtrack_queue
)
6452 free_topmost_backtrack_point (true);
6453 restore_last_backtrack_point (&ls
);
6454 if (sched_verbose
>= 2)
6455 fprintf (sched_dump
, ";;\t\trewind to cycle %d\n", clock_var
);
6456 /* Delay by at least a cycle. This could cause additional
6458 queue_insn (failed_insn
, 1, "backtracked");
6462 if (ready
.n_ready
> 0)
6463 goto resume_after_backtrack
;
6466 if (clock_var
== 0 && ls
.first_cycle_insn_p
)
6472 ls
.first_cycle_insn_p
= true;
6474 if (ls
.modulo_epilogue
)
6477 if (!ls
.first_cycle_insn_p
)
6478 advance_one_cycle ();
6479 perform_replacements_new_cycle ();
6482 /* Once again, debug insn suckiness: they can be on the ready list
6483 even if they have unresolved dependencies. To make our view
6484 of the world consistent, remove such "ready" insns. */
6485 restart_debug_insn_loop
:
6486 for (i
= ready
.n_ready
- 1; i
>= 0; i
--)
6490 x
= ready_element (&ready
, i
);
6491 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x
)) != NULL
6492 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x
)) != NULL
)
6494 ready_remove (&ready
, i
);
6495 goto restart_debug_insn_loop
;
6498 for (i
= ready
.n_ready
- 1; i
>= 0; i
--)
6502 x
= ready_element (&ready
, i
);
6503 resolve_dependencies (x
);
6505 for (i
= 0; i
<= max_insn_queue_index
; i
++)
6507 rtx_insn_list
*link
;
6508 while ((link
= insn_queue
[i
]) != NULL
)
6510 rtx_insn
*x
= link
->insn ();
6511 insn_queue
[i
] = link
->next ();
6512 QUEUE_INDEX (x
) = QUEUE_NOWHERE
;
6513 free_INSN_LIST_node (link
);
6514 resolve_dependencies (x
);
6520 undo_all_replacements ();
6525 fprintf (sched_dump
, ";;\tReady list (final): ");
6526 debug_ready_list (&ready
);
6529 if (modulo_ii
== 0 && current_sched_info
->queue_must_finish_empty
)
6530 /* Sanity check -- queue must be empty now. Meaningless if region has
6532 gcc_assert (!q_size
&& !ready
.n_ready
&& !ready
.n_debug
);
6533 else if (modulo_ii
== 0)
6535 /* We must maintain QUEUE_INDEX between blocks in region. */
6536 for (i
= ready
.n_ready
- 1; i
>= 0; i
--)
6540 x
= ready_element (&ready
, i
);
6541 QUEUE_INDEX (x
) = QUEUE_NOWHERE
;
6542 TODO_SPEC (x
) = HARD_DEP
;
6546 for (i
= 0; i
<= max_insn_queue_index
; i
++)
6549 for (link
= insn_queue
[i
]; link
; link
= XEXP (link
, 1))
6553 x
= as_a
<rtx_insn
*> (XEXP (link
, 0));
6554 QUEUE_INDEX (x
) = QUEUE_NOWHERE
;
6555 TODO_SPEC (x
) = HARD_DEP
;
6557 free_INSN_LIST_list (&insn_queue
[i
]);
6561 if (sched_pressure
== SCHED_PRESSURE_MODEL
)
6562 model_end_schedule ();
6566 commit_schedule (prev_head
, tail
, target_bb
);
6568 fprintf (sched_dump
, ";; total time = %d\n", clock_var
);
6571 last_scheduled_insn
= tail
;
6573 scheduled_insns
.truncate (0);
6575 if (!current_sched_info
->queue_must_finish_empty
6576 || haifa_recovery_bb_recently_added_p
)
6578 /* INSN_TICK (minimum clock tick at which the insn becomes
6579 ready) may be not correct for the insn in the subsequent
6580 blocks of the region. We should use a correct value of
6581 `clock_var' or modify INSN_TICK. It is better to keep
6582 clock_var value equal to 0 at the start of a basic block.
6583 Therefore we modify INSN_TICK here. */
6584 fix_inter_tick (NEXT_INSN (prev_head
), last_scheduled_insn
);
6587 if (targetm
.sched
.finish
)
6589 targetm
.sched
.finish (sched_dump
, sched_verbose
);
6590 /* Target might have added some instructions to the scheduled block
6591 in its md_finish () hook. These new insns don't have any data
6592 initialized and to identify them we extend h_i_d so that they'll
6594 sched_extend_luids ();
6597 /* Update head/tail boundaries. */
6598 head
= NEXT_INSN (prev_head
);
6599 tail
= last_scheduled_insn
;
6603 fprintf (sched_dump
, ";; new head = %d\n;; new tail = %d\n",
6604 INSN_UID (head
), INSN_UID (tail
));
6606 if (sched_verbose
>= 2)
6608 dump_insn_stream (head
, tail
);
6609 print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats
);
6612 fprintf (sched_dump
, "\n");
6615 head
= restore_other_notes (head
, NULL
);
6617 current_sched_info
->head
= head
;
6618 current_sched_info
->tail
= tail
;
6620 free_backtrack_queue ();
6625 /* Set_priorities: compute priority of each insn in the block. */
6628 set_priorities (rtx_insn
*head
, rtx_insn
*tail
)
6632 int sched_max_insns_priority
=
6633 current_sched_info
->sched_max_insns_priority
;
6634 rtx_insn
*prev_head
;
6636 if (head
== tail
&& ! INSN_P (head
))
6641 prev_head
= PREV_INSN (head
);
6642 for (insn
= tail
; insn
!= prev_head
; insn
= PREV_INSN (insn
))
6648 (void) priority (insn
);
6650 gcc_assert (INSN_PRIORITY_KNOWN (insn
));
6652 sched_max_insns_priority
= MAX (sched_max_insns_priority
,
6653 INSN_PRIORITY (insn
));
6656 current_sched_info
->sched_max_insns_priority
= sched_max_insns_priority
;
6661 /* Set dump and sched_verbose for the desired debugging output. If no
6662 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
6663 For -fsched-verbose=N, N>=10, print everything to stderr. */
6665 setup_sched_dump (void)
6667 sched_verbose
= sched_verbose_param
;
6668 if (sched_verbose_param
== 0 && dump_file
)
6670 sched_dump
= ((sched_verbose_param
>= 10 || !dump_file
)
6671 ? stderr
: dump_file
);
6674 /* Allocate data for register pressure sensitive scheduling. */
6676 alloc_global_sched_pressure_data (void)
6678 if (sched_pressure
!= SCHED_PRESSURE_NONE
)
6680 int i
, max_regno
= max_reg_num ();
6682 if (sched_dump
!= NULL
)
6683 /* We need info about pseudos for rtl dumps about pseudo
6684 classes and costs. */
6685 regstat_init_n_sets_and_refs ();
6686 ira_set_pseudo_classes (true, sched_verbose
? sched_dump
: NULL
);
6687 sched_regno_pressure_class
6688 = (enum reg_class
*) xmalloc (max_regno
* sizeof (enum reg_class
));
6689 for (i
= 0; i
< max_regno
; i
++)
6690 sched_regno_pressure_class
[i
]
6691 = (i
< FIRST_PSEUDO_REGISTER
6692 ? ira_pressure_class_translate
[REGNO_REG_CLASS (i
)]
6693 : ira_pressure_class_translate
[reg_allocno_class (i
)]);
6694 curr_reg_live
= BITMAP_ALLOC (NULL
);
6695 if (sched_pressure
== SCHED_PRESSURE_WEIGHTED
)
6697 saved_reg_live
= BITMAP_ALLOC (NULL
);
6698 region_ref_regs
= BITMAP_ALLOC (NULL
);
6703 /* Free data for register pressure sensitive scheduling. Also called
6704 from schedule_region when stopping sched-pressure early. */
6706 free_global_sched_pressure_data (void)
6708 if (sched_pressure
!= SCHED_PRESSURE_NONE
)
6710 if (regstat_n_sets_and_refs
!= NULL
)
6711 regstat_free_n_sets_and_refs ();
6712 if (sched_pressure
== SCHED_PRESSURE_WEIGHTED
)
6714 BITMAP_FREE (region_ref_regs
);
6715 BITMAP_FREE (saved_reg_live
);
6717 BITMAP_FREE (curr_reg_live
);
6718 free (sched_regno_pressure_class
);
6722 /* Initialize some global state for the scheduler. This function works
6723 with the common data shared between all the schedulers. It is called
6724 from the scheduler specific initialization routine. */
6729 /* Disable speculative loads in their presence if cc0 defined. */
6731 flag_schedule_speculative_load
= 0;
6734 if (targetm
.sched
.dispatch (NULL
, IS_DISPATCH_ON
))
6735 targetm
.sched
.dispatch_do (NULL
, DISPATCH_INIT
);
6737 if (live_range_shrinkage_p
)
6738 sched_pressure
= SCHED_PRESSURE_WEIGHTED
;
6739 else if (flag_sched_pressure
6740 && !reload_completed
6741 && common_sched_info
->sched_pass_id
== SCHED_RGN_PASS
)
6742 sched_pressure
= ((enum sched_pressure_algorithm
)
6743 PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM
));
6745 sched_pressure
= SCHED_PRESSURE_NONE
;
6747 if (sched_pressure
!= SCHED_PRESSURE_NONE
)
6748 ira_setup_eliminable_regset ();
6750 /* Initialize SPEC_INFO. */
6751 if (targetm
.sched
.set_sched_flags
)
6753 spec_info
= &spec_info_var
;
6754 targetm
.sched
.set_sched_flags (spec_info
);
6756 if (spec_info
->mask
!= 0)
6758 spec_info
->data_weakness_cutoff
=
6759 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF
) * MAX_DEP_WEAK
) / 100;
6760 spec_info
->control_weakness_cutoff
=
6761 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF
)
6762 * REG_BR_PROB_BASE
) / 100;
6765 /* So we won't read anything accidentally. */
6770 /* So we won't read anything accidentally. */
6773 /* Initialize issue_rate. */
6774 if (targetm
.sched
.issue_rate
)
6775 issue_rate
= targetm
.sched
.issue_rate ();
6779 if (cached_issue_rate
!= issue_rate
)
6781 cached_issue_rate
= issue_rate
;
6782 /* To invalidate max_lookahead_tries: */
6783 cached_first_cycle_multipass_dfa_lookahead
= 0;
6786 if (targetm
.sched
.first_cycle_multipass_dfa_lookahead
)
6787 dfa_lookahead
= targetm
.sched
.first_cycle_multipass_dfa_lookahead ();
6791 if (targetm
.sched
.init_dfa_pre_cycle_insn
)
6792 targetm
.sched
.init_dfa_pre_cycle_insn ();
6794 if (targetm
.sched
.init_dfa_post_cycle_insn
)
6795 targetm
.sched
.init_dfa_post_cycle_insn ();
6798 dfa_state_size
= state_size ();
6800 init_alias_analysis ();
6803 df_set_flags (DF_LR_RUN_DCE
);
6804 df_note_add_problem ();
6806 /* More problems needed for interloop dep calculation in SMS. */
6807 if (common_sched_info
->sched_pass_id
== SCHED_SMS_PASS
)
6809 df_rd_add_problem ();
6810 df_chain_add_problem (DF_DU_CHAIN
+ DF_UD_CHAIN
);
6815 /* Do not run DCE after reload, as this can kill nops inserted
6817 if (reload_completed
)
6818 df_clear_flags (DF_LR_RUN_DCE
);
6820 regstat_compute_calls_crossed ();
6822 if (targetm
.sched
.init_global
)
6823 targetm
.sched
.init_global (sched_dump
, sched_verbose
, get_max_uid () + 1);
6825 alloc_global_sched_pressure_data ();
6827 curr_state
= xmalloc (dfa_state_size
);
6830 static void haifa_init_only_bb (basic_block
, basic_block
);
6832 /* Initialize data structures specific to the Haifa scheduler. */
6834 haifa_sched_init (void)
6836 setup_sched_dump ();
6839 scheduled_insns
.create (0);
6841 if (spec_info
!= NULL
)
6843 sched_deps_info
->use_deps_list
= 1;
6844 sched_deps_info
->generate_spec_deps
= 1;
6847 /* Initialize luids, dependency caches, target and h_i_d for the
6851 bbs
.create (n_basic_blocks_for_fn (cfun
));
6856 FOR_EACH_BB_FN (bb
, cfun
)
6857 bbs
.quick_push (bb
);
6858 sched_init_luids (bbs
);
6859 sched_deps_init (true);
6860 sched_extend_target ();
6861 haifa_init_h_i_d (bbs
);
6866 sched_init_only_bb
= haifa_init_only_bb
;
6867 sched_split_block
= sched_split_block_1
;
6868 sched_create_empty_bb
= sched_create_empty_bb_1
;
6869 haifa_recovery_bb_ever_added_p
= false;
6871 nr_begin_data
= nr_begin_control
= nr_be_in_data
= nr_be_in_control
= 0;
6872 before_recovery
= 0;
6878 /* Finish work with the data specific to the Haifa scheduler. */
6880 haifa_sched_finish (void)
6882 sched_create_empty_bb
= NULL
;
6883 sched_split_block
= NULL
;
6884 sched_init_only_bb
= NULL
;
6886 if (spec_info
&& spec_info
->dump
)
6888 char c
= reload_completed
? 'a' : 'b';
6890 fprintf (spec_info
->dump
,
6891 ";; %s:\n", current_function_name ());
6893 fprintf (spec_info
->dump
,
6894 ";; Procedure %cr-begin-data-spec motions == %d\n",
6896 fprintf (spec_info
->dump
,
6897 ";; Procedure %cr-be-in-data-spec motions == %d\n",
6899 fprintf (spec_info
->dump
,
6900 ";; Procedure %cr-begin-control-spec motions == %d\n",
6901 c
, nr_begin_control
);
6902 fprintf (spec_info
->dump
,
6903 ";; Procedure %cr-be-in-control-spec motions == %d\n",
6904 c
, nr_be_in_control
);
6907 scheduled_insns
.release ();
6909 /* Finalize h_i_d, dependency caches, and luids for the whole
6910 function. Target will be finalized in md_global_finish (). */
6911 sched_deps_finish ();
6912 sched_finish_luids ();
6913 current_sched_info
= NULL
;
6917 /* Free global data used during insn scheduling. This function works with
6918 the common data shared between the schedulers. */
6923 haifa_finish_h_i_d ();
6924 free_global_sched_pressure_data ();
6927 if (targetm
.sched
.finish_global
)
6928 targetm
.sched
.finish_global (sched_dump
, sched_verbose
);
6930 end_alias_analysis ();
6932 regstat_free_calls_crossed ();
6937 /* Free all delay_pair structures that were recorded. */
6939 free_delay_pairs (void)
6943 delay_htab
->empty ();
6944 delay_htab_i2
->empty ();
6948 /* Fix INSN_TICKs of the instructions in the current block as well as
6949 INSN_TICKs of their dependents.
6950 HEAD and TAIL are the begin and the end of the current scheduled block. */
6952 fix_inter_tick (rtx_insn
*head
, rtx_insn
*tail
)
6954 /* Set of instructions with corrected INSN_TICK. */
6955 bitmap_head processed
;
6956 /* ??? It is doubtful if we should assume that cycle advance happens on
6957 basic block boundaries. Basically insns that are unconditionally ready
6958 on the start of the block are more preferable then those which have
6959 a one cycle dependency over insn from the previous block. */
6960 int next_clock
= clock_var
+ 1;
6962 bitmap_initialize (&processed
, 0);
6964 /* Iterates over scheduled instructions and fix their INSN_TICKs and
6965 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
6966 across different blocks. */
6967 for (tail
= NEXT_INSN (tail
); head
!= tail
; head
= NEXT_INSN (head
))
6972 sd_iterator_def sd_it
;
6975 tick
= INSN_TICK (head
);
6976 gcc_assert (tick
>= MIN_TICK
);
6978 /* Fix INSN_TICK of instruction from just scheduled block. */
6979 if (bitmap_set_bit (&processed
, INSN_LUID (head
)))
6983 if (tick
< MIN_TICK
)
6986 INSN_TICK (head
) = tick
;
6989 if (DEBUG_INSN_P (head
))
6992 FOR_EACH_DEP (head
, SD_LIST_RES_FORW
, sd_it
, dep
)
6996 next
= DEP_CON (dep
);
6997 tick
= INSN_TICK (next
);
6999 if (tick
!= INVALID_TICK
7000 /* If NEXT has its INSN_TICK calculated, fix it.
7001 If not - it will be properly calculated from
7002 scratch later in fix_tick_ready. */
7003 && bitmap_set_bit (&processed
, INSN_LUID (next
)))
7007 if (tick
< MIN_TICK
)
7010 if (tick
> INTER_TICK (next
))
7011 INTER_TICK (next
) = tick
;
7013 tick
= INTER_TICK (next
);
7015 INSN_TICK (next
) = tick
;
7020 bitmap_clear (&processed
);
7023 /* Check if NEXT is ready to be added to the ready or queue list.
7024 If "yes", add it to the proper list.
7026 -1 - is not ready yet,
7027 0 - added to the ready list,
7028 0 < N - queued for N cycles. */
7030 try_ready (rtx_insn
*next
)
7032 ds_t old_ts
, new_ts
;
7034 old_ts
= TODO_SPEC (next
);
7036 gcc_assert (!(old_ts
& ~(SPECULATIVE
| HARD_DEP
| DEP_CONTROL
| DEP_POSTPONED
))
7037 && (old_ts
== HARD_DEP
7038 || old_ts
== DEP_POSTPONED
7039 || (old_ts
& SPECULATIVE
)
7040 || old_ts
== DEP_CONTROL
));
7042 new_ts
= recompute_todo_spec (next
, false);
7044 if (new_ts
& (HARD_DEP
| DEP_POSTPONED
))
7045 gcc_assert (new_ts
== old_ts
7046 && QUEUE_INDEX (next
) == QUEUE_NOWHERE
);
7047 else if (current_sched_info
->new_ready
)
7048 new_ts
= current_sched_info
->new_ready (next
, new_ts
);
7050 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
7051 have its original pattern or changed (speculative) one. This is due
7052 to changing ebb in region scheduling.
7053 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
7054 has speculative pattern.
7056 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
7057 control-speculative NEXT could have been discarded by sched-rgn.c
7058 (the same case as when discarded by can_schedule_ready_p ()). */
7060 if ((new_ts
& SPECULATIVE
)
7061 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
7062 need to change anything. */
7063 && new_ts
!= old_ts
)
7068 gcc_assert ((new_ts
& SPECULATIVE
) && !(new_ts
& ~SPECULATIVE
));
7070 res
= haifa_speculate_insn (next
, new_ts
, &new_pat
);
7075 /* It would be nice to change DEP_STATUS of all dependences,
7076 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
7077 so we won't reanalyze anything. */
7082 /* We follow the rule, that every speculative insn
7083 has non-null ORIG_PAT. */
7084 if (!ORIG_PAT (next
))
7085 ORIG_PAT (next
) = PATTERN (next
);
7089 if (!ORIG_PAT (next
))
7090 /* If we gonna to overwrite the original pattern of insn,
7092 ORIG_PAT (next
) = PATTERN (next
);
7094 res
= haifa_change_pattern (next
, new_pat
);
7103 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
7104 either correct (new_ts & SPECULATIVE),
7105 or we simply don't care (new_ts & HARD_DEP). */
7107 gcc_assert (!ORIG_PAT (next
)
7108 || !IS_SPECULATION_BRANCHY_CHECK_P (next
));
7110 TODO_SPEC (next
) = new_ts
;
7112 if (new_ts
& (HARD_DEP
| DEP_POSTPONED
))
7114 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
7115 control-speculative NEXT could have been discarded by sched-rgn.c
7116 (the same case as when discarded by can_schedule_ready_p ()). */
7117 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
7119 change_queue_index (next
, QUEUE_NOWHERE
);
7123 else if (!(new_ts
& BEGIN_SPEC
)
7124 && ORIG_PAT (next
) && PREDICATED_PAT (next
) == NULL_RTX
7125 && !IS_SPECULATION_CHECK_P (next
))
7126 /* We should change pattern of every previously speculative
7127 instruction - and we determine if NEXT was speculative by using
7128 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
7129 pat too, so skip them. */
7131 bool success
= haifa_change_pattern (next
, ORIG_PAT (next
));
7132 gcc_assert (success
);
7133 ORIG_PAT (next
) = 0;
7136 if (sched_verbose
>= 2)
7138 fprintf (sched_dump
, ";;\t\tdependencies resolved: insn %s",
7139 (*current_sched_info
->print_insn
) (next
, 0));
7141 if (spec_info
&& spec_info
->dump
)
7143 if (new_ts
& BEGIN_DATA
)
7144 fprintf (spec_info
->dump
, "; data-spec;");
7145 if (new_ts
& BEGIN_CONTROL
)
7146 fprintf (spec_info
->dump
, "; control-spec;");
7147 if (new_ts
& BE_IN_CONTROL
)
7148 fprintf (spec_info
->dump
, "; in-control-spec;");
7150 if (TODO_SPEC (next
) & DEP_CONTROL
)
7151 fprintf (sched_dump
, " predicated");
7152 fprintf (sched_dump
, "\n");
7155 adjust_priority (next
);
7157 return fix_tick_ready (next
);
7160 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
7162 fix_tick_ready (rtx_insn
*next
)
7166 if (!DEBUG_INSN_P (next
) && !sd_lists_empty_p (next
, SD_LIST_RES_BACK
))
7169 sd_iterator_def sd_it
;
7172 tick
= INSN_TICK (next
);
7173 /* if tick is not equal to INVALID_TICK, then update
7174 INSN_TICK of NEXT with the most recent resolved dependence
7175 cost. Otherwise, recalculate from scratch. */
7176 full_p
= (tick
== INVALID_TICK
);
7178 FOR_EACH_DEP (next
, SD_LIST_RES_BACK
, sd_it
, dep
)
7180 rtx_insn
*pro
= DEP_PRO (dep
);
7183 gcc_assert (INSN_TICK (pro
) >= MIN_TICK
);
7185 tick1
= INSN_TICK (pro
) + dep_cost (dep
);
7196 INSN_TICK (next
) = tick
;
7198 delay
= tick
- clock_var
;
7199 if (delay
<= 0 || sched_pressure
!= SCHED_PRESSURE_NONE
)
7200 delay
= QUEUE_READY
;
7202 change_queue_index (next
, delay
);
7207 /* Move NEXT to the proper queue list with (DELAY >= 1),
7208 or add it to the ready list (DELAY == QUEUE_READY),
7209 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7211 change_queue_index (rtx_insn
*next
, int delay
)
7213 int i
= QUEUE_INDEX (next
);
7215 gcc_assert (QUEUE_NOWHERE
<= delay
&& delay
<= max_insn_queue_index
7217 gcc_assert (i
!= QUEUE_SCHEDULED
);
7219 if ((delay
> 0 && NEXT_Q_AFTER (q_ptr
, delay
) == i
)
7220 || (delay
< 0 && delay
== i
))
7221 /* We have nothing to do. */
7224 /* Remove NEXT from wherever it is now. */
7225 if (i
== QUEUE_READY
)
7226 ready_remove_insn (next
);
7228 queue_remove (next
);
7230 /* Add it to the proper place. */
7231 if (delay
== QUEUE_READY
)
7232 ready_add (readyp
, next
, false);
7233 else if (delay
>= 1)
7234 queue_insn (next
, delay
, "change queue index");
7236 if (sched_verbose
>= 2)
7238 fprintf (sched_dump
, ";;\t\ttick updated: insn %s",
7239 (*current_sched_info
->print_insn
) (next
, 0));
7241 if (delay
== QUEUE_READY
)
7242 fprintf (sched_dump
, " into ready\n");
7243 else if (delay
>= 1)
7244 fprintf (sched_dump
, " into queue with cost=%d\n", delay
);
7246 fprintf (sched_dump
, " removed from ready or queue lists\n");
7250 static int sched_ready_n_insns
= -1;
7252 /* Initialize per region data structures. */
7254 sched_extend_ready_list (int new_sched_ready_n_insns
)
7258 if (sched_ready_n_insns
== -1)
7259 /* At the first call we need to initialize one more choice_stack
7263 sched_ready_n_insns
= 0;
7264 scheduled_insns
.reserve (new_sched_ready_n_insns
);
7267 i
= sched_ready_n_insns
+ 1;
7269 ready
.veclen
= new_sched_ready_n_insns
+ issue_rate
;
7270 ready
.vec
= XRESIZEVEC (rtx_insn
*, ready
.vec
, ready
.veclen
);
7272 gcc_assert (new_sched_ready_n_insns
>= sched_ready_n_insns
);
7274 ready_try
= (signed char *) xrecalloc (ready_try
, new_sched_ready_n_insns
,
7275 sched_ready_n_insns
,
7276 sizeof (*ready_try
));
7278 /* We allocate +1 element to save initial state in the choice_stack[0]
7280 choice_stack
= XRESIZEVEC (struct choice_entry
, choice_stack
,
7281 new_sched_ready_n_insns
+ 1);
7283 for (; i
<= new_sched_ready_n_insns
; i
++)
7285 choice_stack
[i
].state
= xmalloc (dfa_state_size
);
7287 if (targetm
.sched
.first_cycle_multipass_init
)
7288 targetm
.sched
.first_cycle_multipass_init (&(choice_stack
[i
]
7292 sched_ready_n_insns
= new_sched_ready_n_insns
;
7295 /* Free per region data structures. */
7297 sched_finish_ready_list (void)
7308 for (i
= 0; i
<= sched_ready_n_insns
; i
++)
7310 if (targetm
.sched
.first_cycle_multipass_fini
)
7311 targetm
.sched
.first_cycle_multipass_fini (&(choice_stack
[i
]
7314 free (choice_stack
[i
].state
);
7316 free (choice_stack
);
7317 choice_stack
= NULL
;
7319 sched_ready_n_insns
= -1;
7323 haifa_luid_for_non_insn (rtx x
)
7325 gcc_assert (NOTE_P (x
) || LABEL_P (x
));
7330 /* Generates recovery code for INSN. */
7332 generate_recovery_code (rtx_insn
*insn
)
7334 if (TODO_SPEC (insn
) & BEGIN_SPEC
)
7335 begin_speculative_block (insn
);
7337 /* Here we have insn with no dependencies to
7338 instructions other then CHECK_SPEC ones. */
7340 if (TODO_SPEC (insn
) & BE_IN_SPEC
)
7341 add_to_speculative_block (insn
);
7345 Tries to add speculative dependencies of type FS between instructions
7346 in deps_list L and TWIN. */
7348 process_insn_forw_deps_be_in_spec (rtx insn
, rtx_insn
*twin
, ds_t fs
)
7350 sd_iterator_def sd_it
;
7353 FOR_EACH_DEP (insn
, SD_LIST_FORW
, sd_it
, dep
)
7358 consumer
= DEP_CON (dep
);
7360 ds
= DEP_STATUS (dep
);
7362 if (/* If we want to create speculative dep. */
7364 /* And we can do that because this is a true dep. */
7365 && (ds
& DEP_TYPES
) == DEP_TRUE
)
7367 gcc_assert (!(ds
& BE_IN_SPEC
));
7369 if (/* If this dep can be overcome with 'begin speculation'. */
7371 /* Then we have a choice: keep the dep 'begin speculative'
7372 or transform it into 'be in speculative'. */
7374 if (/* In try_ready we assert that if insn once became ready
7375 it can be removed from the ready (or queue) list only
7376 due to backend decision. Hence we can't let the
7377 probability of the speculative dep to decrease. */
7378 ds_weak (ds
) <= ds_weak (fs
))
7382 new_ds
= (ds
& ~BEGIN_SPEC
) | fs
;
7384 if (/* consumer can 'be in speculative'. */
7385 sched_insn_is_legitimate_for_speculation_p (consumer
,
7387 /* Transform it to be in speculative. */
7392 /* Mark the dep as 'be in speculative'. */
7397 dep_def _new_dep
, *new_dep
= &_new_dep
;
7399 init_dep_1 (new_dep
, twin
, consumer
, DEP_TYPE (dep
), ds
);
7400 sd_add_dep (new_dep
, false);
7405 /* Generates recovery code for BEGIN speculative INSN. */
7407 begin_speculative_block (rtx_insn
*insn
)
7409 if (TODO_SPEC (insn
) & BEGIN_DATA
)
7411 if (TODO_SPEC (insn
) & BEGIN_CONTROL
)
7414 create_check_block_twin (insn
, false);
7416 TODO_SPEC (insn
) &= ~BEGIN_SPEC
;
7419 static void haifa_init_insn (rtx_insn
*);
7421 /* Generates recovery code for BE_IN speculative INSN. */
7423 add_to_speculative_block (rtx_insn
*insn
)
7426 sd_iterator_def sd_it
;
7428 rtx_insn_list
*twins
= NULL
;
7429 rtx_vec_t priorities_roots
;
7431 ts
= TODO_SPEC (insn
);
7432 gcc_assert (!(ts
& ~BE_IN_SPEC
));
7434 if (ts
& BE_IN_DATA
)
7436 if (ts
& BE_IN_CONTROL
)
7439 TODO_SPEC (insn
) &= ~BE_IN_SPEC
;
7440 gcc_assert (!TODO_SPEC (insn
));
7442 DONE_SPEC (insn
) |= ts
;
7444 /* First we convert all simple checks to branchy. */
7445 for (sd_it
= sd_iterator_start (insn
, SD_LIST_SPEC_BACK
);
7446 sd_iterator_cond (&sd_it
, &dep
);)
7448 rtx_insn
*check
= DEP_PRO (dep
);
7450 if (IS_SPECULATION_SIMPLE_CHECK_P (check
))
7452 create_check_block_twin (check
, true);
7454 /* Restart search. */
7455 sd_it
= sd_iterator_start (insn
, SD_LIST_SPEC_BACK
);
7458 /* Continue search. */
7459 sd_iterator_next (&sd_it
);
7462 priorities_roots
.create (0);
7463 clear_priorities (insn
, &priorities_roots
);
7467 rtx_insn
*check
, *twin
;
7470 /* Get the first backward dependency of INSN. */
7471 sd_it
= sd_iterator_start (insn
, SD_LIST_SPEC_BACK
);
7472 if (!sd_iterator_cond (&sd_it
, &dep
))
7473 /* INSN has no backward dependencies left. */
7476 gcc_assert ((DEP_STATUS (dep
) & BEGIN_SPEC
) == 0
7477 && (DEP_STATUS (dep
) & BE_IN_SPEC
) != 0
7478 && (DEP_STATUS (dep
) & DEP_TYPES
) == DEP_TRUE
);
7480 check
= DEP_PRO (dep
);
7482 gcc_assert (!IS_SPECULATION_CHECK_P (check
) && !ORIG_PAT (check
)
7483 && QUEUE_INDEX (check
) == QUEUE_NOWHERE
);
7485 rec
= BLOCK_FOR_INSN (check
);
7487 twin
= emit_insn_before (copy_insn (PATTERN (insn
)), BB_END (rec
));
7488 haifa_init_insn (twin
);
7490 sd_copy_back_deps (twin
, insn
, true);
7492 if (sched_verbose
&& spec_info
->dump
)
7493 /* INSN_BB (insn) isn't determined for twin insns yet.
7494 So we can't use current_sched_info->print_insn. */
7495 fprintf (spec_info
->dump
, ";;\t\tGenerated twin insn : %d/rec%d\n",
7496 INSN_UID (twin
), rec
->index
);
7498 twins
= alloc_INSN_LIST (twin
, twins
);
7500 /* Add dependences between TWIN and all appropriate
7501 instructions from REC. */
7502 FOR_EACH_DEP (insn
, SD_LIST_SPEC_BACK
, sd_it
, dep
)
7504 rtx_insn
*pro
= DEP_PRO (dep
);
7506 gcc_assert (DEP_TYPE (dep
) == REG_DEP_TRUE
);
7508 /* INSN might have dependencies from the instructions from
7509 several recovery blocks. At this iteration we process those
7510 producers that reside in REC. */
7511 if (BLOCK_FOR_INSN (pro
) == rec
)
7513 dep_def _new_dep
, *new_dep
= &_new_dep
;
7515 init_dep (new_dep
, pro
, twin
, REG_DEP_TRUE
);
7516 sd_add_dep (new_dep
, false);
7520 process_insn_forw_deps_be_in_spec (insn
, twin
, ts
);
7522 /* Remove all dependencies between INSN and insns in REC. */
7523 for (sd_it
= sd_iterator_start (insn
, SD_LIST_SPEC_BACK
);
7524 sd_iterator_cond (&sd_it
, &dep
);)
7526 rtx_insn
*pro
= DEP_PRO (dep
);
7528 if (BLOCK_FOR_INSN (pro
) == rec
)
7529 sd_delete_dep (sd_it
);
7531 sd_iterator_next (&sd_it
);
7535 /* We couldn't have added the dependencies between INSN and TWINS earlier
7536 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
7540 rtx_insn_list
*next_node
;
7542 twin
= twins
->insn ();
7545 dep_def _new_dep
, *new_dep
= &_new_dep
;
7547 init_dep (new_dep
, insn
, twin
, REG_DEP_OUTPUT
);
7548 sd_add_dep (new_dep
, false);
7551 next_node
= twins
->next ();
7552 free_INSN_LIST_node (twins
);
7556 calc_priorities (priorities_roots
);
7557 priorities_roots
.release ();
7560 /* Extends and fills with zeros (only the new part) array pointed to by P. */
7562 xrecalloc (void *p
, size_t new_nmemb
, size_t old_nmemb
, size_t size
)
7564 gcc_assert (new_nmemb
>= old_nmemb
);
7565 p
= XRESIZEVAR (void, p
, new_nmemb
* size
);
7566 memset (((char *) p
) + old_nmemb
* size
, 0, (new_nmemb
- old_nmemb
) * size
);
7571 Find fallthru edge from PRED. */
7573 find_fallthru_edge_from (basic_block pred
)
7578 succ
= pred
->next_bb
;
7579 gcc_assert (succ
->prev_bb
== pred
);
7581 if (EDGE_COUNT (pred
->succs
) <= EDGE_COUNT (succ
->preds
))
7583 e
= find_fallthru_edge (pred
->succs
);
7587 gcc_assert (e
->dest
== succ
);
7593 e
= find_fallthru_edge (succ
->preds
);
7597 gcc_assert (e
->src
== pred
);
7605 /* Extend per basic block data structures. */
7607 sched_extend_bb (void)
7609 /* The following is done to keep current_sched_info->next_tail non null. */
7610 rtx_insn
*end
= BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
);
7611 rtx_insn
*insn
= DEBUG_INSN_P (end
) ? prev_nondebug_insn (end
) : end
;
7612 if (NEXT_INSN (end
) == 0
7615 /* Don't emit a NOTE if it would end up before a BARRIER. */
7616 && !BARRIER_P (NEXT_INSN (end
))))
7618 rtx_note
*note
= emit_note_after (NOTE_INSN_DELETED
, end
);
7619 /* Make note appear outside BB. */
7620 set_block_for_insn (note
, NULL
);
7621 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
) = end
;
7625 /* Init per basic block data structures. */
7627 sched_init_bbs (void)
7632 /* Initialize BEFORE_RECOVERY variable. */
7634 init_before_recovery (basic_block
*before_recovery_ptr
)
7639 last
= EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
;
7640 e
= find_fallthru_edge_from (last
);
7644 /* We create two basic blocks:
7645 1. Single instruction block is inserted right after E->SRC
7647 2. Empty block right before EXIT_BLOCK.
7648 Between these two blocks recovery blocks will be emitted. */
7650 basic_block single
, empty
;
7654 /* If the fallthrough edge to exit we've found is from the block we've
7655 created before, don't do anything more. */
7656 if (last
== after_recovery
)
7659 adding_bb_to_current_region_p
= false;
7661 single
= sched_create_empty_bb (last
);
7662 empty
= sched_create_empty_bb (single
);
7664 /* Add new blocks to the root loop. */
7665 if (current_loops
!= NULL
)
7667 add_bb_to_loop (single
, (*current_loops
->larray
)[0]);
7668 add_bb_to_loop (empty
, (*current_loops
->larray
)[0]);
7671 single
->count
= last
->count
;
7672 empty
->count
= last
->count
;
7673 single
->frequency
= last
->frequency
;
7674 empty
->frequency
= last
->frequency
;
7675 BB_COPY_PARTITION (single
, last
);
7676 BB_COPY_PARTITION (empty
, last
);
7678 redirect_edge_succ (e
, single
);
7679 make_single_succ_edge (single
, empty
, 0);
7680 make_single_succ_edge (empty
, EXIT_BLOCK_PTR_FOR_FN (cfun
),
7683 label
= block_label (empty
);
7684 x
= emit_jump_insn_after (gen_jump (label
), BB_END (single
));
7685 JUMP_LABEL (x
) = label
;
7686 LABEL_NUSES (label
)++;
7687 haifa_init_insn (x
);
7689 emit_barrier_after (x
);
7691 sched_init_only_bb (empty
, NULL
);
7692 sched_init_only_bb (single
, NULL
);
7695 adding_bb_to_current_region_p
= true;
7696 before_recovery
= single
;
7697 after_recovery
= empty
;
7699 if (before_recovery_ptr
)
7700 *before_recovery_ptr
= before_recovery
;
7702 if (sched_verbose
>= 2 && spec_info
->dump
)
7703 fprintf (spec_info
->dump
,
7704 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
7705 last
->index
, single
->index
, empty
->index
);
7708 before_recovery
= last
;
7711 /* Returns new recovery block. */
7713 sched_create_recovery_block (basic_block
*before_recovery_ptr
)
7719 haifa_recovery_bb_recently_added_p
= true;
7720 haifa_recovery_bb_ever_added_p
= true;
7722 init_before_recovery (before_recovery_ptr
);
7724 barrier
= get_last_bb_insn (before_recovery
);
7725 gcc_assert (BARRIER_P (barrier
));
7727 label
= emit_label_after (gen_label_rtx (), barrier
);
7729 rec
= create_basic_block (label
, label
, before_recovery
);
7731 /* A recovery block always ends with an unconditional jump. */
7732 emit_barrier_after (BB_END (rec
));
7734 if (BB_PARTITION (before_recovery
) != BB_UNPARTITIONED
)
7735 BB_SET_PARTITION (rec
, BB_COLD_PARTITION
);
7737 if (sched_verbose
&& spec_info
->dump
)
7738 fprintf (spec_info
->dump
, ";;\t\tGenerated recovery block rec%d\n",
7744 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
7745 and emit necessary jumps. */
7747 sched_create_recovery_edges (basic_block first_bb
, basic_block rec
,
7748 basic_block second_bb
)
7754 /* This is fixing of incoming edge. */
7755 /* ??? Which other flags should be specified? */
7756 if (BB_PARTITION (first_bb
) != BB_PARTITION (rec
))
7757 /* Partition type is the same, if it is "unpartitioned". */
7758 edge_flags
= EDGE_CROSSING
;
7762 make_edge (first_bb
, rec
, edge_flags
);
7763 label
= block_label (second_bb
);
7764 jump
= emit_jump_insn_after (gen_jump (label
), BB_END (rec
));
7765 JUMP_LABEL (jump
) = label
;
7766 LABEL_NUSES (label
)++;
7768 if (BB_PARTITION (second_bb
) != BB_PARTITION (rec
))
7769 /* Partition type is the same, if it is "unpartitioned". */
7771 /* Rewritten from cfgrtl.c. */
7772 if (flag_reorder_blocks_and_partition
7773 && targetm_common
.have_named_sections
)
7775 /* We don't need the same note for the check because
7776 any_condjump_p (check) == true. */
7777 CROSSING_JUMP_P (jump
) = 1;
7779 edge_flags
= EDGE_CROSSING
;
7784 make_single_succ_edge (rec
, second_bb
, edge_flags
);
7785 if (dom_info_available_p (CDI_DOMINATORS
))
7786 set_immediate_dominator (CDI_DOMINATORS
, rec
, first_bb
);
7789 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
7790 INSN is a simple check, that should be converted to branchy one. */
7792 create_check_block_twin (rtx_insn
*insn
, bool mutate_p
)
7795 rtx_insn
*label
, *check
, *twin
;
7798 sd_iterator_def sd_it
;
7800 dep_def _new_dep
, *new_dep
= &_new_dep
;
7803 gcc_assert (ORIG_PAT (insn
) != NULL_RTX
);
7806 todo_spec
= TODO_SPEC (insn
);
7809 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn
)
7810 && (TODO_SPEC (insn
) & SPECULATIVE
) == 0);
7812 todo_spec
= CHECK_SPEC (insn
);
7815 todo_spec
&= SPECULATIVE
;
7817 /* Create recovery block. */
7818 if (mutate_p
|| targetm
.sched
.needs_block_p (todo_spec
))
7820 rec
= sched_create_recovery_block (NULL
);
7821 label
= BB_HEAD (rec
);
7825 rec
= EXIT_BLOCK_PTR_FOR_FN (cfun
);
7830 check_pat
= targetm
.sched
.gen_spec_check (insn
, label
, todo_spec
);
7832 if (rec
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
7834 /* To have mem_reg alive at the beginning of second_bb,
7835 we emit check BEFORE insn, so insn after splitting
7836 insn will be at the beginning of second_bb, which will
7837 provide us with the correct life information. */
7838 check
= emit_jump_insn_before (check_pat
, insn
);
7839 JUMP_LABEL (check
) = label
;
7840 LABEL_NUSES (label
)++;
7843 check
= emit_insn_before (check_pat
, insn
);
7845 /* Extend data structures. */
7846 haifa_init_insn (check
);
7848 /* CHECK is being added to current region. Extend ready list. */
7849 gcc_assert (sched_ready_n_insns
!= -1);
7850 sched_extend_ready_list (sched_ready_n_insns
+ 1);
7852 if (current_sched_info
->add_remove_insn
)
7853 current_sched_info
->add_remove_insn (insn
, 0);
7855 RECOVERY_BLOCK (check
) = rec
;
7857 if (sched_verbose
&& spec_info
->dump
)
7858 fprintf (spec_info
->dump
, ";;\t\tGenerated check insn : %s\n",
7859 (*current_sched_info
->print_insn
) (check
, 0));
7861 gcc_assert (ORIG_PAT (insn
));
7863 /* Initialize TWIN (twin is a duplicate of original instruction
7864 in the recovery block). */
7865 if (rec
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
7867 sd_iterator_def sd_it
;
7870 FOR_EACH_DEP (insn
, SD_LIST_RES_BACK
, sd_it
, dep
)
7871 if ((DEP_STATUS (dep
) & DEP_OUTPUT
) != 0)
7873 struct _dep _dep2
, *dep2
= &_dep2
;
7875 init_dep (dep2
, DEP_PRO (dep
), check
, REG_DEP_TRUE
);
7877 sd_add_dep (dep2
, true);
7880 twin
= emit_insn_after (ORIG_PAT (insn
), BB_END (rec
));
7881 haifa_init_insn (twin
);
7883 if (sched_verbose
&& spec_info
->dump
)
7884 /* INSN_BB (insn) isn't determined for twin insns yet.
7885 So we can't use current_sched_info->print_insn. */
7886 fprintf (spec_info
->dump
, ";;\t\tGenerated twin insn : %d/rec%d\n",
7887 INSN_UID (twin
), rec
->index
);
7891 ORIG_PAT (check
) = ORIG_PAT (insn
);
7892 HAS_INTERNAL_DEP (check
) = 1;
7894 /* ??? We probably should change all OUTPUT dependencies to
7898 /* Copy all resolved back dependencies of INSN to TWIN. This will
7899 provide correct value for INSN_TICK (TWIN). */
7900 sd_copy_back_deps (twin
, insn
, true);
7902 if (rec
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
7903 /* In case of branchy check, fix CFG. */
7905 basic_block first_bb
, second_bb
;
7908 first_bb
= BLOCK_FOR_INSN (check
);
7909 second_bb
= sched_split_block (first_bb
, check
);
7911 sched_create_recovery_edges (first_bb
, rec
, second_bb
);
7913 sched_init_only_bb (second_bb
, first_bb
);
7914 sched_init_only_bb (rec
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
7916 jump
= BB_END (rec
);
7917 haifa_init_insn (jump
);
7920 /* Move backward dependences from INSN to CHECK and
7921 move forward dependences from INSN to TWIN. */
7923 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
7924 FOR_EACH_DEP (insn
, SD_LIST_BACK
, sd_it
, dep
)
7926 rtx_insn
*pro
= DEP_PRO (dep
);
7929 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
7930 check --TRUE--> producer ??? or ANTI ???
7931 twin --TRUE--> producer
7932 twin --ANTI--> check
7934 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
7935 check --ANTI--> producer
7936 twin --ANTI--> producer
7937 twin --ANTI--> check
7939 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
7940 check ~~TRUE~~> producer
7941 twin ~~TRUE~~> producer
7942 twin --ANTI--> check */
7944 ds
= DEP_STATUS (dep
);
7946 if (ds
& BEGIN_SPEC
)
7948 gcc_assert (!mutate_p
);
7952 init_dep_1 (new_dep
, pro
, check
, DEP_TYPE (dep
), ds
);
7953 sd_add_dep (new_dep
, false);
7955 if (rec
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
7957 DEP_CON (new_dep
) = twin
;
7958 sd_add_dep (new_dep
, false);
7962 /* Second, remove backward dependencies of INSN. */
7963 for (sd_it
= sd_iterator_start (insn
, SD_LIST_SPEC_BACK
);
7964 sd_iterator_cond (&sd_it
, &dep
);)
7966 if ((DEP_STATUS (dep
) & BEGIN_SPEC
)
7968 /* We can delete this dep because we overcome it with
7969 BEGIN_SPECULATION. */
7970 sd_delete_dep (sd_it
);
7972 sd_iterator_next (&sd_it
);
7975 /* Future Speculations. Determine what BE_IN speculations will be like. */
7978 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
7981 gcc_assert (!DONE_SPEC (insn
));
7985 ds_t ts
= TODO_SPEC (insn
);
7987 DONE_SPEC (insn
) = ts
& BEGIN_SPEC
;
7988 CHECK_SPEC (check
) = ts
& BEGIN_SPEC
;
7990 /* Luckiness of future speculations solely depends upon initial
7991 BEGIN speculation. */
7992 if (ts
& BEGIN_DATA
)
7993 fs
= set_dep_weak (fs
, BE_IN_DATA
, get_dep_weak (ts
, BEGIN_DATA
));
7994 if (ts
& BEGIN_CONTROL
)
7995 fs
= set_dep_weak (fs
, BE_IN_CONTROL
,
7996 get_dep_weak (ts
, BEGIN_CONTROL
));
7999 CHECK_SPEC (check
) = CHECK_SPEC (insn
);
8001 /* Future speculations: call the helper. */
8002 process_insn_forw_deps_be_in_spec (insn
, twin
, fs
);
8004 if (rec
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
8006 /* Which types of dependencies should we use here is,
8007 generally, machine-dependent question... But, for now,
8012 init_dep (new_dep
, insn
, check
, REG_DEP_TRUE
);
8013 sd_add_dep (new_dep
, false);
8015 init_dep (new_dep
, insn
, twin
, REG_DEP_OUTPUT
);
8016 sd_add_dep (new_dep
, false);
8020 if (spec_info
->dump
)
8021 fprintf (spec_info
->dump
, ";;\t\tRemoved simple check : %s\n",
8022 (*current_sched_info
->print_insn
) (insn
, 0));
8024 /* Remove all dependencies of the INSN. */
8026 sd_it
= sd_iterator_start (insn
, (SD_LIST_FORW
8028 | SD_LIST_RES_BACK
));
8029 while (sd_iterator_cond (&sd_it
, &dep
))
8030 sd_delete_dep (sd_it
);
8033 /* If former check (INSN) already was moved to the ready (or queue)
8034 list, add new check (CHECK) there too. */
8035 if (QUEUE_INDEX (insn
) != QUEUE_NOWHERE
)
8038 /* Remove old check from instruction stream and free its
8040 sched_remove_insn (insn
);
8043 init_dep (new_dep
, check
, twin
, REG_DEP_ANTI
);
8044 sd_add_dep (new_dep
, false);
8048 init_dep_1 (new_dep
, insn
, check
, REG_DEP_TRUE
, DEP_TRUE
| DEP_OUTPUT
);
8049 sd_add_dep (new_dep
, false);
8053 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
8054 because it'll be done later in add_to_speculative_block. */
8056 rtx_vec_t priorities_roots
= rtx_vec_t ();
8058 clear_priorities (twin
, &priorities_roots
);
8059 calc_priorities (priorities_roots
);
8060 priorities_roots
.release ();
8064 /* Removes dependency between instructions in the recovery block REC
8065 and usual region instructions. It keeps inner dependences so it
8066 won't be necessary to recompute them. */
8068 fix_recovery_deps (basic_block rec
)
8070 rtx_insn
*note
, *insn
, *jump
;
8071 rtx_insn_list
*ready_list
= 0;
8072 bitmap_head in_ready
;
8073 rtx_insn_list
*link
;
8075 bitmap_initialize (&in_ready
, 0);
8077 /* NOTE - a basic block note. */
8078 note
= NEXT_INSN (BB_HEAD (rec
));
8079 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note
));
8080 insn
= BB_END (rec
);
8081 gcc_assert (JUMP_P (insn
));
8082 insn
= PREV_INSN (insn
);
8086 sd_iterator_def sd_it
;
8089 for (sd_it
= sd_iterator_start (insn
, SD_LIST_FORW
);
8090 sd_iterator_cond (&sd_it
, &dep
);)
8092 rtx_insn
*consumer
= DEP_CON (dep
);
8094 if (BLOCK_FOR_INSN (consumer
) != rec
)
8096 sd_delete_dep (sd_it
);
8098 if (bitmap_set_bit (&in_ready
, INSN_LUID (consumer
)))
8099 ready_list
= alloc_INSN_LIST (consumer
, ready_list
);
8103 gcc_assert ((DEP_STATUS (dep
) & DEP_TYPES
) == DEP_TRUE
);
8105 sd_iterator_next (&sd_it
);
8109 insn
= PREV_INSN (insn
);
8111 while (insn
!= note
);
8113 bitmap_clear (&in_ready
);
8115 /* Try to add instructions to the ready or queue list. */
8116 for (link
= ready_list
; link
; link
= link
->next ())
8117 try_ready (link
->insn ());
8118 free_INSN_LIST_list (&ready_list
);
8120 /* Fixing jump's dependences. */
8121 insn
= BB_HEAD (rec
);
8122 jump
= BB_END (rec
);
8124 gcc_assert (LABEL_P (insn
));
8125 insn
= NEXT_INSN (insn
);
8127 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn
));
8128 add_jump_dependencies (insn
, jump
);
8131 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
8132 instruction data. */
8134 haifa_change_pattern (rtx_insn
*insn
, rtx new_pat
)
8138 t
= validate_change (insn
, &PATTERN (insn
), new_pat
, 0);
8142 update_insn_after_change (insn
);
8146 /* -1 - can't speculate,
8147 0 - for speculation with REQUEST mode it is OK to use
8148 current instruction pattern,
8149 1 - need to change pattern for *NEW_PAT to be speculative. */
8151 sched_speculate_insn (rtx_insn
*insn
, ds_t request
, rtx
*new_pat
)
8153 gcc_assert (current_sched_info
->flags
& DO_SPECULATION
8154 && (request
& SPECULATIVE
)
8155 && sched_insn_is_legitimate_for_speculation_p (insn
, request
));
8157 if ((request
& spec_info
->mask
) != request
)
8160 if (request
& BE_IN_SPEC
8161 && !(request
& BEGIN_SPEC
))
8164 return targetm
.sched
.speculate_insn (insn
, request
, new_pat
);
8168 haifa_speculate_insn (rtx_insn
*insn
, ds_t request
, rtx
*new_pat
)
8170 gcc_assert (sched_deps_info
->generate_spec_deps
8171 && !IS_SPECULATION_CHECK_P (insn
));
8173 if (HAS_INTERNAL_DEP (insn
)
8174 || SCHED_GROUP_P (insn
))
8177 return sched_speculate_insn (insn
, request
, new_pat
);
8180 /* Print some information about block BB, which starts with HEAD and
8181 ends with TAIL, before scheduling it.
8182 I is zero, if scheduler is about to start with the fresh ebb. */
8184 dump_new_block_header (int i
, basic_block bb
, rtx_insn
*head
, rtx_insn
*tail
)
8187 fprintf (sched_dump
,
8188 ";; ======================================================\n");
8190 fprintf (sched_dump
,
8191 ";; =====================ADVANCING TO=====================\n");
8192 fprintf (sched_dump
,
8193 ";; -- basic block %d from %d to %d -- %s reload\n",
8194 bb
->index
, INSN_UID (head
), INSN_UID (tail
),
8195 (reload_completed
? "after" : "before"));
8196 fprintf (sched_dump
,
8197 ";; ======================================================\n");
8198 fprintf (sched_dump
, "\n");
8201 /* Unlink basic block notes and labels and saves them, so they
8202 can be easily restored. We unlink basic block notes in EBB to
8203 provide back-compatibility with the previous code, as target backends
8204 assume, that there'll be only instructions between
8205 current_sched_info->{head and tail}. We restore these notes as soon
8207 FIRST (LAST) is the first (last) basic block in the ebb.
8208 NB: In usual case (FIRST == LAST) nothing is really done. */
8210 unlink_bb_notes (basic_block first
, basic_block last
)
8212 /* We DON'T unlink basic block notes of the first block in the ebb. */
8216 bb_header
= XNEWVEC (rtx_insn
*, last_basic_block_for_fn (cfun
));
8218 /* Make a sentinel. */
8219 if (last
->next_bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
8220 bb_header
[last
->next_bb
->index
] = 0;
8222 first
= first
->next_bb
;
8225 rtx_insn
*prev
, *label
, *note
, *next
;
8227 label
= BB_HEAD (last
);
8228 if (LABEL_P (label
))
8229 note
= NEXT_INSN (label
);
8232 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note
));
8234 prev
= PREV_INSN (label
);
8235 next
= NEXT_INSN (note
);
8236 gcc_assert (prev
&& next
);
8238 SET_NEXT_INSN (prev
) = next
;
8239 SET_PREV_INSN (next
) = prev
;
8241 bb_header
[last
->index
] = label
;
8246 last
= last
->prev_bb
;
8251 /* Restore basic block notes.
8252 FIRST is the first basic block in the ebb. */
8254 restore_bb_notes (basic_block first
)
8259 /* We DON'T unlink basic block notes of the first block in the ebb. */
8260 first
= first
->next_bb
;
8261 /* Remember: FIRST is actually a second basic block in the ebb. */
8263 while (first
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
8264 && bb_header
[first
->index
])
8266 rtx_insn
*prev
, *label
, *note
, *next
;
8268 label
= bb_header
[first
->index
];
8269 prev
= PREV_INSN (label
);
8270 next
= NEXT_INSN (prev
);
8272 if (LABEL_P (label
))
8273 note
= NEXT_INSN (label
);
8276 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note
));
8278 bb_header
[first
->index
] = 0;
8280 SET_NEXT_INSN (prev
) = label
;
8281 SET_NEXT_INSN (note
) = next
;
8282 SET_PREV_INSN (next
) = note
;
8284 first
= first
->next_bb
;
8292 Fix CFG after both in- and inter-block movement of
8293 control_flow_insn_p JUMP. */
8295 fix_jump_move (rtx_insn
*jump
)
8297 basic_block bb
, jump_bb
, jump_bb_next
;
8299 bb
= BLOCK_FOR_INSN (PREV_INSN (jump
));
8300 jump_bb
= BLOCK_FOR_INSN (jump
);
8301 jump_bb_next
= jump_bb
->next_bb
;
8303 gcc_assert (common_sched_info
->sched_pass_id
== SCHED_EBB_PASS
8304 || IS_SPECULATION_BRANCHY_CHECK_P (jump
));
8306 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next
)))
8307 /* if jump_bb_next is not empty. */
8308 BB_END (jump_bb
) = BB_END (jump_bb_next
);
8310 if (BB_END (bb
) != PREV_INSN (jump
))
8311 /* Then there are instruction after jump that should be placed
8313 BB_END (jump_bb_next
) = BB_END (bb
);
8315 /* Otherwise jump_bb_next is empty. */
8316 BB_END (jump_bb_next
) = NEXT_INSN (BB_HEAD (jump_bb_next
));
8318 /* To make assertion in move_insn happy. */
8319 BB_END (bb
) = PREV_INSN (jump
);
8321 update_bb_for_insn (jump_bb_next
);
8324 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8326 move_block_after_check (rtx_insn
*jump
)
8328 basic_block bb
, jump_bb
, jump_bb_next
;
8329 vec
<edge
, va_gc
> *t
;
8331 bb
= BLOCK_FOR_INSN (PREV_INSN (jump
));
8332 jump_bb
= BLOCK_FOR_INSN (jump
);
8333 jump_bb_next
= jump_bb
->next_bb
;
8335 update_bb_for_insn (jump_bb
);
8337 gcc_assert (IS_SPECULATION_CHECK_P (jump
)
8338 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next
)));
8340 unlink_block (jump_bb_next
);
8341 link_block (jump_bb_next
, bb
);
8345 move_succs (&(jump_bb
->succs
), bb
);
8346 move_succs (&(jump_bb_next
->succs
), jump_bb
);
8347 move_succs (&t
, jump_bb_next
);
8349 df_mark_solutions_dirty ();
8351 common_sched_info
->fix_recovery_cfg
8352 (bb
->index
, jump_bb
->index
, jump_bb_next
->index
);
8355 /* Helper function for move_block_after_check.
8356 This functions attaches edge vector pointed to by SUCCSP to
8359 move_succs (vec
<edge
, va_gc
> **succsp
, basic_block to
)
8364 gcc_assert (to
->succs
== 0);
8366 to
->succs
= *succsp
;
8368 FOR_EACH_EDGE (e
, ei
, to
->succs
)
8374 /* Remove INSN from the instruction stream.
8375 INSN should have any dependencies. */
8377 sched_remove_insn (rtx_insn
*insn
)
8379 sd_finish_insn (insn
);
8381 change_queue_index (insn
, QUEUE_NOWHERE
);
8382 current_sched_info
->add_remove_insn (insn
, 1);
8386 /* Clear priorities of all instructions, that are forward dependent on INSN.
8387 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8388 be invoked to initialize all cleared priorities. */
8390 clear_priorities (rtx_insn
*insn
, rtx_vec_t
*roots_ptr
)
8392 sd_iterator_def sd_it
;
8394 bool insn_is_root_p
= true;
8396 gcc_assert (QUEUE_INDEX (insn
) != QUEUE_SCHEDULED
);
8398 FOR_EACH_DEP (insn
, SD_LIST_BACK
, sd_it
, dep
)
8400 rtx_insn
*pro
= DEP_PRO (dep
);
8402 if (INSN_PRIORITY_STATUS (pro
) >= 0
8403 && QUEUE_INDEX (insn
) != QUEUE_SCHEDULED
)
8405 /* If DEP doesn't contribute to priority then INSN itself should
8406 be added to priority roots. */
8407 if (contributes_to_priority_p (dep
))
8408 insn_is_root_p
= false;
8410 INSN_PRIORITY_STATUS (pro
) = -1;
8411 clear_priorities (pro
, roots_ptr
);
8416 roots_ptr
->safe_push (insn
);
8419 /* Recompute priorities of instructions, whose priorities might have been
8420 changed. ROOTS is a vector of instructions whose priority computation will
8421 trigger initialization of all cleared priorities. */
8423 calc_priorities (rtx_vec_t roots
)
8428 FOR_EACH_VEC_ELT (roots
, i
, insn
)
8433 /* Add dependences between JUMP and other instructions in the recovery
8434 block. INSN is the first insn the recovery block. */
8436 add_jump_dependencies (rtx_insn
*insn
, rtx_insn
*jump
)
8440 insn
= NEXT_INSN (insn
);
8444 if (dep_list_size (insn
, SD_LIST_FORW
) == 0)
8446 dep_def _new_dep
, *new_dep
= &_new_dep
;
8448 init_dep (new_dep
, insn
, jump
, REG_DEP_ANTI
);
8449 sd_add_dep (new_dep
, false);
8454 gcc_assert (!sd_lists_empty_p (jump
, SD_LIST_BACK
));
8457 /* Extend data structures for logical insn UID. */
8459 sched_extend_luids (void)
8461 int new_luids_max_uid
= get_max_uid () + 1;
8463 sched_luids
.safe_grow_cleared (new_luids_max_uid
);
8466 /* Initialize LUID for INSN. */
8468 sched_init_insn_luid (rtx_insn
*insn
)
8470 int i
= INSN_P (insn
) ? 1 : common_sched_info
->luid_for_non_insn (insn
);
8475 luid
= sched_max_luid
;
8476 sched_max_luid
+= i
;
8481 SET_INSN_LUID (insn
, luid
);
8484 /* Initialize luids for BBS.
8485 The hook common_sched_info->luid_for_non_insn () is used to determine
8486 if notes, labels, etc. need luids. */
8488 sched_init_luids (bb_vec_t bbs
)
8493 sched_extend_luids ();
8494 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
8498 FOR_BB_INSNS (bb
, insn
)
8499 sched_init_insn_luid (insn
);
8505 sched_finish_luids (void)
8507 sched_luids
.release ();
8511 /* Return logical uid of INSN. Helpful while debugging. */
8513 insn_luid (rtx_insn
*insn
)
8515 return INSN_LUID (insn
);
8518 /* Extend per insn data in the target. */
8520 sched_extend_target (void)
8522 if (targetm
.sched
.h_i_d_extended
)
8523 targetm
.sched
.h_i_d_extended ();
8526 /* Extend global scheduler structures (those, that live across calls to
8527 schedule_block) to include information about just emitted INSN. */
8531 int reserve
= (get_max_uid () + 1 - h_i_d
.length ());
8533 && ! h_i_d
.space (reserve
))
8535 h_i_d
.safe_grow_cleared (3 * get_max_uid () / 2);
8536 sched_extend_target ();
8540 /* Initialize h_i_d entry of the INSN with default values.
8541 Values, that are not explicitly initialized here, hold zero. */
8543 init_h_i_d (rtx_insn
*insn
)
8545 if (INSN_LUID (insn
) > 0)
8547 INSN_COST (insn
) = -1;
8548 QUEUE_INDEX (insn
) = QUEUE_NOWHERE
;
8549 INSN_TICK (insn
) = INVALID_TICK
;
8550 INSN_EXACT_TICK (insn
) = INVALID_TICK
;
8551 INTER_TICK (insn
) = INVALID_TICK
;
8552 TODO_SPEC (insn
) = HARD_DEP
;
8556 /* Initialize haifa_insn_data for BBS. */
8558 haifa_init_h_i_d (bb_vec_t bbs
)
8564 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
8568 FOR_BB_INSNS (bb
, insn
)
8573 /* Finalize haifa_insn_data. */
8575 haifa_finish_h_i_d (void)
8578 haifa_insn_data_t data
;
8579 struct reg_use_data
*use
, *next
;
8581 FOR_EACH_VEC_ELT (h_i_d
, i
, data
)
8583 free (data
->max_reg_pressure
);
8584 free (data
->reg_pressure
);
8585 for (use
= data
->reg_use_list
; use
!= NULL
; use
= next
)
8587 next
= use
->next_insn_use
;
8594 /* Init data for the new insn INSN. */
8596 haifa_init_insn (rtx_insn
*insn
)
8598 gcc_assert (insn
!= NULL
);
8600 sched_extend_luids ();
8601 sched_init_insn_luid (insn
);
8602 sched_extend_target ();
8603 sched_deps_init (false);
8607 if (adding_bb_to_current_region_p
)
8609 sd_init_insn (insn
);
8611 /* Extend dependency caches by one element. */
8612 extend_dependency_caches (1, false);
8614 if (sched_pressure
!= SCHED_PRESSURE_NONE
)
8615 init_insn_reg_pressure_info (insn
);
8618 /* Init data for the new basic block BB which comes after AFTER. */
8620 haifa_init_only_bb (basic_block bb
, basic_block after
)
8622 gcc_assert (bb
!= NULL
);
8626 if (common_sched_info
->add_block
)
8627 /* This changes only data structures of the front-end. */
8628 common_sched_info
->add_block (bb
, after
);
8631 /* A generic version of sched_split_block (). */
8633 sched_split_block_1 (basic_block first_bb
, rtx after
)
8637 e
= split_block (first_bb
, after
);
8638 gcc_assert (e
->src
== first_bb
);
8640 /* sched_split_block emits note if *check == BB_END. Probably it
8641 is better to rip that note off. */
8646 /* A generic version of sched_create_empty_bb (). */
8648 sched_create_empty_bb_1 (basic_block after
)
8650 return create_empty_bb (after
);
8653 /* Insert PAT as an INSN into the schedule and update the necessary data
8654 structures to account for it. */
8656 sched_emit_insn (rtx pat
)
8658 rtx_insn
*insn
= emit_insn_before (pat
, first_nonscheduled_insn ());
8659 haifa_init_insn (insn
);
8661 if (current_sched_info
->add_remove_insn
)
8662 current_sched_info
->add_remove_insn (insn
, 0);
8664 (*current_sched_info
->begin_schedule_ready
) (insn
);
8665 scheduled_insns
.safe_push (insn
);
8667 last_scheduled_insn
= insn
;
8671 /* This function returns a candidate satisfying dispatch constraints from
8675 ready_remove_first_dispatch (struct ready_list
*ready
)
8678 rtx_insn
*insn
= ready_element (ready
, 0);
8680 if (ready
->n_ready
== 1
8682 || INSN_CODE (insn
) < 0
8683 || !active_insn_p (insn
)
8684 || targetm
.sched
.dispatch (insn
, FITS_DISPATCH_WINDOW
))
8685 return ready_remove_first (ready
);
8687 for (i
= 1; i
< ready
->n_ready
; i
++)
8689 insn
= ready_element (ready
, i
);
8692 || INSN_CODE (insn
) < 0
8693 || !active_insn_p (insn
))
8696 if (targetm
.sched
.dispatch (insn
, FITS_DISPATCH_WINDOW
))
8698 /* Return ith element of ready. */
8699 insn
= ready_remove (ready
, i
);
8704 if (targetm
.sched
.dispatch (NULL
, DISPATCH_VIOLATION
))
8705 return ready_remove_first (ready
);
8707 for (i
= 1; i
< ready
->n_ready
; i
++)
8709 insn
= ready_element (ready
, i
);
8712 || INSN_CODE (insn
) < 0
8713 || !active_insn_p (insn
))
8716 /* Return i-th element of ready. */
8717 if (targetm
.sched
.dispatch (insn
, IS_CMP
))
8718 return ready_remove (ready
, i
);
8721 return ready_remove_first (ready
);
8724 /* Get number of ready insn in the ready list. */
8727 number_in_ready (void)
8729 return ready
.n_ready
;
8732 /* Get number of ready's in the ready list. */
8735 get_ready_element (int i
)
8737 return ready_element (&ready
, i
);
8740 #endif /* INSN_SCHEDULING */