vectorizer cost model enhancement
[official-gcc.git] / gcc / ipa-inline.c
blob3672e57e471776f48aee8f8043e73489d5b16e21
1 /* Inlining decision heuristics.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Inlining decision heuristics
23 The implementation of inliner is organized as follows:
25 inlining heuristics limits
27 can_inline_edge_p allow to check that particular inlining is allowed
28 by the limits specified by user (allowed function growth, growth and so
29 on).
31 Functions are inlined when it is obvious the result is profitable (such
32 as functions called once or when inlining reduce code size).
33 In addition to that we perform inlining of small functions and recursive
34 inlining.
36 inlining heuristics
38 The inliner itself is split into two passes:
40 pass_early_inlining
42 Simple local inlining pass inlining callees into current function.
43 This pass makes no use of whole unit analysis and thus it can do only
44 very simple decisions based on local properties.
46 The strength of the pass is that it is run in topological order
47 (reverse postorder) on the callgraph. Functions are converted into SSA
48 form just before this pass and optimized subsequently. As a result, the
49 callees of the function seen by the early inliner was already optimized
50 and results of early inlining adds a lot of optimization opportunities
51 for the local optimization.
53 The pass handle the obvious inlining decisions within the compilation
54 unit - inlining auto inline functions, inlining for size and
55 flattening.
57 main strength of the pass is the ability to eliminate abstraction
58 penalty in C++ code (via combination of inlining and early
59 optimization) and thus improve quality of analysis done by real IPA
60 optimizers.
62 Because of lack of whole unit knowledge, the pass can not really make
63 good code size/performance tradeoffs. It however does very simple
64 speculative inlining allowing code size to grow by
65 EARLY_INLINING_INSNS when callee is leaf function. In this case the
66 optimizations performed later are very likely to eliminate the cost.
68 pass_ipa_inline
70 This is the real inliner able to handle inlining with whole program
71 knowledge. It performs following steps:
73 1) inlining of small functions. This is implemented by greedy
74 algorithm ordering all inlinable cgraph edges by their badness and
75 inlining them in this order as long as inline limits allows doing so.
77 This heuristics is not very good on inlining recursive calls. Recursive
78 calls can be inlined with results similar to loop unrolling. To do so,
79 special purpose recursive inliner is executed on function when
80 recursive edge is met as viable candidate.
82 2) Unreachable functions are removed from callgraph. Inlining leads
83 to devirtualization and other modification of callgraph so functions
84 may become unreachable during the process. Also functions declared as
85 extern inline or virtual functions are removed, since after inlining
86 we no longer need the offline bodies.
88 3) Functions called once and not exported from the unit are inlined.
89 This should almost always lead to reduction of code size by eliminating
90 the need for offline copy of the function. */
92 #include "config.h"
93 #include "system.h"
94 #include "coretypes.h"
95 #include "tm.h"
96 #include "tree.h"
97 #include "tree-inline.h"
98 #include "langhooks.h"
99 #include "flags.h"
100 #include "cgraph.h"
101 #include "diagnostic.h"
102 #include "gimple-pretty-print.h"
103 #include "params.h"
104 #include "fibheap.h"
105 #include "intl.h"
106 #include "tree-pass.h"
107 #include "coverage.h"
108 #include "ggc.h"
109 #include "rtl.h"
110 #include "tree-ssa.h"
111 #include "ipa-prop.h"
112 #include "except.h"
113 #include "target.h"
114 #include "ipa-inline.h"
115 #include "ipa-utils.h"
116 #include "sreal.h"
118 /* Statistics we collect about inlining algorithm. */
119 static int overall_size;
120 static gcov_type max_count;
121 static sreal max_count_real, max_relbenefit_real, half_int_min_real;
123 /* Return false when inlining edge E would lead to violating
124 limits on function unit growth or stack usage growth.
126 The relative function body growth limit is present generally
127 to avoid problems with non-linear behavior of the compiler.
128 To allow inlining huge functions into tiny wrapper, the limit
129 is always based on the bigger of the two functions considered.
131 For stack growth limits we always base the growth in stack usage
132 of the callers. We want to prevent applications from segfaulting
133 on stack overflow when functions with huge stack frames gets
134 inlined. */
136 static bool
137 caller_growth_limits (struct cgraph_edge *e)
139 struct cgraph_node *to = e->caller;
140 struct cgraph_node *what = cgraph_function_or_thunk_node (e->callee, NULL);
141 int newsize;
142 int limit = 0;
143 HOST_WIDE_INT stack_size_limit = 0, inlined_stack;
144 struct inline_summary *info, *what_info, *outer_info = inline_summary (to);
146 /* Look for function e->caller is inlined to. While doing
147 so work out the largest function body on the way. As
148 described above, we want to base our function growth
149 limits based on that. Not on the self size of the
150 outer function, not on the self size of inline code
151 we immediately inline to. This is the most relaxed
152 interpretation of the rule "do not grow large functions
153 too much in order to prevent compiler from exploding". */
154 while (true)
156 info = inline_summary (to);
157 if (limit < info->self_size)
158 limit = info->self_size;
159 if (stack_size_limit < info->estimated_self_stack_size)
160 stack_size_limit = info->estimated_self_stack_size;
161 if (to->global.inlined_to)
162 to = to->callers->caller;
163 else
164 break;
167 what_info = inline_summary (what);
169 if (limit < what_info->self_size)
170 limit = what_info->self_size;
172 limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100;
174 /* Check the size after inlining against the function limits. But allow
175 the function to shrink if it went over the limits by forced inlining. */
176 newsize = estimate_size_after_inlining (to, e);
177 if (newsize >= info->size
178 && newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS)
179 && newsize > limit)
181 e->inline_failed = CIF_LARGE_FUNCTION_GROWTH_LIMIT;
182 return false;
185 if (!what_info->estimated_stack_size)
186 return true;
188 /* FIXME: Stack size limit often prevents inlining in Fortran programs
189 due to large i/o datastructures used by the Fortran front-end.
190 We ought to ignore this limit when we know that the edge is executed
191 on every invocation of the caller (i.e. its call statement dominates
192 exit block). We do not track this information, yet. */
193 stack_size_limit += ((gcov_type)stack_size_limit
194 * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100);
196 inlined_stack = (outer_info->stack_frame_offset
197 + outer_info->estimated_self_stack_size
198 + what_info->estimated_stack_size);
199 /* Check new stack consumption with stack consumption at the place
200 stack is used. */
201 if (inlined_stack > stack_size_limit
202 /* If function already has large stack usage from sibling
203 inline call, we can inline, too.
204 This bit overoptimistically assume that we are good at stack
205 packing. */
206 && inlined_stack > info->estimated_stack_size
207 && inlined_stack > PARAM_VALUE (PARAM_LARGE_STACK_FRAME))
209 e->inline_failed = CIF_LARGE_STACK_FRAME_GROWTH_LIMIT;
210 return false;
212 return true;
215 /* Dump info about why inlining has failed. */
217 static void
218 report_inline_failed_reason (struct cgraph_edge *e)
220 if (dump_file)
222 fprintf (dump_file, " not inlinable: %s/%i -> %s/%i, %s\n",
223 xstrdup (cgraph_node_name (e->caller)), e->caller->symbol.order,
224 xstrdup (cgraph_node_name (e->callee)), e->callee->symbol.order,
225 cgraph_inline_failed_string (e->inline_failed));
229 /* Decide if we can inline the edge and possibly update
230 inline_failed reason.
231 We check whether inlining is possible at all and whether
232 caller growth limits allow doing so.
234 if REPORT is true, output reason to the dump file.
236 if DISREGARD_LIMITES is true, ignore size limits.*/
238 static bool
239 can_inline_edge_p (struct cgraph_edge *e, bool report,
240 bool disregard_limits = false)
242 bool inlinable = true;
243 enum availability avail;
244 struct cgraph_node *callee
245 = cgraph_function_or_thunk_node (e->callee, &avail);
246 tree caller_tree = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (e->caller->symbol.decl);
247 tree callee_tree
248 = callee ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee->symbol.decl) : NULL;
249 struct function *caller_cfun = DECL_STRUCT_FUNCTION (e->caller->symbol.decl);
250 struct function *callee_cfun
251 = callee ? DECL_STRUCT_FUNCTION (callee->symbol.decl) : NULL;
253 if (!caller_cfun && e->caller->clone_of)
254 caller_cfun = DECL_STRUCT_FUNCTION (e->caller->clone_of->symbol.decl);
256 if (!callee_cfun && callee && callee->clone_of)
257 callee_cfun = DECL_STRUCT_FUNCTION (callee->clone_of->symbol.decl);
259 gcc_assert (e->inline_failed);
261 if (!callee || !callee->symbol.definition)
263 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
264 inlinable = false;
266 else if (!inline_summary (callee)->inlinable)
268 e->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
269 inlinable = false;
271 else if (avail <= AVAIL_OVERWRITABLE)
273 e->inline_failed = CIF_OVERWRITABLE;
274 inlinable = false;
276 else if (e->call_stmt_cannot_inline_p)
278 if (e->inline_failed != CIF_FUNCTION_NOT_OPTIMIZED)
279 e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
280 inlinable = false;
282 /* Don't inline if the functions have different EH personalities. */
283 else if (DECL_FUNCTION_PERSONALITY (e->caller->symbol.decl)
284 && DECL_FUNCTION_PERSONALITY (callee->symbol.decl)
285 && (DECL_FUNCTION_PERSONALITY (e->caller->symbol.decl)
286 != DECL_FUNCTION_PERSONALITY (callee->symbol.decl)))
288 e->inline_failed = CIF_EH_PERSONALITY;
289 inlinable = false;
291 /* TM pure functions should not be inlined into non-TM_pure
292 functions. */
293 else if (is_tm_pure (callee->symbol.decl)
294 && !is_tm_pure (e->caller->symbol.decl))
296 e->inline_failed = CIF_UNSPECIFIED;
297 inlinable = false;
299 /* Don't inline if the callee can throw non-call exceptions but the
300 caller cannot.
301 FIXME: this is obviously wrong for LTO where STRUCT_FUNCTION is missing.
302 Move the flag into cgraph node or mirror it in the inline summary. */
303 else if (callee_cfun && callee_cfun->can_throw_non_call_exceptions
304 && !(caller_cfun && caller_cfun->can_throw_non_call_exceptions))
306 e->inline_failed = CIF_NON_CALL_EXCEPTIONS;
307 inlinable = false;
309 /* Check compatibility of target optimization options. */
310 else if (!targetm.target_option.can_inline_p (e->caller->symbol.decl,
311 callee->symbol.decl))
313 e->inline_failed = CIF_TARGET_OPTION_MISMATCH;
314 inlinable = false;
316 /* Check if caller growth allows the inlining. */
317 else if (!DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl)
318 && !disregard_limits
319 && !lookup_attribute ("flatten",
320 DECL_ATTRIBUTES
321 (e->caller->global.inlined_to
322 ? e->caller->global.inlined_to->symbol.decl
323 : e->caller->symbol.decl))
324 && !caller_growth_limits (e))
325 inlinable = false;
326 /* Don't inline a function with a higher optimization level than the
327 caller. FIXME: this is really just tip of iceberg of handling
328 optimization attribute. */
329 else if (caller_tree != callee_tree)
331 struct cl_optimization *caller_opt
332 = TREE_OPTIMIZATION ((caller_tree)
333 ? caller_tree
334 : optimization_default_node);
336 struct cl_optimization *callee_opt
337 = TREE_OPTIMIZATION ((callee_tree)
338 ? callee_tree
339 : optimization_default_node);
341 if (((caller_opt->x_optimize > callee_opt->x_optimize)
342 || (caller_opt->x_optimize_size != callee_opt->x_optimize_size))
343 /* gcc.dg/pr43564.c. Look at forced inline even in -O0. */
344 && !DECL_DISREGARD_INLINE_LIMITS (e->callee->symbol.decl))
346 e->inline_failed = CIF_OPTIMIZATION_MISMATCH;
347 inlinable = false;
351 if (!inlinable && report)
352 report_inline_failed_reason (e);
353 return inlinable;
357 /* Return true if the edge E is inlinable during early inlining. */
359 static bool
360 can_early_inline_edge_p (struct cgraph_edge *e)
362 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee,
363 NULL);
364 /* Early inliner might get called at WPA stage when IPA pass adds new
365 function. In this case we can not really do any of early inlining
366 because function bodies are missing. */
367 if (!gimple_has_body_p (callee->symbol.decl))
369 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
370 return false;
372 /* In early inliner some of callees may not be in SSA form yet
373 (i.e. the callgraph is cyclic and we did not process
374 the callee by early inliner, yet). We don't have CIF code for this
375 case; later we will re-do the decision in the real inliner. */
376 if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->caller->symbol.decl))
377 || !gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->symbol.decl)))
379 if (dump_file)
380 fprintf (dump_file, " edge not inlinable: not in SSA form\n");
381 return false;
383 if (!can_inline_edge_p (e, true))
384 return false;
385 return true;
389 /* Return number of calls in N. Ignore cheap builtins. */
391 static int
392 num_calls (struct cgraph_node *n)
394 struct cgraph_edge *e;
395 int num = 0;
397 for (e = n->callees; e; e = e->next_callee)
398 if (!is_inexpensive_builtin (e->callee->symbol.decl))
399 num++;
400 return num;
404 /* Return true if we are interested in inlining small function. */
406 static bool
407 want_early_inline_function_p (struct cgraph_edge *e)
409 bool want_inline = true;
410 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
412 if (DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
414 else if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
415 && !flag_inline_small_functions)
417 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
418 report_inline_failed_reason (e);
419 want_inline = false;
421 else
423 int growth = estimate_edge_growth (e);
424 int n;
426 if (growth <= 0)
428 else if (!cgraph_maybe_hot_edge_p (e)
429 && growth > 0)
431 if (dump_file)
432 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
433 "call is cold and code would grow by %i\n",
434 xstrdup (cgraph_node_name (e->caller)),
435 e->caller->symbol.order,
436 xstrdup (cgraph_node_name (callee)), callee->symbol.order,
437 growth);
438 want_inline = false;
440 else if (growth > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
442 if (dump_file)
443 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
444 "growth %i exceeds --param early-inlining-insns\n",
445 xstrdup (cgraph_node_name (e->caller)),
446 e->caller->symbol.order,
447 xstrdup (cgraph_node_name (callee)), callee->symbol.order,
448 growth);
449 want_inline = false;
451 else if ((n = num_calls (callee)) != 0
452 && growth * (n + 1) > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS))
454 if (dump_file)
455 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, "
456 "growth %i exceeds --param early-inlining-insns "
457 "divided by number of calls\n",
458 xstrdup (cgraph_node_name (e->caller)),
459 e->caller->symbol.order,
460 xstrdup (cgraph_node_name (callee)), callee->symbol.order,
461 growth);
462 want_inline = false;
465 return want_inline;
468 /* Compute time of the edge->caller + edge->callee execution when inlining
469 does not happen. */
471 inline gcov_type
472 compute_uninlined_call_time (struct inline_summary *callee_info,
473 struct cgraph_edge *edge)
475 gcov_type uninlined_call_time =
476 RDIV ((gcov_type)callee_info->time * MAX (edge->frequency, 1),
477 CGRAPH_FREQ_BASE);
478 gcov_type caller_time = inline_summary (edge->caller->global.inlined_to
479 ? edge->caller->global.inlined_to
480 : edge->caller)->time;
481 return uninlined_call_time + caller_time;
484 /* Same as compute_uinlined_call_time but compute time when inlining
485 does happen. */
487 inline gcov_type
488 compute_inlined_call_time (struct cgraph_edge *edge,
489 int edge_time)
491 gcov_type caller_time = inline_summary (edge->caller->global.inlined_to
492 ? edge->caller->global.inlined_to
493 : edge->caller)->time;
494 gcov_type time = (caller_time
495 + RDIV (((gcov_type) edge_time
496 - inline_edge_summary (edge)->call_stmt_time)
497 * MAX (edge->frequency, 1), CGRAPH_FREQ_BASE));
498 /* Possible one roundoff error, but watch for overflows. */
499 gcc_checking_assert (time >= INT_MIN / 2);
500 if (time < 0)
501 time = 0;
502 return time;
505 /* Return true if the speedup for inlining E is bigger than
506 PARAM_MAX_INLINE_MIN_SPEEDUP. */
508 static bool
509 big_speedup_p (struct cgraph_edge *e)
511 gcov_type time = compute_uninlined_call_time (inline_summary (e->callee),
513 gcov_type inlined_time = compute_inlined_call_time (e,
514 estimate_edge_time (e));
515 if (time - inlined_time
516 > RDIV (time * PARAM_VALUE (PARAM_INLINE_MIN_SPEEDUP), 100))
517 return true;
518 return false;
521 /* Return true if we are interested in inlining small function.
522 When REPORT is true, report reason to dump file. */
524 static bool
525 want_inline_small_function_p (struct cgraph_edge *e, bool report)
527 bool want_inline = true;
528 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
530 if (DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
532 else if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
533 && !flag_inline_small_functions)
535 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE;
536 want_inline = false;
538 else
540 int growth = estimate_edge_growth (e);
541 inline_hints hints = estimate_edge_hints (e);
542 bool big_speedup = big_speedup_p (e);
544 if (growth <= 0)
546 /* Apply MAX_INLINE_INSNS_SINGLE limit. Do not do so when
547 hints suggests that inlining given function is very profitable. */
548 else if (DECL_DECLARED_INLINE_P (callee->symbol.decl)
549 && growth >= MAX_INLINE_INSNS_SINGLE
550 && !big_speedup
551 && !(hints & (INLINE_HINT_indirect_call
552 | INLINE_HINT_loop_iterations
553 | INLINE_HINT_array_index
554 | INLINE_HINT_loop_stride)))
556 e->inline_failed = CIF_MAX_INLINE_INSNS_SINGLE_LIMIT;
557 want_inline = false;
559 /* Before giving up based on fact that caller size will grow, allow
560 functions that are called few times and eliminating the offline
561 copy will lead to overall code size reduction.
562 Not all of these will be handled by subsequent inlining of functions
563 called once: in particular weak functions are not handled or funcitons
564 that inline to multiple calls but a lot of bodies is optimized out.
565 Finally we want to inline earlier to allow inlining of callbacks.
567 This is slightly wrong on aggressive side: it is entirely possible
568 that function is called many times with a context where inlining
569 reduces code size and few times with a context where inlining increase
570 code size. Resoluting growth estimate will be negative even if it
571 would make more sense to keep offline copy and do not inline into the
572 call sites that makes the code size grow.
574 When badness orders the calls in a way that code reducing calls come
575 first, this situation is not a problem at all: after inlining all
576 "good" calls, we will realize that keeping the function around is
577 better. */
578 else if (growth <= MAX_INLINE_INSNS_SINGLE
579 /* Unlike for functions called once, we play unsafe with
580 COMDATs. We can allow that since we know functions
581 in consideration are small (and thus risk is small) and
582 moreover grow estimates already accounts that COMDAT
583 functions may or may not disappear when eliminated from
584 current unit. With good probability making aggressive
585 choice in all units is going to make overall program
586 smaller.
588 Consequently we ask cgraph_can_remove_if_no_direct_calls_p
589 instead of
590 cgraph_will_be_removed_from_program_if_no_direct_calls */
591 && !DECL_EXTERNAL (callee->symbol.decl)
592 && cgraph_can_remove_if_no_direct_calls_p (callee)
593 && estimate_growth (callee) <= 0)
595 else if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
596 && !flag_inline_functions)
598 e->inline_failed = CIF_NOT_DECLARED_INLINED;
599 want_inline = false;
601 /* Apply MAX_INLINE_INSNS_AUTO limit for functions not declared inline
602 Upgrade it to MAX_INLINE_INSNS_SINGLE when hints suggests that
603 inlining given function is very profitable. */
604 else if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
605 && !big_speedup
606 && growth >= ((hints & (INLINE_HINT_indirect_call
607 | INLINE_HINT_loop_iterations
608 | INLINE_HINT_array_index
609 | INLINE_HINT_loop_stride))
610 ? MAX (MAX_INLINE_INSNS_AUTO,
611 MAX_INLINE_INSNS_SINGLE)
612 : MAX_INLINE_INSNS_AUTO))
614 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT;
615 want_inline = false;
617 /* If call is cold, do not inline when function body would grow. */
618 else if (!cgraph_maybe_hot_edge_p (e))
620 e->inline_failed = CIF_UNLIKELY_CALL;
621 want_inline = false;
624 if (!want_inline && report)
625 report_inline_failed_reason (e);
626 return want_inline;
629 /* EDGE is self recursive edge.
630 We hand two cases - when function A is inlining into itself
631 or when function A is being inlined into another inliner copy of function
632 A within function B.
634 In first case OUTER_NODE points to the toplevel copy of A, while
635 in the second case OUTER_NODE points to the outermost copy of A in B.
637 In both cases we want to be extra selective since
638 inlining the call will just introduce new recursive calls to appear. */
640 static bool
641 want_inline_self_recursive_call_p (struct cgraph_edge *edge,
642 struct cgraph_node *outer_node,
643 bool peeling,
644 int depth)
646 char const *reason = NULL;
647 bool want_inline = true;
648 int caller_freq = CGRAPH_FREQ_BASE;
649 int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO);
651 if (DECL_DECLARED_INLINE_P (edge->caller->symbol.decl))
652 max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH);
654 if (!cgraph_maybe_hot_edge_p (edge))
656 reason = "recursive call is cold";
657 want_inline = false;
659 else if (max_count && !outer_node->count)
661 reason = "not executed in profile";
662 want_inline = false;
664 else if (depth > max_depth)
666 reason = "--param max-inline-recursive-depth exceeded.";
667 want_inline = false;
670 if (outer_node->global.inlined_to)
671 caller_freq = outer_node->callers->frequency;
673 if (!want_inline)
675 /* Inlining of self recursive function into copy of itself within other function
676 is transformation similar to loop peeling.
678 Peeling is profitable if we can inline enough copies to make probability
679 of actual call to the self recursive function very small. Be sure that
680 the probability of recursion is small.
682 We ensure that the frequency of recursing is at most 1 - (1/max_depth).
683 This way the expected number of recision is at most max_depth. */
684 else if (peeling)
686 int max_prob = CGRAPH_FREQ_BASE - ((CGRAPH_FREQ_BASE + max_depth - 1)
687 / max_depth);
688 int i;
689 for (i = 1; i < depth; i++)
690 max_prob = max_prob * max_prob / CGRAPH_FREQ_BASE;
691 if (max_count
692 && (edge->count * CGRAPH_FREQ_BASE / outer_node->count
693 >= max_prob))
695 reason = "profile of recursive call is too large";
696 want_inline = false;
698 if (!max_count
699 && (edge->frequency * CGRAPH_FREQ_BASE / caller_freq
700 >= max_prob))
702 reason = "frequency of recursive call is too large";
703 want_inline = false;
706 /* Recursive inlining, i.e. equivalent of unrolling, is profitable if recursion
707 depth is large. We reduce function call overhead and increase chances that
708 things fit in hardware return predictor.
710 Recursive inlining might however increase cost of stack frame setup
711 actually slowing down functions whose recursion tree is wide rather than
712 deep.
714 Deciding reliably on when to do recursive inlining without profile feedback
715 is tricky. For now we disable recursive inlining when probability of self
716 recursion is low.
718 Recursive inlining of self recursive call within loop also results in large loop
719 depths that generally optimize badly. We may want to throttle down inlining
720 in those cases. In particular this seems to happen in one of libstdc++ rb tree
721 methods. */
722 else
724 if (max_count
725 && (edge->count * 100 / outer_node->count
726 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
728 reason = "profile of recursive call is too small";
729 want_inline = false;
731 else if (!max_count
732 && (edge->frequency * 100 / caller_freq
733 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY)))
735 reason = "frequency of recursive call is too small";
736 want_inline = false;
739 if (!want_inline && dump_file)
740 fprintf (dump_file, " not inlining recursively: %s\n", reason);
741 return want_inline;
744 /* Return true when NODE has uninlinable caller;
745 set HAS_HOT_CALL if it has hot call.
746 Worker for cgraph_for_node_and_aliases. */
748 static bool
749 check_callers (struct cgraph_node *node, void *has_hot_call)
751 struct cgraph_edge *e;
752 for (e = node->callers; e; e = e->next_caller)
754 if (!can_inline_edge_p (e, true))
755 return true;
756 if (!has_hot_call && cgraph_maybe_hot_edge_p (e))
757 *(bool *)has_hot_call = true;
759 return false;
762 /* If NODE has a caller, return true. */
764 static bool
765 has_caller_p (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
767 if (node->callers)
768 return true;
769 return false;
772 /* Decide if inlining NODE would reduce unit size by eliminating
773 the offline copy of function.
774 When COLD is true the cold calls are considered, too. */
776 static bool
777 want_inline_function_to_all_callers_p (struct cgraph_node *node, bool cold)
779 struct cgraph_node *function = cgraph_function_or_thunk_node (node, NULL);
780 bool has_hot_call = false;
782 /* Does it have callers? */
783 if (!cgraph_for_node_and_aliases (node, has_caller_p, NULL, true))
784 return false;
785 /* Already inlined? */
786 if (function->global.inlined_to)
787 return false;
788 if (cgraph_function_or_thunk_node (node, NULL) != node)
789 return false;
790 /* Inlining into all callers would increase size? */
791 if (estimate_growth (node) > 0)
792 return false;
793 /* All inlines must be possible. */
794 if (cgraph_for_node_and_aliases (node, check_callers, &has_hot_call, true))
795 return false;
796 if (!cold && !has_hot_call)
797 return false;
798 return true;
801 #define RELATIVE_TIME_BENEFIT_RANGE (INT_MAX / 64)
803 /* Return relative time improvement for inlining EDGE in range
804 1...RELATIVE_TIME_BENEFIT_RANGE */
806 static inline int
807 relative_time_benefit (struct inline_summary *callee_info,
808 struct cgraph_edge *edge,
809 int edge_time)
811 gcov_type relbenefit;
812 gcov_type uninlined_call_time = compute_uninlined_call_time (callee_info, edge);
813 gcov_type inlined_call_time = compute_inlined_call_time (edge, edge_time);
815 /* Inlining into extern inline function is not a win. */
816 if (DECL_EXTERNAL (edge->caller->global.inlined_to
817 ? edge->caller->global.inlined_to->symbol.decl
818 : edge->caller->symbol.decl))
819 return 1;
821 /* Watch overflows. */
822 gcc_checking_assert (uninlined_call_time >= 0);
823 gcc_checking_assert (inlined_call_time >= 0);
824 gcc_checking_assert (uninlined_call_time >= inlined_call_time);
826 /* Compute relative time benefit, i.e. how much the call becomes faster.
827 ??? perhaps computing how much the caller+calle together become faster
828 would lead to more realistic results. */
829 if (!uninlined_call_time)
830 uninlined_call_time = 1;
831 relbenefit =
832 RDIV (((gcov_type)uninlined_call_time - inlined_call_time) * RELATIVE_TIME_BENEFIT_RANGE,
833 uninlined_call_time);
834 relbenefit = MIN (relbenefit, RELATIVE_TIME_BENEFIT_RANGE);
835 gcc_checking_assert (relbenefit >= 0);
836 relbenefit = MAX (relbenefit, 1);
837 return relbenefit;
841 /* A cost model driving the inlining heuristics in a way so the edges with
842 smallest badness are inlined first. After each inlining is performed
843 the costs of all caller edges of nodes affected are recomputed so the
844 metrics may accurately depend on values such as number of inlinable callers
845 of the function or function body size. */
847 static int
848 edge_badness (struct cgraph_edge *edge, bool dump)
850 gcov_type badness;
851 int growth, edge_time;
852 struct cgraph_node *callee = cgraph_function_or_thunk_node (edge->callee,
853 NULL);
854 struct inline_summary *callee_info = inline_summary (callee);
855 inline_hints hints;
857 if (DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
858 return INT_MIN;
860 growth = estimate_edge_growth (edge);
861 edge_time = estimate_edge_time (edge);
862 hints = estimate_edge_hints (edge);
863 gcc_checking_assert (edge_time >= 0);
864 gcc_checking_assert (edge_time <= callee_info->time);
865 gcc_checking_assert (growth <= callee_info->size);
867 if (dump)
869 fprintf (dump_file, " Badness calculation for %s/%i -> %s/%i\n",
870 xstrdup (cgraph_node_name (edge->caller)),
871 edge->caller->symbol.order,
872 xstrdup (cgraph_node_name (callee)),
873 edge->callee->symbol.order);
874 fprintf (dump_file, " size growth %i, time %i ",
875 growth,
876 edge_time);
877 dump_inline_hints (dump_file, hints);
878 if (big_speedup_p (edge))
879 fprintf (dump_file, " big_speedup");
880 fprintf (dump_file, "\n");
883 /* Always prefer inlining saving code size. */
884 if (growth <= 0)
886 badness = INT_MIN / 2 + growth;
887 if (dump)
888 fprintf (dump_file, " %i: Growth %i <= 0\n", (int) badness,
889 growth);
892 /* When profiling is available, compute badness as:
894 relative_edge_count * relative_time_benefit
895 goodness = -------------------------------------------
896 growth_f_caller
897 badness = -goodness
899 The fraction is upside down, because on edge counts and time beneits
900 the bounds are known. Edge growth is essentially unlimited. */
902 else if (max_count)
904 sreal tmp, relbenefit_real, growth_real;
905 int relbenefit = relative_time_benefit (callee_info, edge, edge_time);
907 sreal_init(&relbenefit_real, relbenefit, 0);
908 sreal_init(&growth_real, growth, 0);
910 /* relative_edge_count. */
911 sreal_init (&tmp, edge->count, 0);
912 sreal_div (&tmp, &tmp, &max_count_real);
914 /* relative_time_benefit. */
915 sreal_mul (&tmp, &tmp, &relbenefit_real);
916 sreal_div (&tmp, &tmp, &max_relbenefit_real);
918 /* growth_f_caller. */
919 sreal_mul (&tmp, &tmp, &half_int_min_real);
920 sreal_div (&tmp, &tmp, &growth_real);
922 badness = -1 * sreal_to_int (&tmp);
924 /* Be sure that insanity of the profile won't lead to increasing counts
925 in the scalling and thus to overflow in the computation above. */
926 gcc_assert (max_count >= edge->count);
927 if (dump)
929 fprintf (dump_file,
930 " %i (relative %f): profile info. Relative count %f"
931 " * Relative benefit %f\n",
932 (int) badness, (double) badness / INT_MIN,
933 (double) edge->count / max_count,
934 relbenefit * 100.0 / RELATIVE_TIME_BENEFIT_RANGE);
938 /* When function local profile is available. Compute badness as:
940 relative_time_benefit
941 goodness = ---------------------------------
942 growth_of_caller * overall_growth
944 badness = - goodness
946 compensated by the inline hints.
948 else if (flag_guess_branch_prob)
950 badness = (relative_time_benefit (callee_info, edge, edge_time)
951 * (INT_MIN / 16 / RELATIVE_TIME_BENEFIT_RANGE));
952 badness /= (MIN (65536/2, growth) * MIN (65536/2, MAX (1, callee_info->growth)));
953 gcc_checking_assert (badness <=0 && badness >= INT_MIN / 16);
954 if ((hints & (INLINE_HINT_indirect_call
955 | INLINE_HINT_loop_iterations
956 | INLINE_HINT_array_index
957 | INLINE_HINT_loop_stride))
958 || callee_info->growth <= 0)
959 badness *= 8;
960 if (hints & (INLINE_HINT_same_scc))
961 badness /= 16;
962 else if (hints & (INLINE_HINT_in_scc))
963 badness /= 8;
964 else if (hints & (INLINE_HINT_cross_module))
965 badness /= 2;
966 gcc_checking_assert (badness <= 0 && badness >= INT_MIN / 2);
967 if ((hints & INLINE_HINT_declared_inline) && badness >= INT_MIN / 32)
968 badness *= 16;
969 if (dump)
971 fprintf (dump_file,
972 " %i: guessed profile. frequency %f,"
973 " benefit %f%%, time w/o inlining %i, time w inlining %i"
974 " overall growth %i (current) %i (original)\n",
975 (int) badness, (double)edge->frequency / CGRAPH_FREQ_BASE,
976 relative_time_benefit (callee_info, edge, edge_time) * 100.0
977 / RELATIVE_TIME_BENEFIT_RANGE,
978 (int)compute_uninlined_call_time (callee_info, edge),
979 (int)compute_inlined_call_time (edge, edge_time),
980 estimate_growth (callee),
981 callee_info->growth);
984 /* When function local profile is not available or it does not give
985 useful information (ie frequency is zero), base the cost on
986 loop nest and overall size growth, so we optimize for overall number
987 of functions fully inlined in program. */
988 else
990 int nest = MIN (inline_edge_summary (edge)->loop_depth, 8);
991 badness = growth * 256;
993 /* Decrease badness if call is nested. */
994 if (badness > 0)
995 badness >>= nest;
996 else
998 badness <<= nest;
1000 if (dump)
1001 fprintf (dump_file, " %i: no profile. nest %i\n", (int) badness,
1002 nest);
1005 /* Ensure that we did not overflow in all the fixed point math above. */
1006 gcc_assert (badness >= INT_MIN);
1007 gcc_assert (badness <= INT_MAX - 1);
1008 /* Make recursive inlining happen always after other inlining is done. */
1009 if (cgraph_edge_recursive_p (edge))
1010 return badness + 1;
1011 else
1012 return badness;
1015 /* Recompute badness of EDGE and update its key in HEAP if needed. */
1016 static inline void
1017 update_edge_key (fibheap_t heap, struct cgraph_edge *edge)
1019 int badness = edge_badness (edge, false);
1020 if (edge->aux)
1022 fibnode_t n = (fibnode_t) edge->aux;
1023 gcc_checking_assert (n->data == edge);
1025 /* fibheap_replace_key only decrease the keys.
1026 When we increase the key we do not update heap
1027 and instead re-insert the element once it becomes
1028 a minimum of heap. */
1029 if (badness < n->key)
1031 if (dump_file && (dump_flags & TDF_DETAILS))
1033 fprintf (dump_file,
1034 " decreasing badness %s/%i -> %s/%i, %i to %i\n",
1035 xstrdup (cgraph_node_name (edge->caller)),
1036 edge->caller->symbol.order,
1037 xstrdup (cgraph_node_name (edge->callee)),
1038 edge->callee->symbol.order,
1039 (int)n->key,
1040 badness);
1042 fibheap_replace_key (heap, n, badness);
1043 gcc_checking_assert (n->key == badness);
1046 else
1048 if (dump_file && (dump_flags & TDF_DETAILS))
1050 fprintf (dump_file,
1051 " enqueuing call %s/%i -> %s/%i, badness %i\n",
1052 xstrdup (cgraph_node_name (edge->caller)),
1053 edge->caller->symbol.order,
1054 xstrdup (cgraph_node_name (edge->callee)),
1055 edge->callee->symbol.order,
1056 badness);
1058 edge->aux = fibheap_insert (heap, badness, edge);
1063 /* NODE was inlined.
1064 All caller edges needs to be resetted because
1065 size estimates change. Similarly callees needs reset
1066 because better context may be known. */
1068 static void
1069 reset_edge_caches (struct cgraph_node *node)
1071 struct cgraph_edge *edge;
1072 struct cgraph_edge *e = node->callees;
1073 struct cgraph_node *where = node;
1074 int i;
1075 struct ipa_ref *ref;
1077 if (where->global.inlined_to)
1078 where = where->global.inlined_to;
1080 /* WHERE body size has changed, the cached growth is invalid. */
1081 reset_node_growth_cache (where);
1083 for (edge = where->callers; edge; edge = edge->next_caller)
1084 if (edge->inline_failed)
1085 reset_edge_growth_cache (edge);
1086 for (i = 0; ipa_ref_list_referring_iterate (&where->symbol.ref_list,
1087 i, ref); i++)
1088 if (ref->use == IPA_REF_ALIAS)
1089 reset_edge_caches (ipa_ref_referring_node (ref));
1091 if (!e)
1092 return;
1094 while (true)
1095 if (!e->inline_failed && e->callee->callees)
1096 e = e->callee->callees;
1097 else
1099 if (e->inline_failed)
1100 reset_edge_growth_cache (e);
1101 if (e->next_callee)
1102 e = e->next_callee;
1103 else
1107 if (e->caller == node)
1108 return;
1109 e = e->caller->callers;
1111 while (!e->next_callee);
1112 e = e->next_callee;
1117 /* Recompute HEAP nodes for each of caller of NODE.
1118 UPDATED_NODES track nodes we already visited, to avoid redundant work.
1119 When CHECK_INLINABLITY_FOR is set, re-check for specified edge that
1120 it is inlinable. Otherwise check all edges. */
1122 static void
1123 update_caller_keys (fibheap_t heap, struct cgraph_node *node,
1124 bitmap updated_nodes,
1125 struct cgraph_edge *check_inlinablity_for)
1127 struct cgraph_edge *edge;
1128 int i;
1129 struct ipa_ref *ref;
1131 if ((!node->symbol.alias && !inline_summary (node)->inlinable)
1132 || node->global.inlined_to)
1133 return;
1134 if (!bitmap_set_bit (updated_nodes, node->uid))
1135 return;
1137 for (i = 0; ipa_ref_list_referring_iterate (&node->symbol.ref_list,
1138 i, ref); i++)
1139 if (ref->use == IPA_REF_ALIAS)
1141 struct cgraph_node *alias = ipa_ref_referring_node (ref);
1142 update_caller_keys (heap, alias, updated_nodes, check_inlinablity_for);
1145 for (edge = node->callers; edge; edge = edge->next_caller)
1146 if (edge->inline_failed)
1148 if (!check_inlinablity_for
1149 || check_inlinablity_for == edge)
1151 if (can_inline_edge_p (edge, false)
1152 && want_inline_small_function_p (edge, false))
1153 update_edge_key (heap, edge);
1154 else if (edge->aux)
1156 report_inline_failed_reason (edge);
1157 fibheap_delete_node (heap, (fibnode_t) edge->aux);
1158 edge->aux = NULL;
1161 else if (edge->aux)
1162 update_edge_key (heap, edge);
1166 /* Recompute HEAP nodes for each uninlined call in NODE.
1167 This is used when we know that edge badnesses are going only to increase
1168 (we introduced new call site) and thus all we need is to insert newly
1169 created edges into heap. */
1171 static void
1172 update_callee_keys (fibheap_t heap, struct cgraph_node *node,
1173 bitmap updated_nodes)
1175 struct cgraph_edge *e = node->callees;
1177 if (!e)
1178 return;
1179 while (true)
1180 if (!e->inline_failed && e->callee->callees)
1181 e = e->callee->callees;
1182 else
1184 enum availability avail;
1185 struct cgraph_node *callee;
1186 /* We do not reset callee growth cache here. Since we added a new call,
1187 growth chould have just increased and consequentely badness metric
1188 don't need updating. */
1189 if (e->inline_failed
1190 && (callee = cgraph_function_or_thunk_node (e->callee, &avail))
1191 && inline_summary (callee)->inlinable
1192 && avail >= AVAIL_AVAILABLE
1193 && !bitmap_bit_p (updated_nodes, callee->uid))
1195 if (can_inline_edge_p (e, false)
1196 && want_inline_small_function_p (e, false))
1197 update_edge_key (heap, e);
1198 else if (e->aux)
1200 report_inline_failed_reason (e);
1201 fibheap_delete_node (heap, (fibnode_t) e->aux);
1202 e->aux = NULL;
1205 if (e->next_callee)
1206 e = e->next_callee;
1207 else
1211 if (e->caller == node)
1212 return;
1213 e = e->caller->callers;
1215 while (!e->next_callee);
1216 e = e->next_callee;
1221 /* Enqueue all recursive calls from NODE into priority queue depending on
1222 how likely we want to recursively inline the call. */
1224 static void
1225 lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where,
1226 fibheap_t heap)
1228 struct cgraph_edge *e;
1229 enum availability avail;
1231 for (e = where->callees; e; e = e->next_callee)
1232 if (e->callee == node
1233 || (cgraph_function_or_thunk_node (e->callee, &avail) == node
1234 && avail > AVAIL_OVERWRITABLE))
1236 /* When profile feedback is available, prioritize by expected number
1237 of calls. */
1238 fibheap_insert (heap,
1239 !max_count ? -e->frequency
1240 : -(e->count / ((max_count + (1<<24) - 1) / (1<<24))),
1243 for (e = where->callees; e; e = e->next_callee)
1244 if (!e->inline_failed)
1245 lookup_recursive_calls (node, e->callee, heap);
1248 /* Decide on recursive inlining: in the case function has recursive calls,
1249 inline until body size reaches given argument. If any new indirect edges
1250 are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES
1251 is NULL. */
1253 static bool
1254 recursive_inlining (struct cgraph_edge *edge,
1255 vec<cgraph_edge_p> *new_edges)
1257 int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO);
1258 fibheap_t heap;
1259 struct cgraph_node *node;
1260 struct cgraph_edge *e;
1261 struct cgraph_node *master_clone = NULL, *next;
1262 int depth = 0;
1263 int n = 0;
1265 node = edge->caller;
1266 if (node->global.inlined_to)
1267 node = node->global.inlined_to;
1269 if (DECL_DECLARED_INLINE_P (node->symbol.decl))
1270 limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE);
1272 /* Make sure that function is small enough to be considered for inlining. */
1273 if (estimate_size_after_inlining (node, edge) >= limit)
1274 return false;
1275 heap = fibheap_new ();
1276 lookup_recursive_calls (node, node, heap);
1277 if (fibheap_empty (heap))
1279 fibheap_delete (heap);
1280 return false;
1283 if (dump_file)
1284 fprintf (dump_file,
1285 " Performing recursive inlining on %s\n",
1286 cgraph_node_name (node));
1288 /* Do the inlining and update list of recursive call during process. */
1289 while (!fibheap_empty (heap))
1291 struct cgraph_edge *curr
1292 = (struct cgraph_edge *) fibheap_extract_min (heap);
1293 struct cgraph_node *cnode, *dest = curr->callee;
1295 if (!can_inline_edge_p (curr, true))
1296 continue;
1298 /* MASTER_CLONE is produced in the case we already started modified
1299 the function. Be sure to redirect edge to the original body before
1300 estimating growths otherwise we will be seeing growths after inlining
1301 the already modified body. */
1302 if (master_clone)
1304 cgraph_redirect_edge_callee (curr, master_clone);
1305 reset_edge_growth_cache (curr);
1308 if (estimate_size_after_inlining (node, curr) > limit)
1310 cgraph_redirect_edge_callee (curr, dest);
1311 reset_edge_growth_cache (curr);
1312 break;
1315 depth = 1;
1316 for (cnode = curr->caller;
1317 cnode->global.inlined_to; cnode = cnode->callers->caller)
1318 if (node->symbol.decl
1319 == cgraph_function_or_thunk_node (curr->callee, NULL)->symbol.decl)
1320 depth++;
1322 if (!want_inline_self_recursive_call_p (curr, node, false, depth))
1324 cgraph_redirect_edge_callee (curr, dest);
1325 reset_edge_growth_cache (curr);
1326 continue;
1329 if (dump_file)
1331 fprintf (dump_file,
1332 " Inlining call of depth %i", depth);
1333 if (node->count)
1335 fprintf (dump_file, " called approx. %.2f times per call",
1336 (double)curr->count / node->count);
1338 fprintf (dump_file, "\n");
1340 if (!master_clone)
1342 /* We need original clone to copy around. */
1343 master_clone = cgraph_clone_node (node, node->symbol.decl,
1344 node->count, CGRAPH_FREQ_BASE,
1345 false, vNULL, true, NULL);
1346 for (e = master_clone->callees; e; e = e->next_callee)
1347 if (!e->inline_failed)
1348 clone_inlined_nodes (e, true, false, NULL);
1349 cgraph_redirect_edge_callee (curr, master_clone);
1350 reset_edge_growth_cache (curr);
1353 inline_call (curr, false, new_edges, &overall_size, true);
1354 lookup_recursive_calls (node, curr->callee, heap);
1355 n++;
1358 if (!fibheap_empty (heap) && dump_file)
1359 fprintf (dump_file, " Recursive inlining growth limit met.\n");
1360 fibheap_delete (heap);
1362 if (!master_clone)
1363 return false;
1365 if (dump_file)
1366 fprintf (dump_file,
1367 "\n Inlined %i times, "
1368 "body grown from size %i to %i, time %i to %i\n", n,
1369 inline_summary (master_clone)->size, inline_summary (node)->size,
1370 inline_summary (master_clone)->time, inline_summary (node)->time);
1372 /* Remove master clone we used for inlining. We rely that clones inlined
1373 into master clone gets queued just before master clone so we don't
1374 need recursion. */
1375 for (node = cgraph_first_function (); node != master_clone;
1376 node = next)
1378 next = cgraph_next_function (node);
1379 if (node->global.inlined_to == master_clone)
1380 cgraph_remove_node (node);
1382 cgraph_remove_node (master_clone);
1383 return true;
1387 /* Given whole compilation unit estimate of INSNS, compute how large we can
1388 allow the unit to grow. */
1390 static int
1391 compute_max_insns (int insns)
1393 int max_insns = insns;
1394 if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
1395 max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
1397 return ((HOST_WIDEST_INT) max_insns
1398 * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100);
1402 /* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */
1404 static void
1405 add_new_edges_to_heap (fibheap_t heap, vec<cgraph_edge_p> new_edges)
1407 while (new_edges.length () > 0)
1409 struct cgraph_edge *edge = new_edges.pop ();
1411 gcc_assert (!edge->aux);
1412 if (edge->inline_failed
1413 && can_inline_edge_p (edge, true)
1414 && want_inline_small_function_p (edge, true))
1415 edge->aux = fibheap_insert (heap, edge_badness (edge, false), edge);
1419 /* Remove EDGE from the fibheap. */
1421 static void
1422 heap_edge_removal_hook (struct cgraph_edge *e, void *data)
1424 if (e->callee)
1425 reset_node_growth_cache (e->callee);
1426 if (e->aux)
1428 fibheap_delete_node ((fibheap_t)data, (fibnode_t)e->aux);
1429 e->aux = NULL;
1433 /* Return true if speculation of edge E seems useful.
1434 If ANTICIPATE_INLINING is true, be conservative and hope that E
1435 may get inlined. */
1437 bool
1438 speculation_useful_p (struct cgraph_edge *e, bool anticipate_inlining)
1440 enum availability avail;
1441 struct cgraph_node *target = cgraph_function_or_thunk_node (e->callee, &avail);
1442 struct cgraph_edge *direct, *indirect;
1443 struct ipa_ref *ref;
1445 gcc_assert (e->speculative && !e->indirect_unknown_callee);
1447 if (!cgraph_maybe_hot_edge_p (e))
1448 return false;
1450 /* See if IP optimizations found something potentially useful about the
1451 function. For now we look only for CONST/PURE flags. Almost everything
1452 else we propagate is useless. */
1453 if (avail >= AVAIL_AVAILABLE)
1455 int ecf_flags = flags_from_decl_or_type (target->symbol.decl);
1456 if (ecf_flags & ECF_CONST)
1458 cgraph_speculative_call_info (e, direct, indirect, ref);
1459 if (!(indirect->indirect_info->ecf_flags & ECF_CONST))
1460 return true;
1462 else if (ecf_flags & ECF_PURE)
1464 cgraph_speculative_call_info (e, direct, indirect, ref);
1465 if (!(indirect->indirect_info->ecf_flags & ECF_PURE))
1466 return true;
1469 /* If we did not managed to inline the function nor redirect
1470 to an ipa-cp clone (that are seen by having local flag set),
1471 it is probably pointless to inline it unless hardware is missing
1472 indirect call predictor. */
1473 if (!anticipate_inlining && e->inline_failed && !target->local.local)
1474 return false;
1475 /* For overwritable targets there is not much to do. */
1476 if (e->inline_failed && !can_inline_edge_p (e, false, true))
1477 return false;
1478 /* OK, speculation seems interesting. */
1479 return true;
1482 /* We know that EDGE is not going to be inlined.
1483 See if we can remove speculation. */
1485 static void
1486 resolve_noninline_speculation (fibheap_t edge_heap, struct cgraph_edge *edge)
1488 if (edge->speculative && !speculation_useful_p (edge, false))
1490 struct cgraph_node *node = edge->caller;
1491 struct cgraph_node *where = node->global.inlined_to
1492 ? node->global.inlined_to : node;
1493 bitmap updated_nodes = BITMAP_ALLOC (NULL);
1495 cgraph_resolve_speculation (edge, NULL);
1496 reset_edge_caches (where);
1497 inline_update_overall_summary (where);
1498 update_caller_keys (edge_heap, where,
1499 updated_nodes, NULL);
1500 update_callee_keys (edge_heap, where,
1501 updated_nodes);
1502 BITMAP_FREE (updated_nodes);
1506 /* We use greedy algorithm for inlining of small functions:
1507 All inline candidates are put into prioritized heap ordered in
1508 increasing badness.
1510 The inlining of small functions is bounded by unit growth parameters. */
1512 static void
1513 inline_small_functions (void)
1515 struct cgraph_node *node;
1516 struct cgraph_edge *edge;
1517 fibheap_t edge_heap = fibheap_new ();
1518 bitmap updated_nodes = BITMAP_ALLOC (NULL);
1519 int min_size, max_size;
1520 vec<cgraph_edge_p> new_indirect_edges = vNULL;
1521 int initial_size = 0;
1522 struct cgraph_node **order = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
1523 struct cgraph_edge_hook_list *edge_removal_hook_holder;
1525 if (flag_indirect_inlining)
1526 new_indirect_edges.create (8);
1528 edge_removal_hook_holder
1529 = cgraph_add_edge_removal_hook (&heap_edge_removal_hook, edge_heap);
1531 /* Compute overall unit size and other global parameters used by badness
1532 metrics. */
1534 max_count = 0;
1535 ipa_reduced_postorder (order, true, true, NULL);
1536 free (order);
1538 FOR_EACH_DEFINED_FUNCTION (node)
1539 if (!node->global.inlined_to)
1541 if (cgraph_function_with_gimple_body_p (node)
1542 || node->thunk.thunk_p)
1544 struct inline_summary *info = inline_summary (node);
1545 struct ipa_dfs_info *dfs = (struct ipa_dfs_info *) node->symbol.aux;
1547 if (!DECL_EXTERNAL (node->symbol.decl))
1548 initial_size += info->size;
1549 info->growth = estimate_growth (node);
1550 if (dfs && dfs->next_cycle)
1552 struct cgraph_node *n2;
1553 int id = dfs->scc_no + 1;
1554 for (n2 = node; n2;
1555 n2 = ((struct ipa_dfs_info *) node->symbol.aux)->next_cycle)
1557 struct inline_summary *info2 = inline_summary (n2);
1558 if (info2->scc_no)
1559 break;
1560 info2->scc_no = id;
1565 for (edge = node->callers; edge; edge = edge->next_caller)
1566 if (max_count < edge->count)
1567 max_count = edge->count;
1569 sreal_init (&max_count_real, max_count, 0);
1570 sreal_init (&max_relbenefit_real, RELATIVE_TIME_BENEFIT_RANGE, 0);
1571 sreal_init (&half_int_min_real, INT_MAX / 2, 0);
1572 ipa_free_postorder_info ();
1573 initialize_growth_caches ();
1575 if (dump_file)
1576 fprintf (dump_file,
1577 "\nDeciding on inlining of small functions. Starting with size %i.\n",
1578 initial_size);
1580 overall_size = initial_size;
1581 max_size = compute_max_insns (overall_size);
1582 min_size = overall_size;
1584 /* Populate the heeap with all edges we might inline. */
1586 FOR_EACH_DEFINED_FUNCTION (node)
1588 bool update = false;
1589 struct cgraph_edge *next;
1591 if (dump_file)
1592 fprintf (dump_file, "Enqueueing calls in %s/%i.\n",
1593 cgraph_node_name (node), node->symbol.order);
1595 for (edge = node->callees; edge; edge = next)
1597 next = edge->next_callee;
1598 if (edge->inline_failed
1599 && !edge->aux
1600 && can_inline_edge_p (edge, true)
1601 && want_inline_small_function_p (edge, true)
1602 && edge->inline_failed)
1604 gcc_assert (!edge->aux);
1605 update_edge_key (edge_heap, edge);
1607 if (edge->speculative && !speculation_useful_p (edge, edge->aux != NULL))
1609 cgraph_resolve_speculation (edge, NULL);
1610 update = true;
1613 if (update)
1615 struct cgraph_node *where = node->global.inlined_to
1616 ? node->global.inlined_to : node;
1617 inline_update_overall_summary (where);
1618 reset_node_growth_cache (where);
1619 reset_edge_caches (where);
1620 update_caller_keys (edge_heap, where,
1621 updated_nodes, NULL);
1622 bitmap_clear (updated_nodes);
1626 gcc_assert (in_lto_p
1627 || !max_count
1628 || (profile_info && flag_branch_probabilities));
1630 while (!fibheap_empty (edge_heap))
1632 int old_size = overall_size;
1633 struct cgraph_node *where, *callee;
1634 int badness = fibheap_min_key (edge_heap);
1635 int current_badness;
1636 int cached_badness;
1637 int growth;
1639 edge = (struct cgraph_edge *) fibheap_extract_min (edge_heap);
1640 gcc_assert (edge->aux);
1641 edge->aux = NULL;
1642 if (!edge->inline_failed)
1643 continue;
1645 /* Be sure that caches are maintained consistent.
1646 We can not make this ENABLE_CHECKING only because it cause different
1647 updates of the fibheap queue. */
1648 cached_badness = edge_badness (edge, false);
1649 reset_edge_growth_cache (edge);
1650 reset_node_growth_cache (edge->callee);
1652 /* When updating the edge costs, we only decrease badness in the keys.
1653 Increases of badness are handled lazilly; when we see key with out
1654 of date value on it, we re-insert it now. */
1655 current_badness = edge_badness (edge, false);
1656 gcc_assert (cached_badness == current_badness);
1657 gcc_assert (current_badness >= badness);
1658 if (current_badness != badness)
1660 edge->aux = fibheap_insert (edge_heap, current_badness, edge);
1661 continue;
1664 if (!can_inline_edge_p (edge, true))
1666 resolve_noninline_speculation (edge_heap, edge);
1667 continue;
1670 callee = cgraph_function_or_thunk_node (edge->callee, NULL);
1671 growth = estimate_edge_growth (edge);
1672 if (dump_file)
1674 fprintf (dump_file,
1675 "\nConsidering %s/%i with %i size\n",
1676 cgraph_node_name (callee), callee->symbol.order,
1677 inline_summary (callee)->size);
1678 fprintf (dump_file,
1679 " to be inlined into %s/%i in %s:%i\n"
1680 " Estimated growth after inlined into all is %+i insns.\n"
1681 " Estimated badness is %i, frequency %.2f.\n",
1682 cgraph_node_name (edge->caller), edge->caller->symbol.order,
1683 flag_wpa ? "unknown"
1684 : gimple_filename ((const_gimple) edge->call_stmt),
1685 flag_wpa ? -1
1686 : gimple_lineno ((const_gimple) edge->call_stmt),
1687 estimate_growth (callee),
1688 badness,
1689 edge->frequency / (double)CGRAPH_FREQ_BASE);
1690 if (edge->count)
1691 fprintf (dump_file," Called "HOST_WIDEST_INT_PRINT_DEC"x\n",
1692 edge->count);
1693 if (dump_flags & TDF_DETAILS)
1694 edge_badness (edge, true);
1697 if (overall_size + growth > max_size
1698 && !DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
1700 edge->inline_failed = CIF_INLINE_UNIT_GROWTH_LIMIT;
1701 report_inline_failed_reason (edge);
1702 resolve_noninline_speculation (edge_heap, edge);
1703 continue;
1706 if (!want_inline_small_function_p (edge, true))
1708 resolve_noninline_speculation (edge_heap, edge);
1709 continue;
1712 /* Heuristics for inlining small functions works poorly for
1713 recursive calls where we do efect similar to loop unrolling.
1714 When inliing such edge seems profitable, leave decision on
1715 specific inliner. */
1716 if (cgraph_edge_recursive_p (edge))
1718 where = edge->caller;
1719 if (where->global.inlined_to)
1720 where = where->global.inlined_to;
1721 if (!recursive_inlining (edge,
1722 flag_indirect_inlining
1723 ? &new_indirect_edges : NULL))
1725 edge->inline_failed = CIF_RECURSIVE_INLINING;
1726 resolve_noninline_speculation (edge_heap, edge);
1727 continue;
1729 reset_edge_caches (where);
1730 /* Recursive inliner inlines all recursive calls of the function
1731 at once. Consequently we need to update all callee keys. */
1732 if (flag_indirect_inlining)
1733 add_new_edges_to_heap (edge_heap, new_indirect_edges);
1734 update_callee_keys (edge_heap, where, updated_nodes);
1735 bitmap_clear (updated_nodes);
1737 else
1739 struct cgraph_node *outer_node = NULL;
1740 int depth = 0;
1742 /* Consider the case where self recursive function A is inlined into B.
1743 This is desired optimization in some cases, since it leads to effect
1744 similar of loop peeling and we might completely optimize out the
1745 recursive call. However we must be extra selective. */
1747 where = edge->caller;
1748 while (where->global.inlined_to)
1750 if (where->symbol.decl == callee->symbol.decl)
1751 outer_node = where, depth++;
1752 where = where->callers->caller;
1754 if (outer_node
1755 && !want_inline_self_recursive_call_p (edge, outer_node,
1756 true, depth))
1758 edge->inline_failed
1759 = (DECL_DISREGARD_INLINE_LIMITS (edge->callee->symbol.decl)
1760 ? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED);
1761 resolve_noninline_speculation (edge_heap, edge);
1762 continue;
1764 else if (depth && dump_file)
1765 fprintf (dump_file, " Peeling recursion with depth %i\n", depth);
1767 gcc_checking_assert (!callee->global.inlined_to);
1768 inline_call (edge, true, &new_indirect_edges, &overall_size, true);
1769 if (flag_indirect_inlining)
1770 add_new_edges_to_heap (edge_heap, new_indirect_edges);
1772 reset_edge_caches (edge->callee);
1773 reset_node_growth_cache (callee);
1775 update_callee_keys (edge_heap, where, updated_nodes);
1777 where = edge->caller;
1778 if (where->global.inlined_to)
1779 where = where->global.inlined_to;
1781 /* Our profitability metric can depend on local properties
1782 such as number of inlinable calls and size of the function body.
1783 After inlining these properties might change for the function we
1784 inlined into (since it's body size changed) and for the functions
1785 called by function we inlined (since number of it inlinable callers
1786 might change). */
1787 update_caller_keys (edge_heap, where, updated_nodes, NULL);
1788 bitmap_clear (updated_nodes);
1790 if (dump_file)
1792 fprintf (dump_file,
1793 " Inlined into %s which now has time %i and size %i,"
1794 "net change of %+i.\n",
1795 cgraph_node_name (edge->caller),
1796 inline_summary (edge->caller)->time,
1797 inline_summary (edge->caller)->size,
1798 overall_size - old_size);
1800 if (min_size > overall_size)
1802 min_size = overall_size;
1803 max_size = compute_max_insns (min_size);
1805 if (dump_file)
1806 fprintf (dump_file, "New minimal size reached: %i\n", min_size);
1810 free_growth_caches ();
1811 new_indirect_edges.release ();
1812 fibheap_delete (edge_heap);
1813 if (dump_file)
1814 fprintf (dump_file,
1815 "Unit growth for small function inlining: %i->%i (%i%%)\n",
1816 initial_size, overall_size,
1817 initial_size ? overall_size * 100 / (initial_size) - 100: 0);
1818 BITMAP_FREE (updated_nodes);
1819 cgraph_remove_edge_removal_hook (edge_removal_hook_holder);
1822 /* Flatten NODE. Performed both during early inlining and
1823 at IPA inlining time. */
1825 static void
1826 flatten_function (struct cgraph_node *node, bool early)
1828 struct cgraph_edge *e;
1830 /* We shouldn't be called recursively when we are being processed. */
1831 gcc_assert (node->symbol.aux == NULL);
1833 node->symbol.aux = (void *) node;
1835 for (e = node->callees; e; e = e->next_callee)
1837 struct cgraph_node *orig_callee;
1838 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
1840 /* We've hit cycle? It is time to give up. */
1841 if (callee->symbol.aux)
1843 if (dump_file)
1844 fprintf (dump_file,
1845 "Not inlining %s into %s to avoid cycle.\n",
1846 xstrdup (cgraph_node_name (callee)),
1847 xstrdup (cgraph_node_name (e->caller)));
1848 e->inline_failed = CIF_RECURSIVE_INLINING;
1849 continue;
1852 /* When the edge is already inlined, we just need to recurse into
1853 it in order to fully flatten the leaves. */
1854 if (!e->inline_failed)
1856 flatten_function (callee, early);
1857 continue;
1860 /* Flatten attribute needs to be processed during late inlining. For
1861 extra code quality we however do flattening during early optimization,
1862 too. */
1863 if (!early
1864 ? !can_inline_edge_p (e, true)
1865 : !can_early_inline_edge_p (e))
1866 continue;
1868 if (cgraph_edge_recursive_p (e))
1870 if (dump_file)
1871 fprintf (dump_file, "Not inlining: recursive call.\n");
1872 continue;
1875 if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->symbol.decl))
1876 != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->symbol.decl)))
1878 if (dump_file)
1879 fprintf (dump_file, "Not inlining: SSA form does not match.\n");
1880 continue;
1883 /* Inline the edge and flatten the inline clone. Avoid
1884 recursing through the original node if the node was cloned. */
1885 if (dump_file)
1886 fprintf (dump_file, " Inlining %s into %s.\n",
1887 xstrdup (cgraph_node_name (callee)),
1888 xstrdup (cgraph_node_name (e->caller)));
1889 orig_callee = callee;
1890 inline_call (e, true, NULL, NULL, false);
1891 if (e->callee != orig_callee)
1892 orig_callee->symbol.aux = (void *) node;
1893 flatten_function (e->callee, early);
1894 if (e->callee != orig_callee)
1895 orig_callee->symbol.aux = NULL;
1898 node->symbol.aux = NULL;
1899 if (!node->global.inlined_to)
1900 inline_update_overall_summary (node);
1903 /* Count number of callers of NODE and store it into DATA (that
1904 points to int. Worker for cgraph_for_node_and_aliases. */
1906 static bool
1907 sum_callers (struct cgraph_node *node, void *data)
1909 struct cgraph_edge *e;
1910 int *num_calls = (int *)data;
1912 for (e = node->callers; e; e = e->next_caller)
1913 (*num_calls)++;
1914 return false;
1917 /* Inline NODE to all callers. Worker for cgraph_for_node_and_aliases.
1918 DATA points to number of calls originally found so we avoid infinite
1919 recursion. */
1921 static bool
1922 inline_to_all_callers (struct cgraph_node *node, void *data)
1924 int *num_calls = (int *)data;
1925 while (node->callers && !node->global.inlined_to)
1927 struct cgraph_node *caller = node->callers->caller;
1929 if (dump_file)
1931 fprintf (dump_file,
1932 "\nInlining %s size %i.\n",
1933 cgraph_node_name (node),
1934 inline_summary (node)->size);
1935 fprintf (dump_file,
1936 " Called once from %s %i insns.\n",
1937 cgraph_node_name (node->callers->caller),
1938 inline_summary (node->callers->caller)->size);
1941 inline_call (node->callers, true, NULL, NULL, true);
1942 if (dump_file)
1943 fprintf (dump_file,
1944 " Inlined into %s which now has %i size\n",
1945 cgraph_node_name (caller),
1946 inline_summary (caller)->size);
1947 if (!(*num_calls)--)
1949 if (dump_file)
1950 fprintf (dump_file, "New calls found; giving up.\n");
1951 return true;
1954 return false;
1957 /* Decide on the inlining. We do so in the topological order to avoid
1958 expenses on updating data structures. */
1960 static unsigned int
1961 ipa_inline (void)
1963 struct cgraph_node *node;
1964 int nnodes;
1965 struct cgraph_node **order =
1966 XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
1967 int i;
1968 int cold;
1969 bool remove_functions = false;
1971 if (!optimize)
1972 return 0;
1974 if (in_lto_p && optimize)
1975 ipa_update_after_lto_read ();
1977 if (dump_file)
1978 dump_inline_summaries (dump_file);
1980 nnodes = ipa_reverse_postorder (order);
1982 FOR_EACH_FUNCTION (node)
1983 node->symbol.aux = 0;
1985 if (dump_file)
1986 fprintf (dump_file, "\nFlattening functions:\n");
1988 /* In the first pass handle functions to be flattened. Do this with
1989 a priority so none of our later choices will make this impossible. */
1990 for (i = nnodes - 1; i >= 0; i--)
1992 node = order[i];
1994 /* Handle nodes to be flattened.
1995 Ideally when processing callees we stop inlining at the
1996 entry of cycles, possibly cloning that entry point and
1997 try to flatten itself turning it into a self-recursive
1998 function. */
1999 if (lookup_attribute ("flatten",
2000 DECL_ATTRIBUTES (node->symbol.decl)) != NULL)
2002 if (dump_file)
2003 fprintf (dump_file,
2004 "Flattening %s\n", cgraph_node_name (node));
2005 flatten_function (node, false);
2009 inline_small_functions ();
2011 /* Do first after-inlining removal. We want to remove all "stale" extern inline
2012 functions and virtual functions so we really know what is called once. */
2013 symtab_remove_unreachable_nodes (false, dump_file);
2014 free (order);
2016 /* Inline functions with a property that after inlining into all callers the
2017 code size will shrink because the out-of-line copy is eliminated.
2018 We do this regardless on the callee size as long as function growth limits
2019 are met. */
2020 if (dump_file)
2021 fprintf (dump_file,
2022 "\nDeciding on functions to be inlined into all callers and removing useless speculations:\n");
2024 /* Inlining one function called once has good chance of preventing
2025 inlining other function into the same callee. Ideally we should
2026 work in priority order, but probably inlining hot functions first
2027 is good cut without the extra pain of maintaining the queue.
2029 ??? this is not really fitting the bill perfectly: inlining function
2030 into callee often leads to better optimization of callee due to
2031 increased context for optimization.
2032 For example if main() function calls a function that outputs help
2033 and then function that does the main optmization, we should inline
2034 the second with priority even if both calls are cold by themselves.
2036 We probably want to implement new predicate replacing our use of
2037 maybe_hot_edge interpreted as maybe_hot_edge || callee is known
2038 to be hot. */
2039 for (cold = 0; cold <= 1; cold ++)
2041 FOR_EACH_DEFINED_FUNCTION (node)
2043 struct cgraph_edge *edge, *next;
2044 bool update=false;
2046 for (edge = node->callees; edge; edge = next)
2048 next = edge->next_callee;
2049 if (edge->speculative && !speculation_useful_p (edge, false))
2051 cgraph_resolve_speculation (edge, NULL);
2052 update = true;
2053 remove_functions = true;
2056 if (update)
2058 struct cgraph_node *where = node->global.inlined_to
2059 ? node->global.inlined_to : node;
2060 reset_node_growth_cache (where);
2061 reset_edge_caches (where);
2062 inline_update_overall_summary (where);
2064 if (flag_inline_functions_called_once
2065 && want_inline_function_to_all_callers_p (node, cold))
2067 int num_calls = 0;
2068 cgraph_for_node_and_aliases (node, sum_callers,
2069 &num_calls, true);
2070 cgraph_for_node_and_aliases (node, inline_to_all_callers,
2071 &num_calls, true);
2072 remove_functions = true;
2077 /* Free ipa-prop structures if they are no longer needed. */
2078 if (optimize)
2079 ipa_free_all_structures_after_iinln ();
2081 if (dump_file)
2082 fprintf (dump_file,
2083 "\nInlined %i calls, eliminated %i functions\n\n",
2084 ncalls_inlined, nfunctions_inlined);
2086 if (dump_file)
2087 dump_inline_summaries (dump_file);
2088 /* In WPA we use inline summaries for partitioning process. */
2089 if (!flag_wpa)
2090 inline_free_summary ();
2091 return remove_functions ? TODO_remove_functions : 0;
2094 /* Inline always-inline function calls in NODE. */
2096 static bool
2097 inline_always_inline_functions (struct cgraph_node *node)
2099 struct cgraph_edge *e;
2100 bool inlined = false;
2102 for (e = node->callees; e; e = e->next_callee)
2104 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
2105 if (!DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl))
2106 continue;
2108 if (cgraph_edge_recursive_p (e))
2110 if (dump_file)
2111 fprintf (dump_file, " Not inlining recursive call to %s.\n",
2112 cgraph_node_name (e->callee));
2113 e->inline_failed = CIF_RECURSIVE_INLINING;
2114 continue;
2117 if (!can_early_inline_edge_p (e))
2119 /* Set inlined to true if the callee is marked "always_inline" but
2120 is not inlinable. This will allow flagging an error later in
2121 expand_call_inline in tree-inline.c. */
2122 if (lookup_attribute ("always_inline",
2123 DECL_ATTRIBUTES (callee->symbol.decl)) != NULL)
2124 inlined = true;
2125 continue;
2128 if (dump_file)
2129 fprintf (dump_file, " Inlining %s into %s (always_inline).\n",
2130 xstrdup (cgraph_node_name (e->callee)),
2131 xstrdup (cgraph_node_name (e->caller)));
2132 inline_call (e, true, NULL, NULL, false);
2133 inlined = true;
2135 if (inlined)
2136 inline_update_overall_summary (node);
2138 return inlined;
2141 /* Decide on the inlining. We do so in the topological order to avoid
2142 expenses on updating data structures. */
2144 static bool
2145 early_inline_small_functions (struct cgraph_node *node)
2147 struct cgraph_edge *e;
2148 bool inlined = false;
2150 for (e = node->callees; e; e = e->next_callee)
2152 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL);
2153 if (!inline_summary (callee)->inlinable
2154 || !e->inline_failed)
2155 continue;
2157 /* Do not consider functions not declared inline. */
2158 if (!DECL_DECLARED_INLINE_P (callee->symbol.decl)
2159 && !flag_inline_small_functions
2160 && !flag_inline_functions)
2161 continue;
2163 if (dump_file)
2164 fprintf (dump_file, "Considering inline candidate %s.\n",
2165 cgraph_node_name (callee));
2167 if (!can_early_inline_edge_p (e))
2168 continue;
2170 if (cgraph_edge_recursive_p (e))
2172 if (dump_file)
2173 fprintf (dump_file, " Not inlining: recursive call.\n");
2174 continue;
2177 if (!want_early_inline_function_p (e))
2178 continue;
2180 if (dump_file)
2181 fprintf (dump_file, " Inlining %s into %s.\n",
2182 xstrdup (cgraph_node_name (callee)),
2183 xstrdup (cgraph_node_name (e->caller)));
2184 inline_call (e, true, NULL, NULL, true);
2185 inlined = true;
2188 return inlined;
2191 /* Do inlining of small functions. Doing so early helps profiling and other
2192 passes to be somewhat more effective and avoids some code duplication in
2193 later real inlining pass for testcases with very many function calls. */
2194 static unsigned int
2195 early_inliner (void)
2197 struct cgraph_node *node = cgraph_get_node (current_function_decl);
2198 struct cgraph_edge *edge;
2199 unsigned int todo = 0;
2200 int iterations = 0;
2201 bool inlined = false;
2203 if (seen_error ())
2204 return 0;
2206 /* Do nothing if datastructures for ipa-inliner are already computed. This
2207 happens when some pass decides to construct new function and
2208 cgraph_add_new_function calls lowering passes and early optimization on
2209 it. This may confuse ourself when early inliner decide to inline call to
2210 function clone, because function clones don't have parameter list in
2211 ipa-prop matching their signature. */
2212 if (ipa_node_params_vector.exists ())
2213 return 0;
2215 #ifdef ENABLE_CHECKING
2216 verify_cgraph_node (node);
2217 #endif
2218 ipa_remove_all_references (&node->symbol.ref_list);
2220 /* Even when not optimizing or not inlining inline always-inline
2221 functions. */
2222 inlined = inline_always_inline_functions (node);
2224 if (!optimize
2225 || flag_no_inline
2226 || !flag_early_inlining
2227 /* Never inline regular functions into always-inline functions
2228 during incremental inlining. This sucks as functions calling
2229 always inline functions will get less optimized, but at the
2230 same time inlining of functions calling always inline
2231 function into an always inline function might introduce
2232 cycles of edges to be always inlined in the callgraph.
2234 We might want to be smarter and just avoid this type of inlining. */
2235 || DECL_DISREGARD_INLINE_LIMITS (node->symbol.decl))
2237 else if (lookup_attribute ("flatten",
2238 DECL_ATTRIBUTES (node->symbol.decl)) != NULL)
2240 /* When the function is marked to be flattened, recursively inline
2241 all calls in it. */
2242 if (dump_file)
2243 fprintf (dump_file,
2244 "Flattening %s\n", cgraph_node_name (node));
2245 flatten_function (node, true);
2246 inlined = true;
2248 else
2250 /* We iterate incremental inlining to get trivial cases of indirect
2251 inlining. */
2252 while (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS)
2253 && early_inline_small_functions (node))
2255 timevar_push (TV_INTEGRATION);
2256 todo |= optimize_inline_calls (current_function_decl);
2258 /* Technically we ought to recompute inline parameters so the new
2259 iteration of early inliner works as expected. We however have
2260 values approximately right and thus we only need to update edge
2261 info that might be cleared out for newly discovered edges. */
2262 for (edge = node->callees; edge; edge = edge->next_callee)
2264 struct inline_edge_summary *es = inline_edge_summary (edge);
2265 es->call_stmt_size
2266 = estimate_num_insns (edge->call_stmt, &eni_size_weights);
2267 es->call_stmt_time
2268 = estimate_num_insns (edge->call_stmt, &eni_time_weights);
2269 if (edge->callee->symbol.decl
2270 && !gimple_check_call_matching_types (
2271 edge->call_stmt, edge->callee->symbol.decl, false))
2272 edge->call_stmt_cannot_inline_p = true;
2274 timevar_pop (TV_INTEGRATION);
2275 iterations++;
2276 inlined = false;
2278 if (dump_file)
2279 fprintf (dump_file, "Iterations: %i\n", iterations);
2282 if (inlined)
2284 timevar_push (TV_INTEGRATION);
2285 todo |= optimize_inline_calls (current_function_decl);
2286 timevar_pop (TV_INTEGRATION);
2289 cfun->always_inline_functions_inlined = true;
2291 return todo;
2294 namespace {
2296 const pass_data pass_data_early_inline =
2298 GIMPLE_PASS, /* type */
2299 "einline", /* name */
2300 OPTGROUP_INLINE, /* optinfo_flags */
2301 false, /* has_gate */
2302 true, /* has_execute */
2303 TV_EARLY_INLINING, /* tv_id */
2304 PROP_ssa, /* properties_required */
2305 0, /* properties_provided */
2306 0, /* properties_destroyed */
2307 0, /* todo_flags_start */
2308 0, /* todo_flags_finish */
2311 class pass_early_inline : public gimple_opt_pass
2313 public:
2314 pass_early_inline(gcc::context *ctxt)
2315 : gimple_opt_pass(pass_data_early_inline, ctxt)
2318 /* opt_pass methods: */
2319 unsigned int execute () { return early_inliner (); }
2321 }; // class pass_early_inline
2323 } // anon namespace
2325 gimple_opt_pass *
2326 make_pass_early_inline (gcc::context *ctxt)
2328 return new pass_early_inline (ctxt);
2332 /* When to run IPA inlining. Inlining of always-inline functions
2333 happens during early inlining.
2335 Enable inlining unconditoinally, because callgraph redirection
2336 happens here. */
2338 static bool
2339 gate_ipa_inline (void)
2341 return true;
2344 namespace {
2346 const pass_data pass_data_ipa_inline =
2348 IPA_PASS, /* type */
2349 "inline", /* name */
2350 OPTGROUP_INLINE, /* optinfo_flags */
2351 true, /* has_gate */
2352 true, /* has_execute */
2353 TV_IPA_INLINING, /* tv_id */
2354 0, /* properties_required */
2355 0, /* properties_provided */
2356 0, /* properties_destroyed */
2357 TODO_remove_functions, /* todo_flags_start */
2358 ( TODO_dump_symtab ), /* todo_flags_finish */
2361 class pass_ipa_inline : public ipa_opt_pass_d
2363 public:
2364 pass_ipa_inline(gcc::context *ctxt)
2365 : ipa_opt_pass_d(pass_data_ipa_inline, ctxt,
2366 inline_generate_summary, /* generate_summary */
2367 inline_write_summary, /* write_summary */
2368 inline_read_summary, /* read_summary */
2369 NULL, /* write_optimization_summary */
2370 NULL, /* read_optimization_summary */
2371 NULL, /* stmt_fixup */
2372 0, /* function_transform_todo_flags_start */
2373 inline_transform, /* function_transform */
2374 NULL) /* variable_transform */
2377 /* opt_pass methods: */
2378 bool gate () { return gate_ipa_inline (); }
2379 unsigned int execute () { return ipa_inline (); }
2381 }; // class pass_ipa_inline
2383 } // anon namespace
2385 ipa_opt_pass_d *
2386 make_pass_ipa_inline (gcc::context *ctxt)
2388 return new pass_ipa_inline (ctxt);