Convert diagnostics to use quoting flag q 2/n
[official-gcc.git] / gcc / emit-rtl.c
blob2a152c525c04e518e7be398a96eda7996a4185b8
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "bitmap.h"
54 #include "basic-block.h"
55 #include "ggc.h"
56 #include "debug.h"
57 #include "langhooks.h"
59 /* Commonly used modes. */
61 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
63 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
64 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
67 /* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
70 static GTY(()) int label_num = 1;
72 /* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
76 static int last_label_num;
78 /* Value label_num had when set_new_last_label_num was called.
79 If label_num has not changed since then, last_label_num is valid. */
81 static int base_label_num;
83 /* Nonzero means do not generate NOTEs for source line numbers. */
85 static int no_line_numbers;
87 /* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these are unique; no other rtx-object will be equal to any
90 of these. */
92 rtx global_rtl[GR_MAX];
94 /* Commonly used RTL for hard registers. These objects are not necessarily
95 unique, so we allocate them separately from global_rtl. They are
96 initialized once per compilation unit, then copied into regno_reg_rtx
97 at the beginning of each function. */
98 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
100 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
101 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
102 record a copy of const[012]_rtx. */
104 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
106 rtx const_true_rtx;
108 REAL_VALUE_TYPE dconst0;
109 REAL_VALUE_TYPE dconst1;
110 REAL_VALUE_TYPE dconst2;
111 REAL_VALUE_TYPE dconst3;
112 REAL_VALUE_TYPE dconst10;
113 REAL_VALUE_TYPE dconstm1;
114 REAL_VALUE_TYPE dconstm2;
115 REAL_VALUE_TYPE dconsthalf;
116 REAL_VALUE_TYPE dconstthird;
117 REAL_VALUE_TYPE dconstpi;
118 REAL_VALUE_TYPE dconste;
120 /* All references to the following fixed hard registers go through
121 these unique rtl objects. On machines where the frame-pointer and
122 arg-pointer are the same register, they use the same unique object.
124 After register allocation, other rtl objects which used to be pseudo-regs
125 may be clobbered to refer to the frame-pointer register.
126 But references that were originally to the frame-pointer can be
127 distinguished from the others because they contain frame_pointer_rtx.
129 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
130 tricky: until register elimination has taken place hard_frame_pointer_rtx
131 should be used if it is being set, and frame_pointer_rtx otherwise. After
132 register elimination hard_frame_pointer_rtx should always be used.
133 On machines where the two registers are same (most) then these are the
134 same.
136 In an inline procedure, the stack and frame pointer rtxs may not be
137 used for anything else. */
138 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
139 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
140 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
142 /* This is used to implement __builtin_return_address for some machines.
143 See for instance the MIPS port. */
144 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
146 /* We make one copy of (const_int C) where C is in
147 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
148 to save space during the compilation and simplify comparisons of
149 integers. */
151 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
153 /* A hash table storing CONST_INTs whose absolute value is greater
154 than MAX_SAVED_CONST_INT. */
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
157 htab_t const_int_htab;
159 /* A hash table storing memory attribute structures. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
161 htab_t mem_attrs_htab;
163 /* A hash table storing register attribute structures. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
165 htab_t reg_attrs_htab;
167 /* A hash table storing all CONST_DOUBLEs. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169 htab_t const_double_htab;
171 #define first_insn (cfun->emit->x_first_insn)
172 #define last_insn (cfun->emit->x_last_insn)
173 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
174 #define last_location (cfun->emit->x_last_location)
175 #define first_label_num (cfun->emit->x_first_label_num)
177 static rtx make_jump_insn_raw (rtx);
178 static rtx make_call_insn_raw (rtx);
179 static rtx find_line_note (rtx);
180 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
181 static void unshare_all_decls (tree);
182 static void reset_used_decls (tree);
183 static void mark_label_nuses (rtx);
184 static hashval_t const_int_htab_hash (const void *);
185 static int const_int_htab_eq (const void *, const void *);
186 static hashval_t const_double_htab_hash (const void *);
187 static int const_double_htab_eq (const void *, const void *);
188 static rtx lookup_const_double (rtx);
189 static hashval_t mem_attrs_htab_hash (const void *);
190 static int mem_attrs_htab_eq (const void *, const void *);
191 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
192 enum machine_mode);
193 static hashval_t reg_attrs_htab_hash (const void *);
194 static int reg_attrs_htab_eq (const void *, const void *);
195 static reg_attrs *get_reg_attrs (tree, int);
196 static tree component_ref_for_mem_expr (tree);
197 static rtx gen_const_vector (enum machine_mode, int);
198 static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
199 static void copy_rtx_if_shared_1 (rtx *orig);
201 /* Probability of the conditional branch currently proceeded by try_split.
202 Set to -1 otherwise. */
203 int split_branch_probability = -1;
205 /* Returns a hash code for X (which is a really a CONST_INT). */
207 static hashval_t
208 const_int_htab_hash (const void *x)
210 return (hashval_t) INTVAL ((rtx) x);
213 /* Returns nonzero if the value represented by X (which is really a
214 CONST_INT) is the same as that given by Y (which is really a
215 HOST_WIDE_INT *). */
217 static int
218 const_int_htab_eq (const void *x, const void *y)
220 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
223 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
224 static hashval_t
225 const_double_htab_hash (const void *x)
227 rtx value = (rtx) x;
228 hashval_t h;
230 if (GET_MODE (value) == VOIDmode)
231 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
232 else
234 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
235 /* MODE is used in the comparison, so it should be in the hash. */
236 h ^= GET_MODE (value);
238 return h;
241 /* Returns nonzero if the value represented by X (really a ...)
242 is the same as that represented by Y (really a ...) */
243 static int
244 const_double_htab_eq (const void *x, const void *y)
246 rtx a = (rtx)x, b = (rtx)y;
248 if (GET_MODE (a) != GET_MODE (b))
249 return 0;
250 if (GET_MODE (a) == VOIDmode)
251 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
252 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
253 else
254 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
255 CONST_DOUBLE_REAL_VALUE (b));
258 /* Returns a hash code for X (which is a really a mem_attrs *). */
260 static hashval_t
261 mem_attrs_htab_hash (const void *x)
263 mem_attrs *p = (mem_attrs *) x;
265 return (p->alias ^ (p->align * 1000)
266 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
267 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
268 ^ (size_t) p->expr);
271 /* Returns nonzero if the value represented by X (which is really a
272 mem_attrs *) is the same as that given by Y (which is also really a
273 mem_attrs *). */
275 static int
276 mem_attrs_htab_eq (const void *x, const void *y)
278 mem_attrs *p = (mem_attrs *) x;
279 mem_attrs *q = (mem_attrs *) y;
281 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
282 && p->size == q->size && p->align == q->align);
285 /* Allocate a new mem_attrs structure and insert it into the hash table if
286 one identical to it is not already in the table. We are doing this for
287 MEM of mode MODE. */
289 static mem_attrs *
290 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
291 unsigned int align, enum machine_mode mode)
293 mem_attrs attrs;
294 void **slot;
296 /* If everything is the default, we can just return zero.
297 This must match what the corresponding MEM_* macros return when the
298 field is not present. */
299 if (alias == 0 && expr == 0 && offset == 0
300 && (size == 0
301 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
302 && (STRICT_ALIGNMENT && mode != BLKmode
303 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
304 return 0;
306 attrs.alias = alias;
307 attrs.expr = expr;
308 attrs.offset = offset;
309 attrs.size = size;
310 attrs.align = align;
312 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
313 if (*slot == 0)
315 *slot = ggc_alloc (sizeof (mem_attrs));
316 memcpy (*slot, &attrs, sizeof (mem_attrs));
319 return *slot;
322 /* Returns a hash code for X (which is a really a reg_attrs *). */
324 static hashval_t
325 reg_attrs_htab_hash (const void *x)
327 reg_attrs *p = (reg_attrs *) x;
329 return ((p->offset * 1000) ^ (long) p->decl);
332 /* Returns nonzero if the value represented by X (which is really a
333 reg_attrs *) is the same as that given by Y (which is also really a
334 reg_attrs *). */
336 static int
337 reg_attrs_htab_eq (const void *x, const void *y)
339 reg_attrs *p = (reg_attrs *) x;
340 reg_attrs *q = (reg_attrs *) y;
342 return (p->decl == q->decl && p->offset == q->offset);
344 /* Allocate a new reg_attrs structure and insert it into the hash table if
345 one identical to it is not already in the table. We are doing this for
346 MEM of mode MODE. */
348 static reg_attrs *
349 get_reg_attrs (tree decl, int offset)
351 reg_attrs attrs;
352 void **slot;
354 /* If everything is the default, we can just return zero. */
355 if (decl == 0 && offset == 0)
356 return 0;
358 attrs.decl = decl;
359 attrs.offset = offset;
361 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
362 if (*slot == 0)
364 *slot = ggc_alloc (sizeof (reg_attrs));
365 memcpy (*slot, &attrs, sizeof (reg_attrs));
368 return *slot;
371 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
372 don't attempt to share with the various global pieces of rtl (such as
373 frame_pointer_rtx). */
376 gen_raw_REG (enum machine_mode mode, int regno)
378 rtx x = gen_rtx_raw_REG (mode, regno);
379 ORIGINAL_REGNO (x) = regno;
380 return x;
383 /* There are some RTL codes that require special attention; the generation
384 functions do the raw handling. If you add to this list, modify
385 special_rtx in gengenrtl.c as well. */
388 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
390 void **slot;
392 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
393 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
395 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
396 if (const_true_rtx && arg == STORE_FLAG_VALUE)
397 return const_true_rtx;
398 #endif
400 /* Look up the CONST_INT in the hash table. */
401 slot = htab_find_slot_with_hash (const_int_htab, &arg,
402 (hashval_t) arg, INSERT);
403 if (*slot == 0)
404 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
406 return (rtx) *slot;
410 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
412 return GEN_INT (trunc_int_for_mode (c, mode));
415 /* CONST_DOUBLEs might be created from pairs of integers, or from
416 REAL_VALUE_TYPEs. Also, their length is known only at run time,
417 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
419 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
420 hash table. If so, return its counterpart; otherwise add it
421 to the hash table and return it. */
422 static rtx
423 lookup_const_double (rtx real)
425 void **slot = htab_find_slot (const_double_htab, real, INSERT);
426 if (*slot == 0)
427 *slot = real;
429 return (rtx) *slot;
432 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
433 VALUE in mode MODE. */
435 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
437 rtx real = rtx_alloc (CONST_DOUBLE);
438 PUT_MODE (real, mode);
440 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
442 return lookup_const_double (real);
445 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
446 of ints: I0 is the low-order word and I1 is the high-order word.
447 Do not use this routine for non-integer modes; convert to
448 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
451 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
453 rtx value;
454 unsigned int i;
456 if (mode != VOIDmode)
458 int width;
460 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
461 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
462 /* We can get a 0 for an error mark. */
463 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
464 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
466 /* We clear out all bits that don't belong in MODE, unless they and
467 our sign bit are all one. So we get either a reasonable negative
468 value or a reasonable unsigned value for this mode. */
469 width = GET_MODE_BITSIZE (mode);
470 if (width < HOST_BITS_PER_WIDE_INT
471 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
472 != ((HOST_WIDE_INT) (-1) << (width - 1))))
473 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
474 else if (width == HOST_BITS_PER_WIDE_INT
475 && ! (i1 == ~0 && i0 < 0))
476 i1 = 0;
477 else
478 /* We should be able to represent this value as a constant. */
479 gcc_assert (width <= 2 * HOST_BITS_PER_WIDE_INT);
481 /* If this would be an entire word for the target, but is not for
482 the host, then sign-extend on the host so that the number will
483 look the same way on the host that it would on the target.
485 For example, when building a 64 bit alpha hosted 32 bit sparc
486 targeted compiler, then we want the 32 bit unsigned value -1 to be
487 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
488 The latter confuses the sparc backend. */
490 if (width < HOST_BITS_PER_WIDE_INT
491 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
492 i0 |= ((HOST_WIDE_INT) (-1) << width);
494 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
495 CONST_INT.
497 ??? Strictly speaking, this is wrong if we create a CONST_INT for
498 a large unsigned constant with the size of MODE being
499 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
500 in a wider mode. In that case we will mis-interpret it as a
501 negative number.
503 Unfortunately, the only alternative is to make a CONST_DOUBLE for
504 any constant in any mode if it is an unsigned constant larger
505 than the maximum signed integer in an int on the host. However,
506 doing this will break everyone that always expects to see a
507 CONST_INT for SImode and smaller.
509 We have always been making CONST_INTs in this case, so nothing
510 new is being broken. */
512 if (width <= HOST_BITS_PER_WIDE_INT)
513 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
516 /* If this integer fits in one word, return a CONST_INT. */
517 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
518 return GEN_INT (i0);
520 /* We use VOIDmode for integers. */
521 value = rtx_alloc (CONST_DOUBLE);
522 PUT_MODE (value, VOIDmode);
524 CONST_DOUBLE_LOW (value) = i0;
525 CONST_DOUBLE_HIGH (value) = i1;
527 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
528 XWINT (value, i) = 0;
530 return lookup_const_double (value);
534 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
536 /* In case the MD file explicitly references the frame pointer, have
537 all such references point to the same frame pointer. This is
538 used during frame pointer elimination to distinguish the explicit
539 references to these registers from pseudos that happened to be
540 assigned to them.
542 If we have eliminated the frame pointer or arg pointer, we will
543 be using it as a normal register, for example as a spill
544 register. In such cases, we might be accessing it in a mode that
545 is not Pmode and therefore cannot use the pre-allocated rtx.
547 Also don't do this when we are making new REGs in reload, since
548 we don't want to get confused with the real pointers. */
550 if (mode == Pmode && !reload_in_progress)
552 if (regno == FRAME_POINTER_REGNUM
553 && (!reload_completed || frame_pointer_needed))
554 return frame_pointer_rtx;
555 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
556 if (regno == HARD_FRAME_POINTER_REGNUM
557 && (!reload_completed || frame_pointer_needed))
558 return hard_frame_pointer_rtx;
559 #endif
560 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
561 if (regno == ARG_POINTER_REGNUM)
562 return arg_pointer_rtx;
563 #endif
564 #ifdef RETURN_ADDRESS_POINTER_REGNUM
565 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
566 return return_address_pointer_rtx;
567 #endif
568 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
569 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
570 return pic_offset_table_rtx;
571 if (regno == STACK_POINTER_REGNUM)
572 return stack_pointer_rtx;
575 #if 0
576 /* If the per-function register table has been set up, try to re-use
577 an existing entry in that table to avoid useless generation of RTL.
579 This code is disabled for now until we can fix the various backends
580 which depend on having non-shared hard registers in some cases. Long
581 term we want to re-enable this code as it can significantly cut down
582 on the amount of useless RTL that gets generated.
584 We'll also need to fix some code that runs after reload that wants to
585 set ORIGINAL_REGNO. */
587 if (cfun
588 && cfun->emit
589 && regno_reg_rtx
590 && regno < FIRST_PSEUDO_REGISTER
591 && reg_raw_mode[regno] == mode)
592 return regno_reg_rtx[regno];
593 #endif
595 return gen_raw_REG (mode, regno);
599 gen_rtx_MEM (enum machine_mode mode, rtx addr)
601 rtx rt = gen_rtx_raw_MEM (mode, addr);
603 /* This field is not cleared by the mere allocation of the rtx, so
604 we clear it here. */
605 MEM_ATTRS (rt) = 0;
607 return rt;
610 /* Generate a memory referring to non-trapping constant memory. */
613 gen_const_mem (enum machine_mode mode, rtx addr)
615 rtx mem = gen_rtx_MEM (mode, addr);
616 MEM_READONLY_P (mem) = 1;
617 MEM_NOTRAP_P (mem) = 1;
618 return mem;
622 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
624 /* This is the most common failure type.
625 Catch it early so we can see who does it. */
626 gcc_assert (!(offset % GET_MODE_SIZE (mode)));
628 /* This check isn't usable right now because combine will
629 throw arbitrary crap like a CALL into a SUBREG in
630 gen_lowpart_for_combine so we must just eat it. */
631 #if 0
632 /* Check for this too. */
633 gcc_assert (offset < GET_MODE_SIZE (GET_MODE (reg)));
634 #endif
635 return gen_rtx_raw_SUBREG (mode, reg, offset);
638 /* Generate a SUBREG representing the least-significant part of REG if MODE
639 is smaller than mode of REG, otherwise paradoxical SUBREG. */
642 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
644 enum machine_mode inmode;
646 inmode = GET_MODE (reg);
647 if (inmode == VOIDmode)
648 inmode = mode;
649 return gen_rtx_SUBREG (mode, reg,
650 subreg_lowpart_offset (mode, inmode));
653 /* gen_rtvec (n, [rt1, ..., rtn])
655 ** This routine creates an rtvec and stores within it the
656 ** pointers to rtx's which are its arguments.
659 /*VARARGS1*/
660 rtvec
661 gen_rtvec (int n, ...)
663 int i, save_n;
664 rtx *vector;
665 va_list p;
667 va_start (p, n);
669 if (n == 0)
670 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
672 vector = alloca (n * sizeof (rtx));
674 for (i = 0; i < n; i++)
675 vector[i] = va_arg (p, rtx);
677 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
678 save_n = n;
679 va_end (p);
681 return gen_rtvec_v (save_n, vector);
684 rtvec
685 gen_rtvec_v (int n, rtx *argp)
687 int i;
688 rtvec rt_val;
690 if (n == 0)
691 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
693 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
695 for (i = 0; i < n; i++)
696 rt_val->elem[i] = *argp++;
698 return rt_val;
701 /* Generate a REG rtx for a new pseudo register of mode MODE.
702 This pseudo is assigned the next sequential register number. */
705 gen_reg_rtx (enum machine_mode mode)
707 struct function *f = cfun;
708 rtx val;
710 /* Don't let anything called after initial flow analysis create new
711 registers. */
712 gcc_assert (!no_new_pseudos);
714 if (generating_concat_p
715 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
716 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
718 /* For complex modes, don't make a single pseudo.
719 Instead, make a CONCAT of two pseudos.
720 This allows noncontiguous allocation of the real and imaginary parts,
721 which makes much better code. Besides, allocating DCmode
722 pseudos overstrains reload on some machines like the 386. */
723 rtx realpart, imagpart;
724 enum machine_mode partmode = GET_MODE_INNER (mode);
726 realpart = gen_reg_rtx (partmode);
727 imagpart = gen_reg_rtx (partmode);
728 return gen_rtx_CONCAT (mode, realpart, imagpart);
731 /* Make sure regno_pointer_align, and regno_reg_rtx are large
732 enough to have an element for this pseudo reg number. */
734 if (reg_rtx_no == f->emit->regno_pointer_align_length)
736 int old_size = f->emit->regno_pointer_align_length;
737 char *new;
738 rtx *new1;
740 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
741 memset (new + old_size, 0, old_size);
742 f->emit->regno_pointer_align = (unsigned char *) new;
744 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
745 old_size * 2 * sizeof (rtx));
746 memset (new1 + old_size, 0, old_size * sizeof (rtx));
747 regno_reg_rtx = new1;
749 f->emit->regno_pointer_align_length = old_size * 2;
752 val = gen_raw_REG (mode, reg_rtx_no);
753 regno_reg_rtx[reg_rtx_no++] = val;
754 return val;
757 /* Generate a register with same attributes as REG, but offsetted by OFFSET.
758 Do the big endian correction if needed. */
761 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
763 rtx new = gen_rtx_REG (mode, regno);
764 tree decl;
765 HOST_WIDE_INT var_size;
767 /* PR middle-end/14084
768 The problem appears when a variable is stored in a larger register
769 and later it is used in the original mode or some mode in between
770 or some part of variable is accessed.
772 On little endian machines there is no problem because
773 the REG_OFFSET of the start of the variable is the same when
774 accessed in any mode (it is 0).
776 However, this is not true on big endian machines.
777 The offset of the start of the variable is different when accessed
778 in different modes.
779 When we are taking a part of the REG we have to change the OFFSET
780 from offset WRT size of mode of REG to offset WRT size of variable.
782 If we would not do the big endian correction the resulting REG_OFFSET
783 would be larger than the size of the DECL.
785 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
787 REG.mode MODE DECL size old offset new offset description
788 DI SI 4 4 0 int32 in SImode
789 DI SI 1 4 0 char in SImode
790 DI QI 1 7 0 char in QImode
791 DI QI 4 5 1 1st element in QImode
792 of char[4]
793 DI HI 4 6 2 1st element in HImode
794 of int16[2]
796 If the size of DECL is equal or greater than the size of REG
797 we can't do this correction because the register holds the
798 whole variable or a part of the variable and thus the REG_OFFSET
799 is already correct. */
801 decl = REG_EXPR (reg);
802 if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
803 && decl != NULL
804 && offset > 0
805 && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode)
806 && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
807 && var_size < GET_MODE_SIZE (GET_MODE (reg))))
809 int offset_le;
811 /* Convert machine endian to little endian WRT size of mode of REG. */
812 if (WORDS_BIG_ENDIAN)
813 offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
814 / UNITS_PER_WORD) * UNITS_PER_WORD;
815 else
816 offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
818 if (BYTES_BIG_ENDIAN)
819 offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
820 % UNITS_PER_WORD);
821 else
822 offset_le += offset % UNITS_PER_WORD;
824 if (offset_le >= var_size)
826 /* MODE is wider than the variable so the new reg will cover
827 the whole variable so the resulting OFFSET should be 0. */
828 offset = 0;
830 else
832 /* Convert little endian to machine endian WRT size of variable. */
833 if (WORDS_BIG_ENDIAN)
834 offset = ((var_size - 1 - offset_le)
835 / UNITS_PER_WORD) * UNITS_PER_WORD;
836 else
837 offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
839 if (BYTES_BIG_ENDIAN)
840 offset += ((var_size - 1 - offset_le)
841 % UNITS_PER_WORD);
842 else
843 offset += offset_le % UNITS_PER_WORD;
847 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
848 REG_OFFSET (reg) + offset);
849 return new;
852 /* Set the decl for MEM to DECL. */
854 void
855 set_reg_attrs_from_mem (rtx reg, rtx mem)
857 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
858 REG_ATTRS (reg)
859 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
862 /* Set the register attributes for registers contained in PARM_RTX.
863 Use needed values from memory attributes of MEM. */
865 void
866 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
868 if (REG_P (parm_rtx))
869 set_reg_attrs_from_mem (parm_rtx, mem);
870 else if (GET_CODE (parm_rtx) == PARALLEL)
872 /* Check for a NULL entry in the first slot, used to indicate that the
873 parameter goes both on the stack and in registers. */
874 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
875 for (; i < XVECLEN (parm_rtx, 0); i++)
877 rtx x = XVECEXP (parm_rtx, 0, i);
878 if (REG_P (XEXP (x, 0)))
879 REG_ATTRS (XEXP (x, 0))
880 = get_reg_attrs (MEM_EXPR (mem),
881 INTVAL (XEXP (x, 1)));
886 /* Assign the RTX X to declaration T. */
887 void
888 set_decl_rtl (tree t, rtx x)
890 DECL_CHECK (t)->decl.rtl = x;
892 if (!x)
893 return;
894 /* For register, we maintain the reverse information too. */
895 if (REG_P (x))
896 REG_ATTRS (x) = get_reg_attrs (t, 0);
897 else if (GET_CODE (x) == SUBREG)
898 REG_ATTRS (SUBREG_REG (x))
899 = get_reg_attrs (t, -SUBREG_BYTE (x));
900 if (GET_CODE (x) == CONCAT)
902 if (REG_P (XEXP (x, 0)))
903 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
904 if (REG_P (XEXP (x, 1)))
905 REG_ATTRS (XEXP (x, 1))
906 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
908 if (GET_CODE (x) == PARALLEL)
910 int i;
911 for (i = 0; i < XVECLEN (x, 0); i++)
913 rtx y = XVECEXP (x, 0, i);
914 if (REG_P (XEXP (y, 0)))
915 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
920 /* Assign the RTX X to parameter declaration T. */
921 void
922 set_decl_incoming_rtl (tree t, rtx x)
924 DECL_INCOMING_RTL (t) = x;
926 if (!x)
927 return;
928 /* For register, we maintain the reverse information too. */
929 if (REG_P (x))
930 REG_ATTRS (x) = get_reg_attrs (t, 0);
931 else if (GET_CODE (x) == SUBREG)
932 REG_ATTRS (SUBREG_REG (x))
933 = get_reg_attrs (t, -SUBREG_BYTE (x));
934 if (GET_CODE (x) == CONCAT)
936 if (REG_P (XEXP (x, 0)))
937 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
938 if (REG_P (XEXP (x, 1)))
939 REG_ATTRS (XEXP (x, 1))
940 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
942 if (GET_CODE (x) == PARALLEL)
944 int i, start;
946 /* Check for a NULL entry, used to indicate that the parameter goes
947 both on the stack and in registers. */
948 if (XEXP (XVECEXP (x, 0, 0), 0))
949 start = 0;
950 else
951 start = 1;
953 for (i = start; i < XVECLEN (x, 0); i++)
955 rtx y = XVECEXP (x, 0, i);
956 if (REG_P (XEXP (y, 0)))
957 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
962 /* Identify REG (which may be a CONCAT) as a user register. */
964 void
965 mark_user_reg (rtx reg)
967 if (GET_CODE (reg) == CONCAT)
969 REG_USERVAR_P (XEXP (reg, 0)) = 1;
970 REG_USERVAR_P (XEXP (reg, 1)) = 1;
972 else
974 gcc_assert (REG_P (reg));
975 REG_USERVAR_P (reg) = 1;
979 /* Identify REG as a probable pointer register and show its alignment
980 as ALIGN, if nonzero. */
982 void
983 mark_reg_pointer (rtx reg, int align)
985 if (! REG_POINTER (reg))
987 REG_POINTER (reg) = 1;
989 if (align)
990 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
992 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
993 /* We can no-longer be sure just how aligned this pointer is. */
994 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
997 /* Return 1 plus largest pseudo reg number used in the current function. */
1000 max_reg_num (void)
1002 return reg_rtx_no;
1005 /* Return 1 + the largest label number used so far in the current function. */
1008 max_label_num (void)
1010 if (last_label_num && label_num == base_label_num)
1011 return last_label_num;
1012 return label_num;
1015 /* Return first label number used in this function (if any were used). */
1018 get_first_label_num (void)
1020 return first_label_num;
1023 /* If the rtx for label was created during the expansion of a nested
1024 function, then first_label_num won't include this label number.
1025 Fix this now so that array indicies work later. */
1027 void
1028 maybe_set_first_label_num (rtx x)
1030 if (CODE_LABEL_NUMBER (x) < first_label_num)
1031 first_label_num = CODE_LABEL_NUMBER (x);
1034 /* Return the final regno of X, which is a SUBREG of a hard
1035 register. */
1037 subreg_hard_regno (rtx x, int check_mode)
1039 enum machine_mode mode = GET_MODE (x);
1040 unsigned int byte_offset, base_regno, final_regno;
1041 rtx reg = SUBREG_REG (x);
1043 /* This is where we attempt to catch illegal subregs
1044 created by the compiler. */
1045 gcc_assert (GET_CODE (x) == SUBREG && REG_P (reg));
1046 base_regno = REGNO (reg);
1047 gcc_assert (base_regno < FIRST_PSEUDO_REGISTER);
1048 gcc_assert (!check_mode || HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)));
1049 #ifdef ENABLE_CHECKING
1050 gcc_assert (subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
1051 SUBREG_BYTE (x), mode));
1052 #endif
1053 /* Catch non-congruent offsets too. */
1054 byte_offset = SUBREG_BYTE (x);
1055 gcc_assert (!(byte_offset % GET_MODE_SIZE (mode)));
1057 final_regno = subreg_regno (x);
1059 return final_regno;
1062 /* Return a value representing some low-order bits of X, where the number
1063 of low-order bits is given by MODE. Note that no conversion is done
1064 between floating-point and fixed-point values, rather, the bit
1065 representation is returned.
1067 This function handles the cases in common between gen_lowpart, below,
1068 and two variants in cse.c and combine.c. These are the cases that can
1069 be safely handled at all points in the compilation.
1071 If this is not a case we can handle, return 0. */
1074 gen_lowpart_common (enum machine_mode mode, rtx x)
1076 int msize = GET_MODE_SIZE (mode);
1077 int xsize;
1078 int offset = 0;
1079 enum machine_mode innermode;
1081 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1082 so we have to make one up. Yuk. */
1083 innermode = GET_MODE (x);
1084 if (GET_CODE (x) == CONST_INT && msize <= HOST_BITS_PER_WIDE_INT)
1085 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1086 else if (innermode == VOIDmode)
1087 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1089 xsize = GET_MODE_SIZE (innermode);
1091 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1093 if (innermode == mode)
1094 return x;
1096 /* MODE must occupy no more words than the mode of X. */
1097 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1098 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1099 return 0;
1101 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1102 if (GET_MODE_CLASS (mode) == MODE_FLOAT && msize > xsize)
1103 return 0;
1105 offset = subreg_lowpart_offset (mode, innermode);
1107 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1108 && (GET_MODE_CLASS (mode) == MODE_INT
1109 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1111 /* If we are getting the low-order part of something that has been
1112 sign- or zero-extended, we can either just use the object being
1113 extended or make a narrower extension. If we want an even smaller
1114 piece than the size of the object being extended, call ourselves
1115 recursively.
1117 This case is used mostly by combine and cse. */
1119 if (GET_MODE (XEXP (x, 0)) == mode)
1120 return XEXP (x, 0);
1121 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1122 return gen_lowpart_common (mode, XEXP (x, 0));
1123 else if (msize < xsize)
1124 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1126 else if (GET_CODE (x) == SUBREG || REG_P (x)
1127 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1128 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1129 return simplify_gen_subreg (mode, x, innermode, offset);
1131 /* Otherwise, we can't do this. */
1132 return 0;
1135 /* Return the constant real or imaginary part (which has mode MODE)
1136 of a complex value X. The IMAGPART_P argument determines whether
1137 the real or complex component should be returned. This function
1138 returns NULL_RTX if the component isn't a constant. */
1140 static rtx
1141 gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
1143 tree decl, part;
1145 if (MEM_P (x)
1146 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1148 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1149 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1151 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1152 if (TREE_CODE (part) == REAL_CST
1153 || TREE_CODE (part) == INTEGER_CST)
1154 return expand_expr (part, NULL_RTX, mode, 0);
1157 return NULL_RTX;
1160 /* Return the real part (which has mode MODE) of a complex value X.
1161 This always comes at the low address in memory. */
1164 gen_realpart (enum machine_mode mode, rtx x)
1166 rtx part;
1168 /* Handle complex constants. */
1169 part = gen_complex_constant_part (mode, x, 0);
1170 if (part != NULL_RTX)
1171 return part;
1173 if (WORDS_BIG_ENDIAN
1174 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1175 && REG_P (x)
1176 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1177 internal_error
1178 ("can't access real part of complex value in hard register");
1179 else if (WORDS_BIG_ENDIAN)
1180 return gen_highpart (mode, x);
1181 else
1182 return gen_lowpart (mode, x);
1185 /* Return the imaginary part (which has mode MODE) of a complex value X.
1186 This always comes at the high address in memory. */
1189 gen_imagpart (enum machine_mode mode, rtx x)
1191 rtx part;
1193 /* Handle complex constants. */
1194 part = gen_complex_constant_part (mode, x, 1);
1195 if (part != NULL_RTX)
1196 return part;
1198 if (WORDS_BIG_ENDIAN)
1199 return gen_lowpart (mode, x);
1200 else if (! WORDS_BIG_ENDIAN
1201 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1202 && REG_P (x)
1203 && REGNO (x) < FIRST_PSEUDO_REGISTER)
1204 internal_error
1205 ("can't access imaginary part of complex value in hard register");
1206 else
1207 return gen_highpart (mode, x);
1211 gen_highpart (enum machine_mode mode, rtx x)
1213 unsigned int msize = GET_MODE_SIZE (mode);
1214 rtx result;
1216 /* This case loses if X is a subreg. To catch bugs early,
1217 complain if an invalid MODE is used even in other cases. */
1218 gcc_assert (msize <= UNITS_PER_WORD
1219 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1221 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1222 subreg_highpart_offset (mode, GET_MODE (x)));
1223 gcc_assert (result);
1225 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1226 the target if we have a MEM. gen_highpart must return a valid operand,
1227 emitting code if necessary to do so. */
1228 if (MEM_P (result))
1230 result = validize_mem (result);
1231 gcc_assert (result);
1234 return result;
1237 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1238 be VOIDmode constant. */
1240 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1242 if (GET_MODE (exp) != VOIDmode)
1244 gcc_assert (GET_MODE (exp) == innermode);
1245 return gen_highpart (outermode, exp);
1247 return simplify_gen_subreg (outermode, exp, innermode,
1248 subreg_highpart_offset (outermode, innermode));
1251 /* Return offset in bytes to get OUTERMODE low part
1252 of the value in mode INNERMODE stored in memory in target format. */
1254 unsigned int
1255 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1257 unsigned int offset = 0;
1258 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1260 if (difference > 0)
1262 if (WORDS_BIG_ENDIAN)
1263 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1264 if (BYTES_BIG_ENDIAN)
1265 offset += difference % UNITS_PER_WORD;
1268 return offset;
1271 /* Return offset in bytes to get OUTERMODE high part
1272 of the value in mode INNERMODE stored in memory in target format. */
1273 unsigned int
1274 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1276 unsigned int offset = 0;
1277 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1279 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1281 if (difference > 0)
1283 if (! WORDS_BIG_ENDIAN)
1284 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1285 if (! BYTES_BIG_ENDIAN)
1286 offset += difference % UNITS_PER_WORD;
1289 return offset;
1292 /* Return 1 iff X, assumed to be a SUBREG,
1293 refers to the least significant part of its containing reg.
1294 If X is not a SUBREG, always return 1 (it is its own low part!). */
1297 subreg_lowpart_p (rtx x)
1299 if (GET_CODE (x) != SUBREG)
1300 return 1;
1301 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1302 return 0;
1304 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1305 == SUBREG_BYTE (x));
1308 /* Return subword OFFSET of operand OP.
1309 The word number, OFFSET, is interpreted as the word number starting
1310 at the low-order address. OFFSET 0 is the low-order word if not
1311 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1313 If we cannot extract the required word, we return zero. Otherwise,
1314 an rtx corresponding to the requested word will be returned.
1316 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1317 reload has completed, a valid address will always be returned. After
1318 reload, if a valid address cannot be returned, we return zero.
1320 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1321 it is the responsibility of the caller.
1323 MODE is the mode of OP in case it is a CONST_INT.
1325 ??? This is still rather broken for some cases. The problem for the
1326 moment is that all callers of this thing provide no 'goal mode' to
1327 tell us to work with. This exists because all callers were written
1328 in a word based SUBREG world.
1329 Now use of this function can be deprecated by simplify_subreg in most
1330 cases.
1334 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1336 if (mode == VOIDmode)
1337 mode = GET_MODE (op);
1339 gcc_assert (mode != VOIDmode);
1341 /* If OP is narrower than a word, fail. */
1342 if (mode != BLKmode
1343 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1344 return 0;
1346 /* If we want a word outside OP, return zero. */
1347 if (mode != BLKmode
1348 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1349 return const0_rtx;
1351 /* Form a new MEM at the requested address. */
1352 if (MEM_P (op))
1354 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1356 if (! validate_address)
1357 return new;
1359 else if (reload_completed)
1361 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1362 return 0;
1364 else
1365 return replace_equiv_address (new, XEXP (new, 0));
1368 /* Rest can be handled by simplify_subreg. */
1369 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1372 /* Similar to `operand_subword', but never return 0. If we can't extract
1373 the required subword, put OP into a register and try again. If that fails,
1374 abort. We always validate the address in this case.
1376 MODE is the mode of OP, in case it is CONST_INT. */
1379 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1381 rtx result = operand_subword (op, offset, 1, mode);
1383 if (result)
1384 return result;
1386 if (mode != BLKmode && mode != VOIDmode)
1388 /* If this is a register which can not be accessed by words, copy it
1389 to a pseudo register. */
1390 if (REG_P (op))
1391 op = copy_to_reg (op);
1392 else
1393 op = force_reg (mode, op);
1396 result = operand_subword (op, offset, 1, mode);
1397 gcc_assert (result);
1399 return result;
1402 /* Given a compare instruction, swap the operands.
1403 A test instruction is changed into a compare of 0 against the operand. */
1405 void
1406 reverse_comparison (rtx insn)
1408 rtx body = PATTERN (insn);
1409 rtx comp;
1411 if (GET_CODE (body) == SET)
1412 comp = SET_SRC (body);
1413 else
1414 comp = SET_SRC (XVECEXP (body, 0, 0));
1416 if (GET_CODE (comp) == COMPARE)
1418 rtx op0 = XEXP (comp, 0);
1419 rtx op1 = XEXP (comp, 1);
1420 XEXP (comp, 0) = op1;
1421 XEXP (comp, 1) = op0;
1423 else
1425 rtx new = gen_rtx_COMPARE (VOIDmode,
1426 CONST0_RTX (GET_MODE (comp)), comp);
1427 if (GET_CODE (body) == SET)
1428 SET_SRC (body) = new;
1429 else
1430 SET_SRC (XVECEXP (body, 0, 0)) = new;
1434 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1435 or (2) a component ref of something variable. Represent the later with
1436 a NULL expression. */
1438 static tree
1439 component_ref_for_mem_expr (tree ref)
1441 tree inner = TREE_OPERAND (ref, 0);
1443 if (TREE_CODE (inner) == COMPONENT_REF)
1444 inner = component_ref_for_mem_expr (inner);
1445 else
1447 /* Now remove any conversions: they don't change what the underlying
1448 object is. Likewise for SAVE_EXPR. */
1449 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1450 || TREE_CODE (inner) == NON_LVALUE_EXPR
1451 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1452 || TREE_CODE (inner) == SAVE_EXPR)
1453 inner = TREE_OPERAND (inner, 0);
1455 if (! DECL_P (inner))
1456 inner = NULL_TREE;
1459 if (inner == TREE_OPERAND (ref, 0))
1460 return ref;
1461 else
1462 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1463 TREE_OPERAND (ref, 1), NULL_TREE);
1466 /* Returns 1 if both MEM_EXPR can be considered equal
1467 and 0 otherwise. */
1470 mem_expr_equal_p (tree expr1, tree expr2)
1472 if (expr1 == expr2)
1473 return 1;
1475 if (! expr1 || ! expr2)
1476 return 0;
1478 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1479 return 0;
1481 if (TREE_CODE (expr1) == COMPONENT_REF)
1482 return
1483 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1484 TREE_OPERAND (expr2, 0))
1485 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1486 TREE_OPERAND (expr2, 1));
1488 if (INDIRECT_REF_P (expr1))
1489 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1490 TREE_OPERAND (expr2, 0));
1492 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1493 have been resolved here. */
1494 gcc_assert (DECL_P (expr1));
1496 /* Decls with different pointers can't be equal. */
1497 return 0;
1500 /* Given REF, a MEM, and T, either the type of X or the expression
1501 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1502 if we are making a new object of this type. BITPOS is nonzero if
1503 there is an offset outstanding on T that will be applied later. */
1505 void
1506 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1507 HOST_WIDE_INT bitpos)
1509 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1510 tree expr = MEM_EXPR (ref);
1511 rtx offset = MEM_OFFSET (ref);
1512 rtx size = MEM_SIZE (ref);
1513 unsigned int align = MEM_ALIGN (ref);
1514 HOST_WIDE_INT apply_bitpos = 0;
1515 tree type;
1517 /* It can happen that type_for_mode was given a mode for which there
1518 is no language-level type. In which case it returns NULL, which
1519 we can see here. */
1520 if (t == NULL_TREE)
1521 return;
1523 type = TYPE_P (t) ? t : TREE_TYPE (t);
1524 if (type == error_mark_node)
1525 return;
1527 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1528 wrong answer, as it assumes that DECL_RTL already has the right alias
1529 info. Callers should not set DECL_RTL until after the call to
1530 set_mem_attributes. */
1531 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1533 /* Get the alias set from the expression or type (perhaps using a
1534 front-end routine) and use it. */
1535 alias = get_alias_set (t);
1537 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1538 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1539 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1540 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (t);
1542 /* If we are making an object of this type, or if this is a DECL, we know
1543 that it is a scalar if the type is not an aggregate. */
1544 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1545 MEM_SCALAR_P (ref) = 1;
1547 /* We can set the alignment from the type if we are making an object,
1548 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1549 if (objectp || TREE_CODE (t) == INDIRECT_REF
1550 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1551 || TYPE_ALIGN_OK (type))
1552 align = MAX (align, TYPE_ALIGN (type));
1553 else
1554 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1556 if (integer_zerop (TREE_OPERAND (t, 1)))
1557 /* We don't know anything about the alignment. */
1558 align = BITS_PER_UNIT;
1559 else
1560 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1563 /* If the size is known, we can set that. */
1564 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1565 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1567 /* If T is not a type, we may be able to deduce some more information about
1568 the expression. */
1569 if (! TYPE_P (t))
1571 tree base = get_base_address (t);
1572 if (base && DECL_P (base)
1573 && TREE_READONLY (base)
1574 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1575 MEM_READONLY_P (ref) = 1;
1577 if (TREE_THIS_VOLATILE (t))
1578 MEM_VOLATILE_P (ref) = 1;
1580 /* Now remove any conversions: they don't change what the underlying
1581 object is. Likewise for SAVE_EXPR. */
1582 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1583 || TREE_CODE (t) == NON_LVALUE_EXPR
1584 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1585 || TREE_CODE (t) == SAVE_EXPR)
1586 t = TREE_OPERAND (t, 0);
1588 /* If this expression can't be addressed (e.g., it contains a reference
1589 to a non-addressable field), show we don't change its alias set. */
1590 if (! can_address_p (t))
1591 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1593 /* If this is a decl, set the attributes of the MEM from it. */
1594 if (DECL_P (t))
1596 expr = t;
1597 offset = const0_rtx;
1598 apply_bitpos = bitpos;
1599 size = (DECL_SIZE_UNIT (t)
1600 && host_integerp (DECL_SIZE_UNIT (t), 1)
1601 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1602 align = DECL_ALIGN (t);
1605 /* If this is a constant, we know the alignment. */
1606 else if (CONSTANT_CLASS_P (t))
1608 align = TYPE_ALIGN (type);
1609 #ifdef CONSTANT_ALIGNMENT
1610 align = CONSTANT_ALIGNMENT (t, align);
1611 #endif
1614 /* If this is a field reference and not a bit-field, record it. */
1615 /* ??? There is some information that can be gleened from bit-fields,
1616 such as the word offset in the structure that might be modified.
1617 But skip it for now. */
1618 else if (TREE_CODE (t) == COMPONENT_REF
1619 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1621 expr = component_ref_for_mem_expr (t);
1622 offset = const0_rtx;
1623 apply_bitpos = bitpos;
1624 /* ??? Any reason the field size would be different than
1625 the size we got from the type? */
1628 /* If this is an array reference, look for an outer field reference. */
1629 else if (TREE_CODE (t) == ARRAY_REF)
1631 tree off_tree = size_zero_node;
1632 /* We can't modify t, because we use it at the end of the
1633 function. */
1634 tree t2 = t;
1638 tree index = TREE_OPERAND (t2, 1);
1639 tree low_bound = array_ref_low_bound (t2);
1640 tree unit_size = array_ref_element_size (t2);
1642 /* We assume all arrays have sizes that are a multiple of a byte.
1643 First subtract the lower bound, if any, in the type of the
1644 index, then convert to sizetype and multiply by the size of
1645 the array element. */
1646 if (! integer_zerop (low_bound))
1647 index = fold (build2 (MINUS_EXPR, TREE_TYPE (index),
1648 index, low_bound));
1650 off_tree = size_binop (PLUS_EXPR,
1651 size_binop (MULT_EXPR, convert (sizetype,
1652 index),
1653 unit_size),
1654 off_tree);
1655 t2 = TREE_OPERAND (t2, 0);
1657 while (TREE_CODE (t2) == ARRAY_REF);
1659 if (DECL_P (t2))
1661 expr = t2;
1662 offset = NULL;
1663 if (host_integerp (off_tree, 1))
1665 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1666 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1667 align = DECL_ALIGN (t2);
1668 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1669 align = aoff;
1670 offset = GEN_INT (ioff);
1671 apply_bitpos = bitpos;
1674 else if (TREE_CODE (t2) == COMPONENT_REF)
1676 expr = component_ref_for_mem_expr (t2);
1677 if (host_integerp (off_tree, 1))
1679 offset = GEN_INT (tree_low_cst (off_tree, 1));
1680 apply_bitpos = bitpos;
1682 /* ??? Any reason the field size would be different than
1683 the size we got from the type? */
1685 else if (flag_argument_noalias > 1
1686 && (INDIRECT_REF_P (t2))
1687 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1689 expr = t2;
1690 offset = NULL;
1694 /* If this is a Fortran indirect argument reference, record the
1695 parameter decl. */
1696 else if (flag_argument_noalias > 1
1697 && (INDIRECT_REF_P (t))
1698 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1700 expr = t;
1701 offset = NULL;
1705 /* If we modified OFFSET based on T, then subtract the outstanding
1706 bit position offset. Similarly, increase the size of the accessed
1707 object to contain the negative offset. */
1708 if (apply_bitpos)
1710 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1711 if (size)
1712 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1715 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1717 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1718 we're overlapping. */
1719 offset = NULL;
1720 expr = NULL;
1723 /* Now set the attributes we computed above. */
1724 MEM_ATTRS (ref)
1725 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1727 /* If this is already known to be a scalar or aggregate, we are done. */
1728 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1729 return;
1731 /* If it is a reference into an aggregate, this is part of an aggregate.
1732 Otherwise we don't know. */
1733 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1734 || TREE_CODE (t) == ARRAY_RANGE_REF
1735 || TREE_CODE (t) == BIT_FIELD_REF)
1736 MEM_IN_STRUCT_P (ref) = 1;
1739 void
1740 set_mem_attributes (rtx ref, tree t, int objectp)
1742 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1745 /* Set the decl for MEM to DECL. */
1747 void
1748 set_mem_attrs_from_reg (rtx mem, rtx reg)
1750 MEM_ATTRS (mem)
1751 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1752 GEN_INT (REG_OFFSET (reg)),
1753 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1756 /* Set the alias set of MEM to SET. */
1758 void
1759 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1761 #ifdef ENABLE_CHECKING
1762 /* If the new and old alias sets don't conflict, something is wrong. */
1763 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1764 #endif
1766 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1767 MEM_SIZE (mem), MEM_ALIGN (mem),
1768 GET_MODE (mem));
1771 /* Set the alignment of MEM to ALIGN bits. */
1773 void
1774 set_mem_align (rtx mem, unsigned int align)
1776 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1777 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1778 GET_MODE (mem));
1781 /* Set the expr for MEM to EXPR. */
1783 void
1784 set_mem_expr (rtx mem, tree expr)
1786 MEM_ATTRS (mem)
1787 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1788 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1791 /* Set the offset of MEM to OFFSET. */
1793 void
1794 set_mem_offset (rtx mem, rtx offset)
1796 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1797 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1798 GET_MODE (mem));
1801 /* Set the size of MEM to SIZE. */
1803 void
1804 set_mem_size (rtx mem, rtx size)
1806 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1807 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1808 GET_MODE (mem));
1811 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1812 and its address changed to ADDR. (VOIDmode means don't change the mode.
1813 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1814 returned memory location is required to be valid. The memory
1815 attributes are not changed. */
1817 static rtx
1818 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1820 rtx new;
1822 gcc_assert (MEM_P (memref));
1823 if (mode == VOIDmode)
1824 mode = GET_MODE (memref);
1825 if (addr == 0)
1826 addr = XEXP (memref, 0);
1827 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1828 && (!validate || memory_address_p (mode, addr)))
1829 return memref;
1831 if (validate)
1833 if (reload_in_progress || reload_completed)
1834 gcc_assert (memory_address_p (mode, addr));
1835 else
1836 addr = memory_address (mode, addr);
1839 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1840 return memref;
1842 new = gen_rtx_MEM (mode, addr);
1843 MEM_COPY_ATTRIBUTES (new, memref);
1844 return new;
1847 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1848 way we are changing MEMREF, so we only preserve the alias set. */
1851 change_address (rtx memref, enum machine_mode mode, rtx addr)
1853 rtx new = change_address_1 (memref, mode, addr, 1), size;
1854 enum machine_mode mmode = GET_MODE (new);
1855 unsigned int align;
1857 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1858 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1860 /* If there are no changes, just return the original memory reference. */
1861 if (new == memref)
1863 if (MEM_ATTRS (memref) == 0
1864 || (MEM_EXPR (memref) == NULL
1865 && MEM_OFFSET (memref) == NULL
1866 && MEM_SIZE (memref) == size
1867 && MEM_ALIGN (memref) == align))
1868 return new;
1870 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1871 MEM_COPY_ATTRIBUTES (new, memref);
1874 MEM_ATTRS (new)
1875 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1877 return new;
1880 /* Return a memory reference like MEMREF, but with its mode changed
1881 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1882 nonzero, the memory address is forced to be valid.
1883 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1884 and caller is responsible for adjusting MEMREF base register. */
1887 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1888 int validate, int adjust)
1890 rtx addr = XEXP (memref, 0);
1891 rtx new;
1892 rtx memoffset = MEM_OFFSET (memref);
1893 rtx size = 0;
1894 unsigned int memalign = MEM_ALIGN (memref);
1896 /* If there are no changes, just return the original memory reference. */
1897 if (mode == GET_MODE (memref) && !offset
1898 && (!validate || memory_address_p (mode, addr)))
1899 return memref;
1901 /* ??? Prefer to create garbage instead of creating shared rtl.
1902 This may happen even if offset is nonzero -- consider
1903 (plus (plus reg reg) const_int) -- so do this always. */
1904 addr = copy_rtx (addr);
1906 if (adjust)
1908 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1909 object, we can merge it into the LO_SUM. */
1910 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1911 && offset >= 0
1912 && (unsigned HOST_WIDE_INT) offset
1913 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1914 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1915 plus_constant (XEXP (addr, 1), offset));
1916 else
1917 addr = plus_constant (addr, offset);
1920 new = change_address_1 (memref, mode, addr, validate);
1922 /* Compute the new values of the memory attributes due to this adjustment.
1923 We add the offsets and update the alignment. */
1924 if (memoffset)
1925 memoffset = GEN_INT (offset + INTVAL (memoffset));
1927 /* Compute the new alignment by taking the MIN of the alignment and the
1928 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1929 if zero. */
1930 if (offset != 0)
1931 memalign
1932 = MIN (memalign,
1933 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1935 /* We can compute the size in a number of ways. */
1936 if (GET_MODE (new) != BLKmode)
1937 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1938 else if (MEM_SIZE (memref))
1939 size = plus_constant (MEM_SIZE (memref), -offset);
1941 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1942 memoffset, size, memalign, GET_MODE (new));
1944 /* At some point, we should validate that this offset is within the object,
1945 if all the appropriate values are known. */
1946 return new;
1949 /* Return a memory reference like MEMREF, but with its mode changed
1950 to MODE and its address changed to ADDR, which is assumed to be
1951 MEMREF offseted by OFFSET bytes. If VALIDATE is
1952 nonzero, the memory address is forced to be valid. */
1955 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1956 HOST_WIDE_INT offset, int validate)
1958 memref = change_address_1 (memref, VOIDmode, addr, validate);
1959 return adjust_address_1 (memref, mode, offset, validate, 0);
1962 /* Return a memory reference like MEMREF, but whose address is changed by
1963 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1964 known to be in OFFSET (possibly 1). */
1967 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1969 rtx new, addr = XEXP (memref, 0);
1971 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1973 /* At this point we don't know _why_ the address is invalid. It
1974 could have secondary memory references, multiplies or anything.
1976 However, if we did go and rearrange things, we can wind up not
1977 being able to recognize the magic around pic_offset_table_rtx.
1978 This stuff is fragile, and is yet another example of why it is
1979 bad to expose PIC machinery too early. */
1980 if (! memory_address_p (GET_MODE (memref), new)
1981 && GET_CODE (addr) == PLUS
1982 && XEXP (addr, 0) == pic_offset_table_rtx)
1984 addr = force_reg (GET_MODE (addr), addr);
1985 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1988 update_temp_slot_address (XEXP (memref, 0), new);
1989 new = change_address_1 (memref, VOIDmode, new, 1);
1991 /* If there are no changes, just return the original memory reference. */
1992 if (new == memref)
1993 return new;
1995 /* Update the alignment to reflect the offset. Reset the offset, which
1996 we don't know. */
1997 MEM_ATTRS (new)
1998 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1999 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2000 GET_MODE (new));
2001 return new;
2004 /* Return a memory reference like MEMREF, but with its address changed to
2005 ADDR. The caller is asserting that the actual piece of memory pointed
2006 to is the same, just the form of the address is being changed, such as
2007 by putting something into a register. */
2010 replace_equiv_address (rtx memref, rtx addr)
2012 /* change_address_1 copies the memory attribute structure without change
2013 and that's exactly what we want here. */
2014 update_temp_slot_address (XEXP (memref, 0), addr);
2015 return change_address_1 (memref, VOIDmode, addr, 1);
2018 /* Likewise, but the reference is not required to be valid. */
2021 replace_equiv_address_nv (rtx memref, rtx addr)
2023 return change_address_1 (memref, VOIDmode, addr, 0);
2026 /* Return a memory reference like MEMREF, but with its mode widened to
2027 MODE and offset by OFFSET. This would be used by targets that e.g.
2028 cannot issue QImode memory operations and have to use SImode memory
2029 operations plus masking logic. */
2032 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2034 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2035 tree expr = MEM_EXPR (new);
2036 rtx memoffset = MEM_OFFSET (new);
2037 unsigned int size = GET_MODE_SIZE (mode);
2039 /* If there are no changes, just return the original memory reference. */
2040 if (new == memref)
2041 return new;
2043 /* If we don't know what offset we were at within the expression, then
2044 we can't know if we've overstepped the bounds. */
2045 if (! memoffset)
2046 expr = NULL_TREE;
2048 while (expr)
2050 if (TREE_CODE (expr) == COMPONENT_REF)
2052 tree field = TREE_OPERAND (expr, 1);
2053 tree offset = component_ref_field_offset (expr);
2055 if (! DECL_SIZE_UNIT (field))
2057 expr = NULL_TREE;
2058 break;
2061 /* Is the field at least as large as the access? If so, ok,
2062 otherwise strip back to the containing structure. */
2063 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2064 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2065 && INTVAL (memoffset) >= 0)
2066 break;
2068 if (! host_integerp (offset, 1))
2070 expr = NULL_TREE;
2071 break;
2074 expr = TREE_OPERAND (expr, 0);
2075 memoffset
2076 = (GEN_INT (INTVAL (memoffset)
2077 + tree_low_cst (offset, 1)
2078 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2079 / BITS_PER_UNIT)));
2081 /* Similarly for the decl. */
2082 else if (DECL_P (expr)
2083 && DECL_SIZE_UNIT (expr)
2084 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2085 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2086 && (! memoffset || INTVAL (memoffset) >= 0))
2087 break;
2088 else
2090 /* The widened memory access overflows the expression, which means
2091 that it could alias another expression. Zap it. */
2092 expr = NULL_TREE;
2093 break;
2097 if (! expr)
2098 memoffset = NULL_RTX;
2100 /* The widened memory may alias other stuff, so zap the alias set. */
2101 /* ??? Maybe use get_alias_set on any remaining expression. */
2103 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2104 MEM_ALIGN (new), mode);
2106 return new;
2109 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2112 gen_label_rtx (void)
2114 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2115 NULL, label_num++, NULL);
2118 /* For procedure integration. */
2120 /* Install new pointers to the first and last insns in the chain.
2121 Also, set cur_insn_uid to one higher than the last in use.
2122 Used for an inline-procedure after copying the insn chain. */
2124 void
2125 set_new_first_and_last_insn (rtx first, rtx last)
2127 rtx insn;
2129 first_insn = first;
2130 last_insn = last;
2131 cur_insn_uid = 0;
2133 for (insn = first; insn; insn = NEXT_INSN (insn))
2134 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2136 cur_insn_uid++;
2139 /* Set the last label number found in the current function.
2140 This is used when belatedly compiling an inline function. */
2142 void
2143 set_new_last_label_num (int last)
2145 base_label_num = label_num;
2146 last_label_num = last;
2149 /* Restore all variables describing the current status from the structure *P.
2150 This is used after a nested function. */
2152 void
2153 restore_emit_status (struct function *p ATTRIBUTE_UNUSED)
2155 last_label_num = 0;
2158 /* Go through all the RTL insn bodies and copy any invalid shared
2159 structure. This routine should only be called once. */
2161 static void
2162 unshare_all_rtl_1 (tree fndecl, rtx insn)
2164 tree decl;
2166 /* Make sure that virtual parameters are not shared. */
2167 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2168 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2170 /* Make sure that virtual stack slots are not shared. */
2171 unshare_all_decls (DECL_INITIAL (fndecl));
2173 /* Unshare just about everything else. */
2174 unshare_all_rtl_in_chain (insn);
2176 /* Make sure the addresses of stack slots found outside the insn chain
2177 (such as, in DECL_RTL of a variable) are not shared
2178 with the insn chain.
2180 This special care is necessary when the stack slot MEM does not
2181 actually appear in the insn chain. If it does appear, its address
2182 is unshared from all else at that point. */
2183 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2186 /* Go through all the RTL insn bodies and copy any invalid shared
2187 structure, again. This is a fairly expensive thing to do so it
2188 should be done sparingly. */
2190 void
2191 unshare_all_rtl_again (rtx insn)
2193 rtx p;
2194 tree decl;
2196 for (p = insn; p; p = NEXT_INSN (p))
2197 if (INSN_P (p))
2199 reset_used_flags (PATTERN (p));
2200 reset_used_flags (REG_NOTES (p));
2201 reset_used_flags (LOG_LINKS (p));
2204 /* Make sure that virtual stack slots are not shared. */
2205 reset_used_decls (DECL_INITIAL (cfun->decl));
2207 /* Make sure that virtual parameters are not shared. */
2208 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2209 reset_used_flags (DECL_RTL (decl));
2211 reset_used_flags (stack_slot_list);
2213 unshare_all_rtl_1 (cfun->decl, insn);
2216 void
2217 unshare_all_rtl (void)
2219 unshare_all_rtl_1 (current_function_decl, get_insns ());
2222 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2223 Recursively does the same for subexpressions. */
2225 static void
2226 verify_rtx_sharing (rtx orig, rtx insn)
2228 rtx x = orig;
2229 int i;
2230 enum rtx_code code;
2231 const char *format_ptr;
2233 if (x == 0)
2234 return;
2236 code = GET_CODE (x);
2238 /* These types may be freely shared. */
2240 switch (code)
2242 case REG:
2243 case CONST_INT:
2244 case CONST_DOUBLE:
2245 case CONST_VECTOR:
2246 case SYMBOL_REF:
2247 case LABEL_REF:
2248 case CODE_LABEL:
2249 case PC:
2250 case CC0:
2251 case SCRATCH:
2252 return;
2253 /* SCRATCH must be shared because they represent distinct values. */
2254 case CLOBBER:
2255 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2256 return;
2257 break;
2259 case CONST:
2260 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2261 a LABEL_REF, it isn't sharable. */
2262 if (GET_CODE (XEXP (x, 0)) == PLUS
2263 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2264 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2265 return;
2266 break;
2268 case MEM:
2269 /* A MEM is allowed to be shared if its address is constant. */
2270 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2271 || reload_completed || reload_in_progress)
2272 return;
2274 break;
2276 default:
2277 break;
2280 /* This rtx may not be shared. If it has already been seen,
2281 replace it with a copy of itself. */
2282 #ifdef ENABLE_CHECKING
2283 if (RTX_FLAG (x, used))
2285 error ("Invalid rtl sharing found in the insn");
2286 debug_rtx (insn);
2287 error ("Shared rtx");
2288 debug_rtx (x);
2289 internal_error ("Internal consistency failure");
2291 #endif
2292 gcc_assert (!RTX_FLAG (x, used));
2294 RTX_FLAG (x, used) = 1;
2296 /* Now scan the subexpressions recursively. */
2298 format_ptr = GET_RTX_FORMAT (code);
2300 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2302 switch (*format_ptr++)
2304 case 'e':
2305 verify_rtx_sharing (XEXP (x, i), insn);
2306 break;
2308 case 'E':
2309 if (XVEC (x, i) != NULL)
2311 int j;
2312 int len = XVECLEN (x, i);
2314 for (j = 0; j < len; j++)
2316 /* We allow sharing of ASM_OPERANDS inside single
2317 instruction. */
2318 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2319 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2320 == ASM_OPERANDS))
2321 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2322 else
2323 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2326 break;
2329 return;
2332 /* Go through all the RTL insn bodies and check that there is no unexpected
2333 sharing in between the subexpressions. */
2335 void
2336 verify_rtl_sharing (void)
2338 rtx p;
2340 for (p = get_insns (); p; p = NEXT_INSN (p))
2341 if (INSN_P (p))
2343 reset_used_flags (PATTERN (p));
2344 reset_used_flags (REG_NOTES (p));
2345 reset_used_flags (LOG_LINKS (p));
2348 for (p = get_insns (); p; p = NEXT_INSN (p))
2349 if (INSN_P (p))
2351 verify_rtx_sharing (PATTERN (p), p);
2352 verify_rtx_sharing (REG_NOTES (p), p);
2353 verify_rtx_sharing (LOG_LINKS (p), p);
2357 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2358 Assumes the mark bits are cleared at entry. */
2360 void
2361 unshare_all_rtl_in_chain (rtx insn)
2363 for (; insn; insn = NEXT_INSN (insn))
2364 if (INSN_P (insn))
2366 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2367 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2368 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2372 /* Go through all virtual stack slots of a function and copy any
2373 shared structure. */
2374 static void
2375 unshare_all_decls (tree blk)
2377 tree t;
2379 /* Copy shared decls. */
2380 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2381 if (DECL_RTL_SET_P (t))
2382 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2384 /* Now process sub-blocks. */
2385 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2386 unshare_all_decls (t);
2389 /* Go through all virtual stack slots of a function and mark them as
2390 not shared. */
2391 static void
2392 reset_used_decls (tree blk)
2394 tree t;
2396 /* Mark decls. */
2397 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2398 if (DECL_RTL_SET_P (t))
2399 reset_used_flags (DECL_RTL (t));
2401 /* Now process sub-blocks. */
2402 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2403 reset_used_decls (t);
2406 /* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
2407 placed in the result directly, rather than being copied. MAY_SHARE is
2408 either a MEM of an EXPR_LIST of MEMs. */
2411 copy_most_rtx (rtx orig, rtx may_share)
2413 rtx copy;
2414 int i, j;
2415 RTX_CODE code;
2416 const char *format_ptr;
2418 if (orig == may_share
2419 || (GET_CODE (may_share) == EXPR_LIST
2420 && in_expr_list_p (may_share, orig)))
2421 return orig;
2423 code = GET_CODE (orig);
2425 switch (code)
2427 case REG:
2428 case CONST_INT:
2429 case CONST_DOUBLE:
2430 case CONST_VECTOR:
2431 case SYMBOL_REF:
2432 case CODE_LABEL:
2433 case PC:
2434 case CC0:
2435 return orig;
2436 default:
2437 break;
2440 copy = rtx_alloc (code);
2441 PUT_MODE (copy, GET_MODE (orig));
2442 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2443 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2444 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2445 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
2446 RTX_FLAG (copy, return_val) = RTX_FLAG (orig, return_val);
2448 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2450 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2452 switch (*format_ptr++)
2454 case 'e':
2455 XEXP (copy, i) = XEXP (orig, i);
2456 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2457 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2458 break;
2460 case 'u':
2461 XEXP (copy, i) = XEXP (orig, i);
2462 break;
2464 case 'E':
2465 case 'V':
2466 XVEC (copy, i) = XVEC (orig, i);
2467 if (XVEC (orig, i) != NULL)
2469 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2470 for (j = 0; j < XVECLEN (copy, i); j++)
2471 XVECEXP (copy, i, j)
2472 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2474 break;
2476 case 'w':
2477 XWINT (copy, i) = XWINT (orig, i);
2478 break;
2480 case 'n':
2481 case 'i':
2482 XINT (copy, i) = XINT (orig, i);
2483 break;
2485 case 't':
2486 XTREE (copy, i) = XTREE (orig, i);
2487 break;
2489 case 's':
2490 case 'S':
2491 XSTR (copy, i) = XSTR (orig, i);
2492 break;
2494 case '0':
2495 X0ANY (copy, i) = X0ANY (orig, i);
2496 break;
2498 default:
2499 gcc_unreachable ();
2502 return copy;
2505 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2506 Recursively does the same for subexpressions. Uses
2507 copy_rtx_if_shared_1 to reduce stack space. */
2510 copy_rtx_if_shared (rtx orig)
2512 copy_rtx_if_shared_1 (&orig);
2513 return orig;
2516 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2517 use. Recursively does the same for subexpressions. */
2519 static void
2520 copy_rtx_if_shared_1 (rtx *orig1)
2522 rtx x;
2523 int i;
2524 enum rtx_code code;
2525 rtx *last_ptr;
2526 const char *format_ptr;
2527 int copied = 0;
2528 int length;
2530 /* Repeat is used to turn tail-recursion into iteration. */
2531 repeat:
2532 x = *orig1;
2534 if (x == 0)
2535 return;
2537 code = GET_CODE (x);
2539 /* These types may be freely shared. */
2541 switch (code)
2543 case REG:
2544 case CONST_INT:
2545 case CONST_DOUBLE:
2546 case CONST_VECTOR:
2547 case SYMBOL_REF:
2548 case LABEL_REF:
2549 case CODE_LABEL:
2550 case PC:
2551 case CC0:
2552 case SCRATCH:
2553 /* SCRATCH must be shared because they represent distinct values. */
2554 return;
2555 case CLOBBER:
2556 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2557 return;
2558 break;
2560 case CONST:
2561 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2562 a LABEL_REF, it isn't sharable. */
2563 if (GET_CODE (XEXP (x, 0)) == PLUS
2564 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2565 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2566 return;
2567 break;
2569 case INSN:
2570 case JUMP_INSN:
2571 case CALL_INSN:
2572 case NOTE:
2573 case BARRIER:
2574 /* The chain of insns is not being copied. */
2575 return;
2577 default:
2578 break;
2581 /* This rtx may not be shared. If it has already been seen,
2582 replace it with a copy of itself. */
2584 if (RTX_FLAG (x, used))
2586 rtx copy;
2588 copy = rtx_alloc (code);
2589 memcpy (copy, x, RTX_SIZE (code));
2590 x = copy;
2591 copied = 1;
2593 RTX_FLAG (x, used) = 1;
2595 /* Now scan the subexpressions recursively.
2596 We can store any replaced subexpressions directly into X
2597 since we know X is not shared! Any vectors in X
2598 must be copied if X was copied. */
2600 format_ptr = GET_RTX_FORMAT (code);
2601 length = GET_RTX_LENGTH (code);
2602 last_ptr = NULL;
2604 for (i = 0; i < length; i++)
2606 switch (*format_ptr++)
2608 case 'e':
2609 if (last_ptr)
2610 copy_rtx_if_shared_1 (last_ptr);
2611 last_ptr = &XEXP (x, i);
2612 break;
2614 case 'E':
2615 if (XVEC (x, i) != NULL)
2617 int j;
2618 int len = XVECLEN (x, i);
2620 /* Copy the vector iff I copied the rtx and the length
2621 is nonzero. */
2622 if (copied && len > 0)
2623 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2625 /* Call recursively on all inside the vector. */
2626 for (j = 0; j < len; j++)
2628 if (last_ptr)
2629 copy_rtx_if_shared_1 (last_ptr);
2630 last_ptr = &XVECEXP (x, i, j);
2633 break;
2636 *orig1 = x;
2637 if (last_ptr)
2639 orig1 = last_ptr;
2640 goto repeat;
2642 return;
2645 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2646 to look for shared sub-parts. */
2648 void
2649 reset_used_flags (rtx x)
2651 int i, j;
2652 enum rtx_code code;
2653 const char *format_ptr;
2654 int length;
2656 /* Repeat is used to turn tail-recursion into iteration. */
2657 repeat:
2658 if (x == 0)
2659 return;
2661 code = GET_CODE (x);
2663 /* These types may be freely shared so we needn't do any resetting
2664 for them. */
2666 switch (code)
2668 case REG:
2669 case CONST_INT:
2670 case CONST_DOUBLE:
2671 case CONST_VECTOR:
2672 case SYMBOL_REF:
2673 case CODE_LABEL:
2674 case PC:
2675 case CC0:
2676 return;
2678 case INSN:
2679 case JUMP_INSN:
2680 case CALL_INSN:
2681 case NOTE:
2682 case LABEL_REF:
2683 case BARRIER:
2684 /* The chain of insns is not being copied. */
2685 return;
2687 default:
2688 break;
2691 RTX_FLAG (x, used) = 0;
2693 format_ptr = GET_RTX_FORMAT (code);
2694 length = GET_RTX_LENGTH (code);
2696 for (i = 0; i < length; i++)
2698 switch (*format_ptr++)
2700 case 'e':
2701 if (i == length-1)
2703 x = XEXP (x, i);
2704 goto repeat;
2706 reset_used_flags (XEXP (x, i));
2707 break;
2709 case 'E':
2710 for (j = 0; j < XVECLEN (x, i); j++)
2711 reset_used_flags (XVECEXP (x, i, j));
2712 break;
2717 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2718 to look for shared sub-parts. */
2720 void
2721 set_used_flags (rtx x)
2723 int i, j;
2724 enum rtx_code code;
2725 const char *format_ptr;
2727 if (x == 0)
2728 return;
2730 code = GET_CODE (x);
2732 /* These types may be freely shared so we needn't do any resetting
2733 for them. */
2735 switch (code)
2737 case REG:
2738 case CONST_INT:
2739 case CONST_DOUBLE:
2740 case CONST_VECTOR:
2741 case SYMBOL_REF:
2742 case CODE_LABEL:
2743 case PC:
2744 case CC0:
2745 return;
2747 case INSN:
2748 case JUMP_INSN:
2749 case CALL_INSN:
2750 case NOTE:
2751 case LABEL_REF:
2752 case BARRIER:
2753 /* The chain of insns is not being copied. */
2754 return;
2756 default:
2757 break;
2760 RTX_FLAG (x, used) = 1;
2762 format_ptr = GET_RTX_FORMAT (code);
2763 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2765 switch (*format_ptr++)
2767 case 'e':
2768 set_used_flags (XEXP (x, i));
2769 break;
2771 case 'E':
2772 for (j = 0; j < XVECLEN (x, i); j++)
2773 set_used_flags (XVECEXP (x, i, j));
2774 break;
2779 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2780 Return X or the rtx for the pseudo reg the value of X was copied into.
2781 OTHER must be valid as a SET_DEST. */
2784 make_safe_from (rtx x, rtx other)
2786 while (1)
2787 switch (GET_CODE (other))
2789 case SUBREG:
2790 other = SUBREG_REG (other);
2791 break;
2792 case STRICT_LOW_PART:
2793 case SIGN_EXTEND:
2794 case ZERO_EXTEND:
2795 other = XEXP (other, 0);
2796 break;
2797 default:
2798 goto done;
2800 done:
2801 if ((MEM_P (other)
2802 && ! CONSTANT_P (x)
2803 && !REG_P (x)
2804 && GET_CODE (x) != SUBREG)
2805 || (REG_P (other)
2806 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2807 || reg_mentioned_p (other, x))))
2809 rtx temp = gen_reg_rtx (GET_MODE (x));
2810 emit_move_insn (temp, x);
2811 return temp;
2813 return x;
2816 /* Emission of insns (adding them to the doubly-linked list). */
2818 /* Return the first insn of the current sequence or current function. */
2821 get_insns (void)
2823 return first_insn;
2826 /* Specify a new insn as the first in the chain. */
2828 void
2829 set_first_insn (rtx insn)
2831 gcc_assert (!PREV_INSN (insn));
2832 first_insn = insn;
2835 /* Return the last insn emitted in current sequence or current function. */
2838 get_last_insn (void)
2840 return last_insn;
2843 /* Specify a new insn as the last in the chain. */
2845 void
2846 set_last_insn (rtx insn)
2848 gcc_assert (!NEXT_INSN (insn));
2849 last_insn = insn;
2852 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2855 get_last_insn_anywhere (void)
2857 struct sequence_stack *stack;
2858 if (last_insn)
2859 return last_insn;
2860 for (stack = seq_stack; stack; stack = stack->next)
2861 if (stack->last != 0)
2862 return stack->last;
2863 return 0;
2866 /* Return the first nonnote insn emitted in current sequence or current
2867 function. This routine looks inside SEQUENCEs. */
2870 get_first_nonnote_insn (void)
2872 rtx insn = first_insn;
2874 while (insn)
2876 insn = next_insn (insn);
2877 if (insn == 0 || !NOTE_P (insn))
2878 break;
2881 return insn;
2884 /* Return the last nonnote insn emitted in current sequence or current
2885 function. This routine looks inside SEQUENCEs. */
2888 get_last_nonnote_insn (void)
2890 rtx insn = last_insn;
2892 while (insn)
2894 insn = previous_insn (insn);
2895 if (insn == 0 || !NOTE_P (insn))
2896 break;
2899 return insn;
2902 /* Return a number larger than any instruction's uid in this function. */
2905 get_max_uid (void)
2907 return cur_insn_uid;
2910 /* Renumber instructions so that no instruction UIDs are wasted. */
2912 void
2913 renumber_insns (FILE *stream)
2915 rtx insn;
2917 /* If we're not supposed to renumber instructions, don't. */
2918 if (!flag_renumber_insns)
2919 return;
2921 /* If there aren't that many instructions, then it's not really
2922 worth renumbering them. */
2923 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2924 return;
2926 cur_insn_uid = 1;
2928 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2930 if (stream)
2931 fprintf (stream, "Renumbering insn %d to %d\n",
2932 INSN_UID (insn), cur_insn_uid);
2933 INSN_UID (insn) = cur_insn_uid++;
2937 /* Return the next insn. If it is a SEQUENCE, return the first insn
2938 of the sequence. */
2941 next_insn (rtx insn)
2943 if (insn)
2945 insn = NEXT_INSN (insn);
2946 if (insn && NONJUMP_INSN_P (insn)
2947 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2948 insn = XVECEXP (PATTERN (insn), 0, 0);
2951 return insn;
2954 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2955 of the sequence. */
2958 previous_insn (rtx insn)
2960 if (insn)
2962 insn = PREV_INSN (insn);
2963 if (insn && NONJUMP_INSN_P (insn)
2964 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2965 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2968 return insn;
2971 /* Return the next insn after INSN that is not a NOTE. This routine does not
2972 look inside SEQUENCEs. */
2975 next_nonnote_insn (rtx insn)
2977 while (insn)
2979 insn = NEXT_INSN (insn);
2980 if (insn == 0 || !NOTE_P (insn))
2981 break;
2984 return insn;
2987 /* Return the previous insn before INSN that is not a NOTE. This routine does
2988 not look inside SEQUENCEs. */
2991 prev_nonnote_insn (rtx insn)
2993 while (insn)
2995 insn = PREV_INSN (insn);
2996 if (insn == 0 || !NOTE_P (insn))
2997 break;
3000 return insn;
3003 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3004 or 0, if there is none. This routine does not look inside
3005 SEQUENCEs. */
3008 next_real_insn (rtx insn)
3010 while (insn)
3012 insn = NEXT_INSN (insn);
3013 if (insn == 0 || INSN_P (insn))
3014 break;
3017 return insn;
3020 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3021 or 0, if there is none. This routine does not look inside
3022 SEQUENCEs. */
3025 prev_real_insn (rtx insn)
3027 while (insn)
3029 insn = PREV_INSN (insn);
3030 if (insn == 0 || INSN_P (insn))
3031 break;
3034 return insn;
3037 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3038 This routine does not look inside SEQUENCEs. */
3041 last_call_insn (void)
3043 rtx insn;
3045 for (insn = get_last_insn ();
3046 insn && !CALL_P (insn);
3047 insn = PREV_INSN (insn))
3050 return insn;
3053 /* Find the next insn after INSN that really does something. This routine
3054 does not look inside SEQUENCEs. Until reload has completed, this is the
3055 same as next_real_insn. */
3058 active_insn_p (rtx insn)
3060 return (CALL_P (insn) || JUMP_P (insn)
3061 || (NONJUMP_INSN_P (insn)
3062 && (! reload_completed
3063 || (GET_CODE (PATTERN (insn)) != USE
3064 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3068 next_active_insn (rtx insn)
3070 while (insn)
3072 insn = NEXT_INSN (insn);
3073 if (insn == 0 || active_insn_p (insn))
3074 break;
3077 return insn;
3080 /* Find the last insn before INSN that really does something. This routine
3081 does not look inside SEQUENCEs. Until reload has completed, this is the
3082 same as prev_real_insn. */
3085 prev_active_insn (rtx insn)
3087 while (insn)
3089 insn = PREV_INSN (insn);
3090 if (insn == 0 || active_insn_p (insn))
3091 break;
3094 return insn;
3097 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3100 next_label (rtx insn)
3102 while (insn)
3104 insn = NEXT_INSN (insn);
3105 if (insn == 0 || LABEL_P (insn))
3106 break;
3109 return insn;
3112 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3115 prev_label (rtx insn)
3117 while (insn)
3119 insn = PREV_INSN (insn);
3120 if (insn == 0 || LABEL_P (insn))
3121 break;
3124 return insn;
3127 /* Return the last label to mark the same position as LABEL. Return null
3128 if LABEL itself is null. */
3131 skip_consecutive_labels (rtx label)
3133 rtx insn;
3135 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3136 if (LABEL_P (insn))
3137 label = insn;
3139 return label;
3142 #ifdef HAVE_cc0
3143 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3144 and REG_CC_USER notes so we can find it. */
3146 void
3147 link_cc0_insns (rtx insn)
3149 rtx user = next_nonnote_insn (insn);
3151 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3152 user = XVECEXP (PATTERN (user), 0, 0);
3154 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3155 REG_NOTES (user));
3156 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3159 /* Return the next insn that uses CC0 after INSN, which is assumed to
3160 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3161 applied to the result of this function should yield INSN).
3163 Normally, this is simply the next insn. However, if a REG_CC_USER note
3164 is present, it contains the insn that uses CC0.
3166 Return 0 if we can't find the insn. */
3169 next_cc0_user (rtx insn)
3171 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3173 if (note)
3174 return XEXP (note, 0);
3176 insn = next_nonnote_insn (insn);
3177 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3178 insn = XVECEXP (PATTERN (insn), 0, 0);
3180 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3181 return insn;
3183 return 0;
3186 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3187 note, it is the previous insn. */
3190 prev_cc0_setter (rtx insn)
3192 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3194 if (note)
3195 return XEXP (note, 0);
3197 insn = prev_nonnote_insn (insn);
3198 gcc_assert (sets_cc0_p (PATTERN (insn)));
3200 return insn;
3202 #endif
3204 /* Increment the label uses for all labels present in rtx. */
3206 static void
3207 mark_label_nuses (rtx x)
3209 enum rtx_code code;
3210 int i, j;
3211 const char *fmt;
3213 code = GET_CODE (x);
3214 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3215 LABEL_NUSES (XEXP (x, 0))++;
3217 fmt = GET_RTX_FORMAT (code);
3218 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3220 if (fmt[i] == 'e')
3221 mark_label_nuses (XEXP (x, i));
3222 else if (fmt[i] == 'E')
3223 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3224 mark_label_nuses (XVECEXP (x, i, j));
3229 /* Try splitting insns that can be split for better scheduling.
3230 PAT is the pattern which might split.
3231 TRIAL is the insn providing PAT.
3232 LAST is nonzero if we should return the last insn of the sequence produced.
3234 If this routine succeeds in splitting, it returns the first or last
3235 replacement insn depending on the value of LAST. Otherwise, it
3236 returns TRIAL. If the insn to be returned can be split, it will be. */
3239 try_split (rtx pat, rtx trial, int last)
3241 rtx before = PREV_INSN (trial);
3242 rtx after = NEXT_INSN (trial);
3243 int has_barrier = 0;
3244 rtx tem;
3245 rtx note, seq;
3246 int probability;
3247 rtx insn_last, insn;
3248 int njumps = 0;
3250 if (any_condjump_p (trial)
3251 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3252 split_branch_probability = INTVAL (XEXP (note, 0));
3253 probability = split_branch_probability;
3255 seq = split_insns (pat, trial);
3257 split_branch_probability = -1;
3259 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3260 We may need to handle this specially. */
3261 if (after && BARRIER_P (after))
3263 has_barrier = 1;
3264 after = NEXT_INSN (after);
3267 if (!seq)
3268 return trial;
3270 /* Avoid infinite loop if any insn of the result matches
3271 the original pattern. */
3272 insn_last = seq;
3273 while (1)
3275 if (INSN_P (insn_last)
3276 && rtx_equal_p (PATTERN (insn_last), pat))
3277 return trial;
3278 if (!NEXT_INSN (insn_last))
3279 break;
3280 insn_last = NEXT_INSN (insn_last);
3283 /* Mark labels. */
3284 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3286 if (JUMP_P (insn))
3288 mark_jump_label (PATTERN (insn), insn, 0);
3289 njumps++;
3290 if (probability != -1
3291 && any_condjump_p (insn)
3292 && !find_reg_note (insn, REG_BR_PROB, 0))
3294 /* We can preserve the REG_BR_PROB notes only if exactly
3295 one jump is created, otherwise the machine description
3296 is responsible for this step using
3297 split_branch_probability variable. */
3298 gcc_assert (njumps == 1);
3299 REG_NOTES (insn)
3300 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3301 GEN_INT (probability),
3302 REG_NOTES (insn));
3307 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3308 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3309 if (CALL_P (trial))
3311 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3312 if (CALL_P (insn))
3314 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3315 while (*p)
3316 p = &XEXP (*p, 1);
3317 *p = CALL_INSN_FUNCTION_USAGE (trial);
3318 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3322 /* Copy notes, particularly those related to the CFG. */
3323 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3325 switch (REG_NOTE_KIND (note))
3327 case REG_EH_REGION:
3328 insn = insn_last;
3329 while (insn != NULL_RTX)
3331 if (CALL_P (insn)
3332 || (flag_non_call_exceptions && INSN_P (insn)
3333 && may_trap_p (PATTERN (insn))))
3334 REG_NOTES (insn)
3335 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3336 XEXP (note, 0),
3337 REG_NOTES (insn));
3338 insn = PREV_INSN (insn);
3340 break;
3342 case REG_NORETURN:
3343 case REG_SETJMP:
3344 case REG_ALWAYS_RETURN:
3345 insn = insn_last;
3346 while (insn != NULL_RTX)
3348 if (CALL_P (insn))
3349 REG_NOTES (insn)
3350 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3351 XEXP (note, 0),
3352 REG_NOTES (insn));
3353 insn = PREV_INSN (insn);
3355 break;
3357 case REG_NON_LOCAL_GOTO:
3358 insn = insn_last;
3359 while (insn != NULL_RTX)
3361 if (JUMP_P (insn))
3362 REG_NOTES (insn)
3363 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3364 XEXP (note, 0),
3365 REG_NOTES (insn));
3366 insn = PREV_INSN (insn);
3368 break;
3370 default:
3371 break;
3375 /* If there are LABELS inside the split insns increment the
3376 usage count so we don't delete the label. */
3377 if (NONJUMP_INSN_P (trial))
3379 insn = insn_last;
3380 while (insn != NULL_RTX)
3382 if (NONJUMP_INSN_P (insn))
3383 mark_label_nuses (PATTERN (insn));
3385 insn = PREV_INSN (insn);
3389 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3391 delete_insn (trial);
3392 if (has_barrier)
3393 emit_barrier_after (tem);
3395 /* Recursively call try_split for each new insn created; by the
3396 time control returns here that insn will be fully split, so
3397 set LAST and continue from the insn after the one returned.
3398 We can't use next_active_insn here since AFTER may be a note.
3399 Ignore deleted insns, which can be occur if not optimizing. */
3400 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3401 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3402 tem = try_split (PATTERN (tem), tem, 1);
3404 /* Return either the first or the last insn, depending on which was
3405 requested. */
3406 return last
3407 ? (after ? PREV_INSN (after) : last_insn)
3408 : NEXT_INSN (before);
3411 /* Make and return an INSN rtx, initializing all its slots.
3412 Store PATTERN in the pattern slots. */
3415 make_insn_raw (rtx pattern)
3417 rtx insn;
3419 insn = rtx_alloc (INSN);
3421 INSN_UID (insn) = cur_insn_uid++;
3422 PATTERN (insn) = pattern;
3423 INSN_CODE (insn) = -1;
3424 LOG_LINKS (insn) = NULL;
3425 REG_NOTES (insn) = NULL;
3426 INSN_LOCATOR (insn) = 0;
3427 BLOCK_FOR_INSN (insn) = NULL;
3429 #ifdef ENABLE_RTL_CHECKING
3430 if (insn
3431 && INSN_P (insn)
3432 && (returnjump_p (insn)
3433 || (GET_CODE (insn) == SET
3434 && SET_DEST (insn) == pc_rtx)))
3436 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3437 debug_rtx (insn);
3439 #endif
3441 return insn;
3444 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3446 static rtx
3447 make_jump_insn_raw (rtx pattern)
3449 rtx insn;
3451 insn = rtx_alloc (JUMP_INSN);
3452 INSN_UID (insn) = cur_insn_uid++;
3454 PATTERN (insn) = pattern;
3455 INSN_CODE (insn) = -1;
3456 LOG_LINKS (insn) = NULL;
3457 REG_NOTES (insn) = NULL;
3458 JUMP_LABEL (insn) = NULL;
3459 INSN_LOCATOR (insn) = 0;
3460 BLOCK_FOR_INSN (insn) = NULL;
3462 return insn;
3465 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3467 static rtx
3468 make_call_insn_raw (rtx pattern)
3470 rtx insn;
3472 insn = rtx_alloc (CALL_INSN);
3473 INSN_UID (insn) = cur_insn_uid++;
3475 PATTERN (insn) = pattern;
3476 INSN_CODE (insn) = -1;
3477 LOG_LINKS (insn) = NULL;
3478 REG_NOTES (insn) = NULL;
3479 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3480 INSN_LOCATOR (insn) = 0;
3481 BLOCK_FOR_INSN (insn) = NULL;
3483 return insn;
3486 /* Add INSN to the end of the doubly-linked list.
3487 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3489 void
3490 add_insn (rtx insn)
3492 PREV_INSN (insn) = last_insn;
3493 NEXT_INSN (insn) = 0;
3495 if (NULL != last_insn)
3496 NEXT_INSN (last_insn) = insn;
3498 if (NULL == first_insn)
3499 first_insn = insn;
3501 last_insn = insn;
3504 /* Add INSN into the doubly-linked list after insn AFTER. This and
3505 the next should be the only functions called to insert an insn once
3506 delay slots have been filled since only they know how to update a
3507 SEQUENCE. */
3509 void
3510 add_insn_after (rtx insn, rtx after)
3512 rtx next = NEXT_INSN (after);
3513 basic_block bb;
3515 gcc_assert (!optimize || !INSN_DELETED_P (after));
3517 NEXT_INSN (insn) = next;
3518 PREV_INSN (insn) = after;
3520 if (next)
3522 PREV_INSN (next) = insn;
3523 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3524 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3526 else if (last_insn == after)
3527 last_insn = insn;
3528 else
3530 struct sequence_stack *stack = seq_stack;
3531 /* Scan all pending sequences too. */
3532 for (; stack; stack = stack->next)
3533 if (after == stack->last)
3535 stack->last = insn;
3536 break;
3539 gcc_assert (stack);
3542 if (!BARRIER_P (after)
3543 && !BARRIER_P (insn)
3544 && (bb = BLOCK_FOR_INSN (after)))
3546 set_block_for_insn (insn, bb);
3547 if (INSN_P (insn))
3548 bb->flags |= BB_DIRTY;
3549 /* Should not happen as first in the BB is always
3550 either NOTE or LABEL. */
3551 if (BB_END (bb) == after
3552 /* Avoid clobbering of structure when creating new BB. */
3553 && !BARRIER_P (insn)
3554 && (!NOTE_P (insn)
3555 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3556 BB_END (bb) = insn;
3559 NEXT_INSN (after) = insn;
3560 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3562 rtx sequence = PATTERN (after);
3563 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3567 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3568 the previous should be the only functions called to insert an insn once
3569 delay slots have been filled since only they know how to update a
3570 SEQUENCE. */
3572 void
3573 add_insn_before (rtx insn, rtx before)
3575 rtx prev = PREV_INSN (before);
3576 basic_block bb;
3578 gcc_assert (!optimize || !INSN_DELETED_P (before));
3580 PREV_INSN (insn) = prev;
3581 NEXT_INSN (insn) = before;
3583 if (prev)
3585 NEXT_INSN (prev) = insn;
3586 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3588 rtx sequence = PATTERN (prev);
3589 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3592 else if (first_insn == before)
3593 first_insn = insn;
3594 else
3596 struct sequence_stack *stack = seq_stack;
3597 /* Scan all pending sequences too. */
3598 for (; stack; stack = stack->next)
3599 if (before == stack->first)
3601 stack->first = insn;
3602 break;
3605 gcc_assert (stack);
3608 if (!BARRIER_P (before)
3609 && !BARRIER_P (insn)
3610 && (bb = BLOCK_FOR_INSN (before)))
3612 set_block_for_insn (insn, bb);
3613 if (INSN_P (insn))
3614 bb->flags |= BB_DIRTY;
3615 /* Should not happen as first in the BB is always either NOTE or
3616 LABEl. */
3617 gcc_assert (BB_HEAD (bb) != insn
3618 /* Avoid clobbering of structure when creating new BB. */
3619 || BARRIER_P (insn)
3620 || (NOTE_P (insn)
3621 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK));
3624 PREV_INSN (before) = insn;
3625 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3626 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3629 /* Remove an insn from its doubly-linked list. This function knows how
3630 to handle sequences. */
3631 void
3632 remove_insn (rtx insn)
3634 rtx next = NEXT_INSN (insn);
3635 rtx prev = PREV_INSN (insn);
3636 basic_block bb;
3638 if (prev)
3640 NEXT_INSN (prev) = next;
3641 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3643 rtx sequence = PATTERN (prev);
3644 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3647 else if (first_insn == insn)
3648 first_insn = next;
3649 else
3651 struct sequence_stack *stack = seq_stack;
3652 /* Scan all pending sequences too. */
3653 for (; stack; stack = stack->next)
3654 if (insn == stack->first)
3656 stack->first = next;
3657 break;
3660 gcc_assert (stack);
3663 if (next)
3665 PREV_INSN (next) = prev;
3666 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3667 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3669 else if (last_insn == insn)
3670 last_insn = prev;
3671 else
3673 struct sequence_stack *stack = seq_stack;
3674 /* Scan all pending sequences too. */
3675 for (; stack; stack = stack->next)
3676 if (insn == stack->last)
3678 stack->last = prev;
3679 break;
3682 gcc_assert (stack);
3684 if (!BARRIER_P (insn)
3685 && (bb = BLOCK_FOR_INSN (insn)))
3687 if (INSN_P (insn))
3688 bb->flags |= BB_DIRTY;
3689 if (BB_HEAD (bb) == insn)
3691 /* Never ever delete the basic block note without deleting whole
3692 basic block. */
3693 gcc_assert (!NOTE_P (insn));
3694 BB_HEAD (bb) = next;
3696 if (BB_END (bb) == insn)
3697 BB_END (bb) = prev;
3701 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3703 void
3704 add_function_usage_to (rtx call_insn, rtx call_fusage)
3706 gcc_assert (call_insn && CALL_P (call_insn));
3708 /* Put the register usage information on the CALL. If there is already
3709 some usage information, put ours at the end. */
3710 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3712 rtx link;
3714 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3715 link = XEXP (link, 1))
3718 XEXP (link, 1) = call_fusage;
3720 else
3721 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3724 /* Delete all insns made since FROM.
3725 FROM becomes the new last instruction. */
3727 void
3728 delete_insns_since (rtx from)
3730 if (from == 0)
3731 first_insn = 0;
3732 else
3733 NEXT_INSN (from) = 0;
3734 last_insn = from;
3737 /* This function is deprecated, please use sequences instead.
3739 Move a consecutive bunch of insns to a different place in the chain.
3740 The insns to be moved are those between FROM and TO.
3741 They are moved to a new position after the insn AFTER.
3742 AFTER must not be FROM or TO or any insn in between.
3744 This function does not know about SEQUENCEs and hence should not be
3745 called after delay-slot filling has been done. */
3747 void
3748 reorder_insns_nobb (rtx from, rtx to, rtx after)
3750 /* Splice this bunch out of where it is now. */
3751 if (PREV_INSN (from))
3752 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3753 if (NEXT_INSN (to))
3754 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3755 if (last_insn == to)
3756 last_insn = PREV_INSN (from);
3757 if (first_insn == from)
3758 first_insn = NEXT_INSN (to);
3760 /* Make the new neighbors point to it and it to them. */
3761 if (NEXT_INSN (after))
3762 PREV_INSN (NEXT_INSN (after)) = to;
3764 NEXT_INSN (to) = NEXT_INSN (after);
3765 PREV_INSN (from) = after;
3766 NEXT_INSN (after) = from;
3767 if (after == last_insn)
3768 last_insn = to;
3771 /* Same as function above, but take care to update BB boundaries. */
3772 void
3773 reorder_insns (rtx from, rtx to, rtx after)
3775 rtx prev = PREV_INSN (from);
3776 basic_block bb, bb2;
3778 reorder_insns_nobb (from, to, after);
3780 if (!BARRIER_P (after)
3781 && (bb = BLOCK_FOR_INSN (after)))
3783 rtx x;
3784 bb->flags |= BB_DIRTY;
3786 if (!BARRIER_P (from)
3787 && (bb2 = BLOCK_FOR_INSN (from)))
3789 if (BB_END (bb2) == to)
3790 BB_END (bb2) = prev;
3791 bb2->flags |= BB_DIRTY;
3794 if (BB_END (bb) == after)
3795 BB_END (bb) = to;
3797 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3798 if (!BARRIER_P (x))
3799 set_block_for_insn (x, bb);
3803 /* Return the line note insn preceding INSN. */
3805 static rtx
3806 find_line_note (rtx insn)
3808 if (no_line_numbers)
3809 return 0;
3811 for (; insn; insn = PREV_INSN (insn))
3812 if (NOTE_P (insn)
3813 && NOTE_LINE_NUMBER (insn) >= 0)
3814 break;
3816 return insn;
3819 /* Remove unnecessary notes from the instruction stream. */
3821 void
3822 remove_unnecessary_notes (void)
3824 rtx block_stack = NULL_RTX;
3825 rtx eh_stack = NULL_RTX;
3826 rtx insn;
3827 rtx next;
3828 rtx tmp;
3830 /* We must not remove the first instruction in the function because
3831 the compiler depends on the first instruction being a note. */
3832 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3834 /* Remember what's next. */
3835 next = NEXT_INSN (insn);
3837 /* We're only interested in notes. */
3838 if (!NOTE_P (insn))
3839 continue;
3841 switch (NOTE_LINE_NUMBER (insn))
3843 case NOTE_INSN_DELETED:
3844 remove_insn (insn);
3845 break;
3847 case NOTE_INSN_EH_REGION_BEG:
3848 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3849 break;
3851 case NOTE_INSN_EH_REGION_END:
3852 /* Too many end notes. */
3853 gcc_assert (eh_stack);
3854 /* Mismatched nesting. */
3855 gcc_assert (NOTE_EH_HANDLER (XEXP (eh_stack, 0))
3856 == NOTE_EH_HANDLER (insn));
3857 tmp = eh_stack;
3858 eh_stack = XEXP (eh_stack, 1);
3859 free_INSN_LIST_node (tmp);
3860 break;
3862 case NOTE_INSN_BLOCK_BEG:
3863 /* By now, all notes indicating lexical blocks should have
3864 NOTE_BLOCK filled in. */
3865 gcc_assert (NOTE_BLOCK (insn));
3866 block_stack = alloc_INSN_LIST (insn, block_stack);
3867 break;
3869 case NOTE_INSN_BLOCK_END:
3870 /* Too many end notes. */
3871 gcc_assert (block_stack);
3872 /* Mismatched nesting. */
3873 gcc_assert (NOTE_BLOCK (XEXP (block_stack, 0)) == NOTE_BLOCK (insn));
3874 tmp = block_stack;
3875 block_stack = XEXP (block_stack, 1);
3876 free_INSN_LIST_node (tmp);
3878 /* Scan back to see if there are any non-note instructions
3879 between INSN and the beginning of this block. If not,
3880 then there is no PC range in the generated code that will
3881 actually be in this block, so there's no point in
3882 remembering the existence of the block. */
3883 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
3885 /* This block contains a real instruction. Note that we
3886 don't include labels; if the only thing in the block
3887 is a label, then there are still no PC values that
3888 lie within the block. */
3889 if (INSN_P (tmp))
3890 break;
3892 /* We're only interested in NOTEs. */
3893 if (!NOTE_P (tmp))
3894 continue;
3896 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
3898 /* We just verified that this BLOCK matches us with
3899 the block_stack check above. Never delete the
3900 BLOCK for the outermost scope of the function; we
3901 can refer to names from that scope even if the
3902 block notes are messed up. */
3903 if (! is_body_block (NOTE_BLOCK (insn))
3904 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
3906 remove_insn (tmp);
3907 remove_insn (insn);
3909 break;
3911 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
3912 /* There's a nested block. We need to leave the
3913 current block in place since otherwise the debugger
3914 wouldn't be able to show symbols from our block in
3915 the nested block. */
3916 break;
3921 /* Too many begin notes. */
3922 gcc_assert (!block_stack && !eh_stack);
3926 /* Emit insn(s) of given code and pattern
3927 at a specified place within the doubly-linked list.
3929 All of the emit_foo global entry points accept an object
3930 X which is either an insn list or a PATTERN of a single
3931 instruction.
3933 There are thus a few canonical ways to generate code and
3934 emit it at a specific place in the instruction stream. For
3935 example, consider the instruction named SPOT and the fact that
3936 we would like to emit some instructions before SPOT. We might
3937 do it like this:
3939 start_sequence ();
3940 ... emit the new instructions ...
3941 insns_head = get_insns ();
3942 end_sequence ();
3944 emit_insn_before (insns_head, SPOT);
3946 It used to be common to generate SEQUENCE rtl instead, but that
3947 is a relic of the past which no longer occurs. The reason is that
3948 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3949 generated would almost certainly die right after it was created. */
3951 /* Make X be output before the instruction BEFORE. */
3954 emit_insn_before_noloc (rtx x, rtx before)
3956 rtx last = before;
3957 rtx insn;
3959 gcc_assert (before);
3961 if (x == NULL_RTX)
3962 return last;
3964 switch (GET_CODE (x))
3966 case INSN:
3967 case JUMP_INSN:
3968 case CALL_INSN:
3969 case CODE_LABEL:
3970 case BARRIER:
3971 case NOTE:
3972 insn = x;
3973 while (insn)
3975 rtx next = NEXT_INSN (insn);
3976 add_insn_before (insn, before);
3977 last = insn;
3978 insn = next;
3980 break;
3982 #ifdef ENABLE_RTL_CHECKING
3983 case SEQUENCE:
3984 gcc_unreachable ();
3985 break;
3986 #endif
3988 default:
3989 last = make_insn_raw (x);
3990 add_insn_before (last, before);
3991 break;
3994 return last;
3997 /* Make an instruction with body X and code JUMP_INSN
3998 and output it before the instruction BEFORE. */
4001 emit_jump_insn_before_noloc (rtx x, rtx before)
4003 rtx insn, last = NULL_RTX;
4005 gcc_assert (before);
4007 switch (GET_CODE (x))
4009 case INSN:
4010 case JUMP_INSN:
4011 case CALL_INSN:
4012 case CODE_LABEL:
4013 case BARRIER:
4014 case NOTE:
4015 insn = x;
4016 while (insn)
4018 rtx next = NEXT_INSN (insn);
4019 add_insn_before (insn, before);
4020 last = insn;
4021 insn = next;
4023 break;
4025 #ifdef ENABLE_RTL_CHECKING
4026 case SEQUENCE:
4027 gcc_unreachable ();
4028 break;
4029 #endif
4031 default:
4032 last = make_jump_insn_raw (x);
4033 add_insn_before (last, before);
4034 break;
4037 return last;
4040 /* Make an instruction with body X and code CALL_INSN
4041 and output it before the instruction BEFORE. */
4044 emit_call_insn_before_noloc (rtx x, rtx before)
4046 rtx last = NULL_RTX, insn;
4048 gcc_assert (before);
4050 switch (GET_CODE (x))
4052 case INSN:
4053 case JUMP_INSN:
4054 case CALL_INSN:
4055 case CODE_LABEL:
4056 case BARRIER:
4057 case NOTE:
4058 insn = x;
4059 while (insn)
4061 rtx next = NEXT_INSN (insn);
4062 add_insn_before (insn, before);
4063 last = insn;
4064 insn = next;
4066 break;
4068 #ifdef ENABLE_RTL_CHECKING
4069 case SEQUENCE:
4070 gcc_unreachable ();
4071 break;
4072 #endif
4074 default:
4075 last = make_call_insn_raw (x);
4076 add_insn_before (last, before);
4077 break;
4080 return last;
4083 /* Make an insn of code BARRIER
4084 and output it before the insn BEFORE. */
4087 emit_barrier_before (rtx before)
4089 rtx insn = rtx_alloc (BARRIER);
4091 INSN_UID (insn) = cur_insn_uid++;
4093 add_insn_before (insn, before);
4094 return insn;
4097 /* Emit the label LABEL before the insn BEFORE. */
4100 emit_label_before (rtx label, rtx before)
4102 /* This can be called twice for the same label as a result of the
4103 confusion that follows a syntax error! So make it harmless. */
4104 if (INSN_UID (label) == 0)
4106 INSN_UID (label) = cur_insn_uid++;
4107 add_insn_before (label, before);
4110 return label;
4113 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4116 emit_note_before (int subtype, rtx before)
4118 rtx note = rtx_alloc (NOTE);
4119 INSN_UID (note) = cur_insn_uid++;
4120 #ifndef USE_MAPPED_LOCATION
4121 NOTE_SOURCE_FILE (note) = 0;
4122 #endif
4123 NOTE_LINE_NUMBER (note) = subtype;
4124 BLOCK_FOR_INSN (note) = NULL;
4126 add_insn_before (note, before);
4127 return note;
4130 /* Helper for emit_insn_after, handles lists of instructions
4131 efficiently. */
4133 static rtx emit_insn_after_1 (rtx, rtx);
4135 static rtx
4136 emit_insn_after_1 (rtx first, rtx after)
4138 rtx last;
4139 rtx after_after;
4140 basic_block bb;
4142 if (!BARRIER_P (after)
4143 && (bb = BLOCK_FOR_INSN (after)))
4145 bb->flags |= BB_DIRTY;
4146 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4147 if (!BARRIER_P (last))
4148 set_block_for_insn (last, bb);
4149 if (!BARRIER_P (last))
4150 set_block_for_insn (last, bb);
4151 if (BB_END (bb) == after)
4152 BB_END (bb) = last;
4154 else
4155 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4156 continue;
4158 after_after = NEXT_INSN (after);
4160 NEXT_INSN (after) = first;
4161 PREV_INSN (first) = after;
4162 NEXT_INSN (last) = after_after;
4163 if (after_after)
4164 PREV_INSN (after_after) = last;
4166 if (after == last_insn)
4167 last_insn = last;
4168 return last;
4171 /* Make X be output after the insn AFTER. */
4174 emit_insn_after_noloc (rtx x, rtx after)
4176 rtx last = after;
4178 gcc_assert (after);
4180 if (x == NULL_RTX)
4181 return last;
4183 switch (GET_CODE (x))
4185 case INSN:
4186 case JUMP_INSN:
4187 case CALL_INSN:
4188 case CODE_LABEL:
4189 case BARRIER:
4190 case NOTE:
4191 last = emit_insn_after_1 (x, after);
4192 break;
4194 #ifdef ENABLE_RTL_CHECKING
4195 case SEQUENCE:
4196 gcc_unreachable ();
4197 break;
4198 #endif
4200 default:
4201 last = make_insn_raw (x);
4202 add_insn_after (last, after);
4203 break;
4206 return last;
4209 /* Similar to emit_insn_after, except that line notes are to be inserted so
4210 as to act as if this insn were at FROM. */
4212 void
4213 emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
4215 rtx from_line = find_line_note (from);
4216 rtx after_line = find_line_note (after);
4217 rtx insn = emit_insn_after (x, after);
4219 if (from_line)
4220 emit_note_copy_after (from_line, after);
4222 if (after_line)
4223 emit_note_copy_after (after_line, insn);
4226 /* Make an insn of code JUMP_INSN with body X
4227 and output it after the insn AFTER. */
4230 emit_jump_insn_after_noloc (rtx x, rtx after)
4232 rtx last;
4234 gcc_assert (after);
4236 switch (GET_CODE (x))
4238 case INSN:
4239 case JUMP_INSN:
4240 case CALL_INSN:
4241 case CODE_LABEL:
4242 case BARRIER:
4243 case NOTE:
4244 last = emit_insn_after_1 (x, after);
4245 break;
4247 #ifdef ENABLE_RTL_CHECKING
4248 case SEQUENCE:
4249 gcc_unreachable ();
4250 break;
4251 #endif
4253 default:
4254 last = make_jump_insn_raw (x);
4255 add_insn_after (last, after);
4256 break;
4259 return last;
4262 /* Make an instruction with body X and code CALL_INSN
4263 and output it after the instruction AFTER. */
4266 emit_call_insn_after_noloc (rtx x, rtx after)
4268 rtx last;
4270 gcc_assert (after);
4272 switch (GET_CODE (x))
4274 case INSN:
4275 case JUMP_INSN:
4276 case CALL_INSN:
4277 case CODE_LABEL:
4278 case BARRIER:
4279 case NOTE:
4280 last = emit_insn_after_1 (x, after);
4281 break;
4283 #ifdef ENABLE_RTL_CHECKING
4284 case SEQUENCE:
4285 gcc_unreachable ();
4286 break;
4287 #endif
4289 default:
4290 last = make_call_insn_raw (x);
4291 add_insn_after (last, after);
4292 break;
4295 return last;
4298 /* Make an insn of code BARRIER
4299 and output it after the insn AFTER. */
4302 emit_barrier_after (rtx after)
4304 rtx insn = rtx_alloc (BARRIER);
4306 INSN_UID (insn) = cur_insn_uid++;
4308 add_insn_after (insn, after);
4309 return insn;
4312 /* Emit the label LABEL after the insn AFTER. */
4315 emit_label_after (rtx label, rtx after)
4317 /* This can be called twice for the same label
4318 as a result of the confusion that follows a syntax error!
4319 So make it harmless. */
4320 if (INSN_UID (label) == 0)
4322 INSN_UID (label) = cur_insn_uid++;
4323 add_insn_after (label, after);
4326 return label;
4329 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4332 emit_note_after (int subtype, rtx after)
4334 rtx note = rtx_alloc (NOTE);
4335 INSN_UID (note) = cur_insn_uid++;
4336 #ifndef USE_MAPPED_LOCATION
4337 NOTE_SOURCE_FILE (note) = 0;
4338 #endif
4339 NOTE_LINE_NUMBER (note) = subtype;
4340 BLOCK_FOR_INSN (note) = NULL;
4341 add_insn_after (note, after);
4342 return note;
4345 /* Emit a copy of note ORIG after the insn AFTER. */
4348 emit_note_copy_after (rtx orig, rtx after)
4350 rtx note;
4352 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4354 cur_insn_uid++;
4355 return 0;
4358 note = rtx_alloc (NOTE);
4359 INSN_UID (note) = cur_insn_uid++;
4360 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4361 NOTE_DATA (note) = NOTE_DATA (orig);
4362 BLOCK_FOR_INSN (note) = NULL;
4363 add_insn_after (note, after);
4364 return note;
4367 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4369 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4371 rtx last = emit_insn_after_noloc (pattern, after);
4373 if (pattern == NULL_RTX || !loc)
4374 return last;
4376 after = NEXT_INSN (after);
4377 while (1)
4379 if (active_insn_p (after) && !INSN_LOCATOR (after))
4380 INSN_LOCATOR (after) = loc;
4381 if (after == last)
4382 break;
4383 after = NEXT_INSN (after);
4385 return last;
4388 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4390 emit_insn_after (rtx pattern, rtx after)
4392 if (INSN_P (after))
4393 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4394 else
4395 return emit_insn_after_noloc (pattern, after);
4398 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4400 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4402 rtx last = emit_jump_insn_after_noloc (pattern, after);
4404 if (pattern == NULL_RTX || !loc)
4405 return last;
4407 after = NEXT_INSN (after);
4408 while (1)
4410 if (active_insn_p (after) && !INSN_LOCATOR (after))
4411 INSN_LOCATOR (after) = loc;
4412 if (after == last)
4413 break;
4414 after = NEXT_INSN (after);
4416 return last;
4419 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4421 emit_jump_insn_after (rtx pattern, rtx after)
4423 if (INSN_P (after))
4424 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4425 else
4426 return emit_jump_insn_after_noloc (pattern, after);
4429 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4431 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4433 rtx last = emit_call_insn_after_noloc (pattern, after);
4435 if (pattern == NULL_RTX || !loc)
4436 return last;
4438 after = NEXT_INSN (after);
4439 while (1)
4441 if (active_insn_p (after) && !INSN_LOCATOR (after))
4442 INSN_LOCATOR (after) = loc;
4443 if (after == last)
4444 break;
4445 after = NEXT_INSN (after);
4447 return last;
4450 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4452 emit_call_insn_after (rtx pattern, rtx after)
4454 if (INSN_P (after))
4455 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4456 else
4457 return emit_call_insn_after_noloc (pattern, after);
4460 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4462 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4464 rtx first = PREV_INSN (before);
4465 rtx last = emit_insn_before_noloc (pattern, before);
4467 if (pattern == NULL_RTX || !loc)
4468 return last;
4470 first = NEXT_INSN (first);
4471 while (1)
4473 if (active_insn_p (first) && !INSN_LOCATOR (first))
4474 INSN_LOCATOR (first) = loc;
4475 if (first == last)
4476 break;
4477 first = NEXT_INSN (first);
4479 return last;
4482 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4484 emit_insn_before (rtx pattern, rtx before)
4486 if (INSN_P (before))
4487 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4488 else
4489 return emit_insn_before_noloc (pattern, before);
4492 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4494 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4496 rtx first = PREV_INSN (before);
4497 rtx last = emit_jump_insn_before_noloc (pattern, before);
4499 if (pattern == NULL_RTX)
4500 return last;
4502 first = NEXT_INSN (first);
4503 while (1)
4505 if (active_insn_p (first) && !INSN_LOCATOR (first))
4506 INSN_LOCATOR (first) = loc;
4507 if (first == last)
4508 break;
4509 first = NEXT_INSN (first);
4511 return last;
4514 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4516 emit_jump_insn_before (rtx pattern, rtx before)
4518 if (INSN_P (before))
4519 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4520 else
4521 return emit_jump_insn_before_noloc (pattern, before);
4524 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4526 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4528 rtx first = PREV_INSN (before);
4529 rtx last = emit_call_insn_before_noloc (pattern, before);
4531 if (pattern == NULL_RTX)
4532 return last;
4534 first = NEXT_INSN (first);
4535 while (1)
4537 if (active_insn_p (first) && !INSN_LOCATOR (first))
4538 INSN_LOCATOR (first) = loc;
4539 if (first == last)
4540 break;
4541 first = NEXT_INSN (first);
4543 return last;
4546 /* like emit_call_insn_before_noloc,
4547 but set insn_locator according to before. */
4549 emit_call_insn_before (rtx pattern, rtx before)
4551 if (INSN_P (before))
4552 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4553 else
4554 return emit_call_insn_before_noloc (pattern, before);
4557 /* Take X and emit it at the end of the doubly-linked
4558 INSN list.
4560 Returns the last insn emitted. */
4563 emit_insn (rtx x)
4565 rtx last = last_insn;
4566 rtx insn;
4568 if (x == NULL_RTX)
4569 return last;
4571 switch (GET_CODE (x))
4573 case INSN:
4574 case JUMP_INSN:
4575 case CALL_INSN:
4576 case CODE_LABEL:
4577 case BARRIER:
4578 case NOTE:
4579 insn = x;
4580 while (insn)
4582 rtx next = NEXT_INSN (insn);
4583 add_insn (insn);
4584 last = insn;
4585 insn = next;
4587 break;
4589 #ifdef ENABLE_RTL_CHECKING
4590 case SEQUENCE:
4591 gcc_unreachable ();
4592 break;
4593 #endif
4595 default:
4596 last = make_insn_raw (x);
4597 add_insn (last);
4598 break;
4601 return last;
4604 /* Make an insn of code JUMP_INSN with pattern X
4605 and add it to the end of the doubly-linked list. */
4608 emit_jump_insn (rtx x)
4610 rtx last = NULL_RTX, insn;
4612 switch (GET_CODE (x))
4614 case INSN:
4615 case JUMP_INSN:
4616 case CALL_INSN:
4617 case CODE_LABEL:
4618 case BARRIER:
4619 case NOTE:
4620 insn = x;
4621 while (insn)
4623 rtx next = NEXT_INSN (insn);
4624 add_insn (insn);
4625 last = insn;
4626 insn = next;
4628 break;
4630 #ifdef ENABLE_RTL_CHECKING
4631 case SEQUENCE:
4632 gcc_unreachable ();
4633 break;
4634 #endif
4636 default:
4637 last = make_jump_insn_raw (x);
4638 add_insn (last);
4639 break;
4642 return last;
4645 /* Make an insn of code CALL_INSN with pattern X
4646 and add it to the end of the doubly-linked list. */
4649 emit_call_insn (rtx x)
4651 rtx insn;
4653 switch (GET_CODE (x))
4655 case INSN:
4656 case JUMP_INSN:
4657 case CALL_INSN:
4658 case CODE_LABEL:
4659 case BARRIER:
4660 case NOTE:
4661 insn = emit_insn (x);
4662 break;
4664 #ifdef ENABLE_RTL_CHECKING
4665 case SEQUENCE:
4666 gcc_unreachable ();
4667 break;
4668 #endif
4670 default:
4671 insn = make_call_insn_raw (x);
4672 add_insn (insn);
4673 break;
4676 return insn;
4679 /* Add the label LABEL to the end of the doubly-linked list. */
4682 emit_label (rtx label)
4684 /* This can be called twice for the same label
4685 as a result of the confusion that follows a syntax error!
4686 So make it harmless. */
4687 if (INSN_UID (label) == 0)
4689 INSN_UID (label) = cur_insn_uid++;
4690 add_insn (label);
4692 return label;
4695 /* Make an insn of code BARRIER
4696 and add it to the end of the doubly-linked list. */
4699 emit_barrier (void)
4701 rtx barrier = rtx_alloc (BARRIER);
4702 INSN_UID (barrier) = cur_insn_uid++;
4703 add_insn (barrier);
4704 return barrier;
4707 /* Make line numbering NOTE insn for LOCATION add it to the end
4708 of the doubly-linked list, but only if line-numbers are desired for
4709 debugging info and it doesn't match the previous one. */
4712 emit_line_note (location_t location)
4714 rtx note;
4716 #ifdef USE_MAPPED_LOCATION
4717 if (location == last_location)
4718 return NULL_RTX;
4719 #else
4720 if (location.file && last_location.file
4721 && !strcmp (location.file, last_location.file)
4722 && location.line == last_location.line)
4723 return NULL_RTX;
4724 #endif
4725 last_location = location;
4727 if (no_line_numbers)
4729 cur_insn_uid++;
4730 return NULL_RTX;
4733 #ifdef USE_MAPPED_LOCATION
4734 note = emit_note ((int) location);
4735 #else
4736 note = emit_note (location.line);
4737 NOTE_SOURCE_FILE (note) = location.file;
4738 #endif
4740 return note;
4743 /* Emit a copy of note ORIG. */
4746 emit_note_copy (rtx orig)
4748 rtx note;
4750 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4752 cur_insn_uid++;
4753 return NULL_RTX;
4756 note = rtx_alloc (NOTE);
4758 INSN_UID (note) = cur_insn_uid++;
4759 NOTE_DATA (note) = NOTE_DATA (orig);
4760 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4761 BLOCK_FOR_INSN (note) = NULL;
4762 add_insn (note);
4764 return note;
4767 /* Make an insn of code NOTE or type NOTE_NO
4768 and add it to the end of the doubly-linked list. */
4771 emit_note (int note_no)
4773 rtx note;
4775 note = rtx_alloc (NOTE);
4776 INSN_UID (note) = cur_insn_uid++;
4777 NOTE_LINE_NUMBER (note) = note_no;
4778 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4779 BLOCK_FOR_INSN (note) = NULL;
4780 add_insn (note);
4781 return note;
4784 /* Cause next statement to emit a line note even if the line number
4785 has not changed. */
4787 void
4788 force_next_line_note (void)
4790 #ifdef USE_MAPPED_LOCATION
4791 last_location = -1;
4792 #else
4793 last_location.line = -1;
4794 #endif
4797 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4798 note of this type already exists, remove it first. */
4801 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4803 rtx note = find_reg_note (insn, kind, NULL_RTX);
4805 switch (kind)
4807 case REG_EQUAL:
4808 case REG_EQUIV:
4809 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4810 has multiple sets (some callers assume single_set
4811 means the insn only has one set, when in fact it
4812 means the insn only has one * useful * set). */
4813 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4815 gcc_assert (!note);
4816 return NULL_RTX;
4819 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4820 It serves no useful purpose and breaks eliminate_regs. */
4821 if (GET_CODE (datum) == ASM_OPERANDS)
4822 return NULL_RTX;
4823 break;
4825 default:
4826 break;
4829 if (note)
4831 XEXP (note, 0) = datum;
4832 return note;
4835 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4836 return REG_NOTES (insn);
4839 /* Return an indication of which type of insn should have X as a body.
4840 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4842 enum rtx_code
4843 classify_insn (rtx x)
4845 if (LABEL_P (x))
4846 return CODE_LABEL;
4847 if (GET_CODE (x) == CALL)
4848 return CALL_INSN;
4849 if (GET_CODE (x) == RETURN)
4850 return JUMP_INSN;
4851 if (GET_CODE (x) == SET)
4853 if (SET_DEST (x) == pc_rtx)
4854 return JUMP_INSN;
4855 else if (GET_CODE (SET_SRC (x)) == CALL)
4856 return CALL_INSN;
4857 else
4858 return INSN;
4860 if (GET_CODE (x) == PARALLEL)
4862 int j;
4863 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4864 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4865 return CALL_INSN;
4866 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4867 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4868 return JUMP_INSN;
4869 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4870 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4871 return CALL_INSN;
4873 return INSN;
4876 /* Emit the rtl pattern X as an appropriate kind of insn.
4877 If X is a label, it is simply added into the insn chain. */
4880 emit (rtx x)
4882 enum rtx_code code = classify_insn (x);
4884 switch (code)
4886 case CODE_LABEL:
4887 return emit_label (x);
4888 case INSN:
4889 return emit_insn (x);
4890 case JUMP_INSN:
4892 rtx insn = emit_jump_insn (x);
4893 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4894 return emit_barrier ();
4895 return insn;
4897 case CALL_INSN:
4898 return emit_call_insn (x);
4899 default:
4900 gcc_unreachable ();
4904 /* Space for free sequence stack entries. */
4905 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4907 /* Begin emitting insns to a sequence. If this sequence will contain
4908 something that might cause the compiler to pop arguments to function
4909 calls (because those pops have previously been deferred; see
4910 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4911 before calling this function. That will ensure that the deferred
4912 pops are not accidentally emitted in the middle of this sequence. */
4914 void
4915 start_sequence (void)
4917 struct sequence_stack *tem;
4919 if (free_sequence_stack != NULL)
4921 tem = free_sequence_stack;
4922 free_sequence_stack = tem->next;
4924 else
4925 tem = ggc_alloc (sizeof (struct sequence_stack));
4927 tem->next = seq_stack;
4928 tem->first = first_insn;
4929 tem->last = last_insn;
4931 seq_stack = tem;
4933 first_insn = 0;
4934 last_insn = 0;
4937 /* Set up the insn chain starting with FIRST as the current sequence,
4938 saving the previously current one. See the documentation for
4939 start_sequence for more information about how to use this function. */
4941 void
4942 push_to_sequence (rtx first)
4944 rtx last;
4946 start_sequence ();
4948 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4950 first_insn = first;
4951 last_insn = last;
4954 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4956 void
4957 push_to_full_sequence (rtx first, rtx last)
4959 start_sequence ();
4960 first_insn = first;
4961 last_insn = last;
4962 /* We really should have the end of the insn chain here. */
4963 gcc_assert (!last || !NEXT_INSN (last));
4966 /* Set up the outer-level insn chain
4967 as the current sequence, saving the previously current one. */
4969 void
4970 push_topmost_sequence (void)
4972 struct sequence_stack *stack, *top = NULL;
4974 start_sequence ();
4976 for (stack = seq_stack; stack; stack = stack->next)
4977 top = stack;
4979 first_insn = top->first;
4980 last_insn = top->last;
4983 /* After emitting to the outer-level insn chain, update the outer-level
4984 insn chain, and restore the previous saved state. */
4986 void
4987 pop_topmost_sequence (void)
4989 struct sequence_stack *stack, *top = NULL;
4991 for (stack = seq_stack; stack; stack = stack->next)
4992 top = stack;
4994 top->first = first_insn;
4995 top->last = last_insn;
4997 end_sequence ();
5000 /* After emitting to a sequence, restore previous saved state.
5002 To get the contents of the sequence just made, you must call
5003 `get_insns' *before* calling here.
5005 If the compiler might have deferred popping arguments while
5006 generating this sequence, and this sequence will not be immediately
5007 inserted into the instruction stream, use do_pending_stack_adjust
5008 before calling get_insns. That will ensure that the deferred
5009 pops are inserted into this sequence, and not into some random
5010 location in the instruction stream. See INHIBIT_DEFER_POP for more
5011 information about deferred popping of arguments. */
5013 void
5014 end_sequence (void)
5016 struct sequence_stack *tem = seq_stack;
5018 first_insn = tem->first;
5019 last_insn = tem->last;
5020 seq_stack = tem->next;
5022 memset (tem, 0, sizeof (*tem));
5023 tem->next = free_sequence_stack;
5024 free_sequence_stack = tem;
5027 /* Return 1 if currently emitting into a sequence. */
5030 in_sequence_p (void)
5032 return seq_stack != 0;
5035 /* Put the various virtual registers into REGNO_REG_RTX. */
5037 void
5038 init_virtual_regs (struct emit_status *es)
5040 rtx *ptr = es->x_regno_reg_rtx;
5041 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5042 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5043 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5044 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5045 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5049 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5050 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5051 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5052 static int copy_insn_n_scratches;
5054 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5055 copied an ASM_OPERANDS.
5056 In that case, it is the original input-operand vector. */
5057 static rtvec orig_asm_operands_vector;
5059 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5060 copied an ASM_OPERANDS.
5061 In that case, it is the copied input-operand vector. */
5062 static rtvec copy_asm_operands_vector;
5064 /* Likewise for the constraints vector. */
5065 static rtvec orig_asm_constraints_vector;
5066 static rtvec copy_asm_constraints_vector;
5068 /* Recursively create a new copy of an rtx for copy_insn.
5069 This function differs from copy_rtx in that it handles SCRATCHes and
5070 ASM_OPERANDs properly.
5071 Normally, this function is not used directly; use copy_insn as front end.
5072 However, you could first copy an insn pattern with copy_insn and then use
5073 this function afterwards to properly copy any REG_NOTEs containing
5074 SCRATCHes. */
5077 copy_insn_1 (rtx orig)
5079 rtx copy;
5080 int i, j;
5081 RTX_CODE code;
5082 const char *format_ptr;
5084 code = GET_CODE (orig);
5086 switch (code)
5088 case REG:
5089 case CONST_INT:
5090 case CONST_DOUBLE:
5091 case CONST_VECTOR:
5092 case SYMBOL_REF:
5093 case CODE_LABEL:
5094 case PC:
5095 case CC0:
5096 return orig;
5097 case CLOBBER:
5098 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5099 return orig;
5100 break;
5102 case SCRATCH:
5103 for (i = 0; i < copy_insn_n_scratches; i++)
5104 if (copy_insn_scratch_in[i] == orig)
5105 return copy_insn_scratch_out[i];
5106 break;
5108 case CONST:
5109 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5110 a LABEL_REF, it isn't sharable. */
5111 if (GET_CODE (XEXP (orig, 0)) == PLUS
5112 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5113 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5114 return orig;
5115 break;
5117 /* A MEM with a constant address is not sharable. The problem is that
5118 the constant address may need to be reloaded. If the mem is shared,
5119 then reloading one copy of this mem will cause all copies to appear
5120 to have been reloaded. */
5122 default:
5123 break;
5126 copy = rtx_alloc (code);
5128 /* Copy the various flags, and other information. We assume that
5129 all fields need copying, and then clear the fields that should
5130 not be copied. That is the sensible default behavior, and forces
5131 us to explicitly document why we are *not* copying a flag. */
5132 memcpy (copy, orig, RTX_HDR_SIZE);
5134 /* We do not copy the USED flag, which is used as a mark bit during
5135 walks over the RTL. */
5136 RTX_FLAG (copy, used) = 0;
5138 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5139 if (INSN_P (orig))
5141 RTX_FLAG (copy, jump) = 0;
5142 RTX_FLAG (copy, call) = 0;
5143 RTX_FLAG (copy, frame_related) = 0;
5146 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5148 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5150 copy->u.fld[i] = orig->u.fld[i];
5151 switch (*format_ptr++)
5153 case 'e':
5154 if (XEXP (orig, i) != NULL)
5155 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5156 break;
5158 case 'E':
5159 case 'V':
5160 if (XVEC (orig, i) == orig_asm_constraints_vector)
5161 XVEC (copy, i) = copy_asm_constraints_vector;
5162 else if (XVEC (orig, i) == orig_asm_operands_vector)
5163 XVEC (copy, i) = copy_asm_operands_vector;
5164 else if (XVEC (orig, i) != NULL)
5166 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5167 for (j = 0; j < XVECLEN (copy, i); j++)
5168 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5170 break;
5172 case 't':
5173 case 'w':
5174 case 'i':
5175 case 's':
5176 case 'S':
5177 case 'u':
5178 case '0':
5179 /* These are left unchanged. */
5180 break;
5182 default:
5183 gcc_unreachable ();
5187 if (code == SCRATCH)
5189 i = copy_insn_n_scratches++;
5190 gcc_assert (i < MAX_RECOG_OPERANDS);
5191 copy_insn_scratch_in[i] = orig;
5192 copy_insn_scratch_out[i] = copy;
5194 else if (code == ASM_OPERANDS)
5196 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5197 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5198 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5199 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5202 return copy;
5205 /* Create a new copy of an rtx.
5206 This function differs from copy_rtx in that it handles SCRATCHes and
5207 ASM_OPERANDs properly.
5208 INSN doesn't really have to be a full INSN; it could be just the
5209 pattern. */
5211 copy_insn (rtx insn)
5213 copy_insn_n_scratches = 0;
5214 orig_asm_operands_vector = 0;
5215 orig_asm_constraints_vector = 0;
5216 copy_asm_operands_vector = 0;
5217 copy_asm_constraints_vector = 0;
5218 return copy_insn_1 (insn);
5221 /* Initialize data structures and variables in this file
5222 before generating rtl for each function. */
5224 void
5225 init_emit (void)
5227 struct function *f = cfun;
5229 f->emit = ggc_alloc (sizeof (struct emit_status));
5230 first_insn = NULL;
5231 last_insn = NULL;
5232 cur_insn_uid = 1;
5233 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5234 last_location = UNKNOWN_LOCATION;
5235 first_label_num = label_num;
5236 last_label_num = 0;
5237 seq_stack = NULL;
5239 /* Init the tables that describe all the pseudo regs. */
5241 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5243 f->emit->regno_pointer_align
5244 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5245 * sizeof (unsigned char));
5247 regno_reg_rtx
5248 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5250 /* Put copies of all the hard registers into regno_reg_rtx. */
5251 memcpy (regno_reg_rtx,
5252 static_regno_reg_rtx,
5253 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5255 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5256 init_virtual_regs (f->emit);
5258 /* Indicate that the virtual registers and stack locations are
5259 all pointers. */
5260 REG_POINTER (stack_pointer_rtx) = 1;
5261 REG_POINTER (frame_pointer_rtx) = 1;
5262 REG_POINTER (hard_frame_pointer_rtx) = 1;
5263 REG_POINTER (arg_pointer_rtx) = 1;
5265 REG_POINTER (virtual_incoming_args_rtx) = 1;
5266 REG_POINTER (virtual_stack_vars_rtx) = 1;
5267 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5268 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5269 REG_POINTER (virtual_cfa_rtx) = 1;
5271 #ifdef STACK_BOUNDARY
5272 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5273 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5274 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5275 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5277 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5278 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5279 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5280 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5281 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5282 #endif
5284 #ifdef INIT_EXPANDERS
5285 INIT_EXPANDERS;
5286 #endif
5289 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5291 static rtx
5292 gen_const_vector (enum machine_mode mode, int constant)
5294 rtx tem;
5295 rtvec v;
5296 int units, i;
5297 enum machine_mode inner;
5299 units = GET_MODE_NUNITS (mode);
5300 inner = GET_MODE_INNER (mode);
5302 v = rtvec_alloc (units);
5304 /* We need to call this function after we set the scalar const_tiny_rtx
5305 entries. */
5306 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5308 for (i = 0; i < units; ++i)
5309 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5311 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5312 return tem;
5315 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5316 all elements are zero, and the one vector when all elements are one. */
5318 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5320 enum machine_mode inner = GET_MODE_INNER (mode);
5321 int nunits = GET_MODE_NUNITS (mode);
5322 rtx x;
5323 int i;
5325 /* Check to see if all of the elements have the same value. */
5326 x = RTVEC_ELT (v, nunits - 1);
5327 for (i = nunits - 2; i >= 0; i--)
5328 if (RTVEC_ELT (v, i) != x)
5329 break;
5331 /* If the values are all the same, check to see if we can use one of the
5332 standard constant vectors. */
5333 if (i == -1)
5335 if (x == CONST0_RTX (inner))
5336 return CONST0_RTX (mode);
5337 else if (x == CONST1_RTX (inner))
5338 return CONST1_RTX (mode);
5341 return gen_rtx_raw_CONST_VECTOR (mode, v);
5344 /* Create some permanent unique rtl objects shared between all functions.
5345 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5347 void
5348 init_emit_once (int line_numbers)
5350 int i;
5351 enum machine_mode mode;
5352 enum machine_mode double_mode;
5354 /* We need reg_raw_mode, so initialize the modes now. */
5355 init_reg_modes_once ();
5357 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5358 tables. */
5359 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5360 const_int_htab_eq, NULL);
5362 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5363 const_double_htab_eq, NULL);
5365 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5366 mem_attrs_htab_eq, NULL);
5367 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5368 reg_attrs_htab_eq, NULL);
5370 no_line_numbers = ! line_numbers;
5372 /* Compute the word and byte modes. */
5374 byte_mode = VOIDmode;
5375 word_mode = VOIDmode;
5376 double_mode = VOIDmode;
5378 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5379 mode = GET_MODE_WIDER_MODE (mode))
5381 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5382 && byte_mode == VOIDmode)
5383 byte_mode = mode;
5385 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5386 && word_mode == VOIDmode)
5387 word_mode = mode;
5390 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5391 mode = GET_MODE_WIDER_MODE (mode))
5393 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5394 && double_mode == VOIDmode)
5395 double_mode = mode;
5398 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5400 /* Assign register numbers to the globally defined register rtx.
5401 This must be done at runtime because the register number field
5402 is in a union and some compilers can't initialize unions. */
5404 pc_rtx = gen_rtx_PC (VOIDmode);
5405 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5406 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5407 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5408 if (hard_frame_pointer_rtx == 0)
5409 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5410 HARD_FRAME_POINTER_REGNUM);
5411 if (arg_pointer_rtx == 0)
5412 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5413 virtual_incoming_args_rtx =
5414 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5415 virtual_stack_vars_rtx =
5416 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5417 virtual_stack_dynamic_rtx =
5418 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5419 virtual_outgoing_args_rtx =
5420 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5421 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5423 /* Initialize RTL for commonly used hard registers. These are
5424 copied into regno_reg_rtx as we begin to compile each function. */
5425 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5426 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5428 #ifdef INIT_EXPANDERS
5429 /* This is to initialize {init|mark|free}_machine_status before the first
5430 call to push_function_context_to. This is needed by the Chill front
5431 end which calls push_function_context_to before the first call to
5432 init_function_start. */
5433 INIT_EXPANDERS;
5434 #endif
5436 /* Create the unique rtx's for certain rtx codes and operand values. */
5438 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5439 tries to use these variables. */
5440 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5441 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5442 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5444 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5445 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5446 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5447 else
5448 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5450 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5451 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5452 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5453 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5454 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5455 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5456 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5458 dconsthalf = dconst1;
5459 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5461 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5463 /* Initialize mathematical constants for constant folding builtins.
5464 These constants need to be given to at least 160 bits precision. */
5465 real_from_string (&dconstpi,
5466 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5467 real_from_string (&dconste,
5468 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5470 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5472 REAL_VALUE_TYPE *r =
5473 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5475 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5476 mode = GET_MODE_WIDER_MODE (mode))
5477 const_tiny_rtx[i][(int) mode] =
5478 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5480 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5482 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5483 mode = GET_MODE_WIDER_MODE (mode))
5484 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5486 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5487 mode != VOIDmode;
5488 mode = GET_MODE_WIDER_MODE (mode))
5489 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5492 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5493 mode != VOIDmode;
5494 mode = GET_MODE_WIDER_MODE (mode))
5496 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5497 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5500 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5501 mode != VOIDmode;
5502 mode = GET_MODE_WIDER_MODE (mode))
5504 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5505 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5508 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5509 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5510 const_tiny_rtx[0][i] = const0_rtx;
5512 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5513 if (STORE_FLAG_VALUE == 1)
5514 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5516 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5517 return_address_pointer_rtx
5518 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5519 #endif
5521 #ifdef STATIC_CHAIN_REGNUM
5522 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5524 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5525 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5526 static_chain_incoming_rtx
5527 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5528 else
5529 #endif
5530 static_chain_incoming_rtx = static_chain_rtx;
5531 #endif
5533 #ifdef STATIC_CHAIN
5534 static_chain_rtx = STATIC_CHAIN;
5536 #ifdef STATIC_CHAIN_INCOMING
5537 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5538 #else
5539 static_chain_incoming_rtx = static_chain_rtx;
5540 #endif
5541 #endif
5543 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5544 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5547 /* Produce exact duplicate of insn INSN after AFTER.
5548 Care updating of libcall regions if present. */
5551 emit_copy_of_insn_after (rtx insn, rtx after)
5553 rtx new;
5554 rtx note1, note2, link;
5556 switch (GET_CODE (insn))
5558 case INSN:
5559 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5560 break;
5562 case JUMP_INSN:
5563 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5564 break;
5566 case CALL_INSN:
5567 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5568 if (CALL_INSN_FUNCTION_USAGE (insn))
5569 CALL_INSN_FUNCTION_USAGE (new)
5570 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5571 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5572 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5573 break;
5575 default:
5576 gcc_unreachable ();
5579 /* Update LABEL_NUSES. */
5580 mark_jump_label (PATTERN (new), new, 0);
5582 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5584 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5585 make them. */
5586 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5587 if (REG_NOTE_KIND (link) != REG_LABEL)
5589 if (GET_CODE (link) == EXPR_LIST)
5590 REG_NOTES (new)
5591 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5592 XEXP (link, 0),
5593 REG_NOTES (new)));
5594 else
5595 REG_NOTES (new)
5596 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5597 XEXP (link, 0),
5598 REG_NOTES (new)));
5601 /* Fix the libcall sequences. */
5602 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5604 rtx p = new;
5605 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5606 p = PREV_INSN (p);
5607 XEXP (note1, 0) = p;
5608 XEXP (note2, 0) = new;
5610 INSN_CODE (new) = INSN_CODE (insn);
5611 return new;
5614 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5616 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5618 if (hard_reg_clobbers[mode][regno])
5619 return hard_reg_clobbers[mode][regno];
5620 else
5621 return (hard_reg_clobbers[mode][regno] =
5622 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5625 #include "gt-emit-rtl.h"