1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
29 #include "fold-const.h"
30 #include "stor-layout.h"
33 #include "hard-reg-set.h"
35 #include "dominance.h"
38 #include "basic-block.h"
39 #include "tree-ssa-alias.h"
40 #include "internal-fn.h"
41 #include "gimple-fold.h"
43 #include "gimple-expr.h"
45 #include "gimple-iterator.h"
46 #include "gimple-walk.h"
47 #include "gimple-ssa.h"
49 #include "tree-phinodes.h"
50 #include "ssa-iterators.h"
51 #include "stringpool.h"
52 #include "tree-ssanames.h"
53 #include "tree-ssa-loop-manip.h"
54 #include "tree-ssa-loop-niter.h"
55 #include "tree-ssa-loop.h"
56 #include "tree-into-ssa.h"
58 #include "tree-pass.h"
59 #include "tree-dump.h"
60 #include "gimple-pretty-print.h"
61 #include "diagnostic-core.h"
64 #include "tree-scalar-evolution.h"
65 #include "tree-ssa-propagate.h"
66 #include "tree-chrec.h"
67 #include "tree-ssa-threadupdate.h"
69 #include "insn-config.h"
77 #include "insn-codes.h"
79 #include "tree-ssa-scopedtables.h"
80 #include "tree-ssa-threadedge.h"
84 /* Range of values that can be associated with an SSA_NAME after VRP
88 /* Lattice value represented by this range. */
89 enum value_range_type type
;
91 /* Minimum and maximum values represented by this range. These
92 values should be interpreted as follows:
94 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
97 - If TYPE == VR_RANGE then MIN holds the minimum value and
98 MAX holds the maximum value of the range [MIN, MAX].
100 - If TYPE == ANTI_RANGE the variable is known to NOT
101 take any values in the range [MIN, MAX]. */
105 /* Set of SSA names whose value ranges are equivalent to this one.
106 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
110 typedef struct value_range_d value_range_t
;
112 #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
114 /* Set of SSA names found live during the RPO traversal of the function
115 for still active basic-blocks. */
116 static sbitmap
*live
;
118 /* Return true if the SSA name NAME is live on the edge E. */
121 live_on_edge (edge e
, tree name
)
123 return (live
[e
->dest
->index
]
124 && bitmap_bit_p (live
[e
->dest
->index
], SSA_NAME_VERSION (name
)));
127 /* Local functions. */
128 static int compare_values (tree val1
, tree val2
);
129 static int compare_values_warnv (tree val1
, tree val2
, bool *);
130 static void vrp_meet (value_range_t
*, value_range_t
*);
131 static void vrp_intersect_ranges (value_range_t
*, value_range_t
*);
132 static tree
vrp_evaluate_conditional_warnv_with_ops (enum tree_code
,
133 tree
, tree
, bool, bool *,
136 /* Location information for ASSERT_EXPRs. Each instance of this
137 structure describes an ASSERT_EXPR for an SSA name. Since a single
138 SSA name may have more than one assertion associated with it, these
139 locations are kept in a linked list attached to the corresponding
141 struct assert_locus_d
143 /* Basic block where the assertion would be inserted. */
146 /* Some assertions need to be inserted on an edge (e.g., assertions
147 generated by COND_EXPRs). In those cases, BB will be NULL. */
150 /* Pointer to the statement that generated this assertion. */
151 gimple_stmt_iterator si
;
153 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
154 enum tree_code comp_code
;
156 /* Value being compared against. */
159 /* Expression to compare. */
162 /* Next node in the linked list. */
163 struct assert_locus_d
*next
;
166 typedef struct assert_locus_d
*assert_locus_t
;
168 /* If bit I is present, it means that SSA name N_i has a list of
169 assertions that should be inserted in the IL. */
170 static bitmap need_assert_for
;
172 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
173 holds a list of ASSERT_LOCUS_T nodes that describe where
174 ASSERT_EXPRs for SSA name N_I should be inserted. */
175 static assert_locus_t
*asserts_for
;
177 /* Value range array. After propagation, VR_VALUE[I] holds the range
178 of values that SSA name N_I may take. */
179 static unsigned num_vr_values
;
180 static value_range_t
**vr_value
;
181 static bool values_propagated
;
183 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
184 number of executable edges we saw the last time we visited the
186 static int *vr_phi_edge_counts
;
193 static vec
<edge
> to_remove_edges
;
194 static vec
<switch_update
> to_update_switch_stmts
;
197 /* Return the maximum value for TYPE. */
200 vrp_val_max (const_tree type
)
202 if (!INTEGRAL_TYPE_P (type
))
205 return TYPE_MAX_VALUE (type
);
208 /* Return the minimum value for TYPE. */
211 vrp_val_min (const_tree type
)
213 if (!INTEGRAL_TYPE_P (type
))
216 return TYPE_MIN_VALUE (type
);
219 /* Return whether VAL is equal to the maximum value of its type. This
220 will be true for a positive overflow infinity. We can't do a
221 simple equality comparison with TYPE_MAX_VALUE because C typedefs
222 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
223 to the integer constant with the same value in the type. */
226 vrp_val_is_max (const_tree val
)
228 tree type_max
= vrp_val_max (TREE_TYPE (val
));
229 return (val
== type_max
230 || (type_max
!= NULL_TREE
231 && operand_equal_p (val
, type_max
, 0)));
234 /* Return whether VAL is equal to the minimum value of its type. This
235 will be true for a negative overflow infinity. */
238 vrp_val_is_min (const_tree val
)
240 tree type_min
= vrp_val_min (TREE_TYPE (val
));
241 return (val
== type_min
242 || (type_min
!= NULL_TREE
243 && operand_equal_p (val
, type_min
, 0)));
247 /* Return whether TYPE should use an overflow infinity distinct from
248 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
249 represent a signed overflow during VRP computations. An infinity
250 is distinct from a half-range, which will go from some number to
251 TYPE_{MIN,MAX}_VALUE. */
254 needs_overflow_infinity (const_tree type
)
256 return INTEGRAL_TYPE_P (type
) && !TYPE_OVERFLOW_WRAPS (type
);
259 /* Return whether TYPE can support our overflow infinity
260 representation: we use the TREE_OVERFLOW flag, which only exists
261 for constants. If TYPE doesn't support this, we don't optimize
262 cases which would require signed overflow--we drop them to
266 supports_overflow_infinity (const_tree type
)
268 tree min
= vrp_val_min (type
), max
= vrp_val_max (type
);
269 #ifdef ENABLE_CHECKING
270 gcc_assert (needs_overflow_infinity (type
));
272 return (min
!= NULL_TREE
273 && CONSTANT_CLASS_P (min
)
275 && CONSTANT_CLASS_P (max
));
278 /* VAL is the maximum or minimum value of a type. Return a
279 corresponding overflow infinity. */
282 make_overflow_infinity (tree val
)
284 gcc_checking_assert (val
!= NULL_TREE
&& CONSTANT_CLASS_P (val
));
285 val
= copy_node (val
);
286 TREE_OVERFLOW (val
) = 1;
290 /* Return a negative overflow infinity for TYPE. */
293 negative_overflow_infinity (tree type
)
295 gcc_checking_assert (supports_overflow_infinity (type
));
296 return make_overflow_infinity (vrp_val_min (type
));
299 /* Return a positive overflow infinity for TYPE. */
302 positive_overflow_infinity (tree type
)
304 gcc_checking_assert (supports_overflow_infinity (type
));
305 return make_overflow_infinity (vrp_val_max (type
));
308 /* Return whether VAL is a negative overflow infinity. */
311 is_negative_overflow_infinity (const_tree val
)
313 return (TREE_OVERFLOW_P (val
)
314 && needs_overflow_infinity (TREE_TYPE (val
))
315 && vrp_val_is_min (val
));
318 /* Return whether VAL is a positive overflow infinity. */
321 is_positive_overflow_infinity (const_tree val
)
323 return (TREE_OVERFLOW_P (val
)
324 && needs_overflow_infinity (TREE_TYPE (val
))
325 && vrp_val_is_max (val
));
328 /* Return whether VAL is a positive or negative overflow infinity. */
331 is_overflow_infinity (const_tree val
)
333 return (TREE_OVERFLOW_P (val
)
334 && needs_overflow_infinity (TREE_TYPE (val
))
335 && (vrp_val_is_min (val
) || vrp_val_is_max (val
)));
338 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
341 stmt_overflow_infinity (gimple stmt
)
343 if (is_gimple_assign (stmt
)
344 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt
)) ==
346 return is_overflow_infinity (gimple_assign_rhs1 (stmt
));
350 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
351 the same value with TREE_OVERFLOW clear. This can be used to avoid
352 confusing a regular value with an overflow value. */
355 avoid_overflow_infinity (tree val
)
357 if (!is_overflow_infinity (val
))
360 if (vrp_val_is_max (val
))
361 return vrp_val_max (TREE_TYPE (val
));
364 gcc_checking_assert (vrp_val_is_min (val
));
365 return vrp_val_min (TREE_TYPE (val
));
370 /* Return true if ARG is marked with the nonnull attribute in the
371 current function signature. */
374 nonnull_arg_p (const_tree arg
)
376 tree t
, attrs
, fntype
;
377 unsigned HOST_WIDE_INT arg_num
;
379 gcc_assert (TREE_CODE (arg
) == PARM_DECL
&& POINTER_TYPE_P (TREE_TYPE (arg
)));
381 /* The static chain decl is always non null. */
382 if (arg
== cfun
->static_chain_decl
)
385 /* THIS argument of method is always non-NULL. */
386 if (TREE_CODE (TREE_TYPE (current_function_decl
)) == METHOD_TYPE
387 && arg
== DECL_ARGUMENTS (current_function_decl
)
388 && flag_delete_null_pointer_checks
)
391 /* Values passed by reference are always non-NULL. */
392 if (TREE_CODE (TREE_TYPE (arg
)) == REFERENCE_TYPE
393 && flag_delete_null_pointer_checks
)
396 fntype
= TREE_TYPE (current_function_decl
);
397 for (attrs
= TYPE_ATTRIBUTES (fntype
); attrs
; attrs
= TREE_CHAIN (attrs
))
399 attrs
= lookup_attribute ("nonnull", attrs
);
401 /* If "nonnull" wasn't specified, we know nothing about the argument. */
402 if (attrs
== NULL_TREE
)
405 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
406 if (TREE_VALUE (attrs
) == NULL_TREE
)
409 /* Get the position number for ARG in the function signature. */
410 for (arg_num
= 1, t
= DECL_ARGUMENTS (current_function_decl
);
412 t
= DECL_CHAIN (t
), arg_num
++)
418 gcc_assert (t
== arg
);
420 /* Now see if ARG_NUM is mentioned in the nonnull list. */
421 for (t
= TREE_VALUE (attrs
); t
; t
= TREE_CHAIN (t
))
423 if (compare_tree_int (TREE_VALUE (t
), arg_num
) == 0)
432 /* Set value range VR to VR_UNDEFINED. */
435 set_value_range_to_undefined (value_range_t
*vr
)
437 vr
->type
= VR_UNDEFINED
;
438 vr
->min
= vr
->max
= NULL_TREE
;
440 bitmap_clear (vr
->equiv
);
444 /* Set value range VR to VR_VARYING. */
447 set_value_range_to_varying (value_range_t
*vr
)
449 vr
->type
= VR_VARYING
;
450 vr
->min
= vr
->max
= NULL_TREE
;
452 bitmap_clear (vr
->equiv
);
456 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
459 set_value_range (value_range_t
*vr
, enum value_range_type t
, tree min
,
460 tree max
, bitmap equiv
)
462 #if defined ENABLE_CHECKING
463 /* Check the validity of the range. */
464 if (t
== VR_RANGE
|| t
== VR_ANTI_RANGE
)
468 gcc_assert (min
&& max
);
470 gcc_assert ((!TREE_OVERFLOW_P (min
) || is_overflow_infinity (min
))
471 && (!TREE_OVERFLOW_P (max
) || is_overflow_infinity (max
)));
473 if (INTEGRAL_TYPE_P (TREE_TYPE (min
)) && t
== VR_ANTI_RANGE
)
474 gcc_assert (!vrp_val_is_min (min
) || !vrp_val_is_max (max
));
476 cmp
= compare_values (min
, max
);
477 gcc_assert (cmp
== 0 || cmp
== -1 || cmp
== -2);
479 if (needs_overflow_infinity (TREE_TYPE (min
)))
480 gcc_assert (!is_overflow_infinity (min
)
481 || !is_overflow_infinity (max
));
484 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
485 gcc_assert (min
== NULL_TREE
&& max
== NULL_TREE
);
487 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
488 gcc_assert (equiv
== NULL
|| bitmap_empty_p (equiv
));
495 /* Since updating the equivalence set involves deep copying the
496 bitmaps, only do it if absolutely necessary. */
497 if (vr
->equiv
== NULL
499 vr
->equiv
= BITMAP_ALLOC (NULL
);
501 if (equiv
!= vr
->equiv
)
503 if (equiv
&& !bitmap_empty_p (equiv
))
504 bitmap_copy (vr
->equiv
, equiv
);
506 bitmap_clear (vr
->equiv
);
511 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
512 This means adjusting T, MIN and MAX representing the case of a
513 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
514 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
515 In corner cases where MAX+1 or MIN-1 wraps this will fall back
517 This routine exists to ease canonicalization in the case where we
518 extract ranges from var + CST op limit. */
521 set_and_canonicalize_value_range (value_range_t
*vr
, enum value_range_type t
,
522 tree min
, tree max
, bitmap equiv
)
524 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
525 if (t
== VR_UNDEFINED
)
527 set_value_range_to_undefined (vr
);
530 else if (t
== VR_VARYING
)
532 set_value_range_to_varying (vr
);
536 /* Nothing to canonicalize for symbolic ranges. */
537 if (TREE_CODE (min
) != INTEGER_CST
538 || TREE_CODE (max
) != INTEGER_CST
)
540 set_value_range (vr
, t
, min
, max
, equiv
);
544 /* Wrong order for min and max, to swap them and the VR type we need
546 if (tree_int_cst_lt (max
, min
))
550 /* For one bit precision if max < min, then the swapped
551 range covers all values, so for VR_RANGE it is varying and
552 for VR_ANTI_RANGE empty range, so drop to varying as well. */
553 if (TYPE_PRECISION (TREE_TYPE (min
)) == 1)
555 set_value_range_to_varying (vr
);
559 one
= build_int_cst (TREE_TYPE (min
), 1);
560 tmp
= int_const_binop (PLUS_EXPR
, max
, one
);
561 max
= int_const_binop (MINUS_EXPR
, min
, one
);
564 /* There's one corner case, if we had [C+1, C] before we now have
565 that again. But this represents an empty value range, so drop
566 to varying in this case. */
567 if (tree_int_cst_lt (max
, min
))
569 set_value_range_to_varying (vr
);
573 t
= t
== VR_RANGE
? VR_ANTI_RANGE
: VR_RANGE
;
576 /* Anti-ranges that can be represented as ranges should be so. */
577 if (t
== VR_ANTI_RANGE
)
579 bool is_min
= vrp_val_is_min (min
);
580 bool is_max
= vrp_val_is_max (max
);
582 if (is_min
&& is_max
)
584 /* We cannot deal with empty ranges, drop to varying.
585 ??? This could be VR_UNDEFINED instead. */
586 set_value_range_to_varying (vr
);
589 else if (TYPE_PRECISION (TREE_TYPE (min
)) == 1
590 && (is_min
|| is_max
))
592 /* Non-empty boolean ranges can always be represented
593 as a singleton range. */
595 min
= max
= vrp_val_max (TREE_TYPE (min
));
597 min
= max
= vrp_val_min (TREE_TYPE (min
));
601 /* As a special exception preserve non-null ranges. */
602 && !(TYPE_UNSIGNED (TREE_TYPE (min
))
603 && integer_zerop (max
)))
605 tree one
= build_int_cst (TREE_TYPE (max
), 1);
606 min
= int_const_binop (PLUS_EXPR
, max
, one
);
607 max
= vrp_val_max (TREE_TYPE (max
));
612 tree one
= build_int_cst (TREE_TYPE (min
), 1);
613 max
= int_const_binop (MINUS_EXPR
, min
, one
);
614 min
= vrp_val_min (TREE_TYPE (min
));
619 /* Drop [-INF(OVF), +INF(OVF)] to varying. */
620 if (needs_overflow_infinity (TREE_TYPE (min
))
621 && is_overflow_infinity (min
)
622 && is_overflow_infinity (max
))
624 set_value_range_to_varying (vr
);
628 set_value_range (vr
, t
, min
, max
, equiv
);
631 /* Copy value range FROM into value range TO. */
634 copy_value_range (value_range_t
*to
, value_range_t
*from
)
636 set_value_range (to
, from
->type
, from
->min
, from
->max
, from
->equiv
);
639 /* Set value range VR to a single value. This function is only called
640 with values we get from statements, and exists to clear the
641 TREE_OVERFLOW flag so that we don't think we have an overflow
642 infinity when we shouldn't. */
645 set_value_range_to_value (value_range_t
*vr
, tree val
, bitmap equiv
)
647 gcc_assert (is_gimple_min_invariant (val
));
648 if (TREE_OVERFLOW_P (val
))
649 val
= drop_tree_overflow (val
);
650 set_value_range (vr
, VR_RANGE
, val
, val
, equiv
);
653 /* Set value range VR to a non-negative range of type TYPE.
654 OVERFLOW_INFINITY indicates whether to use an overflow infinity
655 rather than TYPE_MAX_VALUE; this should be true if we determine
656 that the range is nonnegative based on the assumption that signed
657 overflow does not occur. */
660 set_value_range_to_nonnegative (value_range_t
*vr
, tree type
,
661 bool overflow_infinity
)
665 if (overflow_infinity
&& !supports_overflow_infinity (type
))
667 set_value_range_to_varying (vr
);
671 zero
= build_int_cst (type
, 0);
672 set_value_range (vr
, VR_RANGE
, zero
,
674 ? positive_overflow_infinity (type
)
675 : TYPE_MAX_VALUE (type
)),
679 /* Set value range VR to a non-NULL range of type TYPE. */
682 set_value_range_to_nonnull (value_range_t
*vr
, tree type
)
684 tree zero
= build_int_cst (type
, 0);
685 set_value_range (vr
, VR_ANTI_RANGE
, zero
, zero
, vr
->equiv
);
689 /* Set value range VR to a NULL range of type TYPE. */
692 set_value_range_to_null (value_range_t
*vr
, tree type
)
694 set_value_range_to_value (vr
, build_int_cst (type
, 0), vr
->equiv
);
698 /* Set value range VR to a range of a truthvalue of type TYPE. */
701 set_value_range_to_truthvalue (value_range_t
*vr
, tree type
)
703 if (TYPE_PRECISION (type
) == 1)
704 set_value_range_to_varying (vr
);
706 set_value_range (vr
, VR_RANGE
,
707 build_int_cst (type
, 0), build_int_cst (type
, 1),
712 /* If abs (min) < abs (max), set VR to [-max, max], if
713 abs (min) >= abs (max), set VR to [-min, min]. */
716 abs_extent_range (value_range_t
*vr
, tree min
, tree max
)
720 gcc_assert (TREE_CODE (min
) == INTEGER_CST
);
721 gcc_assert (TREE_CODE (max
) == INTEGER_CST
);
722 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min
)));
723 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min
)));
724 min
= fold_unary (ABS_EXPR
, TREE_TYPE (min
), min
);
725 max
= fold_unary (ABS_EXPR
, TREE_TYPE (max
), max
);
726 if (TREE_OVERFLOW (min
) || TREE_OVERFLOW (max
))
728 set_value_range_to_varying (vr
);
731 cmp
= compare_values (min
, max
);
733 min
= fold_unary (NEGATE_EXPR
, TREE_TYPE (min
), max
);
734 else if (cmp
== 0 || cmp
== 1)
737 min
= fold_unary (NEGATE_EXPR
, TREE_TYPE (min
), min
);
741 set_value_range_to_varying (vr
);
744 set_and_canonicalize_value_range (vr
, VR_RANGE
, min
, max
, NULL
);
748 /* Return value range information for VAR.
750 If we have no values ranges recorded (ie, VRP is not running), then
751 return NULL. Otherwise create an empty range if none existed for VAR. */
753 static value_range_t
*
754 get_value_range (const_tree var
)
756 static const struct value_range_d vr_const_varying
757 = { VR_VARYING
, NULL_TREE
, NULL_TREE
, NULL
};
760 unsigned ver
= SSA_NAME_VERSION (var
);
762 /* If we have no recorded ranges, then return NULL. */
766 /* If we query the range for a new SSA name return an unmodifiable VARYING.
767 We should get here at most from the substitute-and-fold stage which
768 will never try to change values. */
769 if (ver
>= num_vr_values
)
770 return CONST_CAST (value_range_t
*, &vr_const_varying
);
776 /* After propagation finished do not allocate new value-ranges. */
777 if (values_propagated
)
778 return CONST_CAST (value_range_t
*, &vr_const_varying
);
780 /* Create a default value range. */
781 vr_value
[ver
] = vr
= XCNEW (value_range_t
);
783 /* Defer allocating the equivalence set. */
786 /* If VAR is a default definition of a parameter, the variable can
787 take any value in VAR's type. */
788 if (SSA_NAME_IS_DEFAULT_DEF (var
))
790 sym
= SSA_NAME_VAR (var
);
791 if (TREE_CODE (sym
) == PARM_DECL
)
793 /* Try to use the "nonnull" attribute to create ~[0, 0]
794 anti-ranges for pointers. Note that this is only valid with
795 default definitions of PARM_DECLs. */
796 if (POINTER_TYPE_P (TREE_TYPE (sym
))
797 && nonnull_arg_p (sym
))
798 set_value_range_to_nonnull (vr
, TREE_TYPE (sym
));
800 set_value_range_to_varying (vr
);
802 else if (TREE_CODE (sym
) == RESULT_DECL
803 && DECL_BY_REFERENCE (sym
))
804 set_value_range_to_nonnull (vr
, TREE_TYPE (sym
));
810 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
813 vrp_operand_equal_p (const_tree val1
, const_tree val2
)
817 if (!val1
|| !val2
|| !operand_equal_p (val1
, val2
, 0))
819 return is_overflow_infinity (val1
) == is_overflow_infinity (val2
);
822 /* Return true, if the bitmaps B1 and B2 are equal. */
825 vrp_bitmap_equal_p (const_bitmap b1
, const_bitmap b2
)
828 || ((!b1
|| bitmap_empty_p (b1
))
829 && (!b2
|| bitmap_empty_p (b2
)))
831 && bitmap_equal_p (b1
, b2
)));
834 /* Update the value range and equivalence set for variable VAR to
835 NEW_VR. Return true if NEW_VR is different from VAR's previous
838 NOTE: This function assumes that NEW_VR is a temporary value range
839 object created for the sole purpose of updating VAR's range. The
840 storage used by the equivalence set from NEW_VR will be freed by
841 this function. Do not call update_value_range when NEW_VR
842 is the range object associated with another SSA name. */
845 update_value_range (const_tree var
, value_range_t
*new_vr
)
847 value_range_t
*old_vr
;
850 /* If there is a value-range on the SSA name from earlier analysis
852 if (INTEGRAL_TYPE_P (TREE_TYPE (var
)))
855 value_range_type rtype
= get_range_info (var
, &min
, &max
);
856 if (rtype
== VR_RANGE
|| rtype
== VR_ANTI_RANGE
)
860 nr
.min
= wide_int_to_tree (TREE_TYPE (var
), min
);
861 nr
.max
= wide_int_to_tree (TREE_TYPE (var
), max
);
863 vrp_intersect_ranges (new_vr
, &nr
);
867 /* Update the value range, if necessary. */
868 old_vr
= get_value_range (var
);
869 is_new
= old_vr
->type
!= new_vr
->type
870 || !vrp_operand_equal_p (old_vr
->min
, new_vr
->min
)
871 || !vrp_operand_equal_p (old_vr
->max
, new_vr
->max
)
872 || !vrp_bitmap_equal_p (old_vr
->equiv
, new_vr
->equiv
);
876 /* Do not allow transitions up the lattice. The following
877 is slightly more awkward than just new_vr->type < old_vr->type
878 because VR_RANGE and VR_ANTI_RANGE need to be considered
879 the same. We may not have is_new when transitioning to
880 UNDEFINED. If old_vr->type is VARYING, we shouldn't be
882 if (new_vr
->type
== VR_UNDEFINED
)
884 BITMAP_FREE (new_vr
->equiv
);
885 set_value_range_to_varying (old_vr
);
886 set_value_range_to_varying (new_vr
);
890 set_value_range (old_vr
, new_vr
->type
, new_vr
->min
, new_vr
->max
,
894 BITMAP_FREE (new_vr
->equiv
);
900 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
901 point where equivalence processing can be turned on/off. */
904 add_equivalence (bitmap
*equiv
, const_tree var
)
906 unsigned ver
= SSA_NAME_VERSION (var
);
907 value_range_t
*vr
= vr_value
[ver
];
910 *equiv
= BITMAP_ALLOC (NULL
);
911 bitmap_set_bit (*equiv
, ver
);
913 bitmap_ior_into (*equiv
, vr
->equiv
);
917 /* Return true if VR is ~[0, 0]. */
920 range_is_nonnull (value_range_t
*vr
)
922 return vr
->type
== VR_ANTI_RANGE
923 && integer_zerop (vr
->min
)
924 && integer_zerop (vr
->max
);
928 /* Return true if VR is [0, 0]. */
931 range_is_null (value_range_t
*vr
)
933 return vr
->type
== VR_RANGE
934 && integer_zerop (vr
->min
)
935 && integer_zerop (vr
->max
);
938 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
942 range_int_cst_p (value_range_t
*vr
)
944 return (vr
->type
== VR_RANGE
945 && TREE_CODE (vr
->max
) == INTEGER_CST
946 && TREE_CODE (vr
->min
) == INTEGER_CST
);
949 /* Return true if VR is a INTEGER_CST singleton. */
952 range_int_cst_singleton_p (value_range_t
*vr
)
954 return (range_int_cst_p (vr
)
955 && !is_overflow_infinity (vr
->min
)
956 && !is_overflow_infinity (vr
->max
)
957 && tree_int_cst_equal (vr
->min
, vr
->max
));
960 /* Return true if value range VR involves at least one symbol. */
963 symbolic_range_p (value_range_t
*vr
)
965 return (!is_gimple_min_invariant (vr
->min
)
966 || !is_gimple_min_invariant (vr
->max
));
969 /* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
970 otherwise. We only handle additive operations and set NEG to true if the
971 symbol is negated and INV to the invariant part, if any. */
974 get_single_symbol (tree t
, bool *neg
, tree
*inv
)
979 if (TREE_CODE (t
) == PLUS_EXPR
980 || TREE_CODE (t
) == POINTER_PLUS_EXPR
981 || TREE_CODE (t
) == MINUS_EXPR
)
983 if (is_gimple_min_invariant (TREE_OPERAND (t
, 0)))
985 neg_
= (TREE_CODE (t
) == MINUS_EXPR
);
986 inv_
= TREE_OPERAND (t
, 0);
987 t
= TREE_OPERAND (t
, 1);
989 else if (is_gimple_min_invariant (TREE_OPERAND (t
, 1)))
992 inv_
= TREE_OPERAND (t
, 1);
993 t
= TREE_OPERAND (t
, 0);
1004 if (TREE_CODE (t
) == NEGATE_EXPR
)
1006 t
= TREE_OPERAND (t
, 0);
1010 if (TREE_CODE (t
) != SSA_NAME
)
1018 /* The reverse operation: build a symbolic expression with TYPE
1019 from symbol SYM, negated according to NEG, and invariant INV. */
1022 build_symbolic_expr (tree type
, tree sym
, bool neg
, tree inv
)
1024 const bool pointer_p
= POINTER_TYPE_P (type
);
1028 t
= build1 (NEGATE_EXPR
, type
, t
);
1030 if (integer_zerop (inv
))
1033 return build2 (pointer_p
? POINTER_PLUS_EXPR
: PLUS_EXPR
, type
, t
, inv
);
1036 /* Return true if value range VR involves exactly one symbol SYM. */
1039 symbolic_range_based_on_p (value_range_t
*vr
, const_tree sym
)
1041 bool neg
, min_has_symbol
, max_has_symbol
;
1044 if (is_gimple_min_invariant (vr
->min
))
1045 min_has_symbol
= false;
1046 else if (get_single_symbol (vr
->min
, &neg
, &inv
) == sym
)
1047 min_has_symbol
= true;
1051 if (is_gimple_min_invariant (vr
->max
))
1052 max_has_symbol
= false;
1053 else if (get_single_symbol (vr
->max
, &neg
, &inv
) == sym
)
1054 max_has_symbol
= true;
1058 return (min_has_symbol
|| max_has_symbol
);
1061 /* Return true if value range VR uses an overflow infinity. */
1064 overflow_infinity_range_p (value_range_t
*vr
)
1066 return (vr
->type
== VR_RANGE
1067 && (is_overflow_infinity (vr
->min
)
1068 || is_overflow_infinity (vr
->max
)));
1071 /* Return false if we can not make a valid comparison based on VR;
1072 this will be the case if it uses an overflow infinity and overflow
1073 is not undefined (i.e., -fno-strict-overflow is in effect).
1074 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
1075 uses an overflow infinity. */
1078 usable_range_p (value_range_t
*vr
, bool *strict_overflow_p
)
1080 gcc_assert (vr
->type
== VR_RANGE
);
1081 if (is_overflow_infinity (vr
->min
))
1083 *strict_overflow_p
= true;
1084 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr
->min
)))
1087 if (is_overflow_infinity (vr
->max
))
1089 *strict_overflow_p
= true;
1090 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr
->max
)))
1097 /* Return true if the result of assignment STMT is know to be non-negative.
1098 If the return value is based on the assumption that signed overflow is
1099 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1100 *STRICT_OVERFLOW_P.*/
1103 gimple_assign_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
1105 enum tree_code code
= gimple_assign_rhs_code (stmt
);
1106 switch (get_gimple_rhs_class (code
))
1108 case GIMPLE_UNARY_RHS
:
1109 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt
),
1110 gimple_expr_type (stmt
),
1111 gimple_assign_rhs1 (stmt
),
1113 case GIMPLE_BINARY_RHS
:
1114 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt
),
1115 gimple_expr_type (stmt
),
1116 gimple_assign_rhs1 (stmt
),
1117 gimple_assign_rhs2 (stmt
),
1119 case GIMPLE_TERNARY_RHS
:
1121 case GIMPLE_SINGLE_RHS
:
1122 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt
),
1124 case GIMPLE_INVALID_RHS
:
1131 /* Return true if return value of call STMT is know to be non-negative.
1132 If the return value is based on the assumption that signed overflow is
1133 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1134 *STRICT_OVERFLOW_P.*/
1137 gimple_call_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
1139 tree arg0
= gimple_call_num_args (stmt
) > 0 ?
1140 gimple_call_arg (stmt
, 0) : NULL_TREE
;
1141 tree arg1
= gimple_call_num_args (stmt
) > 1 ?
1142 gimple_call_arg (stmt
, 1) : NULL_TREE
;
1144 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt
),
1145 gimple_call_fndecl (stmt
),
1151 /* Return true if STMT is know to to compute a non-negative value.
1152 If the return value is based on the assumption that signed overflow is
1153 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1154 *STRICT_OVERFLOW_P.*/
1157 gimple_stmt_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
1159 switch (gimple_code (stmt
))
1162 return gimple_assign_nonnegative_warnv_p (stmt
, strict_overflow_p
);
1164 return gimple_call_nonnegative_warnv_p (stmt
, strict_overflow_p
);
1170 /* Return true if the result of assignment STMT is know to be non-zero.
1171 If the return value is based on the assumption that signed overflow is
1172 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1173 *STRICT_OVERFLOW_P.*/
1176 gimple_assign_nonzero_warnv_p (gimple stmt
, bool *strict_overflow_p
)
1178 enum tree_code code
= gimple_assign_rhs_code (stmt
);
1179 switch (get_gimple_rhs_class (code
))
1181 case GIMPLE_UNARY_RHS
:
1182 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt
),
1183 gimple_expr_type (stmt
),
1184 gimple_assign_rhs1 (stmt
),
1186 case GIMPLE_BINARY_RHS
:
1187 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt
),
1188 gimple_expr_type (stmt
),
1189 gimple_assign_rhs1 (stmt
),
1190 gimple_assign_rhs2 (stmt
),
1192 case GIMPLE_TERNARY_RHS
:
1194 case GIMPLE_SINGLE_RHS
:
1195 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt
),
1197 case GIMPLE_INVALID_RHS
:
1204 /* Return true if STMT is known to compute a non-zero value.
1205 If the return value is based on the assumption that signed overflow is
1206 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1207 *STRICT_OVERFLOW_P.*/
1210 gimple_stmt_nonzero_warnv_p (gimple stmt
, bool *strict_overflow_p
)
1212 switch (gimple_code (stmt
))
1215 return gimple_assign_nonzero_warnv_p (stmt
, strict_overflow_p
);
1218 tree fndecl
= gimple_call_fndecl (stmt
);
1219 if (!fndecl
) return false;
1220 if (flag_delete_null_pointer_checks
&& !flag_check_new
1221 && DECL_IS_OPERATOR_NEW (fndecl
)
1222 && !TREE_NOTHROW (fndecl
))
1224 /* References are always non-NULL. */
1225 if (flag_delete_null_pointer_checks
1226 && TREE_CODE (TREE_TYPE (fndecl
)) == REFERENCE_TYPE
)
1228 if (flag_delete_null_pointer_checks
&&
1229 lookup_attribute ("returns_nonnull",
1230 TYPE_ATTRIBUTES (gimple_call_fntype (stmt
))))
1232 return gimple_alloca_call_p (stmt
);
1239 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1243 vrp_stmt_computes_nonzero (gimple stmt
, bool *strict_overflow_p
)
1245 if (gimple_stmt_nonzero_warnv_p (stmt
, strict_overflow_p
))
1248 /* If we have an expression of the form &X->a, then the expression
1249 is nonnull if X is nonnull. */
1250 if (is_gimple_assign (stmt
)
1251 && gimple_assign_rhs_code (stmt
) == ADDR_EXPR
)
1253 tree expr
= gimple_assign_rhs1 (stmt
);
1254 tree base
= get_base_address (TREE_OPERAND (expr
, 0));
1256 if (base
!= NULL_TREE
1257 && TREE_CODE (base
) == MEM_REF
1258 && TREE_CODE (TREE_OPERAND (base
, 0)) == SSA_NAME
)
1260 value_range_t
*vr
= get_value_range (TREE_OPERAND (base
, 0));
1261 if (range_is_nonnull (vr
))
1269 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1270 a gimple invariant, or SSA_NAME +- CST. */
1273 valid_value_p (tree expr
)
1275 if (TREE_CODE (expr
) == SSA_NAME
)
1278 if (TREE_CODE (expr
) == PLUS_EXPR
1279 || TREE_CODE (expr
) == MINUS_EXPR
)
1280 return (TREE_CODE (TREE_OPERAND (expr
, 0)) == SSA_NAME
1281 && TREE_CODE (TREE_OPERAND (expr
, 1)) == INTEGER_CST
);
1283 return is_gimple_min_invariant (expr
);
1289 -2 if those are incomparable. */
1291 operand_less_p (tree val
, tree val2
)
1293 /* LT is folded faster than GE and others. Inline the common case. */
1294 if (TREE_CODE (val
) == INTEGER_CST
&& TREE_CODE (val2
) == INTEGER_CST
)
1295 return tree_int_cst_lt (val
, val2
);
1300 fold_defer_overflow_warnings ();
1302 tcmp
= fold_binary_to_constant (LT_EXPR
, boolean_type_node
, val
, val2
);
1304 fold_undefer_and_ignore_overflow_warnings ();
1307 || TREE_CODE (tcmp
) != INTEGER_CST
)
1310 if (!integer_zerop (tcmp
))
1314 /* val >= val2, not considering overflow infinity. */
1315 if (is_negative_overflow_infinity (val
))
1316 return is_negative_overflow_infinity (val2
) ? 0 : 1;
1317 else if (is_positive_overflow_infinity (val2
))
1318 return is_positive_overflow_infinity (val
) ? 0 : 1;
1323 /* Compare two values VAL1 and VAL2. Return
1325 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1328 +1 if VAL1 > VAL2, and
1331 This is similar to tree_int_cst_compare but supports pointer values
1332 and values that cannot be compared at compile time.
1334 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1335 true if the return value is only valid if we assume that signed
1336 overflow is undefined. */
1339 compare_values_warnv (tree val1
, tree val2
, bool *strict_overflow_p
)
1344 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1346 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1
))
1347 == POINTER_TYPE_P (TREE_TYPE (val2
)));
1349 /* Convert the two values into the same type. This is needed because
1350 sizetype causes sign extension even for unsigned types. */
1351 val2
= fold_convert (TREE_TYPE (val1
), val2
);
1352 STRIP_USELESS_TYPE_CONVERSION (val2
);
1354 if ((TREE_CODE (val1
) == SSA_NAME
1355 || (TREE_CODE (val1
) == NEGATE_EXPR
1356 && TREE_CODE (TREE_OPERAND (val1
, 0)) == SSA_NAME
)
1357 || TREE_CODE (val1
) == PLUS_EXPR
1358 || TREE_CODE (val1
) == MINUS_EXPR
)
1359 && (TREE_CODE (val2
) == SSA_NAME
1360 || (TREE_CODE (val2
) == NEGATE_EXPR
1361 && TREE_CODE (TREE_OPERAND (val2
, 0)) == SSA_NAME
)
1362 || TREE_CODE (val2
) == PLUS_EXPR
1363 || TREE_CODE (val2
) == MINUS_EXPR
))
1365 tree n1
, c1
, n2
, c2
;
1366 enum tree_code code1
, code2
;
1368 /* If VAL1 and VAL2 are of the form '[-]NAME [+-] CST' or 'NAME',
1369 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1370 same name, return -2. */
1371 if (TREE_CODE (val1
) == SSA_NAME
|| TREE_CODE (val1
) == NEGATE_EXPR
)
1379 code1
= TREE_CODE (val1
);
1380 n1
= TREE_OPERAND (val1
, 0);
1381 c1
= TREE_OPERAND (val1
, 1);
1382 if (tree_int_cst_sgn (c1
) == -1)
1384 if (is_negative_overflow_infinity (c1
))
1386 c1
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (c1
), c1
);
1389 code1
= code1
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
;
1393 if (TREE_CODE (val2
) == SSA_NAME
|| TREE_CODE (val2
) == NEGATE_EXPR
)
1401 code2
= TREE_CODE (val2
);
1402 n2
= TREE_OPERAND (val2
, 0);
1403 c2
= TREE_OPERAND (val2
, 1);
1404 if (tree_int_cst_sgn (c2
) == -1)
1406 if (is_negative_overflow_infinity (c2
))
1408 c2
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (c2
), c2
);
1411 code2
= code2
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
;
1415 /* Both values must use the same name. */
1416 if (TREE_CODE (n1
) == NEGATE_EXPR
&& TREE_CODE (n2
) == NEGATE_EXPR
)
1418 n1
= TREE_OPERAND (n1
, 0);
1419 n2
= TREE_OPERAND (n2
, 0);
1424 if (code1
== SSA_NAME
&& code2
== SSA_NAME
)
1428 /* If overflow is defined we cannot simplify more. */
1429 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1
)))
1432 if (strict_overflow_p
!= NULL
1433 && (code1
== SSA_NAME
|| !TREE_NO_WARNING (val1
))
1434 && (code2
== SSA_NAME
|| !TREE_NO_WARNING (val2
)))
1435 *strict_overflow_p
= true;
1437 if (code1
== SSA_NAME
)
1439 if (code2
== PLUS_EXPR
)
1440 /* NAME < NAME + CST */
1442 else if (code2
== MINUS_EXPR
)
1443 /* NAME > NAME - CST */
1446 else if (code1
== PLUS_EXPR
)
1448 if (code2
== SSA_NAME
)
1449 /* NAME + CST > NAME */
1451 else if (code2
== PLUS_EXPR
)
1452 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1453 return compare_values_warnv (c1
, c2
, strict_overflow_p
);
1454 else if (code2
== MINUS_EXPR
)
1455 /* NAME + CST1 > NAME - CST2 */
1458 else if (code1
== MINUS_EXPR
)
1460 if (code2
== SSA_NAME
)
1461 /* NAME - CST < NAME */
1463 else if (code2
== PLUS_EXPR
)
1464 /* NAME - CST1 < NAME + CST2 */
1466 else if (code2
== MINUS_EXPR
)
1467 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1468 C1 and C2 are swapped in the call to compare_values. */
1469 return compare_values_warnv (c2
, c1
, strict_overflow_p
);
1475 /* We cannot compare non-constants. */
1476 if (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
))
1479 if (!POINTER_TYPE_P (TREE_TYPE (val1
)))
1481 /* We cannot compare overflowed values, except for overflow
1483 if (TREE_OVERFLOW (val1
) || TREE_OVERFLOW (val2
))
1485 if (strict_overflow_p
!= NULL
)
1486 *strict_overflow_p
= true;
1487 if (is_negative_overflow_infinity (val1
))
1488 return is_negative_overflow_infinity (val2
) ? 0 : -1;
1489 else if (is_negative_overflow_infinity (val2
))
1491 else if (is_positive_overflow_infinity (val1
))
1492 return is_positive_overflow_infinity (val2
) ? 0 : 1;
1493 else if (is_positive_overflow_infinity (val2
))
1498 return tree_int_cst_compare (val1
, val2
);
1504 /* First see if VAL1 and VAL2 are not the same. */
1505 if (val1
== val2
|| operand_equal_p (val1
, val2
, 0))
1508 /* If VAL1 is a lower address than VAL2, return -1. */
1509 if (operand_less_p (val1
, val2
) == 1)
1512 /* If VAL1 is a higher address than VAL2, return +1. */
1513 if (operand_less_p (val2
, val1
) == 1)
1516 /* If VAL1 is different than VAL2, return +2.
1517 For integer constants we either have already returned -1 or 1
1518 or they are equivalent. We still might succeed in proving
1519 something about non-trivial operands. */
1520 if (TREE_CODE (val1
) != INTEGER_CST
1521 || TREE_CODE (val2
) != INTEGER_CST
)
1523 t
= fold_binary_to_constant (NE_EXPR
, boolean_type_node
, val1
, val2
);
1524 if (t
&& integer_onep (t
))
1532 /* Compare values like compare_values_warnv, but treat comparisons of
1533 nonconstants which rely on undefined overflow as incomparable. */
1536 compare_values (tree val1
, tree val2
)
1542 ret
= compare_values_warnv (val1
, val2
, &sop
);
1544 && (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
)))
1550 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1551 0 if VAL is not inside [MIN, MAX],
1552 -2 if we cannot tell either way.
1554 Benchmark compile/20001226-1.c compilation time after changing this
1558 value_inside_range (tree val
, tree min
, tree max
)
1562 cmp1
= operand_less_p (val
, min
);
1568 cmp2
= operand_less_p (max
, val
);
1576 /* Return true if value ranges VR0 and VR1 have a non-empty
1579 Benchmark compile/20001226-1.c compilation time after changing this
1584 value_ranges_intersect_p (value_range_t
*vr0
, value_range_t
*vr1
)
1586 /* The value ranges do not intersect if the maximum of the first range is
1587 less than the minimum of the second range or vice versa.
1588 When those relations are unknown, we can't do any better. */
1589 if (operand_less_p (vr0
->max
, vr1
->min
) != 0)
1591 if (operand_less_p (vr1
->max
, vr0
->min
) != 0)
1597 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1598 include the value zero, -2 if we cannot tell. */
1601 range_includes_zero_p (tree min
, tree max
)
1603 tree zero
= build_int_cst (TREE_TYPE (min
), 0);
1604 return value_inside_range (zero
, min
, max
);
1607 /* Return true if *VR is know to only contain nonnegative values. */
1610 value_range_nonnegative_p (value_range_t
*vr
)
1612 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1613 which would return a useful value should be encoded as a
1615 if (vr
->type
== VR_RANGE
)
1617 int result
= compare_values (vr
->min
, integer_zero_node
);
1618 return (result
== 0 || result
== 1);
1624 /* If *VR has a value rante that is a single constant value return that,
1625 otherwise return NULL_TREE. */
1628 value_range_constant_singleton (value_range_t
*vr
)
1630 if (vr
->type
== VR_RANGE
1631 && operand_equal_p (vr
->min
, vr
->max
, 0)
1632 && is_gimple_min_invariant (vr
->min
))
1638 /* If OP has a value range with a single constant value return that,
1639 otherwise return NULL_TREE. This returns OP itself if OP is a
1643 op_with_constant_singleton_value_range (tree op
)
1645 if (is_gimple_min_invariant (op
))
1648 if (TREE_CODE (op
) != SSA_NAME
)
1651 return value_range_constant_singleton (get_value_range (op
));
1654 /* Return true if op is in a boolean [0, 1] value-range. */
1657 op_with_boolean_value_range_p (tree op
)
1661 if (TYPE_PRECISION (TREE_TYPE (op
)) == 1)
1664 if (integer_zerop (op
)
1665 || integer_onep (op
))
1668 if (TREE_CODE (op
) != SSA_NAME
)
1671 vr
= get_value_range (op
);
1672 return (vr
->type
== VR_RANGE
1673 && integer_zerop (vr
->min
)
1674 && integer_onep (vr
->max
));
1677 /* Extract value range information from an ASSERT_EXPR EXPR and store
1681 extract_range_from_assert (value_range_t
*vr_p
, tree expr
)
1683 tree var
, cond
, limit
, min
, max
, type
;
1684 value_range_t
*limit_vr
;
1685 enum tree_code cond_code
;
1687 var
= ASSERT_EXPR_VAR (expr
);
1688 cond
= ASSERT_EXPR_COND (expr
);
1690 gcc_assert (COMPARISON_CLASS_P (cond
));
1692 /* Find VAR in the ASSERT_EXPR conditional. */
1693 if (var
== TREE_OPERAND (cond
, 0)
1694 || TREE_CODE (TREE_OPERAND (cond
, 0)) == PLUS_EXPR
1695 || TREE_CODE (TREE_OPERAND (cond
, 0)) == NOP_EXPR
)
1697 /* If the predicate is of the form VAR COMP LIMIT, then we just
1698 take LIMIT from the RHS and use the same comparison code. */
1699 cond_code
= TREE_CODE (cond
);
1700 limit
= TREE_OPERAND (cond
, 1);
1701 cond
= TREE_OPERAND (cond
, 0);
1705 /* If the predicate is of the form LIMIT COMP VAR, then we need
1706 to flip around the comparison code to create the proper range
1708 cond_code
= swap_tree_comparison (TREE_CODE (cond
));
1709 limit
= TREE_OPERAND (cond
, 0);
1710 cond
= TREE_OPERAND (cond
, 1);
1713 limit
= avoid_overflow_infinity (limit
);
1715 type
= TREE_TYPE (var
);
1716 gcc_assert (limit
!= var
);
1718 /* For pointer arithmetic, we only keep track of pointer equality
1720 if (POINTER_TYPE_P (type
) && cond_code
!= NE_EXPR
&& cond_code
!= EQ_EXPR
)
1722 set_value_range_to_varying (vr_p
);
1726 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1727 try to use LIMIT's range to avoid creating symbolic ranges
1729 limit_vr
= (TREE_CODE (limit
) == SSA_NAME
) ? get_value_range (limit
) : NULL
;
1731 /* LIMIT's range is only interesting if it has any useful information. */
1733 && (limit_vr
->type
== VR_UNDEFINED
1734 || limit_vr
->type
== VR_VARYING
1735 || symbolic_range_p (limit_vr
)))
1738 /* Initially, the new range has the same set of equivalences of
1739 VAR's range. This will be revised before returning the final
1740 value. Since assertions may be chained via mutually exclusive
1741 predicates, we will need to trim the set of equivalences before
1743 gcc_assert (vr_p
->equiv
== NULL
);
1744 add_equivalence (&vr_p
->equiv
, var
);
1746 /* Extract a new range based on the asserted comparison for VAR and
1747 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1748 will only use it for equality comparisons (EQ_EXPR). For any
1749 other kind of assertion, we cannot derive a range from LIMIT's
1750 anti-range that can be used to describe the new range. For
1751 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1752 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1753 no single range for x_2 that could describe LE_EXPR, so we might
1754 as well build the range [b_4, +INF] for it.
1755 One special case we handle is extracting a range from a
1756 range test encoded as (unsigned)var + CST <= limit. */
1757 if (TREE_CODE (cond
) == NOP_EXPR
1758 || TREE_CODE (cond
) == PLUS_EXPR
)
1760 if (TREE_CODE (cond
) == PLUS_EXPR
)
1762 min
= fold_build1 (NEGATE_EXPR
, TREE_TYPE (TREE_OPERAND (cond
, 1)),
1763 TREE_OPERAND (cond
, 1));
1764 max
= int_const_binop (PLUS_EXPR
, limit
, min
);
1765 cond
= TREE_OPERAND (cond
, 0);
1769 min
= build_int_cst (TREE_TYPE (var
), 0);
1773 /* Make sure to not set TREE_OVERFLOW on the final type
1774 conversion. We are willingly interpreting large positive
1775 unsigned values as negative signed values here. */
1776 min
= force_fit_type (TREE_TYPE (var
), wi::to_widest (min
), 0, false);
1777 max
= force_fit_type (TREE_TYPE (var
), wi::to_widest (max
), 0, false);
1779 /* We can transform a max, min range to an anti-range or
1780 vice-versa. Use set_and_canonicalize_value_range which does
1782 if (cond_code
== LE_EXPR
)
1783 set_and_canonicalize_value_range (vr_p
, VR_RANGE
,
1784 min
, max
, vr_p
->equiv
);
1785 else if (cond_code
== GT_EXPR
)
1786 set_and_canonicalize_value_range (vr_p
, VR_ANTI_RANGE
,
1787 min
, max
, vr_p
->equiv
);
1791 else if (cond_code
== EQ_EXPR
)
1793 enum value_range_type range_type
;
1797 range_type
= limit_vr
->type
;
1798 min
= limit_vr
->min
;
1799 max
= limit_vr
->max
;
1803 range_type
= VR_RANGE
;
1808 set_value_range (vr_p
, range_type
, min
, max
, vr_p
->equiv
);
1810 /* When asserting the equality VAR == LIMIT and LIMIT is another
1811 SSA name, the new range will also inherit the equivalence set
1813 if (TREE_CODE (limit
) == SSA_NAME
)
1814 add_equivalence (&vr_p
->equiv
, limit
);
1816 else if (cond_code
== NE_EXPR
)
1818 /* As described above, when LIMIT's range is an anti-range and
1819 this assertion is an inequality (NE_EXPR), then we cannot
1820 derive anything from the anti-range. For instance, if
1821 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1822 not imply that VAR's range is [0, 0]. So, in the case of
1823 anti-ranges, we just assert the inequality using LIMIT and
1826 If LIMIT_VR is a range, we can only use it to build a new
1827 anti-range if LIMIT_VR is a single-valued range. For
1828 instance, if LIMIT_VR is [0, 1], the predicate
1829 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1830 Rather, it means that for value 0 VAR should be ~[0, 0]
1831 and for value 1, VAR should be ~[1, 1]. We cannot
1832 represent these ranges.
1834 The only situation in which we can build a valid
1835 anti-range is when LIMIT_VR is a single-valued range
1836 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1837 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1839 && limit_vr
->type
== VR_RANGE
1840 && compare_values (limit_vr
->min
, limit_vr
->max
) == 0)
1842 min
= limit_vr
->min
;
1843 max
= limit_vr
->max
;
1847 /* In any other case, we cannot use LIMIT's range to build a
1848 valid anti-range. */
1852 /* If MIN and MAX cover the whole range for their type, then
1853 just use the original LIMIT. */
1854 if (INTEGRAL_TYPE_P (type
)
1855 && vrp_val_is_min (min
)
1856 && vrp_val_is_max (max
))
1859 set_and_canonicalize_value_range (vr_p
, VR_ANTI_RANGE
,
1860 min
, max
, vr_p
->equiv
);
1862 else if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
1864 min
= TYPE_MIN_VALUE (type
);
1866 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
1870 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1871 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1873 max
= limit_vr
->max
;
1876 /* If the maximum value forces us to be out of bounds, simply punt.
1877 It would be pointless to try and do anything more since this
1878 all should be optimized away above us. */
1879 if ((cond_code
== LT_EXPR
1880 && compare_values (max
, min
) == 0)
1881 || is_overflow_infinity (max
))
1882 set_value_range_to_varying (vr_p
);
1885 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1886 if (cond_code
== LT_EXPR
)
1888 if (TYPE_PRECISION (TREE_TYPE (max
)) == 1
1889 && !TYPE_UNSIGNED (TREE_TYPE (max
)))
1890 max
= fold_build2 (PLUS_EXPR
, TREE_TYPE (max
), max
,
1891 build_int_cst (TREE_TYPE (max
), -1));
1893 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (max
), max
,
1894 build_int_cst (TREE_TYPE (max
), 1));
1896 TREE_NO_WARNING (max
) = 1;
1899 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1902 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
1904 max
= TYPE_MAX_VALUE (type
);
1906 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
1910 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1911 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1913 min
= limit_vr
->min
;
1916 /* If the minimum value forces us to be out of bounds, simply punt.
1917 It would be pointless to try and do anything more since this
1918 all should be optimized away above us. */
1919 if ((cond_code
== GT_EXPR
1920 && compare_values (min
, max
) == 0)
1921 || is_overflow_infinity (min
))
1922 set_value_range_to_varying (vr_p
);
1925 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1926 if (cond_code
== GT_EXPR
)
1928 if (TYPE_PRECISION (TREE_TYPE (min
)) == 1
1929 && !TYPE_UNSIGNED (TREE_TYPE (min
)))
1930 min
= fold_build2 (MINUS_EXPR
, TREE_TYPE (min
), min
,
1931 build_int_cst (TREE_TYPE (min
), -1));
1933 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (min
), min
,
1934 build_int_cst (TREE_TYPE (min
), 1));
1936 TREE_NO_WARNING (min
) = 1;
1939 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1945 /* Finally intersect the new range with what we already know about var. */
1946 vrp_intersect_ranges (vr_p
, get_value_range (var
));
1950 /* Extract range information from SSA name VAR and store it in VR. If
1951 VAR has an interesting range, use it. Otherwise, create the
1952 range [VAR, VAR] and return it. This is useful in situations where
1953 we may have conditionals testing values of VARYING names. For
1960 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1964 extract_range_from_ssa_name (value_range_t
*vr
, tree var
)
1966 value_range_t
*var_vr
= get_value_range (var
);
1968 if (var_vr
->type
!= VR_VARYING
)
1969 copy_value_range (vr
, var_vr
);
1971 set_value_range (vr
, VR_RANGE
, var
, var
, NULL
);
1973 add_equivalence (&vr
->equiv
, var
);
1977 /* Wrapper around int_const_binop. If the operation overflows and we
1978 are not using wrapping arithmetic, then adjust the result to be
1979 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1980 NULL_TREE if we need to use an overflow infinity representation but
1981 the type does not support it. */
1984 vrp_int_const_binop (enum tree_code code
, tree val1
, tree val2
)
1988 res
= int_const_binop (code
, val1
, val2
);
1990 /* If we are using unsigned arithmetic, operate symbolically
1991 on -INF and +INF as int_const_binop only handles signed overflow. */
1992 if (TYPE_UNSIGNED (TREE_TYPE (val1
)))
1994 int checkz
= compare_values (res
, val1
);
1995 bool overflow
= false;
1997 /* Ensure that res = val1 [+*] val2 >= val1
1998 or that res = val1 - val2 <= val1. */
1999 if ((code
== PLUS_EXPR
2000 && !(checkz
== 1 || checkz
== 0))
2001 || (code
== MINUS_EXPR
2002 && !(checkz
== 0 || checkz
== -1)))
2006 /* Checking for multiplication overflow is done by dividing the
2007 output of the multiplication by the first input of the
2008 multiplication. If the result of that division operation is
2009 not equal to the second input of the multiplication, then the
2010 multiplication overflowed. */
2011 else if (code
== MULT_EXPR
&& !integer_zerop (val1
))
2013 tree tmp
= int_const_binop (TRUNC_DIV_EXPR
,
2016 int check
= compare_values (tmp
, val2
);
2024 res
= copy_node (res
);
2025 TREE_OVERFLOW (res
) = 1;
2029 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1
)))
2030 /* If the singed operation wraps then int_const_binop has done
2031 everything we want. */
2033 /* Signed division of -1/0 overflows and by the time it gets here
2034 returns NULL_TREE. */
2037 else if ((TREE_OVERFLOW (res
)
2038 && !TREE_OVERFLOW (val1
)
2039 && !TREE_OVERFLOW (val2
))
2040 || is_overflow_infinity (val1
)
2041 || is_overflow_infinity (val2
))
2043 /* If the operation overflowed but neither VAL1 nor VAL2 are
2044 overflown, return -INF or +INF depending on the operation
2045 and the combination of signs of the operands. */
2046 int sgn1
= tree_int_cst_sgn (val1
);
2047 int sgn2
= tree_int_cst_sgn (val2
);
2049 if (needs_overflow_infinity (TREE_TYPE (res
))
2050 && !supports_overflow_infinity (TREE_TYPE (res
)))
2053 /* We have to punt on adding infinities of different signs,
2054 since we can't tell what the sign of the result should be.
2055 Likewise for subtracting infinities of the same sign. */
2056 if (((code
== PLUS_EXPR
&& sgn1
!= sgn2
)
2057 || (code
== MINUS_EXPR
&& sgn1
== sgn2
))
2058 && is_overflow_infinity (val1
)
2059 && is_overflow_infinity (val2
))
2062 /* Don't try to handle division or shifting of infinities. */
2063 if ((code
== TRUNC_DIV_EXPR
2064 || code
== FLOOR_DIV_EXPR
2065 || code
== CEIL_DIV_EXPR
2066 || code
== EXACT_DIV_EXPR
2067 || code
== ROUND_DIV_EXPR
2068 || code
== RSHIFT_EXPR
)
2069 && (is_overflow_infinity (val1
)
2070 || is_overflow_infinity (val2
)))
2073 /* Notice that we only need to handle the restricted set of
2074 operations handled by extract_range_from_binary_expr.
2075 Among them, only multiplication, addition and subtraction
2076 can yield overflow without overflown operands because we
2077 are working with integral types only... except in the
2078 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
2079 for division too. */
2081 /* For multiplication, the sign of the overflow is given
2082 by the comparison of the signs of the operands. */
2083 if ((code
== MULT_EXPR
&& sgn1
== sgn2
)
2084 /* For addition, the operands must be of the same sign
2085 to yield an overflow. Its sign is therefore that
2086 of one of the operands, for example the first. For
2087 infinite operands X + -INF is negative, not positive. */
2088 || (code
== PLUS_EXPR
2090 ? !is_negative_overflow_infinity (val2
)
2091 : is_positive_overflow_infinity (val2
)))
2092 /* For subtraction, non-infinite operands must be of
2093 different signs to yield an overflow. Its sign is
2094 therefore that of the first operand or the opposite of
2095 that of the second operand. A first operand of 0 counts
2096 as positive here, for the corner case 0 - (-INF), which
2097 overflows, but must yield +INF. For infinite operands 0
2098 - INF is negative, not positive. */
2099 || (code
== MINUS_EXPR
2101 ? !is_positive_overflow_infinity (val2
)
2102 : is_negative_overflow_infinity (val2
)))
2103 /* We only get in here with positive shift count, so the
2104 overflow direction is the same as the sign of val1.
2105 Actually rshift does not overflow at all, but we only
2106 handle the case of shifting overflowed -INF and +INF. */
2107 || (code
== RSHIFT_EXPR
2109 /* For division, the only case is -INF / -1 = +INF. */
2110 || code
== TRUNC_DIV_EXPR
2111 || code
== FLOOR_DIV_EXPR
2112 || code
== CEIL_DIV_EXPR
2113 || code
== EXACT_DIV_EXPR
2114 || code
== ROUND_DIV_EXPR
)
2115 return (needs_overflow_infinity (TREE_TYPE (res
))
2116 ? positive_overflow_infinity (TREE_TYPE (res
))
2117 : TYPE_MAX_VALUE (TREE_TYPE (res
)));
2119 return (needs_overflow_infinity (TREE_TYPE (res
))
2120 ? negative_overflow_infinity (TREE_TYPE (res
))
2121 : TYPE_MIN_VALUE (TREE_TYPE (res
)));
2128 /* For range VR compute two wide_int bitmasks. In *MAY_BE_NONZERO
2129 bitmask if some bit is unset, it means for all numbers in the range
2130 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
2131 bitmask if some bit is set, it means for all numbers in the range
2132 the bit is 1, otherwise it might be 0 or 1. */
2135 zero_nonzero_bits_from_vr (const tree expr_type
,
2137 wide_int
*may_be_nonzero
,
2138 wide_int
*must_be_nonzero
)
2140 *may_be_nonzero
= wi::minus_one (TYPE_PRECISION (expr_type
));
2141 *must_be_nonzero
= wi::zero (TYPE_PRECISION (expr_type
));
2142 if (!range_int_cst_p (vr
)
2143 || is_overflow_infinity (vr
->min
)
2144 || is_overflow_infinity (vr
->max
))
2147 if (range_int_cst_singleton_p (vr
))
2149 *may_be_nonzero
= vr
->min
;
2150 *must_be_nonzero
= *may_be_nonzero
;
2152 else if (tree_int_cst_sgn (vr
->min
) >= 0
2153 || tree_int_cst_sgn (vr
->max
) < 0)
2155 wide_int xor_mask
= wi::bit_xor (vr
->min
, vr
->max
);
2156 *may_be_nonzero
= wi::bit_or (vr
->min
, vr
->max
);
2157 *must_be_nonzero
= wi::bit_and (vr
->min
, vr
->max
);
2160 wide_int mask
= wi::mask (wi::floor_log2 (xor_mask
), false,
2161 may_be_nonzero
->get_precision ());
2162 *may_be_nonzero
= *may_be_nonzero
| mask
;
2163 *must_be_nonzero
= must_be_nonzero
->and_not (mask
);
2170 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
2171 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
2172 false otherwise. If *AR can be represented with a single range
2173 *VR1 will be VR_UNDEFINED. */
2176 ranges_from_anti_range (value_range_t
*ar
,
2177 value_range_t
*vr0
, value_range_t
*vr1
)
2179 tree type
= TREE_TYPE (ar
->min
);
2181 vr0
->type
= VR_UNDEFINED
;
2182 vr1
->type
= VR_UNDEFINED
;
2184 if (ar
->type
!= VR_ANTI_RANGE
2185 || TREE_CODE (ar
->min
) != INTEGER_CST
2186 || TREE_CODE (ar
->max
) != INTEGER_CST
2187 || !vrp_val_min (type
)
2188 || !vrp_val_max (type
))
2191 if (!vrp_val_is_min (ar
->min
))
2193 vr0
->type
= VR_RANGE
;
2194 vr0
->min
= vrp_val_min (type
);
2195 vr0
->max
= wide_int_to_tree (type
, wi::sub (ar
->min
, 1));
2197 if (!vrp_val_is_max (ar
->max
))
2199 vr1
->type
= VR_RANGE
;
2200 vr1
->min
= wide_int_to_tree (type
, wi::add (ar
->max
, 1));
2201 vr1
->max
= vrp_val_max (type
);
2203 if (vr0
->type
== VR_UNDEFINED
)
2206 vr1
->type
= VR_UNDEFINED
;
2209 return vr0
->type
!= VR_UNDEFINED
;
2212 /* Helper to extract a value-range *VR for a multiplicative operation
2216 extract_range_from_multiplicative_op_1 (value_range_t
*vr
,
2217 enum tree_code code
,
2218 value_range_t
*vr0
, value_range_t
*vr1
)
2220 enum value_range_type type
;
2227 /* Multiplications, divisions and shifts are a bit tricky to handle,
2228 depending on the mix of signs we have in the two ranges, we
2229 need to operate on different values to get the minimum and
2230 maximum values for the new range. One approach is to figure
2231 out all the variations of range combinations and do the
2234 However, this involves several calls to compare_values and it
2235 is pretty convoluted. It's simpler to do the 4 operations
2236 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2237 MAX1) and then figure the smallest and largest values to form
2239 gcc_assert (code
== MULT_EXPR
2240 || code
== TRUNC_DIV_EXPR
2241 || code
== FLOOR_DIV_EXPR
2242 || code
== CEIL_DIV_EXPR
2243 || code
== EXACT_DIV_EXPR
2244 || code
== ROUND_DIV_EXPR
2245 || code
== RSHIFT_EXPR
2246 || code
== LSHIFT_EXPR
);
2247 gcc_assert ((vr0
->type
== VR_RANGE
2248 || (code
== MULT_EXPR
&& vr0
->type
== VR_ANTI_RANGE
))
2249 && vr0
->type
== vr1
->type
);
2253 /* Compute the 4 cross operations. */
2255 val
[0] = vrp_int_const_binop (code
, vr0
->min
, vr1
->min
);
2256 if (val
[0] == NULL_TREE
)
2259 if (vr1
->max
== vr1
->min
)
2263 val
[1] = vrp_int_const_binop (code
, vr0
->min
, vr1
->max
);
2264 if (val
[1] == NULL_TREE
)
2268 if (vr0
->max
== vr0
->min
)
2272 val
[2] = vrp_int_const_binop (code
, vr0
->max
, vr1
->min
);
2273 if (val
[2] == NULL_TREE
)
2277 if (vr0
->min
== vr0
->max
|| vr1
->min
== vr1
->max
)
2281 val
[3] = vrp_int_const_binop (code
, vr0
->max
, vr1
->max
);
2282 if (val
[3] == NULL_TREE
)
2288 set_value_range_to_varying (vr
);
2292 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2296 for (i
= 1; i
< 4; i
++)
2298 if (!is_gimple_min_invariant (min
)
2299 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2300 || !is_gimple_min_invariant (max
)
2301 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2306 if (!is_gimple_min_invariant (val
[i
])
2307 || (TREE_OVERFLOW (val
[i
])
2308 && !is_overflow_infinity (val
[i
])))
2310 /* If we found an overflowed value, set MIN and MAX
2311 to it so that we set the resulting range to
2317 if (compare_values (val
[i
], min
) == -1)
2320 if (compare_values (val
[i
], max
) == 1)
2325 /* If either MIN or MAX overflowed, then set the resulting range to
2326 VARYING. But we do accept an overflow infinity
2328 if (min
== NULL_TREE
2329 || !is_gimple_min_invariant (min
)
2330 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2332 || !is_gimple_min_invariant (max
)
2333 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2335 set_value_range_to_varying (vr
);
2341 2) [-INF, +-INF(OVF)]
2342 3) [+-INF(OVF), +INF]
2343 4) [+-INF(OVF), +-INF(OVF)]
2344 We learn nothing when we have INF and INF(OVF) on both sides.
2345 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2347 if ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
2348 && (vrp_val_is_max (max
) || is_overflow_infinity (max
)))
2350 set_value_range_to_varying (vr
);
2354 cmp
= compare_values (min
, max
);
2355 if (cmp
== -2 || cmp
== 1)
2357 /* If the new range has its limits swapped around (MIN > MAX),
2358 then the operation caused one of them to wrap around, mark
2359 the new range VARYING. */
2360 set_value_range_to_varying (vr
);
2363 set_value_range (vr
, type
, min
, max
, NULL
);
2366 /* Extract range information from a binary operation CODE based on
2367 the ranges of each of its operands *VR0 and *VR1 with resulting
2368 type EXPR_TYPE. The resulting range is stored in *VR. */
2371 extract_range_from_binary_expr_1 (value_range_t
*vr
,
2372 enum tree_code code
, tree expr_type
,
2373 value_range_t
*vr0_
, value_range_t
*vr1_
)
2375 value_range_t vr0
= *vr0_
, vr1
= *vr1_
;
2376 value_range_t vrtem0
= VR_INITIALIZER
, vrtem1
= VR_INITIALIZER
;
2377 enum value_range_type type
;
2378 tree min
= NULL_TREE
, max
= NULL_TREE
;
2381 if (!INTEGRAL_TYPE_P (expr_type
)
2382 && !POINTER_TYPE_P (expr_type
))
2384 set_value_range_to_varying (vr
);
2388 /* Not all binary expressions can be applied to ranges in a
2389 meaningful way. Handle only arithmetic operations. */
2390 if (code
!= PLUS_EXPR
2391 && code
!= MINUS_EXPR
2392 && code
!= POINTER_PLUS_EXPR
2393 && code
!= MULT_EXPR
2394 && code
!= TRUNC_DIV_EXPR
2395 && code
!= FLOOR_DIV_EXPR
2396 && code
!= CEIL_DIV_EXPR
2397 && code
!= EXACT_DIV_EXPR
2398 && code
!= ROUND_DIV_EXPR
2399 && code
!= TRUNC_MOD_EXPR
2400 && code
!= RSHIFT_EXPR
2401 && code
!= LSHIFT_EXPR
2404 && code
!= BIT_AND_EXPR
2405 && code
!= BIT_IOR_EXPR
2406 && code
!= BIT_XOR_EXPR
)
2408 set_value_range_to_varying (vr
);
2412 /* If both ranges are UNDEFINED, so is the result. */
2413 if (vr0
.type
== VR_UNDEFINED
&& vr1
.type
== VR_UNDEFINED
)
2415 set_value_range_to_undefined (vr
);
2418 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2419 code. At some point we may want to special-case operations that
2420 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2422 else if (vr0
.type
== VR_UNDEFINED
)
2423 set_value_range_to_varying (&vr0
);
2424 else if (vr1
.type
== VR_UNDEFINED
)
2425 set_value_range_to_varying (&vr1
);
2427 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2428 and express ~[] op X as ([]' op X) U ([]'' op X). */
2429 if (vr0
.type
== VR_ANTI_RANGE
2430 && ranges_from_anti_range (&vr0
, &vrtem0
, &vrtem1
))
2432 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, &vrtem0
, vr1_
);
2433 if (vrtem1
.type
!= VR_UNDEFINED
)
2435 value_range_t vrres
= VR_INITIALIZER
;
2436 extract_range_from_binary_expr_1 (&vrres
, code
, expr_type
,
2438 vrp_meet (vr
, &vrres
);
2442 /* Likewise for X op ~[]. */
2443 if (vr1
.type
== VR_ANTI_RANGE
2444 && ranges_from_anti_range (&vr1
, &vrtem0
, &vrtem1
))
2446 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, vr0_
, &vrtem0
);
2447 if (vrtem1
.type
!= VR_UNDEFINED
)
2449 value_range_t vrres
= VR_INITIALIZER
;
2450 extract_range_from_binary_expr_1 (&vrres
, code
, expr_type
,
2452 vrp_meet (vr
, &vrres
);
2457 /* The type of the resulting value range defaults to VR0.TYPE. */
2460 /* Refuse to operate on VARYING ranges, ranges of different kinds
2461 and symbolic ranges. As an exception, we allow BIT_{AND,IOR}
2462 because we may be able to derive a useful range even if one of
2463 the operands is VR_VARYING or symbolic range. Similarly for
2464 divisions, MIN/MAX and PLUS/MINUS.
2466 TODO, we may be able to derive anti-ranges in some cases. */
2467 if (code
!= BIT_AND_EXPR
2468 && code
!= BIT_IOR_EXPR
2469 && code
!= TRUNC_DIV_EXPR
2470 && code
!= FLOOR_DIV_EXPR
2471 && code
!= CEIL_DIV_EXPR
2472 && code
!= EXACT_DIV_EXPR
2473 && code
!= ROUND_DIV_EXPR
2474 && code
!= TRUNC_MOD_EXPR
2477 && code
!= PLUS_EXPR
2478 && code
!= MINUS_EXPR
2479 && code
!= RSHIFT_EXPR
2480 && (vr0
.type
== VR_VARYING
2481 || vr1
.type
== VR_VARYING
2482 || vr0
.type
!= vr1
.type
2483 || symbolic_range_p (&vr0
)
2484 || symbolic_range_p (&vr1
)))
2486 set_value_range_to_varying (vr
);
2490 /* Now evaluate the expression to determine the new range. */
2491 if (POINTER_TYPE_P (expr_type
))
2493 if (code
== MIN_EXPR
|| code
== MAX_EXPR
)
2495 /* For MIN/MAX expressions with pointers, we only care about
2496 nullness, if both are non null, then the result is nonnull.
2497 If both are null, then the result is null. Otherwise they
2499 if (range_is_nonnull (&vr0
) && range_is_nonnull (&vr1
))
2500 set_value_range_to_nonnull (vr
, expr_type
);
2501 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
2502 set_value_range_to_null (vr
, expr_type
);
2504 set_value_range_to_varying (vr
);
2506 else if (code
== POINTER_PLUS_EXPR
)
2508 /* For pointer types, we are really only interested in asserting
2509 whether the expression evaluates to non-NULL. */
2510 if (range_is_nonnull (&vr0
) || range_is_nonnull (&vr1
))
2511 set_value_range_to_nonnull (vr
, expr_type
);
2512 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
2513 set_value_range_to_null (vr
, expr_type
);
2515 set_value_range_to_varying (vr
);
2517 else if (code
== BIT_AND_EXPR
)
2519 /* For pointer types, we are really only interested in asserting
2520 whether the expression evaluates to non-NULL. */
2521 if (range_is_nonnull (&vr0
) && range_is_nonnull (&vr1
))
2522 set_value_range_to_nonnull (vr
, expr_type
);
2523 else if (range_is_null (&vr0
) || range_is_null (&vr1
))
2524 set_value_range_to_null (vr
, expr_type
);
2526 set_value_range_to_varying (vr
);
2529 set_value_range_to_varying (vr
);
2534 /* For integer ranges, apply the operation to each end of the
2535 range and see what we end up with. */
2536 if (code
== PLUS_EXPR
|| code
== MINUS_EXPR
)
2538 const bool minus_p
= (code
== MINUS_EXPR
);
2539 tree min_op0
= vr0
.min
;
2540 tree min_op1
= minus_p
? vr1
.max
: vr1
.min
;
2541 tree max_op0
= vr0
.max
;
2542 tree max_op1
= minus_p
? vr1
.min
: vr1
.max
;
2543 tree sym_min_op0
= NULL_TREE
;
2544 tree sym_min_op1
= NULL_TREE
;
2545 tree sym_max_op0
= NULL_TREE
;
2546 tree sym_max_op1
= NULL_TREE
;
2547 bool neg_min_op0
, neg_min_op1
, neg_max_op0
, neg_max_op1
;
2549 /* If we have a PLUS or MINUS with two VR_RANGEs, either constant or
2550 single-symbolic ranges, try to compute the precise resulting range,
2551 but only if we know that this resulting range will also be constant
2552 or single-symbolic. */
2553 if (vr0
.type
== VR_RANGE
&& vr1
.type
== VR_RANGE
2554 && (TREE_CODE (min_op0
) == INTEGER_CST
2556 = get_single_symbol (min_op0
, &neg_min_op0
, &min_op0
)))
2557 && (TREE_CODE (min_op1
) == INTEGER_CST
2559 = get_single_symbol (min_op1
, &neg_min_op1
, &min_op1
)))
2560 && (!(sym_min_op0
&& sym_min_op1
)
2561 || (sym_min_op0
== sym_min_op1
2562 && neg_min_op0
== (minus_p
? neg_min_op1
: !neg_min_op1
)))
2563 && (TREE_CODE (max_op0
) == INTEGER_CST
2565 = get_single_symbol (max_op0
, &neg_max_op0
, &max_op0
)))
2566 && (TREE_CODE (max_op1
) == INTEGER_CST
2568 = get_single_symbol (max_op1
, &neg_max_op1
, &max_op1
)))
2569 && (!(sym_max_op0
&& sym_max_op1
)
2570 || (sym_max_op0
== sym_max_op1
2571 && neg_max_op0
== (minus_p
? neg_max_op1
: !neg_max_op1
))))
2573 const signop sgn
= TYPE_SIGN (expr_type
);
2574 const unsigned int prec
= TYPE_PRECISION (expr_type
);
2575 wide_int type_min
, type_max
, wmin
, wmax
;
2579 /* Get the lower and upper bounds of the type. */
2580 if (TYPE_OVERFLOW_WRAPS (expr_type
))
2582 type_min
= wi::min_value (prec
, sgn
);
2583 type_max
= wi::max_value (prec
, sgn
);
2587 type_min
= vrp_val_min (expr_type
);
2588 type_max
= vrp_val_max (expr_type
);
2591 /* Combine the lower bounds, if any. */
2592 if (min_op0
&& min_op1
)
2596 wmin
= wi::sub (min_op0
, min_op1
);
2598 /* Check for overflow. */
2599 if (wi::cmp (0, min_op1
, sgn
)
2600 != wi::cmp (wmin
, min_op0
, sgn
))
2601 min_ovf
= wi::cmp (min_op0
, min_op1
, sgn
);
2605 wmin
= wi::add (min_op0
, min_op1
);
2607 /* Check for overflow. */
2608 if (wi::cmp (min_op1
, 0, sgn
)
2609 != wi::cmp (wmin
, min_op0
, sgn
))
2610 min_ovf
= wi::cmp (min_op0
, wmin
, sgn
);
2616 wmin
= minus_p
? wi::neg (min_op1
) : min_op1
;
2618 wmin
= wi::shwi (0, prec
);
2620 /* Combine the upper bounds, if any. */
2621 if (max_op0
&& max_op1
)
2625 wmax
= wi::sub (max_op0
, max_op1
);
2627 /* Check for overflow. */
2628 if (wi::cmp (0, max_op1
, sgn
)
2629 != wi::cmp (wmax
, max_op0
, sgn
))
2630 max_ovf
= wi::cmp (max_op0
, max_op1
, sgn
);
2634 wmax
= wi::add (max_op0
, max_op1
);
2636 if (wi::cmp (max_op1
, 0, sgn
)
2637 != wi::cmp (wmax
, max_op0
, sgn
))
2638 max_ovf
= wi::cmp (max_op0
, wmax
, sgn
);
2644 wmax
= minus_p
? wi::neg (max_op1
) : max_op1
;
2646 wmax
= wi::shwi (0, prec
);
2648 /* Check for type overflow. */
2651 if (wi::cmp (wmin
, type_min
, sgn
) == -1)
2653 else if (wi::cmp (wmin
, type_max
, sgn
) == 1)
2658 if (wi::cmp (wmax
, type_min
, sgn
) == -1)
2660 else if (wi::cmp (wmax
, type_max
, sgn
) == 1)
2664 /* If we have overflow for the constant part and the resulting
2665 range will be symbolic, drop to VR_VARYING. */
2666 if ((min_ovf
&& sym_min_op0
!= sym_min_op1
)
2667 || (max_ovf
&& sym_max_op0
!= sym_max_op1
))
2669 set_value_range_to_varying (vr
);
2673 if (TYPE_OVERFLOW_WRAPS (expr_type
))
2675 /* If overflow wraps, truncate the values and adjust the
2676 range kind and bounds appropriately. */
2677 wide_int tmin
= wide_int::from (wmin
, prec
, sgn
);
2678 wide_int tmax
= wide_int::from (wmax
, prec
, sgn
);
2679 if (min_ovf
== max_ovf
)
2681 /* No overflow or both overflow or underflow. The
2682 range kind stays VR_RANGE. */
2683 min
= wide_int_to_tree (expr_type
, tmin
);
2684 max
= wide_int_to_tree (expr_type
, tmax
);
2686 else if (min_ovf
== -1 && max_ovf
== 1)
2688 /* Underflow and overflow, drop to VR_VARYING. */
2689 set_value_range_to_varying (vr
);
2694 /* Min underflow or max overflow. The range kind
2695 changes to VR_ANTI_RANGE. */
2696 bool covers
= false;
2697 wide_int tem
= tmin
;
2698 gcc_assert ((min_ovf
== -1 && max_ovf
== 0)
2699 || (max_ovf
== 1 && min_ovf
== 0));
2700 type
= VR_ANTI_RANGE
;
2702 if (wi::cmp (tmin
, tmax
, sgn
) < 0)
2705 if (wi::cmp (tmax
, tem
, sgn
) > 0)
2707 /* If the anti-range would cover nothing, drop to varying.
2708 Likewise if the anti-range bounds are outside of the
2710 if (covers
|| wi::cmp (tmin
, tmax
, sgn
) > 0)
2712 set_value_range_to_varying (vr
);
2715 min
= wide_int_to_tree (expr_type
, tmin
);
2716 max
= wide_int_to_tree (expr_type
, tmax
);
2721 /* If overflow does not wrap, saturate to the types min/max
2725 if (needs_overflow_infinity (expr_type
)
2726 && supports_overflow_infinity (expr_type
))
2727 min
= negative_overflow_infinity (expr_type
);
2729 min
= wide_int_to_tree (expr_type
, type_min
);
2731 else if (min_ovf
== 1)
2733 if (needs_overflow_infinity (expr_type
)
2734 && supports_overflow_infinity (expr_type
))
2735 min
= positive_overflow_infinity (expr_type
);
2737 min
= wide_int_to_tree (expr_type
, type_max
);
2740 min
= wide_int_to_tree (expr_type
, wmin
);
2744 if (needs_overflow_infinity (expr_type
)
2745 && supports_overflow_infinity (expr_type
))
2746 max
= negative_overflow_infinity (expr_type
);
2748 max
= wide_int_to_tree (expr_type
, type_min
);
2750 else if (max_ovf
== 1)
2752 if (needs_overflow_infinity (expr_type
)
2753 && supports_overflow_infinity (expr_type
))
2754 max
= positive_overflow_infinity (expr_type
);
2756 max
= wide_int_to_tree (expr_type
, type_max
);
2759 max
= wide_int_to_tree (expr_type
, wmax
);
2762 if (needs_overflow_infinity (expr_type
)
2763 && supports_overflow_infinity (expr_type
))
2765 if ((min_op0
&& is_negative_overflow_infinity (min_op0
))
2768 ? is_positive_overflow_infinity (min_op1
)
2769 : is_negative_overflow_infinity (min_op1
))))
2770 min
= negative_overflow_infinity (expr_type
);
2771 if ((max_op0
&& is_positive_overflow_infinity (max_op0
))
2774 ? is_negative_overflow_infinity (max_op1
)
2775 : is_positive_overflow_infinity (max_op1
))))
2776 max
= positive_overflow_infinity (expr_type
);
2779 /* If the result lower bound is constant, we're done;
2780 otherwise, build the symbolic lower bound. */
2781 if (sym_min_op0
== sym_min_op1
)
2783 else if (sym_min_op0
)
2784 min
= build_symbolic_expr (expr_type
, sym_min_op0
,
2786 else if (sym_min_op1
)
2787 min
= build_symbolic_expr (expr_type
, sym_min_op1
,
2788 neg_min_op1
^ minus_p
, min
);
2790 /* Likewise for the upper bound. */
2791 if (sym_max_op0
== sym_max_op1
)
2793 else if (sym_max_op0
)
2794 max
= build_symbolic_expr (expr_type
, sym_max_op0
,
2796 else if (sym_max_op1
)
2797 max
= build_symbolic_expr (expr_type
, sym_max_op1
,
2798 neg_max_op1
^ minus_p
, max
);
2802 /* For other cases, for example if we have a PLUS_EXPR with two
2803 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
2804 to compute a precise range for such a case.
2805 ??? General even mixed range kind operations can be expressed
2806 by for example transforming ~[3, 5] + [1, 2] to range-only
2807 operations and a union primitive:
2808 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
2809 [-INF+1, 4] U [6, +INF(OVF)]
2810 though usually the union is not exactly representable with
2811 a single range or anti-range as the above is
2812 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2813 but one could use a scheme similar to equivalences for this. */
2814 set_value_range_to_varying (vr
);
2818 else if (code
== MIN_EXPR
2819 || code
== MAX_EXPR
)
2821 if (vr0
.type
== VR_RANGE
2822 && !symbolic_range_p (&vr0
))
2825 if (vr1
.type
== VR_RANGE
2826 && !symbolic_range_p (&vr1
))
2828 /* For operations that make the resulting range directly
2829 proportional to the original ranges, apply the operation to
2830 the same end of each range. */
2831 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
2832 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.max
);
2834 else if (code
== MIN_EXPR
)
2836 min
= vrp_val_min (expr_type
);
2839 else if (code
== MAX_EXPR
)
2842 max
= vrp_val_max (expr_type
);
2845 else if (vr1
.type
== VR_RANGE
2846 && !symbolic_range_p (&vr1
))
2849 if (code
== MIN_EXPR
)
2851 min
= vrp_val_min (expr_type
);
2854 else if (code
== MAX_EXPR
)
2857 max
= vrp_val_max (expr_type
);
2862 set_value_range_to_varying (vr
);
2866 else if (code
== MULT_EXPR
)
2868 /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
2869 drop to varying. This test requires 2*prec bits if both
2870 operands are signed and 2*prec + 2 bits if either is not. */
2872 signop sign
= TYPE_SIGN (expr_type
);
2873 unsigned int prec
= TYPE_PRECISION (expr_type
);
2875 if (range_int_cst_p (&vr0
)
2876 && range_int_cst_p (&vr1
)
2877 && TYPE_OVERFLOW_WRAPS (expr_type
))
2879 typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION
* 2) vrp_int
;
2880 typedef generic_wide_int
2881 <wi::extended_tree
<WIDE_INT_MAX_PRECISION
* 2> > vrp_int_cst
;
2882 vrp_int sizem1
= wi::mask
<vrp_int
> (prec
, false);
2883 vrp_int size
= sizem1
+ 1;
2885 /* Extend the values using the sign of the result to PREC2.
2886 From here on out, everthing is just signed math no matter
2887 what the input types were. */
2888 vrp_int min0
= vrp_int_cst (vr0
.min
);
2889 vrp_int max0
= vrp_int_cst (vr0
.max
);
2890 vrp_int min1
= vrp_int_cst (vr1
.min
);
2891 vrp_int max1
= vrp_int_cst (vr1
.max
);
2892 /* Canonicalize the intervals. */
2893 if (sign
== UNSIGNED
)
2895 if (wi::ltu_p (size
, min0
+ max0
))
2901 if (wi::ltu_p (size
, min1
+ max1
))
2908 vrp_int prod0
= min0
* min1
;
2909 vrp_int prod1
= min0
* max1
;
2910 vrp_int prod2
= max0
* min1
;
2911 vrp_int prod3
= max0
* max1
;
2913 /* Sort the 4 products so that min is in prod0 and max is in
2915 /* min0min1 > max0max1 */
2916 if (wi::gts_p (prod0
, prod3
))
2917 std::swap (prod0
, prod3
);
2919 /* min0max1 > max0min1 */
2920 if (wi::gts_p (prod1
, prod2
))
2921 std::swap (prod1
, prod2
);
2923 if (wi::gts_p (prod0
, prod1
))
2924 std::swap (prod0
, prod1
);
2926 if (wi::gts_p (prod2
, prod3
))
2927 std::swap (prod2
, prod3
);
2929 /* diff = max - min. */
2930 prod2
= prod3
- prod0
;
2931 if (wi::geu_p (prod2
, sizem1
))
2933 /* the range covers all values. */
2934 set_value_range_to_varying (vr
);
2938 /* The following should handle the wrapping and selecting
2939 VR_ANTI_RANGE for us. */
2940 min
= wide_int_to_tree (expr_type
, prod0
);
2941 max
= wide_int_to_tree (expr_type
, prod3
);
2942 set_and_canonicalize_value_range (vr
, VR_RANGE
, min
, max
, NULL
);
2946 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2947 drop to VR_VARYING. It would take more effort to compute a
2948 precise range for such a case. For example, if we have
2949 op0 == 65536 and op1 == 65536 with their ranges both being
2950 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2951 we cannot claim that the product is in ~[0,0]. Note that we
2952 are guaranteed to have vr0.type == vr1.type at this
2954 if (vr0
.type
== VR_ANTI_RANGE
2955 && !TYPE_OVERFLOW_UNDEFINED (expr_type
))
2957 set_value_range_to_varying (vr
);
2961 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2964 else if (code
== RSHIFT_EXPR
2965 || code
== LSHIFT_EXPR
)
2967 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2968 then drop to VR_VARYING. Outside of this range we get undefined
2969 behavior from the shift operation. We cannot even trust
2970 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2971 shifts, and the operation at the tree level may be widened. */
2972 if (range_int_cst_p (&vr1
)
2973 && compare_tree_int (vr1
.min
, 0) >= 0
2974 && compare_tree_int (vr1
.max
, TYPE_PRECISION (expr_type
)) == -1)
2976 if (code
== RSHIFT_EXPR
)
2978 /* Even if vr0 is VARYING or otherwise not usable, we can derive
2979 useful ranges just from the shift count. E.g.
2980 x >> 63 for signed 64-bit x is always [-1, 0]. */
2981 if (vr0
.type
!= VR_RANGE
|| symbolic_range_p (&vr0
))
2983 vr0
.type
= type
= VR_RANGE
;
2984 vr0
.min
= vrp_val_min (expr_type
);
2985 vr0
.max
= vrp_val_max (expr_type
);
2987 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2990 /* We can map lshifts by constants to MULT_EXPR handling. */
2991 else if (code
== LSHIFT_EXPR
2992 && range_int_cst_singleton_p (&vr1
))
2994 bool saved_flag_wrapv
;
2995 value_range_t vr1p
= VR_INITIALIZER
;
2996 vr1p
.type
= VR_RANGE
;
2997 vr1p
.min
= (wide_int_to_tree
2999 wi::set_bit_in_zero (tree_to_shwi (vr1
.min
),
3000 TYPE_PRECISION (expr_type
))));
3001 vr1p
.max
= vr1p
.min
;
3002 /* We have to use a wrapping multiply though as signed overflow
3003 on lshifts is implementation defined in C89. */
3004 saved_flag_wrapv
= flag_wrapv
;
3006 extract_range_from_binary_expr_1 (vr
, MULT_EXPR
, expr_type
,
3008 flag_wrapv
= saved_flag_wrapv
;
3011 else if (code
== LSHIFT_EXPR
3012 && range_int_cst_p (&vr0
))
3014 int prec
= TYPE_PRECISION (expr_type
);
3015 int overflow_pos
= prec
;
3017 wide_int low_bound
, high_bound
;
3018 bool uns
= TYPE_UNSIGNED (expr_type
);
3019 bool in_bounds
= false;
3024 bound_shift
= overflow_pos
- tree_to_shwi (vr1
.max
);
3025 /* If bound_shift == HOST_BITS_PER_WIDE_INT, the llshift can
3026 overflow. However, for that to happen, vr1.max needs to be
3027 zero, which means vr1 is a singleton range of zero, which
3028 means it should be handled by the previous LSHIFT_EXPR
3030 wide_int bound
= wi::set_bit_in_zero (bound_shift
, prec
);
3031 wide_int complement
= ~(bound
- 1);
3036 high_bound
= complement
;
3037 if (wi::ltu_p (vr0
.max
, low_bound
))
3039 /* [5, 6] << [1, 2] == [10, 24]. */
3040 /* We're shifting out only zeroes, the value increases
3044 else if (wi::ltu_p (high_bound
, vr0
.min
))
3046 /* [0xffffff00, 0xffffffff] << [1, 2]
3047 == [0xfffffc00, 0xfffffffe]. */
3048 /* We're shifting out only ones, the value decreases
3055 /* [-1, 1] << [1, 2] == [-4, 4]. */
3056 low_bound
= complement
;
3058 if (wi::lts_p (vr0
.max
, high_bound
)
3059 && wi::lts_p (low_bound
, vr0
.min
))
3061 /* For non-negative numbers, we're shifting out only
3062 zeroes, the value increases monotonically.
3063 For negative numbers, we're shifting out only ones, the
3064 value decreases monotomically. */
3071 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
3076 set_value_range_to_varying (vr
);
3079 else if (code
== TRUNC_DIV_EXPR
3080 || code
== FLOOR_DIV_EXPR
3081 || code
== CEIL_DIV_EXPR
3082 || code
== EXACT_DIV_EXPR
3083 || code
== ROUND_DIV_EXPR
)
3085 if (vr0
.type
!= VR_RANGE
|| symbolic_range_p (&vr0
))
3087 /* For division, if op1 has VR_RANGE but op0 does not, something
3088 can be deduced just from that range. Say [min, max] / [4, max]
3089 gives [min / 4, max / 4] range. */
3090 if (vr1
.type
== VR_RANGE
3091 && !symbolic_range_p (&vr1
)
3092 && range_includes_zero_p (vr1
.min
, vr1
.max
) == 0)
3094 vr0
.type
= type
= VR_RANGE
;
3095 vr0
.min
= vrp_val_min (expr_type
);
3096 vr0
.max
= vrp_val_max (expr_type
);
3100 set_value_range_to_varying (vr
);
3105 /* For divisions, if flag_non_call_exceptions is true, we must
3106 not eliminate a division by zero. */
3107 if (cfun
->can_throw_non_call_exceptions
3108 && (vr1
.type
!= VR_RANGE
3109 || range_includes_zero_p (vr1
.min
, vr1
.max
) != 0))
3111 set_value_range_to_varying (vr
);
3115 /* For divisions, if op0 is VR_RANGE, we can deduce a range
3116 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
3118 if (vr0
.type
== VR_RANGE
3119 && (vr1
.type
!= VR_RANGE
3120 || range_includes_zero_p (vr1
.min
, vr1
.max
) != 0))
3122 tree zero
= build_int_cst (TREE_TYPE (vr0
.min
), 0);
3127 if (TYPE_UNSIGNED (expr_type
)
3128 || value_range_nonnegative_p (&vr1
))
3130 /* For unsigned division or when divisor is known
3131 to be non-negative, the range has to cover
3132 all numbers from 0 to max for positive max
3133 and all numbers from min to 0 for negative min. */
3134 cmp
= compare_values (vr0
.max
, zero
);
3137 else if (cmp
== 0 || cmp
== 1)
3141 cmp
= compare_values (vr0
.min
, zero
);
3144 else if (cmp
== 0 || cmp
== -1)
3151 /* Otherwise the range is -max .. max or min .. -min
3152 depending on which bound is bigger in absolute value,
3153 as the division can change the sign. */
3154 abs_extent_range (vr
, vr0
.min
, vr0
.max
);
3157 if (type
== VR_VARYING
)
3159 set_value_range_to_varying (vr
);
3165 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
3169 else if (code
== TRUNC_MOD_EXPR
)
3171 if (range_is_null (&vr1
))
3173 set_value_range_to_undefined (vr
);
3176 /* ABS (A % B) < ABS (B) and either
3177 0 <= A % B <= A or A <= A % B <= 0. */
3179 signop sgn
= TYPE_SIGN (expr_type
);
3180 unsigned int prec
= TYPE_PRECISION (expr_type
);
3181 wide_int wmin
, wmax
, tmp
;
3182 wide_int zero
= wi::zero (prec
);
3183 wide_int one
= wi::one (prec
);
3184 if (vr1
.type
== VR_RANGE
&& !symbolic_range_p (&vr1
))
3186 wmax
= wi::sub (vr1
.max
, one
);
3189 tmp
= wi::sub (wi::minus_one (prec
), vr1
.min
);
3190 wmax
= wi::smax (wmax
, tmp
);
3195 wmax
= wi::max_value (prec
, sgn
);
3196 /* X % INT_MIN may be INT_MAX. */
3197 if (sgn
== UNSIGNED
)
3201 if (sgn
== UNSIGNED
)
3206 if (vr0
.type
== VR_RANGE
&& TREE_CODE (vr0
.min
) == INTEGER_CST
)
3209 if (wi::gts_p (tmp
, zero
))
3211 wmin
= wi::smax (wmin
, tmp
);
3215 if (vr0
.type
== VR_RANGE
&& TREE_CODE (vr0
.max
) == INTEGER_CST
)
3218 if (sgn
== SIGNED
&& wi::neg_p (tmp
))
3220 wmax
= wi::min (wmax
, tmp
, sgn
);
3223 min
= wide_int_to_tree (expr_type
, wmin
);
3224 max
= wide_int_to_tree (expr_type
, wmax
);
3226 else if (code
== BIT_AND_EXPR
|| code
== BIT_IOR_EXPR
|| code
== BIT_XOR_EXPR
)
3228 bool int_cst_range0
, int_cst_range1
;
3229 wide_int may_be_nonzero0
, may_be_nonzero1
;
3230 wide_int must_be_nonzero0
, must_be_nonzero1
;
3232 int_cst_range0
= zero_nonzero_bits_from_vr (expr_type
, &vr0
,
3235 int_cst_range1
= zero_nonzero_bits_from_vr (expr_type
, &vr1
,
3240 if (code
== BIT_AND_EXPR
)
3242 min
= wide_int_to_tree (expr_type
,
3243 must_be_nonzero0
& must_be_nonzero1
);
3244 wide_int wmax
= may_be_nonzero0
& may_be_nonzero1
;
3245 /* If both input ranges contain only negative values we can
3246 truncate the result range maximum to the minimum of the
3247 input range maxima. */
3248 if (int_cst_range0
&& int_cst_range1
3249 && tree_int_cst_sgn (vr0
.max
) < 0
3250 && tree_int_cst_sgn (vr1
.max
) < 0)
3252 wmax
= wi::min (wmax
, vr0
.max
, TYPE_SIGN (expr_type
));
3253 wmax
= wi::min (wmax
, vr1
.max
, TYPE_SIGN (expr_type
));
3255 /* If either input range contains only non-negative values
3256 we can truncate the result range maximum to the respective
3257 maximum of the input range. */
3258 if (int_cst_range0
&& tree_int_cst_sgn (vr0
.min
) >= 0)
3259 wmax
= wi::min (wmax
, vr0
.max
, TYPE_SIGN (expr_type
));
3260 if (int_cst_range1
&& tree_int_cst_sgn (vr1
.min
) >= 0)
3261 wmax
= wi::min (wmax
, vr1
.max
, TYPE_SIGN (expr_type
));
3262 max
= wide_int_to_tree (expr_type
, wmax
);
3264 else if (code
== BIT_IOR_EXPR
)
3266 max
= wide_int_to_tree (expr_type
,
3267 may_be_nonzero0
| may_be_nonzero1
);
3268 wide_int wmin
= must_be_nonzero0
| must_be_nonzero1
;
3269 /* If the input ranges contain only positive values we can
3270 truncate the minimum of the result range to the maximum
3271 of the input range minima. */
3272 if (int_cst_range0
&& int_cst_range1
3273 && tree_int_cst_sgn (vr0
.min
) >= 0
3274 && tree_int_cst_sgn (vr1
.min
) >= 0)
3276 wmin
= wi::max (wmin
, vr0
.min
, TYPE_SIGN (expr_type
));
3277 wmin
= wi::max (wmin
, vr1
.min
, TYPE_SIGN (expr_type
));
3279 /* If either input range contains only negative values
3280 we can truncate the minimum of the result range to the
3281 respective minimum range. */
3282 if (int_cst_range0
&& tree_int_cst_sgn (vr0
.max
) < 0)
3283 wmin
= wi::max (wmin
, vr0
.min
, TYPE_SIGN (expr_type
));
3284 if (int_cst_range1
&& tree_int_cst_sgn (vr1
.max
) < 0)
3285 wmin
= wi::max (wmin
, vr1
.min
, TYPE_SIGN (expr_type
));
3286 min
= wide_int_to_tree (expr_type
, wmin
);
3288 else if (code
== BIT_XOR_EXPR
)
3290 wide_int result_zero_bits
= ((must_be_nonzero0
& must_be_nonzero1
)
3291 | ~(may_be_nonzero0
| may_be_nonzero1
));
3292 wide_int result_one_bits
3293 = (must_be_nonzero0
.and_not (may_be_nonzero1
)
3294 | must_be_nonzero1
.and_not (may_be_nonzero0
));
3295 max
= wide_int_to_tree (expr_type
, ~result_zero_bits
);
3296 min
= wide_int_to_tree (expr_type
, result_one_bits
);
3297 /* If the range has all positive or all negative values the
3298 result is better than VARYING. */
3299 if (tree_int_cst_sgn (min
) < 0
3300 || tree_int_cst_sgn (max
) >= 0)
3303 max
= min
= NULL_TREE
;
3309 /* If either MIN or MAX overflowed, then set the resulting range to
3310 VARYING. But we do accept an overflow infinity representation. */
3311 if (min
== NULL_TREE
3312 || (TREE_OVERFLOW_P (min
) && !is_overflow_infinity (min
))
3314 || (TREE_OVERFLOW_P (max
) && !is_overflow_infinity (max
)))
3316 set_value_range_to_varying (vr
);
3322 2) [-INF, +-INF(OVF)]
3323 3) [+-INF(OVF), +INF]
3324 4) [+-INF(OVF), +-INF(OVF)]
3325 We learn nothing when we have INF and INF(OVF) on both sides.
3326 Note that we do accept [-INF, -INF] and [+INF, +INF] without
3328 if ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
3329 && (vrp_val_is_max (max
) || is_overflow_infinity (max
)))
3331 set_value_range_to_varying (vr
);
3335 cmp
= compare_values (min
, max
);
3336 if (cmp
== -2 || cmp
== 1)
3338 /* If the new range has its limits swapped around (MIN > MAX),
3339 then the operation caused one of them to wrap around, mark
3340 the new range VARYING. */
3341 set_value_range_to_varying (vr
);
3344 set_value_range (vr
, type
, min
, max
, NULL
);
3347 /* Extract range information from a binary expression OP0 CODE OP1 based on
3348 the ranges of each of its operands with resulting type EXPR_TYPE.
3349 The resulting range is stored in *VR. */
3352 extract_range_from_binary_expr (value_range_t
*vr
,
3353 enum tree_code code
,
3354 tree expr_type
, tree op0
, tree op1
)
3356 value_range_t vr0
= VR_INITIALIZER
;
3357 value_range_t vr1
= VR_INITIALIZER
;
3359 /* Get value ranges for each operand. For constant operands, create
3360 a new value range with the operand to simplify processing. */
3361 if (TREE_CODE (op0
) == SSA_NAME
)
3362 vr0
= *(get_value_range (op0
));
3363 else if (is_gimple_min_invariant (op0
))
3364 set_value_range_to_value (&vr0
, op0
, NULL
);
3366 set_value_range_to_varying (&vr0
);
3368 if (TREE_CODE (op1
) == SSA_NAME
)
3369 vr1
= *(get_value_range (op1
));
3370 else if (is_gimple_min_invariant (op1
))
3371 set_value_range_to_value (&vr1
, op1
, NULL
);
3373 set_value_range_to_varying (&vr1
);
3375 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, &vr0
, &vr1
);
3377 /* Try harder for PLUS and MINUS if the range of one operand is symbolic
3378 and based on the other operand, for example if it was deduced from a
3379 symbolic comparison. When a bound of the range of the first operand
3380 is invariant, we set the corresponding bound of the new range to INF
3381 in order to avoid recursing on the range of the second operand. */
3382 if (vr
->type
== VR_VARYING
3383 && (code
== PLUS_EXPR
|| code
== MINUS_EXPR
)
3384 && TREE_CODE (op1
) == SSA_NAME
3385 && vr0
.type
== VR_RANGE
3386 && symbolic_range_based_on_p (&vr0
, op1
))
3388 const bool minus_p
= (code
== MINUS_EXPR
);
3389 value_range_t n_vr1
= VR_INITIALIZER
;
3391 /* Try with VR0 and [-INF, OP1]. */
3392 if (is_gimple_min_invariant (minus_p
? vr0
.max
: vr0
.min
))
3393 set_value_range (&n_vr1
, VR_RANGE
, vrp_val_min (expr_type
), op1
, NULL
);
3395 /* Try with VR0 and [OP1, +INF]. */
3396 else if (is_gimple_min_invariant (minus_p
? vr0
.min
: vr0
.max
))
3397 set_value_range (&n_vr1
, VR_RANGE
, op1
, vrp_val_max (expr_type
), NULL
);
3399 /* Try with VR0 and [OP1, OP1]. */
3401 set_value_range (&n_vr1
, VR_RANGE
, op1
, op1
, NULL
);
3403 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, &vr0
, &n_vr1
);
3406 if (vr
->type
== VR_VARYING
3407 && (code
== PLUS_EXPR
|| code
== MINUS_EXPR
)
3408 && TREE_CODE (op0
) == SSA_NAME
3409 && vr1
.type
== VR_RANGE
3410 && symbolic_range_based_on_p (&vr1
, op0
))
3412 const bool minus_p
= (code
== MINUS_EXPR
);
3413 value_range_t n_vr0
= VR_INITIALIZER
;
3415 /* Try with [-INF, OP0] and VR1. */
3416 if (is_gimple_min_invariant (minus_p
? vr1
.max
: vr1
.min
))
3417 set_value_range (&n_vr0
, VR_RANGE
, vrp_val_min (expr_type
), op0
, NULL
);
3419 /* Try with [OP0, +INF] and VR1. */
3420 else if (is_gimple_min_invariant (minus_p
? vr1
.min
: vr1
.max
))
3421 set_value_range (&n_vr0
, VR_RANGE
, op0
, vrp_val_max (expr_type
), NULL
);
3423 /* Try with [OP0, OP0] and VR1. */
3425 set_value_range (&n_vr0
, VR_RANGE
, op0
, op0
, NULL
);
3427 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, &n_vr0
, &vr1
);
3431 /* Extract range information from a unary operation CODE based on
3432 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3433 The The resulting range is stored in *VR. */
3436 extract_range_from_unary_expr_1 (value_range_t
*vr
,
3437 enum tree_code code
, tree type
,
3438 value_range_t
*vr0_
, tree op0_type
)
3440 value_range_t vr0
= *vr0_
, vrtem0
= VR_INITIALIZER
, vrtem1
= VR_INITIALIZER
;
3442 /* VRP only operates on integral and pointer types. */
3443 if (!(INTEGRAL_TYPE_P (op0_type
)
3444 || POINTER_TYPE_P (op0_type
))
3445 || !(INTEGRAL_TYPE_P (type
)
3446 || POINTER_TYPE_P (type
)))
3448 set_value_range_to_varying (vr
);
3452 /* If VR0 is UNDEFINED, so is the result. */
3453 if (vr0
.type
== VR_UNDEFINED
)
3455 set_value_range_to_undefined (vr
);
3459 /* Handle operations that we express in terms of others. */
3460 if (code
== PAREN_EXPR
|| code
== OBJ_TYPE_REF
)
3462 /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */
3463 copy_value_range (vr
, &vr0
);
3466 else if (code
== NEGATE_EXPR
)
3468 /* -X is simply 0 - X, so re-use existing code that also handles
3469 anti-ranges fine. */
3470 value_range_t zero
= VR_INITIALIZER
;
3471 set_value_range_to_value (&zero
, build_int_cst (type
, 0), NULL
);
3472 extract_range_from_binary_expr_1 (vr
, MINUS_EXPR
, type
, &zero
, &vr0
);
3475 else if (code
== BIT_NOT_EXPR
)
3477 /* ~X is simply -1 - X, so re-use existing code that also handles
3478 anti-ranges fine. */
3479 value_range_t minusone
= VR_INITIALIZER
;
3480 set_value_range_to_value (&minusone
, build_int_cst (type
, -1), NULL
);
3481 extract_range_from_binary_expr_1 (vr
, MINUS_EXPR
,
3482 type
, &minusone
, &vr0
);
3486 /* Now canonicalize anti-ranges to ranges when they are not symbolic
3487 and express op ~[] as (op []') U (op []''). */
3488 if (vr0
.type
== VR_ANTI_RANGE
3489 && ranges_from_anti_range (&vr0
, &vrtem0
, &vrtem1
))
3491 extract_range_from_unary_expr_1 (vr
, code
, type
, &vrtem0
, op0_type
);
3492 if (vrtem1
.type
!= VR_UNDEFINED
)
3494 value_range_t vrres
= VR_INITIALIZER
;
3495 extract_range_from_unary_expr_1 (&vrres
, code
, type
,
3497 vrp_meet (vr
, &vrres
);
3502 if (CONVERT_EXPR_CODE_P (code
))
3504 tree inner_type
= op0_type
;
3505 tree outer_type
= type
;
3507 /* If the expression evaluates to a pointer, we are only interested in
3508 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
3509 if (POINTER_TYPE_P (type
))
3511 if (range_is_nonnull (&vr0
))
3512 set_value_range_to_nonnull (vr
, type
);
3513 else if (range_is_null (&vr0
))
3514 set_value_range_to_null (vr
, type
);
3516 set_value_range_to_varying (vr
);
3520 /* If VR0 is varying and we increase the type precision, assume
3521 a full range for the following transformation. */
3522 if (vr0
.type
== VR_VARYING
3523 && INTEGRAL_TYPE_P (inner_type
)
3524 && TYPE_PRECISION (inner_type
) < TYPE_PRECISION (outer_type
))
3526 vr0
.type
= VR_RANGE
;
3527 vr0
.min
= TYPE_MIN_VALUE (inner_type
);
3528 vr0
.max
= TYPE_MAX_VALUE (inner_type
);
3531 /* If VR0 is a constant range or anti-range and the conversion is
3532 not truncating we can convert the min and max values and
3533 canonicalize the resulting range. Otherwise we can do the
3534 conversion if the size of the range is less than what the
3535 precision of the target type can represent and the range is
3536 not an anti-range. */
3537 if ((vr0
.type
== VR_RANGE
3538 || vr0
.type
== VR_ANTI_RANGE
)
3539 && TREE_CODE (vr0
.min
) == INTEGER_CST
3540 && TREE_CODE (vr0
.max
) == INTEGER_CST
3541 && (!is_overflow_infinity (vr0
.min
)
3542 || (vr0
.type
== VR_RANGE
3543 && TYPE_PRECISION (outer_type
) > TYPE_PRECISION (inner_type
)
3544 && needs_overflow_infinity (outer_type
)
3545 && supports_overflow_infinity (outer_type
)))
3546 && (!is_overflow_infinity (vr0
.max
)
3547 || (vr0
.type
== VR_RANGE
3548 && TYPE_PRECISION (outer_type
) > TYPE_PRECISION (inner_type
)
3549 && needs_overflow_infinity (outer_type
)
3550 && supports_overflow_infinity (outer_type
)))
3551 && (TYPE_PRECISION (outer_type
) >= TYPE_PRECISION (inner_type
)
3552 || (vr0
.type
== VR_RANGE
3553 && integer_zerop (int_const_binop (RSHIFT_EXPR
,
3554 int_const_binop (MINUS_EXPR
, vr0
.max
, vr0
.min
),
3555 size_int (TYPE_PRECISION (outer_type
)))))))
3557 tree new_min
, new_max
;
3558 if (is_overflow_infinity (vr0
.min
))
3559 new_min
= negative_overflow_infinity (outer_type
);
3561 new_min
= force_fit_type (outer_type
, wi::to_widest (vr0
.min
),
3563 if (is_overflow_infinity (vr0
.max
))
3564 new_max
= positive_overflow_infinity (outer_type
);
3566 new_max
= force_fit_type (outer_type
, wi::to_widest (vr0
.max
),
3568 set_and_canonicalize_value_range (vr
, vr0
.type
,
3569 new_min
, new_max
, NULL
);
3573 set_value_range_to_varying (vr
);
3576 else if (code
== ABS_EXPR
)
3581 /* Pass through vr0 in the easy cases. */
3582 if (TYPE_UNSIGNED (type
)
3583 || value_range_nonnegative_p (&vr0
))
3585 copy_value_range (vr
, &vr0
);
3589 /* For the remaining varying or symbolic ranges we can't do anything
3591 if (vr0
.type
== VR_VARYING
3592 || symbolic_range_p (&vr0
))
3594 set_value_range_to_varying (vr
);
3598 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3600 if (!TYPE_OVERFLOW_UNDEFINED (type
)
3601 && ((vr0
.type
== VR_RANGE
3602 && vrp_val_is_min (vr0
.min
))
3603 || (vr0
.type
== VR_ANTI_RANGE
3604 && !vrp_val_is_min (vr0
.min
))))
3606 set_value_range_to_varying (vr
);
3610 /* ABS_EXPR may flip the range around, if the original range
3611 included negative values. */
3612 if (is_overflow_infinity (vr0
.min
))
3613 min
= positive_overflow_infinity (type
);
3614 else if (!vrp_val_is_min (vr0
.min
))
3615 min
= fold_unary_to_constant (code
, type
, vr0
.min
);
3616 else if (!needs_overflow_infinity (type
))
3617 min
= TYPE_MAX_VALUE (type
);
3618 else if (supports_overflow_infinity (type
))
3619 min
= positive_overflow_infinity (type
);
3622 set_value_range_to_varying (vr
);
3626 if (is_overflow_infinity (vr0
.max
))
3627 max
= positive_overflow_infinity (type
);
3628 else if (!vrp_val_is_min (vr0
.max
))
3629 max
= fold_unary_to_constant (code
, type
, vr0
.max
);
3630 else if (!needs_overflow_infinity (type
))
3631 max
= TYPE_MAX_VALUE (type
);
3632 else if (supports_overflow_infinity (type
)
3633 /* We shouldn't generate [+INF, +INF] as set_value_range
3634 doesn't like this and ICEs. */
3635 && !is_positive_overflow_infinity (min
))
3636 max
= positive_overflow_infinity (type
);
3639 set_value_range_to_varying (vr
);
3643 cmp
= compare_values (min
, max
);
3645 /* If a VR_ANTI_RANGEs contains zero, then we have
3646 ~[-INF, min(MIN, MAX)]. */
3647 if (vr0
.type
== VR_ANTI_RANGE
)
3649 if (range_includes_zero_p (vr0
.min
, vr0
.max
) == 1)
3651 /* Take the lower of the two values. */
3655 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3656 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3657 flag_wrapv is set and the original anti-range doesn't include
3658 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3659 if (TYPE_OVERFLOW_WRAPS (type
))
3661 tree type_min_value
= TYPE_MIN_VALUE (type
);
3663 min
= (vr0
.min
!= type_min_value
3664 ? int_const_binop (PLUS_EXPR
, type_min_value
,
3665 build_int_cst (TREE_TYPE (type_min_value
), 1))
3670 if (overflow_infinity_range_p (&vr0
))
3671 min
= negative_overflow_infinity (type
);
3673 min
= TYPE_MIN_VALUE (type
);
3678 /* All else has failed, so create the range [0, INF], even for
3679 flag_wrapv since TYPE_MIN_VALUE is in the original
3681 vr0
.type
= VR_RANGE
;
3682 min
= build_int_cst (type
, 0);
3683 if (needs_overflow_infinity (type
))
3685 if (supports_overflow_infinity (type
))
3686 max
= positive_overflow_infinity (type
);
3689 set_value_range_to_varying (vr
);
3694 max
= TYPE_MAX_VALUE (type
);
3698 /* If the range contains zero then we know that the minimum value in the
3699 range will be zero. */
3700 else if (range_includes_zero_p (vr0
.min
, vr0
.max
) == 1)
3704 min
= build_int_cst (type
, 0);
3708 /* If the range was reversed, swap MIN and MAX. */
3710 std::swap (min
, max
);
3713 cmp
= compare_values (min
, max
);
3714 if (cmp
== -2 || cmp
== 1)
3716 /* If the new range has its limits swapped around (MIN > MAX),
3717 then the operation caused one of them to wrap around, mark
3718 the new range VARYING. */
3719 set_value_range_to_varying (vr
);
3722 set_value_range (vr
, vr0
.type
, min
, max
, NULL
);
3726 /* For unhandled operations fall back to varying. */
3727 set_value_range_to_varying (vr
);
3732 /* Extract range information from a unary expression CODE OP0 based on
3733 the range of its operand with resulting type TYPE.
3734 The resulting range is stored in *VR. */
3737 extract_range_from_unary_expr (value_range_t
*vr
, enum tree_code code
,
3738 tree type
, tree op0
)
3740 value_range_t vr0
= VR_INITIALIZER
;
3742 /* Get value ranges for the operand. For constant operands, create
3743 a new value range with the operand to simplify processing. */
3744 if (TREE_CODE (op0
) == SSA_NAME
)
3745 vr0
= *(get_value_range (op0
));
3746 else if (is_gimple_min_invariant (op0
))
3747 set_value_range_to_value (&vr0
, op0
, NULL
);
3749 set_value_range_to_varying (&vr0
);
3751 extract_range_from_unary_expr_1 (vr
, code
, type
, &vr0
, TREE_TYPE (op0
));
3755 /* Extract range information from a conditional expression STMT based on
3756 the ranges of each of its operands and the expression code. */
3759 extract_range_from_cond_expr (value_range_t
*vr
, gassign
*stmt
)
3762 value_range_t vr0
= VR_INITIALIZER
;
3763 value_range_t vr1
= VR_INITIALIZER
;
3765 /* Get value ranges for each operand. For constant operands, create
3766 a new value range with the operand to simplify processing. */
3767 op0
= gimple_assign_rhs2 (stmt
);
3768 if (TREE_CODE (op0
) == SSA_NAME
)
3769 vr0
= *(get_value_range (op0
));
3770 else if (is_gimple_min_invariant (op0
))
3771 set_value_range_to_value (&vr0
, op0
, NULL
);
3773 set_value_range_to_varying (&vr0
);
3775 op1
= gimple_assign_rhs3 (stmt
);
3776 if (TREE_CODE (op1
) == SSA_NAME
)
3777 vr1
= *(get_value_range (op1
));
3778 else if (is_gimple_min_invariant (op1
))
3779 set_value_range_to_value (&vr1
, op1
, NULL
);
3781 set_value_range_to_varying (&vr1
);
3783 /* The resulting value range is the union of the operand ranges */
3784 copy_value_range (vr
, &vr0
);
3785 vrp_meet (vr
, &vr1
);
3789 /* Extract range information from a comparison expression EXPR based
3790 on the range of its operand and the expression code. */
3793 extract_range_from_comparison (value_range_t
*vr
, enum tree_code code
,
3794 tree type
, tree op0
, tree op1
)
3799 val
= vrp_evaluate_conditional_warnv_with_ops (code
, op0
, op1
, false, &sop
,
3802 /* A disadvantage of using a special infinity as an overflow
3803 representation is that we lose the ability to record overflow
3804 when we don't have an infinity. So we have to ignore a result
3805 which relies on overflow. */
3807 if (val
&& !is_overflow_infinity (val
) && !sop
)
3809 /* Since this expression was found on the RHS of an assignment,
3810 its type may be different from _Bool. Convert VAL to EXPR's
3812 val
= fold_convert (type
, val
);
3813 if (is_gimple_min_invariant (val
))
3814 set_value_range_to_value (vr
, val
, vr
->equiv
);
3816 set_value_range (vr
, VR_RANGE
, val
, val
, vr
->equiv
);
3819 /* The result of a comparison is always true or false. */
3820 set_value_range_to_truthvalue (vr
, type
);
3823 /* Helper function for simplify_internal_call_using_ranges and
3824 extract_range_basic. Return true if OP0 SUBCODE OP1 for
3825 SUBCODE {PLUS,MINUS,MULT}_EXPR is known to never overflow or
3826 always overflow. Set *OVF to true if it is known to always
3830 check_for_binary_op_overflow (enum tree_code subcode
, tree type
,
3831 tree op0
, tree op1
, bool *ovf
)
3833 value_range_t vr0
= VR_INITIALIZER
;
3834 value_range_t vr1
= VR_INITIALIZER
;
3835 if (TREE_CODE (op0
) == SSA_NAME
)
3836 vr0
= *get_value_range (op0
);
3837 else if (TREE_CODE (op0
) == INTEGER_CST
)
3838 set_value_range_to_value (&vr0
, op0
, NULL
);
3840 set_value_range_to_varying (&vr0
);
3842 if (TREE_CODE (op1
) == SSA_NAME
)
3843 vr1
= *get_value_range (op1
);
3844 else if (TREE_CODE (op1
) == INTEGER_CST
)
3845 set_value_range_to_value (&vr1
, op1
, NULL
);
3847 set_value_range_to_varying (&vr1
);
3849 if (!range_int_cst_p (&vr0
)
3850 || TREE_OVERFLOW (vr0
.min
)
3851 || TREE_OVERFLOW (vr0
.max
))
3853 vr0
.min
= vrp_val_min (TREE_TYPE (op0
));
3854 vr0
.max
= vrp_val_max (TREE_TYPE (op0
));
3856 if (!range_int_cst_p (&vr1
)
3857 || TREE_OVERFLOW (vr1
.min
)
3858 || TREE_OVERFLOW (vr1
.max
))
3860 vr1
.min
= vrp_val_min (TREE_TYPE (op1
));
3861 vr1
.max
= vrp_val_max (TREE_TYPE (op1
));
3863 *ovf
= arith_overflowed_p (subcode
, type
, vr0
.min
,
3864 subcode
== MINUS_EXPR
? vr1
.max
: vr1
.min
);
3865 if (arith_overflowed_p (subcode
, type
, vr0
.max
,
3866 subcode
== MINUS_EXPR
? vr1
.min
: vr1
.max
) != *ovf
)
3868 if (subcode
== MULT_EXPR
)
3870 if (arith_overflowed_p (subcode
, type
, vr0
.min
, vr1
.max
) != *ovf
3871 || arith_overflowed_p (subcode
, type
, vr0
.max
, vr1
.min
) != *ovf
)
3876 /* So far we found that there is an overflow on the boundaries.
3877 That doesn't prove that there is an overflow even for all values
3878 in between the boundaries. For that compute widest_int range
3879 of the result and see if it doesn't overlap the range of
3881 widest_int wmin
, wmax
;
3884 w
[0] = wi::to_widest (vr0
.min
);
3885 w
[1] = wi::to_widest (vr0
.max
);
3886 w
[2] = wi::to_widest (vr1
.min
);
3887 w
[3] = wi::to_widest (vr1
.max
);
3888 for (i
= 0; i
< 4; i
++)
3894 wt
= wi::add (w
[i
& 1], w
[2 + (i
& 2) / 2]);
3897 wt
= wi::sub (w
[i
& 1], w
[2 + (i
& 2) / 2]);
3900 wt
= wi::mul (w
[i
& 1], w
[2 + (i
& 2) / 2]);
3912 wmin
= wi::smin (wmin
, wt
);
3913 wmax
= wi::smax (wmax
, wt
);
3916 /* The result of op0 CODE op1 is known to be in range
3918 widest_int wtmin
= wi::to_widest (vrp_val_min (type
));
3919 widest_int wtmax
= wi::to_widest (vrp_val_max (type
));
3920 /* If all values in [wmin, wmax] are smaller than
3921 [wtmin, wtmax] or all are larger than [wtmin, wtmax],
3922 the arithmetic operation will always overflow. */
3923 if (wi::lts_p (wmax
, wtmin
) || wi::gts_p (wmin
, wtmax
))
3930 /* Try to derive a nonnegative or nonzero range out of STMT relying
3931 primarily on generic routines in fold in conjunction with range data.
3932 Store the result in *VR */
3935 extract_range_basic (value_range_t
*vr
, gimple stmt
)
3938 tree type
= gimple_expr_type (stmt
);
3940 if (gimple_call_builtin_p (stmt
, BUILT_IN_NORMAL
))
3942 tree fndecl
= gimple_call_fndecl (stmt
), arg
;
3943 int mini
, maxi
, zerov
= 0, prec
;
3945 switch (DECL_FUNCTION_CODE (fndecl
))
3947 case BUILT_IN_CONSTANT_P
:
3948 /* If the call is __builtin_constant_p and the argument is a
3949 function parameter resolve it to false. This avoids bogus
3950 array bound warnings.
3951 ??? We could do this as early as inlining is finished. */
3952 arg
= gimple_call_arg (stmt
, 0);
3953 if (TREE_CODE (arg
) == SSA_NAME
3954 && SSA_NAME_IS_DEFAULT_DEF (arg
)
3955 && TREE_CODE (SSA_NAME_VAR (arg
)) == PARM_DECL
)
3957 set_value_range_to_null (vr
, type
);
3961 /* Both __builtin_ffs* and __builtin_popcount return
3963 CASE_INT_FN (BUILT_IN_FFS
):
3964 CASE_INT_FN (BUILT_IN_POPCOUNT
):
3965 arg
= gimple_call_arg (stmt
, 0);
3966 prec
= TYPE_PRECISION (TREE_TYPE (arg
));
3969 if (TREE_CODE (arg
) == SSA_NAME
)
3971 value_range_t
*vr0
= get_value_range (arg
);
3972 /* If arg is non-zero, then ffs or popcount
3974 if (((vr0
->type
== VR_RANGE
3975 && range_includes_zero_p (vr0
->min
, vr0
->max
) == 0)
3976 || (vr0
->type
== VR_ANTI_RANGE
3977 && range_includes_zero_p (vr0
->min
, vr0
->max
) == 1))
3978 && !is_overflow_infinity (vr0
->min
)
3979 && !is_overflow_infinity (vr0
->max
))
3981 /* If some high bits are known to be zero,
3982 we can decrease the maximum. */
3983 if (vr0
->type
== VR_RANGE
3984 && TREE_CODE (vr0
->max
) == INTEGER_CST
3985 && !operand_less_p (vr0
->min
,
3986 build_zero_cst (TREE_TYPE (vr0
->min
)))
3987 && !is_overflow_infinity (vr0
->max
))
3988 maxi
= tree_floor_log2 (vr0
->max
) + 1;
3991 /* __builtin_parity* returns [0, 1]. */
3992 CASE_INT_FN (BUILT_IN_PARITY
):
3996 /* __builtin_c[lt]z* return [0, prec-1], except for
3997 when the argument is 0, but that is undefined behavior.
3998 On many targets where the CLZ RTL or optab value is defined
3999 for 0 the value is prec, so include that in the range
4001 CASE_INT_FN (BUILT_IN_CLZ
):
4002 arg
= gimple_call_arg (stmt
, 0);
4003 prec
= TYPE_PRECISION (TREE_TYPE (arg
));
4006 if (optab_handler (clz_optab
, TYPE_MODE (TREE_TYPE (arg
)))
4008 && CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg
)),
4010 /* Handle only the single common value. */
4012 /* Magic value to give up, unless vr0 proves
4015 if (TREE_CODE (arg
) == SSA_NAME
)
4017 value_range_t
*vr0
= get_value_range (arg
);
4018 /* From clz of VR_RANGE minimum we can compute
4020 if (vr0
->type
== VR_RANGE
4021 && TREE_CODE (vr0
->min
) == INTEGER_CST
4022 && !is_overflow_infinity (vr0
->min
))
4024 maxi
= prec
- 1 - tree_floor_log2 (vr0
->min
);
4028 else if (vr0
->type
== VR_ANTI_RANGE
4029 && integer_zerop (vr0
->min
)
4030 && !is_overflow_infinity (vr0
->min
))
4037 /* From clz of VR_RANGE maximum we can compute
4039 if (vr0
->type
== VR_RANGE
4040 && TREE_CODE (vr0
->max
) == INTEGER_CST
4041 && !is_overflow_infinity (vr0
->max
))
4043 mini
= prec
- 1 - tree_floor_log2 (vr0
->max
);
4051 /* __builtin_ctz* return [0, prec-1], except for
4052 when the argument is 0, but that is undefined behavior.
4053 If there is a ctz optab for this mode and
4054 CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
4055 otherwise just assume 0 won't be seen. */
4056 CASE_INT_FN (BUILT_IN_CTZ
):
4057 arg
= gimple_call_arg (stmt
, 0);
4058 prec
= TYPE_PRECISION (TREE_TYPE (arg
));
4061 if (optab_handler (ctz_optab
, TYPE_MODE (TREE_TYPE (arg
)))
4063 && CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg
)),
4066 /* Handle only the two common values. */
4069 else if (zerov
== prec
)
4072 /* Magic value to give up, unless vr0 proves
4076 if (TREE_CODE (arg
) == SSA_NAME
)
4078 value_range_t
*vr0
= get_value_range (arg
);
4079 /* If arg is non-zero, then use [0, prec - 1]. */
4080 if (((vr0
->type
== VR_RANGE
4081 && integer_nonzerop (vr0
->min
))
4082 || (vr0
->type
== VR_ANTI_RANGE
4083 && integer_zerop (vr0
->min
)))
4084 && !is_overflow_infinity (vr0
->min
))
4089 /* If some high bits are known to be zero,
4090 we can decrease the result maximum. */
4091 if (vr0
->type
== VR_RANGE
4092 && TREE_CODE (vr0
->max
) == INTEGER_CST
4093 && !is_overflow_infinity (vr0
->max
))
4095 maxi
= tree_floor_log2 (vr0
->max
);
4096 /* For vr0 [0, 0] give up. */
4104 /* __builtin_clrsb* returns [0, prec-1]. */
4105 CASE_INT_FN (BUILT_IN_CLRSB
):
4106 arg
= gimple_call_arg (stmt
, 0);
4107 prec
= TYPE_PRECISION (TREE_TYPE (arg
));
4112 set_value_range (vr
, VR_RANGE
, build_int_cst (type
, mini
),
4113 build_int_cst (type
, maxi
), NULL
);
4119 else if (is_gimple_call (stmt
) && gimple_call_internal_p (stmt
))
4121 enum tree_code subcode
= ERROR_MARK
;
4122 switch (gimple_call_internal_fn (stmt
))
4124 case IFN_UBSAN_CHECK_ADD
:
4125 subcode
= PLUS_EXPR
;
4127 case IFN_UBSAN_CHECK_SUB
:
4128 subcode
= MINUS_EXPR
;
4130 case IFN_UBSAN_CHECK_MUL
:
4131 subcode
= MULT_EXPR
;
4136 if (subcode
!= ERROR_MARK
)
4138 bool saved_flag_wrapv
= flag_wrapv
;
4139 /* Pretend the arithmetics is wrapping. If there is
4140 any overflow, we'll complain, but will actually do
4141 wrapping operation. */
4143 extract_range_from_binary_expr (vr
, subcode
, type
,
4144 gimple_call_arg (stmt
, 0),
4145 gimple_call_arg (stmt
, 1));
4146 flag_wrapv
= saved_flag_wrapv
;
4148 /* If for both arguments vrp_valueize returned non-NULL,
4149 this should have been already folded and if not, it
4150 wasn't folded because of overflow. Avoid removing the
4151 UBSAN_CHECK_* calls in that case. */
4152 if (vr
->type
== VR_RANGE
4153 && (vr
->min
== vr
->max
4154 || operand_equal_p (vr
->min
, vr
->max
, 0)))
4155 set_value_range_to_varying (vr
);
4159 /* Handle extraction of the two results (result of arithmetics and
4160 a flag whether arithmetics overflowed) from {ADD,SUB,MUL}_OVERFLOW
4161 internal function. */
4162 else if (is_gimple_assign (stmt
)
4163 && (gimple_assign_rhs_code (stmt
) == REALPART_EXPR
4164 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
)
4165 && INTEGRAL_TYPE_P (type
))
4167 enum tree_code code
= gimple_assign_rhs_code (stmt
);
4168 tree op
= gimple_assign_rhs1 (stmt
);
4169 if (TREE_CODE (op
) == code
&& TREE_CODE (TREE_OPERAND (op
, 0)) == SSA_NAME
)
4171 gimple g
= SSA_NAME_DEF_STMT (TREE_OPERAND (op
, 0));
4172 if (is_gimple_call (g
) && gimple_call_internal_p (g
))
4174 enum tree_code subcode
= ERROR_MARK
;
4175 switch (gimple_call_internal_fn (g
))
4177 case IFN_ADD_OVERFLOW
:
4178 subcode
= PLUS_EXPR
;
4180 case IFN_SUB_OVERFLOW
:
4181 subcode
= MINUS_EXPR
;
4183 case IFN_MUL_OVERFLOW
:
4184 subcode
= MULT_EXPR
;
4189 if (subcode
!= ERROR_MARK
)
4191 tree op0
= gimple_call_arg (g
, 0);
4192 tree op1
= gimple_call_arg (g
, 1);
4193 if (code
== IMAGPART_EXPR
)
4196 if (check_for_binary_op_overflow (subcode
, type
,
4198 set_value_range_to_value (vr
,
4199 build_int_cst (type
, ovf
),
4202 set_value_range (vr
, VR_RANGE
, build_int_cst (type
, 0),
4203 build_int_cst (type
, 1), NULL
);
4205 else if (types_compatible_p (type
, TREE_TYPE (op0
))
4206 && types_compatible_p (type
, TREE_TYPE (op1
)))
4208 bool saved_flag_wrapv
= flag_wrapv
;
4209 /* Pretend the arithmetics is wrapping. If there is
4210 any overflow, IMAGPART_EXPR will be set. */
4212 extract_range_from_binary_expr (vr
, subcode
, type
,
4214 flag_wrapv
= saved_flag_wrapv
;
4218 value_range_t vr0
= VR_INITIALIZER
;
4219 value_range_t vr1
= VR_INITIALIZER
;
4220 bool saved_flag_wrapv
= flag_wrapv
;
4221 /* Pretend the arithmetics is wrapping. If there is
4222 any overflow, IMAGPART_EXPR will be set. */
4224 extract_range_from_unary_expr (&vr0
, NOP_EXPR
,
4226 extract_range_from_unary_expr (&vr1
, NOP_EXPR
,
4228 extract_range_from_binary_expr_1 (vr
, subcode
, type
,
4230 flag_wrapv
= saved_flag_wrapv
;
4237 if (INTEGRAL_TYPE_P (type
)
4238 && gimple_stmt_nonnegative_warnv_p (stmt
, &sop
))
4239 set_value_range_to_nonnegative (vr
, type
,
4240 sop
|| stmt_overflow_infinity (stmt
));
4241 else if (vrp_stmt_computes_nonzero (stmt
, &sop
)
4243 set_value_range_to_nonnull (vr
, type
);
4245 set_value_range_to_varying (vr
);
4249 /* Try to compute a useful range out of assignment STMT and store it
4253 extract_range_from_assignment (value_range_t
*vr
, gassign
*stmt
)
4255 enum tree_code code
= gimple_assign_rhs_code (stmt
);
4257 if (code
== ASSERT_EXPR
)
4258 extract_range_from_assert (vr
, gimple_assign_rhs1 (stmt
));
4259 else if (code
== SSA_NAME
)
4260 extract_range_from_ssa_name (vr
, gimple_assign_rhs1 (stmt
));
4261 else if (TREE_CODE_CLASS (code
) == tcc_binary
)
4262 extract_range_from_binary_expr (vr
, gimple_assign_rhs_code (stmt
),
4263 gimple_expr_type (stmt
),
4264 gimple_assign_rhs1 (stmt
),
4265 gimple_assign_rhs2 (stmt
));
4266 else if (TREE_CODE_CLASS (code
) == tcc_unary
)
4267 extract_range_from_unary_expr (vr
, gimple_assign_rhs_code (stmt
),
4268 gimple_expr_type (stmt
),
4269 gimple_assign_rhs1 (stmt
));
4270 else if (code
== COND_EXPR
)
4271 extract_range_from_cond_expr (vr
, stmt
);
4272 else if (TREE_CODE_CLASS (code
) == tcc_comparison
)
4273 extract_range_from_comparison (vr
, gimple_assign_rhs_code (stmt
),
4274 gimple_expr_type (stmt
),
4275 gimple_assign_rhs1 (stmt
),
4276 gimple_assign_rhs2 (stmt
));
4277 else if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
4278 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt
)))
4279 set_value_range_to_value (vr
, gimple_assign_rhs1 (stmt
), NULL
);
4281 set_value_range_to_varying (vr
);
4283 if (vr
->type
== VR_VARYING
)
4284 extract_range_basic (vr
, stmt
);
4287 /* Given a range VR, a LOOP and a variable VAR, determine whether it
4288 would be profitable to adjust VR using scalar evolution information
4289 for VAR. If so, update VR with the new limits. */
4292 adjust_range_with_scev (value_range_t
*vr
, struct loop
*loop
,
4293 gimple stmt
, tree var
)
4295 tree init
, step
, chrec
, tmin
, tmax
, min
, max
, type
, tem
;
4296 enum ev_direction dir
;
4298 /* TODO. Don't adjust anti-ranges. An anti-range may provide
4299 better opportunities than a regular range, but I'm not sure. */
4300 if (vr
->type
== VR_ANTI_RANGE
)
4303 chrec
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, var
));
4305 /* Like in PR19590, scev can return a constant function. */
4306 if (is_gimple_min_invariant (chrec
))
4308 set_value_range_to_value (vr
, chrec
, vr
->equiv
);
4312 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
4315 init
= initial_condition_in_loop_num (chrec
, loop
->num
);
4316 tem
= op_with_constant_singleton_value_range (init
);
4319 step
= evolution_part_in_loop_num (chrec
, loop
->num
);
4320 tem
= op_with_constant_singleton_value_range (step
);
4324 /* If STEP is symbolic, we can't know whether INIT will be the
4325 minimum or maximum value in the range. Also, unless INIT is
4326 a simple expression, compare_values and possibly other functions
4327 in tree-vrp won't be able to handle it. */
4328 if (step
== NULL_TREE
4329 || !is_gimple_min_invariant (step
)
4330 || !valid_value_p (init
))
4333 dir
= scev_direction (chrec
);
4334 if (/* Do not adjust ranges if we do not know whether the iv increases
4335 or decreases, ... */
4336 dir
== EV_DIR_UNKNOWN
4337 /* ... or if it may wrap. */
4338 || scev_probably_wraps_p (init
, step
, stmt
, get_chrec_loop (chrec
),
4342 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
4343 negative_overflow_infinity and positive_overflow_infinity,
4344 because we have concluded that the loop probably does not
4347 type
= TREE_TYPE (var
);
4348 if (POINTER_TYPE_P (type
) || !TYPE_MIN_VALUE (type
))
4349 tmin
= lower_bound_in_type (type
, type
);
4351 tmin
= TYPE_MIN_VALUE (type
);
4352 if (POINTER_TYPE_P (type
) || !TYPE_MAX_VALUE (type
))
4353 tmax
= upper_bound_in_type (type
, type
);
4355 tmax
= TYPE_MAX_VALUE (type
);
4357 /* Try to use estimated number of iterations for the loop to constrain the
4358 final value in the evolution. */
4359 if (TREE_CODE (step
) == INTEGER_CST
4360 && is_gimple_val (init
)
4361 && (TREE_CODE (init
) != SSA_NAME
4362 || get_value_range (init
)->type
== VR_RANGE
))
4366 /* We are only entering here for loop header PHI nodes, so using
4367 the number of latch executions is the correct thing to use. */
4368 if (max_loop_iterations (loop
, &nit
))
4370 value_range_t maxvr
= VR_INITIALIZER
;
4371 signop sgn
= TYPE_SIGN (TREE_TYPE (step
));
4374 widest_int wtmp
= wi::mul (wi::to_widest (step
), nit
, sgn
,
4376 /* If the multiplication overflowed we can't do a meaningful
4377 adjustment. Likewise if the result doesn't fit in the type
4378 of the induction variable. For a signed type we have to
4379 check whether the result has the expected signedness which
4380 is that of the step as number of iterations is unsigned. */
4382 && wi::fits_to_tree_p (wtmp
, TREE_TYPE (init
))
4384 || wi::gts_p (wtmp
, 0) == wi::gts_p (step
, 0)))
4386 tem
= wide_int_to_tree (TREE_TYPE (init
), wtmp
);
4387 extract_range_from_binary_expr (&maxvr
, PLUS_EXPR
,
4388 TREE_TYPE (init
), init
, tem
);
4389 /* Likewise if the addition did. */
4390 if (maxvr
.type
== VR_RANGE
)
4399 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
4404 /* For VARYING or UNDEFINED ranges, just about anything we get
4405 from scalar evolutions should be better. */
4407 if (dir
== EV_DIR_DECREASES
)
4412 else if (vr
->type
== VR_RANGE
)
4417 if (dir
== EV_DIR_DECREASES
)
4419 /* INIT is the maximum value. If INIT is lower than VR->MAX
4420 but no smaller than VR->MIN, set VR->MAX to INIT. */
4421 if (compare_values (init
, max
) == -1)
4424 /* According to the loop information, the variable does not
4425 overflow. If we think it does, probably because of an
4426 overflow due to arithmetic on a different INF value,
4428 if (is_negative_overflow_infinity (min
)
4429 || compare_values (min
, tmin
) == -1)
4435 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
4436 if (compare_values (init
, min
) == 1)
4439 if (is_positive_overflow_infinity (max
)
4440 || compare_values (tmax
, max
) == -1)
4447 /* If we just created an invalid range with the minimum
4448 greater than the maximum, we fail conservatively.
4449 This should happen only in unreachable
4450 parts of code, or for invalid programs. */
4451 if (compare_values (min
, max
) == 1
4452 || (is_negative_overflow_infinity (min
)
4453 && is_positive_overflow_infinity (max
)))
4456 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
4460 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
4462 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
4463 all the values in the ranges.
4465 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
4467 - Return NULL_TREE if it is not always possible to determine the
4468 value of the comparison.
4470 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
4471 overflow infinity was used in the test. */
4475 compare_ranges (enum tree_code comp
, value_range_t
*vr0
, value_range_t
*vr1
,
4476 bool *strict_overflow_p
)
4478 /* VARYING or UNDEFINED ranges cannot be compared. */
4479 if (vr0
->type
== VR_VARYING
4480 || vr0
->type
== VR_UNDEFINED
4481 || vr1
->type
== VR_VARYING
4482 || vr1
->type
== VR_UNDEFINED
)
4485 /* Anti-ranges need to be handled separately. */
4486 if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
4488 /* If both are anti-ranges, then we cannot compute any
4490 if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
4493 /* These comparisons are never statically computable. */
4500 /* Equality can be computed only between a range and an
4501 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
4502 if (vr0
->type
== VR_RANGE
)
4504 /* To simplify processing, make VR0 the anti-range. */
4505 value_range_t
*tmp
= vr0
;
4510 gcc_assert (comp
== NE_EXPR
|| comp
== EQ_EXPR
);
4512 if (compare_values_warnv (vr0
->min
, vr1
->min
, strict_overflow_p
) == 0
4513 && compare_values_warnv (vr0
->max
, vr1
->max
, strict_overflow_p
) == 0)
4514 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
4519 if (!usable_range_p (vr0
, strict_overflow_p
)
4520 || !usable_range_p (vr1
, strict_overflow_p
))
4523 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
4524 operands around and change the comparison code. */
4525 if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
4527 comp
= (comp
== GT_EXPR
) ? LT_EXPR
: LE_EXPR
;
4528 std::swap (vr0
, vr1
);
4531 if (comp
== EQ_EXPR
)
4533 /* Equality may only be computed if both ranges represent
4534 exactly one value. */
4535 if (compare_values_warnv (vr0
->min
, vr0
->max
, strict_overflow_p
) == 0
4536 && compare_values_warnv (vr1
->min
, vr1
->max
, strict_overflow_p
) == 0)
4538 int cmp_min
= compare_values_warnv (vr0
->min
, vr1
->min
,
4540 int cmp_max
= compare_values_warnv (vr0
->max
, vr1
->max
,
4542 if (cmp_min
== 0 && cmp_max
== 0)
4543 return boolean_true_node
;
4544 else if (cmp_min
!= -2 && cmp_max
!= -2)
4545 return boolean_false_node
;
4547 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
4548 else if (compare_values_warnv (vr0
->min
, vr1
->max
,
4549 strict_overflow_p
) == 1
4550 || compare_values_warnv (vr1
->min
, vr0
->max
,
4551 strict_overflow_p
) == 1)
4552 return boolean_false_node
;
4556 else if (comp
== NE_EXPR
)
4560 /* If VR0 is completely to the left or completely to the right
4561 of VR1, they are always different. Notice that we need to
4562 make sure that both comparisons yield similar results to
4563 avoid comparing values that cannot be compared at
4565 cmp1
= compare_values_warnv (vr0
->max
, vr1
->min
, strict_overflow_p
);
4566 cmp2
= compare_values_warnv (vr0
->min
, vr1
->max
, strict_overflow_p
);
4567 if ((cmp1
== -1 && cmp2
== -1) || (cmp1
== 1 && cmp2
== 1))
4568 return boolean_true_node
;
4570 /* If VR0 and VR1 represent a single value and are identical,
4572 else if (compare_values_warnv (vr0
->min
, vr0
->max
,
4573 strict_overflow_p
) == 0
4574 && compare_values_warnv (vr1
->min
, vr1
->max
,
4575 strict_overflow_p
) == 0
4576 && compare_values_warnv (vr0
->min
, vr1
->min
,
4577 strict_overflow_p
) == 0
4578 && compare_values_warnv (vr0
->max
, vr1
->max
,
4579 strict_overflow_p
) == 0)
4580 return boolean_false_node
;
4582 /* Otherwise, they may or may not be different. */
4586 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
4590 /* If VR0 is to the left of VR1, return true. */
4591 tst
= compare_values_warnv (vr0
->max
, vr1
->min
, strict_overflow_p
);
4592 if ((comp
== LT_EXPR
&& tst
== -1)
4593 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
4595 if (overflow_infinity_range_p (vr0
)
4596 || overflow_infinity_range_p (vr1
))
4597 *strict_overflow_p
= true;
4598 return boolean_true_node
;
4601 /* If VR0 is to the right of VR1, return false. */
4602 tst
= compare_values_warnv (vr0
->min
, vr1
->max
, strict_overflow_p
);
4603 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
4604 || (comp
== LE_EXPR
&& tst
== 1))
4606 if (overflow_infinity_range_p (vr0
)
4607 || overflow_infinity_range_p (vr1
))
4608 *strict_overflow_p
= true;
4609 return boolean_false_node
;
4612 /* Otherwise, we don't know. */
4620 /* Given a value range VR, a value VAL and a comparison code COMP, return
4621 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
4622 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
4623 always returns false. Return NULL_TREE if it is not always
4624 possible to determine the value of the comparison. Also set
4625 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
4626 infinity was used in the test. */
4629 compare_range_with_value (enum tree_code comp
, value_range_t
*vr
, tree val
,
4630 bool *strict_overflow_p
)
4632 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
4635 /* Anti-ranges need to be handled separately. */
4636 if (vr
->type
== VR_ANTI_RANGE
)
4638 /* For anti-ranges, the only predicates that we can compute at
4639 compile time are equality and inequality. */
4646 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
4647 if (value_inside_range (val
, vr
->min
, vr
->max
) == 1)
4648 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
4653 if (!usable_range_p (vr
, strict_overflow_p
))
4656 if (comp
== EQ_EXPR
)
4658 /* EQ_EXPR may only be computed if VR represents exactly
4660 if (compare_values_warnv (vr
->min
, vr
->max
, strict_overflow_p
) == 0)
4662 int cmp
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
4664 return boolean_true_node
;
4665 else if (cmp
== -1 || cmp
== 1 || cmp
== 2)
4666 return boolean_false_node
;
4668 else if (compare_values_warnv (val
, vr
->min
, strict_overflow_p
) == -1
4669 || compare_values_warnv (vr
->max
, val
, strict_overflow_p
) == -1)
4670 return boolean_false_node
;
4674 else if (comp
== NE_EXPR
)
4676 /* If VAL is not inside VR, then they are always different. */
4677 if (compare_values_warnv (vr
->max
, val
, strict_overflow_p
) == -1
4678 || compare_values_warnv (vr
->min
, val
, strict_overflow_p
) == 1)
4679 return boolean_true_node
;
4681 /* If VR represents exactly one value equal to VAL, then return
4683 if (compare_values_warnv (vr
->min
, vr
->max
, strict_overflow_p
) == 0
4684 && compare_values_warnv (vr
->min
, val
, strict_overflow_p
) == 0)
4685 return boolean_false_node
;
4687 /* Otherwise, they may or may not be different. */
4690 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
4694 /* If VR is to the left of VAL, return true. */
4695 tst
= compare_values_warnv (vr
->max
, val
, strict_overflow_p
);
4696 if ((comp
== LT_EXPR
&& tst
== -1)
4697 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
4699 if (overflow_infinity_range_p (vr
))
4700 *strict_overflow_p
= true;
4701 return boolean_true_node
;
4704 /* If VR is to the right of VAL, return false. */
4705 tst
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
4706 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
4707 || (comp
== LE_EXPR
&& tst
== 1))
4709 if (overflow_infinity_range_p (vr
))
4710 *strict_overflow_p
= true;
4711 return boolean_false_node
;
4714 /* Otherwise, we don't know. */
4717 else if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
4721 /* If VR is to the right of VAL, return true. */
4722 tst
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
4723 if ((comp
== GT_EXPR
&& tst
== 1)
4724 || (comp
== GE_EXPR
&& (tst
== 0 || tst
== 1)))
4726 if (overflow_infinity_range_p (vr
))
4727 *strict_overflow_p
= true;
4728 return boolean_true_node
;
4731 /* If VR is to the left of VAL, return false. */
4732 tst
= compare_values_warnv (vr
->max
, val
, strict_overflow_p
);
4733 if ((comp
== GT_EXPR
&& (tst
== -1 || tst
== 0))
4734 || (comp
== GE_EXPR
&& tst
== -1))
4736 if (overflow_infinity_range_p (vr
))
4737 *strict_overflow_p
= true;
4738 return boolean_false_node
;
4741 /* Otherwise, we don't know. */
4749 /* Debugging dumps. */
4751 void dump_value_range (FILE *, value_range_t
*);
4752 void debug_value_range (value_range_t
*);
4753 void dump_all_value_ranges (FILE *);
4754 void debug_all_value_ranges (void);
4755 void dump_vr_equiv (FILE *, bitmap
);
4756 void debug_vr_equiv (bitmap
);
4759 /* Dump value range VR to FILE. */
4762 dump_value_range (FILE *file
, value_range_t
*vr
)
4765 fprintf (file
, "[]");
4766 else if (vr
->type
== VR_UNDEFINED
)
4767 fprintf (file
, "UNDEFINED");
4768 else if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
4770 tree type
= TREE_TYPE (vr
->min
);
4772 fprintf (file
, "%s[", (vr
->type
== VR_ANTI_RANGE
) ? "~" : "");
4774 if (is_negative_overflow_infinity (vr
->min
))
4775 fprintf (file
, "-INF(OVF)");
4776 else if (INTEGRAL_TYPE_P (type
)
4777 && !TYPE_UNSIGNED (type
)
4778 && vrp_val_is_min (vr
->min
))
4779 fprintf (file
, "-INF");
4781 print_generic_expr (file
, vr
->min
, 0);
4783 fprintf (file
, ", ");
4785 if (is_positive_overflow_infinity (vr
->max
))
4786 fprintf (file
, "+INF(OVF)");
4787 else if (INTEGRAL_TYPE_P (type
)
4788 && vrp_val_is_max (vr
->max
))
4789 fprintf (file
, "+INF");
4791 print_generic_expr (file
, vr
->max
, 0);
4793 fprintf (file
, "]");
4800 fprintf (file
, " EQUIVALENCES: { ");
4802 EXECUTE_IF_SET_IN_BITMAP (vr
->equiv
, 0, i
, bi
)
4804 print_generic_expr (file
, ssa_name (i
), 0);
4805 fprintf (file
, " ");
4809 fprintf (file
, "} (%u elements)", c
);
4812 else if (vr
->type
== VR_VARYING
)
4813 fprintf (file
, "VARYING");
4815 fprintf (file
, "INVALID RANGE");
4819 /* Dump value range VR to stderr. */
4822 debug_value_range (value_range_t
*vr
)
4824 dump_value_range (stderr
, vr
);
4825 fprintf (stderr
, "\n");
4829 /* Dump value ranges of all SSA_NAMEs to FILE. */
4832 dump_all_value_ranges (FILE *file
)
4836 for (i
= 0; i
< num_vr_values
; i
++)
4840 print_generic_expr (file
, ssa_name (i
), 0);
4841 fprintf (file
, ": ");
4842 dump_value_range (file
, vr_value
[i
]);
4843 fprintf (file
, "\n");
4847 fprintf (file
, "\n");
4851 /* Dump all value ranges to stderr. */
4854 debug_all_value_ranges (void)
4856 dump_all_value_ranges (stderr
);
4860 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4861 create a new SSA name N and return the assertion assignment
4862 'N = ASSERT_EXPR <V, V OP W>'. */
4865 build_assert_expr_for (tree cond
, tree v
)
4870 gcc_assert (TREE_CODE (v
) == SSA_NAME
4871 && COMPARISON_CLASS_P (cond
));
4873 a
= build2 (ASSERT_EXPR
, TREE_TYPE (v
), v
, cond
);
4874 assertion
= gimple_build_assign (NULL_TREE
, a
);
4876 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4877 operand of the ASSERT_EXPR. Create it so the new name and the old one
4878 are registered in the replacement table so that we can fix the SSA web
4879 after adding all the ASSERT_EXPRs. */
4880 create_new_def_for (v
, assertion
, NULL
);
4886 /* Return false if EXPR is a predicate expression involving floating
4890 fp_predicate (gimple stmt
)
4892 GIMPLE_CHECK (stmt
, GIMPLE_COND
);
4894 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt
)));
4897 /* If the range of values taken by OP can be inferred after STMT executes,
4898 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4899 describes the inferred range. Return true if a range could be
4903 infer_value_range (gimple stmt
, tree op
, enum tree_code
*comp_code_p
, tree
*val_p
)
4906 *comp_code_p
= ERROR_MARK
;
4908 /* Do not attempt to infer anything in names that flow through
4910 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op
))
4913 /* Similarly, don't infer anything from statements that may throw
4914 exceptions. ??? Relax this requirement? */
4915 if (stmt_could_throw_p (stmt
))
4918 /* If STMT is the last statement of a basic block with no normal
4919 successors, there is no point inferring anything about any of its
4920 operands. We would not be able to find a proper insertion point
4921 for the assertion, anyway. */
4922 if (stmt_ends_bb_p (stmt
))
4927 FOR_EACH_EDGE (e
, ei
, gimple_bb (stmt
)->succs
)
4928 if (!(e
->flags
& EDGE_ABNORMAL
))
4934 if (infer_nonnull_range (stmt
, op
, true, true))
4936 *val_p
= build_int_cst (TREE_TYPE (op
), 0);
4937 *comp_code_p
= NE_EXPR
;
4945 void dump_asserts_for (FILE *, tree
);
4946 void debug_asserts_for (tree
);
4947 void dump_all_asserts (FILE *);
4948 void debug_all_asserts (void);
4950 /* Dump all the registered assertions for NAME to FILE. */
4953 dump_asserts_for (FILE *file
, tree name
)
4957 fprintf (file
, "Assertions to be inserted for ");
4958 print_generic_expr (file
, name
, 0);
4959 fprintf (file
, "\n");
4961 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
4964 fprintf (file
, "\t");
4965 print_gimple_stmt (file
, gsi_stmt (loc
->si
), 0, 0);
4966 fprintf (file
, "\n\tBB #%d", loc
->bb
->index
);
4969 fprintf (file
, "\n\tEDGE %d->%d", loc
->e
->src
->index
,
4970 loc
->e
->dest
->index
);
4971 dump_edge_info (file
, loc
->e
, dump_flags
, 0);
4973 fprintf (file
, "\n\tPREDICATE: ");
4974 print_generic_expr (file
, name
, 0);
4975 fprintf (file
, " %s ", get_tree_code_name (loc
->comp_code
));
4976 print_generic_expr (file
, loc
->val
, 0);
4977 fprintf (file
, "\n\n");
4981 fprintf (file
, "\n");
4985 /* Dump all the registered assertions for NAME to stderr. */
4988 debug_asserts_for (tree name
)
4990 dump_asserts_for (stderr
, name
);
4994 /* Dump all the registered assertions for all the names to FILE. */
4997 dump_all_asserts (FILE *file
)
5002 fprintf (file
, "\nASSERT_EXPRs to be inserted\n\n");
5003 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
5004 dump_asserts_for (file
, ssa_name (i
));
5005 fprintf (file
, "\n");
5009 /* Dump all the registered assertions for all the names to stderr. */
5012 debug_all_asserts (void)
5014 dump_all_asserts (stderr
);
5018 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
5019 'EXPR COMP_CODE VAL' at a location that dominates block BB or
5020 E->DEST, then register this location as a possible insertion point
5021 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
5023 BB, E and SI provide the exact insertion point for the new
5024 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
5025 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
5026 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
5027 must not be NULL. */
5030 register_new_assert_for (tree name
, tree expr
,
5031 enum tree_code comp_code
,
5035 gimple_stmt_iterator si
)
5037 assert_locus_t n
, loc
, last_loc
;
5038 basic_block dest_bb
;
5040 gcc_checking_assert (bb
== NULL
|| e
== NULL
);
5043 gcc_checking_assert (gimple_code (gsi_stmt (si
)) != GIMPLE_COND
5044 && gimple_code (gsi_stmt (si
)) != GIMPLE_SWITCH
);
5046 /* Never build an assert comparing against an integer constant with
5047 TREE_OVERFLOW set. This confuses our undefined overflow warning
5049 if (TREE_OVERFLOW_P (val
))
5050 val
= drop_tree_overflow (val
);
5052 /* The new assertion A will be inserted at BB or E. We need to
5053 determine if the new location is dominated by a previously
5054 registered location for A. If we are doing an edge insertion,
5055 assume that A will be inserted at E->DEST. Note that this is not
5058 If E is a critical edge, it will be split. But even if E is
5059 split, the new block will dominate the same set of blocks that
5062 The reverse, however, is not true, blocks dominated by E->DEST
5063 will not be dominated by the new block created to split E. So,
5064 if the insertion location is on a critical edge, we will not use
5065 the new location to move another assertion previously registered
5066 at a block dominated by E->DEST. */
5067 dest_bb
= (bb
) ? bb
: e
->dest
;
5069 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
5070 VAL at a block dominating DEST_BB, then we don't need to insert a new
5071 one. Similarly, if the same assertion already exists at a block
5072 dominated by DEST_BB and the new location is not on a critical
5073 edge, then update the existing location for the assertion (i.e.,
5074 move the assertion up in the dominance tree).
5076 Note, this is implemented as a simple linked list because there
5077 should not be more than a handful of assertions registered per
5078 name. If this becomes a performance problem, a table hashed by
5079 COMP_CODE and VAL could be implemented. */
5080 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
5084 if (loc
->comp_code
== comp_code
5086 || operand_equal_p (loc
->val
, val
, 0))
5087 && (loc
->expr
== expr
5088 || operand_equal_p (loc
->expr
, expr
, 0)))
5090 /* If E is not a critical edge and DEST_BB
5091 dominates the existing location for the assertion, move
5092 the assertion up in the dominance tree by updating its
5093 location information. */
5094 if ((e
== NULL
|| !EDGE_CRITICAL_P (e
))
5095 && dominated_by_p (CDI_DOMINATORS
, loc
->bb
, dest_bb
))
5104 /* Update the last node of the list and move to the next one. */
5109 /* If we didn't find an assertion already registered for
5110 NAME COMP_CODE VAL, add a new one at the end of the list of
5111 assertions associated with NAME. */
5112 n
= XNEW (struct assert_locus_d
);
5116 n
->comp_code
= comp_code
;
5124 asserts_for
[SSA_NAME_VERSION (name
)] = n
;
5126 bitmap_set_bit (need_assert_for
, SSA_NAME_VERSION (name
));
5129 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
5130 Extract a suitable test code and value and store them into *CODE_P and
5131 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
5133 If no extraction was possible, return FALSE, otherwise return TRUE.
5135 If INVERT is true, then we invert the result stored into *CODE_P. */
5138 extract_code_and_val_from_cond_with_ops (tree name
, enum tree_code cond_code
,
5139 tree cond_op0
, tree cond_op1
,
5140 bool invert
, enum tree_code
*code_p
,
5143 enum tree_code comp_code
;
5146 /* Otherwise, we have a comparison of the form NAME COMP VAL
5147 or VAL COMP NAME. */
5148 if (name
== cond_op1
)
5150 /* If the predicate is of the form VAL COMP NAME, flip
5151 COMP around because we need to register NAME as the
5152 first operand in the predicate. */
5153 comp_code
= swap_tree_comparison (cond_code
);
5158 /* The comparison is of the form NAME COMP VAL, so the
5159 comparison code remains unchanged. */
5160 comp_code
= cond_code
;
5164 /* Invert the comparison code as necessary. */
5166 comp_code
= invert_tree_comparison (comp_code
, 0);
5168 /* VRP does not handle float types. */
5169 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val
)))
5172 /* Do not register always-false predicates.
5173 FIXME: this works around a limitation in fold() when dealing with
5174 enumerations. Given 'enum { N1, N2 } x;', fold will not
5175 fold 'if (x > N2)' to 'if (0)'. */
5176 if ((comp_code
== GT_EXPR
|| comp_code
== LT_EXPR
)
5177 && INTEGRAL_TYPE_P (TREE_TYPE (val
)))
5179 tree min
= TYPE_MIN_VALUE (TREE_TYPE (val
));
5180 tree max
= TYPE_MAX_VALUE (TREE_TYPE (val
));
5182 if (comp_code
== GT_EXPR
5184 || compare_values (val
, max
) == 0))
5187 if (comp_code
== LT_EXPR
5189 || compare_values (val
, min
) == 0))
5192 *code_p
= comp_code
;
5197 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
5198 (otherwise return VAL). VAL and MASK must be zero-extended for
5199 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
5200 (to transform signed values into unsigned) and at the end xor
5204 masked_increment (const wide_int
&val_in
, const wide_int
&mask
,
5205 const wide_int
&sgnbit
, unsigned int prec
)
5207 wide_int bit
= wi::one (prec
), res
;
5210 wide_int val
= val_in
^ sgnbit
;
5211 for (i
= 0; i
< prec
; i
++, bit
+= bit
)
5214 if ((res
& bit
) == 0)
5217 res
= (val
+ bit
).and_not (res
);
5219 if (wi::gtu_p (res
, val
))
5220 return res
^ sgnbit
;
5222 return val
^ sgnbit
;
5225 /* Try to register an edge assertion for SSA name NAME on edge E for
5226 the condition COND contributing to the conditional jump pointed to by BSI.
5227 Invert the condition COND if INVERT is true. */
5230 register_edge_assert_for_2 (tree name
, edge e
, gimple_stmt_iterator bsi
,
5231 enum tree_code cond_code
,
5232 tree cond_op0
, tree cond_op1
, bool invert
)
5235 enum tree_code comp_code
;
5237 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
5240 invert
, &comp_code
, &val
))
5243 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
5244 reachable from E. */
5245 if (live_on_edge (e
, name
)
5246 && !has_single_use (name
))
5247 register_new_assert_for (name
, name
, comp_code
, val
, NULL
, e
, bsi
);
5249 /* In the case of NAME <= CST and NAME being defined as
5250 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
5251 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
5252 This catches range and anti-range tests. */
5253 if ((comp_code
== LE_EXPR
5254 || comp_code
== GT_EXPR
)
5255 && TREE_CODE (val
) == INTEGER_CST
5256 && TYPE_UNSIGNED (TREE_TYPE (val
)))
5258 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
5259 tree cst2
= NULL_TREE
, name2
= NULL_TREE
, name3
= NULL_TREE
;
5261 /* Extract CST2 from the (optional) addition. */
5262 if (is_gimple_assign (def_stmt
)
5263 && gimple_assign_rhs_code (def_stmt
) == PLUS_EXPR
)
5265 name2
= gimple_assign_rhs1 (def_stmt
);
5266 cst2
= gimple_assign_rhs2 (def_stmt
);
5267 if (TREE_CODE (name2
) == SSA_NAME
5268 && TREE_CODE (cst2
) == INTEGER_CST
)
5269 def_stmt
= SSA_NAME_DEF_STMT (name2
);
5272 /* Extract NAME2 from the (optional) sign-changing cast. */
5273 if (gimple_assign_cast_p (def_stmt
))
5275 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
))
5276 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))
5277 && (TYPE_PRECISION (gimple_expr_type (def_stmt
))
5278 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))))
5279 name3
= gimple_assign_rhs1 (def_stmt
);
5282 /* If name3 is used later, create an ASSERT_EXPR for it. */
5283 if (name3
!= NULL_TREE
5284 && TREE_CODE (name3
) == SSA_NAME
5285 && (cst2
== NULL_TREE
5286 || TREE_CODE (cst2
) == INTEGER_CST
)
5287 && INTEGRAL_TYPE_P (TREE_TYPE (name3
))
5288 && live_on_edge (e
, name3
)
5289 && !has_single_use (name3
))
5293 /* Build an expression for the range test. */
5294 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), name3
);
5295 if (cst2
!= NULL_TREE
)
5296 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
5300 fprintf (dump_file
, "Adding assert for ");
5301 print_generic_expr (dump_file
, name3
, 0);
5302 fprintf (dump_file
, " from ");
5303 print_generic_expr (dump_file
, tmp
, 0);
5304 fprintf (dump_file
, "\n");
5307 register_new_assert_for (name3
, tmp
, comp_code
, val
, NULL
, e
, bsi
);
5310 /* If name2 is used later, create an ASSERT_EXPR for it. */
5311 if (name2
!= NULL_TREE
5312 && TREE_CODE (name2
) == SSA_NAME
5313 && TREE_CODE (cst2
) == INTEGER_CST
5314 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
5315 && live_on_edge (e
, name2
)
5316 && !has_single_use (name2
))
5320 /* Build an expression for the range test. */
5322 if (TREE_TYPE (name
) != TREE_TYPE (name2
))
5323 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), tmp
);
5324 if (cst2
!= NULL_TREE
)
5325 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
5329 fprintf (dump_file
, "Adding assert for ");
5330 print_generic_expr (dump_file
, name2
, 0);
5331 fprintf (dump_file
, " from ");
5332 print_generic_expr (dump_file
, tmp
, 0);
5333 fprintf (dump_file
, "\n");
5336 register_new_assert_for (name2
, tmp
, comp_code
, val
, NULL
, e
, bsi
);
5340 /* In the case of post-in/decrement tests like if (i++) ... and uses
5341 of the in/decremented value on the edge the extra name we want to
5342 assert for is not on the def chain of the name compared. Instead
5343 it is in the set of use stmts. */
5344 if ((comp_code
== NE_EXPR
5345 || comp_code
== EQ_EXPR
)
5346 && TREE_CODE (val
) == INTEGER_CST
)
5348 imm_use_iterator ui
;
5350 FOR_EACH_IMM_USE_STMT (use_stmt
, ui
, name
)
5352 /* Cut off to use-stmts that are in the predecessor. */
5353 if (gimple_bb (use_stmt
) != e
->src
)
5356 if (!is_gimple_assign (use_stmt
))
5359 enum tree_code code
= gimple_assign_rhs_code (use_stmt
);
5360 if (code
!= PLUS_EXPR
5361 && code
!= MINUS_EXPR
)
5364 tree cst
= gimple_assign_rhs2 (use_stmt
);
5365 if (TREE_CODE (cst
) != INTEGER_CST
)
5368 tree name2
= gimple_assign_lhs (use_stmt
);
5369 if (live_on_edge (e
, name2
))
5371 cst
= int_const_binop (code
, val
, cst
);
5372 register_new_assert_for (name2
, name2
, comp_code
, cst
,
5378 if (TREE_CODE_CLASS (comp_code
) == tcc_comparison
5379 && TREE_CODE (val
) == INTEGER_CST
)
5381 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
5382 tree name2
= NULL_TREE
, names
[2], cst2
= NULL_TREE
;
5383 tree val2
= NULL_TREE
;
5384 unsigned int prec
= TYPE_PRECISION (TREE_TYPE (val
));
5385 wide_int mask
= wi::zero (prec
);
5386 unsigned int nprec
= prec
;
5387 enum tree_code rhs_code
= ERROR_MARK
;
5389 if (is_gimple_assign (def_stmt
))
5390 rhs_code
= gimple_assign_rhs_code (def_stmt
);
5392 /* Add asserts for NAME cmp CST and NAME being defined
5393 as NAME = (int) NAME2. */
5394 if (!TYPE_UNSIGNED (TREE_TYPE (val
))
5395 && (comp_code
== LE_EXPR
|| comp_code
== LT_EXPR
5396 || comp_code
== GT_EXPR
|| comp_code
== GE_EXPR
)
5397 && gimple_assign_cast_p (def_stmt
))
5399 name2
= gimple_assign_rhs1 (def_stmt
);
5400 if (CONVERT_EXPR_CODE_P (rhs_code
)
5401 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
5402 && TYPE_UNSIGNED (TREE_TYPE (name2
))
5403 && prec
== TYPE_PRECISION (TREE_TYPE (name2
))
5404 && (comp_code
== LE_EXPR
|| comp_code
== GT_EXPR
5405 || !tree_int_cst_equal (val
,
5406 TYPE_MIN_VALUE (TREE_TYPE (val
))))
5407 && live_on_edge (e
, name2
)
5408 && !has_single_use (name2
))
5411 enum tree_code new_comp_code
= comp_code
;
5413 cst
= fold_convert (TREE_TYPE (name2
),
5414 TYPE_MIN_VALUE (TREE_TYPE (val
)));
5415 /* Build an expression for the range test. */
5416 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name2
), name2
, cst
);
5417 cst
= fold_build2 (PLUS_EXPR
, TREE_TYPE (name2
), cst
,
5418 fold_convert (TREE_TYPE (name2
), val
));
5419 if (comp_code
== LT_EXPR
|| comp_code
== GE_EXPR
)
5421 new_comp_code
= comp_code
== LT_EXPR
? LE_EXPR
: GT_EXPR
;
5422 cst
= fold_build2 (MINUS_EXPR
, TREE_TYPE (name2
), cst
,
5423 build_int_cst (TREE_TYPE (name2
), 1));
5428 fprintf (dump_file
, "Adding assert for ");
5429 print_generic_expr (dump_file
, name2
, 0);
5430 fprintf (dump_file
, " from ");
5431 print_generic_expr (dump_file
, tmp
, 0);
5432 fprintf (dump_file
, "\n");
5435 register_new_assert_for (name2
, tmp
, new_comp_code
, cst
, NULL
,
5440 /* Add asserts for NAME cmp CST and NAME being defined as
5441 NAME = NAME2 >> CST2.
5443 Extract CST2 from the right shift. */
5444 if (rhs_code
== RSHIFT_EXPR
)
5446 name2
= gimple_assign_rhs1 (def_stmt
);
5447 cst2
= gimple_assign_rhs2 (def_stmt
);
5448 if (TREE_CODE (name2
) == SSA_NAME
5449 && tree_fits_uhwi_p (cst2
)
5450 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
5451 && IN_RANGE (tree_to_uhwi (cst2
), 1, prec
- 1)
5452 && prec
== GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val
)))
5453 && live_on_edge (e
, name2
)
5454 && !has_single_use (name2
))
5456 mask
= wi::mask (tree_to_uhwi (cst2
), false, prec
);
5457 val2
= fold_binary (LSHIFT_EXPR
, TREE_TYPE (val
), val
, cst2
);
5460 if (val2
!= NULL_TREE
5461 && TREE_CODE (val2
) == INTEGER_CST
5462 && simple_cst_equal (fold_build2 (RSHIFT_EXPR
,
5466 enum tree_code new_comp_code
= comp_code
;
5470 if (comp_code
== EQ_EXPR
|| comp_code
== NE_EXPR
)
5472 if (!TYPE_UNSIGNED (TREE_TYPE (val
)))
5474 tree type
= build_nonstandard_integer_type (prec
, 1);
5475 tmp
= build1 (NOP_EXPR
, type
, name2
);
5476 val2
= fold_convert (type
, val2
);
5478 tmp
= fold_build2 (MINUS_EXPR
, TREE_TYPE (tmp
), tmp
, val2
);
5479 new_val
= wide_int_to_tree (TREE_TYPE (tmp
), mask
);
5480 new_comp_code
= comp_code
== EQ_EXPR
? LE_EXPR
: GT_EXPR
;
5482 else if (comp_code
== LT_EXPR
|| comp_code
== GE_EXPR
)
5485 = wi::min_value (prec
, TYPE_SIGN (TREE_TYPE (val
)));
5487 if (minval
== new_val
)
5488 new_val
= NULL_TREE
;
5493 = wi::max_value (prec
, TYPE_SIGN (TREE_TYPE (val
)));
5496 new_val
= NULL_TREE
;
5498 new_val
= wide_int_to_tree (TREE_TYPE (val2
), mask
);
5505 fprintf (dump_file
, "Adding assert for ");
5506 print_generic_expr (dump_file
, name2
, 0);
5507 fprintf (dump_file
, " from ");
5508 print_generic_expr (dump_file
, tmp
, 0);
5509 fprintf (dump_file
, "\n");
5512 register_new_assert_for (name2
, tmp
, new_comp_code
, new_val
,
5517 /* Add asserts for NAME cmp CST and NAME being defined as
5518 NAME = NAME2 & CST2.
5520 Extract CST2 from the and.
5523 NAME = (unsigned) NAME2;
5524 casts where NAME's type is unsigned and has smaller precision
5525 than NAME2's type as if it was NAME = NAME2 & MASK. */
5526 names
[0] = NULL_TREE
;
5527 names
[1] = NULL_TREE
;
5529 if (rhs_code
== BIT_AND_EXPR
5530 || (CONVERT_EXPR_CODE_P (rhs_code
)
5531 && TREE_CODE (TREE_TYPE (val
)) == INTEGER_TYPE
5532 && TYPE_UNSIGNED (TREE_TYPE (val
))
5533 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))
5536 name2
= gimple_assign_rhs1 (def_stmt
);
5537 if (rhs_code
== BIT_AND_EXPR
)
5538 cst2
= gimple_assign_rhs2 (def_stmt
);
5541 cst2
= TYPE_MAX_VALUE (TREE_TYPE (val
));
5542 nprec
= TYPE_PRECISION (TREE_TYPE (name2
));
5544 if (TREE_CODE (name2
) == SSA_NAME
5545 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
5546 && TREE_CODE (cst2
) == INTEGER_CST
5547 && !integer_zerop (cst2
)
5549 || TYPE_UNSIGNED (TREE_TYPE (val
))))
5551 gimple def_stmt2
= SSA_NAME_DEF_STMT (name2
);
5552 if (gimple_assign_cast_p (def_stmt2
))
5554 names
[1] = gimple_assign_rhs1 (def_stmt2
);
5555 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2
))
5556 || !INTEGRAL_TYPE_P (TREE_TYPE (names
[1]))
5557 || (TYPE_PRECISION (TREE_TYPE (name2
))
5558 != TYPE_PRECISION (TREE_TYPE (names
[1])))
5559 || !live_on_edge (e
, names
[1])
5560 || has_single_use (names
[1]))
5561 names
[1] = NULL_TREE
;
5563 if (live_on_edge (e
, name2
)
5564 && !has_single_use (name2
))
5568 if (names
[0] || names
[1])
5570 wide_int minv
, maxv
, valv
, cst2v
;
5571 wide_int tem
, sgnbit
;
5572 bool valid_p
= false, valn
, cst2n
;
5573 enum tree_code ccode
= comp_code
;
5575 valv
= wide_int::from (val
, nprec
, UNSIGNED
);
5576 cst2v
= wide_int::from (cst2
, nprec
, UNSIGNED
);
5577 valn
= wi::neg_p (valv
, TYPE_SIGN (TREE_TYPE (val
)));
5578 cst2n
= wi::neg_p (cst2v
, TYPE_SIGN (TREE_TYPE (val
)));
5579 /* If CST2 doesn't have most significant bit set,
5580 but VAL is negative, we have comparison like
5581 if ((x & 0x123) > -4) (always true). Just give up. */
5585 sgnbit
= wi::set_bit_in_zero (nprec
- 1, nprec
);
5587 sgnbit
= wi::zero (nprec
);
5588 minv
= valv
& cst2v
;
5592 /* Minimum unsigned value for equality is VAL & CST2
5593 (should be equal to VAL, otherwise we probably should
5594 have folded the comparison into false) and
5595 maximum unsigned value is VAL | ~CST2. */
5596 maxv
= valv
| ~cst2v
;
5601 tem
= valv
| ~cst2v
;
5602 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
5606 sgnbit
= wi::zero (nprec
);
5609 /* If (VAL | ~CST2) is all ones, handle it as
5610 (X & CST2) < VAL. */
5615 sgnbit
= wi::zero (nprec
);
5618 if (!cst2n
&& wi::neg_p (cst2v
))
5619 sgnbit
= wi::set_bit_in_zero (nprec
- 1, nprec
);
5628 if (tem
== wi::mask (nprec
- 1, false, nprec
))
5634 sgnbit
= wi::zero (nprec
);
5639 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
5640 is VAL and maximum unsigned value is ~0. For signed
5641 comparison, if CST2 doesn't have most significant bit
5642 set, handle it similarly. If CST2 has MSB set,
5643 the minimum is the same, and maximum is ~0U/2. */
5646 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
5648 minv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
5652 maxv
= wi::mask (nprec
- (cst2n
? 1 : 0), false, nprec
);
5658 /* Find out smallest MINV where MINV > VAL
5659 && (MINV & CST2) == MINV, if any. If VAL is signed and
5660 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
5661 minv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
5664 maxv
= wi::mask (nprec
- (cst2n
? 1 : 0), false, nprec
);
5669 /* Minimum unsigned value for <= is 0 and maximum
5670 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5671 Otherwise, find smallest VAL2 where VAL2 > VAL
5672 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5674 For signed comparison, if CST2 doesn't have most
5675 significant bit set, handle it similarly. If CST2 has
5676 MSB set, the maximum is the same and minimum is INT_MIN. */
5681 maxv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
5693 /* Minimum unsigned value for < is 0 and maximum
5694 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5695 Otherwise, find smallest VAL2 where VAL2 > VAL
5696 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5698 For signed comparison, if CST2 doesn't have most
5699 significant bit set, handle it similarly. If CST2 has
5700 MSB set, the maximum is the same and minimum is INT_MIN. */
5709 maxv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
5723 && (maxv
- minv
) != -1)
5725 tree tmp
, new_val
, type
;
5728 for (i
= 0; i
< 2; i
++)
5731 wide_int maxv2
= maxv
;
5733 type
= TREE_TYPE (names
[i
]);
5734 if (!TYPE_UNSIGNED (type
))
5736 type
= build_nonstandard_integer_type (nprec
, 1);
5737 tmp
= build1 (NOP_EXPR
, type
, names
[i
]);
5741 tmp
= build2 (PLUS_EXPR
, type
, tmp
,
5742 wide_int_to_tree (type
, -minv
));
5743 maxv2
= maxv
- minv
;
5745 new_val
= wide_int_to_tree (type
, maxv2
);
5749 fprintf (dump_file
, "Adding assert for ");
5750 print_generic_expr (dump_file
, names
[i
], 0);
5751 fprintf (dump_file
, " from ");
5752 print_generic_expr (dump_file
, tmp
, 0);
5753 fprintf (dump_file
, "\n");
5756 register_new_assert_for (names
[i
], tmp
, LE_EXPR
,
5757 new_val
, NULL
, e
, bsi
);
5764 /* OP is an operand of a truth value expression which is known to have
5765 a particular value. Register any asserts for OP and for any
5766 operands in OP's defining statement.
5768 If CODE is EQ_EXPR, then we want to register OP is zero (false),
5769 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
5772 register_edge_assert_for_1 (tree op
, enum tree_code code
,
5773 edge e
, gimple_stmt_iterator bsi
)
5777 enum tree_code rhs_code
;
5779 /* We only care about SSA_NAMEs. */
5780 if (TREE_CODE (op
) != SSA_NAME
)
5783 /* We know that OP will have a zero or nonzero value. If OP is used
5784 more than once go ahead and register an assert for OP. */
5785 if (live_on_edge (e
, op
)
5786 && !has_single_use (op
))
5788 val
= build_int_cst (TREE_TYPE (op
), 0);
5789 register_new_assert_for (op
, op
, code
, val
, NULL
, e
, bsi
);
5792 /* Now look at how OP is set. If it's set from a comparison,
5793 a truth operation or some bit operations, then we may be able
5794 to register information about the operands of that assignment. */
5795 op_def
= SSA_NAME_DEF_STMT (op
);
5796 if (gimple_code (op_def
) != GIMPLE_ASSIGN
)
5799 rhs_code
= gimple_assign_rhs_code (op_def
);
5801 if (TREE_CODE_CLASS (rhs_code
) == tcc_comparison
)
5803 bool invert
= (code
== EQ_EXPR
? true : false);
5804 tree op0
= gimple_assign_rhs1 (op_def
);
5805 tree op1
= gimple_assign_rhs2 (op_def
);
5807 if (TREE_CODE (op0
) == SSA_NAME
)
5808 register_edge_assert_for_2 (op0
, e
, bsi
, rhs_code
, op0
, op1
, invert
);
5809 if (TREE_CODE (op1
) == SSA_NAME
)
5810 register_edge_assert_for_2 (op1
, e
, bsi
, rhs_code
, op0
, op1
, invert
);
5812 else if ((code
== NE_EXPR
5813 && gimple_assign_rhs_code (op_def
) == BIT_AND_EXPR
)
5815 && gimple_assign_rhs_code (op_def
) == BIT_IOR_EXPR
))
5817 /* Recurse on each operand. */
5818 tree op0
= gimple_assign_rhs1 (op_def
);
5819 tree op1
= gimple_assign_rhs2 (op_def
);
5820 if (TREE_CODE (op0
) == SSA_NAME
5821 && has_single_use (op0
))
5822 register_edge_assert_for_1 (op0
, code
, e
, bsi
);
5823 if (TREE_CODE (op1
) == SSA_NAME
5824 && has_single_use (op1
))
5825 register_edge_assert_for_1 (op1
, code
, e
, bsi
);
5827 else if (gimple_assign_rhs_code (op_def
) == BIT_NOT_EXPR
5828 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def
))) == 1)
5830 /* Recurse, flipping CODE. */
5831 code
= invert_tree_comparison (code
, false);
5832 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
), code
, e
, bsi
);
5834 else if (gimple_assign_rhs_code (op_def
) == SSA_NAME
)
5836 /* Recurse through the copy. */
5837 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
), code
, e
, bsi
);
5839 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def
)))
5841 /* Recurse through the type conversion, unless it is a narrowing
5842 conversion or conversion from non-integral type. */
5843 tree rhs
= gimple_assign_rhs1 (op_def
);
5844 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs
))
5845 && (TYPE_PRECISION (TREE_TYPE (rhs
))
5846 <= TYPE_PRECISION (TREE_TYPE (op
))))
5847 register_edge_assert_for_1 (rhs
, code
, e
, bsi
);
5851 /* Try to register an edge assertion for SSA name NAME on edge E for
5852 the condition COND contributing to the conditional jump pointed to by
5856 register_edge_assert_for (tree name
, edge e
, gimple_stmt_iterator si
,
5857 enum tree_code cond_code
, tree cond_op0
,
5861 enum tree_code comp_code
;
5862 bool is_else_edge
= (e
->flags
& EDGE_FALSE_VALUE
) != 0;
5864 /* Do not attempt to infer anything in names that flow through
5866 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name
))
5869 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
5875 /* Register ASSERT_EXPRs for name. */
5876 register_edge_assert_for_2 (name
, e
, si
, cond_code
, cond_op0
,
5877 cond_op1
, is_else_edge
);
5880 /* If COND is effectively an equality test of an SSA_NAME against
5881 the value zero or one, then we may be able to assert values
5882 for SSA_NAMEs which flow into COND. */
5884 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
5885 statement of NAME we can assert both operands of the BIT_AND_EXPR
5886 have nonzero value. */
5887 if (((comp_code
== EQ_EXPR
&& integer_onep (val
))
5888 || (comp_code
== NE_EXPR
&& integer_zerop (val
))))
5890 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
5892 if (is_gimple_assign (def_stmt
)
5893 && gimple_assign_rhs_code (def_stmt
) == BIT_AND_EXPR
)
5895 tree op0
= gimple_assign_rhs1 (def_stmt
);
5896 tree op1
= gimple_assign_rhs2 (def_stmt
);
5897 register_edge_assert_for_1 (op0
, NE_EXPR
, e
, si
);
5898 register_edge_assert_for_1 (op1
, NE_EXPR
, e
, si
);
5902 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
5903 statement of NAME we can assert both operands of the BIT_IOR_EXPR
5905 if (((comp_code
== EQ_EXPR
&& integer_zerop (val
))
5906 || (comp_code
== NE_EXPR
&& integer_onep (val
))))
5908 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
5910 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
5911 necessarily zero value, or if type-precision is one. */
5912 if (is_gimple_assign (def_stmt
)
5913 && (gimple_assign_rhs_code (def_stmt
) == BIT_IOR_EXPR
5914 && (TYPE_PRECISION (TREE_TYPE (name
)) == 1
5915 || comp_code
== EQ_EXPR
)))
5917 tree op0
= gimple_assign_rhs1 (def_stmt
);
5918 tree op1
= gimple_assign_rhs2 (def_stmt
);
5919 register_edge_assert_for_1 (op0
, EQ_EXPR
, e
, si
);
5920 register_edge_assert_for_1 (op1
, EQ_EXPR
, e
, si
);
5926 /* Determine whether the outgoing edges of BB should receive an
5927 ASSERT_EXPR for each of the operands of BB's LAST statement.
5928 The last statement of BB must be a COND_EXPR.
5930 If any of the sub-graphs rooted at BB have an interesting use of
5931 the predicate operands, an assert location node is added to the
5932 list of assertions for the corresponding operands. */
5935 find_conditional_asserts (basic_block bb
, gcond
*last
)
5937 gimple_stmt_iterator bsi
;
5943 bsi
= gsi_for_stmt (last
);
5945 /* Look for uses of the operands in each of the sub-graphs
5946 rooted at BB. We need to check each of the outgoing edges
5947 separately, so that we know what kind of ASSERT_EXPR to
5949 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5954 /* Register the necessary assertions for each operand in the
5955 conditional predicate. */
5956 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
5957 register_edge_assert_for (op
, e
, bsi
,
5958 gimple_cond_code (last
),
5959 gimple_cond_lhs (last
),
5960 gimple_cond_rhs (last
));
5970 /* Compare two case labels sorting first by the destination bb index
5971 and then by the case value. */
5974 compare_case_labels (const void *p1
, const void *p2
)
5976 const struct case_info
*ci1
= (const struct case_info
*) p1
;
5977 const struct case_info
*ci2
= (const struct case_info
*) p2
;
5978 int idx1
= ci1
->bb
->index
;
5979 int idx2
= ci2
->bb
->index
;
5983 else if (idx1
== idx2
)
5985 /* Make sure the default label is first in a group. */
5986 if (!CASE_LOW (ci1
->expr
))
5988 else if (!CASE_LOW (ci2
->expr
))
5991 return tree_int_cst_compare (CASE_LOW (ci1
->expr
),
5992 CASE_LOW (ci2
->expr
));
5998 /* Determine whether the outgoing edges of BB should receive an
5999 ASSERT_EXPR for each of the operands of BB's LAST statement.
6000 The last statement of BB must be a SWITCH_EXPR.
6002 If any of the sub-graphs rooted at BB have an interesting use of
6003 the predicate operands, an assert location node is added to the
6004 list of assertions for the corresponding operands. */
6007 find_switch_asserts (basic_block bb
, gswitch
*last
)
6009 gimple_stmt_iterator bsi
;
6012 struct case_info
*ci
;
6013 size_t n
= gimple_switch_num_labels (last
);
6014 #if GCC_VERSION >= 4000
6017 /* Work around GCC 3.4 bug (PR 37086). */
6018 volatile unsigned int idx
;
6021 bsi
= gsi_for_stmt (last
);
6022 op
= gimple_switch_index (last
);
6023 if (TREE_CODE (op
) != SSA_NAME
)
6026 /* Build a vector of case labels sorted by destination label. */
6027 ci
= XNEWVEC (struct case_info
, n
);
6028 for (idx
= 0; idx
< n
; ++idx
)
6030 ci
[idx
].expr
= gimple_switch_label (last
, idx
);
6031 ci
[idx
].bb
= label_to_block (CASE_LABEL (ci
[idx
].expr
));
6033 qsort (ci
, n
, sizeof (struct case_info
), compare_case_labels
);
6035 for (idx
= 0; idx
< n
; ++idx
)
6038 tree cl
= ci
[idx
].expr
;
6039 basic_block cbb
= ci
[idx
].bb
;
6041 min
= CASE_LOW (cl
);
6042 max
= CASE_HIGH (cl
);
6044 /* If there are multiple case labels with the same destination
6045 we need to combine them to a single value range for the edge. */
6046 if (idx
+ 1 < n
&& cbb
== ci
[idx
+ 1].bb
)
6048 /* Skip labels until the last of the group. */
6051 } while (idx
< n
&& cbb
== ci
[idx
].bb
);
6054 /* Pick up the maximum of the case label range. */
6055 if (CASE_HIGH (ci
[idx
].expr
))
6056 max
= CASE_HIGH (ci
[idx
].expr
);
6058 max
= CASE_LOW (ci
[idx
].expr
);
6061 /* Nothing to do if the range includes the default label until we
6062 can register anti-ranges. */
6063 if (min
== NULL_TREE
)
6066 /* Find the edge to register the assert expr on. */
6067 e
= find_edge (bb
, cbb
);
6069 /* Register the necessary assertions for the operand in the
6071 register_edge_assert_for (op
, e
, bsi
,
6072 max
? GE_EXPR
: EQ_EXPR
,
6073 op
, fold_convert (TREE_TYPE (op
), min
));
6075 register_edge_assert_for (op
, e
, bsi
, LE_EXPR
, op
,
6076 fold_convert (TREE_TYPE (op
), max
));
6083 /* Traverse all the statements in block BB looking for statements that
6084 may generate useful assertions for the SSA names in their operand.
6085 If a statement produces a useful assertion A for name N_i, then the
6086 list of assertions already generated for N_i is scanned to
6087 determine if A is actually needed.
6089 If N_i already had the assertion A at a location dominating the
6090 current location, then nothing needs to be done. Otherwise, the
6091 new location for A is recorded instead.
6093 1- For every statement S in BB, all the variables used by S are
6094 added to bitmap FOUND_IN_SUBGRAPH.
6096 2- If statement S uses an operand N in a way that exposes a known
6097 value range for N, then if N was not already generated by an
6098 ASSERT_EXPR, create a new assert location for N. For instance,
6099 if N is a pointer and the statement dereferences it, we can
6100 assume that N is not NULL.
6102 3- COND_EXPRs are a special case of #2. We can derive range
6103 information from the predicate but need to insert different
6104 ASSERT_EXPRs for each of the sub-graphs rooted at the
6105 conditional block. If the last statement of BB is a conditional
6106 expression of the form 'X op Y', then
6108 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
6110 b) If the conditional is the only entry point to the sub-graph
6111 corresponding to the THEN_CLAUSE, recurse into it. On
6112 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
6113 an ASSERT_EXPR is added for the corresponding variable.
6115 c) Repeat step (b) on the ELSE_CLAUSE.
6117 d) Mark X and Y in FOUND_IN_SUBGRAPH.
6126 In this case, an assertion on the THEN clause is useful to
6127 determine that 'a' is always 9 on that edge. However, an assertion
6128 on the ELSE clause would be unnecessary.
6130 4- If BB does not end in a conditional expression, then we recurse
6131 into BB's dominator children.
6133 At the end of the recursive traversal, every SSA name will have a
6134 list of locations where ASSERT_EXPRs should be added. When a new
6135 location for name N is found, it is registered by calling
6136 register_new_assert_for. That function keeps track of all the
6137 registered assertions to prevent adding unnecessary assertions.
6138 For instance, if a pointer P_4 is dereferenced more than once in a
6139 dominator tree, only the location dominating all the dereference of
6140 P_4 will receive an ASSERT_EXPR. */
6143 find_assert_locations_1 (basic_block bb
, sbitmap live
)
6147 last
= last_stmt (bb
);
6149 /* If BB's last statement is a conditional statement involving integer
6150 operands, determine if we need to add ASSERT_EXPRs. */
6152 && gimple_code (last
) == GIMPLE_COND
6153 && !fp_predicate (last
)
6154 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
6155 find_conditional_asserts (bb
, as_a
<gcond
*> (last
));
6157 /* If BB's last statement is a switch statement involving integer
6158 operands, determine if we need to add ASSERT_EXPRs. */
6160 && gimple_code (last
) == GIMPLE_SWITCH
6161 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
6162 find_switch_asserts (bb
, as_a
<gswitch
*> (last
));
6164 /* Traverse all the statements in BB marking used names and looking
6165 for statements that may infer assertions for their used operands. */
6166 for (gimple_stmt_iterator si
= gsi_last_bb (bb
); !gsi_end_p (si
);
6173 stmt
= gsi_stmt (si
);
6175 if (is_gimple_debug (stmt
))
6178 /* See if we can derive an assertion for any of STMT's operands. */
6179 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
6182 enum tree_code comp_code
;
6184 /* If op is not live beyond this stmt, do not bother to insert
6186 if (!bitmap_bit_p (live
, SSA_NAME_VERSION (op
)))
6189 /* If OP is used in such a way that we can infer a value
6190 range for it, and we don't find a previous assertion for
6191 it, create a new assertion location node for OP. */
6192 if (infer_value_range (stmt
, op
, &comp_code
, &value
))
6194 /* If we are able to infer a nonzero value range for OP,
6195 then walk backwards through the use-def chain to see if OP
6196 was set via a typecast.
6198 If so, then we can also infer a nonzero value range
6199 for the operand of the NOP_EXPR. */
6200 if (comp_code
== NE_EXPR
&& integer_zerop (value
))
6203 gimple def_stmt
= SSA_NAME_DEF_STMT (t
);
6205 while (is_gimple_assign (def_stmt
)
6206 && CONVERT_EXPR_CODE_P
6207 (gimple_assign_rhs_code (def_stmt
))
6209 (gimple_assign_rhs1 (def_stmt
)) == SSA_NAME
6211 (TREE_TYPE (gimple_assign_rhs1 (def_stmt
))))
6213 t
= gimple_assign_rhs1 (def_stmt
);
6214 def_stmt
= SSA_NAME_DEF_STMT (t
);
6216 /* Note we want to register the assert for the
6217 operand of the NOP_EXPR after SI, not after the
6219 if (! has_single_use (t
))
6220 register_new_assert_for (t
, t
, comp_code
, value
,
6225 register_new_assert_for (op
, op
, comp_code
, value
, bb
, NULL
, si
);
6230 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
6231 bitmap_set_bit (live
, SSA_NAME_VERSION (op
));
6232 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_DEF
)
6233 bitmap_clear_bit (live
, SSA_NAME_VERSION (op
));
6236 /* Traverse all PHI nodes in BB, updating live. */
6237 for (gphi_iterator si
= gsi_start_phis (bb
); !gsi_end_p (si
);
6240 use_operand_p arg_p
;
6242 gphi
*phi
= si
.phi ();
6243 tree res
= gimple_phi_result (phi
);
6245 if (virtual_operand_p (res
))
6248 FOR_EACH_PHI_ARG (arg_p
, phi
, i
, SSA_OP_USE
)
6250 tree arg
= USE_FROM_PTR (arg_p
);
6251 if (TREE_CODE (arg
) == SSA_NAME
)
6252 bitmap_set_bit (live
, SSA_NAME_VERSION (arg
));
6255 bitmap_clear_bit (live
, SSA_NAME_VERSION (res
));
6259 /* Do an RPO walk over the function computing SSA name liveness
6260 on-the-fly and deciding on assert expressions to insert. */
6263 find_assert_locations (void)
6265 int *rpo
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
6266 int *bb_rpo
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
6267 int *last_rpo
= XCNEWVEC (int, last_basic_block_for_fn (cfun
));
6270 live
= XCNEWVEC (sbitmap
, last_basic_block_for_fn (cfun
));
6271 rpo_cnt
= pre_and_rev_post_order_compute (NULL
, rpo
, false);
6272 for (i
= 0; i
< rpo_cnt
; ++i
)
6275 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
6276 the order we compute liveness and insert asserts we otherwise
6277 fail to insert asserts into the loop latch. */
6279 FOR_EACH_LOOP (loop
, 0)
6281 i
= loop
->latch
->index
;
6282 unsigned int j
= single_succ_edge (loop
->latch
)->dest_idx
;
6283 for (gphi_iterator gsi
= gsi_start_phis (loop
->header
);
6284 !gsi_end_p (gsi
); gsi_next (&gsi
))
6286 gphi
*phi
= gsi
.phi ();
6287 if (virtual_operand_p (gimple_phi_result (phi
)))
6289 tree arg
= gimple_phi_arg_def (phi
, j
);
6290 if (TREE_CODE (arg
) == SSA_NAME
)
6292 if (live
[i
] == NULL
)
6294 live
[i
] = sbitmap_alloc (num_ssa_names
);
6295 bitmap_clear (live
[i
]);
6297 bitmap_set_bit (live
[i
], SSA_NAME_VERSION (arg
));
6302 for (i
= rpo_cnt
- 1; i
>= 0; --i
)
6304 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, rpo
[i
]);
6310 live
[rpo
[i
]] = sbitmap_alloc (num_ssa_names
);
6311 bitmap_clear (live
[rpo
[i
]]);
6314 /* Process BB and update the live information with uses in
6316 find_assert_locations_1 (bb
, live
[rpo
[i
]]);
6318 /* Merge liveness into the predecessor blocks and free it. */
6319 if (!bitmap_empty_p (live
[rpo
[i
]]))
6322 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6324 int pred
= e
->src
->index
;
6325 if ((e
->flags
& EDGE_DFS_BACK
) || pred
== ENTRY_BLOCK
)
6330 live
[pred
] = sbitmap_alloc (num_ssa_names
);
6331 bitmap_clear (live
[pred
]);
6333 bitmap_ior (live
[pred
], live
[pred
], live
[rpo
[i
]]);
6335 if (bb_rpo
[pred
] < pred_rpo
)
6336 pred_rpo
= bb_rpo
[pred
];
6339 /* Record the RPO number of the last visited block that needs
6340 live information from this block. */
6341 last_rpo
[rpo
[i
]] = pred_rpo
;
6345 sbitmap_free (live
[rpo
[i
]]);
6346 live
[rpo
[i
]] = NULL
;
6349 /* We can free all successors live bitmaps if all their
6350 predecessors have been visited already. */
6351 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6352 if (last_rpo
[e
->dest
->index
] == i
6353 && live
[e
->dest
->index
])
6355 sbitmap_free (live
[e
->dest
->index
]);
6356 live
[e
->dest
->index
] = NULL
;
6361 XDELETEVEC (bb_rpo
);
6362 XDELETEVEC (last_rpo
);
6363 for (i
= 0; i
< last_basic_block_for_fn (cfun
); ++i
)
6365 sbitmap_free (live
[i
]);
6369 /* Create an ASSERT_EXPR for NAME and insert it in the location
6370 indicated by LOC. Return true if we made any edge insertions. */
6373 process_assert_insertions_for (tree name
, assert_locus_t loc
)
6375 /* Build the comparison expression NAME_i COMP_CODE VAL. */
6382 /* If we have X <=> X do not insert an assert expr for that. */
6383 if (loc
->expr
== loc
->val
)
6386 cond
= build2 (loc
->comp_code
, boolean_type_node
, loc
->expr
, loc
->val
);
6387 assert_stmt
= build_assert_expr_for (cond
, name
);
6390 /* We have been asked to insert the assertion on an edge. This
6391 is used only by COND_EXPR and SWITCH_EXPR assertions. */
6392 gcc_checking_assert (gimple_code (gsi_stmt (loc
->si
)) == GIMPLE_COND
6393 || (gimple_code (gsi_stmt (loc
->si
))
6396 gsi_insert_on_edge (loc
->e
, assert_stmt
);
6400 /* Otherwise, we can insert right after LOC->SI iff the
6401 statement must not be the last statement in the block. */
6402 stmt
= gsi_stmt (loc
->si
);
6403 if (!stmt_ends_bb_p (stmt
))
6405 gsi_insert_after (&loc
->si
, assert_stmt
, GSI_SAME_STMT
);
6409 /* If STMT must be the last statement in BB, we can only insert new
6410 assertions on the non-abnormal edge out of BB. Note that since
6411 STMT is not control flow, there may only be one non-abnormal edge
6413 FOR_EACH_EDGE (e
, ei
, loc
->bb
->succs
)
6414 if (!(e
->flags
& EDGE_ABNORMAL
))
6416 gsi_insert_on_edge (e
, assert_stmt
);
6424 /* Process all the insertions registered for every name N_i registered
6425 in NEED_ASSERT_FOR. The list of assertions to be inserted are
6426 found in ASSERTS_FOR[i]. */
6429 process_assert_insertions (void)
6433 bool update_edges_p
= false;
6434 int num_asserts
= 0;
6436 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6437 dump_all_asserts (dump_file
);
6439 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
6441 assert_locus_t loc
= asserts_for
[i
];
6446 assert_locus_t next
= loc
->next
;
6447 update_edges_p
|= process_assert_insertions_for (ssa_name (i
), loc
);
6455 gsi_commit_edge_inserts ();
6457 statistics_counter_event (cfun
, "Number of ASSERT_EXPR expressions inserted",
6462 /* Traverse the flowgraph looking for conditional jumps to insert range
6463 expressions. These range expressions are meant to provide information
6464 to optimizations that need to reason in terms of value ranges. They
6465 will not be expanded into RTL. For instance, given:
6474 this pass will transform the code into:
6480 x = ASSERT_EXPR <x, x < y>
6485 y = ASSERT_EXPR <y, x >= y>
6489 The idea is that once copy and constant propagation have run, other
6490 optimizations will be able to determine what ranges of values can 'x'
6491 take in different paths of the code, simply by checking the reaching
6492 definition of 'x'. */
6495 insert_range_assertions (void)
6497 need_assert_for
= BITMAP_ALLOC (NULL
);
6498 asserts_for
= XCNEWVEC (assert_locus_t
, num_ssa_names
);
6500 calculate_dominance_info (CDI_DOMINATORS
);
6502 find_assert_locations ();
6503 if (!bitmap_empty_p (need_assert_for
))
6505 process_assert_insertions ();
6506 update_ssa (TODO_update_ssa_no_phi
);
6509 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6511 fprintf (dump_file
, "\nSSA form after inserting ASSERT_EXPRs\n");
6512 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
6516 BITMAP_FREE (need_assert_for
);
6519 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
6520 and "struct" hacks. If VRP can determine that the
6521 array subscript is a constant, check if it is outside valid
6522 range. If the array subscript is a RANGE, warn if it is
6523 non-overlapping with valid range.
6524 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
6527 check_array_ref (location_t location
, tree ref
, bool ignore_off_by_one
)
6529 value_range_t
* vr
= NULL
;
6530 tree low_sub
, up_sub
;
6531 tree low_bound
, up_bound
, up_bound_p1
;
6534 if (TREE_NO_WARNING (ref
))
6537 low_sub
= up_sub
= TREE_OPERAND (ref
, 1);
6538 up_bound
= array_ref_up_bound (ref
);
6540 /* Can not check flexible arrays. */
6542 || TREE_CODE (up_bound
) != INTEGER_CST
)
6545 /* Accesses to trailing arrays via pointers may access storage
6546 beyond the types array bounds. */
6547 base
= get_base_address (ref
);
6548 if ((warn_array_bounds
< 2)
6549 && base
&& TREE_CODE (base
) == MEM_REF
)
6551 tree cref
, next
= NULL_TREE
;
6553 if (TREE_CODE (TREE_OPERAND (ref
, 0)) != COMPONENT_REF
)
6556 cref
= TREE_OPERAND (ref
, 0);
6557 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref
, 0))) == RECORD_TYPE
)
6558 for (next
= DECL_CHAIN (TREE_OPERAND (cref
, 1));
6559 next
&& TREE_CODE (next
) != FIELD_DECL
;
6560 next
= DECL_CHAIN (next
))
6563 /* If this is the last field in a struct type or a field in a
6564 union type do not warn. */
6569 low_bound
= array_ref_low_bound (ref
);
6570 up_bound_p1
= int_const_binop (PLUS_EXPR
, up_bound
,
6571 build_int_cst (TREE_TYPE (up_bound
), 1));
6574 if (tree_int_cst_equal (low_bound
, up_bound_p1
))
6576 warning_at (location
, OPT_Warray_bounds
,
6577 "array subscript is above array bounds");
6578 TREE_NO_WARNING (ref
) = 1;
6581 if (TREE_CODE (low_sub
) == SSA_NAME
)
6583 vr
= get_value_range (low_sub
);
6584 if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
6586 low_sub
= vr
->type
== VR_RANGE
? vr
->max
: vr
->min
;
6587 up_sub
= vr
->type
== VR_RANGE
? vr
->min
: vr
->max
;
6591 if (vr
&& vr
->type
== VR_ANTI_RANGE
)
6593 if (TREE_CODE (up_sub
) == INTEGER_CST
6594 && (ignore_off_by_one
6595 ? tree_int_cst_lt (up_bound
, up_sub
)
6596 : tree_int_cst_le (up_bound
, up_sub
))
6597 && TREE_CODE (low_sub
) == INTEGER_CST
6598 && tree_int_cst_le (low_sub
, low_bound
))
6600 warning_at (location
, OPT_Warray_bounds
,
6601 "array subscript is outside array bounds");
6602 TREE_NO_WARNING (ref
) = 1;
6605 else if (TREE_CODE (up_sub
) == INTEGER_CST
6606 && (ignore_off_by_one
6607 ? !tree_int_cst_le (up_sub
, up_bound_p1
)
6608 : !tree_int_cst_le (up_sub
, up_bound
)))
6610 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6612 fprintf (dump_file
, "Array bound warning for ");
6613 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, ref
);
6614 fprintf (dump_file
, "\n");
6616 warning_at (location
, OPT_Warray_bounds
,
6617 "array subscript is above array bounds");
6618 TREE_NO_WARNING (ref
) = 1;
6620 else if (TREE_CODE (low_sub
) == INTEGER_CST
6621 && tree_int_cst_lt (low_sub
, low_bound
))
6623 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6625 fprintf (dump_file
, "Array bound warning for ");
6626 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, ref
);
6627 fprintf (dump_file
, "\n");
6629 warning_at (location
, OPT_Warray_bounds
,
6630 "array subscript is below array bounds");
6631 TREE_NO_WARNING (ref
) = 1;
6635 /* Searches if the expr T, located at LOCATION computes
6636 address of an ARRAY_REF, and call check_array_ref on it. */
6639 search_for_addr_array (tree t
, location_t location
)
6641 /* Check each ARRAY_REFs in the reference chain. */
6644 if (TREE_CODE (t
) == ARRAY_REF
)
6645 check_array_ref (location
, t
, true /*ignore_off_by_one*/);
6647 t
= TREE_OPERAND (t
, 0);
6649 while (handled_component_p (t
));
6651 if (TREE_CODE (t
) == MEM_REF
6652 && TREE_CODE (TREE_OPERAND (t
, 0)) == ADDR_EXPR
6653 && !TREE_NO_WARNING (t
))
6655 tree tem
= TREE_OPERAND (TREE_OPERAND (t
, 0), 0);
6656 tree low_bound
, up_bound
, el_sz
;
6658 if (TREE_CODE (TREE_TYPE (tem
)) != ARRAY_TYPE
6659 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem
))) == ARRAY_TYPE
6660 || !TYPE_DOMAIN (TREE_TYPE (tem
)))
6663 low_bound
= TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem
)));
6664 up_bound
= TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem
)));
6665 el_sz
= TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem
)));
6667 || TREE_CODE (low_bound
) != INTEGER_CST
6669 || TREE_CODE (up_bound
) != INTEGER_CST
6671 || TREE_CODE (el_sz
) != INTEGER_CST
)
6674 idx
= mem_ref_offset (t
);
6675 idx
= wi::sdiv_trunc (idx
, wi::to_offset (el_sz
));
6676 if (wi::lts_p (idx
, 0))
6678 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6680 fprintf (dump_file
, "Array bound warning for ");
6681 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, t
);
6682 fprintf (dump_file
, "\n");
6684 warning_at (location
, OPT_Warray_bounds
,
6685 "array subscript is below array bounds");
6686 TREE_NO_WARNING (t
) = 1;
6688 else if (wi::gts_p (idx
, (wi::to_offset (up_bound
)
6689 - wi::to_offset (low_bound
) + 1)))
6691 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6693 fprintf (dump_file
, "Array bound warning for ");
6694 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, t
);
6695 fprintf (dump_file
, "\n");
6697 warning_at (location
, OPT_Warray_bounds
,
6698 "array subscript is above array bounds");
6699 TREE_NO_WARNING (t
) = 1;
6704 /* walk_tree() callback that checks if *TP is
6705 an ARRAY_REF inside an ADDR_EXPR (in which an array
6706 subscript one outside the valid range is allowed). Call
6707 check_array_ref for each ARRAY_REF found. The location is
6711 check_array_bounds (tree
*tp
, int *walk_subtree
, void *data
)
6714 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
6715 location_t location
;
6717 if (EXPR_HAS_LOCATION (t
))
6718 location
= EXPR_LOCATION (t
);
6721 location_t
*locp
= (location_t
*) wi
->info
;
6725 *walk_subtree
= TRUE
;
6727 if (TREE_CODE (t
) == ARRAY_REF
)
6728 check_array_ref (location
, t
, false /*ignore_off_by_one*/);
6730 else if (TREE_CODE (t
) == ADDR_EXPR
)
6732 search_for_addr_array (t
, location
);
6733 *walk_subtree
= FALSE
;
6739 /* Walk over all statements of all reachable BBs and call check_array_bounds
6743 check_all_array_refs (void)
6746 gimple_stmt_iterator si
;
6748 FOR_EACH_BB_FN (bb
, cfun
)
6752 bool executable
= false;
6754 /* Skip blocks that were found to be unreachable. */
6755 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6756 executable
|= !!(e
->flags
& EDGE_EXECUTABLE
);
6760 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6762 gimple stmt
= gsi_stmt (si
);
6763 struct walk_stmt_info wi
;
6764 if (!gimple_has_location (stmt
)
6765 || is_gimple_debug (stmt
))
6768 memset (&wi
, 0, sizeof (wi
));
6769 wi
.info
= CONST_CAST (void *, (const void *)
6770 gimple_location_ptr (stmt
));
6772 walk_gimple_op (gsi_stmt (si
),
6779 /* Return true if all imm uses of VAR are either in STMT, or
6780 feed (optionally through a chain of single imm uses) GIMPLE_COND
6781 in basic block COND_BB. */
6784 all_imm_uses_in_stmt_or_feed_cond (tree var
, gimple stmt
, basic_block cond_bb
)
6786 use_operand_p use_p
, use2_p
;
6787 imm_use_iterator iter
;
6789 FOR_EACH_IMM_USE_FAST (use_p
, iter
, var
)
6790 if (USE_STMT (use_p
) != stmt
)
6792 gimple use_stmt
= USE_STMT (use_p
), use_stmt2
;
6793 if (is_gimple_debug (use_stmt
))
6795 while (is_gimple_assign (use_stmt
)
6796 && TREE_CODE (gimple_assign_lhs (use_stmt
)) == SSA_NAME
6797 && single_imm_use (gimple_assign_lhs (use_stmt
),
6798 &use2_p
, &use_stmt2
))
6799 use_stmt
= use_stmt2
;
6800 if (gimple_code (use_stmt
) != GIMPLE_COND
6801 || gimple_bb (use_stmt
) != cond_bb
)
6814 __builtin_unreachable ();
6816 x_5 = ASSERT_EXPR <x_3, ...>;
6817 If x_3 has no other immediate uses (checked by caller),
6818 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
6819 from the non-zero bitmask. */
6822 maybe_set_nonzero_bits (basic_block bb
, tree var
)
6824 edge e
= single_pred_edge (bb
);
6825 basic_block cond_bb
= e
->src
;
6826 gimple stmt
= last_stmt (cond_bb
);
6830 || gimple_code (stmt
) != GIMPLE_COND
6831 || gimple_cond_code (stmt
) != ((e
->flags
& EDGE_TRUE_VALUE
)
6832 ? EQ_EXPR
: NE_EXPR
)
6833 || TREE_CODE (gimple_cond_lhs (stmt
)) != SSA_NAME
6834 || !integer_zerop (gimple_cond_rhs (stmt
)))
6837 stmt
= SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt
));
6838 if (!is_gimple_assign (stmt
)
6839 || gimple_assign_rhs_code (stmt
) != BIT_AND_EXPR
6840 || TREE_CODE (gimple_assign_rhs2 (stmt
)) != INTEGER_CST
)
6842 if (gimple_assign_rhs1 (stmt
) != var
)
6846 if (TREE_CODE (gimple_assign_rhs1 (stmt
)) != SSA_NAME
)
6848 stmt2
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt
));
6849 if (!gimple_assign_cast_p (stmt2
)
6850 || gimple_assign_rhs1 (stmt2
) != var
6851 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2
))
6852 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt
)))
6853 != TYPE_PRECISION (TREE_TYPE (var
))))
6856 cst
= gimple_assign_rhs2 (stmt
);
6857 set_nonzero_bits (var
, wi::bit_and_not (get_nonzero_bits (var
), cst
));
6860 /* Convert range assertion expressions into the implied copies and
6861 copy propagate away the copies. Doing the trivial copy propagation
6862 here avoids the need to run the full copy propagation pass after
6865 FIXME, this will eventually lead to copy propagation removing the
6866 names that had useful range information attached to them. For
6867 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
6868 then N_i will have the range [3, +INF].
6870 However, by converting the assertion into the implied copy
6871 operation N_i = N_j, we will then copy-propagate N_j into the uses
6872 of N_i and lose the range information. We may want to hold on to
6873 ASSERT_EXPRs a little while longer as the ranges could be used in
6874 things like jump threading.
6876 The problem with keeping ASSERT_EXPRs around is that passes after
6877 VRP need to handle them appropriately.
6879 Another approach would be to make the range information a first
6880 class property of the SSA_NAME so that it can be queried from
6881 any pass. This is made somewhat more complex by the need for
6882 multiple ranges to be associated with one SSA_NAME. */
6885 remove_range_assertions (void)
6888 gimple_stmt_iterator si
;
6889 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
6890 a basic block preceeded by GIMPLE_COND branching to it and
6891 __builtin_trap, -1 if not yet checked, 0 otherwise. */
6894 /* Note that the BSI iterator bump happens at the bottom of the
6895 loop and no bump is necessary if we're removing the statement
6896 referenced by the current BSI. */
6897 FOR_EACH_BB_FN (bb
, cfun
)
6898 for (si
= gsi_after_labels (bb
), is_unreachable
= -1; !gsi_end_p (si
);)
6900 gimple stmt
= gsi_stmt (si
);
6903 if (is_gimple_assign (stmt
)
6904 && gimple_assign_rhs_code (stmt
) == ASSERT_EXPR
)
6906 tree lhs
= gimple_assign_lhs (stmt
);
6907 tree rhs
= gimple_assign_rhs1 (stmt
);
6909 tree cond
= fold (ASSERT_EXPR_COND (rhs
));
6910 use_operand_p use_p
;
6911 imm_use_iterator iter
;
6913 gcc_assert (cond
!= boolean_false_node
);
6915 var
= ASSERT_EXPR_VAR (rhs
);
6916 gcc_assert (TREE_CODE (var
) == SSA_NAME
);
6918 if (!POINTER_TYPE_P (TREE_TYPE (lhs
))
6919 && SSA_NAME_RANGE_INFO (lhs
))
6921 if (is_unreachable
== -1)
6924 if (single_pred_p (bb
)
6925 && assert_unreachable_fallthru_edge_p
6926 (single_pred_edge (bb
)))
6930 if (x_7 >= 10 && x_7 < 20)
6931 __builtin_unreachable ();
6932 x_8 = ASSERT_EXPR <x_7, ...>;
6933 if the only uses of x_7 are in the ASSERT_EXPR and
6934 in the condition. In that case, we can copy the
6935 range info from x_8 computed in this pass also
6938 && all_imm_uses_in_stmt_or_feed_cond (var
, stmt
,
6941 set_range_info (var
, SSA_NAME_RANGE_TYPE (lhs
),
6942 SSA_NAME_RANGE_INFO (lhs
)->get_min (),
6943 SSA_NAME_RANGE_INFO (lhs
)->get_max ());
6944 maybe_set_nonzero_bits (bb
, var
);
6948 /* Propagate the RHS into every use of the LHS. */
6949 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
6950 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
6951 SET_USE (use_p
, var
);
6953 /* And finally, remove the copy, it is not needed. */
6954 gsi_remove (&si
, true);
6955 release_defs (stmt
);
6959 if (!is_gimple_debug (gsi_stmt (si
)))
6967 /* Return true if STMT is interesting for VRP. */
6970 stmt_interesting_for_vrp (gimple stmt
)
6972 if (gimple_code (stmt
) == GIMPLE_PHI
)
6974 tree res
= gimple_phi_result (stmt
);
6975 return (!virtual_operand_p (res
)
6976 && (INTEGRAL_TYPE_P (TREE_TYPE (res
))
6977 || POINTER_TYPE_P (TREE_TYPE (res
))));
6979 else if (is_gimple_assign (stmt
) || is_gimple_call (stmt
))
6981 tree lhs
= gimple_get_lhs (stmt
);
6983 /* In general, assignments with virtual operands are not useful
6984 for deriving ranges, with the obvious exception of calls to
6985 builtin functions. */
6986 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
6987 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
6988 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
6989 && (is_gimple_call (stmt
)
6990 || !gimple_vuse (stmt
)))
6992 else if (is_gimple_call (stmt
) && gimple_call_internal_p (stmt
))
6993 switch (gimple_call_internal_fn (stmt
))
6995 case IFN_ADD_OVERFLOW
:
6996 case IFN_SUB_OVERFLOW
:
6997 case IFN_MUL_OVERFLOW
:
6998 /* These internal calls return _Complex integer type,
6999 but are interesting to VRP nevertheless. */
7000 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
)
7007 else if (gimple_code (stmt
) == GIMPLE_COND
7008 || gimple_code (stmt
) == GIMPLE_SWITCH
)
7015 /* Initialize local data structures for VRP. */
7018 vrp_initialize (void)
7022 values_propagated
= false;
7023 num_vr_values
= num_ssa_names
;
7024 vr_value
= XCNEWVEC (value_range_t
*, num_vr_values
);
7025 vr_phi_edge_counts
= XCNEWVEC (int, num_ssa_names
);
7027 FOR_EACH_BB_FN (bb
, cfun
)
7029 for (gphi_iterator si
= gsi_start_phis (bb
); !gsi_end_p (si
);
7032 gphi
*phi
= si
.phi ();
7033 if (!stmt_interesting_for_vrp (phi
))
7035 tree lhs
= PHI_RESULT (phi
);
7036 set_value_range_to_varying (get_value_range (lhs
));
7037 prop_set_simulate_again (phi
, false);
7040 prop_set_simulate_again (phi
, true);
7043 for (gimple_stmt_iterator si
= gsi_start_bb (bb
); !gsi_end_p (si
);
7046 gimple stmt
= gsi_stmt (si
);
7048 /* If the statement is a control insn, then we do not
7049 want to avoid simulating the statement once. Failure
7050 to do so means that those edges will never get added. */
7051 if (stmt_ends_bb_p (stmt
))
7052 prop_set_simulate_again (stmt
, true);
7053 else if (!stmt_interesting_for_vrp (stmt
))
7057 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, i
, SSA_OP_DEF
)
7058 set_value_range_to_varying (get_value_range (def
));
7059 prop_set_simulate_again (stmt
, false);
7062 prop_set_simulate_again (stmt
, true);
7067 /* Return the singleton value-range for NAME or NAME. */
7070 vrp_valueize (tree name
)
7072 if (TREE_CODE (name
) == SSA_NAME
)
7074 value_range_t
*vr
= get_value_range (name
);
7075 if (vr
->type
== VR_RANGE
7076 && (vr
->min
== vr
->max
7077 || operand_equal_p (vr
->min
, vr
->max
, 0)))
7083 /* Return the singleton value-range for NAME if that is a constant
7084 but signal to not follow SSA edges. */
7087 vrp_valueize_1 (tree name
)
7089 if (TREE_CODE (name
) == SSA_NAME
)
7091 /* If the definition may be simulated again we cannot follow
7092 this SSA edge as the SSA propagator does not necessarily
7093 re-visit the use. */
7094 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
7095 if (!gimple_nop_p (def_stmt
)
7096 && prop_simulate_again_p (def_stmt
))
7098 value_range_t
*vr
= get_value_range (name
);
7099 if (range_int_cst_singleton_p (vr
))
7105 /* Visit assignment STMT. If it produces an interesting range, record
7106 the SSA name in *OUTPUT_P. */
7108 static enum ssa_prop_result
7109 vrp_visit_assignment_or_call (gimple stmt
, tree
*output_p
)
7113 enum gimple_code code
= gimple_code (stmt
);
7114 lhs
= gimple_get_lhs (stmt
);
7116 /* We only keep track of ranges in integral and pointer types. */
7117 if (TREE_CODE (lhs
) == SSA_NAME
7118 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
7119 /* It is valid to have NULL MIN/MAX values on a type. See
7120 build_range_type. */
7121 && TYPE_MIN_VALUE (TREE_TYPE (lhs
))
7122 && TYPE_MAX_VALUE (TREE_TYPE (lhs
)))
7123 || POINTER_TYPE_P (TREE_TYPE (lhs
))))
7125 value_range_t new_vr
= VR_INITIALIZER
;
7127 /* Try folding the statement to a constant first. */
7128 tree tem
= gimple_fold_stmt_to_constant_1 (stmt
, vrp_valueize
,
7130 if (tem
&& is_gimple_min_invariant (tem
))
7131 set_value_range_to_value (&new_vr
, tem
, NULL
);
7132 /* Then dispatch to value-range extracting functions. */
7133 else if (code
== GIMPLE_CALL
)
7134 extract_range_basic (&new_vr
, stmt
);
7136 extract_range_from_assignment (&new_vr
, as_a
<gassign
*> (stmt
));
7138 if (update_value_range (lhs
, &new_vr
))
7142 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7144 fprintf (dump_file
, "Found new range for ");
7145 print_generic_expr (dump_file
, lhs
, 0);
7146 fprintf (dump_file
, ": ");
7147 dump_value_range (dump_file
, &new_vr
);
7148 fprintf (dump_file
, "\n");
7151 if (new_vr
.type
== VR_VARYING
)
7152 return SSA_PROP_VARYING
;
7154 return SSA_PROP_INTERESTING
;
7157 return SSA_PROP_NOT_INTERESTING
;
7159 else if (is_gimple_call (stmt
) && gimple_call_internal_p (stmt
))
7160 switch (gimple_call_internal_fn (stmt
))
7162 case IFN_ADD_OVERFLOW
:
7163 case IFN_SUB_OVERFLOW
:
7164 case IFN_MUL_OVERFLOW
:
7165 /* These internal calls return _Complex integer type,
7166 which VRP does not track, but the immediate uses
7167 thereof might be interesting. */
7168 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
)
7170 imm_use_iterator iter
;
7171 use_operand_p use_p
;
7172 enum ssa_prop_result res
= SSA_PROP_VARYING
;
7174 set_value_range_to_varying (get_value_range (lhs
));
7176 FOR_EACH_IMM_USE_FAST (use_p
, iter
, lhs
)
7178 gimple use_stmt
= USE_STMT (use_p
);
7179 if (!is_gimple_assign (use_stmt
))
7181 enum tree_code rhs_code
= gimple_assign_rhs_code (use_stmt
);
7182 if (rhs_code
!= REALPART_EXPR
&& rhs_code
!= IMAGPART_EXPR
)
7184 tree rhs1
= gimple_assign_rhs1 (use_stmt
);
7185 tree use_lhs
= gimple_assign_lhs (use_stmt
);
7186 if (TREE_CODE (rhs1
) != rhs_code
7187 || TREE_OPERAND (rhs1
, 0) != lhs
7188 || TREE_CODE (use_lhs
) != SSA_NAME
7189 || !stmt_interesting_for_vrp (use_stmt
)
7190 || (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs
))
7191 || !TYPE_MIN_VALUE (TREE_TYPE (use_lhs
))
7192 || !TYPE_MAX_VALUE (TREE_TYPE (use_lhs
))))
7195 /* If there is a change in the value range for any of the
7196 REALPART_EXPR/IMAGPART_EXPR immediate uses, return
7197 SSA_PROP_INTERESTING. If there are any REALPART_EXPR
7198 or IMAGPART_EXPR immediate uses, but none of them have
7199 a change in their value ranges, return
7200 SSA_PROP_NOT_INTERESTING. If there are no
7201 {REAL,IMAG}PART_EXPR uses at all,
7202 return SSA_PROP_VARYING. */
7203 value_range_t new_vr
= VR_INITIALIZER
;
7204 extract_range_basic (&new_vr
, use_stmt
);
7205 value_range_t
*old_vr
= get_value_range (use_lhs
);
7206 if (old_vr
->type
!= new_vr
.type
7207 || !vrp_operand_equal_p (old_vr
->min
, new_vr
.min
)
7208 || !vrp_operand_equal_p (old_vr
->max
, new_vr
.max
)
7209 || !vrp_bitmap_equal_p (old_vr
->equiv
, new_vr
.equiv
))
7210 res
= SSA_PROP_INTERESTING
;
7212 res
= SSA_PROP_NOT_INTERESTING
;
7213 BITMAP_FREE (new_vr
.equiv
);
7214 if (res
== SSA_PROP_INTERESTING
)
7228 /* Every other statement produces no useful ranges. */
7229 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
7230 set_value_range_to_varying (get_value_range (def
));
7232 return SSA_PROP_VARYING
;
7235 /* Helper that gets the value range of the SSA_NAME with version I
7236 or a symbolic range containing the SSA_NAME only if the value range
7237 is varying or undefined. */
7239 static inline value_range_t
7240 get_vr_for_comparison (int i
)
7242 value_range_t vr
= *get_value_range (ssa_name (i
));
7244 /* If name N_i does not have a valid range, use N_i as its own
7245 range. This allows us to compare against names that may
7246 have N_i in their ranges. */
7247 if (vr
.type
== VR_VARYING
|| vr
.type
== VR_UNDEFINED
)
7250 vr
.min
= ssa_name (i
);
7251 vr
.max
= ssa_name (i
);
7257 /* Compare all the value ranges for names equivalent to VAR with VAL
7258 using comparison code COMP. Return the same value returned by
7259 compare_range_with_value, including the setting of
7260 *STRICT_OVERFLOW_P. */
7263 compare_name_with_value (enum tree_code comp
, tree var
, tree val
,
7264 bool *strict_overflow_p
)
7270 int used_strict_overflow
;
7272 value_range_t equiv_vr
;
7274 /* Get the set of equivalences for VAR. */
7275 e
= get_value_range (var
)->equiv
;
7277 /* Start at -1. Set it to 0 if we do a comparison without relying
7278 on overflow, or 1 if all comparisons rely on overflow. */
7279 used_strict_overflow
= -1;
7281 /* Compare vars' value range with val. */
7282 equiv_vr
= get_vr_for_comparison (SSA_NAME_VERSION (var
));
7284 retval
= compare_range_with_value (comp
, &equiv_vr
, val
, &sop
);
7286 used_strict_overflow
= sop
? 1 : 0;
7288 /* If the equiv set is empty we have done all work we need to do. */
7292 && used_strict_overflow
> 0)
7293 *strict_overflow_p
= true;
7297 EXECUTE_IF_SET_IN_BITMAP (e
, 0, i
, bi
)
7299 equiv_vr
= get_vr_for_comparison (i
);
7301 t
= compare_range_with_value (comp
, &equiv_vr
, val
, &sop
);
7304 /* If we get different answers from different members
7305 of the equivalence set this check must be in a dead
7306 code region. Folding it to a trap representation
7307 would be correct here. For now just return don't-know. */
7317 used_strict_overflow
= 0;
7318 else if (used_strict_overflow
< 0)
7319 used_strict_overflow
= 1;
7324 && used_strict_overflow
> 0)
7325 *strict_overflow_p
= true;
7331 /* Given a comparison code COMP and names N1 and N2, compare all the
7332 ranges equivalent to N1 against all the ranges equivalent to N2
7333 to determine the value of N1 COMP N2. Return the same value
7334 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
7335 whether we relied on an overflow infinity in the comparison. */
7339 compare_names (enum tree_code comp
, tree n1
, tree n2
,
7340 bool *strict_overflow_p
)
7344 bitmap_iterator bi1
, bi2
;
7346 int used_strict_overflow
;
7347 static bitmap_obstack
*s_obstack
= NULL
;
7348 static bitmap s_e1
= NULL
, s_e2
= NULL
;
7350 /* Compare the ranges of every name equivalent to N1 against the
7351 ranges of every name equivalent to N2. */
7352 e1
= get_value_range (n1
)->equiv
;
7353 e2
= get_value_range (n2
)->equiv
;
7355 /* Use the fake bitmaps if e1 or e2 are not available. */
7356 if (s_obstack
== NULL
)
7358 s_obstack
= XNEW (bitmap_obstack
);
7359 bitmap_obstack_initialize (s_obstack
);
7360 s_e1
= BITMAP_ALLOC (s_obstack
);
7361 s_e2
= BITMAP_ALLOC (s_obstack
);
7368 /* Add N1 and N2 to their own set of equivalences to avoid
7369 duplicating the body of the loop just to check N1 and N2
7371 bitmap_set_bit (e1
, SSA_NAME_VERSION (n1
));
7372 bitmap_set_bit (e2
, SSA_NAME_VERSION (n2
));
7374 /* If the equivalence sets have a common intersection, then the two
7375 names can be compared without checking their ranges. */
7376 if (bitmap_intersect_p (e1
, e2
))
7378 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
7379 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
7381 return (comp
== EQ_EXPR
|| comp
== GE_EXPR
|| comp
== LE_EXPR
)
7383 : boolean_false_node
;
7386 /* Start at -1. Set it to 0 if we do a comparison without relying
7387 on overflow, or 1 if all comparisons rely on overflow. */
7388 used_strict_overflow
= -1;
7390 /* Otherwise, compare all the equivalent ranges. First, add N1 and
7391 N2 to their own set of equivalences to avoid duplicating the body
7392 of the loop just to check N1 and N2 ranges. */
7393 EXECUTE_IF_SET_IN_BITMAP (e1
, 0, i1
, bi1
)
7395 value_range_t vr1
= get_vr_for_comparison (i1
);
7397 t
= retval
= NULL_TREE
;
7398 EXECUTE_IF_SET_IN_BITMAP (e2
, 0, i2
, bi2
)
7402 value_range_t vr2
= get_vr_for_comparison (i2
);
7404 t
= compare_ranges (comp
, &vr1
, &vr2
, &sop
);
7407 /* If we get different answers from different members
7408 of the equivalence set this check must be in a dead
7409 code region. Folding it to a trap representation
7410 would be correct here. For now just return don't-know. */
7414 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
7415 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
7421 used_strict_overflow
= 0;
7422 else if (used_strict_overflow
< 0)
7423 used_strict_overflow
= 1;
7429 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
7430 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
7431 if (used_strict_overflow
> 0)
7432 *strict_overflow_p
= true;
7437 /* None of the equivalent ranges are useful in computing this
7439 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
7440 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
7444 /* Helper function for vrp_evaluate_conditional_warnv. */
7447 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code
,
7449 bool * strict_overflow_p
)
7451 value_range_t
*vr0
, *vr1
;
7453 vr0
= (TREE_CODE (op0
) == SSA_NAME
) ? get_value_range (op0
) : NULL
;
7454 vr1
= (TREE_CODE (op1
) == SSA_NAME
) ? get_value_range (op1
) : NULL
;
7456 tree res
= NULL_TREE
;
7458 res
= compare_ranges (code
, vr0
, vr1
, strict_overflow_p
);
7460 res
= compare_range_with_value (code
, vr0
, op1
, strict_overflow_p
);
7462 res
= (compare_range_with_value
7463 (swap_tree_comparison (code
), vr1
, op0
, strict_overflow_p
));
7467 /* Helper function for vrp_evaluate_conditional_warnv. */
7470 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code
, tree op0
,
7471 tree op1
, bool use_equiv_p
,
7472 bool *strict_overflow_p
, bool *only_ranges
)
7476 *only_ranges
= true;
7478 /* We only deal with integral and pointer types. */
7479 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0
))
7480 && !POINTER_TYPE_P (TREE_TYPE (op0
)))
7486 && (ret
= vrp_evaluate_conditional_warnv_with_ops_using_ranges
7487 (code
, op0
, op1
, strict_overflow_p
)))
7489 *only_ranges
= false;
7490 if (TREE_CODE (op0
) == SSA_NAME
&& TREE_CODE (op1
) == SSA_NAME
)
7491 return compare_names (code
, op0
, op1
, strict_overflow_p
);
7492 else if (TREE_CODE (op0
) == SSA_NAME
)
7493 return compare_name_with_value (code
, op0
, op1
, strict_overflow_p
);
7494 else if (TREE_CODE (op1
) == SSA_NAME
)
7495 return (compare_name_with_value
7496 (swap_tree_comparison (code
), op1
, op0
, strict_overflow_p
));
7499 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code
, op0
, op1
,
7504 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
7505 information. Return NULL if the conditional can not be evaluated.
7506 The ranges of all the names equivalent with the operands in COND
7507 will be used when trying to compute the value. If the result is
7508 based on undefined signed overflow, issue a warning if
7512 vrp_evaluate_conditional (enum tree_code code
, tree op0
, tree op1
, gimple stmt
)
7518 /* Some passes and foldings leak constants with overflow flag set
7519 into the IL. Avoid doing wrong things with these and bail out. */
7520 if ((TREE_CODE (op0
) == INTEGER_CST
7521 && TREE_OVERFLOW (op0
))
7522 || (TREE_CODE (op1
) == INTEGER_CST
7523 && TREE_OVERFLOW (op1
)))
7527 ret
= vrp_evaluate_conditional_warnv_with_ops (code
, op0
, op1
, true, &sop
,
7532 enum warn_strict_overflow_code wc
;
7533 const char* warnmsg
;
7535 if (is_gimple_min_invariant (ret
))
7537 wc
= WARN_STRICT_OVERFLOW_CONDITIONAL
;
7538 warnmsg
= G_("assuming signed overflow does not occur when "
7539 "simplifying conditional to constant");
7543 wc
= WARN_STRICT_OVERFLOW_COMPARISON
;
7544 warnmsg
= G_("assuming signed overflow does not occur when "
7545 "simplifying conditional");
7548 if (issue_strict_overflow_warning (wc
))
7550 location_t location
;
7552 if (!gimple_has_location (stmt
))
7553 location
= input_location
;
7555 location
= gimple_location (stmt
);
7556 warning_at (location
, OPT_Wstrict_overflow
, "%s", warnmsg
);
7560 if (warn_type_limits
7561 && ret
&& only_ranges
7562 && TREE_CODE_CLASS (code
) == tcc_comparison
7563 && TREE_CODE (op0
) == SSA_NAME
)
7565 /* If the comparison is being folded and the operand on the LHS
7566 is being compared against a constant value that is outside of
7567 the natural range of OP0's type, then the predicate will
7568 always fold regardless of the value of OP0. If -Wtype-limits
7569 was specified, emit a warning. */
7570 tree type
= TREE_TYPE (op0
);
7571 value_range_t
*vr0
= get_value_range (op0
);
7573 if (vr0
->type
== VR_RANGE
7574 && INTEGRAL_TYPE_P (type
)
7575 && vrp_val_is_min (vr0
->min
)
7576 && vrp_val_is_max (vr0
->max
)
7577 && is_gimple_min_invariant (op1
))
7579 location_t location
;
7581 if (!gimple_has_location (stmt
))
7582 location
= input_location
;
7584 location
= gimple_location (stmt
);
7586 warning_at (location
, OPT_Wtype_limits
,
7588 ? G_("comparison always false "
7589 "due to limited range of data type")
7590 : G_("comparison always true "
7591 "due to limited range of data type"));
7599 /* Visit conditional statement STMT. If we can determine which edge
7600 will be taken out of STMT's basic block, record it in
7601 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7602 SSA_PROP_VARYING. */
7604 static enum ssa_prop_result
7605 vrp_visit_cond_stmt (gcond
*stmt
, edge
*taken_edge_p
)
7610 *taken_edge_p
= NULL
;
7612 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7617 fprintf (dump_file
, "\nVisiting conditional with predicate: ");
7618 print_gimple_stmt (dump_file
, stmt
, 0, 0);
7619 fprintf (dump_file
, "\nWith known ranges\n");
7621 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, i
, SSA_OP_USE
)
7623 fprintf (dump_file
, "\t");
7624 print_generic_expr (dump_file
, use
, 0);
7625 fprintf (dump_file
, ": ");
7626 dump_value_range (dump_file
, vr_value
[SSA_NAME_VERSION (use
)]);
7629 fprintf (dump_file
, "\n");
7632 /* Compute the value of the predicate COND by checking the known
7633 ranges of each of its operands.
7635 Note that we cannot evaluate all the equivalent ranges here
7636 because those ranges may not yet be final and with the current
7637 propagation strategy, we cannot determine when the value ranges
7638 of the names in the equivalence set have changed.
7640 For instance, given the following code fragment
7644 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
7648 Assume that on the first visit to i_14, i_5 has the temporary
7649 range [8, 8] because the second argument to the PHI function is
7650 not yet executable. We derive the range ~[0, 0] for i_14 and the
7651 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
7652 the first time, since i_14 is equivalent to the range [8, 8], we
7653 determine that the predicate is always false.
7655 On the next round of propagation, i_13 is determined to be
7656 VARYING, which causes i_5 to drop down to VARYING. So, another
7657 visit to i_14 is scheduled. In this second visit, we compute the
7658 exact same range and equivalence set for i_14, namely ~[0, 0] and
7659 { i_5 }. But we did not have the previous range for i_5
7660 registered, so vrp_visit_assignment thinks that the range for
7661 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
7662 is not visited again, which stops propagation from visiting
7663 statements in the THEN clause of that if().
7665 To properly fix this we would need to keep the previous range
7666 value for the names in the equivalence set. This way we would've
7667 discovered that from one visit to the other i_5 changed from
7668 range [8, 8] to VR_VARYING.
7670 However, fixing this apparent limitation may not be worth the
7671 additional checking. Testing on several code bases (GCC, DLV,
7672 MICO, TRAMP3D and SPEC2000) showed that doing this results in
7673 4 more predicates folded in SPEC. */
7676 val
= vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt
),
7677 gimple_cond_lhs (stmt
),
7678 gimple_cond_rhs (stmt
),
7683 *taken_edge_p
= find_taken_edge (gimple_bb (stmt
), val
);
7686 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7688 "\nIgnoring predicate evaluation because "
7689 "it assumes that signed overflow is undefined");
7694 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7696 fprintf (dump_file
, "\nPredicate evaluates to: ");
7697 if (val
== NULL_TREE
)
7698 fprintf (dump_file
, "DON'T KNOW\n");
7700 print_generic_stmt (dump_file
, val
, 0);
7703 return (*taken_edge_p
) ? SSA_PROP_INTERESTING
: SSA_PROP_VARYING
;
7706 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
7707 that includes the value VAL. The search is restricted to the range
7708 [START_IDX, n - 1] where n is the size of VEC.
7710 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
7713 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
7714 it is placed in IDX and false is returned.
7716 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
7720 find_case_label_index (gswitch
*stmt
, size_t start_idx
, tree val
, size_t *idx
)
7722 size_t n
= gimple_switch_num_labels (stmt
);
7725 /* Find case label for minimum of the value range or the next one.
7726 At each iteration we are searching in [low, high - 1]. */
7728 for (low
= start_idx
, high
= n
; high
!= low
; )
7732 /* Note that i != high, so we never ask for n. */
7733 size_t i
= (high
+ low
) / 2;
7734 t
= gimple_switch_label (stmt
, i
);
7736 /* Cache the result of comparing CASE_LOW and val. */
7737 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
7741 /* Ranges cannot be empty. */
7750 if (CASE_HIGH (t
) != NULL
7751 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
7763 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
7764 for values between MIN and MAX. The first index is placed in MIN_IDX. The
7765 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
7766 then MAX_IDX < MIN_IDX.
7767 Returns true if the default label is not needed. */
7770 find_case_label_range (gswitch
*stmt
, tree min
, tree max
, size_t *min_idx
,
7774 bool min_take_default
= !find_case_label_index (stmt
, 1, min
, &i
);
7775 bool max_take_default
= !find_case_label_index (stmt
, i
, max
, &j
);
7779 && max_take_default
)
7781 /* Only the default case label reached.
7782 Return an empty range. */
7789 bool take_default
= min_take_default
|| max_take_default
;
7793 if (max_take_default
)
7796 /* If the case label range is continuous, we do not need
7797 the default case label. Verify that. */
7798 high
= CASE_LOW (gimple_switch_label (stmt
, i
));
7799 if (CASE_HIGH (gimple_switch_label (stmt
, i
)))
7800 high
= CASE_HIGH (gimple_switch_label (stmt
, i
));
7801 for (k
= i
+ 1; k
<= j
; ++k
)
7803 low
= CASE_LOW (gimple_switch_label (stmt
, k
));
7804 if (!integer_onep (int_const_binop (MINUS_EXPR
, low
, high
)))
7806 take_default
= true;
7810 if (CASE_HIGH (gimple_switch_label (stmt
, k
)))
7811 high
= CASE_HIGH (gimple_switch_label (stmt
, k
));
7816 return !take_default
;
7820 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
7821 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
7822 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
7823 Returns true if the default label is not needed. */
7826 find_case_label_ranges (gswitch
*stmt
, value_range_t
*vr
, size_t *min_idx1
,
7827 size_t *max_idx1
, size_t *min_idx2
,
7831 unsigned int n
= gimple_switch_num_labels (stmt
);
7833 tree case_low
, case_high
;
7834 tree min
= vr
->min
, max
= vr
->max
;
7836 gcc_checking_assert (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
);
7838 take_default
= !find_case_label_range (stmt
, min
, max
, &i
, &j
);
7840 /* Set second range to emtpy. */
7844 if (vr
->type
== VR_RANGE
)
7848 return !take_default
;
7851 /* Set first range to all case labels. */
7858 /* Make sure all the values of case labels [i , j] are contained in
7859 range [MIN, MAX]. */
7860 case_low
= CASE_LOW (gimple_switch_label (stmt
, i
));
7861 case_high
= CASE_HIGH (gimple_switch_label (stmt
, j
));
7862 if (tree_int_cst_compare (case_low
, min
) < 0)
7864 if (case_high
!= NULL_TREE
7865 && tree_int_cst_compare (max
, case_high
) < 0)
7871 /* If the range spans case labels [i, j], the corresponding anti-range spans
7872 the labels [1, i - 1] and [j + 1, n - 1]. */
7898 /* Visit switch statement STMT. If we can determine which edge
7899 will be taken out of STMT's basic block, record it in
7900 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7901 SSA_PROP_VARYING. */
7903 static enum ssa_prop_result
7904 vrp_visit_switch_stmt (gswitch
*stmt
, edge
*taken_edge_p
)
7908 size_t i
= 0, j
= 0, k
, l
;
7911 *taken_edge_p
= NULL
;
7912 op
= gimple_switch_index (stmt
);
7913 if (TREE_CODE (op
) != SSA_NAME
)
7914 return SSA_PROP_VARYING
;
7916 vr
= get_value_range (op
);
7917 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7919 fprintf (dump_file
, "\nVisiting switch expression with operand ");
7920 print_generic_expr (dump_file
, op
, 0);
7921 fprintf (dump_file
, " with known range ");
7922 dump_value_range (dump_file
, vr
);
7923 fprintf (dump_file
, "\n");
7926 if ((vr
->type
!= VR_RANGE
7927 && vr
->type
!= VR_ANTI_RANGE
)
7928 || symbolic_range_p (vr
))
7929 return SSA_PROP_VARYING
;
7931 /* Find the single edge that is taken from the switch expression. */
7932 take_default
= !find_case_label_ranges (stmt
, vr
, &i
, &j
, &k
, &l
);
7934 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
7938 gcc_assert (take_default
);
7939 val
= gimple_switch_default_label (stmt
);
7943 /* Check if labels with index i to j and maybe the default label
7944 are all reaching the same label. */
7946 val
= gimple_switch_label (stmt
, i
);
7948 && CASE_LABEL (gimple_switch_default_label (stmt
))
7949 != CASE_LABEL (val
))
7951 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7952 fprintf (dump_file
, " not a single destination for this "
7954 return SSA_PROP_VARYING
;
7956 for (++i
; i
<= j
; ++i
)
7958 if (CASE_LABEL (gimple_switch_label (stmt
, i
)) != CASE_LABEL (val
))
7960 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7961 fprintf (dump_file
, " not a single destination for this "
7963 return SSA_PROP_VARYING
;
7968 if (CASE_LABEL (gimple_switch_label (stmt
, k
)) != CASE_LABEL (val
))
7970 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7971 fprintf (dump_file
, " not a single destination for this "
7973 return SSA_PROP_VARYING
;
7978 *taken_edge_p
= find_edge (gimple_bb (stmt
),
7979 label_to_block (CASE_LABEL (val
)));
7981 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7983 fprintf (dump_file
, " will take edge to ");
7984 print_generic_stmt (dump_file
, CASE_LABEL (val
), 0);
7987 return SSA_PROP_INTERESTING
;
7991 /* Evaluate statement STMT. If the statement produces a useful range,
7992 return SSA_PROP_INTERESTING and record the SSA name with the
7993 interesting range into *OUTPUT_P.
7995 If STMT is a conditional branch and we can determine its truth
7996 value, the taken edge is recorded in *TAKEN_EDGE_P.
7998 If STMT produces a varying value, return SSA_PROP_VARYING. */
8000 static enum ssa_prop_result
8001 vrp_visit_stmt (gimple stmt
, edge
*taken_edge_p
, tree
*output_p
)
8006 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8008 fprintf (dump_file
, "\nVisiting statement:\n");
8009 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
8012 if (!stmt_interesting_for_vrp (stmt
))
8013 gcc_assert (stmt_ends_bb_p (stmt
));
8014 else if (is_gimple_assign (stmt
) || is_gimple_call (stmt
))
8015 return vrp_visit_assignment_or_call (stmt
, output_p
);
8016 else if (gimple_code (stmt
) == GIMPLE_COND
)
8017 return vrp_visit_cond_stmt (as_a
<gcond
*> (stmt
), taken_edge_p
);
8018 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
8019 return vrp_visit_switch_stmt (as_a
<gswitch
*> (stmt
), taken_edge_p
);
8021 /* All other statements produce nothing of interest for VRP, so mark
8022 their outputs varying and prevent further simulation. */
8023 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
8024 set_value_range_to_varying (get_value_range (def
));
8026 return SSA_PROP_VARYING
;
8029 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8030 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8031 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8032 possible such range. The resulting range is not canonicalized. */
8035 union_ranges (enum value_range_type
*vr0type
,
8036 tree
*vr0min
, tree
*vr0max
,
8037 enum value_range_type vr1type
,
8038 tree vr1min
, tree vr1max
)
8040 bool mineq
= operand_equal_p (*vr0min
, vr1min
, 0);
8041 bool maxeq
= operand_equal_p (*vr0max
, vr1max
, 0);
8043 /* [] is vr0, () is vr1 in the following classification comments. */
8047 if (*vr0type
== vr1type
)
8048 /* Nothing to do for equal ranges. */
8050 else if ((*vr0type
== VR_RANGE
8051 && vr1type
== VR_ANTI_RANGE
)
8052 || (*vr0type
== VR_ANTI_RANGE
8053 && vr1type
== VR_RANGE
))
8055 /* For anti-range with range union the result is varying. */
8061 else if (operand_less_p (*vr0max
, vr1min
) == 1
8062 || operand_less_p (vr1max
, *vr0min
) == 1)
8064 /* [ ] ( ) or ( ) [ ]
8065 If the ranges have an empty intersection, result of the union
8066 operation is the anti-range or if both are anti-ranges
8068 if (*vr0type
== VR_ANTI_RANGE
8069 && vr1type
== VR_ANTI_RANGE
)
8071 else if (*vr0type
== VR_ANTI_RANGE
8072 && vr1type
== VR_RANGE
)
8074 else if (*vr0type
== VR_RANGE
8075 && vr1type
== VR_ANTI_RANGE
)
8081 else if (*vr0type
== VR_RANGE
8082 && vr1type
== VR_RANGE
)
8084 /* The result is the convex hull of both ranges. */
8085 if (operand_less_p (*vr0max
, vr1min
) == 1)
8087 /* If the result can be an anti-range, create one. */
8088 if (TREE_CODE (*vr0max
) == INTEGER_CST
8089 && TREE_CODE (vr1min
) == INTEGER_CST
8090 && vrp_val_is_min (*vr0min
)
8091 && vrp_val_is_max (vr1max
))
8093 tree min
= int_const_binop (PLUS_EXPR
,
8095 build_int_cst (TREE_TYPE (*vr0max
), 1));
8096 tree max
= int_const_binop (MINUS_EXPR
,
8098 build_int_cst (TREE_TYPE (vr1min
), 1));
8099 if (!operand_less_p (max
, min
))
8101 *vr0type
= VR_ANTI_RANGE
;
8113 /* If the result can be an anti-range, create one. */
8114 if (TREE_CODE (vr1max
) == INTEGER_CST
8115 && TREE_CODE (*vr0min
) == INTEGER_CST
8116 && vrp_val_is_min (vr1min
)
8117 && vrp_val_is_max (*vr0max
))
8119 tree min
= int_const_binop (PLUS_EXPR
,
8121 build_int_cst (TREE_TYPE (vr1max
), 1));
8122 tree max
= int_const_binop (MINUS_EXPR
,
8124 build_int_cst (TREE_TYPE (*vr0min
), 1));
8125 if (!operand_less_p (max
, min
))
8127 *vr0type
= VR_ANTI_RANGE
;
8141 else if ((maxeq
|| operand_less_p (vr1max
, *vr0max
) == 1)
8142 && (mineq
|| operand_less_p (*vr0min
, vr1min
) == 1))
8144 /* [ ( ) ] or [( ) ] or [ ( )] */
8145 if (*vr0type
== VR_RANGE
8146 && vr1type
== VR_RANGE
)
8148 else if (*vr0type
== VR_ANTI_RANGE
8149 && vr1type
== VR_ANTI_RANGE
)
8155 else if (*vr0type
== VR_ANTI_RANGE
8156 && vr1type
== VR_RANGE
)
8158 /* Arbitrarily choose the right or left gap. */
8159 if (!mineq
&& TREE_CODE (vr1min
) == INTEGER_CST
)
8160 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
,
8161 build_int_cst (TREE_TYPE (vr1min
), 1));
8162 else if (!maxeq
&& TREE_CODE (vr1max
) == INTEGER_CST
)
8163 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
,
8164 build_int_cst (TREE_TYPE (vr1max
), 1));
8168 else if (*vr0type
== VR_RANGE
8169 && vr1type
== VR_ANTI_RANGE
)
8170 /* The result covers everything. */
8175 else if ((maxeq
|| operand_less_p (*vr0max
, vr1max
) == 1)
8176 && (mineq
|| operand_less_p (vr1min
, *vr0min
) == 1))
8178 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8179 if (*vr0type
== VR_RANGE
8180 && vr1type
== VR_RANGE
)
8186 else if (*vr0type
== VR_ANTI_RANGE
8187 && vr1type
== VR_ANTI_RANGE
)
8189 else if (*vr0type
== VR_RANGE
8190 && vr1type
== VR_ANTI_RANGE
)
8192 *vr0type
= VR_ANTI_RANGE
;
8193 if (!mineq
&& TREE_CODE (*vr0min
) == INTEGER_CST
)
8195 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
,
8196 build_int_cst (TREE_TYPE (*vr0min
), 1));
8199 else if (!maxeq
&& TREE_CODE (*vr0max
) == INTEGER_CST
)
8201 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
,
8202 build_int_cst (TREE_TYPE (*vr0max
), 1));
8208 else if (*vr0type
== VR_ANTI_RANGE
8209 && vr1type
== VR_RANGE
)
8210 /* The result covers everything. */
8215 else if ((operand_less_p (vr1min
, *vr0max
) == 1
8216 || operand_equal_p (vr1min
, *vr0max
, 0))
8217 && operand_less_p (*vr0min
, vr1min
) == 1
8218 && operand_less_p (*vr0max
, vr1max
) == 1)
8220 /* [ ( ] ) or [ ]( ) */
8221 if (*vr0type
== VR_RANGE
8222 && vr1type
== VR_RANGE
)
8224 else if (*vr0type
== VR_ANTI_RANGE
8225 && vr1type
== VR_ANTI_RANGE
)
8227 else if (*vr0type
== VR_ANTI_RANGE
8228 && vr1type
== VR_RANGE
)
8230 if (TREE_CODE (vr1min
) == INTEGER_CST
)
8231 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
,
8232 build_int_cst (TREE_TYPE (vr1min
), 1));
8236 else if (*vr0type
== VR_RANGE
8237 && vr1type
== VR_ANTI_RANGE
)
8239 if (TREE_CODE (*vr0max
) == INTEGER_CST
)
8242 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
,
8243 build_int_cst (TREE_TYPE (*vr0max
), 1));
8252 else if ((operand_less_p (*vr0min
, vr1max
) == 1
8253 || operand_equal_p (*vr0min
, vr1max
, 0))
8254 && operand_less_p (vr1min
, *vr0min
) == 1
8255 && operand_less_p (vr1max
, *vr0max
) == 1)
8257 /* ( [ ) ] or ( )[ ] */
8258 if (*vr0type
== VR_RANGE
8259 && vr1type
== VR_RANGE
)
8261 else if (*vr0type
== VR_ANTI_RANGE
8262 && vr1type
== VR_ANTI_RANGE
)
8264 else if (*vr0type
== VR_ANTI_RANGE
8265 && vr1type
== VR_RANGE
)
8267 if (TREE_CODE (vr1max
) == INTEGER_CST
)
8268 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
,
8269 build_int_cst (TREE_TYPE (vr1max
), 1));
8273 else if (*vr0type
== VR_RANGE
8274 && vr1type
== VR_ANTI_RANGE
)
8276 if (TREE_CODE (*vr0min
) == INTEGER_CST
)
8280 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
,
8281 build_int_cst (TREE_TYPE (*vr0min
), 1));
8295 *vr0type
= VR_VARYING
;
8296 *vr0min
= NULL_TREE
;
8297 *vr0max
= NULL_TREE
;
8300 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8301 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8302 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8303 possible such range. The resulting range is not canonicalized. */
8306 intersect_ranges (enum value_range_type
*vr0type
,
8307 tree
*vr0min
, tree
*vr0max
,
8308 enum value_range_type vr1type
,
8309 tree vr1min
, tree vr1max
)
8311 bool mineq
= operand_equal_p (*vr0min
, vr1min
, 0);
8312 bool maxeq
= operand_equal_p (*vr0max
, vr1max
, 0);
8314 /* [] is vr0, () is vr1 in the following classification comments. */
8318 if (*vr0type
== vr1type
)
8319 /* Nothing to do for equal ranges. */
8321 else if ((*vr0type
== VR_RANGE
8322 && vr1type
== VR_ANTI_RANGE
)
8323 || (*vr0type
== VR_ANTI_RANGE
8324 && vr1type
== VR_RANGE
))
8326 /* For anti-range with range intersection the result is empty. */
8327 *vr0type
= VR_UNDEFINED
;
8328 *vr0min
= NULL_TREE
;
8329 *vr0max
= NULL_TREE
;
8334 else if (operand_less_p (*vr0max
, vr1min
) == 1
8335 || operand_less_p (vr1max
, *vr0min
) == 1)
8337 /* [ ] ( ) or ( ) [ ]
8338 If the ranges have an empty intersection, the result of the
8339 intersect operation is the range for intersecting an
8340 anti-range with a range or empty when intersecting two ranges. */
8341 if (*vr0type
== VR_RANGE
8342 && vr1type
== VR_ANTI_RANGE
)
8344 else if (*vr0type
== VR_ANTI_RANGE
8345 && vr1type
== VR_RANGE
)
8351 else if (*vr0type
== VR_RANGE
8352 && vr1type
== VR_RANGE
)
8354 *vr0type
= VR_UNDEFINED
;
8355 *vr0min
= NULL_TREE
;
8356 *vr0max
= NULL_TREE
;
8358 else if (*vr0type
== VR_ANTI_RANGE
8359 && vr1type
== VR_ANTI_RANGE
)
8361 /* If the anti-ranges are adjacent to each other merge them. */
8362 if (TREE_CODE (*vr0max
) == INTEGER_CST
8363 && TREE_CODE (vr1min
) == INTEGER_CST
8364 && operand_less_p (*vr0max
, vr1min
) == 1
8365 && integer_onep (int_const_binop (MINUS_EXPR
,
8368 else if (TREE_CODE (vr1max
) == INTEGER_CST
8369 && TREE_CODE (*vr0min
) == INTEGER_CST
8370 && operand_less_p (vr1max
, *vr0min
) == 1
8371 && integer_onep (int_const_binop (MINUS_EXPR
,
8374 /* Else arbitrarily take VR0. */
8377 else if ((maxeq
|| operand_less_p (vr1max
, *vr0max
) == 1)
8378 && (mineq
|| operand_less_p (*vr0min
, vr1min
) == 1))
8380 /* [ ( ) ] or [( ) ] or [ ( )] */
8381 if (*vr0type
== VR_RANGE
8382 && vr1type
== VR_RANGE
)
8384 /* If both are ranges the result is the inner one. */
8389 else if (*vr0type
== VR_RANGE
8390 && vr1type
== VR_ANTI_RANGE
)
8392 /* Choose the right gap if the left one is empty. */
8395 if (TREE_CODE (vr1max
) == INTEGER_CST
)
8396 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
,
8397 build_int_cst (TREE_TYPE (vr1max
), 1));
8401 /* Choose the left gap if the right one is empty. */
8404 if (TREE_CODE (vr1min
) == INTEGER_CST
)
8405 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
,
8406 build_int_cst (TREE_TYPE (vr1min
), 1));
8410 /* Choose the anti-range if the range is effectively varying. */
8411 else if (vrp_val_is_min (*vr0min
)
8412 && vrp_val_is_max (*vr0max
))
8418 /* Else choose the range. */
8420 else if (*vr0type
== VR_ANTI_RANGE
8421 && vr1type
== VR_ANTI_RANGE
)
8422 /* If both are anti-ranges the result is the outer one. */
8424 else if (*vr0type
== VR_ANTI_RANGE
8425 && vr1type
== VR_RANGE
)
8427 /* The intersection is empty. */
8428 *vr0type
= VR_UNDEFINED
;
8429 *vr0min
= NULL_TREE
;
8430 *vr0max
= NULL_TREE
;
8435 else if ((maxeq
|| operand_less_p (*vr0max
, vr1max
) == 1)
8436 && (mineq
|| operand_less_p (vr1min
, *vr0min
) == 1))
8438 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8439 if (*vr0type
== VR_RANGE
8440 && vr1type
== VR_RANGE
)
8441 /* Choose the inner range. */
8443 else if (*vr0type
== VR_ANTI_RANGE
8444 && vr1type
== VR_RANGE
)
8446 /* Choose the right gap if the left is empty. */
8449 *vr0type
= VR_RANGE
;
8450 if (TREE_CODE (*vr0max
) == INTEGER_CST
)
8451 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
,
8452 build_int_cst (TREE_TYPE (*vr0max
), 1));
8457 /* Choose the left gap if the right is empty. */
8460 *vr0type
= VR_RANGE
;
8461 if (TREE_CODE (*vr0min
) == INTEGER_CST
)
8462 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
,
8463 build_int_cst (TREE_TYPE (*vr0min
), 1));
8468 /* Choose the anti-range if the range is effectively varying. */
8469 else if (vrp_val_is_min (vr1min
)
8470 && vrp_val_is_max (vr1max
))
8472 /* Else choose the range. */
8480 else if (*vr0type
== VR_ANTI_RANGE
8481 && vr1type
== VR_ANTI_RANGE
)
8483 /* If both are anti-ranges the result is the outer one. */
8488 else if (vr1type
== VR_ANTI_RANGE
8489 && *vr0type
== VR_RANGE
)
8491 /* The intersection is empty. */
8492 *vr0type
= VR_UNDEFINED
;
8493 *vr0min
= NULL_TREE
;
8494 *vr0max
= NULL_TREE
;
8499 else if ((operand_less_p (vr1min
, *vr0max
) == 1
8500 || operand_equal_p (vr1min
, *vr0max
, 0))
8501 && operand_less_p (*vr0min
, vr1min
) == 1)
8503 /* [ ( ] ) or [ ]( ) */
8504 if (*vr0type
== VR_ANTI_RANGE
8505 && vr1type
== VR_ANTI_RANGE
)
8507 else if (*vr0type
== VR_RANGE
8508 && vr1type
== VR_RANGE
)
8510 else if (*vr0type
== VR_RANGE
8511 && vr1type
== VR_ANTI_RANGE
)
8513 if (TREE_CODE (vr1min
) == INTEGER_CST
)
8514 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
,
8515 build_int_cst (TREE_TYPE (vr1min
), 1));
8519 else if (*vr0type
== VR_ANTI_RANGE
8520 && vr1type
== VR_RANGE
)
8522 *vr0type
= VR_RANGE
;
8523 if (TREE_CODE (*vr0max
) == INTEGER_CST
)
8524 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
,
8525 build_int_cst (TREE_TYPE (*vr0max
), 1));
8533 else if ((operand_less_p (*vr0min
, vr1max
) == 1
8534 || operand_equal_p (*vr0min
, vr1max
, 0))
8535 && operand_less_p (vr1min
, *vr0min
) == 1)
8537 /* ( [ ) ] or ( )[ ] */
8538 if (*vr0type
== VR_ANTI_RANGE
8539 && vr1type
== VR_ANTI_RANGE
)
8541 else if (*vr0type
== VR_RANGE
8542 && vr1type
== VR_RANGE
)
8544 else if (*vr0type
== VR_RANGE
8545 && vr1type
== VR_ANTI_RANGE
)
8547 if (TREE_CODE (vr1max
) == INTEGER_CST
)
8548 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
,
8549 build_int_cst (TREE_TYPE (vr1max
), 1));
8553 else if (*vr0type
== VR_ANTI_RANGE
8554 && vr1type
== VR_RANGE
)
8556 *vr0type
= VR_RANGE
;
8557 if (TREE_CODE (*vr0min
) == INTEGER_CST
)
8558 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
,
8559 build_int_cst (TREE_TYPE (*vr0min
), 1));
8568 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
8569 result for the intersection. That's always a conservative
8570 correct estimate. */
8576 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
8577 in *VR0. This may not be the smallest possible such range. */
8580 vrp_intersect_ranges_1 (value_range_t
*vr0
, value_range_t
*vr1
)
8582 value_range_t saved
;
8584 /* If either range is VR_VARYING the other one wins. */
8585 if (vr1
->type
== VR_VARYING
)
8587 if (vr0
->type
== VR_VARYING
)
8589 copy_value_range (vr0
, vr1
);
8593 /* When either range is VR_UNDEFINED the resulting range is
8594 VR_UNDEFINED, too. */
8595 if (vr0
->type
== VR_UNDEFINED
)
8597 if (vr1
->type
== VR_UNDEFINED
)
8599 set_value_range_to_undefined (vr0
);
8603 /* Save the original vr0 so we can return it as conservative intersection
8604 result when our worker turns things to varying. */
8606 intersect_ranges (&vr0
->type
, &vr0
->min
, &vr0
->max
,
8607 vr1
->type
, vr1
->min
, vr1
->max
);
8608 /* Make sure to canonicalize the result though as the inversion of a
8609 VR_RANGE can still be a VR_RANGE. */
8610 set_and_canonicalize_value_range (vr0
, vr0
->type
,
8611 vr0
->min
, vr0
->max
, vr0
->equiv
);
8612 /* If that failed, use the saved original VR0. */
8613 if (vr0
->type
== VR_VARYING
)
8618 /* If the result is VR_UNDEFINED there is no need to mess with
8619 the equivalencies. */
8620 if (vr0
->type
== VR_UNDEFINED
)
8623 /* The resulting set of equivalences for range intersection is the union of
8625 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
8626 bitmap_ior_into (vr0
->equiv
, vr1
->equiv
);
8627 else if (vr1
->equiv
&& !vr0
->equiv
)
8628 bitmap_copy (vr0
->equiv
, vr1
->equiv
);
8632 vrp_intersect_ranges (value_range_t
*vr0
, value_range_t
*vr1
)
8634 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8636 fprintf (dump_file
, "Intersecting\n ");
8637 dump_value_range (dump_file
, vr0
);
8638 fprintf (dump_file
, "\nand\n ");
8639 dump_value_range (dump_file
, vr1
);
8640 fprintf (dump_file
, "\n");
8642 vrp_intersect_ranges_1 (vr0
, vr1
);
8643 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8645 fprintf (dump_file
, "to\n ");
8646 dump_value_range (dump_file
, vr0
);
8647 fprintf (dump_file
, "\n");
8651 /* Meet operation for value ranges. Given two value ranges VR0 and
8652 VR1, store in VR0 a range that contains both VR0 and VR1. This
8653 may not be the smallest possible such range. */
8656 vrp_meet_1 (value_range_t
*vr0
, value_range_t
*vr1
)
8658 value_range_t saved
;
8660 if (vr0
->type
== VR_UNDEFINED
)
8662 set_value_range (vr0
, vr1
->type
, vr1
->min
, vr1
->max
, vr1
->equiv
);
8666 if (vr1
->type
== VR_UNDEFINED
)
8668 /* VR0 already has the resulting range. */
8672 if (vr0
->type
== VR_VARYING
)
8674 /* Nothing to do. VR0 already has the resulting range. */
8678 if (vr1
->type
== VR_VARYING
)
8680 set_value_range_to_varying (vr0
);
8685 union_ranges (&vr0
->type
, &vr0
->min
, &vr0
->max
,
8686 vr1
->type
, vr1
->min
, vr1
->max
);
8687 if (vr0
->type
== VR_VARYING
)
8689 /* Failed to find an efficient meet. Before giving up and setting
8690 the result to VARYING, see if we can at least derive a useful
8691 anti-range. FIXME, all this nonsense about distinguishing
8692 anti-ranges from ranges is necessary because of the odd
8693 semantics of range_includes_zero_p and friends. */
8694 if (((saved
.type
== VR_RANGE
8695 && range_includes_zero_p (saved
.min
, saved
.max
) == 0)
8696 || (saved
.type
== VR_ANTI_RANGE
8697 && range_includes_zero_p (saved
.min
, saved
.max
) == 1))
8698 && ((vr1
->type
== VR_RANGE
8699 && range_includes_zero_p (vr1
->min
, vr1
->max
) == 0)
8700 || (vr1
->type
== VR_ANTI_RANGE
8701 && range_includes_zero_p (vr1
->min
, vr1
->max
) == 1)))
8703 set_value_range_to_nonnull (vr0
, TREE_TYPE (saved
.min
));
8705 /* Since this meet operation did not result from the meeting of
8706 two equivalent names, VR0 cannot have any equivalences. */
8708 bitmap_clear (vr0
->equiv
);
8712 set_value_range_to_varying (vr0
);
8715 set_and_canonicalize_value_range (vr0
, vr0
->type
, vr0
->min
, vr0
->max
,
8717 if (vr0
->type
== VR_VARYING
)
8720 /* The resulting set of equivalences is always the intersection of
8722 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
8723 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
8724 else if (vr0
->equiv
&& !vr1
->equiv
)
8725 bitmap_clear (vr0
->equiv
);
8729 vrp_meet (value_range_t
*vr0
, value_range_t
*vr1
)
8731 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8733 fprintf (dump_file
, "Meeting\n ");
8734 dump_value_range (dump_file
, vr0
);
8735 fprintf (dump_file
, "\nand\n ");
8736 dump_value_range (dump_file
, vr1
);
8737 fprintf (dump_file
, "\n");
8739 vrp_meet_1 (vr0
, vr1
);
8740 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8742 fprintf (dump_file
, "to\n ");
8743 dump_value_range (dump_file
, vr0
);
8744 fprintf (dump_file
, "\n");
8749 /* Visit all arguments for PHI node PHI that flow through executable
8750 edges. If a valid value range can be derived from all the incoming
8751 value ranges, set a new range for the LHS of PHI. */
8753 static enum ssa_prop_result
8754 vrp_visit_phi_node (gphi
*phi
)
8757 tree lhs
= PHI_RESULT (phi
);
8758 value_range_t
*lhs_vr
= get_value_range (lhs
);
8759 value_range_t vr_result
= VR_INITIALIZER
;
8761 int edges
, old_edges
;
8764 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8766 fprintf (dump_file
, "\nVisiting PHI node: ");
8767 print_gimple_stmt (dump_file
, phi
, 0, dump_flags
);
8771 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
8773 edge e
= gimple_phi_arg_edge (phi
, i
);
8775 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8778 " Argument #%d (%d -> %d %sexecutable)\n",
8779 (int) i
, e
->src
->index
, e
->dest
->index
,
8780 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
8783 if (e
->flags
& EDGE_EXECUTABLE
)
8785 tree arg
= PHI_ARG_DEF (phi
, i
);
8786 value_range_t vr_arg
;
8790 if (TREE_CODE (arg
) == SSA_NAME
)
8792 vr_arg
= *(get_value_range (arg
));
8793 /* Do not allow equivalences or symbolic ranges to leak in from
8794 backedges. That creates invalid equivalencies.
8795 See PR53465 and PR54767. */
8796 if (e
->flags
& EDGE_DFS_BACK
)
8798 if (vr_arg
.type
== VR_RANGE
8799 || vr_arg
.type
== VR_ANTI_RANGE
)
8801 vr_arg
.equiv
= NULL
;
8802 if (symbolic_range_p (&vr_arg
))
8804 vr_arg
.type
= VR_VARYING
;
8805 vr_arg
.min
= NULL_TREE
;
8806 vr_arg
.max
= NULL_TREE
;
8812 /* If the non-backedge arguments range is VR_VARYING then
8813 we can still try recording a simple equivalence. */
8814 if (vr_arg
.type
== VR_VARYING
)
8816 vr_arg
.type
= VR_RANGE
;
8819 vr_arg
.equiv
= NULL
;
8825 if (TREE_OVERFLOW_P (arg
))
8826 arg
= drop_tree_overflow (arg
);
8828 vr_arg
.type
= VR_RANGE
;
8831 vr_arg
.equiv
= NULL
;
8834 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8836 fprintf (dump_file
, "\t");
8837 print_generic_expr (dump_file
, arg
, dump_flags
);
8838 fprintf (dump_file
, ": ");
8839 dump_value_range (dump_file
, &vr_arg
);
8840 fprintf (dump_file
, "\n");
8844 copy_value_range (&vr_result
, &vr_arg
);
8846 vrp_meet (&vr_result
, &vr_arg
);
8849 if (vr_result
.type
== VR_VARYING
)
8854 if (vr_result
.type
== VR_VARYING
)
8856 else if (vr_result
.type
== VR_UNDEFINED
)
8859 old_edges
= vr_phi_edge_counts
[SSA_NAME_VERSION (lhs
)];
8860 vr_phi_edge_counts
[SSA_NAME_VERSION (lhs
)] = edges
;
8862 /* To prevent infinite iterations in the algorithm, derive ranges
8863 when the new value is slightly bigger or smaller than the
8864 previous one. We don't do this if we have seen a new executable
8865 edge; this helps us avoid an overflow infinity for conditionals
8866 which are not in a loop. If the old value-range was VR_UNDEFINED
8867 use the updated range and iterate one more time. */
8869 && gimple_phi_num_args (phi
) > 1
8870 && edges
== old_edges
8871 && lhs_vr
->type
!= VR_UNDEFINED
)
8873 /* Compare old and new ranges, fall back to varying if the
8874 values are not comparable. */
8875 int cmp_min
= compare_values (lhs_vr
->min
, vr_result
.min
);
8878 int cmp_max
= compare_values (lhs_vr
->max
, vr_result
.max
);
8882 /* For non VR_RANGE or for pointers fall back to varying if
8883 the range changed. */
8884 if ((lhs_vr
->type
!= VR_RANGE
|| vr_result
.type
!= VR_RANGE
8885 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
8886 && (cmp_min
!= 0 || cmp_max
!= 0))
8889 /* If the new minimum is larger than than the previous one
8890 retain the old value. If the new minimum value is smaller
8891 than the previous one and not -INF go all the way to -INF + 1.
8892 In the first case, to avoid infinite bouncing between different
8893 minimums, and in the other case to avoid iterating millions of
8894 times to reach -INF. Going to -INF + 1 also lets the following
8895 iteration compute whether there will be any overflow, at the
8896 expense of one additional iteration. */
8898 vr_result
.min
= lhs_vr
->min
;
8899 else if (cmp_min
> 0
8900 && !vrp_val_is_min (vr_result
.min
))
8902 = int_const_binop (PLUS_EXPR
,
8903 vrp_val_min (TREE_TYPE (vr_result
.min
)),
8904 build_int_cst (TREE_TYPE (vr_result
.min
), 1));
8906 /* Similarly for the maximum value. */
8908 vr_result
.max
= lhs_vr
->max
;
8909 else if (cmp_max
< 0
8910 && !vrp_val_is_max (vr_result
.max
))
8912 = int_const_binop (MINUS_EXPR
,
8913 vrp_val_max (TREE_TYPE (vr_result
.min
)),
8914 build_int_cst (TREE_TYPE (vr_result
.min
), 1));
8916 /* If we dropped either bound to +-INF then if this is a loop
8917 PHI node SCEV may known more about its value-range. */
8918 if ((cmp_min
> 0 || cmp_min
< 0
8919 || cmp_max
< 0 || cmp_max
> 0)
8920 && (l
= loop_containing_stmt (phi
))
8921 && l
->header
== gimple_bb (phi
))
8922 adjust_range_with_scev (&vr_result
, l
, phi
, lhs
);
8924 /* If we will end up with a (-INF, +INF) range, set it to
8925 VARYING. Same if the previous max value was invalid for
8926 the type and we end up with vr_result.min > vr_result.max. */
8927 if ((vrp_val_is_max (vr_result
.max
)
8928 && vrp_val_is_min (vr_result
.min
))
8929 || compare_values (vr_result
.min
,
8934 /* If the new range is different than the previous value, keep
8937 if (update_value_range (lhs
, &vr_result
))
8939 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8941 fprintf (dump_file
, "Found new range for ");
8942 print_generic_expr (dump_file
, lhs
, 0);
8943 fprintf (dump_file
, ": ");
8944 dump_value_range (dump_file
, &vr_result
);
8945 fprintf (dump_file
, "\n");
8948 if (vr_result
.type
== VR_VARYING
)
8949 return SSA_PROP_VARYING
;
8951 return SSA_PROP_INTERESTING
;
8954 /* Nothing changed, don't add outgoing edges. */
8955 return SSA_PROP_NOT_INTERESTING
;
8957 /* No match found. Set the LHS to VARYING. */
8959 set_value_range_to_varying (lhs_vr
);
8960 return SSA_PROP_VARYING
;
8963 /* Simplify boolean operations if the source is known
8964 to be already a boolean. */
8966 simplify_truth_ops_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
8968 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
8970 bool need_conversion
;
8972 /* We handle only !=/== case here. */
8973 gcc_assert (rhs_code
== EQ_EXPR
|| rhs_code
== NE_EXPR
);
8975 op0
= gimple_assign_rhs1 (stmt
);
8976 if (!op_with_boolean_value_range_p (op0
))
8979 op1
= gimple_assign_rhs2 (stmt
);
8980 if (!op_with_boolean_value_range_p (op1
))
8983 /* Reduce number of cases to handle to NE_EXPR. As there is no
8984 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
8985 if (rhs_code
== EQ_EXPR
)
8987 if (TREE_CODE (op1
) == INTEGER_CST
)
8988 op1
= int_const_binop (BIT_XOR_EXPR
, op1
,
8989 build_int_cst (TREE_TYPE (op1
), 1));
8994 lhs
= gimple_assign_lhs (stmt
);
8996 = !useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (op0
));
8998 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
9000 && !TYPE_UNSIGNED (TREE_TYPE (op0
))
9001 && TYPE_PRECISION (TREE_TYPE (op0
)) == 1
9002 && TYPE_PRECISION (TREE_TYPE (lhs
)) > 1)
9005 /* For A != 0 we can substitute A itself. */
9006 if (integer_zerop (op1
))
9007 gimple_assign_set_rhs_with_ops (gsi
,
9009 ? NOP_EXPR
: TREE_CODE (op0
), op0
);
9010 /* For A != B we substitute A ^ B. Either with conversion. */
9011 else if (need_conversion
)
9013 tree tem
= make_ssa_name (TREE_TYPE (op0
));
9015 = gimple_build_assign (tem
, BIT_XOR_EXPR
, op0
, op1
);
9016 gsi_insert_before (gsi
, newop
, GSI_SAME_STMT
);
9017 gimple_assign_set_rhs_with_ops (gsi
, NOP_EXPR
, tem
);
9021 gimple_assign_set_rhs_with_ops (gsi
, BIT_XOR_EXPR
, op0
, op1
);
9022 update_stmt (gsi_stmt (*gsi
));
9027 /* Simplify a division or modulo operator to a right shift or
9028 bitwise and if the first operand is unsigned or is greater
9029 than zero and the second operand is an exact power of two.
9030 For TRUNC_MOD_EXPR op0 % op1 with constant op1, optimize it
9031 into just op0 if op0's range is known to be a subset of
9032 [-op1 + 1, op1 - 1] for signed and [0, op1 - 1] for unsigned
9036 simplify_div_or_mod_using_ranges (gimple stmt
)
9038 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
9040 tree op0
= gimple_assign_rhs1 (stmt
);
9041 tree op1
= gimple_assign_rhs2 (stmt
);
9042 value_range_t
*vr
= get_value_range (op0
);
9044 if (rhs_code
== TRUNC_MOD_EXPR
9045 && TREE_CODE (op1
) == INTEGER_CST
9046 && tree_int_cst_sgn (op1
) == 1
9047 && range_int_cst_p (vr
)
9048 && tree_int_cst_lt (vr
->max
, op1
))
9050 if (TYPE_UNSIGNED (TREE_TYPE (op0
))
9051 || tree_int_cst_sgn (vr
->min
) >= 0
9052 || tree_int_cst_lt (fold_unary (NEGATE_EXPR
, TREE_TYPE (op1
), op1
),
9055 /* If op0 already has the range op0 % op1 has,
9056 then TRUNC_MOD_EXPR won't change anything. */
9057 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
9058 gimple_assign_set_rhs_from_tree (&gsi
, op0
);
9064 if (!integer_pow2p (op1
))
9067 if (TYPE_UNSIGNED (TREE_TYPE (op0
)))
9069 val
= integer_one_node
;
9075 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
, &sop
);
9079 && integer_onep (val
)
9080 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
9082 location_t location
;
9084 if (!gimple_has_location (stmt
))
9085 location
= input_location
;
9087 location
= gimple_location (stmt
);
9088 warning_at (location
, OPT_Wstrict_overflow
,
9089 "assuming signed overflow does not occur when "
9090 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
9094 if (val
&& integer_onep (val
))
9098 if (rhs_code
== TRUNC_DIV_EXPR
)
9100 t
= build_int_cst (integer_type_node
, tree_log2 (op1
));
9101 gimple_assign_set_rhs_code (stmt
, RSHIFT_EXPR
);
9102 gimple_assign_set_rhs1 (stmt
, op0
);
9103 gimple_assign_set_rhs2 (stmt
, t
);
9107 t
= build_int_cst (TREE_TYPE (op1
), 1);
9108 t
= int_const_binop (MINUS_EXPR
, op1
, t
);
9109 t
= fold_convert (TREE_TYPE (op0
), t
);
9111 gimple_assign_set_rhs_code (stmt
, BIT_AND_EXPR
);
9112 gimple_assign_set_rhs1 (stmt
, op0
);
9113 gimple_assign_set_rhs2 (stmt
, t
);
9123 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
9124 ABS_EXPR. If the operand is <= 0, then simplify the
9125 ABS_EXPR into a NEGATE_EXPR. */
9128 simplify_abs_using_ranges (gimple stmt
)
9131 tree op
= gimple_assign_rhs1 (stmt
);
9132 tree type
= TREE_TYPE (op
);
9133 value_range_t
*vr
= get_value_range (op
);
9135 if (TYPE_UNSIGNED (type
))
9137 val
= integer_zero_node
;
9143 val
= compare_range_with_value (LE_EXPR
, vr
, integer_zero_node
, &sop
);
9147 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
,
9152 if (integer_zerop (val
))
9153 val
= integer_one_node
;
9154 else if (integer_onep (val
))
9155 val
= integer_zero_node
;
9160 && (integer_onep (val
) || integer_zerop (val
)))
9162 if (sop
&& issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
9164 location_t location
;
9166 if (!gimple_has_location (stmt
))
9167 location
= input_location
;
9169 location
= gimple_location (stmt
);
9170 warning_at (location
, OPT_Wstrict_overflow
,
9171 "assuming signed overflow does not occur when "
9172 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
9175 gimple_assign_set_rhs1 (stmt
, op
);
9176 if (integer_onep (val
))
9177 gimple_assign_set_rhs_code (stmt
, NEGATE_EXPR
);
9179 gimple_assign_set_rhs_code (stmt
, SSA_NAME
);
9188 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
9189 If all the bits that are being cleared by & are already
9190 known to be zero from VR, or all the bits that are being
9191 set by | are already known to be one from VR, the bit
9192 operation is redundant. */
9195 simplify_bit_ops_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
9197 tree op0
= gimple_assign_rhs1 (stmt
);
9198 tree op1
= gimple_assign_rhs2 (stmt
);
9199 tree op
= NULL_TREE
;
9200 value_range_t vr0
= VR_INITIALIZER
;
9201 value_range_t vr1
= VR_INITIALIZER
;
9202 wide_int may_be_nonzero0
, may_be_nonzero1
;
9203 wide_int must_be_nonzero0
, must_be_nonzero1
;
9206 if (TREE_CODE (op0
) == SSA_NAME
)
9207 vr0
= *(get_value_range (op0
));
9208 else if (is_gimple_min_invariant (op0
))
9209 set_value_range_to_value (&vr0
, op0
, NULL
);
9213 if (TREE_CODE (op1
) == SSA_NAME
)
9214 vr1
= *(get_value_range (op1
));
9215 else if (is_gimple_min_invariant (op1
))
9216 set_value_range_to_value (&vr1
, op1
, NULL
);
9220 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op0
), &vr0
, &may_be_nonzero0
,
9223 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op1
), &vr1
, &may_be_nonzero1
,
9227 switch (gimple_assign_rhs_code (stmt
))
9230 mask
= may_be_nonzero0
.and_not (must_be_nonzero1
);
9236 mask
= may_be_nonzero1
.and_not (must_be_nonzero0
);
9244 mask
= may_be_nonzero0
.and_not (must_be_nonzero1
);
9250 mask
= may_be_nonzero1
.and_not (must_be_nonzero0
);
9261 if (op
== NULL_TREE
)
9264 gimple_assign_set_rhs_with_ops (gsi
, TREE_CODE (op
), op
);
9265 update_stmt (gsi_stmt (*gsi
));
9269 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
9270 a known value range VR.
9272 If there is one and only one value which will satisfy the
9273 conditional, then return that value. Else return NULL.
9275 If signed overflow must be undefined for the value to satisfy
9276 the conditional, then set *STRICT_OVERFLOW_P to true. */
9279 test_for_singularity (enum tree_code cond_code
, tree op0
,
9280 tree op1
, value_range_t
*vr
,
9281 bool *strict_overflow_p
)
9286 /* Extract minimum/maximum values which satisfy the
9287 the conditional as it was written. */
9288 if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
9290 /* This should not be negative infinity; there is no overflow
9292 min
= TYPE_MIN_VALUE (TREE_TYPE (op0
));
9295 if (cond_code
== LT_EXPR
&& !is_overflow_infinity (max
))
9297 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
9298 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (op0
), max
, one
);
9300 TREE_NO_WARNING (max
) = 1;
9303 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
9305 /* This should not be positive infinity; there is no overflow
9307 max
= TYPE_MAX_VALUE (TREE_TYPE (op0
));
9310 if (cond_code
== GT_EXPR
&& !is_overflow_infinity (min
))
9312 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
9313 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (op0
), min
, one
);
9315 TREE_NO_WARNING (min
) = 1;
9319 /* Now refine the minimum and maximum values using any
9320 value range information we have for op0. */
9323 if (compare_values (vr
->min
, min
) == 1)
9325 if (compare_values (vr
->max
, max
) == -1)
9328 /* If the new min/max values have converged to a single value,
9329 then there is only one value which can satisfy the condition,
9330 return that value. */
9331 if (operand_equal_p (min
, max
, 0) && is_gimple_min_invariant (min
))
9333 if ((cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
9334 && is_overflow_infinity (vr
->max
))
9335 *strict_overflow_p
= true;
9336 if ((cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
9337 && is_overflow_infinity (vr
->min
))
9338 *strict_overflow_p
= true;
9346 /* Return whether the value range *VR fits in an integer type specified
9347 by PRECISION and UNSIGNED_P. */
9350 range_fits_type_p (value_range_t
*vr
, unsigned dest_precision
, signop dest_sgn
)
9353 unsigned src_precision
;
9357 /* We can only handle integral and pointer types. */
9358 src_type
= TREE_TYPE (vr
->min
);
9359 if (!INTEGRAL_TYPE_P (src_type
)
9360 && !POINTER_TYPE_P (src_type
))
9363 /* An extension is fine unless VR is SIGNED and dest_sgn is UNSIGNED,
9364 and so is an identity transform. */
9365 src_precision
= TYPE_PRECISION (TREE_TYPE (vr
->min
));
9366 src_sgn
= TYPE_SIGN (src_type
);
9367 if ((src_precision
< dest_precision
9368 && !(dest_sgn
== UNSIGNED
&& src_sgn
== SIGNED
))
9369 || (src_precision
== dest_precision
&& src_sgn
== dest_sgn
))
9372 /* Now we can only handle ranges with constant bounds. */
9373 if (vr
->type
!= VR_RANGE
9374 || TREE_CODE (vr
->min
) != INTEGER_CST
9375 || TREE_CODE (vr
->max
) != INTEGER_CST
)
9378 /* For sign changes, the MSB of the wide_int has to be clear.
9379 An unsigned value with its MSB set cannot be represented by
9380 a signed wide_int, while a negative value cannot be represented
9381 by an unsigned wide_int. */
9382 if (src_sgn
!= dest_sgn
9383 && (wi::lts_p (vr
->min
, 0) || wi::lts_p (vr
->max
, 0)))
9386 /* Then we can perform the conversion on both ends and compare
9387 the result for equality. */
9388 tem
= wi::ext (wi::to_widest (vr
->min
), dest_precision
, dest_sgn
);
9389 if (tem
!= wi::to_widest (vr
->min
))
9391 tem
= wi::ext (wi::to_widest (vr
->max
), dest_precision
, dest_sgn
);
9392 if (tem
!= wi::to_widest (vr
->max
))
9398 /* Simplify a conditional using a relational operator to an equality
9399 test if the range information indicates only one value can satisfy
9400 the original conditional. */
9403 simplify_cond_using_ranges (gcond
*stmt
)
9405 tree op0
= gimple_cond_lhs (stmt
);
9406 tree op1
= gimple_cond_rhs (stmt
);
9407 enum tree_code cond_code
= gimple_cond_code (stmt
);
9409 if (cond_code
!= NE_EXPR
9410 && cond_code
!= EQ_EXPR
9411 && TREE_CODE (op0
) == SSA_NAME
9412 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
9413 && is_gimple_min_invariant (op1
))
9415 value_range_t
*vr
= get_value_range (op0
);
9417 /* If we have range information for OP0, then we might be
9418 able to simplify this conditional. */
9419 if (vr
->type
== VR_RANGE
)
9421 enum warn_strict_overflow_code wc
= WARN_STRICT_OVERFLOW_COMPARISON
;
9423 tree new_tree
= test_for_singularity (cond_code
, op0
, op1
, vr
, &sop
);
9426 && (!sop
|| TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0
))))
9430 fprintf (dump_file
, "Simplified relational ");
9431 print_gimple_stmt (dump_file
, stmt
, 0, 0);
9432 fprintf (dump_file
, " into ");
9435 gimple_cond_set_code (stmt
, EQ_EXPR
);
9436 gimple_cond_set_lhs (stmt
, op0
);
9437 gimple_cond_set_rhs (stmt
, new_tree
);
9443 print_gimple_stmt (dump_file
, stmt
, 0, 0);
9444 fprintf (dump_file
, "\n");
9447 if (sop
&& issue_strict_overflow_warning (wc
))
9449 location_t location
= input_location
;
9450 if (gimple_has_location (stmt
))
9451 location
= gimple_location (stmt
);
9453 warning_at (location
, OPT_Wstrict_overflow
,
9454 "assuming signed overflow does not occur when "
9455 "simplifying conditional");
9461 /* Try again after inverting the condition. We only deal
9462 with integral types here, so no need to worry about
9463 issues with inverting FP comparisons. */
9465 new_tree
= test_for_singularity
9466 (invert_tree_comparison (cond_code
, false),
9467 op0
, op1
, vr
, &sop
);
9470 && (!sop
|| TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0
))))
9474 fprintf (dump_file
, "Simplified relational ");
9475 print_gimple_stmt (dump_file
, stmt
, 0, 0);
9476 fprintf (dump_file
, " into ");
9479 gimple_cond_set_code (stmt
, NE_EXPR
);
9480 gimple_cond_set_lhs (stmt
, op0
);
9481 gimple_cond_set_rhs (stmt
, new_tree
);
9487 print_gimple_stmt (dump_file
, stmt
, 0, 0);
9488 fprintf (dump_file
, "\n");
9491 if (sop
&& issue_strict_overflow_warning (wc
))
9493 location_t location
= input_location
;
9494 if (gimple_has_location (stmt
))
9495 location
= gimple_location (stmt
);
9497 warning_at (location
, OPT_Wstrict_overflow
,
9498 "assuming signed overflow does not occur when "
9499 "simplifying conditional");
9507 /* If we have a comparison of an SSA_NAME (OP0) against a constant,
9508 see if OP0 was set by a type conversion where the source of
9509 the conversion is another SSA_NAME with a range that fits
9510 into the range of OP0's type.
9512 If so, the conversion is redundant as the earlier SSA_NAME can be
9513 used for the comparison directly if we just massage the constant in the
9515 if (TREE_CODE (op0
) == SSA_NAME
9516 && TREE_CODE (op1
) == INTEGER_CST
)
9518 gimple def_stmt
= SSA_NAME_DEF_STMT (op0
);
9521 if (!is_gimple_assign (def_stmt
)
9522 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
)))
9525 innerop
= gimple_assign_rhs1 (def_stmt
);
9527 if (TREE_CODE (innerop
) == SSA_NAME
9528 && !POINTER_TYPE_P (TREE_TYPE (innerop
)))
9530 value_range_t
*vr
= get_value_range (innerop
);
9532 if (range_int_cst_p (vr
)
9533 && range_fits_type_p (vr
,
9534 TYPE_PRECISION (TREE_TYPE (op0
)),
9535 TYPE_SIGN (TREE_TYPE (op0
)))
9536 && int_fits_type_p (op1
, TREE_TYPE (innerop
))
9537 /* The range must not have overflowed, or if it did overflow
9538 we must not be wrapping/trapping overflow and optimizing
9539 with strict overflow semantics. */
9540 && ((!is_negative_overflow_infinity (vr
->min
)
9541 && !is_positive_overflow_infinity (vr
->max
))
9542 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (innerop
))))
9544 /* If the range overflowed and the user has asked for warnings
9545 when strict overflow semantics were used to optimize code,
9546 issue an appropriate warning. */
9547 if (cond_code
!= EQ_EXPR
&& cond_code
!= NE_EXPR
9548 && (is_negative_overflow_infinity (vr
->min
)
9549 || is_positive_overflow_infinity (vr
->max
))
9550 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_CONDITIONAL
))
9552 location_t location
;
9554 if (!gimple_has_location (stmt
))
9555 location
= input_location
;
9557 location
= gimple_location (stmt
);
9558 warning_at (location
, OPT_Wstrict_overflow
,
9559 "assuming signed overflow does not occur when "
9560 "simplifying conditional");
9563 tree newconst
= fold_convert (TREE_TYPE (innerop
), op1
);
9564 gimple_cond_set_lhs (stmt
, innerop
);
9565 gimple_cond_set_rhs (stmt
, newconst
);
9574 /* Simplify a switch statement using the value range of the switch
9578 simplify_switch_using_ranges (gswitch
*stmt
)
9580 tree op
= gimple_switch_index (stmt
);
9585 size_t i
= 0, j
= 0, n
, n2
;
9588 size_t k
= 1, l
= 0;
9590 if (TREE_CODE (op
) == SSA_NAME
)
9592 vr
= get_value_range (op
);
9594 /* We can only handle integer ranges. */
9595 if ((vr
->type
!= VR_RANGE
9596 && vr
->type
!= VR_ANTI_RANGE
)
9597 || symbolic_range_p (vr
))
9600 /* Find case label for min/max of the value range. */
9601 take_default
= !find_case_label_ranges (stmt
, vr
, &i
, &j
, &k
, &l
);
9603 else if (TREE_CODE (op
) == INTEGER_CST
)
9605 take_default
= !find_case_label_index (stmt
, 1, op
, &i
);
9619 n
= gimple_switch_num_labels (stmt
);
9621 /* Bail out if this is just all edges taken. */
9627 /* Build a new vector of taken case labels. */
9628 vec2
= make_tree_vec (j
- i
+ 1 + l
- k
+ 1 + (int)take_default
);
9631 /* Add the default edge, if necessary. */
9633 TREE_VEC_ELT (vec2
, n2
++) = gimple_switch_default_label (stmt
);
9635 for (; i
<= j
; ++i
, ++n2
)
9636 TREE_VEC_ELT (vec2
, n2
) = gimple_switch_label (stmt
, i
);
9638 for (; k
<= l
; ++k
, ++n2
)
9639 TREE_VEC_ELT (vec2
, n2
) = gimple_switch_label (stmt
, k
);
9641 /* Mark needed edges. */
9642 for (i
= 0; i
< n2
; ++i
)
9644 e
= find_edge (gimple_bb (stmt
),
9645 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2
, i
))));
9646 e
->aux
= (void *)-1;
9649 /* Queue not needed edges for later removal. */
9650 FOR_EACH_EDGE (e
, ei
, gimple_bb (stmt
)->succs
)
9652 if (e
->aux
== (void *)-1)
9658 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
9660 fprintf (dump_file
, "removing unreachable case label\n");
9662 to_remove_edges
.safe_push (e
);
9663 e
->flags
&= ~EDGE_EXECUTABLE
;
9666 /* And queue an update for the stmt. */
9669 to_update_switch_stmts
.safe_push (su
);
9673 /* Simplify an integral conversion from an SSA name in STMT. */
9676 simplify_conversion_using_ranges (gimple stmt
)
9678 tree innerop
, middleop
, finaltype
;
9680 value_range_t
*innervr
;
9681 signop inner_sgn
, middle_sgn
, final_sgn
;
9682 unsigned inner_prec
, middle_prec
, final_prec
;
9683 widest_int innermin
, innermed
, innermax
, middlemin
, middlemed
, middlemax
;
9685 finaltype
= TREE_TYPE (gimple_assign_lhs (stmt
));
9686 if (!INTEGRAL_TYPE_P (finaltype
))
9688 middleop
= gimple_assign_rhs1 (stmt
);
9689 def_stmt
= SSA_NAME_DEF_STMT (middleop
);
9690 if (!is_gimple_assign (def_stmt
)
9691 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
)))
9693 innerop
= gimple_assign_rhs1 (def_stmt
);
9694 if (TREE_CODE (innerop
) != SSA_NAME
9695 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop
))
9698 /* Get the value-range of the inner operand. */
9699 innervr
= get_value_range (innerop
);
9700 if (innervr
->type
!= VR_RANGE
9701 || TREE_CODE (innervr
->min
) != INTEGER_CST
9702 || TREE_CODE (innervr
->max
) != INTEGER_CST
)
9705 /* Simulate the conversion chain to check if the result is equal if
9706 the middle conversion is removed. */
9707 innermin
= wi::to_widest (innervr
->min
);
9708 innermax
= wi::to_widest (innervr
->max
);
9710 inner_prec
= TYPE_PRECISION (TREE_TYPE (innerop
));
9711 middle_prec
= TYPE_PRECISION (TREE_TYPE (middleop
));
9712 final_prec
= TYPE_PRECISION (finaltype
);
9714 /* If the first conversion is not injective, the second must not
9716 if (wi::gtu_p (innermax
- innermin
,
9717 wi::mask
<widest_int
> (middle_prec
, false))
9718 && middle_prec
< final_prec
)
9720 /* We also want a medium value so that we can track the effect that
9721 narrowing conversions with sign change have. */
9722 inner_sgn
= TYPE_SIGN (TREE_TYPE (innerop
));
9723 if (inner_sgn
== UNSIGNED
)
9724 innermed
= wi::shifted_mask
<widest_int
> (1, inner_prec
- 1, false);
9727 if (wi::cmp (innermin
, innermed
, inner_sgn
) >= 0
9728 || wi::cmp (innermed
, innermax
, inner_sgn
) >= 0)
9729 innermed
= innermin
;
9731 middle_sgn
= TYPE_SIGN (TREE_TYPE (middleop
));
9732 middlemin
= wi::ext (innermin
, middle_prec
, middle_sgn
);
9733 middlemed
= wi::ext (innermed
, middle_prec
, middle_sgn
);
9734 middlemax
= wi::ext (innermax
, middle_prec
, middle_sgn
);
9736 /* Require that the final conversion applied to both the original
9737 and the intermediate range produces the same result. */
9738 final_sgn
= TYPE_SIGN (finaltype
);
9739 if (wi::ext (middlemin
, final_prec
, final_sgn
)
9740 != wi::ext (innermin
, final_prec
, final_sgn
)
9741 || wi::ext (middlemed
, final_prec
, final_sgn
)
9742 != wi::ext (innermed
, final_prec
, final_sgn
)
9743 || wi::ext (middlemax
, final_prec
, final_sgn
)
9744 != wi::ext (innermax
, final_prec
, final_sgn
))
9747 gimple_assign_set_rhs1 (stmt
, innerop
);
9752 /* Simplify a conversion from integral SSA name to float in STMT. */
9755 simplify_float_conversion_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
9757 tree rhs1
= gimple_assign_rhs1 (stmt
);
9758 value_range_t
*vr
= get_value_range (rhs1
);
9759 machine_mode fltmode
= TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt
)));
9764 /* We can only handle constant ranges. */
9765 if (vr
->type
!= VR_RANGE
9766 || TREE_CODE (vr
->min
) != INTEGER_CST
9767 || TREE_CODE (vr
->max
) != INTEGER_CST
)
9770 /* First check if we can use a signed type in place of an unsigned. */
9771 if (TYPE_UNSIGNED (TREE_TYPE (rhs1
))
9772 && (can_float_p (fltmode
, TYPE_MODE (TREE_TYPE (rhs1
)), 0)
9773 != CODE_FOR_nothing
)
9774 && range_fits_type_p (vr
, TYPE_PRECISION (TREE_TYPE (rhs1
)), SIGNED
))
9775 mode
= TYPE_MODE (TREE_TYPE (rhs1
));
9776 /* If we can do the conversion in the current input mode do nothing. */
9777 else if (can_float_p (fltmode
, TYPE_MODE (TREE_TYPE (rhs1
)),
9778 TYPE_UNSIGNED (TREE_TYPE (rhs1
))) != CODE_FOR_nothing
)
9780 /* Otherwise search for a mode we can use, starting from the narrowest
9781 integer mode available. */
9784 mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
9787 /* If we cannot do a signed conversion to float from mode
9788 or if the value-range does not fit in the signed type
9789 try with a wider mode. */
9790 if (can_float_p (fltmode
, mode
, 0) != CODE_FOR_nothing
9791 && range_fits_type_p (vr
, GET_MODE_PRECISION (mode
), SIGNED
))
9794 mode
= GET_MODE_WIDER_MODE (mode
);
9795 /* But do not widen the input. Instead leave that to the
9796 optabs expansion code. */
9797 if (GET_MODE_PRECISION (mode
) > TYPE_PRECISION (TREE_TYPE (rhs1
)))
9800 while (mode
!= VOIDmode
);
9801 if (mode
== VOIDmode
)
9805 /* It works, insert a truncation or sign-change before the
9806 float conversion. */
9807 tem
= make_ssa_name (build_nonstandard_integer_type
9808 (GET_MODE_PRECISION (mode
), 0));
9809 conv
= gimple_build_assign (tem
, NOP_EXPR
, rhs1
);
9810 gsi_insert_before (gsi
, conv
, GSI_SAME_STMT
);
9811 gimple_assign_set_rhs1 (stmt
, tem
);
9817 /* Simplify an internal fn call using ranges if possible. */
9820 simplify_internal_call_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
9822 enum tree_code subcode
;
9823 bool is_ubsan
= false;
9825 switch (gimple_call_internal_fn (stmt
))
9827 case IFN_UBSAN_CHECK_ADD
:
9828 subcode
= PLUS_EXPR
;
9831 case IFN_UBSAN_CHECK_SUB
:
9832 subcode
= MINUS_EXPR
;
9835 case IFN_UBSAN_CHECK_MUL
:
9836 subcode
= MULT_EXPR
;
9839 case IFN_ADD_OVERFLOW
:
9840 subcode
= PLUS_EXPR
;
9842 case IFN_SUB_OVERFLOW
:
9843 subcode
= MINUS_EXPR
;
9845 case IFN_MUL_OVERFLOW
:
9846 subcode
= MULT_EXPR
;
9852 tree op0
= gimple_call_arg (stmt
, 0);
9853 tree op1
= gimple_call_arg (stmt
, 1);
9856 type
= TREE_TYPE (op0
);
9857 else if (gimple_call_lhs (stmt
) == NULL_TREE
)
9860 type
= TREE_TYPE (TREE_TYPE (gimple_call_lhs (stmt
)));
9861 if (!check_for_binary_op_overflow (subcode
, type
, op0
, op1
, &ovf
)
9862 || (is_ubsan
&& ovf
))
9866 location_t loc
= gimple_location (stmt
);
9868 g
= gimple_build_assign (gimple_call_lhs (stmt
), subcode
, op0
, op1
);
9871 int prec
= TYPE_PRECISION (type
);
9874 || !useless_type_conversion_p (type
, TREE_TYPE (op0
))
9875 || !useless_type_conversion_p (type
, TREE_TYPE (op1
)))
9876 utype
= build_nonstandard_integer_type (prec
, 1);
9877 if (TREE_CODE (op0
) == INTEGER_CST
)
9878 op0
= fold_convert (utype
, op0
);
9879 else if (!useless_type_conversion_p (utype
, TREE_TYPE (op0
)))
9881 g
= gimple_build_assign (make_ssa_name (utype
), NOP_EXPR
, op0
);
9882 gimple_set_location (g
, loc
);
9883 gsi_insert_before (gsi
, g
, GSI_SAME_STMT
);
9884 op0
= gimple_assign_lhs (g
);
9886 if (TREE_CODE (op1
) == INTEGER_CST
)
9887 op1
= fold_convert (utype
, op1
);
9888 else if (!useless_type_conversion_p (utype
, TREE_TYPE (op1
)))
9890 g
= gimple_build_assign (make_ssa_name (utype
), NOP_EXPR
, op1
);
9891 gimple_set_location (g
, loc
);
9892 gsi_insert_before (gsi
, g
, GSI_SAME_STMT
);
9893 op1
= gimple_assign_lhs (g
);
9895 g
= gimple_build_assign (make_ssa_name (utype
), subcode
, op0
, op1
);
9896 gimple_set_location (g
, loc
);
9897 gsi_insert_before (gsi
, g
, GSI_SAME_STMT
);
9900 g
= gimple_build_assign (make_ssa_name (type
), NOP_EXPR
,
9901 gimple_assign_lhs (g
));
9902 gimple_set_location (g
, loc
);
9903 gsi_insert_before (gsi
, g
, GSI_SAME_STMT
);
9905 g
= gimple_build_assign (gimple_call_lhs (stmt
), COMPLEX_EXPR
,
9906 gimple_assign_lhs (g
),
9907 build_int_cst (type
, ovf
));
9909 gimple_set_location (g
, loc
);
9910 gsi_replace (gsi
, g
, false);
9914 /* Simplify STMT using ranges if possible. */
9917 simplify_stmt_using_ranges (gimple_stmt_iterator
*gsi
)
9919 gimple stmt
= gsi_stmt (*gsi
);
9920 if (is_gimple_assign (stmt
))
9922 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
9923 tree rhs1
= gimple_assign_rhs1 (stmt
);
9929 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
9930 if the RHS is zero or one, and the LHS are known to be boolean
9932 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
9933 return simplify_truth_ops_using_ranges (gsi
, stmt
);
9936 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
9937 and BIT_AND_EXPR respectively if the first operand is greater
9938 than zero and the second operand is an exact power of two.
9939 Also optimize TRUNC_MOD_EXPR away if the second operand is
9940 constant and the first operand already has the right value
9942 case TRUNC_DIV_EXPR
:
9943 case TRUNC_MOD_EXPR
:
9944 if (TREE_CODE (rhs1
) == SSA_NAME
9945 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
9946 return simplify_div_or_mod_using_ranges (stmt
);
9949 /* Transform ABS (X) into X or -X as appropriate. */
9951 if (TREE_CODE (rhs1
) == SSA_NAME
9952 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
9953 return simplify_abs_using_ranges (stmt
);
9958 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
9959 if all the bits being cleared are already cleared or
9960 all the bits being set are already set. */
9961 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
9962 return simplify_bit_ops_using_ranges (gsi
, stmt
);
9966 if (TREE_CODE (rhs1
) == SSA_NAME
9967 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
9968 return simplify_conversion_using_ranges (stmt
);
9972 if (TREE_CODE (rhs1
) == SSA_NAME
9973 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
9974 return simplify_float_conversion_using_ranges (gsi
, stmt
);
9981 else if (gimple_code (stmt
) == GIMPLE_COND
)
9982 return simplify_cond_using_ranges (as_a
<gcond
*> (stmt
));
9983 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
9984 return simplify_switch_using_ranges (as_a
<gswitch
*> (stmt
));
9985 else if (is_gimple_call (stmt
)
9986 && gimple_call_internal_p (stmt
))
9987 return simplify_internal_call_using_ranges (gsi
, stmt
);
9992 /* If the statement pointed by SI has a predicate whose value can be
9993 computed using the value range information computed by VRP, compute
9994 its value and return true. Otherwise, return false. */
9997 fold_predicate_in (gimple_stmt_iterator
*si
)
9999 bool assignment_p
= false;
10001 gimple stmt
= gsi_stmt (*si
);
10003 if (is_gimple_assign (stmt
)
10004 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt
)) == tcc_comparison
)
10006 assignment_p
= true;
10007 val
= vrp_evaluate_conditional (gimple_assign_rhs_code (stmt
),
10008 gimple_assign_rhs1 (stmt
),
10009 gimple_assign_rhs2 (stmt
),
10012 else if (gcond
*cond_stmt
= dyn_cast
<gcond
*> (stmt
))
10013 val
= vrp_evaluate_conditional (gimple_cond_code (cond_stmt
),
10014 gimple_cond_lhs (cond_stmt
),
10015 gimple_cond_rhs (cond_stmt
),
10023 val
= fold_convert (gimple_expr_type (stmt
), val
);
10027 fprintf (dump_file
, "Folding predicate ");
10028 print_gimple_expr (dump_file
, stmt
, 0, 0);
10029 fprintf (dump_file
, " to ");
10030 print_generic_expr (dump_file
, val
, 0);
10031 fprintf (dump_file
, "\n");
10034 if (is_gimple_assign (stmt
))
10035 gimple_assign_set_rhs_from_tree (si
, val
);
10038 gcc_assert (gimple_code (stmt
) == GIMPLE_COND
);
10039 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
10040 if (integer_zerop (val
))
10041 gimple_cond_make_false (cond_stmt
);
10042 else if (integer_onep (val
))
10043 gimple_cond_make_true (cond_stmt
);
10045 gcc_unreachable ();
10054 /* Callback for substitute_and_fold folding the stmt at *SI. */
10057 vrp_fold_stmt (gimple_stmt_iterator
*si
)
10059 if (fold_predicate_in (si
))
10062 return simplify_stmt_using_ranges (si
);
10065 /* Unwindable const/copy equivalences. */
10066 const_and_copies
*equiv_stack
;
10068 /* A trivial wrapper so that we can present the generic jump threading
10069 code with a simple API for simplifying statements. STMT is the
10070 statement we want to simplify, WITHIN_STMT provides the location
10071 for any overflow warnings. */
10074 simplify_stmt_for_jump_threading (gimple stmt
, gimple within_stmt
)
10076 if (gcond
*cond_stmt
= dyn_cast
<gcond
*> (stmt
))
10077 return vrp_evaluate_conditional (gimple_cond_code (cond_stmt
),
10078 gimple_cond_lhs (cond_stmt
),
10079 gimple_cond_rhs (cond_stmt
),
10082 if (gassign
*assign_stmt
= dyn_cast
<gassign
*> (stmt
))
10084 value_range_t new_vr
= VR_INITIALIZER
;
10085 tree lhs
= gimple_assign_lhs (assign_stmt
);
10087 if (TREE_CODE (lhs
) == SSA_NAME
10088 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
10089 || POINTER_TYPE_P (TREE_TYPE (lhs
))))
10091 extract_range_from_assignment (&new_vr
, assign_stmt
);
10092 if (range_int_cst_singleton_p (&new_vr
))
10100 /* Blocks which have more than one predecessor and more than
10101 one successor present jump threading opportunities, i.e.,
10102 when the block is reached from a specific predecessor, we
10103 may be able to determine which of the outgoing edges will
10104 be traversed. When this optimization applies, we are able
10105 to avoid conditionals at runtime and we may expose secondary
10106 optimization opportunities.
10108 This routine is effectively a driver for the generic jump
10109 threading code. It basically just presents the generic code
10110 with edges that may be suitable for jump threading.
10112 Unlike DOM, we do not iterate VRP if jump threading was successful.
10113 While iterating may expose new opportunities for VRP, it is expected
10114 those opportunities would be very limited and the compile time cost
10115 to expose those opportunities would be significant.
10117 As jump threading opportunities are discovered, they are registered
10118 for later realization. */
10121 identify_jump_threads (void)
10128 /* Ugh. When substituting values earlier in this pass we can
10129 wipe the dominance information. So rebuild the dominator
10130 information as we need it within the jump threading code. */
10131 calculate_dominance_info (CDI_DOMINATORS
);
10133 /* We do not allow VRP information to be used for jump threading
10134 across a back edge in the CFG. Otherwise it becomes too
10135 difficult to avoid eliminating loop exit tests. Of course
10136 EDGE_DFS_BACK is not accurate at this time so we have to
10138 mark_dfs_back_edges ();
10140 /* Do not thread across edges we are about to remove. Just marking
10141 them as EDGE_DFS_BACK will do. */
10142 FOR_EACH_VEC_ELT (to_remove_edges
, i
, e
)
10143 e
->flags
|= EDGE_DFS_BACK
;
10145 /* Allocate our unwinder stack to unwind any temporary equivalences
10146 that might be recorded. */
10147 equiv_stack
= new const_and_copies (dump_file
, dump_flags
);
10149 /* To avoid lots of silly node creation, we create a single
10150 conditional and just modify it in-place when attempting to
10152 dummy
= gimple_build_cond (EQ_EXPR
,
10153 integer_zero_node
, integer_zero_node
,
10156 /* Walk through all the blocks finding those which present a
10157 potential jump threading opportunity. We could set this up
10158 as a dominator walker and record data during the walk, but
10159 I doubt it's worth the effort for the classes of jump
10160 threading opportunities we are trying to identify at this
10161 point in compilation. */
10162 FOR_EACH_BB_FN (bb
, cfun
)
10166 /* If the generic jump threading code does not find this block
10167 interesting, then there is nothing to do. */
10168 if (! potentially_threadable_block (bb
))
10171 last
= last_stmt (bb
);
10173 /* We're basically looking for a switch or any kind of conditional with
10174 integral or pointer type arguments. Note the type of the second
10175 argument will be the same as the first argument, so no need to
10176 check it explicitly.
10178 We also handle the case where there are no statements in the
10179 block. This come up with forwarder blocks that are not
10180 optimized away because they lead to a loop header. But we do
10181 want to thread through them as we can sometimes thread to the
10182 loop exit which is obviously profitable. */
10184 || gimple_code (last
) == GIMPLE_SWITCH
10185 || (gimple_code (last
) == GIMPLE_COND
10186 && TREE_CODE (gimple_cond_lhs (last
)) == SSA_NAME
10187 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last
)))
10188 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last
))))
10189 && (TREE_CODE (gimple_cond_rhs (last
)) == SSA_NAME
10190 || is_gimple_min_invariant (gimple_cond_rhs (last
)))))
10194 /* We've got a block with multiple predecessors and multiple
10195 successors which also ends in a suitable conditional or
10196 switch statement. For each predecessor, see if we can thread
10197 it to a specific successor. */
10198 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
10200 /* Do not thread across back edges or abnormal edges
10202 if (e
->flags
& (EDGE_DFS_BACK
| EDGE_COMPLEX
))
10205 thread_across_edge (dummy
, e
, true, equiv_stack
,
10206 simplify_stmt_for_jump_threading
);
10211 /* We do not actually update the CFG or SSA graphs at this point as
10212 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
10213 handle ASSERT_EXPRs gracefully. */
10216 /* We identified all the jump threading opportunities earlier, but could
10217 not transform the CFG at that time. This routine transforms the
10218 CFG and arranges for the dominator tree to be rebuilt if necessary.
10220 Note the SSA graph update will occur during the normal TODO
10221 processing by the pass manager. */
10223 finalize_jump_threads (void)
10225 thread_through_all_blocks (false);
10226 delete equiv_stack
;
10230 /* Traverse all the blocks folding conditionals with known ranges. */
10233 vrp_finalize (void)
10237 values_propagated
= true;
10241 fprintf (dump_file
, "\nValue ranges after VRP:\n\n");
10242 dump_all_value_ranges (dump_file
);
10243 fprintf (dump_file
, "\n");
10246 substitute_and_fold (op_with_constant_singleton_value_range
,
10247 vrp_fold_stmt
, false);
10249 if (warn_array_bounds
&& first_pass_instance
)
10250 check_all_array_refs ();
10252 /* We must identify jump threading opportunities before we release
10253 the datastructures built by VRP. */
10254 identify_jump_threads ();
10256 /* Set value range to non pointer SSA_NAMEs. */
10257 for (i
= 0; i
< num_vr_values
; i
++)
10260 tree name
= ssa_name (i
);
10263 || POINTER_TYPE_P (TREE_TYPE (name
))
10264 || (vr_value
[i
]->type
== VR_VARYING
)
10265 || (vr_value
[i
]->type
== VR_UNDEFINED
))
10268 if ((TREE_CODE (vr_value
[i
]->min
) == INTEGER_CST
)
10269 && (TREE_CODE (vr_value
[i
]->max
) == INTEGER_CST
)
10270 && (vr_value
[i
]->type
== VR_RANGE
10271 || vr_value
[i
]->type
== VR_ANTI_RANGE
))
10272 set_range_info (name
, vr_value
[i
]->type
, vr_value
[i
]->min
,
10276 /* Free allocated memory. */
10277 for (i
= 0; i
< num_vr_values
; i
++)
10280 BITMAP_FREE (vr_value
[i
]->equiv
);
10281 free (vr_value
[i
]);
10285 free (vr_phi_edge_counts
);
10287 /* So that we can distinguish between VRP data being available
10288 and not available. */
10290 vr_phi_edge_counts
= NULL
;
10294 /* Main entry point to VRP (Value Range Propagation). This pass is
10295 loosely based on J. R. C. Patterson, ``Accurate Static Branch
10296 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
10297 Programming Language Design and Implementation, pp. 67-78, 1995.
10298 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
10300 This is essentially an SSA-CCP pass modified to deal with ranges
10301 instead of constants.
10303 While propagating ranges, we may find that two or more SSA name
10304 have equivalent, though distinct ranges. For instance,
10307 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
10309 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
10313 In the code above, pointer p_5 has range [q_2, q_2], but from the
10314 code we can also determine that p_5 cannot be NULL and, if q_2 had
10315 a non-varying range, p_5's range should also be compatible with it.
10317 These equivalences are created by two expressions: ASSERT_EXPR and
10318 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
10319 result of another assertion, then we can use the fact that p_5 and
10320 p_4 are equivalent when evaluating p_5's range.
10322 Together with value ranges, we also propagate these equivalences
10323 between names so that we can take advantage of information from
10324 multiple ranges when doing final replacement. Note that this
10325 equivalency relation is transitive but not symmetric.
10327 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
10328 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
10329 in contexts where that assertion does not hold (e.g., in line 6).
10331 TODO, the main difference between this pass and Patterson's is that
10332 we do not propagate edge probabilities. We only compute whether
10333 edges can be taken or not. That is, instead of having a spectrum
10334 of jump probabilities between 0 and 1, we only deal with 0, 1 and
10335 DON'T KNOW. In the future, it may be worthwhile to propagate
10336 probabilities to aid branch prediction. */
10338 static unsigned int
10345 loop_optimizer_init (LOOPS_NORMAL
| LOOPS_HAVE_RECORDED_EXITS
);
10346 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
10347 scev_initialize ();
10349 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
10350 Inserting assertions may split edges which will invalidate
10352 insert_range_assertions ();
10354 to_remove_edges
.create (10);
10355 to_update_switch_stmts
.create (5);
10356 threadedge_initialize_values ();
10358 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
10359 mark_dfs_back_edges ();
10362 ssa_propagate (vrp_visit_stmt
, vrp_visit_phi_node
);
10365 free_numbers_of_iterations_estimates ();
10367 /* ASSERT_EXPRs must be removed before finalizing jump threads
10368 as finalizing jump threads calls the CFG cleanup code which
10369 does not properly handle ASSERT_EXPRs. */
10370 remove_range_assertions ();
10372 /* If we exposed any new variables, go ahead and put them into
10373 SSA form now, before we handle jump threading. This simplifies
10374 interactions between rewriting of _DECL nodes into SSA form
10375 and rewriting SSA_NAME nodes into SSA form after block
10376 duplication and CFG manipulation. */
10377 update_ssa (TODO_update_ssa
);
10379 finalize_jump_threads ();
10381 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
10382 CFG in a broken state and requires a cfg_cleanup run. */
10383 FOR_EACH_VEC_ELT (to_remove_edges
, i
, e
)
10385 /* Update SWITCH_EXPR case label vector. */
10386 FOR_EACH_VEC_ELT (to_update_switch_stmts
, i
, su
)
10389 size_t n
= TREE_VEC_LENGTH (su
->vec
);
10391 gimple_switch_set_num_labels (su
->stmt
, n
);
10392 for (j
= 0; j
< n
; j
++)
10393 gimple_switch_set_label (su
->stmt
, j
, TREE_VEC_ELT (su
->vec
, j
));
10394 /* As we may have replaced the default label with a regular one
10395 make sure to make it a real default label again. This ensures
10396 optimal expansion. */
10397 label
= gimple_switch_label (su
->stmt
, 0);
10398 CASE_LOW (label
) = NULL_TREE
;
10399 CASE_HIGH (label
) = NULL_TREE
;
10402 if (to_remove_edges
.length () > 0)
10404 free_dominance_info (CDI_DOMINATORS
);
10405 loops_state_set (LOOPS_NEED_FIXUP
);
10408 to_remove_edges
.release ();
10409 to_update_switch_stmts
.release ();
10410 threadedge_finalize_values ();
10413 loop_optimizer_finalize ();
10419 const pass_data pass_data_vrp
=
10421 GIMPLE_PASS
, /* type */
10423 OPTGROUP_NONE
, /* optinfo_flags */
10424 TV_TREE_VRP
, /* tv_id */
10425 PROP_ssa
, /* properties_required */
10426 0, /* properties_provided */
10427 0, /* properties_destroyed */
10428 0, /* todo_flags_start */
10429 ( TODO_cleanup_cfg
| TODO_update_ssa
), /* todo_flags_finish */
10432 class pass_vrp
: public gimple_opt_pass
10435 pass_vrp (gcc::context
*ctxt
)
10436 : gimple_opt_pass (pass_data_vrp
, ctxt
)
10439 /* opt_pass methods: */
10440 opt_pass
* clone () { return new pass_vrp (m_ctxt
); }
10441 virtual bool gate (function
*) { return flag_tree_vrp
!= 0; }
10442 virtual unsigned int execute (function
*) { return execute_vrp (); }
10444 }; // class pass_vrp
10446 } // anon namespace
10449 make_pass_vrp (gcc::context
*ctxt
)
10451 return new pass_vrp (ctxt
);