2011-11-04 Tom de Vries <tom@codesourcery.com>
[official-gcc.git] / gcc / tree-ssa-tail-merge.c
blob17e7f374b05a1ec2b736dc6363908e32326344ed
1 /* Tail merging for gimple.
2 Copyright (C) 2011 Free Software Foundation, Inc.
3 Contributed by Tom de Vries (tom@codesourcery.com)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Pass overview.
24 MOTIVATIONAL EXAMPLE
26 gimple representation of gcc/testsuite/gcc.dg/pr43864.c at
28 hprofStartupp (charD.1 * outputFileNameD.2600, charD.1 * ctxD.2601)
30 struct FILED.1638 * fpD.2605;
31 charD.1 fileNameD.2604[1000];
32 intD.0 D.3915;
33 const charD.1 * restrict outputFileName.0D.3914;
35 # BLOCK 2 freq:10000
36 # PRED: ENTRY [100.0%] (fallthru,exec)
37 # PT = nonlocal { D.3926 } (restr)
38 outputFileName.0D.3914_3
39 = (const charD.1 * restrict) outputFileNameD.2600_2(D);
40 # .MEMD.3923_13 = VDEF <.MEMD.3923_12(D)>
41 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
42 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
43 sprintfD.759 (&fileNameD.2604, outputFileName.0D.3914_3);
44 # .MEMD.3923_14 = VDEF <.MEMD.3923_13>
45 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
46 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
47 D.3915_4 = accessD.2606 (&fileNameD.2604, 1);
48 if (D.3915_4 == 0)
49 goto <bb 3>;
50 else
51 goto <bb 4>;
52 # SUCC: 3 [10.0%] (true,exec) 4 [90.0%] (false,exec)
54 # BLOCK 3 freq:1000
55 # PRED: 2 [10.0%] (true,exec)
56 # .MEMD.3923_15 = VDEF <.MEMD.3923_14>
57 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
58 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
59 freeD.898 (ctxD.2601_5(D));
60 goto <bb 7>;
61 # SUCC: 7 [100.0%] (fallthru,exec)
63 # BLOCK 4 freq:9000
64 # PRED: 2 [90.0%] (false,exec)
65 # .MEMD.3923_16 = VDEF <.MEMD.3923_14>
66 # PT = nonlocal escaped
67 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
68 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
69 fpD.2605_8 = fopenD.1805 (&fileNameD.2604[0], 0B);
70 if (fpD.2605_8 == 0B)
71 goto <bb 5>;
72 else
73 goto <bb 6>;
74 # SUCC: 5 [1.9%] (true,exec) 6 [98.1%] (false,exec)
76 # BLOCK 5 freq:173
77 # PRED: 4 [1.9%] (true,exec)
78 # .MEMD.3923_17 = VDEF <.MEMD.3923_16>
79 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
80 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
81 freeD.898 (ctxD.2601_5(D));
82 goto <bb 7>;
83 # SUCC: 7 [100.0%] (fallthru,exec)
85 # BLOCK 6 freq:8827
86 # PRED: 4 [98.1%] (false,exec)
87 # .MEMD.3923_18 = VDEF <.MEMD.3923_16>
88 # USE = nonlocal null { fileNameD.2604 D.3926 } (restr)
89 # CLB = nonlocal null { fileNameD.2604 D.3926 } (restr)
90 fooD.2599 (outputFileNameD.2600_2(D), fpD.2605_8);
91 # SUCC: 7 [100.0%] (fallthru,exec)
93 # BLOCK 7 freq:10000
94 # PRED: 3 [100.0%] (fallthru,exec) 5 [100.0%] (fallthru,exec)
95 6 [100.0%] (fallthru,exec)
96 # PT = nonlocal null
98 # ctxD.2601_1 = PHI <0B(3), 0B(5), ctxD.2601_5(D)(6)>
99 # .MEMD.3923_11 = PHI <.MEMD.3923_15(3), .MEMD.3923_17(5),
100 .MEMD.3923_18(6)>
101 # VUSE <.MEMD.3923_11>
102 return ctxD.2601_1;
103 # SUCC: EXIT [100.0%]
106 bb 3 and bb 5 can be merged. The blocks have different predecessors, but the
107 same successors, and the same operations.
110 CONTEXT
112 A technique called tail merging (or cross jumping) can fix the example
113 above. For a block, we look for common code at the end (the tail) of the
114 predecessor blocks, and insert jumps from one block to the other.
115 The example is a special case for tail merging, in that 2 whole blocks
116 can be merged, rather than just the end parts of it.
117 We currently only focus on whole block merging, so in that sense
118 calling this pass tail merge is a bit of a misnomer.
120 We distinguish 2 kinds of situations in which blocks can be merged:
121 - same operations, same predecessors. The successor edges coming from one
122 block are redirected to come from the other block.
123 - same operations, same successors. The predecessor edges entering one block
124 are redirected to enter the other block. Note that this operation might
125 involve introducing phi operations.
127 For efficient implementation, we would like to value numbers the blocks, and
128 have a comparison operator that tells us whether the blocks are equal.
129 Besides being runtime efficient, block value numbering should also abstract
130 from irrelevant differences in order of operations, much like normal value
131 numbering abstracts from irrelevant order of operations.
133 For the first situation (same_operations, same predecessors), normal value
134 numbering fits well. We can calculate a block value number based on the
135 value numbers of the defs and vdefs.
137 For the second situation (same operations, same successors), this approach
138 doesn't work so well. We can illustrate this using the example. The calls
139 to free use different vdefs: MEMD.3923_16 and MEMD.3923_14, and these will
140 remain different in value numbering, since they represent different memory
141 states. So the resulting vdefs of the frees will be different in value
142 numbering, so the block value numbers will be different.
144 The reason why we call the blocks equal is not because they define the same
145 values, but because uses in the blocks use (possibly different) defs in the
146 same way. To be able to detect this efficiently, we need to do some kind of
147 reverse value numbering, meaning number the uses rather than the defs, and
148 calculate a block value number based on the value number of the uses.
149 Ideally, a block comparison operator will also indicate which phis are needed
150 to merge the blocks.
152 For the moment, we don't do block value numbering, but we do insn-by-insn
153 matching, using scc value numbers to match operations with results, and
154 structural comparison otherwise, while ignoring vop mismatches.
157 IMPLEMENTATION
159 1. The pass first determines all groups of blocks with the same successor
160 blocks.
161 2. Within each group, it tries to determine clusters of equal basic blocks.
162 3. The clusters are applied.
163 4. The same successor groups are updated.
164 5. This process is repeated from 2 onwards, until no more changes.
167 LIMITATIONS/TODO
169 - block only
170 - handles only 'same operations, same successors'.
171 It handles same predecessors as a special subcase though.
172 - does not implement the reverse value numbering and block value numbering.
173 - improve memory allocation: use garbage collected memory, obstacks,
174 allocpools where appropriate.
175 - no insertion of gimple_reg phis, We only introduce vop-phis.
176 - handle blocks with gimple_reg phi_nodes.
179 SWITCHES
181 - ftree-tail-merge. On at -O2. We may have to enable it only at -Os. */
183 #include "config.h"
184 #include "system.h"
185 #include "coretypes.h"
186 #include "tm.h"
187 #include "tree.h"
188 #include "tm_p.h"
189 #include "basic-block.h"
190 #include "output.h"
191 #include "flags.h"
192 #include "function.h"
193 #include "tree-flow.h"
194 #include "timevar.h"
195 #include "bitmap.h"
196 #include "tree-ssa-alias.h"
197 #include "params.h"
198 #include "tree-pretty-print.h"
199 #include "hashtab.h"
200 #include "gimple-pretty-print.h"
201 #include "tree-ssa-sccvn.h"
202 #include "tree-dump.h"
204 /* Describes a group of bbs with the same successors. The successor bbs are
205 cached in succs, and the successor edge flags are cached in succ_flags.
206 If a bb has the EDGE_TRUE/VALSE_VALUE flags swapped compared to succ_flags,
207 it's marked in inverse.
208 Additionally, the hash value for the struct is cached in hashval, and
209 in_worklist indicates whether it's currently part of worklist. */
211 struct same_succ_def
213 /* The bbs that have the same successor bbs. */
214 bitmap bbs;
215 /* The successor bbs. */
216 bitmap succs;
217 /* Indicates whether the EDGE_TRUE/FALSE_VALUEs of succ_flags are swapped for
218 bb. */
219 bitmap inverse;
220 /* The edge flags for each of the successor bbs. */
221 VEC (int, heap) *succ_flags;
222 /* Indicates whether the struct is currently in the worklist. */
223 bool in_worklist;
224 /* The hash value of the struct. */
225 hashval_t hashval;
227 typedef struct same_succ_def *same_succ;
228 typedef const struct same_succ_def *const_same_succ;
230 /* A group of bbs where 1 bb from bbs can replace the other bbs. */
232 struct bb_cluster_def
234 /* The bbs in the cluster. */
235 bitmap bbs;
236 /* The preds of the bbs in the cluster. */
237 bitmap preds;
238 /* Index in all_clusters vector. */
239 int index;
240 /* The bb to replace the cluster with. */
241 basic_block rep_bb;
243 typedef struct bb_cluster_def *bb_cluster;
244 typedef const struct bb_cluster_def *const_bb_cluster;
246 /* Per bb-info. */
248 struct aux_bb_info
250 /* The number of non-debug statements in the bb. */
251 int size;
252 /* The same_succ that this bb is a member of. */
253 same_succ bb_same_succ;
254 /* The cluster that this bb is a member of. */
255 bb_cluster cluster;
256 /* The vop state at the exit of a bb. This is shortlived data, used to
257 communicate data between update_block_by and update_vuses. */
258 tree vop_at_exit;
259 /* The bb that either contains or is dominated by the dependencies of the
260 bb. */
261 basic_block dep_bb;
264 /* Macros to access the fields of struct aux_bb_info. */
266 #define BB_SIZE(bb) (((struct aux_bb_info *)bb->aux)->size)
267 #define BB_SAME_SUCC(bb) (((struct aux_bb_info *)bb->aux)->bb_same_succ)
268 #define BB_CLUSTER(bb) (((struct aux_bb_info *)bb->aux)->cluster)
269 #define BB_VOP_AT_EXIT(bb) (((struct aux_bb_info *)bb->aux)->vop_at_exit)
270 #define BB_DEP_BB(bb) (((struct aux_bb_info *)bb->aux)->dep_bb)
272 /* VAL1 and VAL2 are either:
273 - uses in BB1 and BB2, or
274 - phi alternatives for BB1 and BB2.
275 Return true if the uses have the same gvn value. */
277 static bool
278 gvn_uses_equal (tree val1, tree val2)
280 gcc_checking_assert (val1 != NULL_TREE && val2 != NULL_TREE);
282 if (val1 == val2)
283 return true;
285 if (vn_valueize (val1) != vn_valueize (val2))
286 return false;
288 return ((TREE_CODE (val1) == SSA_NAME || CONSTANT_CLASS_P (val1))
289 && (TREE_CODE (val2) == SSA_NAME || CONSTANT_CLASS_P (val2)));
292 /* Prints E to FILE. */
294 static void
295 same_succ_print (FILE *file, const same_succ e)
297 unsigned int i;
298 bitmap_print (file, e->bbs, "bbs:", "\n");
299 bitmap_print (file, e->succs, "succs:", "\n");
300 bitmap_print (file, e->inverse, "inverse:", "\n");
301 fprintf (file, "flags:");
302 for (i = 0; i < VEC_length (int, e->succ_flags); ++i)
303 fprintf (file, " %x", VEC_index (int, e->succ_flags, i));
304 fprintf (file, "\n");
307 /* Prints same_succ VE to VFILE. */
309 static int
310 same_succ_print_traverse (void **ve, void *vfile)
312 const same_succ e = *((const same_succ *)ve);
313 FILE *file = ((FILE*)vfile);
314 same_succ_print (file, e);
315 return 1;
318 /* Update BB_DEP_BB (USE_BB), given a use of VAL in USE_BB. */
320 static void
321 update_dep_bb (basic_block use_bb, tree val)
323 basic_block dep_bb;
325 /* Not a dep. */
326 if (TREE_CODE (val) != SSA_NAME)
327 return;
329 /* Skip use of global def. */
330 if (SSA_NAME_IS_DEFAULT_DEF (val))
331 return;
333 /* Skip use of local def. */
334 dep_bb = gimple_bb (SSA_NAME_DEF_STMT (val));
335 if (dep_bb == use_bb)
336 return;
338 if (BB_DEP_BB (use_bb) == NULL
339 || dominated_by_p (CDI_DOMINATORS, dep_bb, BB_DEP_BB (use_bb)))
340 BB_DEP_BB (use_bb) = dep_bb;
343 /* Update BB_DEP_BB, given the dependencies in STMT. */
345 static void
346 stmt_update_dep_bb (gimple stmt)
348 ssa_op_iter iter;
349 use_operand_p use;
351 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
352 update_dep_bb (gimple_bb (stmt), USE_FROM_PTR (use));
355 /* Returns whether VAL is used in the same bb as in which it is defined, or
356 in the phi of a successor bb. */
358 static bool
359 local_def (tree val)
361 gimple stmt, def_stmt;
362 basic_block bb, def_bb;
363 imm_use_iterator iter;
364 bool res;
366 if (TREE_CODE (val) != SSA_NAME)
367 return false;
368 def_stmt = SSA_NAME_DEF_STMT (val);
369 def_bb = gimple_bb (def_stmt);
371 res = true;
372 FOR_EACH_IMM_USE_STMT (stmt, iter, val)
374 bb = gimple_bb (stmt);
375 if (bb == def_bb)
376 continue;
377 if (gimple_code (stmt) == GIMPLE_PHI
378 && find_edge (def_bb, bb))
379 continue;
380 res = false;
381 BREAK_FROM_IMM_USE_STMT (iter);
383 return res;
386 /* Calculates hash value for same_succ VE. */
388 static hashval_t
389 same_succ_hash (const void *ve)
391 const_same_succ e = (const_same_succ)ve;
392 hashval_t hashval = bitmap_hash (e->succs);
393 int flags;
394 unsigned int i;
395 unsigned int first = bitmap_first_set_bit (e->bbs);
396 basic_block bb = BASIC_BLOCK (first);
397 int size = 0;
398 gimple_stmt_iterator gsi;
399 gimple stmt;
400 tree arg;
401 unsigned int s;
402 bitmap_iterator bs;
404 for (gsi = gsi_start_nondebug_bb (bb);
405 !gsi_end_p (gsi); gsi_next_nondebug (&gsi))
407 stmt = gsi_stmt (gsi);
408 stmt_update_dep_bb (stmt);
409 if (is_gimple_assign (stmt) && local_def (gimple_get_lhs (stmt))
410 && !gimple_has_side_effects (stmt))
411 continue;
412 size++;
414 hashval = iterative_hash_hashval_t (gimple_code (stmt), hashval);
415 if (is_gimple_assign (stmt))
416 hashval = iterative_hash_hashval_t (gimple_assign_rhs_code (stmt),
417 hashval);
418 if (!is_gimple_call (stmt))
419 continue;
420 if (gimple_call_internal_p (stmt))
421 hashval = iterative_hash_hashval_t
422 ((hashval_t) gimple_call_internal_fn (stmt), hashval);
423 else
424 hashval = iterative_hash_expr (gimple_call_fn (stmt), hashval);
425 for (i = 0; i < gimple_call_num_args (stmt); i++)
427 arg = gimple_call_arg (stmt, i);
428 arg = vn_valueize (arg);
429 hashval = iterative_hash_expr (arg, hashval);
433 hashval = iterative_hash_hashval_t (size, hashval);
434 BB_SIZE (bb) = size;
436 for (i = 0; i < VEC_length (int, e->succ_flags); ++i)
438 flags = VEC_index (int, e->succ_flags, i);
439 flags = flags & ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
440 hashval = iterative_hash_hashval_t (flags, hashval);
443 EXECUTE_IF_SET_IN_BITMAP (e->succs, 0, s, bs)
445 int n = find_edge (bb, BASIC_BLOCK (s))->dest_idx;
446 for (gsi = gsi_start_phis (BASIC_BLOCK (s)); !gsi_end_p (gsi);
447 gsi_next (&gsi))
449 gimple phi = gsi_stmt (gsi);
450 tree lhs = gimple_phi_result (phi);
451 tree val = gimple_phi_arg_def (phi, n);
453 if (!is_gimple_reg (lhs))
454 continue;
455 update_dep_bb (bb, val);
459 return hashval;
462 /* Returns true if E1 and E2 have 2 successors, and if the successor flags
463 are inverse for the EDGE_TRUE_VALUE and EDGE_FALSE_VALUE flags, and equal for
464 the other edge flags. */
466 static bool
467 inverse_flags (const_same_succ e1, const_same_succ e2)
469 int f1a, f1b, f2a, f2b;
470 int mask = ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
472 if (VEC_length (int, e1->succ_flags) != 2)
473 return false;
475 f1a = VEC_index (int, e1->succ_flags, 0);
476 f1b = VEC_index (int, e1->succ_flags, 1);
477 f2a = VEC_index (int, e2->succ_flags, 0);
478 f2b = VEC_index (int, e2->succ_flags, 1);
480 if (f1a == f2a && f1b == f2b)
481 return false;
483 return (f1a & mask) == (f2a & mask) && (f1b & mask) == (f2b & mask);
486 /* Compares SAME_SUCCs VE1 and VE2. */
488 static int
489 same_succ_equal (const void *ve1, const void *ve2)
491 const_same_succ e1 = (const_same_succ)ve1;
492 const_same_succ e2 = (const_same_succ)ve2;
493 unsigned int i, first1, first2;
494 gimple_stmt_iterator gsi1, gsi2;
495 gimple s1, s2;
496 basic_block bb1, bb2;
498 if (e1->hashval != e2->hashval)
499 return 0;
501 if (VEC_length (int, e1->succ_flags) != VEC_length (int, e2->succ_flags))
502 return 0;
504 if (!bitmap_equal_p (e1->succs, e2->succs))
505 return 0;
507 if (!inverse_flags (e1, e2))
509 for (i = 0; i < VEC_length (int, e1->succ_flags); ++i)
510 if (VEC_index (int, e1->succ_flags, i)
511 != VEC_index (int, e1->succ_flags, i))
512 return 0;
515 first1 = bitmap_first_set_bit (e1->bbs);
516 first2 = bitmap_first_set_bit (e2->bbs);
518 bb1 = BASIC_BLOCK (first1);
519 bb2 = BASIC_BLOCK (first2);
521 if (BB_SIZE (bb1) != BB_SIZE (bb2))
522 return 0;
524 gsi1 = gsi_start_nondebug_bb (bb1);
525 gsi2 = gsi_start_nondebug_bb (bb2);
526 while (!(gsi_end_p (gsi1) || gsi_end_p (gsi2)))
528 s1 = gsi_stmt (gsi1);
529 s2 = gsi_stmt (gsi2);
530 if (gimple_code (s1) != gimple_code (s2))
531 return 0;
532 if (is_gimple_call (s1) && !gimple_call_same_target_p (s1, s2))
533 return 0;
534 gsi_next_nondebug (&gsi1);
535 gsi_next_nondebug (&gsi2);
538 return 1;
541 /* Alloc and init a new SAME_SUCC. */
543 static same_succ
544 same_succ_alloc (void)
546 same_succ same = XNEW (struct same_succ_def);
548 same->bbs = BITMAP_ALLOC (NULL);
549 same->succs = BITMAP_ALLOC (NULL);
550 same->inverse = BITMAP_ALLOC (NULL);
551 same->succ_flags = VEC_alloc (int, heap, 10);
552 same->in_worklist = false;
554 return same;
557 /* Delete same_succ VE. */
559 static void
560 same_succ_delete (void *ve)
562 same_succ e = (same_succ)ve;
564 BITMAP_FREE (e->bbs);
565 BITMAP_FREE (e->succs);
566 BITMAP_FREE (e->inverse);
567 VEC_free (int, heap, e->succ_flags);
569 XDELETE (ve);
572 /* Reset same_succ SAME. */
574 static void
575 same_succ_reset (same_succ same)
577 bitmap_clear (same->bbs);
578 bitmap_clear (same->succs);
579 bitmap_clear (same->inverse);
580 VEC_truncate (int, same->succ_flags, 0);
583 /* Hash table with all same_succ entries. */
585 static htab_t same_succ_htab;
587 /* Array that is used to store the edge flags for a successor. */
589 static int *same_succ_edge_flags;
591 /* Bitmap that is used to mark bbs that are recently deleted. */
593 static bitmap deleted_bbs;
595 /* Bitmap that is used to mark predecessors of bbs that are
596 deleted. */
598 static bitmap deleted_bb_preds;
600 /* Prints same_succ_htab to stderr. */
602 extern void debug_same_succ (void);
603 DEBUG_FUNCTION void
604 debug_same_succ ( void)
606 htab_traverse (same_succ_htab, same_succ_print_traverse, stderr);
609 DEF_VEC_P (same_succ);
610 DEF_VEC_ALLOC_P (same_succ, heap);
612 /* Vector of bbs to process. */
614 static VEC (same_succ, heap) *worklist;
616 /* Prints worklist to FILE. */
618 static void
619 print_worklist (FILE *file)
621 unsigned int i;
622 for (i = 0; i < VEC_length (same_succ, worklist); ++i)
623 same_succ_print (file, VEC_index (same_succ, worklist, i));
626 /* Adds SAME to worklist. */
628 static void
629 add_to_worklist (same_succ same)
631 if (same->in_worklist)
632 return;
634 if (bitmap_count_bits (same->bbs) < 2)
635 return;
637 same->in_worklist = true;
638 VEC_safe_push (same_succ, heap, worklist, same);
641 /* Add BB to same_succ_htab. */
643 static void
644 find_same_succ_bb (basic_block bb, same_succ *same_p)
646 unsigned int j;
647 bitmap_iterator bj;
648 same_succ same = *same_p;
649 same_succ *slot;
650 edge_iterator ei;
651 edge e;
653 if (bb == NULL)
654 return;
655 bitmap_set_bit (same->bbs, bb->index);
656 FOR_EACH_EDGE (e, ei, bb->succs)
658 int index = e->dest->index;
659 bitmap_set_bit (same->succs, index);
660 same_succ_edge_flags[index] = e->flags;
662 EXECUTE_IF_SET_IN_BITMAP (same->succs, 0, j, bj)
663 VEC_safe_push (int, heap, same->succ_flags, same_succ_edge_flags[j]);
665 same->hashval = same_succ_hash (same);
667 slot = (same_succ *) htab_find_slot_with_hash (same_succ_htab, same,
668 same->hashval, INSERT);
669 if (*slot == NULL)
671 *slot = same;
672 BB_SAME_SUCC (bb) = same;
673 add_to_worklist (same);
674 *same_p = NULL;
676 else
678 bitmap_set_bit ((*slot)->bbs, bb->index);
679 BB_SAME_SUCC (bb) = *slot;
680 add_to_worklist (*slot);
681 if (inverse_flags (same, *slot))
682 bitmap_set_bit ((*slot)->inverse, bb->index);
683 same_succ_reset (same);
687 /* Find bbs with same successors. */
689 static void
690 find_same_succ (void)
692 same_succ same = same_succ_alloc ();
693 basic_block bb;
695 FOR_EACH_BB (bb)
697 find_same_succ_bb (bb, &same);
698 if (same == NULL)
699 same = same_succ_alloc ();
702 same_succ_delete (same);
705 /* Initializes worklist administration. */
707 static void
708 init_worklist (void)
710 alloc_aux_for_blocks (sizeof (struct aux_bb_info));
711 same_succ_htab
712 = htab_create (n_basic_blocks, same_succ_hash, same_succ_equal,
713 same_succ_delete);
714 same_succ_edge_flags = XCNEWVEC (int, last_basic_block);
715 deleted_bbs = BITMAP_ALLOC (NULL);
716 deleted_bb_preds = BITMAP_ALLOC (NULL);
717 worklist = VEC_alloc (same_succ, heap, n_basic_blocks);
718 find_same_succ ();
720 if (dump_file && (dump_flags & TDF_DETAILS))
722 fprintf (dump_file, "initial worklist:\n");
723 print_worklist (dump_file);
727 /* Deletes worklist administration. */
729 static void
730 delete_worklist (void)
732 free_aux_for_blocks ();
733 htab_delete (same_succ_htab);
734 same_succ_htab = NULL;
735 XDELETEVEC (same_succ_edge_flags);
736 same_succ_edge_flags = NULL;
737 BITMAP_FREE (deleted_bbs);
738 BITMAP_FREE (deleted_bb_preds);
739 VEC_free (same_succ, heap, worklist);
742 /* Mark BB as deleted, and mark its predecessors. */
744 static void
745 delete_basic_block_same_succ (basic_block bb)
747 edge e;
748 edge_iterator ei;
750 bitmap_set_bit (deleted_bbs, bb->index);
752 FOR_EACH_EDGE (e, ei, bb->preds)
753 bitmap_set_bit (deleted_bb_preds, e->src->index);
756 /* Removes BB from its corresponding same_succ. */
758 static void
759 same_succ_flush_bb (basic_block bb)
761 same_succ same = BB_SAME_SUCC (bb);
762 BB_SAME_SUCC (bb) = NULL;
763 if (bitmap_single_bit_set_p (same->bbs))
764 htab_remove_elt_with_hash (same_succ_htab, same, same->hashval);
765 else
766 bitmap_clear_bit (same->bbs, bb->index);
769 /* Removes all bbs in BBS from their corresponding same_succ. */
771 static void
772 same_succ_flush_bbs (bitmap bbs)
774 unsigned int i;
775 bitmap_iterator bi;
777 EXECUTE_IF_SET_IN_BITMAP (bbs, 0, i, bi)
778 same_succ_flush_bb (BASIC_BLOCK (i));
781 /* Release the last vdef in BB, either normal or phi result. */
783 static void
784 release_last_vdef (basic_block bb)
786 gimple_stmt_iterator i;
788 for (i = gsi_last_bb (bb); !gsi_end_p (i); gsi_prev_nondebug (&i))
790 gimple stmt = gsi_stmt (i);
791 if (gimple_vdef (stmt) == NULL_TREE)
792 continue;
794 mark_virtual_operand_for_renaming (gimple_vdef (stmt));
795 return;
798 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
800 gimple phi = gsi_stmt (i);
801 tree res = gimple_phi_result (phi);
803 if (is_gimple_reg (res))
804 continue;
806 mark_virtual_phi_result_for_renaming (phi);
807 return;
812 /* Delete all deleted_bbs. */
814 static void
815 purge_bbs (void)
817 bitmap_and_compl_into (deleted_bb_preds, deleted_bbs);
818 bitmap_clear (deleted_bbs);
821 /* For deleted_bb_preds, find bbs with same successors. */
823 static void
824 update_worklist (void)
826 unsigned int i;
827 bitmap_iterator bi;
828 basic_block bb;
829 same_succ same;
831 bitmap_clear_bit (deleted_bb_preds, ENTRY_BLOCK);
832 same_succ_flush_bbs (deleted_bb_preds);
834 same = same_succ_alloc ();
835 EXECUTE_IF_SET_IN_BITMAP (deleted_bb_preds, 0, i, bi)
837 bb = BASIC_BLOCK (i);
838 gcc_assert (bb != NULL);
839 find_same_succ_bb (bb, &same);
840 if (same == NULL)
841 same = same_succ_alloc ();
843 same_succ_delete (same);
844 bitmap_clear (deleted_bb_preds);
847 /* Prints cluster C to FILE. */
849 static void
850 print_cluster (FILE *file, bb_cluster c)
852 if (c == NULL)
853 return;
854 bitmap_print (file, c->bbs, "bbs:", "\n");
855 bitmap_print (file, c->preds, "preds:", "\n");
858 /* Prints cluster C to stderr. */
860 extern void debug_cluster (bb_cluster);
861 DEBUG_FUNCTION void
862 debug_cluster (bb_cluster c)
864 print_cluster (stderr, c);
867 /* Update C->rep_bb, given that BB is added to the cluster. */
869 static void
870 update_rep_bb (bb_cluster c, basic_block bb)
872 /* Initial. */
873 if (c->rep_bb == NULL)
875 c->rep_bb = bb;
876 return;
879 /* Current needs no deps, keep it. */
880 if (BB_DEP_BB (c->rep_bb) == NULL)
881 return;
883 /* Bb needs no deps, change rep_bb. */
884 if (BB_DEP_BB (bb) == NULL)
886 c->rep_bb = bb;
887 return;
890 /* Bb needs last deps earlier than current, change rep_bb. A potential
891 problem with this, is that the first deps might also be earlier, which
892 would mean we prefer longer lifetimes for the deps. To be able to check
893 for this, we would have to trace BB_FIRST_DEP_BB as well, besides
894 BB_DEP_BB, which is really BB_LAST_DEP_BB.
895 The benefit of choosing the bb with last deps earlier, is that it can
896 potentially be used as replacement for more bbs. */
897 if (dominated_by_p (CDI_DOMINATORS, BB_DEP_BB (c->rep_bb), BB_DEP_BB (bb)))
898 c->rep_bb = bb;
901 /* Add BB to cluster C. Sets BB in C->bbs, and preds of BB in C->preds. */
903 static void
904 add_bb_to_cluster (bb_cluster c, basic_block bb)
906 edge e;
907 edge_iterator ei;
909 bitmap_set_bit (c->bbs, bb->index);
911 FOR_EACH_EDGE (e, ei, bb->preds)
912 bitmap_set_bit (c->preds, e->src->index);
914 update_rep_bb (c, bb);
917 /* Allocate and init new cluster. */
919 static bb_cluster
920 new_cluster (void)
922 bb_cluster c;
923 c = XCNEW (struct bb_cluster_def);
924 c->bbs = BITMAP_ALLOC (NULL);
925 c->preds = BITMAP_ALLOC (NULL);
926 c->rep_bb = NULL;
927 return c;
930 /* Delete clusters. */
932 static void
933 delete_cluster (bb_cluster c)
935 if (c == NULL)
936 return;
937 BITMAP_FREE (c->bbs);
938 BITMAP_FREE (c->preds);
939 XDELETE (c);
942 DEF_VEC_P (bb_cluster);
943 DEF_VEC_ALLOC_P (bb_cluster, heap);
945 /* Array that contains all clusters. */
947 static VEC (bb_cluster, heap) *all_clusters;
949 /* Allocate all cluster vectors. */
951 static void
952 alloc_cluster_vectors (void)
954 all_clusters = VEC_alloc (bb_cluster, heap, n_basic_blocks);
957 /* Reset all cluster vectors. */
959 static void
960 reset_cluster_vectors (void)
962 unsigned int i;
963 basic_block bb;
964 for (i = 0; i < VEC_length (bb_cluster, all_clusters); ++i)
965 delete_cluster (VEC_index (bb_cluster, all_clusters, i));
966 VEC_truncate (bb_cluster, all_clusters, 0);
967 FOR_EACH_BB (bb)
968 BB_CLUSTER (bb) = NULL;
971 /* Delete all cluster vectors. */
973 static void
974 delete_cluster_vectors (void)
976 unsigned int i;
977 for (i = 0; i < VEC_length (bb_cluster, all_clusters); ++i)
978 delete_cluster (VEC_index (bb_cluster, all_clusters, i));
979 VEC_free (bb_cluster, heap, all_clusters);
982 /* Merge cluster C2 into C1. */
984 static void
985 merge_clusters (bb_cluster c1, bb_cluster c2)
987 bitmap_ior_into (c1->bbs, c2->bbs);
988 bitmap_ior_into (c1->preds, c2->preds);
991 /* Register equivalence of BB1 and BB2 (members of cluster C). Store c in
992 all_clusters, or merge c with existing cluster. */
994 static void
995 set_cluster (basic_block bb1, basic_block bb2)
997 basic_block merge_bb, other_bb;
998 bb_cluster merge, old, c;
1000 if (BB_CLUSTER (bb1) == NULL && BB_CLUSTER (bb2) == NULL)
1002 c = new_cluster ();
1003 add_bb_to_cluster (c, bb1);
1004 add_bb_to_cluster (c, bb2);
1005 BB_CLUSTER (bb1) = c;
1006 BB_CLUSTER (bb2) = c;
1007 c->index = VEC_length (bb_cluster, all_clusters);
1008 VEC_safe_push (bb_cluster, heap, all_clusters, c);
1010 else if (BB_CLUSTER (bb1) == NULL || BB_CLUSTER (bb2) == NULL)
1012 merge_bb = BB_CLUSTER (bb1) == NULL ? bb2 : bb1;
1013 other_bb = BB_CLUSTER (bb1) == NULL ? bb1 : bb2;
1014 merge = BB_CLUSTER (merge_bb);
1015 add_bb_to_cluster (merge, other_bb);
1016 BB_CLUSTER (other_bb) = merge;
1018 else if (BB_CLUSTER (bb1) != BB_CLUSTER (bb2))
1020 unsigned int i;
1021 bitmap_iterator bi;
1023 old = BB_CLUSTER (bb2);
1024 merge = BB_CLUSTER (bb1);
1025 merge_clusters (merge, old);
1026 EXECUTE_IF_SET_IN_BITMAP (old->bbs, 0, i, bi)
1027 BB_CLUSTER (BASIC_BLOCK (i)) = merge;
1028 VEC_replace (bb_cluster, all_clusters, old->index, NULL);
1029 update_rep_bb (merge, old->rep_bb);
1030 delete_cluster (old);
1032 else
1033 gcc_unreachable ();
1036 /* Return true if gimple statements S1 and S2 are equal. Gimple_bb (s1) and
1037 gimple_bb (s2) are members of SAME_SUCC. */
1039 static bool
1040 gimple_equal_p (same_succ same_succ, gimple s1, gimple s2)
1042 unsigned int i;
1043 tree lhs1, lhs2;
1044 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
1045 tree t1, t2;
1046 bool equal, inv_cond;
1047 enum tree_code code1, code2;
1049 if (gimple_code (s1) != gimple_code (s2))
1050 return false;
1052 switch (gimple_code (s1))
1054 case GIMPLE_CALL:
1055 if (gimple_call_num_args (s1) != gimple_call_num_args (s2))
1056 return false;
1057 if (!gimple_call_same_target_p (s1, s2))
1058 return false;
1060 equal = true;
1061 for (i = 0; i < gimple_call_num_args (s1); ++i)
1063 t1 = gimple_call_arg (s1, i);
1064 t2 = gimple_call_arg (s2, i);
1065 if (operand_equal_p (t1, t2, 0))
1066 continue;
1067 if (gvn_uses_equal (t1, t2))
1068 continue;
1069 equal = false;
1070 break;
1072 if (equal)
1073 return true;
1075 lhs1 = gimple_get_lhs (s1);
1076 lhs2 = gimple_get_lhs (s2);
1077 return (lhs1 != NULL_TREE && lhs2 != NULL_TREE
1078 && TREE_CODE (lhs1) == SSA_NAME && TREE_CODE (lhs2) == SSA_NAME
1079 && vn_valueize (lhs1) == vn_valueize (lhs2));
1081 case GIMPLE_ASSIGN:
1082 lhs1 = gimple_get_lhs (s1);
1083 lhs2 = gimple_get_lhs (s2);
1084 return (TREE_CODE (lhs1) == SSA_NAME
1085 && TREE_CODE (lhs2) == SSA_NAME
1086 && vn_valueize (lhs1) == vn_valueize (lhs2));
1088 case GIMPLE_COND:
1089 t1 = gimple_cond_lhs (s1);
1090 t2 = gimple_cond_lhs (s2);
1091 if (!operand_equal_p (t1, t2, 0)
1092 && !gvn_uses_equal (t1, t2))
1093 return false;
1095 t1 = gimple_cond_rhs (s1);
1096 t2 = gimple_cond_rhs (s2);
1097 if (!operand_equal_p (t1, t2, 0)
1098 && !gvn_uses_equal (t1, t2))
1099 return false;
1101 code1 = gimple_expr_code (s1);
1102 code2 = gimple_expr_code (s2);
1103 inv_cond = (bitmap_bit_p (same_succ->inverse, bb1->index)
1104 != bitmap_bit_p (same_succ->inverse, bb2->index));
1105 if (inv_cond)
1107 bool honor_nans
1108 = HONOR_NANS (TYPE_MODE (TREE_TYPE (gimple_cond_lhs (s1))));
1109 code2 = invert_tree_comparison (code2, honor_nans);
1111 return code1 == code2;
1113 default:
1114 return false;
1118 /* Let GSI skip backwards over local defs. */
1120 static void
1121 gsi_advance_bw_nondebug_nonlocal (gimple_stmt_iterator *gsi)
1123 gimple stmt;
1125 while (true)
1127 if (gsi_end_p (*gsi))
1128 return;
1129 stmt = gsi_stmt (*gsi);
1130 if (!(is_gimple_assign (stmt) && local_def (gimple_get_lhs (stmt))
1131 && !gimple_has_side_effects (stmt)))
1132 return;
1133 gsi_prev_nondebug (gsi);
1137 /* Determines whether BB1 and BB2 (members of same_succ) are duplicates. If so,
1138 clusters them. */
1140 static void
1141 find_duplicate (same_succ same_succ, basic_block bb1, basic_block bb2)
1143 gimple_stmt_iterator gsi1 = gsi_last_nondebug_bb (bb1);
1144 gimple_stmt_iterator gsi2 = gsi_last_nondebug_bb (bb2);
1146 gsi_advance_bw_nondebug_nonlocal (&gsi1);
1147 gsi_advance_bw_nondebug_nonlocal (&gsi2);
1149 while (!gsi_end_p (gsi1) && !gsi_end_p (gsi2))
1151 if (!gimple_equal_p (same_succ, gsi_stmt (gsi1), gsi_stmt (gsi2)))
1152 return;
1154 gsi_prev_nondebug (&gsi1);
1155 gsi_prev_nondebug (&gsi2);
1156 gsi_advance_bw_nondebug_nonlocal (&gsi1);
1157 gsi_advance_bw_nondebug_nonlocal (&gsi2);
1160 if (!(gsi_end_p (gsi1) && gsi_end_p (gsi2)))
1161 return;
1163 if (dump_file)
1164 fprintf (dump_file, "find_duplicates: <bb %d> duplicate of <bb %d>\n",
1165 bb1->index, bb2->index);
1167 set_cluster (bb1, bb2);
1170 /* Returns whether for all phis in DEST the phi alternatives for E1 and
1171 E2 are equal. */
1173 static bool
1174 same_phi_alternatives_1 (basic_block dest, edge e1, edge e2)
1176 int n1 = e1->dest_idx, n2 = e2->dest_idx;
1177 gimple_stmt_iterator gsi;
1179 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
1181 gimple phi = gsi_stmt (gsi);
1182 tree lhs = gimple_phi_result (phi);
1183 tree val1 = gimple_phi_arg_def (phi, n1);
1184 tree val2 = gimple_phi_arg_def (phi, n2);
1186 if (!is_gimple_reg (lhs))
1187 continue;
1189 if (operand_equal_for_phi_arg_p (val1, val2))
1190 continue;
1191 if (gvn_uses_equal (val1, val2))
1192 continue;
1194 return false;
1197 return true;
1200 /* Returns whether for all successors of BB1 and BB2 (members of SAME_SUCC), the
1201 phi alternatives for BB1 and BB2 are equal. */
1203 static bool
1204 same_phi_alternatives (same_succ same_succ, basic_block bb1, basic_block bb2)
1206 unsigned int s;
1207 bitmap_iterator bs;
1208 edge e1, e2;
1209 basic_block succ;
1211 EXECUTE_IF_SET_IN_BITMAP (same_succ->succs, 0, s, bs)
1213 succ = BASIC_BLOCK (s);
1214 e1 = find_edge (bb1, succ);
1215 e2 = find_edge (bb2, succ);
1216 if (e1->flags & EDGE_COMPLEX
1217 || e2->flags & EDGE_COMPLEX)
1218 return false;
1220 /* For all phis in bb, the phi alternatives for e1 and e2 need to have
1221 the same value. */
1222 if (!same_phi_alternatives_1 (succ, e1, e2))
1223 return false;
1226 return true;
1229 /* Return true if BB has non-vop phis. */
1231 static bool
1232 bb_has_non_vop_phi (basic_block bb)
1234 gimple_seq phis = phi_nodes (bb);
1235 gimple phi;
1237 if (phis == NULL)
1238 return false;
1240 if (!gimple_seq_singleton_p (phis))
1241 return true;
1243 phi = gimple_seq_first_stmt (phis);
1244 return is_gimple_reg (gimple_phi_result (phi));
1247 /* Returns true if redirecting the incoming edges of FROM to TO maintains the
1248 invariant that uses in FROM are dominates by their defs. */
1250 static bool
1251 deps_ok_for_redirect_from_bb_to_bb (basic_block from, basic_block to)
1253 basic_block cd, dep_bb = BB_DEP_BB (to);
1254 edge_iterator ei;
1255 edge e;
1256 bitmap from_preds = BITMAP_ALLOC (NULL);
1258 if (dep_bb == NULL)
1259 return true;
1261 FOR_EACH_EDGE (e, ei, from->preds)
1262 bitmap_set_bit (from_preds, e->src->index);
1263 cd = nearest_common_dominator_for_set (CDI_DOMINATORS, from_preds);
1264 BITMAP_FREE (from_preds);
1266 return dominated_by_p (CDI_DOMINATORS, dep_bb, cd);
1269 /* Returns true if replacing BB1 (or its replacement bb) by BB2 (or its
1270 replacement bb) and vice versa maintains the invariant that uses in the
1271 replacement are dominates by their defs. */
1273 static bool
1274 deps_ok_for_redirect (basic_block bb1, basic_block bb2)
1276 if (BB_CLUSTER (bb1) != NULL)
1277 bb1 = BB_CLUSTER (bb1)->rep_bb;
1279 if (BB_CLUSTER (bb2) != NULL)
1280 bb2 = BB_CLUSTER (bb2)->rep_bb;
1282 return (deps_ok_for_redirect_from_bb_to_bb (bb1, bb2)
1283 && deps_ok_for_redirect_from_bb_to_bb (bb2, bb1));
1286 /* Within SAME_SUCC->bbs, find clusters of bbs which can be merged. */
1288 static void
1289 find_clusters_1 (same_succ same_succ)
1291 basic_block bb1, bb2;
1292 unsigned int i, j;
1293 bitmap_iterator bi, bj;
1294 int nr_comparisons;
1295 int max_comparisons = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_COMPARISONS);
1297 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, 0, i, bi)
1299 bb1 = BASIC_BLOCK (i);
1301 /* TODO: handle blocks with phi-nodes. We'll have to find corresponding
1302 phi-nodes in bb1 and bb2, with the same alternatives for the same
1303 preds. */
1304 if (bb_has_non_vop_phi (bb1))
1305 continue;
1307 nr_comparisons = 0;
1308 EXECUTE_IF_SET_IN_BITMAP (same_succ->bbs, i + 1, j, bj)
1310 bb2 = BASIC_BLOCK (j);
1312 if (bb_has_non_vop_phi (bb2))
1313 continue;
1315 if (BB_CLUSTER (bb1) != NULL && BB_CLUSTER (bb1) == BB_CLUSTER (bb2))
1316 continue;
1318 /* Limit quadratic behaviour. */
1319 nr_comparisons++;
1320 if (nr_comparisons > max_comparisons)
1321 break;
1323 /* This is a conservative dependency check. We could test more
1324 precise for allowed replacement direction. */
1325 if (!deps_ok_for_redirect (bb1, bb2))
1326 continue;
1328 if (!(same_phi_alternatives (same_succ, bb1, bb2)))
1329 continue;
1331 find_duplicate (same_succ, bb1, bb2);
1336 /* Find clusters of bbs which can be merged. */
1338 static void
1339 find_clusters (void)
1341 same_succ same;
1343 while (!VEC_empty (same_succ, worklist))
1345 same = VEC_pop (same_succ, worklist);
1346 same->in_worklist = false;
1347 if (dump_file && (dump_flags & TDF_DETAILS))
1349 fprintf (dump_file, "processing worklist entry\n");
1350 same_succ_print (dump_file, same);
1352 find_clusters_1 (same);
1356 /* Replace uses of the result of PHI with NAME. */
1358 static void
1359 unlink_virtual_phi (gimple phi, tree name)
1361 use_operand_p use_p;
1362 imm_use_iterator iter;
1363 gimple use_stmt;
1364 tree vdef = gimple_phi_result (phi);
1366 if (!vdef
1367 || TREE_CODE (vdef) != SSA_NAME)
1368 return;
1370 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vdef)
1372 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1373 SET_USE (use_p, name);
1376 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef))
1377 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name) = 1;
1380 /* Create or update a vop phi in BB2. Use VUSE1 arguments for all the
1381 REDIRECTED_EDGES, or if VUSE1 is NULL_TREE, use BB_VOP_AT_EXIT. If a new
1382 phis is created, use the phi instead of VUSE2 in BB2. */
1384 static void
1385 update_vuses (bool vuse1_phi_args, tree vuse1, tree vuse2, basic_block bb2,
1386 VEC (edge,heap) *redirected_edges)
1388 gimple stmt, phi = NULL;
1389 tree lhs = NULL_TREE, arg, var;
1390 unsigned int i;
1391 gimple def_stmt2 = NULL;
1392 imm_use_iterator iter;
1393 use_operand_p use_p;
1394 edge_iterator ei;
1395 edge e;
1397 if (vuse2 != NULL_TREE)
1399 var = SSA_NAME_VAR (vuse2);
1400 def_stmt2 = SSA_NAME_DEF_STMT (vuse2);
1402 else
1403 var = SSA_NAME_VAR (vuse1);
1405 if (def_stmt2 && gimple_bb (def_stmt2) == bb2)
1406 /* Update existing phi. */
1407 phi = def_stmt2;
1408 else
1410 /* No need to create a phi with 2 equal arguments. */
1411 if (vuse1 == vuse2)
1412 return;
1414 /* Create a phi. */
1415 lhs = make_ssa_name (var, NULL);
1416 VN_INFO_GET (lhs);
1417 phi = create_phi_node (lhs, bb2);
1418 SSA_NAME_DEF_STMT (lhs) = phi;
1420 /* Set default argument vuse2 for all preds. */
1421 arg = vuse2 == NULL_TREE ? gimple_phi_result (phi): vuse2;
1422 FOR_EACH_EDGE (e, ei, bb2->preds)
1423 add_phi_arg (phi, arg, e, UNKNOWN_LOCATION);
1426 /* Update phi. */
1427 for (i = 0; i < EDGE_COUNT (redirected_edges); ++i)
1429 e = VEC_index (edge, redirected_edges, i);
1430 if (vuse1_phi_args)
1431 arg = BB_VOP_AT_EXIT (e->src);
1432 else
1433 arg = vuse1 == NULL_TREE ? gimple_phi_result (phi): vuse1;
1435 add_phi_arg (phi, arg, e, UNKNOWN_LOCATION);
1438 /* Return if we updated an existing phi. */
1439 if (def_stmt2 && gimple_bb (def_stmt2) == bb2)
1440 return;
1442 /* Replace relevant uses with the newly created phi. */
1443 FOR_EACH_IMM_USE_STMT (stmt, iter, vuse2 == NULL_TREE ? vuse1 : vuse2)
1445 if (stmt == phi)
1446 continue;
1448 if (gimple_code (stmt) != GIMPLE_PHI
1449 && !dominated_by_p (CDI_DOMINATORS, gimple_bb (stmt), bb2))
1450 continue;
1452 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1454 if (gimple_code (stmt) == GIMPLE_PHI)
1456 unsigned int pred_index = PHI_ARG_INDEX_FROM_USE (use_p);
1457 basic_block pred = EDGE_PRED (gimple_bb (stmt), pred_index)->src;
1458 if (!dominated_by_p (CDI_DOMINATORS, pred, bb2))
1459 continue;
1461 if (pred == bb2 && EDGE_COUNT (gimple_bb (stmt)->preds) == 1)
1463 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1464 unlink_virtual_phi (stmt, lhs);
1465 remove_phi_node (&gsi, true);
1466 break;
1469 SET_USE (use_p, lhs);
1470 update_stmt (stmt);
1475 /* Returns the vop phi of BB, if any. */
1477 static gimple
1478 vop_phi (basic_block bb)
1480 gimple stmt;
1481 gimple_stmt_iterator gsi;
1482 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1484 stmt = gsi_stmt (gsi);
1485 if (is_gimple_reg (gimple_phi_result (stmt)))
1486 continue;
1487 return stmt;
1489 return NULL;
1492 /* Returns the vop state at the entry of BB, if found in BB or a successor
1493 bb. */
1495 static tree
1496 vop_at_entry (basic_block bb)
1498 gimple bb_phi, succ_phi;
1499 gimple_stmt_iterator gsi;
1500 gimple stmt;
1501 tree vuse, vdef;
1502 basic_block succ;
1504 bb_phi = vop_phi (bb);
1505 if (bb_phi != NULL)
1506 return gimple_phi_result (bb_phi);
1508 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1510 stmt = gsi_stmt (gsi);
1511 vuse = gimple_vuse (stmt);
1512 vdef = gimple_vdef (stmt);
1513 if (vuse != NULL_TREE)
1514 return vuse;
1515 if (vdef != NULL_TREE)
1516 return NULL_TREE;
1519 if (EDGE_COUNT (bb->succs) == 0)
1520 return NULL_TREE;
1522 succ = EDGE_SUCC (bb, 0)->dest;
1523 succ_phi = vop_phi (succ);
1524 return (succ_phi != NULL
1525 ? PHI_ARG_DEF_FROM_EDGE (succ_phi, find_edge (bb, succ))
1526 : NULL_TREE);
1529 /* Given that all incoming edges of BB1 have been redirected to BB2, delete BB1
1530 and recompute dominator info. */
1532 static void
1533 delete_block_update_dominator_info (basic_block bb1, basic_block bb2)
1535 VEC (basic_block,heap) *fix_dom_bb;
1536 unsigned int i;
1537 basic_block bb, dom;
1538 edge e;
1539 edge_iterator ei;
1541 /* Consider the following cfg, where A is the direct dominator of I:
1546 / \ \
1548 /| |\
1550 |\ /|
1551 | x |
1552 |/ \|
1557 Say E and F are duplicates, and F is removed. The cfg then looks like
1558 this:
1563 / \ \
1565 / \ / \
1572 E is now the new direct dominator of I.
1574 In order to calculate the new dominator info, we take the nearest common
1575 dominator (A) of bb1 (F) and bb2 (E), and get the set of bbs immediately
1576 dominated by it. Some of this set may now be directly dominated by bb2.
1578 Ideally we would have a means to determine which bbs in the set are now
1579 dominated by bb2, and call set_immediate_dominator for those bbs, but we
1580 don't, so instead we let iterate_fix_dominators figure it out. */
1582 /* Add bbs immediately dominated by the most common dominator. */
1583 dom = nearest_common_dominator (CDI_DOMINATORS, bb1, bb2);
1584 fix_dom_bb = get_dominated_by (CDI_DOMINATORS, dom);
1586 if (get_immediate_dominator (CDI_DOMINATORS, bb1) == dom)
1587 for (i = 0; VEC_iterate (basic_block, fix_dom_bb, i, bb); ++i)
1589 if (bb != bb1)
1590 continue;
1591 VEC_unordered_remove (basic_block, fix_dom_bb, i);
1592 break;
1595 /* Add bb2, but not twice. */
1596 if (get_immediate_dominator (CDI_DOMINATORS, bb2) != dom)
1597 VEC_safe_push (basic_block, heap, fix_dom_bb, bb2);
1598 /* Add succs of bb2, but not twice. */
1599 FOR_EACH_EDGE (e, ei, bb2->succs)
1600 if (get_immediate_dominator (CDI_DOMINATORS, e->dest) != dom)
1601 VEC_safe_push (basic_block, heap, fix_dom_bb, e->dest);
1603 delete_basic_block (bb1);
1604 iterate_fix_dominators (CDI_DOMINATORS, fix_dom_bb, false);
1605 #if defined (ENABLE_CHECKING)
1606 verify_dominators (CDI_DOMINATORS);
1607 #endif
1608 VEC_free (basic_block, heap, fix_dom_bb);
1611 /* Redirect all edges from BB1 to BB2, marks BB1 for removal, and if
1612 UPDATE_VOPS, inserts vop phis. */
1614 static void
1615 replace_block_by (basic_block bb1, basic_block bb2, bool update_vops)
1617 edge pred_edge;
1618 unsigned int i;
1619 tree phi_vuse1 = NULL_TREE, phi_vuse2 = NULL_TREE, arg;
1620 VEC (edge,heap) *redirected_edges = NULL;
1621 edge e;
1622 edge_iterator ei;
1623 bool vuse1_phi_args = false;
1625 phi_vuse2 = vop_at_entry (bb2);
1626 if (phi_vuse2 != NULL_TREE && TREE_CODE (phi_vuse2) != SSA_NAME)
1627 phi_vuse2 = NULL_TREE;
1629 if (update_vops)
1631 /* Find the vops at entry of bb1 and bb2. */
1632 phi_vuse1 = vop_at_entry (bb1);
1634 /* If both are not found, it means there's no need to update. Uses old
1635 dominator info. */
1636 if (phi_vuse1 == NULL_TREE && phi_vuse2 == NULL_TREE)
1637 update_vops = false;
1638 else if (phi_vuse1 == NULL_TREE)
1639 update_vops = dominated_by_p (CDI_DOMINATORS, bb1, bb2);
1640 else if (phi_vuse2 == NULL_TREE)
1641 update_vops = dominated_by_p (CDI_DOMINATORS, bb2, bb1);
1644 if (phi_vuse1 && gimple_bb (SSA_NAME_DEF_STMT (phi_vuse1)) == bb1)
1646 /* If the vop at entry of bb1 is a phi, save the phi alternatives in
1647 BB_VOP_AT_EXIT, before we lose that information by redirecting the
1648 edges. */
1649 FOR_EACH_EDGE (e, ei, bb1->preds)
1651 arg = PHI_ARG_DEF_FROM_EDGE (SSA_NAME_DEF_STMT (phi_vuse1), e);
1652 BB_VOP_AT_EXIT (e->src) = arg;
1654 vuse1_phi_args = true;
1657 /* Mark the basic block for later deletion. */
1658 delete_basic_block_same_succ (bb1);
1660 if (update_vops)
1661 redirected_edges = VEC_alloc (edge, heap, 10);
1663 /* Redirect the incoming edges of bb1 to bb2. */
1664 for (i = EDGE_COUNT (bb1->preds); i > 0 ; --i)
1666 pred_edge = EDGE_PRED (bb1, i - 1);
1667 pred_edge = redirect_edge_and_branch (pred_edge, bb2);
1668 gcc_assert (pred_edge != NULL);
1669 if (update_vops)
1670 VEC_safe_push (edge, heap, redirected_edges, pred_edge);
1671 else if (phi_vuse2 && gimple_bb (SSA_NAME_DEF_STMT (phi_vuse2)) == bb2)
1672 add_phi_arg (SSA_NAME_DEF_STMT (phi_vuse2), SSA_NAME_VAR (phi_vuse2),
1673 pred_edge, UNKNOWN_LOCATION);
1676 /* Do updates that use bb1, before deleting bb1. */
1677 if (!update_vops)
1678 release_last_vdef (bb1);
1679 same_succ_flush_bb (bb1);
1681 delete_block_update_dominator_info (bb1, bb2);
1683 /* Update the vops. Uses new dominator info. */
1684 if (update_vops)
1686 update_vuses (vuse1_phi_args, phi_vuse1, phi_vuse2, bb2,
1687 redirected_edges);
1688 VEC_free (edge, heap, redirected_edges);
1692 /* Bbs for which update_debug_stmt need to be called. */
1694 static bitmap update_bbs;
1696 /* For each cluster in all_clusters, merge all cluster->bbs. Returns
1697 number of bbs removed. Insert vop phis if UPDATE_VOPS. */
1699 static int
1700 apply_clusters (bool update_vops)
1702 basic_block bb1, bb2;
1703 bb_cluster c;
1704 unsigned int i, j;
1705 bitmap_iterator bj;
1706 int nr_bbs_removed = 0;
1708 for (i = 0; i < VEC_length (bb_cluster, all_clusters); ++i)
1710 c = VEC_index (bb_cluster, all_clusters, i);
1711 if (c == NULL)
1712 continue;
1714 bb2 = c->rep_bb;
1715 bitmap_set_bit (update_bbs, bb2->index);
1717 bitmap_clear_bit (c->bbs, bb2->index);
1718 EXECUTE_IF_SET_IN_BITMAP (c->bbs, 0, j, bj)
1720 bb1 = BASIC_BLOCK (j);
1721 bitmap_clear_bit (update_bbs, bb1->index);
1723 replace_block_by (bb1, bb2, update_vops);
1724 nr_bbs_removed++;
1728 return nr_bbs_removed;
1731 /* Resets debug statement STMT if it has uses that are not dominated by their
1732 defs. */
1734 static void
1735 update_debug_stmt (gimple stmt)
1737 use_operand_p use_p;
1738 ssa_op_iter oi;
1739 basic_block bbdef, bbuse;
1740 gimple def_stmt;
1741 tree name;
1743 if (!gimple_debug_bind_p (stmt))
1744 return;
1746 bbuse = gimple_bb (stmt);
1747 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, oi, SSA_OP_USE)
1749 name = USE_FROM_PTR (use_p);
1750 gcc_assert (TREE_CODE (name) == SSA_NAME);
1752 def_stmt = SSA_NAME_DEF_STMT (name);
1753 gcc_assert (def_stmt != NULL);
1755 bbdef = gimple_bb (def_stmt);
1756 if (bbdef == NULL || bbuse == bbdef
1757 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef))
1758 continue;
1760 gimple_debug_bind_reset_value (stmt);
1761 update_stmt (stmt);
1765 /* Resets all debug statements that have uses that are not
1766 dominated by their defs. */
1768 static void
1769 update_debug_stmts (void)
1771 basic_block bb;
1772 bitmap_iterator bi;
1773 unsigned int i;
1775 if (!MAY_HAVE_DEBUG_STMTS)
1776 return;
1778 EXECUTE_IF_SET_IN_BITMAP (update_bbs, 0, i, bi)
1780 gimple stmt;
1781 gimple_stmt_iterator gsi;
1783 bb = BASIC_BLOCK (i);
1784 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1786 stmt = gsi_stmt (gsi);
1787 if (!is_gimple_debug (stmt))
1788 continue;
1789 update_debug_stmt (stmt);
1794 /* Runs tail merge optimization. */
1796 unsigned int
1797 tail_merge_optimize (unsigned int todo)
1799 int nr_bbs_removed_total = 0;
1800 int nr_bbs_removed;
1801 bool loop_entered = false;
1802 int iteration_nr = 0;
1803 bool update_vops = !symbol_marked_for_renaming (gimple_vop (cfun));
1804 int max_iterations = PARAM_VALUE (PARAM_MAX_TAIL_MERGE_ITERATIONS);
1806 if (!flag_tree_tail_merge || max_iterations == 0)
1807 return 0;
1809 timevar_push (TV_TREE_TAIL_MERGE);
1811 calculate_dominance_info (CDI_DOMINATORS);
1812 init_worklist ();
1814 while (!VEC_empty (same_succ, worklist))
1816 if (!loop_entered)
1818 loop_entered = true;
1819 alloc_cluster_vectors ();
1820 update_bbs = BITMAP_ALLOC (NULL);
1822 else
1823 reset_cluster_vectors ();
1825 iteration_nr++;
1826 if (dump_file && (dump_flags & TDF_DETAILS))
1827 fprintf (dump_file, "worklist iteration #%d\n", iteration_nr);
1829 find_clusters ();
1830 gcc_assert (VEC_empty (same_succ, worklist));
1831 if (VEC_empty (bb_cluster, all_clusters))
1832 break;
1834 nr_bbs_removed = apply_clusters (update_vops);
1835 nr_bbs_removed_total += nr_bbs_removed;
1836 if (nr_bbs_removed == 0)
1837 break;
1839 purge_bbs ();
1841 if (iteration_nr == max_iterations)
1842 break;
1844 update_worklist ();
1847 if (dump_file && (dump_flags & TDF_DETAILS))
1848 fprintf (dump_file, "htab collision / search: %f\n",
1849 htab_collisions (same_succ_htab));
1851 if (nr_bbs_removed_total > 0)
1853 update_debug_stmts ();
1855 if (dump_file && (dump_flags & TDF_DETAILS))
1857 fprintf (dump_file, "Before TODOs.\n");
1858 dump_function_to_file (current_function_decl, dump_file, dump_flags);
1861 todo |= (TODO_verify_ssa | TODO_verify_stmts | TODO_verify_flow
1862 | TODO_dump_func);
1865 delete_worklist ();
1866 if (loop_entered)
1868 delete_cluster_vectors ();
1869 BITMAP_FREE (update_bbs);
1872 timevar_pop (TV_TREE_TAIL_MERGE);
1874 return todo;