PR target/81369
[official-gcc.git] / gcc / tree-vect-loop.c
blob6c18c8f8ecb07c32e7c312226991aafd995b7edc
1 /* Loop Vectorization
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
4 Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "tree-pass.h"
32 #include "ssa.h"
33 #include "optabs-tree.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "cfganal.h"
38 #include "gimplify.h"
39 #include "gimple-iterator.h"
40 #include "gimplify-me.h"
41 #include "tree-ssa-loop-ivopts.h"
42 #include "tree-ssa-loop-manip.h"
43 #include "tree-ssa-loop-niter.h"
44 #include "tree-ssa-loop.h"
45 #include "cfgloop.h"
46 #include "params.h"
47 #include "tree-scalar-evolution.h"
48 #include "tree-vectorizer.h"
49 #include "gimple-fold.h"
50 #include "cgraph.h"
51 #include "tree-cfg.h"
52 #include "tree-if-conv.h"
54 /* Loop Vectorization Pass.
56 This pass tries to vectorize loops.
58 For example, the vectorizer transforms the following simple loop:
60 short a[N]; short b[N]; short c[N]; int i;
62 for (i=0; i<N; i++){
63 a[i] = b[i] + c[i];
66 as if it was manually vectorized by rewriting the source code into:
68 typedef int __attribute__((mode(V8HI))) v8hi;
69 short a[N]; short b[N]; short c[N]; int i;
70 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
71 v8hi va, vb, vc;
73 for (i=0; i<N/8; i++){
74 vb = pb[i];
75 vc = pc[i];
76 va = vb + vc;
77 pa[i] = va;
80 The main entry to this pass is vectorize_loops(), in which
81 the vectorizer applies a set of analyses on a given set of loops,
82 followed by the actual vectorization transformation for the loops that
83 had successfully passed the analysis phase.
84 Throughout this pass we make a distinction between two types of
85 data: scalars (which are represented by SSA_NAMES), and memory references
86 ("data-refs"). These two types of data require different handling both
87 during analysis and transformation. The types of data-refs that the
88 vectorizer currently supports are ARRAY_REFS which base is an array DECL
89 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
90 accesses are required to have a simple (consecutive) access pattern.
92 Analysis phase:
93 ===============
94 The driver for the analysis phase is vect_analyze_loop().
95 It applies a set of analyses, some of which rely on the scalar evolution
96 analyzer (scev) developed by Sebastian Pop.
98 During the analysis phase the vectorizer records some information
99 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
100 loop, as well as general information about the loop as a whole, which is
101 recorded in a "loop_vec_info" struct attached to each loop.
103 Transformation phase:
104 =====================
105 The loop transformation phase scans all the stmts in the loop, and
106 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
107 the loop that needs to be vectorized. It inserts the vector code sequence
108 just before the scalar stmt S, and records a pointer to the vector code
109 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
110 attached to S). This pointer will be used for the vectorization of following
111 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
112 otherwise, we rely on dead code elimination for removing it.
114 For example, say stmt S1 was vectorized into stmt VS1:
116 VS1: vb = px[i];
117 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
118 S2: a = b;
120 To vectorize stmt S2, the vectorizer first finds the stmt that defines
121 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
122 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
123 resulting sequence would be:
125 VS1: vb = px[i];
126 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
127 VS2: va = vb;
128 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
130 Operands that are not SSA_NAMEs, are data-refs that appear in
131 load/store operations (like 'x[i]' in S1), and are handled differently.
133 Target modeling:
134 =================
135 Currently the only target specific information that is used is the
136 size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
137 Targets that can support different sizes of vectors, for now will need
138 to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
139 flexibility will be added in the future.
141 Since we only vectorize operations which vector form can be
142 expressed using existing tree codes, to verify that an operation is
143 supported, the vectorizer checks the relevant optab at the relevant
144 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
145 the value found is CODE_FOR_nothing, then there's no target support, and
146 we can't vectorize the stmt.
148 For additional information on this project see:
149 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
152 static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *);
154 /* Function vect_determine_vectorization_factor
156 Determine the vectorization factor (VF). VF is the number of data elements
157 that are operated upon in parallel in a single iteration of the vectorized
158 loop. For example, when vectorizing a loop that operates on 4byte elements,
159 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
160 elements can fit in a single vector register.
162 We currently support vectorization of loops in which all types operated upon
163 are of the same size. Therefore this function currently sets VF according to
164 the size of the types operated upon, and fails if there are multiple sizes
165 in the loop.
167 VF is also the factor by which the loop iterations are strip-mined, e.g.:
168 original loop:
169 for (i=0; i<N; i++){
170 a[i] = b[i] + c[i];
173 vectorized loop:
174 for (i=0; i<N; i+=VF){
175 a[i:VF] = b[i:VF] + c[i:VF];
179 static bool
180 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
182 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
183 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
184 unsigned nbbs = loop->num_nodes;
185 unsigned int vectorization_factor = 0;
186 tree scalar_type = NULL_TREE;
187 gphi *phi;
188 tree vectype;
189 unsigned int nunits;
190 stmt_vec_info stmt_info;
191 unsigned i;
192 HOST_WIDE_INT dummy;
193 gimple *stmt, *pattern_stmt = NULL;
194 gimple_seq pattern_def_seq = NULL;
195 gimple_stmt_iterator pattern_def_si = gsi_none ();
196 bool analyze_pattern_stmt = false;
197 bool bool_result;
198 auto_vec<stmt_vec_info> mask_producers;
200 if (dump_enabled_p ())
201 dump_printf_loc (MSG_NOTE, vect_location,
202 "=== vect_determine_vectorization_factor ===\n");
204 for (i = 0; i < nbbs; i++)
206 basic_block bb = bbs[i];
208 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
209 gsi_next (&si))
211 phi = si.phi ();
212 stmt_info = vinfo_for_stmt (phi);
213 if (dump_enabled_p ())
215 dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: ");
216 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
219 gcc_assert (stmt_info);
221 if (STMT_VINFO_RELEVANT_P (stmt_info)
222 || STMT_VINFO_LIVE_P (stmt_info))
224 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
225 scalar_type = TREE_TYPE (PHI_RESULT (phi));
227 if (dump_enabled_p ())
229 dump_printf_loc (MSG_NOTE, vect_location,
230 "get vectype for scalar type: ");
231 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
232 dump_printf (MSG_NOTE, "\n");
235 vectype = get_vectype_for_scalar_type (scalar_type);
236 if (!vectype)
238 if (dump_enabled_p ())
240 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
241 "not vectorized: unsupported "
242 "data-type ");
243 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
244 scalar_type);
245 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
247 return false;
249 STMT_VINFO_VECTYPE (stmt_info) = vectype;
251 if (dump_enabled_p ())
253 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
254 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
255 dump_printf (MSG_NOTE, "\n");
258 nunits = TYPE_VECTOR_SUBPARTS (vectype);
259 if (dump_enabled_p ())
260 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n",
261 nunits);
263 if (!vectorization_factor
264 || (nunits > vectorization_factor))
265 vectorization_factor = nunits;
269 for (gimple_stmt_iterator si = gsi_start_bb (bb);
270 !gsi_end_p (si) || analyze_pattern_stmt;)
272 tree vf_vectype;
274 if (analyze_pattern_stmt)
275 stmt = pattern_stmt;
276 else
277 stmt = gsi_stmt (si);
279 stmt_info = vinfo_for_stmt (stmt);
281 if (dump_enabled_p ())
283 dump_printf_loc (MSG_NOTE, vect_location,
284 "==> examining statement: ");
285 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
288 gcc_assert (stmt_info);
290 /* Skip stmts which do not need to be vectorized. */
291 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
292 && !STMT_VINFO_LIVE_P (stmt_info))
293 || gimple_clobber_p (stmt))
295 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
296 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
297 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
298 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
300 stmt = pattern_stmt;
301 stmt_info = vinfo_for_stmt (pattern_stmt);
302 if (dump_enabled_p ())
304 dump_printf_loc (MSG_NOTE, vect_location,
305 "==> examining pattern statement: ");
306 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
309 else
311 if (dump_enabled_p ())
312 dump_printf_loc (MSG_NOTE, vect_location, "skip.\n");
313 gsi_next (&si);
314 continue;
317 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
318 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
319 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
320 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
321 analyze_pattern_stmt = true;
323 /* If a pattern statement has def stmts, analyze them too. */
324 if (is_pattern_stmt_p (stmt_info))
326 if (pattern_def_seq == NULL)
328 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
329 pattern_def_si = gsi_start (pattern_def_seq);
331 else if (!gsi_end_p (pattern_def_si))
332 gsi_next (&pattern_def_si);
333 if (pattern_def_seq != NULL)
335 gimple *pattern_def_stmt = NULL;
336 stmt_vec_info pattern_def_stmt_info = NULL;
338 while (!gsi_end_p (pattern_def_si))
340 pattern_def_stmt = gsi_stmt (pattern_def_si);
341 pattern_def_stmt_info
342 = vinfo_for_stmt (pattern_def_stmt);
343 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
344 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
345 break;
346 gsi_next (&pattern_def_si);
349 if (!gsi_end_p (pattern_def_si))
351 if (dump_enabled_p ())
353 dump_printf_loc (MSG_NOTE, vect_location,
354 "==> examining pattern def stmt: ");
355 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
356 pattern_def_stmt, 0);
359 stmt = pattern_def_stmt;
360 stmt_info = pattern_def_stmt_info;
362 else
364 pattern_def_si = gsi_none ();
365 analyze_pattern_stmt = false;
368 else
369 analyze_pattern_stmt = false;
372 if (gimple_get_lhs (stmt) == NULL_TREE
373 /* MASK_STORE has no lhs, but is ok. */
374 && (!is_gimple_call (stmt)
375 || !gimple_call_internal_p (stmt)
376 || gimple_call_internal_fn (stmt) != IFN_MASK_STORE))
378 if (is_gimple_call (stmt))
380 /* Ignore calls with no lhs. These must be calls to
381 #pragma omp simd functions, and what vectorization factor
382 it really needs can't be determined until
383 vectorizable_simd_clone_call. */
384 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
386 pattern_def_seq = NULL;
387 gsi_next (&si);
389 continue;
391 if (dump_enabled_p ())
393 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
394 "not vectorized: irregular stmt.");
395 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
398 return false;
401 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
403 if (dump_enabled_p ())
405 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
406 "not vectorized: vector stmt in loop:");
407 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
409 return false;
412 bool_result = false;
414 if (STMT_VINFO_VECTYPE (stmt_info))
416 /* The only case when a vectype had been already set is for stmts
417 that contain a dataref, or for "pattern-stmts" (stmts
418 generated by the vectorizer to represent/replace a certain
419 idiom). */
420 gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
421 || is_pattern_stmt_p (stmt_info)
422 || !gsi_end_p (pattern_def_si));
423 vectype = STMT_VINFO_VECTYPE (stmt_info);
425 else
427 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
428 if (gimple_call_internal_p (stmt, IFN_MASK_STORE))
429 scalar_type = TREE_TYPE (gimple_call_arg (stmt, 3));
430 else
431 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
433 /* Bool ops don't participate in vectorization factor
434 computation. For comparison use compared types to
435 compute a factor. */
436 if (VECT_SCALAR_BOOLEAN_TYPE_P (scalar_type)
437 && is_gimple_assign (stmt)
438 && gimple_assign_rhs_code (stmt) != COND_EXPR)
440 if (STMT_VINFO_RELEVANT_P (stmt_info)
441 || STMT_VINFO_LIVE_P (stmt_info))
442 mask_producers.safe_push (stmt_info);
443 bool_result = true;
445 if (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt))
446 == tcc_comparison
447 && !VECT_SCALAR_BOOLEAN_TYPE_P
448 (TREE_TYPE (gimple_assign_rhs1 (stmt))))
449 scalar_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
450 else
452 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
454 pattern_def_seq = NULL;
455 gsi_next (&si);
457 continue;
461 if (dump_enabled_p ())
463 dump_printf_loc (MSG_NOTE, vect_location,
464 "get vectype for scalar type: ");
465 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
466 dump_printf (MSG_NOTE, "\n");
468 vectype = get_vectype_for_scalar_type (scalar_type);
469 if (!vectype)
471 if (dump_enabled_p ())
473 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
474 "not vectorized: unsupported "
475 "data-type ");
476 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
477 scalar_type);
478 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
480 return false;
483 if (!bool_result)
484 STMT_VINFO_VECTYPE (stmt_info) = vectype;
486 if (dump_enabled_p ())
488 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
489 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
490 dump_printf (MSG_NOTE, "\n");
494 /* Don't try to compute VF out scalar types if we stmt
495 produces boolean vector. Use result vectype instead. */
496 if (VECTOR_BOOLEAN_TYPE_P (vectype))
497 vf_vectype = vectype;
498 else
500 /* The vectorization factor is according to the smallest
501 scalar type (or the largest vector size, but we only
502 support one vector size per loop). */
503 if (!bool_result)
504 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
505 &dummy);
506 if (dump_enabled_p ())
508 dump_printf_loc (MSG_NOTE, vect_location,
509 "get vectype for scalar type: ");
510 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
511 dump_printf (MSG_NOTE, "\n");
513 vf_vectype = get_vectype_for_scalar_type (scalar_type);
515 if (!vf_vectype)
517 if (dump_enabled_p ())
519 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
520 "not vectorized: unsupported data-type ");
521 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
522 scalar_type);
523 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
525 return false;
528 if ((GET_MODE_SIZE (TYPE_MODE (vectype))
529 != GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
531 if (dump_enabled_p ())
533 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
534 "not vectorized: different sized vector "
535 "types in statement, ");
536 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
537 vectype);
538 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
539 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
540 vf_vectype);
541 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
543 return false;
546 if (dump_enabled_p ())
548 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
549 dump_generic_expr (MSG_NOTE, TDF_SLIM, vf_vectype);
550 dump_printf (MSG_NOTE, "\n");
553 nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
554 if (dump_enabled_p ())
555 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n", nunits);
556 if (!vectorization_factor
557 || (nunits > vectorization_factor))
558 vectorization_factor = nunits;
560 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
562 pattern_def_seq = NULL;
563 gsi_next (&si);
568 /* TODO: Analyze cost. Decide if worth while to vectorize. */
569 if (dump_enabled_p ())
570 dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = %d\n",
571 vectorization_factor);
572 if (vectorization_factor <= 1)
574 if (dump_enabled_p ())
575 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
576 "not vectorized: unsupported data-type\n");
577 return false;
579 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
581 for (i = 0; i < mask_producers.length (); i++)
583 tree mask_type = NULL;
585 stmt = STMT_VINFO_STMT (mask_producers[i]);
587 if (is_gimple_assign (stmt)
588 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison
589 && !VECT_SCALAR_BOOLEAN_TYPE_P
590 (TREE_TYPE (gimple_assign_rhs1 (stmt))))
592 scalar_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
593 mask_type = get_mask_type_for_scalar_type (scalar_type);
595 if (!mask_type)
597 if (dump_enabled_p ())
598 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
599 "not vectorized: unsupported mask\n");
600 return false;
603 else
605 tree rhs;
606 ssa_op_iter iter;
607 gimple *def_stmt;
608 enum vect_def_type dt;
610 FOR_EACH_SSA_TREE_OPERAND (rhs, stmt, iter, SSA_OP_USE)
612 if (!vect_is_simple_use (rhs, mask_producers[i]->vinfo,
613 &def_stmt, &dt, &vectype))
615 if (dump_enabled_p ())
617 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
618 "not vectorized: can't compute mask type "
619 "for statement, ");
620 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
623 return false;
626 /* No vectype probably means external definition.
627 Allow it in case there is another operand which
628 allows to determine mask type. */
629 if (!vectype)
630 continue;
632 if (!mask_type)
633 mask_type = vectype;
634 else if (TYPE_VECTOR_SUBPARTS (mask_type)
635 != TYPE_VECTOR_SUBPARTS (vectype))
637 if (dump_enabled_p ())
639 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
640 "not vectorized: different sized masks "
641 "types in statement, ");
642 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
643 mask_type);
644 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
645 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
646 vectype);
647 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
649 return false;
651 else if (VECTOR_BOOLEAN_TYPE_P (mask_type)
652 != VECTOR_BOOLEAN_TYPE_P (vectype))
654 if (dump_enabled_p ())
656 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
657 "not vectorized: mixed mask and "
658 "nonmask vector types in statement, ");
659 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
660 mask_type);
661 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
662 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
663 vectype);
664 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
666 return false;
670 /* We may compare boolean value loaded as vector of integers.
671 Fix mask_type in such case. */
672 if (mask_type
673 && !VECTOR_BOOLEAN_TYPE_P (mask_type)
674 && gimple_code (stmt) == GIMPLE_ASSIGN
675 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
676 mask_type = build_same_sized_truth_vector_type (mask_type);
679 /* No mask_type should mean loop invariant predicate.
680 This is probably a subject for optimization in
681 if-conversion. */
682 if (!mask_type)
684 if (dump_enabled_p ())
686 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
687 "not vectorized: can't compute mask type "
688 "for statement, ");
689 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
692 return false;
695 STMT_VINFO_VECTYPE (mask_producers[i]) = mask_type;
698 return true;
702 /* Function vect_is_simple_iv_evolution.
704 FORNOW: A simple evolution of an induction variables in the loop is
705 considered a polynomial evolution. */
707 static bool
708 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
709 tree * step)
711 tree init_expr;
712 tree step_expr;
713 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
714 basic_block bb;
716 /* When there is no evolution in this loop, the evolution function
717 is not "simple". */
718 if (evolution_part == NULL_TREE)
719 return false;
721 /* When the evolution is a polynomial of degree >= 2
722 the evolution function is not "simple". */
723 if (tree_is_chrec (evolution_part))
724 return false;
726 step_expr = evolution_part;
727 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
729 if (dump_enabled_p ())
731 dump_printf_loc (MSG_NOTE, vect_location, "step: ");
732 dump_generic_expr (MSG_NOTE, TDF_SLIM, step_expr);
733 dump_printf (MSG_NOTE, ", init: ");
734 dump_generic_expr (MSG_NOTE, TDF_SLIM, init_expr);
735 dump_printf (MSG_NOTE, "\n");
738 *init = init_expr;
739 *step = step_expr;
741 if (TREE_CODE (step_expr) != INTEGER_CST
742 && (TREE_CODE (step_expr) != SSA_NAME
743 || ((bb = gimple_bb (SSA_NAME_DEF_STMT (step_expr)))
744 && flow_bb_inside_loop_p (get_loop (cfun, loop_nb), bb))
745 || (!INTEGRAL_TYPE_P (TREE_TYPE (step_expr))
746 && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr))
747 || !flag_associative_math)))
748 && (TREE_CODE (step_expr) != REAL_CST
749 || !flag_associative_math))
751 if (dump_enabled_p ())
752 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
753 "step unknown.\n");
754 return false;
757 return true;
760 /* Function vect_analyze_scalar_cycles_1.
762 Examine the cross iteration def-use cycles of scalar variables
763 in LOOP. LOOP_VINFO represents the loop that is now being
764 considered for vectorization (can be LOOP, or an outer-loop
765 enclosing LOOP). */
767 static void
768 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
770 basic_block bb = loop->header;
771 tree init, step;
772 auto_vec<gimple *, 64> worklist;
773 gphi_iterator gsi;
774 bool double_reduc;
776 if (dump_enabled_p ())
777 dump_printf_loc (MSG_NOTE, vect_location,
778 "=== vect_analyze_scalar_cycles ===\n");
780 /* First - identify all inductions. Reduction detection assumes that all the
781 inductions have been identified, therefore, this order must not be
782 changed. */
783 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
785 gphi *phi = gsi.phi ();
786 tree access_fn = NULL;
787 tree def = PHI_RESULT (phi);
788 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
790 if (dump_enabled_p ())
792 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
793 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
796 /* Skip virtual phi's. The data dependences that are associated with
797 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
798 if (virtual_operand_p (def))
799 continue;
801 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
803 /* Analyze the evolution function. */
804 access_fn = analyze_scalar_evolution (loop, def);
805 if (access_fn)
807 STRIP_NOPS (access_fn);
808 if (dump_enabled_p ())
810 dump_printf_loc (MSG_NOTE, vect_location,
811 "Access function of PHI: ");
812 dump_generic_expr (MSG_NOTE, TDF_SLIM, access_fn);
813 dump_printf (MSG_NOTE, "\n");
815 STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
816 = initial_condition_in_loop_num (access_fn, loop->num);
817 STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
818 = evolution_part_in_loop_num (access_fn, loop->num);
821 if (!access_fn
822 || !vect_is_simple_iv_evolution (loop->num, access_fn, &init, &step)
823 || (LOOP_VINFO_LOOP (loop_vinfo) != loop
824 && TREE_CODE (step) != INTEGER_CST))
826 worklist.safe_push (phi);
827 continue;
830 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
831 != NULL_TREE);
832 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
834 if (dump_enabled_p ())
835 dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.\n");
836 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
840 /* Second - identify all reductions and nested cycles. */
841 while (worklist.length () > 0)
843 gimple *phi = worklist.pop ();
844 tree def = PHI_RESULT (phi);
845 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
846 gimple *reduc_stmt;
848 if (dump_enabled_p ())
850 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
851 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
854 gcc_assert (!virtual_operand_p (def)
855 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
857 reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi,
858 &double_reduc, false);
859 if (reduc_stmt)
861 if (double_reduc)
863 if (dump_enabled_p ())
864 dump_printf_loc (MSG_NOTE, vect_location,
865 "Detected double reduction.\n");
867 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
868 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
869 vect_double_reduction_def;
871 else
873 if (loop != LOOP_VINFO_LOOP (loop_vinfo))
875 if (dump_enabled_p ())
876 dump_printf_loc (MSG_NOTE, vect_location,
877 "Detected vectorizable nested cycle.\n");
879 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
880 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
881 vect_nested_cycle;
883 else
885 if (dump_enabled_p ())
886 dump_printf_loc (MSG_NOTE, vect_location,
887 "Detected reduction.\n");
889 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
890 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
891 vect_reduction_def;
892 /* Store the reduction cycles for possible vectorization in
893 loop-aware SLP if it was not detected as reduction
894 chain. */
895 if (! GROUP_FIRST_ELEMENT (vinfo_for_stmt (reduc_stmt)))
896 LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push (reduc_stmt);
900 else
901 if (dump_enabled_p ())
902 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
903 "Unknown def-use cycle pattern.\n");
908 /* Function vect_analyze_scalar_cycles.
910 Examine the cross iteration def-use cycles of scalar variables, by
911 analyzing the loop-header PHIs of scalar variables. Classify each
912 cycle as one of the following: invariant, induction, reduction, unknown.
913 We do that for the loop represented by LOOP_VINFO, and also to its
914 inner-loop, if exists.
915 Examples for scalar cycles:
917 Example1: reduction:
919 loop1:
920 for (i=0; i<N; i++)
921 sum += a[i];
923 Example2: induction:
925 loop2:
926 for (i=0; i<N; i++)
927 a[i] = i; */
929 static void
930 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
932 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
934 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
936 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
937 Reductions in such inner-loop therefore have different properties than
938 the reductions in the nest that gets vectorized:
939 1. When vectorized, they are executed in the same order as in the original
940 scalar loop, so we can't change the order of computation when
941 vectorizing them.
942 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
943 current checks are too strict. */
945 if (loop->inner)
946 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
949 /* Transfer group and reduction information from STMT to its pattern stmt. */
951 static void
952 vect_fixup_reduc_chain (gimple *stmt)
954 gimple *firstp = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
955 gimple *stmtp;
956 gcc_assert (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (firstp))
957 && GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
958 GROUP_SIZE (vinfo_for_stmt (firstp)) = GROUP_SIZE (vinfo_for_stmt (stmt));
961 stmtp = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
962 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmtp)) = firstp;
963 stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
964 if (stmt)
965 GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmtp))
966 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
968 while (stmt);
969 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmtp)) = vect_reduction_def;
972 /* Fixup scalar cycles that now have their stmts detected as patterns. */
974 static void
975 vect_fixup_scalar_cycles_with_patterns (loop_vec_info loop_vinfo)
977 gimple *first;
978 unsigned i;
980 FOR_EACH_VEC_ELT (LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo), i, first)
981 if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (first)))
983 gimple *next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (first));
984 while (next)
986 if (! STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (next)))
987 break;
988 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
990 /* If not all stmt in the chain are patterns try to handle
991 the chain without patterns. */
992 if (! next)
994 vect_fixup_reduc_chain (first);
995 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo)[i]
996 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (first));
1001 /* Function vect_get_loop_niters.
1003 Determine how many iterations the loop is executed and place it
1004 in NUMBER_OF_ITERATIONS. Place the number of latch iterations
1005 in NUMBER_OF_ITERATIONSM1. Place the condition under which the
1006 niter information holds in ASSUMPTIONS.
1008 Return the loop exit condition. */
1011 static gcond *
1012 vect_get_loop_niters (struct loop *loop, tree *assumptions,
1013 tree *number_of_iterations, tree *number_of_iterationsm1)
1015 edge exit = single_exit (loop);
1016 struct tree_niter_desc niter_desc;
1017 tree niter_assumptions, niter, may_be_zero;
1018 gcond *cond = get_loop_exit_condition (loop);
1020 *assumptions = boolean_true_node;
1021 *number_of_iterationsm1 = chrec_dont_know;
1022 *number_of_iterations = chrec_dont_know;
1023 if (dump_enabled_p ())
1024 dump_printf_loc (MSG_NOTE, vect_location,
1025 "=== get_loop_niters ===\n");
1027 if (!exit)
1028 return cond;
1030 niter = chrec_dont_know;
1031 may_be_zero = NULL_TREE;
1032 niter_assumptions = boolean_true_node;
1033 if (!number_of_iterations_exit_assumptions (loop, exit, &niter_desc, NULL)
1034 || chrec_contains_undetermined (niter_desc.niter))
1035 return cond;
1037 niter_assumptions = niter_desc.assumptions;
1038 may_be_zero = niter_desc.may_be_zero;
1039 niter = niter_desc.niter;
1041 if (may_be_zero && integer_zerop (may_be_zero))
1042 may_be_zero = NULL_TREE;
1044 if (may_be_zero)
1046 if (COMPARISON_CLASS_P (may_be_zero))
1048 /* Try to combine may_be_zero with assumptions, this can simplify
1049 computation of niter expression. */
1050 if (niter_assumptions && !integer_nonzerop (niter_assumptions))
1051 niter_assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1052 niter_assumptions,
1053 fold_build1 (TRUTH_NOT_EXPR,
1054 boolean_type_node,
1055 may_be_zero));
1056 else
1057 niter = fold_build3 (COND_EXPR, TREE_TYPE (niter), may_be_zero,
1058 build_int_cst (TREE_TYPE (niter), 0), niter);
1060 may_be_zero = NULL_TREE;
1062 else if (integer_nonzerop (may_be_zero))
1064 *number_of_iterationsm1 = build_int_cst (TREE_TYPE (niter), 0);
1065 *number_of_iterations = build_int_cst (TREE_TYPE (niter), 1);
1066 return cond;
1068 else
1069 return cond;
1072 *assumptions = niter_assumptions;
1073 *number_of_iterationsm1 = niter;
1075 /* We want the number of loop header executions which is the number
1076 of latch executions plus one.
1077 ??? For UINT_MAX latch executions this number overflows to zero
1078 for loops like do { n++; } while (n != 0); */
1079 if (niter && !chrec_contains_undetermined (niter))
1080 niter = fold_build2 (PLUS_EXPR, TREE_TYPE (niter), unshare_expr (niter),
1081 build_int_cst (TREE_TYPE (niter), 1));
1082 *number_of_iterations = niter;
1084 return cond;
1087 /* Function bb_in_loop_p
1089 Used as predicate for dfs order traversal of the loop bbs. */
1091 static bool
1092 bb_in_loop_p (const_basic_block bb, const void *data)
1094 const struct loop *const loop = (const struct loop *)data;
1095 if (flow_bb_inside_loop_p (loop, bb))
1096 return true;
1097 return false;
1101 /* Function new_loop_vec_info.
1103 Create and initialize a new loop_vec_info struct for LOOP, as well as
1104 stmt_vec_info structs for all the stmts in LOOP. */
1106 static loop_vec_info
1107 new_loop_vec_info (struct loop *loop)
1109 loop_vec_info res;
1110 basic_block *bbs;
1111 gimple_stmt_iterator si;
1112 unsigned int i, nbbs;
1114 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
1115 res->kind = vec_info::loop;
1116 LOOP_VINFO_LOOP (res) = loop;
1118 bbs = get_loop_body (loop);
1120 /* Create/Update stmt_info for all stmts in the loop. */
1121 for (i = 0; i < loop->num_nodes; i++)
1123 basic_block bb = bbs[i];
1125 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1127 gimple *phi = gsi_stmt (si);
1128 gimple_set_uid (phi, 0);
1129 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res));
1132 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1134 gimple *stmt = gsi_stmt (si);
1135 gimple_set_uid (stmt, 0);
1136 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res));
1140 /* CHECKME: We want to visit all BBs before their successors (except for
1141 latch blocks, for which this assertion wouldn't hold). In the simple
1142 case of the loop forms we allow, a dfs order of the BBs would the same
1143 as reversed postorder traversal, so we are safe. */
1145 free (bbs);
1146 bbs = XCNEWVEC (basic_block, loop->num_nodes);
1147 nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
1148 bbs, loop->num_nodes, loop);
1149 gcc_assert (nbbs == loop->num_nodes);
1151 LOOP_VINFO_BBS (res) = bbs;
1152 LOOP_VINFO_NITERSM1 (res) = NULL;
1153 LOOP_VINFO_NITERS (res) = NULL;
1154 LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
1155 LOOP_VINFO_NITERS_ASSUMPTIONS (res) = NULL;
1156 LOOP_VINFO_COST_MODEL_THRESHOLD (res) = 0;
1157 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
1158 LOOP_VINFO_PEELING_FOR_ALIGNMENT (res) = 0;
1159 LOOP_VINFO_VECT_FACTOR (res) = 0;
1160 LOOP_VINFO_LOOP_NEST (res) = vNULL;
1161 LOOP_VINFO_DATAREFS (res) = vNULL;
1162 LOOP_VINFO_DDRS (res) = vNULL;
1163 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
1164 LOOP_VINFO_MAY_MISALIGN_STMTS (res) = vNULL;
1165 LOOP_VINFO_MAY_ALIAS_DDRS (res) = vNULL;
1166 LOOP_VINFO_GROUPED_STORES (res) = vNULL;
1167 LOOP_VINFO_REDUCTIONS (res) = vNULL;
1168 LOOP_VINFO_REDUCTION_CHAINS (res) = vNULL;
1169 LOOP_VINFO_SLP_INSTANCES (res) = vNULL;
1170 LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
1171 LOOP_VINFO_TARGET_COST_DATA (res) = init_cost (loop);
1172 LOOP_VINFO_PEELING_FOR_GAPS (res) = false;
1173 LOOP_VINFO_PEELING_FOR_NITER (res) = false;
1174 LOOP_VINFO_OPERANDS_SWAPPED (res) = false;
1175 LOOP_VINFO_ORIG_LOOP_INFO (res) = NULL;
1177 return res;
1181 /* Function destroy_loop_vec_info.
1183 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
1184 stmts in the loop. */
1186 void
1187 destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
1189 struct loop *loop;
1190 basic_block *bbs;
1191 int nbbs;
1192 gimple_stmt_iterator si;
1193 int j;
1194 vec<slp_instance> slp_instances;
1195 slp_instance instance;
1196 bool swapped;
1198 if (!loop_vinfo)
1199 return;
1201 loop = LOOP_VINFO_LOOP (loop_vinfo);
1203 bbs = LOOP_VINFO_BBS (loop_vinfo);
1204 nbbs = clean_stmts ? loop->num_nodes : 0;
1205 swapped = LOOP_VINFO_OPERANDS_SWAPPED (loop_vinfo);
1207 for (j = 0; j < nbbs; j++)
1209 basic_block bb = bbs[j];
1210 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1211 free_stmt_vec_info (gsi_stmt (si));
1213 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
1215 gimple *stmt = gsi_stmt (si);
1217 /* We may have broken canonical form by moving a constant
1218 into RHS1 of a commutative op. Fix such occurrences. */
1219 if (swapped && is_gimple_assign (stmt))
1221 enum tree_code code = gimple_assign_rhs_code (stmt);
1223 if ((code == PLUS_EXPR
1224 || code == POINTER_PLUS_EXPR
1225 || code == MULT_EXPR)
1226 && CONSTANT_CLASS_P (gimple_assign_rhs1 (stmt)))
1227 swap_ssa_operands (stmt,
1228 gimple_assign_rhs1_ptr (stmt),
1229 gimple_assign_rhs2_ptr (stmt));
1230 else if (code == COND_EXPR
1231 && CONSTANT_CLASS_P (gimple_assign_rhs2 (stmt)))
1233 tree cond_expr = gimple_assign_rhs1 (stmt);
1234 enum tree_code cond_code = TREE_CODE (cond_expr);
1236 if (TREE_CODE_CLASS (cond_code) == tcc_comparison)
1238 bool honor_nans = HONOR_NANS (TREE_OPERAND (cond_expr,
1239 0));
1240 cond_code = invert_tree_comparison (cond_code,
1241 honor_nans);
1242 if (cond_code != ERROR_MARK)
1244 TREE_SET_CODE (cond_expr, cond_code);
1245 swap_ssa_operands (stmt,
1246 gimple_assign_rhs2_ptr (stmt),
1247 gimple_assign_rhs3_ptr (stmt));
1253 /* Free stmt_vec_info. */
1254 free_stmt_vec_info (stmt);
1255 gsi_next (&si);
1259 free (LOOP_VINFO_BBS (loop_vinfo));
1260 vect_destroy_datarefs (loop_vinfo);
1261 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
1262 LOOP_VINFO_LOOP_NEST (loop_vinfo).release ();
1263 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).release ();
1264 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).release ();
1265 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).release ();
1266 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
1267 FOR_EACH_VEC_ELT (slp_instances, j, instance)
1268 vect_free_slp_instance (instance);
1270 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
1271 LOOP_VINFO_GROUPED_STORES (loop_vinfo).release ();
1272 LOOP_VINFO_REDUCTIONS (loop_vinfo).release ();
1273 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).release ();
1275 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
1276 loop_vinfo->scalar_cost_vec.release ();
1278 free (loop_vinfo);
1279 loop->aux = NULL;
1283 /* Calculate the cost of one scalar iteration of the loop. */
1284 static void
1285 vect_compute_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
1287 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1288 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1289 int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
1290 int innerloop_iters, i;
1292 /* Count statements in scalar loop. Using this as scalar cost for a single
1293 iteration for now.
1295 TODO: Add outer loop support.
1297 TODO: Consider assigning different costs to different scalar
1298 statements. */
1300 /* FORNOW. */
1301 innerloop_iters = 1;
1302 if (loop->inner)
1303 innerloop_iters = 50; /* FIXME */
1305 for (i = 0; i < nbbs; i++)
1307 gimple_stmt_iterator si;
1308 basic_block bb = bbs[i];
1310 if (bb->loop_father == loop->inner)
1311 factor = innerloop_iters;
1312 else
1313 factor = 1;
1315 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1317 gimple *stmt = gsi_stmt (si);
1318 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1320 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
1321 continue;
1323 /* Skip stmts that are not vectorized inside the loop. */
1324 if (stmt_info
1325 && !STMT_VINFO_RELEVANT_P (stmt_info)
1326 && (!STMT_VINFO_LIVE_P (stmt_info)
1327 || !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1328 && !STMT_VINFO_IN_PATTERN_P (stmt_info))
1329 continue;
1331 vect_cost_for_stmt kind;
1332 if (STMT_VINFO_DATA_REF (stmt_info))
1334 if (DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info)))
1335 kind = scalar_load;
1336 else
1337 kind = scalar_store;
1339 else
1340 kind = scalar_stmt;
1342 scalar_single_iter_cost
1343 += record_stmt_cost (&LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
1344 factor, kind, stmt_info, 0, vect_prologue);
1347 LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo)
1348 = scalar_single_iter_cost;
1352 /* Function vect_analyze_loop_form_1.
1354 Verify that certain CFG restrictions hold, including:
1355 - the loop has a pre-header
1356 - the loop has a single entry and exit
1357 - the loop exit condition is simple enough
1358 - the number of iterations can be analyzed, i.e, a countable loop. The
1359 niter could be analyzed under some assumptions. */
1361 bool
1362 vect_analyze_loop_form_1 (struct loop *loop, gcond **loop_cond,
1363 tree *assumptions, tree *number_of_iterationsm1,
1364 tree *number_of_iterations, gcond **inner_loop_cond)
1366 if (dump_enabled_p ())
1367 dump_printf_loc (MSG_NOTE, vect_location,
1368 "=== vect_analyze_loop_form ===\n");
1370 /* Different restrictions apply when we are considering an inner-most loop,
1371 vs. an outer (nested) loop.
1372 (FORNOW. May want to relax some of these restrictions in the future). */
1374 if (!loop->inner)
1376 /* Inner-most loop. We currently require that the number of BBs is
1377 exactly 2 (the header and latch). Vectorizable inner-most loops
1378 look like this:
1380 (pre-header)
1382 header <--------+
1383 | | |
1384 | +--> latch --+
1386 (exit-bb) */
1388 if (loop->num_nodes != 2)
1390 if (dump_enabled_p ())
1391 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1392 "not vectorized: control flow in loop.\n");
1393 return false;
1396 if (empty_block_p (loop->header))
1398 if (dump_enabled_p ())
1399 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1400 "not vectorized: empty loop.\n");
1401 return false;
1404 else
1406 struct loop *innerloop = loop->inner;
1407 edge entryedge;
1409 /* Nested loop. We currently require that the loop is doubly-nested,
1410 contains a single inner loop, and the number of BBs is exactly 5.
1411 Vectorizable outer-loops look like this:
1413 (pre-header)
1415 header <---+
1417 inner-loop |
1419 tail ------+
1421 (exit-bb)
1423 The inner-loop has the properties expected of inner-most loops
1424 as described above. */
1426 if ((loop->inner)->inner || (loop->inner)->next)
1428 if (dump_enabled_p ())
1429 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1430 "not vectorized: multiple nested loops.\n");
1431 return false;
1434 if (loop->num_nodes != 5)
1436 if (dump_enabled_p ())
1437 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1438 "not vectorized: control flow in loop.\n");
1439 return false;
1442 entryedge = loop_preheader_edge (innerloop);
1443 if (entryedge->src != loop->header
1444 || !single_exit (innerloop)
1445 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
1447 if (dump_enabled_p ())
1448 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1449 "not vectorized: unsupported outerloop form.\n");
1450 return false;
1453 /* Analyze the inner-loop. */
1454 tree inner_niterm1, inner_niter, inner_assumptions;
1455 if (! vect_analyze_loop_form_1 (loop->inner, inner_loop_cond,
1456 &inner_assumptions, &inner_niterm1,
1457 &inner_niter, NULL)
1458 /* Don't support analyzing niter under assumptions for inner
1459 loop. */
1460 || !integer_onep (inner_assumptions))
1462 if (dump_enabled_p ())
1463 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1464 "not vectorized: Bad inner loop.\n");
1465 return false;
1468 if (!expr_invariant_in_loop_p (loop, inner_niter))
1470 if (dump_enabled_p ())
1471 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1472 "not vectorized: inner-loop count not"
1473 " invariant.\n");
1474 return false;
1477 if (dump_enabled_p ())
1478 dump_printf_loc (MSG_NOTE, vect_location,
1479 "Considering outer-loop vectorization.\n");
1482 if (!single_exit (loop)
1483 || EDGE_COUNT (loop->header->preds) != 2)
1485 if (dump_enabled_p ())
1487 if (!single_exit (loop))
1488 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1489 "not vectorized: multiple exits.\n");
1490 else if (EDGE_COUNT (loop->header->preds) != 2)
1491 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1492 "not vectorized: too many incoming edges.\n");
1494 return false;
1497 /* We assume that the loop exit condition is at the end of the loop. i.e,
1498 that the loop is represented as a do-while (with a proper if-guard
1499 before the loop if needed), where the loop header contains all the
1500 executable statements, and the latch is empty. */
1501 if (!empty_block_p (loop->latch)
1502 || !gimple_seq_empty_p (phi_nodes (loop->latch)))
1504 if (dump_enabled_p ())
1505 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1506 "not vectorized: latch block not empty.\n");
1507 return false;
1510 /* Make sure the exit is not abnormal. */
1511 edge e = single_exit (loop);
1512 if (e->flags & EDGE_ABNORMAL)
1514 if (dump_enabled_p ())
1515 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1516 "not vectorized: abnormal loop exit edge.\n");
1517 return false;
1520 *loop_cond = vect_get_loop_niters (loop, assumptions, number_of_iterations,
1521 number_of_iterationsm1);
1522 if (!*loop_cond)
1524 if (dump_enabled_p ())
1525 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1526 "not vectorized: complicated exit condition.\n");
1527 return false;
1530 if (integer_zerop (*assumptions)
1531 || !*number_of_iterations
1532 || chrec_contains_undetermined (*number_of_iterations))
1534 if (dump_enabled_p ())
1535 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1536 "not vectorized: number of iterations cannot be "
1537 "computed.\n");
1538 return false;
1541 if (integer_zerop (*number_of_iterations))
1543 if (dump_enabled_p ())
1544 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1545 "not vectorized: number of iterations = 0.\n");
1546 return false;
1549 return true;
1552 /* Analyze LOOP form and return a loop_vec_info if it is of suitable form. */
1554 loop_vec_info
1555 vect_analyze_loop_form (struct loop *loop)
1557 tree assumptions, number_of_iterations, number_of_iterationsm1;
1558 gcond *loop_cond, *inner_loop_cond = NULL;
1560 if (! vect_analyze_loop_form_1 (loop, &loop_cond,
1561 &assumptions, &number_of_iterationsm1,
1562 &number_of_iterations, &inner_loop_cond))
1563 return NULL;
1565 loop_vec_info loop_vinfo = new_loop_vec_info (loop);
1566 LOOP_VINFO_NITERSM1 (loop_vinfo) = number_of_iterationsm1;
1567 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1568 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1569 if (!integer_onep (assumptions))
1571 /* We consider to vectorize this loop by versioning it under
1572 some assumptions. In order to do this, we need to clear
1573 existing information computed by scev and niter analyzer. */
1574 scev_reset_htab ();
1575 free_numbers_of_iterations_estimates (loop);
1576 /* Also set flag for this loop so that following scev and niter
1577 analysis are done under the assumptions. */
1578 loop_constraint_set (loop, LOOP_C_FINITE);
1579 /* Also record the assumptions for versioning. */
1580 LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo) = assumptions;
1583 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
1585 if (dump_enabled_p ())
1587 dump_printf_loc (MSG_NOTE, vect_location,
1588 "Symbolic number of iterations is ");
1589 dump_generic_expr (MSG_NOTE, TDF_DETAILS, number_of_iterations);
1590 dump_printf (MSG_NOTE, "\n");
1594 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
1595 if (inner_loop_cond)
1596 STMT_VINFO_TYPE (vinfo_for_stmt (inner_loop_cond))
1597 = loop_exit_ctrl_vec_info_type;
1599 gcc_assert (!loop->aux);
1600 loop->aux = loop_vinfo;
1601 return loop_vinfo;
1606 /* Scan the loop stmts and dependent on whether there are any (non-)SLP
1607 statements update the vectorization factor. */
1609 static void
1610 vect_update_vf_for_slp (loop_vec_info loop_vinfo)
1612 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1613 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1614 int nbbs = loop->num_nodes;
1615 unsigned int vectorization_factor;
1616 int i;
1618 if (dump_enabled_p ())
1619 dump_printf_loc (MSG_NOTE, vect_location,
1620 "=== vect_update_vf_for_slp ===\n");
1622 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1623 gcc_assert (vectorization_factor != 0);
1625 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1626 vectorization factor of the loop is the unrolling factor required by
1627 the SLP instances. If that unrolling factor is 1, we say, that we
1628 perform pure SLP on loop - cross iteration parallelism is not
1629 exploited. */
1630 bool only_slp_in_loop = true;
1631 for (i = 0; i < nbbs; i++)
1633 basic_block bb = bbs[i];
1634 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
1635 gsi_next (&si))
1637 gimple *stmt = gsi_stmt (si);
1638 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1639 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
1640 && STMT_VINFO_RELATED_STMT (stmt_info))
1642 stmt = STMT_VINFO_RELATED_STMT (stmt_info);
1643 stmt_info = vinfo_for_stmt (stmt);
1645 if ((STMT_VINFO_RELEVANT_P (stmt_info)
1646 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1647 && !PURE_SLP_STMT (stmt_info))
1648 /* STMT needs both SLP and loop-based vectorization. */
1649 only_slp_in_loop = false;
1653 if (only_slp_in_loop)
1655 dump_printf_loc (MSG_NOTE, vect_location,
1656 "Loop contains only SLP stmts\n");
1657 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1659 else
1661 dump_printf_loc (MSG_NOTE, vect_location,
1662 "Loop contains SLP and non-SLP stmts\n");
1663 vectorization_factor
1664 = least_common_multiple (vectorization_factor,
1665 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1668 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1669 if (dump_enabled_p ())
1670 dump_printf_loc (MSG_NOTE, vect_location,
1671 "Updating vectorization factor to %d\n",
1672 vectorization_factor);
1675 /* Function vect_analyze_loop_operations.
1677 Scan the loop stmts and make sure they are all vectorizable. */
1679 static bool
1680 vect_analyze_loop_operations (loop_vec_info loop_vinfo)
1682 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1683 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1684 int nbbs = loop->num_nodes;
1685 int i;
1686 stmt_vec_info stmt_info;
1687 bool need_to_vectorize = false;
1688 bool ok;
1690 if (dump_enabled_p ())
1691 dump_printf_loc (MSG_NOTE, vect_location,
1692 "=== vect_analyze_loop_operations ===\n");
1694 for (i = 0; i < nbbs; i++)
1696 basic_block bb = bbs[i];
1698 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
1699 gsi_next (&si))
1701 gphi *phi = si.phi ();
1702 ok = true;
1704 stmt_info = vinfo_for_stmt (phi);
1705 if (dump_enabled_p ())
1707 dump_printf_loc (MSG_NOTE, vect_location, "examining phi: ");
1708 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1710 if (virtual_operand_p (gimple_phi_result (phi)))
1711 continue;
1713 /* Inner-loop loop-closed exit phi in outer-loop vectorization
1714 (i.e., a phi in the tail of the outer-loop). */
1715 if (! is_loop_header_bb_p (bb))
1717 /* FORNOW: we currently don't support the case that these phis
1718 are not used in the outerloop (unless it is double reduction,
1719 i.e., this phi is vect_reduction_def), cause this case
1720 requires to actually do something here. */
1721 if (STMT_VINFO_LIVE_P (stmt_info)
1722 && STMT_VINFO_DEF_TYPE (stmt_info)
1723 != vect_double_reduction_def)
1725 if (dump_enabled_p ())
1726 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1727 "Unsupported loop-closed phi in "
1728 "outer-loop.\n");
1729 return false;
1732 /* If PHI is used in the outer loop, we check that its operand
1733 is defined in the inner loop. */
1734 if (STMT_VINFO_RELEVANT_P (stmt_info))
1736 tree phi_op;
1737 gimple *op_def_stmt;
1739 if (gimple_phi_num_args (phi) != 1)
1740 return false;
1742 phi_op = PHI_ARG_DEF (phi, 0);
1743 if (TREE_CODE (phi_op) != SSA_NAME)
1744 return false;
1746 op_def_stmt = SSA_NAME_DEF_STMT (phi_op);
1747 if (gimple_nop_p (op_def_stmt)
1748 || !flow_bb_inside_loop_p (loop, gimple_bb (op_def_stmt))
1749 || !vinfo_for_stmt (op_def_stmt))
1750 return false;
1752 if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1753 != vect_used_in_outer
1754 && STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1755 != vect_used_in_outer_by_reduction)
1756 return false;
1759 continue;
1762 gcc_assert (stmt_info);
1764 if ((STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1765 || STMT_VINFO_LIVE_P (stmt_info))
1766 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1768 /* A scalar-dependence cycle that we don't support. */
1769 if (dump_enabled_p ())
1770 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1771 "not vectorized: scalar dependence cycle.\n");
1772 return false;
1775 if (STMT_VINFO_RELEVANT_P (stmt_info))
1777 need_to_vectorize = true;
1778 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
1779 && ! PURE_SLP_STMT (stmt_info))
1780 ok = vectorizable_induction (phi, NULL, NULL, NULL);
1781 else if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
1782 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle)
1783 && ! PURE_SLP_STMT (stmt_info))
1784 ok = vectorizable_reduction (phi, NULL, NULL, NULL);
1787 if (ok && STMT_VINFO_LIVE_P (stmt_info))
1788 ok = vectorizable_live_operation (phi, NULL, NULL, -1, NULL);
1790 if (!ok)
1792 if (dump_enabled_p ())
1794 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1795 "not vectorized: relevant phi not "
1796 "supported: ");
1797 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, phi, 0);
1799 return false;
1803 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
1804 gsi_next (&si))
1806 gimple *stmt = gsi_stmt (si);
1807 if (!gimple_clobber_p (stmt)
1808 && !vect_analyze_stmt (stmt, &need_to_vectorize, NULL))
1809 return false;
1811 } /* bbs */
1813 /* All operations in the loop are either irrelevant (deal with loop
1814 control, or dead), or only used outside the loop and can be moved
1815 out of the loop (e.g. invariants, inductions). The loop can be
1816 optimized away by scalar optimizations. We're better off not
1817 touching this loop. */
1818 if (!need_to_vectorize)
1820 if (dump_enabled_p ())
1821 dump_printf_loc (MSG_NOTE, vect_location,
1822 "All the computation can be taken out of the loop.\n");
1823 if (dump_enabled_p ())
1824 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1825 "not vectorized: redundant loop. no profit to "
1826 "vectorize.\n");
1827 return false;
1830 return true;
1834 /* Function vect_analyze_loop_2.
1836 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1837 for it. The different analyses will record information in the
1838 loop_vec_info struct. */
1839 static bool
1840 vect_analyze_loop_2 (loop_vec_info loop_vinfo, bool &fatal)
1842 bool ok;
1843 int max_vf = MAX_VECTORIZATION_FACTOR;
1844 int min_vf = 2;
1845 unsigned int n_stmts = 0;
1847 /* The first group of checks is independent of the vector size. */
1848 fatal = true;
1850 /* Find all data references in the loop (which correspond to vdefs/vuses)
1851 and analyze their evolution in the loop. */
1853 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1855 loop_p loop = LOOP_VINFO_LOOP (loop_vinfo);
1856 if (!find_loop_nest (loop, &LOOP_VINFO_LOOP_NEST (loop_vinfo)))
1858 if (dump_enabled_p ())
1859 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1860 "not vectorized: loop nest containing two "
1861 "or more consecutive inner loops cannot be "
1862 "vectorized\n");
1863 return false;
1866 for (unsigned i = 0; i < loop->num_nodes; i++)
1867 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
1868 !gsi_end_p (gsi); gsi_next (&gsi))
1870 gimple *stmt = gsi_stmt (gsi);
1871 if (is_gimple_debug (stmt))
1872 continue;
1873 ++n_stmts;
1874 if (!find_data_references_in_stmt (loop, stmt,
1875 &LOOP_VINFO_DATAREFS (loop_vinfo)))
1877 if (is_gimple_call (stmt) && loop->safelen)
1879 tree fndecl = gimple_call_fndecl (stmt), op;
1880 if (fndecl != NULL_TREE)
1882 cgraph_node *node = cgraph_node::get (fndecl);
1883 if (node != NULL && node->simd_clones != NULL)
1885 unsigned int j, n = gimple_call_num_args (stmt);
1886 for (j = 0; j < n; j++)
1888 op = gimple_call_arg (stmt, j);
1889 if (DECL_P (op)
1890 || (REFERENCE_CLASS_P (op)
1891 && get_base_address (op)))
1892 break;
1894 op = gimple_call_lhs (stmt);
1895 /* Ignore #pragma omp declare simd functions
1896 if they don't have data references in the
1897 call stmt itself. */
1898 if (j == n
1899 && !(op
1900 && (DECL_P (op)
1901 || (REFERENCE_CLASS_P (op)
1902 && get_base_address (op)))))
1903 continue;
1907 if (dump_enabled_p ())
1908 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1909 "not vectorized: loop contains function "
1910 "calls or data references that cannot "
1911 "be analyzed\n");
1912 return false;
1916 /* Analyze the data references and also adjust the minimal
1917 vectorization factor according to the loads and stores. */
1919 ok = vect_analyze_data_refs (loop_vinfo, &min_vf);
1920 if (!ok)
1922 if (dump_enabled_p ())
1923 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1924 "bad data references.\n");
1925 return false;
1928 /* Classify all cross-iteration scalar data-flow cycles.
1929 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1930 vect_analyze_scalar_cycles (loop_vinfo);
1932 vect_pattern_recog (loop_vinfo);
1934 vect_fixup_scalar_cycles_with_patterns (loop_vinfo);
1936 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1937 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1939 ok = vect_analyze_data_ref_accesses (loop_vinfo);
1940 if (!ok)
1942 if (dump_enabled_p ())
1943 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1944 "bad data access.\n");
1945 return false;
1948 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1950 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1951 if (!ok)
1953 if (dump_enabled_p ())
1954 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1955 "unexpected pattern.\n");
1956 return false;
1959 /* While the rest of the analysis below depends on it in some way. */
1960 fatal = false;
1962 /* Analyze data dependences between the data-refs in the loop
1963 and adjust the maximum vectorization factor according to
1964 the dependences.
1965 FORNOW: fail at the first data dependence that we encounter. */
1967 ok = vect_analyze_data_ref_dependences (loop_vinfo, &max_vf);
1968 if (!ok
1969 || max_vf < min_vf)
1971 if (dump_enabled_p ())
1972 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1973 "bad data dependence.\n");
1974 return false;
1977 ok = vect_determine_vectorization_factor (loop_vinfo);
1978 if (!ok)
1980 if (dump_enabled_p ())
1981 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1982 "can't determine vectorization factor.\n");
1983 return false;
1985 if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1987 if (dump_enabled_p ())
1988 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1989 "bad data dependence.\n");
1990 return false;
1993 /* Compute the scalar iteration cost. */
1994 vect_compute_single_scalar_iteration_cost (loop_vinfo);
1996 int saved_vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1997 HOST_WIDE_INT estimated_niter;
1998 unsigned th;
1999 int min_scalar_loop_bound;
2001 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
2002 ok = vect_analyze_slp (loop_vinfo, n_stmts);
2003 if (!ok)
2004 return false;
2006 /* If there are any SLP instances mark them as pure_slp. */
2007 bool slp = vect_make_slp_decision (loop_vinfo);
2008 if (slp)
2010 /* Find stmts that need to be both vectorized and SLPed. */
2011 vect_detect_hybrid_slp (loop_vinfo);
2013 /* Update the vectorization factor based on the SLP decision. */
2014 vect_update_vf_for_slp (loop_vinfo);
2017 /* This is the point where we can re-start analysis with SLP forced off. */
2018 start_over:
2020 /* Now the vectorization factor is final. */
2021 unsigned vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2022 gcc_assert (vectorization_factor != 0);
2024 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
2025 dump_printf_loc (MSG_NOTE, vect_location,
2026 "vectorization_factor = %d, niters = "
2027 HOST_WIDE_INT_PRINT_DEC "\n", vectorization_factor,
2028 LOOP_VINFO_INT_NITERS (loop_vinfo));
2030 HOST_WIDE_INT max_niter
2031 = likely_max_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
2032 if ((LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2033 && (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
2034 || (max_niter != -1
2035 && (unsigned HOST_WIDE_INT) max_niter < vectorization_factor))
2037 if (dump_enabled_p ())
2038 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2039 "not vectorized: iteration count smaller than "
2040 "vectorization factor.\n");
2041 return false;
2044 /* Analyze the alignment of the data-refs in the loop.
2045 Fail if a data reference is found that cannot be vectorized. */
2047 ok = vect_analyze_data_refs_alignment (loop_vinfo);
2048 if (!ok)
2050 if (dump_enabled_p ())
2051 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2052 "bad data alignment.\n");
2053 return false;
2056 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
2057 It is important to call pruning after vect_analyze_data_ref_accesses,
2058 since we use grouping information gathered by interleaving analysis. */
2059 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
2060 if (!ok)
2061 return false;
2063 /* Do not invoke vect_enhance_data_refs_alignment for eplilogue
2064 vectorization. */
2065 if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
2067 /* This pass will decide on using loop versioning and/or loop peeling in
2068 order to enhance the alignment of data references in the loop. */
2069 ok = vect_enhance_data_refs_alignment (loop_vinfo);
2070 if (!ok)
2072 if (dump_enabled_p ())
2073 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2074 "bad data alignment.\n");
2075 return false;
2079 if (slp)
2081 /* Analyze operations in the SLP instances. Note this may
2082 remove unsupported SLP instances which makes the above
2083 SLP kind detection invalid. */
2084 unsigned old_size = LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length ();
2085 vect_slp_analyze_operations (LOOP_VINFO_SLP_INSTANCES (loop_vinfo),
2086 LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
2087 if (LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length () != old_size)
2088 goto again;
2091 /* Scan all the remaining operations in the loop that are not subject
2092 to SLP and make sure they are vectorizable. */
2093 ok = vect_analyze_loop_operations (loop_vinfo);
2094 if (!ok)
2096 if (dump_enabled_p ())
2097 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2098 "bad operation or unsupported loop bound.\n");
2099 return false;
2102 /* If epilog loop is required because of data accesses with gaps,
2103 one additional iteration needs to be peeled. Check if there is
2104 enough iterations for vectorization. */
2105 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
2106 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2108 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2109 tree scalar_niters = LOOP_VINFO_NITERSM1 (loop_vinfo);
2111 if (wi::to_widest (scalar_niters) < vf)
2113 if (dump_enabled_p ())
2114 dump_printf_loc (MSG_NOTE, vect_location,
2115 "loop has no enough iterations to support"
2116 " peeling for gaps.\n");
2117 return false;
2121 /* Analyze cost. Decide if worth while to vectorize. */
2122 int min_profitable_estimate, min_profitable_iters;
2123 vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
2124 &min_profitable_estimate);
2126 if (min_profitable_iters < 0)
2128 if (dump_enabled_p ())
2129 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2130 "not vectorized: vectorization not profitable.\n");
2131 if (dump_enabled_p ())
2132 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2133 "not vectorized: vector version will never be "
2134 "profitable.\n");
2135 goto again;
2138 min_scalar_loop_bound = (PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
2139 * vectorization_factor);
2141 /* Use the cost model only if it is more conservative than user specified
2142 threshold. */
2143 th = (unsigned) MAX (min_scalar_loop_bound, min_profitable_iters);
2145 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = th;
2147 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2148 && LOOP_VINFO_INT_NITERS (loop_vinfo) < th)
2150 if (dump_enabled_p ())
2151 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2152 "not vectorized: vectorization not profitable.\n");
2153 if (dump_enabled_p ())
2154 dump_printf_loc (MSG_NOTE, vect_location,
2155 "not vectorized: iteration count smaller than user "
2156 "specified loop bound parameter or minimum profitable "
2157 "iterations (whichever is more conservative).\n");
2158 goto again;
2161 estimated_niter
2162 = estimated_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
2163 if (estimated_niter == -1)
2164 estimated_niter = max_niter;
2165 if (estimated_niter != -1
2166 && ((unsigned HOST_WIDE_INT) estimated_niter
2167 < MAX (th, (unsigned) min_profitable_estimate)))
2169 if (dump_enabled_p ())
2170 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2171 "not vectorized: estimated iteration count too "
2172 "small.\n");
2173 if (dump_enabled_p ())
2174 dump_printf_loc (MSG_NOTE, vect_location,
2175 "not vectorized: estimated iteration count smaller "
2176 "than specified loop bound parameter or minimum "
2177 "profitable iterations (whichever is more "
2178 "conservative).\n");
2179 goto again;
2182 /* Decide whether we need to create an epilogue loop to handle
2183 remaining scalar iterations. */
2184 th = ((LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo)
2185 / LOOP_VINFO_VECT_FACTOR (loop_vinfo))
2186 * LOOP_VINFO_VECT_FACTOR (loop_vinfo));
2188 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2189 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2191 if (ctz_hwi (LOOP_VINFO_INT_NITERS (loop_vinfo)
2192 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
2193 < exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
2194 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
2196 else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
2197 || (tree_ctz (LOOP_VINFO_NITERS (loop_vinfo))
2198 < (unsigned)exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo))
2199 /* In case of versioning, check if the maximum number of
2200 iterations is greater than th. If they are identical,
2201 the epilogue is unnecessary. */
2202 && (!LOOP_REQUIRES_VERSIONING (loop_vinfo)
2203 || (unsigned HOST_WIDE_INT) max_niter > th)))
2204 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
2206 /* If an epilogue loop is required make sure we can create one. */
2207 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
2208 || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
2210 if (dump_enabled_p ())
2211 dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required\n");
2212 if (!vect_can_advance_ivs_p (loop_vinfo)
2213 || !slpeel_can_duplicate_loop_p (LOOP_VINFO_LOOP (loop_vinfo),
2214 single_exit (LOOP_VINFO_LOOP
2215 (loop_vinfo))))
2217 if (dump_enabled_p ())
2218 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2219 "not vectorized: can't create required "
2220 "epilog loop\n");
2221 goto again;
2225 /* During peeling, we need to check if number of loop iterations is
2226 enough for both peeled prolog loop and vector loop. This check
2227 can be merged along with threshold check of loop versioning, so
2228 increase threshold for this case if necessary. */
2229 if (LOOP_REQUIRES_VERSIONING (loop_vinfo)
2230 && (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
2231 || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)))
2233 unsigned niters_th;
2235 /* Niters for peeled prolog loop. */
2236 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
2238 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2239 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr)));
2241 niters_th = TYPE_VECTOR_SUBPARTS (vectype) - 1;
2243 else
2244 niters_th = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2246 /* Niters for at least one iteration of vectorized loop. */
2247 niters_th += LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2248 /* One additional iteration because of peeling for gap. */
2249 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2250 niters_th++;
2251 if (LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) < niters_th)
2252 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = niters_th;
2255 gcc_assert (vectorization_factor
2256 == (unsigned)LOOP_VINFO_VECT_FACTOR (loop_vinfo));
2258 /* Ok to vectorize! */
2259 return true;
2261 again:
2262 /* Try again with SLP forced off but if we didn't do any SLP there is
2263 no point in re-trying. */
2264 if (!slp)
2265 return false;
2267 /* If there are reduction chains re-trying will fail anyway. */
2268 if (! LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).is_empty ())
2269 return false;
2271 /* Likewise if the grouped loads or stores in the SLP cannot be handled
2272 via interleaving or lane instructions. */
2273 slp_instance instance;
2274 slp_tree node;
2275 unsigned i, j;
2276 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
2278 stmt_vec_info vinfo;
2279 vinfo = vinfo_for_stmt
2280 (SLP_TREE_SCALAR_STMTS (SLP_INSTANCE_TREE (instance))[0]);
2281 if (! STMT_VINFO_GROUPED_ACCESS (vinfo))
2282 continue;
2283 vinfo = vinfo_for_stmt (STMT_VINFO_GROUP_FIRST_ELEMENT (vinfo));
2284 unsigned int size = STMT_VINFO_GROUP_SIZE (vinfo);
2285 tree vectype = STMT_VINFO_VECTYPE (vinfo);
2286 if (! vect_store_lanes_supported (vectype, size)
2287 && ! vect_grouped_store_supported (vectype, size))
2288 return false;
2289 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), j, node)
2291 vinfo = vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (node)[0]);
2292 vinfo = vinfo_for_stmt (STMT_VINFO_GROUP_FIRST_ELEMENT (vinfo));
2293 bool single_element_p = !STMT_VINFO_GROUP_NEXT_ELEMENT (vinfo);
2294 size = STMT_VINFO_GROUP_SIZE (vinfo);
2295 vectype = STMT_VINFO_VECTYPE (vinfo);
2296 if (! vect_load_lanes_supported (vectype, size)
2297 && ! vect_grouped_load_supported (vectype, single_element_p,
2298 size))
2299 return false;
2303 if (dump_enabled_p ())
2304 dump_printf_loc (MSG_NOTE, vect_location,
2305 "re-trying with SLP disabled\n");
2307 /* Roll back state appropriately. No SLP this time. */
2308 slp = false;
2309 /* Restore vectorization factor as it were without SLP. */
2310 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = saved_vectorization_factor;
2311 /* Free the SLP instances. */
2312 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), j, instance)
2313 vect_free_slp_instance (instance);
2314 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
2315 /* Reset SLP type to loop_vect on all stmts. */
2316 for (i = 0; i < LOOP_VINFO_LOOP (loop_vinfo)->num_nodes; ++i)
2318 basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i];
2319 for (gimple_stmt_iterator si = gsi_start_phis (bb);
2320 !gsi_end_p (si); gsi_next (&si))
2322 stmt_vec_info stmt_info = vinfo_for_stmt (gsi_stmt (si));
2323 STMT_SLP_TYPE (stmt_info) = loop_vect;
2325 for (gimple_stmt_iterator si = gsi_start_bb (bb);
2326 !gsi_end_p (si); gsi_next (&si))
2328 stmt_vec_info stmt_info = vinfo_for_stmt (gsi_stmt (si));
2329 STMT_SLP_TYPE (stmt_info) = loop_vect;
2330 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
2332 stmt_info = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
2333 STMT_SLP_TYPE (stmt_info) = loop_vect;
2334 for (gimple_stmt_iterator pi
2335 = gsi_start (STMT_VINFO_PATTERN_DEF_SEQ (stmt_info));
2336 !gsi_end_p (pi); gsi_next (&pi))
2338 gimple *pstmt = gsi_stmt (pi);
2339 STMT_SLP_TYPE (vinfo_for_stmt (pstmt)) = loop_vect;
2344 /* Free optimized alias test DDRS. */
2345 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).release ();
2346 /* Reset target cost data. */
2347 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
2348 LOOP_VINFO_TARGET_COST_DATA (loop_vinfo)
2349 = init_cost (LOOP_VINFO_LOOP (loop_vinfo));
2350 /* Reset assorted flags. */
2351 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = false;
2352 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = false;
2353 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = 0;
2355 goto start_over;
2358 /* Function vect_analyze_loop.
2360 Apply a set of analyses on LOOP, and create a loop_vec_info struct
2361 for it. The different analyses will record information in the
2362 loop_vec_info struct. If ORIG_LOOP_VINFO is not NULL epilogue must
2363 be vectorized. */
2364 loop_vec_info
2365 vect_analyze_loop (struct loop *loop, loop_vec_info orig_loop_vinfo)
2367 loop_vec_info loop_vinfo;
2368 unsigned int vector_sizes;
2370 /* Autodetect first vector size we try. */
2371 current_vector_size = 0;
2372 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
2374 if (dump_enabled_p ())
2375 dump_printf_loc (MSG_NOTE, vect_location,
2376 "===== analyze_loop_nest =====\n");
2378 if (loop_outer (loop)
2379 && loop_vec_info_for_loop (loop_outer (loop))
2380 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
2382 if (dump_enabled_p ())
2383 dump_printf_loc (MSG_NOTE, vect_location,
2384 "outer-loop already vectorized.\n");
2385 return NULL;
2388 while (1)
2390 /* Check the CFG characteristics of the loop (nesting, entry/exit). */
2391 loop_vinfo = vect_analyze_loop_form (loop);
2392 if (!loop_vinfo)
2394 if (dump_enabled_p ())
2395 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2396 "bad loop form.\n");
2397 return NULL;
2400 bool fatal = false;
2402 if (orig_loop_vinfo)
2403 LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo) = orig_loop_vinfo;
2405 if (vect_analyze_loop_2 (loop_vinfo, fatal))
2407 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
2409 return loop_vinfo;
2412 destroy_loop_vec_info (loop_vinfo, true);
2414 vector_sizes &= ~current_vector_size;
2415 if (fatal
2416 || vector_sizes == 0
2417 || current_vector_size == 0)
2418 return NULL;
2420 /* Try the next biggest vector size. */
2421 current_vector_size = 1 << floor_log2 (vector_sizes);
2422 if (dump_enabled_p ())
2423 dump_printf_loc (MSG_NOTE, vect_location,
2424 "***** Re-trying analysis with "
2425 "vector size %d\n", current_vector_size);
2430 /* Function reduction_code_for_scalar_code
2432 Input:
2433 CODE - tree_code of a reduction operations.
2435 Output:
2436 REDUC_CODE - the corresponding tree-code to be used to reduce the
2437 vector of partial results into a single scalar result, or ERROR_MARK
2438 if the operation is a supported reduction operation, but does not have
2439 such a tree-code.
2441 Return FALSE if CODE currently cannot be vectorized as reduction. */
2443 static bool
2444 reduction_code_for_scalar_code (enum tree_code code,
2445 enum tree_code *reduc_code)
2447 switch (code)
2449 case MAX_EXPR:
2450 *reduc_code = REDUC_MAX_EXPR;
2451 return true;
2453 case MIN_EXPR:
2454 *reduc_code = REDUC_MIN_EXPR;
2455 return true;
2457 case PLUS_EXPR:
2458 *reduc_code = REDUC_PLUS_EXPR;
2459 return true;
2461 case MULT_EXPR:
2462 case MINUS_EXPR:
2463 case BIT_IOR_EXPR:
2464 case BIT_XOR_EXPR:
2465 case BIT_AND_EXPR:
2466 *reduc_code = ERROR_MARK;
2467 return true;
2469 default:
2470 return false;
2475 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
2476 STMT is printed with a message MSG. */
2478 static void
2479 report_vect_op (dump_flags_t msg_type, gimple *stmt, const char *msg)
2481 dump_printf_loc (msg_type, vect_location, "%s", msg);
2482 dump_gimple_stmt (msg_type, TDF_SLIM, stmt, 0);
2486 /* Detect SLP reduction of the form:
2488 #a1 = phi <a5, a0>
2489 a2 = operation (a1)
2490 a3 = operation (a2)
2491 a4 = operation (a3)
2492 a5 = operation (a4)
2494 #a = phi <a5>
2496 PHI is the reduction phi node (#a1 = phi <a5, a0> above)
2497 FIRST_STMT is the first reduction stmt in the chain
2498 (a2 = operation (a1)).
2500 Return TRUE if a reduction chain was detected. */
2502 static bool
2503 vect_is_slp_reduction (loop_vec_info loop_info, gimple *phi,
2504 gimple *first_stmt)
2506 struct loop *loop = (gimple_bb (phi))->loop_father;
2507 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2508 enum tree_code code;
2509 gimple *current_stmt = NULL, *loop_use_stmt = NULL, *first, *next_stmt;
2510 stmt_vec_info use_stmt_info, current_stmt_info;
2511 tree lhs;
2512 imm_use_iterator imm_iter;
2513 use_operand_p use_p;
2514 int nloop_uses, size = 0, n_out_of_loop_uses;
2515 bool found = false;
2517 if (loop != vect_loop)
2518 return false;
2520 lhs = PHI_RESULT (phi);
2521 code = gimple_assign_rhs_code (first_stmt);
2522 while (1)
2524 nloop_uses = 0;
2525 n_out_of_loop_uses = 0;
2526 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
2528 gimple *use_stmt = USE_STMT (use_p);
2529 if (is_gimple_debug (use_stmt))
2530 continue;
2532 /* Check if we got back to the reduction phi. */
2533 if (use_stmt == phi)
2535 loop_use_stmt = use_stmt;
2536 found = true;
2537 break;
2540 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2542 loop_use_stmt = use_stmt;
2543 nloop_uses++;
2545 else
2546 n_out_of_loop_uses++;
2548 /* There are can be either a single use in the loop or two uses in
2549 phi nodes. */
2550 if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
2551 return false;
2554 if (found)
2555 break;
2557 /* We reached a statement with no loop uses. */
2558 if (nloop_uses == 0)
2559 return false;
2561 /* This is a loop exit phi, and we haven't reached the reduction phi. */
2562 if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
2563 return false;
2565 if (!is_gimple_assign (loop_use_stmt)
2566 || code != gimple_assign_rhs_code (loop_use_stmt)
2567 || !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
2568 return false;
2570 /* Insert USE_STMT into reduction chain. */
2571 use_stmt_info = vinfo_for_stmt (loop_use_stmt);
2572 if (current_stmt)
2574 current_stmt_info = vinfo_for_stmt (current_stmt);
2575 GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
2576 GROUP_FIRST_ELEMENT (use_stmt_info)
2577 = GROUP_FIRST_ELEMENT (current_stmt_info);
2579 else
2580 GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
2582 lhs = gimple_assign_lhs (loop_use_stmt);
2583 current_stmt = loop_use_stmt;
2584 size++;
2587 if (!found || loop_use_stmt != phi || size < 2)
2588 return false;
2590 /* Swap the operands, if needed, to make the reduction operand be the second
2591 operand. */
2592 lhs = PHI_RESULT (phi);
2593 next_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2594 while (next_stmt)
2596 if (gimple_assign_rhs2 (next_stmt) == lhs)
2598 tree op = gimple_assign_rhs1 (next_stmt);
2599 gimple *def_stmt = NULL;
2601 if (TREE_CODE (op) == SSA_NAME)
2602 def_stmt = SSA_NAME_DEF_STMT (op);
2604 /* Check that the other def is either defined in the loop
2605 ("vect_internal_def"), or it's an induction (defined by a
2606 loop-header phi-node). */
2607 if (def_stmt
2608 && gimple_bb (def_stmt)
2609 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2610 && (is_gimple_assign (def_stmt)
2611 || is_gimple_call (def_stmt)
2612 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2613 == vect_induction_def
2614 || (gimple_code (def_stmt) == GIMPLE_PHI
2615 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2616 == vect_internal_def
2617 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2619 lhs = gimple_assign_lhs (next_stmt);
2620 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2621 continue;
2624 return false;
2626 else
2628 tree op = gimple_assign_rhs2 (next_stmt);
2629 gimple *def_stmt = NULL;
2631 if (TREE_CODE (op) == SSA_NAME)
2632 def_stmt = SSA_NAME_DEF_STMT (op);
2634 /* Check that the other def is either defined in the loop
2635 ("vect_internal_def"), or it's an induction (defined by a
2636 loop-header phi-node). */
2637 if (def_stmt
2638 && gimple_bb (def_stmt)
2639 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2640 && (is_gimple_assign (def_stmt)
2641 || is_gimple_call (def_stmt)
2642 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2643 == vect_induction_def
2644 || (gimple_code (def_stmt) == GIMPLE_PHI
2645 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2646 == vect_internal_def
2647 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2649 if (dump_enabled_p ())
2651 dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: ");
2652 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, next_stmt, 0);
2655 swap_ssa_operands (next_stmt,
2656 gimple_assign_rhs1_ptr (next_stmt),
2657 gimple_assign_rhs2_ptr (next_stmt));
2658 update_stmt (next_stmt);
2660 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (next_stmt)))
2661 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2663 else
2664 return false;
2667 lhs = gimple_assign_lhs (next_stmt);
2668 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2671 /* Save the chain for further analysis in SLP detection. */
2672 first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2673 LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (first);
2674 GROUP_SIZE (vinfo_for_stmt (first)) = size;
2676 return true;
2680 /* Function vect_is_simple_reduction
2682 (1) Detect a cross-iteration def-use cycle that represents a simple
2683 reduction computation. We look for the following pattern:
2685 loop_header:
2686 a1 = phi < a0, a2 >
2687 a3 = ...
2688 a2 = operation (a3, a1)
2692 a3 = ...
2693 loop_header:
2694 a1 = phi < a0, a2 >
2695 a2 = operation (a3, a1)
2697 such that:
2698 1. operation is commutative and associative and it is safe to
2699 change the order of the computation
2700 2. no uses for a2 in the loop (a2 is used out of the loop)
2701 3. no uses of a1 in the loop besides the reduction operation
2702 4. no uses of a1 outside the loop.
2704 Conditions 1,4 are tested here.
2705 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
2707 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
2708 nested cycles.
2710 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
2711 reductions:
2713 a1 = phi < a0, a2 >
2714 inner loop (def of a3)
2715 a2 = phi < a3 >
2717 (4) Detect condition expressions, ie:
2718 for (int i = 0; i < N; i++)
2719 if (a[i] < val)
2720 ret_val = a[i];
2724 static gimple *
2725 vect_is_simple_reduction (loop_vec_info loop_info, gimple *phi,
2726 bool *double_reduc,
2727 bool need_wrapping_integral_overflow,
2728 enum vect_reduction_type *v_reduc_type)
2730 struct loop *loop = (gimple_bb (phi))->loop_father;
2731 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2732 gimple *def_stmt, *def1 = NULL, *def2 = NULL, *phi_use_stmt = NULL;
2733 enum tree_code orig_code, code;
2734 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
2735 tree type;
2736 int nloop_uses;
2737 tree name;
2738 imm_use_iterator imm_iter;
2739 use_operand_p use_p;
2740 bool phi_def;
2742 *double_reduc = false;
2743 *v_reduc_type = TREE_CODE_REDUCTION;
2745 name = PHI_RESULT (phi);
2746 /* ??? If there are no uses of the PHI result the inner loop reduction
2747 won't be detected as possibly double-reduction by vectorizable_reduction
2748 because that tries to walk the PHI arg from the preheader edge which
2749 can be constant. See PR60382. */
2750 if (has_zero_uses (name))
2751 return NULL;
2752 nloop_uses = 0;
2753 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2755 gimple *use_stmt = USE_STMT (use_p);
2756 if (is_gimple_debug (use_stmt))
2757 continue;
2759 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2761 if (dump_enabled_p ())
2762 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2763 "intermediate value used outside loop.\n");
2765 return NULL;
2768 nloop_uses++;
2769 if (nloop_uses > 1)
2771 if (dump_enabled_p ())
2772 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2773 "reduction value used in loop.\n");
2774 return NULL;
2777 phi_use_stmt = use_stmt;
2780 edge latch_e = loop_latch_edge (loop);
2781 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
2782 if (TREE_CODE (loop_arg) != SSA_NAME)
2784 if (dump_enabled_p ())
2786 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2787 "reduction: not ssa_name: ");
2788 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, loop_arg);
2789 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2791 return NULL;
2794 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
2795 if (is_gimple_assign (def_stmt))
2797 name = gimple_assign_lhs (def_stmt);
2798 phi_def = false;
2800 else if (gimple_code (def_stmt) == GIMPLE_PHI)
2802 name = PHI_RESULT (def_stmt);
2803 phi_def = true;
2805 else
2807 if (dump_enabled_p ())
2809 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2810 "reduction: unhandled reduction operation: ");
2811 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, def_stmt, 0);
2813 return NULL;
2816 nloop_uses = 0;
2817 auto_vec<gphi *, 3> lcphis;
2818 if (flow_bb_inside_loop_p (loop, gimple_bb (def_stmt)))
2819 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2821 gimple *use_stmt = USE_STMT (use_p);
2822 if (is_gimple_debug (use_stmt))
2823 continue;
2824 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2825 nloop_uses++;
2826 else
2827 /* We can have more than one loop-closed PHI. */
2828 lcphis.safe_push (as_a <gphi *> (use_stmt));
2829 if (nloop_uses > 1)
2831 if (dump_enabled_p ())
2832 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2833 "reduction used in loop.\n");
2834 return NULL;
2838 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
2839 defined in the inner loop. */
2840 if (phi_def)
2842 op1 = PHI_ARG_DEF (def_stmt, 0);
2844 if (gimple_phi_num_args (def_stmt) != 1
2845 || TREE_CODE (op1) != SSA_NAME)
2847 if (dump_enabled_p ())
2848 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2849 "unsupported phi node definition.\n");
2851 return NULL;
2854 def1 = SSA_NAME_DEF_STMT (op1);
2855 if (gimple_bb (def1)
2856 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2857 && loop->inner
2858 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
2859 && is_gimple_assign (def1)
2860 && flow_bb_inside_loop_p (loop->inner, gimple_bb (phi_use_stmt)))
2862 if (dump_enabled_p ())
2863 report_vect_op (MSG_NOTE, def_stmt,
2864 "detected double reduction: ");
2866 *double_reduc = true;
2867 return def_stmt;
2870 return NULL;
2873 /* If we are vectorizing an inner reduction we are executing that
2874 in the original order only in case we are not dealing with a
2875 double reduction. */
2876 bool check_reduction = true;
2877 if (flow_loop_nested_p (vect_loop, loop))
2879 gphi *lcphi;
2880 unsigned i;
2881 check_reduction = false;
2882 FOR_EACH_VEC_ELT (lcphis, i, lcphi)
2883 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_phi_result (lcphi))
2885 gimple *use_stmt = USE_STMT (use_p);
2886 if (is_gimple_debug (use_stmt))
2887 continue;
2888 if (! flow_bb_inside_loop_p (vect_loop, gimple_bb (use_stmt)))
2889 check_reduction = true;
2893 bool nested_in_vect_loop = flow_loop_nested_p (vect_loop, loop);
2894 code = orig_code = gimple_assign_rhs_code (def_stmt);
2896 /* We can handle "res -= x[i]", which is non-associative by
2897 simply rewriting this into "res += -x[i]". Avoid changing
2898 gimple instruction for the first simple tests and only do this
2899 if we're allowed to change code at all. */
2900 if (code == MINUS_EXPR
2901 && (op1 = gimple_assign_rhs1 (def_stmt))
2902 && TREE_CODE (op1) == SSA_NAME
2903 && SSA_NAME_DEF_STMT (op1) == phi)
2904 code = PLUS_EXPR;
2906 if (code == COND_EXPR)
2908 if (! nested_in_vect_loop)
2909 *v_reduc_type = COND_REDUCTION;
2911 op3 = gimple_assign_rhs1 (def_stmt);
2912 if (COMPARISON_CLASS_P (op3))
2914 op4 = TREE_OPERAND (op3, 1);
2915 op3 = TREE_OPERAND (op3, 0);
2918 op1 = gimple_assign_rhs2 (def_stmt);
2919 op2 = gimple_assign_rhs3 (def_stmt);
2921 else if (!commutative_tree_code (code) || !associative_tree_code (code))
2923 if (dump_enabled_p ())
2924 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2925 "reduction: not commutative/associative: ");
2926 return NULL;
2928 else if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
2930 op1 = gimple_assign_rhs1 (def_stmt);
2931 op2 = gimple_assign_rhs2 (def_stmt);
2933 else
2935 if (dump_enabled_p ())
2936 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2937 "reduction: not handled operation: ");
2938 return NULL;
2941 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2943 if (dump_enabled_p ())
2944 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2945 "reduction: both uses not ssa_names: ");
2947 return NULL;
2950 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
2951 if ((TREE_CODE (op1) == SSA_NAME
2952 && !types_compatible_p (type,TREE_TYPE (op1)))
2953 || (TREE_CODE (op2) == SSA_NAME
2954 && !types_compatible_p (type, TREE_TYPE (op2)))
2955 || (op3 && TREE_CODE (op3) == SSA_NAME
2956 && !types_compatible_p (type, TREE_TYPE (op3)))
2957 || (op4 && TREE_CODE (op4) == SSA_NAME
2958 && !types_compatible_p (type, TREE_TYPE (op4))))
2960 if (dump_enabled_p ())
2962 dump_printf_loc (MSG_NOTE, vect_location,
2963 "reduction: multiple types: operation type: ");
2964 dump_generic_expr (MSG_NOTE, TDF_SLIM, type);
2965 dump_printf (MSG_NOTE, ", operands types: ");
2966 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2967 TREE_TYPE (op1));
2968 dump_printf (MSG_NOTE, ",");
2969 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2970 TREE_TYPE (op2));
2971 if (op3)
2973 dump_printf (MSG_NOTE, ",");
2974 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2975 TREE_TYPE (op3));
2978 if (op4)
2980 dump_printf (MSG_NOTE, ",");
2981 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2982 TREE_TYPE (op4));
2984 dump_printf (MSG_NOTE, "\n");
2987 return NULL;
2990 /* Check that it's ok to change the order of the computation.
2991 Generally, when vectorizing a reduction we change the order of the
2992 computation. This may change the behavior of the program in some
2993 cases, so we need to check that this is ok. One exception is when
2994 vectorizing an outer-loop: the inner-loop is executed sequentially,
2995 and therefore vectorizing reductions in the inner-loop during
2996 outer-loop vectorization is safe. */
2998 if (*v_reduc_type != COND_REDUCTION
2999 && check_reduction)
3001 /* CHECKME: check for !flag_finite_math_only too? */
3002 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math)
3004 /* Changing the order of operations changes the semantics. */
3005 if (dump_enabled_p ())
3006 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3007 "reduction: unsafe fp math optimization: ");
3008 return NULL;
3010 else if (INTEGRAL_TYPE_P (type))
3012 if (!operation_no_trapping_overflow (type, code))
3014 /* Changing the order of operations changes the semantics. */
3015 if (dump_enabled_p ())
3016 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3017 "reduction: unsafe int math optimization"
3018 " (overflow traps): ");
3019 return NULL;
3021 if (need_wrapping_integral_overflow
3022 && !TYPE_OVERFLOW_WRAPS (type)
3023 && operation_can_overflow (code))
3025 /* Changing the order of operations changes the semantics. */
3026 if (dump_enabled_p ())
3027 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3028 "reduction: unsafe int math optimization"
3029 " (overflow doesn't wrap): ");
3030 return NULL;
3033 else if (SAT_FIXED_POINT_TYPE_P (type))
3035 /* Changing the order of operations changes the semantics. */
3036 if (dump_enabled_p ())
3037 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3038 "reduction: unsafe fixed-point math optimization: ");
3039 return NULL;
3043 /* Reduction is safe. We're dealing with one of the following:
3044 1) integer arithmetic and no trapv
3045 2) floating point arithmetic, and special flags permit this optimization
3046 3) nested cycle (i.e., outer loop vectorization). */
3047 if (TREE_CODE (op1) == SSA_NAME)
3048 def1 = SSA_NAME_DEF_STMT (op1);
3050 if (TREE_CODE (op2) == SSA_NAME)
3051 def2 = SSA_NAME_DEF_STMT (op2);
3053 if (code != COND_EXPR
3054 && ((!def1 || gimple_nop_p (def1)) && (!def2 || gimple_nop_p (def2))))
3056 if (dump_enabled_p ())
3057 report_vect_op (MSG_NOTE, def_stmt, "reduction: no defs for operands: ");
3058 return NULL;
3061 /* Check that one def is the reduction def, defined by PHI,
3062 the other def is either defined in the loop ("vect_internal_def"),
3063 or it's an induction (defined by a loop-header phi-node). */
3065 if (def2 && def2 == phi
3066 && (code == COND_EXPR
3067 || !def1 || gimple_nop_p (def1)
3068 || !flow_bb_inside_loop_p (loop, gimple_bb (def1))
3069 || (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
3070 && (is_gimple_assign (def1)
3071 || is_gimple_call (def1)
3072 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
3073 == vect_induction_def
3074 || (gimple_code (def1) == GIMPLE_PHI
3075 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
3076 == vect_internal_def
3077 && !is_loop_header_bb_p (gimple_bb (def1)))))))
3079 if (dump_enabled_p ())
3080 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
3081 return def_stmt;
3084 if (def1 && def1 == phi
3085 && (code == COND_EXPR
3086 || !def2 || gimple_nop_p (def2)
3087 || !flow_bb_inside_loop_p (loop, gimple_bb (def2))
3088 || (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
3089 && (is_gimple_assign (def2)
3090 || is_gimple_call (def2)
3091 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
3092 == vect_induction_def
3093 || (gimple_code (def2) == GIMPLE_PHI
3094 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
3095 == vect_internal_def
3096 && !is_loop_header_bb_p (gimple_bb (def2)))))))
3098 if (! nested_in_vect_loop && orig_code != MINUS_EXPR)
3100 /* Check if we can swap operands (just for simplicity - so that
3101 the rest of the code can assume that the reduction variable
3102 is always the last (second) argument). */
3103 if (code == COND_EXPR)
3105 /* Swap cond_expr by inverting the condition. */
3106 tree cond_expr = gimple_assign_rhs1 (def_stmt);
3107 enum tree_code invert_code = ERROR_MARK;
3108 enum tree_code cond_code = TREE_CODE (cond_expr);
3110 if (TREE_CODE_CLASS (cond_code) == tcc_comparison)
3112 bool honor_nans = HONOR_NANS (TREE_OPERAND (cond_expr, 0));
3113 invert_code = invert_tree_comparison (cond_code, honor_nans);
3115 if (invert_code != ERROR_MARK)
3117 TREE_SET_CODE (cond_expr, invert_code);
3118 swap_ssa_operands (def_stmt,
3119 gimple_assign_rhs2_ptr (def_stmt),
3120 gimple_assign_rhs3_ptr (def_stmt));
3122 else
3124 if (dump_enabled_p ())
3125 report_vect_op (MSG_NOTE, def_stmt,
3126 "detected reduction: cannot swap operands "
3127 "for cond_expr");
3128 return NULL;
3131 else
3132 swap_ssa_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
3133 gimple_assign_rhs2_ptr (def_stmt));
3135 if (dump_enabled_p ())
3136 report_vect_op (MSG_NOTE, def_stmt,
3137 "detected reduction: need to swap operands: ");
3139 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (def_stmt)))
3140 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
3142 else
3144 if (dump_enabled_p ())
3145 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
3148 return def_stmt;
3151 /* Try to find SLP reduction chain. */
3152 if (! nested_in_vect_loop
3153 && code != COND_EXPR
3154 && vect_is_slp_reduction (loop_info, phi, def_stmt))
3156 if (dump_enabled_p ())
3157 report_vect_op (MSG_NOTE, def_stmt,
3158 "reduction: detected reduction chain: ");
3160 return def_stmt;
3163 if (dump_enabled_p ())
3164 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3165 "reduction: unknown pattern: ");
3167 return NULL;
3170 /* Wrapper around vect_is_simple_reduction, which will modify code
3171 in-place if it enables detection of more reductions. Arguments
3172 as there. */
3174 gimple *
3175 vect_force_simple_reduction (loop_vec_info loop_info, gimple *phi,
3176 bool *double_reduc,
3177 bool need_wrapping_integral_overflow)
3179 enum vect_reduction_type v_reduc_type;
3180 gimple *def = vect_is_simple_reduction (loop_info, phi, double_reduc,
3181 need_wrapping_integral_overflow,
3182 &v_reduc_type);
3183 if (def)
3185 stmt_vec_info reduc_def_info = vinfo_for_stmt (phi);
3186 STMT_VINFO_REDUC_TYPE (reduc_def_info) = v_reduc_type;
3187 STMT_VINFO_REDUC_DEF (reduc_def_info) = def;
3188 reduc_def_info = vinfo_for_stmt (def);
3189 STMT_VINFO_REDUC_DEF (reduc_def_info) = phi;
3191 return def;
3194 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
3196 vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
3197 int *peel_iters_epilogue,
3198 stmt_vector_for_cost *scalar_cost_vec,
3199 stmt_vector_for_cost *prologue_cost_vec,
3200 stmt_vector_for_cost *epilogue_cost_vec)
3202 int retval = 0;
3203 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3205 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
3207 *peel_iters_epilogue = vf/2;
3208 if (dump_enabled_p ())
3209 dump_printf_loc (MSG_NOTE, vect_location,
3210 "cost model: epilogue peel iters set to vf/2 "
3211 "because loop iterations are unknown .\n");
3213 /* If peeled iterations are known but number of scalar loop
3214 iterations are unknown, count a taken branch per peeled loop. */
3215 retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
3216 NULL, 0, vect_prologue);
3217 retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
3218 NULL, 0, vect_epilogue);
3220 else
3222 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
3223 peel_iters_prologue = niters < peel_iters_prologue ?
3224 niters : peel_iters_prologue;
3225 *peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
3226 /* If we need to peel for gaps, but no peeling is required, we have to
3227 peel VF iterations. */
3228 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
3229 *peel_iters_epilogue = vf;
3232 stmt_info_for_cost *si;
3233 int j;
3234 if (peel_iters_prologue)
3235 FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
3237 stmt_vec_info stmt_info
3238 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3239 retval += record_stmt_cost (prologue_cost_vec,
3240 si->count * peel_iters_prologue,
3241 si->kind, stmt_info, si->misalign,
3242 vect_prologue);
3244 if (*peel_iters_epilogue)
3245 FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
3247 stmt_vec_info stmt_info
3248 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3249 retval += record_stmt_cost (epilogue_cost_vec,
3250 si->count * *peel_iters_epilogue,
3251 si->kind, stmt_info, si->misalign,
3252 vect_epilogue);
3255 return retval;
3258 /* Function vect_estimate_min_profitable_iters
3260 Return the number of iterations required for the vector version of the
3261 loop to be profitable relative to the cost of the scalar version of the
3262 loop.
3264 *RET_MIN_PROFITABLE_NITERS is a cost model profitability threshold
3265 of iterations for vectorization. -1 value means loop vectorization
3266 is not profitable. This returned value may be used for dynamic
3267 profitability check.
3269 *RET_MIN_PROFITABLE_ESTIMATE is a profitability threshold to be used
3270 for static check against estimated number of iterations. */
3272 static void
3273 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
3274 int *ret_min_profitable_niters,
3275 int *ret_min_profitable_estimate)
3277 int min_profitable_iters;
3278 int min_profitable_estimate;
3279 int peel_iters_prologue;
3280 int peel_iters_epilogue;
3281 unsigned vec_inside_cost = 0;
3282 int vec_outside_cost = 0;
3283 unsigned vec_prologue_cost = 0;
3284 unsigned vec_epilogue_cost = 0;
3285 int scalar_single_iter_cost = 0;
3286 int scalar_outside_cost = 0;
3287 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3288 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
3289 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3291 /* Cost model disabled. */
3292 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
3294 dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.\n");
3295 *ret_min_profitable_niters = 0;
3296 *ret_min_profitable_estimate = 0;
3297 return;
3300 /* Requires loop versioning tests to handle misalignment. */
3301 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
3303 /* FIXME: Make cost depend on complexity of individual check. */
3304 unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
3305 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
3306 vect_prologue);
3307 dump_printf (MSG_NOTE,
3308 "cost model: Adding cost of checks for loop "
3309 "versioning to treat misalignment.\n");
3312 /* Requires loop versioning with alias checks. */
3313 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
3315 /* FIXME: Make cost depend on complexity of individual check. */
3316 unsigned len = LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).length ();
3317 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
3318 vect_prologue);
3319 dump_printf (MSG_NOTE,
3320 "cost model: Adding cost of checks for loop "
3321 "versioning aliasing.\n");
3324 /* Requires loop versioning with niter checks. */
3325 if (LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo))
3327 /* FIXME: Make cost depend on complexity of individual check. */
3328 (void) add_stmt_cost (target_cost_data, 1, vector_stmt, NULL, 0,
3329 vect_prologue);
3330 dump_printf (MSG_NOTE,
3331 "cost model: Adding cost of checks for loop "
3332 "versioning niters.\n");
3335 if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
3336 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken, NULL, 0,
3337 vect_prologue);
3339 /* Count statements in scalar loop. Using this as scalar cost for a single
3340 iteration for now.
3342 TODO: Add outer loop support.
3344 TODO: Consider assigning different costs to different scalar
3345 statements. */
3347 scalar_single_iter_cost
3348 = LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo);
3350 /* Add additional cost for the peeled instructions in prologue and epilogue
3351 loop.
3353 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
3354 at compile-time - we assume it's vf/2 (the worst would be vf-1).
3356 TODO: Build an expression that represents peel_iters for prologue and
3357 epilogue to be used in a run-time test. */
3359 if (npeel < 0)
3361 peel_iters_prologue = vf/2;
3362 dump_printf (MSG_NOTE, "cost model: "
3363 "prologue peel iters set to vf/2.\n");
3365 /* If peeling for alignment is unknown, loop bound of main loop becomes
3366 unknown. */
3367 peel_iters_epilogue = vf/2;
3368 dump_printf (MSG_NOTE, "cost model: "
3369 "epilogue peel iters set to vf/2 because "
3370 "peeling for alignment is unknown.\n");
3372 /* If peeled iterations are unknown, count a taken branch and a not taken
3373 branch per peeled loop. Even if scalar loop iterations are known,
3374 vector iterations are not known since peeled prologue iterations are
3375 not known. Hence guards remain the same. */
3376 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
3377 NULL, 0, vect_prologue);
3378 (void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
3379 NULL, 0, vect_prologue);
3380 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
3381 NULL, 0, vect_epilogue);
3382 (void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
3383 NULL, 0, vect_epilogue);
3384 stmt_info_for_cost *si;
3385 int j;
3386 FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo), j, si)
3388 struct _stmt_vec_info *stmt_info
3389 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3390 (void) add_stmt_cost (target_cost_data,
3391 si->count * peel_iters_prologue,
3392 si->kind, stmt_info, si->misalign,
3393 vect_prologue);
3394 (void) add_stmt_cost (target_cost_data,
3395 si->count * peel_iters_epilogue,
3396 si->kind, stmt_info, si->misalign,
3397 vect_epilogue);
3400 else
3402 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
3403 stmt_info_for_cost *si;
3404 int j;
3405 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3407 prologue_cost_vec.create (2);
3408 epilogue_cost_vec.create (2);
3409 peel_iters_prologue = npeel;
3411 (void) vect_get_known_peeling_cost (loop_vinfo, peel_iters_prologue,
3412 &peel_iters_epilogue,
3413 &LOOP_VINFO_SCALAR_ITERATION_COST
3414 (loop_vinfo),
3415 &prologue_cost_vec,
3416 &epilogue_cost_vec);
3418 FOR_EACH_VEC_ELT (prologue_cost_vec, j, si)
3420 struct _stmt_vec_info *stmt_info
3421 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3422 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
3423 si->misalign, vect_prologue);
3426 FOR_EACH_VEC_ELT (epilogue_cost_vec, j, si)
3428 struct _stmt_vec_info *stmt_info
3429 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3430 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
3431 si->misalign, vect_epilogue);
3434 prologue_cost_vec.release ();
3435 epilogue_cost_vec.release ();
3438 /* FORNOW: The scalar outside cost is incremented in one of the
3439 following ways:
3441 1. The vectorizer checks for alignment and aliasing and generates
3442 a condition that allows dynamic vectorization. A cost model
3443 check is ANDED with the versioning condition. Hence scalar code
3444 path now has the added cost of the versioning check.
3446 if (cost > th & versioning_check)
3447 jmp to vector code
3449 Hence run-time scalar is incremented by not-taken branch cost.
3451 2. The vectorizer then checks if a prologue is required. If the
3452 cost model check was not done before during versioning, it has to
3453 be done before the prologue check.
3455 if (cost <= th)
3456 prologue = scalar_iters
3457 if (prologue == 0)
3458 jmp to vector code
3459 else
3460 execute prologue
3461 if (prologue == num_iters)
3462 go to exit
3464 Hence the run-time scalar cost is incremented by a taken branch,
3465 plus a not-taken branch, plus a taken branch cost.
3467 3. The vectorizer then checks if an epilogue is required. If the
3468 cost model check was not done before during prologue check, it
3469 has to be done with the epilogue check.
3471 if (prologue == 0)
3472 jmp to vector code
3473 else
3474 execute prologue
3475 if (prologue == num_iters)
3476 go to exit
3477 vector code:
3478 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
3479 jmp to epilogue
3481 Hence the run-time scalar cost should be incremented by 2 taken
3482 branches.
3484 TODO: The back end may reorder the BBS's differently and reverse
3485 conditions/branch directions. Change the estimates below to
3486 something more reasonable. */
3488 /* If the number of iterations is known and we do not do versioning, we can
3489 decide whether to vectorize at compile time. Hence the scalar version
3490 do not carry cost model guard costs. */
3491 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
3492 || LOOP_REQUIRES_VERSIONING (loop_vinfo))
3494 /* Cost model check occurs at versioning. */
3495 if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
3496 scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
3497 else
3499 /* Cost model check occurs at prologue generation. */
3500 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
3501 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
3502 + vect_get_stmt_cost (cond_branch_not_taken);
3503 /* Cost model check occurs at epilogue generation. */
3504 else
3505 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
3509 /* Complete the target-specific cost calculations. */
3510 finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo), &vec_prologue_cost,
3511 &vec_inside_cost, &vec_epilogue_cost);
3513 vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
3515 if (dump_enabled_p ())
3517 dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
3518 dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
3519 vec_inside_cost);
3520 dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
3521 vec_prologue_cost);
3522 dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
3523 vec_epilogue_cost);
3524 dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
3525 scalar_single_iter_cost);
3526 dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
3527 scalar_outside_cost);
3528 dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
3529 vec_outside_cost);
3530 dump_printf (MSG_NOTE, " prologue iterations: %d\n",
3531 peel_iters_prologue);
3532 dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
3533 peel_iters_epilogue);
3536 /* Calculate number of iterations required to make the vector version
3537 profitable, relative to the loop bodies only. The following condition
3538 must hold true:
3539 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
3540 where
3541 SIC = scalar iteration cost, VIC = vector iteration cost,
3542 VOC = vector outside cost, VF = vectorization factor,
3543 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
3544 SOC = scalar outside cost for run time cost model check. */
3546 if ((scalar_single_iter_cost * vf) > (int) vec_inside_cost)
3548 if (vec_outside_cost <= 0)
3549 min_profitable_iters = 0;
3550 else
3552 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
3553 - vec_inside_cost * peel_iters_prologue
3554 - vec_inside_cost * peel_iters_epilogue)
3555 / ((scalar_single_iter_cost * vf)
3556 - vec_inside_cost);
3558 if ((scalar_single_iter_cost * vf * min_profitable_iters)
3559 <= (((int) vec_inside_cost * min_profitable_iters)
3560 + (((int) vec_outside_cost - scalar_outside_cost) * vf)))
3561 min_profitable_iters++;
3564 /* vector version will never be profitable. */
3565 else
3567 if (LOOP_VINFO_LOOP (loop_vinfo)->force_vectorize)
3568 warning_at (vect_location, OPT_Wopenmp_simd, "vectorization "
3569 "did not happen for a simd loop");
3571 if (dump_enabled_p ())
3572 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3573 "cost model: the vector iteration cost = %d "
3574 "divided by the scalar iteration cost = %d "
3575 "is greater or equal to the vectorization factor = %d"
3576 ".\n",
3577 vec_inside_cost, scalar_single_iter_cost, vf);
3578 *ret_min_profitable_niters = -1;
3579 *ret_min_profitable_estimate = -1;
3580 return;
3583 dump_printf (MSG_NOTE,
3584 " Calculated minimum iters for profitability: %d\n",
3585 min_profitable_iters);
3587 min_profitable_iters =
3588 min_profitable_iters < vf ? vf : min_profitable_iters;
3590 if (dump_enabled_p ())
3591 dump_printf_loc (MSG_NOTE, vect_location,
3592 " Runtime profitability threshold = %d\n",
3593 min_profitable_iters);
3595 *ret_min_profitable_niters = min_profitable_iters;
3597 /* Calculate number of iterations required to make the vector version
3598 profitable, relative to the loop bodies only.
3600 Non-vectorized variant is SIC * niters and it must win over vector
3601 variant on the expected loop trip count. The following condition must hold true:
3602 SIC * niters > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC + SOC */
3604 if (vec_outside_cost <= 0)
3605 min_profitable_estimate = 0;
3606 else
3608 min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost) * vf
3609 - vec_inside_cost * peel_iters_prologue
3610 - vec_inside_cost * peel_iters_epilogue)
3611 / ((scalar_single_iter_cost * vf)
3612 - vec_inside_cost);
3614 min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
3615 if (dump_enabled_p ())
3616 dump_printf_loc (MSG_NOTE, vect_location,
3617 " Static estimate profitability threshold = %d\n",
3618 min_profitable_estimate);
3620 *ret_min_profitable_estimate = min_profitable_estimate;
3623 /* Writes into SEL a mask for a vec_perm, equivalent to a vec_shr by OFFSET
3624 vector elements (not bits) for a vector of mode MODE. */
3625 static void
3626 calc_vec_perm_mask_for_shift (machine_mode mode, unsigned int offset,
3627 unsigned char *sel)
3629 unsigned int i, nelt = GET_MODE_NUNITS (mode);
3631 for (i = 0; i < nelt; i++)
3632 sel[i] = (i + offset) & (2*nelt - 1);
3635 /* Checks whether the target supports whole-vector shifts for vectors of mode
3636 MODE. This is the case if _either_ the platform handles vec_shr_optab, _or_
3637 it supports vec_perm_const with masks for all necessary shift amounts. */
3638 static bool
3639 have_whole_vector_shift (machine_mode mode)
3641 if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
3642 return true;
3644 if (direct_optab_handler (vec_perm_const_optab, mode) == CODE_FOR_nothing)
3645 return false;
3647 unsigned int i, nelt = GET_MODE_NUNITS (mode);
3648 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
3650 for (i = nelt/2; i >= 1; i/=2)
3652 calc_vec_perm_mask_for_shift (mode, i, sel);
3653 if (!can_vec_perm_p (mode, false, sel))
3654 return false;
3656 return true;
3659 /* Return the reduction operand (with index REDUC_INDEX) of STMT. */
3661 static tree
3662 get_reduction_op (gimple *stmt, int reduc_index)
3664 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3666 case GIMPLE_SINGLE_RHS:
3667 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt))
3668 == ternary_op);
3669 return TREE_OPERAND (gimple_assign_rhs1 (stmt), reduc_index);
3670 case GIMPLE_UNARY_RHS:
3671 return gimple_assign_rhs1 (stmt);
3672 case GIMPLE_BINARY_RHS:
3673 return (reduc_index
3674 ? gimple_assign_rhs2 (stmt) : gimple_assign_rhs1 (stmt));
3675 case GIMPLE_TERNARY_RHS:
3676 return gimple_op (stmt, reduc_index + 1);
3677 default:
3678 gcc_unreachable ();
3682 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
3683 functions. Design better to avoid maintenance issues. */
3685 /* Function vect_model_reduction_cost.
3687 Models cost for a reduction operation, including the vector ops
3688 generated within the strip-mine loop, the initial definition before
3689 the loop, and the epilogue code that must be generated. */
3691 static void
3692 vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
3693 int ncopies)
3695 int prologue_cost = 0, epilogue_cost = 0;
3696 enum tree_code code;
3697 optab optab;
3698 tree vectype;
3699 gimple *orig_stmt;
3700 machine_mode mode;
3701 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3702 struct loop *loop = NULL;
3703 void *target_cost_data;
3705 if (loop_vinfo)
3707 loop = LOOP_VINFO_LOOP (loop_vinfo);
3708 target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3710 else
3711 target_cost_data = BB_VINFO_TARGET_COST_DATA (STMT_VINFO_BB_VINFO (stmt_info));
3713 /* Condition reductions generate two reductions in the loop. */
3714 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
3715 ncopies *= 2;
3717 /* Cost of reduction op inside loop. */
3718 unsigned inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3719 stmt_info, 0, vect_body);
3721 vectype = STMT_VINFO_VECTYPE (stmt_info);
3722 mode = TYPE_MODE (vectype);
3723 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3725 if (!orig_stmt)
3726 orig_stmt = STMT_VINFO_STMT (stmt_info);
3728 code = gimple_assign_rhs_code (orig_stmt);
3730 /* Add in cost for initial definition.
3731 For cond reduction we have four vectors: initial index, step, initial
3732 result of the data reduction, initial value of the index reduction. */
3733 int prologue_stmts = STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
3734 == COND_REDUCTION ? 4 : 1;
3735 prologue_cost += add_stmt_cost (target_cost_data, prologue_stmts,
3736 scalar_to_vec, stmt_info, 0,
3737 vect_prologue);
3739 /* Determine cost of epilogue code.
3741 We have a reduction operator that will reduce the vector in one statement.
3742 Also requires scalar extract. */
3744 if (!loop || !nested_in_vect_loop_p (loop, orig_stmt))
3746 if (reduc_code != ERROR_MARK)
3748 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
3750 /* An EQ stmt and an COND_EXPR stmt. */
3751 epilogue_cost += add_stmt_cost (target_cost_data, 2,
3752 vector_stmt, stmt_info, 0,
3753 vect_epilogue);
3754 /* Reduction of the max index and a reduction of the found
3755 values. */
3756 epilogue_cost += add_stmt_cost (target_cost_data, 2,
3757 vec_to_scalar, stmt_info, 0,
3758 vect_epilogue);
3759 /* A broadcast of the max value. */
3760 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3761 scalar_to_vec, stmt_info, 0,
3762 vect_epilogue);
3764 else
3766 epilogue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
3767 stmt_info, 0, vect_epilogue);
3768 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3769 vec_to_scalar, stmt_info, 0,
3770 vect_epilogue);
3773 else if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
3775 unsigned nunits = TYPE_VECTOR_SUBPARTS (vectype);
3776 /* Extraction of scalar elements. */
3777 epilogue_cost += add_stmt_cost (target_cost_data, 2 * nunits,
3778 vec_to_scalar, stmt_info, 0,
3779 vect_epilogue);
3780 /* Scalar max reductions via COND_EXPR / MAX_EXPR. */
3781 epilogue_cost += add_stmt_cost (target_cost_data, 2 * nunits - 3,
3782 scalar_stmt, stmt_info, 0,
3783 vect_epilogue);
3785 else
3787 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
3788 tree bitsize =
3789 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
3790 int element_bitsize = tree_to_uhwi (bitsize);
3791 int nelements = vec_size_in_bits / element_bitsize;
3793 if (code == COND_EXPR)
3794 code = MAX_EXPR;
3796 optab = optab_for_tree_code (code, vectype, optab_default);
3798 /* We have a whole vector shift available. */
3799 if (optab != unknown_optab
3800 && VECTOR_MODE_P (mode)
3801 && optab_handler (optab, mode) != CODE_FOR_nothing
3802 && have_whole_vector_shift (mode))
3804 /* Final reduction via vector shifts and the reduction operator.
3805 Also requires scalar extract. */
3806 epilogue_cost += add_stmt_cost (target_cost_data,
3807 exact_log2 (nelements) * 2,
3808 vector_stmt, stmt_info, 0,
3809 vect_epilogue);
3810 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3811 vec_to_scalar, stmt_info, 0,
3812 vect_epilogue);
3814 else
3815 /* Use extracts and reduction op for final reduction. For N
3816 elements, we have N extracts and N-1 reduction ops. */
3817 epilogue_cost += add_stmt_cost (target_cost_data,
3818 nelements + nelements - 1,
3819 vector_stmt, stmt_info, 0,
3820 vect_epilogue);
3824 if (dump_enabled_p ())
3825 dump_printf (MSG_NOTE,
3826 "vect_model_reduction_cost: inside_cost = %d, "
3827 "prologue_cost = %d, epilogue_cost = %d .\n", inside_cost,
3828 prologue_cost, epilogue_cost);
3832 /* Function vect_model_induction_cost.
3834 Models cost for induction operations. */
3836 static void
3837 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
3839 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3840 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3841 unsigned inside_cost, prologue_cost;
3843 if (PURE_SLP_STMT (stmt_info))
3844 return;
3846 /* loop cost for vec_loop. */
3847 inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3848 stmt_info, 0, vect_body);
3850 /* prologue cost for vec_init and vec_step. */
3851 prologue_cost = add_stmt_cost (target_cost_data, 2, scalar_to_vec,
3852 stmt_info, 0, vect_prologue);
3854 if (dump_enabled_p ())
3855 dump_printf_loc (MSG_NOTE, vect_location,
3856 "vect_model_induction_cost: inside_cost = %d, "
3857 "prologue_cost = %d .\n", inside_cost, prologue_cost);
3862 /* Function get_initial_def_for_reduction
3864 Input:
3865 STMT - a stmt that performs a reduction operation in the loop.
3866 INIT_VAL - the initial value of the reduction variable
3868 Output:
3869 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
3870 of the reduction (used for adjusting the epilog - see below).
3871 Return a vector variable, initialized according to the operation that STMT
3872 performs. This vector will be used as the initial value of the
3873 vector of partial results.
3875 Option1 (adjust in epilog): Initialize the vector as follows:
3876 add/bit or/xor: [0,0,...,0,0]
3877 mult/bit and: [1,1,...,1,1]
3878 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
3879 and when necessary (e.g. add/mult case) let the caller know
3880 that it needs to adjust the result by init_val.
3882 Option2: Initialize the vector as follows:
3883 add/bit or/xor: [init_val,0,0,...,0]
3884 mult/bit and: [init_val,1,1,...,1]
3885 min/max/cond_expr: [init_val,init_val,...,init_val]
3886 and no adjustments are needed.
3888 For example, for the following code:
3890 s = init_val;
3891 for (i=0;i<n;i++)
3892 s = s + a[i];
3894 STMT is 's = s + a[i]', and the reduction variable is 's'.
3895 For a vector of 4 units, we want to return either [0,0,0,init_val],
3896 or [0,0,0,0] and let the caller know that it needs to adjust
3897 the result at the end by 'init_val'.
3899 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
3900 initialization vector is simpler (same element in all entries), if
3901 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
3903 A cost model should help decide between these two schemes. */
3905 tree
3906 get_initial_def_for_reduction (gimple *stmt, tree init_val,
3907 tree *adjustment_def)
3909 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
3910 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3911 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3912 tree scalar_type = TREE_TYPE (init_val);
3913 tree vectype = get_vectype_for_scalar_type (scalar_type);
3914 int nunits;
3915 enum tree_code code = gimple_assign_rhs_code (stmt);
3916 tree def_for_init;
3917 tree init_def;
3918 tree *elts;
3919 int i;
3920 bool nested_in_vect_loop = false;
3921 REAL_VALUE_TYPE real_init_val = dconst0;
3922 int int_init_val = 0;
3923 gimple *def_stmt = NULL;
3924 gimple_seq stmts = NULL;
3926 gcc_assert (vectype);
3927 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3929 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
3930 || SCALAR_FLOAT_TYPE_P (scalar_type));
3932 if (nested_in_vect_loop_p (loop, stmt))
3933 nested_in_vect_loop = true;
3934 else
3935 gcc_assert (loop == (gimple_bb (stmt))->loop_father);
3937 /* In case of double reduction we only create a vector variable to be put
3938 in the reduction phi node. The actual statement creation is done in
3939 vect_create_epilog_for_reduction. */
3940 if (adjustment_def && nested_in_vect_loop
3941 && TREE_CODE (init_val) == SSA_NAME
3942 && (def_stmt = SSA_NAME_DEF_STMT (init_val))
3943 && gimple_code (def_stmt) == GIMPLE_PHI
3944 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
3945 && vinfo_for_stmt (def_stmt)
3946 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
3947 == vect_double_reduction_def)
3949 *adjustment_def = NULL;
3950 return vect_create_destination_var (init_val, vectype);
3953 /* In case of a nested reduction do not use an adjustment def as
3954 that case is not supported by the epilogue generation correctly
3955 if ncopies is not one. */
3956 if (adjustment_def && nested_in_vect_loop)
3958 *adjustment_def = NULL;
3959 return vect_get_vec_def_for_operand (init_val, stmt);
3962 switch (code)
3964 case WIDEN_SUM_EXPR:
3965 case DOT_PROD_EXPR:
3966 case SAD_EXPR:
3967 case PLUS_EXPR:
3968 case MINUS_EXPR:
3969 case BIT_IOR_EXPR:
3970 case BIT_XOR_EXPR:
3971 case MULT_EXPR:
3972 case BIT_AND_EXPR:
3973 /* ADJUSMENT_DEF is NULL when called from
3974 vect_create_epilog_for_reduction to vectorize double reduction. */
3975 if (adjustment_def)
3976 *adjustment_def = init_val;
3978 if (code == MULT_EXPR)
3980 real_init_val = dconst1;
3981 int_init_val = 1;
3984 if (code == BIT_AND_EXPR)
3985 int_init_val = -1;
3987 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3988 def_for_init = build_real (scalar_type, real_init_val);
3989 else
3990 def_for_init = build_int_cst (scalar_type, int_init_val);
3992 /* Create a vector of '0' or '1' except the first element. */
3993 elts = XALLOCAVEC (tree, nunits);
3994 for (i = nunits - 2; i >= 0; --i)
3995 elts[i + 1] = def_for_init;
3997 /* Option1: the first element is '0' or '1' as well. */
3998 if (adjustment_def)
4000 elts[0] = def_for_init;
4001 init_def = build_vector (vectype, elts);
4002 break;
4005 /* Option2: the first element is INIT_VAL. */
4006 elts[0] = init_val;
4007 if (TREE_CONSTANT (init_val))
4008 init_def = build_vector (vectype, elts);
4009 else
4011 vec<constructor_elt, va_gc> *v;
4012 vec_alloc (v, nunits);
4013 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init_val);
4014 for (i = 1; i < nunits; ++i)
4015 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[i]);
4016 init_def = build_constructor (vectype, v);
4019 break;
4021 case MIN_EXPR:
4022 case MAX_EXPR:
4023 case COND_EXPR:
4024 if (adjustment_def)
4026 *adjustment_def = NULL_TREE;
4027 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_vinfo) != COND_REDUCTION)
4029 init_def = vect_get_vec_def_for_operand (init_val, stmt);
4030 break;
4033 init_val = gimple_convert (&stmts, TREE_TYPE (vectype), init_val);
4034 if (! gimple_seq_empty_p (stmts))
4035 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
4036 init_def = build_vector_from_val (vectype, init_val);
4037 break;
4039 default:
4040 gcc_unreachable ();
4043 return init_def;
4046 /* Get at the initial defs for OP in the reduction SLP_NODE.
4047 NUMBER_OF_VECTORS is the number of vector defs to create.
4048 REDUC_INDEX is the index of the reduction operand in the statements. */
4050 static void
4051 get_initial_defs_for_reduction (slp_tree slp_node,
4052 vec<tree> *vec_oprnds,
4053 unsigned int number_of_vectors,
4054 int reduc_index, enum tree_code code)
4056 vec<gimple *> stmts = SLP_TREE_SCALAR_STMTS (slp_node);
4057 gimple *stmt = stmts[0];
4058 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
4059 unsigned nunits;
4060 tree vec_cst;
4061 tree *elts;
4062 unsigned j, number_of_places_left_in_vector;
4063 tree vector_type, scalar_type;
4064 tree vop;
4065 int group_size = stmts.length ();
4066 unsigned int vec_num, i;
4067 unsigned number_of_copies = 1;
4068 vec<tree> voprnds;
4069 voprnds.create (number_of_vectors);
4070 bool constant_p;
4071 tree neutral_op = NULL;
4072 gimple *def_stmt;
4073 struct loop *loop;
4074 gimple_seq ctor_seq = NULL;
4076 vector_type = STMT_VINFO_VECTYPE (stmt_vinfo);
4077 scalar_type = TREE_TYPE (vector_type);
4078 nunits = TYPE_VECTOR_SUBPARTS (vector_type);
4080 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
4081 && reduc_index != -1);
4083 /* op is the reduction operand of the first stmt already. */
4084 /* For additional copies (see the explanation of NUMBER_OF_COPIES below)
4085 we need either neutral operands or the original operands. See
4086 get_initial_def_for_reduction() for details. */
4087 switch (code)
4089 case WIDEN_SUM_EXPR:
4090 case DOT_PROD_EXPR:
4091 case SAD_EXPR:
4092 case PLUS_EXPR:
4093 case MINUS_EXPR:
4094 case BIT_IOR_EXPR:
4095 case BIT_XOR_EXPR:
4096 neutral_op = build_zero_cst (scalar_type);
4097 break;
4099 case MULT_EXPR:
4100 neutral_op = build_one_cst (scalar_type);
4101 break;
4103 case BIT_AND_EXPR:
4104 neutral_op = build_all_ones_cst (scalar_type);
4105 break;
4107 /* For MIN/MAX we don't have an easy neutral operand but
4108 the initial values can be used fine here. Only for
4109 a reduction chain we have to force a neutral element. */
4110 case MAX_EXPR:
4111 case MIN_EXPR:
4112 if (!GROUP_FIRST_ELEMENT (stmt_vinfo))
4113 neutral_op = NULL;
4114 else
4116 tree op = get_reduction_op (stmts[0], reduc_index);
4117 def_stmt = SSA_NAME_DEF_STMT (op);
4118 loop = (gimple_bb (stmt))->loop_father;
4119 neutral_op = PHI_ARG_DEF_FROM_EDGE (def_stmt,
4120 loop_preheader_edge (loop));
4122 break;
4124 default:
4125 gcc_assert (!GROUP_FIRST_ELEMENT (stmt_vinfo));
4126 neutral_op = NULL;
4129 /* NUMBER_OF_COPIES is the number of times we need to use the same values in
4130 created vectors. It is greater than 1 if unrolling is performed.
4132 For example, we have two scalar operands, s1 and s2 (e.g., group of
4133 strided accesses of size two), while NUNITS is four (i.e., four scalars
4134 of this type can be packed in a vector). The output vector will contain
4135 two copies of each scalar operand: {s1, s2, s1, s2}. (NUMBER_OF_COPIES
4136 will be 2).
4138 If GROUP_SIZE > NUNITS, the scalars will be split into several vectors
4139 containing the operands.
4141 For example, NUNITS is four as before, and the group size is 8
4142 (s1, s2, ..., s8). We will create two vectors {s1, s2, s3, s4} and
4143 {s5, s6, s7, s8}. */
4145 number_of_copies = nunits * number_of_vectors / group_size;
4147 number_of_places_left_in_vector = nunits;
4148 constant_p = true;
4149 elts = XALLOCAVEC (tree, nunits);
4150 for (j = 0; j < number_of_copies; j++)
4152 for (i = group_size - 1; stmts.iterate (i, &stmt); i--)
4154 tree op = get_reduction_op (stmt, reduc_index);
4155 loop = (gimple_bb (stmt))->loop_father;
4156 def_stmt = SSA_NAME_DEF_STMT (op);
4158 gcc_assert (loop);
4160 /* Get the def before the loop. In reduction chain we have only
4161 one initial value. */
4162 if ((j != (number_of_copies - 1)
4163 || (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt))
4164 && i != 0))
4165 && neutral_op)
4166 op = neutral_op;
4167 else
4168 op = PHI_ARG_DEF_FROM_EDGE (def_stmt,
4169 loop_preheader_edge (loop));
4171 /* Create 'vect_ = {op0,op1,...,opn}'. */
4172 number_of_places_left_in_vector--;
4173 elts[number_of_places_left_in_vector] = op;
4174 if (!CONSTANT_CLASS_P (op))
4175 constant_p = false;
4177 if (number_of_places_left_in_vector == 0)
4179 if (constant_p)
4180 vec_cst = build_vector (vector_type, elts);
4181 else
4183 vec<constructor_elt, va_gc> *v;
4184 unsigned k;
4185 vec_alloc (v, nunits);
4186 for (k = 0; k < nunits; ++k)
4187 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[k]);
4188 vec_cst = build_constructor (vector_type, v);
4190 tree init;
4191 gimple_stmt_iterator gsi;
4192 init = vect_init_vector (stmt, vec_cst, vector_type, NULL);
4193 if (ctor_seq != NULL)
4195 gsi = gsi_for_stmt (SSA_NAME_DEF_STMT (init));
4196 gsi_insert_seq_before_without_update (&gsi, ctor_seq,
4197 GSI_SAME_STMT);
4198 ctor_seq = NULL;
4200 voprnds.quick_push (init);
4202 number_of_places_left_in_vector = nunits;
4203 constant_p = true;
4208 /* Since the vectors are created in the reverse order, we should invert
4209 them. */
4210 vec_num = voprnds.length ();
4211 for (j = vec_num; j != 0; j--)
4213 vop = voprnds[j - 1];
4214 vec_oprnds->quick_push (vop);
4217 voprnds.release ();
4219 /* In case that VF is greater than the unrolling factor needed for the SLP
4220 group of stmts, NUMBER_OF_VECTORS to be created is greater than
4221 NUMBER_OF_SCALARS/NUNITS or NUNITS/NUMBER_OF_SCALARS, and hence we have
4222 to replicate the vectors. */
4223 while (number_of_vectors > vec_oprnds->length ())
4225 tree neutral_vec = NULL;
4227 if (neutral_op)
4229 if (!neutral_vec)
4230 neutral_vec = build_vector_from_val (vector_type, neutral_op);
4232 vec_oprnds->quick_push (neutral_vec);
4234 else
4236 for (i = 0; vec_oprnds->iterate (i, &vop) && i < vec_num; i++)
4237 vec_oprnds->quick_push (vop);
4243 /* Function vect_create_epilog_for_reduction
4245 Create code at the loop-epilog to finalize the result of a reduction
4246 computation.
4248 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
4249 reduction statements.
4250 STMT is the scalar reduction stmt that is being vectorized.
4251 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
4252 number of elements that we can fit in a vectype (nunits). In this case
4253 we have to generate more than one vector stmt - i.e - we need to "unroll"
4254 the vector stmt by a factor VF/nunits. For more details see documentation
4255 in vectorizable_operation.
4256 REDUC_CODE is the tree-code for the epilog reduction.
4257 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
4258 computation.
4259 REDUC_INDEX is the index of the operand in the right hand side of the
4260 statement that is defined by REDUCTION_PHI.
4261 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
4262 SLP_NODE is an SLP node containing a group of reduction statements. The
4263 first one in this group is STMT.
4265 This function:
4266 1. Creates the reduction def-use cycles: sets the arguments for
4267 REDUCTION_PHIS:
4268 The loop-entry argument is the vectorized initial-value of the reduction.
4269 The loop-latch argument is taken from VECT_DEFS - the vector of partial
4270 sums.
4271 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
4272 by applying the operation specified by REDUC_CODE if available, or by
4273 other means (whole-vector shifts or a scalar loop).
4274 The function also creates a new phi node at the loop exit to preserve
4275 loop-closed form, as illustrated below.
4277 The flow at the entry to this function:
4279 loop:
4280 vec_def = phi <null, null> # REDUCTION_PHI
4281 VECT_DEF = vector_stmt # vectorized form of STMT
4282 s_loop = scalar_stmt # (scalar) STMT
4283 loop_exit:
4284 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4285 use <s_out0>
4286 use <s_out0>
4288 The above is transformed by this function into:
4290 loop:
4291 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
4292 VECT_DEF = vector_stmt # vectorized form of STMT
4293 s_loop = scalar_stmt # (scalar) STMT
4294 loop_exit:
4295 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4296 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4297 v_out2 = reduce <v_out1>
4298 s_out3 = extract_field <v_out2, 0>
4299 s_out4 = adjust_result <s_out3>
4300 use <s_out4>
4301 use <s_out4>
4304 static void
4305 vect_create_epilog_for_reduction (vec<tree> vect_defs, gimple *stmt,
4306 gimple *reduc_def_stmt,
4307 int ncopies, enum tree_code reduc_code,
4308 vec<gimple *> reduction_phis,
4309 int reduc_index, bool double_reduc,
4310 slp_tree slp_node)
4312 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4313 stmt_vec_info prev_phi_info;
4314 tree vectype;
4315 machine_mode mode;
4316 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4317 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
4318 basic_block exit_bb;
4319 tree scalar_dest;
4320 tree scalar_type;
4321 gimple *new_phi = NULL, *phi;
4322 gimple_stmt_iterator exit_gsi;
4323 tree vec_dest;
4324 tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
4325 gimple *epilog_stmt = NULL;
4326 enum tree_code code = gimple_assign_rhs_code (stmt);
4327 gimple *exit_phi;
4328 tree bitsize;
4329 tree adjustment_def = NULL;
4330 tree vec_initial_def = NULL;
4331 tree expr, def, initial_def = NULL;
4332 tree orig_name, scalar_result;
4333 imm_use_iterator imm_iter, phi_imm_iter;
4334 use_operand_p use_p, phi_use_p;
4335 gimple *use_stmt, *orig_stmt, *reduction_phi = NULL;
4336 bool nested_in_vect_loop = false;
4337 auto_vec<gimple *> new_phis;
4338 auto_vec<gimple *> inner_phis;
4339 enum vect_def_type dt = vect_unknown_def_type;
4340 int j, i;
4341 auto_vec<tree> scalar_results;
4342 unsigned int group_size = 1, k, ratio;
4343 auto_vec<tree> vec_initial_defs;
4344 auto_vec<gimple *> phis;
4345 bool slp_reduc = false;
4346 tree new_phi_result;
4347 gimple *inner_phi = NULL;
4348 tree induction_index = NULL_TREE;
4350 if (slp_node)
4351 group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
4353 if (nested_in_vect_loop_p (loop, stmt))
4355 outer_loop = loop;
4356 loop = loop->inner;
4357 nested_in_vect_loop = true;
4358 gcc_assert (!slp_node);
4361 vectype = STMT_VINFO_VECTYPE (stmt_info);
4362 gcc_assert (vectype);
4363 mode = TYPE_MODE (vectype);
4365 /* 1. Create the reduction def-use cycle:
4366 Set the arguments of REDUCTION_PHIS, i.e., transform
4368 loop:
4369 vec_def = phi <null, null> # REDUCTION_PHI
4370 VECT_DEF = vector_stmt # vectorized form of STMT
4373 into:
4375 loop:
4376 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
4377 VECT_DEF = vector_stmt # vectorized form of STMT
4380 (in case of SLP, do it for all the phis). */
4382 /* Get the loop-entry arguments. */
4383 enum vect_def_type initial_def_dt = vect_unknown_def_type;
4384 if (slp_node)
4386 unsigned vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
4387 vec_initial_defs.reserve (vec_num);
4388 get_initial_defs_for_reduction (slp_node, &vec_initial_defs,
4389 vec_num, reduc_index, code);
4391 else
4393 /* Get at the scalar def before the loop, that defines the initial value
4394 of the reduction variable. */
4395 gimple *def_stmt;
4396 initial_def = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
4397 loop_preheader_edge (loop));
4398 vect_is_simple_use (initial_def, loop_vinfo, &def_stmt, &initial_def_dt);
4399 vec_initial_def = get_initial_def_for_reduction (stmt, initial_def,
4400 &adjustment_def);
4401 vec_initial_defs.create (1);
4402 vec_initial_defs.quick_push (vec_initial_def);
4405 /* Set phi nodes arguments. */
4406 FOR_EACH_VEC_ELT (reduction_phis, i, phi)
4408 tree vec_init_def, def;
4409 gimple_seq stmts;
4410 vec_init_def = force_gimple_operand (vec_initial_defs[i], &stmts,
4411 true, NULL_TREE);
4412 if (stmts)
4413 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
4415 def = vect_defs[i];
4416 for (j = 0; j < ncopies; j++)
4418 if (j != 0)
4420 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4421 if (nested_in_vect_loop)
4422 vec_init_def
4423 = vect_get_vec_def_for_stmt_copy (initial_def_dt,
4424 vec_init_def);
4427 /* Set the loop-entry arg of the reduction-phi. */
4429 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
4430 == INTEGER_INDUC_COND_REDUCTION)
4432 /* Initialise the reduction phi to zero. This prevents initial
4433 values of non-zero interferring with the reduction op. */
4434 gcc_assert (ncopies == 1);
4435 gcc_assert (i == 0);
4437 tree vec_init_def_type = TREE_TYPE (vec_init_def);
4438 tree zero_vec = build_zero_cst (vec_init_def_type);
4440 add_phi_arg (as_a <gphi *> (phi), zero_vec,
4441 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4443 else
4444 add_phi_arg (as_a <gphi *> (phi), vec_init_def,
4445 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4447 /* Set the loop-latch arg for the reduction-phi. */
4448 if (j > 0)
4449 def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
4451 add_phi_arg (as_a <gphi *> (phi), def, loop_latch_edge (loop),
4452 UNKNOWN_LOCATION);
4454 if (dump_enabled_p ())
4456 dump_printf_loc (MSG_NOTE, vect_location,
4457 "transform reduction: created def-use cycle: ");
4458 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
4459 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, SSA_NAME_DEF_STMT (def), 0);
4464 /* For cond reductions we want to create a new vector (INDEX_COND_EXPR)
4465 which is updated with the current index of the loop for every match of
4466 the original loop's cond_expr (VEC_STMT). This results in a vector
4467 containing the last time the condition passed for that vector lane.
4468 The first match will be a 1 to allow 0 to be used for non-matching
4469 indexes. If there are no matches at all then the vector will be all
4470 zeroes. */
4471 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
4473 tree indx_before_incr, indx_after_incr;
4474 int nunits_out = TYPE_VECTOR_SUBPARTS (vectype);
4475 int k;
4477 gimple *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
4478 gcc_assert (gimple_assign_rhs_code (vec_stmt) == VEC_COND_EXPR);
4480 int scalar_precision
4481 = GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (vectype)));
4482 tree cr_index_scalar_type = make_unsigned_type (scalar_precision);
4483 tree cr_index_vector_type = build_vector_type
4484 (cr_index_scalar_type, TYPE_VECTOR_SUBPARTS (vectype));
4486 /* First we create a simple vector induction variable which starts
4487 with the values {1,2,3,...} (SERIES_VECT) and increments by the
4488 vector size (STEP). */
4490 /* Create a {1,2,3,...} vector. */
4491 tree *vtemp = XALLOCAVEC (tree, nunits_out);
4492 for (k = 0; k < nunits_out; ++k)
4493 vtemp[k] = build_int_cst (cr_index_scalar_type, k + 1);
4494 tree series_vect = build_vector (cr_index_vector_type, vtemp);
4496 /* Create a vector of the step value. */
4497 tree step = build_int_cst (cr_index_scalar_type, nunits_out);
4498 tree vec_step = build_vector_from_val (cr_index_vector_type, step);
4500 /* Create an induction variable. */
4501 gimple_stmt_iterator incr_gsi;
4502 bool insert_after;
4503 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
4504 create_iv (series_vect, vec_step, NULL_TREE, loop, &incr_gsi,
4505 insert_after, &indx_before_incr, &indx_after_incr);
4507 /* Next create a new phi node vector (NEW_PHI_TREE) which starts
4508 filled with zeros (VEC_ZERO). */
4510 /* Create a vector of 0s. */
4511 tree zero = build_zero_cst (cr_index_scalar_type);
4512 tree vec_zero = build_vector_from_val (cr_index_vector_type, zero);
4514 /* Create a vector phi node. */
4515 tree new_phi_tree = make_ssa_name (cr_index_vector_type);
4516 new_phi = create_phi_node (new_phi_tree, loop->header);
4517 set_vinfo_for_stmt (new_phi,
4518 new_stmt_vec_info (new_phi, loop_vinfo));
4519 add_phi_arg (as_a <gphi *> (new_phi), vec_zero,
4520 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4522 /* Now take the condition from the loops original cond_expr
4523 (VEC_STMT) and produce a new cond_expr (INDEX_COND_EXPR) which for
4524 every match uses values from the induction variable
4525 (INDEX_BEFORE_INCR) otherwise uses values from the phi node
4526 (NEW_PHI_TREE).
4527 Finally, we update the phi (NEW_PHI_TREE) to take the value of
4528 the new cond_expr (INDEX_COND_EXPR). */
4530 /* Duplicate the condition from vec_stmt. */
4531 tree ccompare = unshare_expr (gimple_assign_rhs1 (vec_stmt));
4533 /* Create a conditional, where the condition is taken from vec_stmt
4534 (CCOMPARE), then is the induction index (INDEX_BEFORE_INCR) and
4535 else is the phi (NEW_PHI_TREE). */
4536 tree index_cond_expr = build3 (VEC_COND_EXPR, cr_index_vector_type,
4537 ccompare, indx_before_incr,
4538 new_phi_tree);
4539 induction_index = make_ssa_name (cr_index_vector_type);
4540 gimple *index_condition = gimple_build_assign (induction_index,
4541 index_cond_expr);
4542 gsi_insert_before (&incr_gsi, index_condition, GSI_SAME_STMT);
4543 stmt_vec_info index_vec_info = new_stmt_vec_info (index_condition,
4544 loop_vinfo);
4545 STMT_VINFO_VECTYPE (index_vec_info) = cr_index_vector_type;
4546 set_vinfo_for_stmt (index_condition, index_vec_info);
4548 /* Update the phi with the vec cond. */
4549 add_phi_arg (as_a <gphi *> (new_phi), induction_index,
4550 loop_latch_edge (loop), UNKNOWN_LOCATION);
4553 /* 2. Create epilog code.
4554 The reduction epilog code operates across the elements of the vector
4555 of partial results computed by the vectorized loop.
4556 The reduction epilog code consists of:
4558 step 1: compute the scalar result in a vector (v_out2)
4559 step 2: extract the scalar result (s_out3) from the vector (v_out2)
4560 step 3: adjust the scalar result (s_out3) if needed.
4562 Step 1 can be accomplished using one the following three schemes:
4563 (scheme 1) using reduc_code, if available.
4564 (scheme 2) using whole-vector shifts, if available.
4565 (scheme 3) using a scalar loop. In this case steps 1+2 above are
4566 combined.
4568 The overall epilog code looks like this:
4570 s_out0 = phi <s_loop> # original EXIT_PHI
4571 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4572 v_out2 = reduce <v_out1> # step 1
4573 s_out3 = extract_field <v_out2, 0> # step 2
4574 s_out4 = adjust_result <s_out3> # step 3
4576 (step 3 is optional, and steps 1 and 2 may be combined).
4577 Lastly, the uses of s_out0 are replaced by s_out4. */
4580 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
4581 v_out1 = phi <VECT_DEF>
4582 Store them in NEW_PHIS. */
4584 exit_bb = single_exit (loop)->dest;
4585 prev_phi_info = NULL;
4586 new_phis.create (vect_defs.length ());
4587 FOR_EACH_VEC_ELT (vect_defs, i, def)
4589 for (j = 0; j < ncopies; j++)
4591 tree new_def = copy_ssa_name (def);
4592 phi = create_phi_node (new_def, exit_bb);
4593 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo));
4594 if (j == 0)
4595 new_phis.quick_push (phi);
4596 else
4598 def = vect_get_vec_def_for_stmt_copy (dt, def);
4599 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
4602 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
4603 prev_phi_info = vinfo_for_stmt (phi);
4607 /* The epilogue is created for the outer-loop, i.e., for the loop being
4608 vectorized. Create exit phis for the outer loop. */
4609 if (double_reduc)
4611 loop = outer_loop;
4612 exit_bb = single_exit (loop)->dest;
4613 inner_phis.create (vect_defs.length ());
4614 FOR_EACH_VEC_ELT (new_phis, i, phi)
4616 tree new_result = copy_ssa_name (PHI_RESULT (phi));
4617 gphi *outer_phi = create_phi_node (new_result, exit_bb);
4618 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4619 PHI_RESULT (phi));
4620 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4621 loop_vinfo));
4622 inner_phis.quick_push (phi);
4623 new_phis[i] = outer_phi;
4624 prev_phi_info = vinfo_for_stmt (outer_phi);
4625 while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi)))
4627 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4628 new_result = copy_ssa_name (PHI_RESULT (phi));
4629 outer_phi = create_phi_node (new_result, exit_bb);
4630 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4631 PHI_RESULT (phi));
4632 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4633 loop_vinfo));
4634 STMT_VINFO_RELATED_STMT (prev_phi_info) = outer_phi;
4635 prev_phi_info = vinfo_for_stmt (outer_phi);
4640 exit_gsi = gsi_after_labels (exit_bb);
4642 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
4643 (i.e. when reduc_code is not available) and in the final adjustment
4644 code (if needed). Also get the original scalar reduction variable as
4645 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
4646 represents a reduction pattern), the tree-code and scalar-def are
4647 taken from the original stmt that the pattern-stmt (STMT) replaces.
4648 Otherwise (it is a regular reduction) - the tree-code and scalar-def
4649 are taken from STMT. */
4651 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4652 if (!orig_stmt)
4654 /* Regular reduction */
4655 orig_stmt = stmt;
4657 else
4659 /* Reduction pattern */
4660 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
4661 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
4662 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
4665 code = gimple_assign_rhs_code (orig_stmt);
4666 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
4667 partial results are added and not subtracted. */
4668 if (code == MINUS_EXPR)
4669 code = PLUS_EXPR;
4671 scalar_dest = gimple_assign_lhs (orig_stmt);
4672 scalar_type = TREE_TYPE (scalar_dest);
4673 scalar_results.create (group_size);
4674 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
4675 bitsize = TYPE_SIZE (scalar_type);
4677 /* In case this is a reduction in an inner-loop while vectorizing an outer
4678 loop - we don't need to extract a single scalar result at the end of the
4679 inner-loop (unless it is double reduction, i.e., the use of reduction is
4680 outside the outer-loop). The final vector of partial results will be used
4681 in the vectorized outer-loop, or reduced to a scalar result at the end of
4682 the outer-loop. */
4683 if (nested_in_vect_loop && !double_reduc)
4684 goto vect_finalize_reduction;
4686 /* SLP reduction without reduction chain, e.g.,
4687 # a1 = phi <a2, a0>
4688 # b1 = phi <b2, b0>
4689 a2 = operation (a1)
4690 b2 = operation (b1) */
4691 slp_reduc = (slp_node && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
4693 /* In case of reduction chain, e.g.,
4694 # a1 = phi <a3, a0>
4695 a2 = operation (a1)
4696 a3 = operation (a2),
4698 we may end up with more than one vector result. Here we reduce them to
4699 one vector. */
4700 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4702 tree first_vect = PHI_RESULT (new_phis[0]);
4703 tree tmp;
4704 gassign *new_vec_stmt = NULL;
4706 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4707 for (k = 1; k < new_phis.length (); k++)
4709 gimple *next_phi = new_phis[k];
4710 tree second_vect = PHI_RESULT (next_phi);
4712 tmp = build2 (code, vectype, first_vect, second_vect);
4713 new_vec_stmt = gimple_build_assign (vec_dest, tmp);
4714 first_vect = make_ssa_name (vec_dest, new_vec_stmt);
4715 gimple_assign_set_lhs (new_vec_stmt, first_vect);
4716 gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
4719 new_phi_result = first_vect;
4720 if (new_vec_stmt)
4722 new_phis.truncate (0);
4723 new_phis.safe_push (new_vec_stmt);
4726 else
4727 new_phi_result = PHI_RESULT (new_phis[0]);
4729 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION
4730 && reduc_code != ERROR_MARK)
4732 /* For condition reductions, we have a vector (NEW_PHI_RESULT) containing
4733 various data values where the condition matched and another vector
4734 (INDUCTION_INDEX) containing all the indexes of those matches. We
4735 need to extract the last matching index (which will be the index with
4736 highest value) and use this to index into the data vector.
4737 For the case where there were no matches, the data vector will contain
4738 all default values and the index vector will be all zeros. */
4740 /* Get various versions of the type of the vector of indexes. */
4741 tree index_vec_type = TREE_TYPE (induction_index);
4742 gcc_checking_assert (TYPE_UNSIGNED (index_vec_type));
4743 tree index_scalar_type = TREE_TYPE (index_vec_type);
4744 tree index_vec_cmp_type = build_same_sized_truth_vector_type
4745 (index_vec_type);
4747 /* Get an unsigned integer version of the type of the data vector. */
4748 int scalar_precision = GET_MODE_PRECISION (TYPE_MODE (scalar_type));
4749 tree scalar_type_unsigned = make_unsigned_type (scalar_precision);
4750 tree vectype_unsigned = build_vector_type
4751 (scalar_type_unsigned, TYPE_VECTOR_SUBPARTS (vectype));
4753 /* First we need to create a vector (ZERO_VEC) of zeros and another
4754 vector (MAX_INDEX_VEC) filled with the last matching index, which we
4755 can create using a MAX reduction and then expanding.
4756 In the case where the loop never made any matches, the max index will
4757 be zero. */
4759 /* Vector of {0, 0, 0,...}. */
4760 tree zero_vec = make_ssa_name (vectype);
4761 tree zero_vec_rhs = build_zero_cst (vectype);
4762 gimple *zero_vec_stmt = gimple_build_assign (zero_vec, zero_vec_rhs);
4763 gsi_insert_before (&exit_gsi, zero_vec_stmt, GSI_SAME_STMT);
4765 /* Find maximum value from the vector of found indexes. */
4766 tree max_index = make_ssa_name (index_scalar_type);
4767 gimple *max_index_stmt = gimple_build_assign (max_index, REDUC_MAX_EXPR,
4768 induction_index);
4769 gsi_insert_before (&exit_gsi, max_index_stmt, GSI_SAME_STMT);
4771 /* Vector of {max_index, max_index, max_index,...}. */
4772 tree max_index_vec = make_ssa_name (index_vec_type);
4773 tree max_index_vec_rhs = build_vector_from_val (index_vec_type,
4774 max_index);
4775 gimple *max_index_vec_stmt = gimple_build_assign (max_index_vec,
4776 max_index_vec_rhs);
4777 gsi_insert_before (&exit_gsi, max_index_vec_stmt, GSI_SAME_STMT);
4779 /* Next we compare the new vector (MAX_INDEX_VEC) full of max indexes
4780 with the vector (INDUCTION_INDEX) of found indexes, choosing values
4781 from the data vector (NEW_PHI_RESULT) for matches, 0 (ZERO_VEC)
4782 otherwise. Only one value should match, resulting in a vector
4783 (VEC_COND) with one data value and the rest zeros.
4784 In the case where the loop never made any matches, every index will
4785 match, resulting in a vector with all data values (which will all be
4786 the default value). */
4788 /* Compare the max index vector to the vector of found indexes to find
4789 the position of the max value. */
4790 tree vec_compare = make_ssa_name (index_vec_cmp_type);
4791 gimple *vec_compare_stmt = gimple_build_assign (vec_compare, EQ_EXPR,
4792 induction_index,
4793 max_index_vec);
4794 gsi_insert_before (&exit_gsi, vec_compare_stmt, GSI_SAME_STMT);
4796 /* Use the compare to choose either values from the data vector or
4797 zero. */
4798 tree vec_cond = make_ssa_name (vectype);
4799 gimple *vec_cond_stmt = gimple_build_assign (vec_cond, VEC_COND_EXPR,
4800 vec_compare, new_phi_result,
4801 zero_vec);
4802 gsi_insert_before (&exit_gsi, vec_cond_stmt, GSI_SAME_STMT);
4804 /* Finally we need to extract the data value from the vector (VEC_COND)
4805 into a scalar (MATCHED_DATA_REDUC). Logically we want to do a OR
4806 reduction, but because this doesn't exist, we can use a MAX reduction
4807 instead. The data value might be signed or a float so we need to cast
4808 it first.
4809 In the case where the loop never made any matches, the data values are
4810 all identical, and so will reduce down correctly. */
4812 /* Make the matched data values unsigned. */
4813 tree vec_cond_cast = make_ssa_name (vectype_unsigned);
4814 tree vec_cond_cast_rhs = build1 (VIEW_CONVERT_EXPR, vectype_unsigned,
4815 vec_cond);
4816 gimple *vec_cond_cast_stmt = gimple_build_assign (vec_cond_cast,
4817 VIEW_CONVERT_EXPR,
4818 vec_cond_cast_rhs);
4819 gsi_insert_before (&exit_gsi, vec_cond_cast_stmt, GSI_SAME_STMT);
4821 /* Reduce down to a scalar value. */
4822 tree data_reduc = make_ssa_name (scalar_type_unsigned);
4823 optab ot = optab_for_tree_code (REDUC_MAX_EXPR, vectype_unsigned,
4824 optab_default);
4825 gcc_assert (optab_handler (ot, TYPE_MODE (vectype_unsigned))
4826 != CODE_FOR_nothing);
4827 gimple *data_reduc_stmt = gimple_build_assign (data_reduc,
4828 REDUC_MAX_EXPR,
4829 vec_cond_cast);
4830 gsi_insert_before (&exit_gsi, data_reduc_stmt, GSI_SAME_STMT);
4832 /* Convert the reduced value back to the result type and set as the
4833 result. */
4834 gimple_seq stmts = NULL;
4835 new_temp = gimple_build (&stmts, VIEW_CONVERT_EXPR, scalar_type,
4836 data_reduc);
4837 gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
4838 scalar_results.safe_push (new_temp);
4840 else if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION
4841 && reduc_code == ERROR_MARK)
4843 /* Condition redution without supported REDUC_MAX_EXPR. Generate
4844 idx = 0;
4845 idx_val = induction_index[0];
4846 val = data_reduc[0];
4847 for (idx = 0, val = init, i = 0; i < nelts; ++i)
4848 if (induction_index[i] > idx_val)
4849 val = data_reduc[i], idx_val = induction_index[i];
4850 return val; */
4852 tree data_eltype = TREE_TYPE (TREE_TYPE (new_phi_result));
4853 tree idx_eltype = TREE_TYPE (TREE_TYPE (induction_index));
4854 unsigned HOST_WIDE_INT el_size = tree_to_uhwi (TYPE_SIZE (idx_eltype));
4855 unsigned HOST_WIDE_INT v_size
4856 = el_size * TYPE_VECTOR_SUBPARTS (TREE_TYPE (induction_index));
4857 tree idx_val = NULL_TREE, val = NULL_TREE;
4858 for (unsigned HOST_WIDE_INT off = 0; off < v_size; off += el_size)
4860 tree old_idx_val = idx_val;
4861 tree old_val = val;
4862 idx_val = make_ssa_name (idx_eltype);
4863 epilog_stmt = gimple_build_assign (idx_val, BIT_FIELD_REF,
4864 build3 (BIT_FIELD_REF, idx_eltype,
4865 induction_index,
4866 bitsize_int (el_size),
4867 bitsize_int (off)));
4868 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4869 val = make_ssa_name (data_eltype);
4870 epilog_stmt = gimple_build_assign (val, BIT_FIELD_REF,
4871 build3 (BIT_FIELD_REF,
4872 data_eltype,
4873 new_phi_result,
4874 bitsize_int (el_size),
4875 bitsize_int (off)));
4876 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4877 if (off != 0)
4879 tree new_idx_val = idx_val;
4880 tree new_val = val;
4881 if (off != v_size - el_size)
4883 new_idx_val = make_ssa_name (idx_eltype);
4884 epilog_stmt = gimple_build_assign (new_idx_val,
4885 MAX_EXPR, idx_val,
4886 old_idx_val);
4887 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4889 new_val = make_ssa_name (data_eltype);
4890 epilog_stmt = gimple_build_assign (new_val,
4891 COND_EXPR,
4892 build2 (GT_EXPR,
4893 boolean_type_node,
4894 idx_val,
4895 old_idx_val),
4896 val, old_val);
4897 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4898 idx_val = new_idx_val;
4899 val = new_val;
4902 /* Convert the reduced value back to the result type and set as the
4903 result. */
4904 gimple_seq stmts = NULL;
4905 val = gimple_convert (&stmts, scalar_type, val);
4906 gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
4907 scalar_results.safe_push (val);
4910 /* 2.3 Create the reduction code, using one of the three schemes described
4911 above. In SLP we simply need to extract all the elements from the
4912 vector (without reducing them), so we use scalar shifts. */
4913 else if (reduc_code != ERROR_MARK && !slp_reduc)
4915 tree tmp;
4916 tree vec_elem_type;
4918 /* Case 1: Create:
4919 v_out2 = reduc_expr <v_out1> */
4921 if (dump_enabled_p ())
4922 dump_printf_loc (MSG_NOTE, vect_location,
4923 "Reduce using direct vector reduction.\n");
4925 vec_elem_type = TREE_TYPE (TREE_TYPE (new_phi_result));
4926 if (!useless_type_conversion_p (scalar_type, vec_elem_type))
4928 tree tmp_dest =
4929 vect_create_destination_var (scalar_dest, vec_elem_type);
4930 tmp = build1 (reduc_code, vec_elem_type, new_phi_result);
4931 epilog_stmt = gimple_build_assign (tmp_dest, tmp);
4932 new_temp = make_ssa_name (tmp_dest, epilog_stmt);
4933 gimple_assign_set_lhs (epilog_stmt, new_temp);
4934 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4936 tmp = build1 (NOP_EXPR, scalar_type, new_temp);
4938 else
4939 tmp = build1 (reduc_code, scalar_type, new_phi_result);
4941 epilog_stmt = gimple_build_assign (new_scalar_dest, tmp);
4942 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4943 gimple_assign_set_lhs (epilog_stmt, new_temp);
4944 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4946 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
4947 == INTEGER_INDUC_COND_REDUCTION)
4949 /* Earlier we set the initial value to be zero. Check the result
4950 and if it is zero then replace with the original initial
4951 value. */
4952 tree zero = build_zero_cst (scalar_type);
4953 tree zcompare = build2 (EQ_EXPR, boolean_type_node, new_temp, zero);
4955 tmp = make_ssa_name (new_scalar_dest);
4956 epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
4957 initial_def, new_temp);
4958 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4959 new_temp = tmp;
4962 scalar_results.safe_push (new_temp);
4964 else
4966 bool reduce_with_shift = have_whole_vector_shift (mode);
4967 int element_bitsize = tree_to_uhwi (bitsize);
4968 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
4969 tree vec_temp;
4971 /* COND reductions all do the final reduction with MAX_EXPR. */
4972 if (code == COND_EXPR)
4973 code = MAX_EXPR;
4975 /* Regardless of whether we have a whole vector shift, if we're
4976 emulating the operation via tree-vect-generic, we don't want
4977 to use it. Only the first round of the reduction is likely
4978 to still be profitable via emulation. */
4979 /* ??? It might be better to emit a reduction tree code here, so that
4980 tree-vect-generic can expand the first round via bit tricks. */
4981 if (!VECTOR_MODE_P (mode))
4982 reduce_with_shift = false;
4983 else
4985 optab optab = optab_for_tree_code (code, vectype, optab_default);
4986 if (optab_handler (optab, mode) == CODE_FOR_nothing)
4987 reduce_with_shift = false;
4990 if (reduce_with_shift && !slp_reduc)
4992 int nelements = vec_size_in_bits / element_bitsize;
4993 unsigned char *sel = XALLOCAVEC (unsigned char, nelements);
4995 int elt_offset;
4997 tree zero_vec = build_zero_cst (vectype);
4998 /* Case 2: Create:
4999 for (offset = nelements/2; offset >= 1; offset/=2)
5001 Create: va' = vec_shift <va, offset>
5002 Create: va = vop <va, va'>
5003 } */
5005 tree rhs;
5007 if (dump_enabled_p ())
5008 dump_printf_loc (MSG_NOTE, vect_location,
5009 "Reduce using vector shifts\n");
5011 vec_dest = vect_create_destination_var (scalar_dest, vectype);
5012 new_temp = new_phi_result;
5013 for (elt_offset = nelements / 2;
5014 elt_offset >= 1;
5015 elt_offset /= 2)
5017 calc_vec_perm_mask_for_shift (mode, elt_offset, sel);
5018 tree mask = vect_gen_perm_mask_any (vectype, sel);
5019 epilog_stmt = gimple_build_assign (vec_dest, VEC_PERM_EXPR,
5020 new_temp, zero_vec, mask);
5021 new_name = make_ssa_name (vec_dest, epilog_stmt);
5022 gimple_assign_set_lhs (epilog_stmt, new_name);
5023 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5025 epilog_stmt = gimple_build_assign (vec_dest, code, new_name,
5026 new_temp);
5027 new_temp = make_ssa_name (vec_dest, epilog_stmt);
5028 gimple_assign_set_lhs (epilog_stmt, new_temp);
5029 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5032 /* 2.4 Extract the final scalar result. Create:
5033 s_out3 = extract_field <v_out2, bitpos> */
5035 if (dump_enabled_p ())
5036 dump_printf_loc (MSG_NOTE, vect_location,
5037 "extract scalar result\n");
5039 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp,
5040 bitsize, bitsize_zero_node);
5041 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
5042 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
5043 gimple_assign_set_lhs (epilog_stmt, new_temp);
5044 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5045 scalar_results.safe_push (new_temp);
5047 else
5049 /* Case 3: Create:
5050 s = extract_field <v_out2, 0>
5051 for (offset = element_size;
5052 offset < vector_size;
5053 offset += element_size;)
5055 Create: s' = extract_field <v_out2, offset>
5056 Create: s = op <s, s'> // For non SLP cases
5057 } */
5059 if (dump_enabled_p ())
5060 dump_printf_loc (MSG_NOTE, vect_location,
5061 "Reduce using scalar code.\n");
5063 vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
5064 FOR_EACH_VEC_ELT (new_phis, i, new_phi)
5066 int bit_offset;
5067 if (gimple_code (new_phi) == GIMPLE_PHI)
5068 vec_temp = PHI_RESULT (new_phi);
5069 else
5070 vec_temp = gimple_assign_lhs (new_phi);
5071 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
5072 bitsize_zero_node);
5073 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
5074 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
5075 gimple_assign_set_lhs (epilog_stmt, new_temp);
5076 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5078 /* In SLP we don't need to apply reduction operation, so we just
5079 collect s' values in SCALAR_RESULTS. */
5080 if (slp_reduc)
5081 scalar_results.safe_push (new_temp);
5083 for (bit_offset = element_bitsize;
5084 bit_offset < vec_size_in_bits;
5085 bit_offset += element_bitsize)
5087 tree bitpos = bitsize_int (bit_offset);
5088 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
5089 bitsize, bitpos);
5091 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
5092 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
5093 gimple_assign_set_lhs (epilog_stmt, new_name);
5094 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5096 if (slp_reduc)
5098 /* In SLP we don't need to apply reduction operation, so
5099 we just collect s' values in SCALAR_RESULTS. */
5100 new_temp = new_name;
5101 scalar_results.safe_push (new_name);
5103 else
5105 epilog_stmt = gimple_build_assign (new_scalar_dest, code,
5106 new_name, new_temp);
5107 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
5108 gimple_assign_set_lhs (epilog_stmt, new_temp);
5109 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5114 /* The only case where we need to reduce scalar results in SLP, is
5115 unrolling. If the size of SCALAR_RESULTS is greater than
5116 GROUP_SIZE, we reduce them combining elements modulo
5117 GROUP_SIZE. */
5118 if (slp_reduc)
5120 tree res, first_res, new_res;
5121 gimple *new_stmt;
5123 /* Reduce multiple scalar results in case of SLP unrolling. */
5124 for (j = group_size; scalar_results.iterate (j, &res);
5125 j++)
5127 first_res = scalar_results[j % group_size];
5128 new_stmt = gimple_build_assign (new_scalar_dest, code,
5129 first_res, res);
5130 new_res = make_ssa_name (new_scalar_dest, new_stmt);
5131 gimple_assign_set_lhs (new_stmt, new_res);
5132 gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
5133 scalar_results[j % group_size] = new_res;
5136 else
5137 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
5138 scalar_results.safe_push (new_temp);
5141 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5142 == INTEGER_INDUC_COND_REDUCTION)
5144 /* Earlier we set the initial value to be zero. Check the result
5145 and if it is zero then replace with the original initial
5146 value. */
5147 tree zero = build_zero_cst (scalar_type);
5148 tree zcompare = build2 (EQ_EXPR, boolean_type_node, new_temp, zero);
5150 tree tmp = make_ssa_name (new_scalar_dest);
5151 epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
5152 initial_def, new_temp);
5153 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5154 scalar_results[0] = tmp;
5158 vect_finalize_reduction:
5160 if (double_reduc)
5161 loop = loop->inner;
5163 /* 2.5 Adjust the final result by the initial value of the reduction
5164 variable. (When such adjustment is not needed, then
5165 'adjustment_def' is zero). For example, if code is PLUS we create:
5166 new_temp = loop_exit_def + adjustment_def */
5168 if (adjustment_def)
5170 gcc_assert (!slp_reduc);
5171 if (nested_in_vect_loop)
5173 new_phi = new_phis[0];
5174 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
5175 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
5176 new_dest = vect_create_destination_var (scalar_dest, vectype);
5178 else
5180 new_temp = scalar_results[0];
5181 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
5182 expr = build2 (code, scalar_type, new_temp, adjustment_def);
5183 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
5186 epilog_stmt = gimple_build_assign (new_dest, expr);
5187 new_temp = make_ssa_name (new_dest, epilog_stmt);
5188 gimple_assign_set_lhs (epilog_stmt, new_temp);
5189 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5190 if (nested_in_vect_loop)
5192 set_vinfo_for_stmt (epilog_stmt,
5193 new_stmt_vec_info (epilog_stmt, loop_vinfo));
5194 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
5195 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
5197 if (!double_reduc)
5198 scalar_results.quick_push (new_temp);
5199 else
5200 scalar_results[0] = new_temp;
5202 else
5203 scalar_results[0] = new_temp;
5205 new_phis[0] = epilog_stmt;
5208 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
5209 phis with new adjusted scalar results, i.e., replace use <s_out0>
5210 with use <s_out4>.
5212 Transform:
5213 loop_exit:
5214 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
5215 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
5216 v_out2 = reduce <v_out1>
5217 s_out3 = extract_field <v_out2, 0>
5218 s_out4 = adjust_result <s_out3>
5219 use <s_out0>
5220 use <s_out0>
5222 into:
5224 loop_exit:
5225 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
5226 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
5227 v_out2 = reduce <v_out1>
5228 s_out3 = extract_field <v_out2, 0>
5229 s_out4 = adjust_result <s_out3>
5230 use <s_out4>
5231 use <s_out4> */
5234 /* In SLP reduction chain we reduce vector results into one vector if
5235 necessary, hence we set here GROUP_SIZE to 1. SCALAR_DEST is the LHS of
5236 the last stmt in the reduction chain, since we are looking for the loop
5237 exit phi node. */
5238 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
5240 gimple *dest_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1];
5241 /* Handle reduction patterns. */
5242 if (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (dest_stmt)))
5243 dest_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (dest_stmt));
5245 scalar_dest = gimple_assign_lhs (dest_stmt);
5246 group_size = 1;
5249 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
5250 case that GROUP_SIZE is greater than vectorization factor). Therefore, we
5251 need to match SCALAR_RESULTS with corresponding statements. The first
5252 (GROUP_SIZE / number of new vector stmts) scalar results correspond to
5253 the first vector stmt, etc.
5254 (RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
5255 if (group_size > new_phis.length ())
5257 ratio = group_size / new_phis.length ();
5258 gcc_assert (!(group_size % new_phis.length ()));
5260 else
5261 ratio = 1;
5263 for (k = 0; k < group_size; k++)
5265 if (k % ratio == 0)
5267 epilog_stmt = new_phis[k / ratio];
5268 reduction_phi = reduction_phis[k / ratio];
5269 if (double_reduc)
5270 inner_phi = inner_phis[k / ratio];
5273 if (slp_reduc)
5275 gimple *current_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[k];
5277 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
5278 /* SLP statements can't participate in patterns. */
5279 gcc_assert (!orig_stmt);
5280 scalar_dest = gimple_assign_lhs (current_stmt);
5283 phis.create (3);
5284 /* Find the loop-closed-use at the loop exit of the original scalar
5285 result. (The reduction result is expected to have two immediate uses -
5286 one at the latch block, and one at the loop exit). */
5287 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
5288 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p)))
5289 && !is_gimple_debug (USE_STMT (use_p)))
5290 phis.safe_push (USE_STMT (use_p));
5292 /* While we expect to have found an exit_phi because of loop-closed-ssa
5293 form we can end up without one if the scalar cycle is dead. */
5295 FOR_EACH_VEC_ELT (phis, i, exit_phi)
5297 if (outer_loop)
5299 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
5300 gphi *vect_phi;
5302 /* FORNOW. Currently not supporting the case that an inner-loop
5303 reduction is not used in the outer-loop (but only outside the
5304 outer-loop), unless it is double reduction. */
5305 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
5306 && !STMT_VINFO_LIVE_P (exit_phi_vinfo))
5307 || double_reduc);
5309 if (double_reduc)
5310 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = inner_phi;
5311 else
5312 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
5313 if (!double_reduc
5314 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
5315 != vect_double_reduction_def)
5316 continue;
5318 /* Handle double reduction:
5320 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
5321 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
5322 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
5323 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
5325 At that point the regular reduction (stmt2 and stmt3) is
5326 already vectorized, as well as the exit phi node, stmt4.
5327 Here we vectorize the phi node of double reduction, stmt1, and
5328 update all relevant statements. */
5330 /* Go through all the uses of s2 to find double reduction phi
5331 node, i.e., stmt1 above. */
5332 orig_name = PHI_RESULT (exit_phi);
5333 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
5335 stmt_vec_info use_stmt_vinfo;
5336 stmt_vec_info new_phi_vinfo;
5337 tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
5338 basic_block bb = gimple_bb (use_stmt);
5339 gimple *use;
5341 /* Check that USE_STMT is really double reduction phi
5342 node. */
5343 if (gimple_code (use_stmt) != GIMPLE_PHI
5344 || gimple_phi_num_args (use_stmt) != 2
5345 || bb->loop_father != outer_loop)
5346 continue;
5347 use_stmt_vinfo = vinfo_for_stmt (use_stmt);
5348 if (!use_stmt_vinfo
5349 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
5350 != vect_double_reduction_def)
5351 continue;
5353 /* Create vector phi node for double reduction:
5354 vs1 = phi <vs0, vs2>
5355 vs1 was created previously in this function by a call to
5356 vect_get_vec_def_for_operand and is stored in
5357 vec_initial_def;
5358 vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
5359 vs0 is created here. */
5361 /* Create vector phi node. */
5362 vect_phi = create_phi_node (vec_initial_def, bb);
5363 new_phi_vinfo = new_stmt_vec_info (vect_phi,
5364 loop_vec_info_for_loop (outer_loop));
5365 set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
5367 /* Create vs0 - initial def of the double reduction phi. */
5368 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
5369 loop_preheader_edge (outer_loop));
5370 init_def = get_initial_def_for_reduction (stmt,
5371 preheader_arg, NULL);
5372 vect_phi_init = vect_init_vector (use_stmt, init_def,
5373 vectype, NULL);
5375 /* Update phi node arguments with vs0 and vs2. */
5376 add_phi_arg (vect_phi, vect_phi_init,
5377 loop_preheader_edge (outer_loop),
5378 UNKNOWN_LOCATION);
5379 add_phi_arg (vect_phi, PHI_RESULT (inner_phi),
5380 loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
5381 if (dump_enabled_p ())
5383 dump_printf_loc (MSG_NOTE, vect_location,
5384 "created double reduction phi node: ");
5385 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vect_phi, 0);
5388 vect_phi_res = PHI_RESULT (vect_phi);
5390 /* Replace the use, i.e., set the correct vs1 in the regular
5391 reduction phi node. FORNOW, NCOPIES is always 1, so the
5392 loop is redundant. */
5393 use = reduction_phi;
5394 for (j = 0; j < ncopies; j++)
5396 edge pr_edge = loop_preheader_edge (loop);
5397 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
5398 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
5404 phis.release ();
5405 if (nested_in_vect_loop)
5407 if (double_reduc)
5408 loop = outer_loop;
5409 else
5410 continue;
5413 phis.create (3);
5414 /* Find the loop-closed-use at the loop exit of the original scalar
5415 result. (The reduction result is expected to have two immediate uses,
5416 one at the latch block, and one at the loop exit). For double
5417 reductions we are looking for exit phis of the outer loop. */
5418 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
5420 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
5422 if (!is_gimple_debug (USE_STMT (use_p)))
5423 phis.safe_push (USE_STMT (use_p));
5425 else
5427 if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
5429 tree phi_res = PHI_RESULT (USE_STMT (use_p));
5431 FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
5433 if (!flow_bb_inside_loop_p (loop,
5434 gimple_bb (USE_STMT (phi_use_p)))
5435 && !is_gimple_debug (USE_STMT (phi_use_p)))
5436 phis.safe_push (USE_STMT (phi_use_p));
5442 FOR_EACH_VEC_ELT (phis, i, exit_phi)
5444 /* Replace the uses: */
5445 orig_name = PHI_RESULT (exit_phi);
5446 scalar_result = scalar_results[k];
5447 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
5448 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
5449 SET_USE (use_p, scalar_result);
5452 phis.release ();
5457 /* Function is_nonwrapping_integer_induction.
5459 Check if STMT (which is part of loop LOOP) both increments and
5460 does not cause overflow. */
5462 static bool
5463 is_nonwrapping_integer_induction (gimple *stmt, struct loop *loop)
5465 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
5466 tree base = STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo);
5467 tree step = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo);
5468 tree lhs_type = TREE_TYPE (gimple_phi_result (stmt));
5469 widest_int ni, max_loop_value, lhs_max;
5470 bool overflow = false;
5472 /* Make sure the loop is integer based. */
5473 if (TREE_CODE (base) != INTEGER_CST
5474 || TREE_CODE (step) != INTEGER_CST)
5475 return false;
5477 /* Check that the induction increments. */
5478 if (tree_int_cst_sgn (step) == -1)
5479 return false;
5481 /* Check that the max size of the loop will not wrap. */
5483 if (TYPE_OVERFLOW_UNDEFINED (lhs_type))
5484 return true;
5486 if (! max_stmt_executions (loop, &ni))
5487 return false;
5489 max_loop_value = wi::mul (wi::to_widest (step), ni, TYPE_SIGN (lhs_type),
5490 &overflow);
5491 if (overflow)
5492 return false;
5494 max_loop_value = wi::add (wi::to_widest (base), max_loop_value,
5495 TYPE_SIGN (lhs_type), &overflow);
5496 if (overflow)
5497 return false;
5499 return (wi::min_precision (max_loop_value, TYPE_SIGN (lhs_type))
5500 <= TYPE_PRECISION (lhs_type));
5503 /* Function vectorizable_reduction.
5505 Check if STMT performs a reduction operation that can be vectorized.
5506 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
5507 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
5508 Return FALSE if not a vectorizable STMT, TRUE otherwise.
5510 This function also handles reduction idioms (patterns) that have been
5511 recognized in advance during vect_pattern_recog. In this case, STMT may be
5512 of this form:
5513 X = pattern_expr (arg0, arg1, ..., X)
5514 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
5515 sequence that had been detected and replaced by the pattern-stmt (STMT).
5517 This function also handles reduction of condition expressions, for example:
5518 for (int i = 0; i < N; i++)
5519 if (a[i] < value)
5520 last = a[i];
5521 This is handled by vectorising the loop and creating an additional vector
5522 containing the loop indexes for which "a[i] < value" was true. In the
5523 function epilogue this is reduced to a single max value and then used to
5524 index into the vector of results.
5526 In some cases of reduction patterns, the type of the reduction variable X is
5527 different than the type of the other arguments of STMT.
5528 In such cases, the vectype that is used when transforming STMT into a vector
5529 stmt is different than the vectype that is used to determine the
5530 vectorization factor, because it consists of a different number of elements
5531 than the actual number of elements that are being operated upon in parallel.
5533 For example, consider an accumulation of shorts into an int accumulator.
5534 On some targets it's possible to vectorize this pattern operating on 8
5535 shorts at a time (hence, the vectype for purposes of determining the
5536 vectorization factor should be V8HI); on the other hand, the vectype that
5537 is used to create the vector form is actually V4SI (the type of the result).
5539 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
5540 indicates what is the actual level of parallelism (V8HI in the example), so
5541 that the right vectorization factor would be derived. This vectype
5542 corresponds to the type of arguments to the reduction stmt, and should *NOT*
5543 be used to create the vectorized stmt. The right vectype for the vectorized
5544 stmt is obtained from the type of the result X:
5545 get_vectype_for_scalar_type (TREE_TYPE (X))
5547 This means that, contrary to "regular" reductions (or "regular" stmts in
5548 general), the following equation:
5549 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
5550 does *NOT* necessarily hold for reduction patterns. */
5552 bool
5553 vectorizable_reduction (gimple *stmt, gimple_stmt_iterator *gsi,
5554 gimple **vec_stmt, slp_tree slp_node)
5556 tree vec_dest;
5557 tree scalar_dest;
5558 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5559 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
5560 tree vectype_in = NULL_TREE;
5561 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5562 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5563 enum tree_code code, orig_code, epilog_reduc_code;
5564 machine_mode vec_mode;
5565 int op_type;
5566 optab optab, reduc_optab;
5567 tree new_temp = NULL_TREE;
5568 gimple *def_stmt;
5569 enum vect_def_type dt, cond_reduc_dt = vect_unknown_def_type;
5570 gphi *new_phi = NULL;
5571 tree scalar_type;
5572 bool is_simple_use;
5573 gimple *orig_stmt;
5574 stmt_vec_info orig_stmt_info = NULL;
5575 int i;
5576 int ncopies;
5577 int epilog_copies;
5578 stmt_vec_info prev_stmt_info, prev_phi_info;
5579 bool single_defuse_cycle = false;
5580 gimple *new_stmt = NULL;
5581 int j;
5582 tree ops[3];
5583 enum vect_def_type dts[3];
5584 bool nested_cycle = false, found_nested_cycle_def = false;
5585 bool double_reduc = false;
5586 basic_block def_bb;
5587 struct loop * def_stmt_loop, *outer_loop = NULL;
5588 tree def_arg;
5589 gimple *def_arg_stmt;
5590 auto_vec<tree> vec_oprnds0;
5591 auto_vec<tree> vec_oprnds1;
5592 auto_vec<tree> vec_oprnds2;
5593 auto_vec<tree> vect_defs;
5594 auto_vec<gimple *> phis;
5595 int vec_num;
5596 tree def0, tem;
5597 bool first_p = true;
5598 tree cr_index_scalar_type = NULL_TREE, cr_index_vector_type = NULL_TREE;
5599 tree cond_reduc_val = NULL_TREE;
5601 /* Make sure it was already recognized as a reduction computation. */
5602 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) != vect_reduction_def
5603 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) != vect_nested_cycle)
5604 return false;
5606 if (nested_in_vect_loop_p (loop, stmt))
5608 outer_loop = loop;
5609 loop = loop->inner;
5610 nested_cycle = true;
5613 /* In case of reduction chain we switch to the first stmt in the chain, but
5614 we don't update STMT_INFO, since only the last stmt is marked as reduction
5615 and has reduction properties. */
5616 if (GROUP_FIRST_ELEMENT (stmt_info)
5617 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
5619 stmt = GROUP_FIRST_ELEMENT (stmt_info);
5620 first_p = false;
5623 if (gimple_code (stmt) == GIMPLE_PHI)
5625 /* Analysis is fully done on the reduction stmt invocation. */
5626 if (! vec_stmt)
5628 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
5629 return true;
5632 gimple *reduc_stmt = STMT_VINFO_REDUC_DEF (stmt_info);
5633 if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (reduc_stmt)))
5634 reduc_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (reduc_stmt));
5636 gcc_assert (is_gimple_assign (reduc_stmt));
5637 for (unsigned k = 1; k < gimple_num_ops (reduc_stmt); ++k)
5639 tree op = gimple_op (reduc_stmt, k);
5640 if (op == gimple_phi_result (stmt))
5641 continue;
5642 if (k == 1
5643 && gimple_assign_rhs_code (reduc_stmt) == COND_EXPR)
5644 continue;
5645 vectype_in = get_vectype_for_scalar_type (TREE_TYPE (op));
5646 break;
5648 gcc_assert (vectype_in);
5650 if (slp_node)
5651 ncopies = 1;
5652 else
5653 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5654 / TYPE_VECTOR_SUBPARTS (vectype_in));
5656 use_operand_p use_p;
5657 gimple *use_stmt;
5658 if (ncopies > 1
5659 && (STMT_VINFO_RELEVANT (vinfo_for_stmt (reduc_stmt))
5660 <= vect_used_only_live)
5661 && single_imm_use (gimple_phi_result (stmt), &use_p, &use_stmt)
5662 && (use_stmt == reduc_stmt
5663 || (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use_stmt))
5664 == reduc_stmt)))
5665 single_defuse_cycle = true;
5667 /* Create the destination vector */
5668 scalar_dest = gimple_assign_lhs (reduc_stmt);
5669 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
5671 if (slp_node)
5672 /* The size vect_schedule_slp_instance computes is off for us. */
5673 vec_num = ((LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5674 * SLP_TREE_SCALAR_STMTS (slp_node).length ())
5675 / TYPE_VECTOR_SUBPARTS (vectype_in));
5676 else
5677 vec_num = 1;
5679 /* Generate the reduction PHIs upfront. */
5680 prev_phi_info = NULL;
5681 for (j = 0; j < ncopies; j++)
5683 if (j == 0 || !single_defuse_cycle)
5685 for (i = 0; i < vec_num; i++)
5687 /* Create the reduction-phi that defines the reduction
5688 operand. */
5689 new_phi = create_phi_node (vec_dest, loop->header);
5690 set_vinfo_for_stmt (new_phi,
5691 new_stmt_vec_info (new_phi, loop_vinfo));
5693 if (slp_node)
5694 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_phi);
5695 else
5697 if (j == 0)
5698 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_phi;
5699 else
5700 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
5701 prev_phi_info = vinfo_for_stmt (new_phi);
5707 return true;
5710 /* 1. Is vectorizable reduction? */
5711 /* Not supportable if the reduction variable is used in the loop, unless
5712 it's a reduction chain. */
5713 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
5714 && !GROUP_FIRST_ELEMENT (stmt_info))
5715 return false;
5717 /* Reductions that are not used even in an enclosing outer-loop,
5718 are expected to be "live" (used out of the loop). */
5719 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
5720 && !STMT_VINFO_LIVE_P (stmt_info))
5721 return false;
5723 /* 2. Has this been recognized as a reduction pattern?
5725 Check if STMT represents a pattern that has been recognized
5726 in earlier analysis stages. For stmts that represent a pattern,
5727 the STMT_VINFO_RELATED_STMT field records the last stmt in
5728 the original sequence that constitutes the pattern. */
5730 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
5731 if (orig_stmt)
5733 orig_stmt_info = vinfo_for_stmt (orig_stmt);
5734 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
5735 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
5738 /* 3. Check the operands of the operation. The first operands are defined
5739 inside the loop body. The last operand is the reduction variable,
5740 which is defined by the loop-header-phi. */
5742 gcc_assert (is_gimple_assign (stmt));
5744 /* Flatten RHS. */
5745 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
5747 case GIMPLE_BINARY_RHS:
5748 code = gimple_assign_rhs_code (stmt);
5749 op_type = TREE_CODE_LENGTH (code);
5750 gcc_assert (op_type == binary_op);
5751 ops[0] = gimple_assign_rhs1 (stmt);
5752 ops[1] = gimple_assign_rhs2 (stmt);
5753 break;
5755 case GIMPLE_TERNARY_RHS:
5756 code = gimple_assign_rhs_code (stmt);
5757 op_type = TREE_CODE_LENGTH (code);
5758 gcc_assert (op_type == ternary_op);
5759 ops[0] = gimple_assign_rhs1 (stmt);
5760 ops[1] = gimple_assign_rhs2 (stmt);
5761 ops[2] = gimple_assign_rhs3 (stmt);
5762 break;
5764 case GIMPLE_UNARY_RHS:
5765 return false;
5767 default:
5768 gcc_unreachable ();
5771 if (code == COND_EXPR && slp_node)
5772 return false;
5774 scalar_dest = gimple_assign_lhs (stmt);
5775 scalar_type = TREE_TYPE (scalar_dest);
5776 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
5777 && !SCALAR_FLOAT_TYPE_P (scalar_type))
5778 return false;
5780 /* Do not try to vectorize bit-precision reductions. */
5781 if ((TYPE_PRECISION (scalar_type)
5782 != GET_MODE_PRECISION (TYPE_MODE (scalar_type))))
5783 return false;
5785 /* All uses but the last are expected to be defined in the loop.
5786 The last use is the reduction variable. In case of nested cycle this
5787 assumption is not true: we use reduc_index to record the index of the
5788 reduction variable. */
5789 gimple *reduc_def_stmt = NULL;
5790 int reduc_index = -1;
5791 for (i = 0; i < op_type; i++)
5793 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
5794 if (i == 0 && code == COND_EXPR)
5795 continue;
5797 is_simple_use = vect_is_simple_use (ops[i], loop_vinfo,
5798 &def_stmt, &dts[i], &tem);
5799 dt = dts[i];
5800 gcc_assert (is_simple_use);
5801 if (dt == vect_reduction_def)
5803 reduc_def_stmt = def_stmt;
5804 reduc_index = i;
5805 continue;
5807 else
5809 if (!vectype_in)
5810 vectype_in = tem;
5813 if (dt != vect_internal_def
5814 && dt != vect_external_def
5815 && dt != vect_constant_def
5816 && dt != vect_induction_def
5817 && !(dt == vect_nested_cycle && nested_cycle))
5818 return false;
5820 if (dt == vect_nested_cycle)
5822 found_nested_cycle_def = true;
5823 reduc_def_stmt = def_stmt;
5824 reduc_index = i;
5827 if (i == 1 && code == COND_EXPR)
5829 /* Record how value of COND_EXPR is defined. */
5830 if (dt == vect_constant_def)
5832 cond_reduc_dt = dt;
5833 cond_reduc_val = ops[i];
5835 if (dt == vect_induction_def && def_stmt != NULL
5836 && is_nonwrapping_integer_induction (def_stmt, loop))
5837 cond_reduc_dt = dt;
5841 if (!vectype_in)
5842 vectype_in = vectype_out;
5844 /* When vectorizing a reduction chain w/o SLP the reduction PHI is not
5845 directy used in stmt. */
5846 if (reduc_index == -1)
5848 if (orig_stmt)
5849 reduc_def_stmt = STMT_VINFO_REDUC_DEF (orig_stmt_info);
5850 else
5851 reduc_def_stmt = STMT_VINFO_REDUC_DEF (stmt_info);
5854 if (! reduc_def_stmt || gimple_code (reduc_def_stmt) != GIMPLE_PHI)
5855 return false;
5857 if (!(reduc_index == -1
5858 || dts[reduc_index] == vect_reduction_def
5859 || dts[reduc_index] == vect_nested_cycle
5860 || ((dts[reduc_index] == vect_internal_def
5861 || dts[reduc_index] == vect_external_def
5862 || dts[reduc_index] == vect_constant_def
5863 || dts[reduc_index] == vect_induction_def)
5864 && nested_cycle && found_nested_cycle_def)))
5866 /* For pattern recognized stmts, orig_stmt might be a reduction,
5867 but some helper statements for the pattern might not, or
5868 might be COND_EXPRs with reduction uses in the condition. */
5869 gcc_assert (orig_stmt);
5870 return false;
5873 stmt_vec_info reduc_def_info = vinfo_for_stmt (reduc_def_stmt);
5874 enum vect_reduction_type v_reduc_type
5875 = STMT_VINFO_REDUC_TYPE (reduc_def_info);
5876 gimple *tmp = STMT_VINFO_REDUC_DEF (reduc_def_info);
5878 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = v_reduc_type;
5879 /* If we have a condition reduction, see if we can simplify it further. */
5880 if (v_reduc_type == COND_REDUCTION)
5882 if (cond_reduc_dt == vect_induction_def)
5884 if (dump_enabled_p ())
5885 dump_printf_loc (MSG_NOTE, vect_location,
5886 "condition expression based on "
5887 "integer induction.\n");
5888 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5889 = INTEGER_INDUC_COND_REDUCTION;
5892 /* Loop peeling modifies initial value of reduction PHI, which
5893 makes the reduction stmt to be transformed different to the
5894 original stmt analyzed. We need to record reduction code for
5895 CONST_COND_REDUCTION type reduction at analyzing stage, thus
5896 it can be used directly at transform stage. */
5897 if (STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info) == MAX_EXPR
5898 || STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info) == MIN_EXPR)
5900 /* Also set the reduction type to CONST_COND_REDUCTION. */
5901 gcc_assert (cond_reduc_dt == vect_constant_def);
5902 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = CONST_COND_REDUCTION;
5904 else if (cond_reduc_dt == vect_constant_def)
5906 enum vect_def_type cond_initial_dt;
5907 gimple *def_stmt = SSA_NAME_DEF_STMT (ops[reduc_index]);
5908 tree cond_initial_val
5909 = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
5911 gcc_assert (cond_reduc_val != NULL_TREE);
5912 vect_is_simple_use (cond_initial_val, loop_vinfo,
5913 &def_stmt, &cond_initial_dt);
5914 if (cond_initial_dt == vect_constant_def
5915 && types_compatible_p (TREE_TYPE (cond_initial_val),
5916 TREE_TYPE (cond_reduc_val)))
5918 tree e = fold_binary (LE_EXPR, boolean_type_node,
5919 cond_initial_val, cond_reduc_val);
5920 if (e && (integer_onep (e) || integer_zerop (e)))
5922 if (dump_enabled_p ())
5923 dump_printf_loc (MSG_NOTE, vect_location,
5924 "condition expression based on "
5925 "compile time constant.\n");
5926 /* Record reduction code at analysis stage. */
5927 STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info)
5928 = integer_onep (e) ? MAX_EXPR : MIN_EXPR;
5929 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5930 = CONST_COND_REDUCTION;
5936 if (orig_stmt)
5937 gcc_assert (tmp == orig_stmt
5938 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == orig_stmt);
5939 else
5940 /* We changed STMT to be the first stmt in reduction chain, hence we
5941 check that in this case the first element in the chain is STMT. */
5942 gcc_assert (stmt == tmp
5943 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
5945 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
5946 return false;
5948 if (slp_node)
5949 ncopies = 1;
5950 else
5951 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5952 / TYPE_VECTOR_SUBPARTS (vectype_in));
5954 gcc_assert (ncopies >= 1);
5956 vec_mode = TYPE_MODE (vectype_in);
5958 if (code == COND_EXPR)
5960 /* Only call during the analysis stage, otherwise we'll lose
5961 STMT_VINFO_TYPE. */
5962 if (!vec_stmt && !vectorizable_condition (stmt, gsi, NULL,
5963 ops[reduc_index], 0, NULL))
5965 if (dump_enabled_p ())
5966 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5967 "unsupported condition in reduction\n");
5968 return false;
5971 else
5973 /* 4. Supportable by target? */
5975 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR
5976 || code == LROTATE_EXPR || code == RROTATE_EXPR)
5978 /* Shifts and rotates are only supported by vectorizable_shifts,
5979 not vectorizable_reduction. */
5980 if (dump_enabled_p ())
5981 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5982 "unsupported shift or rotation.\n");
5983 return false;
5986 /* 4.1. check support for the operation in the loop */
5987 optab = optab_for_tree_code (code, vectype_in, optab_default);
5988 if (!optab)
5990 if (dump_enabled_p ())
5991 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5992 "no optab.\n");
5994 return false;
5997 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
5999 if (dump_enabled_p ())
6000 dump_printf (MSG_NOTE, "op not supported by target.\n");
6002 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
6003 || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
6004 < vect_min_worthwhile_factor (code))
6005 return false;
6007 if (dump_enabled_p ())
6008 dump_printf (MSG_NOTE, "proceeding using word mode.\n");
6011 /* Worthwhile without SIMD support? */
6012 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
6013 && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
6014 < vect_min_worthwhile_factor (code))
6016 if (dump_enabled_p ())
6017 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6018 "not worthwhile without SIMD support.\n");
6020 return false;
6024 /* 4.2. Check support for the epilog operation.
6026 If STMT represents a reduction pattern, then the type of the
6027 reduction variable may be different than the type of the rest
6028 of the arguments. For example, consider the case of accumulation
6029 of shorts into an int accumulator; The original code:
6030 S1: int_a = (int) short_a;
6031 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
6033 was replaced with:
6034 STMT: int_acc = widen_sum <short_a, int_acc>
6036 This means that:
6037 1. The tree-code that is used to create the vector operation in the
6038 epilog code (that reduces the partial results) is not the
6039 tree-code of STMT, but is rather the tree-code of the original
6040 stmt from the pattern that STMT is replacing. I.e, in the example
6041 above we want to use 'widen_sum' in the loop, but 'plus' in the
6042 epilog.
6043 2. The type (mode) we use to check available target support
6044 for the vector operation to be created in the *epilog*, is
6045 determined by the type of the reduction variable (in the example
6046 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
6047 However the type (mode) we use to check available target support
6048 for the vector operation to be created *inside the loop*, is
6049 determined by the type of the other arguments to STMT (in the
6050 example we'd check this: optab_handler (widen_sum_optab,
6051 vect_short_mode)).
6053 This is contrary to "regular" reductions, in which the types of all
6054 the arguments are the same as the type of the reduction variable.
6055 For "regular" reductions we can therefore use the same vector type
6056 (and also the same tree-code) when generating the epilog code and
6057 when generating the code inside the loop. */
6059 if (orig_stmt)
6061 /* This is a reduction pattern: get the vectype from the type of the
6062 reduction variable, and get the tree-code from orig_stmt. */
6063 gcc_assert (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
6064 == TREE_CODE_REDUCTION);
6065 orig_code = gimple_assign_rhs_code (orig_stmt);
6066 gcc_assert (vectype_out);
6067 vec_mode = TYPE_MODE (vectype_out);
6069 else
6071 /* Regular reduction: use the same vectype and tree-code as used for
6072 the vector code inside the loop can be used for the epilog code. */
6073 orig_code = code;
6075 if (code == MINUS_EXPR)
6076 orig_code = PLUS_EXPR;
6078 /* For simple condition reductions, replace with the actual expression
6079 we want to base our reduction around. */
6080 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == CONST_COND_REDUCTION)
6082 orig_code = STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info);
6083 gcc_assert (orig_code == MAX_EXPR || orig_code == MIN_EXPR);
6085 else if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
6086 == INTEGER_INDUC_COND_REDUCTION)
6087 orig_code = MAX_EXPR;
6090 if (nested_cycle)
6092 def_bb = gimple_bb (reduc_def_stmt);
6093 def_stmt_loop = def_bb->loop_father;
6094 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
6095 loop_preheader_edge (def_stmt_loop));
6096 if (TREE_CODE (def_arg) == SSA_NAME
6097 && (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
6098 && gimple_code (def_arg_stmt) == GIMPLE_PHI
6099 && flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
6100 && vinfo_for_stmt (def_arg_stmt)
6101 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
6102 == vect_double_reduction_def)
6103 double_reduc = true;
6106 epilog_reduc_code = ERROR_MARK;
6108 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) != COND_REDUCTION)
6110 if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
6112 reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
6113 optab_default);
6114 if (!reduc_optab)
6116 if (dump_enabled_p ())
6117 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6118 "no optab for reduction.\n");
6120 epilog_reduc_code = ERROR_MARK;
6122 else if (optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
6124 if (dump_enabled_p ())
6125 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6126 "reduc op not supported by target.\n");
6128 epilog_reduc_code = ERROR_MARK;
6131 else
6133 if (!nested_cycle || double_reduc)
6135 if (dump_enabled_p ())
6136 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6137 "no reduc code for scalar code.\n");
6139 return false;
6143 else
6145 int scalar_precision = GET_MODE_PRECISION (TYPE_MODE (scalar_type));
6146 cr_index_scalar_type = make_unsigned_type (scalar_precision);
6147 cr_index_vector_type = build_vector_type
6148 (cr_index_scalar_type, TYPE_VECTOR_SUBPARTS (vectype_out));
6150 optab = optab_for_tree_code (REDUC_MAX_EXPR, cr_index_vector_type,
6151 optab_default);
6152 if (optab_handler (optab, TYPE_MODE (cr_index_vector_type))
6153 != CODE_FOR_nothing)
6154 epilog_reduc_code = REDUC_MAX_EXPR;
6157 if ((double_reduc
6158 || STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) != TREE_CODE_REDUCTION)
6159 && ncopies > 1)
6161 if (dump_enabled_p ())
6162 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6163 "multiple types in double reduction or condition "
6164 "reduction.\n");
6165 return false;
6168 /* In case of widenning multiplication by a constant, we update the type
6169 of the constant to be the type of the other operand. We check that the
6170 constant fits the type in the pattern recognition pass. */
6171 if (code == DOT_PROD_EXPR
6172 && !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
6174 if (TREE_CODE (ops[0]) == INTEGER_CST)
6175 ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
6176 else if (TREE_CODE (ops[1]) == INTEGER_CST)
6177 ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
6178 else
6180 if (dump_enabled_p ())
6181 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6182 "invalid types in dot-prod\n");
6184 return false;
6188 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
6190 widest_int ni;
6192 if (! max_loop_iterations (loop, &ni))
6194 if (dump_enabled_p ())
6195 dump_printf_loc (MSG_NOTE, vect_location,
6196 "loop count not known, cannot create cond "
6197 "reduction.\n");
6198 return false;
6200 /* Convert backedges to iterations. */
6201 ni += 1;
6203 /* The additional index will be the same type as the condition. Check
6204 that the loop can fit into this less one (because we'll use up the
6205 zero slot for when there are no matches). */
6206 tree max_index = TYPE_MAX_VALUE (cr_index_scalar_type);
6207 if (wi::geu_p (ni, wi::to_widest (max_index)))
6209 if (dump_enabled_p ())
6210 dump_printf_loc (MSG_NOTE, vect_location,
6211 "loop size is greater than data size.\n");
6212 return false;
6216 if (!vec_stmt) /* transformation not required. */
6218 if (first_p)
6219 vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies);
6220 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
6221 return true;
6224 /* Transform. */
6226 if (dump_enabled_p ())
6227 dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.\n");
6229 /* FORNOW: Multiple types are not supported for condition. */
6230 if (code == COND_EXPR)
6231 gcc_assert (ncopies == 1);
6233 /* Create the destination vector */
6234 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
6236 /* In case the vectorization factor (VF) is bigger than the number
6237 of elements that we can fit in a vectype (nunits), we have to generate
6238 more than one vector stmt - i.e - we need to "unroll" the
6239 vector stmt by a factor VF/nunits. For more details see documentation
6240 in vectorizable_operation. */
6242 /* If the reduction is used in an outer loop we need to generate
6243 VF intermediate results, like so (e.g. for ncopies=2):
6244 r0 = phi (init, r0)
6245 r1 = phi (init, r1)
6246 r0 = x0 + r0;
6247 r1 = x1 + r1;
6248 (i.e. we generate VF results in 2 registers).
6249 In this case we have a separate def-use cycle for each copy, and therefore
6250 for each copy we get the vector def for the reduction variable from the
6251 respective phi node created for this copy.
6253 Otherwise (the reduction is unused in the loop nest), we can combine
6254 together intermediate results, like so (e.g. for ncopies=2):
6255 r = phi (init, r)
6256 r = x0 + r;
6257 r = x1 + r;
6258 (i.e. we generate VF/2 results in a single register).
6259 In this case for each copy we get the vector def for the reduction variable
6260 from the vectorized reduction operation generated in the previous iteration.
6262 This only works when we see both the reduction PHI and its only consumer
6263 in vectorizable_reduction and there are no intermediate stmts
6264 participating. */
6265 use_operand_p use_p;
6266 gimple *use_stmt;
6267 if (ncopies > 1
6268 && (STMT_VINFO_RELEVANT (stmt_info) <= vect_used_only_live)
6269 && single_imm_use (gimple_phi_result (reduc_def_stmt), &use_p, &use_stmt)
6270 && (use_stmt == stmt
6271 || STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use_stmt)) == stmt))
6273 single_defuse_cycle = true;
6274 epilog_copies = 1;
6276 else
6277 epilog_copies = ncopies;
6279 prev_stmt_info = NULL;
6280 prev_phi_info = NULL;
6281 if (slp_node)
6282 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
6283 else
6285 vec_num = 1;
6286 vec_oprnds0.create (1);
6287 vec_oprnds1.create (1);
6288 if (op_type == ternary_op)
6289 vec_oprnds2.create (1);
6292 phis.create (vec_num);
6293 vect_defs.create (vec_num);
6294 if (!slp_node)
6295 vect_defs.quick_push (NULL_TREE);
6297 auto_vec<tree> vec_oprnds;
6298 for (j = 0; j < ncopies; j++)
6300 if (j == 0 || !single_defuse_cycle)
6302 for (i = 0; i < vec_num; i++)
6304 /* Get the created reduction-phi that defines the reduction
6305 operand. */
6306 tree reduc_def = gimple_phi_result (reduc_def_stmt);
6307 if (j == 0)
6308 vect_get_vec_defs (reduc_def, NULL, stmt, &vec_oprnds, NULL,
6309 slp_node);
6310 else
6312 dt = vect_reduction_def;
6313 vect_get_vec_defs_for_stmt_copy (&dt,
6314 &vec_oprnds, NULL);
6316 new_phi = as_a <gphi *> (SSA_NAME_DEF_STMT (vec_oprnds[i]));
6317 if (j == 0 || slp_node)
6318 phis.quick_push (new_phi);
6322 if (code == COND_EXPR)
6324 gcc_assert (!slp_node);
6325 vectorizable_condition (stmt, gsi, vec_stmt,
6326 PHI_RESULT (phis[0]),
6327 reduc_index, NULL);
6328 /* Multiple types are not supported for condition. */
6329 break;
6332 /* Handle uses. */
6333 if (j == 0)
6335 if (slp_node)
6337 /* Get vec defs for all the operands except the reduction index,
6338 ensuring the ordering of the ops in the vector is kept. */
6339 auto_vec<tree, 3> slp_ops;
6340 auto_vec<vec<tree>, 3> vec_defs;
6342 slp_ops.quick_push (ops[0]);
6343 slp_ops.quick_push (ops[1]);
6344 if (op_type == ternary_op)
6345 slp_ops.quick_push (ops[2]);
6347 vect_get_slp_defs (slp_ops, slp_node, &vec_defs);
6349 vec_oprnds0.safe_splice (vec_defs[0]);
6350 vec_defs[0].release ();
6351 vec_oprnds1.safe_splice (vec_defs[1]);
6352 vec_defs[1].release ();
6353 if (op_type == ternary_op)
6355 vec_oprnds2.safe_splice (vec_defs[2]);
6356 vec_defs[2].release ();
6359 else
6361 vec_oprnds0.quick_push
6362 (vect_get_vec_def_for_operand (ops[0], stmt));
6363 vec_oprnds1.quick_push
6364 (vect_get_vec_def_for_operand (ops[1], stmt));
6365 if (op_type == ternary_op)
6366 vec_oprnds2.quick_push
6367 (vect_get_vec_def_for_operand (ops[2], stmt));
6370 else
6372 if (!slp_node)
6374 gcc_assert (reduc_index != -1 || ! single_defuse_cycle);
6376 if (single_defuse_cycle && reduc_index == 0)
6377 vec_oprnds0[0] = gimple_assign_lhs (new_stmt);
6378 else
6379 vec_oprnds0[0]
6380 = vect_get_vec_def_for_stmt_copy (dts[0], vec_oprnds0[0]);
6381 if (single_defuse_cycle && reduc_index == 1)
6382 vec_oprnds1[0] = gimple_assign_lhs (new_stmt);
6383 else
6384 vec_oprnds1[0]
6385 = vect_get_vec_def_for_stmt_copy (dts[1], vec_oprnds1[0]);
6386 if (op_type == ternary_op)
6388 if (single_defuse_cycle && reduc_index == 2)
6389 vec_oprnds2[0] = gimple_assign_lhs (new_stmt);
6390 else
6391 vec_oprnds2[0]
6392 = vect_get_vec_def_for_stmt_copy (dts[2], vec_oprnds2[0]);
6397 FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
6399 tree vop[3] = { def0, vec_oprnds1[i], NULL_TREE };
6400 if (op_type == ternary_op)
6401 vop[2] = vec_oprnds2[i];
6403 new_temp = make_ssa_name (vec_dest, new_stmt);
6404 new_stmt = gimple_build_assign (new_temp, code,
6405 vop[0], vop[1], vop[2]);
6406 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6408 if (slp_node)
6410 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
6411 vect_defs.quick_push (new_temp);
6413 else
6414 vect_defs[0] = new_temp;
6417 if (slp_node)
6418 continue;
6420 if (j == 0)
6421 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
6422 else
6423 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
6425 prev_stmt_info = vinfo_for_stmt (new_stmt);
6428 /* Finalize the reduction-phi (set its arguments) and create the
6429 epilog reduction code. */
6430 if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
6431 vect_defs[0] = gimple_assign_lhs (*vec_stmt);
6433 vect_create_epilog_for_reduction (vect_defs, stmt, reduc_def_stmt,
6434 epilog_copies,
6435 epilog_reduc_code, phis, reduc_index,
6436 double_reduc, slp_node);
6438 return true;
6441 /* Function vect_min_worthwhile_factor.
6443 For a loop where we could vectorize the operation indicated by CODE,
6444 return the minimum vectorization factor that makes it worthwhile
6445 to use generic vectors. */
6447 vect_min_worthwhile_factor (enum tree_code code)
6449 switch (code)
6451 case PLUS_EXPR:
6452 case MINUS_EXPR:
6453 case NEGATE_EXPR:
6454 return 4;
6456 case BIT_AND_EXPR:
6457 case BIT_IOR_EXPR:
6458 case BIT_XOR_EXPR:
6459 case BIT_NOT_EXPR:
6460 return 2;
6462 default:
6463 return INT_MAX;
6468 /* Function vectorizable_induction
6470 Check if PHI performs an induction computation that can be vectorized.
6471 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
6472 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
6473 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
6475 bool
6476 vectorizable_induction (gimple *phi,
6477 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
6478 gimple **vec_stmt, slp_tree slp_node)
6480 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
6481 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
6482 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
6483 unsigned ncopies;
6484 bool nested_in_vect_loop = false;
6485 struct loop *iv_loop;
6486 tree vec_def;
6487 edge pe = loop_preheader_edge (loop);
6488 basic_block new_bb;
6489 tree new_vec, vec_init, vec_step, t;
6490 tree new_name;
6491 gimple *new_stmt;
6492 gphi *induction_phi;
6493 tree induc_def, vec_dest;
6494 tree init_expr, step_expr;
6495 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
6496 unsigned i;
6497 tree expr;
6498 gimple_seq stmts;
6499 imm_use_iterator imm_iter;
6500 use_operand_p use_p;
6501 gimple *exit_phi;
6502 edge latch_e;
6503 tree loop_arg;
6504 gimple_stmt_iterator si;
6505 basic_block bb = gimple_bb (phi);
6507 if (gimple_code (phi) != GIMPLE_PHI)
6508 return false;
6510 if (!STMT_VINFO_RELEVANT_P (stmt_info))
6511 return false;
6513 /* Make sure it was recognized as induction computation. */
6514 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
6515 return false;
6517 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
6518 unsigned nunits = TYPE_VECTOR_SUBPARTS (vectype);
6520 if (slp_node)
6521 ncopies = 1;
6522 else
6523 ncopies = vf / nunits;
6524 gcc_assert (ncopies >= 1);
6526 /* FORNOW. These restrictions should be relaxed. */
6527 if (nested_in_vect_loop_p (loop, phi))
6529 imm_use_iterator imm_iter;
6530 use_operand_p use_p;
6531 gimple *exit_phi;
6532 edge latch_e;
6533 tree loop_arg;
6535 if (ncopies > 1)
6537 if (dump_enabled_p ())
6538 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6539 "multiple types in nested loop.\n");
6540 return false;
6543 /* FORNOW: outer loop induction with SLP not supported. */
6544 if (STMT_SLP_TYPE (stmt_info))
6545 return false;
6547 exit_phi = NULL;
6548 latch_e = loop_latch_edge (loop->inner);
6549 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
6550 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
6552 gimple *use_stmt = USE_STMT (use_p);
6553 if (is_gimple_debug (use_stmt))
6554 continue;
6556 if (!flow_bb_inside_loop_p (loop->inner, gimple_bb (use_stmt)))
6558 exit_phi = use_stmt;
6559 break;
6562 if (exit_phi)
6564 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
6565 if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
6566 && !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
6568 if (dump_enabled_p ())
6569 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6570 "inner-loop induction only used outside "
6571 "of the outer vectorized loop.\n");
6572 return false;
6576 nested_in_vect_loop = true;
6577 iv_loop = loop->inner;
6579 else
6580 iv_loop = loop;
6581 gcc_assert (iv_loop == (gimple_bb (phi))->loop_father);
6583 if (!vec_stmt) /* transformation not required. */
6585 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
6586 if (dump_enabled_p ())
6587 dump_printf_loc (MSG_NOTE, vect_location,
6588 "=== vectorizable_induction ===\n");
6589 vect_model_induction_cost (stmt_info, ncopies);
6590 return true;
6593 /* Transform. */
6595 /* Compute a vector variable, initialized with the first VF values of
6596 the induction variable. E.g., for an iv with IV_PHI='X' and
6597 evolution S, for a vector of 4 units, we want to compute:
6598 [X, X + S, X + 2*S, X + 3*S]. */
6600 if (dump_enabled_p ())
6601 dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.\n");
6603 latch_e = loop_latch_edge (iv_loop);
6604 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
6606 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
6607 gcc_assert (step_expr != NULL_TREE);
6609 pe = loop_preheader_edge (iv_loop);
6610 init_expr = PHI_ARG_DEF_FROM_EDGE (phi,
6611 loop_preheader_edge (iv_loop));
6613 /* Convert the step to the desired type. */
6614 stmts = NULL;
6615 step_expr = gimple_convert (&stmts, TREE_TYPE (vectype), step_expr);
6616 if (stmts)
6618 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
6619 gcc_assert (!new_bb);
6622 /* Find the first insertion point in the BB. */
6623 si = gsi_after_labels (bb);
6625 /* For SLP induction we have to generate several IVs as for example
6626 with group size 3 we need [i, i, i, i + S] [i + S, i + S, i + 2*S, i + 2*S]
6627 [i + 2*S, i + 3*S, i + 3*S, i + 3*S]. The step is the same uniform
6628 [VF*S, VF*S, VF*S, VF*S] for all. */
6629 if (slp_node)
6631 /* Convert the init to the desired type. */
6632 stmts = NULL;
6633 init_expr = gimple_convert (&stmts, TREE_TYPE (vectype), init_expr);
6634 if (stmts)
6636 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
6637 gcc_assert (!new_bb);
6640 /* Generate [VF*S, VF*S, ... ]. */
6641 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
6643 expr = build_int_cst (integer_type_node, vf);
6644 expr = fold_convert (TREE_TYPE (step_expr), expr);
6646 else
6647 expr = build_int_cst (TREE_TYPE (step_expr), vf);
6648 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
6649 expr, step_expr);
6650 if (! CONSTANT_CLASS_P (new_name))
6651 new_name = vect_init_vector (phi, new_name,
6652 TREE_TYPE (step_expr), NULL);
6653 new_vec = build_vector_from_val (vectype, new_name);
6654 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
6656 /* Now generate the IVs. */
6657 unsigned group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
6658 unsigned nvects = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
6659 unsigned elts = nunits * nvects;
6660 unsigned nivs = least_common_multiple (group_size, nunits) / nunits;
6661 gcc_assert (elts % group_size == 0);
6662 tree elt = init_expr;
6663 unsigned ivn;
6664 for (ivn = 0; ivn < nivs; ++ivn)
6666 tree *elts = XALLOCAVEC (tree, nunits);
6667 bool constant_p = true;
6668 for (unsigned eltn = 0; eltn < nunits; ++eltn)
6670 if (ivn*nunits + eltn >= group_size
6671 && (ivn*nunits + eltn) % group_size == 0)
6673 stmts = NULL;
6674 elt = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (elt),
6675 elt, step_expr);
6676 if (stmts)
6678 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
6679 gcc_assert (!new_bb);
6682 if (! CONSTANT_CLASS_P (elt))
6683 constant_p = false;
6684 elts[eltn] = elt;
6686 if (constant_p)
6687 new_vec = build_vector (vectype, elts);
6688 else
6690 vec<constructor_elt, va_gc> *v;
6691 vec_alloc (v, nunits);
6692 for (i = 0; i < nunits; ++i)
6693 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[i]);
6694 new_vec = build_constructor (vectype, v);
6696 vec_init = vect_init_vector (phi, new_vec, vectype, NULL);
6698 /* Create the induction-phi that defines the induction-operand. */
6699 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
6700 induction_phi = create_phi_node (vec_dest, iv_loop->header);
6701 set_vinfo_for_stmt (induction_phi,
6702 new_stmt_vec_info (induction_phi, loop_vinfo));
6703 induc_def = PHI_RESULT (induction_phi);
6705 /* Create the iv update inside the loop */
6706 vec_def = make_ssa_name (vec_dest);
6707 new_stmt = gimple_build_assign (vec_def, PLUS_EXPR, induc_def, vec_step);
6708 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
6709 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo));
6711 /* Set the arguments of the phi node: */
6712 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
6713 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
6714 UNKNOWN_LOCATION);
6716 SLP_TREE_VEC_STMTS (slp_node).quick_push (induction_phi);
6719 /* Re-use IVs when we can. */
6720 if (ivn < nvects)
6722 unsigned vfp
6723 = least_common_multiple (group_size, nunits) / group_size;
6724 /* Generate [VF'*S, VF'*S, ... ]. */
6725 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
6727 expr = build_int_cst (integer_type_node, vfp);
6728 expr = fold_convert (TREE_TYPE (step_expr), expr);
6730 else
6731 expr = build_int_cst (TREE_TYPE (step_expr), vfp);
6732 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
6733 expr, step_expr);
6734 if (! CONSTANT_CLASS_P (new_name))
6735 new_name = vect_init_vector (phi, new_name,
6736 TREE_TYPE (step_expr), NULL);
6737 new_vec = build_vector_from_val (vectype, new_name);
6738 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
6739 for (; ivn < nvects; ++ivn)
6741 gimple *iv = SLP_TREE_VEC_STMTS (slp_node)[ivn - nivs];
6742 tree def;
6743 if (gimple_code (iv) == GIMPLE_PHI)
6744 def = gimple_phi_result (iv);
6745 else
6746 def = gimple_assign_lhs (iv);
6747 new_stmt = gimple_build_assign (make_ssa_name (vectype),
6748 PLUS_EXPR,
6749 def, vec_step);
6750 if (gimple_code (iv) == GIMPLE_PHI)
6751 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
6752 else
6754 gimple_stmt_iterator tgsi = gsi_for_stmt (iv);
6755 gsi_insert_after (&tgsi, new_stmt, GSI_CONTINUE_LINKING);
6757 set_vinfo_for_stmt (new_stmt,
6758 new_stmt_vec_info (new_stmt, loop_vinfo));
6759 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
6763 return true;
6766 /* Create the vector that holds the initial_value of the induction. */
6767 if (nested_in_vect_loop)
6769 /* iv_loop is nested in the loop to be vectorized. init_expr had already
6770 been created during vectorization of previous stmts. We obtain it
6771 from the STMT_VINFO_VEC_STMT of the defining stmt. */
6772 vec_init = vect_get_vec_def_for_operand (init_expr, phi);
6773 /* If the initial value is not of proper type, convert it. */
6774 if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
6776 new_stmt
6777 = gimple_build_assign (vect_get_new_ssa_name (vectype,
6778 vect_simple_var,
6779 "vec_iv_"),
6780 VIEW_CONVERT_EXPR,
6781 build1 (VIEW_CONVERT_EXPR, vectype,
6782 vec_init));
6783 vec_init = gimple_assign_lhs (new_stmt);
6784 new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
6785 new_stmt);
6786 gcc_assert (!new_bb);
6787 set_vinfo_for_stmt (new_stmt,
6788 new_stmt_vec_info (new_stmt, loop_vinfo));
6791 else
6793 vec<constructor_elt, va_gc> *v;
6795 /* iv_loop is the loop to be vectorized. Create:
6796 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
6797 stmts = NULL;
6798 new_name = gimple_convert (&stmts, TREE_TYPE (vectype), init_expr);
6800 vec_alloc (v, nunits);
6801 bool constant_p = is_gimple_min_invariant (new_name);
6802 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
6803 for (i = 1; i < nunits; i++)
6805 /* Create: new_name_i = new_name + step_expr */
6806 new_name = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (new_name),
6807 new_name, step_expr);
6808 if (!is_gimple_min_invariant (new_name))
6809 constant_p = false;
6810 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
6812 if (stmts)
6814 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
6815 gcc_assert (!new_bb);
6818 /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
6819 if (constant_p)
6820 new_vec = build_vector_from_ctor (vectype, v);
6821 else
6822 new_vec = build_constructor (vectype, v);
6823 vec_init = vect_init_vector (phi, new_vec, vectype, NULL);
6827 /* Create the vector that holds the step of the induction. */
6828 if (nested_in_vect_loop)
6829 /* iv_loop is nested in the loop to be vectorized. Generate:
6830 vec_step = [S, S, S, S] */
6831 new_name = step_expr;
6832 else
6834 /* iv_loop is the loop to be vectorized. Generate:
6835 vec_step = [VF*S, VF*S, VF*S, VF*S] */
6836 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
6838 expr = build_int_cst (integer_type_node, vf);
6839 expr = fold_convert (TREE_TYPE (step_expr), expr);
6841 else
6842 expr = build_int_cst (TREE_TYPE (step_expr), vf);
6843 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
6844 expr, step_expr);
6845 if (TREE_CODE (step_expr) == SSA_NAME)
6846 new_name = vect_init_vector (phi, new_name,
6847 TREE_TYPE (step_expr), NULL);
6850 t = unshare_expr (new_name);
6851 gcc_assert (CONSTANT_CLASS_P (new_name)
6852 || TREE_CODE (new_name) == SSA_NAME);
6853 new_vec = build_vector_from_val (vectype, t);
6854 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
6857 /* Create the following def-use cycle:
6858 loop prolog:
6859 vec_init = ...
6860 vec_step = ...
6861 loop:
6862 vec_iv = PHI <vec_init, vec_loop>
6864 STMT
6866 vec_loop = vec_iv + vec_step; */
6868 /* Create the induction-phi that defines the induction-operand. */
6869 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
6870 induction_phi = create_phi_node (vec_dest, iv_loop->header);
6871 set_vinfo_for_stmt (induction_phi,
6872 new_stmt_vec_info (induction_phi, loop_vinfo));
6873 induc_def = PHI_RESULT (induction_phi);
6875 /* Create the iv update inside the loop */
6876 vec_def = make_ssa_name (vec_dest);
6877 new_stmt = gimple_build_assign (vec_def, PLUS_EXPR, induc_def, vec_step);
6878 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
6879 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo));
6881 /* Set the arguments of the phi node: */
6882 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
6883 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
6884 UNKNOWN_LOCATION);
6886 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = induction_phi;
6888 /* In case that vectorization factor (VF) is bigger than the number
6889 of elements that we can fit in a vectype (nunits), we have to generate
6890 more than one vector stmt - i.e - we need to "unroll" the
6891 vector stmt by a factor VF/nunits. For more details see documentation
6892 in vectorizable_operation. */
6894 if (ncopies > 1)
6896 stmt_vec_info prev_stmt_vinfo;
6897 /* FORNOW. This restriction should be relaxed. */
6898 gcc_assert (!nested_in_vect_loop);
6900 /* Create the vector that holds the step of the induction. */
6901 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
6903 expr = build_int_cst (integer_type_node, nunits);
6904 expr = fold_convert (TREE_TYPE (step_expr), expr);
6906 else
6907 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
6908 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
6909 expr, step_expr);
6910 if (TREE_CODE (step_expr) == SSA_NAME)
6911 new_name = vect_init_vector (phi, new_name,
6912 TREE_TYPE (step_expr), NULL);
6913 t = unshare_expr (new_name);
6914 gcc_assert (CONSTANT_CLASS_P (new_name)
6915 || TREE_CODE (new_name) == SSA_NAME);
6916 new_vec = build_vector_from_val (vectype, t);
6917 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
6919 vec_def = induc_def;
6920 prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
6921 for (i = 1; i < ncopies; i++)
6923 /* vec_i = vec_prev + vec_step */
6924 new_stmt = gimple_build_assign (vec_dest, PLUS_EXPR,
6925 vec_def, vec_step);
6926 vec_def = make_ssa_name (vec_dest, new_stmt);
6927 gimple_assign_set_lhs (new_stmt, vec_def);
6929 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
6930 set_vinfo_for_stmt (new_stmt,
6931 new_stmt_vec_info (new_stmt, loop_vinfo));
6932 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
6933 prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
6937 if (nested_in_vect_loop)
6939 /* Find the loop-closed exit-phi of the induction, and record
6940 the final vector of induction results: */
6941 exit_phi = NULL;
6942 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
6944 gimple *use_stmt = USE_STMT (use_p);
6945 if (is_gimple_debug (use_stmt))
6946 continue;
6948 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (use_stmt)))
6950 exit_phi = use_stmt;
6951 break;
6954 if (exit_phi)
6956 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
6957 /* FORNOW. Currently not supporting the case that an inner-loop induction
6958 is not used in the outer-loop (i.e. only outside the outer-loop). */
6959 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
6960 && !STMT_VINFO_LIVE_P (stmt_vinfo));
6962 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
6963 if (dump_enabled_p ())
6965 dump_printf_loc (MSG_NOTE, vect_location,
6966 "vector of inductions after inner-loop:");
6967 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
6973 if (dump_enabled_p ())
6975 dump_printf_loc (MSG_NOTE, vect_location,
6976 "transform induction: created def-use cycle: ");
6977 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, induction_phi, 0);
6978 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
6979 SSA_NAME_DEF_STMT (vec_def), 0);
6982 return true;
6985 /* Function vectorizable_live_operation.
6987 STMT computes a value that is used outside the loop. Check if
6988 it can be supported. */
6990 bool
6991 vectorizable_live_operation (gimple *stmt,
6992 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
6993 slp_tree slp_node, int slp_index,
6994 gimple **vec_stmt)
6996 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
6997 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
6998 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
6999 imm_use_iterator imm_iter;
7000 tree lhs, lhs_type, bitsize, vec_bitsize;
7001 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
7002 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
7003 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
7004 gimple *use_stmt;
7005 auto_vec<tree> vec_oprnds;
7007 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
7009 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
7010 return false;
7012 /* FORNOW. CHECKME. */
7013 if (nested_in_vect_loop_p (loop, stmt))
7014 return false;
7016 /* If STMT is not relevant and it is a simple assignment and its inputs are
7017 invariant then it can remain in place, unvectorized. The original last
7018 scalar value that it computes will be used. */
7019 if (!STMT_VINFO_RELEVANT_P (stmt_info))
7021 gcc_assert (is_simple_and_all_uses_invariant (stmt, loop_vinfo));
7022 if (dump_enabled_p ())
7023 dump_printf_loc (MSG_NOTE, vect_location,
7024 "statement is simple and uses invariant. Leaving in "
7025 "place.\n");
7026 return true;
7029 if (!vec_stmt)
7030 /* No transformation required. */
7031 return true;
7033 /* If stmt has a related stmt, then use that for getting the lhs. */
7034 if (is_pattern_stmt_p (stmt_info))
7035 stmt = STMT_VINFO_RELATED_STMT (stmt_info);
7037 lhs = (is_a <gphi *> (stmt)) ? gimple_phi_result (stmt)
7038 : gimple_get_lhs (stmt);
7039 lhs_type = TREE_TYPE (lhs);
7041 bitsize = TYPE_SIZE (TREE_TYPE (vectype));
7042 vec_bitsize = TYPE_SIZE (vectype);
7044 /* Get the vectorized lhs of STMT and the lane to use (counted in bits). */
7045 tree vec_lhs, bitstart;
7046 if (slp_node)
7048 gcc_assert (slp_index >= 0);
7050 int num_scalar = SLP_TREE_SCALAR_STMTS (slp_node).length ();
7051 int num_vec = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
7053 /* Get the last occurrence of the scalar index from the concatenation of
7054 all the slp vectors. Calculate which slp vector it is and the index
7055 within. */
7056 int pos = (num_vec * nunits) - num_scalar + slp_index;
7057 int vec_entry = pos / nunits;
7058 int vec_index = pos % nunits;
7060 /* Get the correct slp vectorized stmt. */
7061 vec_lhs = gimple_get_lhs (SLP_TREE_VEC_STMTS (slp_node)[vec_entry]);
7063 /* Get entry to use. */
7064 bitstart = build_int_cst (unsigned_type_node, vec_index);
7065 bitstart = int_const_binop (MULT_EXPR, bitsize, bitstart);
7067 else
7069 enum vect_def_type dt = STMT_VINFO_DEF_TYPE (stmt_info);
7070 vec_lhs = vect_get_vec_def_for_operand_1 (stmt, dt);
7072 /* For multiple copies, get the last copy. */
7073 for (int i = 1; i < ncopies; ++i)
7074 vec_lhs = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type,
7075 vec_lhs);
7077 /* Get the last lane in the vector. */
7078 bitstart = int_const_binop (MINUS_EXPR, vec_bitsize, bitsize);
7081 /* Create a new vectorized stmt for the uses of STMT and insert outside the
7082 loop. */
7083 gimple_seq stmts = NULL;
7084 tree bftype = TREE_TYPE (vectype);
7085 if (VECTOR_BOOLEAN_TYPE_P (vectype))
7086 bftype = build_nonstandard_integer_type (tree_to_uhwi (bitsize), 1);
7087 tree new_tree = build3 (BIT_FIELD_REF, bftype, vec_lhs, bitsize, bitstart);
7088 new_tree = force_gimple_operand (fold_convert (lhs_type, new_tree), &stmts,
7089 true, NULL_TREE);
7090 if (stmts)
7091 gsi_insert_seq_on_edge_immediate (single_exit (loop), stmts);
7093 /* Replace use of lhs with newly computed result. If the use stmt is a
7094 single arg PHI, just replace all uses of PHI result. It's necessary
7095 because lcssa PHI defining lhs may be before newly inserted stmt. */
7096 use_operand_p use_p;
7097 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, lhs)
7098 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
7099 && !is_gimple_debug (use_stmt))
7101 if (gimple_code (use_stmt) == GIMPLE_PHI
7102 && gimple_phi_num_args (use_stmt) == 1)
7104 replace_uses_by (gimple_phi_result (use_stmt), new_tree);
7106 else
7108 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
7109 SET_USE (use_p, new_tree);
7111 update_stmt (use_stmt);
7114 return true;
7117 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
7119 static void
7120 vect_loop_kill_debug_uses (struct loop *loop, gimple *stmt)
7122 ssa_op_iter op_iter;
7123 imm_use_iterator imm_iter;
7124 def_operand_p def_p;
7125 gimple *ustmt;
7127 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
7129 FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
7131 basic_block bb;
7133 if (!is_gimple_debug (ustmt))
7134 continue;
7136 bb = gimple_bb (ustmt);
7138 if (!flow_bb_inside_loop_p (loop, bb))
7140 if (gimple_debug_bind_p (ustmt))
7142 if (dump_enabled_p ())
7143 dump_printf_loc (MSG_NOTE, vect_location,
7144 "killing debug use\n");
7146 gimple_debug_bind_reset_value (ustmt);
7147 update_stmt (ustmt);
7149 else
7150 gcc_unreachable ();
7156 /* Given loop represented by LOOP_VINFO, return true if computation of
7157 LOOP_VINFO_NITERS (= LOOP_VINFO_NITERSM1 + 1) doesn't overflow, false
7158 otherwise. */
7160 static bool
7161 loop_niters_no_overflow (loop_vec_info loop_vinfo)
7163 /* Constant case. */
7164 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
7166 tree cst_niters = LOOP_VINFO_NITERS (loop_vinfo);
7167 tree cst_nitersm1 = LOOP_VINFO_NITERSM1 (loop_vinfo);
7169 gcc_assert (TREE_CODE (cst_niters) == INTEGER_CST);
7170 gcc_assert (TREE_CODE (cst_nitersm1) == INTEGER_CST);
7171 if (wi::to_widest (cst_nitersm1) < wi::to_widest (cst_niters))
7172 return true;
7175 widest_int max;
7176 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
7177 /* Check the upper bound of loop niters. */
7178 if (get_max_loop_iterations (loop, &max))
7180 tree type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
7181 signop sgn = TYPE_SIGN (type);
7182 widest_int type_max = widest_int::from (wi::max_value (type), sgn);
7183 if (max < type_max)
7184 return true;
7186 return false;
7189 /* Scale profiling counters by estimation for LOOP which is vectorized
7190 by factor VF. */
7192 static void
7193 scale_profile_for_vect_loop (struct loop *loop, unsigned vf)
7195 edge preheader = loop_preheader_edge (loop);
7196 /* Reduce loop iterations by the vectorization factor. */
7197 gcov_type new_est_niter = niter_for_unrolled_loop (loop, vf);
7198 profile_count freq_h = loop->header->count, freq_e = preheader->count;
7200 /* Use frequency only if counts are zero. */
7201 if (!(freq_h > 0) && !(freq_e > 0))
7203 freq_h = profile_count::from_gcov_type (loop->header->frequency);
7204 freq_e = profile_count::from_gcov_type (EDGE_FREQUENCY (preheader));
7206 if (freq_h > 0)
7208 profile_probability p;
7210 /* Avoid dropping loop body profile counter to 0 because of zero count
7211 in loop's preheader. */
7212 if (!(freq_e > profile_count::from_gcov_type (1)))
7213 freq_e = profile_count::from_gcov_type (1);
7214 p = freq_e.apply_scale (new_est_niter + 1, 1).probability_in (freq_h);
7215 scale_loop_frequencies (loop, p);
7218 basic_block exit_bb = single_pred (loop->latch);
7219 edge exit_e = single_exit (loop);
7220 exit_e->count = loop_preheader_edge (loop)->count;
7221 exit_e->probability = profile_probability::always ()
7222 .apply_scale (1, new_est_niter + 1);
7224 edge exit_l = single_pred_edge (loop->latch);
7225 profile_probability prob = exit_l->probability;
7226 exit_l->probability = exit_e->probability.invert ();
7227 exit_l->count = exit_bb->count - exit_e->count;
7228 if (prob.initialized_p () && exit_l->probability.initialized_p ())
7229 scale_bbs_frequencies (&loop->latch, 1, exit_l->probability / prob);
7232 /* Function vect_transform_loop.
7234 The analysis phase has determined that the loop is vectorizable.
7235 Vectorize the loop - created vectorized stmts to replace the scalar
7236 stmts in the loop, and update the loop exit condition.
7237 Returns scalar epilogue loop if any. */
7239 struct loop *
7240 vect_transform_loop (loop_vec_info loop_vinfo)
7242 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
7243 struct loop *epilogue = NULL;
7244 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
7245 int nbbs = loop->num_nodes;
7246 int i;
7247 tree niters_vector = NULL;
7248 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
7249 bool grouped_store;
7250 bool slp_scheduled = false;
7251 gimple *stmt, *pattern_stmt;
7252 gimple_seq pattern_def_seq = NULL;
7253 gimple_stmt_iterator pattern_def_si = gsi_none ();
7254 bool transform_pattern_stmt = false;
7255 bool check_profitability = false;
7256 int th;
7258 if (dump_enabled_p ())
7259 dump_printf_loc (MSG_NOTE, vect_location, "=== vec_transform_loop ===\n");
7261 /* Use the more conservative vectorization threshold. If the number
7262 of iterations is constant assume the cost check has been performed
7263 by our caller. If the threshold makes all loops profitable that
7264 run at least the vectorization factor number of times checking
7265 is pointless, too. */
7266 th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
7267 if (th >= LOOP_VINFO_VECT_FACTOR (loop_vinfo)
7268 && !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
7270 if (dump_enabled_p ())
7271 dump_printf_loc (MSG_NOTE, vect_location,
7272 "Profitability threshold is %d loop iterations.\n",
7273 th);
7274 check_profitability = true;
7277 /* Make sure there exists a single-predecessor exit bb. Do this before
7278 versioning. */
7279 edge e = single_exit (loop);
7280 if (! single_pred_p (e->dest))
7282 split_loop_exit_edge (e);
7283 if (dump_enabled_p ())
7284 dump_printf (MSG_NOTE, "split exit edge\n");
7287 /* Version the loop first, if required, so the profitability check
7288 comes first. */
7290 if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
7292 vect_loop_versioning (loop_vinfo, th, check_profitability);
7293 check_profitability = false;
7296 /* Make sure there exists a single-predecessor exit bb also on the
7297 scalar loop copy. Do this after versioning but before peeling
7298 so CFG structure is fine for both scalar and if-converted loop
7299 to make slpeel_duplicate_current_defs_from_edges face matched
7300 loop closed PHI nodes on the exit. */
7301 if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo))
7303 e = single_exit (LOOP_VINFO_SCALAR_LOOP (loop_vinfo));
7304 if (! single_pred_p (e->dest))
7306 split_loop_exit_edge (e);
7307 if (dump_enabled_p ())
7308 dump_printf (MSG_NOTE, "split exit edge of scalar loop\n");
7312 tree niters = vect_build_loop_niters (loop_vinfo);
7313 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = niters;
7314 tree nitersm1 = unshare_expr (LOOP_VINFO_NITERSM1 (loop_vinfo));
7315 bool niters_no_overflow = loop_niters_no_overflow (loop_vinfo);
7316 epilogue = vect_do_peeling (loop_vinfo, niters, nitersm1, &niters_vector, th,
7317 check_profitability, niters_no_overflow);
7318 if (niters_vector == NULL_TREE)
7320 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
7321 niters_vector
7322 = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
7323 LOOP_VINFO_INT_NITERS (loop_vinfo) / vf);
7324 else
7325 vect_gen_vector_loop_niters (loop_vinfo, niters, &niters_vector,
7326 niters_no_overflow);
7329 /* 1) Make sure the loop header has exactly two entries
7330 2) Make sure we have a preheader basic block. */
7332 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
7334 split_edge (loop_preheader_edge (loop));
7336 /* FORNOW: the vectorizer supports only loops which body consist
7337 of one basic block (header + empty latch). When the vectorizer will
7338 support more involved loop forms, the order by which the BBs are
7339 traversed need to be reconsidered. */
7341 for (i = 0; i < nbbs; i++)
7343 basic_block bb = bbs[i];
7344 stmt_vec_info stmt_info;
7346 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
7347 gsi_next (&si))
7349 gphi *phi = si.phi ();
7350 if (dump_enabled_p ())
7352 dump_printf_loc (MSG_NOTE, vect_location,
7353 "------>vectorizing phi: ");
7354 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
7356 stmt_info = vinfo_for_stmt (phi);
7357 if (!stmt_info)
7358 continue;
7360 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
7361 vect_loop_kill_debug_uses (loop, phi);
7363 if (!STMT_VINFO_RELEVANT_P (stmt_info)
7364 && !STMT_VINFO_LIVE_P (stmt_info))
7365 continue;
7367 if (STMT_VINFO_VECTYPE (stmt_info)
7368 && (TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
7369 != (unsigned HOST_WIDE_INT) vf)
7370 && dump_enabled_p ())
7371 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
7373 if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
7374 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
7375 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle)
7376 && ! PURE_SLP_STMT (stmt_info))
7378 if (dump_enabled_p ())
7379 dump_printf_loc (MSG_NOTE, vect_location, "transform phi.\n");
7380 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
7384 pattern_stmt = NULL;
7385 for (gimple_stmt_iterator si = gsi_start_bb (bb);
7386 !gsi_end_p (si) || transform_pattern_stmt;)
7388 bool is_store;
7390 if (transform_pattern_stmt)
7391 stmt = pattern_stmt;
7392 else
7394 stmt = gsi_stmt (si);
7395 /* During vectorization remove existing clobber stmts. */
7396 if (gimple_clobber_p (stmt))
7398 unlink_stmt_vdef (stmt);
7399 gsi_remove (&si, true);
7400 release_defs (stmt);
7401 continue;
7405 if (dump_enabled_p ())
7407 dump_printf_loc (MSG_NOTE, vect_location,
7408 "------>vectorizing statement: ");
7409 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
7412 stmt_info = vinfo_for_stmt (stmt);
7414 /* vector stmts created in the outer-loop during vectorization of
7415 stmts in an inner-loop may not have a stmt_info, and do not
7416 need to be vectorized. */
7417 if (!stmt_info)
7419 gsi_next (&si);
7420 continue;
7423 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
7424 vect_loop_kill_debug_uses (loop, stmt);
7426 if (!STMT_VINFO_RELEVANT_P (stmt_info)
7427 && !STMT_VINFO_LIVE_P (stmt_info))
7429 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
7430 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
7431 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
7432 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
7434 stmt = pattern_stmt;
7435 stmt_info = vinfo_for_stmt (stmt);
7437 else
7439 gsi_next (&si);
7440 continue;
7443 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
7444 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
7445 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
7446 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
7447 transform_pattern_stmt = true;
7449 /* If pattern statement has def stmts, vectorize them too. */
7450 if (is_pattern_stmt_p (stmt_info))
7452 if (pattern_def_seq == NULL)
7454 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
7455 pattern_def_si = gsi_start (pattern_def_seq);
7457 else if (!gsi_end_p (pattern_def_si))
7458 gsi_next (&pattern_def_si);
7459 if (pattern_def_seq != NULL)
7461 gimple *pattern_def_stmt = NULL;
7462 stmt_vec_info pattern_def_stmt_info = NULL;
7464 while (!gsi_end_p (pattern_def_si))
7466 pattern_def_stmt = gsi_stmt (pattern_def_si);
7467 pattern_def_stmt_info
7468 = vinfo_for_stmt (pattern_def_stmt);
7469 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
7470 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
7471 break;
7472 gsi_next (&pattern_def_si);
7475 if (!gsi_end_p (pattern_def_si))
7477 if (dump_enabled_p ())
7479 dump_printf_loc (MSG_NOTE, vect_location,
7480 "==> vectorizing pattern def "
7481 "stmt: ");
7482 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
7483 pattern_def_stmt, 0);
7486 stmt = pattern_def_stmt;
7487 stmt_info = pattern_def_stmt_info;
7489 else
7491 pattern_def_si = gsi_none ();
7492 transform_pattern_stmt = false;
7495 else
7496 transform_pattern_stmt = false;
7499 if (STMT_VINFO_VECTYPE (stmt_info))
7501 unsigned int nunits
7502 = (unsigned int)
7503 TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
7504 if (!STMT_SLP_TYPE (stmt_info)
7505 && nunits != (unsigned int) vf
7506 && dump_enabled_p ())
7507 /* For SLP VF is set according to unrolling factor, and not
7508 to vector size, hence for SLP this print is not valid. */
7509 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
7512 /* SLP. Schedule all the SLP instances when the first SLP stmt is
7513 reached. */
7514 if (STMT_SLP_TYPE (stmt_info))
7516 if (!slp_scheduled)
7518 slp_scheduled = true;
7520 if (dump_enabled_p ())
7521 dump_printf_loc (MSG_NOTE, vect_location,
7522 "=== scheduling SLP instances ===\n");
7524 vect_schedule_slp (loop_vinfo);
7527 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
7528 if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
7530 if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
7532 pattern_def_seq = NULL;
7533 gsi_next (&si);
7535 continue;
7539 /* -------- vectorize statement ------------ */
7540 if (dump_enabled_p ())
7541 dump_printf_loc (MSG_NOTE, vect_location, "transform statement.\n");
7543 grouped_store = false;
7544 is_store = vect_transform_stmt (stmt, &si, &grouped_store, NULL, NULL);
7545 if (is_store)
7547 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
7549 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
7550 interleaving chain was completed - free all the stores in
7551 the chain. */
7552 gsi_next (&si);
7553 vect_remove_stores (GROUP_FIRST_ELEMENT (stmt_info));
7555 else
7557 /* Free the attached stmt_vec_info and remove the stmt. */
7558 gimple *store = gsi_stmt (si);
7559 free_stmt_vec_info (store);
7560 unlink_stmt_vdef (store);
7561 gsi_remove (&si, true);
7562 release_defs (store);
7565 /* Stores can only appear at the end of pattern statements. */
7566 gcc_assert (!transform_pattern_stmt);
7567 pattern_def_seq = NULL;
7569 else if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
7571 pattern_def_seq = NULL;
7572 gsi_next (&si);
7574 } /* stmts in BB */
7575 } /* BBs in loop */
7577 slpeel_make_loop_iterate_ntimes (loop, niters_vector);
7579 scale_profile_for_vect_loop (loop, vf);
7581 /* The minimum number of iterations performed by the epilogue. This
7582 is 1 when peeling for gaps because we always need a final scalar
7583 iteration. */
7584 int min_epilogue_iters = LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) ? 1 : 0;
7585 /* +1 to convert latch counts to loop iteration counts,
7586 -min_epilogue_iters to remove iterations that cannot be performed
7587 by the vector code. */
7588 int bias = 1 - min_epilogue_iters;
7589 /* In these calculations the "- 1" converts loop iteration counts
7590 back to latch counts. */
7591 if (loop->any_upper_bound)
7592 loop->nb_iterations_upper_bound
7593 = wi::udiv_floor (loop->nb_iterations_upper_bound + bias, vf) - 1;
7594 if (loop->any_likely_upper_bound)
7595 loop->nb_iterations_likely_upper_bound
7596 = wi::udiv_floor (loop->nb_iterations_likely_upper_bound + bias, vf) - 1;
7597 if (loop->any_estimate)
7598 loop->nb_iterations_estimate
7599 = wi::udiv_floor (loop->nb_iterations_estimate + bias, vf) - 1;
7601 if (dump_enabled_p ())
7603 if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
7605 dump_printf_loc (MSG_NOTE, vect_location,
7606 "LOOP VECTORIZED\n");
7607 if (loop->inner)
7608 dump_printf_loc (MSG_NOTE, vect_location,
7609 "OUTER LOOP VECTORIZED\n");
7610 dump_printf (MSG_NOTE, "\n");
7612 else
7613 dump_printf_loc (MSG_NOTE, vect_location,
7614 "LOOP EPILOGUE VECTORIZED (VS=%d)\n",
7615 current_vector_size);
7618 /* Free SLP instances here because otherwise stmt reference counting
7619 won't work. */
7620 slp_instance instance;
7621 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
7622 vect_free_slp_instance (instance);
7623 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
7624 /* Clear-up safelen field since its value is invalid after vectorization
7625 since vectorized loop can have loop-carried dependencies. */
7626 loop->safelen = 0;
7628 /* Don't vectorize epilogue for epilogue. */
7629 if (LOOP_VINFO_EPILOGUE_P (loop_vinfo))
7630 epilogue = NULL;
7632 if (epilogue)
7634 unsigned int vector_sizes
7635 = targetm.vectorize.autovectorize_vector_sizes ();
7636 vector_sizes &= current_vector_size - 1;
7638 if (!PARAM_VALUE (PARAM_VECT_EPILOGUES_NOMASK))
7639 epilogue = NULL;
7640 else if (!vector_sizes)
7641 epilogue = NULL;
7642 else if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
7643 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) >= 0)
7645 int smallest_vec_size = 1 << ctz_hwi (vector_sizes);
7646 int ratio = current_vector_size / smallest_vec_size;
7647 int eiters = LOOP_VINFO_INT_NITERS (loop_vinfo)
7648 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
7649 eiters = eiters % vf;
7651 epilogue->nb_iterations_upper_bound = eiters - 1;
7653 if (eiters < vf / ratio)
7654 epilogue = NULL;
7658 if (epilogue)
7660 epilogue->force_vectorize = loop->force_vectorize;
7661 epilogue->safelen = loop->safelen;
7662 epilogue->dont_vectorize = false;
7664 /* We may need to if-convert epilogue to vectorize it. */
7665 if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo))
7666 tree_if_conversion (epilogue);
7669 return epilogue;
7672 /* The code below is trying to perform simple optimization - revert
7673 if-conversion for masked stores, i.e. if the mask of a store is zero
7674 do not perform it and all stored value producers also if possible.
7675 For example,
7676 for (i=0; i<n; i++)
7677 if (c[i])
7679 p1[i] += 1;
7680 p2[i] = p3[i] +2;
7682 this transformation will produce the following semi-hammock:
7684 if (!mask__ifc__42.18_165 == { 0, 0, 0, 0, 0, 0, 0, 0 })
7686 vect__11.19_170 = MASK_LOAD (vectp_p1.20_168, 0B, mask__ifc__42.18_165);
7687 vect__12.22_172 = vect__11.19_170 + vect_cst__171;
7688 MASK_STORE (vectp_p1.23_175, 0B, mask__ifc__42.18_165, vect__12.22_172);
7689 vect__18.25_182 = MASK_LOAD (vectp_p3.26_180, 0B, mask__ifc__42.18_165);
7690 vect__19.28_184 = vect__18.25_182 + vect_cst__183;
7691 MASK_STORE (vectp_p2.29_187, 0B, mask__ifc__42.18_165, vect__19.28_184);
7695 void
7696 optimize_mask_stores (struct loop *loop)
7698 basic_block *bbs = get_loop_body (loop);
7699 unsigned nbbs = loop->num_nodes;
7700 unsigned i;
7701 basic_block bb;
7702 struct loop *bb_loop;
7703 gimple_stmt_iterator gsi;
7704 gimple *stmt;
7705 auto_vec<gimple *> worklist;
7707 vect_location = find_loop_location (loop);
7708 /* Pick up all masked stores in loop if any. */
7709 for (i = 0; i < nbbs; i++)
7711 bb = bbs[i];
7712 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
7713 gsi_next (&gsi))
7715 stmt = gsi_stmt (gsi);
7716 if (gimple_call_internal_p (stmt, IFN_MASK_STORE))
7717 worklist.safe_push (stmt);
7721 free (bbs);
7722 if (worklist.is_empty ())
7723 return;
7725 /* Loop has masked stores. */
7726 while (!worklist.is_empty ())
7728 gimple *last, *last_store;
7729 edge e, efalse;
7730 tree mask;
7731 basic_block store_bb, join_bb;
7732 gimple_stmt_iterator gsi_to;
7733 tree vdef, new_vdef;
7734 gphi *phi;
7735 tree vectype;
7736 tree zero;
7738 last = worklist.pop ();
7739 mask = gimple_call_arg (last, 2);
7740 bb = gimple_bb (last);
7741 /* Create then_bb and if-then structure in CFG, then_bb belongs to
7742 the same loop as if_bb. It could be different to LOOP when two
7743 level loop-nest is vectorized and mask_store belongs to the inner
7744 one. */
7745 e = split_block (bb, last);
7746 bb_loop = bb->loop_father;
7747 gcc_assert (loop == bb_loop || flow_loop_nested_p (loop, bb_loop));
7748 join_bb = e->dest;
7749 store_bb = create_empty_bb (bb);
7750 add_bb_to_loop (store_bb, bb_loop);
7751 e->flags = EDGE_TRUE_VALUE;
7752 efalse = make_edge (bb, store_bb, EDGE_FALSE_VALUE);
7753 /* Put STORE_BB to likely part. */
7754 efalse->probability = profile_probability::unlikely ();
7755 store_bb->frequency = PROB_ALWAYS - EDGE_FREQUENCY (efalse);
7756 make_single_succ_edge (store_bb, join_bb, EDGE_FALLTHRU);
7757 if (dom_info_available_p (CDI_DOMINATORS))
7758 set_immediate_dominator (CDI_DOMINATORS, store_bb, bb);
7759 if (dump_enabled_p ())
7760 dump_printf_loc (MSG_NOTE, vect_location,
7761 "Create new block %d to sink mask stores.",
7762 store_bb->index);
7763 /* Create vector comparison with boolean result. */
7764 vectype = TREE_TYPE (mask);
7765 zero = build_zero_cst (vectype);
7766 stmt = gimple_build_cond (EQ_EXPR, mask, zero, NULL_TREE, NULL_TREE);
7767 gsi = gsi_last_bb (bb);
7768 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
7769 /* Create new PHI node for vdef of the last masked store:
7770 .MEM_2 = VDEF <.MEM_1>
7771 will be converted to
7772 .MEM.3 = VDEF <.MEM_1>
7773 and new PHI node will be created in join bb
7774 .MEM_2 = PHI <.MEM_1, .MEM_3>
7776 vdef = gimple_vdef (last);
7777 new_vdef = make_ssa_name (gimple_vop (cfun), last);
7778 gimple_set_vdef (last, new_vdef);
7779 phi = create_phi_node (vdef, join_bb);
7780 add_phi_arg (phi, new_vdef, EDGE_SUCC (store_bb, 0), UNKNOWN_LOCATION);
7782 /* Put all masked stores with the same mask to STORE_BB if possible. */
7783 while (true)
7785 gimple_stmt_iterator gsi_from;
7786 gimple *stmt1 = NULL;
7788 /* Move masked store to STORE_BB. */
7789 last_store = last;
7790 gsi = gsi_for_stmt (last);
7791 gsi_from = gsi;
7792 /* Shift GSI to the previous stmt for further traversal. */
7793 gsi_prev (&gsi);
7794 gsi_to = gsi_start_bb (store_bb);
7795 gsi_move_before (&gsi_from, &gsi_to);
7796 /* Setup GSI_TO to the non-empty block start. */
7797 gsi_to = gsi_start_bb (store_bb);
7798 if (dump_enabled_p ())
7800 dump_printf_loc (MSG_NOTE, vect_location,
7801 "Move stmt to created bb\n");
7802 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, last, 0);
7804 /* Move all stored value producers if possible. */
7805 while (!gsi_end_p (gsi))
7807 tree lhs;
7808 imm_use_iterator imm_iter;
7809 use_operand_p use_p;
7810 bool res;
7812 /* Skip debug statements. */
7813 if (is_gimple_debug (gsi_stmt (gsi)))
7815 gsi_prev (&gsi);
7816 continue;
7818 stmt1 = gsi_stmt (gsi);
7819 /* Do not consider statements writing to memory or having
7820 volatile operand. */
7821 if (gimple_vdef (stmt1)
7822 || gimple_has_volatile_ops (stmt1))
7823 break;
7824 gsi_from = gsi;
7825 gsi_prev (&gsi);
7826 lhs = gimple_get_lhs (stmt1);
7827 if (!lhs)
7828 break;
7830 /* LHS of vectorized stmt must be SSA_NAME. */
7831 if (TREE_CODE (lhs) != SSA_NAME)
7832 break;
7834 if (!VECTOR_TYPE_P (TREE_TYPE (lhs)))
7836 /* Remove dead scalar statement. */
7837 if (has_zero_uses (lhs))
7839 gsi_remove (&gsi_from, true);
7840 continue;
7844 /* Check that LHS does not have uses outside of STORE_BB. */
7845 res = true;
7846 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
7848 gimple *use_stmt;
7849 use_stmt = USE_STMT (use_p);
7850 if (is_gimple_debug (use_stmt))
7851 continue;
7852 if (gimple_bb (use_stmt) != store_bb)
7854 res = false;
7855 break;
7858 if (!res)
7859 break;
7861 if (gimple_vuse (stmt1)
7862 && gimple_vuse (stmt1) != gimple_vuse (last_store))
7863 break;
7865 /* Can move STMT1 to STORE_BB. */
7866 if (dump_enabled_p ())
7868 dump_printf_loc (MSG_NOTE, vect_location,
7869 "Move stmt to created bb\n");
7870 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt1, 0);
7872 gsi_move_before (&gsi_from, &gsi_to);
7873 /* Shift GSI_TO for further insertion. */
7874 gsi_prev (&gsi_to);
7876 /* Put other masked stores with the same mask to STORE_BB. */
7877 if (worklist.is_empty ()
7878 || gimple_call_arg (worklist.last (), 2) != mask
7879 || worklist.last () != stmt1)
7880 break;
7881 last = worklist.pop ();
7883 add_phi_arg (phi, gimple_vuse (last_store), e, UNKNOWN_LOCATION);