1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
29 #include "hard-reg-set.h"
32 #include "insn-config.h"
33 #include "insn-attr.h"
34 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
40 #include "typeclass.h"
42 #include "langhooks.h"
45 #include "tree-iterator.h"
48 #include "common/common-target.h"
51 #include "diagnostic.h"
52 #include "tree-outof-ssa.h"
53 #include "target-globals.h"
56 /* Decide whether a function's arguments should be processed
57 from first to last or from last to first.
59 They should if the stack and args grow in opposite directions, but
60 only if we have push insns. */
64 #ifndef PUSH_ARGS_REVERSED
65 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
66 #define PUSH_ARGS_REVERSED /* If it's last to first. */
72 #ifndef STACK_PUSH_CODE
73 #ifdef STACK_GROWS_DOWNWARD
74 #define STACK_PUSH_CODE PRE_DEC
76 #define STACK_PUSH_CODE PRE_INC
81 /* If this is nonzero, we do not bother generating VOLATILE
82 around volatile memory references, and we are willing to
83 output indirect addresses. If cse is to follow, we reject
84 indirect addresses so a useful potential cse is generated;
85 if it is used only once, instruction combination will produce
86 the same indirect address eventually. */
89 /* This structure is used by move_by_pieces to describe the move to
91 struct move_by_pieces_d
100 int explicit_inc_from
;
101 unsigned HOST_WIDE_INT len
;
102 HOST_WIDE_INT offset
;
106 /* This structure is used by store_by_pieces to describe the clear to
109 struct store_by_pieces_d
115 unsigned HOST_WIDE_INT len
;
116 HOST_WIDE_INT offset
;
117 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
);
122 static void move_by_pieces_1 (insn_gen_fn
, machine_mode
,
123 struct move_by_pieces_d
*);
124 static bool block_move_libcall_safe_for_call_parm (void);
125 static bool emit_block_move_via_movmem (rtx
, rtx
, rtx
, unsigned, unsigned, HOST_WIDE_INT
);
126 static tree
emit_block_move_libcall_fn (int);
127 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
128 static rtx
clear_by_pieces_1 (void *, HOST_WIDE_INT
, enum machine_mode
);
129 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
130 static void store_by_pieces_1 (struct store_by_pieces_d
*, unsigned int);
131 static void store_by_pieces_2 (insn_gen_fn
, machine_mode
,
132 struct store_by_pieces_d
*);
133 static tree
clear_storage_libcall_fn (int);
134 static rtx
compress_float_constant (rtx
, rtx
);
135 static rtx
get_subtarget (rtx
);
136 static void store_constructor_field (rtx
, unsigned HOST_WIDE_INT
,
137 HOST_WIDE_INT
, enum machine_mode
,
138 tree
, int, alias_set_type
);
139 static void store_constructor (tree
, rtx
, int, HOST_WIDE_INT
);
140 static rtx
store_field (rtx
, HOST_WIDE_INT
, HOST_WIDE_INT
,
141 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
142 enum machine_mode
, tree
, alias_set_type
, bool);
144 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (const_tree
, const_tree
);
146 static int is_aligning_offset (const_tree
, const_tree
);
147 static void expand_operands (tree
, tree
, rtx
, rtx
*, rtx
*,
148 enum expand_modifier
);
149 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
150 static rtx
do_store_flag (sepops
, rtx
, enum machine_mode
);
152 static void emit_single_push_insn (enum machine_mode
, rtx
, tree
);
154 static void do_tablejump (rtx
, enum machine_mode
, rtx
, rtx
, rtx
, int);
155 static rtx
const_vector_from_tree (tree
);
156 static void write_complex_part (rtx
, rtx
, bool);
158 /* This macro is used to determine whether move_by_pieces should be called
159 to perform a structure copy. */
160 #ifndef MOVE_BY_PIECES_P
161 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
162 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
163 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
166 /* This macro is used to determine whether clear_by_pieces should be
167 called to clear storage. */
168 #ifndef CLEAR_BY_PIECES_P
169 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
170 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
171 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
174 /* This macro is used to determine whether store_by_pieces should be
175 called to "memset" storage with byte values other than zero. */
176 #ifndef SET_BY_PIECES_P
177 #define SET_BY_PIECES_P(SIZE, ALIGN) \
178 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
179 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
182 /* This macro is used to determine whether store_by_pieces should be
183 called to "memcpy" storage when the source is a constant string. */
184 #ifndef STORE_BY_PIECES_P
185 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
186 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
187 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
190 /* This is run to set up which modes can be used
191 directly in memory and to initialize the block move optab. It is run
192 at the beginning of compilation and when the target is reinitialized. */
195 init_expr_target (void)
198 enum machine_mode mode
;
203 /* Try indexing by frame ptr and try by stack ptr.
204 It is known that on the Convex the stack ptr isn't a valid index.
205 With luck, one or the other is valid on any machine. */
206 mem
= gen_rtx_MEM (VOIDmode
, stack_pointer_rtx
);
207 mem1
= gen_rtx_MEM (VOIDmode
, frame_pointer_rtx
);
209 /* A scratch register we can modify in-place below to avoid
210 useless RTL allocations. */
211 reg
= gen_rtx_REG (VOIDmode
, -1);
213 insn
= rtx_alloc (INSN
);
214 pat
= gen_rtx_SET (VOIDmode
, NULL_RTX
, NULL_RTX
);
215 PATTERN (insn
) = pat
;
217 for (mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
218 mode
= (enum machine_mode
) ((int) mode
+ 1))
222 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
223 PUT_MODE (mem
, mode
);
224 PUT_MODE (mem1
, mode
);
225 PUT_MODE (reg
, mode
);
227 /* See if there is some register that can be used in this mode and
228 directly loaded or stored from memory. */
230 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
231 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
232 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
235 if (! HARD_REGNO_MODE_OK (regno
, mode
))
238 SET_REGNO (reg
, regno
);
241 SET_DEST (pat
) = reg
;
242 if (recog (pat
, insn
, &num_clobbers
) >= 0)
243 direct_load
[(int) mode
] = 1;
245 SET_SRC (pat
) = mem1
;
246 SET_DEST (pat
) = reg
;
247 if (recog (pat
, insn
, &num_clobbers
) >= 0)
248 direct_load
[(int) mode
] = 1;
251 SET_DEST (pat
) = mem
;
252 if (recog (pat
, insn
, &num_clobbers
) >= 0)
253 direct_store
[(int) mode
] = 1;
256 SET_DEST (pat
) = mem1
;
257 if (recog (pat
, insn
, &num_clobbers
) >= 0)
258 direct_store
[(int) mode
] = 1;
262 mem
= gen_rtx_MEM (VOIDmode
, gen_rtx_raw_REG (Pmode
, 10000));
264 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
265 mode
= GET_MODE_WIDER_MODE (mode
))
267 enum machine_mode srcmode
;
268 for (srcmode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); srcmode
!= mode
;
269 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
273 ic
= can_extend_p (mode
, srcmode
, 0);
274 if (ic
== CODE_FOR_nothing
)
277 PUT_MODE (mem
, srcmode
);
279 if (insn_operand_matches (ic
, 1, mem
))
280 float_extend_from_mem
[mode
][srcmode
] = true;
285 /* This is run at the start of compiling a function. */
290 memset (&crtl
->expr
, 0, sizeof (crtl
->expr
));
293 /* Copy data from FROM to TO, where the machine modes are not the same.
294 Both modes may be integer, or both may be floating, or both may be
296 UNSIGNEDP should be nonzero if FROM is an unsigned type.
297 This causes zero-extension instead of sign-extension. */
300 convert_move (rtx to
, rtx from
, int unsignedp
)
302 enum machine_mode to_mode
= GET_MODE (to
);
303 enum machine_mode from_mode
= GET_MODE (from
);
304 int to_real
= SCALAR_FLOAT_MODE_P (to_mode
);
305 int from_real
= SCALAR_FLOAT_MODE_P (from_mode
);
309 /* rtx code for making an equivalent value. */
310 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
311 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
314 gcc_assert (to_real
== from_real
);
315 gcc_assert (to_mode
!= BLKmode
);
316 gcc_assert (from_mode
!= BLKmode
);
318 /* If the source and destination are already the same, then there's
323 /* If FROM is a SUBREG that indicates that we have already done at least
324 the required extension, strip it. We don't handle such SUBREGs as
327 if (GET_CODE (from
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (from
)
328 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from
)))
329 >= GET_MODE_PRECISION (to_mode
))
330 && SUBREG_PROMOTED_UNSIGNED_P (from
) == unsignedp
)
331 from
= gen_lowpart (to_mode
, from
), from_mode
= to_mode
;
333 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
335 if (to_mode
== from_mode
336 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
338 emit_move_insn (to
, from
);
342 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
344 gcc_assert (GET_MODE_BITSIZE (from_mode
) == GET_MODE_BITSIZE (to_mode
));
346 if (VECTOR_MODE_P (to_mode
))
347 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
349 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
351 emit_move_insn (to
, from
);
355 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
357 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
358 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
367 gcc_assert ((GET_MODE_PRECISION (from_mode
)
368 != GET_MODE_PRECISION (to_mode
))
369 || (DECIMAL_FLOAT_MODE_P (from_mode
)
370 != DECIMAL_FLOAT_MODE_P (to_mode
)));
372 if (GET_MODE_PRECISION (from_mode
) == GET_MODE_PRECISION (to_mode
))
373 /* Conversion between decimal float and binary float, same size. */
374 tab
= DECIMAL_FLOAT_MODE_P (from_mode
) ? trunc_optab
: sext_optab
;
375 else if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
380 /* Try converting directly if the insn is supported. */
382 code
= convert_optab_handler (tab
, to_mode
, from_mode
);
383 if (code
!= CODE_FOR_nothing
)
385 emit_unop_insn (code
, to
, from
,
386 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
390 /* Otherwise use a libcall. */
391 libcall
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
393 /* Is this conversion implemented yet? */
394 gcc_assert (libcall
);
397 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
399 insns
= get_insns ();
401 emit_libcall_block (insns
, to
, value
,
402 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
404 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
408 /* Handle pointer conversion. */ /* SPEE 900220. */
409 /* Targets are expected to provide conversion insns between PxImode and
410 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
411 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
413 enum machine_mode full_mode
414 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode
), MODE_INT
);
416 gcc_assert (convert_optab_handler (trunc_optab
, to_mode
, full_mode
)
417 != CODE_FOR_nothing
);
419 if (full_mode
!= from_mode
)
420 from
= convert_to_mode (full_mode
, from
, unsignedp
);
421 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, full_mode
),
425 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
428 enum machine_mode full_mode
429 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode
), MODE_INT
);
430 convert_optab ctab
= unsignedp
? zext_optab
: sext_optab
;
431 enum insn_code icode
;
433 icode
= convert_optab_handler (ctab
, full_mode
, from_mode
);
434 gcc_assert (icode
!= CODE_FOR_nothing
);
436 if (to_mode
== full_mode
)
438 emit_unop_insn (icode
, to
, from
, UNKNOWN
);
442 new_from
= gen_reg_rtx (full_mode
);
443 emit_unop_insn (icode
, new_from
, from
, UNKNOWN
);
445 /* else proceed to integer conversions below. */
446 from_mode
= full_mode
;
450 /* Make sure both are fixed-point modes or both are not. */
451 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
) ==
452 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode
));
453 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
))
455 /* If we widen from_mode to to_mode and they are in the same class,
456 we won't saturate the result.
457 Otherwise, always saturate the result to play safe. */
458 if (GET_MODE_CLASS (from_mode
) == GET_MODE_CLASS (to_mode
)
459 && GET_MODE_SIZE (from_mode
) < GET_MODE_SIZE (to_mode
))
460 expand_fixed_convert (to
, from
, 0, 0);
462 expand_fixed_convert (to
, from
, 0, 1);
466 /* Now both modes are integers. */
468 /* Handle expanding beyond a word. */
469 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
)
470 && GET_MODE_PRECISION (to_mode
) > BITS_PER_WORD
)
477 enum machine_mode lowpart_mode
;
478 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
480 /* Try converting directly if the insn is supported. */
481 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
484 /* If FROM is a SUBREG, put it into a register. Do this
485 so that we always generate the same set of insns for
486 better cse'ing; if an intermediate assignment occurred,
487 we won't be doing the operation directly on the SUBREG. */
488 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
489 from
= force_reg (from_mode
, from
);
490 emit_unop_insn (code
, to
, from
, equiv_code
);
493 /* Next, try converting via full word. */
494 else if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
495 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
496 != CODE_FOR_nothing
))
498 rtx word_to
= gen_reg_rtx (word_mode
);
501 if (reg_overlap_mentioned_p (to
, from
))
502 from
= force_reg (from_mode
, from
);
505 convert_move (word_to
, from
, unsignedp
);
506 emit_unop_insn (code
, to
, word_to
, equiv_code
);
510 /* No special multiword conversion insn; do it by hand. */
513 /* Since we will turn this into a no conflict block, we must ensure the
514 the source does not overlap the target so force it into an isolated
515 register when maybe so. Likewise for any MEM input, since the
516 conversion sequence might require several references to it and we
517 must ensure we're getting the same value every time. */
519 if (MEM_P (from
) || reg_overlap_mentioned_p (to
, from
))
520 from
= force_reg (from_mode
, from
);
522 /* Get a copy of FROM widened to a word, if necessary. */
523 if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
)
524 lowpart_mode
= word_mode
;
526 lowpart_mode
= from_mode
;
528 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
530 lowpart
= gen_lowpart (lowpart_mode
, to
);
531 emit_move_insn (lowpart
, lowfrom
);
533 /* Compute the value to put in each remaining word. */
535 fill_value
= const0_rtx
;
537 fill_value
= emit_store_flag (gen_reg_rtx (word_mode
),
538 LT
, lowfrom
, const0_rtx
,
541 /* Fill the remaining words. */
542 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
544 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
545 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
547 gcc_assert (subword
);
549 if (fill_value
!= subword
)
550 emit_move_insn (subword
, fill_value
);
553 insns
= get_insns ();
560 /* Truncating multi-word to a word or less. */
561 if (GET_MODE_PRECISION (from_mode
) > BITS_PER_WORD
562 && GET_MODE_PRECISION (to_mode
) <= BITS_PER_WORD
)
565 && ! MEM_VOLATILE_P (from
)
566 && direct_load
[(int) to_mode
]
567 && ! mode_dependent_address_p (XEXP (from
, 0),
568 MEM_ADDR_SPACE (from
)))
570 || GET_CODE (from
) == SUBREG
))
571 from
= force_reg (from_mode
, from
);
572 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
576 /* Now follow all the conversions between integers
577 no more than a word long. */
579 /* For truncation, usually we can just refer to FROM in a narrower mode. */
580 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
581 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, from_mode
))
584 && ! MEM_VOLATILE_P (from
)
585 && direct_load
[(int) to_mode
]
586 && ! mode_dependent_address_p (XEXP (from
, 0),
587 MEM_ADDR_SPACE (from
)))
589 || GET_CODE (from
) == SUBREG
))
590 from
= force_reg (from_mode
, from
);
591 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
592 && ! HARD_REGNO_MODE_OK (REGNO (from
), to_mode
))
593 from
= copy_to_reg (from
);
594 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
598 /* Handle extension. */
599 if (GET_MODE_PRECISION (to_mode
) > GET_MODE_PRECISION (from_mode
))
601 /* Convert directly if that works. */
602 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
605 emit_unop_insn (code
, to
, from
, equiv_code
);
610 enum machine_mode intermediate
;
614 /* Search for a mode to convert via. */
615 for (intermediate
= from_mode
; intermediate
!= VOIDmode
;
616 intermediate
= GET_MODE_WIDER_MODE (intermediate
))
617 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
619 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
620 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, intermediate
)))
621 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
622 != CODE_FOR_nothing
))
624 convert_move (to
, convert_to_mode (intermediate
, from
,
625 unsignedp
), unsignedp
);
629 /* No suitable intermediate mode.
630 Generate what we need with shifts. */
631 shift_amount
= (GET_MODE_PRECISION (to_mode
)
632 - GET_MODE_PRECISION (from_mode
));
633 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
634 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
636 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
639 emit_move_insn (to
, tmp
);
644 /* Support special truncate insns for certain modes. */
645 if (convert_optab_handler (trunc_optab
, to_mode
,
646 from_mode
) != CODE_FOR_nothing
)
648 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, from_mode
),
653 /* Handle truncation of volatile memrefs, and so on;
654 the things that couldn't be truncated directly,
655 and for which there was no special instruction.
657 ??? Code above formerly short-circuited this, for most integer
658 mode pairs, with a force_reg in from_mode followed by a recursive
659 call to this routine. Appears always to have been wrong. */
660 if (GET_MODE_PRECISION (to_mode
) < GET_MODE_PRECISION (from_mode
))
662 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
663 emit_move_insn (to
, temp
);
667 /* Mode combination is not recognized. */
671 /* Return an rtx for a value that would result
672 from converting X to mode MODE.
673 Both X and MODE may be floating, or both integer.
674 UNSIGNEDP is nonzero if X is an unsigned value.
675 This can be done by referring to a part of X in place
676 or by copying to a new temporary with conversion. */
679 convert_to_mode (enum machine_mode mode
, rtx x
, int unsignedp
)
681 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
684 /* Return an rtx for a value that would result
685 from converting X from mode OLDMODE to mode MODE.
686 Both modes may be floating, or both integer.
687 UNSIGNEDP is nonzero if X is an unsigned value.
689 This can be done by referring to a part of X in place
690 or by copying to a new temporary with conversion.
692 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
695 convert_modes (enum machine_mode mode
, enum machine_mode oldmode
, rtx x
, int unsignedp
)
699 /* If FROM is a SUBREG that indicates that we have already done at least
700 the required extension, strip it. */
702 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
703 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) >= GET_MODE_SIZE (mode
)
704 && SUBREG_PROMOTED_UNSIGNED_P (x
) == unsignedp
)
705 x
= gen_lowpart (mode
, x
);
707 if (GET_MODE (x
) != VOIDmode
)
708 oldmode
= GET_MODE (x
);
713 /* There is one case that we must handle specially: If we are converting
714 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
715 we are to interpret the constant as unsigned, gen_lowpart will do
716 the wrong if the constant appears negative. What we want to do is
717 make the high-order word of the constant zero, not all ones. */
719 if (unsignedp
&& GET_MODE_CLASS (mode
) == MODE_INT
720 && GET_MODE_BITSIZE (mode
) == HOST_BITS_PER_DOUBLE_INT
721 && CONST_INT_P (x
) && INTVAL (x
) < 0)
723 double_int val
= double_int::from_uhwi (INTVAL (x
));
725 /* We need to zero extend VAL. */
726 if (oldmode
!= VOIDmode
)
727 val
= val
.zext (GET_MODE_BITSIZE (oldmode
));
729 return immed_double_int_const (val
, mode
);
732 /* We can do this with a gen_lowpart if both desired and current modes
733 are integer, and this is either a constant integer, a register, or a
734 non-volatile MEM. Except for the constant case where MODE is no
735 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
738 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
)
739 || (GET_MODE_CLASS (mode
) == MODE_INT
740 && GET_MODE_CLASS (oldmode
) == MODE_INT
741 && (CONST_DOUBLE_AS_INT_P (x
)
742 || (GET_MODE_PRECISION (mode
) <= GET_MODE_PRECISION (oldmode
)
743 && ((MEM_P (x
) && ! MEM_VOLATILE_P (x
)
744 && direct_load
[(int) mode
])
746 && (! HARD_REGISTER_P (x
)
747 || HARD_REGNO_MODE_OK (REGNO (x
), mode
))
748 && TRULY_NOOP_TRUNCATION_MODES_P (mode
,
751 /* ?? If we don't know OLDMODE, we have to assume here that
752 X does not need sign- or zero-extension. This may not be
753 the case, but it's the best we can do. */
754 if (CONST_INT_P (x
) && oldmode
!= VOIDmode
755 && GET_MODE_PRECISION (mode
) > GET_MODE_PRECISION (oldmode
))
757 HOST_WIDE_INT val
= INTVAL (x
);
759 /* We must sign or zero-extend in this case. Start by
760 zero-extending, then sign extend if we need to. */
761 val
&= GET_MODE_MASK (oldmode
);
763 && val_signbit_known_set_p (oldmode
, val
))
764 val
|= ~GET_MODE_MASK (oldmode
);
766 return gen_int_mode (val
, mode
);
769 return gen_lowpart (mode
, x
);
772 /* Converting from integer constant into mode is always equivalent to an
774 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
776 gcc_assert (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (oldmode
));
777 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
780 temp
= gen_reg_rtx (mode
);
781 convert_move (temp
, x
, unsignedp
);
785 /* Return the largest alignment we can use for doing a move (or store)
786 of MAX_PIECES. ALIGN is the largest alignment we could use. */
789 alignment_for_piecewise_move (unsigned int max_pieces
, unsigned int align
)
791 enum machine_mode tmode
;
793 tmode
= mode_for_size (max_pieces
* BITS_PER_UNIT
, MODE_INT
, 1);
794 if (align
>= GET_MODE_ALIGNMENT (tmode
))
795 align
= GET_MODE_ALIGNMENT (tmode
);
798 enum machine_mode tmode
, xmode
;
800 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
802 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
803 if (GET_MODE_SIZE (tmode
) > max_pieces
804 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
807 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
813 /* Return the widest integer mode no wider than SIZE. If no such mode
814 can be found, return VOIDmode. */
816 static enum machine_mode
817 widest_int_mode_for_size (unsigned int size
)
819 enum machine_mode tmode
, mode
= VOIDmode
;
821 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
822 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
823 if (GET_MODE_SIZE (tmode
) < size
)
829 /* STORE_MAX_PIECES is the number of bytes at a time that we can
830 store efficiently. Due to internal GCC limitations, this is
831 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
832 for an immediate constant. */
834 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
836 /* Determine whether the LEN bytes can be moved by using several move
837 instructions. Return nonzero if a call to move_by_pieces should
841 can_move_by_pieces (unsigned HOST_WIDE_INT len ATTRIBUTE_UNUSED
,
842 unsigned int align ATTRIBUTE_UNUSED
)
844 return MOVE_BY_PIECES_P (len
, align
);
847 /* Generate several move instructions to copy LEN bytes from block FROM to
848 block TO. (These are MEM rtx's with BLKmode).
850 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
851 used to push FROM to the stack.
853 ALIGN is maximum stack alignment we can assume.
855 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
856 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
860 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
861 unsigned int align
, int endp
)
863 struct move_by_pieces_d data
;
864 enum machine_mode to_addr_mode
;
865 enum machine_mode from_addr_mode
= get_address_mode (from
);
866 rtx to_addr
, from_addr
= XEXP (from
, 0);
867 unsigned int max_size
= MOVE_MAX_PIECES
+ 1;
868 enum insn_code icode
;
870 align
= MIN (to
? MEM_ALIGN (to
) : align
, MEM_ALIGN (from
));
873 data
.from_addr
= from_addr
;
876 to_addr_mode
= get_address_mode (to
);
877 to_addr
= XEXP (to
, 0);
880 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
881 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
883 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
887 to_addr_mode
= VOIDmode
;
891 #ifdef STACK_GROWS_DOWNWARD
897 data
.to_addr
= to_addr
;
900 = (GET_CODE (from_addr
) == PRE_INC
|| GET_CODE (from_addr
) == PRE_DEC
901 || GET_CODE (from_addr
) == POST_INC
902 || GET_CODE (from_addr
) == POST_DEC
);
904 data
.explicit_inc_from
= 0;
905 data
.explicit_inc_to
= 0;
906 if (data
.reverse
) data
.offset
= len
;
909 /* If copying requires more than two move insns,
910 copy addresses to registers (to make displacements shorter)
911 and use post-increment if available. */
912 if (!(data
.autinc_from
&& data
.autinc_to
)
913 && move_by_pieces_ninsns (len
, align
, max_size
) > 2)
915 /* Find the mode of the largest move...
916 MODE might not be used depending on the definitions of the
917 USE_* macros below. */
918 enum machine_mode mode ATTRIBUTE_UNUSED
919 = widest_int_mode_for_size (max_size
);
921 if (USE_LOAD_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_from
)
923 data
.from_addr
= copy_to_mode_reg (from_addr_mode
,
924 plus_constant (from_addr_mode
,
926 data
.autinc_from
= 1;
927 data
.explicit_inc_from
= -1;
929 if (USE_LOAD_POST_INCREMENT (mode
) && ! data
.autinc_from
)
931 data
.from_addr
= copy_to_mode_reg (from_addr_mode
, from_addr
);
932 data
.autinc_from
= 1;
933 data
.explicit_inc_from
= 1;
935 if (!data
.autinc_from
&& CONSTANT_P (from_addr
))
936 data
.from_addr
= copy_to_mode_reg (from_addr_mode
, from_addr
);
937 if (USE_STORE_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_to
)
939 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
940 plus_constant (to_addr_mode
,
943 data
.explicit_inc_to
= -1;
945 if (USE_STORE_POST_INCREMENT (mode
) && ! data
.reverse
&& ! data
.autinc_to
)
947 data
.to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
949 data
.explicit_inc_to
= 1;
951 if (!data
.autinc_to
&& CONSTANT_P (to_addr
))
952 data
.to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
955 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
957 /* First move what we can in the largest integer mode, then go to
958 successively smaller modes. */
960 while (max_size
> 1 && data
.len
> 0)
962 enum machine_mode mode
= widest_int_mode_for_size (max_size
);
964 if (mode
== VOIDmode
)
967 icode
= optab_handler (mov_optab
, mode
);
968 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
969 move_by_pieces_1 (GEN_FCN (icode
), mode
, &data
);
971 max_size
= GET_MODE_SIZE (mode
);
974 /* The code above should have handled everything. */
975 gcc_assert (!data
.len
);
981 gcc_assert (!data
.reverse
);
986 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
987 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
989 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
990 plus_constant (to_addr_mode
,
994 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
1001 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
1009 /* Return number of insns required to move L bytes by pieces.
1010 ALIGN (in bits) is maximum alignment we can assume. */
1012 unsigned HOST_WIDE_INT
1013 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
1014 unsigned int max_size
)
1016 unsigned HOST_WIDE_INT n_insns
= 0;
1018 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
1020 while (max_size
> 1 && l
> 0)
1022 enum machine_mode mode
;
1023 enum insn_code icode
;
1025 mode
= widest_int_mode_for_size (max_size
);
1027 if (mode
== VOIDmode
)
1030 icode
= optab_handler (mov_optab
, mode
);
1031 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1032 n_insns
+= l
/ GET_MODE_SIZE (mode
), l
%= GET_MODE_SIZE (mode
);
1034 max_size
= GET_MODE_SIZE (mode
);
1041 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1042 with move instructions for mode MODE. GENFUN is the gen_... function
1043 to make a move insn for that mode. DATA has all the other info. */
1046 move_by_pieces_1 (insn_gen_fn genfun
, machine_mode mode
,
1047 struct move_by_pieces_d
*data
)
1049 unsigned int size
= GET_MODE_SIZE (mode
);
1050 rtx to1
= NULL_RTX
, from1
;
1052 while (data
->len
>= size
)
1055 data
->offset
-= size
;
1059 if (data
->autinc_to
)
1060 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
1063 to1
= adjust_address (data
->to
, mode
, data
->offset
);
1066 if (data
->autinc_from
)
1067 from1
= adjust_automodify_address (data
->from
, mode
, data
->from_addr
,
1070 from1
= adjust_address (data
->from
, mode
, data
->offset
);
1072 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
1073 emit_insn (gen_add2_insn (data
->to_addr
,
1074 gen_int_mode (-(HOST_WIDE_INT
) size
,
1075 GET_MODE (data
->to_addr
))));
1076 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_from
< 0)
1077 emit_insn (gen_add2_insn (data
->from_addr
,
1078 gen_int_mode (-(HOST_WIDE_INT
) size
,
1079 GET_MODE (data
->from_addr
))));
1082 emit_insn ((*genfun
) (to1
, from1
));
1085 #ifdef PUSH_ROUNDING
1086 emit_single_push_insn (mode
, from1
, NULL
);
1092 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
1093 emit_insn (gen_add2_insn (data
->to_addr
,
1095 GET_MODE (data
->to_addr
))));
1096 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_from
> 0)
1097 emit_insn (gen_add2_insn (data
->from_addr
,
1099 GET_MODE (data
->from_addr
))));
1101 if (! data
->reverse
)
1102 data
->offset
+= size
;
1108 /* Emit code to move a block Y to a block X. This may be done with
1109 string-move instructions, with multiple scalar move instructions,
1110 or with a library call.
1112 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1113 SIZE is an rtx that says how long they are.
1114 ALIGN is the maximum alignment we can assume they have.
1115 METHOD describes what kind of copy this is, and what mechanisms may be used.
1117 Return the address of the new block, if memcpy is called and returns it,
1121 emit_block_move_hints (rtx x
, rtx y
, rtx size
, enum block_op_methods method
,
1122 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
1129 if (CONST_INT_P (size
)
1130 && INTVAL (size
) == 0)
1135 case BLOCK_OP_NORMAL
:
1136 case BLOCK_OP_TAILCALL
:
1137 may_use_call
= true;
1140 case BLOCK_OP_CALL_PARM
:
1141 may_use_call
= block_move_libcall_safe_for_call_parm ();
1143 /* Make inhibit_defer_pop nonzero around the library call
1144 to force it to pop the arguments right away. */
1148 case BLOCK_OP_NO_LIBCALL
:
1149 may_use_call
= false;
1156 gcc_assert (MEM_P (x
) && MEM_P (y
));
1157 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1158 gcc_assert (align
>= BITS_PER_UNIT
);
1160 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1161 block copy is more efficient for other large modes, e.g. DCmode. */
1162 x
= adjust_address (x
, BLKmode
, 0);
1163 y
= adjust_address (y
, BLKmode
, 0);
1165 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1166 can be incorrect is coming from __builtin_memcpy. */
1167 if (CONST_INT_P (size
))
1169 x
= shallow_copy_rtx (x
);
1170 y
= shallow_copy_rtx (y
);
1171 set_mem_size (x
, INTVAL (size
));
1172 set_mem_size (y
, INTVAL (size
));
1175 if (CONST_INT_P (size
) && MOVE_BY_PIECES_P (INTVAL (size
), align
))
1176 move_by_pieces (x
, y
, INTVAL (size
), align
, 0);
1177 else if (emit_block_move_via_movmem (x
, y
, size
, align
,
1178 expected_align
, expected_size
))
1180 else if (may_use_call
1181 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x
))
1182 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y
)))
1184 /* Since x and y are passed to a libcall, mark the corresponding
1185 tree EXPR as addressable. */
1186 tree y_expr
= MEM_EXPR (y
);
1187 tree x_expr
= MEM_EXPR (x
);
1189 mark_addressable (y_expr
);
1191 mark_addressable (x_expr
);
1192 retval
= emit_block_move_via_libcall (x
, y
, size
,
1193 method
== BLOCK_OP_TAILCALL
);
1197 emit_block_move_via_loop (x
, y
, size
, align
);
1199 if (method
== BLOCK_OP_CALL_PARM
)
1206 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1208 return emit_block_move_hints (x
, y
, size
, method
, 0, -1);
1211 /* A subroutine of emit_block_move. Returns true if calling the
1212 block move libcall will not clobber any parameters which may have
1213 already been placed on the stack. */
1216 block_move_libcall_safe_for_call_parm (void)
1218 #if defined (REG_PARM_STACK_SPACE)
1222 /* If arguments are pushed on the stack, then they're safe. */
1226 /* If registers go on the stack anyway, any argument is sure to clobber
1227 an outgoing argument. */
1228 #if defined (REG_PARM_STACK_SPACE)
1229 fn
= emit_block_move_libcall_fn (false);
1230 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1231 depend on its argument. */
1233 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn
? NULL_TREE
: TREE_TYPE (fn
)))
1234 && REG_PARM_STACK_SPACE (fn
) != 0)
1238 /* If any argument goes in memory, then it might clobber an outgoing
1241 CUMULATIVE_ARGS args_so_far_v
;
1242 cumulative_args_t args_so_far
;
1245 fn
= emit_block_move_libcall_fn (false);
1246 INIT_CUMULATIVE_ARGS (args_so_far_v
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
1247 args_so_far
= pack_cumulative_args (&args_so_far_v
);
1249 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1250 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1252 enum machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1253 rtx tmp
= targetm
.calls
.function_arg (args_so_far
, mode
,
1255 if (!tmp
|| !REG_P (tmp
))
1257 if (targetm
.calls
.arg_partial_bytes (args_so_far
, mode
, NULL
, 1))
1259 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
1266 /* A subroutine of emit_block_move. Expand a movmem pattern;
1267 return true if successful. */
1270 emit_block_move_via_movmem (rtx x
, rtx y
, rtx size
, unsigned int align
,
1271 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
1273 int save_volatile_ok
= volatile_ok
;
1274 enum machine_mode mode
;
1276 if (expected_align
< align
)
1277 expected_align
= align
;
1279 /* Since this is a move insn, we don't care about volatility. */
1282 /* Try the most limited insn first, because there's no point
1283 including more than one in the machine description unless
1284 the more limited one has some advantage. */
1286 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1287 mode
= GET_MODE_WIDER_MODE (mode
))
1289 enum insn_code code
= direct_optab_handler (movmem_optab
, mode
);
1291 if (code
!= CODE_FOR_nothing
1292 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1293 here because if SIZE is less than the mode mask, as it is
1294 returned by the macro, it will definitely be less than the
1295 actual mode mask. */
1296 && ((CONST_INT_P (size
)
1297 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1298 <= (GET_MODE_MASK (mode
) >> 1)))
1299 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
))
1301 struct expand_operand ops
[6];
1304 /* ??? When called via emit_block_move_for_call, it'd be
1305 nice if there were some way to inform the backend, so
1306 that it doesn't fail the expansion because it thinks
1307 emitting the libcall would be more efficient. */
1308 nops
= insn_data
[(int) code
].n_generator_args
;
1309 gcc_assert (nops
== 4 || nops
== 6);
1311 create_fixed_operand (&ops
[0], x
);
1312 create_fixed_operand (&ops
[1], y
);
1313 /* The check above guarantees that this size conversion is valid. */
1314 create_convert_operand_to (&ops
[2], size
, mode
, true);
1315 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
1318 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
1319 create_integer_operand (&ops
[5], expected_size
);
1321 if (maybe_expand_insn (code
, nops
, ops
))
1323 volatile_ok
= save_volatile_ok
;
1329 volatile_ok
= save_volatile_ok
;
1333 /* A subroutine of emit_block_move. Expand a call to memcpy.
1334 Return the return value from memcpy, 0 otherwise. */
1337 emit_block_move_via_libcall (rtx dst
, rtx src
, rtx size
, bool tailcall
)
1339 rtx dst_addr
, src_addr
;
1340 tree call_expr
, fn
, src_tree
, dst_tree
, size_tree
;
1341 enum machine_mode size_mode
;
1344 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1345 pseudos. We can then place those new pseudos into a VAR_DECL and
1348 dst_addr
= copy_addr_to_reg (XEXP (dst
, 0));
1349 src_addr
= copy_addr_to_reg (XEXP (src
, 0));
1351 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1352 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1354 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1355 src_tree
= make_tree (ptr_type_node
, src_addr
);
1357 size_mode
= TYPE_MODE (sizetype
);
1359 size
= convert_to_mode (size_mode
, size
, 1);
1360 size
= copy_to_mode_reg (size_mode
, size
);
1362 /* It is incorrect to use the libcall calling conventions to call
1363 memcpy in this context. This could be a user call to memcpy and
1364 the user may wish to examine the return value from memcpy. For
1365 targets where libcalls and normal calls have different conventions
1366 for returning pointers, we could end up generating incorrect code. */
1368 size_tree
= make_tree (sizetype
, size
);
1370 fn
= emit_block_move_libcall_fn (true);
1371 call_expr
= build_call_expr (fn
, 3, dst_tree
, src_tree
, size_tree
);
1372 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
1374 retval
= expand_normal (call_expr
);
1379 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1380 for the function we use for block copies. */
1382 static GTY(()) tree block_move_fn
;
1385 init_block_move_fn (const char *asmspec
)
1389 tree args
, fn
, attrs
, attr_args
;
1391 fn
= get_identifier ("memcpy");
1392 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
1393 const_ptr_type_node
, sizetype
,
1396 fn
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, fn
, args
);
1397 DECL_EXTERNAL (fn
) = 1;
1398 TREE_PUBLIC (fn
) = 1;
1399 DECL_ARTIFICIAL (fn
) = 1;
1400 TREE_NOTHROW (fn
) = 1;
1401 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
1402 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
1404 attr_args
= build_tree_list (NULL_TREE
, build_string (1, "1"));
1405 attrs
= tree_cons (get_identifier ("fn spec"), attr_args
, NULL
);
1407 decl_attributes (&fn
, attrs
, ATTR_FLAG_BUILT_IN
);
1413 set_user_assembler_name (block_move_fn
, asmspec
);
1417 emit_block_move_libcall_fn (int for_call
)
1419 static bool emitted_extern
;
1422 init_block_move_fn (NULL
);
1424 if (for_call
&& !emitted_extern
)
1426 emitted_extern
= true;
1427 make_decl_rtl (block_move_fn
);
1430 return block_move_fn
;
1433 /* A subroutine of emit_block_move. Copy the data via an explicit
1434 loop. This is used only when libcalls are forbidden. */
1435 /* ??? It'd be nice to copy in hunks larger than QImode. */
1438 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
1439 unsigned int align ATTRIBUTE_UNUSED
)
1441 rtx cmp_label
, top_label
, iter
, x_addr
, y_addr
, tmp
;
1442 enum machine_mode x_addr_mode
= get_address_mode (x
);
1443 enum machine_mode y_addr_mode
= get_address_mode (y
);
1444 enum machine_mode iter_mode
;
1446 iter_mode
= GET_MODE (size
);
1447 if (iter_mode
== VOIDmode
)
1448 iter_mode
= word_mode
;
1450 top_label
= gen_label_rtx ();
1451 cmp_label
= gen_label_rtx ();
1452 iter
= gen_reg_rtx (iter_mode
);
1454 emit_move_insn (iter
, const0_rtx
);
1456 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
1457 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
1458 do_pending_stack_adjust ();
1460 emit_jump (cmp_label
);
1461 emit_label (top_label
);
1463 tmp
= convert_modes (x_addr_mode
, iter_mode
, iter
, true);
1464 x_addr
= simplify_gen_binary (PLUS
, x_addr_mode
, x_addr
, tmp
);
1466 if (x_addr_mode
!= y_addr_mode
)
1467 tmp
= convert_modes (y_addr_mode
, iter_mode
, iter
, true);
1468 y_addr
= simplify_gen_binary (PLUS
, y_addr_mode
, y_addr
, tmp
);
1470 x
= change_address (x
, QImode
, x_addr
);
1471 y
= change_address (y
, QImode
, y_addr
);
1473 emit_move_insn (x
, y
);
1475 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
1476 true, OPTAB_LIB_WIDEN
);
1478 emit_move_insn (iter
, tmp
);
1480 emit_label (cmp_label
);
1482 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
1483 true, top_label
, REG_BR_PROB_BASE
* 90 / 100);
1486 /* Copy all or part of a value X into registers starting at REGNO.
1487 The number of registers to be filled is NREGS. */
1490 move_block_to_reg (int regno
, rtx x
, int nregs
, enum machine_mode mode
)
1493 #ifdef HAVE_load_multiple
1501 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
1502 x
= validize_mem (force_const_mem (mode
, x
));
1504 /* See if the machine can do this with a load multiple insn. */
1505 #ifdef HAVE_load_multiple
1506 if (HAVE_load_multiple
)
1508 last
= get_last_insn ();
1509 pat
= gen_load_multiple (gen_rtx_REG (word_mode
, regno
), x
,
1517 delete_insns_since (last
);
1521 for (i
= 0; i
< nregs
; i
++)
1522 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
1523 operand_subword_force (x
, i
, mode
));
1526 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1527 The number of registers to be filled is NREGS. */
1530 move_block_from_reg (int regno
, rtx x
, int nregs
)
1537 /* See if the machine can do this with a store multiple insn. */
1538 #ifdef HAVE_store_multiple
1539 if (HAVE_store_multiple
)
1541 rtx last
= get_last_insn ();
1542 rtx pat
= gen_store_multiple (x
, gen_rtx_REG (word_mode
, regno
),
1550 delete_insns_since (last
);
1554 for (i
= 0; i
< nregs
; i
++)
1556 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
1560 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
1564 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1565 ORIG, where ORIG is a non-consecutive group of registers represented by
1566 a PARALLEL. The clone is identical to the original except in that the
1567 original set of registers is replaced by a new set of pseudo registers.
1568 The new set has the same modes as the original set. */
1571 gen_group_rtx (rtx orig
)
1576 gcc_assert (GET_CODE (orig
) == PARALLEL
);
1578 length
= XVECLEN (orig
, 0);
1579 tmps
= XALLOCAVEC (rtx
, length
);
1581 /* Skip a NULL entry in first slot. */
1582 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
1587 for (; i
< length
; i
++)
1589 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
1590 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
1592 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
1595 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
1598 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1599 except that values are placed in TMPS[i], and must later be moved
1600 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1603 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
, int ssize
)
1607 enum machine_mode m
= GET_MODE (orig_src
);
1609 gcc_assert (GET_CODE (dst
) == PARALLEL
);
1612 && !SCALAR_INT_MODE_P (m
)
1613 && !MEM_P (orig_src
)
1614 && GET_CODE (orig_src
) != CONCAT
)
1616 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_src
));
1617 if (imode
== BLKmode
)
1618 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
);
1620 src
= gen_reg_rtx (imode
);
1621 if (imode
!= BLKmode
)
1622 src
= gen_lowpart (GET_MODE (orig_src
), src
);
1623 emit_move_insn (src
, orig_src
);
1624 /* ...and back again. */
1625 if (imode
!= BLKmode
)
1626 src
= gen_lowpart (imode
, src
);
1627 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1631 /* Check for a NULL entry, used to indicate that the parameter goes
1632 both on the stack and in registers. */
1633 if (XEXP (XVECEXP (dst
, 0, 0), 0))
1638 /* Process the pieces. */
1639 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
1641 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
1642 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (dst
, 0, i
), 1));
1643 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1646 /* Handle trailing fragments that run over the size of the struct. */
1647 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1649 /* Arrange to shift the fragment to where it belongs.
1650 extract_bit_field loads to the lsb of the reg. */
1652 #ifdef BLOCK_REG_PADDING
1653 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
1654 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1659 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1660 bytelen
= ssize
- bytepos
;
1661 gcc_assert (bytelen
> 0);
1664 /* If we won't be loading directly from memory, protect the real source
1665 from strange tricks we might play; but make sure that the source can
1666 be loaded directly into the destination. */
1668 if (!MEM_P (orig_src
)
1669 && (!CONSTANT_P (orig_src
)
1670 || (GET_MODE (orig_src
) != mode
1671 && GET_MODE (orig_src
) != VOIDmode
)))
1673 if (GET_MODE (orig_src
) == VOIDmode
)
1674 src
= gen_reg_rtx (mode
);
1676 src
= gen_reg_rtx (GET_MODE (orig_src
));
1678 emit_move_insn (src
, orig_src
);
1681 /* Optimize the access just a bit. */
1683 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (src
))
1684 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
1685 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1686 && bytelen
== GET_MODE_SIZE (mode
))
1688 tmps
[i
] = gen_reg_rtx (mode
);
1689 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
1691 else if (COMPLEX_MODE_P (mode
)
1692 && GET_MODE (src
) == mode
1693 && bytelen
== GET_MODE_SIZE (mode
))
1694 /* Let emit_move_complex do the bulk of the work. */
1696 else if (GET_CODE (src
) == CONCAT
)
1698 unsigned int slen
= GET_MODE_SIZE (GET_MODE (src
));
1699 unsigned int slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
1701 if ((bytepos
== 0 && bytelen
== slen0
)
1702 || (bytepos
!= 0 && bytepos
+ bytelen
<= slen
))
1704 /* The following assumes that the concatenated objects all
1705 have the same size. In this case, a simple calculation
1706 can be used to determine the object and the bit field
1708 tmps
[i
] = XEXP (src
, bytepos
/ slen0
);
1709 if (! CONSTANT_P (tmps
[i
])
1710 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
))
1711 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
1712 (bytepos
% slen0
) * BITS_PER_UNIT
,
1713 1, false, NULL_RTX
, mode
, mode
);
1719 gcc_assert (!bytepos
);
1720 mem
= assign_stack_temp (GET_MODE (src
), slen
);
1721 emit_move_insn (mem
, src
);
1722 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
1723 0, 1, false, NULL_RTX
, mode
, mode
);
1726 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1727 SIMD register, which is currently broken. While we get GCC
1728 to emit proper RTL for these cases, let's dump to memory. */
1729 else if (VECTOR_MODE_P (GET_MODE (dst
))
1732 int slen
= GET_MODE_SIZE (GET_MODE (src
));
1735 mem
= assign_stack_temp (GET_MODE (src
), slen
);
1736 emit_move_insn (mem
, src
);
1737 tmps
[i
] = adjust_address (mem
, mode
, (int) bytepos
);
1739 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
1740 && XVECLEN (dst
, 0) > 1)
1741 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE(dst
), bytepos
);
1742 else if (CONSTANT_P (src
))
1744 HOST_WIDE_INT len
= (HOST_WIDE_INT
) bytelen
;
1752 gcc_assert (2 * len
== ssize
);
1753 split_double (src
, &first
, &second
);
1760 else if (REG_P (src
) && GET_MODE (src
) == mode
)
1763 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
1764 bytepos
* BITS_PER_UNIT
, 1, false, NULL_RTX
,
1768 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
1773 /* Emit code to move a block SRC of type TYPE to a block DST,
1774 where DST is non-consecutive registers represented by a PARALLEL.
1775 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1779 emit_group_load (rtx dst
, rtx src
, tree type
, int ssize
)
1784 tmps
= XALLOCAVEC (rtx
, XVECLEN (dst
, 0));
1785 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1787 /* Copy the extracted pieces into the proper (probable) hard regs. */
1788 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
1790 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
1793 emit_move_insn (d
, tmps
[i
]);
1797 /* Similar, but load SRC into new pseudos in a format that looks like
1798 PARALLEL. This can later be fed to emit_group_move to get things
1799 in the right place. */
1802 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, int ssize
)
1807 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
1808 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
1810 /* Convert the vector to look just like the original PARALLEL, except
1811 with the computed values. */
1812 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
1814 rtx e
= XVECEXP (parallel
, 0, i
);
1815 rtx d
= XEXP (e
, 0);
1819 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
1820 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
1822 RTVEC_ELT (vec
, i
) = e
;
1825 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
1828 /* Emit code to move a block SRC to block DST, where SRC and DST are
1829 non-consecutive groups of registers, each represented by a PARALLEL. */
1832 emit_group_move (rtx dst
, rtx src
)
1836 gcc_assert (GET_CODE (src
) == PARALLEL
1837 && GET_CODE (dst
) == PARALLEL
1838 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
1840 /* Skip first entry if NULL. */
1841 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
1842 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
1843 XEXP (XVECEXP (src
, 0, i
), 0));
1846 /* Move a group of registers represented by a PARALLEL into pseudos. */
1849 emit_group_move_into_temps (rtx src
)
1851 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
1854 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
1856 rtx e
= XVECEXP (src
, 0, i
);
1857 rtx d
= XEXP (e
, 0);
1860 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
1861 RTVEC_ELT (vec
, i
) = e
;
1864 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
1867 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1868 where SRC is non-consecutive registers represented by a PARALLEL.
1869 SSIZE represents the total size of block ORIG_DST, or -1 if not
1873 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
, int ssize
)
1876 int start
, finish
, i
;
1877 enum machine_mode m
= GET_MODE (orig_dst
);
1879 gcc_assert (GET_CODE (src
) == PARALLEL
);
1881 if (!SCALAR_INT_MODE_P (m
)
1882 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
1884 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_dst
));
1885 if (imode
== BLKmode
)
1886 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
);
1888 dst
= gen_reg_rtx (imode
);
1889 emit_group_store (dst
, src
, type
, ssize
);
1890 if (imode
!= BLKmode
)
1891 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
1892 emit_move_insn (orig_dst
, dst
);
1896 /* Check for a NULL entry, used to indicate that the parameter goes
1897 both on the stack and in registers. */
1898 if (XEXP (XVECEXP (src
, 0, 0), 0))
1902 finish
= XVECLEN (src
, 0);
1904 tmps
= XALLOCAVEC (rtx
, finish
);
1906 /* Copy the (probable) hard regs into pseudos. */
1907 for (i
= start
; i
< finish
; i
++)
1909 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
1910 if (!REG_P (reg
) || REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
1912 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
1913 emit_move_insn (tmps
[i
], reg
);
1919 /* If we won't be storing directly into memory, protect the real destination
1920 from strange tricks we might play. */
1922 if (GET_CODE (dst
) == PARALLEL
)
1926 /* We can get a PARALLEL dst if there is a conditional expression in
1927 a return statement. In that case, the dst and src are the same,
1928 so no action is necessary. */
1929 if (rtx_equal_p (dst
, src
))
1932 /* It is unclear if we can ever reach here, but we may as well handle
1933 it. Allocate a temporary, and split this into a store/load to/from
1936 temp
= assign_stack_temp (GET_MODE (dst
), ssize
);
1937 emit_group_store (temp
, src
, type
, ssize
);
1938 emit_group_load (dst
, temp
, type
, ssize
);
1941 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
1943 enum machine_mode outer
= GET_MODE (dst
);
1944 enum machine_mode inner
;
1945 HOST_WIDE_INT bytepos
;
1949 if (!REG_P (dst
) || REGNO (dst
) < FIRST_PSEUDO_REGISTER
)
1950 dst
= gen_reg_rtx (outer
);
1952 /* Make life a bit easier for combine. */
1953 /* If the first element of the vector is the low part
1954 of the destination mode, use a paradoxical subreg to
1955 initialize the destination. */
1958 inner
= GET_MODE (tmps
[start
]);
1959 bytepos
= subreg_lowpart_offset (inner
, outer
);
1960 if (INTVAL (XEXP (XVECEXP (src
, 0, start
), 1)) == bytepos
)
1962 temp
= simplify_gen_subreg (outer
, tmps
[start
],
1966 emit_move_insn (dst
, temp
);
1973 /* If the first element wasn't the low part, try the last. */
1975 && start
< finish
- 1)
1977 inner
= GET_MODE (tmps
[finish
- 1]);
1978 bytepos
= subreg_lowpart_offset (inner
, outer
);
1979 if (INTVAL (XEXP (XVECEXP (src
, 0, finish
- 1), 1)) == bytepos
)
1981 temp
= simplify_gen_subreg (outer
, tmps
[finish
- 1],
1985 emit_move_insn (dst
, temp
);
1992 /* Otherwise, simply initialize the result to zero. */
1994 emit_move_insn (dst
, CONST0_RTX (outer
));
1997 /* Process the pieces. */
1998 for (i
= start
; i
< finish
; i
++)
2000 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (src
, 0, i
), 1));
2001 enum machine_mode mode
= GET_MODE (tmps
[i
]);
2002 unsigned int bytelen
= GET_MODE_SIZE (mode
);
2003 unsigned int adj_bytelen
= bytelen
;
2006 /* Handle trailing fragments that run over the size of the struct. */
2007 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2008 adj_bytelen
= ssize
- bytepos
;
2010 if (GET_CODE (dst
) == CONCAT
)
2012 if (bytepos
+ adj_bytelen
2013 <= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2014 dest
= XEXP (dst
, 0);
2015 else if (bytepos
>= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2017 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
2018 dest
= XEXP (dst
, 1);
2022 enum machine_mode dest_mode
= GET_MODE (dest
);
2023 enum machine_mode tmp_mode
= GET_MODE (tmps
[i
]);
2025 gcc_assert (bytepos
== 0 && XVECLEN (src
, 0));
2027 if (GET_MODE_ALIGNMENT (dest_mode
)
2028 >= GET_MODE_ALIGNMENT (tmp_mode
))
2030 dest
= assign_stack_temp (dest_mode
,
2031 GET_MODE_SIZE (dest_mode
));
2032 emit_move_insn (adjust_address (dest
,
2040 dest
= assign_stack_temp (tmp_mode
,
2041 GET_MODE_SIZE (tmp_mode
));
2042 emit_move_insn (dest
, tmps
[i
]);
2043 dst
= adjust_address (dest
, dest_mode
, bytepos
);
2049 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2051 /* store_bit_field always takes its value from the lsb.
2052 Move the fragment to the lsb if it's not already there. */
2054 #ifdef BLOCK_REG_PADDING
2055 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
2056 == (BYTES_BIG_ENDIAN
? upward
: downward
)
2062 int shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
2063 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
2066 bytelen
= adj_bytelen
;
2069 /* Optimize the access just a bit. */
2071 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (dest
))
2072 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
2073 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
2074 && bytelen
== GET_MODE_SIZE (mode
))
2075 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
2077 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2078 0, 0, mode
, tmps
[i
]);
2081 /* Copy from the pseudo into the (probable) hard reg. */
2082 if (orig_dst
!= dst
)
2083 emit_move_insn (orig_dst
, dst
);
2086 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2087 of the value stored in X. */
2090 maybe_emit_group_store (rtx x
, tree type
)
2092 enum machine_mode mode
= TYPE_MODE (type
);
2093 gcc_checking_assert (GET_MODE (x
) == VOIDmode
|| GET_MODE (x
) == mode
);
2094 if (GET_CODE (x
) == PARALLEL
)
2096 rtx result
= gen_reg_rtx (mode
);
2097 emit_group_store (result
, x
, type
, int_size_in_bytes (type
));
2103 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2105 This is used on targets that return BLKmode values in registers. */
2108 copy_blkmode_from_reg (rtx target
, rtx srcreg
, tree type
)
2110 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
2111 rtx src
= NULL
, dst
= NULL
;
2112 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
2113 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
2114 enum machine_mode mode
= GET_MODE (srcreg
);
2115 enum machine_mode tmode
= GET_MODE (target
);
2116 enum machine_mode copy_mode
;
2118 /* BLKmode registers created in the back-end shouldn't have survived. */
2119 gcc_assert (mode
!= BLKmode
);
2121 /* If the structure doesn't take up a whole number of words, see whether
2122 SRCREG is padded on the left or on the right. If it's on the left,
2123 set PADDING_CORRECTION to the number of bits to skip.
2125 In most ABIs, the structure will be returned at the least end of
2126 the register, which translates to right padding on little-endian
2127 targets and left padding on big-endian targets. The opposite
2128 holds if the structure is returned at the most significant
2129 end of the register. */
2130 if (bytes
% UNITS_PER_WORD
!= 0
2131 && (targetm
.calls
.return_in_msb (type
)
2133 : BYTES_BIG_ENDIAN
))
2135 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
2137 /* We can use a single move if we have an exact mode for the size. */
2138 else if (MEM_P (target
)
2139 && (!SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
))
2140 || MEM_ALIGN (target
) >= GET_MODE_ALIGNMENT (mode
))
2141 && bytes
== GET_MODE_SIZE (mode
))
2143 emit_move_insn (adjust_address (target
, mode
, 0), srcreg
);
2147 /* And if we additionally have the same mode for a register. */
2148 else if (REG_P (target
)
2149 && GET_MODE (target
) == mode
2150 && bytes
== GET_MODE_SIZE (mode
))
2152 emit_move_insn (target
, srcreg
);
2156 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2157 into a new pseudo which is a full word. */
2158 if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
2160 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
2164 /* Copy the structure BITSIZE bits at a time. If the target lives in
2165 memory, take care of not reading/writing past its end by selecting
2166 a copy mode suited to BITSIZE. This should always be possible given
2169 If the target lives in register, make sure not to select a copy mode
2170 larger than the mode of the register.
2172 We could probably emit more efficient code for machines which do not use
2173 strict alignment, but it doesn't seem worth the effort at the current
2176 copy_mode
= word_mode
;
2179 enum machine_mode mem_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
2180 if (mem_mode
!= BLKmode
)
2181 copy_mode
= mem_mode
;
2183 else if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
2186 for (bitpos
= 0, xbitpos
= padding_correction
;
2187 bitpos
< bytes
* BITS_PER_UNIT
;
2188 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2190 /* We need a new source operand each time xbitpos is on a
2191 word boundary and when xbitpos == padding_correction
2192 (the first time through). */
2193 if (xbitpos
% BITS_PER_WORD
== 0 || xbitpos
== padding_correction
)
2194 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
, mode
);
2196 /* We need a new destination operand each time bitpos is on
2198 if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
2200 else if (bitpos
% BITS_PER_WORD
== 0)
2201 dst
= operand_subword (target
, bitpos
/ BITS_PER_WORD
, 1, tmode
);
2203 /* Use xbitpos for the source extraction (right justified) and
2204 bitpos for the destination store (left justified). */
2205 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, 0, 0, copy_mode
,
2206 extract_bit_field (src
, bitsize
,
2207 xbitpos
% BITS_PER_WORD
, 1, false,
2208 NULL_RTX
, copy_mode
, copy_mode
));
2212 /* Copy BLKmode value SRC into a register of mode MODE. Return the
2213 register if it contains any data, otherwise return null.
2215 This is used on targets that return BLKmode values in registers. */
2218 copy_blkmode_to_reg (enum machine_mode mode
, tree src
)
2221 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0, bytes
;
2222 unsigned int bitsize
;
2223 rtx
*dst_words
, dst
, x
, src_word
= NULL_RTX
, dst_word
= NULL_RTX
;
2224 enum machine_mode dst_mode
;
2226 gcc_assert (TYPE_MODE (TREE_TYPE (src
)) == BLKmode
);
2228 x
= expand_normal (src
);
2230 bytes
= int_size_in_bytes (TREE_TYPE (src
));
2234 /* If the structure doesn't take up a whole number of words, see
2235 whether the register value should be padded on the left or on
2236 the right. Set PADDING_CORRECTION to the number of padding
2237 bits needed on the left side.
2239 In most ABIs, the structure will be returned at the least end of
2240 the register, which translates to right padding on little-endian
2241 targets and left padding on big-endian targets. The opposite
2242 holds if the structure is returned at the most significant
2243 end of the register. */
2244 if (bytes
% UNITS_PER_WORD
!= 0
2245 && (targetm
.calls
.return_in_msb (TREE_TYPE (src
))
2247 : BYTES_BIG_ENDIAN
))
2248 padding_correction
= (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
)
2251 n_regs
= (bytes
+ UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
2252 dst_words
= XALLOCAVEC (rtx
, n_regs
);
2253 bitsize
= MIN (TYPE_ALIGN (TREE_TYPE (src
)), BITS_PER_WORD
);
2255 /* Copy the structure BITSIZE bits at a time. */
2256 for (bitpos
= 0, xbitpos
= padding_correction
;
2257 bitpos
< bytes
* BITS_PER_UNIT
;
2258 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2260 /* We need a new destination pseudo each time xbitpos is
2261 on a word boundary and when xbitpos == padding_correction
2262 (the first time through). */
2263 if (xbitpos
% BITS_PER_WORD
== 0
2264 || xbitpos
== padding_correction
)
2266 /* Generate an appropriate register. */
2267 dst_word
= gen_reg_rtx (word_mode
);
2268 dst_words
[xbitpos
/ BITS_PER_WORD
] = dst_word
;
2270 /* Clear the destination before we move anything into it. */
2271 emit_move_insn (dst_word
, CONST0_RTX (word_mode
));
2274 /* We need a new source operand each time bitpos is on a word
2276 if (bitpos
% BITS_PER_WORD
== 0)
2277 src_word
= operand_subword_force (x
, bitpos
/ BITS_PER_WORD
, BLKmode
);
2279 /* Use bitpos for the source extraction (left justified) and
2280 xbitpos for the destination store (right justified). */
2281 store_bit_field (dst_word
, bitsize
, xbitpos
% BITS_PER_WORD
,
2283 extract_bit_field (src_word
, bitsize
,
2284 bitpos
% BITS_PER_WORD
, 1, false,
2285 NULL_RTX
, word_mode
, word_mode
));
2288 if (mode
== BLKmode
)
2290 /* Find the smallest integer mode large enough to hold the
2291 entire structure. */
2292 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2294 mode
= GET_MODE_WIDER_MODE (mode
))
2295 /* Have we found a large enough mode? */
2296 if (GET_MODE_SIZE (mode
) >= bytes
)
2299 /* A suitable mode should have been found. */
2300 gcc_assert (mode
!= VOIDmode
);
2303 if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (word_mode
))
2304 dst_mode
= word_mode
;
2307 dst
= gen_reg_rtx (dst_mode
);
2309 for (i
= 0; i
< n_regs
; i
++)
2310 emit_move_insn (operand_subword (dst
, i
, 0, dst_mode
), dst_words
[i
]);
2312 if (mode
!= dst_mode
)
2313 dst
= gen_lowpart (mode
, dst
);
2318 /* Add a USE expression for REG to the (possibly empty) list pointed
2319 to by CALL_FUSAGE. REG must denote a hard register. */
2322 use_reg_mode (rtx
*call_fusage
, rtx reg
, enum machine_mode mode
)
2324 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
2327 = gen_rtx_EXPR_LIST (mode
, gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
2330 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2331 starting at REGNO. All of these registers must be hard registers. */
2334 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
2338 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
2340 for (i
= 0; i
< nregs
; i
++)
2341 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
2344 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2345 PARALLEL REGS. This is for calls that pass values in multiple
2346 non-contiguous locations. The Irix 6 ABI has examples of this. */
2349 use_group_regs (rtx
*call_fusage
, rtx regs
)
2353 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
2355 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
2357 /* A NULL entry means the parameter goes both on the stack and in
2358 registers. This can also be a MEM for targets that pass values
2359 partially on the stack and partially in registers. */
2360 if (reg
!= 0 && REG_P (reg
))
2361 use_reg (call_fusage
, reg
);
2365 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2366 assigment and the code of the expresion on the RHS is CODE. Return
2370 get_def_for_expr (tree name
, enum tree_code code
)
2374 if (TREE_CODE (name
) != SSA_NAME
)
2377 def_stmt
= get_gimple_for_ssa_name (name
);
2379 || gimple_assign_rhs_code (def_stmt
) != code
)
2385 #ifdef HAVE_conditional_move
2386 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2387 assigment and the class of the expresion on the RHS is CLASS. Return
2391 get_def_for_expr_class (tree name
, enum tree_code_class tclass
)
2395 if (TREE_CODE (name
) != SSA_NAME
)
2398 def_stmt
= get_gimple_for_ssa_name (name
);
2400 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt
)) != tclass
)
2408 /* Determine whether the LEN bytes generated by CONSTFUN can be
2409 stored to memory using several move instructions. CONSTFUNDATA is
2410 a pointer which will be passed as argument in every CONSTFUN call.
2411 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2412 a memset operation and false if it's a copy of a constant string.
2413 Return nonzero if a call to store_by_pieces should succeed. */
2416 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
2417 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2418 void *constfundata
, unsigned int align
, bool memsetp
)
2420 unsigned HOST_WIDE_INT l
;
2421 unsigned int max_size
;
2422 HOST_WIDE_INT offset
= 0;
2423 enum machine_mode mode
;
2424 enum insn_code icode
;
2426 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2427 rtx cst ATTRIBUTE_UNUSED
;
2433 ? SET_BY_PIECES_P (len
, align
)
2434 : STORE_BY_PIECES_P (len
, align
)))
2437 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
2439 /* We would first store what we can in the largest integer mode, then go to
2440 successively smaller modes. */
2443 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
2447 max_size
= STORE_MAX_PIECES
+ 1;
2448 while (max_size
> 1 && l
> 0)
2450 mode
= widest_int_mode_for_size (max_size
);
2452 if (mode
== VOIDmode
)
2455 icode
= optab_handler (mov_optab
, mode
);
2456 if (icode
!= CODE_FOR_nothing
2457 && align
>= GET_MODE_ALIGNMENT (mode
))
2459 unsigned int size
= GET_MODE_SIZE (mode
);
2466 cst
= (*constfun
) (constfundata
, offset
, mode
);
2467 if (!targetm
.legitimate_constant_p (mode
, cst
))
2477 max_size
= GET_MODE_SIZE (mode
);
2480 /* The code above should have handled everything. */
2487 /* Generate several move instructions to store LEN bytes generated by
2488 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2489 pointer which will be passed as argument in every CONSTFUN call.
2490 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2491 a memset operation and false if it's a copy of a constant string.
2492 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2493 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2497 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
2498 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2499 void *constfundata
, unsigned int align
, bool memsetp
, int endp
)
2501 enum machine_mode to_addr_mode
= get_address_mode (to
);
2502 struct store_by_pieces_d data
;
2506 gcc_assert (endp
!= 2);
2511 ? SET_BY_PIECES_P (len
, align
)
2512 : STORE_BY_PIECES_P (len
, align
));
2513 data
.constfun
= constfun
;
2514 data
.constfundata
= constfundata
;
2517 store_by_pieces_1 (&data
, align
);
2522 gcc_assert (!data
.reverse
);
2527 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
2528 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
2530 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
2531 plus_constant (to_addr_mode
,
2535 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
2542 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
2550 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2551 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2554 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
2556 struct store_by_pieces_d data
;
2561 data
.constfun
= clear_by_pieces_1
;
2562 data
.constfundata
= NULL
;
2565 store_by_pieces_1 (&data
, align
);
2568 /* Callback routine for clear_by_pieces.
2569 Return const0_rtx unconditionally. */
2572 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED
,
2573 HOST_WIDE_INT offset ATTRIBUTE_UNUSED
,
2574 enum machine_mode mode ATTRIBUTE_UNUSED
)
2579 /* Subroutine of clear_by_pieces and store_by_pieces.
2580 Generate several move instructions to store LEN bytes of block TO. (A MEM
2581 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2584 store_by_pieces_1 (struct store_by_pieces_d
*data ATTRIBUTE_UNUSED
,
2585 unsigned int align ATTRIBUTE_UNUSED
)
2587 enum machine_mode to_addr_mode
= get_address_mode (data
->to
);
2588 rtx to_addr
= XEXP (data
->to
, 0);
2589 unsigned int max_size
= STORE_MAX_PIECES
+ 1;
2590 enum insn_code icode
;
2593 data
->to_addr
= to_addr
;
2595 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
2596 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
2598 data
->explicit_inc_to
= 0;
2600 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
2602 data
->offset
= data
->len
;
2604 /* If storing requires more than two move insns,
2605 copy addresses to registers (to make displacements shorter)
2606 and use post-increment if available. */
2607 if (!data
->autinc_to
2608 && move_by_pieces_ninsns (data
->len
, align
, max_size
) > 2)
2610 /* Determine the main mode we'll be using.
2611 MODE might not be used depending on the definitions of the
2612 USE_* macros below. */
2613 enum machine_mode mode ATTRIBUTE_UNUSED
2614 = widest_int_mode_for_size (max_size
);
2616 if (USE_STORE_PRE_DECREMENT (mode
) && data
->reverse
&& ! data
->autinc_to
)
2618 data
->to_addr
= copy_to_mode_reg (to_addr_mode
,
2619 plus_constant (to_addr_mode
,
2622 data
->autinc_to
= 1;
2623 data
->explicit_inc_to
= -1;
2626 if (USE_STORE_POST_INCREMENT (mode
) && ! data
->reverse
2627 && ! data
->autinc_to
)
2629 data
->to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
2630 data
->autinc_to
= 1;
2631 data
->explicit_inc_to
= 1;
2634 if ( !data
->autinc_to
&& CONSTANT_P (to_addr
))
2635 data
->to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
2638 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
2640 /* First store what we can in the largest integer mode, then go to
2641 successively smaller modes. */
2643 while (max_size
> 1 && data
->len
> 0)
2645 enum machine_mode mode
= widest_int_mode_for_size (max_size
);
2647 if (mode
== VOIDmode
)
2650 icode
= optab_handler (mov_optab
, mode
);
2651 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
2652 store_by_pieces_2 (GEN_FCN (icode
), mode
, data
);
2654 max_size
= GET_MODE_SIZE (mode
);
2657 /* The code above should have handled everything. */
2658 gcc_assert (!data
->len
);
2661 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2662 with move instructions for mode MODE. GENFUN is the gen_... function
2663 to make a move insn for that mode. DATA has all the other info. */
2666 store_by_pieces_2 (insn_gen_fn genfun
, machine_mode mode
,
2667 struct store_by_pieces_d
*data
)
2669 unsigned int size
= GET_MODE_SIZE (mode
);
2672 while (data
->len
>= size
)
2675 data
->offset
-= size
;
2677 if (data
->autinc_to
)
2678 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
2681 to1
= adjust_address (data
->to
, mode
, data
->offset
);
2683 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
2684 emit_insn (gen_add2_insn (data
->to_addr
,
2685 gen_int_mode (-(HOST_WIDE_INT
) size
,
2686 GET_MODE (data
->to_addr
))));
2688 cst
= (*data
->constfun
) (data
->constfundata
, data
->offset
, mode
);
2689 emit_insn ((*genfun
) (to1
, cst
));
2691 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
2692 emit_insn (gen_add2_insn (data
->to_addr
,
2694 GET_MODE (data
->to_addr
))));
2696 if (! data
->reverse
)
2697 data
->offset
+= size
;
2703 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2704 its length in bytes. */
2707 clear_storage_hints (rtx object
, rtx size
, enum block_op_methods method
,
2708 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
2710 enum machine_mode mode
= GET_MODE (object
);
2713 gcc_assert (method
== BLOCK_OP_NORMAL
|| method
== BLOCK_OP_TAILCALL
);
2715 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2716 just move a zero. Otherwise, do this a piece at a time. */
2718 && CONST_INT_P (size
)
2719 && INTVAL (size
) == (HOST_WIDE_INT
) GET_MODE_SIZE (mode
))
2721 rtx zero
= CONST0_RTX (mode
);
2724 emit_move_insn (object
, zero
);
2728 if (COMPLEX_MODE_P (mode
))
2730 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
2733 write_complex_part (object
, zero
, 0);
2734 write_complex_part (object
, zero
, 1);
2740 if (size
== const0_rtx
)
2743 align
= MEM_ALIGN (object
);
2745 if (CONST_INT_P (size
)
2746 && CLEAR_BY_PIECES_P (INTVAL (size
), align
))
2747 clear_by_pieces (object
, INTVAL (size
), align
);
2748 else if (set_storage_via_setmem (object
, size
, const0_rtx
, align
,
2749 expected_align
, expected_size
))
2751 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object
)))
2752 return set_storage_via_libcall (object
, size
, const0_rtx
,
2753 method
== BLOCK_OP_TAILCALL
);
2761 clear_storage (rtx object
, rtx size
, enum block_op_methods method
)
2763 return clear_storage_hints (object
, size
, method
, 0, -1);
2767 /* A subroutine of clear_storage. Expand a call to memset.
2768 Return the return value of memset, 0 otherwise. */
2771 set_storage_via_libcall (rtx object
, rtx size
, rtx val
, bool tailcall
)
2773 tree call_expr
, fn
, object_tree
, size_tree
, val_tree
;
2774 enum machine_mode size_mode
;
2777 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2778 place those into new pseudos into a VAR_DECL and use them later. */
2780 object
= copy_addr_to_reg (XEXP (object
, 0));
2782 size_mode
= TYPE_MODE (sizetype
);
2783 size
= convert_to_mode (size_mode
, size
, 1);
2784 size
= copy_to_mode_reg (size_mode
, size
);
2786 /* It is incorrect to use the libcall calling conventions to call
2787 memset in this context. This could be a user call to memset and
2788 the user may wish to examine the return value from memset. For
2789 targets where libcalls and normal calls have different conventions
2790 for returning pointers, we could end up generating incorrect code. */
2792 object_tree
= make_tree (ptr_type_node
, object
);
2793 if (!CONST_INT_P (val
))
2794 val
= convert_to_mode (TYPE_MODE (integer_type_node
), val
, 1);
2795 size_tree
= make_tree (sizetype
, size
);
2796 val_tree
= make_tree (integer_type_node
, val
);
2798 fn
= clear_storage_libcall_fn (true);
2799 call_expr
= build_call_expr (fn
, 3, object_tree
, val_tree
, size_tree
);
2800 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
2802 retval
= expand_normal (call_expr
);
2807 /* A subroutine of set_storage_via_libcall. Create the tree node
2808 for the function we use for block clears. */
2810 tree block_clear_fn
;
2813 init_block_clear_fn (const char *asmspec
)
2815 if (!block_clear_fn
)
2819 fn
= get_identifier ("memset");
2820 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
2821 integer_type_node
, sizetype
,
2824 fn
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, fn
, args
);
2825 DECL_EXTERNAL (fn
) = 1;
2826 TREE_PUBLIC (fn
) = 1;
2827 DECL_ARTIFICIAL (fn
) = 1;
2828 TREE_NOTHROW (fn
) = 1;
2829 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
2830 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
2832 block_clear_fn
= fn
;
2836 set_user_assembler_name (block_clear_fn
, asmspec
);
2840 clear_storage_libcall_fn (int for_call
)
2842 static bool emitted_extern
;
2844 if (!block_clear_fn
)
2845 init_block_clear_fn (NULL
);
2847 if (for_call
&& !emitted_extern
)
2849 emitted_extern
= true;
2850 make_decl_rtl (block_clear_fn
);
2853 return block_clear_fn
;
2856 /* Expand a setmem pattern; return true if successful. */
2859 set_storage_via_setmem (rtx object
, rtx size
, rtx val
, unsigned int align
,
2860 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
2862 /* Try the most limited insn first, because there's no point
2863 including more than one in the machine description unless
2864 the more limited one has some advantage. */
2866 enum machine_mode mode
;
2868 if (expected_align
< align
)
2869 expected_align
= align
;
2871 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
2872 mode
= GET_MODE_WIDER_MODE (mode
))
2874 enum insn_code code
= direct_optab_handler (setmem_optab
, mode
);
2876 if (code
!= CODE_FOR_nothing
2877 /* We don't need MODE to be narrower than
2878 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2879 the mode mask, as it is returned by the macro, it will
2880 definitely be less than the actual mode mask. */
2881 && ((CONST_INT_P (size
)
2882 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
2883 <= (GET_MODE_MASK (mode
) >> 1)))
2884 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
))
2886 struct expand_operand ops
[6];
2889 nops
= insn_data
[(int) code
].n_generator_args
;
2890 gcc_assert (nops
== 4 || nops
== 6);
2892 create_fixed_operand (&ops
[0], object
);
2893 /* The check above guarantees that this size conversion is valid. */
2894 create_convert_operand_to (&ops
[1], size
, mode
, true);
2895 create_convert_operand_from (&ops
[2], val
, byte_mode
, true);
2896 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
2899 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
2900 create_integer_operand (&ops
[5], expected_size
);
2902 if (maybe_expand_insn (code
, nops
, ops
))
2911 /* Write to one of the components of the complex value CPLX. Write VAL to
2912 the real part if IMAG_P is false, and the imaginary part if its true. */
2915 write_complex_part (rtx cplx
, rtx val
, bool imag_p
)
2917 enum machine_mode cmode
;
2918 enum machine_mode imode
;
2921 if (GET_CODE (cplx
) == CONCAT
)
2923 emit_move_insn (XEXP (cplx
, imag_p
), val
);
2927 cmode
= GET_MODE (cplx
);
2928 imode
= GET_MODE_INNER (cmode
);
2929 ibitsize
= GET_MODE_BITSIZE (imode
);
2931 /* For MEMs simplify_gen_subreg may generate an invalid new address
2932 because, e.g., the original address is considered mode-dependent
2933 by the target, which restricts simplify_subreg from invoking
2934 adjust_address_nv. Instead of preparing fallback support for an
2935 invalid address, we call adjust_address_nv directly. */
2938 emit_move_insn (adjust_address_nv (cplx
, imode
,
2939 imag_p
? GET_MODE_SIZE (imode
) : 0),
2944 /* If the sub-object is at least word sized, then we know that subregging
2945 will work. This special case is important, since store_bit_field
2946 wants to operate on integer modes, and there's rarely an OImode to
2947 correspond to TCmode. */
2948 if (ibitsize
>= BITS_PER_WORD
2949 /* For hard regs we have exact predicates. Assume we can split
2950 the original object if it spans an even number of hard regs.
2951 This special case is important for SCmode on 64-bit platforms
2952 where the natural size of floating-point regs is 32-bit. */
2954 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2955 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
2957 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
2958 imag_p
? GET_MODE_SIZE (imode
) : 0);
2961 emit_move_insn (part
, val
);
2965 /* simplify_gen_subreg may fail for sub-word MEMs. */
2966 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2969 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, 0, 0, imode
, val
);
2972 /* Extract one of the components of the complex value CPLX. Extract the
2973 real part if IMAG_P is false, and the imaginary part if it's true. */
2976 read_complex_part (rtx cplx
, bool imag_p
)
2978 enum machine_mode cmode
, imode
;
2981 if (GET_CODE (cplx
) == CONCAT
)
2982 return XEXP (cplx
, imag_p
);
2984 cmode
= GET_MODE (cplx
);
2985 imode
= GET_MODE_INNER (cmode
);
2986 ibitsize
= GET_MODE_BITSIZE (imode
);
2988 /* Special case reads from complex constants that got spilled to memory. */
2989 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
2991 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
2992 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
2994 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
2995 if (CONSTANT_CLASS_P (part
))
2996 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
3000 /* For MEMs simplify_gen_subreg may generate an invalid new address
3001 because, e.g., the original address is considered mode-dependent
3002 by the target, which restricts simplify_subreg from invoking
3003 adjust_address_nv. Instead of preparing fallback support for an
3004 invalid address, we call adjust_address_nv directly. */
3006 return adjust_address_nv (cplx
, imode
,
3007 imag_p
? GET_MODE_SIZE (imode
) : 0);
3009 /* If the sub-object is at least word sized, then we know that subregging
3010 will work. This special case is important, since extract_bit_field
3011 wants to operate on integer modes, and there's rarely an OImode to
3012 correspond to TCmode. */
3013 if (ibitsize
>= BITS_PER_WORD
3014 /* For hard regs we have exact predicates. Assume we can split
3015 the original object if it spans an even number of hard regs.
3016 This special case is important for SCmode on 64-bit platforms
3017 where the natural size of floating-point regs is 32-bit. */
3019 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
3020 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
3022 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
3023 imag_p
? GET_MODE_SIZE (imode
) : 0);
3027 /* simplify_gen_subreg may fail for sub-word MEMs. */
3028 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
3031 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
3032 true, false, NULL_RTX
, imode
, imode
);
3035 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3036 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3037 represented in NEW_MODE. If FORCE is true, this will never happen, as
3038 we'll force-create a SUBREG if needed. */
3041 emit_move_change_mode (enum machine_mode new_mode
,
3042 enum machine_mode old_mode
, rtx x
, bool force
)
3046 if (push_operand (x
, GET_MODE (x
)))
3048 ret
= gen_rtx_MEM (new_mode
, XEXP (x
, 0));
3049 MEM_COPY_ATTRIBUTES (ret
, x
);
3053 /* We don't have to worry about changing the address since the
3054 size in bytes is supposed to be the same. */
3055 if (reload_in_progress
)
3057 /* Copy the MEM to change the mode and move any
3058 substitutions from the old MEM to the new one. */
3059 ret
= adjust_address_nv (x
, new_mode
, 0);
3060 copy_replacements (x
, ret
);
3063 ret
= adjust_address (x
, new_mode
, 0);
3067 /* Note that we do want simplify_subreg's behavior of validating
3068 that the new mode is ok for a hard register. If we were to use
3069 simplify_gen_subreg, we would create the subreg, but would
3070 probably run into the target not being able to implement it. */
3071 /* Except, of course, when FORCE is true, when this is exactly what
3072 we want. Which is needed for CCmodes on some targets. */
3074 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
3076 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
3082 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3083 an integer mode of the same size as MODE. Returns the instruction
3084 emitted, or NULL if such a move could not be generated. */
3087 emit_move_via_integer (enum machine_mode mode
, rtx x
, rtx y
, bool force
)
3089 enum machine_mode imode
;
3090 enum insn_code code
;
3092 /* There must exist a mode of the exact size we require. */
3093 imode
= int_mode_for_mode (mode
);
3094 if (imode
== BLKmode
)
3097 /* The target must support moves in this mode. */
3098 code
= optab_handler (mov_optab
, imode
);
3099 if (code
== CODE_FOR_nothing
)
3102 x
= emit_move_change_mode (imode
, mode
, x
, force
);
3105 y
= emit_move_change_mode (imode
, mode
, y
, force
);
3108 return emit_insn (GEN_FCN (code
) (x
, y
));
3111 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3112 Return an equivalent MEM that does not use an auto-increment. */
3115 emit_move_resolve_push (enum machine_mode mode
, rtx x
)
3117 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
3118 HOST_WIDE_INT adjust
;
3121 adjust
= GET_MODE_SIZE (mode
);
3122 #ifdef PUSH_ROUNDING
3123 adjust
= PUSH_ROUNDING (adjust
);
3125 if (code
== PRE_DEC
|| code
== POST_DEC
)
3127 else if (code
== PRE_MODIFY
|| code
== POST_MODIFY
)
3129 rtx expr
= XEXP (XEXP (x
, 0), 1);
3132 gcc_assert (GET_CODE (expr
) == PLUS
|| GET_CODE (expr
) == MINUS
);
3133 gcc_assert (CONST_INT_P (XEXP (expr
, 1)));
3134 val
= INTVAL (XEXP (expr
, 1));
3135 if (GET_CODE (expr
) == MINUS
)
3137 gcc_assert (adjust
== val
|| adjust
== -val
);
3141 /* Do not use anti_adjust_stack, since we don't want to update
3142 stack_pointer_delta. */
3143 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
3144 gen_int_mode (adjust
, Pmode
), stack_pointer_rtx
,
3145 0, OPTAB_LIB_WIDEN
);
3146 if (temp
!= stack_pointer_rtx
)
3147 emit_move_insn (stack_pointer_rtx
, temp
);
3154 temp
= stack_pointer_rtx
;
3159 temp
= plus_constant (Pmode
, stack_pointer_rtx
, -adjust
);
3165 return replace_equiv_address (x
, temp
);
3168 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3169 X is known to satisfy push_operand, and MODE is known to be complex.
3170 Returns the last instruction emitted. */
3173 emit_move_complex_push (enum machine_mode mode
, rtx x
, rtx y
)
3175 enum machine_mode submode
= GET_MODE_INNER (mode
);
3178 #ifdef PUSH_ROUNDING
3179 unsigned int submodesize
= GET_MODE_SIZE (submode
);
3181 /* In case we output to the stack, but the size is smaller than the
3182 machine can push exactly, we need to use move instructions. */
3183 if (PUSH_ROUNDING (submodesize
) != submodesize
)
3185 x
= emit_move_resolve_push (mode
, x
);
3186 return emit_move_insn (x
, y
);
3190 /* Note that the real part always precedes the imag part in memory
3191 regardless of machine's endianness. */
3192 switch (GET_CODE (XEXP (x
, 0)))
3206 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3207 read_complex_part (y
, imag_first
));
3208 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3209 read_complex_part (y
, !imag_first
));
3212 /* A subroutine of emit_move_complex. Perform the move from Y to X
3213 via two moves of the parts. Returns the last instruction emitted. */
3216 emit_move_complex_parts (rtx x
, rtx y
)
3218 /* Show the output dies here. This is necessary for SUBREGs
3219 of pseudos since we cannot track their lifetimes correctly;
3220 hard regs shouldn't appear here except as return values. */
3221 if (!reload_completed
&& !reload_in_progress
3222 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
3225 write_complex_part (x
, read_complex_part (y
, false), false);
3226 write_complex_part (x
, read_complex_part (y
, true), true);
3228 return get_last_insn ();
3231 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3232 MODE is known to be complex. Returns the last instruction emitted. */
3235 emit_move_complex (enum machine_mode mode
, rtx x
, rtx y
)
3239 /* Need to take special care for pushes, to maintain proper ordering
3240 of the data, and possibly extra padding. */
3241 if (push_operand (x
, mode
))
3242 return emit_move_complex_push (mode
, x
, y
);
3244 /* See if we can coerce the target into moving both values at once, except
3245 for floating point where we favor moving as parts if this is easy. */
3246 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
3247 && optab_handler (mov_optab
, GET_MODE_INNER (mode
)) != CODE_FOR_nothing
3249 && HARD_REGISTER_P (x
)
3250 && hard_regno_nregs
[REGNO(x
)][mode
] == 1)
3252 && HARD_REGISTER_P (y
)
3253 && hard_regno_nregs
[REGNO(y
)][mode
] == 1))
3255 /* Not possible if the values are inherently not adjacent. */
3256 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
3258 /* Is possible if both are registers (or subregs of registers). */
3259 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
3261 /* If one of the operands is a memory, and alignment constraints
3262 are friendly enough, we may be able to do combined memory operations.
3263 We do not attempt this if Y is a constant because that combination is
3264 usually better with the by-parts thing below. */
3265 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
3266 && (!STRICT_ALIGNMENT
3267 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
3276 /* For memory to memory moves, optimal behavior can be had with the
3277 existing block move logic. */
3278 if (MEM_P (x
) && MEM_P (y
))
3280 emit_block_move (x
, y
, GEN_INT (GET_MODE_SIZE (mode
)),
3281 BLOCK_OP_NO_LIBCALL
);
3282 return get_last_insn ();
3285 ret
= emit_move_via_integer (mode
, x
, y
, true);
3290 return emit_move_complex_parts (x
, y
);
3293 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3294 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3297 emit_move_ccmode (enum machine_mode mode
, rtx x
, rtx y
)
3301 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3304 enum insn_code code
= optab_handler (mov_optab
, CCmode
);
3305 if (code
!= CODE_FOR_nothing
)
3307 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
3308 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
3309 return emit_insn (GEN_FCN (code
) (x
, y
));
3313 /* Otherwise, find the MODE_INT mode of the same width. */
3314 ret
= emit_move_via_integer (mode
, x
, y
, false);
3315 gcc_assert (ret
!= NULL
);
3319 /* Return true if word I of OP lies entirely in the
3320 undefined bits of a paradoxical subreg. */
3323 undefined_operand_subword_p (const_rtx op
, int i
)
3325 enum machine_mode innermode
, innermostmode
;
3327 if (GET_CODE (op
) != SUBREG
)
3329 innermode
= GET_MODE (op
);
3330 innermostmode
= GET_MODE (SUBREG_REG (op
));
3331 offset
= i
* UNITS_PER_WORD
+ SUBREG_BYTE (op
);
3332 /* The SUBREG_BYTE represents offset, as if the value were stored in
3333 memory, except for a paradoxical subreg where we define
3334 SUBREG_BYTE to be 0; undo this exception as in
3336 if (SUBREG_BYTE (op
) == 0
3337 && GET_MODE_SIZE (innermostmode
) < GET_MODE_SIZE (innermode
))
3339 int difference
= (GET_MODE_SIZE (innermostmode
) - GET_MODE_SIZE (innermode
));
3340 if (WORDS_BIG_ENDIAN
)
3341 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3342 if (BYTES_BIG_ENDIAN
)
3343 offset
+= difference
% UNITS_PER_WORD
;
3345 if (offset
>= GET_MODE_SIZE (innermostmode
)
3346 || offset
<= -GET_MODE_SIZE (word_mode
))
3351 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3352 MODE is any multi-word or full-word mode that lacks a move_insn
3353 pattern. Note that you will get better code if you define such
3354 patterns, even if they must turn into multiple assembler instructions. */
3357 emit_move_multi_word (enum machine_mode mode
, rtx x
, rtx y
)
3364 gcc_assert (GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
);
3366 /* If X is a push on the stack, do the push now and replace
3367 X with a reference to the stack pointer. */
3368 if (push_operand (x
, mode
))
3369 x
= emit_move_resolve_push (mode
, x
);
3371 /* If we are in reload, see if either operand is a MEM whose address
3372 is scheduled for replacement. */
3373 if (reload_in_progress
&& MEM_P (x
)
3374 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
3375 x
= replace_equiv_address_nv (x
, inner
);
3376 if (reload_in_progress
&& MEM_P (y
)
3377 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
3378 y
= replace_equiv_address_nv (y
, inner
);
3382 need_clobber
= false;
3384 i
< (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
3387 rtx xpart
= operand_subword (x
, i
, 1, mode
);
3390 /* Do not generate code for a move if it would come entirely
3391 from the undefined bits of a paradoxical subreg. */
3392 if (undefined_operand_subword_p (y
, i
))
3395 ypart
= operand_subword (y
, i
, 1, mode
);
3397 /* If we can't get a part of Y, put Y into memory if it is a
3398 constant. Otherwise, force it into a register. Then we must
3399 be able to get a part of Y. */
3400 if (ypart
== 0 && CONSTANT_P (y
))
3402 y
= use_anchored_address (force_const_mem (mode
, y
));
3403 ypart
= operand_subword (y
, i
, 1, mode
);
3405 else if (ypart
== 0)
3406 ypart
= operand_subword_force (y
, i
, mode
);
3408 gcc_assert (xpart
&& ypart
);
3410 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
3412 last_insn
= emit_move_insn (xpart
, ypart
);
3418 /* Show the output dies here. This is necessary for SUBREGs
3419 of pseudos since we cannot track their lifetimes correctly;
3420 hard regs shouldn't appear here except as return values.
3421 We never want to emit such a clobber after reload. */
3423 && ! (reload_in_progress
|| reload_completed
)
3424 && need_clobber
!= 0)
3432 /* Low level part of emit_move_insn.
3433 Called just like emit_move_insn, but assumes X and Y
3434 are basically valid. */
3437 emit_move_insn_1 (rtx x
, rtx y
)
3439 enum machine_mode mode
= GET_MODE (x
);
3440 enum insn_code code
;
3442 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
3444 code
= optab_handler (mov_optab
, mode
);
3445 if (code
!= CODE_FOR_nothing
)
3446 return emit_insn (GEN_FCN (code
) (x
, y
));
3448 /* Expand complex moves by moving real part and imag part. */
3449 if (COMPLEX_MODE_P (mode
))
3450 return emit_move_complex (mode
, x
, y
);
3452 if (GET_MODE_CLASS (mode
) == MODE_DECIMAL_FLOAT
3453 || ALL_FIXED_POINT_MODE_P (mode
))
3455 rtx result
= emit_move_via_integer (mode
, x
, y
, true);
3457 /* If we can't find an integer mode, use multi words. */
3461 return emit_move_multi_word (mode
, x
, y
);
3464 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3465 return emit_move_ccmode (mode
, x
, y
);
3467 /* Try using a move pattern for the corresponding integer mode. This is
3468 only safe when simplify_subreg can convert MODE constants into integer
3469 constants. At present, it can only do this reliably if the value
3470 fits within a HOST_WIDE_INT. */
3471 if (!CONSTANT_P (y
) || GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3473 rtx ret
= emit_move_via_integer (mode
, x
, y
, lra_in_progress
);
3477 if (! lra_in_progress
|| recog (PATTERN (ret
), ret
, 0) >= 0)
3482 return emit_move_multi_word (mode
, x
, y
);
3485 /* Generate code to copy Y into X.
3486 Both Y and X must have the same mode, except that
3487 Y can be a constant with VOIDmode.
3488 This mode cannot be BLKmode; use emit_block_move for that.
3490 Return the last instruction emitted. */
3493 emit_move_insn (rtx x
, rtx y
)
3495 enum machine_mode mode
= GET_MODE (x
);
3496 rtx y_cst
= NULL_RTX
;
3499 gcc_assert (mode
!= BLKmode
3500 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
3505 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
3506 && (last_insn
= compress_float_constant (x
, y
)))
3511 if (!targetm
.legitimate_constant_p (mode
, y
))
3513 y
= force_const_mem (mode
, y
);
3515 /* If the target's cannot_force_const_mem prevented the spill,
3516 assume that the target's move expanders will also take care
3517 of the non-legitimate constant. */
3521 y
= use_anchored_address (y
);
3525 /* If X or Y are memory references, verify that their addresses are valid
3528 && (! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
3530 && ! push_operand (x
, GET_MODE (x
))))
3531 x
= validize_mem (x
);
3534 && ! memory_address_addr_space_p (GET_MODE (y
), XEXP (y
, 0),
3535 MEM_ADDR_SPACE (y
)))
3536 y
= validize_mem (y
);
3538 gcc_assert (mode
!= BLKmode
);
3540 last_insn
= emit_move_insn_1 (x
, y
);
3542 if (y_cst
&& REG_P (x
)
3543 && (set
= single_set (last_insn
)) != NULL_RTX
3544 && SET_DEST (set
) == x
3545 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
3546 set_unique_reg_note (last_insn
, REG_EQUAL
, copy_rtx (y_cst
));
3551 /* If Y is representable exactly in a narrower mode, and the target can
3552 perform the extension directly from constant or memory, then emit the
3553 move as an extension. */
3556 compress_float_constant (rtx x
, rtx y
)
3558 enum machine_mode dstmode
= GET_MODE (x
);
3559 enum machine_mode orig_srcmode
= GET_MODE (y
);
3560 enum machine_mode srcmode
;
3562 int oldcost
, newcost
;
3563 bool speed
= optimize_insn_for_speed_p ();
3565 REAL_VALUE_FROM_CONST_DOUBLE (r
, y
);
3567 if (targetm
.legitimate_constant_p (dstmode
, y
))
3568 oldcost
= set_src_cost (y
, speed
);
3570 oldcost
= set_src_cost (force_const_mem (dstmode
, y
), speed
);
3572 for (srcmode
= GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode
));
3573 srcmode
!= orig_srcmode
;
3574 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
3577 rtx trunc_y
, last_insn
;
3579 /* Skip if the target can't extend this way. */
3580 ic
= can_extend_p (dstmode
, srcmode
, 0);
3581 if (ic
== CODE_FOR_nothing
)
3584 /* Skip if the narrowed value isn't exact. */
3585 if (! exact_real_truncate (srcmode
, &r
))
3588 trunc_y
= CONST_DOUBLE_FROM_REAL_VALUE (r
, srcmode
);
3590 if (targetm
.legitimate_constant_p (srcmode
, trunc_y
))
3592 /* Skip if the target needs extra instructions to perform
3594 if (!insn_operand_matches (ic
, 1, trunc_y
))
3596 /* This is valid, but may not be cheaper than the original. */
3597 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3599 if (oldcost
< newcost
)
3602 else if (float_extend_from_mem
[dstmode
][srcmode
])
3604 trunc_y
= force_const_mem (srcmode
, trunc_y
);
3605 /* This is valid, but may not be cheaper than the original. */
3606 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3608 if (oldcost
< newcost
)
3610 trunc_y
= validize_mem (trunc_y
);
3615 /* For CSE's benefit, force the compressed constant pool entry
3616 into a new pseudo. This constant may be used in different modes,
3617 and if not, combine will put things back together for us. */
3618 trunc_y
= force_reg (srcmode
, trunc_y
);
3619 emit_unop_insn (ic
, x
, trunc_y
, UNKNOWN
);
3620 last_insn
= get_last_insn ();
3623 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
3631 /* Pushing data onto the stack. */
3633 /* Push a block of length SIZE (perhaps variable)
3634 and return an rtx to address the beginning of the block.
3635 The value may be virtual_outgoing_args_rtx.
3637 EXTRA is the number of bytes of padding to push in addition to SIZE.
3638 BELOW nonzero means this padding comes at low addresses;
3639 otherwise, the padding comes at high addresses. */
3642 push_block (rtx size
, int extra
, int below
)
3646 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
3647 if (CONSTANT_P (size
))
3648 anti_adjust_stack (plus_constant (Pmode
, size
, extra
));
3649 else if (REG_P (size
) && extra
== 0)
3650 anti_adjust_stack (size
);
3653 temp
= copy_to_mode_reg (Pmode
, size
);
3655 temp
= expand_binop (Pmode
, add_optab
, temp
,
3656 gen_int_mode (extra
, Pmode
),
3657 temp
, 0, OPTAB_LIB_WIDEN
);
3658 anti_adjust_stack (temp
);
3661 #ifndef STACK_GROWS_DOWNWARD
3667 temp
= virtual_outgoing_args_rtx
;
3668 if (extra
!= 0 && below
)
3669 temp
= plus_constant (Pmode
, temp
, extra
);
3673 if (CONST_INT_P (size
))
3674 temp
= plus_constant (Pmode
, virtual_outgoing_args_rtx
,
3675 -INTVAL (size
) - (below
? 0 : extra
));
3676 else if (extra
!= 0 && !below
)
3677 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3678 negate_rtx (Pmode
, plus_constant (Pmode
, size
,
3681 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3682 negate_rtx (Pmode
, size
));
3685 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT
), temp
);
3688 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3691 mem_autoinc_base (rtx mem
)
3695 rtx addr
= XEXP (mem
, 0);
3696 if (GET_RTX_CLASS (GET_CODE (addr
)) == RTX_AUTOINC
)
3697 return XEXP (addr
, 0);
3702 /* A utility routine used here, in reload, and in try_split. The insns
3703 after PREV up to and including LAST are known to adjust the stack,
3704 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3705 placing notes as appropriate. PREV may be NULL, indicating the
3706 entire insn sequence prior to LAST should be scanned.
3708 The set of allowed stack pointer modifications is small:
3709 (1) One or more auto-inc style memory references (aka pushes),
3710 (2) One or more addition/subtraction with the SP as destination,
3711 (3) A single move insn with the SP as destination,
3712 (4) A call_pop insn,
3713 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3715 Insns in the sequence that do not modify the SP are ignored,
3716 except for noreturn calls.
3718 The return value is the amount of adjustment that can be trivially
3719 verified, via immediate operand or auto-inc. If the adjustment
3720 cannot be trivially extracted, the return value is INT_MIN. */
3723 find_args_size_adjust (rtx insn
)
3728 pat
= PATTERN (insn
);
3731 /* Look for a call_pop pattern. */
3734 /* We have to allow non-call_pop patterns for the case
3735 of emit_single_push_insn of a TLS address. */
3736 if (GET_CODE (pat
) != PARALLEL
)
3739 /* All call_pop have a stack pointer adjust in the parallel.
3740 The call itself is always first, and the stack adjust is
3741 usually last, so search from the end. */
3742 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; --i
)
3744 set
= XVECEXP (pat
, 0, i
);
3745 if (GET_CODE (set
) != SET
)
3747 dest
= SET_DEST (set
);
3748 if (dest
== stack_pointer_rtx
)
3751 /* We'd better have found the stack pointer adjust. */
3754 /* Fall through to process the extracted SET and DEST
3755 as if it was a standalone insn. */
3757 else if (GET_CODE (pat
) == SET
)
3759 else if ((set
= single_set (insn
)) != NULL
)
3761 else if (GET_CODE (pat
) == PARALLEL
)
3763 /* ??? Some older ports use a parallel with a stack adjust
3764 and a store for a PUSH_ROUNDING pattern, rather than a
3765 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3766 /* ??? See h8300 and m68k, pushqi1. */
3767 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; --i
)
3769 set
= XVECEXP (pat
, 0, i
);
3770 if (GET_CODE (set
) != SET
)
3772 dest
= SET_DEST (set
);
3773 if (dest
== stack_pointer_rtx
)
3776 /* We do not expect an auto-inc of the sp in the parallel. */
3777 gcc_checking_assert (mem_autoinc_base (dest
) != stack_pointer_rtx
);
3778 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
3779 != stack_pointer_rtx
);
3787 dest
= SET_DEST (set
);
3789 /* Look for direct modifications of the stack pointer. */
3790 if (REG_P (dest
) && REGNO (dest
) == STACK_POINTER_REGNUM
)
3792 /* Look for a trivial adjustment, otherwise assume nothing. */
3793 /* Note that the SPU restore_stack_block pattern refers to
3794 the stack pointer in V4SImode. Consider that non-trivial. */
3795 if (SCALAR_INT_MODE_P (GET_MODE (dest
))
3796 && GET_CODE (SET_SRC (set
)) == PLUS
3797 && XEXP (SET_SRC (set
), 0) == stack_pointer_rtx
3798 && CONST_INT_P (XEXP (SET_SRC (set
), 1)))
3799 return INTVAL (XEXP (SET_SRC (set
), 1));
3800 /* ??? Reload can generate no-op moves, which will be cleaned
3801 up later. Recognize it and continue searching. */
3802 else if (rtx_equal_p (dest
, SET_SRC (set
)))
3805 return HOST_WIDE_INT_MIN
;
3811 /* Otherwise only think about autoinc patterns. */
3812 if (mem_autoinc_base (dest
) == stack_pointer_rtx
)
3815 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
3816 != stack_pointer_rtx
);
3818 else if (mem_autoinc_base (SET_SRC (set
)) == stack_pointer_rtx
)
3819 mem
= SET_SRC (set
);
3823 addr
= XEXP (mem
, 0);
3824 switch (GET_CODE (addr
))
3828 return GET_MODE_SIZE (GET_MODE (mem
));
3831 return -GET_MODE_SIZE (GET_MODE (mem
));
3834 addr
= XEXP (addr
, 1);
3835 gcc_assert (GET_CODE (addr
) == PLUS
);
3836 gcc_assert (XEXP (addr
, 0) == stack_pointer_rtx
);
3837 gcc_assert (CONST_INT_P (XEXP (addr
, 1)));
3838 return INTVAL (XEXP (addr
, 1));
3846 fixup_args_size_notes (rtx prev
, rtx last
, int end_args_size
)
3848 int args_size
= end_args_size
;
3849 bool saw_unknown
= false;
3852 for (insn
= last
; insn
!= prev
; insn
= PREV_INSN (insn
))
3854 HOST_WIDE_INT this_delta
;
3856 if (!NONDEBUG_INSN_P (insn
))
3859 this_delta
= find_args_size_adjust (insn
);
3860 if (this_delta
== 0)
3863 || ACCUMULATE_OUTGOING_ARGS
3864 || find_reg_note (insn
, REG_NORETURN
, NULL_RTX
) == NULL_RTX
)
3868 gcc_assert (!saw_unknown
);
3869 if (this_delta
== HOST_WIDE_INT_MIN
)
3872 add_reg_note (insn
, REG_ARGS_SIZE
, GEN_INT (args_size
));
3873 #ifdef STACK_GROWS_DOWNWARD
3874 this_delta
= -(unsigned HOST_WIDE_INT
) this_delta
;
3876 args_size
-= this_delta
;
3879 return saw_unknown
? INT_MIN
: args_size
;
3882 #ifdef PUSH_ROUNDING
3883 /* Emit single push insn. */
3886 emit_single_push_insn_1 (enum machine_mode mode
, rtx x
, tree type
)
3889 unsigned rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3891 enum insn_code icode
;
3893 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3894 /* If there is push pattern, use it. Otherwise try old way of throwing
3895 MEM representing push operation to move expander. */
3896 icode
= optab_handler (push_optab
, mode
);
3897 if (icode
!= CODE_FOR_nothing
)
3899 struct expand_operand ops
[1];
3901 create_input_operand (&ops
[0], x
, mode
);
3902 if (maybe_expand_insn (icode
, 1, ops
))
3905 if (GET_MODE_SIZE (mode
) == rounded_size
)
3906 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
3907 /* If we are to pad downward, adjust the stack pointer first and
3908 then store X into the stack location using an offset. This is
3909 because emit_move_insn does not know how to pad; it does not have
3911 else if (FUNCTION_ARG_PADDING (mode
, type
) == downward
)
3913 unsigned padding_size
= rounded_size
- GET_MODE_SIZE (mode
);
3914 HOST_WIDE_INT offset
;
3916 emit_move_insn (stack_pointer_rtx
,
3917 expand_binop (Pmode
,
3918 #ifdef STACK_GROWS_DOWNWARD
3924 gen_int_mode (rounded_size
, Pmode
),
3925 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
3927 offset
= (HOST_WIDE_INT
) padding_size
;
3928 #ifdef STACK_GROWS_DOWNWARD
3929 if (STACK_PUSH_CODE
== POST_DEC
)
3930 /* We have already decremented the stack pointer, so get the
3932 offset
+= (HOST_WIDE_INT
) rounded_size
;
3934 if (STACK_PUSH_CODE
== POST_INC
)
3935 /* We have already incremented the stack pointer, so get the
3937 offset
-= (HOST_WIDE_INT
) rounded_size
;
3939 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3940 gen_int_mode (offset
, Pmode
));
3944 #ifdef STACK_GROWS_DOWNWARD
3945 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3946 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3947 gen_int_mode (-(HOST_WIDE_INT
) rounded_size
,
3950 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3951 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3952 gen_int_mode (rounded_size
, Pmode
));
3954 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
3957 dest
= gen_rtx_MEM (mode
, dest_addr
);
3961 set_mem_attributes (dest
, type
, 1);
3963 if (flag_optimize_sibling_calls
)
3964 /* Function incoming arguments may overlap with sibling call
3965 outgoing arguments and we cannot allow reordering of reads
3966 from function arguments with stores to outgoing arguments
3967 of sibling calls. */
3968 set_mem_alias_set (dest
, 0);
3970 emit_move_insn (dest
, x
);
3973 /* Emit and annotate a single push insn. */
3976 emit_single_push_insn (enum machine_mode mode
, rtx x
, tree type
)
3978 int delta
, old_delta
= stack_pointer_delta
;
3979 rtx prev
= get_last_insn ();
3982 emit_single_push_insn_1 (mode
, x
, type
);
3984 last
= get_last_insn ();
3986 /* Notice the common case where we emitted exactly one insn. */
3987 if (PREV_INSN (last
) == prev
)
3989 add_reg_note (last
, REG_ARGS_SIZE
, GEN_INT (stack_pointer_delta
));
3993 delta
= fixup_args_size_notes (prev
, last
, stack_pointer_delta
);
3994 gcc_assert (delta
== INT_MIN
|| delta
== old_delta
);
3998 /* Generate code to push X onto the stack, assuming it has mode MODE and
4000 MODE is redundant except when X is a CONST_INT (since they don't
4002 SIZE is an rtx for the size of data to be copied (in bytes),
4003 needed only if X is BLKmode.
4005 ALIGN (in bits) is maximum alignment we can assume.
4007 If PARTIAL and REG are both nonzero, then copy that many of the first
4008 bytes of X into registers starting with REG, and push the rest of X.
4009 The amount of space pushed is decreased by PARTIAL bytes.
4010 REG must be a hard register in this case.
4011 If REG is zero but PARTIAL is not, take any all others actions for an
4012 argument partially in registers, but do not actually load any
4015 EXTRA is the amount in bytes of extra space to leave next to this arg.
4016 This is ignored if an argument block has already been allocated.
4018 On a machine that lacks real push insns, ARGS_ADDR is the address of
4019 the bottom of the argument block for this call. We use indexing off there
4020 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4021 argument block has not been preallocated.
4023 ARGS_SO_FAR is the size of args previously pushed for this call.
4025 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4026 for arguments passed in registers. If nonzero, it will be the number
4027 of bytes required. */
4030 emit_push_insn (rtx x
, enum machine_mode mode
, tree type
, rtx size
,
4031 unsigned int align
, int partial
, rtx reg
, int extra
,
4032 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
4036 enum direction stack_direction
4037 #ifdef STACK_GROWS_DOWNWARD
4043 /* Decide where to pad the argument: `downward' for below,
4044 `upward' for above, or `none' for don't pad it.
4045 Default is below for small data on big-endian machines; else above. */
4046 enum direction where_pad
= FUNCTION_ARG_PADDING (mode
, type
);
4048 /* Invert direction if stack is post-decrement.
4050 if (STACK_PUSH_CODE
== POST_DEC
)
4051 if (where_pad
!= none
)
4052 where_pad
= (where_pad
== downward
? upward
: downward
);
4057 || (STRICT_ALIGNMENT
&& align
< GET_MODE_ALIGNMENT (mode
)))
4059 /* Copy a block into the stack, entirely or partially. */
4066 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4067 used
= partial
- offset
;
4069 if (mode
!= BLKmode
)
4071 /* A value is to be stored in an insufficiently aligned
4072 stack slot; copy via a suitably aligned slot if
4074 size
= GEN_INT (GET_MODE_SIZE (mode
));
4075 if (!MEM_P (xinner
))
4077 temp
= assign_temp (type
, 1, 1);
4078 emit_move_insn (temp
, xinner
);
4085 /* USED is now the # of bytes we need not copy to the stack
4086 because registers will take care of them. */
4089 xinner
= adjust_address (xinner
, BLKmode
, used
);
4091 /* If the partial register-part of the arg counts in its stack size,
4092 skip the part of stack space corresponding to the registers.
4093 Otherwise, start copying to the beginning of the stack space,
4094 by setting SKIP to 0. */
4095 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
4097 #ifdef PUSH_ROUNDING
4098 /* Do it with several push insns if that doesn't take lots of insns
4099 and if there is no difficulty with push insns that skip bytes
4100 on the stack for alignment purposes. */
4103 && CONST_INT_P (size
)
4105 && MEM_ALIGN (xinner
) >= align
4106 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size
) - used
, align
))
4107 /* Here we avoid the case of a structure whose weak alignment
4108 forces many pushes of a small amount of data,
4109 and such small pushes do rounding that causes trouble. */
4110 && ((! SLOW_UNALIGNED_ACCESS (word_mode
, align
))
4111 || align
>= BIGGEST_ALIGNMENT
4112 || (PUSH_ROUNDING (align
/ BITS_PER_UNIT
)
4113 == (align
/ BITS_PER_UNIT
)))
4114 && (HOST_WIDE_INT
) PUSH_ROUNDING (INTVAL (size
)) == INTVAL (size
))
4116 /* Push padding now if padding above and stack grows down,
4117 or if padding below and stack grows up.
4118 But if space already allocated, this has already been done. */
4119 if (extra
&& args_addr
== 0
4120 && where_pad
!= none
&& where_pad
!= stack_direction
)
4121 anti_adjust_stack (GEN_INT (extra
));
4123 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
, 0);
4126 #endif /* PUSH_ROUNDING */
4130 /* Otherwise make space on the stack and copy the data
4131 to the address of that space. */
4133 /* Deduct words put into registers from the size we must copy. */
4136 if (CONST_INT_P (size
))
4137 size
= GEN_INT (INTVAL (size
) - used
);
4139 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
4140 gen_int_mode (used
, GET_MODE (size
)),
4141 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
4144 /* Get the address of the stack space.
4145 In this case, we do not deal with EXTRA separately.
4146 A single stack adjust will do. */
4149 temp
= push_block (size
, extra
, where_pad
== downward
);
4152 else if (CONST_INT_P (args_so_far
))
4153 temp
= memory_address (BLKmode
,
4154 plus_constant (Pmode
, args_addr
,
4155 skip
+ INTVAL (args_so_far
)));
4157 temp
= memory_address (BLKmode
,
4158 plus_constant (Pmode
,
4159 gen_rtx_PLUS (Pmode
,
4164 if (!ACCUMULATE_OUTGOING_ARGS
)
4166 /* If the source is referenced relative to the stack pointer,
4167 copy it to another register to stabilize it. We do not need
4168 to do this if we know that we won't be changing sp. */
4170 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
4171 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
4172 temp
= copy_to_reg (temp
);
4175 target
= gen_rtx_MEM (BLKmode
, temp
);
4177 /* We do *not* set_mem_attributes here, because incoming arguments
4178 may overlap with sibling call outgoing arguments and we cannot
4179 allow reordering of reads from function arguments with stores
4180 to outgoing arguments of sibling calls. We do, however, want
4181 to record the alignment of the stack slot. */
4182 /* ALIGN may well be better aligned than TYPE, e.g. due to
4183 PARM_BOUNDARY. Assume the caller isn't lying. */
4184 set_mem_align (target
, align
);
4186 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
4189 else if (partial
> 0)
4191 /* Scalar partly in registers. */
4193 int size
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
4196 /* # bytes of start of argument
4197 that we must make space for but need not store. */
4198 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4199 int args_offset
= INTVAL (args_so_far
);
4202 /* Push padding now if padding above and stack grows down,
4203 or if padding below and stack grows up.
4204 But if space already allocated, this has already been done. */
4205 if (extra
&& args_addr
== 0
4206 && where_pad
!= none
&& where_pad
!= stack_direction
)
4207 anti_adjust_stack (GEN_INT (extra
));
4209 /* If we make space by pushing it, we might as well push
4210 the real data. Otherwise, we can leave OFFSET nonzero
4211 and leave the space uninitialized. */
4215 /* Now NOT_STACK gets the number of words that we don't need to
4216 allocate on the stack. Convert OFFSET to words too. */
4217 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
4218 offset
/= UNITS_PER_WORD
;
4220 /* If the partial register-part of the arg counts in its stack size,
4221 skip the part of stack space corresponding to the registers.
4222 Otherwise, start copying to the beginning of the stack space,
4223 by setting SKIP to 0. */
4224 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
4226 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
4227 x
= validize_mem (force_const_mem (mode
, x
));
4229 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4230 SUBREGs of such registers are not allowed. */
4231 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
4232 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
4233 x
= copy_to_reg (x
);
4235 /* Loop over all the words allocated on the stack for this arg. */
4236 /* We can do it by words, because any scalar bigger than a word
4237 has a size a multiple of a word. */
4238 #ifndef PUSH_ARGS_REVERSED
4239 for (i
= not_stack
; i
< size
; i
++)
4241 for (i
= size
- 1; i
>= not_stack
; i
--)
4243 if (i
>= not_stack
+ offset
)
4244 emit_push_insn (operand_subword_force (x
, i
, mode
),
4245 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
4247 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
4249 reg_parm_stack_space
, alignment_pad
);
4256 /* Push padding now if padding above and stack grows down,
4257 or if padding below and stack grows up.
4258 But if space already allocated, this has already been done. */
4259 if (extra
&& args_addr
== 0
4260 && where_pad
!= none
&& where_pad
!= stack_direction
)
4261 anti_adjust_stack (GEN_INT (extra
));
4263 #ifdef PUSH_ROUNDING
4264 if (args_addr
== 0 && PUSH_ARGS
)
4265 emit_single_push_insn (mode
, x
, type
);
4269 if (CONST_INT_P (args_so_far
))
4271 = memory_address (mode
,
4272 plus_constant (Pmode
, args_addr
,
4273 INTVAL (args_so_far
)));
4275 addr
= memory_address (mode
, gen_rtx_PLUS (Pmode
, args_addr
,
4277 dest
= gen_rtx_MEM (mode
, addr
);
4279 /* We do *not* set_mem_attributes here, because incoming arguments
4280 may overlap with sibling call outgoing arguments and we cannot
4281 allow reordering of reads from function arguments with stores
4282 to outgoing arguments of sibling calls. We do, however, want
4283 to record the alignment of the stack slot. */
4284 /* ALIGN may well be better aligned than TYPE, e.g. due to
4285 PARM_BOUNDARY. Assume the caller isn't lying. */
4286 set_mem_align (dest
, align
);
4288 emit_move_insn (dest
, x
);
4292 /* If part should go in registers, copy that part
4293 into the appropriate registers. Do this now, at the end,
4294 since mem-to-mem copies above may do function calls. */
4295 if (partial
> 0 && reg
!= 0)
4297 /* Handle calls that pass values in multiple non-contiguous locations.
4298 The Irix 6 ABI has examples of this. */
4299 if (GET_CODE (reg
) == PARALLEL
)
4300 emit_group_load (reg
, x
, type
, -1);
4303 gcc_assert (partial
% UNITS_PER_WORD
== 0);
4304 move_block_to_reg (REGNO (reg
), x
, partial
/ UNITS_PER_WORD
, mode
);
4308 if (extra
&& args_addr
== 0 && where_pad
== stack_direction
)
4309 anti_adjust_stack (GEN_INT (extra
));
4311 if (alignment_pad
&& args_addr
== 0)
4312 anti_adjust_stack (alignment_pad
);
4315 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4319 get_subtarget (rtx x
)
4323 /* Only registers can be subtargets. */
4325 /* Don't use hard regs to avoid extending their life. */
4326 || REGNO (x
) < FIRST_PSEUDO_REGISTER
4330 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4331 FIELD is a bitfield. Returns true if the optimization was successful,
4332 and there's nothing else to do. */
4335 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize
,
4336 unsigned HOST_WIDE_INT bitpos
,
4337 unsigned HOST_WIDE_INT bitregion_start
,
4338 unsigned HOST_WIDE_INT bitregion_end
,
4339 enum machine_mode mode1
, rtx str_rtx
,
4342 enum machine_mode str_mode
= GET_MODE (str_rtx
);
4343 unsigned int str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4348 enum tree_code code
;
4350 if (mode1
!= VOIDmode
4351 || bitsize
>= BITS_PER_WORD
4352 || str_bitsize
> BITS_PER_WORD
4353 || TREE_SIDE_EFFECTS (to
)
4354 || TREE_THIS_VOLATILE (to
))
4358 if (TREE_CODE (src
) != SSA_NAME
)
4360 if (TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
4363 srcstmt
= get_gimple_for_ssa_name (src
);
4365 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt
)) != tcc_binary
)
4368 code
= gimple_assign_rhs_code (srcstmt
);
4370 op0
= gimple_assign_rhs1 (srcstmt
);
4372 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4373 to find its initialization. Hopefully the initialization will
4374 be from a bitfield load. */
4375 if (TREE_CODE (op0
) == SSA_NAME
)
4377 gimple op0stmt
= get_gimple_for_ssa_name (op0
);
4379 /* We want to eventually have OP0 be the same as TO, which
4380 should be a bitfield. */
4382 || !is_gimple_assign (op0stmt
)
4383 || gimple_assign_rhs_code (op0stmt
) != TREE_CODE (to
))
4385 op0
= gimple_assign_rhs1 (op0stmt
);
4388 op1
= gimple_assign_rhs2 (srcstmt
);
4390 if (!operand_equal_p (to
, op0
, 0))
4393 if (MEM_P (str_rtx
))
4395 unsigned HOST_WIDE_INT offset1
;
4397 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
4398 str_mode
= word_mode
;
4399 str_mode
= get_best_mode (bitsize
, bitpos
,
4400 bitregion_start
, bitregion_end
,
4401 MEM_ALIGN (str_rtx
), str_mode
, 0);
4402 if (str_mode
== VOIDmode
)
4404 str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4407 bitpos
%= str_bitsize
;
4408 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
4409 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
4411 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
4414 /* If the bit field covers the whole REG/MEM, store_field
4415 will likely generate better code. */
4416 if (bitsize
>= str_bitsize
)
4419 /* We can't handle fields split across multiple entities. */
4420 if (bitpos
+ bitsize
> str_bitsize
)
4423 if (BYTES_BIG_ENDIAN
)
4424 bitpos
= str_bitsize
- bitpos
- bitsize
;
4430 /* For now, just optimize the case of the topmost bitfield
4431 where we don't need to do any masking and also
4432 1 bit bitfields where xor can be used.
4433 We might win by one instruction for the other bitfields
4434 too if insv/extv instructions aren't used, so that
4435 can be added later. */
4436 if (bitpos
+ bitsize
!= str_bitsize
4437 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
4440 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4441 value
= convert_modes (str_mode
,
4442 TYPE_MODE (TREE_TYPE (op1
)), value
,
4443 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4445 /* We may be accessing data outside the field, which means
4446 we can alias adjacent data. */
4447 if (MEM_P (str_rtx
))
4449 str_rtx
= shallow_copy_rtx (str_rtx
);
4450 set_mem_alias_set (str_rtx
, 0);
4451 set_mem_expr (str_rtx
, 0);
4454 binop
= code
== PLUS_EXPR
? add_optab
: sub_optab
;
4455 if (bitsize
== 1 && bitpos
+ bitsize
!= str_bitsize
)
4457 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
4460 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4461 result
= expand_binop (str_mode
, binop
, str_rtx
,
4462 value
, str_rtx
, 1, OPTAB_WIDEN
);
4463 if (result
!= str_rtx
)
4464 emit_move_insn (str_rtx
, result
);
4469 if (TREE_CODE (op1
) != INTEGER_CST
)
4471 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4472 value
= convert_modes (str_mode
,
4473 TYPE_MODE (TREE_TYPE (op1
)), value
,
4474 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4476 /* We may be accessing data outside the field, which means
4477 we can alias adjacent data. */
4478 if (MEM_P (str_rtx
))
4480 str_rtx
= shallow_copy_rtx (str_rtx
);
4481 set_mem_alias_set (str_rtx
, 0);
4482 set_mem_expr (str_rtx
, 0);
4485 binop
= code
== BIT_IOR_EXPR
? ior_optab
: xor_optab
;
4486 if (bitpos
+ bitsize
!= str_bitsize
)
4488 rtx mask
= gen_int_mode (((unsigned HOST_WIDE_INT
) 1 << bitsize
) - 1,
4490 value
= expand_and (str_mode
, value
, mask
, NULL_RTX
);
4492 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4493 result
= expand_binop (str_mode
, binop
, str_rtx
,
4494 value
, str_rtx
, 1, OPTAB_WIDEN
);
4495 if (result
!= str_rtx
)
4496 emit_move_insn (str_rtx
, result
);
4506 /* In the C++ memory model, consecutive bit fields in a structure are
4507 considered one memory location.
4509 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4510 returns the bit range of consecutive bits in which this COMPONENT_REF
4511 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4512 and *OFFSET may be adjusted in the process.
4514 If the access does not need to be restricted, 0 is returned in both
4515 *BITSTART and *BITEND. */
4518 get_bit_range (unsigned HOST_WIDE_INT
*bitstart
,
4519 unsigned HOST_WIDE_INT
*bitend
,
4521 HOST_WIDE_INT
*bitpos
,
4524 HOST_WIDE_INT bitoffset
;
4527 gcc_assert (TREE_CODE (exp
) == COMPONENT_REF
);
4529 field
= TREE_OPERAND (exp
, 1);
4530 repr
= DECL_BIT_FIELD_REPRESENTATIVE (field
);
4531 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4532 need to limit the range we can access. */
4535 *bitstart
= *bitend
= 0;
4539 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4540 part of a larger bit field, then the representative does not serve any
4541 useful purpose. This can occur in Ada. */
4542 if (handled_component_p (TREE_OPERAND (exp
, 0)))
4544 enum machine_mode rmode
;
4545 HOST_WIDE_INT rbitsize
, rbitpos
;
4549 get_inner_reference (TREE_OPERAND (exp
, 0), &rbitsize
, &rbitpos
,
4550 &roffset
, &rmode
, &unsignedp
, &volatilep
, false);
4551 if ((rbitpos
% BITS_PER_UNIT
) != 0)
4553 *bitstart
= *bitend
= 0;
4558 /* Compute the adjustment to bitpos from the offset of the field
4559 relative to the representative. DECL_FIELD_OFFSET of field and
4560 repr are the same by construction if they are not constants,
4561 see finish_bitfield_layout. */
4562 if (host_integerp (DECL_FIELD_OFFSET (field
), 1)
4563 && host_integerp (DECL_FIELD_OFFSET (repr
), 1))
4564 bitoffset
= (tree_low_cst (DECL_FIELD_OFFSET (field
), 1)
4565 - tree_low_cst (DECL_FIELD_OFFSET (repr
), 1)) * BITS_PER_UNIT
;
4568 bitoffset
+= (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
4569 - tree_low_cst (DECL_FIELD_BIT_OFFSET (repr
), 1));
4571 /* If the adjustment is larger than bitpos, we would have a negative bit
4572 position for the lower bound and this may wreak havoc later. This can
4573 occur only if we have a non-null offset, so adjust offset and bitpos
4574 to make the lower bound non-negative. */
4575 if (bitoffset
> *bitpos
)
4577 HOST_WIDE_INT adjust
= bitoffset
- *bitpos
;
4579 gcc_assert ((adjust
% BITS_PER_UNIT
) == 0);
4580 gcc_assert (*offset
!= NULL_TREE
);
4584 = size_binop (MINUS_EXPR
, *offset
, size_int (adjust
/ BITS_PER_UNIT
));
4588 *bitstart
= *bitpos
- bitoffset
;
4590 *bitend
= *bitstart
+ tree_low_cst (DECL_SIZE (repr
), 1) - 1;
4593 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4594 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4595 DECL_RTL was not set yet, return NORTL. */
4598 addr_expr_of_non_mem_decl_p_1 (tree addr
, bool nortl
)
4600 if (TREE_CODE (addr
) != ADDR_EXPR
)
4603 tree base
= TREE_OPERAND (addr
, 0);
4606 || TREE_ADDRESSABLE (base
)
4607 || DECL_MODE (base
) == BLKmode
)
4610 if (!DECL_RTL_SET_P (base
))
4613 return (!MEM_P (DECL_RTL (base
)));
4616 /* Returns true if the MEM_REF REF refers to an object that does not
4617 reside in memory and has non-BLKmode. */
4620 mem_ref_refers_to_non_mem_p (tree ref
)
4622 tree base
= TREE_OPERAND (ref
, 0);
4623 return addr_expr_of_non_mem_decl_p_1 (base
, false);
4626 /* Return TRUE iff OP is an ADDR_EXPR of a DECL that's not
4627 addressable. This is very much like mem_ref_refers_to_non_mem_p,
4628 but instead of the MEM_REF, it takes its base, and it doesn't
4629 assume a DECL is in memory just because its RTL is not set yet. */
4632 addr_expr_of_non_mem_decl_p (tree op
)
4634 return addr_expr_of_non_mem_decl_p_1 (op
, true);
4637 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4638 is true, try generating a nontemporal store. */
4641 expand_assignment (tree to
, tree from
, bool nontemporal
)
4645 enum machine_mode mode
;
4647 enum insn_code icode
;
4649 /* Don't crash if the lhs of the assignment was erroneous. */
4650 if (TREE_CODE (to
) == ERROR_MARK
)
4652 expand_normal (from
);
4656 /* Optimize away no-op moves without side-effects. */
4657 if (operand_equal_p (to
, from
, 0))
4660 /* Handle misaligned stores. */
4661 mode
= TYPE_MODE (TREE_TYPE (to
));
4662 if ((TREE_CODE (to
) == MEM_REF
4663 || TREE_CODE (to
) == TARGET_MEM_REF
)
4665 && !mem_ref_refers_to_non_mem_p (to
)
4666 && ((align
= get_object_alignment (to
))
4667 < GET_MODE_ALIGNMENT (mode
))
4668 && (((icode
= optab_handler (movmisalign_optab
, mode
))
4669 != CODE_FOR_nothing
)
4670 || SLOW_UNALIGNED_ACCESS (mode
, align
)))
4674 reg
= expand_expr (from
, NULL_RTX
, VOIDmode
, EXPAND_NORMAL
);
4675 reg
= force_not_mem (reg
);
4676 mem
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4678 if (icode
!= CODE_FOR_nothing
)
4680 struct expand_operand ops
[2];
4682 create_fixed_operand (&ops
[0], mem
);
4683 create_input_operand (&ops
[1], reg
, mode
);
4684 /* The movmisalign<mode> pattern cannot fail, else the assignment
4685 would silently be omitted. */
4686 expand_insn (icode
, 2, ops
);
4689 store_bit_field (mem
, GET_MODE_BITSIZE (mode
),
4690 0, 0, 0, mode
, reg
);
4694 /* Assignment of a structure component needs special treatment
4695 if the structure component's rtx is not simply a MEM.
4696 Assignment of an array element at a constant index, and assignment of
4697 an array element in an unaligned packed structure field, has the same
4698 problem. Same for (partially) storing into a non-memory object. */
4699 if (handled_component_p (to
)
4700 || (TREE_CODE (to
) == MEM_REF
4701 && mem_ref_refers_to_non_mem_p (to
))
4702 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
4704 enum machine_mode mode1
;
4705 HOST_WIDE_INT bitsize
, bitpos
;
4706 unsigned HOST_WIDE_INT bitregion_start
= 0;
4707 unsigned HOST_WIDE_INT bitregion_end
= 0;
4714 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
4715 &unsignedp
, &volatilep
, true);
4717 if (TREE_CODE (to
) == COMPONENT_REF
4718 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to
, 1)))
4719 get_bit_range (&bitregion_start
, &bitregion_end
, to
, &bitpos
, &offset
);
4721 to_rtx
= expand_expr (tem
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4723 /* If the bitfield is volatile, we want to access it in the
4724 field's mode, not the computed mode.
4725 If a MEM has VOIDmode (external with incomplete type),
4726 use BLKmode for it instead. */
4729 if (volatilep
&& flag_strict_volatile_bitfields
> 0)
4730 to_rtx
= adjust_address (to_rtx
, mode1
, 0);
4731 else if (GET_MODE (to_rtx
) == VOIDmode
)
4732 to_rtx
= adjust_address (to_rtx
, BLKmode
, 0);
4737 enum machine_mode address_mode
;
4740 if (!MEM_P (to_rtx
))
4742 /* We can get constant negative offsets into arrays with broken
4743 user code. Translate this to a trap instead of ICEing. */
4744 gcc_assert (TREE_CODE (offset
) == INTEGER_CST
);
4745 expand_builtin_trap ();
4746 to_rtx
= gen_rtx_MEM (BLKmode
, const0_rtx
);
4749 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
4750 address_mode
= get_address_mode (to_rtx
);
4751 if (GET_MODE (offset_rtx
) != address_mode
)
4752 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
4754 /* A constant address in TO_RTX can have VOIDmode, we must not try
4755 to call force_reg for that case. Avoid that case. */
4757 && GET_MODE (to_rtx
) == BLKmode
4758 && GET_MODE (XEXP (to_rtx
, 0)) != VOIDmode
4760 && (bitpos
% bitsize
) == 0
4761 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
4762 && MEM_ALIGN (to_rtx
) == GET_MODE_ALIGNMENT (mode1
))
4764 to_rtx
= adjust_address (to_rtx
, mode1
, bitpos
/ BITS_PER_UNIT
);
4768 to_rtx
= offset_address (to_rtx
, offset_rtx
,
4769 highest_pow2_factor_for_target (to
,
4773 /* No action is needed if the target is not a memory and the field
4774 lies completely outside that target. This can occur if the source
4775 code contains an out-of-bounds access to a small array. */
4777 && GET_MODE (to_rtx
) != BLKmode
4778 && (unsigned HOST_WIDE_INT
) bitpos
4779 >= GET_MODE_PRECISION (GET_MODE (to_rtx
)))
4781 expand_normal (from
);
4784 /* Handle expand_expr of a complex value returning a CONCAT. */
4785 else if (GET_CODE (to_rtx
) == CONCAT
)
4787 unsigned short mode_bitsize
= GET_MODE_BITSIZE (GET_MODE (to_rtx
));
4788 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from
)))
4790 && bitsize
== mode_bitsize
)
4791 result
= store_expr (from
, to_rtx
, false, nontemporal
);
4792 else if (bitsize
== mode_bitsize
/ 2
4793 && (bitpos
== 0 || bitpos
== mode_bitsize
/ 2))
4794 result
= store_expr (from
, XEXP (to_rtx
, bitpos
!= 0), false,
4796 else if (bitpos
+ bitsize
<= mode_bitsize
/ 2)
4797 result
= store_field (XEXP (to_rtx
, 0), bitsize
, bitpos
,
4798 bitregion_start
, bitregion_end
,
4800 get_alias_set (to
), nontemporal
);
4801 else if (bitpos
>= mode_bitsize
/ 2)
4802 result
= store_field (XEXP (to_rtx
, 1), bitsize
,
4803 bitpos
- mode_bitsize
/ 2,
4804 bitregion_start
, bitregion_end
,
4806 get_alias_set (to
), nontemporal
);
4807 else if (bitpos
== 0 && bitsize
== mode_bitsize
)
4810 result
= expand_normal (from
);
4811 from_rtx
= simplify_gen_subreg (GET_MODE (to_rtx
), result
,
4812 TYPE_MODE (TREE_TYPE (from
)), 0);
4813 emit_move_insn (XEXP (to_rtx
, 0),
4814 read_complex_part (from_rtx
, false));
4815 emit_move_insn (XEXP (to_rtx
, 1),
4816 read_complex_part (from_rtx
, true));
4820 rtx temp
= assign_stack_temp (GET_MODE (to_rtx
),
4821 GET_MODE_SIZE (GET_MODE (to_rtx
)));
4822 write_complex_part (temp
, XEXP (to_rtx
, 0), false);
4823 write_complex_part (temp
, XEXP (to_rtx
, 1), true);
4824 result
= store_field (temp
, bitsize
, bitpos
,
4825 bitregion_start
, bitregion_end
,
4827 get_alias_set (to
), nontemporal
);
4828 emit_move_insn (XEXP (to_rtx
, 0), read_complex_part (temp
, false));
4829 emit_move_insn (XEXP (to_rtx
, 1), read_complex_part (temp
, true));
4836 /* If the field is at offset zero, we could have been given the
4837 DECL_RTX of the parent struct. Don't munge it. */
4838 to_rtx
= shallow_copy_rtx (to_rtx
);
4839 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
4841 MEM_VOLATILE_P (to_rtx
) = 1;
4844 if (optimize_bitfield_assignment_op (bitsize
, bitpos
,
4845 bitregion_start
, bitregion_end
,
4850 result
= store_field (to_rtx
, bitsize
, bitpos
,
4851 bitregion_start
, bitregion_end
,
4853 get_alias_set (to
), nontemporal
);
4857 preserve_temp_slots (result
);
4862 /* If the rhs is a function call and its value is not an aggregate,
4863 call the function before we start to compute the lhs.
4864 This is needed for correct code for cases such as
4865 val = setjmp (buf) on machines where reference to val
4866 requires loading up part of an address in a separate insn.
4868 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4869 since it might be a promoted variable where the zero- or sign- extension
4870 needs to be done. Handling this in the normal way is safe because no
4871 computation is done before the call. The same is true for SSA names. */
4872 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
4873 && COMPLETE_TYPE_P (TREE_TYPE (from
))
4874 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
4875 && ! (((TREE_CODE (to
) == VAR_DECL
4876 || TREE_CODE (to
) == PARM_DECL
4877 || TREE_CODE (to
) == RESULT_DECL
)
4878 && REG_P (DECL_RTL (to
)))
4879 || TREE_CODE (to
) == SSA_NAME
))
4884 value
= expand_normal (from
);
4886 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4888 /* Handle calls that return values in multiple non-contiguous locations.
4889 The Irix 6 ABI has examples of this. */
4890 if (GET_CODE (to_rtx
) == PARALLEL
)
4892 if (GET_CODE (value
) == PARALLEL
)
4893 emit_group_move (to_rtx
, value
);
4895 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
4896 int_size_in_bytes (TREE_TYPE (from
)));
4898 else if (GET_CODE (value
) == PARALLEL
)
4899 emit_group_store (to_rtx
, value
, TREE_TYPE (from
),
4900 int_size_in_bytes (TREE_TYPE (from
)));
4901 else if (GET_MODE (to_rtx
) == BLKmode
)
4903 /* Handle calls that return BLKmode values in registers. */
4905 copy_blkmode_from_reg (to_rtx
, value
, TREE_TYPE (from
));
4907 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
4911 if (POINTER_TYPE_P (TREE_TYPE (to
)))
4912 value
= convert_memory_address_addr_space
4913 (GET_MODE (to_rtx
), value
,
4914 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to
))));
4916 emit_move_insn (to_rtx
, value
);
4918 preserve_temp_slots (to_rtx
);
4923 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
4924 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4926 /* Don't move directly into a return register. */
4927 if (TREE_CODE (to
) == RESULT_DECL
4928 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
4934 /* If the source is itself a return value, it still is in a pseudo at
4935 this point so we can move it back to the return register directly. */
4937 && TYPE_MODE (TREE_TYPE (from
)) == BLKmode
4938 && TREE_CODE (from
) != CALL_EXPR
)
4939 temp
= copy_blkmode_to_reg (GET_MODE (to_rtx
), from
);
4941 temp
= expand_expr (from
, NULL_RTX
, GET_MODE (to_rtx
), EXPAND_NORMAL
);
4943 /* Handle calls that return values in multiple non-contiguous locations.
4944 The Irix 6 ABI has examples of this. */
4945 if (GET_CODE (to_rtx
) == PARALLEL
)
4947 if (GET_CODE (temp
) == PARALLEL
)
4948 emit_group_move (to_rtx
, temp
);
4950 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
4951 int_size_in_bytes (TREE_TYPE (from
)));
4954 emit_move_insn (to_rtx
, temp
);
4956 preserve_temp_slots (to_rtx
);
4961 /* In case we are returning the contents of an object which overlaps
4962 the place the value is being stored, use a safe function when copying
4963 a value through a pointer into a structure value return block. */
4964 if (TREE_CODE (to
) == RESULT_DECL
4965 && TREE_CODE (from
) == INDIRECT_REF
4966 && ADDR_SPACE_GENERIC_P
4967 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from
, 0)))))
4968 && refs_may_alias_p (to
, from
)
4969 && cfun
->returns_struct
4970 && !cfun
->returns_pcc_struct
)
4975 size
= expr_size (from
);
4976 from_rtx
= expand_normal (from
);
4978 emit_library_call (memmove_libfunc
, LCT_NORMAL
,
4979 VOIDmode
, 3, XEXP (to_rtx
, 0), Pmode
,
4980 XEXP (from_rtx
, 0), Pmode
,
4981 convert_to_mode (TYPE_MODE (sizetype
),
4982 size
, TYPE_UNSIGNED (sizetype
)),
4983 TYPE_MODE (sizetype
));
4985 preserve_temp_slots (to_rtx
);
4990 /* Compute FROM and store the value in the rtx we got. */
4993 result
= store_expr (from
, to_rtx
, 0, nontemporal
);
4994 preserve_temp_slots (result
);
4999 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5000 succeeded, false otherwise. */
5003 emit_storent_insn (rtx to
, rtx from
)
5005 struct expand_operand ops
[2];
5006 enum machine_mode mode
= GET_MODE (to
);
5007 enum insn_code code
= optab_handler (storent_optab
, mode
);
5009 if (code
== CODE_FOR_nothing
)
5012 create_fixed_operand (&ops
[0], to
);
5013 create_input_operand (&ops
[1], from
, mode
);
5014 return maybe_expand_insn (code
, 2, ops
);
5017 /* Generate code for computing expression EXP,
5018 and storing the value into TARGET.
5020 If the mode is BLKmode then we may return TARGET itself.
5021 It turns out that in BLKmode it doesn't cause a problem.
5022 because C has no operators that could combine two different
5023 assignments into the same BLKmode object with different values
5024 with no sequence point. Will other languages need this to
5027 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5028 stack, and block moves may need to be treated specially.
5030 If NONTEMPORAL is true, try using a nontemporal store instruction. */
5033 store_expr (tree exp
, rtx target
, int call_param_p
, bool nontemporal
)
5036 rtx alt_rtl
= NULL_RTX
;
5037 location_t loc
= curr_insn_location ();
5039 if (VOID_TYPE_P (TREE_TYPE (exp
)))
5041 /* C++ can generate ?: expressions with a throw expression in one
5042 branch and an rvalue in the other. Here, we resolve attempts to
5043 store the throw expression's nonexistent result. */
5044 gcc_assert (!call_param_p
);
5045 expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
5048 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
5050 /* Perform first part of compound expression, then assign from second
5052 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
5053 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5054 return store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
,
5057 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
5059 /* For conditional expression, get safe form of the target. Then
5060 test the condition, doing the appropriate assignment on either
5061 side. This avoids the creation of unnecessary temporaries.
5062 For non-BLKmode, it is more efficient not to do this. */
5064 rtx lab1
= gen_label_rtx (), lab2
= gen_label_rtx ();
5066 do_pending_stack_adjust ();
5068 jumpifnot (TREE_OPERAND (exp
, 0), lab1
, -1);
5069 store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
,
5071 emit_jump_insn (gen_jump (lab2
));
5074 store_expr (TREE_OPERAND (exp
, 2), target
, call_param_p
,
5081 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
5082 /* If this is a scalar in a register that is stored in a wider mode
5083 than the declared mode, compute the result into its declared mode
5084 and then convert to the wider mode. Our value is the computed
5087 rtx inner_target
= 0;
5089 /* We can do the conversion inside EXP, which will often result
5090 in some optimizations. Do the conversion in two steps: first
5091 change the signedness, if needed, then the extend. But don't
5092 do this if the type of EXP is a subtype of something else
5093 since then the conversion might involve more than just
5094 converting modes. */
5095 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
5096 && TREE_TYPE (TREE_TYPE (exp
)) == 0
5097 && GET_MODE_PRECISION (GET_MODE (target
))
5098 == TYPE_PRECISION (TREE_TYPE (exp
)))
5100 if (TYPE_UNSIGNED (TREE_TYPE (exp
))
5101 != SUBREG_PROMOTED_UNSIGNED_P (target
))
5103 /* Some types, e.g. Fortran's logical*4, won't have a signed
5104 version, so use the mode instead. */
5106 = (signed_or_unsigned_type_for
5107 (SUBREG_PROMOTED_UNSIGNED_P (target
), TREE_TYPE (exp
)));
5109 ntype
= lang_hooks
.types
.type_for_mode
5110 (TYPE_MODE (TREE_TYPE (exp
)),
5111 SUBREG_PROMOTED_UNSIGNED_P (target
));
5113 exp
= fold_convert_loc (loc
, ntype
, exp
);
5116 exp
= fold_convert_loc (loc
, lang_hooks
.types
.type_for_mode
5117 (GET_MODE (SUBREG_REG (target
)),
5118 SUBREG_PROMOTED_UNSIGNED_P (target
)),
5121 inner_target
= SUBREG_REG (target
);
5124 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
5125 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5127 /* If TEMP is a VOIDmode constant, use convert_modes to make
5128 sure that we properly convert it. */
5129 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
5131 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5132 temp
, SUBREG_PROMOTED_UNSIGNED_P (target
));
5133 temp
= convert_modes (GET_MODE (SUBREG_REG (target
)),
5134 GET_MODE (target
), temp
,
5135 SUBREG_PROMOTED_UNSIGNED_P (target
));
5138 convert_move (SUBREG_REG (target
), temp
,
5139 SUBREG_PROMOTED_UNSIGNED_P (target
));
5143 else if ((TREE_CODE (exp
) == STRING_CST
5144 || (TREE_CODE (exp
) == MEM_REF
5145 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
5146 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
5148 && integer_zerop (TREE_OPERAND (exp
, 1))))
5149 && !nontemporal
&& !call_param_p
5152 /* Optimize initialization of an array with a STRING_CST. */
5153 HOST_WIDE_INT exp_len
, str_copy_len
;
5155 tree str
= TREE_CODE (exp
) == STRING_CST
5156 ? exp
: TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
5158 exp_len
= int_expr_size (exp
);
5162 if (TREE_STRING_LENGTH (str
) <= 0)
5165 str_copy_len
= strlen (TREE_STRING_POINTER (str
));
5166 if (str_copy_len
< TREE_STRING_LENGTH (str
) - 1)
5169 str_copy_len
= TREE_STRING_LENGTH (str
);
5170 if ((STORE_MAX_PIECES
& (STORE_MAX_PIECES
- 1)) == 0
5171 && TREE_STRING_POINTER (str
)[TREE_STRING_LENGTH (str
) - 1] == '\0')
5173 str_copy_len
+= STORE_MAX_PIECES
- 1;
5174 str_copy_len
&= ~(STORE_MAX_PIECES
- 1);
5176 str_copy_len
= MIN (str_copy_len
, exp_len
);
5177 if (!can_store_by_pieces (str_copy_len
, builtin_strncpy_read_str
,
5178 CONST_CAST (char *, TREE_STRING_POINTER (str
)),
5179 MEM_ALIGN (target
), false))
5184 dest_mem
= store_by_pieces (dest_mem
,
5185 str_copy_len
, builtin_strncpy_read_str
,
5187 TREE_STRING_POINTER (str
)),
5188 MEM_ALIGN (target
), false,
5189 exp_len
> str_copy_len
? 1 : 0);
5190 if (exp_len
> str_copy_len
)
5191 clear_storage (adjust_address (dest_mem
, BLKmode
, 0),
5192 GEN_INT (exp_len
- str_copy_len
),
5201 /* If we want to use a nontemporal store, force the value to
5203 tmp_target
= nontemporal
? NULL_RTX
: target
;
5204 temp
= expand_expr_real (exp
, tmp_target
, GET_MODE (target
),
5206 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
5210 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5211 the same as that of TARGET, adjust the constant. This is needed, for
5212 example, in case it is a CONST_DOUBLE and we want only a word-sized
5214 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
5215 && TREE_CODE (exp
) != ERROR_MARK
5216 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
5217 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5218 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5220 /* If value was not generated in the target, store it there.
5221 Convert the value to TARGET's type first if necessary and emit the
5222 pending incrementations that have been queued when expanding EXP.
5223 Note that we cannot emit the whole queue blindly because this will
5224 effectively disable the POST_INC optimization later.
5226 If TEMP and TARGET compare equal according to rtx_equal_p, but
5227 one or both of them are volatile memory refs, we have to distinguish
5229 - expand_expr has used TARGET. In this case, we must not generate
5230 another copy. This can be detected by TARGET being equal according
5232 - expand_expr has not used TARGET - that means that the source just
5233 happens to have the same RTX form. Since temp will have been created
5234 by expand_expr, it will compare unequal according to == .
5235 We must generate a copy in this case, to reach the correct number
5236 of volatile memory references. */
5238 if ((! rtx_equal_p (temp
, target
)
5239 || (temp
!= target
&& (side_effects_p (temp
)
5240 || side_effects_p (target
))))
5241 && TREE_CODE (exp
) != ERROR_MARK
5242 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5243 but TARGET is not valid memory reference, TEMP will differ
5244 from TARGET although it is really the same location. */
5246 && rtx_equal_p (alt_rtl
, target
)
5247 && !side_effects_p (alt_rtl
)
5248 && !side_effects_p (target
))
5249 /* If there's nothing to copy, don't bother. Don't call
5250 expr_size unless necessary, because some front-ends (C++)
5251 expr_size-hook must not be given objects that are not
5252 supposed to be bit-copied or bit-initialized. */
5253 && expr_size (exp
) != const0_rtx
)
5255 if (GET_MODE (temp
) != GET_MODE (target
) && GET_MODE (temp
) != VOIDmode
)
5257 if (GET_MODE (target
) == BLKmode
)
5259 /* Handle calls that return BLKmode values in registers. */
5260 if (REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
5261 copy_blkmode_from_reg (target
, temp
, TREE_TYPE (exp
));
5263 store_bit_field (target
,
5264 INTVAL (expr_size (exp
)) * BITS_PER_UNIT
,
5265 0, 0, 0, GET_MODE (temp
), temp
);
5268 convert_move (target
, temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5271 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
5273 /* Handle copying a string constant into an array. The string
5274 constant may be shorter than the array. So copy just the string's
5275 actual length, and clear the rest. First get the size of the data
5276 type of the string, which is actually the size of the target. */
5277 rtx size
= expr_size (exp
);
5279 if (CONST_INT_P (size
)
5280 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
5281 emit_block_move (target
, temp
, size
,
5283 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5286 enum machine_mode pointer_mode
5287 = targetm
.addr_space
.pointer_mode (MEM_ADDR_SPACE (target
));
5288 enum machine_mode address_mode
= get_address_mode (target
);
5290 /* Compute the size of the data to copy from the string. */
5292 = size_binop_loc (loc
, MIN_EXPR
,
5293 make_tree (sizetype
, size
),
5294 size_int (TREE_STRING_LENGTH (exp
)));
5296 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
5298 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
5301 /* Copy that much. */
5302 copy_size_rtx
= convert_to_mode (pointer_mode
, copy_size_rtx
,
5303 TYPE_UNSIGNED (sizetype
));
5304 emit_block_move (target
, temp
, copy_size_rtx
,
5306 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5308 /* Figure out how much is left in TARGET that we have to clear.
5309 Do all calculations in pointer_mode. */
5310 if (CONST_INT_P (copy_size_rtx
))
5312 size
= plus_constant (address_mode
, size
,
5313 -INTVAL (copy_size_rtx
));
5314 target
= adjust_address (target
, BLKmode
,
5315 INTVAL (copy_size_rtx
));
5319 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
5320 copy_size_rtx
, NULL_RTX
, 0,
5323 if (GET_MODE (copy_size_rtx
) != address_mode
)
5324 copy_size_rtx
= convert_to_mode (address_mode
,
5326 TYPE_UNSIGNED (sizetype
));
5328 target
= offset_address (target
, copy_size_rtx
,
5329 highest_pow2_factor (copy_size
));
5330 label
= gen_label_rtx ();
5331 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
5332 GET_MODE (size
), 0, label
);
5335 if (size
!= const0_rtx
)
5336 clear_storage (target
, size
, BLOCK_OP_NORMAL
);
5342 /* Handle calls that return values in multiple non-contiguous locations.
5343 The Irix 6 ABI has examples of this. */
5344 else if (GET_CODE (target
) == PARALLEL
)
5346 if (GET_CODE (temp
) == PARALLEL
)
5347 emit_group_move (target
, temp
);
5349 emit_group_load (target
, temp
, TREE_TYPE (exp
),
5350 int_size_in_bytes (TREE_TYPE (exp
)));
5352 else if (GET_CODE (temp
) == PARALLEL
)
5353 emit_group_store (target
, temp
, TREE_TYPE (exp
),
5354 int_size_in_bytes (TREE_TYPE (exp
)));
5355 else if (GET_MODE (temp
) == BLKmode
)
5356 emit_block_move (target
, temp
, expr_size (exp
),
5358 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5359 /* If we emit a nontemporal store, there is nothing else to do. */
5360 else if (nontemporal
&& emit_storent_insn (target
, temp
))
5364 temp
= force_operand (temp
, target
);
5366 emit_move_insn (target
, temp
);
5373 /* Return true if field F of structure TYPE is a flexible array. */
5376 flexible_array_member_p (const_tree f
, const_tree type
)
5381 return (DECL_CHAIN (f
) == NULL
5382 && TREE_CODE (tf
) == ARRAY_TYPE
5384 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf
))
5385 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf
)))
5386 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf
))
5387 && int_size_in_bytes (type
) >= 0);
5390 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5391 must have in order for it to completely initialize a value of type TYPE.
5392 Return -1 if the number isn't known.
5394 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5396 static HOST_WIDE_INT
5397 count_type_elements (const_tree type
, bool for_ctor_p
)
5399 switch (TREE_CODE (type
))
5405 nelts
= array_type_nelts (type
);
5406 if (nelts
&& host_integerp (nelts
, 1))
5408 unsigned HOST_WIDE_INT n
;
5410 n
= tree_low_cst (nelts
, 1) + 1;
5411 if (n
== 0 || for_ctor_p
)
5414 return n
* count_type_elements (TREE_TYPE (type
), false);
5416 return for_ctor_p
? -1 : 1;
5421 unsigned HOST_WIDE_INT n
;
5425 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5426 if (TREE_CODE (f
) == FIELD_DECL
)
5429 n
+= count_type_elements (TREE_TYPE (f
), false);
5430 else if (!flexible_array_member_p (f
, type
))
5431 /* Don't count flexible arrays, which are not supposed
5432 to be initialized. */
5440 case QUAL_UNION_TYPE
:
5445 gcc_assert (!for_ctor_p
);
5446 /* Estimate the number of scalars in each field and pick the
5447 maximum. Other estimates would do instead; the idea is simply
5448 to make sure that the estimate is not sensitive to the ordering
5451 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5452 if (TREE_CODE (f
) == FIELD_DECL
)
5454 m
= count_type_elements (TREE_TYPE (f
), false);
5455 /* If the field doesn't span the whole union, add an extra
5456 scalar for the rest. */
5457 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f
)),
5458 TYPE_SIZE (type
)) != 1)
5470 return TYPE_VECTOR_SUBPARTS (type
);
5474 case FIXED_POINT_TYPE
:
5479 case REFERENCE_TYPE
:
5495 /* Helper for categorize_ctor_elements. Identical interface. */
5498 categorize_ctor_elements_1 (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
5499 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
5501 unsigned HOST_WIDE_INT idx
;
5502 HOST_WIDE_INT nz_elts
, init_elts
, num_fields
;
5503 tree value
, purpose
, elt_type
;
5505 /* Whether CTOR is a valid constant initializer, in accordance with what
5506 initializer_constant_valid_p does. If inferred from the constructor
5507 elements, true until proven otherwise. */
5508 bool const_from_elts_p
= constructor_static_from_elts_p (ctor
);
5509 bool const_p
= const_from_elts_p
? true : TREE_STATIC (ctor
);
5514 elt_type
= NULL_TREE
;
5516 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), idx
, purpose
, value
)
5518 HOST_WIDE_INT mult
= 1;
5520 if (purpose
&& TREE_CODE (purpose
) == RANGE_EXPR
)
5522 tree lo_index
= TREE_OPERAND (purpose
, 0);
5523 tree hi_index
= TREE_OPERAND (purpose
, 1);
5525 if (host_integerp (lo_index
, 1) && host_integerp (hi_index
, 1))
5526 mult
= (tree_low_cst (hi_index
, 1)
5527 - tree_low_cst (lo_index
, 1) + 1);
5530 elt_type
= TREE_TYPE (value
);
5532 switch (TREE_CODE (value
))
5536 HOST_WIDE_INT nz
= 0, ic
= 0;
5538 bool const_elt_p
= categorize_ctor_elements_1 (value
, &nz
, &ic
,
5541 nz_elts
+= mult
* nz
;
5542 init_elts
+= mult
* ic
;
5544 if (const_from_elts_p
&& const_p
)
5545 const_p
= const_elt_p
;
5552 if (!initializer_zerop (value
))
5558 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
5559 init_elts
+= mult
* TREE_STRING_LENGTH (value
);
5563 if (!initializer_zerop (TREE_REALPART (value
)))
5565 if (!initializer_zerop (TREE_IMAGPART (value
)))
5573 for (i
= 0; i
< VECTOR_CST_NELTS (value
); ++i
)
5575 tree v
= VECTOR_CST_ELT (value
, i
);
5576 if (!initializer_zerop (v
))
5585 HOST_WIDE_INT tc
= count_type_elements (elt_type
, false);
5586 nz_elts
+= mult
* tc
;
5587 init_elts
+= mult
* tc
;
5589 if (const_from_elts_p
&& const_p
)
5590 const_p
= initializer_constant_valid_p (value
, elt_type
)
5597 if (*p_complete
&& !complete_ctor_at_level_p (TREE_TYPE (ctor
),
5598 num_fields
, elt_type
))
5599 *p_complete
= false;
5601 *p_nz_elts
+= nz_elts
;
5602 *p_init_elts
+= init_elts
;
5607 /* Examine CTOR to discover:
5608 * how many scalar fields are set to nonzero values,
5609 and place it in *P_NZ_ELTS;
5610 * how many scalar fields in total are in CTOR,
5611 and place it in *P_ELT_COUNT.
5612 * whether the constructor is complete -- in the sense that every
5613 meaningful byte is explicitly given a value --
5614 and place it in *P_COMPLETE.
5616 Return whether or not CTOR is a valid static constant initializer, the same
5617 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5620 categorize_ctor_elements (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
5621 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
5627 return categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_init_elts
, p_complete
);
5630 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
5631 of which had type LAST_TYPE. Each element was itself a complete
5632 initializer, in the sense that every meaningful byte was explicitly
5633 given a value. Return true if the same is true for the constructor
5637 complete_ctor_at_level_p (const_tree type
, HOST_WIDE_INT num_elts
,
5638 const_tree last_type
)
5640 if (TREE_CODE (type
) == UNION_TYPE
5641 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5646 gcc_assert (num_elts
== 1 && last_type
);
5648 /* ??? We could look at each element of the union, and find the
5649 largest element. Which would avoid comparing the size of the
5650 initialized element against any tail padding in the union.
5651 Doesn't seem worth the effort... */
5652 return simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (last_type
)) == 1;
5655 return count_type_elements (type
, true) == num_elts
;
5658 /* Return 1 if EXP contains mostly (3/4) zeros. */
5661 mostly_zeros_p (const_tree exp
)
5663 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5665 HOST_WIDE_INT nz_elts
, init_elts
;
5668 categorize_ctor_elements (exp
, &nz_elts
, &init_elts
, &complete_p
);
5669 return !complete_p
|| nz_elts
< init_elts
/ 4;
5672 return initializer_zerop (exp
);
5675 /* Return 1 if EXP contains all zeros. */
5678 all_zeros_p (const_tree exp
)
5680 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5682 HOST_WIDE_INT nz_elts
, init_elts
;
5685 categorize_ctor_elements (exp
, &nz_elts
, &init_elts
, &complete_p
);
5686 return nz_elts
== 0;
5689 return initializer_zerop (exp
);
5692 /* Helper function for store_constructor.
5693 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5694 CLEARED is as for store_constructor.
5695 ALIAS_SET is the alias set to use for any stores.
5697 This provides a recursive shortcut back to store_constructor when it isn't
5698 necessary to go through store_field. This is so that we can pass through
5699 the cleared field to let store_constructor know that we may not have to
5700 clear a substructure if the outer structure has already been cleared. */
5703 store_constructor_field (rtx target
, unsigned HOST_WIDE_INT bitsize
,
5704 HOST_WIDE_INT bitpos
, enum machine_mode mode
,
5705 tree exp
, int cleared
, alias_set_type alias_set
)
5707 if (TREE_CODE (exp
) == CONSTRUCTOR
5708 /* We can only call store_constructor recursively if the size and
5709 bit position are on a byte boundary. */
5710 && bitpos
% BITS_PER_UNIT
== 0
5711 && (bitsize
> 0 && bitsize
% BITS_PER_UNIT
== 0)
5712 /* If we have a nonzero bitpos for a register target, then we just
5713 let store_field do the bitfield handling. This is unlikely to
5714 generate unnecessary clear instructions anyways. */
5715 && (bitpos
== 0 || MEM_P (target
)))
5719 = adjust_address (target
,
5720 GET_MODE (target
) == BLKmode
5722 % GET_MODE_ALIGNMENT (GET_MODE (target
)))
5723 ? BLKmode
: VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5726 /* Update the alias set, if required. */
5727 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
5728 && MEM_ALIAS_SET (target
) != 0)
5730 target
= copy_rtx (target
);
5731 set_mem_alias_set (target
, alias_set
);
5734 store_constructor (exp
, target
, cleared
, bitsize
/ BITS_PER_UNIT
);
5737 store_field (target
, bitsize
, bitpos
, 0, 0, mode
, exp
, alias_set
, false);
5740 /* Store the value of constructor EXP into the rtx TARGET.
5741 TARGET is either a REG or a MEM; we know it cannot conflict, since
5742 safe_from_p has been called.
5743 CLEARED is true if TARGET is known to have been zero'd.
5744 SIZE is the number of bytes of TARGET we are allowed to modify: this
5745 may not be the same as the size of EXP if we are assigning to a field
5746 which has been packed to exclude padding bits. */
5749 store_constructor (tree exp
, rtx target
, int cleared
, HOST_WIDE_INT size
)
5751 tree type
= TREE_TYPE (exp
);
5752 #ifdef WORD_REGISTER_OPERATIONS
5753 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
5756 switch (TREE_CODE (type
))
5760 case QUAL_UNION_TYPE
:
5762 unsigned HOST_WIDE_INT idx
;
5765 /* If size is zero or the target is already cleared, do nothing. */
5766 if (size
== 0 || cleared
)
5768 /* We either clear the aggregate or indicate the value is dead. */
5769 else if ((TREE_CODE (type
) == UNION_TYPE
5770 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5771 && ! CONSTRUCTOR_ELTS (exp
))
5772 /* If the constructor is empty, clear the union. */
5774 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
5778 /* If we are building a static constructor into a register,
5779 set the initial value as zero so we can fold the value into
5780 a constant. But if more than one register is involved,
5781 this probably loses. */
5782 else if (REG_P (target
) && TREE_STATIC (exp
)
5783 && GET_MODE_SIZE (GET_MODE (target
)) <= UNITS_PER_WORD
)
5785 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5789 /* If the constructor has fewer fields than the structure or
5790 if we are initializing the structure to mostly zeros, clear
5791 the whole structure first. Don't do this if TARGET is a
5792 register whose mode size isn't equal to SIZE since
5793 clear_storage can't handle this case. */
5795 && (((int)vec_safe_length (CONSTRUCTOR_ELTS (exp
))
5796 != fields_length (type
))
5797 || mostly_zeros_p (exp
))
5799 || ((HOST_WIDE_INT
) GET_MODE_SIZE (GET_MODE (target
))
5802 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
5806 if (REG_P (target
) && !cleared
)
5807 emit_clobber (target
);
5809 /* Store each element of the constructor into the
5810 corresponding field of TARGET. */
5811 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, field
, value
)
5813 enum machine_mode mode
;
5814 HOST_WIDE_INT bitsize
;
5815 HOST_WIDE_INT bitpos
= 0;
5817 rtx to_rtx
= target
;
5819 /* Just ignore missing fields. We cleared the whole
5820 structure, above, if any fields are missing. */
5824 if (cleared
&& initializer_zerop (value
))
5827 if (host_integerp (DECL_SIZE (field
), 1))
5828 bitsize
= tree_low_cst (DECL_SIZE (field
), 1);
5832 mode
= DECL_MODE (field
);
5833 if (DECL_BIT_FIELD (field
))
5836 offset
= DECL_FIELD_OFFSET (field
);
5837 if (host_integerp (offset
, 0)
5838 && host_integerp (bit_position (field
), 0))
5840 bitpos
= int_bit_position (field
);
5844 bitpos
= tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 0);
5848 enum machine_mode address_mode
;
5852 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset
,
5853 make_tree (TREE_TYPE (exp
),
5856 offset_rtx
= expand_normal (offset
);
5857 gcc_assert (MEM_P (to_rtx
));
5859 address_mode
= get_address_mode (to_rtx
);
5860 if (GET_MODE (offset_rtx
) != address_mode
)
5861 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
5863 to_rtx
= offset_address (to_rtx
, offset_rtx
,
5864 highest_pow2_factor (offset
));
5867 #ifdef WORD_REGISTER_OPERATIONS
5868 /* If this initializes a field that is smaller than a
5869 word, at the start of a word, try to widen it to a full
5870 word. This special case allows us to output C++ member
5871 function initializations in a form that the optimizers
5874 && bitsize
< BITS_PER_WORD
5875 && bitpos
% BITS_PER_WORD
== 0
5876 && GET_MODE_CLASS (mode
) == MODE_INT
5877 && TREE_CODE (value
) == INTEGER_CST
5879 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
5881 tree type
= TREE_TYPE (value
);
5883 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
5885 type
= lang_hooks
.types
.type_for_mode
5886 (word_mode
, TYPE_UNSIGNED (type
));
5887 value
= fold_convert (type
, value
);
5890 if (BYTES_BIG_ENDIAN
)
5892 = fold_build2 (LSHIFT_EXPR
, type
, value
,
5893 build_int_cst (type
,
5894 BITS_PER_WORD
- bitsize
));
5895 bitsize
= BITS_PER_WORD
;
5900 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
5901 && DECL_NONADDRESSABLE_P (field
))
5903 to_rtx
= copy_rtx (to_rtx
);
5904 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
5907 store_constructor_field (to_rtx
, bitsize
, bitpos
, mode
,
5909 get_alias_set (TREE_TYPE (field
)));
5916 unsigned HOST_WIDE_INT i
;
5919 tree elttype
= TREE_TYPE (type
);
5921 HOST_WIDE_INT minelt
= 0;
5922 HOST_WIDE_INT maxelt
= 0;
5924 domain
= TYPE_DOMAIN (type
);
5925 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
5926 && TYPE_MAX_VALUE (domain
)
5927 && host_integerp (TYPE_MIN_VALUE (domain
), 0)
5928 && host_integerp (TYPE_MAX_VALUE (domain
), 0));
5930 /* If we have constant bounds for the range of the type, get them. */
5933 minelt
= tree_low_cst (TYPE_MIN_VALUE (domain
), 0);
5934 maxelt
= tree_low_cst (TYPE_MAX_VALUE (domain
), 0);
5937 /* If the constructor has fewer elements than the array, clear
5938 the whole array first. Similarly if this is static
5939 constructor of a non-BLKmode object. */
5942 else if (REG_P (target
) && TREE_STATIC (exp
))
5946 unsigned HOST_WIDE_INT idx
;
5948 HOST_WIDE_INT count
= 0, zero_count
= 0;
5949 need_to_clear
= ! const_bounds_p
;
5951 /* This loop is a more accurate version of the loop in
5952 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5953 is also needed to check for missing elements. */
5954 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, index
, value
)
5956 HOST_WIDE_INT this_node_count
;
5961 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
5963 tree lo_index
= TREE_OPERAND (index
, 0);
5964 tree hi_index
= TREE_OPERAND (index
, 1);
5966 if (! host_integerp (lo_index
, 1)
5967 || ! host_integerp (hi_index
, 1))
5973 this_node_count
= (tree_low_cst (hi_index
, 1)
5974 - tree_low_cst (lo_index
, 1) + 1);
5977 this_node_count
= 1;
5979 count
+= this_node_count
;
5980 if (mostly_zeros_p (value
))
5981 zero_count
+= this_node_count
;
5984 /* Clear the entire array first if there are any missing
5985 elements, or if the incidence of zero elements is >=
5988 && (count
< maxelt
- minelt
+ 1
5989 || 4 * zero_count
>= 3 * count
))
5993 if (need_to_clear
&& size
> 0)
5996 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5998 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6002 if (!cleared
&& REG_P (target
))
6003 /* Inform later passes that the old value is dead. */
6004 emit_clobber (target
);
6006 /* Store each element of the constructor into the
6007 corresponding element of TARGET, determined by counting the
6009 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), i
, index
, value
)
6011 enum machine_mode mode
;
6012 HOST_WIDE_INT bitsize
;
6013 HOST_WIDE_INT bitpos
;
6014 rtx xtarget
= target
;
6016 if (cleared
&& initializer_zerop (value
))
6019 mode
= TYPE_MODE (elttype
);
6020 if (mode
== BLKmode
)
6021 bitsize
= (host_integerp (TYPE_SIZE (elttype
), 1)
6022 ? tree_low_cst (TYPE_SIZE (elttype
), 1)
6025 bitsize
= GET_MODE_BITSIZE (mode
);
6027 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
6029 tree lo_index
= TREE_OPERAND (index
, 0);
6030 tree hi_index
= TREE_OPERAND (index
, 1);
6031 rtx index_r
, pos_rtx
;
6032 HOST_WIDE_INT lo
, hi
, count
;
6035 /* If the range is constant and "small", unroll the loop. */
6037 && host_integerp (lo_index
, 0)
6038 && host_integerp (hi_index
, 0)
6039 && (lo
= tree_low_cst (lo_index
, 0),
6040 hi
= tree_low_cst (hi_index
, 0),
6041 count
= hi
- lo
+ 1,
6044 || (host_integerp (TYPE_SIZE (elttype
), 1)
6045 && (tree_low_cst (TYPE_SIZE (elttype
), 1) * count
6048 lo
-= minelt
; hi
-= minelt
;
6049 for (; lo
<= hi
; lo
++)
6051 bitpos
= lo
* tree_low_cst (TYPE_SIZE (elttype
), 0);
6054 && !MEM_KEEP_ALIAS_SET_P (target
)
6055 && TREE_CODE (type
) == ARRAY_TYPE
6056 && TYPE_NONALIASED_COMPONENT (type
))
6058 target
= copy_rtx (target
);
6059 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6062 store_constructor_field
6063 (target
, bitsize
, bitpos
, mode
, value
, cleared
,
6064 get_alias_set (elttype
));
6069 rtx loop_start
= gen_label_rtx ();
6070 rtx loop_end
= gen_label_rtx ();
6073 expand_normal (hi_index
);
6075 index
= build_decl (EXPR_LOCATION (exp
),
6076 VAR_DECL
, NULL_TREE
, domain
);
6077 index_r
= gen_reg_rtx (promote_decl_mode (index
, NULL
));
6078 SET_DECL_RTL (index
, index_r
);
6079 store_expr (lo_index
, index_r
, 0, false);
6081 /* Build the head of the loop. */
6082 do_pending_stack_adjust ();
6083 emit_label (loop_start
);
6085 /* Assign value to element index. */
6087 fold_convert (ssizetype
,
6088 fold_build2 (MINUS_EXPR
,
6091 TYPE_MIN_VALUE (domain
)));
6094 size_binop (MULT_EXPR
, position
,
6095 fold_convert (ssizetype
,
6096 TYPE_SIZE_UNIT (elttype
)));
6098 pos_rtx
= expand_normal (position
);
6099 xtarget
= offset_address (target
, pos_rtx
,
6100 highest_pow2_factor (position
));
6101 xtarget
= adjust_address (xtarget
, mode
, 0);
6102 if (TREE_CODE (value
) == CONSTRUCTOR
)
6103 store_constructor (value
, xtarget
, cleared
,
6104 bitsize
/ BITS_PER_UNIT
);
6106 store_expr (value
, xtarget
, 0, false);
6108 /* Generate a conditional jump to exit the loop. */
6109 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
6111 jumpif (exit_cond
, loop_end
, -1);
6113 /* Update the loop counter, and jump to the head of
6115 expand_assignment (index
,
6116 build2 (PLUS_EXPR
, TREE_TYPE (index
),
6117 index
, integer_one_node
),
6120 emit_jump (loop_start
);
6122 /* Build the end of the loop. */
6123 emit_label (loop_end
);
6126 else if ((index
!= 0 && ! host_integerp (index
, 0))
6127 || ! host_integerp (TYPE_SIZE (elttype
), 1))
6132 index
= ssize_int (1);
6135 index
= fold_convert (ssizetype
,
6136 fold_build2 (MINUS_EXPR
,
6139 TYPE_MIN_VALUE (domain
)));
6142 size_binop (MULT_EXPR
, index
,
6143 fold_convert (ssizetype
,
6144 TYPE_SIZE_UNIT (elttype
)));
6145 xtarget
= offset_address (target
,
6146 expand_normal (position
),
6147 highest_pow2_factor (position
));
6148 xtarget
= adjust_address (xtarget
, mode
, 0);
6149 store_expr (value
, xtarget
, 0, false);
6154 bitpos
= ((tree_low_cst (index
, 0) - minelt
)
6155 * tree_low_cst (TYPE_SIZE (elttype
), 1));
6157 bitpos
= (i
* tree_low_cst (TYPE_SIZE (elttype
), 1));
6159 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
6160 && TREE_CODE (type
) == ARRAY_TYPE
6161 && TYPE_NONALIASED_COMPONENT (type
))
6163 target
= copy_rtx (target
);
6164 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6166 store_constructor_field (target
, bitsize
, bitpos
, mode
, value
,
6167 cleared
, get_alias_set (elttype
));
6175 unsigned HOST_WIDE_INT idx
;
6176 constructor_elt
*ce
;
6179 int icode
= CODE_FOR_nothing
;
6180 tree elttype
= TREE_TYPE (type
);
6181 int elt_size
= tree_low_cst (TYPE_SIZE (elttype
), 1);
6182 enum machine_mode eltmode
= TYPE_MODE (elttype
);
6183 HOST_WIDE_INT bitsize
;
6184 HOST_WIDE_INT bitpos
;
6185 rtvec vector
= NULL
;
6187 alias_set_type alias
;
6189 gcc_assert (eltmode
!= BLKmode
);
6191 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
6192 if (REG_P (target
) && VECTOR_MODE_P (GET_MODE (target
)))
6194 enum machine_mode mode
= GET_MODE (target
);
6196 icode
= (int) optab_handler (vec_init_optab
, mode
);
6197 if (icode
!= CODE_FOR_nothing
)
6201 vector
= rtvec_alloc (n_elts
);
6202 for (i
= 0; i
< n_elts
; i
++)
6203 RTVEC_ELT (vector
, i
) = CONST0_RTX (GET_MODE_INNER (mode
));
6207 /* If the constructor has fewer elements than the vector,
6208 clear the whole array first. Similarly if this is static
6209 constructor of a non-BLKmode object. */
6212 else if (REG_P (target
) && TREE_STATIC (exp
))
6216 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
6219 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
6221 int n_elts_here
= tree_low_cst
6222 (int_const_binop (TRUNC_DIV_EXPR
,
6223 TYPE_SIZE (TREE_TYPE (value
)),
6224 TYPE_SIZE (elttype
)), 1);
6226 count
+= n_elts_here
;
6227 if (mostly_zeros_p (value
))
6228 zero_count
+= n_elts_here
;
6231 /* Clear the entire vector first if there are any missing elements,
6232 or if the incidence of zero elements is >= 75%. */
6233 need_to_clear
= (count
< n_elts
|| 4 * zero_count
>= 3 * count
);
6236 if (need_to_clear
&& size
> 0 && !vector
)
6239 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6241 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6245 /* Inform later passes that the old value is dead. */
6246 if (!cleared
&& !vector
&& REG_P (target
))
6247 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6250 alias
= MEM_ALIAS_SET (target
);
6252 alias
= get_alias_set (elttype
);
6254 /* Store each element of the constructor into the corresponding
6255 element of TARGET, determined by counting the elements. */
6256 for (idx
= 0, i
= 0;
6257 vec_safe_iterate (CONSTRUCTOR_ELTS (exp
), idx
, &ce
);
6258 idx
++, i
+= bitsize
/ elt_size
)
6260 HOST_WIDE_INT eltpos
;
6261 tree value
= ce
->value
;
6263 bitsize
= tree_low_cst (TYPE_SIZE (TREE_TYPE (value
)), 1);
6264 if (cleared
&& initializer_zerop (value
))
6268 eltpos
= tree_low_cst (ce
->index
, 1);
6274 /* Vector CONSTRUCTORs should only be built from smaller
6275 vectors in the case of BLKmode vectors. */
6276 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
6277 RTVEC_ELT (vector
, eltpos
)
6278 = expand_normal (value
);
6282 enum machine_mode value_mode
=
6283 TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
6284 ? TYPE_MODE (TREE_TYPE (value
))
6286 bitpos
= eltpos
* elt_size
;
6287 store_constructor_field (target
, bitsize
, bitpos
, value_mode
,
6288 value
, cleared
, alias
);
6293 emit_insn (GEN_FCN (icode
)
6295 gen_rtx_PARALLEL (GET_MODE (target
), vector
)));
6304 /* Store the value of EXP (an expression tree)
6305 into a subfield of TARGET which has mode MODE and occupies
6306 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6307 If MODE is VOIDmode, it means that we are storing into a bit-field.
6309 BITREGION_START is bitpos of the first bitfield in this region.
6310 BITREGION_END is the bitpos of the ending bitfield in this region.
6311 These two fields are 0, if the C++ memory model does not apply,
6312 or we are not interested in keeping track of bitfield regions.
6314 Always return const0_rtx unless we have something particular to
6317 ALIAS_SET is the alias set for the destination. This value will
6318 (in general) be different from that for TARGET, since TARGET is a
6319 reference to the containing structure.
6321 If NONTEMPORAL is true, try generating a nontemporal store. */
6324 store_field (rtx target
, HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
6325 unsigned HOST_WIDE_INT bitregion_start
,
6326 unsigned HOST_WIDE_INT bitregion_end
,
6327 enum machine_mode mode
, tree exp
,
6328 alias_set_type alias_set
, bool nontemporal
)
6330 if (TREE_CODE (exp
) == ERROR_MARK
)
6333 /* If we have nothing to store, do nothing unless the expression has
6336 return expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
6338 if (GET_CODE (target
) == CONCAT
)
6340 /* We're storing into a struct containing a single __complex. */
6342 gcc_assert (!bitpos
);
6343 return store_expr (exp
, target
, 0, nontemporal
);
6346 /* If the structure is in a register or if the component
6347 is a bit field, we cannot use addressing to access it.
6348 Use bit-field techniques or SUBREG to store in it. */
6350 if (mode
== VOIDmode
6351 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
6352 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
6353 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
6355 || GET_CODE (target
) == SUBREG
6356 /* If the field isn't aligned enough to store as an ordinary memref,
6357 store it as a bit field. */
6359 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
6360 || bitpos
% GET_MODE_ALIGNMENT (mode
))
6361 && SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
)))
6362 || (bitpos
% BITS_PER_UNIT
!= 0)))
6363 || (bitsize
>= 0 && mode
!= BLKmode
6364 && GET_MODE_BITSIZE (mode
) > bitsize
)
6365 /* If the RHS and field are a constant size and the size of the
6366 RHS isn't the same size as the bitfield, we must use bitfield
6369 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
6370 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) != 0)
6371 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6372 decl we must use bitfield operations. */
6374 && TREE_CODE (exp
) == MEM_REF
6375 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
6376 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
6377 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp
, 0),0 ))
6378 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)) != BLKmode
))
6383 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6384 implies a mask operation. If the precision is the same size as
6385 the field we're storing into, that mask is redundant. This is
6386 particularly common with bit field assignments generated by the
6388 nop_def
= get_def_for_expr (exp
, NOP_EXPR
);
6391 tree type
= TREE_TYPE (exp
);
6392 if (INTEGRAL_TYPE_P (type
)
6393 && TYPE_PRECISION (type
) < GET_MODE_BITSIZE (TYPE_MODE (type
))
6394 && bitsize
== TYPE_PRECISION (type
))
6396 tree op
= gimple_assign_rhs1 (nop_def
);
6397 type
= TREE_TYPE (op
);
6398 if (INTEGRAL_TYPE_P (type
) && TYPE_PRECISION (type
) >= bitsize
)
6403 temp
= expand_normal (exp
);
6405 /* If BITSIZE is narrower than the size of the type of EXP
6406 we will be narrowing TEMP. Normally, what's wanted are the
6407 low-order bits. However, if EXP's type is a record and this is
6408 big-endian machine, we want the upper BITSIZE bits. */
6409 if (BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (temp
)) == MODE_INT
6410 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (temp
))
6411 && TREE_CODE (TREE_TYPE (exp
)) == RECORD_TYPE
)
6412 temp
= expand_shift (RSHIFT_EXPR
, GET_MODE (temp
), temp
,
6413 GET_MODE_BITSIZE (GET_MODE (temp
)) - bitsize
,
6416 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
6417 if (mode
!= VOIDmode
&& mode
!= BLKmode
6418 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
6419 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
6421 /* If the modes of TEMP and TARGET are both BLKmode, both
6422 must be in memory and BITPOS must be aligned on a byte
6423 boundary. If so, we simply do a block copy. Likewise
6424 for a BLKmode-like TARGET. */
6425 if (GET_MODE (temp
) == BLKmode
6426 && (GET_MODE (target
) == BLKmode
6428 && GET_MODE_CLASS (GET_MODE (target
)) == MODE_INT
6429 && (bitpos
% BITS_PER_UNIT
) == 0
6430 && (bitsize
% BITS_PER_UNIT
) == 0)))
6432 gcc_assert (MEM_P (target
) && MEM_P (temp
)
6433 && (bitpos
% BITS_PER_UNIT
) == 0);
6435 target
= adjust_address (target
, VOIDmode
, bitpos
/ BITS_PER_UNIT
);
6436 emit_block_move (target
, temp
,
6437 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
6444 /* Handle calls that return values in multiple non-contiguous locations.
6445 The Irix 6 ABI has examples of this. */
6446 if (GET_CODE (temp
) == PARALLEL
)
6448 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (exp
));
6450 if (mode
== BLKmode
)
6451 mode
= smallest_mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
);
6452 temp_target
= gen_reg_rtx (mode
);
6453 emit_group_store (temp_target
, temp
, TREE_TYPE (exp
), size
);
6456 else if (mode
== BLKmode
)
6458 /* Handle calls that return BLKmode values in registers. */
6459 if (REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
6461 rtx temp_target
= gen_reg_rtx (GET_MODE (temp
));
6462 copy_blkmode_from_reg (temp_target
, temp
, TREE_TYPE (exp
));
6467 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (exp
));
6469 mode
= smallest_mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
);
6470 temp_target
= gen_reg_rtx (mode
);
6472 = extract_bit_field (temp
, size
* BITS_PER_UNIT
, 0, 1,
6473 false, temp_target
, mode
, mode
);
6478 /* Store the value in the bitfield. */
6479 store_bit_field (target
, bitsize
, bitpos
,
6480 bitregion_start
, bitregion_end
,
6487 /* Now build a reference to just the desired component. */
6488 rtx to_rtx
= adjust_address (target
, mode
, bitpos
/ BITS_PER_UNIT
);
6490 if (to_rtx
== target
)
6491 to_rtx
= copy_rtx (to_rtx
);
6493 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
6494 set_mem_alias_set (to_rtx
, alias_set
);
6496 return store_expr (exp
, to_rtx
, 0, nontemporal
);
6500 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6501 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6502 codes and find the ultimate containing object, which we return.
6504 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6505 bit position, and *PUNSIGNEDP to the signedness of the field.
6506 If the position of the field is variable, we store a tree
6507 giving the variable offset (in units) in *POFFSET.
6508 This offset is in addition to the bit position.
6509 If the position is not variable, we store 0 in *POFFSET.
6511 If any of the extraction expressions is volatile,
6512 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6514 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6515 Otherwise, it is a mode that can be used to access the field.
6517 If the field describes a variable-sized object, *PMODE is set to
6518 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6519 this case, but the address of the object can be found.
6521 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
6522 look through nodes that serve as markers of a greater alignment than
6523 the one that can be deduced from the expression. These nodes make it
6524 possible for front-ends to prevent temporaries from being created by
6525 the middle-end on alignment considerations. For that purpose, the
6526 normal operating mode at high-level is to always pass FALSE so that
6527 the ultimate containing object is really returned; moreover, the
6528 associated predicate handled_component_p will always return TRUE
6529 on these nodes, thus indicating that they are essentially handled
6530 by get_inner_reference. TRUE should only be passed when the caller
6531 is scanning the expression in order to build another representation
6532 and specifically knows how to handle these nodes; as such, this is
6533 the normal operating mode in the RTL expanders. */
6536 get_inner_reference (tree exp
, HOST_WIDE_INT
*pbitsize
,
6537 HOST_WIDE_INT
*pbitpos
, tree
*poffset
,
6538 enum machine_mode
*pmode
, int *punsignedp
,
6539 int *pvolatilep
, bool keep_aligning
)
6542 enum machine_mode mode
= VOIDmode
;
6543 bool blkmode_bitfield
= false;
6544 tree offset
= size_zero_node
;
6545 double_int bit_offset
= double_int_zero
;
6547 /* First get the mode, signedness, and size. We do this from just the
6548 outermost expression. */
6550 if (TREE_CODE (exp
) == COMPONENT_REF
)
6552 tree field
= TREE_OPERAND (exp
, 1);
6553 size_tree
= DECL_SIZE (field
);
6554 if (!DECL_BIT_FIELD (field
))
6555 mode
= DECL_MODE (field
);
6556 else if (DECL_MODE (field
) == BLKmode
)
6557 blkmode_bitfield
= true;
6558 else if (TREE_THIS_VOLATILE (exp
)
6559 && flag_strict_volatile_bitfields
> 0)
6560 /* Volatile bitfields should be accessed in the mode of the
6561 field's type, not the mode computed based on the bit
6563 mode
= TYPE_MODE (DECL_BIT_FIELD_TYPE (field
));
6565 *punsignedp
= DECL_UNSIGNED (field
);
6567 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
6569 size_tree
= TREE_OPERAND (exp
, 1);
6570 *punsignedp
= (! INTEGRAL_TYPE_P (TREE_TYPE (exp
))
6571 || TYPE_UNSIGNED (TREE_TYPE (exp
)));
6573 /* For vector types, with the correct size of access, use the mode of
6575 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == VECTOR_TYPE
6576 && TREE_TYPE (exp
) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6577 && tree_int_cst_equal (size_tree
, TYPE_SIZE (TREE_TYPE (exp
))))
6578 mode
= TYPE_MODE (TREE_TYPE (exp
));
6582 mode
= TYPE_MODE (TREE_TYPE (exp
));
6583 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
6585 if (mode
== BLKmode
)
6586 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
6588 *pbitsize
= GET_MODE_BITSIZE (mode
);
6593 if (! host_integerp (size_tree
, 1))
6594 mode
= BLKmode
, *pbitsize
= -1;
6596 *pbitsize
= tree_low_cst (size_tree
, 1);
6599 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6600 and find the ultimate containing object. */
6603 switch (TREE_CODE (exp
))
6606 bit_offset
+= tree_to_double_int (TREE_OPERAND (exp
, 2));
6611 tree field
= TREE_OPERAND (exp
, 1);
6612 tree this_offset
= component_ref_field_offset (exp
);
6614 /* If this field hasn't been filled in yet, don't go past it.
6615 This should only happen when folding expressions made during
6616 type construction. */
6617 if (this_offset
== 0)
6620 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
6621 bit_offset
+= tree_to_double_int (DECL_FIELD_BIT_OFFSET (field
));
6623 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6628 case ARRAY_RANGE_REF
:
6630 tree index
= TREE_OPERAND (exp
, 1);
6631 tree low_bound
= array_ref_low_bound (exp
);
6632 tree unit_size
= array_ref_element_size (exp
);
6634 /* We assume all arrays have sizes that are a multiple of a byte.
6635 First subtract the lower bound, if any, in the type of the
6636 index, then convert to sizetype and multiply by the size of
6637 the array element. */
6638 if (! integer_zerop (low_bound
))
6639 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
6642 offset
= size_binop (PLUS_EXPR
, offset
,
6643 size_binop (MULT_EXPR
,
6644 fold_convert (sizetype
, index
),
6653 bit_offset
+= double_int::from_uhwi (*pbitsize
);
6656 case VIEW_CONVERT_EXPR
:
6657 if (keep_aligning
&& STRICT_ALIGNMENT
6658 && (TYPE_ALIGN (TREE_TYPE (exp
))
6659 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0))))
6660 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6661 < BIGGEST_ALIGNMENT
)
6662 && (TYPE_ALIGN_OK (TREE_TYPE (exp
))
6663 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
6668 /* Hand back the decl for MEM[&decl, off]. */
6669 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
)
6671 tree off
= TREE_OPERAND (exp
, 1);
6672 if (!integer_zerop (off
))
6674 double_int boff
, coff
= mem_ref_offset (exp
);
6675 boff
= coff
.lshift (BITS_PER_UNIT
== 8
6676 ? 3 : exact_log2 (BITS_PER_UNIT
));
6679 exp
= TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
6687 /* If any reference in the chain is volatile, the effect is volatile. */
6688 if (TREE_THIS_VOLATILE (exp
))
6691 exp
= TREE_OPERAND (exp
, 0);
6695 /* If OFFSET is constant, see if we can return the whole thing as a
6696 constant bit position. Make sure to handle overflow during
6698 if (TREE_CODE (offset
) == INTEGER_CST
)
6700 double_int tem
= tree_to_double_int (offset
);
6701 tem
= tem
.sext (TYPE_PRECISION (sizetype
));
6702 tem
= tem
.lshift (BITS_PER_UNIT
== 8 ? 3 : exact_log2 (BITS_PER_UNIT
));
6704 if (tem
.fits_shwi ())
6706 *pbitpos
= tem
.to_shwi ();
6707 *poffset
= offset
= NULL_TREE
;
6711 /* Otherwise, split it up. */
6714 /* Avoid returning a negative bitpos as this may wreak havoc later. */
6715 if (bit_offset
.is_negative ())
6718 = double_int::mask (BITS_PER_UNIT
== 8
6719 ? 3 : exact_log2 (BITS_PER_UNIT
));
6720 double_int tem
= bit_offset
.and_not (mask
);
6721 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
6722 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
6724 tem
= tem
.arshift (BITS_PER_UNIT
== 8
6725 ? 3 : exact_log2 (BITS_PER_UNIT
),
6726 HOST_BITS_PER_DOUBLE_INT
);
6727 offset
= size_binop (PLUS_EXPR
, offset
,
6728 double_int_to_tree (sizetype
, tem
));
6731 *pbitpos
= bit_offset
.to_shwi ();
6735 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6736 if (mode
== VOIDmode
6738 && (*pbitpos
% BITS_PER_UNIT
) == 0
6739 && (*pbitsize
% BITS_PER_UNIT
) == 0)
6747 /* Return a tree of sizetype representing the size, in bytes, of the element
6748 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6751 array_ref_element_size (tree exp
)
6753 tree aligned_size
= TREE_OPERAND (exp
, 3);
6754 tree elmt_type
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6755 location_t loc
= EXPR_LOCATION (exp
);
6757 /* If a size was specified in the ARRAY_REF, it's the size measured
6758 in alignment units of the element type. So multiply by that value. */
6761 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6762 sizetype from another type of the same width and signedness. */
6763 if (TREE_TYPE (aligned_size
) != sizetype
)
6764 aligned_size
= fold_convert_loc (loc
, sizetype
, aligned_size
);
6765 return size_binop_loc (loc
, MULT_EXPR
, aligned_size
,
6766 size_int (TYPE_ALIGN_UNIT (elmt_type
)));
6769 /* Otherwise, take the size from that of the element type. Substitute
6770 any PLACEHOLDER_EXPR that we have. */
6772 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type
), exp
);
6775 /* Return a tree representing the lower bound of the array mentioned in
6776 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6779 array_ref_low_bound (tree exp
)
6781 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6783 /* If a lower bound is specified in EXP, use it. */
6784 if (TREE_OPERAND (exp
, 2))
6785 return TREE_OPERAND (exp
, 2);
6787 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6788 substituting for a PLACEHOLDER_EXPR as needed. */
6789 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
6790 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type
), exp
);
6792 /* Otherwise, return a zero of the appropriate type. */
6793 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp
, 1)), 0);
6796 /* Returns true if REF is an array reference to an array at the end of
6797 a structure. If this is the case, the array may be allocated larger
6798 than its upper bound implies. */
6801 array_at_struct_end_p (tree ref
)
6803 if (TREE_CODE (ref
) != ARRAY_REF
6804 && TREE_CODE (ref
) != ARRAY_RANGE_REF
)
6807 while (handled_component_p (ref
))
6809 /* If the reference chain contains a component reference to a
6810 non-union type and there follows another field the reference
6811 is not at the end of a structure. */
6812 if (TREE_CODE (ref
) == COMPONENT_REF
6813 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref
, 0))) == RECORD_TYPE
)
6815 tree nextf
= DECL_CHAIN (TREE_OPERAND (ref
, 1));
6816 while (nextf
&& TREE_CODE (nextf
) != FIELD_DECL
)
6817 nextf
= DECL_CHAIN (nextf
);
6822 ref
= TREE_OPERAND (ref
, 0);
6825 /* If the reference is based on a declared entity, the size of the array
6826 is constrained by its given domain. */
6833 /* Return a tree representing the upper bound of the array mentioned in
6834 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6837 array_ref_up_bound (tree exp
)
6839 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6841 /* If there is a domain type and it has an upper bound, use it, substituting
6842 for a PLACEHOLDER_EXPR as needed. */
6843 if (domain_type
&& TYPE_MAX_VALUE (domain_type
))
6844 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type
), exp
);
6846 /* Otherwise fail. */
6850 /* Return a tree representing the offset, in bytes, of the field referenced
6851 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6854 component_ref_field_offset (tree exp
)
6856 tree aligned_offset
= TREE_OPERAND (exp
, 2);
6857 tree field
= TREE_OPERAND (exp
, 1);
6858 location_t loc
= EXPR_LOCATION (exp
);
6860 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6861 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6865 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6866 sizetype from another type of the same width and signedness. */
6867 if (TREE_TYPE (aligned_offset
) != sizetype
)
6868 aligned_offset
= fold_convert_loc (loc
, sizetype
, aligned_offset
);
6869 return size_binop_loc (loc
, MULT_EXPR
, aligned_offset
,
6870 size_int (DECL_OFFSET_ALIGN (field
)
6874 /* Otherwise, take the offset from that of the field. Substitute
6875 any PLACEHOLDER_EXPR that we have. */
6877 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field
), exp
);
6880 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6882 static unsigned HOST_WIDE_INT
6883 target_align (const_tree target
)
6885 /* We might have a chain of nested references with intermediate misaligning
6886 bitfields components, so need to recurse to find out. */
6888 unsigned HOST_WIDE_INT this_align
, outer_align
;
6890 switch (TREE_CODE (target
))
6896 this_align
= DECL_ALIGN (TREE_OPERAND (target
, 1));
6897 outer_align
= target_align (TREE_OPERAND (target
, 0));
6898 return MIN (this_align
, outer_align
);
6901 case ARRAY_RANGE_REF
:
6902 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
6903 outer_align
= target_align (TREE_OPERAND (target
, 0));
6904 return MIN (this_align
, outer_align
);
6907 case NON_LVALUE_EXPR
:
6908 case VIEW_CONVERT_EXPR
:
6909 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
6910 outer_align
= target_align (TREE_OPERAND (target
, 0));
6911 return MAX (this_align
, outer_align
);
6914 return TYPE_ALIGN (TREE_TYPE (target
));
6919 /* Given an rtx VALUE that may contain additions and multiplications, return
6920 an equivalent value that just refers to a register, memory, or constant.
6921 This is done by generating instructions to perform the arithmetic and
6922 returning a pseudo-register containing the value.
6924 The returned value may be a REG, SUBREG, MEM or constant. */
6927 force_operand (rtx value
, rtx target
)
6930 /* Use subtarget as the target for operand 0 of a binary operation. */
6931 rtx subtarget
= get_subtarget (target
);
6932 enum rtx_code code
= GET_CODE (value
);
6934 /* Check for subreg applied to an expression produced by loop optimizer. */
6936 && !REG_P (SUBREG_REG (value
))
6937 && !MEM_P (SUBREG_REG (value
)))
6940 = simplify_gen_subreg (GET_MODE (value
),
6941 force_reg (GET_MODE (SUBREG_REG (value
)),
6942 force_operand (SUBREG_REG (value
),
6944 GET_MODE (SUBREG_REG (value
)),
6945 SUBREG_BYTE (value
));
6946 code
= GET_CODE (value
);
6949 /* Check for a PIC address load. */
6950 if ((code
== PLUS
|| code
== MINUS
)
6951 && XEXP (value
, 0) == pic_offset_table_rtx
6952 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
6953 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
6954 || GET_CODE (XEXP (value
, 1)) == CONST
))
6957 subtarget
= gen_reg_rtx (GET_MODE (value
));
6958 emit_move_insn (subtarget
, value
);
6962 if (ARITHMETIC_P (value
))
6964 op2
= XEXP (value
, 1);
6965 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
6967 if (code
== MINUS
&& CONST_INT_P (op2
))
6970 op2
= negate_rtx (GET_MODE (value
), op2
);
6973 /* Check for an addition with OP2 a constant integer and our first
6974 operand a PLUS of a virtual register and something else. In that
6975 case, we want to emit the sum of the virtual register and the
6976 constant first and then add the other value. This allows virtual
6977 register instantiation to simply modify the constant rather than
6978 creating another one around this addition. */
6979 if (code
== PLUS
&& CONST_INT_P (op2
)
6980 && GET_CODE (XEXP (value
, 0)) == PLUS
6981 && REG_P (XEXP (XEXP (value
, 0), 0))
6982 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6983 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
6985 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
6986 XEXP (XEXP (value
, 0), 0), op2
,
6987 subtarget
, 0, OPTAB_LIB_WIDEN
);
6988 return expand_simple_binop (GET_MODE (value
), code
, temp
,
6989 force_operand (XEXP (XEXP (value
,
6991 target
, 0, OPTAB_LIB_WIDEN
);
6994 op1
= force_operand (XEXP (value
, 0), subtarget
);
6995 op2
= force_operand (op2
, NULL_RTX
);
6999 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
7001 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
7002 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7003 target
, 1, OPTAB_LIB_WIDEN
);
7005 return expand_divmod (0,
7006 FLOAT_MODE_P (GET_MODE (value
))
7007 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
7008 GET_MODE (value
), op1
, op2
, target
, 0);
7010 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7013 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
7016 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7019 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7020 target
, 0, OPTAB_LIB_WIDEN
);
7022 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7023 target
, 1, OPTAB_LIB_WIDEN
);
7026 if (UNARY_P (value
))
7029 target
= gen_reg_rtx (GET_MODE (value
));
7030 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
7037 case FLOAT_TRUNCATE
:
7038 convert_move (target
, op1
, code
== ZERO_EXTEND
);
7043 expand_fix (target
, op1
, code
== UNSIGNED_FIX
);
7047 case UNSIGNED_FLOAT
:
7048 expand_float (target
, op1
, code
== UNSIGNED_FLOAT
);
7052 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
7056 #ifdef INSN_SCHEDULING
7057 /* On machines that have insn scheduling, we want all memory reference to be
7058 explicit, so we need to deal with such paradoxical SUBREGs. */
7059 if (paradoxical_subreg_p (value
) && MEM_P (SUBREG_REG (value
)))
7061 = simplify_gen_subreg (GET_MODE (value
),
7062 force_reg (GET_MODE (SUBREG_REG (value
)),
7063 force_operand (SUBREG_REG (value
),
7065 GET_MODE (SUBREG_REG (value
)),
7066 SUBREG_BYTE (value
));
7072 /* Subroutine of expand_expr: return nonzero iff there is no way that
7073 EXP can reference X, which is being modified. TOP_P is nonzero if this
7074 call is going to be used to determine whether we need a temporary
7075 for EXP, as opposed to a recursive call to this function.
7077 It is always safe for this routine to return zero since it merely
7078 searches for optimization opportunities. */
7081 safe_from_p (const_rtx x
, tree exp
, int top_p
)
7087 /* If EXP has varying size, we MUST use a target since we currently
7088 have no way of allocating temporaries of variable size
7089 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7090 So we assume here that something at a higher level has prevented a
7091 clash. This is somewhat bogus, but the best we can do. Only
7092 do this when X is BLKmode and when we are at the top level. */
7093 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
7094 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
7095 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
7096 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
7097 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
7099 && GET_MODE (x
) == BLKmode
)
7100 /* If X is in the outgoing argument area, it is always safe. */
7102 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
7103 || (GET_CODE (XEXP (x
, 0)) == PLUS
7104 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
7107 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7108 find the underlying pseudo. */
7109 if (GET_CODE (x
) == SUBREG
)
7112 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7116 /* Now look at our tree code and possibly recurse. */
7117 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
7119 case tcc_declaration
:
7120 exp_rtl
= DECL_RTL_IF_SET (exp
);
7126 case tcc_exceptional
:
7127 if (TREE_CODE (exp
) == TREE_LIST
)
7131 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
7133 exp
= TREE_CHAIN (exp
);
7136 if (TREE_CODE (exp
) != TREE_LIST
)
7137 return safe_from_p (x
, exp
, 0);
7140 else if (TREE_CODE (exp
) == CONSTRUCTOR
)
7142 constructor_elt
*ce
;
7143 unsigned HOST_WIDE_INT idx
;
7145 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp
), idx
, ce
)
7146 if ((ce
->index
!= NULL_TREE
&& !safe_from_p (x
, ce
->index
, 0))
7147 || !safe_from_p (x
, ce
->value
, 0))
7151 else if (TREE_CODE (exp
) == ERROR_MARK
)
7152 return 1; /* An already-visited SAVE_EXPR? */
7157 /* The only case we look at here is the DECL_INITIAL inside a
7159 return (TREE_CODE (exp
) != DECL_EXPR
7160 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
7161 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
7162 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
7165 case tcc_comparison
:
7166 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
7171 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7173 case tcc_expression
:
7176 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7177 the expression. If it is set, we conflict iff we are that rtx or
7178 both are in memory. Otherwise, we check all operands of the
7179 expression recursively. */
7181 switch (TREE_CODE (exp
))
7184 /* If the operand is static or we are static, we can't conflict.
7185 Likewise if we don't conflict with the operand at all. */
7186 if (staticp (TREE_OPERAND (exp
, 0))
7187 || TREE_STATIC (exp
)
7188 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
7191 /* Otherwise, the only way this can conflict is if we are taking
7192 the address of a DECL a that address if part of X, which is
7194 exp
= TREE_OPERAND (exp
, 0);
7197 if (!DECL_RTL_SET_P (exp
)
7198 || !MEM_P (DECL_RTL (exp
)))
7201 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
7207 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
7208 get_alias_set (exp
)))
7213 /* Assume that the call will clobber all hard registers and
7215 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7220 case WITH_CLEANUP_EXPR
:
7221 case CLEANUP_POINT_EXPR
:
7222 /* Lowered by gimplify.c. */
7226 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7232 /* If we have an rtx, we do not need to scan our operands. */
7236 nops
= TREE_OPERAND_LENGTH (exp
);
7237 for (i
= 0; i
< nops
; i
++)
7238 if (TREE_OPERAND (exp
, i
) != 0
7239 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
7245 /* Should never get a type here. */
7249 /* If we have an rtl, find any enclosed object. Then see if we conflict
7253 if (GET_CODE (exp_rtl
) == SUBREG
)
7255 exp_rtl
= SUBREG_REG (exp_rtl
);
7257 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
7261 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7262 are memory and they conflict. */
7263 return ! (rtx_equal_p (x
, exp_rtl
)
7264 || (MEM_P (x
) && MEM_P (exp_rtl
)
7265 && true_dependence (exp_rtl
, VOIDmode
, x
)));
7268 /* If we reach here, it is safe. */
7273 /* Return the highest power of two that EXP is known to be a multiple of.
7274 This is used in updating alignment of MEMs in array references. */
7276 unsigned HOST_WIDE_INT
7277 highest_pow2_factor (const_tree exp
)
7279 unsigned HOST_WIDE_INT c0
, c1
;
7281 switch (TREE_CODE (exp
))
7284 /* We can find the lowest bit that's a one. If the low
7285 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
7286 We need to handle this case since we can find it in a COND_EXPR,
7287 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
7288 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
7290 if (TREE_OVERFLOW (exp
))
7291 return BIGGEST_ALIGNMENT
;
7294 /* Note: tree_low_cst is intentionally not used here,
7295 we don't care about the upper bits. */
7296 c0
= TREE_INT_CST_LOW (exp
);
7298 return c0
? c0
: BIGGEST_ALIGNMENT
;
7302 case PLUS_EXPR
: case MINUS_EXPR
: case MIN_EXPR
: case MAX_EXPR
:
7303 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
7304 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
7305 return MIN (c0
, c1
);
7308 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
7309 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
7312 case ROUND_DIV_EXPR
: case TRUNC_DIV_EXPR
: case FLOOR_DIV_EXPR
:
7314 if (integer_pow2p (TREE_OPERAND (exp
, 1))
7315 && host_integerp (TREE_OPERAND (exp
, 1), 1))
7317 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
7318 c1
= tree_low_cst (TREE_OPERAND (exp
, 1), 1);
7319 return MAX (1, c0
/ c1
);
7324 /* The highest power of two of a bit-and expression is the maximum of
7325 that of its operands. We typically get here for a complex LHS and
7326 a constant negative power of two on the RHS to force an explicit
7327 alignment, so don't bother looking at the LHS. */
7328 return highest_pow2_factor (TREE_OPERAND (exp
, 1));
7332 return highest_pow2_factor (TREE_OPERAND (exp
, 0));
7335 return highest_pow2_factor (TREE_OPERAND (exp
, 1));
7338 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
7339 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 2));
7340 return MIN (c0
, c1
);
7349 /* Similar, except that the alignment requirements of TARGET are
7350 taken into account. Assume it is at least as aligned as its
7351 type, unless it is a COMPONENT_REF in which case the layout of
7352 the structure gives the alignment. */
7354 static unsigned HOST_WIDE_INT
7355 highest_pow2_factor_for_target (const_tree target
, const_tree exp
)
7357 unsigned HOST_WIDE_INT talign
= target_align (target
) / BITS_PER_UNIT
;
7358 unsigned HOST_WIDE_INT factor
= highest_pow2_factor (exp
);
7360 return MAX (factor
, talign
);
7363 #ifdef HAVE_conditional_move
7364 /* Convert the tree comparison code TCODE to the rtl one where the
7365 signedness is UNSIGNEDP. */
7367 static enum rtx_code
7368 convert_tree_comp_to_rtx (enum tree_code tcode
, int unsignedp
)
7380 code
= unsignedp
? LTU
: LT
;
7383 code
= unsignedp
? LEU
: LE
;
7386 code
= unsignedp
? GTU
: GT
;
7389 code
= unsignedp
? GEU
: GE
;
7391 case UNORDERED_EXPR
:
7423 /* Subroutine of expand_expr. Expand the two operands of a binary
7424 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7425 The value may be stored in TARGET if TARGET is nonzero. The
7426 MODIFIER argument is as documented by expand_expr. */
7429 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
7430 enum expand_modifier modifier
)
7432 if (! safe_from_p (target
, exp1
, 1))
7434 if (operand_equal_p (exp0
, exp1
, 0))
7436 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7437 *op1
= copy_rtx (*op0
);
7441 /* If we need to preserve evaluation order, copy exp0 into its own
7442 temporary variable so that it can't be clobbered by exp1. */
7443 if (flag_evaluation_order
&& TREE_SIDE_EFFECTS (exp1
))
7444 exp0
= save_expr (exp0
);
7445 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7446 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
7451 /* Return a MEM that contains constant EXP. DEFER is as for
7452 output_constant_def and MODIFIER is as for expand_expr. */
7455 expand_expr_constant (tree exp
, int defer
, enum expand_modifier modifier
)
7459 mem
= output_constant_def (exp
, defer
);
7460 if (modifier
!= EXPAND_INITIALIZER
)
7461 mem
= use_anchored_address (mem
);
7465 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7466 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7469 expand_expr_addr_expr_1 (tree exp
, rtx target
, enum machine_mode tmode
,
7470 enum expand_modifier modifier
, addr_space_t as
)
7472 rtx result
, subtarget
;
7474 HOST_WIDE_INT bitsize
, bitpos
;
7475 int volatilep
, unsignedp
;
7476 enum machine_mode mode1
;
7478 /* If we are taking the address of a constant and are at the top level,
7479 we have to use output_constant_def since we can't call force_const_mem
7481 /* ??? This should be considered a front-end bug. We should not be
7482 generating ADDR_EXPR of something that isn't an LVALUE. The only
7483 exception here is STRING_CST. */
7484 if (CONSTANT_CLASS_P (exp
))
7486 result
= XEXP (expand_expr_constant (exp
, 0, modifier
), 0);
7487 if (modifier
< EXPAND_SUM
)
7488 result
= force_operand (result
, target
);
7492 /* Everything must be something allowed by is_gimple_addressable. */
7493 switch (TREE_CODE (exp
))
7496 /* This case will happen via recursion for &a->b. */
7497 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, modifier
);
7501 tree tem
= TREE_OPERAND (exp
, 0);
7502 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
7503 tem
= fold_build_pointer_plus (tem
, TREE_OPERAND (exp
, 1));
7504 return expand_expr (tem
, target
, tmode
, modifier
);
7508 /* Expand the initializer like constants above. */
7509 result
= XEXP (expand_expr_constant (DECL_INITIAL (exp
),
7511 if (modifier
< EXPAND_SUM
)
7512 result
= force_operand (result
, target
);
7516 /* The real part of the complex number is always first, therefore
7517 the address is the same as the address of the parent object. */
7520 inner
= TREE_OPERAND (exp
, 0);
7524 /* The imaginary part of the complex number is always second.
7525 The expression is therefore always offset by the size of the
7528 bitpos
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)));
7529 inner
= TREE_OPERAND (exp
, 0);
7532 case COMPOUND_LITERAL_EXPR
:
7533 /* Allow COMPOUND_LITERAL_EXPR in initializers, if e.g.
7534 rtl_for_decl_init is called on DECL_INITIAL with
7535 COMPOUNT_LITERAL_EXPRs in it, they aren't gimplified. */
7536 if (modifier
== EXPAND_INITIALIZER
7537 && COMPOUND_LITERAL_EXPR_DECL (exp
))
7538 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp
),
7539 target
, tmode
, modifier
, as
);
7542 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7543 expand_expr, as that can have various side effects; LABEL_DECLs for
7544 example, may not have their DECL_RTL set yet. Expand the rtl of
7545 CONSTRUCTORs too, which should yield a memory reference for the
7546 constructor's contents. Assume language specific tree nodes can
7547 be expanded in some interesting way. */
7548 gcc_assert (TREE_CODE (exp
) < LAST_AND_UNUSED_TREE_CODE
);
7550 || TREE_CODE (exp
) == CONSTRUCTOR
7551 || TREE_CODE (exp
) == COMPOUND_LITERAL_EXPR
)
7553 result
= expand_expr (exp
, target
, tmode
,
7554 modifier
== EXPAND_INITIALIZER
7555 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
7557 /* If the DECL isn't in memory, then the DECL wasn't properly
7558 marked TREE_ADDRESSABLE, which will be either a front-end
7559 or a tree optimizer bug. */
7561 if (TREE_ADDRESSABLE (exp
)
7563 && ! targetm
.calls
.allocate_stack_slots_for_args())
7565 error ("local frame unavailable (naked function?)");
7569 gcc_assert (MEM_P (result
));
7570 result
= XEXP (result
, 0);
7572 /* ??? Is this needed anymore? */
7574 TREE_USED (exp
) = 1;
7576 if (modifier
!= EXPAND_INITIALIZER
7577 && modifier
!= EXPAND_CONST_ADDRESS
7578 && modifier
!= EXPAND_SUM
)
7579 result
= force_operand (result
, target
);
7583 /* Pass FALSE as the last argument to get_inner_reference although
7584 we are expanding to RTL. The rationale is that we know how to
7585 handle "aligning nodes" here: we can just bypass them because
7586 they won't change the final object whose address will be returned
7587 (they actually exist only for that purpose). */
7588 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
7589 &mode1
, &unsignedp
, &volatilep
, false);
7593 /* We must have made progress. */
7594 gcc_assert (inner
!= exp
);
7596 subtarget
= offset
|| bitpos
? NULL_RTX
: target
;
7597 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7598 inner alignment, force the inner to be sufficiently aligned. */
7599 if (CONSTANT_CLASS_P (inner
)
7600 && TYPE_ALIGN (TREE_TYPE (inner
)) < TYPE_ALIGN (TREE_TYPE (exp
)))
7602 inner
= copy_node (inner
);
7603 TREE_TYPE (inner
) = copy_node (TREE_TYPE (inner
));
7604 TYPE_ALIGN (TREE_TYPE (inner
)) = TYPE_ALIGN (TREE_TYPE (exp
));
7605 TYPE_USER_ALIGN (TREE_TYPE (inner
)) = 1;
7607 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
, as
);
7613 if (modifier
!= EXPAND_NORMAL
)
7614 result
= force_operand (result
, NULL
);
7615 tmp
= expand_expr (offset
, NULL_RTX
, tmode
,
7616 modifier
== EXPAND_INITIALIZER
7617 ? EXPAND_INITIALIZER
: EXPAND_NORMAL
);
7619 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7620 tmp
= convert_memory_address_addr_space (tmode
, tmp
, as
);
7622 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7623 result
= simplify_gen_binary (PLUS
, tmode
, result
, tmp
);
7626 subtarget
= bitpos
? NULL_RTX
: target
;
7627 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
7628 1, OPTAB_LIB_WIDEN
);
7634 /* Someone beforehand should have rejected taking the address
7635 of such an object. */
7636 gcc_assert ((bitpos
% BITS_PER_UNIT
) == 0);
7638 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7639 result
= plus_constant (tmode
, result
, bitpos
/ BITS_PER_UNIT
);
7640 if (modifier
< EXPAND_SUM
)
7641 result
= force_operand (result
, target
);
7647 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7648 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7651 expand_expr_addr_expr (tree exp
, rtx target
, enum machine_mode tmode
,
7652 enum expand_modifier modifier
)
7654 addr_space_t as
= ADDR_SPACE_GENERIC
;
7655 enum machine_mode address_mode
= Pmode
;
7656 enum machine_mode pointer_mode
= ptr_mode
;
7657 enum machine_mode rmode
;
7660 /* Target mode of VOIDmode says "whatever's natural". */
7661 if (tmode
== VOIDmode
)
7662 tmode
= TYPE_MODE (TREE_TYPE (exp
));
7664 if (POINTER_TYPE_P (TREE_TYPE (exp
)))
7666 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp
)));
7667 address_mode
= targetm
.addr_space
.address_mode (as
);
7668 pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
7671 /* We can get called with some Weird Things if the user does silliness
7672 like "(short) &a". In that case, convert_memory_address won't do
7673 the right thing, so ignore the given target mode. */
7674 if (tmode
!= address_mode
&& tmode
!= pointer_mode
)
7675 tmode
= address_mode
;
7677 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
7678 tmode
, modifier
, as
);
7680 /* Despite expand_expr claims concerning ignoring TMODE when not
7681 strictly convenient, stuff breaks if we don't honor it. Note
7682 that combined with the above, we only do this for pointer modes. */
7683 rmode
= GET_MODE (result
);
7684 if (rmode
== VOIDmode
)
7687 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7692 /* Generate code for computing CONSTRUCTOR EXP.
7693 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7694 is TRUE, instead of creating a temporary variable in memory
7695 NULL is returned and the caller needs to handle it differently. */
7698 expand_constructor (tree exp
, rtx target
, enum expand_modifier modifier
,
7699 bool avoid_temp_mem
)
7701 tree type
= TREE_TYPE (exp
);
7702 enum machine_mode mode
= TYPE_MODE (type
);
7704 /* Try to avoid creating a temporary at all. This is possible
7705 if all of the initializer is zero.
7706 FIXME: try to handle all [0..255] initializers we can handle
7708 if (TREE_STATIC (exp
)
7709 && !TREE_ADDRESSABLE (exp
)
7710 && target
!= 0 && mode
== BLKmode
7711 && all_zeros_p (exp
))
7713 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
7717 /* All elts simple constants => refer to a constant in memory. But
7718 if this is a non-BLKmode mode, let it store a field at a time
7719 since that should make a CONST_INT or CONST_DOUBLE when we
7720 fold. Likewise, if we have a target we can use, it is best to
7721 store directly into the target unless the type is large enough
7722 that memcpy will be used. If we are making an initializer and
7723 all operands are constant, put it in memory as well.
7725 FIXME: Avoid trying to fill vector constructors piece-meal.
7726 Output them with output_constant_def below unless we're sure
7727 they're zeros. This should go away when vector initializers
7728 are treated like VECTOR_CST instead of arrays. */
7729 if ((TREE_STATIC (exp
)
7730 && ((mode
== BLKmode
7731 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
7732 || TREE_ADDRESSABLE (exp
)
7733 || (host_integerp (TYPE_SIZE_UNIT (type
), 1)
7734 && (! MOVE_BY_PIECES_P
7735 (tree_low_cst (TYPE_SIZE_UNIT (type
), 1),
7737 && ! mostly_zeros_p (exp
))))
7738 || ((modifier
== EXPAND_INITIALIZER
|| modifier
== EXPAND_CONST_ADDRESS
)
7739 && TREE_CONSTANT (exp
)))
7746 constructor
= expand_expr_constant (exp
, 1, modifier
);
7748 if (modifier
!= EXPAND_CONST_ADDRESS
7749 && modifier
!= EXPAND_INITIALIZER
7750 && modifier
!= EXPAND_SUM
)
7751 constructor
= validize_mem (constructor
);
7756 /* Handle calls that pass values in multiple non-contiguous
7757 locations. The Irix 6 ABI has examples of this. */
7758 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
7759 || GET_CODE (target
) == PARALLEL
|| modifier
== EXPAND_STACK_PARM
)
7765 = assign_temp (build_qualified_type (type
, (TYPE_QUALS (type
)
7766 | (TREE_READONLY (exp
)
7767 * TYPE_QUAL_CONST
))),
7768 TREE_ADDRESSABLE (exp
), 1);
7771 store_constructor (exp
, target
, 0, int_expr_size (exp
));
7776 /* expand_expr: generate code for computing expression EXP.
7777 An rtx for the computed value is returned. The value is never null.
7778 In the case of a void EXP, const0_rtx is returned.
7780 The value may be stored in TARGET if TARGET is nonzero.
7781 TARGET is just a suggestion; callers must assume that
7782 the rtx returned may not be the same as TARGET.
7784 If TARGET is CONST0_RTX, it means that the value will be ignored.
7786 If TMODE is not VOIDmode, it suggests generating the
7787 result in mode TMODE. But this is done only when convenient.
7788 Otherwise, TMODE is ignored and the value generated in its natural mode.
7789 TMODE is just a suggestion; callers must assume that
7790 the rtx returned may not have mode TMODE.
7792 Note that TARGET may have neither TMODE nor MODE. In that case, it
7793 probably will not be used.
7795 If MODIFIER is EXPAND_SUM then when EXP is an addition
7796 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7797 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7798 products as above, or REG or MEM, or constant.
7799 Ordinarily in such cases we would output mul or add instructions
7800 and then return a pseudo reg containing the sum.
7802 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7803 it also marks a label as absolutely required (it can't be dead).
7804 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7805 This is used for outputting expressions used in initializers.
7807 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7808 with a constant address even if that address is not normally legitimate.
7809 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7811 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7812 a call parameter. Such targets require special care as we haven't yet
7813 marked TARGET so that it's safe from being trashed by libcalls. We
7814 don't want to use TARGET for anything but the final result;
7815 Intermediate values must go elsewhere. Additionally, calls to
7816 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7818 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7819 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7820 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7821 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7825 expand_expr_real (tree exp
, rtx target
, enum machine_mode tmode
,
7826 enum expand_modifier modifier
, rtx
*alt_rtl
)
7830 /* Handle ERROR_MARK before anybody tries to access its type. */
7831 if (TREE_CODE (exp
) == ERROR_MARK
7832 || (TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
))
7834 ret
= CONST0_RTX (tmode
);
7835 return ret
? ret
: const0_rtx
;
7838 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
7842 /* Try to expand the conditional expression which is represented by
7843 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If succeseds
7844 return the rtl reg which repsents the result. Otherwise return
7848 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED
,
7849 tree treeop1 ATTRIBUTE_UNUSED
,
7850 tree treeop2 ATTRIBUTE_UNUSED
)
7852 #ifdef HAVE_conditional_move
7854 rtx op00
, op01
, op1
, op2
;
7855 enum rtx_code comparison_code
;
7856 enum machine_mode comparison_mode
;
7859 tree type
= TREE_TYPE (treeop1
);
7860 int unsignedp
= TYPE_UNSIGNED (type
);
7861 enum machine_mode mode
= TYPE_MODE (type
);
7862 enum machine_mode orig_mode
= mode
;
7864 /* If we cannot do a conditional move on the mode, try doing it
7865 with the promoted mode. */
7866 if (!can_conditionally_move_p (mode
))
7868 mode
= promote_mode (type
, mode
, &unsignedp
);
7869 if (!can_conditionally_move_p (mode
))
7871 temp
= assign_temp (type
, 0, 0); /* Use promoted mode for temp. */
7874 temp
= assign_temp (type
, 0, 1);
7877 expand_operands (treeop1
, treeop2
,
7878 temp
, &op1
, &op2
, EXPAND_NORMAL
);
7880 if (TREE_CODE (treeop0
) == SSA_NAME
7881 && (srcstmt
= get_def_for_expr_class (treeop0
, tcc_comparison
)))
7883 tree type
= TREE_TYPE (gimple_assign_rhs1 (srcstmt
));
7884 enum tree_code cmpcode
= gimple_assign_rhs_code (srcstmt
);
7885 op00
= expand_normal (gimple_assign_rhs1 (srcstmt
));
7886 op01
= expand_normal (gimple_assign_rhs2 (srcstmt
));
7887 comparison_mode
= TYPE_MODE (type
);
7888 unsignedp
= TYPE_UNSIGNED (type
);
7889 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
7891 else if (TREE_CODE_CLASS (TREE_CODE (treeop0
)) == tcc_comparison
)
7893 tree type
= TREE_TYPE (TREE_OPERAND (treeop0
, 0));
7894 enum tree_code cmpcode
= TREE_CODE (treeop0
);
7895 op00
= expand_normal (TREE_OPERAND (treeop0
, 0));
7896 op01
= expand_normal (TREE_OPERAND (treeop0
, 1));
7897 unsignedp
= TYPE_UNSIGNED (type
);
7898 comparison_mode
= TYPE_MODE (type
);
7899 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
7903 op00
= expand_normal (treeop0
);
7905 comparison_code
= NE
;
7906 comparison_mode
= TYPE_MODE (TREE_TYPE (treeop0
));
7909 if (GET_MODE (op1
) != mode
)
7910 op1
= gen_lowpart (mode
, op1
);
7912 if (GET_MODE (op2
) != mode
)
7913 op2
= gen_lowpart (mode
, op2
);
7915 /* Try to emit the conditional move. */
7916 insn
= emit_conditional_move (temp
, comparison_code
,
7917 op00
, op01
, comparison_mode
,
7921 /* If we could do the conditional move, emit the sequence,
7925 rtx seq
= get_insns ();
7928 return convert_modes (orig_mode
, mode
, temp
, 0);
7931 /* Otherwise discard the sequence and fall back to code with
7939 expand_expr_real_2 (sepops ops
, rtx target
, enum machine_mode tmode
,
7940 enum expand_modifier modifier
)
7942 rtx op0
, op1
, op2
, temp
;
7945 enum machine_mode mode
;
7946 enum tree_code code
= ops
->code
;
7948 rtx subtarget
, original_target
;
7950 bool reduce_bit_field
;
7951 location_t loc
= ops
->location
;
7952 tree treeop0
, treeop1
, treeop2
;
7953 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7954 ? reduce_to_bit_field_precision ((expr), \
7960 mode
= TYPE_MODE (type
);
7961 unsignedp
= TYPE_UNSIGNED (type
);
7967 /* We should be called only on simple (binary or unary) expressions,
7968 exactly those that are valid in gimple expressions that aren't
7969 GIMPLE_SINGLE_RHS (or invalid). */
7970 gcc_assert (get_gimple_rhs_class (code
) == GIMPLE_UNARY_RHS
7971 || get_gimple_rhs_class (code
) == GIMPLE_BINARY_RHS
7972 || get_gimple_rhs_class (code
) == GIMPLE_TERNARY_RHS
);
7974 ignore
= (target
== const0_rtx
7975 || ((CONVERT_EXPR_CODE_P (code
)
7976 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
7977 && TREE_CODE (type
) == VOID_TYPE
));
7979 /* We should be called only if we need the result. */
7980 gcc_assert (!ignore
);
7982 /* An operation in what may be a bit-field type needs the
7983 result to be reduced to the precision of the bit-field type,
7984 which is narrower than that of the type's mode. */
7985 reduce_bit_field
= (INTEGRAL_TYPE_P (type
)
7986 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
7988 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
7991 /* Use subtarget as the target for operand 0 of a binary operation. */
7992 subtarget
= get_subtarget (target
);
7993 original_target
= target
;
7997 case NON_LVALUE_EXPR
:
8000 if (treeop0
== error_mark_node
)
8003 if (TREE_CODE (type
) == UNION_TYPE
)
8005 tree valtype
= TREE_TYPE (treeop0
);
8007 /* If both input and output are BLKmode, this conversion isn't doing
8008 anything except possibly changing memory attribute. */
8009 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
8011 rtx result
= expand_expr (treeop0
, target
, tmode
,
8014 result
= copy_rtx (result
);
8015 set_mem_attributes (result
, type
, 0);
8021 if (TYPE_MODE (type
) != BLKmode
)
8022 target
= gen_reg_rtx (TYPE_MODE (type
));
8024 target
= assign_temp (type
, 1, 1);
8028 /* Store data into beginning of memory target. */
8029 store_expr (treeop0
,
8030 adjust_address (target
, TYPE_MODE (valtype
), 0),
8031 modifier
== EXPAND_STACK_PARM
,
8036 gcc_assert (REG_P (target
));
8038 /* Store this field into a union of the proper type. */
8039 store_field (target
,
8040 MIN ((int_size_in_bytes (TREE_TYPE
8043 (HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)),
8044 0, 0, 0, TYPE_MODE (valtype
), treeop0
, 0, false);
8047 /* Return the entire union. */
8051 if (mode
== TYPE_MODE (TREE_TYPE (treeop0
)))
8053 op0
= expand_expr (treeop0
, target
, VOIDmode
,
8056 /* If the signedness of the conversion differs and OP0 is
8057 a promoted SUBREG, clear that indication since we now
8058 have to do the proper extension. */
8059 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)) != unsignedp
8060 && GET_CODE (op0
) == SUBREG
)
8061 SUBREG_PROMOTED_VAR_P (op0
) = 0;
8063 return REDUCE_BIT_FIELD (op0
);
8066 op0
= expand_expr (treeop0
, NULL_RTX
, mode
,
8067 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
);
8068 if (GET_MODE (op0
) == mode
)
8071 /* If OP0 is a constant, just convert it into the proper mode. */
8072 else if (CONSTANT_P (op0
))
8074 tree inner_type
= TREE_TYPE (treeop0
);
8075 enum machine_mode inner_mode
= GET_MODE (op0
);
8077 if (inner_mode
== VOIDmode
)
8078 inner_mode
= TYPE_MODE (inner_type
);
8080 if (modifier
== EXPAND_INITIALIZER
)
8081 op0
= simplify_gen_subreg (mode
, op0
, inner_mode
,
8082 subreg_lowpart_offset (mode
,
8085 op0
= convert_modes (mode
, inner_mode
, op0
,
8086 TYPE_UNSIGNED (inner_type
));
8089 else if (modifier
== EXPAND_INITIALIZER
)
8090 op0
= gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
8092 else if (target
== 0)
8093 op0
= convert_to_mode (mode
, op0
,
8094 TYPE_UNSIGNED (TREE_TYPE
8098 convert_move (target
, op0
,
8099 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8103 return REDUCE_BIT_FIELD (op0
);
8105 case ADDR_SPACE_CONVERT_EXPR
:
8107 tree treeop0_type
= TREE_TYPE (treeop0
);
8109 addr_space_t as_from
;
8111 gcc_assert (POINTER_TYPE_P (type
));
8112 gcc_assert (POINTER_TYPE_P (treeop0_type
));
8114 as_to
= TYPE_ADDR_SPACE (TREE_TYPE (type
));
8115 as_from
= TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type
));
8117 /* Conversions between pointers to the same address space should
8118 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8119 gcc_assert (as_to
!= as_from
);
8121 /* Ask target code to handle conversion between pointers
8122 to overlapping address spaces. */
8123 if (targetm
.addr_space
.subset_p (as_to
, as_from
)
8124 || targetm
.addr_space
.subset_p (as_from
, as_to
))
8126 op0
= expand_expr (treeop0
, NULL_RTX
, VOIDmode
, modifier
);
8127 op0
= targetm
.addr_space
.convert (op0
, treeop0_type
, type
);
8132 /* For disjoint address spaces, converting anything but
8133 a null pointer invokes undefined behaviour. We simply
8134 always return a null pointer here. */
8135 return CONST0_RTX (mode
);
8138 case POINTER_PLUS_EXPR
:
8139 /* Even though the sizetype mode and the pointer's mode can be different
8140 expand is able to handle this correctly and get the correct result out
8141 of the PLUS_EXPR code. */
8142 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8143 if sizetype precision is smaller than pointer precision. */
8144 if (TYPE_PRECISION (sizetype
) < TYPE_PRECISION (type
))
8145 treeop1
= fold_convert_loc (loc
, type
,
8146 fold_convert_loc (loc
, ssizetype
,
8148 /* If sizetype precision is larger than pointer precision, truncate the
8149 offset to have matching modes. */
8150 else if (TYPE_PRECISION (sizetype
) > TYPE_PRECISION (type
))
8151 treeop1
= fold_convert_loc (loc
, type
, treeop1
);
8154 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8155 something else, make sure we add the register to the constant and
8156 then to the other thing. This case can occur during strength
8157 reduction and doing it this way will produce better code if the
8158 frame pointer or argument pointer is eliminated.
8160 fold-const.c will ensure that the constant is always in the inner
8161 PLUS_EXPR, so the only case we need to do anything about is if
8162 sp, ap, or fp is our second argument, in which case we must swap
8163 the innermost first argument and our second argument. */
8165 if (TREE_CODE (treeop0
) == PLUS_EXPR
8166 && TREE_CODE (TREE_OPERAND (treeop0
, 1)) == INTEGER_CST
8167 && TREE_CODE (treeop1
) == VAR_DECL
8168 && (DECL_RTL (treeop1
) == frame_pointer_rtx
8169 || DECL_RTL (treeop1
) == stack_pointer_rtx
8170 || DECL_RTL (treeop1
) == arg_pointer_rtx
))
8175 /* If the result is to be ptr_mode and we are adding an integer to
8176 something, we might be forming a constant. So try to use
8177 plus_constant. If it produces a sum and we can't accept it,
8178 use force_operand. This allows P = &ARR[const] to generate
8179 efficient code on machines where a SYMBOL_REF is not a valid
8182 If this is an EXPAND_SUM call, always return the sum. */
8183 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
8184 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
8186 if (modifier
== EXPAND_STACK_PARM
)
8188 if (TREE_CODE (treeop0
) == INTEGER_CST
8189 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
8190 && TREE_CONSTANT (treeop1
))
8194 op1
= expand_expr (treeop1
, subtarget
, VOIDmode
,
8196 /* Use immed_double_const to ensure that the constant is
8197 truncated according to the mode of OP1, then sign extended
8198 to a HOST_WIDE_INT. Using the constant directly can result
8199 in non-canonical RTL in a 64x32 cross compile. */
8201 = immed_double_const (TREE_INT_CST_LOW (treeop0
),
8203 TYPE_MODE (TREE_TYPE (treeop1
)));
8204 op1
= plus_constant (mode
, op1
, INTVAL (constant_part
));
8205 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8206 op1
= force_operand (op1
, target
);
8207 return REDUCE_BIT_FIELD (op1
);
8210 else if (TREE_CODE (treeop1
) == INTEGER_CST
8211 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
8212 && TREE_CONSTANT (treeop0
))
8216 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8217 (modifier
== EXPAND_INITIALIZER
8218 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
8219 if (! CONSTANT_P (op0
))
8221 op1
= expand_expr (treeop1
, NULL_RTX
,
8222 VOIDmode
, modifier
);
8223 /* Return a PLUS if modifier says it's OK. */
8224 if (modifier
== EXPAND_SUM
8225 || modifier
== EXPAND_INITIALIZER
)
8226 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
8229 /* Use immed_double_const to ensure that the constant is
8230 truncated according to the mode of OP1, then sign extended
8231 to a HOST_WIDE_INT. Using the constant directly can result
8232 in non-canonical RTL in a 64x32 cross compile. */
8234 = immed_double_const (TREE_INT_CST_LOW (treeop1
),
8236 TYPE_MODE (TREE_TYPE (treeop0
)));
8237 op0
= plus_constant (mode
, op0
, INTVAL (constant_part
));
8238 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8239 op0
= force_operand (op0
, target
);
8240 return REDUCE_BIT_FIELD (op0
);
8244 /* Use TER to expand pointer addition of a negated value
8245 as pointer subtraction. */
8246 if ((POINTER_TYPE_P (TREE_TYPE (treeop0
))
8247 || (TREE_CODE (TREE_TYPE (treeop0
)) == VECTOR_TYPE
8248 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0
)))))
8249 && TREE_CODE (treeop1
) == SSA_NAME
8250 && TYPE_MODE (TREE_TYPE (treeop0
))
8251 == TYPE_MODE (TREE_TYPE (treeop1
)))
8253 gimple def
= get_def_for_expr (treeop1
, NEGATE_EXPR
);
8256 treeop1
= gimple_assign_rhs1 (def
);
8262 /* No sense saving up arithmetic to be done
8263 if it's all in the wrong mode to form part of an address.
8264 And force_operand won't know whether to sign-extend or
8266 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8267 || mode
!= ptr_mode
)
8269 expand_operands (treeop0
, treeop1
,
8270 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8271 if (op0
== const0_rtx
)
8273 if (op1
== const0_rtx
)
8278 expand_operands (treeop0
, treeop1
,
8279 subtarget
, &op0
, &op1
, modifier
);
8280 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8284 /* For initializers, we are allowed to return a MINUS of two
8285 symbolic constants. Here we handle all cases when both operands
8287 /* Handle difference of two symbolic constants,
8288 for the sake of an initializer. */
8289 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
8290 && really_constant_p (treeop0
)
8291 && really_constant_p (treeop1
))
8293 expand_operands (treeop0
, treeop1
,
8294 NULL_RTX
, &op0
, &op1
, modifier
);
8296 /* If the last operand is a CONST_INT, use plus_constant of
8297 the negated constant. Else make the MINUS. */
8298 if (CONST_INT_P (op1
))
8299 return REDUCE_BIT_FIELD (plus_constant (mode
, op0
,
8302 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode
, op0
, op1
));
8305 /* No sense saving up arithmetic to be done
8306 if it's all in the wrong mode to form part of an address.
8307 And force_operand won't know whether to sign-extend or
8309 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8310 || mode
!= ptr_mode
)
8313 expand_operands (treeop0
, treeop1
,
8314 subtarget
, &op0
, &op1
, modifier
);
8316 /* Convert A - const to A + (-const). */
8317 if (CONST_INT_P (op1
))
8319 op1
= negate_rtx (mode
, op1
);
8320 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8325 case WIDEN_MULT_PLUS_EXPR
:
8326 case WIDEN_MULT_MINUS_EXPR
:
8327 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8328 op2
= expand_normal (treeop2
);
8329 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
8333 case WIDEN_MULT_EXPR
:
8334 /* If first operand is constant, swap them.
8335 Thus the following special case checks need only
8336 check the second operand. */
8337 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8344 /* First, check if we have a multiplication of one signed and one
8345 unsigned operand. */
8346 if (TREE_CODE (treeop1
) != INTEGER_CST
8347 && (TYPE_UNSIGNED (TREE_TYPE (treeop0
))
8348 != TYPE_UNSIGNED (TREE_TYPE (treeop1
))))
8350 enum machine_mode innermode
= TYPE_MODE (TREE_TYPE (treeop0
));
8351 this_optab
= usmul_widen_optab
;
8352 if (find_widening_optab_handler (this_optab
, mode
, innermode
, 0)
8353 != CODE_FOR_nothing
)
8355 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8356 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8359 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op1
, &op0
,
8361 /* op0 and op1 might still be constant, despite the above
8362 != INTEGER_CST check. Handle it. */
8363 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8365 op0
= convert_modes (innermode
, mode
, op0
, true);
8366 op1
= convert_modes (innermode
, mode
, op1
, false);
8367 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
8368 target
, unsignedp
));
8373 /* Check for a multiplication with matching signedness. */
8374 else if ((TREE_CODE (treeop1
) == INTEGER_CST
8375 && int_fits_type_p (treeop1
, TREE_TYPE (treeop0
)))
8376 || (TYPE_UNSIGNED (TREE_TYPE (treeop1
))
8377 == TYPE_UNSIGNED (TREE_TYPE (treeop0
))))
8379 tree op0type
= TREE_TYPE (treeop0
);
8380 enum machine_mode innermode
= TYPE_MODE (op0type
);
8381 bool zextend_p
= TYPE_UNSIGNED (op0type
);
8382 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
8383 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
8385 if (TREE_CODE (treeop0
) != INTEGER_CST
)
8387 if (find_widening_optab_handler (this_optab
, mode
, innermode
, 0)
8388 != CODE_FOR_nothing
)
8390 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8392 /* op0 and op1 might still be constant, despite the above
8393 != INTEGER_CST check. Handle it. */
8394 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8397 op0
= convert_modes (innermode
, mode
, op0
, zextend_p
);
8399 = convert_modes (innermode
, mode
, op1
,
8400 TYPE_UNSIGNED (TREE_TYPE (treeop1
)));
8401 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
8405 temp
= expand_widening_mult (mode
, op0
, op1
, target
,
8406 unsignedp
, this_optab
);
8407 return REDUCE_BIT_FIELD (temp
);
8409 if (find_widening_optab_handler (other_optab
, mode
, innermode
, 0)
8411 && innermode
== word_mode
)
8414 op0
= expand_normal (treeop0
);
8415 if (TREE_CODE (treeop1
) == INTEGER_CST
)
8416 op1
= convert_modes (innermode
, mode
,
8417 expand_normal (treeop1
),
8418 TYPE_UNSIGNED (TREE_TYPE (treeop1
)));
8420 op1
= expand_normal (treeop1
);
8421 /* op0 and op1 might still be constant, despite the above
8422 != INTEGER_CST check. Handle it. */
8423 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8424 goto widen_mult_const
;
8425 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
8426 unsignedp
, OPTAB_LIB_WIDEN
);
8427 hipart
= gen_highpart (innermode
, temp
);
8428 htem
= expand_mult_highpart_adjust (innermode
, hipart
,
8432 emit_move_insn (hipart
, htem
);
8433 return REDUCE_BIT_FIELD (temp
);
8437 treeop0
= fold_build1 (CONVERT_EXPR
, type
, treeop0
);
8438 treeop1
= fold_build1 (CONVERT_EXPR
, type
, treeop1
);
8439 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8440 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8444 optab opt
= fma_optab
;
8447 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8449 if (optab_handler (fma_optab
, mode
) == CODE_FOR_nothing
)
8451 tree fn
= mathfn_built_in (TREE_TYPE (treeop0
), BUILT_IN_FMA
);
8454 gcc_assert (fn
!= NULL_TREE
);
8455 call_expr
= build_call_expr (fn
, 3, treeop0
, treeop1
, treeop2
);
8456 return expand_builtin (call_expr
, target
, subtarget
, mode
, false);
8459 def0
= get_def_for_expr (treeop0
, NEGATE_EXPR
);
8460 def2
= get_def_for_expr (treeop2
, NEGATE_EXPR
);
8465 && optab_handler (fnms_optab
, mode
) != CODE_FOR_nothing
)
8468 op0
= expand_normal (gimple_assign_rhs1 (def0
));
8469 op2
= expand_normal (gimple_assign_rhs1 (def2
));
8472 && optab_handler (fnma_optab
, mode
) != CODE_FOR_nothing
)
8475 op0
= expand_normal (gimple_assign_rhs1 (def0
));
8478 && optab_handler (fms_optab
, mode
) != CODE_FOR_nothing
)
8481 op2
= expand_normal (gimple_assign_rhs1 (def2
));
8485 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
, EXPAND_NORMAL
);
8487 op2
= expand_normal (treeop2
);
8488 op1
= expand_normal (treeop1
);
8490 return expand_ternary_op (TYPE_MODE (type
), opt
,
8491 op0
, op1
, op2
, target
, 0);
8495 /* If this is a fixed-point operation, then we cannot use the code
8496 below because "expand_mult" doesn't support sat/no-sat fixed-point
8498 if (ALL_FIXED_POINT_MODE_P (mode
))
8501 /* If first operand is constant, swap them.
8502 Thus the following special case checks need only
8503 check the second operand. */
8504 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8511 /* Attempt to return something suitable for generating an
8512 indexed address, for machines that support that. */
8514 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
8515 && host_integerp (treeop1
, 0))
8517 tree exp1
= treeop1
;
8519 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8523 op0
= force_operand (op0
, NULL_RTX
);
8525 op0
= copy_to_mode_reg (mode
, op0
);
8527 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
,
8528 gen_int_mode (tree_low_cst (exp1
, 0),
8529 TYPE_MODE (TREE_TYPE (exp1
)))));
8532 if (modifier
== EXPAND_STACK_PARM
)
8535 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8536 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8538 case TRUNC_DIV_EXPR
:
8539 case FLOOR_DIV_EXPR
:
8541 case ROUND_DIV_EXPR
:
8542 case EXACT_DIV_EXPR
:
8543 /* If this is a fixed-point operation, then we cannot use the code
8544 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8546 if (ALL_FIXED_POINT_MODE_P (mode
))
8549 if (modifier
== EXPAND_STACK_PARM
)
8551 /* Possible optimization: compute the dividend with EXPAND_SUM
8552 then if the divisor is constant can optimize the case
8553 where some terms of the dividend have coeffs divisible by it. */
8554 expand_operands (treeop0
, treeop1
,
8555 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8556 return expand_divmod (0, code
, mode
, op0
, op1
, target
, unsignedp
);
8561 case MULT_HIGHPART_EXPR
:
8562 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8563 temp
= expand_mult_highpart (mode
, op0
, op1
, target
, unsignedp
);
8567 case TRUNC_MOD_EXPR
:
8568 case FLOOR_MOD_EXPR
:
8570 case ROUND_MOD_EXPR
:
8571 if (modifier
== EXPAND_STACK_PARM
)
8573 expand_operands (treeop0
, treeop1
,
8574 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8575 return expand_divmod (1, code
, mode
, op0
, op1
, target
, unsignedp
);
8577 case FIXED_CONVERT_EXPR
:
8578 op0
= expand_normal (treeop0
);
8579 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8580 target
= gen_reg_rtx (mode
);
8582 if ((TREE_CODE (TREE_TYPE (treeop0
)) == INTEGER_TYPE
8583 && TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8584 || (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_UNSIGNED (type
)))
8585 expand_fixed_convert (target
, op0
, 1, TYPE_SATURATING (type
));
8587 expand_fixed_convert (target
, op0
, 0, TYPE_SATURATING (type
));
8590 case FIX_TRUNC_EXPR
:
8591 op0
= expand_normal (treeop0
);
8592 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8593 target
= gen_reg_rtx (mode
);
8594 expand_fix (target
, op0
, unsignedp
);
8598 op0
= expand_normal (treeop0
);
8599 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8600 target
= gen_reg_rtx (mode
);
8601 /* expand_float can't figure out what to do if FROM has VOIDmode.
8602 So give it the correct mode. With -O, cse will optimize this. */
8603 if (GET_MODE (op0
) == VOIDmode
)
8604 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0
)),
8606 expand_float (target
, op0
,
8607 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8611 op0
= expand_expr (treeop0
, subtarget
,
8612 VOIDmode
, EXPAND_NORMAL
);
8613 if (modifier
== EXPAND_STACK_PARM
)
8615 temp
= expand_unop (mode
,
8616 optab_for_tree_code (NEGATE_EXPR
, type
,
8620 return REDUCE_BIT_FIELD (temp
);
8623 op0
= expand_expr (treeop0
, subtarget
,
8624 VOIDmode
, EXPAND_NORMAL
);
8625 if (modifier
== EXPAND_STACK_PARM
)
8628 /* ABS_EXPR is not valid for complex arguments. */
8629 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
8630 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
8632 /* Unsigned abs is simply the operand. Testing here means we don't
8633 risk generating incorrect code below. */
8634 if (TYPE_UNSIGNED (type
))
8637 return expand_abs (mode
, op0
, target
, unsignedp
,
8638 safe_from_p (target
, treeop0
, 1));
8642 target
= original_target
;
8644 || modifier
== EXPAND_STACK_PARM
8645 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
8646 || GET_MODE (target
) != mode
8648 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
8649 target
= gen_reg_rtx (mode
);
8650 expand_operands (treeop0
, treeop1
,
8651 target
, &op0
, &op1
, EXPAND_NORMAL
);
8653 /* First try to do it with a special MIN or MAX instruction.
8654 If that does not win, use a conditional jump to select the proper
8656 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
8657 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
8662 /* At this point, a MEM target is no longer useful; we will get better
8665 if (! REG_P (target
))
8666 target
= gen_reg_rtx (mode
);
8668 /* If op1 was placed in target, swap op0 and op1. */
8669 if (target
!= op0
&& target
== op1
)
8676 /* We generate better code and avoid problems with op1 mentioning
8677 target by forcing op1 into a pseudo if it isn't a constant. */
8678 if (! CONSTANT_P (op1
))
8679 op1
= force_reg (mode
, op1
);
8682 enum rtx_code comparison_code
;
8685 if (code
== MAX_EXPR
)
8686 comparison_code
= unsignedp
? GEU
: GE
;
8688 comparison_code
= unsignedp
? LEU
: LE
;
8690 /* Canonicalize to comparisons against 0. */
8691 if (op1
== const1_rtx
)
8693 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8694 or (a != 0 ? a : 1) for unsigned.
8695 For MIN we are safe converting (a <= 1 ? a : 1)
8696 into (a <= 0 ? a : 1) */
8697 cmpop1
= const0_rtx
;
8698 if (code
== MAX_EXPR
)
8699 comparison_code
= unsignedp
? NE
: GT
;
8701 if (op1
== constm1_rtx
&& !unsignedp
)
8703 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8704 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8705 cmpop1
= const0_rtx
;
8706 if (code
== MIN_EXPR
)
8707 comparison_code
= LT
;
8709 #ifdef HAVE_conditional_move
8710 /* Use a conditional move if possible. */
8711 if (can_conditionally_move_p (mode
))
8715 /* ??? Same problem as in expmed.c: emit_conditional_move
8716 forces a stack adjustment via compare_from_rtx, and we
8717 lose the stack adjustment if the sequence we are about
8718 to create is discarded. */
8719 do_pending_stack_adjust ();
8723 /* Try to emit the conditional move. */
8724 insn
= emit_conditional_move (target
, comparison_code
,
8729 /* If we could do the conditional move, emit the sequence,
8733 rtx seq
= get_insns ();
8739 /* Otherwise discard the sequence and fall back to code with
8745 emit_move_insn (target
, op0
);
8747 temp
= gen_label_rtx ();
8748 do_compare_rtx_and_jump (target
, cmpop1
, comparison_code
,
8749 unsignedp
, mode
, NULL_RTX
, NULL_RTX
, temp
,
8752 emit_move_insn (target
, op1
);
8757 op0
= expand_expr (treeop0
, subtarget
,
8758 VOIDmode
, EXPAND_NORMAL
);
8759 if (modifier
== EXPAND_STACK_PARM
)
8761 /* In case we have to reduce the result to bitfield precision
8762 for unsigned bitfield expand this as XOR with a proper constant
8764 if (reduce_bit_field
&& TYPE_UNSIGNED (type
))
8765 temp
= expand_binop (mode
, xor_optab
, op0
,
8766 immed_double_int_const
8767 (double_int::mask (TYPE_PRECISION (type
)), mode
),
8768 target
, 1, OPTAB_LIB_WIDEN
);
8770 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
8774 /* ??? Can optimize bitwise operations with one arg constant.
8775 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8776 and (a bitwise1 b) bitwise2 b (etc)
8777 but that is probably not worth while. */
8786 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type
))
8787 || (GET_MODE_PRECISION (TYPE_MODE (type
))
8788 == TYPE_PRECISION (type
)));
8793 /* If this is a fixed-point operation, then we cannot use the code
8794 below because "expand_shift" doesn't support sat/no-sat fixed-point
8796 if (ALL_FIXED_POINT_MODE_P (mode
))
8799 if (! safe_from_p (subtarget
, treeop1
, 1))
8801 if (modifier
== EXPAND_STACK_PARM
)
8803 op0
= expand_expr (treeop0
, subtarget
,
8804 VOIDmode
, EXPAND_NORMAL
);
8805 temp
= expand_variable_shift (code
, mode
, op0
, treeop1
, target
,
8807 if (code
== LSHIFT_EXPR
)
8808 temp
= REDUCE_BIT_FIELD (temp
);
8811 /* Could determine the answer when only additive constants differ. Also,
8812 the addition of one can be handled by changing the condition. */
8819 case UNORDERED_EXPR
:
8827 temp
= do_store_flag (ops
,
8828 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
8829 tmode
!= VOIDmode
? tmode
: mode
);
8833 /* Use a compare and a jump for BLKmode comparisons, or for function
8834 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8837 || modifier
== EXPAND_STACK_PARM
8838 || ! safe_from_p (target
, treeop0
, 1)
8839 || ! safe_from_p (target
, treeop1
, 1)
8840 /* Make sure we don't have a hard reg (such as function's return
8841 value) live across basic blocks, if not optimizing. */
8842 || (!optimize
&& REG_P (target
)
8843 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
8844 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
8846 emit_move_insn (target
, const0_rtx
);
8848 op1
= gen_label_rtx ();
8849 jumpifnot_1 (code
, treeop0
, treeop1
, op1
, -1);
8851 if (TYPE_PRECISION (type
) == 1 && !TYPE_UNSIGNED (type
))
8852 emit_move_insn (target
, constm1_rtx
);
8854 emit_move_insn (target
, const1_rtx
);
8860 /* Get the rtx code of the operands. */
8861 op0
= expand_normal (treeop0
);
8862 op1
= expand_normal (treeop1
);
8865 target
= gen_reg_rtx (TYPE_MODE (type
));
8867 /* If target overlaps with op1, then either we need to force
8868 op1 into a pseudo (if target also overlaps with op0),
8869 or write the complex parts in reverse order. */
8870 switch (GET_CODE (target
))
8873 if (reg_overlap_mentioned_p (XEXP (target
, 0), op1
))
8875 if (reg_overlap_mentioned_p (XEXP (target
, 1), op0
))
8877 complex_expr_force_op1
:
8878 temp
= gen_reg_rtx (GET_MODE_INNER (GET_MODE (target
)));
8879 emit_move_insn (temp
, op1
);
8883 complex_expr_swap_order
:
8884 /* Move the imaginary (op1) and real (op0) parts to their
8886 write_complex_part (target
, op1
, true);
8887 write_complex_part (target
, op0
, false);
8893 temp
= adjust_address_nv (target
,
8894 GET_MODE_INNER (GET_MODE (target
)), 0);
8895 if (reg_overlap_mentioned_p (temp
, op1
))
8897 enum machine_mode imode
= GET_MODE_INNER (GET_MODE (target
));
8898 temp
= adjust_address_nv (target
, imode
,
8899 GET_MODE_SIZE (imode
));
8900 if (reg_overlap_mentioned_p (temp
, op0
))
8901 goto complex_expr_force_op1
;
8902 goto complex_expr_swap_order
;
8906 if (reg_overlap_mentioned_p (target
, op1
))
8908 if (reg_overlap_mentioned_p (target
, op0
))
8909 goto complex_expr_force_op1
;
8910 goto complex_expr_swap_order
;
8915 /* Move the real (op0) and imaginary (op1) parts to their location. */
8916 write_complex_part (target
, op0
, false);
8917 write_complex_part (target
, op1
, true);
8921 case WIDEN_SUM_EXPR
:
8923 tree oprnd0
= treeop0
;
8924 tree oprnd1
= treeop1
;
8926 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8927 target
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, op1
,
8932 case REDUC_MAX_EXPR
:
8933 case REDUC_MIN_EXPR
:
8934 case REDUC_PLUS_EXPR
:
8936 op0
= expand_normal (treeop0
);
8937 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
8938 temp
= expand_unop (mode
, this_optab
, op0
, target
, unsignedp
);
8943 case VEC_LSHIFT_EXPR
:
8944 case VEC_RSHIFT_EXPR
:
8946 target
= expand_vec_shift_expr (ops
, target
);
8950 case VEC_UNPACK_HI_EXPR
:
8951 case VEC_UNPACK_LO_EXPR
:
8953 op0
= expand_normal (treeop0
);
8954 temp
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, NULL_RTX
,
8960 case VEC_UNPACK_FLOAT_HI_EXPR
:
8961 case VEC_UNPACK_FLOAT_LO_EXPR
:
8963 op0
= expand_normal (treeop0
);
8964 /* The signedness is determined from input operand. */
8965 temp
= expand_widen_pattern_expr
8966 (ops
, op0
, NULL_RTX
, NULL_RTX
,
8967 target
, TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8973 case VEC_WIDEN_MULT_HI_EXPR
:
8974 case VEC_WIDEN_MULT_LO_EXPR
:
8975 case VEC_WIDEN_MULT_EVEN_EXPR
:
8976 case VEC_WIDEN_MULT_ODD_EXPR
:
8977 case VEC_WIDEN_LSHIFT_HI_EXPR
:
8978 case VEC_WIDEN_LSHIFT_LO_EXPR
:
8979 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8980 target
= expand_widen_pattern_expr (ops
, op0
, op1
, NULL_RTX
,
8982 gcc_assert (target
);
8985 case VEC_PACK_TRUNC_EXPR
:
8986 case VEC_PACK_SAT_EXPR
:
8987 case VEC_PACK_FIX_TRUNC_EXPR
:
8988 mode
= TYPE_MODE (TREE_TYPE (treeop0
));
8992 expand_operands (treeop0
, treeop1
, target
, &op0
, &op1
, EXPAND_NORMAL
);
8993 op2
= expand_normal (treeop2
);
8995 /* Careful here: if the target doesn't support integral vector modes,
8996 a constant selection vector could wind up smooshed into a normal
8997 integral constant. */
8998 if (CONSTANT_P (op2
) && GET_CODE (op2
) != CONST_VECTOR
)
9000 tree sel_type
= TREE_TYPE (treeop2
);
9001 enum machine_mode vmode
9002 = mode_for_vector (TYPE_MODE (TREE_TYPE (sel_type
)),
9003 TYPE_VECTOR_SUBPARTS (sel_type
));
9004 gcc_assert (GET_MODE_CLASS (vmode
) == MODE_VECTOR_INT
);
9005 op2
= simplify_subreg (vmode
, op2
, TYPE_MODE (sel_type
), 0);
9006 gcc_assert (op2
&& GET_CODE (op2
) == CONST_VECTOR
);
9009 gcc_assert (GET_MODE_CLASS (GET_MODE (op2
)) == MODE_VECTOR_INT
);
9011 temp
= expand_vec_perm (mode
, op0
, op1
, op2
, target
);
9017 tree oprnd0
= treeop0
;
9018 tree oprnd1
= treeop1
;
9019 tree oprnd2
= treeop2
;
9022 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9023 op2
= expand_normal (oprnd2
);
9024 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
9029 case REALIGN_LOAD_EXPR
:
9031 tree oprnd0
= treeop0
;
9032 tree oprnd1
= treeop1
;
9033 tree oprnd2
= treeop2
;
9036 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9037 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9038 op2
= expand_normal (oprnd2
);
9039 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
9046 /* A COND_EXPR with its type being VOID_TYPE represents a
9047 conditional jump and is handled in
9048 expand_gimple_cond_expr. */
9049 gcc_assert (!VOID_TYPE_P (type
));
9051 /* Note that COND_EXPRs whose type is a structure or union
9052 are required to be constructed to contain assignments of
9053 a temporary variable, so that we can evaluate them here
9054 for side effect only. If type is void, we must do likewise. */
9056 gcc_assert (!TREE_ADDRESSABLE (type
)
9058 && TREE_TYPE (treeop1
) != void_type_node
9059 && TREE_TYPE (treeop2
) != void_type_node
);
9061 temp
= expand_cond_expr_using_cmove (treeop0
, treeop1
, treeop2
);
9065 /* If we are not to produce a result, we have no target. Otherwise,
9066 if a target was specified use it; it will not be used as an
9067 intermediate target unless it is safe. If no target, use a
9070 if (modifier
!= EXPAND_STACK_PARM
9072 && safe_from_p (original_target
, treeop0
, 1)
9073 && GET_MODE (original_target
) == mode
9074 && !MEM_P (original_target
))
9075 temp
= original_target
;
9077 temp
= assign_temp (type
, 0, 1);
9079 do_pending_stack_adjust ();
9081 op0
= gen_label_rtx ();
9082 op1
= gen_label_rtx ();
9083 jumpifnot (treeop0
, op0
, -1);
9084 store_expr (treeop1
, temp
,
9085 modifier
== EXPAND_STACK_PARM
,
9088 emit_jump_insn (gen_jump (op1
));
9091 store_expr (treeop2
, temp
,
9092 modifier
== EXPAND_STACK_PARM
,
9100 target
= expand_vec_cond_expr (type
, treeop0
, treeop1
, treeop2
, target
);
9107 /* Here to do an ordinary binary operator. */
9109 expand_operands (treeop0
, treeop1
,
9110 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9112 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9114 if (modifier
== EXPAND_STACK_PARM
)
9116 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
9117 unsignedp
, OPTAB_LIB_WIDEN
);
9119 /* Bitwise operations do not need bitfield reduction as we expect their
9120 operands being properly truncated. */
9121 if (code
== BIT_XOR_EXPR
9122 || code
== BIT_AND_EXPR
9123 || code
== BIT_IOR_EXPR
)
9125 return REDUCE_BIT_FIELD (temp
);
9127 #undef REDUCE_BIT_FIELD
9130 /* Return TRUE if expression STMT is suitable for replacement.
9131 Never consider memory loads as replaceable, because those don't ever lead
9132 into constant expressions. */
9135 stmt_is_replaceable_p (gimple stmt
)
9137 if (ssa_is_replaceable_p (stmt
))
9139 /* Don't move around loads. */
9140 if (!gimple_assign_single_p (stmt
)
9141 || is_gimple_val (gimple_assign_rhs1 (stmt
)))
9148 expand_expr_real_1 (tree exp
, rtx target
, enum machine_mode tmode
,
9149 enum expand_modifier modifier
, rtx
*alt_rtl
)
9151 rtx op0
, op1
, temp
, decl_rtl
;
9154 enum machine_mode mode
;
9155 enum tree_code code
= TREE_CODE (exp
);
9156 rtx subtarget
, original_target
;
9159 bool reduce_bit_field
;
9160 location_t loc
= EXPR_LOCATION (exp
);
9161 struct separate_ops ops
;
9162 tree treeop0
, treeop1
, treeop2
;
9163 tree ssa_name
= NULL_TREE
;
9166 type
= TREE_TYPE (exp
);
9167 mode
= TYPE_MODE (type
);
9168 unsignedp
= TYPE_UNSIGNED (type
);
9170 treeop0
= treeop1
= treeop2
= NULL_TREE
;
9171 if (!VL_EXP_CLASS_P (exp
))
9172 switch (TREE_CODE_LENGTH (code
))
9175 case 3: treeop2
= TREE_OPERAND (exp
, 2);
9176 case 2: treeop1
= TREE_OPERAND (exp
, 1);
9177 case 1: treeop0
= TREE_OPERAND (exp
, 0);
9187 ignore
= (target
== const0_rtx
9188 || ((CONVERT_EXPR_CODE_P (code
)
9189 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
9190 && TREE_CODE (type
) == VOID_TYPE
));
9192 /* An operation in what may be a bit-field type needs the
9193 result to be reduced to the precision of the bit-field type,
9194 which is narrower than that of the type's mode. */
9195 reduce_bit_field
= (!ignore
9196 && INTEGRAL_TYPE_P (type
)
9197 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
9199 /* If we are going to ignore this result, we need only do something
9200 if there is a side-effect somewhere in the expression. If there
9201 is, short-circuit the most common cases here. Note that we must
9202 not call expand_expr with anything but const0_rtx in case this
9203 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9207 if (! TREE_SIDE_EFFECTS (exp
))
9210 /* Ensure we reference a volatile object even if value is ignored, but
9211 don't do this if all we are doing is taking its address. */
9212 if (TREE_THIS_VOLATILE (exp
)
9213 && TREE_CODE (exp
) != FUNCTION_DECL
9214 && mode
!= VOIDmode
&& mode
!= BLKmode
9215 && modifier
!= EXPAND_CONST_ADDRESS
)
9217 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
9223 if (TREE_CODE_CLASS (code
) == tcc_unary
9224 || code
== BIT_FIELD_REF
9225 || code
== COMPONENT_REF
9226 || code
== INDIRECT_REF
)
9227 return expand_expr (treeop0
, const0_rtx
, VOIDmode
,
9230 else if (TREE_CODE_CLASS (code
) == tcc_binary
9231 || TREE_CODE_CLASS (code
) == tcc_comparison
9232 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
9234 expand_expr (treeop0
, const0_rtx
, VOIDmode
, modifier
);
9235 expand_expr (treeop1
, const0_rtx
, VOIDmode
, modifier
);
9242 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
9245 /* Use subtarget as the target for operand 0 of a binary operation. */
9246 subtarget
= get_subtarget (target
);
9247 original_target
= target
;
9253 tree function
= decl_function_context (exp
);
9255 temp
= label_rtx (exp
);
9256 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
9258 if (function
!= current_function_decl
9260 LABEL_REF_NONLOCAL_P (temp
) = 1;
9262 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
9267 /* ??? ivopts calls expander, without any preparation from
9268 out-of-ssa. So fake instructions as if this was an access to the
9269 base variable. This unnecessarily allocates a pseudo, see how we can
9270 reuse it, if partition base vars have it set already. */
9271 if (!currently_expanding_to_rtl
)
9273 tree var
= SSA_NAME_VAR (exp
);
9274 if (var
&& DECL_RTL_SET_P (var
))
9275 return DECL_RTL (var
);
9276 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp
)),
9277 LAST_VIRTUAL_REGISTER
+ 1);
9280 g
= get_gimple_for_ssa_name (exp
);
9281 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9283 && modifier
== EXPAND_INITIALIZER
9284 && !SSA_NAME_IS_DEFAULT_DEF (exp
)
9285 && (optimize
|| DECL_IGNORED_P (SSA_NAME_VAR (exp
)))
9286 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp
)))
9287 g
= SSA_NAME_DEF_STMT (exp
);
9291 location_t saved_loc
= curr_insn_location ();
9293 set_curr_insn_location (gimple_location (g
));
9294 r
= expand_expr_real (gimple_assign_rhs_to_tree (g
), target
,
9295 tmode
, modifier
, NULL
);
9296 set_curr_insn_location (saved_loc
);
9297 if (REG_P (r
) && !REG_EXPR (r
))
9298 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp
), r
);
9303 decl_rtl
= get_rtx_for_ssa_name (ssa_name
);
9304 exp
= SSA_NAME_VAR (ssa_name
);
9305 goto expand_decl_rtl
;
9309 /* If a static var's type was incomplete when the decl was written,
9310 but the type is complete now, lay out the decl now. */
9311 if (DECL_SIZE (exp
) == 0
9312 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
9313 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
9314 layout_decl (exp
, 0);
9316 /* ... fall through ... */
9320 decl_rtl
= DECL_RTL (exp
);
9322 gcc_assert (decl_rtl
);
9323 decl_rtl
= copy_rtx (decl_rtl
);
9324 /* Record writes to register variables. */
9325 if (modifier
== EXPAND_WRITE
9327 && HARD_REGISTER_P (decl_rtl
))
9328 add_to_hard_reg_set (&crtl
->asm_clobbers
,
9329 GET_MODE (decl_rtl
), REGNO (decl_rtl
));
9331 /* Ensure variable marked as used even if it doesn't go through
9332 a parser. If it hasn't be used yet, write out an external
9334 TREE_USED (exp
) = 1;
9336 /* Show we haven't gotten RTL for this yet. */
9339 /* Variables inherited from containing functions should have
9340 been lowered by this point. */
9341 context
= decl_function_context (exp
);
9342 gcc_assert (SCOPE_FILE_SCOPE_P (context
)
9343 || context
== current_function_decl
9344 || TREE_STATIC (exp
)
9345 || DECL_EXTERNAL (exp
)
9346 /* ??? C++ creates functions that are not TREE_STATIC. */
9347 || TREE_CODE (exp
) == FUNCTION_DECL
);
9349 /* This is the case of an array whose size is to be determined
9350 from its initializer, while the initializer is still being parsed.
9351 ??? We aren't parsing while expanding anymore. */
9353 if (MEM_P (decl_rtl
) && REG_P (XEXP (decl_rtl
, 0)))
9354 temp
= validize_mem (decl_rtl
);
9356 /* If DECL_RTL is memory, we are in the normal case and the
9357 address is not valid, get the address into a register. */
9359 else if (MEM_P (decl_rtl
) && modifier
!= EXPAND_INITIALIZER
)
9362 *alt_rtl
= decl_rtl
;
9363 decl_rtl
= use_anchored_address (decl_rtl
);
9364 if (modifier
!= EXPAND_CONST_ADDRESS
9365 && modifier
!= EXPAND_SUM
9366 && !memory_address_addr_space_p (DECL_MODE (exp
),
9368 MEM_ADDR_SPACE (decl_rtl
)))
9369 temp
= replace_equiv_address (decl_rtl
,
9370 copy_rtx (XEXP (decl_rtl
, 0)));
9373 /* If we got something, return it. But first, set the alignment
9374 if the address is a register. */
9377 if (MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
9378 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
9383 /* If the mode of DECL_RTL does not match that of the decl,
9384 there are two cases: we are dealing with a BLKmode value
9385 that is returned in a register, or we are dealing with
9386 a promoted value. In the latter case, return a SUBREG
9387 of the wanted mode, but mark it so that we know that it
9388 was already extended. */
9389 if (REG_P (decl_rtl
)
9390 && DECL_MODE (exp
) != BLKmode
9391 && GET_MODE (decl_rtl
) != DECL_MODE (exp
))
9393 enum machine_mode pmode
;
9395 /* Get the signedness to be used for this variable. Ensure we get
9396 the same mode we got when the variable was declared. */
9397 if (code
== SSA_NAME
9398 && (g
= SSA_NAME_DEF_STMT (ssa_name
))
9399 && gimple_code (g
) == GIMPLE_CALL
)
9401 gcc_assert (!gimple_call_internal_p (g
));
9402 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
9403 gimple_call_fntype (g
),
9407 pmode
= promote_decl_mode (exp
, &unsignedp
);
9408 gcc_assert (GET_MODE (decl_rtl
) == pmode
);
9410 temp
= gen_lowpart_SUBREG (mode
, decl_rtl
);
9411 SUBREG_PROMOTED_VAR_P (temp
) = 1;
9412 SUBREG_PROMOTED_UNSIGNED_SET (temp
, unsignedp
);
9419 temp
= immed_double_const (TREE_INT_CST_LOW (exp
),
9420 TREE_INT_CST_HIGH (exp
), mode
);
9426 tree tmp
= NULL_TREE
;
9427 if (GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
9428 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
9429 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FRACT
9430 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UFRACT
9431 || GET_MODE_CLASS (mode
) == MODE_VECTOR_ACCUM
9432 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UACCUM
)
9433 return const_vector_from_tree (exp
);
9434 if (GET_MODE_CLASS (mode
) == MODE_INT
)
9436 tree type_for_mode
= lang_hooks
.types
.type_for_mode (mode
, 1);
9438 tmp
= fold_unary_loc (loc
, VIEW_CONVERT_EXPR
, type_for_mode
, exp
);
9442 vec
<constructor_elt
, va_gc
> *v
;
9444 vec_alloc (v
, VECTOR_CST_NELTS (exp
));
9445 for (i
= 0; i
< VECTOR_CST_NELTS (exp
); ++i
)
9446 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, VECTOR_CST_ELT (exp
, i
));
9447 tmp
= build_constructor (type
, v
);
9449 return expand_expr (tmp
, ignore
? const0_rtx
: target
,
9454 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
9457 /* If optimized, generate immediate CONST_DOUBLE
9458 which will be turned into memory by reload if necessary.
9460 We used to force a register so that loop.c could see it. But
9461 this does not allow gen_* patterns to perform optimizations with
9462 the constants. It also produces two insns in cases like "x = 1.0;".
9463 On most machines, floating-point constants are not permitted in
9464 many insns, so we'd end up copying it to a register in any case.
9466 Now, we do the copying in expand_binop, if appropriate. */
9467 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp
),
9468 TYPE_MODE (TREE_TYPE (exp
)));
9471 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp
),
9472 TYPE_MODE (TREE_TYPE (exp
)));
9475 /* Handle evaluating a complex constant in a CONCAT target. */
9476 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
9478 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
9481 rtarg
= XEXP (original_target
, 0);
9482 itarg
= XEXP (original_target
, 1);
9484 /* Move the real and imaginary parts separately. */
9485 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, EXPAND_NORMAL
);
9486 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, EXPAND_NORMAL
);
9489 emit_move_insn (rtarg
, op0
);
9491 emit_move_insn (itarg
, op1
);
9493 return original_target
;
9496 /* ... fall through ... */
9499 temp
= expand_expr_constant (exp
, 1, modifier
);
9501 /* temp contains a constant address.
9502 On RISC machines where a constant address isn't valid,
9503 make some insns to get that address into a register. */
9504 if (modifier
!= EXPAND_CONST_ADDRESS
9505 && modifier
!= EXPAND_INITIALIZER
9506 && modifier
!= EXPAND_SUM
9507 && ! memory_address_addr_space_p (mode
, XEXP (temp
, 0),
9508 MEM_ADDR_SPACE (temp
)))
9509 return replace_equiv_address (temp
,
9510 copy_rtx (XEXP (temp
, 0)));
9516 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
);
9518 if (!SAVE_EXPR_RESOLVED_P (exp
))
9520 /* We can indeed still hit this case, typically via builtin
9521 expanders calling save_expr immediately before expanding
9522 something. Assume this means that we only have to deal
9523 with non-BLKmode values. */
9524 gcc_assert (GET_MODE (ret
) != BLKmode
);
9526 val
= build_decl (curr_insn_location (),
9527 VAR_DECL
, NULL
, TREE_TYPE (exp
));
9528 DECL_ARTIFICIAL (val
) = 1;
9529 DECL_IGNORED_P (val
) = 1;
9531 TREE_OPERAND (exp
, 0) = treeop0
;
9532 SAVE_EXPR_RESOLVED_P (exp
) = 1;
9534 if (!CONSTANT_P (ret
))
9535 ret
= copy_to_reg (ret
);
9536 SET_DECL_RTL (val
, ret
);
9544 /* If we don't need the result, just ensure we evaluate any
9548 unsigned HOST_WIDE_INT idx
;
9551 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
9552 expand_expr (value
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
9557 return expand_constructor (exp
, target
, modifier
, false);
9559 case TARGET_MEM_REF
:
9562 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9563 struct mem_address addr
;
9564 enum insn_code icode
;
9567 get_address_description (exp
, &addr
);
9568 op0
= addr_for_mem_ref (&addr
, as
, true);
9569 op0
= memory_address_addr_space (mode
, op0
, as
);
9570 temp
= gen_rtx_MEM (mode
, op0
);
9571 set_mem_attributes (temp
, exp
, 0);
9572 set_mem_addr_space (temp
, as
);
9573 align
= get_object_alignment (exp
);
9574 if (modifier
!= EXPAND_WRITE
9575 && modifier
!= EXPAND_MEMORY
9577 && align
< GET_MODE_ALIGNMENT (mode
)
9578 /* If the target does not have special handling for unaligned
9579 loads of mode then it can use regular moves for them. */
9580 && ((icode
= optab_handler (movmisalign_optab
, mode
))
9581 != CODE_FOR_nothing
))
9583 struct expand_operand ops
[2];
9585 /* We've already validated the memory, and we're creating a
9586 new pseudo destination. The predicates really can't fail,
9587 nor can the generator. */
9588 create_output_operand (&ops
[0], NULL_RTX
, mode
);
9589 create_fixed_operand (&ops
[1], temp
);
9590 expand_insn (icode
, 2, ops
);
9591 temp
= ops
[0].value
;
9599 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9600 enum machine_mode address_mode
;
9601 tree base
= TREE_OPERAND (exp
, 0);
9603 enum insn_code icode
;
9605 /* Handle expansion of non-aliased memory with non-BLKmode. That
9606 might end up in a register. */
9607 if (mem_ref_refers_to_non_mem_p (exp
))
9609 HOST_WIDE_INT offset
= mem_ref_offset (exp
).low
;
9610 base
= TREE_OPERAND (base
, 0);
9612 && host_integerp (TYPE_SIZE (type
), 1)
9613 && (GET_MODE_BITSIZE (DECL_MODE (base
))
9614 == TREE_INT_CST_LOW (TYPE_SIZE (type
))))
9615 return expand_expr (build1 (VIEW_CONVERT_EXPR
, type
, base
),
9616 target
, tmode
, modifier
);
9617 if (TYPE_MODE (type
) == BLKmode
)
9619 temp
= assign_stack_temp (DECL_MODE (base
),
9620 GET_MODE_SIZE (DECL_MODE (base
)));
9621 store_expr (base
, temp
, 0, false);
9622 temp
= adjust_address (temp
, BLKmode
, offset
);
9623 set_mem_size (temp
, int_size_in_bytes (type
));
9626 exp
= build3 (BIT_FIELD_REF
, type
, base
, TYPE_SIZE (type
),
9627 bitsize_int (offset
* BITS_PER_UNIT
));
9628 return expand_expr (exp
, target
, tmode
, modifier
);
9630 address_mode
= targetm
.addr_space
.address_mode (as
);
9631 base
= TREE_OPERAND (exp
, 0);
9632 if ((def_stmt
= get_def_for_expr (base
, BIT_AND_EXPR
)))
9634 tree mask
= gimple_assign_rhs2 (def_stmt
);
9635 base
= build2 (BIT_AND_EXPR
, TREE_TYPE (base
),
9636 gimple_assign_rhs1 (def_stmt
), mask
);
9637 TREE_OPERAND (exp
, 0) = base
;
9639 align
= get_object_alignment (exp
);
9640 op0
= expand_expr (base
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
9641 op0
= memory_address_addr_space (address_mode
, op0
, as
);
9642 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
9645 = immed_double_int_const (mem_ref_offset (exp
), address_mode
);
9646 op0
= simplify_gen_binary (PLUS
, address_mode
, op0
, off
);
9648 op0
= memory_address_addr_space (mode
, op0
, as
);
9649 temp
= gen_rtx_MEM (mode
, op0
);
9650 set_mem_attributes (temp
, exp
, 0);
9651 set_mem_addr_space (temp
, as
);
9652 if (TREE_THIS_VOLATILE (exp
))
9653 MEM_VOLATILE_P (temp
) = 1;
9654 if (modifier
!= EXPAND_WRITE
9655 && modifier
!= EXPAND_MEMORY
9657 && align
< GET_MODE_ALIGNMENT (mode
))
9659 if ((icode
= optab_handler (movmisalign_optab
, mode
))
9660 != CODE_FOR_nothing
)
9662 struct expand_operand ops
[2];
9664 /* We've already validated the memory, and we're creating a
9665 new pseudo destination. The predicates really can't fail,
9666 nor can the generator. */
9667 create_output_operand (&ops
[0], NULL_RTX
, mode
);
9668 create_fixed_operand (&ops
[1], temp
);
9669 expand_insn (icode
, 2, ops
);
9670 temp
= ops
[0].value
;
9672 else if (SLOW_UNALIGNED_ACCESS (mode
, align
))
9673 temp
= extract_bit_field (temp
, GET_MODE_BITSIZE (mode
),
9674 0, TYPE_UNSIGNED (TREE_TYPE (exp
)),
9675 true, (modifier
== EXPAND_STACK_PARM
9676 ? NULL_RTX
: target
),
9685 tree array
= treeop0
;
9686 tree index
= treeop1
;
9689 /* Fold an expression like: "foo"[2].
9690 This is not done in fold so it won't happen inside &.
9691 Don't fold if this is for wide characters since it's too
9692 difficult to do correctly and this is a very rare case. */
9694 if (modifier
!= EXPAND_CONST_ADDRESS
9695 && modifier
!= EXPAND_INITIALIZER
9696 && modifier
!= EXPAND_MEMORY
)
9698 tree t
= fold_read_from_constant_string (exp
);
9701 return expand_expr (t
, target
, tmode
, modifier
);
9704 /* If this is a constant index into a constant array,
9705 just get the value from the array. Handle both the cases when
9706 we have an explicit constructor and when our operand is a variable
9707 that was declared const. */
9709 if (modifier
!= EXPAND_CONST_ADDRESS
9710 && modifier
!= EXPAND_INITIALIZER
9711 && modifier
!= EXPAND_MEMORY
9712 && TREE_CODE (array
) == CONSTRUCTOR
9713 && ! TREE_SIDE_EFFECTS (array
)
9714 && TREE_CODE (index
) == INTEGER_CST
)
9716 unsigned HOST_WIDE_INT ix
;
9719 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array
), ix
,
9721 if (tree_int_cst_equal (field
, index
))
9723 if (!TREE_SIDE_EFFECTS (value
))
9724 return expand_expr (fold (value
), target
, tmode
, modifier
);
9729 else if (optimize
>= 1
9730 && modifier
!= EXPAND_CONST_ADDRESS
9731 && modifier
!= EXPAND_INITIALIZER
9732 && modifier
!= EXPAND_MEMORY
9733 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
9734 && TREE_CODE (index
) == INTEGER_CST
9735 && (TREE_CODE (array
) == VAR_DECL
9736 || TREE_CODE (array
) == CONST_DECL
)
9737 && (init
= ctor_for_folding (array
)) != error_mark_node
)
9739 if (TREE_CODE (init
) == CONSTRUCTOR
)
9741 unsigned HOST_WIDE_INT ix
;
9744 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init
), ix
,
9746 if (tree_int_cst_equal (field
, index
))
9748 if (TREE_SIDE_EFFECTS (value
))
9751 if (TREE_CODE (value
) == CONSTRUCTOR
)
9753 /* If VALUE is a CONSTRUCTOR, this
9754 optimization is only useful if
9755 this doesn't store the CONSTRUCTOR
9756 into memory. If it does, it is more
9757 efficient to just load the data from
9758 the array directly. */
9759 rtx ret
= expand_constructor (value
, target
,
9761 if (ret
== NULL_RTX
)
9766 expand_expr (fold (value
), target
, tmode
, modifier
);
9769 else if (TREE_CODE (init
) == STRING_CST
)
9771 tree low_bound
= array_ref_low_bound (exp
);
9772 tree index1
= fold_convert_loc (loc
, sizetype
, treeop1
);
9774 /* Optimize the special case of a zero lower bound.
9776 We convert the lower bound to sizetype to avoid problems
9777 with constant folding. E.g. suppose the lower bound is
9778 1 and its mode is QI. Without the conversion
9779 (ARRAY + (INDEX - (unsigned char)1))
9781 (ARRAY + (-(unsigned char)1) + INDEX)
9783 (ARRAY + 255 + INDEX). Oops! */
9784 if (!integer_zerop (low_bound
))
9785 index1
= size_diffop_loc (loc
, index1
,
9786 fold_convert_loc (loc
, sizetype
,
9789 if (compare_tree_int (index1
, TREE_STRING_LENGTH (init
)) < 0)
9791 tree type
= TREE_TYPE (TREE_TYPE (init
));
9792 enum machine_mode mode
= TYPE_MODE (type
);
9794 if (GET_MODE_CLASS (mode
) == MODE_INT
9795 && GET_MODE_SIZE (mode
) == 1)
9796 return gen_int_mode (TREE_STRING_POINTER (init
)
9797 [TREE_INT_CST_LOW (index1
)],
9803 goto normal_inner_ref
;
9806 /* If the operand is a CONSTRUCTOR, we can just extract the
9807 appropriate field if it is present. */
9808 if (TREE_CODE (treeop0
) == CONSTRUCTOR
)
9810 unsigned HOST_WIDE_INT idx
;
9813 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0
),
9815 if (field
== treeop1
9816 /* We can normally use the value of the field in the
9817 CONSTRUCTOR. However, if this is a bitfield in
9818 an integral mode that we can fit in a HOST_WIDE_INT,
9819 we must mask only the number of bits in the bitfield,
9820 since this is done implicitly by the constructor. If
9821 the bitfield does not meet either of those conditions,
9822 we can't do this optimization. */
9823 && (! DECL_BIT_FIELD (field
)
9824 || ((GET_MODE_CLASS (DECL_MODE (field
)) == MODE_INT
)
9825 && (GET_MODE_PRECISION (DECL_MODE (field
))
9826 <= HOST_BITS_PER_WIDE_INT
))))
9828 if (DECL_BIT_FIELD (field
)
9829 && modifier
== EXPAND_STACK_PARM
)
9831 op0
= expand_expr (value
, target
, tmode
, modifier
);
9832 if (DECL_BIT_FIELD (field
))
9834 HOST_WIDE_INT bitsize
= TREE_INT_CST_LOW (DECL_SIZE (field
));
9835 enum machine_mode imode
= TYPE_MODE (TREE_TYPE (field
));
9837 if (TYPE_UNSIGNED (TREE_TYPE (field
)))
9839 op1
= gen_int_mode (((HOST_WIDE_INT
) 1 << bitsize
) - 1,
9841 op0
= expand_and (imode
, op0
, op1
, target
);
9845 int count
= GET_MODE_PRECISION (imode
) - bitsize
;
9847 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
9849 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
9857 goto normal_inner_ref
;
9860 case ARRAY_RANGE_REF
:
9863 enum machine_mode mode1
, mode2
;
9864 HOST_WIDE_INT bitsize
, bitpos
;
9866 int volatilep
= 0, must_force_mem
;
9867 bool packedp
= false;
9868 tree tem
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
9869 &mode1
, &unsignedp
, &volatilep
, true);
9870 rtx orig_op0
, memloc
;
9871 bool mem_attrs_from_type
= false;
9873 /* If we got back the original object, something is wrong. Perhaps
9874 we are evaluating an expression too early. In any event, don't
9875 infinitely recurse. */
9876 gcc_assert (tem
!= exp
);
9878 if (TYPE_PACKED (TREE_TYPE (TREE_OPERAND (exp
, 0)))
9879 || (TREE_CODE (TREE_OPERAND (exp
, 1)) == FIELD_DECL
9880 && DECL_PACKED (TREE_OPERAND (exp
, 1))))
9883 /* If TEM's type is a union of variable size, pass TARGET to the inner
9884 computation, since it will need a temporary and TARGET is known
9885 to have to do. This occurs in unchecked conversion in Ada. */
9888 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
9889 && COMPLETE_TYPE_P (TREE_TYPE (tem
))
9890 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
9892 && modifier
!= EXPAND_STACK_PARM
9893 ? target
: NULL_RTX
),
9895 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
);
9897 /* If the bitfield is volatile, we want to access it in the
9898 field's mode, not the computed mode.
9899 If a MEM has VOIDmode (external with incomplete type),
9900 use BLKmode for it instead. */
9903 if (volatilep
&& flag_strict_volatile_bitfields
> 0)
9904 op0
= adjust_address (op0
, mode1
, 0);
9905 else if (GET_MODE (op0
) == VOIDmode
)
9906 op0
= adjust_address (op0
, BLKmode
, 0);
9910 = CONSTANT_P (op0
) ? TYPE_MODE (TREE_TYPE (tem
)) : GET_MODE (op0
);
9912 /* If we have either an offset, a BLKmode result, or a reference
9913 outside the underlying object, we must force it to memory.
9914 Such a case can occur in Ada if we have unchecked conversion
9915 of an expression from a scalar type to an aggregate type or
9916 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
9917 passed a partially uninitialized object or a view-conversion
9918 to a larger size. */
9919 must_force_mem
= (offset
9921 || bitpos
+ bitsize
> GET_MODE_BITSIZE (mode2
));
9923 /* Handle CONCAT first. */
9924 if (GET_CODE (op0
) == CONCAT
&& !must_force_mem
)
9927 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
9930 && bitsize
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
9933 op0
= XEXP (op0
, 0);
9934 mode2
= GET_MODE (op0
);
9936 else if (bitpos
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
9937 && bitsize
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 1)))
9941 op0
= XEXP (op0
, 1);
9943 mode2
= GET_MODE (op0
);
9946 /* Otherwise force into memory. */
9950 /* If this is a constant, put it in a register if it is a legitimate
9951 constant and we don't need a memory reference. */
9952 if (CONSTANT_P (op0
)
9954 && targetm
.legitimate_constant_p (mode2
, op0
)
9956 op0
= force_reg (mode2
, op0
);
9958 /* Otherwise, if this is a constant, try to force it to the constant
9959 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
9960 is a legitimate constant. */
9961 else if (CONSTANT_P (op0
) && (memloc
= force_const_mem (mode2
, op0
)))
9962 op0
= validize_mem (memloc
);
9964 /* Otherwise, if this is a constant or the object is not in memory
9965 and need be, put it there. */
9966 else if (CONSTANT_P (op0
) || (!MEM_P (op0
) && must_force_mem
))
9968 tree nt
= build_qualified_type (TREE_TYPE (tem
),
9969 (TYPE_QUALS (TREE_TYPE (tem
))
9970 | TYPE_QUAL_CONST
));
9971 memloc
= assign_temp (nt
, 1, 1);
9972 emit_move_insn (memloc
, op0
);
9974 mem_attrs_from_type
= true;
9979 enum machine_mode address_mode
;
9980 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
9983 gcc_assert (MEM_P (op0
));
9985 address_mode
= get_address_mode (op0
);
9986 if (GET_MODE (offset_rtx
) != address_mode
)
9987 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
9989 if (GET_MODE (op0
) == BLKmode
9990 /* A constant address in OP0 can have VOIDmode, we must
9991 not try to call force_reg in that case. */
9992 && GET_MODE (XEXP (op0
, 0)) != VOIDmode
9994 && (bitpos
% bitsize
) == 0
9995 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
9996 && MEM_ALIGN (op0
) == GET_MODE_ALIGNMENT (mode1
))
9998 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10002 op0
= offset_address (op0
, offset_rtx
,
10003 highest_pow2_factor (offset
));
10006 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10007 record its alignment as BIGGEST_ALIGNMENT. */
10008 if (MEM_P (op0
) && bitpos
== 0 && offset
!= 0
10009 && is_aligning_offset (offset
, tem
))
10010 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
10012 /* Don't forget about volatility even if this is a bitfield. */
10013 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
10015 if (op0
== orig_op0
)
10016 op0
= copy_rtx (op0
);
10018 MEM_VOLATILE_P (op0
) = 1;
10021 /* In cases where an aligned union has an unaligned object
10022 as a field, we might be extracting a BLKmode value from
10023 an integer-mode (e.g., SImode) object. Handle this case
10024 by doing the extract into an object as wide as the field
10025 (which we know to be the width of a basic mode), then
10026 storing into memory, and changing the mode to BLKmode. */
10027 if (mode1
== VOIDmode
10028 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
10029 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
10030 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
10031 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
10032 && modifier
!= EXPAND_CONST_ADDRESS
10033 && modifier
!= EXPAND_INITIALIZER
10034 && modifier
!= EXPAND_MEMORY
)
10035 /* If the field is volatile, we always want an aligned
10036 access. Do this in following two situations:
10037 1. the access is not already naturally
10038 aligned, otherwise "normal" (non-bitfield) volatile fields
10039 become non-addressable.
10040 2. the bitsize is narrower than the access size. Need
10041 to extract bitfields from the access. */
10042 || (volatilep
&& flag_strict_volatile_bitfields
> 0
10043 && (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0
10044 || (mode1
!= BLKmode
10045 && bitsize
< GET_MODE_SIZE (mode1
) * BITS_PER_UNIT
)))
10046 /* If the field isn't aligned enough to fetch as a memref,
10047 fetch it as a bit field. */
10048 || (mode1
!= BLKmode
10049 && (((TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
10050 || (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0)
10052 && (MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
10053 || (bitpos
% GET_MODE_ALIGNMENT (mode1
) != 0))))
10054 && modifier
!= EXPAND_MEMORY
10055 && ((modifier
== EXPAND_CONST_ADDRESS
10056 || modifier
== EXPAND_INITIALIZER
)
10058 : SLOW_UNALIGNED_ACCESS (mode1
, MEM_ALIGN (op0
))))
10059 || (bitpos
% BITS_PER_UNIT
!= 0)))
10060 /* If the type and the field are a constant size and the
10061 size of the type isn't the same size as the bitfield,
10062 we must use bitfield operations. */
10064 && TYPE_SIZE (TREE_TYPE (exp
))
10065 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
10066 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)),
10069 enum machine_mode ext_mode
= mode
;
10071 if (ext_mode
== BLKmode
10072 && ! (target
!= 0 && MEM_P (op0
)
10074 && bitpos
% BITS_PER_UNIT
== 0))
10075 ext_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
10077 if (ext_mode
== BLKmode
)
10080 target
= assign_temp (type
, 1, 1);
10085 /* In this case, BITPOS must start at a byte boundary and
10086 TARGET, if specified, must be a MEM. */
10087 gcc_assert (MEM_P (op0
)
10088 && (!target
|| MEM_P (target
))
10089 && !(bitpos
% BITS_PER_UNIT
));
10091 emit_block_move (target
,
10092 adjust_address (op0
, VOIDmode
,
10093 bitpos
/ BITS_PER_UNIT
),
10094 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
10096 (modifier
== EXPAND_STACK_PARM
10097 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10102 op0
= validize_mem (op0
);
10104 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
10105 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10107 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
, packedp
,
10108 (modifier
== EXPAND_STACK_PARM
10109 ? NULL_RTX
: target
),
10110 ext_mode
, ext_mode
);
10112 /* If the result is a record type and BITSIZE is narrower than
10113 the mode of OP0, an integral mode, and this is a big endian
10114 machine, we must put the field into the high-order bits. */
10115 if (TREE_CODE (type
) == RECORD_TYPE
&& BYTES_BIG_ENDIAN
10116 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
10117 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (op0
)))
10118 op0
= expand_shift (LSHIFT_EXPR
, GET_MODE (op0
), op0
,
10119 GET_MODE_BITSIZE (GET_MODE (op0
))
10120 - bitsize
, op0
, 1);
10122 /* If the result type is BLKmode, store the data into a temporary
10123 of the appropriate type, but with the mode corresponding to the
10124 mode for the data we have (op0's mode). It's tempting to make
10125 this a constant type, since we know it's only being stored once,
10126 but that can cause problems if we are taking the address of this
10127 COMPONENT_REF because the MEM of any reference via that address
10128 will have flags corresponding to the type, which will not
10129 necessarily be constant. */
10130 if (mode
== BLKmode
)
10134 new_rtx
= assign_stack_temp_for_type (ext_mode
,
10135 GET_MODE_BITSIZE (ext_mode
),
10137 emit_move_insn (new_rtx
, op0
);
10138 op0
= copy_rtx (new_rtx
);
10139 PUT_MODE (op0
, BLKmode
);
10145 /* If the result is BLKmode, use that to access the object
10147 if (mode
== BLKmode
)
10150 /* Get a reference to just this component. */
10151 if (modifier
== EXPAND_CONST_ADDRESS
10152 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
10153 op0
= adjust_address_nv (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10155 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10157 if (op0
== orig_op0
)
10158 op0
= copy_rtx (op0
);
10160 /* If op0 is a temporary because of forcing to memory, pass only the
10161 type to set_mem_attributes so that the original expression is never
10162 marked as ADDRESSABLE through MEM_EXPR of the temporary. */
10163 if (mem_attrs_from_type
)
10164 set_mem_attributes (op0
, type
, 0);
10166 set_mem_attributes (op0
, exp
, 0);
10168 if (REG_P (XEXP (op0
, 0)))
10169 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10171 MEM_VOLATILE_P (op0
) |= volatilep
;
10172 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
10173 || modifier
== EXPAND_CONST_ADDRESS
10174 || modifier
== EXPAND_INITIALIZER
)
10178 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
10180 convert_move (target
, op0
, unsignedp
);
10185 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
10188 /* All valid uses of __builtin_va_arg_pack () are removed during
10190 if (CALL_EXPR_VA_ARG_PACK (exp
))
10191 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp
);
10193 tree fndecl
= get_callee_fndecl (exp
), attr
;
10196 && (attr
= lookup_attribute ("error",
10197 DECL_ATTRIBUTES (fndecl
))) != NULL
)
10198 error ("%Kcall to %qs declared with attribute error: %s",
10199 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
10200 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
10202 && (attr
= lookup_attribute ("warning",
10203 DECL_ATTRIBUTES (fndecl
))) != NULL
)
10204 warning_at (tree_nonartificial_location (exp
),
10205 0, "%Kcall to %qs declared with attribute warning: %s",
10206 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
10207 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
10209 /* Check for a built-in function. */
10210 if (fndecl
&& DECL_BUILT_IN (fndecl
))
10212 gcc_assert (DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_FRONTEND
);
10213 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
10216 return expand_call (exp
, target
, ignore
);
10218 case VIEW_CONVERT_EXPR
:
10221 /* If we are converting to BLKmode, try to avoid an intermediate
10222 temporary by fetching an inner memory reference. */
10223 if (mode
== BLKmode
10224 && TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
10225 && TYPE_MODE (TREE_TYPE (treeop0
)) != BLKmode
10226 && handled_component_p (treeop0
))
10228 enum machine_mode mode1
;
10229 HOST_WIDE_INT bitsize
, bitpos
;
10234 = get_inner_reference (treeop0
, &bitsize
, &bitpos
,
10235 &offset
, &mode1
, &unsignedp
, &volatilep
,
10239 /* ??? We should work harder and deal with non-zero offsets. */
10241 && (bitpos
% BITS_PER_UNIT
) == 0
10243 && compare_tree_int (TYPE_SIZE (type
), bitsize
) == 0)
10245 /* See the normal_inner_ref case for the rationale. */
10247 = expand_expr (tem
,
10248 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
10249 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
10251 && modifier
!= EXPAND_STACK_PARM
10252 ? target
: NULL_RTX
),
10254 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
);
10256 if (MEM_P (orig_op0
))
10260 /* Get a reference to just this component. */
10261 if (modifier
== EXPAND_CONST_ADDRESS
10262 || modifier
== EXPAND_SUM
10263 || modifier
== EXPAND_INITIALIZER
)
10264 op0
= adjust_address_nv (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
10266 op0
= adjust_address (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
10268 if (op0
== orig_op0
)
10269 op0
= copy_rtx (op0
);
10271 set_mem_attributes (op0
, treeop0
, 0);
10272 if (REG_P (XEXP (op0
, 0)))
10273 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10275 MEM_VOLATILE_P (op0
) |= volatilep
;
10281 op0
= expand_expr (treeop0
, NULL_RTX
, VOIDmode
, modifier
);
10283 /* If the input and output modes are both the same, we are done. */
10284 if (mode
== GET_MODE (op0
))
10286 /* If neither mode is BLKmode, and both modes are the same size
10287 then we can use gen_lowpart. */
10288 else if (mode
!= BLKmode
&& GET_MODE (op0
) != BLKmode
10289 && (GET_MODE_PRECISION (mode
)
10290 == GET_MODE_PRECISION (GET_MODE (op0
)))
10291 && !COMPLEX_MODE_P (GET_MODE (op0
)))
10293 if (GET_CODE (op0
) == SUBREG
)
10294 op0
= force_reg (GET_MODE (op0
), op0
);
10295 temp
= gen_lowpart_common (mode
, op0
);
10300 if (!REG_P (op0
) && !MEM_P (op0
))
10301 op0
= force_reg (GET_MODE (op0
), op0
);
10302 op0
= gen_lowpart (mode
, op0
);
10305 /* If both types are integral, convert from one mode to the other. */
10306 else if (INTEGRAL_TYPE_P (type
) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0
)))
10307 op0
= convert_modes (mode
, GET_MODE (op0
), op0
,
10308 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
10309 /* As a last resort, spill op0 to memory, and reload it in a
10311 else if (!MEM_P (op0
))
10313 /* If the operand is not a MEM, force it into memory. Since we
10314 are going to be changing the mode of the MEM, don't call
10315 force_const_mem for constants because we don't allow pool
10316 constants to change mode. */
10317 tree inner_type
= TREE_TYPE (treeop0
);
10319 gcc_assert (!TREE_ADDRESSABLE (exp
));
10321 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
10323 = assign_stack_temp_for_type
10324 (TYPE_MODE (inner_type
),
10325 GET_MODE_SIZE (TYPE_MODE (inner_type
)), inner_type
);
10327 emit_move_insn (target
, op0
);
10331 /* At this point, OP0 is in the correct mode. If the output type is
10332 such that the operand is known to be aligned, indicate that it is.
10333 Otherwise, we need only be concerned about alignment for non-BLKmode
10337 enum insn_code icode
;
10339 if (TYPE_ALIGN_OK (type
))
10341 /* ??? Copying the MEM without substantially changing it might
10342 run afoul of the code handling volatile memory references in
10343 store_expr, which assumes that TARGET is returned unmodified
10344 if it has been used. */
10345 op0
= copy_rtx (op0
);
10346 set_mem_align (op0
, MAX (MEM_ALIGN (op0
), TYPE_ALIGN (type
)));
10348 else if (mode
!= BLKmode
10349 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode
)
10350 /* If the target does have special handling for unaligned
10351 loads of mode then use them. */
10352 && ((icode
= optab_handler (movmisalign_optab
, mode
))
10353 != CODE_FOR_nothing
))
10357 op0
= adjust_address (op0
, mode
, 0);
10358 /* We've already validated the memory, and we're creating a
10359 new pseudo destination. The predicates really can't
10361 reg
= gen_reg_rtx (mode
);
10363 /* Nor can the insn generator. */
10364 insn
= GEN_FCN (icode
) (reg
, op0
);
10368 else if (STRICT_ALIGNMENT
10370 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode
))
10372 tree inner_type
= TREE_TYPE (treeop0
);
10373 HOST_WIDE_INT temp_size
10374 = MAX (int_size_in_bytes (inner_type
),
10375 (HOST_WIDE_INT
) GET_MODE_SIZE (mode
));
10377 = assign_stack_temp_for_type (mode
, temp_size
, type
);
10378 rtx new_with_op0_mode
10379 = adjust_address (new_rtx
, GET_MODE (op0
), 0);
10381 gcc_assert (!TREE_ADDRESSABLE (exp
));
10383 if (GET_MODE (op0
) == BLKmode
)
10384 emit_block_move (new_with_op0_mode
, op0
,
10385 GEN_INT (GET_MODE_SIZE (mode
)),
10386 (modifier
== EXPAND_STACK_PARM
10387 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10389 emit_move_insn (new_with_op0_mode
, op0
);
10394 op0
= adjust_address (op0
, mode
, 0);
10401 tree lhs
= treeop0
;
10402 tree rhs
= treeop1
;
10403 gcc_assert (ignore
);
10405 /* Check for |= or &= of a bitfield of size one into another bitfield
10406 of size 1. In this case, (unless we need the result of the
10407 assignment) we can do this more efficiently with a
10408 test followed by an assignment, if necessary.
10410 ??? At this point, we can't get a BIT_FIELD_REF here. But if
10411 things change so we do, this code should be enhanced to
10413 if (TREE_CODE (lhs
) == COMPONENT_REF
10414 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
10415 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
10416 && TREE_OPERAND (rhs
, 0) == lhs
10417 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
10418 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
10419 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
10421 rtx label
= gen_label_rtx ();
10422 int value
= TREE_CODE (rhs
) == BIT_IOR_EXPR
;
10423 do_jump (TREE_OPERAND (rhs
, 1),
10425 value
? 0 : label
, -1);
10426 expand_assignment (lhs
, build_int_cst (TREE_TYPE (rhs
), value
),
10428 do_pending_stack_adjust ();
10429 emit_label (label
);
10433 expand_assignment (lhs
, rhs
, false);
10438 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
10440 case REALPART_EXPR
:
10441 op0
= expand_normal (treeop0
);
10442 return read_complex_part (op0
, false);
10444 case IMAGPART_EXPR
:
10445 op0
= expand_normal (treeop0
);
10446 return read_complex_part (op0
, true);
10453 /* Expanded in cfgexpand.c. */
10454 gcc_unreachable ();
10456 case TRY_CATCH_EXPR
:
10458 case EH_FILTER_EXPR
:
10459 case TRY_FINALLY_EXPR
:
10460 /* Lowered by tree-eh.c. */
10461 gcc_unreachable ();
10463 case WITH_CLEANUP_EXPR
:
10464 case CLEANUP_POINT_EXPR
:
10466 case CASE_LABEL_EXPR
:
10471 case COMPOUND_EXPR
:
10472 case PREINCREMENT_EXPR
:
10473 case PREDECREMENT_EXPR
:
10474 case POSTINCREMENT_EXPR
:
10475 case POSTDECREMENT_EXPR
:
10478 case COMPOUND_LITERAL_EXPR
:
10479 /* Lowered by gimplify.c. */
10480 gcc_unreachable ();
10483 /* Function descriptors are not valid except for as
10484 initialization constants, and should not be expanded. */
10485 gcc_unreachable ();
10487 case WITH_SIZE_EXPR
:
10488 /* WITH_SIZE_EXPR expands to its first argument. The caller should
10489 have pulled out the size to use in whatever context it needed. */
10490 return expand_expr_real (treeop0
, original_target
, tmode
,
10491 modifier
, alt_rtl
);
10494 return expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
10498 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
10499 signedness of TYPE), possibly returning the result in TARGET. */
10501 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
10503 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
10504 if (target
&& GET_MODE (target
) != GET_MODE (exp
))
10506 /* For constant values, reduce using build_int_cst_type. */
10507 if (CONST_INT_P (exp
))
10509 HOST_WIDE_INT value
= INTVAL (exp
);
10510 tree t
= build_int_cst_type (type
, value
);
10511 return expand_expr (t
, target
, VOIDmode
, EXPAND_NORMAL
);
10513 else if (TYPE_UNSIGNED (type
))
10515 rtx mask
= immed_double_int_const (double_int::mask (prec
),
10517 return expand_and (GET_MODE (exp
), exp
, mask
, target
);
10521 int count
= GET_MODE_PRECISION (GET_MODE (exp
)) - prec
;
10522 exp
= expand_shift (LSHIFT_EXPR
, GET_MODE (exp
),
10523 exp
, count
, target
, 0);
10524 return expand_shift (RSHIFT_EXPR
, GET_MODE (exp
),
10525 exp
, count
, target
, 0);
10529 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
10530 when applied to the address of EXP produces an address known to be
10531 aligned more than BIGGEST_ALIGNMENT. */
10534 is_aligning_offset (const_tree offset
, const_tree exp
)
10536 /* Strip off any conversions. */
10537 while (CONVERT_EXPR_P (offset
))
10538 offset
= TREE_OPERAND (offset
, 0);
10540 /* We must now have a BIT_AND_EXPR with a constant that is one less than
10541 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
10542 if (TREE_CODE (offset
) != BIT_AND_EXPR
10543 || !host_integerp (TREE_OPERAND (offset
, 1), 1)
10544 || compare_tree_int (TREE_OPERAND (offset
, 1),
10545 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
10546 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset
, 1), 1) + 1) < 0)
10549 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
10550 It must be NEGATE_EXPR. Then strip any more conversions. */
10551 offset
= TREE_OPERAND (offset
, 0);
10552 while (CONVERT_EXPR_P (offset
))
10553 offset
= TREE_OPERAND (offset
, 0);
10555 if (TREE_CODE (offset
) != NEGATE_EXPR
)
10558 offset
= TREE_OPERAND (offset
, 0);
10559 while (CONVERT_EXPR_P (offset
))
10560 offset
= TREE_OPERAND (offset
, 0);
10562 /* This must now be the address of EXP. */
10563 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
10566 /* Return the tree node if an ARG corresponds to a string constant or zero
10567 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
10568 in bytes within the string that ARG is accessing. The type of the
10569 offset will be `sizetype'. */
10572 string_constant (tree arg
, tree
*ptr_offset
)
10574 tree array
, offset
, lower_bound
;
10577 if (TREE_CODE (arg
) == ADDR_EXPR
)
10579 if (TREE_CODE (TREE_OPERAND (arg
, 0)) == STRING_CST
)
10581 *ptr_offset
= size_zero_node
;
10582 return TREE_OPERAND (arg
, 0);
10584 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == VAR_DECL
)
10586 array
= TREE_OPERAND (arg
, 0);
10587 offset
= size_zero_node
;
10589 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == ARRAY_REF
)
10591 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
10592 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
10593 if (TREE_CODE (array
) != STRING_CST
10594 && TREE_CODE (array
) != VAR_DECL
)
10597 /* Check if the array has a nonzero lower bound. */
10598 lower_bound
= array_ref_low_bound (TREE_OPERAND (arg
, 0));
10599 if (!integer_zerop (lower_bound
))
10601 /* If the offset and base aren't both constants, return 0. */
10602 if (TREE_CODE (lower_bound
) != INTEGER_CST
)
10604 if (TREE_CODE (offset
) != INTEGER_CST
)
10606 /* Adjust offset by the lower bound. */
10607 offset
= size_diffop (fold_convert (sizetype
, offset
),
10608 fold_convert (sizetype
, lower_bound
));
10611 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == MEM_REF
)
10613 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
10614 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
10615 if (TREE_CODE (array
) != ADDR_EXPR
)
10617 array
= TREE_OPERAND (array
, 0);
10618 if (TREE_CODE (array
) != STRING_CST
10619 && TREE_CODE (array
) != VAR_DECL
)
10625 else if (TREE_CODE (arg
) == PLUS_EXPR
|| TREE_CODE (arg
) == POINTER_PLUS_EXPR
)
10627 tree arg0
= TREE_OPERAND (arg
, 0);
10628 tree arg1
= TREE_OPERAND (arg
, 1);
10633 if (TREE_CODE (arg0
) == ADDR_EXPR
10634 && (TREE_CODE (TREE_OPERAND (arg0
, 0)) == STRING_CST
10635 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == VAR_DECL
))
10637 array
= TREE_OPERAND (arg0
, 0);
10640 else if (TREE_CODE (arg1
) == ADDR_EXPR
10641 && (TREE_CODE (TREE_OPERAND (arg1
, 0)) == STRING_CST
10642 || TREE_CODE (TREE_OPERAND (arg1
, 0)) == VAR_DECL
))
10644 array
= TREE_OPERAND (arg1
, 0);
10653 if (TREE_CODE (array
) == STRING_CST
)
10655 *ptr_offset
= fold_convert (sizetype
, offset
);
10658 else if (TREE_CODE (array
) == VAR_DECL
10659 || TREE_CODE (array
) == CONST_DECL
)
10662 tree init
= ctor_for_folding (array
);
10664 /* Variables initialized to string literals can be handled too. */
10665 if (init
== error_mark_node
10667 || TREE_CODE (init
) != STRING_CST
)
10670 /* Avoid const char foo[4] = "abcde"; */
10671 if (DECL_SIZE_UNIT (array
) == NULL_TREE
10672 || TREE_CODE (DECL_SIZE_UNIT (array
)) != INTEGER_CST
10673 || (length
= TREE_STRING_LENGTH (init
)) <= 0
10674 || compare_tree_int (DECL_SIZE_UNIT (array
), length
) < 0)
10677 /* If variable is bigger than the string literal, OFFSET must be constant
10678 and inside of the bounds of the string literal. */
10679 offset
= fold_convert (sizetype
, offset
);
10680 if (compare_tree_int (DECL_SIZE_UNIT (array
), length
) > 0
10681 && (! host_integerp (offset
, 1)
10682 || compare_tree_int (offset
, length
) >= 0))
10685 *ptr_offset
= offset
;
10692 /* Generate code to calculate OPS, and exploded expression
10693 using a store-flag instruction and return an rtx for the result.
10694 OPS reflects a comparison.
10696 If TARGET is nonzero, store the result there if convenient.
10698 Return zero if there is no suitable set-flag instruction
10699 available on this machine.
10701 Once expand_expr has been called on the arguments of the comparison,
10702 we are committed to doing the store flag, since it is not safe to
10703 re-evaluate the expression. We emit the store-flag insn by calling
10704 emit_store_flag, but only expand the arguments if we have a reason
10705 to believe that emit_store_flag will be successful. If we think that
10706 it will, but it isn't, we have to simulate the store-flag with a
10707 set/jump/set sequence. */
10710 do_store_flag (sepops ops
, rtx target
, enum machine_mode mode
)
10712 enum rtx_code code
;
10713 tree arg0
, arg1
, type
;
10715 enum machine_mode operand_mode
;
10718 rtx subtarget
= target
;
10719 location_t loc
= ops
->location
;
10724 /* Don't crash if the comparison was erroneous. */
10725 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
10728 type
= TREE_TYPE (arg0
);
10729 operand_mode
= TYPE_MODE (type
);
10730 unsignedp
= TYPE_UNSIGNED (type
);
10732 /* We won't bother with BLKmode store-flag operations because it would mean
10733 passing a lot of information to emit_store_flag. */
10734 if (operand_mode
== BLKmode
)
10737 /* We won't bother with store-flag operations involving function pointers
10738 when function pointers must be canonicalized before comparisons. */
10739 #ifdef HAVE_canonicalize_funcptr_for_compare
10740 if (HAVE_canonicalize_funcptr_for_compare
10741 && ((TREE_CODE (TREE_TYPE (arg0
)) == POINTER_TYPE
10742 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0
)))
10744 || (TREE_CODE (TREE_TYPE (arg1
)) == POINTER_TYPE
10745 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1
)))
10746 == FUNCTION_TYPE
))))
10753 /* For vector typed comparisons emit code to generate the desired
10754 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
10755 expander for this. */
10756 if (TREE_CODE (ops
->type
) == VECTOR_TYPE
)
10758 tree ifexp
= build2 (ops
->code
, ops
->type
, arg0
, arg1
);
10759 tree if_true
= constant_boolean_node (true, ops
->type
);
10760 tree if_false
= constant_boolean_node (false, ops
->type
);
10761 return expand_vec_cond_expr (ops
->type
, ifexp
, if_true
, if_false
, target
);
10764 /* Get the rtx comparison code to use. We know that EXP is a comparison
10765 operation of some type. Some comparisons against 1 and -1 can be
10766 converted to comparisons with zero. Do so here so that the tests
10767 below will be aware that we have a comparison with zero. These
10768 tests will not catch constants in the first operand, but constants
10769 are rarely passed as the first operand. */
10780 if (integer_onep (arg1
))
10781 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
10783 code
= unsignedp
? LTU
: LT
;
10786 if (! unsignedp
&& integer_all_onesp (arg1
))
10787 arg1
= integer_zero_node
, code
= LT
;
10789 code
= unsignedp
? LEU
: LE
;
10792 if (! unsignedp
&& integer_all_onesp (arg1
))
10793 arg1
= integer_zero_node
, code
= GE
;
10795 code
= unsignedp
? GTU
: GT
;
10798 if (integer_onep (arg1
))
10799 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
10801 code
= unsignedp
? GEU
: GE
;
10804 case UNORDERED_EXPR
:
10830 gcc_unreachable ();
10833 /* Put a constant second. */
10834 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
10835 || TREE_CODE (arg0
) == FIXED_CST
)
10837 tem
= arg0
; arg0
= arg1
; arg1
= tem
;
10838 code
= swap_condition (code
);
10841 /* If this is an equality or inequality test of a single bit, we can
10842 do this by shifting the bit being tested to the low-order bit and
10843 masking the result with the constant 1. If the condition was EQ,
10844 we xor it with 1. This does not require an scc insn and is faster
10845 than an scc insn even if we have it.
10847 The code to make this transformation was moved into fold_single_bit_test,
10848 so we just call into the folder and expand its result. */
10850 if ((code
== NE
|| code
== EQ
)
10851 && integer_zerop (arg1
)
10852 && (TYPE_PRECISION (ops
->type
) != 1 || TYPE_UNSIGNED (ops
->type
)))
10854 gimple srcstmt
= get_def_for_expr (arg0
, BIT_AND_EXPR
);
10856 && integer_pow2p (gimple_assign_rhs2 (srcstmt
)))
10858 enum tree_code tcode
= code
== NE
? NE_EXPR
: EQ_EXPR
;
10859 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
10860 tree temp
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg1
),
10861 gimple_assign_rhs1 (srcstmt
),
10862 gimple_assign_rhs2 (srcstmt
));
10863 temp
= fold_single_bit_test (loc
, tcode
, temp
, arg1
, type
);
10865 return expand_expr (temp
, target
, VOIDmode
, EXPAND_NORMAL
);
10869 if (! get_subtarget (target
)
10870 || GET_MODE (subtarget
) != operand_mode
)
10873 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
10876 target
= gen_reg_rtx (mode
);
10878 /* Try a cstore if possible. */
10879 return emit_store_flag_force (target
, code
, op0
, op1
,
10880 operand_mode
, unsignedp
,
10881 (TYPE_PRECISION (ops
->type
) == 1
10882 && !TYPE_UNSIGNED (ops
->type
)) ? -1 : 1);
10886 /* Stubs in case we haven't got a casesi insn. */
10887 #ifndef HAVE_casesi
10888 # define HAVE_casesi 0
10889 # define gen_casesi(a, b, c, d, e) (0)
10890 # define CODE_FOR_casesi CODE_FOR_nothing
10893 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10894 0 otherwise (i.e. if there is no casesi instruction).
10896 DEFAULT_PROBABILITY is the probability of jumping to the default
10899 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
10900 rtx table_label
, rtx default_label
, rtx fallback_label
,
10901 int default_probability
)
10903 struct expand_operand ops
[5];
10904 enum machine_mode index_mode
= SImode
;
10905 rtx op1
, op2
, index
;
10910 /* Convert the index to SImode. */
10911 if (GET_MODE_BITSIZE (TYPE_MODE (index_type
)) > GET_MODE_BITSIZE (index_mode
))
10913 enum machine_mode omode
= TYPE_MODE (index_type
);
10914 rtx rangertx
= expand_normal (range
);
10916 /* We must handle the endpoints in the original mode. */
10917 index_expr
= build2 (MINUS_EXPR
, index_type
,
10918 index_expr
, minval
);
10919 minval
= integer_zero_node
;
10920 index
= expand_normal (index_expr
);
10922 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
10923 omode
, 1, default_label
,
10924 default_probability
);
10925 /* Now we can safely truncate. */
10926 index
= convert_to_mode (index_mode
, index
, 0);
10930 if (TYPE_MODE (index_type
) != index_mode
)
10932 index_type
= lang_hooks
.types
.type_for_mode (index_mode
, 0);
10933 index_expr
= fold_convert (index_type
, index_expr
);
10936 index
= expand_normal (index_expr
);
10939 do_pending_stack_adjust ();
10941 op1
= expand_normal (minval
);
10942 op2
= expand_normal (range
);
10944 create_input_operand (&ops
[0], index
, index_mode
);
10945 create_convert_operand_from_type (&ops
[1], op1
, TREE_TYPE (minval
));
10946 create_convert_operand_from_type (&ops
[2], op2
, TREE_TYPE (range
));
10947 create_fixed_operand (&ops
[3], table_label
);
10948 create_fixed_operand (&ops
[4], (default_label
10950 : fallback_label
));
10951 expand_jump_insn (CODE_FOR_casesi
, 5, ops
);
10955 /* Attempt to generate a tablejump instruction; same concept. */
10956 #ifndef HAVE_tablejump
10957 #define HAVE_tablejump 0
10958 #define gen_tablejump(x, y) (0)
10961 /* Subroutine of the next function.
10963 INDEX is the value being switched on, with the lowest value
10964 in the table already subtracted.
10965 MODE is its expected mode (needed if INDEX is constant).
10966 RANGE is the length of the jump table.
10967 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10969 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10970 index value is out of range.
10971 DEFAULT_PROBABILITY is the probability of jumping to
10972 the default label. */
10975 do_tablejump (rtx index
, enum machine_mode mode
, rtx range
, rtx table_label
,
10976 rtx default_label
, int default_probability
)
10980 if (INTVAL (range
) > cfun
->cfg
->max_jumptable_ents
)
10981 cfun
->cfg
->max_jumptable_ents
= INTVAL (range
);
10983 /* Do an unsigned comparison (in the proper mode) between the index
10984 expression and the value which represents the length of the range.
10985 Since we just finished subtracting the lower bound of the range
10986 from the index expression, this comparison allows us to simultaneously
10987 check that the original index expression value is both greater than
10988 or equal to the minimum value of the range and less than or equal to
10989 the maximum value of the range. */
10992 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
10993 default_label
, default_probability
);
10996 /* If index is in range, it must fit in Pmode.
10997 Convert to Pmode so we can index with it. */
10999 index
= convert_to_mode (Pmode
, index
, 1);
11001 /* Don't let a MEM slip through, because then INDEX that comes
11002 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
11003 and break_out_memory_refs will go to work on it and mess it up. */
11004 #ifdef PIC_CASE_VECTOR_ADDRESS
11005 if (flag_pic
&& !REG_P (index
))
11006 index
= copy_to_mode_reg (Pmode
, index
);
11009 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
11010 GET_MODE_SIZE, because this indicates how large insns are. The other
11011 uses should all be Pmode, because they are addresses. This code
11012 could fail if addresses and insns are not the same size. */
11013 index
= gen_rtx_PLUS
11015 gen_rtx_MULT (Pmode
, index
,
11016 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE
), Pmode
)),
11017 gen_rtx_LABEL_REF (Pmode
, table_label
));
11018 #ifdef PIC_CASE_VECTOR_ADDRESS
11020 index
= PIC_CASE_VECTOR_ADDRESS (index
);
11023 index
= memory_address (CASE_VECTOR_MODE
, index
);
11024 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
11025 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
11026 convert_move (temp
, vector
, 0);
11028 emit_jump_insn (gen_tablejump (temp
, table_label
));
11030 /* If we are generating PIC code or if the table is PC-relative, the
11031 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
11032 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
11037 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
11038 rtx table_label
, rtx default_label
, int default_probability
)
11042 if (! HAVE_tablejump
)
11045 index_expr
= fold_build2 (MINUS_EXPR
, index_type
,
11046 fold_convert (index_type
, index_expr
),
11047 fold_convert (index_type
, minval
));
11048 index
= expand_normal (index_expr
);
11049 do_pending_stack_adjust ();
11051 do_tablejump (index
, TYPE_MODE (index_type
),
11052 convert_modes (TYPE_MODE (index_type
),
11053 TYPE_MODE (TREE_TYPE (range
)),
11054 expand_normal (range
),
11055 TYPE_UNSIGNED (TREE_TYPE (range
))),
11056 table_label
, default_label
, default_probability
);
11060 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
11062 const_vector_from_tree (tree exp
)
11068 enum machine_mode inner
, mode
;
11070 mode
= TYPE_MODE (TREE_TYPE (exp
));
11072 if (initializer_zerop (exp
))
11073 return CONST0_RTX (mode
);
11075 units
= GET_MODE_NUNITS (mode
);
11076 inner
= GET_MODE_INNER (mode
);
11078 v
= rtvec_alloc (units
);
11080 for (i
= 0; i
< VECTOR_CST_NELTS (exp
); ++i
)
11082 elt
= VECTOR_CST_ELT (exp
, i
);
11084 if (TREE_CODE (elt
) == REAL_CST
)
11085 RTVEC_ELT (v
, i
) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt
),
11087 else if (TREE_CODE (elt
) == FIXED_CST
)
11088 RTVEC_ELT (v
, i
) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt
),
11091 RTVEC_ELT (v
, i
) = immed_double_int_const (tree_to_double_int (elt
),
11095 return gen_rtx_CONST_VECTOR (mode
, v
);
11098 /* Build a decl for a personality function given a language prefix. */
11101 build_personality_function (const char *lang
)
11103 const char *unwind_and_version
;
11107 switch (targetm_common
.except_unwind_info (&global_options
))
11112 unwind_and_version
= "_sj0";
11116 unwind_and_version
= "_v0";
11119 unwind_and_version
= "_seh0";
11122 gcc_unreachable ();
11125 name
= ACONCAT (("__", lang
, "_personality", unwind_and_version
, NULL
));
11127 type
= build_function_type_list (integer_type_node
, integer_type_node
,
11128 long_long_unsigned_type_node
,
11129 ptr_type_node
, ptr_type_node
, NULL_TREE
);
11130 decl
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
,
11131 get_identifier (name
), type
);
11132 DECL_ARTIFICIAL (decl
) = 1;
11133 DECL_EXTERNAL (decl
) = 1;
11134 TREE_PUBLIC (decl
) = 1;
11136 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11137 are the flags assigned by targetm.encode_section_info. */
11138 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl
), 0), NULL
);
11143 /* Extracts the personality function of DECL and returns the corresponding
11147 get_personality_function (tree decl
)
11149 tree personality
= DECL_FUNCTION_PERSONALITY (decl
);
11150 enum eh_personality_kind pk
;
11152 pk
= function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl
));
11153 if (pk
== eh_personality_none
)
11157 && pk
== eh_personality_any
)
11158 personality
= lang_hooks
.eh_personality ();
11160 if (pk
== eh_personality_lang
)
11161 gcc_assert (personality
!= NULL_TREE
);
11163 return XEXP (DECL_RTL (personality
), 0);
11166 #include "gt-expr.h"