1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* This program is used to produce insn-recog.c, which contains a
22 function called `recog' plus its subroutines. These functions
23 contain a decision tree that recognizes whether an rtx, the
24 argument given to recog, is a valid instruction.
26 recog returns -1 if the rtx is not valid. If the rtx is valid,
27 recog returns a nonnegative number which is the insn code number
28 for the pattern that matched. This is the same as the order in the
29 machine description of the entry that matched. This number can be
30 used as an index into various insn_* tables, such as insn_template,
31 insn_outfun, and insn_n_operands (found in insn-output.c).
33 The third argument to recog is an optional pointer to an int. If
34 present, recog will accept a pattern if it matches except for
35 missing CLOBBER expressions at the end. In that case, the value
36 pointed to by the optional pointer will be set to the number of
37 CLOBBERs that need to be added (it should be initialized to zero by
38 the caller). If it is set nonzero, the caller should allocate a
39 PARALLEL of the appropriate size, copy the initial entries, and
40 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
42 This program also generates the function `split_insns', which
43 returns 0 if the rtl could not be split, or it returns the split
46 This program also generates the function `peephole2_insns', which
47 returns 0 if the rtl could not be matched. If there was a match,
48 the new rtl is returned in an INSN list, and LAST_INSN will point
49 to the last recognized insn in the old sequence. */
53 #include "coretypes.h"
58 #include "gensupport.h"
60 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
61 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
63 /* Ways of obtaining an rtx to be tested. */
65 /* PATTERN (peep2_next_insn (ARG)). */
68 /* XEXP (BASE, ARG). */
71 /* XVECEXP (BASE, 0, ARG). */
75 /* The position of an rtx relative to X0. Each useful position is
76 represented by exactly one instance of this structure. */
79 /* The parent rtx. This is the root position for POS_PEEP2_INSNs. */
80 struct position
*base
;
82 /* A position with the same BASE and TYPE, but with the next value
84 struct position
*next
;
86 /* A list of all POS_XEXP positions that use this one as their base,
87 chained by NEXT fields. The first entry represents XEXP (this, 0),
88 the second represents XEXP (this, 1), and so on. */
89 struct position
*xexps
;
91 /* A list of POS_XVECEXP0 positions that use this one as their base,
92 chained by NEXT fields. The first entry represents XVECEXP (this, 0, 0),
93 the second represents XVECEXP (this, 0, 1), and so on. */
94 struct position
*xvecexp0s
;
96 /* The type of position. */
97 enum position_type type
;
99 /* The argument to TYPE (shown as ARG in the position_type comments). */
102 /* The depth of this position, with 0 as the root. */
106 /* A listhead of decision trees. The alternatives to a node are kept
107 in a doubly-linked list so we can easily add nodes to the proper
108 place when merging. */
112 struct decision
*first
;
113 struct decision
*last
;
116 /* These types are roughly in the order in which we'd like to test them. */
120 DT_mode
, DT_code
, DT_veclen
,
121 DT_elt_zero_int
, DT_elt_one_int
, DT_elt_zero_wide
, DT_elt_zero_wide_safe
,
123 DT_veclen_ge
, DT_dup
, DT_pred
, DT_c_test
,
124 DT_accept_op
, DT_accept_insn
127 /* A single test. The two accept types aren't tests per-se, but
128 their equality (or lack thereof) does affect tree merging so
129 it is convenient to keep them here. */
133 /* A linked list through the tests attached to a node. */
134 struct decision_test
*next
;
136 enum decision_type type
;
140 int num_insns
; /* Number if insn in a define_peephole2. */
141 enum machine_mode mode
; /* Machine mode of node. */
142 RTX_CODE code
; /* Code to test. */
146 const char *name
; /* Predicate to call. */
147 const struct pred_data
*data
;
148 /* Optimization hints for this predicate. */
149 enum machine_mode mode
; /* Machine mode for node. */
152 const char *c_test
; /* Additional test to perform. */
153 int veclen
; /* Length of vector. */
154 int dup
; /* Number of operand to compare against. */
155 HOST_WIDE_INT intval
; /* Value for XINT for XWINT. */
156 int opno
; /* Operand number matched. */
159 int code_number
; /* Insn number matched. */
160 int lineno
; /* Line number of the insn. */
161 int num_clobbers_to_add
; /* Number of CLOBBERs to be added. */
166 /* Data structure for decision tree for recognizing legitimate insns. */
170 struct decision_head success
; /* Nodes to test on success. */
171 struct decision
*next
; /* Node to test on failure. */
172 struct decision
*prev
; /* Node whose failure tests us. */
173 struct decision
*afterward
; /* Node to test on success,
174 but failure of successor nodes. */
176 struct position
*position
; /* Position in pattern. */
178 struct decision_test
*tests
; /* The tests for this node. */
180 int number
; /* Node number, used for labels */
181 int subroutine_number
; /* Number of subroutine this node starts */
182 int need_label
; /* Label needs to be output. */
185 #define SUBROUTINE_THRESHOLD 100
187 static int next_subroutine_number
;
189 /* We can write three types of subroutines: One for insn recognition,
190 one to split insns, and one for peephole-type optimizations. This
191 defines which type is being written. */
194 RECOG
, SPLIT
, PEEPHOLE2
197 #define IS_SPLIT(X) ((X) != RECOG)
199 /* Next available node number for tree nodes. */
201 static int next_number
;
203 /* Next number to use as an insn_code. */
205 static int next_insn_code
;
207 /* Record the highest depth we ever have so we know how many variables to
208 allocate in each subroutine we make. */
210 static int max_depth
;
212 /* The line number of the start of the pattern currently being processed. */
213 static int pattern_lineno
;
215 /* The root position (x0). */
216 static struct position root_pos
;
218 /* A list of all POS_PEEP2_INSNs. The entry for insn 0 is the root position,
219 since we are given that instruction's pattern as x0. */
220 static struct position
*peep2_insn_pos_list
= &root_pos
;
222 extern void debug_decision
224 extern void debug_decision_list
227 /* Return a position with the given BASE, TYPE and ARG. NEXT_PTR
228 points to where the unique object that represents the position
229 should be stored. Create the object if it doesn't already exist,
230 otherwise reuse the object that is already there. */
232 static struct position
*
233 next_position (struct position
**next_ptr
, struct position
*base
,
234 enum position_type type
, int arg
)
236 struct position
*pos
;
241 pos
= XCNEW (struct position
);
245 pos
->depth
= base
->depth
+ 1;
251 /* Compare positions POS1 and POS2 lexicographically. */
254 compare_positions (struct position
*pos1
, struct position
*pos2
)
258 diff
= pos1
->depth
- pos2
->depth
;
262 while (pos1
->depth
!= pos2
->depth
);
266 while (pos1
->depth
!= pos2
->depth
);
269 diff
= (int) pos1
->type
- (int) pos2
->type
;
271 diff
= pos1
->arg
- pos2
->arg
;
278 /* Create a new node in sequence after LAST. */
280 static struct decision
*
281 new_decision (struct position
*pos
, struct decision_head
*last
)
283 struct decision
*new_decision
= XCNEW (struct decision
);
285 new_decision
->success
= *last
;
286 new_decision
->position
= pos
;
287 new_decision
->number
= next_number
++;
289 last
->first
= last
->last
= new_decision
;
293 /* Create a new test and link it in at PLACE. */
295 static struct decision_test
*
296 new_decision_test (enum decision_type type
, struct decision_test
***pplace
)
298 struct decision_test
**place
= *pplace
;
299 struct decision_test
*test
;
301 test
= XNEW (struct decision_test
);
312 /* Search for and return operand N, stop when reaching node STOP. */
315 find_operand (rtx pattern
, int n
, rtx stop
)
325 code
= GET_CODE (pattern
);
326 if ((code
== MATCH_SCRATCH
327 || code
== MATCH_OPERAND
328 || code
== MATCH_OPERATOR
329 || code
== MATCH_PARALLEL
)
330 && XINT (pattern
, 0) == n
)
333 fmt
= GET_RTX_FORMAT (code
);
334 len
= GET_RTX_LENGTH (code
);
335 for (i
= 0; i
< len
; i
++)
340 if ((r
= find_operand (XEXP (pattern
, i
), n
, stop
)) != NULL_RTX
)
345 if (! XVEC (pattern
, i
))
350 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
351 if ((r
= find_operand (XVECEXP (pattern
, i
, j
), n
, stop
))
356 case 'i': case 'w': case '0': case 's':
367 /* Search for and return operand M, such that it has a matching
368 constraint for operand N. */
371 find_matching_operand (rtx pattern
, int n
)
378 code
= GET_CODE (pattern
);
379 if (code
== MATCH_OPERAND
380 && (XSTR (pattern
, 2)[0] == '0' + n
381 || (XSTR (pattern
, 2)[0] == '%'
382 && XSTR (pattern
, 2)[1] == '0' + n
)))
385 fmt
= GET_RTX_FORMAT (code
);
386 len
= GET_RTX_LENGTH (code
);
387 for (i
= 0; i
< len
; i
++)
392 if ((r
= find_matching_operand (XEXP (pattern
, i
), n
)))
397 if (! XVEC (pattern
, i
))
402 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
403 if ((r
= find_matching_operand (XVECEXP (pattern
, i
, j
), n
)))
407 case 'i': case 'w': case '0': case 's':
419 /* Check for various errors in patterns. SET is nonnull for a destination,
420 and is the complete set pattern. SET_CODE is '=' for normal sets, and
421 '+' within a context that requires in-out constraints. */
424 validate_pattern (rtx pattern
, rtx insn
, rtx set
, int set_code
)
431 code
= GET_CODE (pattern
);
439 if (find_operand (insn
, XINT (pattern
, 0), pattern
) == pattern
)
440 error_with_line (pattern_lineno
,
441 "operand %i duplicated before defined",
447 const char *pred_name
= XSTR (pattern
, 1);
448 const struct pred_data
*pred
;
451 if (GET_CODE (insn
) == DEFINE_INSN
)
452 c_test
= XSTR (insn
, 2);
454 c_test
= XSTR (insn
, 1);
456 if (pred_name
[0] != 0)
458 pred
= lookup_predicate (pred_name
);
460 message_with_line (pattern_lineno
,
461 "warning: unknown predicate '%s'",
467 if (code
== MATCH_OPERAND
)
469 const char constraints0
= XSTR (pattern
, 2)[0];
471 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
472 don't use the MATCH_OPERAND constraint, only the predicate.
473 This is confusing to folks doing new ports, so help them
474 not make the mistake. */
475 if (GET_CODE (insn
) == DEFINE_EXPAND
476 || GET_CODE (insn
) == DEFINE_SPLIT
477 || GET_CODE (insn
) == DEFINE_PEEPHOLE2
)
480 message_with_line (pattern_lineno
,
481 "warning: constraints not supported in %s",
482 rtx_name
[GET_CODE (insn
)]);
485 /* A MATCH_OPERAND that is a SET should have an output reload. */
486 else if (set
&& constraints0
)
490 if (constraints0
== '+')
492 /* If we've only got an output reload for this operand,
493 we'd better have a matching input operand. */
494 else if (constraints0
== '='
495 && find_matching_operand (insn
, XINT (pattern
, 0)))
498 error_with_line (pattern_lineno
,
499 "operand %d missing in-out reload",
502 else if (constraints0
!= '=' && constraints0
!= '+')
503 error_with_line (pattern_lineno
,
504 "operand %d missing output reload",
509 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
510 while not likely to occur at runtime, results in less efficient
511 code from insn-recog.c. */
512 if (set
&& pred
&& pred
->allows_non_lvalue
)
513 message_with_line (pattern_lineno
,
514 "warning: destination operand %d "
518 /* A modeless MATCH_OPERAND can be handy when we can check for
519 multiple modes in the c_test. In most other cases, it is a
520 mistake. Only DEFINE_INSN is eligible, since SPLIT and
521 PEEP2 can FAIL within the output pattern. Exclude special
522 predicates, which check the mode themselves. Also exclude
523 predicates that allow only constants. Exclude the SET_DEST
524 of a call instruction, as that is a common idiom. */
526 if (GET_MODE (pattern
) == VOIDmode
527 && code
== MATCH_OPERAND
528 && GET_CODE (insn
) == DEFINE_INSN
531 && pred
->allows_non_const
532 && strstr (c_test
, "operands") == NULL
534 && GET_CODE (set
) == SET
535 && GET_CODE (SET_SRC (set
)) == CALL
))
536 message_with_line (pattern_lineno
,
537 "warning: operand %d missing mode?",
544 enum machine_mode dmode
, smode
;
547 dest
= SET_DEST (pattern
);
548 src
= SET_SRC (pattern
);
550 /* STRICT_LOW_PART is a wrapper. Its argument is the real
551 destination, and it's mode should match the source. */
552 if (GET_CODE (dest
) == STRICT_LOW_PART
)
553 dest
= XEXP (dest
, 0);
555 /* Find the referent for a DUP. */
557 if (GET_CODE (dest
) == MATCH_DUP
558 || GET_CODE (dest
) == MATCH_OP_DUP
559 || GET_CODE (dest
) == MATCH_PAR_DUP
)
560 dest
= find_operand (insn
, XINT (dest
, 0), NULL
);
562 if (GET_CODE (src
) == MATCH_DUP
563 || GET_CODE (src
) == MATCH_OP_DUP
564 || GET_CODE (src
) == MATCH_PAR_DUP
)
565 src
= find_operand (insn
, XINT (src
, 0), NULL
);
567 dmode
= GET_MODE (dest
);
568 smode
= GET_MODE (src
);
570 /* The mode of an ADDRESS_OPERAND is the mode of the memory
571 reference, not the mode of the address. */
572 if (GET_CODE (src
) == MATCH_OPERAND
573 && ! strcmp (XSTR (src
, 1), "address_operand"))
576 /* The operands of a SET must have the same mode unless one
578 else if (dmode
!= VOIDmode
&& smode
!= VOIDmode
&& dmode
!= smode
)
579 error_with_line (pattern_lineno
,
580 "mode mismatch in set: %smode vs %smode",
581 GET_MODE_NAME (dmode
), GET_MODE_NAME (smode
));
583 /* If only one of the operands is VOIDmode, and PC or CC0 is
584 not involved, it's probably a mistake. */
585 else if (dmode
!= smode
586 && GET_CODE (dest
) != PC
587 && GET_CODE (dest
) != CC0
588 && GET_CODE (src
) != PC
589 && GET_CODE (src
) != CC0
590 && !CONST_INT_P (src
)
591 && GET_CODE (src
) != CALL
)
594 which
= (dmode
== VOIDmode
? "destination" : "source");
595 message_with_line (pattern_lineno
,
596 "warning: %s missing a mode?", which
);
599 if (dest
!= SET_DEST (pattern
))
600 validate_pattern (dest
, insn
, pattern
, '=');
601 validate_pattern (SET_DEST (pattern
), insn
, pattern
, '=');
602 validate_pattern (SET_SRC (pattern
), insn
, NULL_RTX
, 0);
607 validate_pattern (SET_DEST (pattern
), insn
, pattern
, '=');
611 validate_pattern (XEXP (pattern
, 0), insn
, set
, set
? '+' : 0);
612 validate_pattern (XEXP (pattern
, 1), insn
, NULL_RTX
, 0);
613 validate_pattern (XEXP (pattern
, 2), insn
, NULL_RTX
, 0);
616 case STRICT_LOW_PART
:
617 validate_pattern (XEXP (pattern
, 0), insn
, set
, set
? '+' : 0);
621 if (GET_MODE (XEXP (pattern
, 0)) != VOIDmode
)
622 error_with_line (pattern_lineno
,
623 "operand to label_ref %smode not VOIDmode",
624 GET_MODE_NAME (GET_MODE (XEXP (pattern
, 0))));
631 fmt
= GET_RTX_FORMAT (code
);
632 len
= GET_RTX_LENGTH (code
);
633 for (i
= 0; i
< len
; i
++)
638 validate_pattern (XEXP (pattern
, i
), insn
, NULL_RTX
, 0);
642 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
643 validate_pattern (XVECEXP (pattern
, i
, j
), insn
, NULL_RTX
, 0);
646 case 'i': case 'w': case '0': case 's':
655 /* Create a chain of nodes to verify that an rtl expression matches
658 LAST is a pointer to the listhead in the previous node in the chain (or
659 in the calling function, for the first node).
661 POSITION is the current position in the insn.
663 INSN_TYPE is the type of insn for which we are emitting code.
665 A pointer to the final node in the chain is returned. */
667 static struct decision
*
668 add_to_sequence (rtx pattern
, struct decision_head
*last
,
669 struct position
*pos
, enum routine_type insn_type
, int top
)
672 struct decision
*this_decision
, *sub
;
673 struct decision_test
*test
;
674 struct decision_test
**place
;
675 struct position
*subpos
, **subpos_ptr
;
679 enum machine_mode mode
;
680 enum position_type pos_type
;
682 if (pos
->depth
> max_depth
)
683 max_depth
= pos
->depth
;
685 sub
= this_decision
= new_decision (pos
, last
);
686 place
= &this_decision
->tests
;
688 mode
= GET_MODE (pattern
);
689 code
= GET_CODE (pattern
);
694 /* Toplevel peephole pattern. */
695 if (insn_type
== PEEPHOLE2
&& top
)
699 /* Check we have sufficient insns. This avoids complications
700 because we then know peep2_next_insn never fails. */
701 num_insns
= XVECLEN (pattern
, 0);
704 test
= new_decision_test (DT_num_insns
, &place
);
705 test
->u
.num_insns
= num_insns
;
706 last
= &sub
->success
;
710 /* We don't need the node we just created -- unlink it. */
711 last
->first
= last
->last
= NULL
;
714 subpos_ptr
= &peep2_insn_pos_list
;
715 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 0); i
++)
717 subpos
= next_position (subpos_ptr
, &root_pos
,
719 sub
= add_to_sequence (XVECEXP (pattern
, 0, i
),
720 last
, subpos
, insn_type
, 0);
721 last
= &sub
->success
;
722 subpos_ptr
= &subpos
->next
;
727 /* Else nothing special. */
731 /* The explicit patterns within a match_parallel enforce a minimum
732 length on the vector. The match_parallel predicate may allow
733 for more elements. We do need to check for this minimum here
734 or the code generated to match the internals may reference data
735 beyond the end of the vector. */
736 test
= new_decision_test (DT_veclen_ge
, &place
);
737 test
->u
.veclen
= XVECLEN (pattern
, 2);
744 RTX_CODE was_code
= code
;
745 const char *pred_name
;
746 bool allows_const_int
= true;
748 if (code
== MATCH_SCRATCH
)
750 pred_name
= "scratch_operand";
755 pred_name
= XSTR (pattern
, 1);
756 if (code
== MATCH_PARALLEL
)
762 if (pred_name
[0] != 0)
764 const struct pred_data
*pred
;
766 test
= new_decision_test (DT_pred
, &place
);
767 test
->u
.pred
.name
= pred_name
;
768 test
->u
.pred
.mode
= mode
;
770 /* See if we know about this predicate.
771 If we do, remember it for use below.
773 We can optimize the generated code a little if either
774 (a) the predicate only accepts one code, or (b) the
775 predicate does not allow CONST_INT, in which case it
776 can match only if the modes match. */
777 pred
= lookup_predicate (pred_name
);
780 test
->u
.pred
.data
= pred
;
781 allows_const_int
= pred
->codes
[CONST_INT
];
782 if (was_code
== MATCH_PARALLEL
783 && pred
->singleton
!= PARALLEL
)
784 message_with_line (pattern_lineno
,
785 "predicate '%s' used in match_parallel "
786 "does not allow only PARALLEL", pred
->name
);
788 code
= pred
->singleton
;
791 message_with_line (pattern_lineno
,
792 "warning: unknown predicate '%s' in '%s' expression",
793 pred_name
, GET_RTX_NAME (was_code
));
796 /* Can't enforce a mode if we allow const_int. */
797 if (allows_const_int
)
800 /* Accept the operand, i.e. record it in `operands'. */
801 test
= new_decision_test (DT_accept_op
, &place
);
802 test
->u
.opno
= XINT (pattern
, 0);
804 if (was_code
== MATCH_OPERATOR
|| was_code
== MATCH_PARALLEL
)
806 if (was_code
== MATCH_OPERATOR
)
809 subpos_ptr
= &pos
->xexps
;
813 pos_type
= POS_XVECEXP0
;
814 subpos_ptr
= &pos
->xvecexp0s
;
816 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 2); i
++)
818 subpos
= next_position (subpos_ptr
, pos
, pos_type
, i
);
819 sub
= add_to_sequence (XVECEXP (pattern
, 2, i
),
820 &sub
->success
, subpos
, insn_type
, 0);
821 subpos_ptr
= &subpos
->next
;
830 test
= new_decision_test (DT_dup
, &place
);
831 test
->u
.dup
= XINT (pattern
, 0);
833 test
= new_decision_test (DT_accept_op
, &place
);
834 test
->u
.opno
= XINT (pattern
, 0);
836 subpos_ptr
= &pos
->xexps
;
837 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 1); i
++)
839 subpos
= next_position (subpos_ptr
, pos
, POS_XEXP
, i
);
840 sub
= add_to_sequence (XVECEXP (pattern
, 1, i
),
841 &sub
->success
, subpos
, insn_type
, 0);
842 subpos_ptr
= &subpos
->next
;
850 test
= new_decision_test (DT_dup
, &place
);
851 test
->u
.dup
= XINT (pattern
, 0);
858 fmt
= GET_RTX_FORMAT (code
);
859 len
= GET_RTX_LENGTH (code
);
861 /* Do tests against the current node first. */
862 for (i
= 0; i
< (size_t) len
; i
++)
870 test
= new_decision_test (DT_elt_zero_int
, &place
);
871 test
->u
.intval
= XINT (pattern
, i
);
875 test
= new_decision_test (DT_elt_one_int
, &place
);
876 test
->u
.intval
= XINT (pattern
, i
);
879 else if (fmt
[i
] == 'w')
881 /* If this value actually fits in an int, we can use a switch
882 statement here, so indicate that. */
883 enum decision_type type
884 = ((int) XWINT (pattern
, i
) == XWINT (pattern
, i
))
885 ? DT_elt_zero_wide_safe
: DT_elt_zero_wide
;
889 test
= new_decision_test (type
, &place
);
890 test
->u
.intval
= XWINT (pattern
, i
);
892 else if (fmt
[i
] == 'E')
896 test
= new_decision_test (DT_veclen
, &place
);
897 test
->u
.veclen
= XVECLEN (pattern
, i
);
901 /* Now test our sub-patterns. */
902 subpos_ptr
= &pos
->xexps
;
903 for (i
= 0; i
< (size_t) len
; i
++)
905 subpos
= next_position (subpos_ptr
, pos
, POS_XEXP
, i
);
909 sub
= add_to_sequence (XEXP (pattern
, i
), &sub
->success
,
910 subpos
, insn_type
, 0);
915 struct position
*subpos2
, **subpos2_ptr
;
918 subpos2_ptr
= &pos
->xvecexp0s
;
919 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
921 subpos2
= next_position (subpos2_ptr
, pos
, POS_XVECEXP0
, j
);
922 sub
= add_to_sequence (XVECEXP (pattern
, i
, j
),
923 &sub
->success
, subpos2
, insn_type
, 0);
924 subpos2_ptr
= &subpos2
->next
;
938 subpos_ptr
= &subpos
->next
;
942 /* Insert nodes testing mode and code, if they're still relevant,
943 before any of the nodes we may have added above. */
946 place
= &this_decision
->tests
;
947 test
= new_decision_test (DT_code
, &place
);
951 if (mode
!= VOIDmode
)
953 place
= &this_decision
->tests
;
954 test
= new_decision_test (DT_mode
, &place
);
958 /* If we didn't insert any tests or accept nodes, hork. */
959 gcc_assert (this_decision
->tests
);
965 /* A subroutine of maybe_both_true; examines only one test.
966 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
969 maybe_both_true_2 (struct decision_test
*d1
, struct decision_test
*d2
)
971 if (d1
->type
== d2
->type
)
976 if (d1
->u
.num_insns
== d2
->u
.num_insns
)
982 return d1
->u
.mode
== d2
->u
.mode
;
985 return d1
->u
.code
== d2
->u
.code
;
988 return d1
->u
.veclen
== d2
->u
.veclen
;
990 case DT_elt_zero_int
:
992 case DT_elt_zero_wide
:
993 case DT_elt_zero_wide_safe
:
994 return d1
->u
.intval
== d2
->u
.intval
;
1001 /* If either has a predicate that we know something about, set
1002 things up so that D1 is the one that always has a known
1003 predicate. Then see if they have any codes in common. */
1005 if (d1
->type
== DT_pred
|| d2
->type
== DT_pred
)
1007 if (d2
->type
== DT_pred
)
1009 struct decision_test
*tmp
;
1010 tmp
= d1
, d1
= d2
, d2
= tmp
;
1013 /* If D2 tests a mode, see if it matches D1. */
1014 if (d1
->u
.pred
.mode
!= VOIDmode
)
1016 if (d2
->type
== DT_mode
)
1018 if (d1
->u
.pred
.mode
!= d2
->u
.mode
1019 /* The mode of an address_operand predicate is the
1020 mode of the memory, not the operand. It can only
1021 be used for testing the predicate, so we must
1023 && strcmp (d1
->u
.pred
.name
, "address_operand") != 0)
1026 /* Don't check two predicate modes here, because if both predicates
1027 accept CONST_INT, then both can still be true even if the modes
1028 are different. If they don't accept CONST_INT, there will be a
1029 separate DT_mode that will make maybe_both_true_1 return 0. */
1032 if (d1
->u
.pred
.data
)
1034 /* If D2 tests a code, see if it is in the list of valid
1035 codes for D1's predicate. */
1036 if (d2
->type
== DT_code
)
1038 if (!d1
->u
.pred
.data
->codes
[d2
->u
.code
])
1042 /* Otherwise see if the predicates have any codes in common. */
1043 else if (d2
->type
== DT_pred
&& d2
->u
.pred
.data
)
1045 bool common
= false;
1048 for (c
= 0; c
< NUM_RTX_CODE
; c
++)
1049 if (d1
->u
.pred
.data
->codes
[c
] && d2
->u
.pred
.data
->codes
[c
])
1061 /* Tests vs veclen may be known when strict equality is involved. */
1062 if (d1
->type
== DT_veclen
&& d2
->type
== DT_veclen_ge
)
1063 return d1
->u
.veclen
>= d2
->u
.veclen
;
1064 if (d1
->type
== DT_veclen_ge
&& d2
->type
== DT_veclen
)
1065 return d2
->u
.veclen
>= d1
->u
.veclen
;
1070 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1071 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1074 maybe_both_true_1 (struct decision_test
*d1
, struct decision_test
*d2
)
1076 struct decision_test
*t1
, *t2
;
1078 /* A match_operand with no predicate can match anything. Recognize
1079 this by the existence of a lone DT_accept_op test. */
1080 if (d1
->type
== DT_accept_op
|| d2
->type
== DT_accept_op
)
1083 /* Eliminate pairs of tests while they can exactly match. */
1084 while (d1
&& d2
&& d1
->type
== d2
->type
)
1086 if (maybe_both_true_2 (d1
, d2
) == 0)
1088 d1
= d1
->next
, d2
= d2
->next
;
1091 /* After that, consider all pairs. */
1092 for (t1
= d1
; t1
; t1
= t1
->next
)
1093 for (t2
= d2
; t2
; t2
= t2
->next
)
1094 if (maybe_both_true_2 (t1
, t2
) == 0)
1100 /* Return 0 if we can prove that there is no RTL that can match both
1101 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1102 can match both or just that we couldn't prove there wasn't such an RTL).
1104 TOPLEVEL is nonzero if we are to only look at the top level and not
1105 recursively descend. */
1108 maybe_both_true (struct decision
*d1
, struct decision
*d2
,
1111 struct decision
*p1
, *p2
;
1114 /* Don't compare strings on the different positions in insn. Doing so
1115 is incorrect and results in false matches from constructs like
1117 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1118 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1120 [(set (match_operand:HI "register_operand" "r")
1121 (match_operand:HI "register_operand" "r"))]
1123 If we are presented with such, we are recursing through the remainder
1124 of a node's success nodes (from the loop at the end of this function).
1125 Skip forward until we come to a position that matches.
1127 Due to the way positions are constructed, we know that iterating
1128 forward from the lexically lower position will run into the lexically
1129 higher position and not the other way around. This saves a bit
1132 cmp
= compare_positions (d1
->position
, d2
->position
);
1135 gcc_assert (!toplevel
);
1137 /* If the d2->position was lexically lower, swap. */
1139 p1
= d1
, d1
= d2
, d2
= p1
;
1141 if (d1
->success
.first
== 0)
1143 for (p1
= d1
->success
.first
; p1
; p1
= p1
->next
)
1144 if (maybe_both_true (p1
, d2
, 0))
1150 /* Test the current level. */
1151 cmp
= maybe_both_true_1 (d1
->tests
, d2
->tests
);
1155 /* We can't prove that D1 and D2 cannot both be true. If we are only
1156 to check the top level, return 1. Otherwise, see if we can prove
1157 that all choices in both successors are mutually exclusive. If
1158 either does not have any successors, we can't prove they can't both
1161 if (toplevel
|| d1
->success
.first
== 0 || d2
->success
.first
== 0)
1164 for (p1
= d1
->success
.first
; p1
; p1
= p1
->next
)
1165 for (p2
= d2
->success
.first
; p2
; p2
= p2
->next
)
1166 if (maybe_both_true (p1
, p2
, 0))
1172 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1175 nodes_identical_1 (struct decision_test
*d1
, struct decision_test
*d2
)
1180 return d1
->u
.num_insns
== d2
->u
.num_insns
;
1183 return d1
->u
.mode
== d2
->u
.mode
;
1186 return d1
->u
.code
== d2
->u
.code
;
1189 return (d1
->u
.pred
.mode
== d2
->u
.pred
.mode
1190 && strcmp (d1
->u
.pred
.name
, d2
->u
.pred
.name
) == 0);
1193 return strcmp (d1
->u
.c_test
, d2
->u
.c_test
) == 0;
1197 return d1
->u
.veclen
== d2
->u
.veclen
;
1200 return d1
->u
.dup
== d2
->u
.dup
;
1202 case DT_elt_zero_int
:
1203 case DT_elt_one_int
:
1204 case DT_elt_zero_wide
:
1205 case DT_elt_zero_wide_safe
:
1206 return d1
->u
.intval
== d2
->u
.intval
;
1209 return d1
->u
.opno
== d2
->u
.opno
;
1211 case DT_accept_insn
:
1212 /* Differences will be handled in merge_accept_insn. */
1220 /* True iff the two nodes are identical (on one level only). Due
1221 to the way these lists are constructed, we shouldn't have to
1222 consider different orderings on the tests. */
1225 nodes_identical (struct decision
*d1
, struct decision
*d2
)
1227 struct decision_test
*t1
, *t2
;
1229 for (t1
= d1
->tests
, t2
= d2
->tests
; t1
&& t2
; t1
= t1
->next
, t2
= t2
->next
)
1231 if (t1
->type
!= t2
->type
)
1233 if (! nodes_identical_1 (t1
, t2
))
1237 /* For success, they should now both be null. */
1241 /* Check that their subnodes are at the same position, as any one set
1242 of sibling decisions must be at the same position. Allowing this
1243 requires complications to find_afterward and when change_state is
1245 if (d1
->success
.first
1246 && d2
->success
.first
1247 && d1
->success
.first
->position
!= d2
->success
.first
->position
)
1253 /* A subroutine of merge_trees; given two nodes that have been declared
1254 identical, cope with two insn accept states. If they differ in the
1255 number of clobbers, then the conflict was created by make_insn_sequence
1256 and we can drop the with-clobbers version on the floor. If both
1257 nodes have no additional clobbers, we have found an ambiguity in the
1258 source machine description. */
1261 merge_accept_insn (struct decision
*oldd
, struct decision
*addd
)
1263 struct decision_test
*old
, *add
;
1265 for (old
= oldd
->tests
; old
; old
= old
->next
)
1266 if (old
->type
== DT_accept_insn
)
1271 for (add
= addd
->tests
; add
; add
= add
->next
)
1272 if (add
->type
== DT_accept_insn
)
1277 /* If one node is for a normal insn and the second is for the base
1278 insn with clobbers stripped off, the second node should be ignored. */
1280 if (old
->u
.insn
.num_clobbers_to_add
== 0
1281 && add
->u
.insn
.num_clobbers_to_add
> 0)
1283 /* Nothing to do here. */
1285 else if (old
->u
.insn
.num_clobbers_to_add
> 0
1286 && add
->u
.insn
.num_clobbers_to_add
== 0)
1288 /* In this case, replace OLD with ADD. */
1289 old
->u
.insn
= add
->u
.insn
;
1293 error_with_line (add
->u
.insn
.lineno
, "`%s' matches `%s'",
1294 get_insn_name (add
->u
.insn
.code_number
),
1295 get_insn_name (old
->u
.insn
.code_number
));
1296 message_with_line (old
->u
.insn
.lineno
, "previous definition of `%s'",
1297 get_insn_name (old
->u
.insn
.code_number
));
1301 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1304 merge_trees (struct decision_head
*oldh
, struct decision_head
*addh
)
1306 struct decision
*next
, *add
;
1308 if (addh
->first
== 0)
1310 if (oldh
->first
== 0)
1316 /* Trying to merge bits at different positions isn't possible. */
1317 gcc_assert (oldh
->first
->position
== addh
->first
->position
);
1319 for (add
= addh
->first
; add
; add
= next
)
1321 struct decision
*old
, *insert_before
= NULL
;
1325 /* The semantics of pattern matching state that the tests are
1326 done in the order given in the MD file so that if an insn
1327 matches two patterns, the first one will be used. However,
1328 in practice, most, if not all, patterns are unambiguous so
1329 that their order is independent. In that case, we can merge
1330 identical tests and group all similar modes and codes together.
1332 Scan starting from the end of OLDH until we reach a point
1333 where we reach the head of the list or where we pass a
1334 pattern that could also be true if NEW is true. If we find
1335 an identical pattern, we can merge them. Also, record the
1336 last node that tests the same code and mode and the last one
1337 that tests just the same mode.
1339 If we have no match, place NEW after the closest match we found. */
1341 for (old
= oldh
->last
; old
; old
= old
->prev
)
1343 if (nodes_identical (old
, add
))
1345 merge_accept_insn (old
, add
);
1346 merge_trees (&old
->success
, &add
->success
);
1350 if (maybe_both_true (old
, add
, 0))
1353 /* Insert the nodes in DT test type order, which is roughly
1354 how expensive/important the test is. Given that the tests
1355 are also ordered within the list, examining the first is
1357 if ((int) add
->tests
->type
< (int) old
->tests
->type
)
1358 insert_before
= old
;
1361 if (insert_before
== NULL
)
1364 add
->prev
= oldh
->last
;
1365 oldh
->last
->next
= add
;
1370 if ((add
->prev
= insert_before
->prev
) != NULL
)
1371 add
->prev
->next
= add
;
1374 add
->next
= insert_before
;
1375 insert_before
->prev
= add
;
1382 /* Walk the tree looking for sub-nodes that perform common tests.
1383 Factor out the common test into a new node. This enables us
1384 (depending on the test type) to emit switch statements later. */
1387 factor_tests (struct decision_head
*head
)
1389 struct decision
*first
, *next
;
1391 for (first
= head
->first
; first
&& first
->next
; first
= next
)
1393 enum decision_type type
;
1394 struct decision
*new_dec
, *old_last
;
1396 type
= first
->tests
->type
;
1399 /* Want at least two compatible sequential nodes. */
1400 if (next
->tests
->type
!= type
)
1403 /* Don't want all node types, just those we can turn into
1404 switch statements. */
1407 && type
!= DT_veclen
1408 && type
!= DT_elt_zero_int
1409 && type
!= DT_elt_one_int
1410 && type
!= DT_elt_zero_wide_safe
)
1413 /* If we'd been performing more than one test, create a new node
1414 below our first test. */
1415 if (first
->tests
->next
!= NULL
)
1417 new_dec
= new_decision (first
->position
, &first
->success
);
1418 new_dec
->tests
= first
->tests
->next
;
1419 first
->tests
->next
= NULL
;
1422 /* Crop the node tree off after our first test. */
1424 old_last
= head
->last
;
1427 /* For each compatible test, adjust to perform only one test in
1428 the top level node, then merge the node back into the tree. */
1431 struct decision_head h
;
1433 if (next
->tests
->next
!= NULL
)
1435 new_dec
= new_decision (next
->position
, &next
->success
);
1436 new_dec
->tests
= next
->tests
->next
;
1437 next
->tests
->next
= NULL
;
1441 new_dec
->next
= NULL
;
1442 h
.first
= h
.last
= new_dec
;
1444 merge_trees (head
, &h
);
1446 while (next
&& next
->tests
->type
== type
);
1448 /* After we run out of compatible tests, graft the remaining nodes
1449 back onto the tree. */
1452 next
->prev
= head
->last
;
1453 head
->last
->next
= next
;
1454 head
->last
= old_last
;
1459 for (first
= head
->first
; first
; first
= first
->next
)
1460 factor_tests (&first
->success
);
1463 /* After factoring, try to simplify the tests on any one node.
1464 Tests that are useful for switch statements are recognizable
1465 by having only a single test on a node -- we'll be manipulating
1466 nodes with multiple tests:
1468 If we have mode tests or code tests that are redundant with
1469 predicates, remove them. */
1472 simplify_tests (struct decision_head
*head
)
1474 struct decision
*tree
;
1476 for (tree
= head
->first
; tree
; tree
= tree
->next
)
1478 struct decision_test
*a
, *b
;
1485 /* Find a predicate node. */
1486 while (b
&& b
->type
!= DT_pred
)
1490 /* Due to how these tests are constructed, we don't even need
1491 to check that the mode and code are compatible -- they were
1492 generated from the predicate in the first place. */
1493 while (a
->type
== DT_mode
|| a
->type
== DT_code
)
1500 for (tree
= head
->first
; tree
; tree
= tree
->next
)
1501 simplify_tests (&tree
->success
);
1504 /* Count the number of subnodes of HEAD. If the number is high enough,
1505 make the first node in HEAD start a separate subroutine in the C code
1506 that is generated. */
1509 break_out_subroutines (struct decision_head
*head
, int initial
)
1512 struct decision
*sub
;
1514 for (sub
= head
->first
; sub
; sub
= sub
->next
)
1515 size
+= 1 + break_out_subroutines (&sub
->success
, 0);
1517 if (size
> SUBROUTINE_THRESHOLD
&& ! initial
)
1519 head
->first
->subroutine_number
= ++next_subroutine_number
;
1525 /* For each node p, find the next alternative that might be true
1529 find_afterward (struct decision_head
*head
, struct decision
*real_afterward
)
1531 struct decision
*p
, *q
, *afterward
;
1533 /* We can't propagate alternatives across subroutine boundaries.
1534 This is not incorrect, merely a minor optimization loss. */
1537 afterward
= (p
->subroutine_number
> 0 ? NULL
: real_afterward
);
1539 for ( ; p
; p
= p
->next
)
1541 /* Find the next node that might be true if this one fails. */
1542 for (q
= p
->next
; q
; q
= q
->next
)
1543 if (maybe_both_true (p
, q
, 1))
1546 /* If we reached the end of the list without finding one,
1547 use the incoming afterward position. */
1556 for (p
= head
->first
; p
; p
= p
->next
)
1557 if (p
->success
.first
)
1558 find_afterward (&p
->success
, p
->afterward
);
1560 /* When we are generating a subroutine, record the real afterward
1561 position in the first node where write_tree can find it, and we
1562 can do the right thing at the subroutine call site. */
1564 if (p
->subroutine_number
> 0)
1565 p
->afterward
= real_afterward
;
1568 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1569 actions are necessary to move to NEWPOS. If we fail to move to the
1570 new state, branch to node AFTERWARD if nonzero, otherwise return.
1572 Failure to move to the new state can only occur if we are trying to
1573 match multiple insns and we try to step past the end of the stream. */
1576 change_state (struct position
*oldpos
, struct position
*newpos
,
1579 while (oldpos
->depth
> newpos
->depth
)
1580 oldpos
= oldpos
->base
;
1582 if (oldpos
!= newpos
)
1583 switch (newpos
->type
)
1585 case POS_PEEP2_INSN
:
1586 printf ("%stem = peep2_next_insn (%d);\n", indent
, newpos
->arg
);
1587 printf ("%sx%d = PATTERN (tem);\n", indent
, newpos
->depth
);
1591 change_state (oldpos
, newpos
->base
, indent
);
1592 printf ("%sx%d = XEXP (x%d, %d);\n",
1593 indent
, newpos
->depth
, newpos
->depth
- 1, newpos
->arg
);
1597 change_state (oldpos
, newpos
->base
, indent
);
1598 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1599 indent
, newpos
->depth
, newpos
->depth
- 1, newpos
->arg
);
1604 /* Print the enumerator constant for CODE -- the upcase version of
1608 print_code (enum rtx_code code
)
1611 for (p
= GET_RTX_NAME (code
); *p
; p
++)
1612 putchar (TOUPPER (*p
));
1615 /* Emit code to cross an afterward link -- change state and branch. */
1618 write_afterward (struct decision
*start
, struct decision
*afterward
,
1621 if (!afterward
|| start
->subroutine_number
> 0)
1622 printf("%sgoto ret0;\n", indent
);
1625 change_state (start
->position
, afterward
->position
, indent
);
1626 printf ("%sgoto L%d;\n", indent
, afterward
->number
);
1630 /* Emit a HOST_WIDE_INT as an integer constant expression. We need to take
1631 special care to avoid "decimal constant is so large that it is unsigned"
1632 warnings in the resulting code. */
1635 print_host_wide_int (HOST_WIDE_INT val
)
1637 HOST_WIDE_INT min
= (unsigned HOST_WIDE_INT
)1 << (HOST_BITS_PER_WIDE_INT
-1);
1639 printf ("(" HOST_WIDE_INT_PRINT_DEC_C
"-1)", val
+ 1);
1641 printf (HOST_WIDE_INT_PRINT_DEC_C
, val
);
1644 /* Emit a switch statement, if possible, for an initial sequence of
1645 nodes at START. Return the first node yet untested. */
1647 static struct decision
*
1648 write_switch (struct decision
*start
, int depth
)
1650 struct decision
*p
= start
;
1651 enum decision_type type
= p
->tests
->type
;
1652 struct decision
*needs_label
= NULL
;
1654 /* If we have two or more nodes in sequence that test the same one
1655 thing, we may be able to use a switch statement. */
1659 || p
->next
->tests
->type
!= type
1660 || p
->next
->tests
->next
1661 || nodes_identical_1 (p
->tests
, p
->next
->tests
))
1664 /* DT_code is special in that we can do interesting things with
1665 known predicates at the same time. */
1666 if (type
== DT_code
)
1668 char codemap
[NUM_RTX_CODE
];
1669 struct decision
*ret
;
1672 memset (codemap
, 0, sizeof(codemap
));
1674 printf (" switch (GET_CODE (x%d))\n {\n", depth
);
1675 code
= p
->tests
->u
.code
;
1678 if (p
!= start
&& p
->need_label
&& needs_label
== NULL
)
1683 printf (":\n goto L%d;\n", p
->success
.first
->number
);
1684 p
->success
.first
->need_label
= 1;
1691 && p
->tests
->type
== DT_code
1692 && ! codemap
[code
= p
->tests
->u
.code
]);
1694 /* If P is testing a predicate that we know about and we haven't
1695 seen any of the codes that are valid for the predicate, we can
1696 write a series of "case" statement, one for each possible code.
1697 Since we are already in a switch, these redundant tests are very
1698 cheap and will reduce the number of predicates called. */
1700 /* Note that while we write out cases for these predicates here,
1701 we don't actually write the test here, as it gets kinda messy.
1702 It is trivial to leave this to later by telling our caller that
1703 we only processed the CODE tests. */
1704 if (needs_label
!= NULL
)
1709 while (p
&& p
->tests
->type
== DT_pred
&& p
->tests
->u
.pred
.data
)
1711 const struct pred_data
*data
= p
->tests
->u
.pred
.data
;
1714 for (c
= 0; c
< NUM_RTX_CODE
; c
++)
1715 if (codemap
[c
] && data
->codes
[c
])
1718 for (c
= 0; c
< NUM_RTX_CODE
; c
++)
1721 fputs (" case ", stdout
);
1722 print_code ((enum rtx_code
) c
);
1723 fputs (":\n", stdout
);
1727 printf (" goto L%d;\n", p
->number
);
1733 /* Make the default case skip the predicates we managed to match. */
1735 printf (" default:\n");
1740 printf (" goto L%d;\n", p
->number
);
1744 write_afterward (start
, start
->afterward
, " ");
1747 printf (" break;\n");
1752 else if (type
== DT_mode
1753 || type
== DT_veclen
1754 || type
== DT_elt_zero_int
1755 || type
== DT_elt_one_int
1756 || type
== DT_elt_zero_wide_safe
)
1758 const char *indent
= "";
1760 /* We cast switch parameter to integer, so we must ensure that the value
1762 if (type
== DT_elt_zero_wide_safe
)
1765 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth
, depth
);
1767 printf ("%s switch (", indent
);
1771 printf ("GET_MODE (x%d)", depth
);
1774 printf ("XVECLEN (x%d, 0)", depth
);
1776 case DT_elt_zero_int
:
1777 printf ("XINT (x%d, 0)", depth
);
1779 case DT_elt_one_int
:
1780 printf ("XINT (x%d, 1)", depth
);
1782 case DT_elt_zero_wide_safe
:
1783 /* Convert result of XWINT to int for portability since some C
1784 compilers won't do it and some will. */
1785 printf ("(int) XWINT (x%d, 0)", depth
);
1790 printf (")\n%s {\n", indent
);
1794 /* Merge trees will not unify identical nodes if their
1795 sub-nodes are at different levels. Thus we must check
1796 for duplicate cases. */
1798 for (q
= start
; q
!= p
; q
= q
->next
)
1799 if (nodes_identical_1 (p
->tests
, q
->tests
))
1802 if (p
!= start
&& p
->need_label
&& needs_label
== NULL
)
1805 printf ("%s case ", indent
);
1809 printf ("%smode", GET_MODE_NAME (p
->tests
->u
.mode
));
1812 printf ("%d", p
->tests
->u
.veclen
);
1814 case DT_elt_zero_int
:
1815 case DT_elt_one_int
:
1816 case DT_elt_zero_wide
:
1817 case DT_elt_zero_wide_safe
:
1818 print_host_wide_int (p
->tests
->u
.intval
);
1823 printf (":\n%s goto L%d;\n", indent
, p
->success
.first
->number
);
1824 p
->success
.first
->need_label
= 1;
1828 while (p
&& p
->tests
->type
== type
&& !p
->tests
->next
);
1831 printf ("%s default:\n%s break;\n%s }\n",
1832 indent
, indent
, indent
);
1834 return needs_label
!= NULL
? needs_label
: p
;
1838 /* None of the other tests are amenable. */
1843 /* Emit code for one test. */
1846 write_cond (struct decision_test
*p
, int depth
,
1847 enum routine_type subroutine_type
)
1852 printf ("peep2_current_count >= %d", p
->u
.num_insns
);
1856 printf ("GET_MODE (x%d) == %smode", depth
, GET_MODE_NAME (p
->u
.mode
));
1860 printf ("GET_CODE (x%d) == ", depth
);
1861 print_code (p
->u
.code
);
1865 printf ("XVECLEN (x%d, 0) == %d", depth
, p
->u
.veclen
);
1868 case DT_elt_zero_int
:
1869 printf ("XINT (x%d, 0) == %d", depth
, (int) p
->u
.intval
);
1872 case DT_elt_one_int
:
1873 printf ("XINT (x%d, 1) == %d", depth
, (int) p
->u
.intval
);
1876 case DT_elt_zero_wide
:
1877 case DT_elt_zero_wide_safe
:
1878 printf ("XWINT (x%d, 0) == ", depth
);
1879 print_host_wide_int (p
->u
.intval
);
1883 printf ("x%d == const_int_rtx[MAX_SAVED_CONST_INT + (%d)]",
1884 depth
, (int) p
->u
.intval
);
1888 printf ("XVECLEN (x%d, 0) >= %d", depth
, p
->u
.veclen
);
1892 printf ("rtx_equal_p (x%d, operands[%d])", depth
, p
->u
.dup
);
1896 printf ("%s (x%d, %smode)", p
->u
.pred
.name
, depth
,
1897 GET_MODE_NAME (p
->u
.pred
.mode
));
1901 print_c_condition (p
->u
.c_test
);
1904 case DT_accept_insn
:
1905 gcc_assert (subroutine_type
== RECOG
);
1906 gcc_assert (p
->u
.insn
.num_clobbers_to_add
);
1907 printf ("pnum_clobbers != NULL");
1915 /* Emit code for one action. The previous tests have succeeded;
1916 TEST is the last of the chain. In the normal case we simply
1917 perform a state change. For the `accept' tests we must do more work. */
1920 write_action (struct decision
*p
, struct decision_test
*test
,
1921 int depth
, int uncond
, struct decision
*success
,
1922 enum routine_type subroutine_type
)
1929 else if (test
->type
== DT_accept_op
|| test
->type
== DT_accept_insn
)
1931 fputs (" {\n", stdout
);
1938 if (test
->type
== DT_accept_op
)
1940 printf("%soperands[%d] = x%d;\n", indent
, test
->u
.opno
, depth
);
1942 /* Only allow DT_accept_insn to follow. */
1946 gcc_assert (test
->type
== DT_accept_insn
);
1950 /* Sanity check that we're now at the end of the list of tests. */
1951 gcc_assert (!test
->next
);
1953 if (test
->type
== DT_accept_insn
)
1955 switch (subroutine_type
)
1958 if (test
->u
.insn
.num_clobbers_to_add
!= 0)
1959 printf ("%s*pnum_clobbers = %d;\n",
1960 indent
, test
->u
.insn
.num_clobbers_to_add
);
1961 printf ("%sreturn %d; /* %s */\n", indent
,
1962 test
->u
.insn
.code_number
,
1963 get_insn_name (test
->u
.insn
.code_number
));
1967 printf ("%sreturn gen_split_%d (insn, operands);\n",
1968 indent
, test
->u
.insn
.code_number
);
1974 struct position
*pos
;
1976 for (pos
= p
->position
; pos
; pos
= pos
->base
)
1977 if (pos
->type
== POS_PEEP2_INSN
)
1979 match_len
= pos
->arg
;
1982 printf ("%s*_pmatch_len = %d;\n", indent
, match_len
);
1983 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
1984 indent
, test
->u
.insn
.code_number
);
1985 printf ("%sif (tem != 0)\n%s return tem;\n", indent
, indent
);
1995 printf("%sgoto L%d;\n", indent
, success
->number
);
1996 success
->need_label
= 1;
2000 fputs (" }\n", stdout
);
2003 /* Return 1 if the test is always true and has no fallthru path. Return -1
2004 if the test does have a fallthru path, but requires that the condition be
2005 terminated. Otherwise return 0 for a normal test. */
2006 /* ??? is_unconditional is a stupid name for a tri-state function. */
2009 is_unconditional (struct decision_test
*t
, enum routine_type subroutine_type
)
2011 if (t
->type
== DT_accept_op
)
2014 if (t
->type
== DT_accept_insn
)
2016 switch (subroutine_type
)
2019 return (t
->u
.insn
.num_clobbers_to_add
== 0);
2032 /* Emit code for one node -- the conditional and the accompanying action.
2033 Return true if there is no fallthru path. */
2036 write_node (struct decision
*p
, int depth
,
2037 enum routine_type subroutine_type
)
2039 struct decision_test
*test
, *last_test
;
2042 /* Scan the tests and simplify comparisons against small
2044 for (test
= p
->tests
; test
; test
= test
->next
)
2046 if (test
->type
== DT_code
2047 && test
->u
.code
== CONST_INT
2049 && test
->next
->type
== DT_elt_zero_wide_safe
2050 && -MAX_SAVED_CONST_INT
<= test
->next
->u
.intval
2051 && test
->next
->u
.intval
<= MAX_SAVED_CONST_INT
)
2053 test
->type
= DT_const_int
;
2054 test
->u
.intval
= test
->next
->u
.intval
;
2055 test
->next
= test
->next
->next
;
2059 last_test
= test
= p
->tests
;
2060 uncond
= is_unconditional (test
, subroutine_type
);
2064 write_cond (test
, depth
, subroutine_type
);
2066 while ((test
= test
->next
) != NULL
)
2069 if (is_unconditional (test
, subroutine_type
))
2073 write_cond (test
, depth
, subroutine_type
);
2079 write_action (p
, last_test
, depth
, uncond
, p
->success
.first
, subroutine_type
);
2084 /* Emit code for all of the sibling nodes of HEAD. */
2087 write_tree_1 (struct decision_head
*head
, int depth
,
2088 enum routine_type subroutine_type
)
2090 struct decision
*p
, *next
;
2093 for (p
= head
->first
; p
; p
= next
)
2095 /* The label for the first element was printed in write_tree. */
2096 if (p
!= head
->first
&& p
->need_label
)
2097 OUTPUT_LABEL (" ", p
->number
);
2099 /* Attempt to write a switch statement for a whole sequence. */
2100 next
= write_switch (p
, depth
);
2105 /* Failed -- fall back and write one node. */
2106 uncond
= write_node (p
, depth
, subroutine_type
);
2111 /* Finished with this chain. Close a fallthru path by branching
2112 to the afterward node. */
2114 write_afterward (head
->last
, head
->last
->afterward
, " ");
2117 /* Write out the decision tree starting at HEAD. PREVPOS is the
2118 position at the node that branched to this node. */
2121 write_tree (struct decision_head
*head
, struct position
*prevpos
,
2122 enum routine_type type
, int initial
)
2124 struct decision
*p
= head
->first
;
2128 OUTPUT_LABEL (" ", p
->number
);
2130 if (! initial
&& p
->subroutine_number
> 0)
2132 static const char * const name_prefix
[] = {
2133 "recog", "split", "peephole2"
2136 static const char * const call_suffix
[] = {
2137 ", pnum_clobbers", "", ", _pmatch_len"
2140 /* This node has been broken out into a separate subroutine.
2141 Call it, test the result, and branch accordingly. */
2145 printf (" tem = %s_%d (x0, insn%s);\n",
2146 name_prefix
[type
], p
->subroutine_number
, call_suffix
[type
]);
2147 if (IS_SPLIT (type
))
2148 printf (" if (tem != 0)\n return tem;\n");
2150 printf (" if (tem >= 0)\n return tem;\n");
2152 change_state (p
->position
, p
->afterward
->position
, " ");
2153 printf (" goto L%d;\n", p
->afterward
->number
);
2157 printf (" return %s_%d (x0, insn%s);\n",
2158 name_prefix
[type
], p
->subroutine_number
, call_suffix
[type
]);
2163 change_state (prevpos
, p
->position
, " ");
2164 write_tree_1 (head
, p
->position
->depth
, type
);
2166 for (p
= head
->first
; p
; p
= p
->next
)
2167 if (p
->success
.first
)
2168 write_tree (&p
->success
, p
->position
, type
, 0);
2172 /* Write out a subroutine of type TYPE to do comparisons starting at
2176 write_subroutine (struct decision_head
*head
, enum routine_type type
)
2178 int subfunction
= head
->first
? head
->first
->subroutine_number
: 0;
2183 s_or_e
= subfunction
? "static " : "";
2186 sprintf (extension
, "_%d", subfunction
);
2187 else if (type
== RECOG
)
2188 extension
[0] = '\0';
2190 strcpy (extension
, "_insns");
2196 recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e
, extension
);
2200 split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n",
2205 peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
2210 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2211 for (i
= 1; i
<= max_depth
; i
++)
2212 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i
);
2214 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type
) ? "rtx" : "int");
2217 printf (" recog_data.insn = NULL_RTX;\n");
2220 write_tree (head
, &root_pos
, type
, 1);
2222 printf (" goto ret0;\n");
2224 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type
) ? 0 : -1);
2227 /* In break_out_subroutines, we discovered the boundaries for the
2228 subroutines, but did not write them out. Do so now. */
2231 write_subroutines (struct decision_head
*head
, enum routine_type type
)
2235 for (p
= head
->first
; p
; p
= p
->next
)
2236 if (p
->success
.first
)
2237 write_subroutines (&p
->success
, type
);
2239 if (head
->first
->subroutine_number
> 0)
2240 write_subroutine (head
, type
);
2243 /* Begin the output file. */
2249 /* Generated automatically by the program `genrecog' from the target\n\
2250 machine description file. */\n\
2252 #include \"config.h\"\n\
2253 #include \"system.h\"\n\
2254 #include \"coretypes.h\"\n\
2255 #include \"tm.h\"\n\
2256 #include \"rtl.h\"\n\
2257 #include \"tm_p.h\"\n\
2258 #include \"function.h\"\n\
2259 #include \"insn-config.h\"\n\
2260 #include \"recog.h\"\n\
2261 #include \"output.h\"\n\
2262 #include \"flags.h\"\n\
2263 #include \"hard-reg-set.h\"\n\
2264 #include \"resource.h\"\n\
2265 #include \"diagnostic-core.h\"\n\
2266 #include \"reload.h\"\n\
2267 #include \"regs.h\"\n\
2268 #include \"tm-constrs.h\"\n\
2272 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2273 X0 is a valid instruction.\n\
2275 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2276 returns a nonnegative number which is the insn code number for the\n\
2277 pattern that matched. This is the same as the order in the machine\n\
2278 description of the entry that matched. This number can be used as an\n\
2279 index into `insn_data' and other tables.\n");
2281 The third argument to recog is an optional pointer to an int. If\n\
2282 present, recog will accept a pattern if it matches except for missing\n\
2283 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2284 the optional pointer will be set to the number of CLOBBERs that need\n\
2285 to be added (it should be initialized to zero by the caller). If it");
2287 is set nonzero, the caller should allocate a PARALLEL of the\n\
2288 appropriate size, copy the initial entries, and call add_clobbers\n\
2289 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2293 The function split_insns returns 0 if the rtl could not\n\
2294 be split or the split rtl as an INSN list if it can be.\n\
2296 The function peephole2_insns returns 0 if the rtl could not\n\
2297 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
2298 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2303 /* Construct and return a sequence of decisions
2304 that will recognize INSN.
2306 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2308 static struct decision_head
2309 make_insn_sequence (rtx insn
, enum routine_type type
)
2312 const char *c_test
= XSTR (insn
, type
== RECOG
? 2 : 1);
2313 int truth
= maybe_eval_c_test (c_test
);
2314 struct decision
*last
;
2315 struct decision_test
*test
, **place
;
2316 struct decision_head head
;
2317 struct position
*c_test_pos
, **pos_ptr
;
2319 /* We should never see an insn whose C test is false at compile time. */
2322 c_test_pos
= &root_pos
;
2323 if (type
== PEEPHOLE2
)
2327 /* peephole2 gets special treatment:
2328 - X always gets an outer parallel even if it's only one entry
2329 - we remove all traces of outer-level match_scratch and match_dup
2330 expressions here. */
2331 x
= rtx_alloc (PARALLEL
);
2332 PUT_MODE (x
, VOIDmode
);
2333 XVEC (x
, 0) = rtvec_alloc (XVECLEN (insn
, 0));
2334 pos_ptr
= &peep2_insn_pos_list
;
2335 for (i
= j
= 0; i
< XVECLEN (insn
, 0); i
++)
2337 rtx tmp
= XVECEXP (insn
, 0, i
);
2338 if (GET_CODE (tmp
) != MATCH_SCRATCH
&& GET_CODE (tmp
) != MATCH_DUP
)
2340 c_test_pos
= next_position (pos_ptr
, &root_pos
,
2342 XVECEXP (x
, 0, j
) = tmp
;
2344 pos_ptr
= &c_test_pos
->next
;
2349 else if (XVECLEN (insn
, type
== RECOG
) == 1)
2350 x
= XVECEXP (insn
, type
== RECOG
, 0);
2353 x
= rtx_alloc (PARALLEL
);
2354 XVEC (x
, 0) = XVEC (insn
, type
== RECOG
);
2355 PUT_MODE (x
, VOIDmode
);
2358 validate_pattern (x
, insn
, NULL_RTX
, 0);
2360 memset(&head
, 0, sizeof(head
));
2361 last
= add_to_sequence (x
, &head
, &root_pos
, type
, 1);
2363 /* Find the end of the test chain on the last node. */
2364 for (test
= last
->tests
; test
->next
; test
= test
->next
)
2366 place
= &test
->next
;
2368 /* Skip the C test if it's known to be true at compile time. */
2371 /* Need a new node if we have another test to add. */
2372 if (test
->type
== DT_accept_op
)
2374 last
= new_decision (c_test_pos
, &last
->success
);
2375 place
= &last
->tests
;
2377 test
= new_decision_test (DT_c_test
, &place
);
2378 test
->u
.c_test
= c_test
;
2381 test
= new_decision_test (DT_accept_insn
, &place
);
2382 test
->u
.insn
.code_number
= next_insn_code
;
2383 test
->u
.insn
.lineno
= pattern_lineno
;
2384 test
->u
.insn
.num_clobbers_to_add
= 0;
2389 /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
2390 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2391 If so, set up to recognize the pattern without these CLOBBERs. */
2393 if (GET_CODE (x
) == PARALLEL
)
2397 /* Find the last non-clobber in the parallel. */
2398 for (i
= XVECLEN (x
, 0); i
> 0; i
--)
2400 rtx y
= XVECEXP (x
, 0, i
- 1);
2401 if (GET_CODE (y
) != CLOBBER
2402 || (!REG_P (XEXP (y
, 0))
2403 && GET_CODE (XEXP (y
, 0)) != MATCH_SCRATCH
))
2407 if (i
!= XVECLEN (x
, 0))
2410 struct decision_head clobber_head
;
2412 /* Build a similar insn without the clobbers. */
2414 new_rtx
= XVECEXP (x
, 0, 0);
2419 new_rtx
= rtx_alloc (PARALLEL
);
2420 XVEC (new_rtx
, 0) = rtvec_alloc (i
);
2421 for (j
= i
- 1; j
>= 0; j
--)
2422 XVECEXP (new_rtx
, 0, j
) = XVECEXP (x
, 0, j
);
2426 memset (&clobber_head
, 0, sizeof(clobber_head
));
2427 last
= add_to_sequence (new_rtx
, &clobber_head
, &root_pos
,
2430 /* Find the end of the test chain on the last node. */
2431 for (test
= last
->tests
; test
->next
; test
= test
->next
)
2434 /* We definitely have a new test to add -- create a new
2436 place
= &test
->next
;
2437 if (test
->type
== DT_accept_op
)
2439 last
= new_decision (&root_pos
, &last
->success
);
2440 place
= &last
->tests
;
2443 /* Skip the C test if it's known to be true at compile
2447 test
= new_decision_test (DT_c_test
, &place
);
2448 test
->u
.c_test
= c_test
;
2451 test
= new_decision_test (DT_accept_insn
, &place
);
2452 test
->u
.insn
.code_number
= next_insn_code
;
2453 test
->u
.insn
.lineno
= pattern_lineno
;
2454 test
->u
.insn
.num_clobbers_to_add
= XVECLEN (x
, 0) - i
;
2456 merge_trees (&head
, &clobber_head
);
2462 /* Define the subroutine we will call below and emit in genemit. */
2463 printf ("extern rtx gen_split_%d (rtx, rtx *);\n", next_insn_code
);
2467 /* Define the subroutine we will call below and emit in genemit. */
2468 printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
2477 process_tree (struct decision_head
*head
, enum routine_type subroutine_type
)
2479 if (head
->first
== NULL
)
2481 /* We can elide peephole2_insns, but not recog or split_insns. */
2482 if (subroutine_type
== PEEPHOLE2
)
2487 factor_tests (head
);
2489 next_subroutine_number
= 0;
2490 break_out_subroutines (head
, 1);
2491 find_afterward (head
, NULL
);
2493 /* We run this after find_afterward, because find_afterward needs
2494 the redundant DT_mode tests on predicates to determine whether
2495 two tests can both be true or not. */
2496 simplify_tests(head
);
2498 write_subroutines (head
, subroutine_type
);
2501 write_subroutine (head
, subroutine_type
);
2504 extern int main (int, char **);
2507 main (int argc
, char **argv
)
2510 struct decision_head recog_tree
, split_tree
, peephole2_tree
, h
;
2512 progname
= "genrecog";
2514 memset (&recog_tree
, 0, sizeof recog_tree
);
2515 memset (&split_tree
, 0, sizeof split_tree
);
2516 memset (&peephole2_tree
, 0, sizeof peephole2_tree
);
2518 if (!init_rtx_reader_args (argc
, argv
))
2519 return (FATAL_EXIT_CODE
);
2525 /* Read the machine description. */
2529 desc
= read_md_rtx (&pattern_lineno
, &next_insn_code
);
2533 switch (GET_CODE (desc
))
2536 h
= make_insn_sequence (desc
, RECOG
);
2537 merge_trees (&recog_tree
, &h
);
2541 h
= make_insn_sequence (desc
, SPLIT
);
2542 merge_trees (&split_tree
, &h
);
2545 case DEFINE_PEEPHOLE2
:
2546 h
= make_insn_sequence (desc
, PEEPHOLE2
);
2547 merge_trees (&peephole2_tree
, &h
);
2555 return FATAL_EXIT_CODE
;
2559 process_tree (&recog_tree
, RECOG
);
2560 process_tree (&split_tree
, SPLIT
);
2561 process_tree (&peephole2_tree
, PEEPHOLE2
);
2564 return (ferror (stdout
) != 0 ? FATAL_EXIT_CODE
: SUCCESS_EXIT_CODE
);
2568 debug_decision_2 (struct decision_test
*test
)
2573 fprintf (stderr
, "num_insns=%d", test
->u
.num_insns
);
2576 fprintf (stderr
, "mode=%s", GET_MODE_NAME (test
->u
.mode
));
2579 fprintf (stderr
, "code=%s", GET_RTX_NAME (test
->u
.code
));
2582 fprintf (stderr
, "veclen=%d", test
->u
.veclen
);
2584 case DT_elt_zero_int
:
2585 fprintf (stderr
, "elt0_i=%d", (int) test
->u
.intval
);
2587 case DT_elt_one_int
:
2588 fprintf (stderr
, "elt1_i=%d", (int) test
->u
.intval
);
2590 case DT_elt_zero_wide
:
2591 fprintf (stderr
, "elt0_w=" HOST_WIDE_INT_PRINT_DEC
, test
->u
.intval
);
2593 case DT_elt_zero_wide_safe
:
2594 fprintf (stderr
, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC
, test
->u
.intval
);
2597 fprintf (stderr
, "veclen>=%d", test
->u
.veclen
);
2600 fprintf (stderr
, "dup=%d", test
->u
.dup
);
2603 fprintf (stderr
, "pred=(%s,%s)",
2604 test
->u
.pred
.name
, GET_MODE_NAME(test
->u
.pred
.mode
));
2609 strncpy (sub
, test
->u
.c_test
, sizeof(sub
));
2610 memcpy (sub
+16, "...", 4);
2611 fprintf (stderr
, "c_test=\"%s\"", sub
);
2615 fprintf (stderr
, "A_op=%d", test
->u
.opno
);
2617 case DT_accept_insn
:
2618 fprintf (stderr
, "A_insn=(%d,%d)",
2619 test
->u
.insn
.code_number
, test
->u
.insn
.num_clobbers_to_add
);
2628 debug_decision_1 (struct decision
*d
, int indent
)
2631 struct decision_test
*test
;
2635 for (i
= 0; i
< indent
; ++i
)
2637 fputs ("(nil)\n", stderr
);
2641 for (i
= 0; i
< indent
; ++i
)
2648 debug_decision_2 (test
);
2649 while ((test
= test
->next
) != NULL
)
2651 fputs (" + ", stderr
);
2652 debug_decision_2 (test
);
2655 fprintf (stderr
, "} %d n %d a %d\n", d
->number
,
2656 (d
->next
? d
->next
->number
: -1),
2657 (d
->afterward
? d
->afterward
->number
: -1));
2661 debug_decision_0 (struct decision
*d
, int indent
, int maxdepth
)
2670 for (i
= 0; i
< indent
; ++i
)
2672 fputs ("(nil)\n", stderr
);
2676 debug_decision_1 (d
, indent
);
2677 for (n
= d
->success
.first
; n
; n
= n
->next
)
2678 debug_decision_0 (n
, indent
+ 2, maxdepth
- 1);
2682 debug_decision (struct decision
*d
)
2684 debug_decision_0 (d
, 0, 1000000);
2688 debug_decision_list (struct decision
*d
)
2692 debug_decision_0 (d
, 0, 0);