1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
23 modulus = sqrt(x*x + y*y + z*z);
28 that can be optimized to
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
89 #include "coretypes.h"
95 #include "fold-const.h"
97 #include "hard-reg-set.h"
99 #include "dominance.h"
101 #include "basic-block.h"
102 #include "tree-ssa-alias.h"
103 #include "internal-fn.h"
104 #include "gimple-fold.h"
105 #include "gimple-expr.h"
107 #include "gimple-iterator.h"
108 #include "gimplify.h"
109 #include "gimplify-me.h"
110 #include "stor-layout.h"
111 #include "gimple-ssa.h"
112 #include "tree-cfg.h"
113 #include "tree-phinodes.h"
114 #include "ssa-iterators.h"
115 #include "stringpool.h"
116 #include "tree-ssanames.h"
118 #include "insn-config.h"
123 #include "emit-rtl.h"
127 #include "tree-dfa.h"
128 #include "tree-ssa.h"
129 #include "tree-pass.h"
130 #include "alloc-pool.h"
132 #include "gimple-pretty-print.h"
133 #include "builtins.h"
136 /* FIXME: RTL headers have to be included here for optabs. */
137 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
138 #include "expr.h" /* Because optabs.h wants sepops. */
139 #include "insn-codes.h"
142 /* This structure represents one basic block that either computes a
143 division, or is a common dominator for basic block that compute a
146 /* The basic block represented by this structure. */
149 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
153 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
154 was inserted in BB. */
155 gimple recip_def_stmt
;
157 /* Pointer to a list of "struct occurrence"s for blocks dominated
159 struct occurrence
*children
;
161 /* Pointer to the next "struct occurrence"s in the list of blocks
162 sharing a common dominator. */
163 struct occurrence
*next
;
165 /* The number of divisions that are in BB before compute_merit. The
166 number of divisions that are in BB or post-dominate it after
170 /* True if the basic block has a division, false if it is a common
171 dominator for basic blocks that do. If it is false and trapping
172 math is active, BB is not a candidate for inserting a reciprocal. */
173 bool bb_has_division
;
178 /* Number of 1.0/X ops inserted. */
181 /* Number of 1.0/FUNC ops inserted. */
187 /* Number of cexpi calls inserted. */
193 /* Number of hand-written 16-bit nop / bswaps found. */
196 /* Number of hand-written 32-bit nop / bswaps found. */
199 /* Number of hand-written 64-bit nop / bswaps found. */
201 } nop_stats
, bswap_stats
;
205 /* Number of widening multiplication ops inserted. */
206 int widen_mults_inserted
;
208 /* Number of integer multiply-and-accumulate ops inserted. */
211 /* Number of fp fused multiply-add ops inserted. */
215 /* The instance of "struct occurrence" representing the highest
216 interesting block in the dominator tree. */
217 static struct occurrence
*occ_head
;
219 /* Allocation pool for getting instances of "struct occurrence". */
220 static pool_allocator
<occurrence
> *occ_pool
;
224 /* Allocate and return a new struct occurrence for basic block BB, and
225 whose children list is headed by CHILDREN. */
226 static struct occurrence
*
227 occ_new (basic_block bb
, struct occurrence
*children
)
229 struct occurrence
*occ
;
231 bb
->aux
= occ
= occ_pool
->allocate ();
232 memset (occ
, 0, sizeof (struct occurrence
));
235 occ
->children
= children
;
240 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
241 list of "struct occurrence"s, one per basic block, having IDOM as
242 their common dominator.
244 We try to insert NEW_OCC as deep as possible in the tree, and we also
245 insert any other block that is a common dominator for BB and one
246 block already in the tree. */
249 insert_bb (struct occurrence
*new_occ
, basic_block idom
,
250 struct occurrence
**p_head
)
252 struct occurrence
*occ
, **p_occ
;
254 for (p_occ
= p_head
; (occ
= *p_occ
) != NULL
; )
256 basic_block bb
= new_occ
->bb
, occ_bb
= occ
->bb
;
257 basic_block dom
= nearest_common_dominator (CDI_DOMINATORS
, occ_bb
, bb
);
260 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
263 occ
->next
= new_occ
->children
;
264 new_occ
->children
= occ
;
266 /* Try the next block (it may as well be dominated by BB). */
269 else if (dom
== occ_bb
)
271 /* OCC_BB dominates BB. Tail recurse to look deeper. */
272 insert_bb (new_occ
, dom
, &occ
->children
);
276 else if (dom
!= idom
)
278 gcc_assert (!dom
->aux
);
280 /* There is a dominator between IDOM and BB, add it and make
281 two children out of NEW_OCC and OCC. First, remove OCC from
287 /* None of the previous blocks has DOM as a dominator: if we tail
288 recursed, we would reexamine them uselessly. Just switch BB with
289 DOM, and go on looking for blocks dominated by DOM. */
290 new_occ
= occ_new (dom
, new_occ
);
295 /* Nothing special, go on with the next element. */
300 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
301 new_occ
->next
= *p_head
;
305 /* Register that we found a division in BB. */
308 register_division_in (basic_block bb
)
310 struct occurrence
*occ
;
312 occ
= (struct occurrence
*) bb
->aux
;
315 occ
= occ_new (bb
, NULL
);
316 insert_bb (occ
, ENTRY_BLOCK_PTR_FOR_FN (cfun
), &occ_head
);
319 occ
->bb_has_division
= true;
320 occ
->num_divisions
++;
324 /* Compute the number of divisions that postdominate each block in OCC and
328 compute_merit (struct occurrence
*occ
)
330 struct occurrence
*occ_child
;
331 basic_block dom
= occ
->bb
;
333 for (occ_child
= occ
->children
; occ_child
; occ_child
= occ_child
->next
)
336 if (occ_child
->children
)
337 compute_merit (occ_child
);
340 bb
= single_noncomplex_succ (dom
);
344 if (dominated_by_p (CDI_POST_DOMINATORS
, bb
, occ_child
->bb
))
345 occ
->num_divisions
+= occ_child
->num_divisions
;
350 /* Return whether USE_STMT is a floating-point division by DEF. */
352 is_division_by (gimple use_stmt
, tree def
)
354 return is_gimple_assign (use_stmt
)
355 && gimple_assign_rhs_code (use_stmt
) == RDIV_EXPR
356 && gimple_assign_rhs2 (use_stmt
) == def
357 /* Do not recognize x / x as valid division, as we are getting
358 confused later by replacing all immediate uses x in such
360 && gimple_assign_rhs1 (use_stmt
) != def
;
363 /* Walk the subset of the dominator tree rooted at OCC, setting the
364 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
365 the given basic block. The field may be left NULL, of course,
366 if it is not possible or profitable to do the optimization.
368 DEF_BSI is an iterator pointing at the statement defining DEF.
369 If RECIP_DEF is set, a dominator already has a computation that can
373 insert_reciprocals (gimple_stmt_iterator
*def_gsi
, struct occurrence
*occ
,
374 tree def
, tree recip_def
, int threshold
)
378 gimple_stmt_iterator gsi
;
379 struct occurrence
*occ_child
;
382 && (occ
->bb_has_division
|| !flag_trapping_math
)
383 && occ
->num_divisions
>= threshold
)
385 /* Make a variable with the replacement and substitute it. */
386 type
= TREE_TYPE (def
);
387 recip_def
= create_tmp_reg (type
, "reciptmp");
388 new_stmt
= gimple_build_assign (recip_def
, RDIV_EXPR
,
389 build_one_cst (type
), def
);
391 if (occ
->bb_has_division
)
393 /* Case 1: insert before an existing division. */
394 gsi
= gsi_after_labels (occ
->bb
);
395 while (!gsi_end_p (gsi
) && !is_division_by (gsi_stmt (gsi
), def
))
398 gsi_insert_before (&gsi
, new_stmt
, GSI_SAME_STMT
);
400 else if (def_gsi
&& occ
->bb
== def_gsi
->bb
)
402 /* Case 2: insert right after the definition. Note that this will
403 never happen if the definition statement can throw, because in
404 that case the sole successor of the statement's basic block will
405 dominate all the uses as well. */
406 gsi_insert_after (def_gsi
, new_stmt
, GSI_NEW_STMT
);
410 /* Case 3: insert in a basic block not containing defs/uses. */
411 gsi
= gsi_after_labels (occ
->bb
);
412 gsi_insert_before (&gsi
, new_stmt
, GSI_SAME_STMT
);
415 reciprocal_stats
.rdivs_inserted
++;
417 occ
->recip_def_stmt
= new_stmt
;
420 occ
->recip_def
= recip_def
;
421 for (occ_child
= occ
->children
; occ_child
; occ_child
= occ_child
->next
)
422 insert_reciprocals (def_gsi
, occ_child
, def
, recip_def
, threshold
);
426 /* Replace the division at USE_P with a multiplication by the reciprocal, if
430 replace_reciprocal (use_operand_p use_p
)
432 gimple use_stmt
= USE_STMT (use_p
);
433 basic_block bb
= gimple_bb (use_stmt
);
434 struct occurrence
*occ
= (struct occurrence
*) bb
->aux
;
436 if (optimize_bb_for_speed_p (bb
)
437 && occ
->recip_def
&& use_stmt
!= occ
->recip_def_stmt
)
439 gimple_stmt_iterator gsi
= gsi_for_stmt (use_stmt
);
440 gimple_assign_set_rhs_code (use_stmt
, MULT_EXPR
);
441 SET_USE (use_p
, occ
->recip_def
);
442 fold_stmt_inplace (&gsi
);
443 update_stmt (use_stmt
);
448 /* Free OCC and return one more "struct occurrence" to be freed. */
450 static struct occurrence
*
451 free_bb (struct occurrence
*occ
)
453 struct occurrence
*child
, *next
;
455 /* First get the two pointers hanging off OCC. */
457 child
= occ
->children
;
459 occ_pool
->remove (occ
);
461 /* Now ensure that we don't recurse unless it is necessary. */
467 next
= free_bb (next
);
474 /* Look for floating-point divisions among DEF's uses, and try to
475 replace them by multiplications with the reciprocal. Add
476 as many statements computing the reciprocal as needed.
478 DEF must be a GIMPLE register of a floating-point type. */
481 execute_cse_reciprocals_1 (gimple_stmt_iterator
*def_gsi
, tree def
)
484 imm_use_iterator use_iter
;
485 struct occurrence
*occ
;
486 int count
= 0, threshold
;
488 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def
)) && is_gimple_reg (def
));
490 FOR_EACH_IMM_USE_FAST (use_p
, use_iter
, def
)
492 gimple use_stmt
= USE_STMT (use_p
);
493 if (is_division_by (use_stmt
, def
))
495 register_division_in (gimple_bb (use_stmt
));
500 /* Do the expensive part only if we can hope to optimize something. */
501 threshold
= targetm
.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def
)));
502 if (count
>= threshold
)
505 for (occ
= occ_head
; occ
; occ
= occ
->next
)
508 insert_reciprocals (def_gsi
, occ
, def
, NULL
, threshold
);
511 FOR_EACH_IMM_USE_STMT (use_stmt
, use_iter
, def
)
513 if (is_division_by (use_stmt
, def
))
515 FOR_EACH_IMM_USE_ON_STMT (use_p
, use_iter
)
516 replace_reciprocal (use_p
);
521 for (occ
= occ_head
; occ
; )
527 /* Go through all the floating-point SSA_NAMEs, and call
528 execute_cse_reciprocals_1 on each of them. */
531 const pass_data pass_data_cse_reciprocals
=
533 GIMPLE_PASS
, /* type */
535 OPTGROUP_NONE
, /* optinfo_flags */
537 PROP_ssa
, /* properties_required */
538 0, /* properties_provided */
539 0, /* properties_destroyed */
540 0, /* todo_flags_start */
541 TODO_update_ssa
, /* todo_flags_finish */
544 class pass_cse_reciprocals
: public gimple_opt_pass
547 pass_cse_reciprocals (gcc::context
*ctxt
)
548 : gimple_opt_pass (pass_data_cse_reciprocals
, ctxt
)
551 /* opt_pass methods: */
552 virtual bool gate (function
*) { return optimize
&& flag_reciprocal_math
; }
553 virtual unsigned int execute (function
*);
555 }; // class pass_cse_reciprocals
558 pass_cse_reciprocals::execute (function
*fun
)
563 occ_pool
= new pool_allocator
<occurrence
>
564 ("dominators for recip", n_basic_blocks_for_fn (fun
) / 3 + 1);
566 memset (&reciprocal_stats
, 0, sizeof (reciprocal_stats
));
567 calculate_dominance_info (CDI_DOMINATORS
);
568 calculate_dominance_info (CDI_POST_DOMINATORS
);
570 #ifdef ENABLE_CHECKING
571 FOR_EACH_BB_FN (bb
, fun
)
572 gcc_assert (!bb
->aux
);
575 for (arg
= DECL_ARGUMENTS (fun
->decl
); arg
; arg
= DECL_CHAIN (arg
))
576 if (FLOAT_TYPE_P (TREE_TYPE (arg
))
577 && is_gimple_reg (arg
))
579 tree name
= ssa_default_def (fun
, arg
);
581 execute_cse_reciprocals_1 (NULL
, name
);
584 FOR_EACH_BB_FN (bb
, fun
)
588 for (gphi_iterator gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
);
591 gphi
*phi
= gsi
.phi ();
592 def
= PHI_RESULT (phi
);
593 if (! virtual_operand_p (def
)
594 && FLOAT_TYPE_P (TREE_TYPE (def
)))
595 execute_cse_reciprocals_1 (NULL
, def
);
598 for (gimple_stmt_iterator gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
);
601 gimple stmt
= gsi_stmt (gsi
);
603 if (gimple_has_lhs (stmt
)
604 && (def
= SINGLE_SSA_TREE_OPERAND (stmt
, SSA_OP_DEF
)) != NULL
605 && FLOAT_TYPE_P (TREE_TYPE (def
))
606 && TREE_CODE (def
) == SSA_NAME
)
607 execute_cse_reciprocals_1 (&gsi
, def
);
610 if (optimize_bb_for_size_p (bb
))
613 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
614 for (gimple_stmt_iterator gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
);
617 gimple stmt
= gsi_stmt (gsi
);
620 if (is_gimple_assign (stmt
)
621 && gimple_assign_rhs_code (stmt
) == RDIV_EXPR
)
623 tree arg1
= gimple_assign_rhs2 (stmt
);
626 if (TREE_CODE (arg1
) != SSA_NAME
)
629 stmt1
= SSA_NAME_DEF_STMT (arg1
);
631 if (is_gimple_call (stmt1
)
632 && gimple_call_lhs (stmt1
)
633 && (fndecl
= gimple_call_fndecl (stmt1
))
634 && (DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
635 || DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_MD
))
637 enum built_in_function code
;
642 code
= DECL_FUNCTION_CODE (fndecl
);
643 md_code
= DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_MD
;
645 fndecl
= targetm
.builtin_reciprocal (code
, md_code
, false);
649 /* Check that all uses of the SSA name are divisions,
650 otherwise replacing the defining statement will do
653 FOR_EACH_IMM_USE_FAST (use_p
, ui
, arg1
)
655 gimple stmt2
= USE_STMT (use_p
);
656 if (is_gimple_debug (stmt2
))
658 if (!is_gimple_assign (stmt2
)
659 || gimple_assign_rhs_code (stmt2
) != RDIV_EXPR
660 || gimple_assign_rhs1 (stmt2
) == arg1
661 || gimple_assign_rhs2 (stmt2
) != arg1
)
670 gimple_replace_ssa_lhs (stmt1
, arg1
);
671 gimple_call_set_fndecl (stmt1
, fndecl
);
673 reciprocal_stats
.rfuncs_inserted
++;
675 FOR_EACH_IMM_USE_STMT (stmt
, ui
, arg1
)
677 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
678 gimple_assign_set_rhs_code (stmt
, MULT_EXPR
);
679 fold_stmt_inplace (&gsi
);
687 statistics_counter_event (fun
, "reciprocal divs inserted",
688 reciprocal_stats
.rdivs_inserted
);
689 statistics_counter_event (fun
, "reciprocal functions inserted",
690 reciprocal_stats
.rfuncs_inserted
);
692 free_dominance_info (CDI_DOMINATORS
);
693 free_dominance_info (CDI_POST_DOMINATORS
);
701 make_pass_cse_reciprocals (gcc::context
*ctxt
)
703 return new pass_cse_reciprocals (ctxt
);
706 /* Records an occurrence at statement USE_STMT in the vector of trees
707 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
708 is not yet initialized. Returns true if the occurrence was pushed on
709 the vector. Adjusts *TOP_BB to be the basic block dominating all
710 statements in the vector. */
713 maybe_record_sincos (vec
<gimple
> *stmts
,
714 basic_block
*top_bb
, gimple use_stmt
)
716 basic_block use_bb
= gimple_bb (use_stmt
);
718 && (*top_bb
== use_bb
719 || dominated_by_p (CDI_DOMINATORS
, use_bb
, *top_bb
)))
720 stmts
->safe_push (use_stmt
);
722 || dominated_by_p (CDI_DOMINATORS
, *top_bb
, use_bb
))
724 stmts
->safe_push (use_stmt
);
733 /* Look for sin, cos and cexpi calls with the same argument NAME and
734 create a single call to cexpi CSEing the result in this case.
735 We first walk over all immediate uses of the argument collecting
736 statements that we can CSE in a vector and in a second pass replace
737 the statement rhs with a REALPART or IMAGPART expression on the
738 result of the cexpi call we insert before the use statement that
739 dominates all other candidates. */
742 execute_cse_sincos_1 (tree name
)
744 gimple_stmt_iterator gsi
;
745 imm_use_iterator use_iter
;
746 tree fndecl
, res
, type
;
747 gimple def_stmt
, use_stmt
, stmt
;
748 int seen_cos
= 0, seen_sin
= 0, seen_cexpi
= 0;
749 auto_vec
<gimple
> stmts
;
750 basic_block top_bb
= NULL
;
752 bool cfg_changed
= false;
754 type
= TREE_TYPE (name
);
755 FOR_EACH_IMM_USE_STMT (use_stmt
, use_iter
, name
)
757 if (gimple_code (use_stmt
) != GIMPLE_CALL
758 || !gimple_call_lhs (use_stmt
)
759 || !(fndecl
= gimple_call_fndecl (use_stmt
))
760 || DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_NORMAL
)
763 switch (DECL_FUNCTION_CODE (fndecl
))
765 CASE_FLT_FN (BUILT_IN_COS
):
766 seen_cos
|= maybe_record_sincos (&stmts
, &top_bb
, use_stmt
) ? 1 : 0;
769 CASE_FLT_FN (BUILT_IN_SIN
):
770 seen_sin
|= maybe_record_sincos (&stmts
, &top_bb
, use_stmt
) ? 1 : 0;
773 CASE_FLT_FN (BUILT_IN_CEXPI
):
774 seen_cexpi
|= maybe_record_sincos (&stmts
, &top_bb
, use_stmt
) ? 1 : 0;
781 if (seen_cos
+ seen_sin
+ seen_cexpi
<= 1)
784 /* Simply insert cexpi at the beginning of top_bb but not earlier than
785 the name def statement. */
786 fndecl
= mathfn_built_in (type
, BUILT_IN_CEXPI
);
789 stmt
= gimple_build_call (fndecl
, 1, name
);
790 res
= make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl
)), stmt
, "sincostmp");
791 gimple_call_set_lhs (stmt
, res
);
793 def_stmt
= SSA_NAME_DEF_STMT (name
);
794 if (!SSA_NAME_IS_DEFAULT_DEF (name
)
795 && gimple_code (def_stmt
) != GIMPLE_PHI
796 && gimple_bb (def_stmt
) == top_bb
)
798 gsi
= gsi_for_stmt (def_stmt
);
799 gsi_insert_after (&gsi
, stmt
, GSI_SAME_STMT
);
803 gsi
= gsi_after_labels (top_bb
);
804 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
806 sincos_stats
.inserted
++;
808 /* And adjust the recorded old call sites. */
809 for (i
= 0; stmts
.iterate (i
, &use_stmt
); ++i
)
812 fndecl
= gimple_call_fndecl (use_stmt
);
814 switch (DECL_FUNCTION_CODE (fndecl
))
816 CASE_FLT_FN (BUILT_IN_COS
):
817 rhs
= fold_build1 (REALPART_EXPR
, type
, res
);
820 CASE_FLT_FN (BUILT_IN_SIN
):
821 rhs
= fold_build1 (IMAGPART_EXPR
, type
, res
);
824 CASE_FLT_FN (BUILT_IN_CEXPI
):
832 /* Replace call with a copy. */
833 stmt
= gimple_build_assign (gimple_call_lhs (use_stmt
), rhs
);
835 gsi
= gsi_for_stmt (use_stmt
);
836 gsi_replace (&gsi
, stmt
, true);
837 if (gimple_purge_dead_eh_edges (gimple_bb (stmt
)))
844 /* To evaluate powi(x,n), the floating point value x raised to the
845 constant integer exponent n, we use a hybrid algorithm that
846 combines the "window method" with look-up tables. For an
847 introduction to exponentiation algorithms and "addition chains",
848 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
849 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
850 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
851 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
853 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
854 multiplications to inline before calling the system library's pow
855 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
856 so this default never requires calling pow, powf or powl. */
858 #ifndef POWI_MAX_MULTS
859 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
862 /* The size of the "optimal power tree" lookup table. All
863 exponents less than this value are simply looked up in the
864 powi_table below. This threshold is also used to size the
865 cache of pseudo registers that hold intermediate results. */
866 #define POWI_TABLE_SIZE 256
868 /* The size, in bits of the window, used in the "window method"
869 exponentiation algorithm. This is equivalent to a radix of
870 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
871 #define POWI_WINDOW_SIZE 3
873 /* The following table is an efficient representation of an
874 "optimal power tree". For each value, i, the corresponding
875 value, j, in the table states than an optimal evaluation
876 sequence for calculating pow(x,i) can be found by evaluating
877 pow(x,j)*pow(x,i-j). An optimal power tree for the first
878 100 integers is given in Knuth's "Seminumerical algorithms". */
880 static const unsigned char powi_table
[POWI_TABLE_SIZE
] =
882 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
883 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
884 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
885 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
886 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
887 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
888 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
889 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
890 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
891 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
892 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
893 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
894 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
895 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
896 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
897 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
898 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
899 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
900 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
901 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
902 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
903 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
904 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
905 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
906 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
907 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
908 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
909 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
910 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
911 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
912 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
913 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
917 /* Return the number of multiplications required to calculate
918 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
919 subroutine of powi_cost. CACHE is an array indicating
920 which exponents have already been calculated. */
923 powi_lookup_cost (unsigned HOST_WIDE_INT n
, bool *cache
)
925 /* If we've already calculated this exponent, then this evaluation
926 doesn't require any additional multiplications. */
931 return powi_lookup_cost (n
- powi_table
[n
], cache
)
932 + powi_lookup_cost (powi_table
[n
], cache
) + 1;
935 /* Return the number of multiplications required to calculate
936 powi(x,n) for an arbitrary x, given the exponent N. This
937 function needs to be kept in sync with powi_as_mults below. */
940 powi_cost (HOST_WIDE_INT n
)
942 bool cache
[POWI_TABLE_SIZE
];
943 unsigned HOST_WIDE_INT digit
;
944 unsigned HOST_WIDE_INT val
;
950 /* Ignore the reciprocal when calculating the cost. */
951 val
= (n
< 0) ? -n
: n
;
953 /* Initialize the exponent cache. */
954 memset (cache
, 0, POWI_TABLE_SIZE
* sizeof (bool));
959 while (val
>= POWI_TABLE_SIZE
)
963 digit
= val
& ((1 << POWI_WINDOW_SIZE
) - 1);
964 result
+= powi_lookup_cost (digit
, cache
)
965 + POWI_WINDOW_SIZE
+ 1;
966 val
>>= POWI_WINDOW_SIZE
;
975 return result
+ powi_lookup_cost (val
, cache
);
978 /* Recursive subroutine of powi_as_mults. This function takes the
979 array, CACHE, of already calculated exponents and an exponent N and
980 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
983 powi_as_mults_1 (gimple_stmt_iterator
*gsi
, location_t loc
, tree type
,
984 HOST_WIDE_INT n
, tree
*cache
)
986 tree op0
, op1
, ssa_target
;
987 unsigned HOST_WIDE_INT digit
;
990 if (n
< POWI_TABLE_SIZE
&& cache
[n
])
993 ssa_target
= make_temp_ssa_name (type
, NULL
, "powmult");
995 if (n
< POWI_TABLE_SIZE
)
997 cache
[n
] = ssa_target
;
998 op0
= powi_as_mults_1 (gsi
, loc
, type
, n
- powi_table
[n
], cache
);
999 op1
= powi_as_mults_1 (gsi
, loc
, type
, powi_table
[n
], cache
);
1003 digit
= n
& ((1 << POWI_WINDOW_SIZE
) - 1);
1004 op0
= powi_as_mults_1 (gsi
, loc
, type
, n
- digit
, cache
);
1005 op1
= powi_as_mults_1 (gsi
, loc
, type
, digit
, cache
);
1009 op0
= powi_as_mults_1 (gsi
, loc
, type
, n
>> 1, cache
);
1013 mult_stmt
= gimple_build_assign (ssa_target
, MULT_EXPR
, op0
, op1
);
1014 gimple_set_location (mult_stmt
, loc
);
1015 gsi_insert_before (gsi
, mult_stmt
, GSI_SAME_STMT
);
1020 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1021 This function needs to be kept in sync with powi_cost above. */
1024 powi_as_mults (gimple_stmt_iterator
*gsi
, location_t loc
,
1025 tree arg0
, HOST_WIDE_INT n
)
1027 tree cache
[POWI_TABLE_SIZE
], result
, type
= TREE_TYPE (arg0
);
1032 return build_real (type
, dconst1
);
1034 memset (cache
, 0, sizeof (cache
));
1037 result
= powi_as_mults_1 (gsi
, loc
, type
, (n
< 0) ? -n
: n
, cache
);
1041 /* If the original exponent was negative, reciprocate the result. */
1042 target
= make_temp_ssa_name (type
, NULL
, "powmult");
1043 div_stmt
= gimple_build_assign (target
, RDIV_EXPR
,
1044 build_real (type
, dconst1
), result
);
1045 gimple_set_location (div_stmt
, loc
);
1046 gsi_insert_before (gsi
, div_stmt
, GSI_SAME_STMT
);
1051 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1052 location info LOC. If the arguments are appropriate, create an
1053 equivalent sequence of statements prior to GSI using an optimal
1054 number of multiplications, and return an expession holding the
1058 gimple_expand_builtin_powi (gimple_stmt_iterator
*gsi
, location_t loc
,
1059 tree arg0
, HOST_WIDE_INT n
)
1061 /* Avoid largest negative number. */
1063 && ((n
>= -1 && n
<= 2)
1064 || (optimize_function_for_speed_p (cfun
)
1065 && powi_cost (n
) <= POWI_MAX_MULTS
)))
1066 return powi_as_mults (gsi
, loc
, arg0
, n
);
1071 /* Build a gimple call statement that calls FN with argument ARG.
1072 Set the lhs of the call statement to a fresh SSA name. Insert the
1073 statement prior to GSI's current position, and return the fresh
1077 build_and_insert_call (gimple_stmt_iterator
*gsi
, location_t loc
,
1083 call_stmt
= gimple_build_call (fn
, 1, arg
);
1084 ssa_target
= make_temp_ssa_name (TREE_TYPE (arg
), NULL
, "powroot");
1085 gimple_set_lhs (call_stmt
, ssa_target
);
1086 gimple_set_location (call_stmt
, loc
);
1087 gsi_insert_before (gsi
, call_stmt
, GSI_SAME_STMT
);
1092 /* Build a gimple binary operation with the given CODE and arguments
1093 ARG0, ARG1, assigning the result to a new SSA name for variable
1094 TARGET. Insert the statement prior to GSI's current position, and
1095 return the fresh SSA name.*/
1098 build_and_insert_binop (gimple_stmt_iterator
*gsi
, location_t loc
,
1099 const char *name
, enum tree_code code
,
1100 tree arg0
, tree arg1
)
1102 tree result
= make_temp_ssa_name (TREE_TYPE (arg0
), NULL
, name
);
1103 gassign
*stmt
= gimple_build_assign (result
, code
, arg0
, arg1
);
1104 gimple_set_location (stmt
, loc
);
1105 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1109 /* Build a gimple reference operation with the given CODE and argument
1110 ARG, assigning the result to a new SSA name of TYPE with NAME.
1111 Insert the statement prior to GSI's current position, and return
1112 the fresh SSA name. */
1115 build_and_insert_ref (gimple_stmt_iterator
*gsi
, location_t loc
, tree type
,
1116 const char *name
, enum tree_code code
, tree arg0
)
1118 tree result
= make_temp_ssa_name (type
, NULL
, name
);
1119 gimple stmt
= gimple_build_assign (result
, build1 (code
, type
, arg0
));
1120 gimple_set_location (stmt
, loc
);
1121 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1125 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1126 prior to GSI's current position, and return the fresh SSA name. */
1129 build_and_insert_cast (gimple_stmt_iterator
*gsi
, location_t loc
,
1130 tree type
, tree val
)
1132 tree result
= make_ssa_name (type
);
1133 gassign
*stmt
= gimple_build_assign (result
, NOP_EXPR
, val
);
1134 gimple_set_location (stmt
, loc
);
1135 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1139 struct pow_synth_sqrt_info
1142 unsigned int deepest
;
1143 unsigned int num_mults
;
1146 /* Return true iff the real value C can be represented as a
1147 sum of powers of 0.5 up to N. That is:
1148 C == SUM<i from 1..N> (a[i]*(0.5**i)) where a[i] is either 0 or 1.
1149 Record in INFO the various parameters of the synthesis algorithm such
1150 as the factors a[i], the maximum 0.5 power and the number of
1151 multiplications that will be required. */
1154 representable_as_half_series_p (REAL_VALUE_TYPE c
, unsigned n
,
1155 struct pow_synth_sqrt_info
*info
)
1157 REAL_VALUE_TYPE factor
= dconsthalf
;
1158 REAL_VALUE_TYPE remainder
= c
;
1161 info
->num_mults
= 0;
1162 memset (info
->factors
, 0, n
* sizeof (bool));
1164 for (unsigned i
= 0; i
< n
; i
++)
1166 REAL_VALUE_TYPE res
;
1168 /* If something inexact happened bail out now. */
1169 if (REAL_ARITHMETIC (res
, MINUS_EXPR
, remainder
, factor
))
1172 /* We have hit zero. The number is representable as a sum
1173 of powers of 0.5. */
1174 if (REAL_VALUES_EQUAL (res
, dconst0
))
1176 info
->factors
[i
] = true;
1177 info
->deepest
= i
+ 1;
1180 else if (!REAL_VALUE_NEGATIVE (res
))
1183 info
->factors
[i
] = true;
1187 info
->factors
[i
] = false;
1189 REAL_ARITHMETIC (factor
, MULT_EXPR
, factor
, dconsthalf
);
1194 /* Return the tree corresponding to FN being applied
1195 to ARG N times at GSI and LOC.
1196 Look up previous results from CACHE if need be.
1197 cache[0] should contain just plain ARG i.e. FN applied to ARG 0 times. */
1200 get_fn_chain (tree arg
, unsigned int n
, gimple_stmt_iterator
*gsi
,
1201 tree fn
, location_t loc
, tree
*cache
)
1203 tree res
= cache
[n
];
1206 tree prev
= get_fn_chain (arg
, n
- 1, gsi
, fn
, loc
, cache
);
1207 res
= build_and_insert_call (gsi
, loc
, fn
, prev
);
1214 /* Print to STREAM the repeated application of function FNAME to ARG
1215 N times. So, for FNAME = "foo", ARG = "x", N = 2 it would print:
1219 print_nested_fn (FILE* stream
, const char *fname
, const char* arg
,
1223 fprintf (stream
, "%s", arg
);
1226 fprintf (stream
, "%s (", fname
);
1227 print_nested_fn (stream
, fname
, arg
, n
- 1);
1228 fprintf (stream
, ")");
1232 /* Print to STREAM the fractional sequence of sqrt chains
1233 applied to ARG, described by INFO. Used for the dump file. */
1236 dump_fractional_sqrt_sequence (FILE *stream
, const char *arg
,
1237 struct pow_synth_sqrt_info
*info
)
1239 for (unsigned int i
= 0; i
< info
->deepest
; i
++)
1241 bool is_set
= info
->factors
[i
];
1244 print_nested_fn (stream
, "sqrt", arg
, i
+ 1);
1245 if (i
!= info
->deepest
- 1)
1246 fprintf (stream
, " * ");
1251 /* Print to STREAM a representation of raising ARG to an integer
1252 power N. Used for the dump file. */
1255 dump_integer_part (FILE *stream
, const char* arg
, HOST_WIDE_INT n
)
1258 fprintf (stream
, "powi (%s, " HOST_WIDE_INT_PRINT_DEC
")", arg
, n
);
1260 fprintf (stream
, "%s", arg
);
1263 /* Attempt to synthesize a POW[F] (ARG0, ARG1) call using chains of
1264 square roots. Place at GSI and LOC. Limit the maximum depth
1265 of the sqrt chains to MAX_DEPTH. Return the tree holding the
1266 result of the expanded sequence or NULL_TREE if the expansion failed.
1268 This routine assumes that ARG1 is a real number with a fractional part
1269 (the integer exponent case will have been handled earlier in
1270 gimple_expand_builtin_pow).
1273 * For ARG1 composed of a whole part WHOLE_PART and a fractional part
1274 FRAC_PART i.e. WHOLE_PART == floor (ARG1) and
1275 FRAC_PART == ARG1 - WHOLE_PART:
1276 Produce POWI (ARG0, WHOLE_PART) * POW (ARG0, FRAC_PART) where
1277 POW (ARG0, FRAC_PART) is expanded as a product of square root chains
1278 if it can be expressed as such, that is if FRAC_PART satisfies:
1279 FRAC_PART == <SUM from i = 1 until MAX_DEPTH> (a[i] * (0.5**i))
1280 where integer a[i] is either 0 or 1.
1283 POW (x, 3.625) == POWI (x, 3) * POW (x, 0.625)
1284 --> POWI (x, 3) * SQRT (x) * SQRT (SQRT (SQRT (x)))
1286 For ARG1 < 0.0 there are two approaches:
1287 * (A) Expand to 1.0 / POW (ARG0, -ARG1) where POW (ARG0, -ARG1)
1288 is calculated as above.
1291 POW (x, -5.625) == 1.0 / POW (x, 5.625)
1292 --> 1.0 / (POWI (x, 5) * SQRT (x) * SQRT (SQRT (SQRT (x))))
1294 * (B) : WHOLE_PART := - ceil (abs (ARG1))
1295 FRAC_PART := ARG1 - WHOLE_PART
1296 and expand to POW (x, FRAC_PART) / POWI (x, WHOLE_PART).
1298 POW (x, -5.875) == POW (x, 0.125) / POWI (X, 6)
1299 --> SQRT (SQRT (SQRT (x))) / (POWI (x, 6))
1301 For ARG1 < 0.0 we choose between (A) and (B) depending on
1302 how many multiplications we'd have to do.
1303 So, for the example in (B): POW (x, -5.875), if we were to
1304 follow algorithm (A) we would produce:
1305 1.0 / POWI (X, 5) * SQRT (X) * SQRT (SQRT (X)) * SQRT (SQRT (SQRT (X)))
1306 which contains more multiplications than approach (B).
1308 Hopefully, this approach will eliminate potentially expensive POW library
1309 calls when unsafe floating point math is enabled and allow the compiler to
1310 further optimise the multiplies, square roots and divides produced by this
1314 expand_pow_as_sqrts (gimple_stmt_iterator
*gsi
, location_t loc
,
1315 tree arg0
, tree arg1
, HOST_WIDE_INT max_depth
)
1317 tree type
= TREE_TYPE (arg0
);
1318 machine_mode mode
= TYPE_MODE (type
);
1319 tree sqrtfn
= mathfn_built_in (type
, BUILT_IN_SQRT
);
1320 bool one_over
= true;
1325 if (TREE_CODE (arg1
) != REAL_CST
)
1328 REAL_VALUE_TYPE exp_init
= TREE_REAL_CST (arg1
);
1330 gcc_assert (max_depth
> 0);
1331 tree
*cache
= XALLOCAVEC (tree
, max_depth
+ 1);
1333 struct pow_synth_sqrt_info synth_info
;
1334 synth_info
.factors
= XALLOCAVEC (bool, max_depth
+ 1);
1335 synth_info
.deepest
= 0;
1336 synth_info
.num_mults
= 0;
1338 bool neg_exp
= REAL_VALUE_NEGATIVE (exp_init
);
1339 REAL_VALUE_TYPE exp
= real_value_abs (&exp_init
);
1341 /* The whole and fractional parts of exp. */
1342 REAL_VALUE_TYPE whole_part
;
1343 REAL_VALUE_TYPE frac_part
;
1345 real_floor (&whole_part
, mode
, &exp
);
1346 REAL_ARITHMETIC (frac_part
, MINUS_EXPR
, exp
, whole_part
);
1349 REAL_VALUE_TYPE ceil_whole
= dconst0
;
1350 REAL_VALUE_TYPE ceil_fract
= dconst0
;
1354 real_ceil (&ceil_whole
, mode
, &exp
);
1355 REAL_ARITHMETIC (ceil_fract
, MINUS_EXPR
, ceil_whole
, exp
);
1358 if (!representable_as_half_series_p (frac_part
, max_depth
, &synth_info
))
1361 /* Check whether it's more profitable to not use 1.0 / ... */
1364 struct pow_synth_sqrt_info alt_synth_info
;
1365 alt_synth_info
.factors
= XALLOCAVEC (bool, max_depth
+ 1);
1366 alt_synth_info
.deepest
= 0;
1367 alt_synth_info
.num_mults
= 0;
1369 if (representable_as_half_series_p (ceil_fract
, max_depth
,
1371 && alt_synth_info
.deepest
<= synth_info
.deepest
1372 && alt_synth_info
.num_mults
< synth_info
.num_mults
)
1374 whole_part
= ceil_whole
;
1375 frac_part
= ceil_fract
;
1376 synth_info
.deepest
= alt_synth_info
.deepest
;
1377 synth_info
.num_mults
= alt_synth_info
.num_mults
;
1378 memcpy (synth_info
.factors
, alt_synth_info
.factors
,
1379 (max_depth
+ 1) * sizeof (bool));
1384 HOST_WIDE_INT n
= real_to_integer (&whole_part
);
1385 REAL_VALUE_TYPE cint
;
1386 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
1388 if (!real_identical (&whole_part
, &cint
))
1391 if (powi_cost (n
) + synth_info
.num_mults
> POWI_MAX_MULTS
)
1394 memset (cache
, 0, (max_depth
+ 1) * sizeof (tree
));
1396 tree integer_res
= n
== 0 ? build_real (type
, dconst1
) : arg0
;
1398 /* Calculate the integer part of the exponent. */
1401 integer_res
= gimple_expand_builtin_powi (gsi
, loc
, arg0
, n
);
1410 real_to_decimal (string
, &exp_init
, sizeof (string
), 0, 1);
1411 fprintf (dump_file
, "synthesizing pow (x, %s) as:\n", string
);
1417 fprintf (dump_file
, "1.0 / (");
1418 dump_integer_part (dump_file
, "x", n
);
1420 fprintf (dump_file
, " * ");
1421 dump_fractional_sqrt_sequence (dump_file
, "x", &synth_info
);
1422 fprintf (dump_file
, ")");
1426 dump_fractional_sqrt_sequence (dump_file
, "x", &synth_info
);
1427 fprintf (dump_file
, " / (");
1428 dump_integer_part (dump_file
, "x", n
);
1429 fprintf (dump_file
, ")");
1434 dump_fractional_sqrt_sequence (dump_file
, "x", &synth_info
);
1436 fprintf (dump_file
, " * ");
1437 dump_integer_part (dump_file
, "x", n
);
1440 fprintf (dump_file
, "\ndeepest sqrt chain: %d\n", synth_info
.deepest
);
1444 tree fract_res
= NULL_TREE
;
1447 /* Calculate the fractional part of the exponent. */
1448 for (unsigned i
= 0; i
< synth_info
.deepest
; i
++)
1450 if (synth_info
.factors
[i
])
1452 tree sqrt_chain
= get_fn_chain (arg0
, i
+ 1, gsi
, sqrtfn
, loc
, cache
);
1455 fract_res
= sqrt_chain
;
1458 fract_res
= build_and_insert_binop (gsi
, loc
, "powroot", MULT_EXPR
,
1459 fract_res
, sqrt_chain
);
1463 tree res
= NULL_TREE
;
1470 res
= build_and_insert_binop (gsi
, loc
, "powroot", MULT_EXPR
,
1471 fract_res
, integer_res
);
1475 res
= build_and_insert_binop (gsi
, loc
, "powrootrecip", RDIV_EXPR
,
1476 build_real (type
, dconst1
), res
);
1480 res
= build_and_insert_binop (gsi
, loc
, "powroot", RDIV_EXPR
,
1481 fract_res
, integer_res
);
1485 res
= build_and_insert_binop (gsi
, loc
, "powroot", MULT_EXPR
,
1486 fract_res
, integer_res
);
1490 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1491 with location info LOC. If possible, create an equivalent and
1492 less expensive sequence of statements prior to GSI, and return an
1493 expession holding the result. */
1496 gimple_expand_builtin_pow (gimple_stmt_iterator
*gsi
, location_t loc
,
1497 tree arg0
, tree arg1
)
1499 REAL_VALUE_TYPE c
, cint
, dconst1_3
, dconst1_4
, dconst1_6
;
1500 REAL_VALUE_TYPE c2
, dconst3
;
1502 tree type
, sqrtfn
, cbrtfn
, sqrt_arg0
, result
, cbrt_x
, powi_cbrt_x
;
1504 bool speed_p
= optimize_bb_for_speed_p (gsi_bb (*gsi
));
1505 bool hw_sqrt_exists
, c_is_int
, c2_is_int
;
1507 dconst1_4
= dconst1
;
1508 SET_REAL_EXP (&dconst1_4
, REAL_EXP (&dconst1_4
) - 2);
1510 /* If the exponent isn't a constant, there's nothing of interest
1512 if (TREE_CODE (arg1
) != REAL_CST
)
1515 /* If the exponent is equivalent to an integer, expand to an optimal
1516 multiplication sequence when profitable. */
1517 c
= TREE_REAL_CST (arg1
);
1518 n
= real_to_integer (&c
);
1519 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
1520 c_is_int
= real_identical (&c
, &cint
);
1523 && ((n
>= -1 && n
<= 2)
1524 || (flag_unsafe_math_optimizations
1526 && powi_cost (n
) <= POWI_MAX_MULTS
)))
1527 return gimple_expand_builtin_powi (gsi
, loc
, arg0
, n
);
1529 /* Attempt various optimizations using sqrt and cbrt. */
1530 type
= TREE_TYPE (arg0
);
1531 mode
= TYPE_MODE (type
);
1532 sqrtfn
= mathfn_built_in (type
, BUILT_IN_SQRT
);
1534 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1535 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1538 && REAL_VALUES_EQUAL (c
, dconsthalf
)
1539 && !HONOR_SIGNED_ZEROS (mode
))
1540 return build_and_insert_call (gsi
, loc
, sqrtfn
, arg0
);
1542 hw_sqrt_exists
= optab_handler (sqrt_optab
, mode
) != CODE_FOR_nothing
;
1544 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1545 optimizations since 1./3. is not exactly representable. If x
1546 is negative and finite, the correct value of pow(x,1./3.) is
1547 a NaN with the "invalid" exception raised, because the value
1548 of 1./3. actually has an even denominator. The correct value
1549 of cbrt(x) is a negative real value. */
1550 cbrtfn
= mathfn_built_in (type
, BUILT_IN_CBRT
);
1551 dconst1_3
= real_value_truncate (mode
, dconst_third ());
1553 if (flag_unsafe_math_optimizations
1555 && (gimple_val_nonnegative_real_p (arg0
) || !HONOR_NANS (mode
))
1556 && REAL_VALUES_EQUAL (c
, dconst1_3
))
1557 return build_and_insert_call (gsi
, loc
, cbrtfn
, arg0
);
1559 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1560 if we don't have a hardware sqrt insn. */
1561 dconst1_6
= dconst1_3
;
1562 SET_REAL_EXP (&dconst1_6
, REAL_EXP (&dconst1_6
) - 1);
1564 if (flag_unsafe_math_optimizations
1567 && (gimple_val_nonnegative_real_p (arg0
) || !HONOR_NANS (mode
))
1570 && REAL_VALUES_EQUAL (c
, dconst1_6
))
1573 sqrt_arg0
= build_and_insert_call (gsi
, loc
, sqrtfn
, arg0
);
1576 return build_and_insert_call (gsi
, loc
, cbrtfn
, sqrt_arg0
);
1580 /* Attempt to expand the POW as a product of square root chains.
1581 Expand the 0.25 case even when otpimising for size. */
1582 if (flag_unsafe_math_optimizations
1585 && (speed_p
|| REAL_VALUES_EQUAL (c
, dconst1_4
))
1586 && !HONOR_SIGNED_ZEROS (mode
))
1588 unsigned int max_depth
= speed_p
1589 ? PARAM_VALUE (PARAM_MAX_POW_SQRT_DEPTH
)
1592 tree expand_with_sqrts
1593 = expand_pow_as_sqrts (gsi
, loc
, arg0
, arg1
, max_depth
);
1595 if (expand_with_sqrts
)
1596 return expand_with_sqrts
;
1599 real_arithmetic (&c2
, MULT_EXPR
, &c
, &dconst2
);
1600 n
= real_to_integer (&c2
);
1601 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
1602 c2_is_int
= real_identical (&c2
, &cint
);
1604 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1606 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1607 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1609 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1610 different from pow(x, 1./3.) due to rounding and behavior with
1611 negative x, we need to constrain this transformation to unsafe
1612 math and positive x or finite math. */
1613 real_from_integer (&dconst3
, VOIDmode
, 3, SIGNED
);
1614 real_arithmetic (&c2
, MULT_EXPR
, &c
, &dconst3
);
1615 real_round (&c2
, mode
, &c2
);
1616 n
= real_to_integer (&c2
);
1617 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
1618 real_arithmetic (&c2
, RDIV_EXPR
, &cint
, &dconst3
);
1619 real_convert (&c2
, mode
, &c2
);
1621 if (flag_unsafe_math_optimizations
1623 && (gimple_val_nonnegative_real_p (arg0
) || !HONOR_NANS (mode
))
1624 && real_identical (&c2
, &c
)
1626 && optimize_function_for_speed_p (cfun
)
1627 && powi_cost (n
/ 3) <= POWI_MAX_MULTS
)
1629 tree powi_x_ndiv3
= NULL_TREE
;
1631 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1632 possible or profitable, give up. Skip the degenerate case when
1633 abs(n) < 3, where the result is always 1. */
1634 if (absu_hwi (n
) >= 3)
1636 powi_x_ndiv3
= gimple_expand_builtin_powi (gsi
, loc
, arg0
,
1642 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1643 as that creates an unnecessary variable. Instead, just produce
1644 either cbrt(x) or cbrt(x) * cbrt(x). */
1645 cbrt_x
= build_and_insert_call (gsi
, loc
, cbrtfn
, arg0
);
1647 if (absu_hwi (n
) % 3 == 1)
1648 powi_cbrt_x
= cbrt_x
;
1650 powi_cbrt_x
= build_and_insert_binop (gsi
, loc
, "powroot", MULT_EXPR
,
1653 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1654 if (absu_hwi (n
) < 3)
1655 result
= powi_cbrt_x
;
1657 result
= build_and_insert_binop (gsi
, loc
, "powroot", MULT_EXPR
,
1658 powi_x_ndiv3
, powi_cbrt_x
);
1660 /* If n is negative, reciprocate the result. */
1662 result
= build_and_insert_binop (gsi
, loc
, "powroot", RDIV_EXPR
,
1663 build_real (type
, dconst1
), result
);
1668 /* No optimizations succeeded. */
1672 /* ARG is the argument to a cabs builtin call in GSI with location info
1673 LOC. Create a sequence of statements prior to GSI that calculates
1674 sqrt(R*R + I*I), where R and I are the real and imaginary components
1675 of ARG, respectively. Return an expression holding the result. */
1678 gimple_expand_builtin_cabs (gimple_stmt_iterator
*gsi
, location_t loc
, tree arg
)
1680 tree real_part
, imag_part
, addend1
, addend2
, sum
, result
;
1681 tree type
= TREE_TYPE (TREE_TYPE (arg
));
1682 tree sqrtfn
= mathfn_built_in (type
, BUILT_IN_SQRT
);
1683 machine_mode mode
= TYPE_MODE (type
);
1685 if (!flag_unsafe_math_optimizations
1686 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi
)))
1688 || optab_handler (sqrt_optab
, mode
) == CODE_FOR_nothing
)
1691 real_part
= build_and_insert_ref (gsi
, loc
, type
, "cabs",
1692 REALPART_EXPR
, arg
);
1693 addend1
= build_and_insert_binop (gsi
, loc
, "cabs", MULT_EXPR
,
1694 real_part
, real_part
);
1695 imag_part
= build_and_insert_ref (gsi
, loc
, type
, "cabs",
1696 IMAGPART_EXPR
, arg
);
1697 addend2
= build_and_insert_binop (gsi
, loc
, "cabs", MULT_EXPR
,
1698 imag_part
, imag_part
);
1699 sum
= build_and_insert_binop (gsi
, loc
, "cabs", PLUS_EXPR
, addend1
, addend2
);
1700 result
= build_and_insert_call (gsi
, loc
, sqrtfn
, sum
);
1705 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1706 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1707 an optimal number of multiplies, when n is a constant. */
1711 const pass_data pass_data_cse_sincos
=
1713 GIMPLE_PASS
, /* type */
1714 "sincos", /* name */
1715 OPTGROUP_NONE
, /* optinfo_flags */
1716 TV_NONE
, /* tv_id */
1717 PROP_ssa
, /* properties_required */
1718 0, /* properties_provided */
1719 0, /* properties_destroyed */
1720 0, /* todo_flags_start */
1721 TODO_update_ssa
, /* todo_flags_finish */
1724 class pass_cse_sincos
: public gimple_opt_pass
1727 pass_cse_sincos (gcc::context
*ctxt
)
1728 : gimple_opt_pass (pass_data_cse_sincos
, ctxt
)
1731 /* opt_pass methods: */
1732 virtual bool gate (function
*)
1734 /* We no longer require either sincos or cexp, since powi expansion
1735 piggybacks on this pass. */
1739 virtual unsigned int execute (function
*);
1741 }; // class pass_cse_sincos
1744 pass_cse_sincos::execute (function
*fun
)
1747 bool cfg_changed
= false;
1749 calculate_dominance_info (CDI_DOMINATORS
);
1750 memset (&sincos_stats
, 0, sizeof (sincos_stats
));
1752 FOR_EACH_BB_FN (bb
, fun
)
1754 gimple_stmt_iterator gsi
;
1755 bool cleanup_eh
= false;
1757 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1759 gimple stmt
= gsi_stmt (gsi
);
1762 /* Only the last stmt in a bb could throw, no need to call
1763 gimple_purge_dead_eh_edges if we change something in the middle
1764 of a basic block. */
1767 if (is_gimple_call (stmt
)
1768 && gimple_call_lhs (stmt
)
1769 && (fndecl
= gimple_call_fndecl (stmt
))
1770 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
1772 tree arg
, arg0
, arg1
, result
;
1776 switch (DECL_FUNCTION_CODE (fndecl
))
1778 CASE_FLT_FN (BUILT_IN_COS
):
1779 CASE_FLT_FN (BUILT_IN_SIN
):
1780 CASE_FLT_FN (BUILT_IN_CEXPI
):
1781 /* Make sure we have either sincos or cexp. */
1782 if (!targetm
.libc_has_function (function_c99_math_complex
)
1783 && !targetm
.libc_has_function (function_sincos
))
1786 arg
= gimple_call_arg (stmt
, 0);
1787 if (TREE_CODE (arg
) == SSA_NAME
)
1788 cfg_changed
|= execute_cse_sincos_1 (arg
);
1791 CASE_FLT_FN (BUILT_IN_POW
):
1792 arg0
= gimple_call_arg (stmt
, 0);
1793 arg1
= gimple_call_arg (stmt
, 1);
1795 loc
= gimple_location (stmt
);
1796 result
= gimple_expand_builtin_pow (&gsi
, loc
, arg0
, arg1
);
1800 tree lhs
= gimple_get_lhs (stmt
);
1801 gassign
*new_stmt
= gimple_build_assign (lhs
, result
);
1802 gimple_set_location (new_stmt
, loc
);
1803 unlink_stmt_vdef (stmt
);
1804 gsi_replace (&gsi
, new_stmt
, true);
1806 if (gimple_vdef (stmt
))
1807 release_ssa_name (gimple_vdef (stmt
));
1811 CASE_FLT_FN (BUILT_IN_POWI
):
1812 arg0
= gimple_call_arg (stmt
, 0);
1813 arg1
= gimple_call_arg (stmt
, 1);
1814 loc
= gimple_location (stmt
);
1816 if (real_minus_onep (arg0
))
1818 tree t0
, t1
, cond
, one
, minus_one
;
1821 t0
= TREE_TYPE (arg0
);
1822 t1
= TREE_TYPE (arg1
);
1823 one
= build_real (t0
, dconst1
);
1824 minus_one
= build_real (t0
, dconstm1
);
1826 cond
= make_temp_ssa_name (t1
, NULL
, "powi_cond");
1827 stmt
= gimple_build_assign (cond
, BIT_AND_EXPR
,
1828 arg1
, build_int_cst (t1
, 1));
1829 gimple_set_location (stmt
, loc
);
1830 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
1832 result
= make_temp_ssa_name (t0
, NULL
, "powi");
1833 stmt
= gimple_build_assign (result
, COND_EXPR
, cond
,
1835 gimple_set_location (stmt
, loc
);
1836 gsi_insert_before (&gsi
, stmt
, GSI_SAME_STMT
);
1840 if (!tree_fits_shwi_p (arg1
))
1843 n
= tree_to_shwi (arg1
);
1844 result
= gimple_expand_builtin_powi (&gsi
, loc
, arg0
, n
);
1849 tree lhs
= gimple_get_lhs (stmt
);
1850 gassign
*new_stmt
= gimple_build_assign (lhs
, result
);
1851 gimple_set_location (new_stmt
, loc
);
1852 unlink_stmt_vdef (stmt
);
1853 gsi_replace (&gsi
, new_stmt
, true);
1855 if (gimple_vdef (stmt
))
1856 release_ssa_name (gimple_vdef (stmt
));
1860 CASE_FLT_FN (BUILT_IN_CABS
):
1861 arg0
= gimple_call_arg (stmt
, 0);
1862 loc
= gimple_location (stmt
);
1863 result
= gimple_expand_builtin_cabs (&gsi
, loc
, arg0
);
1867 tree lhs
= gimple_get_lhs (stmt
);
1868 gassign
*new_stmt
= gimple_build_assign (lhs
, result
);
1869 gimple_set_location (new_stmt
, loc
);
1870 unlink_stmt_vdef (stmt
);
1871 gsi_replace (&gsi
, new_stmt
, true);
1873 if (gimple_vdef (stmt
))
1874 release_ssa_name (gimple_vdef (stmt
));
1883 cfg_changed
|= gimple_purge_dead_eh_edges (bb
);
1886 statistics_counter_event (fun
, "sincos statements inserted",
1887 sincos_stats
.inserted
);
1889 free_dominance_info (CDI_DOMINATORS
);
1890 return cfg_changed
? TODO_cleanup_cfg
: 0;
1896 make_pass_cse_sincos (gcc::context
*ctxt
)
1898 return new pass_cse_sincos (ctxt
);
1901 /* A symbolic number is used to detect byte permutation and selection
1902 patterns. Therefore the field N contains an artificial number
1903 consisting of octet sized markers:
1905 0 - target byte has the value 0
1906 FF - target byte has an unknown value (eg. due to sign extension)
1907 1..size - marker value is the target byte index minus one.
1909 To detect permutations on memory sources (arrays and structures), a symbolic
1910 number is also associated a base address (the array or structure the load is
1911 made from), an offset from the base address and a range which gives the
1912 difference between the highest and lowest accessed memory location to make
1913 such a symbolic number. The range is thus different from size which reflects
1914 the size of the type of current expression. Note that for non memory source,
1915 range holds the same value as size.
1917 For instance, for an array char a[], (short) a[0] | (short) a[3] would have
1918 a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would
1919 still have a size of 2 but this time a range of 1. */
1921 struct symbolic_number
{
1926 HOST_WIDE_INT bytepos
;
1929 unsigned HOST_WIDE_INT range
;
1932 #define BITS_PER_MARKER 8
1933 #define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
1934 #define MARKER_BYTE_UNKNOWN MARKER_MASK
1935 #define HEAD_MARKER(n, size) \
1936 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
1938 /* The number which the find_bswap_or_nop_1 result should match in
1939 order to have a nop. The number is masked according to the size of
1940 the symbolic number before using it. */
1941 #define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
1942 (uint64_t)0x08070605 << 32 | 0x04030201)
1944 /* The number which the find_bswap_or_nop_1 result should match in
1945 order to have a byte swap. The number is masked according to the
1946 size of the symbolic number before using it. */
1947 #define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
1948 (uint64_t)0x01020304 << 32 | 0x05060708)
1950 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1951 number N. Return false if the requested operation is not permitted
1952 on a symbolic number. */
1955 do_shift_rotate (enum tree_code code
,
1956 struct symbolic_number
*n
,
1959 int i
, size
= TYPE_PRECISION (n
->type
) / BITS_PER_UNIT
;
1960 unsigned head_marker
;
1962 if (count
% BITS_PER_UNIT
!= 0)
1964 count
= (count
/ BITS_PER_UNIT
) * BITS_PER_MARKER
;
1966 /* Zero out the extra bits of N in order to avoid them being shifted
1967 into the significant bits. */
1968 if (size
< 64 / BITS_PER_MARKER
)
1969 n
->n
&= ((uint64_t) 1 << (size
* BITS_PER_MARKER
)) - 1;
1977 head_marker
= HEAD_MARKER (n
->n
, size
);
1979 /* Arithmetic shift of signed type: result is dependent on the value. */
1980 if (!TYPE_UNSIGNED (n
->type
) && head_marker
)
1981 for (i
= 0; i
< count
/ BITS_PER_MARKER
; i
++)
1982 n
->n
|= (uint64_t) MARKER_BYTE_UNKNOWN
1983 << ((size
- 1 - i
) * BITS_PER_MARKER
);
1986 n
->n
= (n
->n
<< count
) | (n
->n
>> ((size
* BITS_PER_MARKER
) - count
));
1989 n
->n
= (n
->n
>> count
) | (n
->n
<< ((size
* BITS_PER_MARKER
) - count
));
1994 /* Zero unused bits for size. */
1995 if (size
< 64 / BITS_PER_MARKER
)
1996 n
->n
&= ((uint64_t) 1 << (size
* BITS_PER_MARKER
)) - 1;
2000 /* Perform sanity checking for the symbolic number N and the gimple
2004 verify_symbolic_number_p (struct symbolic_number
*n
, gimple stmt
)
2008 lhs_type
= gimple_expr_type (stmt
);
2010 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
2013 if (TYPE_PRECISION (lhs_type
) != TYPE_PRECISION (n
->type
))
2019 /* Initialize the symbolic number N for the bswap pass from the base element
2020 SRC manipulated by the bitwise OR expression. */
2023 init_symbolic_number (struct symbolic_number
*n
, tree src
)
2027 n
->base_addr
= n
->offset
= n
->alias_set
= n
->vuse
= NULL_TREE
;
2029 /* Set up the symbolic number N by setting each byte to a value between 1 and
2030 the byte size of rhs1. The highest order byte is set to n->size and the
2031 lowest order byte to 1. */
2032 n
->type
= TREE_TYPE (src
);
2033 size
= TYPE_PRECISION (n
->type
);
2034 if (size
% BITS_PER_UNIT
!= 0)
2036 size
/= BITS_PER_UNIT
;
2037 if (size
> 64 / BITS_PER_MARKER
)
2042 if (size
< 64 / BITS_PER_MARKER
)
2043 n
->n
&= ((uint64_t) 1 << (size
* BITS_PER_MARKER
)) - 1;
2048 /* Check if STMT might be a byte swap or a nop from a memory source and returns
2049 the answer. If so, REF is that memory source and the base of the memory area
2050 accessed and the offset of the access from that base are recorded in N. */
2053 find_bswap_or_nop_load (gimple stmt
, tree ref
, struct symbolic_number
*n
)
2055 /* Leaf node is an array or component ref. Memorize its base and
2056 offset from base to compare to other such leaf node. */
2057 HOST_WIDE_INT bitsize
, bitpos
;
2059 int unsignedp
, volatilep
;
2060 tree offset
, base_addr
;
2062 /* Not prepared to handle PDP endian. */
2063 if (BYTES_BIG_ENDIAN
!= WORDS_BIG_ENDIAN
)
2066 if (!gimple_assign_load_p (stmt
) || gimple_has_volatile_ops (stmt
))
2069 base_addr
= get_inner_reference (ref
, &bitsize
, &bitpos
, &offset
, &mode
,
2070 &unsignedp
, &volatilep
, false);
2072 if (TREE_CODE (base_addr
) == MEM_REF
)
2074 offset_int bit_offset
= 0;
2075 tree off
= TREE_OPERAND (base_addr
, 1);
2077 if (!integer_zerop (off
))
2079 offset_int boff
, coff
= mem_ref_offset (base_addr
);
2080 boff
= wi::lshift (coff
, LOG2_BITS_PER_UNIT
);
2084 base_addr
= TREE_OPERAND (base_addr
, 0);
2086 /* Avoid returning a negative bitpos as this may wreak havoc later. */
2087 if (wi::neg_p (bit_offset
))
2089 offset_int mask
= wi::mask
<offset_int
> (LOG2_BITS_PER_UNIT
, false);
2090 offset_int tem
= bit_offset
.and_not (mask
);
2091 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
2092 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
2094 tem
= wi::arshift (tem
, LOG2_BITS_PER_UNIT
);
2096 offset
= size_binop (PLUS_EXPR
, offset
,
2097 wide_int_to_tree (sizetype
, tem
));
2099 offset
= wide_int_to_tree (sizetype
, tem
);
2102 bitpos
+= bit_offset
.to_shwi ();
2105 if (bitpos
% BITS_PER_UNIT
)
2107 if (bitsize
% BITS_PER_UNIT
)
2110 if (!init_symbolic_number (n
, ref
))
2112 n
->base_addr
= base_addr
;
2114 n
->bytepos
= bitpos
/ BITS_PER_UNIT
;
2115 n
->alias_set
= reference_alias_ptr_type (ref
);
2116 n
->vuse
= gimple_vuse (stmt
);
2120 /* Compute the symbolic number N representing the result of a bitwise OR on 2
2121 symbolic number N1 and N2 whose source statements are respectively
2122 SOURCE_STMT1 and SOURCE_STMT2. */
2125 perform_symbolic_merge (gimple source_stmt1
, struct symbolic_number
*n1
,
2126 gimple source_stmt2
, struct symbolic_number
*n2
,
2127 struct symbolic_number
*n
)
2132 struct symbolic_number
*n_start
;
2134 /* Sources are different, cancel bswap if they are not memory location with
2135 the same base (array, structure, ...). */
2136 if (gimple_assign_rhs1 (source_stmt1
) != gimple_assign_rhs1 (source_stmt2
))
2139 HOST_WIDE_INT start_sub
, end_sub
, end1
, end2
, end
;
2140 struct symbolic_number
*toinc_n_ptr
, *n_end
;
2142 if (!n1
->base_addr
|| !n2
->base_addr
2143 || !operand_equal_p (n1
->base_addr
, n2
->base_addr
, 0))
2146 if (!n1
->offset
!= !n2
->offset
2147 || (n1
->offset
&& !operand_equal_p (n1
->offset
, n2
->offset
, 0)))
2150 if (n1
->bytepos
< n2
->bytepos
)
2153 start_sub
= n2
->bytepos
- n1
->bytepos
;
2154 source_stmt
= source_stmt1
;
2159 start_sub
= n1
->bytepos
- n2
->bytepos
;
2160 source_stmt
= source_stmt2
;
2163 /* Find the highest address at which a load is performed and
2164 compute related info. */
2165 end1
= n1
->bytepos
+ (n1
->range
- 1);
2166 end2
= n2
->bytepos
+ (n2
->range
- 1);
2170 end_sub
= end2
- end1
;
2175 end_sub
= end1
- end2
;
2177 n_end
= (end2
> end1
) ? n2
: n1
;
2179 /* Find symbolic number whose lsb is the most significant. */
2180 if (BYTES_BIG_ENDIAN
)
2181 toinc_n_ptr
= (n_end
== n1
) ? n2
: n1
;
2183 toinc_n_ptr
= (n_start
== n1
) ? n2
: n1
;
2185 n
->range
= end
- n_start
->bytepos
+ 1;
2187 /* Check that the range of memory covered can be represented by
2188 a symbolic number. */
2189 if (n
->range
> 64 / BITS_PER_MARKER
)
2192 /* Reinterpret byte marks in symbolic number holding the value of
2193 bigger weight according to target endianness. */
2194 inc
= BYTES_BIG_ENDIAN
? end_sub
: start_sub
;
2195 size
= TYPE_PRECISION (n1
->type
) / BITS_PER_UNIT
;
2196 for (i
= 0; i
< size
; i
++, inc
<<= BITS_PER_MARKER
)
2199 = (toinc_n_ptr
->n
>> (i
* BITS_PER_MARKER
)) & MARKER_MASK
;
2200 if (marker
&& marker
!= MARKER_BYTE_UNKNOWN
)
2201 toinc_n_ptr
->n
+= inc
;
2206 n
->range
= n1
->range
;
2208 source_stmt
= source_stmt1
;
2212 || alias_ptr_types_compatible_p (n1
->alias_set
, n2
->alias_set
))
2213 n
->alias_set
= n1
->alias_set
;
2215 n
->alias_set
= ptr_type_node
;
2216 n
->vuse
= n_start
->vuse
;
2217 n
->base_addr
= n_start
->base_addr
;
2218 n
->offset
= n_start
->offset
;
2219 n
->bytepos
= n_start
->bytepos
;
2220 n
->type
= n_start
->type
;
2221 size
= TYPE_PRECISION (n
->type
) / BITS_PER_UNIT
;
2223 for (i
= 0, mask
= MARKER_MASK
; i
< size
; i
++, mask
<<= BITS_PER_MARKER
)
2225 uint64_t masked1
, masked2
;
2227 masked1
= n1
->n
& mask
;
2228 masked2
= n2
->n
& mask
;
2229 if (masked1
&& masked2
&& masked1
!= masked2
)
2232 n
->n
= n1
->n
| n2
->n
;
2237 /* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
2238 the operation given by the rhs of STMT on the result. If the operation
2239 could successfully be executed the function returns a gimple stmt whose
2240 rhs's first tree is the expression of the source operand and NULL
2244 find_bswap_or_nop_1 (gimple stmt
, struct symbolic_number
*n
, int limit
)
2246 enum tree_code code
;
2247 tree rhs1
, rhs2
= NULL
;
2248 gimple rhs1_stmt
, rhs2_stmt
, source_stmt1
;
2249 enum gimple_rhs_class rhs_class
;
2251 if (!limit
|| !is_gimple_assign (stmt
))
2254 rhs1
= gimple_assign_rhs1 (stmt
);
2256 if (find_bswap_or_nop_load (stmt
, rhs1
, n
))
2259 if (TREE_CODE (rhs1
) != SSA_NAME
)
2262 code
= gimple_assign_rhs_code (stmt
);
2263 rhs_class
= gimple_assign_rhs_class (stmt
);
2264 rhs1_stmt
= SSA_NAME_DEF_STMT (rhs1
);
2266 if (rhs_class
== GIMPLE_BINARY_RHS
)
2267 rhs2
= gimple_assign_rhs2 (stmt
);
2269 /* Handle unary rhs and binary rhs with integer constants as second
2272 if (rhs_class
== GIMPLE_UNARY_RHS
2273 || (rhs_class
== GIMPLE_BINARY_RHS
2274 && TREE_CODE (rhs2
) == INTEGER_CST
))
2276 if (code
!= BIT_AND_EXPR
2277 && code
!= LSHIFT_EXPR
2278 && code
!= RSHIFT_EXPR
2279 && code
!= LROTATE_EXPR
2280 && code
!= RROTATE_EXPR
2281 && !CONVERT_EXPR_CODE_P (code
))
2284 source_stmt1
= find_bswap_or_nop_1 (rhs1_stmt
, n
, limit
- 1);
2286 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
2287 we have to initialize the symbolic number. */
2290 if (gimple_assign_load_p (stmt
)
2291 || !init_symbolic_number (n
, rhs1
))
2293 source_stmt1
= stmt
;
2300 int i
, size
= TYPE_PRECISION (n
->type
) / BITS_PER_UNIT
;
2301 uint64_t val
= int_cst_value (rhs2
), mask
= 0;
2302 uint64_t tmp
= (1 << BITS_PER_UNIT
) - 1;
2304 /* Only constants masking full bytes are allowed. */
2305 for (i
= 0; i
< size
; i
++, tmp
<<= BITS_PER_UNIT
)
2306 if ((val
& tmp
) != 0 && (val
& tmp
) != tmp
)
2309 mask
|= (uint64_t) MARKER_MASK
<< (i
* BITS_PER_MARKER
);
2318 if (!do_shift_rotate (code
, n
, (int) TREE_INT_CST_LOW (rhs2
)))
2323 int i
, type_size
, old_type_size
;
2326 type
= gimple_expr_type (stmt
);
2327 type_size
= TYPE_PRECISION (type
);
2328 if (type_size
% BITS_PER_UNIT
!= 0)
2330 type_size
/= BITS_PER_UNIT
;
2331 if (type_size
> 64 / BITS_PER_MARKER
)
2334 /* Sign extension: result is dependent on the value. */
2335 old_type_size
= TYPE_PRECISION (n
->type
) / BITS_PER_UNIT
;
2336 if (!TYPE_UNSIGNED (n
->type
) && type_size
> old_type_size
2337 && HEAD_MARKER (n
->n
, old_type_size
))
2338 for (i
= 0; i
< type_size
- old_type_size
; i
++)
2339 n
->n
|= (uint64_t) MARKER_BYTE_UNKNOWN
2340 << ((type_size
- 1 - i
) * BITS_PER_MARKER
);
2342 if (type_size
< 64 / BITS_PER_MARKER
)
2344 /* If STMT casts to a smaller type mask out the bits not
2345 belonging to the target type. */
2346 n
->n
&= ((uint64_t) 1 << (type_size
* BITS_PER_MARKER
)) - 1;
2350 n
->range
= type_size
;
2356 return verify_symbolic_number_p (n
, stmt
) ? source_stmt1
: NULL
;
2359 /* Handle binary rhs. */
2361 if (rhs_class
== GIMPLE_BINARY_RHS
)
2363 struct symbolic_number n1
, n2
;
2364 gimple source_stmt
, source_stmt2
;
2366 if (code
!= BIT_IOR_EXPR
)
2369 if (TREE_CODE (rhs2
) != SSA_NAME
)
2372 rhs2_stmt
= SSA_NAME_DEF_STMT (rhs2
);
2377 source_stmt1
= find_bswap_or_nop_1 (rhs1_stmt
, &n1
, limit
- 1);
2382 source_stmt2
= find_bswap_or_nop_1 (rhs2_stmt
, &n2
, limit
- 1);
2387 if (TYPE_PRECISION (n1
.type
) != TYPE_PRECISION (n2
.type
))
2390 if (!n1
.vuse
!= !n2
.vuse
2391 || (n1
.vuse
&& !operand_equal_p (n1
.vuse
, n2
.vuse
, 0)))
2395 = perform_symbolic_merge (source_stmt1
, &n1
, source_stmt2
, &n2
, n
);
2400 if (!verify_symbolic_number_p (n
, stmt
))
2412 /* Check if STMT completes a bswap implementation or a read in a given
2413 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
2414 accordingly. It also sets N to represent the kind of operations
2415 performed: size of the resulting expression and whether it works on
2416 a memory source, and if so alias-set and vuse. At last, the
2417 function returns a stmt whose rhs's first tree is the source
2421 find_bswap_or_nop (gimple stmt
, struct symbolic_number
*n
, bool *bswap
)
2423 /* The number which the find_bswap_or_nop_1 result should match in order
2424 to have a full byte swap. The number is shifted to the right
2425 according to the size of the symbolic number before using it. */
2426 uint64_t cmpxchg
= CMPXCHG
;
2427 uint64_t cmpnop
= CMPNOP
;
2432 /* The last parameter determines the depth search limit. It usually
2433 correlates directly to the number n of bytes to be touched. We
2434 increase that number by log2(n) + 1 here in order to also
2435 cover signed -> unsigned conversions of the src operand as can be seen
2436 in libgcc, and for initial shift/and operation of the src operand. */
2437 limit
= TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt
)));
2438 limit
+= 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT
) limit
);
2439 source_stmt
= find_bswap_or_nop_1 (stmt
, n
, limit
);
2444 /* Find real size of result (highest non-zero byte). */
2450 for (tmpn
= n
->n
, rsize
= 0; tmpn
; tmpn
>>= BITS_PER_MARKER
, rsize
++);
2454 /* Zero out the extra bits of N and CMP*. */
2455 if (n
->range
< (int) sizeof (int64_t))
2459 mask
= ((uint64_t) 1 << (n
->range
* BITS_PER_MARKER
)) - 1;
2460 cmpxchg
>>= (64 / BITS_PER_MARKER
- n
->range
) * BITS_PER_MARKER
;
2464 /* A complete byte swap should make the symbolic number to start with
2465 the largest digit in the highest order byte. Unchanged symbolic
2466 number indicates a read with same endianness as target architecture. */
2469 else if (n
->n
== cmpxchg
)
2474 /* Useless bit manipulation performed by code. */
2475 if (!n
->base_addr
&& n
->n
== cmpnop
)
2478 n
->range
*= BITS_PER_UNIT
;
2484 const pass_data pass_data_optimize_bswap
=
2486 GIMPLE_PASS
, /* type */
2488 OPTGROUP_NONE
, /* optinfo_flags */
2489 TV_NONE
, /* tv_id */
2490 PROP_ssa
, /* properties_required */
2491 0, /* properties_provided */
2492 0, /* properties_destroyed */
2493 0, /* todo_flags_start */
2494 0, /* todo_flags_finish */
2497 class pass_optimize_bswap
: public gimple_opt_pass
2500 pass_optimize_bswap (gcc::context
*ctxt
)
2501 : gimple_opt_pass (pass_data_optimize_bswap
, ctxt
)
2504 /* opt_pass methods: */
2505 virtual bool gate (function
*)
2507 return flag_expensive_optimizations
&& optimize
;
2510 virtual unsigned int execute (function
*);
2512 }; // class pass_optimize_bswap
2514 /* Perform the bswap optimization: replace the expression computed in the rhs
2515 of CUR_STMT by an equivalent bswap, load or load + bswap expression.
2516 Which of these alternatives replace the rhs is given by N->base_addr (non
2517 null if a load is needed) and BSWAP. The type, VUSE and set-alias of the
2518 load to perform are also given in N while the builtin bswap invoke is given
2519 in FNDEL. Finally, if a load is involved, SRC_STMT refers to one of the
2520 load statements involved to construct the rhs in CUR_STMT and N->range gives
2521 the size of the rhs expression for maintaining some statistics.
2523 Note that if the replacement involve a load, CUR_STMT is moved just after
2524 SRC_STMT to do the load with the same VUSE which can lead to CUR_STMT
2525 changing of basic block. */
2528 bswap_replace (gimple cur_stmt
, gimple src_stmt
, tree fndecl
, tree bswap_type
,
2529 tree load_type
, struct symbolic_number
*n
, bool bswap
)
2531 gimple_stmt_iterator gsi
;
2535 gsi
= gsi_for_stmt (cur_stmt
);
2536 src
= gimple_assign_rhs1 (src_stmt
);
2537 tgt
= gimple_assign_lhs (cur_stmt
);
2539 /* Need to load the value from memory first. */
2542 gimple_stmt_iterator gsi_ins
= gsi_for_stmt (src_stmt
);
2543 tree addr_expr
, addr_tmp
, val_expr
, val_tmp
;
2544 tree load_offset_ptr
, aligned_load_type
;
2545 gimple addr_stmt
, load_stmt
;
2547 HOST_WIDE_INT load_offset
= 0;
2549 align
= get_object_alignment (src
);
2550 /* If the new access is smaller than the original one, we need
2551 to perform big endian adjustment. */
2552 if (BYTES_BIG_ENDIAN
)
2554 HOST_WIDE_INT bitsize
, bitpos
;
2556 int unsignedp
, volatilep
;
2559 get_inner_reference (src
, &bitsize
, &bitpos
, &offset
, &mode
,
2560 &unsignedp
, &volatilep
, false);
2561 if (n
->range
< (unsigned HOST_WIDE_INT
) bitsize
)
2563 load_offset
= (bitsize
- n
->range
) / BITS_PER_UNIT
;
2564 unsigned HOST_WIDE_INT l
2565 = (load_offset
* BITS_PER_UNIT
) & (align
- 1);
2572 && align
< GET_MODE_ALIGNMENT (TYPE_MODE (load_type
))
2573 && SLOW_UNALIGNED_ACCESS (TYPE_MODE (load_type
), align
))
2576 /* Move cur_stmt just before one of the load of the original
2577 to ensure it has the same VUSE. See PR61517 for what could
2579 gsi_move_before (&gsi
, &gsi_ins
);
2580 gsi
= gsi_for_stmt (cur_stmt
);
2582 /* Compute address to load from and cast according to the size
2584 addr_expr
= build_fold_addr_expr (unshare_expr (src
));
2585 if (is_gimple_mem_ref_addr (addr_expr
))
2586 addr_tmp
= addr_expr
;
2589 addr_tmp
= make_temp_ssa_name (TREE_TYPE (addr_expr
), NULL
,
2591 addr_stmt
= gimple_build_assign (addr_tmp
, addr_expr
);
2592 gsi_insert_before (&gsi
, addr_stmt
, GSI_SAME_STMT
);
2595 /* Perform the load. */
2596 aligned_load_type
= load_type
;
2597 if (align
< TYPE_ALIGN (load_type
))
2598 aligned_load_type
= build_aligned_type (load_type
, align
);
2599 load_offset_ptr
= build_int_cst (n
->alias_set
, load_offset
);
2600 val_expr
= fold_build2 (MEM_REF
, aligned_load_type
, addr_tmp
,
2606 nop_stats
.found_16bit
++;
2607 else if (n
->range
== 32)
2608 nop_stats
.found_32bit
++;
2611 gcc_assert (n
->range
== 64);
2612 nop_stats
.found_64bit
++;
2615 /* Convert the result of load if necessary. */
2616 if (!useless_type_conversion_p (TREE_TYPE (tgt
), load_type
))
2618 val_tmp
= make_temp_ssa_name (aligned_load_type
, NULL
,
2620 load_stmt
= gimple_build_assign (val_tmp
, val_expr
);
2621 gimple_set_vuse (load_stmt
, n
->vuse
);
2622 gsi_insert_before (&gsi
, load_stmt
, GSI_SAME_STMT
);
2623 gimple_assign_set_rhs_with_ops (&gsi
, NOP_EXPR
, val_tmp
);
2627 gimple_assign_set_rhs_with_ops (&gsi
, MEM_REF
, val_expr
);
2628 gimple_set_vuse (cur_stmt
, n
->vuse
);
2630 update_stmt (cur_stmt
);
2635 "%d bit load in target endianness found at: ",
2637 print_gimple_stmt (dump_file
, cur_stmt
, 0, 0);
2643 val_tmp
= make_temp_ssa_name (aligned_load_type
, NULL
, "load_dst");
2644 load_stmt
= gimple_build_assign (val_tmp
, val_expr
);
2645 gimple_set_vuse (load_stmt
, n
->vuse
);
2646 gsi_insert_before (&gsi
, load_stmt
, GSI_SAME_STMT
);
2652 bswap_stats
.found_16bit
++;
2653 else if (n
->range
== 32)
2654 bswap_stats
.found_32bit
++;
2657 gcc_assert (n
->range
== 64);
2658 bswap_stats
.found_64bit
++;
2663 /* Convert the src expression if necessary. */
2664 if (!useless_type_conversion_p (TREE_TYPE (tmp
), bswap_type
))
2666 gimple convert_stmt
;
2668 tmp
= make_temp_ssa_name (bswap_type
, NULL
, "bswapsrc");
2669 convert_stmt
= gimple_build_assign (tmp
, NOP_EXPR
, src
);
2670 gsi_insert_before (&gsi
, convert_stmt
, GSI_SAME_STMT
);
2673 /* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values
2674 are considered as rotation of 2N bit values by N bits is generally not
2675 equivalent to a bswap. Consider for instance 0x01020304 r>> 16 which
2676 gives 0x03040102 while a bswap for that value is 0x04030201. */
2677 if (bswap
&& n
->range
== 16)
2679 tree count
= build_int_cst (NULL
, BITS_PER_UNIT
);
2680 src
= fold_build2 (LROTATE_EXPR
, bswap_type
, tmp
, count
);
2681 bswap_stmt
= gimple_build_assign (NULL
, src
);
2684 bswap_stmt
= gimple_build_call (fndecl
, 1, tmp
);
2688 /* Convert the result if necessary. */
2689 if (!useless_type_conversion_p (TREE_TYPE (tgt
), bswap_type
))
2691 gimple convert_stmt
;
2693 tmp
= make_temp_ssa_name (bswap_type
, NULL
, "bswapdst");
2694 convert_stmt
= gimple_build_assign (tgt
, NOP_EXPR
, tmp
);
2695 gsi_insert_after (&gsi
, convert_stmt
, GSI_SAME_STMT
);
2698 gimple_set_lhs (bswap_stmt
, tmp
);
2702 fprintf (dump_file
, "%d bit bswap implementation found at: ",
2704 print_gimple_stmt (dump_file
, cur_stmt
, 0, 0);
2707 gsi_insert_after (&gsi
, bswap_stmt
, GSI_SAME_STMT
);
2708 gsi_remove (&gsi
, true);
2712 /* Find manual byte swap implementations as well as load in a given
2713 endianness. Byte swaps are turned into a bswap builtin invokation
2714 while endian loads are converted to bswap builtin invokation or
2715 simple load according to the target endianness. */
2718 pass_optimize_bswap::execute (function
*fun
)
2721 bool bswap32_p
, bswap64_p
;
2722 bool changed
= false;
2723 tree bswap32_type
= NULL_TREE
, bswap64_type
= NULL_TREE
;
2725 if (BITS_PER_UNIT
!= 8)
2728 bswap32_p
= (builtin_decl_explicit_p (BUILT_IN_BSWAP32
)
2729 && optab_handler (bswap_optab
, SImode
) != CODE_FOR_nothing
);
2730 bswap64_p
= (builtin_decl_explicit_p (BUILT_IN_BSWAP64
)
2731 && (optab_handler (bswap_optab
, DImode
) != CODE_FOR_nothing
2732 || (bswap32_p
&& word_mode
== SImode
)));
2734 /* Determine the argument type of the builtins. The code later on
2735 assumes that the return and argument type are the same. */
2738 tree fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP32
);
2739 bswap32_type
= TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl
)));
2744 tree fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP64
);
2745 bswap64_type
= TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl
)));
2748 memset (&nop_stats
, 0, sizeof (nop_stats
));
2749 memset (&bswap_stats
, 0, sizeof (bswap_stats
));
2751 FOR_EACH_BB_FN (bb
, fun
)
2753 gimple_stmt_iterator gsi
;
2755 /* We do a reverse scan for bswap patterns to make sure we get the
2756 widest match. As bswap pattern matching doesn't handle previously
2757 inserted smaller bswap replacements as sub-patterns, the wider
2758 variant wouldn't be detected. */
2759 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
);)
2761 gimple src_stmt
, cur_stmt
= gsi_stmt (gsi
);
2762 tree fndecl
= NULL_TREE
, bswap_type
= NULL_TREE
, load_type
;
2763 enum tree_code code
;
2764 struct symbolic_number n
;
2767 /* This gsi_prev (&gsi) is not part of the for loop because cur_stmt
2768 might be moved to a different basic block by bswap_replace and gsi
2769 must not points to it if that's the case. Moving the gsi_prev
2770 there make sure that gsi points to the statement previous to
2771 cur_stmt while still making sure that all statements are
2772 considered in this basic block. */
2775 if (!is_gimple_assign (cur_stmt
))
2778 code
= gimple_assign_rhs_code (cur_stmt
);
2783 if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt
))
2784 || tree_to_uhwi (gimple_assign_rhs2 (cur_stmt
))
2794 src_stmt
= find_bswap_or_nop (cur_stmt
, &n
, &bswap
);
2802 /* Already in canonical form, nothing to do. */
2803 if (code
== LROTATE_EXPR
|| code
== RROTATE_EXPR
)
2805 load_type
= bswap_type
= uint16_type_node
;
2808 load_type
= uint32_type_node
;
2811 fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP32
);
2812 bswap_type
= bswap32_type
;
2816 load_type
= uint64_type_node
;
2819 fndecl
= builtin_decl_explicit (BUILT_IN_BSWAP64
);
2820 bswap_type
= bswap64_type
;
2827 if (bswap
&& !fndecl
&& n
.range
!= 16)
2830 if (bswap_replace (cur_stmt
, src_stmt
, fndecl
, bswap_type
, load_type
,
2836 statistics_counter_event (fun
, "16-bit nop implementations found",
2837 nop_stats
.found_16bit
);
2838 statistics_counter_event (fun
, "32-bit nop implementations found",
2839 nop_stats
.found_32bit
);
2840 statistics_counter_event (fun
, "64-bit nop implementations found",
2841 nop_stats
.found_64bit
);
2842 statistics_counter_event (fun
, "16-bit bswap implementations found",
2843 bswap_stats
.found_16bit
);
2844 statistics_counter_event (fun
, "32-bit bswap implementations found",
2845 bswap_stats
.found_32bit
);
2846 statistics_counter_event (fun
, "64-bit bswap implementations found",
2847 bswap_stats
.found_64bit
);
2849 return (changed
? TODO_update_ssa
: 0);
2855 make_pass_optimize_bswap (gcc::context
*ctxt
)
2857 return new pass_optimize_bswap (ctxt
);
2860 /* Return true if stmt is a type conversion operation that can be stripped
2861 when used in a widening multiply operation. */
2863 widening_mult_conversion_strippable_p (tree result_type
, gimple stmt
)
2865 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
2867 if (TREE_CODE (result_type
) == INTEGER_TYPE
)
2872 if (!CONVERT_EXPR_CODE_P (rhs_code
))
2875 op_type
= TREE_TYPE (gimple_assign_lhs (stmt
));
2877 /* If the type of OP has the same precision as the result, then
2878 we can strip this conversion. The multiply operation will be
2879 selected to create the correct extension as a by-product. */
2880 if (TYPE_PRECISION (result_type
) == TYPE_PRECISION (op_type
))
2883 /* We can also strip a conversion if it preserves the signed-ness of
2884 the operation and doesn't narrow the range. */
2885 inner_op_type
= TREE_TYPE (gimple_assign_rhs1 (stmt
));
2887 /* If the inner-most type is unsigned, then we can strip any
2888 intermediate widening operation. If it's signed, then the
2889 intermediate widening operation must also be signed. */
2890 if ((TYPE_UNSIGNED (inner_op_type
)
2891 || TYPE_UNSIGNED (op_type
) == TYPE_UNSIGNED (inner_op_type
))
2892 && TYPE_PRECISION (op_type
) > TYPE_PRECISION (inner_op_type
))
2898 return rhs_code
== FIXED_CONVERT_EXPR
;
2901 /* Return true if RHS is a suitable operand for a widening multiplication,
2902 assuming a target type of TYPE.
2903 There are two cases:
2905 - RHS makes some value at least twice as wide. Store that value
2906 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2908 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2909 but leave *TYPE_OUT untouched. */
2912 is_widening_mult_rhs_p (tree type
, tree rhs
, tree
*type_out
,
2918 if (TREE_CODE (rhs
) == SSA_NAME
)
2920 stmt
= SSA_NAME_DEF_STMT (rhs
);
2921 if (is_gimple_assign (stmt
))
2923 if (! widening_mult_conversion_strippable_p (type
, stmt
))
2927 rhs1
= gimple_assign_rhs1 (stmt
);
2929 if (TREE_CODE (rhs1
) == INTEGER_CST
)
2931 *new_rhs_out
= rhs1
;
2940 type1
= TREE_TYPE (rhs1
);
2942 if (TREE_CODE (type1
) != TREE_CODE (type
)
2943 || TYPE_PRECISION (type1
) * 2 > TYPE_PRECISION (type
))
2946 *new_rhs_out
= rhs1
;
2951 if (TREE_CODE (rhs
) == INTEGER_CST
)
2961 /* Return true if STMT performs a widening multiplication, assuming the
2962 output type is TYPE. If so, store the unwidened types of the operands
2963 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2964 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2965 and *TYPE2_OUT would give the operands of the multiplication. */
2968 is_widening_mult_p (gimple stmt
,
2969 tree
*type1_out
, tree
*rhs1_out
,
2970 tree
*type2_out
, tree
*rhs2_out
)
2972 tree type
= TREE_TYPE (gimple_assign_lhs (stmt
));
2974 if (TREE_CODE (type
) != INTEGER_TYPE
2975 && TREE_CODE (type
) != FIXED_POINT_TYPE
)
2978 if (!is_widening_mult_rhs_p (type
, gimple_assign_rhs1 (stmt
), type1_out
,
2982 if (!is_widening_mult_rhs_p (type
, gimple_assign_rhs2 (stmt
), type2_out
,
2986 if (*type1_out
== NULL
)
2988 if (*type2_out
== NULL
|| !int_fits_type_p (*rhs1_out
, *type2_out
))
2990 *type1_out
= *type2_out
;
2993 if (*type2_out
== NULL
)
2995 if (!int_fits_type_p (*rhs2_out
, *type1_out
))
2997 *type2_out
= *type1_out
;
3000 /* Ensure that the larger of the two operands comes first. */
3001 if (TYPE_PRECISION (*type1_out
) < TYPE_PRECISION (*type2_out
))
3003 std::swap (*type1_out
, *type2_out
);
3004 std::swap (*rhs1_out
, *rhs2_out
);
3010 /* Process a single gimple statement STMT, which has a MULT_EXPR as
3011 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
3012 value is true iff we converted the statement. */
3015 convert_mult_to_widen (gimple stmt
, gimple_stmt_iterator
*gsi
)
3017 tree lhs
, rhs1
, rhs2
, type
, type1
, type2
;
3018 enum insn_code handler
;
3019 machine_mode to_mode
, from_mode
, actual_mode
;
3021 int actual_precision
;
3022 location_t loc
= gimple_location (stmt
);
3023 bool from_unsigned1
, from_unsigned2
;
3025 lhs
= gimple_assign_lhs (stmt
);
3026 type
= TREE_TYPE (lhs
);
3027 if (TREE_CODE (type
) != INTEGER_TYPE
)
3030 if (!is_widening_mult_p (stmt
, &type1
, &rhs1
, &type2
, &rhs2
))
3033 to_mode
= TYPE_MODE (type
);
3034 from_mode
= TYPE_MODE (type1
);
3035 from_unsigned1
= TYPE_UNSIGNED (type1
);
3036 from_unsigned2
= TYPE_UNSIGNED (type2
);
3038 if (from_unsigned1
&& from_unsigned2
)
3039 op
= umul_widen_optab
;
3040 else if (!from_unsigned1
&& !from_unsigned2
)
3041 op
= smul_widen_optab
;
3043 op
= usmul_widen_optab
;
3045 handler
= find_widening_optab_handler_and_mode (op
, to_mode
, from_mode
,
3048 if (handler
== CODE_FOR_nothing
)
3050 if (op
!= smul_widen_optab
)
3052 /* We can use a signed multiply with unsigned types as long as
3053 there is a wider mode to use, or it is the smaller of the two
3054 types that is unsigned. Note that type1 >= type2, always. */
3055 if ((TYPE_UNSIGNED (type1
)
3056 && TYPE_PRECISION (type1
) == GET_MODE_PRECISION (from_mode
))
3057 || (TYPE_UNSIGNED (type2
)
3058 && TYPE_PRECISION (type2
) == GET_MODE_PRECISION (from_mode
)))
3060 from_mode
= GET_MODE_WIDER_MODE (from_mode
);
3061 if (GET_MODE_SIZE (to_mode
) <= GET_MODE_SIZE (from_mode
))
3065 op
= smul_widen_optab
;
3066 handler
= find_widening_optab_handler_and_mode (op
, to_mode
,
3070 if (handler
== CODE_FOR_nothing
)
3073 from_unsigned1
= from_unsigned2
= false;
3079 /* Ensure that the inputs to the handler are in the correct precison
3080 for the opcode. This will be the full mode size. */
3081 actual_precision
= GET_MODE_PRECISION (actual_mode
);
3082 if (2 * actual_precision
> TYPE_PRECISION (type
))
3084 if (actual_precision
!= TYPE_PRECISION (type1
)
3085 || from_unsigned1
!= TYPE_UNSIGNED (type1
))
3086 rhs1
= build_and_insert_cast (gsi
, loc
,
3087 build_nonstandard_integer_type
3088 (actual_precision
, from_unsigned1
), rhs1
);
3089 if (actual_precision
!= TYPE_PRECISION (type2
)
3090 || from_unsigned2
!= TYPE_UNSIGNED (type2
))
3091 rhs2
= build_and_insert_cast (gsi
, loc
,
3092 build_nonstandard_integer_type
3093 (actual_precision
, from_unsigned2
), rhs2
);
3095 /* Handle constants. */
3096 if (TREE_CODE (rhs1
) == INTEGER_CST
)
3097 rhs1
= fold_convert (type1
, rhs1
);
3098 if (TREE_CODE (rhs2
) == INTEGER_CST
)
3099 rhs2
= fold_convert (type2
, rhs2
);
3101 gimple_assign_set_rhs1 (stmt
, rhs1
);
3102 gimple_assign_set_rhs2 (stmt
, rhs2
);
3103 gimple_assign_set_rhs_code (stmt
, WIDEN_MULT_EXPR
);
3105 widen_mul_stats
.widen_mults_inserted
++;
3109 /* Process a single gimple statement STMT, which is found at the
3110 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
3111 rhs (given by CODE), and try to convert it into a
3112 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
3113 is true iff we converted the statement. */
3116 convert_plusminus_to_widen (gimple_stmt_iterator
*gsi
, gimple stmt
,
3117 enum tree_code code
)
3119 gimple rhs1_stmt
= NULL
, rhs2_stmt
= NULL
;
3120 gimple conv1_stmt
= NULL
, conv2_stmt
= NULL
, conv_stmt
;
3121 tree type
, type1
, type2
, optype
;
3122 tree lhs
, rhs1
, rhs2
, mult_rhs1
, mult_rhs2
, add_rhs
;
3123 enum tree_code rhs1_code
= ERROR_MARK
, rhs2_code
= ERROR_MARK
;
3125 enum tree_code wmult_code
;
3126 enum insn_code handler
;
3127 machine_mode to_mode
, from_mode
, actual_mode
;
3128 location_t loc
= gimple_location (stmt
);
3129 int actual_precision
;
3130 bool from_unsigned1
, from_unsigned2
;
3132 lhs
= gimple_assign_lhs (stmt
);
3133 type
= TREE_TYPE (lhs
);
3134 if (TREE_CODE (type
) != INTEGER_TYPE
3135 && TREE_CODE (type
) != FIXED_POINT_TYPE
)
3138 if (code
== MINUS_EXPR
)
3139 wmult_code
= WIDEN_MULT_MINUS_EXPR
;
3141 wmult_code
= WIDEN_MULT_PLUS_EXPR
;
3143 rhs1
= gimple_assign_rhs1 (stmt
);
3144 rhs2
= gimple_assign_rhs2 (stmt
);
3146 if (TREE_CODE (rhs1
) == SSA_NAME
)
3148 rhs1_stmt
= SSA_NAME_DEF_STMT (rhs1
);
3149 if (is_gimple_assign (rhs1_stmt
))
3150 rhs1_code
= gimple_assign_rhs_code (rhs1_stmt
);
3153 if (TREE_CODE (rhs2
) == SSA_NAME
)
3155 rhs2_stmt
= SSA_NAME_DEF_STMT (rhs2
);
3156 if (is_gimple_assign (rhs2_stmt
))
3157 rhs2_code
= gimple_assign_rhs_code (rhs2_stmt
);
3160 /* Allow for one conversion statement between the multiply
3161 and addition/subtraction statement. If there are more than
3162 one conversions then we assume they would invalidate this
3163 transformation. If that's not the case then they should have
3164 been folded before now. */
3165 if (CONVERT_EXPR_CODE_P (rhs1_code
))
3167 conv1_stmt
= rhs1_stmt
;
3168 rhs1
= gimple_assign_rhs1 (rhs1_stmt
);
3169 if (TREE_CODE (rhs1
) == SSA_NAME
)
3171 rhs1_stmt
= SSA_NAME_DEF_STMT (rhs1
);
3172 if (is_gimple_assign (rhs1_stmt
))
3173 rhs1_code
= gimple_assign_rhs_code (rhs1_stmt
);
3178 if (CONVERT_EXPR_CODE_P (rhs2_code
))
3180 conv2_stmt
= rhs2_stmt
;
3181 rhs2
= gimple_assign_rhs1 (rhs2_stmt
);
3182 if (TREE_CODE (rhs2
) == SSA_NAME
)
3184 rhs2_stmt
= SSA_NAME_DEF_STMT (rhs2
);
3185 if (is_gimple_assign (rhs2_stmt
))
3186 rhs2_code
= gimple_assign_rhs_code (rhs2_stmt
);
3192 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
3193 is_widening_mult_p, but we still need the rhs returns.
3195 It might also appear that it would be sufficient to use the existing
3196 operands of the widening multiply, but that would limit the choice of
3197 multiply-and-accumulate instructions.
3199 If the widened-multiplication result has more than one uses, it is
3200 probably wiser not to do the conversion. */
3201 if (code
== PLUS_EXPR
3202 && (rhs1_code
== MULT_EXPR
|| rhs1_code
== WIDEN_MULT_EXPR
))
3204 if (!has_single_use (rhs1
)
3205 || !is_widening_mult_p (rhs1_stmt
, &type1
, &mult_rhs1
,
3206 &type2
, &mult_rhs2
))
3209 conv_stmt
= conv1_stmt
;
3211 else if (rhs2_code
== MULT_EXPR
|| rhs2_code
== WIDEN_MULT_EXPR
)
3213 if (!has_single_use (rhs2
)
3214 || !is_widening_mult_p (rhs2_stmt
, &type1
, &mult_rhs1
,
3215 &type2
, &mult_rhs2
))
3218 conv_stmt
= conv2_stmt
;
3223 to_mode
= TYPE_MODE (type
);
3224 from_mode
= TYPE_MODE (type1
);
3225 from_unsigned1
= TYPE_UNSIGNED (type1
);
3226 from_unsigned2
= TYPE_UNSIGNED (type2
);
3229 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
3230 if (from_unsigned1
!= from_unsigned2
)
3232 if (!INTEGRAL_TYPE_P (type
))
3234 /* We can use a signed multiply with unsigned types as long as
3235 there is a wider mode to use, or it is the smaller of the two
3236 types that is unsigned. Note that type1 >= type2, always. */
3238 && TYPE_PRECISION (type1
) == GET_MODE_PRECISION (from_mode
))
3240 && TYPE_PRECISION (type2
) == GET_MODE_PRECISION (from_mode
)))
3242 from_mode
= GET_MODE_WIDER_MODE (from_mode
);
3243 if (GET_MODE_SIZE (from_mode
) >= GET_MODE_SIZE (to_mode
))
3247 from_unsigned1
= from_unsigned2
= false;
3248 optype
= build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode
),
3252 /* If there was a conversion between the multiply and addition
3253 then we need to make sure it fits a multiply-and-accumulate.
3254 The should be a single mode change which does not change the
3258 /* We use the original, unmodified data types for this. */
3259 tree from_type
= TREE_TYPE (gimple_assign_rhs1 (conv_stmt
));
3260 tree to_type
= TREE_TYPE (gimple_assign_lhs (conv_stmt
));
3261 int data_size
= TYPE_PRECISION (type1
) + TYPE_PRECISION (type2
);
3262 bool is_unsigned
= TYPE_UNSIGNED (type1
) && TYPE_UNSIGNED (type2
);
3264 if (TYPE_PRECISION (from_type
) > TYPE_PRECISION (to_type
))
3266 /* Conversion is a truncate. */
3267 if (TYPE_PRECISION (to_type
) < data_size
)
3270 else if (TYPE_PRECISION (from_type
) < TYPE_PRECISION (to_type
))
3272 /* Conversion is an extend. Check it's the right sort. */
3273 if (TYPE_UNSIGNED (from_type
) != is_unsigned
3274 && !(is_unsigned
&& TYPE_PRECISION (from_type
) > data_size
))
3277 /* else convert is a no-op for our purposes. */
3280 /* Verify that the machine can perform a widening multiply
3281 accumulate in this mode/signedness combination, otherwise
3282 this transformation is likely to pessimize code. */
3283 this_optab
= optab_for_tree_code (wmult_code
, optype
, optab_default
);
3284 handler
= find_widening_optab_handler_and_mode (this_optab
, to_mode
,
3285 from_mode
, 0, &actual_mode
);
3287 if (handler
== CODE_FOR_nothing
)
3290 /* Ensure that the inputs to the handler are in the correct precison
3291 for the opcode. This will be the full mode size. */
3292 actual_precision
= GET_MODE_PRECISION (actual_mode
);
3293 if (actual_precision
!= TYPE_PRECISION (type1
)
3294 || from_unsigned1
!= TYPE_UNSIGNED (type1
))
3295 mult_rhs1
= build_and_insert_cast (gsi
, loc
,
3296 build_nonstandard_integer_type
3297 (actual_precision
, from_unsigned1
),
3299 if (actual_precision
!= TYPE_PRECISION (type2
)
3300 || from_unsigned2
!= TYPE_UNSIGNED (type2
))
3301 mult_rhs2
= build_and_insert_cast (gsi
, loc
,
3302 build_nonstandard_integer_type
3303 (actual_precision
, from_unsigned2
),
3306 if (!useless_type_conversion_p (type
, TREE_TYPE (add_rhs
)))
3307 add_rhs
= build_and_insert_cast (gsi
, loc
, type
, add_rhs
);
3309 /* Handle constants. */
3310 if (TREE_CODE (mult_rhs1
) == INTEGER_CST
)
3311 mult_rhs1
= fold_convert (type1
, mult_rhs1
);
3312 if (TREE_CODE (mult_rhs2
) == INTEGER_CST
)
3313 mult_rhs2
= fold_convert (type2
, mult_rhs2
);
3315 gimple_assign_set_rhs_with_ops (gsi
, wmult_code
, mult_rhs1
, mult_rhs2
,
3317 update_stmt (gsi_stmt (*gsi
));
3318 widen_mul_stats
.maccs_inserted
++;
3322 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
3323 with uses in additions and subtractions to form fused multiply-add
3324 operations. Returns true if successful and MUL_STMT should be removed. */
3327 convert_mult_to_fma (gimple mul_stmt
, tree op1
, tree op2
)
3329 tree mul_result
= gimple_get_lhs (mul_stmt
);
3330 tree type
= TREE_TYPE (mul_result
);
3331 gimple use_stmt
, neguse_stmt
;
3333 use_operand_p use_p
;
3334 imm_use_iterator imm_iter
;
3336 if (FLOAT_TYPE_P (type
)
3337 && flag_fp_contract_mode
== FP_CONTRACT_OFF
)
3340 /* We don't want to do bitfield reduction ops. */
3341 if (INTEGRAL_TYPE_P (type
)
3342 && (TYPE_PRECISION (type
)
3343 != GET_MODE_PRECISION (TYPE_MODE (type
))))
3346 /* If the target doesn't support it, don't generate it. We assume that
3347 if fma isn't available then fms, fnma or fnms are not either. */
3348 if (optab_handler (fma_optab
, TYPE_MODE (type
)) == CODE_FOR_nothing
)
3351 /* If the multiplication has zero uses, it is kept around probably because
3352 of -fnon-call-exceptions. Don't optimize it away in that case,
3354 if (has_zero_uses (mul_result
))
3357 /* Make sure that the multiplication statement becomes dead after
3358 the transformation, thus that all uses are transformed to FMAs.
3359 This means we assume that an FMA operation has the same cost
3361 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, mul_result
)
3363 enum tree_code use_code
;
3364 tree result
= mul_result
;
3365 bool negate_p
= false;
3367 use_stmt
= USE_STMT (use_p
);
3369 if (is_gimple_debug (use_stmt
))
3372 /* For now restrict this operations to single basic blocks. In theory
3373 we would want to support sinking the multiplication in
3379 to form a fma in the then block and sink the multiplication to the
3381 if (gimple_bb (use_stmt
) != gimple_bb (mul_stmt
))
3384 if (!is_gimple_assign (use_stmt
))
3387 use_code
= gimple_assign_rhs_code (use_stmt
);
3389 /* A negate on the multiplication leads to FNMA. */
3390 if (use_code
== NEGATE_EXPR
)
3395 result
= gimple_assign_lhs (use_stmt
);
3397 /* Make sure the negate statement becomes dead with this
3398 single transformation. */
3399 if (!single_imm_use (gimple_assign_lhs (use_stmt
),
3400 &use_p
, &neguse_stmt
))
3403 /* Make sure the multiplication isn't also used on that stmt. */
3404 FOR_EACH_PHI_OR_STMT_USE (usep
, neguse_stmt
, iter
, SSA_OP_USE
)
3405 if (USE_FROM_PTR (usep
) == mul_result
)
3409 use_stmt
= neguse_stmt
;
3410 if (gimple_bb (use_stmt
) != gimple_bb (mul_stmt
))
3412 if (!is_gimple_assign (use_stmt
))
3415 use_code
= gimple_assign_rhs_code (use_stmt
);
3422 if (gimple_assign_rhs2 (use_stmt
) == result
)
3423 negate_p
= !negate_p
;
3428 /* FMA can only be formed from PLUS and MINUS. */
3432 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
3433 by a MULT_EXPR that we'll visit later, we might be able to
3434 get a more profitable match with fnma.
3435 OTOH, if we don't, a negate / fma pair has likely lower latency
3436 that a mult / subtract pair. */
3437 if (use_code
== MINUS_EXPR
&& !negate_p
3438 && gimple_assign_rhs1 (use_stmt
) == result
3439 && optab_handler (fms_optab
, TYPE_MODE (type
)) == CODE_FOR_nothing
3440 && optab_handler (fnma_optab
, TYPE_MODE (type
)) != CODE_FOR_nothing
)
3442 tree rhs2
= gimple_assign_rhs2 (use_stmt
);
3444 if (TREE_CODE (rhs2
) == SSA_NAME
)
3446 gimple stmt2
= SSA_NAME_DEF_STMT (rhs2
);
3447 if (has_single_use (rhs2
)
3448 && is_gimple_assign (stmt2
)
3449 && gimple_assign_rhs_code (stmt2
) == MULT_EXPR
)
3454 /* We can't handle a * b + a * b. */
3455 if (gimple_assign_rhs1 (use_stmt
) == gimple_assign_rhs2 (use_stmt
))
3458 /* While it is possible to validate whether or not the exact form
3459 that we've recognized is available in the backend, the assumption
3460 is that the transformation is never a loss. For instance, suppose
3461 the target only has the plain FMA pattern available. Consider
3462 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
3463 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
3464 still have 3 operations, but in the FMA form the two NEGs are
3465 independent and could be run in parallel. */
3468 FOR_EACH_IMM_USE_STMT (use_stmt
, imm_iter
, mul_result
)
3470 gimple_stmt_iterator gsi
= gsi_for_stmt (use_stmt
);
3471 enum tree_code use_code
;
3472 tree addop
, mulop1
= op1
, result
= mul_result
;
3473 bool negate_p
= false;
3475 if (is_gimple_debug (use_stmt
))
3478 use_code
= gimple_assign_rhs_code (use_stmt
);
3479 if (use_code
== NEGATE_EXPR
)
3481 result
= gimple_assign_lhs (use_stmt
);
3482 single_imm_use (gimple_assign_lhs (use_stmt
), &use_p
, &neguse_stmt
);
3483 gsi_remove (&gsi
, true);
3484 release_defs (use_stmt
);
3486 use_stmt
= neguse_stmt
;
3487 gsi
= gsi_for_stmt (use_stmt
);
3488 use_code
= gimple_assign_rhs_code (use_stmt
);
3492 if (gimple_assign_rhs1 (use_stmt
) == result
)
3494 addop
= gimple_assign_rhs2 (use_stmt
);
3495 /* a * b - c -> a * b + (-c) */
3496 if (gimple_assign_rhs_code (use_stmt
) == MINUS_EXPR
)
3497 addop
= force_gimple_operand_gsi (&gsi
,
3498 build1 (NEGATE_EXPR
,
3500 true, NULL_TREE
, true,
3505 addop
= gimple_assign_rhs1 (use_stmt
);
3506 /* a - b * c -> (-b) * c + a */
3507 if (gimple_assign_rhs_code (use_stmt
) == MINUS_EXPR
)
3508 negate_p
= !negate_p
;
3512 mulop1
= force_gimple_operand_gsi (&gsi
,
3513 build1 (NEGATE_EXPR
,
3515 true, NULL_TREE
, true,
3518 fma_stmt
= gimple_build_assign (gimple_assign_lhs (use_stmt
),
3519 FMA_EXPR
, mulop1
, op2
, addop
);
3520 gsi_replace (&gsi
, fma_stmt
, true);
3521 widen_mul_stats
.fmas_inserted
++;
3527 /* Find integer multiplications where the operands are extended from
3528 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3529 where appropriate. */
3533 const pass_data pass_data_optimize_widening_mul
=
3535 GIMPLE_PASS
, /* type */
3536 "widening_mul", /* name */
3537 OPTGROUP_NONE
, /* optinfo_flags */
3538 TV_NONE
, /* tv_id */
3539 PROP_ssa
, /* properties_required */
3540 0, /* properties_provided */
3541 0, /* properties_destroyed */
3542 0, /* todo_flags_start */
3543 TODO_update_ssa
, /* todo_flags_finish */
3546 class pass_optimize_widening_mul
: public gimple_opt_pass
3549 pass_optimize_widening_mul (gcc::context
*ctxt
)
3550 : gimple_opt_pass (pass_data_optimize_widening_mul
, ctxt
)
3553 /* opt_pass methods: */
3554 virtual bool gate (function
*)
3556 return flag_expensive_optimizations
&& optimize
;
3559 virtual unsigned int execute (function
*);
3561 }; // class pass_optimize_widening_mul
3564 pass_optimize_widening_mul::execute (function
*fun
)
3567 bool cfg_changed
= false;
3569 memset (&widen_mul_stats
, 0, sizeof (widen_mul_stats
));
3571 FOR_EACH_BB_FN (bb
, fun
)
3573 gimple_stmt_iterator gsi
;
3575 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
);)
3577 gimple stmt
= gsi_stmt (gsi
);
3578 enum tree_code code
;
3580 if (is_gimple_assign (stmt
))
3582 code
= gimple_assign_rhs_code (stmt
);
3586 if (!convert_mult_to_widen (stmt
, &gsi
)
3587 && convert_mult_to_fma (stmt
,
3588 gimple_assign_rhs1 (stmt
),
3589 gimple_assign_rhs2 (stmt
)))
3591 gsi_remove (&gsi
, true);
3592 release_defs (stmt
);
3599 convert_plusminus_to_widen (&gsi
, stmt
, code
);
3605 else if (is_gimple_call (stmt
)
3606 && gimple_call_lhs (stmt
))
3608 tree fndecl
= gimple_call_fndecl (stmt
);
3610 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
3612 switch (DECL_FUNCTION_CODE (fndecl
))
3617 if (TREE_CODE (gimple_call_arg (stmt
, 1)) == REAL_CST
3618 && REAL_VALUES_EQUAL
3619 (TREE_REAL_CST (gimple_call_arg (stmt
, 1)),
3621 && convert_mult_to_fma (stmt
,
3622 gimple_call_arg (stmt
, 0),
3623 gimple_call_arg (stmt
, 0)))
3625 unlink_stmt_vdef (stmt
);
3626 if (gsi_remove (&gsi
, true)
3627 && gimple_purge_dead_eh_edges (bb
))
3629 release_defs (stmt
);
3642 statistics_counter_event (fun
, "widening multiplications inserted",
3643 widen_mul_stats
.widen_mults_inserted
);
3644 statistics_counter_event (fun
, "widening maccs inserted",
3645 widen_mul_stats
.maccs_inserted
);
3646 statistics_counter_event (fun
, "fused multiply-adds inserted",
3647 widen_mul_stats
.fmas_inserted
);
3649 return cfg_changed
? TODO_cleanup_cfg
: 0;
3655 make_pass_optimize_widening_mul (gcc::context
*ctxt
)
3657 return new pass_optimize_widening_mul (ctxt
);