PR target/56540
[official-gcc.git] / gcc / config / ia64 / ia64.h
blob6ecc15510e3b0828ae147a0d5372d1e8f3a18130
1 /* Definitions of target machine GNU compiler. IA-64 version.
2 Copyright (C) 1999-2018 Free Software Foundation, Inc.
3 Contributed by James E. Wilson <wilson@cygnus.com> and
4 David Mosberger <davidm@hpl.hp.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* ??? Look at ABI group documents for list of preprocessor macros and
23 other features required for ABI compliance. */
25 /* ??? Functions containing a non-local goto target save many registers. Why?
26 See for instance execute/920428-2.c. */
29 /* Run-time target specifications */
31 /* Target CPU builtins. */
32 #define TARGET_CPU_CPP_BUILTINS() \
33 do { \
34 builtin_assert("cpu=ia64"); \
35 builtin_assert("machine=ia64"); \
36 builtin_define("__ia64"); \
37 builtin_define("__ia64__"); \
38 builtin_define("__itanium__"); \
39 if (TARGET_BIG_ENDIAN) \
40 builtin_define("__BIG_ENDIAN__"); \
41 builtin_define("__SIZEOF_FPREG__=16"); \
42 builtin_define("__SIZEOF_FLOAT80__=16");\
43 builtin_define("__SIZEOF_FLOAT128__=16");\
44 } while (0)
46 #ifndef SUBTARGET_EXTRA_SPECS
47 #define SUBTARGET_EXTRA_SPECS
48 #endif
50 #define EXTRA_SPECS \
51 { "asm_extra", ASM_EXTRA_SPEC }, \
52 SUBTARGET_EXTRA_SPECS
54 #define CC1_SPEC "%(cc1_cpu) "
56 #define ASM_EXTRA_SPEC ""
58 /* Variables which are this size or smaller are put in the sdata/sbss
59 sections. */
60 extern unsigned int ia64_section_threshold;
62 /* If the assembler supports thread-local storage, assume that the
63 system does as well. If a particular target system has an
64 assembler that supports TLS -- but the rest of the system does not
65 support TLS -- that system should explicit define TARGET_HAVE_TLS
66 to false in its own configuration file. */
67 #if !defined(TARGET_HAVE_TLS) && defined(HAVE_AS_TLS)
68 #define TARGET_HAVE_TLS true
69 #endif
71 #define TARGET_TLS14 (ia64_tls_size == 14)
72 #define TARGET_TLS22 (ia64_tls_size == 22)
73 #define TARGET_TLS64 (ia64_tls_size == 64)
75 #define TARGET_HPUX 0
76 #define TARGET_HPUX_LD 0
78 #define TARGET_ABI_OPEN_VMS 0
80 #ifndef TARGET_ILP32
81 #define TARGET_ILP32 0
82 #endif
84 #ifndef HAVE_AS_LTOFFX_LDXMOV_RELOCS
85 #define HAVE_AS_LTOFFX_LDXMOV_RELOCS 0
86 #endif
88 /* Values for TARGET_INLINE_FLOAT_DIV, TARGET_INLINE_INT_DIV, and
89 TARGET_INLINE_SQRT. */
91 enum ia64_inline_type
93 INL_NO = 0,
94 INL_MIN_LAT = 1,
95 INL_MAX_THR = 2
98 /* Default target_flags if no switches are specified */
100 #ifndef TARGET_DEFAULT
101 #define TARGET_DEFAULT (MASK_DWARF2_ASM)
102 #endif
104 #ifndef TARGET_CPU_DEFAULT
105 #define TARGET_CPU_DEFAULT 0
106 #endif
108 /* Driver configuration */
110 /* A C string constant that tells the GCC driver program options to pass to
111 `cc1'. It can also specify how to translate options you give to GCC into
112 options for GCC to pass to the `cc1'. */
114 #undef CC1_SPEC
115 #define CC1_SPEC "%{G*}"
117 /* A C string constant that tells the GCC driver program options to pass to
118 `cc1plus'. It can also specify how to translate options you give to GCC
119 into options for GCC to pass to the `cc1plus'. */
121 /* #define CC1PLUS_SPEC "" */
123 /* Storage Layout */
125 /* Define this macro to have the value 1 if the most significant bit in a byte
126 has the lowest number; otherwise define it to have the value zero. */
128 #define BITS_BIG_ENDIAN 0
130 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
132 /* Define this macro to have the value 1 if, in a multiword object, the most
133 significant word has the lowest number. */
135 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
137 #define UNITS_PER_WORD 8
139 #define POINTER_SIZE (TARGET_ILP32 ? 32 : 64)
141 /* A C expression whose value is zero if pointers that need to be extended
142 from being `POINTER_SIZE' bits wide to `Pmode' are sign-extended and one if
143 they are zero-extended and negative one if there is a ptr_extend operation.
145 You need not define this macro if the `POINTER_SIZE' is equal to the width
146 of `Pmode'. */
147 /* Need this for 32-bit pointers, see hpux.h for setting it. */
148 /* #define POINTERS_EXTEND_UNSIGNED */
150 /* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
151 which has the specified mode and signedness is to be stored in a register.
152 This macro is only called when TYPE is a scalar type. */
153 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
154 do \
156 if (GET_MODE_CLASS (MODE) == MODE_INT \
157 && GET_MODE_SIZE (MODE) < 4) \
158 (MODE) = SImode; \
160 while (0)
162 #define PARM_BOUNDARY 64
164 /* Define this macro if you wish to preserve a certain alignment for the stack
165 pointer. The definition is a C expression for the desired alignment
166 (measured in bits). */
168 #define STACK_BOUNDARY 128
170 /* Align frames on double word boundaries */
171 #ifndef IA64_STACK_ALIGN
172 #define IA64_STACK_ALIGN(LOC) (((LOC) + 15) & ~15)
173 #endif
175 #define FUNCTION_BOUNDARY 128
177 /* Optional x86 80-bit float, quad-precision 128-bit float, and quad-word
178 128-bit integers all require 128-bit alignment. */
179 #define BIGGEST_ALIGNMENT 128
181 /* If defined, a C expression to compute the alignment for a static variable.
182 TYPE is the data type, and ALIGN is the alignment that the object
183 would ordinarily have. The value of this macro is used instead of that
184 alignment to align the object. */
186 #define DATA_ALIGNMENT(TYPE, ALIGN) \
187 (TREE_CODE (TYPE) == ARRAY_TYPE \
188 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
189 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
191 #define STRICT_ALIGNMENT 1
193 /* Define this if you wish to imitate the way many other C compilers handle
194 alignment of bitfields and the structures that contain them.
195 The behavior is that the type written for a bit-field (`int', `short', or
196 other integer type) imposes an alignment for the entire structure, as if the
197 structure really did contain an ordinary field of that type. In addition,
198 the bit-field is placed within the structure so that it would fit within such
199 a field, not crossing a boundary for it. */
200 #define PCC_BITFIELD_TYPE_MATTERS 1
202 /* An integer expression for the size in bits of the largest integer machine
203 mode that should actually be used. */
205 /* Allow pairs of registers to be used, which is the intent of the default. */
206 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
208 /* By default, the C++ compiler will use function addresses in the
209 vtable entries. Setting this nonzero tells the compiler to use
210 function descriptors instead. The value of this macro says how
211 many words wide the descriptor is (normally 2). It is assumed
212 that the address of a function descriptor may be treated as a
213 pointer to a function.
215 For reasons known only to HP, the vtable entries (as opposed to
216 normal function descriptors) are 16 bytes wide in 32-bit mode as
217 well, even though the 3rd and 4th words are unused. */
218 #define TARGET_VTABLE_USES_DESCRIPTORS (TARGET_ILP32 ? 4 : 2)
220 /* Due to silliness in the HPUX linker, vtable entries must be
221 8-byte aligned even in 32-bit mode. Rather than create multiple
222 ABIs, force this restriction on everyone else too. */
223 #define TARGET_VTABLE_ENTRY_ALIGN 64
225 /* Due to the above, we need extra padding for the data entries below 0
226 to retain the alignment of the descriptors. */
227 #define TARGET_VTABLE_DATA_ENTRY_DISTANCE (TARGET_ILP32 ? 2 : 1)
229 /* Layout of Source Language Data Types */
231 #define INT_TYPE_SIZE 32
233 #define SHORT_TYPE_SIZE 16
235 #define LONG_TYPE_SIZE (TARGET_ILP32 ? 32 : 64)
237 #define LONG_LONG_TYPE_SIZE 64
239 #define FLOAT_TYPE_SIZE 32
241 #define DOUBLE_TYPE_SIZE 64
243 /* long double is XFmode normally, and TFmode for HPUX. It should be
244 TFmode for VMS as well but we only support up to DFmode now. */
245 #define LONG_DOUBLE_TYPE_SIZE \
246 (TARGET_HPUX ? 128 \
247 : TARGET_ABI_OPEN_VMS ? 64 \
248 : 80)
251 #define DEFAULT_SIGNED_CHAR 1
253 /* A C expression for a string describing the name of the data type to use for
254 size values. The typedef name `size_t' is defined using the contents of the
255 string. */
256 /* ??? Needs to be defined for P64 code. */
257 /* #define SIZE_TYPE */
259 /* A C expression for a string describing the name of the data type to use for
260 the result of subtracting two pointers. The typedef name `ptrdiff_t' is
261 defined using the contents of the string. See `SIZE_TYPE' above for more
262 information. */
263 /* ??? Needs to be defined for P64 code. */
264 /* #define PTRDIFF_TYPE */
266 /* A C expression for a string describing the name of the data type to use for
267 wide characters. The typedef name `wchar_t' is defined using the contents
268 of the string. See `SIZE_TYPE' above for more information. */
269 /* #define WCHAR_TYPE */
271 /* A C expression for the size in bits of the data type for wide characters.
272 This is used in `cpp', which cannot make use of `WCHAR_TYPE'. */
273 /* #define WCHAR_TYPE_SIZE */
276 /* Register Basics */
278 /* Number of hardware registers known to the compiler.
279 We have 128 general registers, 128 floating point registers,
280 64 predicate registers, 8 branch registers, one frame pointer,
281 and several "application" registers. */
283 #define FIRST_PSEUDO_REGISTER 334
285 /* Ranges for the various kinds of registers. */
286 #define ADDL_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 3)
287 #define GR_REGNO_P(REGNO) ((unsigned HOST_WIDE_INT) (REGNO) <= 127)
288 #define FR_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 255)
289 #define FP_REGNO_P(REGNO) ((REGNO) >= 128 && (REGNO) <= 254 && (REGNO) != 159)
290 #define PR_REGNO_P(REGNO) ((REGNO) >= 256 && (REGNO) <= 319)
291 #define BR_REGNO_P(REGNO) ((REGNO) >= 320 && (REGNO) <= 327)
292 #define GENERAL_REGNO_P(REGNO) \
293 (GR_REGNO_P (REGNO) || (REGNO) == FRAME_POINTER_REGNUM)
295 #define GR_REG(REGNO) ((REGNO) + 0)
296 #define FR_REG(REGNO) ((REGNO) + 128)
297 #define PR_REG(REGNO) ((REGNO) + 256)
298 #define BR_REG(REGNO) ((REGNO) + 320)
299 #define OUT_REG(REGNO) ((REGNO) + 120)
300 #define IN_REG(REGNO) ((REGNO) + 112)
301 #define LOC_REG(REGNO) ((REGNO) + 32)
303 #define AR_CCV_REGNUM 329
304 #define AR_UNAT_REGNUM 330
305 #define AR_PFS_REGNUM 331
306 #define AR_LC_REGNUM 332
307 #define AR_EC_REGNUM 333
309 #define IN_REGNO_P(REGNO) ((REGNO) >= IN_REG (0) && (REGNO) <= IN_REG (7))
310 #define LOC_REGNO_P(REGNO) ((REGNO) >= LOC_REG (0) && (REGNO) <= LOC_REG (79))
311 #define OUT_REGNO_P(REGNO) ((REGNO) >= OUT_REG (0) && (REGNO) <= OUT_REG (7))
313 #define AR_M_REGNO_P(REGNO) ((REGNO) == AR_CCV_REGNUM \
314 || (REGNO) == AR_UNAT_REGNUM)
315 #define AR_I_REGNO_P(REGNO) ((REGNO) >= AR_PFS_REGNUM \
316 && (REGNO) < FIRST_PSEUDO_REGISTER)
317 #define AR_REGNO_P(REGNO) ((REGNO) >= AR_CCV_REGNUM \
318 && (REGNO) < FIRST_PSEUDO_REGISTER)
321 /* ??? Don't really need two sets of macros. I like this one better because
322 it is less typing. */
323 #define R_GR(REGNO) GR_REG (REGNO)
324 #define R_FR(REGNO) FR_REG (REGNO)
325 #define R_PR(REGNO) PR_REG (REGNO)
326 #define R_BR(REGNO) BR_REG (REGNO)
328 /* An initializer that says which registers are used for fixed purposes all
329 throughout the compiled code and are therefore not available for general
330 allocation.
332 r0: constant 0
333 r1: global pointer (gp)
334 r12: stack pointer (sp)
335 r13: thread pointer (tp)
336 f0: constant 0.0
337 f1: constant 1.0
338 p0: constant true
339 fp: eliminable frame pointer */
341 /* The last 16 stacked regs are reserved for the 8 input and 8 output
342 registers. */
344 #define FIXED_REGISTERS \
345 { /* General registers. */ \
346 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, \
347 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
348 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
349 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
350 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
351 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
352 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
353 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
354 /* Floating-point registers. */ \
355 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
356 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
357 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
358 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
359 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
360 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
361 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
362 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
363 /* Predicate registers. */ \
364 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
365 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
366 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
367 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
368 /* Branch registers. */ \
369 0, 0, 0, 0, 0, 0, 0, 0, \
370 /*FP CCV UNAT PFS LC EC */ \
371 1, 1, 1, 1, 1, 1 \
374 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered
375 (in general) by function calls as well as for fixed registers. This
376 macro therefore identifies the registers that are not available for
377 general allocation of values that must live across function calls. */
379 #define CALL_USED_REGISTERS \
380 { /* General registers. */ \
381 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
382 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
383 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
384 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
385 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
386 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
387 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
388 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
389 /* Floating-point registers. */ \
390 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
391 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
392 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
393 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
394 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
395 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
396 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
397 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
398 /* Predicate registers. */ \
399 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
400 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
401 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
402 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
403 /* Branch registers. */ \
404 1, 0, 0, 0, 0, 0, 1, 1, \
405 /*FP CCV UNAT PFS LC EC */ \
406 1, 1, 1, 1, 1, 1 \
409 /* Like `CALL_USED_REGISTERS' but used to overcome a historical
410 problem which makes CALL_USED_REGISTERS *always* include
411 all the FIXED_REGISTERS. Until this problem has been
412 resolved this macro can be used to overcome this situation.
413 In particular, block_propagate() requires this list
414 be accurate, or we can remove registers which should be live.
415 This macro is used in regs_invalidated_by_call. */
417 #define CALL_REALLY_USED_REGISTERS \
418 { /* General registers. */ \
419 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, \
420 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
421 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
422 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
423 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
424 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
425 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
426 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
427 /* Floating-point registers. */ \
428 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
429 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
430 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
431 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
432 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
433 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
434 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
435 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
436 /* Predicate registers. */ \
437 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
438 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
439 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
440 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
441 /* Branch registers. */ \
442 1, 0, 0, 0, 0, 0, 1, 1, \
443 /*FP CCV UNAT PFS LC EC */ \
444 0, 1, 0, 1, 0, 0 \
448 /* Define this macro if the target machine has register windows. This C
449 expression returns the register number as seen by the called function
450 corresponding to the register number OUT as seen by the calling function.
451 Return OUT if register number OUT is not an outbound register. */
453 #define INCOMING_REGNO(OUT) \
454 ((unsigned) ((OUT) - OUT_REG (0)) < 8 ? IN_REG ((OUT) - OUT_REG (0)) : (OUT))
456 /* Define this macro if the target machine has register windows. This C
457 expression returns the register number as seen by the calling function
458 corresponding to the register number IN as seen by the called function.
459 Return IN if register number IN is not an inbound register. */
461 #define OUTGOING_REGNO(IN) \
462 ((unsigned) ((IN) - IN_REG (0)) < 8 ? OUT_REG ((IN) - IN_REG (0)) : (IN))
464 /* Define this macro if the target machine has register windows. This
465 C expression returns true if the register is call-saved but is in the
466 register window. */
468 #define LOCAL_REGNO(REGNO) \
469 (IN_REGNO_P (REGNO) || LOC_REGNO_P (REGNO))
471 /* We define CCImode in ia64-modes.def so we need a selector. */
473 #define SELECT_CC_MODE(OP,X,Y) CCmode
475 /* Order of allocation of registers */
477 /* If defined, an initializer for a vector of integers, containing the numbers
478 of hard registers in the order in which GCC should prefer to use them
479 (from most preferred to least).
481 If this macro is not defined, registers are used lowest numbered first (all
482 else being equal).
484 One use of this macro is on machines where the highest numbered registers
485 must always be saved and the save-multiple-registers instruction supports
486 only sequences of consecutive registers. On such machines, define
487 `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
488 allocatable register first. */
490 /* ??? Should the GR return value registers come before or after the rest
491 of the caller-save GRs? */
493 #define REG_ALLOC_ORDER \
495 /* Caller-saved general registers. */ \
496 R_GR (14), R_GR (15), R_GR (16), R_GR (17), \
497 R_GR (18), R_GR (19), R_GR (20), R_GR (21), R_GR (22), R_GR (23), \
498 R_GR (24), R_GR (25), R_GR (26), R_GR (27), R_GR (28), R_GR (29), \
499 R_GR (30), R_GR (31), \
500 /* Output registers. */ \
501 R_GR (120), R_GR (121), R_GR (122), R_GR (123), R_GR (124), R_GR (125), \
502 R_GR (126), R_GR (127), \
503 /* Caller-saved general registers, also used for return values. */ \
504 R_GR (8), R_GR (9), R_GR (10), R_GR (11), \
505 /* addl caller-saved general registers. */ \
506 R_GR (2), R_GR (3), \
507 /* Caller-saved FP registers. */ \
508 R_FR (6), R_FR (7), \
509 /* Caller-saved FP registers, used for parameters and return values. */ \
510 R_FR (8), R_FR (9), R_FR (10), R_FR (11), \
511 R_FR (12), R_FR (13), R_FR (14), R_FR (15), \
512 /* Rotating caller-saved FP registers. */ \
513 R_FR (32), R_FR (33), R_FR (34), R_FR (35), \
514 R_FR (36), R_FR (37), R_FR (38), R_FR (39), R_FR (40), R_FR (41), \
515 R_FR (42), R_FR (43), R_FR (44), R_FR (45), R_FR (46), R_FR (47), \
516 R_FR (48), R_FR (49), R_FR (50), R_FR (51), R_FR (52), R_FR (53), \
517 R_FR (54), R_FR (55), R_FR (56), R_FR (57), R_FR (58), R_FR (59), \
518 R_FR (60), R_FR (61), R_FR (62), R_FR (63), R_FR (64), R_FR (65), \
519 R_FR (66), R_FR (67), R_FR (68), R_FR (69), R_FR (70), R_FR (71), \
520 R_FR (72), R_FR (73), R_FR (74), R_FR (75), R_FR (76), R_FR (77), \
521 R_FR (78), R_FR (79), R_FR (80), R_FR (81), R_FR (82), R_FR (83), \
522 R_FR (84), R_FR (85), R_FR (86), R_FR (87), R_FR (88), R_FR (89), \
523 R_FR (90), R_FR (91), R_FR (92), R_FR (93), R_FR (94), R_FR (95), \
524 R_FR (96), R_FR (97), R_FR (98), R_FR (99), R_FR (100), R_FR (101), \
525 R_FR (102), R_FR (103), R_FR (104), R_FR (105), R_FR (106), R_FR (107), \
526 R_FR (108), R_FR (109), R_FR (110), R_FR (111), R_FR (112), R_FR (113), \
527 R_FR (114), R_FR (115), R_FR (116), R_FR (117), R_FR (118), R_FR (119), \
528 R_FR (120), R_FR (121), R_FR (122), R_FR (123), R_FR (124), R_FR (125), \
529 R_FR (126), R_FR (127), \
530 /* Caller-saved predicate registers. */ \
531 R_PR (6), R_PR (7), R_PR (8), R_PR (9), R_PR (10), R_PR (11), \
532 R_PR (12), R_PR (13), R_PR (14), R_PR (15), \
533 /* Rotating caller-saved predicate registers. */ \
534 R_PR (16), R_PR (17), \
535 R_PR (18), R_PR (19), R_PR (20), R_PR (21), R_PR (22), R_PR (23), \
536 R_PR (24), R_PR (25), R_PR (26), R_PR (27), R_PR (28), R_PR (29), \
537 R_PR (30), R_PR (31), R_PR (32), R_PR (33), R_PR (34), R_PR (35), \
538 R_PR (36), R_PR (37), R_PR (38), R_PR (39), R_PR (40), R_PR (41), \
539 R_PR (42), R_PR (43), R_PR (44), R_PR (45), R_PR (46), R_PR (47), \
540 R_PR (48), R_PR (49), R_PR (50), R_PR (51), R_PR (52), R_PR (53), \
541 R_PR (54), R_PR (55), R_PR (56), R_PR (57), R_PR (58), R_PR (59), \
542 R_PR (60), R_PR (61), R_PR (62), R_PR (63), \
543 /* Caller-saved branch registers. */ \
544 R_BR (6), R_BR (7), \
546 /* Stacked callee-saved general registers. */ \
547 R_GR (32), R_GR (33), R_GR (34), R_GR (35), \
548 R_GR (36), R_GR (37), R_GR (38), R_GR (39), R_GR (40), R_GR (41), \
549 R_GR (42), R_GR (43), R_GR (44), R_GR (45), R_GR (46), R_GR (47), \
550 R_GR (48), R_GR (49), R_GR (50), R_GR (51), R_GR (52), R_GR (53), \
551 R_GR (54), R_GR (55), R_GR (56), R_GR (57), R_GR (58), R_GR (59), \
552 R_GR (60), R_GR (61), R_GR (62), R_GR (63), R_GR (64), R_GR (65), \
553 R_GR (66), R_GR (67), R_GR (68), R_GR (69), R_GR (70), R_GR (71), \
554 R_GR (72), R_GR (73), R_GR (74), R_GR (75), R_GR (76), R_GR (77), \
555 R_GR (78), R_GR (79), R_GR (80), R_GR (81), R_GR (82), R_GR (83), \
556 R_GR (84), R_GR (85), R_GR (86), R_GR (87), R_GR (88), R_GR (89), \
557 R_GR (90), R_GR (91), R_GR (92), R_GR (93), R_GR (94), R_GR (95), \
558 R_GR (96), R_GR (97), R_GR (98), R_GR (99), R_GR (100), R_GR (101), \
559 R_GR (102), R_GR (103), R_GR (104), R_GR (105), R_GR (106), R_GR (107), \
560 R_GR (108), \
561 /* Input registers. */ \
562 R_GR (112), R_GR (113), R_GR (114), R_GR (115), R_GR (116), R_GR (117), \
563 R_GR (118), R_GR (119), \
564 /* Callee-saved general registers. */ \
565 R_GR (4), R_GR (5), R_GR (6), R_GR (7), \
566 /* Callee-saved FP registers. */ \
567 R_FR (2), R_FR (3), R_FR (4), R_FR (5), R_FR (16), R_FR (17), \
568 R_FR (18), R_FR (19), R_FR (20), R_FR (21), R_FR (22), R_FR (23), \
569 R_FR (24), R_FR (25), R_FR (26), R_FR (27), R_FR (28), R_FR (29), \
570 R_FR (30), R_FR (31), \
571 /* Callee-saved predicate registers. */ \
572 R_PR (1), R_PR (2), R_PR (3), R_PR (4), R_PR (5), \
573 /* Callee-saved branch registers. */ \
574 R_BR (1), R_BR (2), R_BR (3), R_BR (4), R_BR (5), \
576 /* ??? Stacked registers reserved for fp, rp, and ar.pfs. */ \
577 R_GR (109), R_GR (110), R_GR (111), \
579 /* Special general registers. */ \
580 R_GR (0), R_GR (1), R_GR (12), R_GR (13), \
581 /* Special FP registers. */ \
582 R_FR (0), R_FR (1), \
583 /* Special predicate registers. */ \
584 R_PR (0), \
585 /* Special branch registers. */ \
586 R_BR (0), \
587 /* Other fixed registers. */ \
588 FRAME_POINTER_REGNUM, \
589 AR_CCV_REGNUM, AR_UNAT_REGNUM, AR_PFS_REGNUM, AR_LC_REGNUM, \
590 AR_EC_REGNUM \
593 /* How Values Fit in Registers */
595 /* Specify the modes required to caller save a given hard regno.
596 We need to ensure floating pt regs are not saved as DImode. */
598 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
599 ((FR_REGNO_P (REGNO) && (NREGS) == 1) ? RFmode \
600 : choose_hard_reg_mode ((REGNO), (NREGS), false))
602 /* Handling Leaf Functions */
604 /* A C initializer for a vector, indexed by hard register number, which
605 contains 1 for a register that is allowable in a candidate for leaf function
606 treatment. */
607 /* ??? This might be useful. */
608 /* #define LEAF_REGISTERS */
610 /* A C expression whose value is the register number to which REGNO should be
611 renumbered, when a function is treated as a leaf function. */
612 /* ??? This might be useful. */
613 /* #define LEAF_REG_REMAP(REGNO) */
616 /* Register Classes */
618 /* An enumeral type that must be defined with all the register class names as
619 enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
620 register class, followed by one more enumeral value, `LIM_REG_CLASSES',
621 which is not a register class but rather tells how many classes there
622 are. */
623 /* ??? When compiling without optimization, it is possible for the only use of
624 a pseudo to be a parameter load from the stack with a REG_EQUIV note.
625 Regclass handles this case specially and does not assign any costs to the
626 pseudo. The pseudo then ends up using the last class before ALL_REGS.
627 Thus we must not let either PR_REGS or BR_REGS be the last class. The
628 testcase for this is gcc.c-torture/execute/va-arg-7.c. */
629 enum reg_class
631 NO_REGS,
632 PR_REGS,
633 BR_REGS,
634 AR_M_REGS,
635 AR_I_REGS,
636 ADDL_REGS,
637 GR_REGS,
638 FP_REGS,
639 FR_REGS,
640 GR_AND_BR_REGS,
641 GR_AND_FR_REGS,
642 ALL_REGS,
643 LIM_REG_CLASSES
646 #define GENERAL_REGS GR_REGS
648 /* The number of distinct register classes. */
649 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
651 /* An initializer containing the names of the register classes as C string
652 constants. These names are used in writing some of the debugging dumps. */
653 #define REG_CLASS_NAMES \
654 { "NO_REGS", "PR_REGS", "BR_REGS", "AR_M_REGS", "AR_I_REGS", \
655 "ADDL_REGS", "GR_REGS", "FP_REGS", "FR_REGS", \
656 "GR_AND_BR_REGS", "GR_AND_FR_REGS", "ALL_REGS" }
658 /* An initializer containing the contents of the register classes, as integers
659 which are bit masks. The Nth integer specifies the contents of class N.
660 The way the integer MASK is interpreted is that register R is in the class
661 if `MASK & (1 << R)' is 1. */
662 #define REG_CLASS_CONTENTS \
664 /* NO_REGS. */ \
665 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
666 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
667 0x00000000, 0x00000000, 0x0000 }, \
668 /* PR_REGS. */ \
669 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
670 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
671 0xFFFFFFFF, 0xFFFFFFFF, 0x0000 }, \
672 /* BR_REGS. */ \
673 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
674 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
675 0x00000000, 0x00000000, 0x00FF }, \
676 /* AR_M_REGS. */ \
677 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
678 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
679 0x00000000, 0x00000000, 0x0600 }, \
680 /* AR_I_REGS. */ \
681 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
682 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
683 0x00000000, 0x00000000, 0x3800 }, \
684 /* ADDL_REGS. */ \
685 { 0x0000000F, 0x00000000, 0x00000000, 0x00000000, \
686 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
687 0x00000000, 0x00000000, 0x0000 }, \
688 /* GR_REGS. */ \
689 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
690 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
691 0x00000000, 0x00000000, 0x0100 }, \
692 /* FP_REGS. */ \
693 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
694 0x7FFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x7FFFFFFF, \
695 0x00000000, 0x00000000, 0x0000 }, \
696 /* FR_REGS. */ \
697 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
698 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
699 0x00000000, 0x00000000, 0x0000 }, \
700 /* GR_AND_BR_REGS. */ \
701 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
702 0x00000000, 0x00000000, 0x00000000, 0x00000000, \
703 0x00000000, 0x00000000, 0x01FF }, \
704 /* GR_AND_FR_REGS. */ \
705 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
706 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
707 0x00000000, 0x00000000, 0x0100 }, \
708 /* ALL_REGS. */ \
709 { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
710 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, \
711 0xFFFFFFFF, 0xFFFFFFFF, 0x3FFF }, \
714 /* A C expression whose value is a register class containing hard register
715 REGNO. In general there is more than one such class; choose a class which
716 is "minimal", meaning that no smaller class also contains the register. */
717 /* The NO_REGS case is primarily for the benefit of rws_access_reg, which
718 may call here with private (invalid) register numbers, such as
719 REG_VOLATILE. */
720 #define REGNO_REG_CLASS(REGNO) \
721 (ADDL_REGNO_P (REGNO) ? ADDL_REGS \
722 : GENERAL_REGNO_P (REGNO) ? GR_REGS \
723 : FR_REGNO_P (REGNO) ? (REGNO) != R_FR (31) \
724 && (REGNO) != R_FR(127) ? FP_REGS : FR_REGS \
725 : PR_REGNO_P (REGNO) ? PR_REGS \
726 : BR_REGNO_P (REGNO) ? BR_REGS \
727 : AR_M_REGNO_P (REGNO) ? AR_M_REGS \
728 : AR_I_REGNO_P (REGNO) ? AR_I_REGS \
729 : NO_REGS)
731 /* A macro whose definition is the name of the class to which a valid base
732 register must belong. A base register is one used in an address which is
733 the register value plus a displacement. */
734 #define BASE_REG_CLASS GENERAL_REGS
736 /* A macro whose definition is the name of the class to which a valid index
737 register must belong. An index register is one used in an address where its
738 value is either multiplied by a scale factor or added to another register
739 (as well as added to a displacement). This is needed for POST_MODIFY. */
740 #define INDEX_REG_CLASS GENERAL_REGS
742 /* A C expression which is nonzero if register number NUM is suitable for use
743 as a base register in operand addresses. It may be either a suitable hard
744 register or a pseudo register that has been allocated such a hard reg. */
745 #define REGNO_OK_FOR_BASE_P(REGNO) \
746 (GENERAL_REGNO_P (REGNO) || GENERAL_REGNO_P (reg_renumber[REGNO]))
748 /* A C expression which is nonzero if register number NUM is suitable for use
749 as an index register in operand addresses. It may be either a suitable hard
750 register or a pseudo register that has been allocated such a hard reg.
751 This is needed for POST_MODIFY. */
752 #define REGNO_OK_FOR_INDEX_P(NUM) REGNO_OK_FOR_BASE_P (NUM)
754 /* You should define this macro to indicate to the reload phase that it may
755 need to allocate at least one register for a reload in addition to the
756 register to contain the data. Specifically, if copying X to a register
757 CLASS in MODE requires an intermediate register, you should define this
758 to return the largest register class all of whose registers can be used
759 as intermediate registers or scratch registers. */
761 #define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
762 ia64_secondary_reload_class (CLASS, MODE, X)
764 /* A C expression for the maximum number of consecutive registers of
765 class CLASS needed to hold a value of mode MODE.
766 This is closely related to TARGET_HARD_REGNO_NREGS. */
768 #define CLASS_MAX_NREGS(CLASS, MODE) \
769 ((MODE) == BImode && (CLASS) == PR_REGS ? 2 \
770 : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == XFmode) ? 1 \
771 : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == RFmode) ? 1 \
772 : (((CLASS) == FR_REGS || (CLASS) == FP_REGS) && (MODE) == XCmode) ? 2 \
773 : (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
775 /* Basic Stack Layout */
777 /* Define this macro if pushing a word onto the stack moves the stack pointer
778 to a smaller address. */
779 #define STACK_GROWS_DOWNWARD 1
781 /* Define this macro to nonzero if the addresses of local variable slots
782 are at negative offsets from the frame pointer. */
783 #define FRAME_GROWS_DOWNWARD 0
785 /* Offset from the stack pointer register to the first location at which
786 outgoing arguments are placed. If not specified, the default value of zero
787 is used. This is the proper value for most machines. */
788 /* IA64 has a 16 byte scratch area that is at the bottom of the stack. */
789 #define STACK_POINTER_OFFSET 16
791 /* Offset from the argument pointer register to the first argument's address.
792 On some machines it may depend on the data type of the function. */
793 #define FIRST_PARM_OFFSET(FUNDECL) 0
795 /* A C expression whose value is RTL representing the value of the return
796 address for the frame COUNT steps up from the current frame, after the
797 prologue. */
799 /* ??? Frames other than zero would likely require interpreting the frame
800 unwind info, so we don't try to support them. We would also need to define
801 DYNAMIC_CHAIN_ADDRESS and SETUP_FRAME_ADDRESS (for the reg stack flush). */
803 #define RETURN_ADDR_RTX(COUNT, FRAME) \
804 ia64_return_addr_rtx (COUNT, FRAME)
806 /* A C expression whose value is RTL representing the location of the incoming
807 return address at the beginning of any function, before the prologue. This
808 RTL is either a `REG', indicating that the return value is saved in `REG',
809 or a `MEM' representing a location in the stack. This enables DWARF2
810 unwind info for C++ EH. */
811 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, BR_REG (0))
813 /* A C expression whose value is an integer giving the offset, in bytes, from
814 the value of the stack pointer register to the top of the stack frame at the
815 beginning of any function, before the prologue. The top of the frame is
816 defined to be the value of the stack pointer in the previous frame, just
817 before the call instruction. */
818 /* The CFA is past the red zone, not at the entry-point stack
819 pointer. */
820 #define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
822 /* We shorten debug info by using CFA-16 as DW_AT_frame_base. */
823 #define CFA_FRAME_BASE_OFFSET(FUNDECL) (-INCOMING_FRAME_SP_OFFSET)
826 /* Register That Address the Stack Frame. */
828 /* The register number of the stack pointer register, which must also be a
829 fixed register according to `FIXED_REGISTERS'. On most machines, the
830 hardware determines which register this is. */
832 #define STACK_POINTER_REGNUM 12
834 /* The register number of the frame pointer register, which is used to access
835 automatic variables in the stack frame. On some machines, the hardware
836 determines which register this is. On other machines, you can choose any
837 register you wish for this purpose. */
839 #define FRAME_POINTER_REGNUM 328
841 /* Base register for access to local variables of the function. */
842 #define HARD_FRAME_POINTER_REGNUM LOC_REG (79)
844 /* The register number of the arg pointer register, which is used to access the
845 function's argument list. */
846 /* r0 won't otherwise be used, so put the always eliminated argument pointer
847 in it. */
848 #define ARG_POINTER_REGNUM R_GR(0)
850 /* Due to the way varargs and argument spilling happens, the argument
851 pointer is not 16-byte aligned like the stack pointer. */
852 #define INIT_EXPANDERS \
853 do { \
854 ia64_init_expanders (); \
855 if (crtl->emit.regno_pointer_align) \
856 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = 64; \
857 } while (0)
859 /* Register numbers used for passing a function's static chain pointer. */
860 /* ??? The ABI sez the static chain should be passed as a normal parameter. */
861 #define STATIC_CHAIN_REGNUM 15
863 /* Eliminating the Frame Pointer and the Arg Pointer */
865 /* If defined, this macro specifies a table of register pairs used to eliminate
866 unneeded registers that point into the stack frame. */
868 #define ELIMINABLE_REGS \
870 {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
871 {ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
872 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
873 {FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
876 /* This macro returns the initial difference between the specified pair
877 of registers. */
878 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
879 ((OFFSET) = ia64_initial_elimination_offset ((FROM), (TO)))
881 /* Passing Function Arguments on the Stack */
883 /* If defined, the maximum amount of space required for outgoing arguments will
884 be computed and placed into the variable
885 `crtl->outgoing_args_size'. */
887 #define ACCUMULATE_OUTGOING_ARGS 1
890 /* Function Arguments in Registers */
892 #define MAX_ARGUMENT_SLOTS 8
893 #define MAX_INT_RETURN_SLOTS 4
894 #define GR_ARG_FIRST IN_REG (0)
895 #define GR_RET_FIRST GR_REG (8)
896 #define GR_RET_LAST GR_REG (11)
897 #define FR_ARG_FIRST FR_REG (8)
898 #define FR_RET_FIRST FR_REG (8)
899 #define FR_RET_LAST FR_REG (15)
900 #define AR_ARG_FIRST OUT_REG (0)
902 /* A C type for declaring a variable that is used as the first argument of
903 `FUNCTION_ARG' and other related values. For some target machines, the type
904 `int' suffices and can hold the number of bytes of argument so far. */
906 enum ivms_arg_type {I64, FF, FD, FG, FS, FT};
907 /* VMS floating point formats VAX F, VAX D, VAX G, IEEE S, IEEE T. */
909 typedef struct ia64_args
911 int words; /* # words of arguments so far */
912 int int_regs; /* # GR registers used so far */
913 int fp_regs; /* # FR registers used so far */
914 int prototype; /* whether function prototyped */
915 enum ivms_arg_type atypes[8]; /* which VMS float type or if not float */
916 } CUMULATIVE_ARGS;
918 /* A C statement (sans semicolon) for initializing the variable CUM for the
919 state at the beginning of the argument list. */
921 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
922 do { \
923 (CUM).words = 0; \
924 (CUM).int_regs = 0; \
925 (CUM).fp_regs = 0; \
926 (CUM).prototype = ((FNTYPE) && prototype_p (FNTYPE)) || (LIBNAME); \
927 (CUM).atypes[0] = (CUM).atypes[1] = (CUM).atypes[2] = I64; \
928 (CUM).atypes[3] = (CUM).atypes[4] = (CUM).atypes[5] = I64; \
929 (CUM).atypes[6] = (CUM).atypes[7] = I64; \
930 } while (0)
932 /* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
933 arguments for the function being compiled. If this macro is undefined,
934 `INIT_CUMULATIVE_ARGS' is used instead. */
936 /* We set prototype to true so that we never try to return a PARALLEL from
937 function_arg. */
938 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
939 do { \
940 (CUM).words = 0; \
941 (CUM).int_regs = 0; \
942 (CUM).fp_regs = 0; \
943 (CUM).prototype = 1; \
944 (CUM).atypes[0] = (CUM).atypes[1] = (CUM).atypes[2] = I64; \
945 (CUM).atypes[3] = (CUM).atypes[4] = (CUM).atypes[5] = I64; \
946 (CUM).atypes[6] = (CUM).atypes[7] = I64; \
947 } while (0)
949 /* A C expression that is nonzero if REGNO is the number of a hard register in
950 which function arguments are sometimes passed. This does *not* include
951 implicit arguments such as the static chain and the structure-value address.
952 On many machines, no registers can be used for this purpose since all
953 function arguments are pushed on the stack. */
954 #define FUNCTION_ARG_REGNO_P(REGNO) \
955 (((REGNO) >= AR_ARG_FIRST && (REGNO) < (AR_ARG_FIRST + MAX_ARGUMENT_SLOTS)) \
956 || ((REGNO) >= FR_ARG_FIRST && (REGNO) < (FR_ARG_FIRST + MAX_ARGUMENT_SLOTS)))
959 /* How Large Values are Returned */
961 #define DEFAULT_PCC_STRUCT_RETURN 0
964 /* Caller-Saves Register Allocation */
966 /* A C expression to determine whether it is worthwhile to consider placing a
967 pseudo-register in a call-clobbered hard register and saving and restoring
968 it around each function call. The expression should be 1 when this is worth
969 doing, and 0 otherwise.
971 If you don't define this macro, a default is used which is good on most
972 machines: `4 * CALLS < REFS'. */
973 /* ??? Investigate. */
974 /* #define CALLER_SAVE_PROFITABLE(REFS, CALLS) */
977 /* Function Entry and Exit */
979 /* Define this macro as a C expression that is nonzero if the return
980 instruction or the function epilogue ignores the value of the stack pointer;
981 in other words, if it is safe to delete an instruction to adjust the stack
982 pointer before a return from the function. */
984 #define EXIT_IGNORE_STACK 1
986 /* Define this macro as a C expression that is nonzero for registers
987 used by the epilogue or the `return' pattern. */
989 #define EPILOGUE_USES(REGNO) ia64_epilogue_uses (REGNO)
991 /* Nonzero for registers used by the exception handling mechanism. */
993 #define EH_USES(REGNO) ia64_eh_uses (REGNO)
995 /* Output part N of a function descriptor for DECL. For ia64, both
996 words are emitted with a single relocation, so ignore N > 0. */
997 #define ASM_OUTPUT_FDESC(FILE, DECL, PART) \
998 do { \
999 if ((PART) == 0) \
1001 if (TARGET_ILP32) \
1002 fputs ("\tdata8.ua @iplt(", FILE); \
1003 else \
1004 fputs ("\tdata16.ua @iplt(", FILE); \
1005 mark_decl_referenced (DECL); \
1006 assemble_name (FILE, XSTR (XEXP (DECL_RTL (DECL), 0), 0)); \
1007 fputs (")\n", FILE); \
1008 if (TARGET_ILP32) \
1009 fputs ("\tdata8.ua 0\n", FILE); \
1011 } while (0)
1013 /* Generating Code for Profiling. */
1015 /* A C statement or compound statement to output to FILE some assembler code to
1016 call the profiling subroutine `mcount'. */
1018 #undef FUNCTION_PROFILER
1019 #define FUNCTION_PROFILER(FILE, LABELNO) \
1020 ia64_output_function_profiler(FILE, LABELNO)
1022 /* Neither hpux nor linux use profile counters. */
1023 #define NO_PROFILE_COUNTERS 1
1025 /* Trampolines for Nested Functions. */
1027 /* We need 32 bytes, so we can save the sp, ar.rnat, ar.bsp, and ar.pfs of
1028 the function containing a non-local goto target. */
1030 #define STACK_SAVEAREA_MODE(LEVEL) \
1031 ((LEVEL) == SAVE_NONLOCAL ? OImode : Pmode)
1033 /* A C expression for the size in bytes of the trampoline, as an integer. */
1035 #define TRAMPOLINE_SIZE 32
1037 /* Alignment required for trampolines, in bits. */
1039 #define TRAMPOLINE_ALIGNMENT 64
1041 /* Addressing Modes */
1043 /* Define this macro if the machine supports post-increment addressing. */
1045 #define HAVE_POST_INCREMENT 1
1046 #define HAVE_POST_DECREMENT 1
1047 #define HAVE_POST_MODIFY_DISP 1
1048 #define HAVE_POST_MODIFY_REG 1
1050 /* A C expression that is 1 if the RTX X is a constant which is a valid
1051 address. */
1053 #define CONSTANT_ADDRESS_P(X) 0
1055 /* The max number of registers that can appear in a valid memory address. */
1057 #define MAX_REGS_PER_ADDRESS 2
1060 /* Condition Code Status */
1062 /* One some machines not all possible comparisons are defined, but you can
1063 convert an invalid comparison into a valid one. */
1064 /* ??? Investigate. See the alpha definition. */
1065 /* #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) */
1068 /* Describing Relative Costs of Operations */
1070 /* A C expression for the cost of a branch instruction. A value of 1 is the
1071 default; other values are interpreted relative to that. Used by the
1072 if-conversion code as max instruction count. */
1073 /* ??? This requires investigation. The primary effect might be how
1074 many additional insn groups we run into, vs how good the dynamic
1075 branch predictor is. */
1077 #define BRANCH_COST(speed_p, predictable_p) 6
1079 /* Define this macro as a C expression which is nonzero if accessing less than
1080 a word of memory (i.e. a `char' or a `short') is no faster than accessing a
1081 word of memory. */
1083 #define SLOW_BYTE_ACCESS 1
1085 /* Define this macro if it is as good or better to call a constant function
1086 address than to call an address kept in a register.
1088 Indirect function calls are more expensive that direct function calls, so
1089 don't cse function addresses. */
1091 #define NO_FUNCTION_CSE 1
1094 /* Dividing the output into sections. */
1096 /* A C expression whose value is a string containing the assembler operation
1097 that should precede instructions and read-only data. */
1099 #define TEXT_SECTION_ASM_OP "\t.text"
1101 /* A C expression whose value is a string containing the assembler operation to
1102 identify the following data as writable initialized data. */
1104 #define DATA_SECTION_ASM_OP "\t.data"
1106 /* If defined, a C expression whose value is a string containing the assembler
1107 operation to identify the following data as uninitialized global data. */
1109 #define BSS_SECTION_ASM_OP "\t.bss"
1111 #define IA64_DEFAULT_GVALUE 8
1113 /* Position Independent Code. */
1115 /* The register number of the register used to address a table of static data
1116 addresses in memory. */
1118 /* ??? Should modify ia64.md to use pic_offset_table_rtx instead of
1119 gen_rtx_REG (DImode, 1). */
1121 /* ??? Should we set flag_pic? Probably need to define
1122 LEGITIMIZE_PIC_OPERAND_P to make that work. */
1124 #define PIC_OFFSET_TABLE_REGNUM GR_REG (1)
1126 /* Define this macro if the register defined by `PIC_OFFSET_TABLE_REGNUM' is
1127 clobbered by calls. */
1129 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
1132 /* The Overall Framework of an Assembler File. */
1134 /* A C string constant describing how to begin a comment in the target
1135 assembler language. The compiler assumes that the comment will end at the
1136 end of the line. */
1138 #define ASM_COMMENT_START "//"
1140 /* A C string constant for text to be output before each `asm' statement or
1141 group of consecutive ones. */
1143 #define ASM_APP_ON (TARGET_GNU_AS ? "#APP\n" : "//APP\n")
1145 /* A C string constant for text to be output after each `asm' statement or
1146 group of consecutive ones. */
1148 #define ASM_APP_OFF (TARGET_GNU_AS ? "#NO_APP\n" : "//NO_APP\n")
1150 /* Output and Generation of Labels. */
1152 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
1153 assembler definition of a label named NAME. */
1155 /* See the ASM_OUTPUT_LABELREF definition in sysv4.h for an explanation of
1156 why ia64_asm_output_label exists. */
1158 extern int ia64_asm_output_label;
1159 #define ASM_OUTPUT_LABEL(STREAM, NAME) \
1160 do { \
1161 ia64_asm_output_label = 1; \
1162 assemble_name (STREAM, NAME); \
1163 fputs (":\n", STREAM); \
1164 ia64_asm_output_label = 0; \
1165 } while (0)
1167 /* Globalizing directive for a label. */
1168 #define GLOBAL_ASM_OP "\t.global "
1170 /* A C statement (sans semicolon) to output to the stdio stream STREAM any text
1171 necessary for declaring the name of an external symbol named NAME which is
1172 referenced in this compilation but not defined. */
1174 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1175 ia64_asm_output_external (FILE, DECL, NAME)
1177 /* A C statement to store into the string STRING a label whose name is made
1178 from the string PREFIX and the number NUM. */
1180 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
1181 do { \
1182 sprintf (LABEL, "*.%s%d", PREFIX, NUM); \
1183 } while (0)
1185 /* ??? Not sure if using a ? in the name for Intel as is safe. */
1187 #define ASM_PN_FORMAT (TARGET_GNU_AS ? "%s.%lu" : "%s?%lu")
1189 /* A C statement to output to the stdio stream STREAM assembler code which
1190 defines (equates) the symbol NAME to have the value VALUE. */
1192 #define ASM_OUTPUT_DEF(STREAM, NAME, VALUE) \
1193 do { \
1194 assemble_name (STREAM, NAME); \
1195 fputs (" = ", STREAM); \
1196 if (ISDIGIT (*VALUE)) \
1197 ia64_asm_output_label = 1; \
1198 assemble_name (STREAM, VALUE); \
1199 fputc ('\n', STREAM); \
1200 ia64_asm_output_label = 0; \
1201 } while (0)
1204 /* Macros Controlling Initialization Routines. */
1206 /* This is handled by sysv4.h. */
1209 /* Output of Assembler Instructions. */
1211 /* A C initializer containing the assembler's names for the machine registers,
1212 each one as a C string constant. */
1214 #define REGISTER_NAMES \
1216 /* General registers. */ \
1217 "ap", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", \
1218 "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", \
1219 "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", \
1220 "r30", "r31", \
1221 /* Local registers. */ \
1222 "loc0", "loc1", "loc2", "loc3", "loc4", "loc5", "loc6", "loc7", \
1223 "loc8", "loc9", "loc10","loc11","loc12","loc13","loc14","loc15", \
1224 "loc16","loc17","loc18","loc19","loc20","loc21","loc22","loc23", \
1225 "loc24","loc25","loc26","loc27","loc28","loc29","loc30","loc31", \
1226 "loc32","loc33","loc34","loc35","loc36","loc37","loc38","loc39", \
1227 "loc40","loc41","loc42","loc43","loc44","loc45","loc46","loc47", \
1228 "loc48","loc49","loc50","loc51","loc52","loc53","loc54","loc55", \
1229 "loc56","loc57","loc58","loc59","loc60","loc61","loc62","loc63", \
1230 "loc64","loc65","loc66","loc67","loc68","loc69","loc70","loc71", \
1231 "loc72","loc73","loc74","loc75","loc76","loc77","loc78","loc79", \
1232 /* Input registers. */ \
1233 "in0", "in1", "in2", "in3", "in4", "in5", "in6", "in7", \
1234 /* Output registers. */ \
1235 "out0", "out1", "out2", "out3", "out4", "out5", "out6", "out7", \
1236 /* Floating-point registers. */ \
1237 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", \
1238 "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", \
1239 "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", \
1240 "f30", "f31", "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", \
1241 "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", "f48", "f49", \
1242 "f50", "f51", "f52", "f53", "f54", "f55", "f56", "f57", "f58", "f59", \
1243 "f60", "f61", "f62", "f63", "f64", "f65", "f66", "f67", "f68", "f69", \
1244 "f70", "f71", "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", \
1245 "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", "f88", "f89", \
1246 "f90", "f91", "f92", "f93", "f94", "f95", "f96", "f97", "f98", "f99", \
1247 "f100","f101","f102","f103","f104","f105","f106","f107","f108","f109",\
1248 "f110","f111","f112","f113","f114","f115","f116","f117","f118","f119",\
1249 "f120","f121","f122","f123","f124","f125","f126","f127", \
1250 /* Predicate registers. */ \
1251 "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8", "p9", \
1252 "p10", "p11", "p12", "p13", "p14", "p15", "p16", "p17", "p18", "p19", \
1253 "p20", "p21", "p22", "p23", "p24", "p25", "p26", "p27", "p28", "p29", \
1254 "p30", "p31", "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", \
1255 "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", "p48", "p49", \
1256 "p50", "p51", "p52", "p53", "p54", "p55", "p56", "p57", "p58", "p59", \
1257 "p60", "p61", "p62", "p63", \
1258 /* Branch registers. */ \
1259 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", \
1260 /* Frame pointer. Application registers. */ \
1261 "sfp", "ar.ccv", "ar.unat", "ar.pfs", "ar.lc", "ar.ec", \
1264 /* If defined, a C initializer for an array of structures containing a name and
1265 a register number. This macro defines additional names for hard registers,
1266 thus allowing the `asm' option in declarations to refer to registers using
1267 alternate names. */
1269 #define ADDITIONAL_REGISTER_NAMES \
1271 { "gp", R_GR (1) }, \
1272 { "sp", R_GR (12) }, \
1273 { "in0", IN_REG (0) }, \
1274 { "in1", IN_REG (1) }, \
1275 { "in2", IN_REG (2) }, \
1276 { "in3", IN_REG (3) }, \
1277 { "in4", IN_REG (4) }, \
1278 { "in5", IN_REG (5) }, \
1279 { "in6", IN_REG (6) }, \
1280 { "in7", IN_REG (7) }, \
1281 { "out0", OUT_REG (0) }, \
1282 { "out1", OUT_REG (1) }, \
1283 { "out2", OUT_REG (2) }, \
1284 { "out3", OUT_REG (3) }, \
1285 { "out4", OUT_REG (4) }, \
1286 { "out5", OUT_REG (5) }, \
1287 { "out6", OUT_REG (6) }, \
1288 { "out7", OUT_REG (7) }, \
1289 { "loc0", LOC_REG (0) }, \
1290 { "loc1", LOC_REG (1) }, \
1291 { "loc2", LOC_REG (2) }, \
1292 { "loc3", LOC_REG (3) }, \
1293 { "loc4", LOC_REG (4) }, \
1294 { "loc5", LOC_REG (5) }, \
1295 { "loc6", LOC_REG (6) }, \
1296 { "loc7", LOC_REG (7) }, \
1297 { "loc8", LOC_REG (8) }, \
1298 { "loc9", LOC_REG (9) }, \
1299 { "loc10", LOC_REG (10) }, \
1300 { "loc11", LOC_REG (11) }, \
1301 { "loc12", LOC_REG (12) }, \
1302 { "loc13", LOC_REG (13) }, \
1303 { "loc14", LOC_REG (14) }, \
1304 { "loc15", LOC_REG (15) }, \
1305 { "loc16", LOC_REG (16) }, \
1306 { "loc17", LOC_REG (17) }, \
1307 { "loc18", LOC_REG (18) }, \
1308 { "loc19", LOC_REG (19) }, \
1309 { "loc20", LOC_REG (20) }, \
1310 { "loc21", LOC_REG (21) }, \
1311 { "loc22", LOC_REG (22) }, \
1312 { "loc23", LOC_REG (23) }, \
1313 { "loc24", LOC_REG (24) }, \
1314 { "loc25", LOC_REG (25) }, \
1315 { "loc26", LOC_REG (26) }, \
1316 { "loc27", LOC_REG (27) }, \
1317 { "loc28", LOC_REG (28) }, \
1318 { "loc29", LOC_REG (29) }, \
1319 { "loc30", LOC_REG (30) }, \
1320 { "loc31", LOC_REG (31) }, \
1321 { "loc32", LOC_REG (32) }, \
1322 { "loc33", LOC_REG (33) }, \
1323 { "loc34", LOC_REG (34) }, \
1324 { "loc35", LOC_REG (35) }, \
1325 { "loc36", LOC_REG (36) }, \
1326 { "loc37", LOC_REG (37) }, \
1327 { "loc38", LOC_REG (38) }, \
1328 { "loc39", LOC_REG (39) }, \
1329 { "loc40", LOC_REG (40) }, \
1330 { "loc41", LOC_REG (41) }, \
1331 { "loc42", LOC_REG (42) }, \
1332 { "loc43", LOC_REG (43) }, \
1333 { "loc44", LOC_REG (44) }, \
1334 { "loc45", LOC_REG (45) }, \
1335 { "loc46", LOC_REG (46) }, \
1336 { "loc47", LOC_REG (47) }, \
1337 { "loc48", LOC_REG (48) }, \
1338 { "loc49", LOC_REG (49) }, \
1339 { "loc50", LOC_REG (50) }, \
1340 { "loc51", LOC_REG (51) }, \
1341 { "loc52", LOC_REG (52) }, \
1342 { "loc53", LOC_REG (53) }, \
1343 { "loc54", LOC_REG (54) }, \
1344 { "loc55", LOC_REG (55) }, \
1345 { "loc56", LOC_REG (56) }, \
1346 { "loc57", LOC_REG (57) }, \
1347 { "loc58", LOC_REG (58) }, \
1348 { "loc59", LOC_REG (59) }, \
1349 { "loc60", LOC_REG (60) }, \
1350 { "loc61", LOC_REG (61) }, \
1351 { "loc62", LOC_REG (62) }, \
1352 { "loc63", LOC_REG (63) }, \
1353 { "loc64", LOC_REG (64) }, \
1354 { "loc65", LOC_REG (65) }, \
1355 { "loc66", LOC_REG (66) }, \
1356 { "loc67", LOC_REG (67) }, \
1357 { "loc68", LOC_REG (68) }, \
1358 { "loc69", LOC_REG (69) }, \
1359 { "loc70", LOC_REG (70) }, \
1360 { "loc71", LOC_REG (71) }, \
1361 { "loc72", LOC_REG (72) }, \
1362 { "loc73", LOC_REG (73) }, \
1363 { "loc74", LOC_REG (74) }, \
1364 { "loc75", LOC_REG (75) }, \
1365 { "loc76", LOC_REG (76) }, \
1366 { "loc77", LOC_REG (77) }, \
1367 { "loc78", LOC_REG (78) }, \
1368 { "loc79", LOC_REG (79) }, \
1371 /* If defined, C string expressions to be used for the `%R', `%L', `%U', and
1372 `%I' options of `asm_fprintf' (see `final.c'). */
1374 #define REGISTER_PREFIX ""
1375 #define LOCAL_LABEL_PREFIX "."
1376 #define USER_LABEL_PREFIX ""
1377 #define IMMEDIATE_PREFIX ""
1380 /* Output of dispatch tables. */
1382 /* This macro should be provided on machines where the addresses in a dispatch
1383 table are relative to the table's own address. */
1385 /* ??? Depends on the pointer size. */
1387 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
1388 do { \
1389 if (CASE_VECTOR_MODE == SImode) \
1390 fprintf (STREAM, "\tdata4 @pcrel(.L%d)\n", VALUE); \
1391 else \
1392 fprintf (STREAM, "\tdata8 @pcrel(.L%d)\n", VALUE); \
1393 } while (0)
1395 /* Jump tables only need 4 or 8 byte alignment. */
1397 #define ADDR_VEC_ALIGN(ADDR_VEC) (CASE_VECTOR_MODE == SImode ? 2 : 3)
1400 /* Assembler Commands for Exception Regions. */
1402 /* Select a format to encode pointers in exception handling data. CODE
1403 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
1404 true if the symbol may be affected by dynamic relocations. */
1405 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
1406 (((CODE) == 1 ? DW_EH_PE_textrel : DW_EH_PE_datarel) \
1407 | ((GLOBAL) ? DW_EH_PE_indirect : 0) \
1408 | (TARGET_ILP32 ? DW_EH_PE_udata4 : DW_EH_PE_udata8))
1410 /* Handle special EH pointer encodings. Absolute, pc-relative, and
1411 indirect are handled automatically. */
1412 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
1413 do { \
1414 const char *reltag = NULL; \
1415 if (((ENCODING) & 0xF0) == DW_EH_PE_textrel) \
1416 reltag = "@segrel("; \
1417 else if (((ENCODING) & 0xF0) == DW_EH_PE_datarel) \
1418 reltag = "@gprel("; \
1419 if (reltag) \
1421 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1422 fputs (reltag, FILE); \
1423 assemble_name (FILE, XSTR (ADDR, 0)); \
1424 fputc (')', FILE); \
1425 goto DONE; \
1427 } while (0)
1430 /* Assembler Commands for Alignment. */
1432 /* ??? Investigate. */
1434 /* The alignment (log base 2) to put in front of LABEL, which follows
1435 a BARRIER. */
1437 /* #define LABEL_ALIGN_AFTER_BARRIER(LABEL) */
1439 /* The desired alignment for the location counter at the beginning
1440 of a loop. */
1442 /* #define LOOP_ALIGN(LABEL) */
1444 /* Define this macro if `ASM_OUTPUT_SKIP' should not be used in the text
1445 section because it fails put zeros in the bytes that are skipped. */
1447 #define ASM_NO_SKIP_IN_TEXT 1
1449 /* A C statement to output to the stdio stream STREAM an assembler command to
1450 advance the location counter to a multiple of 2 to the POWER bytes. */
1452 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
1453 fprintf (STREAM, "\t.align %d\n", 1<<(POWER))
1456 /* Macros Affecting all Debug Formats. */
1458 /* This is handled in sysv4.h. */
1461 /* Specific Options for DBX Output. */
1463 /* This is handled by dbxelf.h. */
1466 /* Open ended Hooks for DBX Output. */
1468 /* Likewise. */
1471 /* File names in DBX format. */
1473 /* Likewise. */
1476 /* Macros for Dwarf Output. */
1478 /* Define this macro if GCC should produce dwarf version 2 format debugging
1479 output in response to the `-g' option. */
1481 #define DWARF2_DEBUGGING_INFO 1
1483 #define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DWARF2_ASM)
1485 /* Use tags for debug info labels, so that they don't break instruction
1486 bundles. This also avoids getting spurious DV warnings from the
1487 assembler. This is similar to (*targetm.asm_out.internal_label), except that we
1488 add brackets around the label. */
1490 #define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
1491 fprintf (FILE, TARGET_GNU_AS ? "[.%s%d:]\n" : ".%s%d:\n", PREFIX, NUM)
1493 /* Use section-relative relocations for debugging offsets. Unlike other
1494 targets that fake this by putting the section VMA at 0, IA-64 has
1495 proper relocations for them. */
1496 #define ASM_OUTPUT_DWARF_OFFSET(FILE, SIZE, LABEL, OFFSET, SECTION) \
1497 do { \
1498 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1499 fputs ("@secrel(", FILE); \
1500 assemble_name (FILE, LABEL); \
1501 if ((OFFSET) != 0) \
1502 fprintf (FILE, "+" HOST_WIDE_INT_PRINT_DEC, \
1503 (HOST_WIDE_INT) (OFFSET)); \
1504 fputc (')', FILE); \
1505 } while (0)
1507 /* Emit a PC-relative relocation. */
1508 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
1509 do { \
1510 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1511 fputs ("@pcrel(", FILE); \
1512 assemble_name (FILE, LABEL); \
1513 fputc (')', FILE); \
1514 } while (0)
1516 /* Register Renaming Parameters. */
1518 /* A C expression that is nonzero if hard register number REGNO2 can be
1519 considered for use as a rename register for REGNO1 */
1521 #define HARD_REGNO_RENAME_OK(REGNO1,REGNO2) \
1522 ia64_hard_regno_rename_ok((REGNO1), (REGNO2))
1525 /* Miscellaneous Parameters. */
1527 /* Flag to mark data that is in the small address area (addressable
1528 via "addl", that is, within a 2MByte offset of 0. */
1529 #define SYMBOL_FLAG_SMALL_ADDR (SYMBOL_FLAG_MACH_DEP << 0)
1530 #define SYMBOL_REF_SMALL_ADDR_P(X) \
1531 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SMALL_ADDR) != 0)
1533 /* An alias for a machine mode name. This is the machine mode that elements of
1534 a jump-table should have. */
1536 #define CASE_VECTOR_MODE ptr_mode
1538 /* Define as C expression which evaluates to nonzero if the tablejump
1539 instruction expects the table to contain offsets from the address of the
1540 table. */
1542 #define CASE_VECTOR_PC_RELATIVE 1
1544 /* Define this macro if operations between registers with integral mode smaller
1545 than a word are always performed on the entire register. */
1547 #define WORD_REGISTER_OPERATIONS 1
1549 /* Define this macro to be a C expression indicating when insns that read
1550 memory in MODE, an integral mode narrower than a word, set the bits outside
1551 of MODE to be either the sign-extension or the zero-extension of the data
1552 read. */
1554 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1556 /* The maximum number of bytes that a single instruction can move quickly from
1557 memory to memory. */
1558 #define MOVE_MAX 8
1560 /* A C expression describing the value returned by a comparison operator with
1561 an integral mode and stored by a store-flag instruction (`sCOND') when the
1562 condition is true. */
1564 /* ??? Investigate using STORE_FLAG_VALUE of -1 instead of 1. */
1566 /* An alias for the machine mode for pointers. */
1568 /* ??? This would change if we had ILP32 support. */
1570 #define Pmode DImode
1572 /* An alias for the machine mode used for memory references to functions being
1573 called, in `call' RTL expressions. */
1575 #define FUNCTION_MODE Pmode
1577 /* A C expression for the maximum number of instructions to execute via
1578 conditional execution instructions instead of a branch. A value of
1579 BRANCH_COST+1 is the default if the machine does not use
1580 cc0, and 1 if it does use cc0. */
1581 /* ??? Investigate. */
1582 #define MAX_CONDITIONAL_EXECUTE 12
1584 extern int ia64_final_schedule;
1586 #define TARGET_UNWIND_TABLES_DEFAULT true
1588 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 15 : INVALID_REGNUM)
1590 /* This function contains machine specific function data. */
1591 struct GTY(()) machine_function
1593 /* The new stack pointer when unwinding from EH. */
1594 rtx ia64_eh_epilogue_sp;
1596 /* The new bsp value when unwinding from EH. */
1597 rtx ia64_eh_epilogue_bsp;
1599 /* The GP value save register. */
1600 rtx ia64_gp_save;
1602 /* The number of varargs registers to save. */
1603 int n_varargs;
1605 /* The number of the next unwind state to copy. */
1606 int state_num;
1609 #define DONT_USE_BUILTIN_SETJMP
1611 /* Output any profiling code before the prologue. */
1613 #undef PROFILE_BEFORE_PROLOGUE
1614 #define PROFILE_BEFORE_PROLOGUE 1
1616 /* Initialize library function table. */
1617 #undef TARGET_INIT_LIBFUNCS
1618 #define TARGET_INIT_LIBFUNCS ia64_init_libfuncs
1621 /* Switch on code for querying unit reservations. */
1622 #define CPU_UNITS_QUERY 1
1624 /* End of ia64.h */