PR target/81369
[official-gcc.git] / gcc / ada / s-gearop.adb
blobb6d6f22d51b22ff5acd74eb51f49e3266de4b591
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME COMPONENTS --
4 -- --
5 -- S Y S T E M . G E N E R I C _ A R R A Y _ O P E R A T I O N S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2006-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 with Ada.Numerics; use Ada.Numerics;
33 package body System.Generic_Array_Operations is
34 function Check_Unit_Last
35 (Index : Integer;
36 Order : Positive;
37 First : Integer) return Integer;
38 pragma Inline_Always (Check_Unit_Last);
39 -- Compute index of last element returned by Unit_Vector or Unit_Matrix.
40 -- A separate function is needed to allow raising Constraint_Error before
41 -- declaring the function result variable. The result variable needs to be
42 -- declared first, to allow front-end inlining.
44 --------------
45 -- Diagonal --
46 --------------
48 function Diagonal (A : Matrix) return Vector is
49 N : constant Natural := Natural'Min (A'Length (1), A'Length (2));
50 begin
51 return R : Vector (A'First (1) .. A'First (1) + N - 1) do
52 for J in 0 .. N - 1 loop
53 R (R'First + J) := A (A'First (1) + J, A'First (2) + J);
54 end loop;
55 end return;
56 end Diagonal;
58 --------------------------
59 -- Square_Matrix_Length --
60 --------------------------
62 function Square_Matrix_Length (A : Matrix) return Natural is
63 begin
64 if A'Length (1) /= A'Length (2) then
65 raise Constraint_Error with "matrix is not square";
66 else
67 return A'Length (1);
68 end if;
69 end Square_Matrix_Length;
71 ---------------------
72 -- Check_Unit_Last --
73 ---------------------
75 function Check_Unit_Last
76 (Index : Integer;
77 Order : Positive;
78 First : Integer) return Integer
80 begin
81 -- Order the tests carefully to avoid overflow
83 if Index < First
84 or else First > Integer'Last - Order + 1
85 or else Index > First + (Order - 1)
86 then
87 raise Constraint_Error;
88 end if;
90 return First + (Order - 1);
91 end Check_Unit_Last;
93 ---------------------
94 -- Back_Substitute --
95 ---------------------
97 procedure Back_Substitute (M, N : in out Matrix) is
98 pragma Assert (M'First (1) = N'First (1)
99 and then
100 M'Last (1) = N'Last (1));
102 procedure Sub_Row
103 (M : in out Matrix;
104 Target : Integer;
105 Source : Integer;
106 Factor : Scalar);
107 -- Elementary row operation that subtracts Factor * M (Source, <>) from
108 -- M (Target, <>)
110 -------------
111 -- Sub_Row --
112 -------------
114 procedure Sub_Row
115 (M : in out Matrix;
116 Target : Integer;
117 Source : Integer;
118 Factor : Scalar)
120 begin
121 for J in M'Range (2) loop
122 M (Target, J) := M (Target, J) - Factor * M (Source, J);
123 end loop;
124 end Sub_Row;
126 -- Local declarations
128 Max_Col : Integer := M'Last (2);
130 -- Start of processing for Back_Substitute
132 begin
133 Do_Rows : for Row in reverse M'Range (1) loop
134 Find_Non_Zero : for Col in reverse M'First (2) .. Max_Col loop
135 if Is_Non_Zero (M (Row, Col)) then
137 -- Found first non-zero element, so subtract a multiple of this
138 -- element from all higher rows, to reduce all other elements
139 -- in this column to zero.
141 declare
142 -- We can't use a for loop, as we'd need to iterate to
143 -- Row - 1, but that expression will overflow if M'First
144 -- equals Integer'First, which is true for aggregates
145 -- without explicit bounds..
147 J : Integer := M'First (1);
149 begin
150 while J < Row loop
151 Sub_Row (N, J, Row, (M (J, Col) / M (Row, Col)));
152 Sub_Row (M, J, Row, (M (J, Col) / M (Row, Col)));
153 J := J + 1;
154 end loop;
155 end;
157 -- Avoid potential overflow in the subtraction below
159 exit Do_Rows when Col = M'First (2);
161 Max_Col := Col - 1;
163 exit Find_Non_Zero;
164 end if;
165 end loop Find_Non_Zero;
166 end loop Do_Rows;
167 end Back_Substitute;
169 -----------------------
170 -- Forward_Eliminate --
171 -----------------------
173 procedure Forward_Eliminate
174 (M : in out Matrix;
175 N : in out Matrix;
176 Det : out Scalar)
178 pragma Assert (M'First (1) = N'First (1)
179 and then
180 M'Last (1) = N'Last (1));
182 -- The following are variations of the elementary matrix row operations:
183 -- row switching, row multiplication and row addition. Because in this
184 -- algorithm the addition factor is always a negated value, we chose to
185 -- use row subtraction instead. Similarly, instead of multiplying by
186 -- a reciprocal, we divide.
188 procedure Sub_Row
189 (M : in out Matrix;
190 Target : Integer;
191 Source : Integer;
192 Factor : Scalar);
193 -- Subtrace Factor * M (Source, <>) from M (Target, <>)
195 procedure Divide_Row
196 (M, N : in out Matrix;
197 Row : Integer;
198 Scale : Scalar);
199 -- Divide M (Row) and N (Row) by Scale, and update Det
201 procedure Switch_Row
202 (M, N : in out Matrix;
203 Row_1 : Integer;
204 Row_2 : Integer);
205 -- Exchange M (Row_1) and N (Row_1) with M (Row_2) and N (Row_2),
206 -- negating Det in the process.
208 -------------
209 -- Sub_Row --
210 -------------
212 procedure Sub_Row
213 (M : in out Matrix;
214 Target : Integer;
215 Source : Integer;
216 Factor : Scalar)
218 begin
219 for J in M'Range (2) loop
220 M (Target, J) := M (Target, J) - Factor * M (Source, J);
221 end loop;
222 end Sub_Row;
224 ----------------
225 -- Divide_Row --
226 ----------------
228 procedure Divide_Row
229 (M, N : in out Matrix;
230 Row : Integer;
231 Scale : Scalar)
233 begin
234 Det := Det * Scale;
236 for J in M'Range (2) loop
237 M (Row, J) := M (Row, J) / Scale;
238 end loop;
240 for J in N'Range (2) loop
241 N (Row - M'First (1) + N'First (1), J) :=
242 N (Row - M'First (1) + N'First (1), J) / Scale;
243 end loop;
244 end Divide_Row;
246 ----------------
247 -- Switch_Row --
248 ----------------
250 procedure Switch_Row
251 (M, N : in out Matrix;
252 Row_1 : Integer;
253 Row_2 : Integer)
255 procedure Swap (X, Y : in out Scalar);
256 -- Exchange the values of X and Y
258 ----------
259 -- Swap --
260 ----------
262 procedure Swap (X, Y : in out Scalar) is
263 T : constant Scalar := X;
264 begin
265 X := Y;
266 Y := T;
267 end Swap;
269 -- Start of processing for Switch_Row
271 begin
272 if Row_1 /= Row_2 then
273 Det := Zero - Det;
275 for J in M'Range (2) loop
276 Swap (M (Row_1, J), M (Row_2, J));
277 end loop;
279 for J in N'Range (2) loop
280 Swap (N (Row_1 - M'First (1) + N'First (1), J),
281 N (Row_2 - M'First (1) + N'First (1), J));
282 end loop;
283 end if;
284 end Switch_Row;
286 -- Local declarations
288 Row : Integer := M'First (1);
290 -- Start of processing for Forward_Eliminate
292 begin
293 Det := One;
295 for J in M'Range (2) loop
296 declare
297 Max_Row : Integer := Row;
298 Max_Abs : Real'Base := 0.0;
300 begin
301 -- Find best pivot in column J, starting in row Row
303 for K in Row .. M'Last (1) loop
304 declare
305 New_Abs : constant Real'Base := abs M (K, J);
306 begin
307 if Max_Abs < New_Abs then
308 Max_Abs := New_Abs;
309 Max_Row := K;
310 end if;
311 end;
312 end loop;
314 if Max_Abs > 0.0 then
315 Switch_Row (M, N, Row, Max_Row);
317 -- The temporaries below are necessary to force a copy of the
318 -- value and avoid improper aliasing.
320 declare
321 Scale : constant Scalar := M (Row, J);
322 begin
323 Divide_Row (M, N, Row, Scale);
324 end;
326 for U in Row + 1 .. M'Last (1) loop
327 declare
328 Factor : constant Scalar := M (U, J);
329 begin
330 Sub_Row (N, U, Row, Factor);
331 Sub_Row (M, U, Row, Factor);
332 end;
333 end loop;
335 exit when Row >= M'Last (1);
337 Row := Row + 1;
339 else
340 -- Set zero (note that we do not have literals)
342 Det := Zero;
343 end if;
344 end;
345 end loop;
346 end Forward_Eliminate;
348 -------------------
349 -- Inner_Product --
350 -------------------
352 function Inner_Product
353 (Left : Left_Vector;
354 Right : Right_Vector) return Result_Scalar
356 R : Result_Scalar := Zero;
358 begin
359 if Left'Length /= Right'Length then
360 raise Constraint_Error with
361 "vectors are of different length in inner product";
362 end if;
364 for J in Left'Range loop
365 R := R + Left (J) * Right (J - Left'First + Right'First);
366 end loop;
368 return R;
369 end Inner_Product;
371 -------------
372 -- L2_Norm --
373 -------------
375 function L2_Norm (X : X_Vector) return Result_Real'Base is
376 Sum : Result_Real'Base := 0.0;
378 begin
379 for J in X'Range loop
380 Sum := Sum + Result_Real'Base (abs X (J))**2;
381 end loop;
383 return Sqrt (Sum);
384 end L2_Norm;
386 ----------------------------------
387 -- Matrix_Elementwise_Operation --
388 ----------------------------------
390 function Matrix_Elementwise_Operation (X : X_Matrix) return Result_Matrix is
391 begin
392 return R : Result_Matrix (X'Range (1), X'Range (2)) do
393 for J in R'Range (1) loop
394 for K in R'Range (2) loop
395 R (J, K) := Operation (X (J, K));
396 end loop;
397 end loop;
398 end return;
399 end Matrix_Elementwise_Operation;
401 ----------------------------------
402 -- Vector_Elementwise_Operation --
403 ----------------------------------
405 function Vector_Elementwise_Operation (X : X_Vector) return Result_Vector is
406 begin
407 return R : Result_Vector (X'Range) do
408 for J in R'Range loop
409 R (J) := Operation (X (J));
410 end loop;
411 end return;
412 end Vector_Elementwise_Operation;
414 -----------------------------------------
415 -- Matrix_Matrix_Elementwise_Operation --
416 -----------------------------------------
418 function Matrix_Matrix_Elementwise_Operation
419 (Left : Left_Matrix;
420 Right : Right_Matrix) return Result_Matrix
422 begin
423 return R : Result_Matrix (Left'Range (1), Left'Range (2)) do
424 if Left'Length (1) /= Right'Length (1)
425 or else
426 Left'Length (2) /= Right'Length (2)
427 then
428 raise Constraint_Error with
429 "matrices are of different dimension in elementwise operation";
430 end if;
432 for J in R'Range (1) loop
433 for K in R'Range (2) loop
434 R (J, K) :=
435 Operation
436 (Left (J, K),
437 Right
438 (J - R'First (1) + Right'First (1),
439 K - R'First (2) + Right'First (2)));
440 end loop;
441 end loop;
442 end return;
443 end Matrix_Matrix_Elementwise_Operation;
445 ------------------------------------------------
446 -- Matrix_Matrix_Scalar_Elementwise_Operation --
447 ------------------------------------------------
449 function Matrix_Matrix_Scalar_Elementwise_Operation
450 (X : X_Matrix;
451 Y : Y_Matrix;
452 Z : Z_Scalar) return Result_Matrix
454 begin
455 return R : Result_Matrix (X'Range (1), X'Range (2)) do
456 if X'Length (1) /= Y'Length (1)
457 or else
458 X'Length (2) /= Y'Length (2)
459 then
460 raise Constraint_Error with
461 "matrices are of different dimension in elementwise operation";
462 end if;
464 for J in R'Range (1) loop
465 for K in R'Range (2) loop
466 R (J, K) :=
467 Operation
468 (X (J, K),
469 Y (J - R'First (1) + Y'First (1),
470 K - R'First (2) + Y'First (2)),
472 end loop;
473 end loop;
474 end return;
475 end Matrix_Matrix_Scalar_Elementwise_Operation;
477 -----------------------------------------
478 -- Vector_Vector_Elementwise_Operation --
479 -----------------------------------------
481 function Vector_Vector_Elementwise_Operation
482 (Left : Left_Vector;
483 Right : Right_Vector) return Result_Vector
485 begin
486 return R : Result_Vector (Left'Range) do
487 if Left'Length /= Right'Length then
488 raise Constraint_Error with
489 "vectors are of different length in elementwise operation";
490 end if;
492 for J in R'Range loop
493 R (J) := Operation (Left (J), Right (J - R'First + Right'First));
494 end loop;
495 end return;
496 end Vector_Vector_Elementwise_Operation;
498 ------------------------------------------------
499 -- Vector_Vector_Scalar_Elementwise_Operation --
500 ------------------------------------------------
502 function Vector_Vector_Scalar_Elementwise_Operation
503 (X : X_Vector;
504 Y : Y_Vector;
505 Z : Z_Scalar) return Result_Vector is
506 begin
507 return R : Result_Vector (X'Range) do
508 if X'Length /= Y'Length then
509 raise Constraint_Error with
510 "vectors are of different length in elementwise operation";
511 end if;
513 for J in R'Range loop
514 R (J) := Operation (X (J), Y (J - X'First + Y'First), Z);
515 end loop;
516 end return;
517 end Vector_Vector_Scalar_Elementwise_Operation;
519 -----------------------------------------
520 -- Matrix_Scalar_Elementwise_Operation --
521 -----------------------------------------
523 function Matrix_Scalar_Elementwise_Operation
524 (Left : Left_Matrix;
525 Right : Right_Scalar) return Result_Matrix
527 begin
528 return R : Result_Matrix (Left'Range (1), Left'Range (2)) do
529 for J in R'Range (1) loop
530 for K in R'Range (2) loop
531 R (J, K) := Operation (Left (J, K), Right);
532 end loop;
533 end loop;
534 end return;
535 end Matrix_Scalar_Elementwise_Operation;
537 -----------------------------------------
538 -- Vector_Scalar_Elementwise_Operation --
539 -----------------------------------------
541 function Vector_Scalar_Elementwise_Operation
542 (Left : Left_Vector;
543 Right : Right_Scalar) return Result_Vector
545 begin
546 return R : Result_Vector (Left'Range) do
547 for J in R'Range loop
548 R (J) := Operation (Left (J), Right);
549 end loop;
550 end return;
551 end Vector_Scalar_Elementwise_Operation;
553 -----------------------------------------
554 -- Scalar_Matrix_Elementwise_Operation --
555 -----------------------------------------
557 function Scalar_Matrix_Elementwise_Operation
558 (Left : Left_Scalar;
559 Right : Right_Matrix) return Result_Matrix
561 begin
562 return R : Result_Matrix (Right'Range (1), Right'Range (2)) do
563 for J in R'Range (1) loop
564 for K in R'Range (2) loop
565 R (J, K) := Operation (Left, Right (J, K));
566 end loop;
567 end loop;
568 end return;
569 end Scalar_Matrix_Elementwise_Operation;
571 -----------------------------------------
572 -- Scalar_Vector_Elementwise_Operation --
573 -----------------------------------------
575 function Scalar_Vector_Elementwise_Operation
576 (Left : Left_Scalar;
577 Right : Right_Vector) return Result_Vector
579 begin
580 return R : Result_Vector (Right'Range) do
581 for J in R'Range loop
582 R (J) := Operation (Left, Right (J));
583 end loop;
584 end return;
585 end Scalar_Vector_Elementwise_Operation;
587 ----------
588 -- Sqrt --
589 ----------
591 function Sqrt (X : Real'Base) return Real'Base is
592 Root, Next : Real'Base;
594 begin
595 -- Be defensive: any comparisons with NaN values will yield False.
597 if not (X > 0.0) then
598 if X = 0.0 then
599 return X;
600 else
601 raise Argument_Error;
602 end if;
604 elsif X > Real'Base'Last then
606 -- X is infinity, which is its own square root
608 return X;
609 end if;
611 -- Compute an initial estimate based on:
613 -- X = M * R**E and Sqrt (X) = Sqrt (M) * R**(E / 2.0),
615 -- where M is the mantissa, R is the radix and E the exponent.
617 -- By ignoring the mantissa and ignoring the case of an odd
618 -- exponent, we get a final error that is at most R. In other words,
619 -- the result has about a single bit precision.
621 Root := Real'Base (Real'Machine_Radix) ** (Real'Exponent (X) / 2);
623 -- Because of the poor initial estimate, use the Babylonian method of
624 -- computing the square root, as it is stable for all inputs. Every step
625 -- will roughly double the precision of the result. Just a few steps
626 -- suffice in most cases. Eight iterations should give about 2**8 bits
627 -- of precision.
629 for J in 1 .. 8 loop
630 Next := (Root + X / Root) / 2.0;
631 exit when Root = Next;
632 Root := Next;
633 end loop;
635 return Root;
636 end Sqrt;
638 ---------------------------
639 -- Matrix_Matrix_Product --
640 ---------------------------
642 function Matrix_Matrix_Product
643 (Left : Left_Matrix;
644 Right : Right_Matrix) return Result_Matrix
646 begin
647 return R : Result_Matrix (Left'Range (1), Right'Range (2)) do
648 if Left'Length (2) /= Right'Length (1) then
649 raise Constraint_Error with
650 "incompatible dimensions in matrix multiplication";
651 end if;
653 for J in R'Range (1) loop
654 for K in R'Range (2) loop
655 declare
656 S : Result_Scalar := Zero;
658 begin
659 for M in Left'Range (2) loop
660 S := S + Left (J, M) *
661 Right
662 (M - Left'First (2) + Right'First (1), K);
663 end loop;
665 R (J, K) := S;
666 end;
667 end loop;
668 end loop;
669 end return;
670 end Matrix_Matrix_Product;
672 ----------------------------
673 -- Matrix_Vector_Solution --
674 ----------------------------
676 function Matrix_Vector_Solution (A : Matrix; X : Vector) return Vector is
677 N : constant Natural := A'Length (1);
678 MA : Matrix := A;
679 MX : Matrix (A'Range (1), 1 .. 1);
680 R : Vector (A'Range (2));
681 Det : Scalar;
683 begin
684 if A'Length (2) /= N then
685 raise Constraint_Error with "matrix is not square";
686 end if;
688 if X'Length /= N then
689 raise Constraint_Error with "incompatible vector length";
690 end if;
692 for J in 0 .. MX'Length (1) - 1 loop
693 MX (MX'First (1) + J, 1) := X (X'First + J);
694 end loop;
696 Forward_Eliminate (MA, MX, Det);
698 if Det = Zero then
699 raise Constraint_Error with "matrix is singular";
700 end if;
702 Back_Substitute (MA, MX);
704 for J in 0 .. R'Length - 1 loop
705 R (R'First + J) := MX (MX'First (1) + J, 1);
706 end loop;
708 return R;
709 end Matrix_Vector_Solution;
711 ----------------------------
712 -- Matrix_Matrix_Solution --
713 ----------------------------
715 function Matrix_Matrix_Solution (A, X : Matrix) return Matrix is
716 N : constant Natural := A'Length (1);
717 MA : Matrix (A'Range (2), A'Range (2));
718 MB : Matrix (A'Range (2), X'Range (2));
719 Det : Scalar;
721 begin
722 if A'Length (2) /= N then
723 raise Constraint_Error with "matrix is not square";
724 end if;
726 if X'Length (1) /= N then
727 raise Constraint_Error with "matrices have unequal number of rows";
728 end if;
730 for J in 0 .. A'Length (1) - 1 loop
731 for K in MA'Range (2) loop
732 MA (MA'First (1) + J, K) := A (A'First (1) + J, K);
733 end loop;
735 for K in MB'Range (2) loop
736 MB (MB'First (1) + J, K) := X (X'First (1) + J, K);
737 end loop;
738 end loop;
740 Forward_Eliminate (MA, MB, Det);
742 if Det = Zero then
743 raise Constraint_Error with "matrix is singular";
744 end if;
746 Back_Substitute (MA, MB);
748 return MB;
749 end Matrix_Matrix_Solution;
751 ---------------------------
752 -- Matrix_Vector_Product --
753 ---------------------------
755 function Matrix_Vector_Product
756 (Left : Matrix;
757 Right : Right_Vector) return Result_Vector
759 begin
760 return R : Result_Vector (Left'Range (1)) do
761 if Left'Length (2) /= Right'Length then
762 raise Constraint_Error with
763 "incompatible dimensions in matrix-vector multiplication";
764 end if;
766 for J in Left'Range (1) loop
767 declare
768 S : Result_Scalar := Zero;
770 begin
771 for K in Left'Range (2) loop
772 S := S + Left (J, K)
773 * Right (K - Left'First (2) + Right'First);
774 end loop;
776 R (J) := S;
777 end;
778 end loop;
779 end return;
780 end Matrix_Vector_Product;
782 -------------------
783 -- Outer_Product --
784 -------------------
786 function Outer_Product
787 (Left : Left_Vector;
788 Right : Right_Vector) return Matrix
790 begin
791 return R : Matrix (Left'Range, Right'Range) do
792 for J in R'Range (1) loop
793 for K in R'Range (2) loop
794 R (J, K) := Left (J) * Right (K);
795 end loop;
796 end loop;
797 end return;
798 end Outer_Product;
800 -----------------
801 -- Swap_Column --
802 -----------------
804 procedure Swap_Column (A : in out Matrix; Left, Right : Integer) is
805 Temp : Scalar;
806 begin
807 for J in A'Range (1) loop
808 Temp := A (J, Left);
809 A (J, Left) := A (J, Right);
810 A (J, Right) := Temp;
811 end loop;
812 end Swap_Column;
814 ---------------
815 -- Transpose --
816 ---------------
818 procedure Transpose (A : Matrix; R : out Matrix) is
819 begin
820 for J in R'Range (1) loop
821 for K in R'Range (2) loop
822 R (J, K) := A (K - R'First (2) + A'First (1),
823 J - R'First (1) + A'First (2));
824 end loop;
825 end loop;
826 end Transpose;
828 -------------------------------
829 -- Update_Matrix_With_Matrix --
830 -------------------------------
832 procedure Update_Matrix_With_Matrix (X : in out X_Matrix; Y : Y_Matrix) is
833 begin
834 if X'Length (1) /= Y'Length (1)
835 or else
836 X'Length (2) /= Y'Length (2)
837 then
838 raise Constraint_Error with
839 "matrices are of different dimension in update operation";
840 end if;
842 for J in X'Range (1) loop
843 for K in X'Range (2) loop
844 Update (X (J, K), Y (J - X'First (1) + Y'First (1),
845 K - X'First (2) + Y'First (2)));
846 end loop;
847 end loop;
848 end Update_Matrix_With_Matrix;
850 -------------------------------
851 -- Update_Vector_With_Vector --
852 -------------------------------
854 procedure Update_Vector_With_Vector (X : in out X_Vector; Y : Y_Vector) is
855 begin
856 if X'Length /= Y'Length then
857 raise Constraint_Error with
858 "vectors are of different length in update operation";
859 end if;
861 for J in X'Range loop
862 Update (X (J), Y (J - X'First + Y'First));
863 end loop;
864 end Update_Vector_With_Vector;
866 -----------------
867 -- Unit_Matrix --
868 -----------------
870 function Unit_Matrix
871 (Order : Positive;
872 First_1 : Integer := 1;
873 First_2 : Integer := 1) return Matrix
875 begin
876 return R : Matrix (First_1 .. Check_Unit_Last (First_1, Order, First_1),
877 First_2 .. Check_Unit_Last (First_2, Order, First_2))
879 R := (others => (others => Zero));
881 for J in 0 .. Order - 1 loop
882 R (First_1 + J, First_2 + J) := One;
883 end loop;
884 end return;
885 end Unit_Matrix;
887 -----------------
888 -- Unit_Vector --
889 -----------------
891 function Unit_Vector
892 (Index : Integer;
893 Order : Positive;
894 First : Integer := 1) return Vector
896 begin
897 return R : Vector (First .. Check_Unit_Last (Index, Order, First)) do
898 R := (others => Zero);
899 R (Index) := One;
900 end return;
901 end Unit_Vector;
903 ---------------------------
904 -- Vector_Matrix_Product --
905 ---------------------------
907 function Vector_Matrix_Product
908 (Left : Left_Vector;
909 Right : Matrix) return Result_Vector
911 begin
912 return R : Result_Vector (Right'Range (2)) do
913 if Left'Length /= Right'Length (1) then
914 raise Constraint_Error with
915 "incompatible dimensions in vector-matrix multiplication";
916 end if;
918 for J in Right'Range (2) loop
919 declare
920 S : Result_Scalar := Zero;
922 begin
923 for K in Right'Range (1) loop
924 S := S + Left (K - Right'First (1)
925 + Left'First) * Right (K, J);
926 end loop;
928 R (J) := S;
929 end;
930 end loop;
931 end return;
932 end Vector_Matrix_Product;
934 end System.Generic_Array_Operations;