Daily bump.
[official-gcc.git] / libjava / boehm.cc
blob4dc60fc43b74e9e5bcbae45155a391456ac18837
1 // boehm.cc - interface between libjava and Boehm GC.
3 /* Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation
5 This file is part of libgcj.
7 This software is copyrighted work licensed under the terms of the
8 Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
9 details. */
11 #include <config.h>
13 #include <stdio.h>
15 #include <jvm.h>
16 #include <gcj/cni.h>
18 #include <java/lang/Class.h>
19 #include <java/lang/reflect/Modifier.h>
20 #include <java-interp.h>
22 // More nastiness: the GC wants to define TRUE and FALSE. We don't
23 // need the Java definitions (themselves a hack), so we undefine them.
24 #undef TRUE
25 #undef FALSE
27 extern "C"
29 #include <private/gc_priv.h>
30 #include <private/gc_pmark.h>
31 #include <gc_gcj.h>
33 #ifdef THREAD_LOCAL_ALLOC
34 # define GC_REDIRECT_TO_LOCAL
35 # include <gc_local_alloc.h>
36 #endif
38 // These aren't declared in any Boehm GC header.
39 void GC_finalize_all (void);
40 ptr_t GC_debug_generic_malloc (size_t size, int k, GC_EXTRA_PARAMS);
43 // We must check for plausibility ourselves.
44 #define MAYBE_MARK(Obj, Top, Limit, Source, Exit) \
45 Top=GC_MARK_AND_PUSH((GC_PTR)Obj, Top, Limit, (GC_PTR *)Source)
49 // Nonzero if this module has been initialized.
50 static int initialized = 0;
52 #if 0
53 // `kind' index used when allocating Java objects.
54 static int obj_kind_x;
56 // Freelist used for Java objects.
57 static ptr_t *obj_free_list;
58 #endif /* 0 */
60 // `kind' index used when allocating Java arrays.
61 static int array_kind_x;
63 // Freelist used for Java arrays.
64 static ptr_t *array_free_list;
66 // Lock used to protect access to Boehm's GC_enable/GC_disable functions.
67 static _Jv_Mutex_t disable_gc_mutex;
71 // This is called by the GC during the mark phase. It marks a Java
72 // object. We use `void *' arguments and return, and not what the
73 // Boehm GC wants, to avoid pollution in our headers.
74 void *
75 _Jv_MarkObj (void *addr, void *msp, void *msl, void * /* env */)
77 mse *mark_stack_ptr = (mse *) msp;
78 mse *mark_stack_limit = (mse *) msl;
79 jobject obj = (jobject) addr;
81 // FIXME: if env is 1, this object was allocated through the debug
82 // interface, and addr points to the beginning of the debug header.
83 // In that case, we should really add the size of the header to addr.
85 _Jv_VTable *dt = *(_Jv_VTable **) addr;
86 // The object might not yet have its vtable set, or it might
87 // really be an object on the freelist. In either case, the vtable slot
88 // will either be 0, or it will point to a cleared object.
89 // This assumes Java objects have size at least 3 words,
90 // including the header. But this should remain true, since this
91 // should only be used with debugging allocation or with large objects.
92 if (__builtin_expect (! dt || !(dt -> get_finalizer()), false))
93 return mark_stack_ptr;
94 jclass klass = dt->clas;
95 ptr_t p;
97 # ifndef JV_HASH_SYNCHRONIZATION
98 // Every object has a sync_info pointer.
99 p = (ptr_t) obj->sync_info;
100 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, obj, o1label);
101 # endif
102 // Mark the object's class.
103 p = (ptr_t) klass;
104 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, obj, o2label);
106 if (__builtin_expect (klass == &java::lang::Class::class$, false))
108 // Currently we allocate some of the memory referenced from class objects
109 // as pointerfree memory, and then mark it more intelligently here.
110 // We ensure that the ClassClass mark descriptor forces invocation of
111 // this procedure.
112 // Correctness of this is subtle, but it looks OK to me for now. For the incremental
113 // collector, we need to make sure that the class object is written whenever
114 // any of the subobjects are altered and may need rescanning. This may be tricky
115 // during construction, and this may not be the right way to do this with
116 // incremental collection.
117 // If we overflow the mark stack, we will rescan the class object, so we should
118 // be OK. The same applies if we redo the mark phase because win32 unmapped part
119 // of our root set. - HB
120 jclass c = (jclass) addr;
122 p = (ptr_t) c->name;
123 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c3label);
124 p = (ptr_t) c->superclass;
125 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c4label);
126 for (int i = 0; i < c->constants.size; ++i)
128 /* FIXME: We could make this more precise by using the tags -KKT */
129 p = (ptr_t) c->constants.data[i].p;
130 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c5label);
133 #ifdef INTERPRETER
134 if (_Jv_IsInterpretedClass (c))
136 p = (ptr_t) c->constants.tags;
137 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c5alabel);
138 p = (ptr_t) c->constants.data;
139 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c5blabel);
140 p = (ptr_t) c->vtable;
141 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c5clabel);
143 #endif
145 // If the class is an array, then the methods field holds a
146 // pointer to the element class. If the class is primitive,
147 // then the methods field holds a pointer to the array class.
148 p = (ptr_t) c->methods;
149 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c6label);
152 if (! c->isArray() && ! c->isPrimitive())
154 // Scan each method in the cases where `methods' really
155 // points to a methods structure.
156 for (int i = 0; i < c->method_count; ++i)
158 p = (ptr_t) c->methods[i].name;
159 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c,
160 cm1label);
161 p = (ptr_t) c->methods[i].signature;
162 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c,
163 cm2label);
165 // FIXME: `ncode' entry?
167 #ifdef INTERPRETER
168 // The interpreter installs a heap-allocated
169 // trampoline here, so we'll mark it.
170 if (_Jv_IsInterpretedClass (c))
172 p = (ptr_t) c->methods[i].ncode;
173 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c,
174 cm3label);
176 #endif
180 // Mark all the fields.
181 p = (ptr_t) c->fields;
182 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c8label);
183 for (int i = 0; i < c->field_count; ++i)
185 _Jv_Field* field = &c->fields[i];
187 #ifndef COMPACT_FIELDS
188 p = (ptr_t) field->name;
189 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c8alabel);
190 #endif
191 p = (ptr_t) field->type;
192 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c8blabel);
194 // For the interpreter, we also need to mark the memory
195 // containing static members
196 if ((field->flags & java::lang::reflect::Modifier::STATIC))
198 p = (ptr_t) field->u.addr;
199 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c8clabel);
201 // also, if the static member is a reference,
202 // mark also the value pointed to. We check for isResolved
203 // since marking can happen before memory is allocated for
204 // static members.
205 if (JvFieldIsRef (field) && field->isResolved())
207 jobject val = *(jobject*) field->u.addr;
208 p = (ptr_t) val;
209 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit,
210 c, c8elabel);
215 p = (ptr_t) c->vtable;
216 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c9label);
217 p = (ptr_t) c->interfaces;
218 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, cAlabel);
219 for (int i = 0; i < c->interface_count; ++i)
221 p = (ptr_t) c->interfaces[i];
222 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, cClabel);
224 p = (ptr_t) c->loader;
225 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, cBlabel);
226 p = (ptr_t) c->arrayclass;
227 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, cDlabel);
229 #ifdef INTERPRETER
230 if (_Jv_IsInterpretedClass (c))
232 _Jv_InterpClass* ic = (_Jv_InterpClass*)c;
234 p = (ptr_t) ic->interpreted_methods;
235 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic, cElabel);
237 for (int i = 0; i < c->method_count; i++)
239 p = (ptr_t) ic->interpreted_methods[i];
240 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic, \
241 cFlabel);
244 p = (ptr_t) ic->field_initializers;
245 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic, cGlabel);
248 #endif
251 else
253 // NOTE: each class only holds information about the class
254 // itself. So we must do the marking for the entire inheritance
255 // tree in order to mark all fields. FIXME: what about
256 // interfaces? We skip Object here, because Object only has a
257 // sync_info, and we handled that earlier.
258 // Note: occasionally `klass' can be null. For instance, this
259 // can happen if a GC occurs between the point where an object
260 // is allocated and where the vtbl slot is set.
261 while (klass && klass != &java::lang::Object::class$)
263 jfieldID field = JvGetFirstInstanceField (klass);
264 jint max = JvNumInstanceFields (klass);
266 for (int i = 0; i < max; ++i)
268 if (JvFieldIsRef (field))
270 jobject val = JvGetObjectField (obj, field);
271 p = (ptr_t) val;
272 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit,
273 obj, elabel);
275 field = field->getNextField ();
277 klass = klass->getSuperclass();
281 return mark_stack_ptr;
284 // This is called by the GC during the mark phase. It marks a Java
285 // array (of objects). We use `void *' arguments and return, and not
286 // what the Boehm GC wants, to avoid pollution in our headers.
287 void *
288 _Jv_MarkArray (void *addr, void *msp, void *msl, void * /*env*/)
290 mse *mark_stack_ptr = (mse *) msp;
291 mse *mark_stack_limit = (mse *) msl;
292 jobjectArray array = (jobjectArray) addr;
294 _Jv_VTable *dt = *(_Jv_VTable **) addr;
295 // Assumes size >= 3 words. That's currently true since arrays have
296 // a vtable, sync pointer, and size. If the sync pointer goes away,
297 // we may need to round up the size.
298 if (__builtin_expect (! dt || !(dt -> get_finalizer()), false))
299 return mark_stack_ptr;
300 jclass klass = dt->clas;
301 ptr_t p;
303 # ifndef JV_HASH_SYNCHRONIZATION
304 // Every object has a sync_info pointer.
305 p = (ptr_t) array->sync_info;
306 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, array, e1label);
307 # endif
308 // Mark the object's class.
309 p = (ptr_t) klass;
310 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, &(dt -> clas), o2label);
312 for (int i = 0; i < JvGetArrayLength (array); ++i)
314 jobject obj = elements (array)[i];
315 p = (ptr_t) obj;
316 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, array, e2label);
319 return mark_stack_ptr;
322 // Generate a GC marking descriptor for a class.
324 // We assume that the gcj mark proc has index 0. This is a dubious assumption,
325 // since another one could be registered first. But the compiler also
326 // knows this, so in that case everything else will break, too.
327 #define GCJ_DEFAULT_DESCR GC_MAKE_PROC(GC_GCJ_RESERVED_MARK_PROC_INDEX,0)
328 void *
329 _Jv_BuildGCDescr(jclass)
331 /* FIXME: We should really look at the class and build the descriptor. */
332 return (void *)(GCJ_DEFAULT_DESCR);
335 // Allocate some space that is known to be pointer-free.
336 void *
337 _Jv_AllocBytes (jsize size)
339 void *r = GC_MALLOC_ATOMIC (size);
340 // We have to explicitly zero memory here, as the GC doesn't
341 // guarantee that PTRFREE allocations are zeroed. Note that we
342 // don't have to do this for other allocation types because we set
343 // the `ok_init' flag in the type descriptor.
344 memset (r, 0, size);
345 return r;
348 // Allocate space for a new Java array.
349 // Used only for arrays of objects.
350 void *
351 _Jv_AllocArray (jsize size, jclass klass)
353 void *obj;
354 const jsize min_heap_addr = 16*1024;
355 // A heuristic. If size is less than this value, the size
356 // stored in the array can't possibly be misinterpreted as
357 // a pointer. Thus we lose nothing by scanning the object
358 // completely conservatively, since no misidentification can
359 // take place.
361 #ifdef GC_DEBUG
362 // There isn't much to lose by scanning this conservatively.
363 // If we didn't, the mark proc would have to understand that
364 // it needed to skip the header.
365 obj = GC_MALLOC(size);
366 #else
367 if (size < min_heap_addr)
368 obj = GC_MALLOC(size);
369 else
370 obj = GC_generic_malloc (size, array_kind_x);
371 #endif
372 *((_Jv_VTable **) obj) = klass->vtable;
373 return obj;
376 /* Allocate space for a new non-Java object, which does not have the usual
377 Java object header but may contain pointers to other GC'ed objects. */
378 void *
379 _Jv_AllocRawObj (jsize size)
381 return (void *) GC_MALLOC (size);
384 static void
385 call_finalizer (GC_PTR obj, GC_PTR client_data)
387 _Jv_FinalizerFunc *fn = (_Jv_FinalizerFunc *) client_data;
388 jobject jobj = (jobject) obj;
390 (*fn) (jobj);
393 void
394 _Jv_RegisterFinalizer (void *object, _Jv_FinalizerFunc *meth)
396 GC_REGISTER_FINALIZER_NO_ORDER (object, call_finalizer, (GC_PTR) meth,
397 NULL, NULL);
400 void
401 _Jv_RunFinalizers (void)
403 GC_invoke_finalizers ();
406 void
407 _Jv_RunAllFinalizers (void)
409 GC_finalize_all ();
412 void
413 _Jv_RunGC (void)
415 GC_gcollect ();
418 long
419 _Jv_GCTotalMemory (void)
421 return GC_get_heap_size ();
424 long
425 _Jv_GCFreeMemory (void)
427 return GC_get_free_bytes ();
430 void
431 _Jv_GCSetInitialHeapSize (size_t size)
433 size_t current = GC_get_heap_size ();
434 if (size > current)
435 GC_expand_hp (size - current);
438 void
439 _Jv_GCSetMaximumHeapSize (size_t size)
441 GC_set_max_heap_size ((GC_word) size);
444 // From boehm's misc.c
445 extern "C" void GC_enable();
446 extern "C" void GC_disable();
448 void
449 _Jv_DisableGC (void)
451 _Jv_MutexLock (&disable_gc_mutex);
452 GC_disable();
453 _Jv_MutexUnlock (&disable_gc_mutex);
456 void
457 _Jv_EnableGC (void)
459 _Jv_MutexLock (&disable_gc_mutex);
460 GC_enable();
461 _Jv_MutexUnlock (&disable_gc_mutex);
464 static void * handle_out_of_memory(size_t)
466 _Jv_ThrowNoMemory();
469 void
470 _Jv_InitGC (void)
472 int proc;
473 DCL_LOCK_STATE;
475 DISABLE_SIGNALS ();
476 LOCK ();
478 if (initialized)
480 UNLOCK ();
481 ENABLE_SIGNALS ();
482 return;
484 initialized = 1;
485 UNLOCK ();
487 // Configure the collector to use the bitmap marking descriptors that we
488 // stash in the class vtable.
489 GC_init_gcj_malloc (0, (void *) _Jv_MarkObj);
491 // Cause an out of memory error to be thrown from the allocators,
492 // instead of returning 0. This is cheaper than checking on allocation.
493 GC_oom_fn = handle_out_of_memory;
495 LOCK ();
496 GC_java_finalization = 1;
498 // We use a different mark procedure for object arrays. This code
499 // configures a different object `kind' for object array allocation and
500 // marking. FIXME: see above.
501 array_free_list = (ptr_t *) GC_generic_malloc_inner ((MAXOBJSZ + 1)
502 * sizeof (ptr_t),
503 PTRFREE);
504 memset (array_free_list, 0, (MAXOBJSZ + 1) * sizeof (ptr_t));
506 proc = GC_n_mark_procs++;
507 GC_mark_procs[proc] = (GC_mark_proc) _Jv_MarkArray;
509 array_kind_x = GC_n_kinds++;
510 GC_obj_kinds[array_kind_x].ok_freelist = array_free_list;
511 GC_obj_kinds[array_kind_x].ok_reclaim_list = 0;
512 GC_obj_kinds[array_kind_x].ok_descriptor = GC_MAKE_PROC (proc, 0);
513 GC_obj_kinds[array_kind_x].ok_relocate_descr = FALSE;
514 GC_obj_kinds[array_kind_x].ok_init = TRUE;
516 _Jv_MutexInit (&disable_gc_mutex);
518 UNLOCK ();
519 ENABLE_SIGNALS ();
522 #ifdef JV_HASH_SYNCHRONIZATION
523 // Allocate an object with a fake vtable pointer, which causes only
524 // the first field (beyond the fake vtable pointer) to be traced.
525 // Eventually this should probably be generalized.
527 static _Jv_VTable trace_one_vtable = {
528 0, // class pointer
529 (void *)(2 * sizeof(void *)),
530 // descriptor; scan 2 words incl. vtable ptr.
531 // Least significant bits must be zero to
532 // identify this as a length descriptor
533 {0} // First method
536 void *
537 _Jv_AllocTraceOne (jsize size /* includes vtable slot */)
539 return GC_GCJ_MALLOC (size, &trace_one_vtable);
542 // Ditto for two words.
543 // the first field (beyond the fake vtable pointer) to be traced.
544 // Eventually this should probably be generalized.
546 static _Jv_VTable trace_two_vtable =
548 0, // class pointer
549 (void *)(3 * sizeof(void *)),
550 // descriptor; scan 3 words incl. vtable ptr.
551 {0} // First method
554 void *
555 _Jv_AllocTraceTwo (jsize size /* includes vtable slot */)
557 return GC_GCJ_MALLOC (size, &trace_two_vtable);
560 #endif /* JV_HASH_SYNCHRONIZATION */
562 void
563 _Jv_GCInitializeFinalizers (void (*notifier) (void))
565 GC_finalize_on_demand = 1;
566 GC_finalizer_notifier = notifier;
569 void
570 _Jv_GCRegisterDisappearingLink (jobject *objp)
572 GC_general_register_disappearing_link ((GC_PTR *) objp, (GC_PTR) *objp);
575 jboolean
576 _Jv_GCCanReclaimSoftReference (jobject)
578 // For now, always reclaim soft references. FIXME.
579 return true;
582 #if 0
583 void
584 _Jv_InitGC (void)
586 int proc;
587 DCL_LOCK_STATE;
589 DISABLE_SIGNALS ();
590 LOCK ();
592 if (initialized)
594 UNLOCK ();
595 ENABLE_SIGNALS ();
596 return;
598 initialized = 1;
600 GC_java_finalization = 1;
602 // Set up state for marking and allocation of Java objects.
603 obj_free_list = (ptr_t *) GC_generic_malloc_inner ((MAXOBJSZ + 1)
604 * sizeof (ptr_t),
605 PTRFREE);
606 memset (obj_free_list, 0, (MAXOBJSZ + 1) * sizeof (ptr_t));
608 proc = GC_n_mark_procs++;
609 GC_mark_procs[proc] = (GC_mark_proc) _Jv_MarkObj;
611 obj_kind_x = GC_n_kinds++;
612 GC_obj_kinds[obj_kind_x].ok_freelist = obj_free_list;
613 GC_obj_kinds[obj_kind_x].ok_reclaim_list = 0;
614 GC_obj_kinds[obj_kind_x].ok_descriptor = GC_MAKE_PROC (proc, 0);
615 GC_obj_kinds[obj_kind_x].ok_relocate_descr = FALSE;
616 GC_obj_kinds[obj_kind_x].ok_init = TRUE;
618 // Set up state for marking and allocation of arrays of Java
619 // objects.
620 array_free_list = (ptr_t *) GC_generic_malloc_inner ((MAXOBJSZ + 1)
621 * sizeof (ptr_t),
622 PTRFREE);
623 memset (array_free_list, 0, (MAXOBJSZ + 1) * sizeof (ptr_t));
625 proc = GC_n_mark_procs++;
626 GC_mark_procs[proc] = (GC_mark_proc) _Jv_MarkArray;
628 array_kind_x = GC_n_kinds++;
629 GC_obj_kinds[array_kind_x].ok_freelist = array_free_list;
630 GC_obj_kinds[array_kind_x].ok_reclaim_list = 0;
631 GC_obj_kinds[array_kind_x].ok_descriptor = GC_MAKE_PROC (proc, 0);
632 GC_obj_kinds[array_kind_x].ok_relocate_descr = FALSE;
633 GC_obj_kinds[array_kind_x].ok_init = TRUE;
635 _Jv_MutexInit (&disable_gc_mutex);
637 UNLOCK ();
638 ENABLE_SIGNALS ();
640 #endif /* 0 */