vectorizer cost model enhancement
[official-gcc.git] / gcc / ipa-cp.c
blob86f5501c388abd67a7e7af2b8745b69c8466f0ce
1 /* Interprocedural constant propagation
2 Copyright (C) 2005-2013 Free Software Foundation, Inc.
4 Contributed by Razya Ladelsky <RAZYA@il.ibm.com> and Martin Jambor
5 <mjambor@suse.cz>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* Interprocedural constant propagation (IPA-CP).
25 The goal of this transformation is to
27 1) discover functions which are always invoked with some arguments with the
28 same known constant values and modify the functions so that the
29 subsequent optimizations can take advantage of the knowledge, and
31 2) partial specialization - create specialized versions of functions
32 transformed in this way if some parameters are known constants only in
33 certain contexts but the estimated tradeoff between speedup and cost size
34 is deemed good.
36 The algorithm also propagates types and attempts to perform type based
37 devirtualization. Types are propagated much like constants.
39 The algorithm basically consists of three stages. In the first, functions
40 are analyzed one at a time and jump functions are constructed for all known
41 call-sites. In the second phase, the pass propagates information from the
42 jump functions across the call to reveal what values are available at what
43 call sites, performs estimations of effects of known values on functions and
44 their callees, and finally decides what specialized extra versions should be
45 created. In the third, the special versions materialize and appropriate
46 calls are redirected.
48 The algorithm used is to a certain extent based on "Interprocedural Constant
49 Propagation", by David Callahan, Keith D Cooper, Ken Kennedy, Linda Torczon,
50 Comp86, pg 152-161 and "A Methodology for Procedure Cloning" by Keith D
51 Cooper, Mary W. Hall, and Ken Kennedy.
54 First stage - intraprocedural analysis
55 =======================================
57 This phase computes jump_function and modification flags.
59 A jump function for a call-site represents the values passed as an actual
60 arguments of a given call-site. In principle, there are three types of
61 values:
63 Pass through - the caller's formal parameter is passed as an actual
64 argument, plus an operation on it can be performed.
65 Constant - a constant is passed as an actual argument.
66 Unknown - neither of the above.
68 All jump function types are described in detail in ipa-prop.h, together with
69 the data structures that represent them and methods of accessing them.
71 ipcp_generate_summary() is the main function of the first stage.
73 Second stage - interprocedural analysis
74 ========================================
76 This stage is itself divided into two phases. In the first, we propagate
77 known values over the call graph, in the second, we make cloning decisions.
78 It uses a different algorithm than the original Callahan's paper.
80 First, we traverse the functions topologically from callers to callees and,
81 for each strongly connected component (SCC), we propagate constants
82 according to previously computed jump functions. We also record what known
83 values depend on other known values and estimate local effects. Finally, we
84 propagate cumulative information about these effects from dependent values
85 to those on which they depend.
87 Second, we again traverse the call graph in the same topological order and
88 make clones for functions which we know are called with the same values in
89 all contexts and decide about extra specialized clones of functions just for
90 some contexts - these decisions are based on both local estimates and
91 cumulative estimates propagated from callees.
93 ipcp_propagate_stage() and ipcp_decision_stage() together constitute the
94 third stage.
96 Third phase - materialization of clones, call statement updates.
97 ============================================
99 This stage is currently performed by call graph code (mainly in cgraphunit.c
100 and tree-inline.c) according to instructions inserted to the call graph by
101 the second stage. */
103 #include "config.h"
104 #include "system.h"
105 #include "coretypes.h"
106 #include "tree.h"
107 #include "target.h"
108 #include "gimple.h"
109 #include "cgraph.h"
110 #include "ipa-prop.h"
111 #include "tree-ssa.h"
112 #include "tree-pass.h"
113 #include "flags.h"
114 #include "diagnostic.h"
115 #include "tree-pretty-print.h"
116 #include "tree-inline.h"
117 #include "params.h"
118 #include "ipa-inline.h"
119 #include "ipa-utils.h"
121 struct ipcp_value;
123 /* Describes a particular source for an IPA-CP value. */
125 struct ipcp_value_source
127 /* Aggregate offset of the source, negative if the source is scalar value of
128 the argument itself. */
129 HOST_WIDE_INT offset;
130 /* The incoming edge that brought the value. */
131 struct cgraph_edge *cs;
132 /* If the jump function that resulted into his value was a pass-through or an
133 ancestor, this is the ipcp_value of the caller from which the described
134 value has been derived. Otherwise it is NULL. */
135 struct ipcp_value *val;
136 /* Next pointer in a linked list of sources of a value. */
137 struct ipcp_value_source *next;
138 /* If the jump function that resulted into his value was a pass-through or an
139 ancestor, this is the index of the parameter of the caller the jump
140 function references. */
141 int index;
144 /* Describes one particular value stored in struct ipcp_lattice. */
146 struct ipcp_value
148 /* The actual value for the given parameter. This is either an IPA invariant
149 or a TREE_BINFO describing a type that can be used for
150 devirtualization. */
151 tree value;
152 /* The list of sources from which this value originates. */
153 struct ipcp_value_source *sources;
154 /* Next pointers in a linked list of all values in a lattice. */
155 struct ipcp_value *next;
156 /* Next pointers in a linked list of values in a strongly connected component
157 of values. */
158 struct ipcp_value *scc_next;
159 /* Next pointers in a linked list of SCCs of values sorted topologically
160 according their sources. */
161 struct ipcp_value *topo_next;
162 /* A specialized node created for this value, NULL if none has been (so far)
163 created. */
164 struct cgraph_node *spec_node;
165 /* Depth first search number and low link for topological sorting of
166 values. */
167 int dfs, low_link;
168 /* Time benefit and size cost that specializing the function for this value
169 would bring about in this function alone. */
170 int local_time_benefit, local_size_cost;
171 /* Time benefit and size cost that specializing the function for this value
172 can bring about in it's callees (transitively). */
173 int prop_time_benefit, prop_size_cost;
174 /* True if this valye is currently on the topo-sort stack. */
175 bool on_stack;
178 /* Lattice describing potential values of a formal parameter of a function, or
179 a part of an aggreagate. TOP is represented by a lattice with zero values
180 and with contains_variable and bottom flags cleared. BOTTOM is represented
181 by a lattice with the bottom flag set. In that case, values and
182 contains_variable flag should be disregarded. */
184 struct ipcp_lattice
186 /* The list of known values and types in this lattice. Note that values are
187 not deallocated if a lattice is set to bottom because there may be value
188 sources referencing them. */
189 struct ipcp_value *values;
190 /* Number of known values and types in this lattice. */
191 int values_count;
192 /* The lattice contains a variable component (in addition to values). */
193 bool contains_variable;
194 /* The value of the lattice is bottom (i.e. variable and unusable for any
195 propagation). */
196 bool bottom;
199 /* Lattice with an offset to describe a part of an aggregate. */
201 struct ipcp_agg_lattice : public ipcp_lattice
203 /* Offset that is being described by this lattice. */
204 HOST_WIDE_INT offset;
205 /* Size so that we don't have to re-compute it every time we traverse the
206 list. Must correspond to TYPE_SIZE of all lat values. */
207 HOST_WIDE_INT size;
208 /* Next element of the linked list. */
209 struct ipcp_agg_lattice *next;
212 /* Structure containing lattices for a parameter itself and for pieces of
213 aggregates that are passed in the parameter or by a reference in a parameter
214 plus some other useful flags. */
216 struct ipcp_param_lattices
218 /* Lattice describing the value of the parameter itself. */
219 struct ipcp_lattice itself;
220 /* Lattices describing aggregate parts. */
221 struct ipcp_agg_lattice *aggs;
222 /* Number of aggregate lattices */
223 int aggs_count;
224 /* True if aggregate data were passed by reference (as opposed to by
225 value). */
226 bool aggs_by_ref;
227 /* All aggregate lattices contain a variable component (in addition to
228 values). */
229 bool aggs_contain_variable;
230 /* The value of all aggregate lattices is bottom (i.e. variable and unusable
231 for any propagation). */
232 bool aggs_bottom;
234 /* There is a virtual call based on this parameter. */
235 bool virt_call;
238 /* Allocation pools for values and their sources in ipa-cp. */
240 alloc_pool ipcp_values_pool;
241 alloc_pool ipcp_sources_pool;
242 alloc_pool ipcp_agg_lattice_pool;
244 /* Maximal count found in program. */
246 static gcov_type max_count;
248 /* Original overall size of the program. */
250 static long overall_size, max_new_size;
252 /* Head of the linked list of topologically sorted values. */
254 static struct ipcp_value *values_topo;
256 /* Return the param lattices structure corresponding to the Ith formal
257 parameter of the function described by INFO. */
258 static inline struct ipcp_param_lattices *
259 ipa_get_parm_lattices (struct ipa_node_params *info, int i)
261 gcc_assert (i >= 0 && i < ipa_get_param_count (info));
262 gcc_checking_assert (!info->ipcp_orig_node);
263 gcc_checking_assert (info->lattices);
264 return &(info->lattices[i]);
267 /* Return the lattice corresponding to the scalar value of the Ith formal
268 parameter of the function described by INFO. */
269 static inline struct ipcp_lattice *
270 ipa_get_scalar_lat (struct ipa_node_params *info, int i)
272 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
273 return &plats->itself;
276 /* Return whether LAT is a lattice with a single constant and without an
277 undefined value. */
279 static inline bool
280 ipa_lat_is_single_const (struct ipcp_lattice *lat)
282 if (lat->bottom
283 || lat->contains_variable
284 || lat->values_count != 1)
285 return false;
286 else
287 return true;
290 /* Return true iff the CS is an edge within a strongly connected component as
291 computed by ipa_reduced_postorder. */
293 static inline bool
294 edge_within_scc (struct cgraph_edge *cs)
296 struct ipa_dfs_info *caller_dfs = (struct ipa_dfs_info *) cs->caller->symbol.aux;
297 struct ipa_dfs_info *callee_dfs;
298 struct cgraph_node *callee = cgraph_function_node (cs->callee, NULL);
300 callee_dfs = (struct ipa_dfs_info *) callee->symbol.aux;
301 return (caller_dfs
302 && callee_dfs
303 && caller_dfs->scc_no == callee_dfs->scc_no);
306 /* Print V which is extracted from a value in a lattice to F. */
308 static void
309 print_ipcp_constant_value (FILE * f, tree v)
311 if (TREE_CODE (v) == TREE_BINFO)
313 fprintf (f, "BINFO ");
314 print_generic_expr (f, BINFO_TYPE (v), 0);
316 else if (TREE_CODE (v) == ADDR_EXPR
317 && TREE_CODE (TREE_OPERAND (v, 0)) == CONST_DECL)
319 fprintf (f, "& ");
320 print_generic_expr (f, DECL_INITIAL (TREE_OPERAND (v, 0)), 0);
322 else
323 print_generic_expr (f, v, 0);
326 /* Print a lattice LAT to F. */
328 static void
329 print_lattice (FILE * f, struct ipcp_lattice *lat,
330 bool dump_sources, bool dump_benefits)
332 struct ipcp_value *val;
333 bool prev = false;
335 if (lat->bottom)
337 fprintf (f, "BOTTOM\n");
338 return;
341 if (!lat->values_count && !lat->contains_variable)
343 fprintf (f, "TOP\n");
344 return;
347 if (lat->contains_variable)
349 fprintf (f, "VARIABLE");
350 prev = true;
351 if (dump_benefits)
352 fprintf (f, "\n");
355 for (val = lat->values; val; val = val->next)
357 if (dump_benefits && prev)
358 fprintf (f, " ");
359 else if (!dump_benefits && prev)
360 fprintf (f, ", ");
361 else
362 prev = true;
364 print_ipcp_constant_value (f, val->value);
366 if (dump_sources)
368 struct ipcp_value_source *s;
370 fprintf (f, " [from:");
371 for (s = val->sources; s; s = s->next)
372 fprintf (f, " %i(%i)", s->cs->caller->symbol.order,
373 s->cs->frequency);
374 fprintf (f, "]");
377 if (dump_benefits)
378 fprintf (f, " [loc_time: %i, loc_size: %i, "
379 "prop_time: %i, prop_size: %i]\n",
380 val->local_time_benefit, val->local_size_cost,
381 val->prop_time_benefit, val->prop_size_cost);
383 if (!dump_benefits)
384 fprintf (f, "\n");
387 /* Print all ipcp_lattices of all functions to F. */
389 static void
390 print_all_lattices (FILE * f, bool dump_sources, bool dump_benefits)
392 struct cgraph_node *node;
393 int i, count;
395 fprintf (f, "\nLattices:\n");
396 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
398 struct ipa_node_params *info;
400 info = IPA_NODE_REF (node);
401 fprintf (f, " Node: %s/%i:\n", cgraph_node_name (node),
402 node->symbol.order);
403 count = ipa_get_param_count (info);
404 for (i = 0; i < count; i++)
406 struct ipcp_agg_lattice *aglat;
407 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
408 fprintf (f, " param [%d]: ", i);
409 print_lattice (f, &plats->itself, dump_sources, dump_benefits);
411 if (plats->virt_call)
412 fprintf (f, " virt_call flag set\n");
414 if (plats->aggs_bottom)
416 fprintf (f, " AGGS BOTTOM\n");
417 continue;
419 if (plats->aggs_contain_variable)
420 fprintf (f, " AGGS VARIABLE\n");
421 for (aglat = plats->aggs; aglat; aglat = aglat->next)
423 fprintf (f, " %soffset " HOST_WIDE_INT_PRINT_DEC ": ",
424 plats->aggs_by_ref ? "ref " : "", aglat->offset);
425 print_lattice (f, aglat, dump_sources, dump_benefits);
431 /* Determine whether it is at all technically possible to create clones of NODE
432 and store this information in the ipa_node_params structure associated
433 with NODE. */
435 static void
436 determine_versionability (struct cgraph_node *node)
438 const char *reason = NULL;
440 /* There are a number of generic reasons functions cannot be versioned. We
441 also cannot remove parameters if there are type attributes such as fnspec
442 present. */
443 if (node->symbol.alias || node->thunk.thunk_p)
444 reason = "alias or thunk";
445 else if (!node->local.versionable)
446 reason = "not a tree_versionable_function";
447 else if (cgraph_function_body_availability (node) <= AVAIL_OVERWRITABLE)
448 reason = "insufficient body availability";
450 if (reason && dump_file && !node->symbol.alias && !node->thunk.thunk_p)
451 fprintf (dump_file, "Function %s/%i is not versionable, reason: %s.\n",
452 cgraph_node_name (node), node->symbol.order, reason);
454 node->local.versionable = (reason == NULL);
457 /* Return true if it is at all technically possible to create clones of a
458 NODE. */
460 static bool
461 ipcp_versionable_function_p (struct cgraph_node *node)
463 return node->local.versionable;
466 /* Structure holding accumulated information about callers of a node. */
468 struct caller_statistics
470 gcov_type count_sum;
471 int n_calls, n_hot_calls, freq_sum;
474 /* Initialize fields of STAT to zeroes. */
476 static inline void
477 init_caller_stats (struct caller_statistics *stats)
479 stats->count_sum = 0;
480 stats->n_calls = 0;
481 stats->n_hot_calls = 0;
482 stats->freq_sum = 0;
485 /* Worker callback of cgraph_for_node_and_aliases accumulating statistics of
486 non-thunk incoming edges to NODE. */
488 static bool
489 gather_caller_stats (struct cgraph_node *node, void *data)
491 struct caller_statistics *stats = (struct caller_statistics *) data;
492 struct cgraph_edge *cs;
494 for (cs = node->callers; cs; cs = cs->next_caller)
495 if (cs->caller->thunk.thunk_p)
496 cgraph_for_node_and_aliases (cs->caller, gather_caller_stats,
497 stats, false);
498 else
500 stats->count_sum += cs->count;
501 stats->freq_sum += cs->frequency;
502 stats->n_calls++;
503 if (cgraph_maybe_hot_edge_p (cs))
504 stats->n_hot_calls ++;
506 return false;
510 /* Return true if this NODE is viable candidate for cloning. */
512 static bool
513 ipcp_cloning_candidate_p (struct cgraph_node *node)
515 struct caller_statistics stats;
517 gcc_checking_assert (cgraph_function_with_gimple_body_p (node));
519 if (!flag_ipa_cp_clone)
521 if (dump_file)
522 fprintf (dump_file, "Not considering %s for cloning; "
523 "-fipa-cp-clone disabled.\n",
524 cgraph_node_name (node));
525 return false;
528 if (!optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node->symbol.decl)))
530 if (dump_file)
531 fprintf (dump_file, "Not considering %s for cloning; "
532 "optimizing it for size.\n",
533 cgraph_node_name (node));
534 return false;
537 init_caller_stats (&stats);
538 cgraph_for_node_and_aliases (node, gather_caller_stats, &stats, false);
540 if (inline_summary (node)->self_size < stats.n_calls)
542 if (dump_file)
543 fprintf (dump_file, "Considering %s for cloning; code might shrink.\n",
544 cgraph_node_name (node));
545 return true;
548 /* When profile is available and function is hot, propagate into it even if
549 calls seems cold; constant propagation can improve function's speed
550 significantly. */
551 if (max_count)
553 if (stats.count_sum > node->count * 90 / 100)
555 if (dump_file)
556 fprintf (dump_file, "Considering %s for cloning; "
557 "usually called directly.\n",
558 cgraph_node_name (node));
559 return true;
562 if (!stats.n_hot_calls)
564 if (dump_file)
565 fprintf (dump_file, "Not considering %s for cloning; no hot calls.\n",
566 cgraph_node_name (node));
567 return false;
569 if (dump_file)
570 fprintf (dump_file, "Considering %s for cloning.\n",
571 cgraph_node_name (node));
572 return true;
575 /* Arrays representing a topological ordering of call graph nodes and a stack
576 of noes used during constant propagation. */
578 struct topo_info
580 struct cgraph_node **order;
581 struct cgraph_node **stack;
582 int nnodes, stack_top;
585 /* Allocate the arrays in TOPO and topologically sort the nodes into order. */
587 static void
588 build_toporder_info (struct topo_info *topo)
590 topo->order = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
591 topo->stack = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes);
592 topo->stack_top = 0;
593 topo->nnodes = ipa_reduced_postorder (topo->order, true, true, NULL);
596 /* Free information about strongly connected components and the arrays in
597 TOPO. */
599 static void
600 free_toporder_info (struct topo_info *topo)
602 ipa_free_postorder_info ();
603 free (topo->order);
604 free (topo->stack);
607 /* Add NODE to the stack in TOPO, unless it is already there. */
609 static inline void
610 push_node_to_stack (struct topo_info *topo, struct cgraph_node *node)
612 struct ipa_node_params *info = IPA_NODE_REF (node);
613 if (info->node_enqueued)
614 return;
615 info->node_enqueued = 1;
616 topo->stack[topo->stack_top++] = node;
619 /* Pop a node from the stack in TOPO and return it or return NULL if the stack
620 is empty. */
622 static struct cgraph_node *
623 pop_node_from_stack (struct topo_info *topo)
625 if (topo->stack_top)
627 struct cgraph_node *node;
628 topo->stack_top--;
629 node = topo->stack[topo->stack_top];
630 IPA_NODE_REF (node)->node_enqueued = 0;
631 return node;
633 else
634 return NULL;
637 /* Set lattice LAT to bottom and return true if it previously was not set as
638 such. */
640 static inline bool
641 set_lattice_to_bottom (struct ipcp_lattice *lat)
643 bool ret = !lat->bottom;
644 lat->bottom = true;
645 return ret;
648 /* Mark lattice as containing an unknown value and return true if it previously
649 was not marked as such. */
651 static inline bool
652 set_lattice_contains_variable (struct ipcp_lattice *lat)
654 bool ret = !lat->contains_variable;
655 lat->contains_variable = true;
656 return ret;
659 /* Set all aggegate lattices in PLATS to bottom and return true if they were
660 not previously set as such. */
662 static inline bool
663 set_agg_lats_to_bottom (struct ipcp_param_lattices *plats)
665 bool ret = !plats->aggs_bottom;
666 plats->aggs_bottom = true;
667 return ret;
670 /* Mark all aggegate lattices in PLATS as containing an unknown value and
671 return true if they were not previously marked as such. */
673 static inline bool
674 set_agg_lats_contain_variable (struct ipcp_param_lattices *plats)
676 bool ret = !plats->aggs_contain_variable;
677 plats->aggs_contain_variable = true;
678 return ret;
681 /* Mark bot aggregate and scalar lattices as containing an unknown variable,
682 return true is any of them has not been marked as such so far. */
684 static inline bool
685 set_all_contains_variable (struct ipcp_param_lattices *plats)
687 bool ret = !plats->itself.contains_variable || !plats->aggs_contain_variable;
688 plats->itself.contains_variable = true;
689 plats->aggs_contain_variable = true;
690 return ret;
693 /* Initialize ipcp_lattices. */
695 static void
696 initialize_node_lattices (struct cgraph_node *node)
698 struct ipa_node_params *info = IPA_NODE_REF (node);
699 struct cgraph_edge *ie;
700 bool disable = false, variable = false;
701 int i;
703 gcc_checking_assert (cgraph_function_with_gimple_body_p (node));
704 if (!node->local.local)
706 /* When cloning is allowed, we can assume that externally visible
707 functions are not called. We will compensate this by cloning
708 later. */
709 if (ipcp_versionable_function_p (node)
710 && ipcp_cloning_candidate_p (node))
711 variable = true;
712 else
713 disable = true;
716 if (disable || variable)
718 for (i = 0; i < ipa_get_param_count (info) ; i++)
720 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
721 if (disable)
723 set_lattice_to_bottom (&plats->itself);
724 set_agg_lats_to_bottom (plats);
726 else
727 set_all_contains_variable (plats);
729 if (dump_file && (dump_flags & TDF_DETAILS)
730 && !node->symbol.alias && !node->thunk.thunk_p)
731 fprintf (dump_file, "Marking all lattices of %s/%i as %s\n",
732 cgraph_node_name (node), node->symbol.order,
733 disable ? "BOTTOM" : "VARIABLE");
736 for (ie = node->indirect_calls; ie; ie = ie->next_callee)
737 if (ie->indirect_info->polymorphic
738 && ie->indirect_info->param_index >= 0)
740 gcc_checking_assert (ie->indirect_info->param_index >= 0);
741 ipa_get_parm_lattices (info,
742 ie->indirect_info->param_index)->virt_call = 1;
746 /* Return the result of a (possibly arithmetic) pass through jump function
747 JFUNC on the constant value INPUT. Return NULL_TREE if that cannot be
748 determined or be considered an interprocedural invariant. */
750 static tree
751 ipa_get_jf_pass_through_result (struct ipa_jump_func *jfunc, tree input)
753 tree restype, res;
755 if (TREE_CODE (input) == TREE_BINFO)
757 if (ipa_get_jf_pass_through_type_preserved (jfunc))
759 gcc_checking_assert (ipa_get_jf_pass_through_operation (jfunc)
760 == NOP_EXPR);
761 return input;
763 return NULL_TREE;
766 if (ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
767 return input;
769 gcc_checking_assert (is_gimple_ip_invariant (input));
770 if (TREE_CODE_CLASS (ipa_get_jf_pass_through_operation (jfunc))
771 == tcc_comparison)
772 restype = boolean_type_node;
773 else
774 restype = TREE_TYPE (input);
775 res = fold_binary (ipa_get_jf_pass_through_operation (jfunc), restype,
776 input, ipa_get_jf_pass_through_operand (jfunc));
778 if (res && !is_gimple_ip_invariant (res))
779 return NULL_TREE;
781 return res;
784 /* Return the result of an ancestor jump function JFUNC on the constant value
785 INPUT. Return NULL_TREE if that cannot be determined. */
787 static tree
788 ipa_get_jf_ancestor_result (struct ipa_jump_func *jfunc, tree input)
790 if (TREE_CODE (input) == TREE_BINFO)
792 if (!ipa_get_jf_ancestor_type_preserved (jfunc))
793 return NULL;
794 return get_binfo_at_offset (input,
795 ipa_get_jf_ancestor_offset (jfunc),
796 ipa_get_jf_ancestor_type (jfunc));
798 else if (TREE_CODE (input) == ADDR_EXPR)
800 tree t = TREE_OPERAND (input, 0);
801 t = build_ref_for_offset (EXPR_LOCATION (t), t,
802 ipa_get_jf_ancestor_offset (jfunc),
803 ipa_get_jf_ancestor_type (jfunc), NULL, false);
804 return build_fold_addr_expr (t);
806 else
807 return NULL_TREE;
810 /* Determine whether JFUNC evaluates to a known value (that is either a
811 constant or a binfo) and if so, return it. Otherwise return NULL. INFO
812 describes the caller node so that pass-through jump functions can be
813 evaluated. */
815 tree
816 ipa_value_from_jfunc (struct ipa_node_params *info, struct ipa_jump_func *jfunc)
818 if (jfunc->type == IPA_JF_CONST)
819 return ipa_get_jf_constant (jfunc);
820 else if (jfunc->type == IPA_JF_KNOWN_TYPE)
821 return ipa_binfo_from_known_type_jfunc (jfunc);
822 else if (jfunc->type == IPA_JF_PASS_THROUGH
823 || jfunc->type == IPA_JF_ANCESTOR)
825 tree input;
826 int idx;
828 if (jfunc->type == IPA_JF_PASS_THROUGH)
829 idx = ipa_get_jf_pass_through_formal_id (jfunc);
830 else
831 idx = ipa_get_jf_ancestor_formal_id (jfunc);
833 if (info->ipcp_orig_node)
834 input = info->known_vals[idx];
835 else
837 struct ipcp_lattice *lat;
839 if (!info->lattices)
841 gcc_checking_assert (!flag_ipa_cp);
842 return NULL_TREE;
844 lat = ipa_get_scalar_lat (info, idx);
845 if (!ipa_lat_is_single_const (lat))
846 return NULL_TREE;
847 input = lat->values->value;
850 if (!input)
851 return NULL_TREE;
853 if (jfunc->type == IPA_JF_PASS_THROUGH)
854 return ipa_get_jf_pass_through_result (jfunc, input);
855 else
856 return ipa_get_jf_ancestor_result (jfunc, input);
858 else
859 return NULL_TREE;
863 /* If checking is enabled, verify that no lattice is in the TOP state, i.e. not
864 bottom, not containing a variable component and without any known value at
865 the same time. */
867 DEBUG_FUNCTION void
868 ipcp_verify_propagated_values (void)
870 struct cgraph_node *node;
872 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
874 struct ipa_node_params *info = IPA_NODE_REF (node);
875 int i, count = ipa_get_param_count (info);
877 for (i = 0; i < count; i++)
879 struct ipcp_lattice *lat = ipa_get_scalar_lat (info, i);
881 if (!lat->bottom
882 && !lat->contains_variable
883 && lat->values_count == 0)
885 if (dump_file)
887 fprintf (dump_file, "\nIPA lattices after constant "
888 "propagation:\n");
889 print_all_lattices (dump_file, true, false);
892 gcc_unreachable ();
898 /* Return true iff X and Y should be considered equal values by IPA-CP. */
900 static bool
901 values_equal_for_ipcp_p (tree x, tree y)
903 gcc_checking_assert (x != NULL_TREE && y != NULL_TREE);
905 if (x == y)
906 return true;
908 if (TREE_CODE (x) == TREE_BINFO || TREE_CODE (y) == TREE_BINFO)
909 return false;
911 if (TREE_CODE (x) == ADDR_EXPR
912 && TREE_CODE (y) == ADDR_EXPR
913 && TREE_CODE (TREE_OPERAND (x, 0)) == CONST_DECL
914 && TREE_CODE (TREE_OPERAND (y, 0)) == CONST_DECL)
915 return operand_equal_p (DECL_INITIAL (TREE_OPERAND (x, 0)),
916 DECL_INITIAL (TREE_OPERAND (y, 0)), 0);
917 else
918 return operand_equal_p (x, y, 0);
921 /* Add a new value source to VAL, marking that a value comes from edge CS and
922 (if the underlying jump function is a pass-through or an ancestor one) from
923 a caller value SRC_VAL of a caller parameter described by SRC_INDEX. OFFSET
924 is negative if the source was the scalar value of the parameter itself or
925 the offset within an aggregate. */
927 static void
928 add_value_source (struct ipcp_value *val, struct cgraph_edge *cs,
929 struct ipcp_value *src_val, int src_idx, HOST_WIDE_INT offset)
931 struct ipcp_value_source *src;
933 src = (struct ipcp_value_source *) pool_alloc (ipcp_sources_pool);
934 src->offset = offset;
935 src->cs = cs;
936 src->val = src_val;
937 src->index = src_idx;
939 src->next = val->sources;
940 val->sources = src;
943 /* Try to add NEWVAL to LAT, potentially creating a new struct ipcp_value for
944 it. CS, SRC_VAL SRC_INDEX and OFFSET are meant for add_value_source and
945 have the same meaning. */
947 static bool
948 add_value_to_lattice (struct ipcp_lattice *lat, tree newval,
949 struct cgraph_edge *cs, struct ipcp_value *src_val,
950 int src_idx, HOST_WIDE_INT offset)
952 struct ipcp_value *val;
954 if (lat->bottom)
955 return false;
957 for (val = lat->values; val; val = val->next)
958 if (values_equal_for_ipcp_p (val->value, newval))
960 if (edge_within_scc (cs))
962 struct ipcp_value_source *s;
963 for (s = val->sources; s ; s = s->next)
964 if (s->cs == cs)
965 break;
966 if (s)
967 return false;
970 add_value_source (val, cs, src_val, src_idx, offset);
971 return false;
974 if (lat->values_count == PARAM_VALUE (PARAM_IPA_CP_VALUE_LIST_SIZE))
976 /* We can only free sources, not the values themselves, because sources
977 of other values in this this SCC might point to them. */
978 for (val = lat->values; val; val = val->next)
980 while (val->sources)
982 struct ipcp_value_source *src = val->sources;
983 val->sources = src->next;
984 pool_free (ipcp_sources_pool, src);
988 lat->values = NULL;
989 return set_lattice_to_bottom (lat);
992 lat->values_count++;
993 val = (struct ipcp_value *) pool_alloc (ipcp_values_pool);
994 memset (val, 0, sizeof (*val));
996 add_value_source (val, cs, src_val, src_idx, offset);
997 val->value = newval;
998 val->next = lat->values;
999 lat->values = val;
1000 return true;
1003 /* Like above but passes a special value of offset to distinguish that the
1004 origin is the scalar value of the parameter rather than a part of an
1005 aggregate. */
1007 static inline bool
1008 add_scalar_value_to_lattice (struct ipcp_lattice *lat, tree newval,
1009 struct cgraph_edge *cs,
1010 struct ipcp_value *src_val, int src_idx)
1012 return add_value_to_lattice (lat, newval, cs, src_val, src_idx, -1);
1015 /* Propagate values through a pass-through jump function JFUNC associated with
1016 edge CS, taking values from SRC_LAT and putting them into DEST_LAT. SRC_IDX
1017 is the index of the source parameter. */
1019 static bool
1020 propagate_vals_accross_pass_through (struct cgraph_edge *cs,
1021 struct ipa_jump_func *jfunc,
1022 struct ipcp_lattice *src_lat,
1023 struct ipcp_lattice *dest_lat,
1024 int src_idx)
1026 struct ipcp_value *src_val;
1027 bool ret = false;
1029 /* Do not create new values when propagating within an SCC because if there
1030 are arithmetic functions with circular dependencies, there is infinite
1031 number of them and we would just make lattices bottom. */
1032 if ((ipa_get_jf_pass_through_operation (jfunc) != NOP_EXPR)
1033 and edge_within_scc (cs))
1034 ret = set_lattice_contains_variable (dest_lat);
1035 else
1036 for (src_val = src_lat->values; src_val; src_val = src_val->next)
1038 tree cstval = ipa_get_jf_pass_through_result (jfunc, src_val->value);
1040 if (cstval)
1041 ret |= add_scalar_value_to_lattice (dest_lat, cstval, cs, src_val,
1042 src_idx);
1043 else
1044 ret |= set_lattice_contains_variable (dest_lat);
1047 return ret;
1050 /* Propagate values through an ancestor jump function JFUNC associated with
1051 edge CS, taking values from SRC_LAT and putting them into DEST_LAT. SRC_IDX
1052 is the index of the source parameter. */
1054 static bool
1055 propagate_vals_accross_ancestor (struct cgraph_edge *cs,
1056 struct ipa_jump_func *jfunc,
1057 struct ipcp_lattice *src_lat,
1058 struct ipcp_lattice *dest_lat,
1059 int src_idx)
1061 struct ipcp_value *src_val;
1062 bool ret = false;
1064 if (edge_within_scc (cs))
1065 return set_lattice_contains_variable (dest_lat);
1067 for (src_val = src_lat->values; src_val; src_val = src_val->next)
1069 tree t = ipa_get_jf_ancestor_result (jfunc, src_val->value);
1071 if (t)
1072 ret |= add_scalar_value_to_lattice (dest_lat, t, cs, src_val, src_idx);
1073 else
1074 ret |= set_lattice_contains_variable (dest_lat);
1077 return ret;
1080 /* Propagate scalar values across jump function JFUNC that is associated with
1081 edge CS and put the values into DEST_LAT. */
1083 static bool
1084 propagate_scalar_accross_jump_function (struct cgraph_edge *cs,
1085 struct ipa_jump_func *jfunc,
1086 struct ipcp_lattice *dest_lat)
1088 if (dest_lat->bottom)
1089 return false;
1091 if (jfunc->type == IPA_JF_CONST
1092 || jfunc->type == IPA_JF_KNOWN_TYPE)
1094 tree val;
1096 if (jfunc->type == IPA_JF_KNOWN_TYPE)
1098 val = ipa_binfo_from_known_type_jfunc (jfunc);
1099 if (!val)
1100 return set_lattice_contains_variable (dest_lat);
1102 else
1103 val = ipa_get_jf_constant (jfunc);
1104 return add_scalar_value_to_lattice (dest_lat, val, cs, NULL, 0);
1106 else if (jfunc->type == IPA_JF_PASS_THROUGH
1107 || jfunc->type == IPA_JF_ANCESTOR)
1109 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
1110 struct ipcp_lattice *src_lat;
1111 int src_idx;
1112 bool ret;
1114 if (jfunc->type == IPA_JF_PASS_THROUGH)
1115 src_idx = ipa_get_jf_pass_through_formal_id (jfunc);
1116 else
1117 src_idx = ipa_get_jf_ancestor_formal_id (jfunc);
1119 src_lat = ipa_get_scalar_lat (caller_info, src_idx);
1120 if (src_lat->bottom)
1121 return set_lattice_contains_variable (dest_lat);
1123 /* If we would need to clone the caller and cannot, do not propagate. */
1124 if (!ipcp_versionable_function_p (cs->caller)
1125 && (src_lat->contains_variable
1126 || (src_lat->values_count > 1)))
1127 return set_lattice_contains_variable (dest_lat);
1129 if (jfunc->type == IPA_JF_PASS_THROUGH)
1130 ret = propagate_vals_accross_pass_through (cs, jfunc, src_lat,
1131 dest_lat, src_idx);
1132 else
1133 ret = propagate_vals_accross_ancestor (cs, jfunc, src_lat, dest_lat,
1134 src_idx);
1136 if (src_lat->contains_variable)
1137 ret |= set_lattice_contains_variable (dest_lat);
1139 return ret;
1142 /* TODO: We currently do not handle member method pointers in IPA-CP (we only
1143 use it for indirect inlining), we should propagate them too. */
1144 return set_lattice_contains_variable (dest_lat);
1147 /* If DEST_PLATS already has aggregate items, check that aggs_by_ref matches
1148 NEW_AGGS_BY_REF and if not, mark all aggs as bottoms and return true (in all
1149 other cases, return false). If there are no aggregate items, set
1150 aggs_by_ref to NEW_AGGS_BY_REF. */
1152 static bool
1153 set_check_aggs_by_ref (struct ipcp_param_lattices *dest_plats,
1154 bool new_aggs_by_ref)
1156 if (dest_plats->aggs)
1158 if (dest_plats->aggs_by_ref != new_aggs_by_ref)
1160 set_agg_lats_to_bottom (dest_plats);
1161 return true;
1164 else
1165 dest_plats->aggs_by_ref = new_aggs_by_ref;
1166 return false;
1169 /* Walk aggregate lattices in DEST_PLATS from ***AGLAT on, until ***aglat is an
1170 already existing lattice for the given OFFSET and SIZE, marking all skipped
1171 lattices as containing variable and checking for overlaps. If there is no
1172 already existing lattice for the OFFSET and VAL_SIZE, create one, initialize
1173 it with offset, size and contains_variable to PRE_EXISTING, and return true,
1174 unless there are too many already. If there are two many, return false. If
1175 there are overlaps turn whole DEST_PLATS to bottom and return false. If any
1176 skipped lattices were newly marked as containing variable, set *CHANGE to
1177 true. */
1179 static bool
1180 merge_agg_lats_step (struct ipcp_param_lattices *dest_plats,
1181 HOST_WIDE_INT offset, HOST_WIDE_INT val_size,
1182 struct ipcp_agg_lattice ***aglat,
1183 bool pre_existing, bool *change)
1185 gcc_checking_assert (offset >= 0);
1187 while (**aglat && (**aglat)->offset < offset)
1189 if ((**aglat)->offset + (**aglat)->size > offset)
1191 set_agg_lats_to_bottom (dest_plats);
1192 return false;
1194 *change |= set_lattice_contains_variable (**aglat);
1195 *aglat = &(**aglat)->next;
1198 if (**aglat && (**aglat)->offset == offset)
1200 if ((**aglat)->size != val_size
1201 || ((**aglat)->next
1202 && (**aglat)->next->offset < offset + val_size))
1204 set_agg_lats_to_bottom (dest_plats);
1205 return false;
1207 gcc_checking_assert (!(**aglat)->next
1208 || (**aglat)->next->offset >= offset + val_size);
1209 return true;
1211 else
1213 struct ipcp_agg_lattice *new_al;
1215 if (**aglat && (**aglat)->offset < offset + val_size)
1217 set_agg_lats_to_bottom (dest_plats);
1218 return false;
1220 if (dest_plats->aggs_count == PARAM_VALUE (PARAM_IPA_MAX_AGG_ITEMS))
1221 return false;
1222 dest_plats->aggs_count++;
1223 new_al = (struct ipcp_agg_lattice *) pool_alloc (ipcp_agg_lattice_pool);
1224 memset (new_al, 0, sizeof (*new_al));
1226 new_al->offset = offset;
1227 new_al->size = val_size;
1228 new_al->contains_variable = pre_existing;
1230 new_al->next = **aglat;
1231 **aglat = new_al;
1232 return true;
1236 /* Set all AGLAT and all other aggregate lattices reachable by next pointers as
1237 containing an unknown value. */
1239 static bool
1240 set_chain_of_aglats_contains_variable (struct ipcp_agg_lattice *aglat)
1242 bool ret = false;
1243 while (aglat)
1245 ret |= set_lattice_contains_variable (aglat);
1246 aglat = aglat->next;
1248 return ret;
1251 /* Merge existing aggregate lattices in SRC_PLATS to DEST_PLATS, subtracting
1252 DELTA_OFFSET. CS is the call graph edge and SRC_IDX the index of the source
1253 parameter used for lattice value sources. Return true if DEST_PLATS changed
1254 in any way. */
1256 static bool
1257 merge_aggregate_lattices (struct cgraph_edge *cs,
1258 struct ipcp_param_lattices *dest_plats,
1259 struct ipcp_param_lattices *src_plats,
1260 int src_idx, HOST_WIDE_INT offset_delta)
1262 bool pre_existing = dest_plats->aggs != NULL;
1263 struct ipcp_agg_lattice **dst_aglat;
1264 bool ret = false;
1266 if (set_check_aggs_by_ref (dest_plats, src_plats->aggs_by_ref))
1267 return true;
1268 if (src_plats->aggs_bottom)
1269 return set_agg_lats_contain_variable (dest_plats);
1270 if (src_plats->aggs_contain_variable)
1271 ret |= set_agg_lats_contain_variable (dest_plats);
1272 dst_aglat = &dest_plats->aggs;
1274 for (struct ipcp_agg_lattice *src_aglat = src_plats->aggs;
1275 src_aglat;
1276 src_aglat = src_aglat->next)
1278 HOST_WIDE_INT new_offset = src_aglat->offset - offset_delta;
1280 if (new_offset < 0)
1281 continue;
1282 if (merge_agg_lats_step (dest_plats, new_offset, src_aglat->size,
1283 &dst_aglat, pre_existing, &ret))
1285 struct ipcp_agg_lattice *new_al = *dst_aglat;
1287 dst_aglat = &(*dst_aglat)->next;
1288 if (src_aglat->bottom)
1290 ret |= set_lattice_contains_variable (new_al);
1291 continue;
1293 if (src_aglat->contains_variable)
1294 ret |= set_lattice_contains_variable (new_al);
1295 for (struct ipcp_value *val = src_aglat->values;
1296 val;
1297 val = val->next)
1298 ret |= add_value_to_lattice (new_al, val->value, cs, val, src_idx,
1299 src_aglat->offset);
1301 else if (dest_plats->aggs_bottom)
1302 return true;
1304 ret |= set_chain_of_aglats_contains_variable (*dst_aglat);
1305 return ret;
1308 /* Determine whether there is anything to propagate FROM SRC_PLATS through a
1309 pass-through JFUNC and if so, whether it has conform and conforms to the
1310 rules about propagating values passed by reference. */
1312 static bool
1313 agg_pass_through_permissible_p (struct ipcp_param_lattices *src_plats,
1314 struct ipa_jump_func *jfunc)
1316 return src_plats->aggs
1317 && (!src_plats->aggs_by_ref
1318 || ipa_get_jf_pass_through_agg_preserved (jfunc));
1321 /* Propagate scalar values across jump function JFUNC that is associated with
1322 edge CS and put the values into DEST_LAT. */
1324 static bool
1325 propagate_aggs_accross_jump_function (struct cgraph_edge *cs,
1326 struct ipa_jump_func *jfunc,
1327 struct ipcp_param_lattices *dest_plats)
1329 bool ret = false;
1331 if (dest_plats->aggs_bottom)
1332 return false;
1334 if (jfunc->type == IPA_JF_PASS_THROUGH
1335 && ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
1337 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
1338 int src_idx = ipa_get_jf_pass_through_formal_id (jfunc);
1339 struct ipcp_param_lattices *src_plats;
1341 src_plats = ipa_get_parm_lattices (caller_info, src_idx);
1342 if (agg_pass_through_permissible_p (src_plats, jfunc))
1344 /* Currently we do not produce clobber aggregate jump
1345 functions, replace with merging when we do. */
1346 gcc_assert (!jfunc->agg.items);
1347 ret |= merge_aggregate_lattices (cs, dest_plats, src_plats,
1348 src_idx, 0);
1350 else
1351 ret |= set_agg_lats_contain_variable (dest_plats);
1353 else if (jfunc->type == IPA_JF_ANCESTOR
1354 && ipa_get_jf_ancestor_agg_preserved (jfunc))
1356 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
1357 int src_idx = ipa_get_jf_ancestor_formal_id (jfunc);
1358 struct ipcp_param_lattices *src_plats;
1360 src_plats = ipa_get_parm_lattices (caller_info, src_idx);
1361 if (src_plats->aggs && src_plats->aggs_by_ref)
1363 /* Currently we do not produce clobber aggregate jump
1364 functions, replace with merging when we do. */
1365 gcc_assert (!jfunc->agg.items);
1366 ret |= merge_aggregate_lattices (cs, dest_plats, src_plats, src_idx,
1367 ipa_get_jf_ancestor_offset (jfunc));
1369 else if (!src_plats->aggs_by_ref)
1370 ret |= set_agg_lats_to_bottom (dest_plats);
1371 else
1372 ret |= set_agg_lats_contain_variable (dest_plats);
1374 else if (jfunc->agg.items)
1376 bool pre_existing = dest_plats->aggs != NULL;
1377 struct ipcp_agg_lattice **aglat = &dest_plats->aggs;
1378 struct ipa_agg_jf_item *item;
1379 int i;
1381 if (set_check_aggs_by_ref (dest_plats, jfunc->agg.by_ref))
1382 return true;
1384 FOR_EACH_VEC_ELT (*jfunc->agg.items, i, item)
1386 HOST_WIDE_INT val_size;
1388 if (item->offset < 0)
1389 continue;
1390 gcc_checking_assert (is_gimple_ip_invariant (item->value));
1391 val_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (item->value)), 1);
1393 if (merge_agg_lats_step (dest_plats, item->offset, val_size,
1394 &aglat, pre_existing, &ret))
1396 ret |= add_value_to_lattice (*aglat, item->value, cs, NULL, 0, 0);
1397 aglat = &(*aglat)->next;
1399 else if (dest_plats->aggs_bottom)
1400 return true;
1403 ret |= set_chain_of_aglats_contains_variable (*aglat);
1405 else
1406 ret |= set_agg_lats_contain_variable (dest_plats);
1408 return ret;
1411 /* Propagate constants from the caller to the callee of CS. INFO describes the
1412 caller. */
1414 static bool
1415 propagate_constants_accross_call (struct cgraph_edge *cs)
1417 struct ipa_node_params *callee_info;
1418 enum availability availability;
1419 struct cgraph_node *callee, *alias_or_thunk;
1420 struct ipa_edge_args *args;
1421 bool ret = false;
1422 int i, args_count, parms_count;
1424 callee = cgraph_function_node (cs->callee, &availability);
1425 if (!callee->symbol.definition)
1426 return false;
1427 gcc_checking_assert (cgraph_function_with_gimple_body_p (callee));
1428 callee_info = IPA_NODE_REF (callee);
1430 args = IPA_EDGE_REF (cs);
1431 args_count = ipa_get_cs_argument_count (args);
1432 parms_count = ipa_get_param_count (callee_info);
1434 /* If this call goes through a thunk we must not propagate to the first (0th)
1435 parameter. However, we might need to uncover a thunk from below a series
1436 of aliases first. */
1437 alias_or_thunk = cs->callee;
1438 while (alias_or_thunk->symbol.alias)
1439 alias_or_thunk = cgraph_alias_target (alias_or_thunk);
1440 if (alias_or_thunk->thunk.thunk_p)
1442 ret |= set_all_contains_variable (ipa_get_parm_lattices (callee_info,
1443 0));
1444 i = 1;
1446 else
1447 i = 0;
1449 for (; (i < args_count) && (i < parms_count); i++)
1451 struct ipa_jump_func *jump_func = ipa_get_ith_jump_func (args, i);
1452 struct ipcp_param_lattices *dest_plats;
1454 dest_plats = ipa_get_parm_lattices (callee_info, i);
1455 if (availability == AVAIL_OVERWRITABLE)
1456 ret |= set_all_contains_variable (dest_plats);
1457 else
1459 ret |= propagate_scalar_accross_jump_function (cs, jump_func,
1460 &dest_plats->itself);
1461 ret |= propagate_aggs_accross_jump_function (cs, jump_func,
1462 dest_plats);
1465 for (; i < parms_count; i++)
1466 ret |= set_all_contains_variable (ipa_get_parm_lattices (callee_info, i));
1468 return ret;
1471 /* If an indirect edge IE can be turned into a direct one based on KNOWN_VALS
1472 (which can contain both constants and binfos), KNOWN_BINFOS, KNOWN_AGGS or
1473 AGG_REPS return the destination. The latter three can be NULL. If AGG_REPS
1474 is not NULL, KNOWN_AGGS is ignored. */
1476 static tree
1477 ipa_get_indirect_edge_target_1 (struct cgraph_edge *ie,
1478 vec<tree> known_vals,
1479 vec<tree> known_binfos,
1480 vec<ipa_agg_jump_function_p> known_aggs,
1481 struct ipa_agg_replacement_value *agg_reps)
1483 int param_index = ie->indirect_info->param_index;
1484 HOST_WIDE_INT token, anc_offset;
1485 tree otr_type;
1486 tree t;
1487 tree target;
1489 if (param_index == -1
1490 || known_vals.length () <= (unsigned int) param_index)
1491 return NULL_TREE;
1493 if (!ie->indirect_info->polymorphic)
1495 tree t;
1497 if (ie->indirect_info->agg_contents)
1499 if (agg_reps)
1501 t = NULL;
1502 while (agg_reps)
1504 if (agg_reps->index == param_index
1505 && agg_reps->offset == ie->indirect_info->offset
1506 && agg_reps->by_ref == ie->indirect_info->by_ref)
1508 t = agg_reps->value;
1509 break;
1511 agg_reps = agg_reps->next;
1514 else if (known_aggs.length () > (unsigned int) param_index)
1516 struct ipa_agg_jump_function *agg;
1517 agg = known_aggs[param_index];
1518 t = ipa_find_agg_cst_for_param (agg, ie->indirect_info->offset,
1519 ie->indirect_info->by_ref);
1521 else
1522 t = NULL;
1524 else
1525 t = known_vals[param_index];
1527 if (t &&
1528 TREE_CODE (t) == ADDR_EXPR
1529 && TREE_CODE (TREE_OPERAND (t, 0)) == FUNCTION_DECL)
1530 return TREE_OPERAND (t, 0);
1531 else
1532 return NULL_TREE;
1535 gcc_assert (!ie->indirect_info->agg_contents);
1536 token = ie->indirect_info->otr_token;
1537 anc_offset = ie->indirect_info->offset;
1538 otr_type = ie->indirect_info->otr_type;
1540 t = known_vals[param_index];
1541 if (!t && known_binfos.length () > (unsigned int) param_index)
1542 t = known_binfos[param_index];
1543 if (!t)
1544 return NULL_TREE;
1546 if (TREE_CODE (t) != TREE_BINFO)
1548 tree binfo;
1549 binfo = gimple_extract_devirt_binfo_from_cst
1550 (t, ie->indirect_info->otr_type);
1551 if (!binfo)
1552 return NULL_TREE;
1553 binfo = get_binfo_at_offset (binfo, anc_offset, otr_type);
1554 if (!binfo)
1555 return NULL_TREE;
1556 target = gimple_get_virt_method_for_binfo (token, binfo);
1558 else
1560 tree binfo;
1562 binfo = get_binfo_at_offset (t, anc_offset, otr_type);
1563 if (!binfo)
1564 return NULL_TREE;
1565 target = gimple_get_virt_method_for_binfo (token, binfo);
1567 #ifdef ENABLE_CHECKING
1568 if (target)
1569 gcc_assert (possible_polymorphic_call_target_p
1570 (ie, cgraph_get_node (target)));
1571 #endif
1573 return target;
1577 /* If an indirect edge IE can be turned into a direct one based on KNOWN_VALS
1578 (which can contain both constants and binfos), KNOWN_BINFOS (which can be
1579 NULL) or KNOWN_AGGS (which also can be NULL) return the destination. */
1581 tree
1582 ipa_get_indirect_edge_target (struct cgraph_edge *ie,
1583 vec<tree> known_vals,
1584 vec<tree> known_binfos,
1585 vec<ipa_agg_jump_function_p> known_aggs)
1587 return ipa_get_indirect_edge_target_1 (ie, known_vals, known_binfos,
1588 known_aggs, NULL);
1591 /* Calculate devirtualization time bonus for NODE, assuming we know KNOWN_CSTS
1592 and KNOWN_BINFOS. */
1594 static int
1595 devirtualization_time_bonus (struct cgraph_node *node,
1596 vec<tree> known_csts,
1597 vec<tree> known_binfos,
1598 vec<ipa_agg_jump_function_p> known_aggs)
1600 struct cgraph_edge *ie;
1601 int res = 0;
1603 for (ie = node->indirect_calls; ie; ie = ie->next_callee)
1605 struct cgraph_node *callee;
1606 struct inline_summary *isummary;
1607 tree target;
1609 target = ipa_get_indirect_edge_target (ie, known_csts, known_binfos,
1610 known_aggs);
1611 if (!target)
1612 continue;
1614 /* Only bare minimum benefit for clearly un-inlineable targets. */
1615 res += 1;
1616 callee = cgraph_get_node (target);
1617 if (!callee || !callee->symbol.definition)
1618 continue;
1619 isummary = inline_summary (callee);
1620 if (!isummary->inlinable)
1621 continue;
1623 /* FIXME: The values below need re-considering and perhaps also
1624 integrating into the cost metrics, at lest in some very basic way. */
1625 if (isummary->size <= MAX_INLINE_INSNS_AUTO / 4)
1626 res += 31;
1627 else if (isummary->size <= MAX_INLINE_INSNS_AUTO / 2)
1628 res += 15;
1629 else if (isummary->size <= MAX_INLINE_INSNS_AUTO
1630 || DECL_DECLARED_INLINE_P (callee->symbol.decl))
1631 res += 7;
1634 return res;
1637 /* Return time bonus incurred because of HINTS. */
1639 static int
1640 hint_time_bonus (inline_hints hints)
1642 int result = 0;
1643 if (hints & (INLINE_HINT_loop_iterations | INLINE_HINT_loop_stride))
1644 result += PARAM_VALUE (PARAM_IPA_CP_LOOP_HINT_BONUS);
1645 if (hints & INLINE_HINT_array_index)
1646 result += PARAM_VALUE (PARAM_IPA_CP_ARRAY_INDEX_HINT_BONUS);
1647 return result;
1650 /* Return true if cloning NODE is a good idea, given the estimated TIME_BENEFIT
1651 and SIZE_COST and with the sum of frequencies of incoming edges to the
1652 potential new clone in FREQUENCIES. */
1654 static bool
1655 good_cloning_opportunity_p (struct cgraph_node *node, int time_benefit,
1656 int freq_sum, gcov_type count_sum, int size_cost)
1658 if (time_benefit == 0
1659 || !flag_ipa_cp_clone
1660 || !optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node->symbol.decl)))
1661 return false;
1663 gcc_assert (size_cost > 0);
1665 if (max_count)
1667 int factor = (count_sum * 1000) / max_count;
1668 HOST_WIDEST_INT evaluation = (((HOST_WIDEST_INT) time_benefit * factor)
1669 / size_cost);
1671 if (dump_file && (dump_flags & TDF_DETAILS))
1672 fprintf (dump_file, " good_cloning_opportunity_p (time: %i, "
1673 "size: %i, count_sum: " HOST_WIDE_INT_PRINT_DEC
1674 ") -> evaluation: " HOST_WIDEST_INT_PRINT_DEC
1675 ", threshold: %i\n",
1676 time_benefit, size_cost, (HOST_WIDE_INT) count_sum,
1677 evaluation, PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD));
1679 return evaluation >= PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD);
1681 else
1683 HOST_WIDEST_INT evaluation = (((HOST_WIDEST_INT) time_benefit * freq_sum)
1684 / size_cost);
1686 if (dump_file && (dump_flags & TDF_DETAILS))
1687 fprintf (dump_file, " good_cloning_opportunity_p (time: %i, "
1688 "size: %i, freq_sum: %i) -> evaluation: "
1689 HOST_WIDEST_INT_PRINT_DEC ", threshold: %i\n",
1690 time_benefit, size_cost, freq_sum, evaluation,
1691 PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD));
1693 return evaluation >= PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD);
1697 /* Return all context independent values from aggregate lattices in PLATS in a
1698 vector. Return NULL if there are none. */
1700 static vec<ipa_agg_jf_item_t, va_gc> *
1701 context_independent_aggregate_values (struct ipcp_param_lattices *plats)
1703 vec<ipa_agg_jf_item_t, va_gc> *res = NULL;
1705 if (plats->aggs_bottom
1706 || plats->aggs_contain_variable
1707 || plats->aggs_count == 0)
1708 return NULL;
1710 for (struct ipcp_agg_lattice *aglat = plats->aggs;
1711 aglat;
1712 aglat = aglat->next)
1713 if (ipa_lat_is_single_const (aglat))
1715 struct ipa_agg_jf_item item;
1716 item.offset = aglat->offset;
1717 item.value = aglat->values->value;
1718 vec_safe_push (res, item);
1720 return res;
1723 /* Allocate KNOWN_CSTS, KNOWN_BINFOS and, if non-NULL, KNOWN_AGGS and populate
1724 them with values of parameters that are known independent of the context.
1725 INFO describes the function. If REMOVABLE_PARAMS_COST is non-NULL, the
1726 movement cost of all removable parameters will be stored in it. */
1728 static bool
1729 gather_context_independent_values (struct ipa_node_params *info,
1730 vec<tree> *known_csts,
1731 vec<tree> *known_binfos,
1732 vec<ipa_agg_jump_function_t> *known_aggs,
1733 int *removable_params_cost)
1735 int i, count = ipa_get_param_count (info);
1736 bool ret = false;
1738 known_csts->create (0);
1739 known_binfos->create (0);
1740 known_csts->safe_grow_cleared (count);
1741 known_binfos->safe_grow_cleared (count);
1742 if (known_aggs)
1744 known_aggs->create (0);
1745 known_aggs->safe_grow_cleared (count);
1748 if (removable_params_cost)
1749 *removable_params_cost = 0;
1751 for (i = 0; i < count ; i++)
1753 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
1754 struct ipcp_lattice *lat = &plats->itself;
1756 if (ipa_lat_is_single_const (lat))
1758 struct ipcp_value *val = lat->values;
1759 if (TREE_CODE (val->value) != TREE_BINFO)
1761 (*known_csts)[i] = val->value;
1762 if (removable_params_cost)
1763 *removable_params_cost
1764 += estimate_move_cost (TREE_TYPE (val->value));
1765 ret = true;
1767 else if (plats->virt_call)
1769 (*known_binfos)[i] = val->value;
1770 ret = true;
1772 else if (removable_params_cost
1773 && !ipa_is_param_used (info, i))
1774 *removable_params_cost += ipa_get_param_move_cost (info, i);
1776 else if (removable_params_cost
1777 && !ipa_is_param_used (info, i))
1778 *removable_params_cost
1779 += ipa_get_param_move_cost (info, i);
1781 if (known_aggs)
1783 vec<ipa_agg_jf_item_t, va_gc> *agg_items;
1784 struct ipa_agg_jump_function *ajf;
1786 agg_items = context_independent_aggregate_values (plats);
1787 ajf = &(*known_aggs)[i];
1788 ajf->items = agg_items;
1789 ajf->by_ref = plats->aggs_by_ref;
1790 ret |= agg_items != NULL;
1794 return ret;
1797 /* The current interface in ipa-inline-analysis requires a pointer vector.
1798 Create it.
1800 FIXME: That interface should be re-worked, this is slightly silly. Still,
1801 I'd like to discuss how to change it first and this demonstrates the
1802 issue. */
1804 static vec<ipa_agg_jump_function_p>
1805 agg_jmp_p_vec_for_t_vec (vec<ipa_agg_jump_function_t> known_aggs)
1807 vec<ipa_agg_jump_function_p> ret;
1808 struct ipa_agg_jump_function *ajf;
1809 int i;
1811 ret.create (known_aggs.length ());
1812 FOR_EACH_VEC_ELT (known_aggs, i, ajf)
1813 ret.quick_push (ajf);
1814 return ret;
1817 /* Iterate over known values of parameters of NODE and estimate the local
1818 effects in terms of time and size they have. */
1820 static void
1821 estimate_local_effects (struct cgraph_node *node)
1823 struct ipa_node_params *info = IPA_NODE_REF (node);
1824 int i, count = ipa_get_param_count (info);
1825 vec<tree> known_csts, known_binfos;
1826 vec<ipa_agg_jump_function_t> known_aggs;
1827 vec<ipa_agg_jump_function_p> known_aggs_ptrs;
1828 bool always_const;
1829 int base_time = inline_summary (node)->time;
1830 int removable_params_cost;
1832 if (!count || !ipcp_versionable_function_p (node))
1833 return;
1835 if (dump_file && (dump_flags & TDF_DETAILS))
1836 fprintf (dump_file, "\nEstimating effects for %s/%i, base_time: %i.\n",
1837 cgraph_node_name (node), node->symbol.order, base_time);
1839 always_const = gather_context_independent_values (info, &known_csts,
1840 &known_binfos, &known_aggs,
1841 &removable_params_cost);
1842 known_aggs_ptrs = agg_jmp_p_vec_for_t_vec (known_aggs);
1843 if (always_const)
1845 struct caller_statistics stats;
1846 inline_hints hints;
1847 int time, size;
1849 init_caller_stats (&stats);
1850 cgraph_for_node_and_aliases (node, gather_caller_stats, &stats, false);
1851 estimate_ipcp_clone_size_and_time (node, known_csts, known_binfos,
1852 known_aggs_ptrs, &size, &time, &hints);
1853 time -= devirtualization_time_bonus (node, known_csts, known_binfos,
1854 known_aggs_ptrs);
1855 time -= hint_time_bonus (hints);
1856 time -= removable_params_cost;
1857 size -= stats.n_calls * removable_params_cost;
1859 if (dump_file)
1860 fprintf (dump_file, " - context independent values, size: %i, "
1861 "time_benefit: %i\n", size, base_time - time);
1863 if (size <= 0
1864 || cgraph_will_be_removed_from_program_if_no_direct_calls (node))
1866 info->do_clone_for_all_contexts = true;
1867 base_time = time;
1869 if (dump_file)
1870 fprintf (dump_file, " Decided to specialize for all "
1871 "known contexts, code not going to grow.\n");
1873 else if (good_cloning_opportunity_p (node, base_time - time,
1874 stats.freq_sum, stats.count_sum,
1875 size))
1877 if (size + overall_size <= max_new_size)
1879 info->do_clone_for_all_contexts = true;
1880 base_time = time;
1881 overall_size += size;
1883 if (dump_file)
1884 fprintf (dump_file, " Decided to specialize for all "
1885 "known contexts, growth deemed beneficial.\n");
1887 else if (dump_file && (dump_flags & TDF_DETAILS))
1888 fprintf (dump_file, " Not cloning for all contexts because "
1889 "max_new_size would be reached with %li.\n",
1890 size + overall_size);
1894 for (i = 0; i < count ; i++)
1896 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
1897 struct ipcp_lattice *lat = &plats->itself;
1898 struct ipcp_value *val;
1899 int emc;
1901 if (lat->bottom
1902 || !lat->values
1903 || known_csts[i]
1904 || known_binfos[i])
1905 continue;
1907 for (val = lat->values; val; val = val->next)
1909 int time, size, time_benefit;
1910 inline_hints hints;
1912 if (TREE_CODE (val->value) != TREE_BINFO)
1914 known_csts[i] = val->value;
1915 known_binfos[i] = NULL_TREE;
1916 emc = estimate_move_cost (TREE_TYPE (val->value));
1918 else if (plats->virt_call)
1920 known_csts[i] = NULL_TREE;
1921 known_binfos[i] = val->value;
1922 emc = 0;
1924 else
1925 continue;
1927 estimate_ipcp_clone_size_and_time (node, known_csts, known_binfos,
1928 known_aggs_ptrs, &size, &time,
1929 &hints);
1930 time_benefit = base_time - time
1931 + devirtualization_time_bonus (node, known_csts, known_binfos,
1932 known_aggs_ptrs)
1933 + hint_time_bonus (hints)
1934 + removable_params_cost + emc;
1936 gcc_checking_assert (size >=0);
1937 /* The inliner-heuristics based estimates may think that in certain
1938 contexts some functions do not have any size at all but we want
1939 all specializations to have at least a tiny cost, not least not to
1940 divide by zero. */
1941 if (size == 0)
1942 size = 1;
1944 if (dump_file && (dump_flags & TDF_DETAILS))
1946 fprintf (dump_file, " - estimates for value ");
1947 print_ipcp_constant_value (dump_file, val->value);
1948 fprintf (dump_file, " for ");
1949 ipa_dump_param (dump_file, info, i);
1950 fprintf (dump_file, ": time_benefit: %i, size: %i\n",
1951 time_benefit, size);
1954 val->local_time_benefit = time_benefit;
1955 val->local_size_cost = size;
1957 known_binfos[i] = NULL_TREE;
1958 known_csts[i] = NULL_TREE;
1961 for (i = 0; i < count ; i++)
1963 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
1964 struct ipa_agg_jump_function *ajf;
1965 struct ipcp_agg_lattice *aglat;
1967 if (plats->aggs_bottom || !plats->aggs)
1968 continue;
1970 ajf = &known_aggs[i];
1971 for (aglat = plats->aggs; aglat; aglat = aglat->next)
1973 struct ipcp_value *val;
1974 if (aglat->bottom || !aglat->values
1975 /* If the following is true, the one value is in known_aggs. */
1976 || (!plats->aggs_contain_variable
1977 && ipa_lat_is_single_const (aglat)))
1978 continue;
1980 for (val = aglat->values; val; val = val->next)
1982 int time, size, time_benefit;
1983 struct ipa_agg_jf_item item;
1984 inline_hints hints;
1986 item.offset = aglat->offset;
1987 item.value = val->value;
1988 vec_safe_push (ajf->items, item);
1990 estimate_ipcp_clone_size_and_time (node, known_csts, known_binfos,
1991 known_aggs_ptrs, &size, &time,
1992 &hints);
1993 time_benefit = base_time - time
1994 + devirtualization_time_bonus (node, known_csts, known_binfos,
1995 known_aggs_ptrs)
1996 + hint_time_bonus (hints);
1997 gcc_checking_assert (size >=0);
1998 if (size == 0)
1999 size = 1;
2001 if (dump_file && (dump_flags & TDF_DETAILS))
2003 fprintf (dump_file, " - estimates for value ");
2004 print_ipcp_constant_value (dump_file, val->value);
2005 fprintf (dump_file, " for ");
2006 ipa_dump_param (dump_file, info, i);
2007 fprintf (dump_file, "[%soffset: " HOST_WIDE_INT_PRINT_DEC
2008 "]: time_benefit: %i, size: %i\n",
2009 plats->aggs_by_ref ? "ref " : "",
2010 aglat->offset, time_benefit, size);
2013 val->local_time_benefit = time_benefit;
2014 val->local_size_cost = size;
2015 ajf->items->pop ();
2020 for (i = 0; i < count ; i++)
2021 vec_free (known_aggs[i].items);
2023 known_csts.release ();
2024 known_binfos.release ();
2025 known_aggs.release ();
2026 known_aggs_ptrs.release ();
2030 /* Add value CUR_VAL and all yet-unsorted values it is dependent on to the
2031 topological sort of values. */
2033 static void
2034 add_val_to_toposort (struct ipcp_value *cur_val)
2036 static int dfs_counter = 0;
2037 static struct ipcp_value *stack;
2038 struct ipcp_value_source *src;
2040 if (cur_val->dfs)
2041 return;
2043 dfs_counter++;
2044 cur_val->dfs = dfs_counter;
2045 cur_val->low_link = dfs_counter;
2047 cur_val->topo_next = stack;
2048 stack = cur_val;
2049 cur_val->on_stack = true;
2051 for (src = cur_val->sources; src; src = src->next)
2052 if (src->val)
2054 if (src->val->dfs == 0)
2056 add_val_to_toposort (src->val);
2057 if (src->val->low_link < cur_val->low_link)
2058 cur_val->low_link = src->val->low_link;
2060 else if (src->val->on_stack
2061 && src->val->dfs < cur_val->low_link)
2062 cur_val->low_link = src->val->dfs;
2065 if (cur_val->dfs == cur_val->low_link)
2067 struct ipcp_value *v, *scc_list = NULL;
2071 v = stack;
2072 stack = v->topo_next;
2073 v->on_stack = false;
2075 v->scc_next = scc_list;
2076 scc_list = v;
2078 while (v != cur_val);
2080 cur_val->topo_next = values_topo;
2081 values_topo = cur_val;
2085 /* Add all values in lattices associated with NODE to the topological sort if
2086 they are not there yet. */
2088 static void
2089 add_all_node_vals_to_toposort (struct cgraph_node *node)
2091 struct ipa_node_params *info = IPA_NODE_REF (node);
2092 int i, count = ipa_get_param_count (info);
2094 for (i = 0; i < count ; i++)
2096 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
2097 struct ipcp_lattice *lat = &plats->itself;
2098 struct ipcp_agg_lattice *aglat;
2099 struct ipcp_value *val;
2101 if (!lat->bottom)
2102 for (val = lat->values; val; val = val->next)
2103 add_val_to_toposort (val);
2105 if (!plats->aggs_bottom)
2106 for (aglat = plats->aggs; aglat; aglat = aglat->next)
2107 if (!aglat->bottom)
2108 for (val = aglat->values; val; val = val->next)
2109 add_val_to_toposort (val);
2113 /* One pass of constants propagation along the call graph edges, from callers
2114 to callees (requires topological ordering in TOPO), iterate over strongly
2115 connected components. */
2117 static void
2118 propagate_constants_topo (struct topo_info *topo)
2120 int i;
2122 for (i = topo->nnodes - 1; i >= 0; i--)
2124 unsigned j;
2125 struct cgraph_node *v, *node = topo->order[i];
2126 vec<cgraph_node_ptr> cycle_nodes = ipa_get_nodes_in_cycle (node);
2128 /* First, iteratively propagate within the strongly connected component
2129 until all lattices stabilize. */
2130 FOR_EACH_VEC_ELT (cycle_nodes, j, v)
2131 if (cgraph_function_with_gimple_body_p (v))
2132 push_node_to_stack (topo, v);
2134 v = pop_node_from_stack (topo);
2135 while (v)
2137 struct cgraph_edge *cs;
2139 for (cs = v->callees; cs; cs = cs->next_callee)
2140 if (edge_within_scc (cs)
2141 && propagate_constants_accross_call (cs))
2142 push_node_to_stack (topo, cs->callee);
2143 v = pop_node_from_stack (topo);
2146 /* Afterwards, propagate along edges leading out of the SCC, calculates
2147 the local effects of the discovered constants and all valid values to
2148 their topological sort. */
2149 FOR_EACH_VEC_ELT (cycle_nodes, j, v)
2150 if (cgraph_function_with_gimple_body_p (v))
2152 struct cgraph_edge *cs;
2154 estimate_local_effects (v);
2155 add_all_node_vals_to_toposort (v);
2156 for (cs = v->callees; cs; cs = cs->next_callee)
2157 if (!edge_within_scc (cs))
2158 propagate_constants_accross_call (cs);
2160 cycle_nodes.release ();
2165 /* Return the sum of A and B if none of them is bigger than INT_MAX/2, return
2166 the bigger one if otherwise. */
2168 static int
2169 safe_add (int a, int b)
2171 if (a > INT_MAX/2 || b > INT_MAX/2)
2172 return a > b ? a : b;
2173 else
2174 return a + b;
2178 /* Propagate the estimated effects of individual values along the topological
2179 from the dependent values to those they depend on. */
2181 static void
2182 propagate_effects (void)
2184 struct ipcp_value *base;
2186 for (base = values_topo; base; base = base->topo_next)
2188 struct ipcp_value_source *src;
2189 struct ipcp_value *val;
2190 int time = 0, size = 0;
2192 for (val = base; val; val = val->scc_next)
2194 time = safe_add (time,
2195 val->local_time_benefit + val->prop_time_benefit);
2196 size = safe_add (size, val->local_size_cost + val->prop_size_cost);
2199 for (val = base; val; val = val->scc_next)
2200 for (src = val->sources; src; src = src->next)
2201 if (src->val
2202 && cgraph_maybe_hot_edge_p (src->cs))
2204 src->val->prop_time_benefit = safe_add (time,
2205 src->val->prop_time_benefit);
2206 src->val->prop_size_cost = safe_add (size,
2207 src->val->prop_size_cost);
2213 /* Propagate constants, binfos and their effects from the summaries
2214 interprocedurally. */
2216 static void
2217 ipcp_propagate_stage (struct topo_info *topo)
2219 struct cgraph_node *node;
2221 if (dump_file)
2222 fprintf (dump_file, "\n Propagating constants:\n\n");
2224 if (in_lto_p)
2225 ipa_update_after_lto_read ();
2228 FOR_EACH_DEFINED_FUNCTION (node)
2230 struct ipa_node_params *info = IPA_NODE_REF (node);
2232 determine_versionability (node);
2233 if (cgraph_function_with_gimple_body_p (node))
2235 info->lattices = XCNEWVEC (struct ipcp_param_lattices,
2236 ipa_get_param_count (info));
2237 initialize_node_lattices (node);
2239 if (node->symbol.definition && !node->symbol.alias)
2240 overall_size += inline_summary (node)->self_size;
2241 if (node->count > max_count)
2242 max_count = node->count;
2245 max_new_size = overall_size;
2246 if (max_new_size < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
2247 max_new_size = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
2248 max_new_size += max_new_size * PARAM_VALUE (PARAM_IPCP_UNIT_GROWTH) / 100 + 1;
2250 if (dump_file)
2251 fprintf (dump_file, "\noverall_size: %li, max_new_size: %li\n",
2252 overall_size, max_new_size);
2254 propagate_constants_topo (topo);
2255 #ifdef ENABLE_CHECKING
2256 ipcp_verify_propagated_values ();
2257 #endif
2258 propagate_effects ();
2260 if (dump_file)
2262 fprintf (dump_file, "\nIPA lattices after all propagation:\n");
2263 print_all_lattices (dump_file, (dump_flags & TDF_DETAILS), true);
2267 /* Discover newly direct outgoing edges from NODE which is a new clone with
2268 known KNOWN_VALS and make them direct. */
2270 static void
2271 ipcp_discover_new_direct_edges (struct cgraph_node *node,
2272 vec<tree> known_vals,
2273 struct ipa_agg_replacement_value *aggvals)
2275 struct cgraph_edge *ie, *next_ie;
2276 bool found = false;
2278 for (ie = node->indirect_calls; ie; ie = next_ie)
2280 tree target;
2282 next_ie = ie->next_callee;
2283 target = ipa_get_indirect_edge_target_1 (ie, known_vals, vNULL, vNULL,
2284 aggvals);
2285 if (target)
2287 bool agg_contents = ie->indirect_info->agg_contents;
2288 bool polymorphic = ie->indirect_info->polymorphic;
2289 bool param_index = ie->indirect_info->param_index;
2290 struct cgraph_edge *cs = ipa_make_edge_direct_to_target (ie, target);
2291 found = true;
2293 if (cs && !agg_contents && !polymorphic)
2295 struct ipa_node_params *info = IPA_NODE_REF (node);
2296 int c = ipa_get_controlled_uses (info, param_index);
2297 if (c != IPA_UNDESCRIBED_USE)
2299 struct ipa_ref *to_del;
2301 c--;
2302 ipa_set_controlled_uses (info, param_index, c);
2303 if (dump_file && (dump_flags & TDF_DETAILS))
2304 fprintf (dump_file, " controlled uses count of param "
2305 "%i bumped down to %i\n", param_index, c);
2306 if (c == 0
2307 && (to_del = ipa_find_reference ((symtab_node) node,
2308 (symtab_node) cs->callee,
2309 NULL, 0)))
2311 if (dump_file && (dump_flags & TDF_DETAILS))
2312 fprintf (dump_file, " and even removing its "
2313 "cloning-created reference\n");
2314 ipa_remove_reference (to_del);
2320 /* Turning calls to direct calls will improve overall summary. */
2321 if (found)
2322 inline_update_overall_summary (node);
2325 /* Vector of pointers which for linked lists of clones of an original crgaph
2326 edge. */
2328 static vec<cgraph_edge_p> next_edge_clone;
2330 static inline void
2331 grow_next_edge_clone_vector (void)
2333 if (next_edge_clone.length ()
2334 <= (unsigned) cgraph_edge_max_uid)
2335 next_edge_clone.safe_grow_cleared (cgraph_edge_max_uid + 1);
2338 /* Edge duplication hook to grow the appropriate linked list in
2339 next_edge_clone. */
2341 static void
2342 ipcp_edge_duplication_hook (struct cgraph_edge *src, struct cgraph_edge *dst,
2343 __attribute__((unused)) void *data)
2345 grow_next_edge_clone_vector ();
2346 next_edge_clone[dst->uid] = next_edge_clone[src->uid];
2347 next_edge_clone[src->uid] = dst;
2350 /* See if NODE is a clone with a known aggregate value at a given OFFSET of a
2351 parameter with the given INDEX. */
2353 static tree
2354 get_clone_agg_value (struct cgraph_node *node, HOST_WIDEST_INT offset,
2355 int index)
2357 struct ipa_agg_replacement_value *aggval;
2359 aggval = ipa_get_agg_replacements_for_node (node);
2360 while (aggval)
2362 if (aggval->offset == offset
2363 && aggval->index == index)
2364 return aggval->value;
2365 aggval = aggval->next;
2367 return NULL_TREE;
2370 /* Return true if edge CS does bring about the value described by SRC. */
2372 static bool
2373 cgraph_edge_brings_value_p (struct cgraph_edge *cs,
2374 struct ipcp_value_source *src)
2376 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
2377 struct ipa_node_params *dst_info = IPA_NODE_REF (cs->callee);
2379 if ((dst_info->ipcp_orig_node && !dst_info->is_all_contexts_clone)
2380 || caller_info->node_dead)
2381 return false;
2382 if (!src->val)
2383 return true;
2385 if (caller_info->ipcp_orig_node)
2387 tree t;
2388 if (src->offset == -1)
2389 t = caller_info->known_vals[src->index];
2390 else
2391 t = get_clone_agg_value (cs->caller, src->offset, src->index);
2392 return (t != NULL_TREE
2393 && values_equal_for_ipcp_p (src->val->value, t));
2395 else
2397 struct ipcp_agg_lattice *aglat;
2398 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (caller_info,
2399 src->index);
2400 if (src->offset == -1)
2401 return (ipa_lat_is_single_const (&plats->itself)
2402 && values_equal_for_ipcp_p (src->val->value,
2403 plats->itself.values->value));
2404 else
2406 if (plats->aggs_bottom || plats->aggs_contain_variable)
2407 return false;
2408 for (aglat = plats->aggs; aglat; aglat = aglat->next)
2409 if (aglat->offset == src->offset)
2410 return (ipa_lat_is_single_const (aglat)
2411 && values_equal_for_ipcp_p (src->val->value,
2412 aglat->values->value));
2414 return false;
2418 /* Get the next clone in the linked list of clones of an edge. */
2420 static inline struct cgraph_edge *
2421 get_next_cgraph_edge_clone (struct cgraph_edge *cs)
2423 return next_edge_clone[cs->uid];
2426 /* Given VAL, iterate over all its sources and if they still hold, add their
2427 edge frequency and their number into *FREQUENCY and *CALLER_COUNT
2428 respectively. */
2430 static bool
2431 get_info_about_necessary_edges (struct ipcp_value *val, int *freq_sum,
2432 gcov_type *count_sum, int *caller_count)
2434 struct ipcp_value_source *src;
2435 int freq = 0, count = 0;
2436 gcov_type cnt = 0;
2437 bool hot = false;
2439 for (src = val->sources; src; src = src->next)
2441 struct cgraph_edge *cs = src->cs;
2442 while (cs)
2444 if (cgraph_edge_brings_value_p (cs, src))
2446 count++;
2447 freq += cs->frequency;
2448 cnt += cs->count;
2449 hot |= cgraph_maybe_hot_edge_p (cs);
2451 cs = get_next_cgraph_edge_clone (cs);
2455 *freq_sum = freq;
2456 *count_sum = cnt;
2457 *caller_count = count;
2458 return hot;
2461 /* Return a vector of incoming edges that do bring value VAL. It is assumed
2462 their number is known and equal to CALLER_COUNT. */
2464 static vec<cgraph_edge_p>
2465 gather_edges_for_value (struct ipcp_value *val, int caller_count)
2467 struct ipcp_value_source *src;
2468 vec<cgraph_edge_p> ret;
2470 ret.create (caller_count);
2471 for (src = val->sources; src; src = src->next)
2473 struct cgraph_edge *cs = src->cs;
2474 while (cs)
2476 if (cgraph_edge_brings_value_p (cs, src))
2477 ret.quick_push (cs);
2478 cs = get_next_cgraph_edge_clone (cs);
2482 return ret;
2485 /* Construct a replacement map for a know VALUE for a formal parameter PARAM.
2486 Return it or NULL if for some reason it cannot be created. */
2488 static struct ipa_replace_map *
2489 get_replacement_map (struct ipa_node_params *info, tree value, int parm_num)
2491 struct ipa_replace_map *replace_map;
2494 replace_map = ggc_alloc_ipa_replace_map ();
2495 if (dump_file)
2497 fprintf (dump_file, " replacing ");
2498 ipa_dump_param (dump_file, info, parm_num);
2500 fprintf (dump_file, " with const ");
2501 print_generic_expr (dump_file, value, 0);
2502 fprintf (dump_file, "\n");
2504 replace_map->old_tree = NULL;
2505 replace_map->parm_num = parm_num;
2506 replace_map->new_tree = value;
2507 replace_map->replace_p = true;
2508 replace_map->ref_p = false;
2510 return replace_map;
2513 /* Dump new profiling counts */
2515 static void
2516 dump_profile_updates (struct cgraph_node *orig_node,
2517 struct cgraph_node *new_node)
2519 struct cgraph_edge *cs;
2521 fprintf (dump_file, " setting count of the specialized node to "
2522 HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) new_node->count);
2523 for (cs = new_node->callees; cs ; cs = cs->next_callee)
2524 fprintf (dump_file, " edge to %s has count "
2525 HOST_WIDE_INT_PRINT_DEC "\n",
2526 cgraph_node_name (cs->callee), (HOST_WIDE_INT) cs->count);
2528 fprintf (dump_file, " setting count of the original node to "
2529 HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) orig_node->count);
2530 for (cs = orig_node->callees; cs ; cs = cs->next_callee)
2531 fprintf (dump_file, " edge to %s is left with "
2532 HOST_WIDE_INT_PRINT_DEC "\n",
2533 cgraph_node_name (cs->callee), (HOST_WIDE_INT) cs->count);
2536 /* After a specialized NEW_NODE version of ORIG_NODE has been created, update
2537 their profile information to reflect this. */
2539 static void
2540 update_profiling_info (struct cgraph_node *orig_node,
2541 struct cgraph_node *new_node)
2543 struct cgraph_edge *cs;
2544 struct caller_statistics stats;
2545 gcov_type new_sum, orig_sum;
2546 gcov_type remainder, orig_node_count = orig_node->count;
2548 if (orig_node_count == 0)
2549 return;
2551 init_caller_stats (&stats);
2552 cgraph_for_node_and_aliases (orig_node, gather_caller_stats, &stats, false);
2553 orig_sum = stats.count_sum;
2554 init_caller_stats (&stats);
2555 cgraph_for_node_and_aliases (new_node, gather_caller_stats, &stats, false);
2556 new_sum = stats.count_sum;
2558 if (orig_node_count < orig_sum + new_sum)
2560 if (dump_file)
2561 fprintf (dump_file, " Problem: node %s/%i has too low count "
2562 HOST_WIDE_INT_PRINT_DEC " while the sum of incoming "
2563 "counts is " HOST_WIDE_INT_PRINT_DEC "\n",
2564 cgraph_node_name (orig_node), orig_node->symbol.order,
2565 (HOST_WIDE_INT) orig_node_count,
2566 (HOST_WIDE_INT) (orig_sum + new_sum));
2568 orig_node_count = (orig_sum + new_sum) * 12 / 10;
2569 if (dump_file)
2570 fprintf (dump_file, " proceeding by pretending it was "
2571 HOST_WIDE_INT_PRINT_DEC "\n",
2572 (HOST_WIDE_INT) orig_node_count);
2575 new_node->count = new_sum;
2576 remainder = orig_node_count - new_sum;
2577 orig_node->count = remainder;
2579 for (cs = new_node->callees; cs ; cs = cs->next_callee)
2580 if (cs->frequency)
2581 cs->count = apply_probability (cs->count,
2582 GCOV_COMPUTE_SCALE (new_sum,
2583 orig_node_count));
2584 else
2585 cs->count = 0;
2587 for (cs = orig_node->callees; cs ; cs = cs->next_callee)
2588 cs->count = apply_probability (cs->count,
2589 GCOV_COMPUTE_SCALE (remainder,
2590 orig_node_count));
2592 if (dump_file)
2593 dump_profile_updates (orig_node, new_node);
2596 /* Update the respective profile of specialized NEW_NODE and the original
2597 ORIG_NODE after additional edges with cumulative count sum REDIRECTED_SUM
2598 have been redirected to the specialized version. */
2600 static void
2601 update_specialized_profile (struct cgraph_node *new_node,
2602 struct cgraph_node *orig_node,
2603 gcov_type redirected_sum)
2605 struct cgraph_edge *cs;
2606 gcov_type new_node_count, orig_node_count = orig_node->count;
2608 if (dump_file)
2609 fprintf (dump_file, " the sum of counts of redirected edges is "
2610 HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) redirected_sum);
2611 if (orig_node_count == 0)
2612 return;
2614 gcc_assert (orig_node_count >= redirected_sum);
2616 new_node_count = new_node->count;
2617 new_node->count += redirected_sum;
2618 orig_node->count -= redirected_sum;
2620 for (cs = new_node->callees; cs ; cs = cs->next_callee)
2621 if (cs->frequency)
2622 cs->count += apply_probability (cs->count,
2623 GCOV_COMPUTE_SCALE (redirected_sum,
2624 new_node_count));
2625 else
2626 cs->count = 0;
2628 for (cs = orig_node->callees; cs ; cs = cs->next_callee)
2630 gcov_type dec = apply_probability (cs->count,
2631 GCOV_COMPUTE_SCALE (redirected_sum,
2632 orig_node_count));
2633 if (dec < cs->count)
2634 cs->count -= dec;
2635 else
2636 cs->count = 0;
2639 if (dump_file)
2640 dump_profile_updates (orig_node, new_node);
2643 /* Create a specialized version of NODE with known constants and types of
2644 parameters in KNOWN_VALS and redirect all edges in CALLERS to it. */
2646 static struct cgraph_node *
2647 create_specialized_node (struct cgraph_node *node,
2648 vec<tree> known_vals,
2649 struct ipa_agg_replacement_value *aggvals,
2650 vec<cgraph_edge_p> callers)
2652 struct ipa_node_params *new_info, *info = IPA_NODE_REF (node);
2653 vec<ipa_replace_map_p, va_gc> *replace_trees = NULL;
2654 struct ipa_agg_replacement_value *av;
2655 struct cgraph_node *new_node;
2656 int i, count = ipa_get_param_count (info);
2657 bitmap args_to_skip;
2659 gcc_assert (!info->ipcp_orig_node);
2661 if (node->local.can_change_signature)
2663 args_to_skip = BITMAP_GGC_ALLOC ();
2664 for (i = 0; i < count; i++)
2666 tree t = known_vals[i];
2668 if ((t && TREE_CODE (t) != TREE_BINFO)
2669 || !ipa_is_param_used (info, i))
2670 bitmap_set_bit (args_to_skip, i);
2673 else
2675 args_to_skip = NULL;
2676 if (dump_file && (dump_flags & TDF_DETAILS))
2677 fprintf (dump_file, " cannot change function signature\n");
2680 for (i = 0; i < count ; i++)
2682 tree t = known_vals[i];
2683 if (t && TREE_CODE (t) != TREE_BINFO)
2685 struct ipa_replace_map *replace_map;
2687 replace_map = get_replacement_map (info, t, i);
2688 if (replace_map)
2689 vec_safe_push (replace_trees, replace_map);
2693 new_node = cgraph_create_virtual_clone (node, callers, replace_trees,
2694 args_to_skip, "constprop");
2695 ipa_set_node_agg_value_chain (new_node, aggvals);
2696 for (av = aggvals; av; av = av->next)
2697 ipa_maybe_record_reference ((symtab_node) new_node, av->value,
2698 IPA_REF_ADDR, NULL);
2700 if (dump_file && (dump_flags & TDF_DETAILS))
2702 fprintf (dump_file, " the new node is %s/%i.\n",
2703 cgraph_node_name (new_node), new_node->symbol.order);
2704 if (aggvals)
2705 ipa_dump_agg_replacement_values (dump_file, aggvals);
2707 gcc_checking_assert (ipa_node_params_vector.exists ()
2708 && (ipa_node_params_vector.length ()
2709 > (unsigned) cgraph_max_uid));
2710 update_profiling_info (node, new_node);
2711 new_info = IPA_NODE_REF (new_node);
2712 new_info->ipcp_orig_node = node;
2713 new_info->known_vals = known_vals;
2715 ipcp_discover_new_direct_edges (new_node, known_vals, aggvals);
2717 callers.release ();
2718 return new_node;
2721 /* Given a NODE, and a subset of its CALLERS, try to populate blanks slots in
2722 KNOWN_VALS with constants and types that are also known for all of the
2723 CALLERS. */
2725 static void
2726 find_more_scalar_values_for_callers_subset (struct cgraph_node *node,
2727 vec<tree> known_vals,
2728 vec<cgraph_edge_p> callers)
2730 struct ipa_node_params *info = IPA_NODE_REF (node);
2731 int i, count = ipa_get_param_count (info);
2733 for (i = 0; i < count ; i++)
2735 struct cgraph_edge *cs;
2736 tree newval = NULL_TREE;
2737 int j;
2739 if (ipa_get_scalar_lat (info, i)->bottom || known_vals[i])
2740 continue;
2742 FOR_EACH_VEC_ELT (callers, j, cs)
2744 struct ipa_jump_func *jump_func;
2745 tree t;
2747 if (i >= ipa_get_cs_argument_count (IPA_EDGE_REF (cs)))
2749 newval = NULL_TREE;
2750 break;
2752 jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
2753 t = ipa_value_from_jfunc (IPA_NODE_REF (cs->caller), jump_func);
2754 if (!t
2755 || (newval
2756 && !values_equal_for_ipcp_p (t, newval)))
2758 newval = NULL_TREE;
2759 break;
2761 else
2762 newval = t;
2765 if (newval)
2767 if (dump_file && (dump_flags & TDF_DETAILS))
2769 fprintf (dump_file, " adding an extra known scalar value ");
2770 print_ipcp_constant_value (dump_file, newval);
2771 fprintf (dump_file, " for ");
2772 ipa_dump_param (dump_file, info, i);
2773 fprintf (dump_file, "\n");
2776 known_vals[i] = newval;
2781 /* Go through PLATS and create a vector of values consisting of values and
2782 offsets (minus OFFSET) of lattices that contain only a single value. */
2784 static vec<ipa_agg_jf_item_t>
2785 copy_plats_to_inter (struct ipcp_param_lattices *plats, HOST_WIDE_INT offset)
2787 vec<ipa_agg_jf_item_t> res = vNULL;
2789 if (!plats->aggs || plats->aggs_contain_variable || plats->aggs_bottom)
2790 return vNULL;
2792 for (struct ipcp_agg_lattice *aglat = plats->aggs; aglat; aglat = aglat->next)
2793 if (ipa_lat_is_single_const (aglat))
2795 struct ipa_agg_jf_item ti;
2796 ti.offset = aglat->offset - offset;
2797 ti.value = aglat->values->value;
2798 res.safe_push (ti);
2800 return res;
2803 /* Intersect all values in INTER with single value lattices in PLATS (while
2804 subtracting OFFSET). */
2806 static void
2807 intersect_with_plats (struct ipcp_param_lattices *plats,
2808 vec<ipa_agg_jf_item_t> *inter,
2809 HOST_WIDE_INT offset)
2811 struct ipcp_agg_lattice *aglat;
2812 struct ipa_agg_jf_item *item;
2813 int k;
2815 if (!plats->aggs || plats->aggs_contain_variable || plats->aggs_bottom)
2817 inter->release ();
2818 return;
2821 aglat = plats->aggs;
2822 FOR_EACH_VEC_ELT (*inter, k, item)
2824 bool found = false;
2825 if (!item->value)
2826 continue;
2827 while (aglat)
2829 if (aglat->offset - offset > item->offset)
2830 break;
2831 if (aglat->offset - offset == item->offset)
2833 gcc_checking_assert (item->value);
2834 if (values_equal_for_ipcp_p (item->value, aglat->values->value))
2835 found = true;
2836 break;
2838 aglat = aglat->next;
2840 if (!found)
2841 item->value = NULL_TREE;
2845 /* Copy agggregate replacement values of NODE (which is an IPA-CP clone) to the
2846 vector result while subtracting OFFSET from the individual value offsets. */
2848 static vec<ipa_agg_jf_item_t>
2849 agg_replacements_to_vector (struct cgraph_node *node, int index,
2850 HOST_WIDE_INT offset)
2852 struct ipa_agg_replacement_value *av;
2853 vec<ipa_agg_jf_item_t> res = vNULL;
2855 for (av = ipa_get_agg_replacements_for_node (node); av; av = av->next)
2856 if (av->index == index
2857 && (av->offset - offset) >= 0)
2859 struct ipa_agg_jf_item item;
2860 gcc_checking_assert (av->value);
2861 item.offset = av->offset - offset;
2862 item.value = av->value;
2863 res.safe_push (item);
2866 return res;
2869 /* Intersect all values in INTER with those that we have already scheduled to
2870 be replaced in parameter number INDEX of NODE, which is an IPA-CP clone
2871 (while subtracting OFFSET). */
2873 static void
2874 intersect_with_agg_replacements (struct cgraph_node *node, int index,
2875 vec<ipa_agg_jf_item_t> *inter,
2876 HOST_WIDE_INT offset)
2878 struct ipa_agg_replacement_value *srcvals;
2879 struct ipa_agg_jf_item *item;
2880 int i;
2882 srcvals = ipa_get_agg_replacements_for_node (node);
2883 if (!srcvals)
2885 inter->release ();
2886 return;
2889 FOR_EACH_VEC_ELT (*inter, i, item)
2891 struct ipa_agg_replacement_value *av;
2892 bool found = false;
2893 if (!item->value)
2894 continue;
2895 for (av = srcvals; av; av = av->next)
2897 gcc_checking_assert (av->value);
2898 if (av->index == index
2899 && av->offset - offset == item->offset)
2901 if (values_equal_for_ipcp_p (item->value, av->value))
2902 found = true;
2903 break;
2906 if (!found)
2907 item->value = NULL_TREE;
2911 /* Intersect values in INTER with aggregate values that come along edge CS to
2912 parameter number INDEX and return it. If INTER does not actually exist yet,
2913 copy all incoming values to it. If we determine we ended up with no values
2914 whatsoever, return a released vector. */
2916 static vec<ipa_agg_jf_item_t>
2917 intersect_aggregates_with_edge (struct cgraph_edge *cs, int index,
2918 vec<ipa_agg_jf_item_t> inter)
2920 struct ipa_jump_func *jfunc;
2921 jfunc = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), index);
2922 if (jfunc->type == IPA_JF_PASS_THROUGH
2923 && ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
2925 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
2926 int src_idx = ipa_get_jf_pass_through_formal_id (jfunc);
2928 if (caller_info->ipcp_orig_node)
2930 struct cgraph_node *orig_node = caller_info->ipcp_orig_node;
2931 struct ipcp_param_lattices *orig_plats;
2932 orig_plats = ipa_get_parm_lattices (IPA_NODE_REF (orig_node),
2933 src_idx);
2934 if (agg_pass_through_permissible_p (orig_plats, jfunc))
2936 if (!inter.exists ())
2937 inter = agg_replacements_to_vector (cs->caller, src_idx, 0);
2938 else
2939 intersect_with_agg_replacements (cs->caller, src_idx,
2940 &inter, 0);
2943 else
2945 struct ipcp_param_lattices *src_plats;
2946 src_plats = ipa_get_parm_lattices (caller_info, src_idx);
2947 if (agg_pass_through_permissible_p (src_plats, jfunc))
2949 /* Currently we do not produce clobber aggregate jump
2950 functions, adjust when we do. */
2951 gcc_checking_assert (!jfunc->agg.items);
2952 if (!inter.exists ())
2953 inter = copy_plats_to_inter (src_plats, 0);
2954 else
2955 intersect_with_plats (src_plats, &inter, 0);
2959 else if (jfunc->type == IPA_JF_ANCESTOR
2960 && ipa_get_jf_ancestor_agg_preserved (jfunc))
2962 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
2963 int src_idx = ipa_get_jf_ancestor_formal_id (jfunc);
2964 struct ipcp_param_lattices *src_plats;
2965 HOST_WIDE_INT delta = ipa_get_jf_ancestor_offset (jfunc);
2967 if (caller_info->ipcp_orig_node)
2969 if (!inter.exists ())
2970 inter = agg_replacements_to_vector (cs->caller, src_idx, delta);
2971 else
2972 intersect_with_agg_replacements (cs->caller, src_idx, &inter,
2973 delta);
2975 else
2977 src_plats = ipa_get_parm_lattices (caller_info, src_idx);;
2978 /* Currently we do not produce clobber aggregate jump
2979 functions, adjust when we do. */
2980 gcc_checking_assert (!src_plats->aggs || !jfunc->agg.items);
2981 if (!inter.exists ())
2982 inter = copy_plats_to_inter (src_plats, delta);
2983 else
2984 intersect_with_plats (src_plats, &inter, delta);
2987 else if (jfunc->agg.items)
2989 struct ipa_agg_jf_item *item;
2990 int k;
2992 if (!inter.exists ())
2993 for (unsigned i = 0; i < jfunc->agg.items->length (); i++)
2994 inter.safe_push ((*jfunc->agg.items)[i]);
2995 else
2996 FOR_EACH_VEC_ELT (inter, k, item)
2998 int l = 0;
2999 bool found = false;;
3001 if (!item->value)
3002 continue;
3004 while ((unsigned) l < jfunc->agg.items->length ())
3006 struct ipa_agg_jf_item *ti;
3007 ti = &(*jfunc->agg.items)[l];
3008 if (ti->offset > item->offset)
3009 break;
3010 if (ti->offset == item->offset)
3012 gcc_checking_assert (ti->value);
3013 if (values_equal_for_ipcp_p (item->value,
3014 ti->value))
3015 found = true;
3016 break;
3018 l++;
3020 if (!found)
3021 item->value = NULL;
3024 else
3026 inter.release();
3027 return vec<ipa_agg_jf_item_t>();
3029 return inter;
3032 /* Look at edges in CALLERS and collect all known aggregate values that arrive
3033 from all of them. */
3035 static struct ipa_agg_replacement_value *
3036 find_aggregate_values_for_callers_subset (struct cgraph_node *node,
3037 vec<cgraph_edge_p> callers)
3039 struct ipa_node_params *dest_info = IPA_NODE_REF (node);
3040 struct ipa_agg_replacement_value *res = NULL;
3041 struct cgraph_edge *cs;
3042 int i, j, count = ipa_get_param_count (dest_info);
3044 FOR_EACH_VEC_ELT (callers, j, cs)
3046 int c = ipa_get_cs_argument_count (IPA_EDGE_REF (cs));
3047 if (c < count)
3048 count = c;
3051 for (i = 0; i < count ; i++)
3053 struct cgraph_edge *cs;
3054 vec<ipa_agg_jf_item_t> inter = vNULL;
3055 struct ipa_agg_jf_item *item;
3056 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (dest_info, i);
3057 int j;
3059 /* Among other things, the following check should deal with all by_ref
3060 mismatches. */
3061 if (plats->aggs_bottom)
3062 continue;
3064 FOR_EACH_VEC_ELT (callers, j, cs)
3066 inter = intersect_aggregates_with_edge (cs, i, inter);
3068 if (!inter.exists ())
3069 goto next_param;
3072 FOR_EACH_VEC_ELT (inter, j, item)
3074 struct ipa_agg_replacement_value *v;
3076 if (!item->value)
3077 continue;
3079 v = ggc_alloc_ipa_agg_replacement_value ();
3080 v->index = i;
3081 v->offset = item->offset;
3082 v->value = item->value;
3083 v->by_ref = plats->aggs_by_ref;
3084 v->next = res;
3085 res = v;
3088 next_param:
3089 if (inter.exists ())
3090 inter.release ();
3092 return res;
3095 /* Turn KNOWN_AGGS into a list of aggreate replacement values. */
3097 static struct ipa_agg_replacement_value *
3098 known_aggs_to_agg_replacement_list (vec<ipa_agg_jump_function_t> known_aggs)
3100 struct ipa_agg_replacement_value *res = NULL;
3101 struct ipa_agg_jump_function *aggjf;
3102 struct ipa_agg_jf_item *item;
3103 int i, j;
3105 FOR_EACH_VEC_ELT (known_aggs, i, aggjf)
3106 FOR_EACH_VEC_SAFE_ELT (aggjf->items, j, item)
3108 struct ipa_agg_replacement_value *v;
3109 v = ggc_alloc_ipa_agg_replacement_value ();
3110 v->index = i;
3111 v->offset = item->offset;
3112 v->value = item->value;
3113 v->by_ref = aggjf->by_ref;
3114 v->next = res;
3115 res = v;
3117 return res;
3120 /* Determine whether CS also brings all scalar values that the NODE is
3121 specialized for. */
3123 static bool
3124 cgraph_edge_brings_all_scalars_for_node (struct cgraph_edge *cs,
3125 struct cgraph_node *node)
3127 struct ipa_node_params *dest_info = IPA_NODE_REF (node);
3128 int count = ipa_get_param_count (dest_info);
3129 struct ipa_node_params *caller_info;
3130 struct ipa_edge_args *args;
3131 int i;
3133 caller_info = IPA_NODE_REF (cs->caller);
3134 args = IPA_EDGE_REF (cs);
3135 for (i = 0; i < count; i++)
3137 struct ipa_jump_func *jump_func;
3138 tree val, t;
3140 val = dest_info->known_vals[i];
3141 if (!val)
3142 continue;
3144 if (i >= ipa_get_cs_argument_count (args))
3145 return false;
3146 jump_func = ipa_get_ith_jump_func (args, i);
3147 t = ipa_value_from_jfunc (caller_info, jump_func);
3148 if (!t || !values_equal_for_ipcp_p (val, t))
3149 return false;
3151 return true;
3154 /* Determine whether CS also brings all aggregate values that NODE is
3155 specialized for. */
3156 static bool
3157 cgraph_edge_brings_all_agg_vals_for_node (struct cgraph_edge *cs,
3158 struct cgraph_node *node)
3160 struct ipa_node_params *orig_caller_info = IPA_NODE_REF (cs->caller);
3161 struct ipa_agg_replacement_value *aggval;
3162 int i, ec, count;
3164 aggval = ipa_get_agg_replacements_for_node (node);
3165 if (!aggval)
3166 return true;
3168 count = ipa_get_param_count (IPA_NODE_REF (node));
3169 ec = ipa_get_cs_argument_count (IPA_EDGE_REF (cs));
3170 if (ec < count)
3171 for (struct ipa_agg_replacement_value *av = aggval; av; av = av->next)
3172 if (aggval->index >= ec)
3173 return false;
3175 if (orig_caller_info->ipcp_orig_node)
3176 orig_caller_info = IPA_NODE_REF (orig_caller_info->ipcp_orig_node);
3178 for (i = 0; i < count; i++)
3180 static vec<ipa_agg_jf_item_t> values = vec<ipa_agg_jf_item_t>();
3181 struct ipcp_param_lattices *plats;
3182 bool interesting = false;
3183 for (struct ipa_agg_replacement_value *av = aggval; av; av = av->next)
3184 if (aggval->index == i)
3186 interesting = true;
3187 break;
3189 if (!interesting)
3190 continue;
3192 plats = ipa_get_parm_lattices (orig_caller_info, aggval->index);
3193 if (plats->aggs_bottom)
3194 return false;
3196 values = intersect_aggregates_with_edge (cs, i, values);
3197 if (!values.exists())
3198 return false;
3200 for (struct ipa_agg_replacement_value *av = aggval; av; av = av->next)
3201 if (aggval->index == i)
3203 struct ipa_agg_jf_item *item;
3204 int j;
3205 bool found = false;
3206 FOR_EACH_VEC_ELT (values, j, item)
3207 if (item->value
3208 && item->offset == av->offset
3209 && values_equal_for_ipcp_p (item->value, av->value))
3211 found = true;
3212 break;
3214 if (!found)
3216 values.release();
3217 return false;
3221 return true;
3224 /* Given an original NODE and a VAL for which we have already created a
3225 specialized clone, look whether there are incoming edges that still lead
3226 into the old node but now also bring the requested value and also conform to
3227 all other criteria such that they can be redirected the the special node.
3228 This function can therefore redirect the final edge in a SCC. */
3230 static void
3231 perhaps_add_new_callers (struct cgraph_node *node, struct ipcp_value *val)
3233 struct ipcp_value_source *src;
3234 gcov_type redirected_sum = 0;
3236 for (src = val->sources; src; src = src->next)
3238 struct cgraph_edge *cs = src->cs;
3239 while (cs)
3241 enum availability availability;
3242 struct cgraph_node *dst = cgraph_function_node (cs->callee,
3243 &availability);
3244 if ((dst == node || IPA_NODE_REF (dst)->is_all_contexts_clone)
3245 && availability > AVAIL_OVERWRITABLE
3246 && cgraph_edge_brings_value_p (cs, src))
3248 if (cgraph_edge_brings_all_scalars_for_node (cs, val->spec_node)
3249 && cgraph_edge_brings_all_agg_vals_for_node (cs,
3250 val->spec_node))
3252 if (dump_file)
3253 fprintf (dump_file, " - adding an extra caller %s/%i"
3254 " of %s/%i\n",
3255 xstrdup (cgraph_node_name (cs->caller)),
3256 cs->caller->symbol.order,
3257 xstrdup (cgraph_node_name (val->spec_node)),
3258 val->spec_node->symbol.order);
3260 cgraph_redirect_edge_callee (cs, val->spec_node);
3261 redirected_sum += cs->count;
3264 cs = get_next_cgraph_edge_clone (cs);
3268 if (redirected_sum)
3269 update_specialized_profile (val->spec_node, node, redirected_sum);
3273 /* Copy KNOWN_BINFOS to KNOWN_VALS. */
3275 static void
3276 move_binfos_to_values (vec<tree> known_vals,
3277 vec<tree> known_binfos)
3279 tree t;
3280 int i;
3282 for (i = 0; known_binfos.iterate (i, &t); i++)
3283 if (t)
3284 known_vals[i] = t;
3287 /* Return true if there is a replacement equivalent to VALUE, INDEX and OFFSET
3288 among those in the AGGVALS list. */
3290 DEBUG_FUNCTION bool
3291 ipcp_val_in_agg_replacements_p (struct ipa_agg_replacement_value *aggvals,
3292 int index, HOST_WIDE_INT offset, tree value)
3294 while (aggvals)
3296 if (aggvals->index == index
3297 && aggvals->offset == offset
3298 && values_equal_for_ipcp_p (aggvals->value, value))
3299 return true;
3300 aggvals = aggvals->next;
3302 return false;
3305 /* Decide wheter to create a special version of NODE for value VAL of parameter
3306 at the given INDEX. If OFFSET is -1, the value is for the parameter itself,
3307 otherwise it is stored at the given OFFSET of the parameter. KNOWN_CSTS,
3308 KNOWN_BINFOS and KNOWN_AGGS describe the other already known values. */
3310 static bool
3311 decide_about_value (struct cgraph_node *node, int index, HOST_WIDE_INT offset,
3312 struct ipcp_value *val, vec<tree> known_csts,
3313 vec<tree> known_binfos)
3315 struct ipa_agg_replacement_value *aggvals;
3316 int freq_sum, caller_count;
3317 gcov_type count_sum;
3318 vec<cgraph_edge_p> callers;
3319 vec<tree> kv;
3321 if (val->spec_node)
3323 perhaps_add_new_callers (node, val);
3324 return false;
3326 else if (val->local_size_cost + overall_size > max_new_size)
3328 if (dump_file && (dump_flags & TDF_DETAILS))
3329 fprintf (dump_file, " Ignoring candidate value because "
3330 "max_new_size would be reached with %li.\n",
3331 val->local_size_cost + overall_size);
3332 return false;
3334 else if (!get_info_about_necessary_edges (val, &freq_sum, &count_sum,
3335 &caller_count))
3336 return false;
3338 if (dump_file && (dump_flags & TDF_DETAILS))
3340 fprintf (dump_file, " - considering value ");
3341 print_ipcp_constant_value (dump_file, val->value);
3342 fprintf (dump_file, " for ");
3343 ipa_dump_param (dump_file, IPA_NODE_REF (node), index);
3344 if (offset != -1)
3345 fprintf (dump_file, ", offset: " HOST_WIDE_INT_PRINT_DEC, offset);
3346 fprintf (dump_file, " (caller_count: %i)\n", caller_count);
3349 if (!good_cloning_opportunity_p (node, val->local_time_benefit,
3350 freq_sum, count_sum,
3351 val->local_size_cost)
3352 && !good_cloning_opportunity_p (node,
3353 val->local_time_benefit
3354 + val->prop_time_benefit,
3355 freq_sum, count_sum,
3356 val->local_size_cost
3357 + val->prop_size_cost))
3358 return false;
3360 if (dump_file)
3361 fprintf (dump_file, " Creating a specialized node of %s/%i.\n",
3362 cgraph_node_name (node), node->symbol.order);
3364 callers = gather_edges_for_value (val, caller_count);
3365 kv = known_csts.copy ();
3366 move_binfos_to_values (kv, known_binfos);
3367 if (offset == -1)
3368 kv[index] = val->value;
3369 find_more_scalar_values_for_callers_subset (node, kv, callers);
3370 aggvals = find_aggregate_values_for_callers_subset (node, callers);
3371 gcc_checking_assert (offset == -1
3372 || ipcp_val_in_agg_replacements_p (aggvals, index,
3373 offset, val->value));
3374 val->spec_node = create_specialized_node (node, kv, aggvals, callers);
3375 overall_size += val->local_size_cost;
3377 /* TODO: If for some lattice there is only one other known value
3378 left, make a special node for it too. */
3380 return true;
3383 /* Decide whether and what specialized clones of NODE should be created. */
3385 static bool
3386 decide_whether_version_node (struct cgraph_node *node)
3388 struct ipa_node_params *info = IPA_NODE_REF (node);
3389 int i, count = ipa_get_param_count (info);
3390 vec<tree> known_csts, known_binfos;
3391 vec<ipa_agg_jump_function_t> known_aggs = vNULL;
3392 bool ret = false;
3394 if (count == 0)
3395 return false;
3397 if (dump_file && (dump_flags & TDF_DETAILS))
3398 fprintf (dump_file, "\nEvaluating opportunities for %s/%i.\n",
3399 cgraph_node_name (node), node->symbol.order);
3401 gather_context_independent_values (info, &known_csts, &known_binfos,
3402 info->do_clone_for_all_contexts ? &known_aggs
3403 : NULL, NULL);
3405 for (i = 0; i < count ;i++)
3407 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
3408 struct ipcp_lattice *lat = &plats->itself;
3409 struct ipcp_value *val;
3411 if (!lat->bottom
3412 && !known_csts[i]
3413 && !known_binfos[i])
3414 for (val = lat->values; val; val = val->next)
3415 ret |= decide_about_value (node, i, -1, val, known_csts,
3416 known_binfos);
3418 if (!plats->aggs_bottom)
3420 struct ipcp_agg_lattice *aglat;
3421 struct ipcp_value *val;
3422 for (aglat = plats->aggs; aglat; aglat = aglat->next)
3423 if (!aglat->bottom && aglat->values
3424 /* If the following is false, the one value is in
3425 known_aggs. */
3426 && (plats->aggs_contain_variable
3427 || !ipa_lat_is_single_const (aglat)))
3428 for (val = aglat->values; val; val = val->next)
3429 ret |= decide_about_value (node, i, aglat->offset, val,
3430 known_csts, known_binfos);
3432 info = IPA_NODE_REF (node);
3435 if (info->do_clone_for_all_contexts)
3437 struct cgraph_node *clone;
3438 vec<cgraph_edge_p> callers;
3440 if (dump_file)
3441 fprintf (dump_file, " - Creating a specialized node of %s/%i "
3442 "for all known contexts.\n", cgraph_node_name (node),
3443 node->symbol.order);
3445 callers = collect_callers_of_node (node);
3446 move_binfos_to_values (known_csts, known_binfos);
3447 clone = create_specialized_node (node, known_csts,
3448 known_aggs_to_agg_replacement_list (known_aggs),
3449 callers);
3450 info = IPA_NODE_REF (node);
3451 info->do_clone_for_all_contexts = false;
3452 IPA_NODE_REF (clone)->is_all_contexts_clone = true;
3453 for (i = 0; i < count ; i++)
3454 vec_free (known_aggs[i].items);
3455 known_aggs.release ();
3456 ret = true;
3458 else
3459 known_csts.release ();
3461 known_binfos.release ();
3462 return ret;
3465 /* Transitively mark all callees of NODE within the same SCC as not dead. */
3467 static void
3468 spread_undeadness (struct cgraph_node *node)
3470 struct cgraph_edge *cs;
3472 for (cs = node->callees; cs; cs = cs->next_callee)
3473 if (edge_within_scc (cs))
3475 struct cgraph_node *callee;
3476 struct ipa_node_params *info;
3478 callee = cgraph_function_node (cs->callee, NULL);
3479 info = IPA_NODE_REF (callee);
3481 if (info->node_dead)
3483 info->node_dead = 0;
3484 spread_undeadness (callee);
3489 /* Return true if NODE has a caller from outside of its SCC that is not
3490 dead. Worker callback for cgraph_for_node_and_aliases. */
3492 static bool
3493 has_undead_caller_from_outside_scc_p (struct cgraph_node *node,
3494 void *data ATTRIBUTE_UNUSED)
3496 struct cgraph_edge *cs;
3498 for (cs = node->callers; cs; cs = cs->next_caller)
3499 if (cs->caller->thunk.thunk_p
3500 && cgraph_for_node_and_aliases (cs->caller,
3501 has_undead_caller_from_outside_scc_p,
3502 NULL, true))
3503 return true;
3504 else if (!edge_within_scc (cs)
3505 && !IPA_NODE_REF (cs->caller)->node_dead)
3506 return true;
3507 return false;
3511 /* Identify nodes within the same SCC as NODE which are no longer needed
3512 because of new clones and will be removed as unreachable. */
3514 static void
3515 identify_dead_nodes (struct cgraph_node *node)
3517 struct cgraph_node *v;
3518 for (v = node; v ; v = ((struct ipa_dfs_info *) v->symbol.aux)->next_cycle)
3519 if (cgraph_will_be_removed_from_program_if_no_direct_calls (v)
3520 && !cgraph_for_node_and_aliases (v,
3521 has_undead_caller_from_outside_scc_p,
3522 NULL, true))
3523 IPA_NODE_REF (v)->node_dead = 1;
3525 for (v = node; v ; v = ((struct ipa_dfs_info *) v->symbol.aux)->next_cycle)
3526 if (!IPA_NODE_REF (v)->node_dead)
3527 spread_undeadness (v);
3529 if (dump_file && (dump_flags & TDF_DETAILS))
3531 for (v = node; v ; v = ((struct ipa_dfs_info *) v->symbol.aux)->next_cycle)
3532 if (IPA_NODE_REF (v)->node_dead)
3533 fprintf (dump_file, " Marking node as dead: %s/%i.\n",
3534 cgraph_node_name (v), v->symbol.order);
3538 /* The decision stage. Iterate over the topological order of call graph nodes
3539 TOPO and make specialized clones if deemed beneficial. */
3541 static void
3542 ipcp_decision_stage (struct topo_info *topo)
3544 int i;
3546 if (dump_file)
3547 fprintf (dump_file, "\nIPA decision stage:\n\n");
3549 for (i = topo->nnodes - 1; i >= 0; i--)
3551 struct cgraph_node *node = topo->order[i];
3552 bool change = false, iterate = true;
3554 while (iterate)
3556 struct cgraph_node *v;
3557 iterate = false;
3558 for (v = node; v ; v = ((struct ipa_dfs_info *) v->symbol.aux)->next_cycle)
3559 if (cgraph_function_with_gimple_body_p (v)
3560 && ipcp_versionable_function_p (v))
3561 iterate |= decide_whether_version_node (v);
3563 change |= iterate;
3565 if (change)
3566 identify_dead_nodes (node);
3570 /* The IPCP driver. */
3572 static unsigned int
3573 ipcp_driver (void)
3575 struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
3576 struct topo_info topo;
3578 ipa_check_create_node_params ();
3579 ipa_check_create_edge_args ();
3580 grow_next_edge_clone_vector ();
3581 edge_duplication_hook_holder =
3582 cgraph_add_edge_duplication_hook (&ipcp_edge_duplication_hook, NULL);
3583 ipcp_values_pool = create_alloc_pool ("IPA-CP values",
3584 sizeof (struct ipcp_value), 32);
3585 ipcp_sources_pool = create_alloc_pool ("IPA-CP value sources",
3586 sizeof (struct ipcp_value_source), 64);
3587 ipcp_agg_lattice_pool = create_alloc_pool ("IPA_CP aggregate lattices",
3588 sizeof (struct ipcp_agg_lattice),
3589 32);
3590 if (dump_file)
3592 fprintf (dump_file, "\nIPA structures before propagation:\n");
3593 if (dump_flags & TDF_DETAILS)
3594 ipa_print_all_params (dump_file);
3595 ipa_print_all_jump_functions (dump_file);
3598 /* Topological sort. */
3599 build_toporder_info (&topo);
3600 /* Do the interprocedural propagation. */
3601 ipcp_propagate_stage (&topo);
3602 /* Decide what constant propagation and cloning should be performed. */
3603 ipcp_decision_stage (&topo);
3605 /* Free all IPCP structures. */
3606 free_toporder_info (&topo);
3607 next_edge_clone.release ();
3608 cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder);
3609 ipa_free_all_structures_after_ipa_cp ();
3610 if (dump_file)
3611 fprintf (dump_file, "\nIPA constant propagation end\n");
3612 return 0;
3615 /* Initialization and computation of IPCP data structures. This is the initial
3616 intraprocedural analysis of functions, which gathers information to be
3617 propagated later on. */
3619 static void
3620 ipcp_generate_summary (void)
3622 struct cgraph_node *node;
3624 if (dump_file)
3625 fprintf (dump_file, "\nIPA constant propagation start:\n");
3626 ipa_register_cgraph_hooks ();
3628 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
3630 node->local.versionable
3631 = tree_versionable_function_p (node->symbol.decl);
3632 ipa_analyze_node (node);
3636 /* Write ipcp summary for nodes in SET. */
3638 static void
3639 ipcp_write_summary (void)
3641 ipa_prop_write_jump_functions ();
3644 /* Read ipcp summary. */
3646 static void
3647 ipcp_read_summary (void)
3649 ipa_prop_read_jump_functions ();
3652 /* Gate for IPCP optimization. */
3654 static bool
3655 cgraph_gate_cp (void)
3657 /* FIXME: We should remove the optimize check after we ensure we never run
3658 IPA passes when not optimizing. */
3659 return flag_ipa_cp && optimize;
3662 namespace {
3664 const pass_data pass_data_ipa_cp =
3666 IPA_PASS, /* type */
3667 "cp", /* name */
3668 OPTGROUP_NONE, /* optinfo_flags */
3669 true, /* has_gate */
3670 true, /* has_execute */
3671 TV_IPA_CONSTANT_PROP, /* tv_id */
3672 0, /* properties_required */
3673 0, /* properties_provided */
3674 0, /* properties_destroyed */
3675 0, /* todo_flags_start */
3676 ( TODO_dump_symtab | TODO_remove_functions ), /* todo_flags_finish */
3679 class pass_ipa_cp : public ipa_opt_pass_d
3681 public:
3682 pass_ipa_cp(gcc::context *ctxt)
3683 : ipa_opt_pass_d(pass_data_ipa_cp, ctxt,
3684 ipcp_generate_summary, /* generate_summary */
3685 ipcp_write_summary, /* write_summary */
3686 ipcp_read_summary, /* read_summary */
3687 ipa_prop_write_all_agg_replacement, /*
3688 write_optimization_summary */
3689 ipa_prop_read_all_agg_replacement, /*
3690 read_optimization_summary */
3691 NULL, /* stmt_fixup */
3692 0, /* function_transform_todo_flags_start */
3693 ipcp_transform_function, /* function_transform */
3694 NULL) /* variable_transform */
3697 /* opt_pass methods: */
3698 bool gate () { return cgraph_gate_cp (); }
3699 unsigned int execute () { return ipcp_driver (); }
3701 }; // class pass_ipa_cp
3703 } // anon namespace
3705 ipa_opt_pass_d *
3706 make_pass_ipa_cp (gcc::context *ctxt)
3708 return new pass_ipa_cp (ctxt);