1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains optimizer of the control flow. The main entry point is
21 cleanup_cfg. Following optimizations are performed:
23 - Unreachable blocks removal
24 - Edge forwarding (edge to the forwarder block is forwarded to its
25 successor. Simplification of the branch instruction is performed by
26 underlying infrastructure so branch can be converted to simplejump or
28 - Cross jumping (tail merging)
29 - Conditional jump-around-simplejump simplification
30 - Basic block merging. */
34 #include "coretypes.h"
40 #include "hard-reg-set.h"
42 #include "insn-config.h"
45 #include "diagnostic-core.h"
46 #include "alloc-pool.h"
51 #include "function.h" /* For inline functions in emit-rtl.h they need crtl. */
53 #include "tree-pass.h"
63 #include "dominance.h"
68 #include "cfgcleanup.h"
70 #include "basic-block.h"
76 #define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
78 /* Set to true when we are running first pass of try_optimize_cfg loop. */
79 static bool first_pass
;
81 /* Set to true if crossjumps occurred in the latest run of try_optimize_cfg. */
82 static bool crossjumps_occured
;
84 /* Set to true if we couldn't run an optimization due to stale liveness
85 information; we should run df_analyze to enable more opportunities. */
86 static bool block_was_dirty
;
88 static bool try_crossjump_to_edge (int, edge
, edge
, enum replace_direction
);
89 static bool try_crossjump_bb (int, basic_block
);
90 static bool outgoing_edges_match (int, basic_block
, basic_block
);
91 static enum replace_direction
old_insns_match_p (int, rtx_insn
*, rtx_insn
*);
93 static void merge_blocks_move_predecessor_nojumps (basic_block
, basic_block
);
94 static void merge_blocks_move_successor_nojumps (basic_block
, basic_block
);
95 static bool try_optimize_cfg (int);
96 static bool try_simplify_condjump (basic_block
);
97 static bool try_forward_edges (int, basic_block
);
98 static edge
thread_jump (edge
, basic_block
);
99 static bool mark_effect (rtx
, bitmap
);
100 static void notice_new_block (basic_block
);
101 static void update_forwarder_flag (basic_block
);
102 static void merge_memattrs (rtx
, rtx
);
104 /* Set flags for newly created block. */
107 notice_new_block (basic_block bb
)
112 if (forwarder_block_p (bb
))
113 bb
->flags
|= BB_FORWARDER_BLOCK
;
116 /* Recompute forwarder flag after block has been modified. */
119 update_forwarder_flag (basic_block bb
)
121 if (forwarder_block_p (bb
))
122 bb
->flags
|= BB_FORWARDER_BLOCK
;
124 bb
->flags
&= ~BB_FORWARDER_BLOCK
;
127 /* Simplify a conditional jump around an unconditional jump.
128 Return true if something changed. */
131 try_simplify_condjump (basic_block cbranch_block
)
133 basic_block jump_block
, jump_dest_block
, cbranch_dest_block
;
134 edge cbranch_jump_edge
, cbranch_fallthru_edge
;
135 rtx_insn
*cbranch_insn
;
137 /* Verify that there are exactly two successors. */
138 if (EDGE_COUNT (cbranch_block
->succs
) != 2)
141 /* Verify that we've got a normal conditional branch at the end
143 cbranch_insn
= BB_END (cbranch_block
);
144 if (!any_condjump_p (cbranch_insn
))
147 cbranch_fallthru_edge
= FALLTHRU_EDGE (cbranch_block
);
148 cbranch_jump_edge
= BRANCH_EDGE (cbranch_block
);
150 /* The next block must not have multiple predecessors, must not
151 be the last block in the function, and must contain just the
152 unconditional jump. */
153 jump_block
= cbranch_fallthru_edge
->dest
;
154 if (!single_pred_p (jump_block
)
155 || jump_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
156 || !FORWARDER_BLOCK_P (jump_block
))
158 jump_dest_block
= single_succ (jump_block
);
160 /* If we are partitioning hot/cold basic blocks, we don't want to
161 mess up unconditional or indirect jumps that cross between hot
164 Basic block partitioning may result in some jumps that appear to
165 be optimizable (or blocks that appear to be mergeable), but which really
166 must be left untouched (they are required to make it safely across
167 partition boundaries). See the comments at the top of
168 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
170 if (BB_PARTITION (jump_block
) != BB_PARTITION (jump_dest_block
)
171 || (cbranch_jump_edge
->flags
& EDGE_CROSSING
))
174 /* The conditional branch must target the block after the
175 unconditional branch. */
176 cbranch_dest_block
= cbranch_jump_edge
->dest
;
178 if (cbranch_dest_block
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
179 || !can_fallthru (jump_block
, cbranch_dest_block
))
182 /* Invert the conditional branch. */
183 if (!invert_jump (as_a
<rtx_jump_insn
*> (cbranch_insn
),
184 block_label (jump_dest_block
), 0))
188 fprintf (dump_file
, "Simplifying condjump %i around jump %i\n",
189 INSN_UID (cbranch_insn
), INSN_UID (BB_END (jump_block
)));
191 /* Success. Update the CFG to match. Note that after this point
192 the edge variable names appear backwards; the redirection is done
193 this way to preserve edge profile data. */
194 cbranch_jump_edge
= redirect_edge_succ_nodup (cbranch_jump_edge
,
196 cbranch_fallthru_edge
= redirect_edge_succ_nodup (cbranch_fallthru_edge
,
198 cbranch_jump_edge
->flags
|= EDGE_FALLTHRU
;
199 cbranch_fallthru_edge
->flags
&= ~EDGE_FALLTHRU
;
200 update_br_prob_note (cbranch_block
);
202 /* Delete the block with the unconditional jump, and clean up the mess. */
203 delete_basic_block (jump_block
);
204 tidy_fallthru_edge (cbranch_jump_edge
);
205 update_forwarder_flag (cbranch_block
);
210 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
211 on register. Used by jump threading. */
214 mark_effect (rtx exp
, regset nonequal
)
217 switch (GET_CODE (exp
))
219 /* In case we do clobber the register, mark it as equal, as we know the
220 value is dead so it don't have to match. */
222 dest
= XEXP (exp
, 0);
224 bitmap_clear_range (nonequal
, REGNO (dest
), REG_NREGS (dest
));
228 if (rtx_equal_for_cselib_p (SET_DEST (exp
), SET_SRC (exp
)))
230 dest
= SET_DEST (exp
);
235 bitmap_set_range (nonequal
, REGNO (dest
), REG_NREGS (dest
));
243 /* Return true if X contains a register in NONEQUAL. */
245 mentions_nonequal_regs (const_rtx x
, regset nonequal
)
247 subrtx_iterator::array_type array
;
248 FOR_EACH_SUBRTX (iter
, array
, x
, NONCONST
)
253 unsigned int end_regno
= END_REGNO (x
);
254 for (unsigned int regno
= REGNO (x
); regno
< end_regno
; ++regno
)
255 if (REGNO_REG_SET_P (nonequal
, regno
))
262 /* Attempt to prove that the basic block B will have no side effects and
263 always continues in the same edge if reached via E. Return the edge
264 if exist, NULL otherwise. */
267 thread_jump (edge e
, basic_block b
)
269 rtx set1
, set2
, cond1
, cond2
;
271 enum rtx_code code1
, code2
, reversed_code2
;
272 bool reverse1
= false;
276 reg_set_iterator rsi
;
278 if (b
->flags
& BB_NONTHREADABLE_BLOCK
)
281 /* At the moment, we do handle only conditional jumps, but later we may
282 want to extend this code to tablejumps and others. */
283 if (EDGE_COUNT (e
->src
->succs
) != 2)
285 if (EDGE_COUNT (b
->succs
) != 2)
287 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
291 /* Second branch must end with onlyjump, as we will eliminate the jump. */
292 if (!any_condjump_p (BB_END (e
->src
)))
295 if (!any_condjump_p (BB_END (b
)) || !onlyjump_p (BB_END (b
)))
297 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
301 set1
= pc_set (BB_END (e
->src
));
302 set2
= pc_set (BB_END (b
));
303 if (((e
->flags
& EDGE_FALLTHRU
) != 0)
304 != (XEXP (SET_SRC (set1
), 1) == pc_rtx
))
307 cond1
= XEXP (SET_SRC (set1
), 0);
308 cond2
= XEXP (SET_SRC (set2
), 0);
310 code1
= reversed_comparison_code (cond1
, BB_END (e
->src
));
312 code1
= GET_CODE (cond1
);
314 code2
= GET_CODE (cond2
);
315 reversed_code2
= reversed_comparison_code (cond2
, BB_END (b
));
317 if (!comparison_dominates_p (code1
, code2
)
318 && !comparison_dominates_p (code1
, reversed_code2
))
321 /* Ensure that the comparison operators are equivalent.
322 ??? This is far too pessimistic. We should allow swapped operands,
323 different CCmodes, or for example comparisons for interval, that
324 dominate even when operands are not equivalent. */
325 if (!rtx_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
326 || !rtx_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
329 /* Short circuit cases where block B contains some side effects, as we can't
331 for (insn
= NEXT_INSN (BB_HEAD (b
)); insn
!= NEXT_INSN (BB_END (b
));
332 insn
= NEXT_INSN (insn
))
333 if (INSN_P (insn
) && side_effects_p (PATTERN (insn
)))
335 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
341 /* First process all values computed in the source basic block. */
342 for (insn
= NEXT_INSN (BB_HEAD (e
->src
));
343 insn
!= NEXT_INSN (BB_END (e
->src
));
344 insn
= NEXT_INSN (insn
))
346 cselib_process_insn (insn
);
348 nonequal
= BITMAP_ALLOC (NULL
);
349 CLEAR_REG_SET (nonequal
);
351 /* Now assume that we've continued by the edge E to B and continue
352 processing as if it were same basic block.
353 Our goal is to prove that whole block is an NOOP. */
355 for (insn
= NEXT_INSN (BB_HEAD (b
));
356 insn
!= NEXT_INSN (BB_END (b
)) && !failed
;
357 insn
= NEXT_INSN (insn
))
361 rtx pat
= PATTERN (insn
);
363 if (GET_CODE (pat
) == PARALLEL
)
365 for (i
= 0; i
< (unsigned)XVECLEN (pat
, 0); i
++)
366 failed
|= mark_effect (XVECEXP (pat
, 0, i
), nonequal
);
369 failed
|= mark_effect (pat
, nonequal
);
372 cselib_process_insn (insn
);
375 /* Later we should clear nonequal of dead registers. So far we don't
376 have life information in cfg_cleanup. */
379 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
383 /* cond2 must not mention any register that is not equal to the
385 if (mentions_nonequal_regs (cond2
, nonequal
))
388 EXECUTE_IF_SET_IN_REG_SET (nonequal
, 0, i
, rsi
)
391 BITMAP_FREE (nonequal
);
393 if ((comparison_dominates_p (code1
, code2
) != 0)
394 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
395 return BRANCH_EDGE (b
);
397 return FALLTHRU_EDGE (b
);
400 BITMAP_FREE (nonequal
);
405 /* Attempt to forward edges leaving basic block B.
406 Return true if successful. */
409 try_forward_edges (int mode
, basic_block b
)
411 bool changed
= false;
413 edge e
, *threaded_edges
= NULL
;
415 /* If we are partitioning hot/cold basic blocks, we don't want to
416 mess up unconditional or indirect jumps that cross between hot
419 Basic block partitioning may result in some jumps that appear to
420 be optimizable (or blocks that appear to be mergeable), but which really
421 must be left untouched (they are required to make it safely across
422 partition boundaries). See the comments at the top of
423 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
425 if (JUMP_P (BB_END (b
)) && CROSSING_JUMP_P (BB_END (b
)))
428 for (ei
= ei_start (b
->succs
); (e
= ei_safe_edge (ei
)); )
430 basic_block target
, first
;
431 location_t goto_locus
;
433 bool threaded
= false;
434 int nthreaded_edges
= 0;
435 bool may_thread
= first_pass
|| (b
->flags
& BB_MODIFIED
) != 0;
437 /* Skip complex edges because we don't know how to update them.
439 Still handle fallthru edges, as we can succeed to forward fallthru
440 edge to the same place as the branch edge of conditional branch
441 and turn conditional branch to an unconditional branch. */
442 if (e
->flags
& EDGE_COMPLEX
)
448 target
= first
= e
->dest
;
449 counter
= NUM_FIXED_BLOCKS
;
450 goto_locus
= e
->goto_locus
;
452 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
453 up jumps that cross between hot/cold sections.
455 Basic block partitioning may result in some jumps that appear
456 to be optimizable (or blocks that appear to be mergeable), but which
457 really must be left untouched (they are required to make it safely
458 across partition boundaries). See the comments at the top of
459 bb-reorder.c:partition_hot_cold_basic_blocks for complete
462 if (first
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
463 && JUMP_P (BB_END (first
))
464 && CROSSING_JUMP_P (BB_END (first
)))
467 while (counter
< n_basic_blocks_for_fn (cfun
))
469 basic_block new_target
= NULL
;
470 bool new_target_threaded
= false;
471 may_thread
|= (target
->flags
& BB_MODIFIED
) != 0;
473 if (FORWARDER_BLOCK_P (target
)
474 && !(single_succ_edge (target
)->flags
& EDGE_CROSSING
)
475 && single_succ (target
) != EXIT_BLOCK_PTR_FOR_FN (cfun
))
477 /* Bypass trivial infinite loops. */
478 new_target
= single_succ (target
);
479 if (target
== new_target
)
480 counter
= n_basic_blocks_for_fn (cfun
);
483 /* When not optimizing, ensure that edges or forwarder
484 blocks with different locus are not optimized out. */
485 location_t new_locus
= single_succ_edge (target
)->goto_locus
;
486 location_t locus
= goto_locus
;
488 if (LOCATION_LOCUS (new_locus
) != UNKNOWN_LOCATION
489 && LOCATION_LOCUS (locus
) != UNKNOWN_LOCATION
490 && new_locus
!= locus
)
494 if (LOCATION_LOCUS (new_locus
) != UNKNOWN_LOCATION
)
497 rtx_insn
*last
= BB_END (target
);
498 if (DEBUG_INSN_P (last
))
499 last
= prev_nondebug_insn (last
);
500 if (last
&& INSN_P (last
))
501 new_locus
= INSN_LOCATION (last
);
503 new_locus
= UNKNOWN_LOCATION
;
505 if (LOCATION_LOCUS (new_locus
) != UNKNOWN_LOCATION
506 && LOCATION_LOCUS (locus
) != UNKNOWN_LOCATION
507 && new_locus
!= locus
)
511 if (LOCATION_LOCUS (new_locus
) != UNKNOWN_LOCATION
)
520 /* Allow to thread only over one edge at time to simplify updating
522 else if ((mode
& CLEANUP_THREADING
) && may_thread
)
524 edge t
= thread_jump (e
, target
);
528 threaded_edges
= XNEWVEC (edge
,
529 n_basic_blocks_for_fn (cfun
));
534 /* Detect an infinite loop across blocks not
535 including the start block. */
536 for (i
= 0; i
< nthreaded_edges
; ++i
)
537 if (threaded_edges
[i
] == t
)
539 if (i
< nthreaded_edges
)
541 counter
= n_basic_blocks_for_fn (cfun
);
546 /* Detect an infinite loop across the start block. */
550 gcc_assert (nthreaded_edges
551 < (n_basic_blocks_for_fn (cfun
)
552 - NUM_FIXED_BLOCKS
));
553 threaded_edges
[nthreaded_edges
++] = t
;
555 new_target
= t
->dest
;
556 new_target_threaded
= true;
565 threaded
|= new_target_threaded
;
568 if (counter
>= n_basic_blocks_for_fn (cfun
))
571 fprintf (dump_file
, "Infinite loop in BB %i.\n",
574 else if (target
== first
)
575 ; /* We didn't do anything. */
578 /* Save the values now, as the edge may get removed. */
579 gcov_type edge_count
= e
->count
;
580 int edge_probability
= e
->probability
;
584 e
->goto_locus
= goto_locus
;
586 /* Don't force if target is exit block. */
587 if (threaded
&& target
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
589 notice_new_block (redirect_edge_and_branch_force (e
, target
));
591 fprintf (dump_file
, "Conditionals threaded.\n");
593 else if (!redirect_edge_and_branch (e
, target
))
597 "Forwarding edge %i->%i to %i failed.\n",
598 b
->index
, e
->dest
->index
, target
->index
);
603 /* We successfully forwarded the edge. Now update profile
604 data: for each edge we traversed in the chain, remove
605 the original edge's execution count. */
606 edge_frequency
= apply_probability (b
->frequency
, edge_probability
);
612 if (!single_succ_p (first
))
614 gcc_assert (n
< nthreaded_edges
);
615 t
= threaded_edges
[n
++];
616 gcc_assert (t
->src
== first
);
617 update_bb_profile_for_threading (first
, edge_frequency
,
619 update_br_prob_note (first
);
623 first
->count
-= edge_count
;
624 if (first
->count
< 0)
626 first
->frequency
-= edge_frequency
;
627 if (first
->frequency
< 0)
628 first
->frequency
= 0;
629 /* It is possible that as the result of
630 threading we've removed edge as it is
631 threaded to the fallthru edge. Avoid
632 getting out of sync. */
633 if (n
< nthreaded_edges
634 && first
== threaded_edges
[n
]->src
)
636 t
= single_succ_edge (first
);
639 t
->count
-= edge_count
;
644 while (first
!= target
);
652 free (threaded_edges
);
657 /* Blocks A and B are to be merged into a single block. A has no incoming
658 fallthru edge, so it can be moved before B without adding or modifying
659 any jumps (aside from the jump from A to B). */
662 merge_blocks_move_predecessor_nojumps (basic_block a
, basic_block b
)
666 /* If we are partitioning hot/cold basic blocks, we don't want to
667 mess up unconditional or indirect jumps that cross between hot
670 Basic block partitioning may result in some jumps that appear to
671 be optimizable (or blocks that appear to be mergeable), but which really
672 must be left untouched (they are required to make it safely across
673 partition boundaries). See the comments at the top of
674 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
676 if (BB_PARTITION (a
) != BB_PARTITION (b
))
679 barrier
= next_nonnote_insn (BB_END (a
));
680 gcc_assert (BARRIER_P (barrier
));
681 delete_insn (barrier
);
683 /* Scramble the insn chain. */
684 if (BB_END (a
) != PREV_INSN (BB_HEAD (b
)))
685 reorder_insns_nobb (BB_HEAD (a
), BB_END (a
), PREV_INSN (BB_HEAD (b
)));
689 fprintf (dump_file
, "Moved block %d before %d and merged.\n",
692 /* Swap the records for the two blocks around. */
695 link_block (a
, b
->prev_bb
);
697 /* Now blocks A and B are contiguous. Merge them. */
701 /* Blocks A and B are to be merged into a single block. B has no outgoing
702 fallthru edge, so it can be moved after A without adding or modifying
703 any jumps (aside from the jump from A to B). */
706 merge_blocks_move_successor_nojumps (basic_block a
, basic_block b
)
708 rtx_insn
*barrier
, *real_b_end
;
710 rtx_jump_table_data
*table
;
712 /* If we are partitioning hot/cold basic blocks, we don't want to
713 mess up unconditional or indirect jumps that cross between hot
716 Basic block partitioning may result in some jumps that appear to
717 be optimizable (or blocks that appear to be mergeable), but which really
718 must be left untouched (they are required to make it safely across
719 partition boundaries). See the comments at the top of
720 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
722 if (BB_PARTITION (a
) != BB_PARTITION (b
))
725 real_b_end
= BB_END (b
);
727 /* If there is a jump table following block B temporarily add the jump table
728 to block B so that it will also be moved to the correct location. */
729 if (tablejump_p (BB_END (b
), &label
, &table
)
730 && prev_active_insn (label
) == BB_END (b
))
735 /* There had better have been a barrier there. Delete it. */
736 barrier
= NEXT_INSN (BB_END (b
));
737 if (barrier
&& BARRIER_P (barrier
))
738 delete_insn (barrier
);
741 /* Scramble the insn chain. */
742 reorder_insns_nobb (BB_HEAD (b
), BB_END (b
), BB_END (a
));
744 /* Restore the real end of b. */
745 BB_END (b
) = real_b_end
;
748 fprintf (dump_file
, "Moved block %d after %d and merged.\n",
751 /* Now blocks A and B are contiguous. Merge them. */
755 /* Attempt to merge basic blocks that are potentially non-adjacent.
756 Return NULL iff the attempt failed, otherwise return basic block
757 where cleanup_cfg should continue. Because the merging commonly
758 moves basic block away or introduces another optimization
759 possibility, return basic block just before B so cleanup_cfg don't
762 It may be good idea to return basic block before C in the case
763 C has been moved after B and originally appeared earlier in the
764 insn sequence, but we have no information available about the
765 relative ordering of these two. Hopefully it is not too common. */
768 merge_blocks_move (edge e
, basic_block b
, basic_block c
, int mode
)
772 /* If we are partitioning hot/cold basic blocks, we don't want to
773 mess up unconditional or indirect jumps that cross between hot
776 Basic block partitioning may result in some jumps that appear to
777 be optimizable (or blocks that appear to be mergeable), but which really
778 must be left untouched (they are required to make it safely across
779 partition boundaries). See the comments at the top of
780 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
782 if (BB_PARTITION (b
) != BB_PARTITION (c
))
785 /* If B has a fallthru edge to C, no need to move anything. */
786 if (e
->flags
& EDGE_FALLTHRU
)
788 int b_index
= b
->index
, c_index
= c
->index
;
790 /* Protect the loop latches. */
791 if (current_loops
&& c
->loop_father
->latch
== c
)
795 update_forwarder_flag (b
);
798 fprintf (dump_file
, "Merged %d and %d without moving.\n",
801 return b
->prev_bb
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) ? b
: b
->prev_bb
;
804 /* Otherwise we will need to move code around. Do that only if expensive
805 transformations are allowed. */
806 else if (mode
& CLEANUP_EXPENSIVE
)
808 edge tmp_edge
, b_fallthru_edge
;
809 bool c_has_outgoing_fallthru
;
810 bool b_has_incoming_fallthru
;
812 /* Avoid overactive code motion, as the forwarder blocks should be
813 eliminated by edge redirection instead. One exception might have
814 been if B is a forwarder block and C has no fallthru edge, but
815 that should be cleaned up by bb-reorder instead. */
816 if (FORWARDER_BLOCK_P (b
) || FORWARDER_BLOCK_P (c
))
819 /* We must make sure to not munge nesting of lexical blocks,
820 and loop notes. This is done by squeezing out all the notes
821 and leaving them there to lie. Not ideal, but functional. */
823 tmp_edge
= find_fallthru_edge (c
->succs
);
824 c_has_outgoing_fallthru
= (tmp_edge
!= NULL
);
826 tmp_edge
= find_fallthru_edge (b
->preds
);
827 b_has_incoming_fallthru
= (tmp_edge
!= NULL
);
828 b_fallthru_edge
= tmp_edge
;
831 next
= next
->prev_bb
;
833 /* Otherwise, we're going to try to move C after B. If C does
834 not have an outgoing fallthru, then it can be moved
835 immediately after B without introducing or modifying jumps. */
836 if (! c_has_outgoing_fallthru
)
838 merge_blocks_move_successor_nojumps (b
, c
);
839 return next
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) ? next
->next_bb
: next
;
842 /* If B does not have an incoming fallthru, then it can be moved
843 immediately before C without introducing or modifying jumps.
844 C cannot be the first block, so we do not have to worry about
845 accessing a non-existent block. */
847 if (b_has_incoming_fallthru
)
851 if (b_fallthru_edge
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
853 bb
= force_nonfallthru (b_fallthru_edge
);
855 notice_new_block (bb
);
858 merge_blocks_move_predecessor_nojumps (b
, c
);
859 return next
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) ? next
->next_bb
: next
;
866 /* Removes the memory attributes of MEM expression
867 if they are not equal. */
870 merge_memattrs (rtx x
, rtx y
)
879 if (x
== 0 || y
== 0)
884 if (code
!= GET_CODE (y
))
887 if (GET_MODE (x
) != GET_MODE (y
))
890 if (code
== MEM
&& !mem_attrs_eq_p (MEM_ATTRS (x
), MEM_ATTRS (y
)))
894 else if (! MEM_ATTRS (y
))
898 HOST_WIDE_INT mem_size
;
900 if (MEM_ALIAS_SET (x
) != MEM_ALIAS_SET (y
))
902 set_mem_alias_set (x
, 0);
903 set_mem_alias_set (y
, 0);
906 if (! mem_expr_equal_p (MEM_EXPR (x
), MEM_EXPR (y
)))
910 clear_mem_offset (x
);
911 clear_mem_offset (y
);
913 else if (MEM_OFFSET_KNOWN_P (x
) != MEM_OFFSET_KNOWN_P (y
)
914 || (MEM_OFFSET_KNOWN_P (x
)
915 && MEM_OFFSET (x
) != MEM_OFFSET (y
)))
917 clear_mem_offset (x
);
918 clear_mem_offset (y
);
921 if (MEM_SIZE_KNOWN_P (x
) && MEM_SIZE_KNOWN_P (y
))
923 mem_size
= MAX (MEM_SIZE (x
), MEM_SIZE (y
));
924 set_mem_size (x
, mem_size
);
925 set_mem_size (y
, mem_size
);
933 set_mem_align (x
, MIN (MEM_ALIGN (x
), MEM_ALIGN (y
)));
934 set_mem_align (y
, MEM_ALIGN (x
));
939 if (MEM_READONLY_P (x
) != MEM_READONLY_P (y
))
941 MEM_READONLY_P (x
) = 0;
942 MEM_READONLY_P (y
) = 0;
944 if (MEM_NOTRAP_P (x
) != MEM_NOTRAP_P (y
))
946 MEM_NOTRAP_P (x
) = 0;
947 MEM_NOTRAP_P (y
) = 0;
949 if (MEM_VOLATILE_P (x
) != MEM_VOLATILE_P (y
))
951 MEM_VOLATILE_P (x
) = 1;
952 MEM_VOLATILE_P (y
) = 1;
956 fmt
= GET_RTX_FORMAT (code
);
957 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
962 /* Two vectors must have the same length. */
963 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
966 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
967 merge_memattrs (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
));
972 merge_memattrs (XEXP (x
, i
), XEXP (y
, i
));
979 /* Checks if patterns P1 and P2 are equivalent, apart from the possibly
980 different single sets S1 and S2. */
983 equal_different_set_p (rtx p1
, rtx s1
, rtx p2
, rtx s2
)
988 if (p1
== s1
&& p2
== s2
)
991 if (GET_CODE (p1
) != PARALLEL
|| GET_CODE (p2
) != PARALLEL
)
994 if (XVECLEN (p1
, 0) != XVECLEN (p2
, 0))
997 for (i
= 0; i
< XVECLEN (p1
, 0); i
++)
999 e1
= XVECEXP (p1
, 0, i
);
1000 e2
= XVECEXP (p2
, 0, i
);
1001 if (e1
== s1
&& e2
== s2
)
1003 if (reload_completed
1004 ? rtx_renumbered_equal_p (e1
, e2
) : rtx_equal_p (e1
, e2
))
1014 /* NOTE1 is the REG_EQUAL note, if any, attached to an insn
1015 that is a single_set with a SET_SRC of SRC1. Similarly
1018 So effectively NOTE1/NOTE2 are an alternate form of
1019 SRC1/SRC2 respectively.
1021 Return nonzero if SRC1 or NOTE1 has the same constant
1022 integer value as SRC2 or NOTE2. Else return zero. */
1024 values_equal_p (rtx note1
, rtx note2
, rtx src1
, rtx src2
)
1028 && CONST_INT_P (XEXP (note1
, 0))
1029 && rtx_equal_p (XEXP (note1
, 0), XEXP (note2
, 0)))
1034 && CONST_INT_P (src1
)
1035 && CONST_INT_P (src2
)
1036 && rtx_equal_p (src1
, src2
))
1040 && CONST_INT_P (src2
)
1041 && rtx_equal_p (XEXP (note1
, 0), src2
))
1045 && CONST_INT_P (src1
)
1046 && rtx_equal_p (XEXP (note2
, 0), src1
))
1052 /* Examine register notes on I1 and I2 and return:
1053 - dir_forward if I1 can be replaced by I2, or
1054 - dir_backward if I2 can be replaced by I1, or
1055 - dir_both if both are the case. */
1057 static enum replace_direction
1058 can_replace_by (rtx_insn
*i1
, rtx_insn
*i2
)
1060 rtx s1
, s2
, d1
, d2
, src1
, src2
, note1
, note2
;
1063 /* Check for 2 sets. */
1064 s1
= single_set (i1
);
1065 s2
= single_set (i2
);
1066 if (s1
== NULL_RTX
|| s2
== NULL_RTX
)
1069 /* Check that the 2 sets set the same dest. */
1072 if (!(reload_completed
1073 ? rtx_renumbered_equal_p (d1
, d2
) : rtx_equal_p (d1
, d2
)))
1076 /* Find identical req_equiv or reg_equal note, which implies that the 2 sets
1077 set dest to the same value. */
1078 note1
= find_reg_equal_equiv_note (i1
);
1079 note2
= find_reg_equal_equiv_note (i2
);
1081 src1
= SET_SRC (s1
);
1082 src2
= SET_SRC (s2
);
1084 if (!values_equal_p (note1
, note2
, src1
, src2
))
1087 if (!equal_different_set_p (PATTERN (i1
), s1
, PATTERN (i2
), s2
))
1090 /* Although the 2 sets set dest to the same value, we cannot replace
1091 (set (dest) (const_int))
1094 because we don't know if the reg is live and has the same value at the
1095 location of replacement. */
1096 c1
= CONST_INT_P (src1
);
1097 c2
= CONST_INT_P (src2
);
1103 return dir_backward
;
1108 /* Merges directions A and B. */
1110 static enum replace_direction
1111 merge_dir (enum replace_direction a
, enum replace_direction b
)
1113 /* Implements the following table:
1132 /* Examine I1 and I2 and return:
1133 - dir_forward if I1 can be replaced by I2, or
1134 - dir_backward if I2 can be replaced by I1, or
1135 - dir_both if both are the case. */
1137 static enum replace_direction
1138 old_insns_match_p (int mode ATTRIBUTE_UNUSED
, rtx_insn
*i1
, rtx_insn
*i2
)
1142 /* Verify that I1 and I2 are equivalent. */
1143 if (GET_CODE (i1
) != GET_CODE (i2
))
1146 /* __builtin_unreachable() may lead to empty blocks (ending with
1147 NOTE_INSN_BASIC_BLOCK). They may be crossjumped. */
1148 if (NOTE_INSN_BASIC_BLOCK_P (i1
) && NOTE_INSN_BASIC_BLOCK_P (i2
))
1151 /* ??? Do not allow cross-jumping between different stack levels. */
1152 p1
= find_reg_note (i1
, REG_ARGS_SIZE
, NULL
);
1153 p2
= find_reg_note (i2
, REG_ARGS_SIZE
, NULL
);
1158 if (!rtx_equal_p (p1
, p2
))
1161 /* ??? Worse, this adjustment had better be constant lest we
1162 have differing incoming stack levels. */
1163 if (!frame_pointer_needed
1164 && find_args_size_adjust (i1
) == HOST_WIDE_INT_MIN
)
1173 if (GET_CODE (p1
) != GET_CODE (p2
))
1176 /* If this is a CALL_INSN, compare register usage information.
1177 If we don't check this on stack register machines, the two
1178 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1179 numbers of stack registers in the same basic block.
1180 If we don't check this on machines with delay slots, a delay slot may
1181 be filled that clobbers a parameter expected by the subroutine.
1183 ??? We take the simple route for now and assume that if they're
1184 equal, they were constructed identically.
1186 Also check for identical exception regions. */
1190 /* Ensure the same EH region. */
1191 rtx n1
= find_reg_note (i1
, REG_EH_REGION
, 0);
1192 rtx n2
= find_reg_note (i2
, REG_EH_REGION
, 0);
1197 if (n1
&& (!n2
|| XEXP (n1
, 0) != XEXP (n2
, 0)))
1200 if (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1
),
1201 CALL_INSN_FUNCTION_USAGE (i2
))
1202 || SIBLING_CALL_P (i1
) != SIBLING_CALL_P (i2
))
1205 /* For address sanitizer, never crossjump __asan_report_* builtins,
1206 otherwise errors might be reported on incorrect lines. */
1207 if (flag_sanitize
& SANITIZE_ADDRESS
)
1209 rtx call
= get_call_rtx_from (i1
);
1210 if (call
&& GET_CODE (XEXP (XEXP (call
, 0), 0)) == SYMBOL_REF
)
1212 rtx symbol
= XEXP (XEXP (call
, 0), 0);
1213 if (SYMBOL_REF_DECL (symbol
)
1214 && TREE_CODE (SYMBOL_REF_DECL (symbol
)) == FUNCTION_DECL
)
1216 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol
))
1218 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol
))
1219 >= BUILT_IN_ASAN_REPORT_LOAD1
1220 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol
))
1221 <= BUILT_IN_ASAN_STOREN
)
1229 /* If cross_jump_death_matters is not 0, the insn's mode
1230 indicates whether or not the insn contains any stack-like
1233 if ((mode
& CLEANUP_POST_REGSTACK
) && stack_regs_mentioned (i1
))
1235 /* If register stack conversion has already been done, then
1236 death notes must also be compared before it is certain that
1237 the two instruction streams match. */
1240 HARD_REG_SET i1_regset
, i2_regset
;
1242 CLEAR_HARD_REG_SET (i1_regset
);
1243 CLEAR_HARD_REG_SET (i2_regset
);
1245 for (note
= REG_NOTES (i1
); note
; note
= XEXP (note
, 1))
1246 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
1247 SET_HARD_REG_BIT (i1_regset
, REGNO (XEXP (note
, 0)));
1249 for (note
= REG_NOTES (i2
); note
; note
= XEXP (note
, 1))
1250 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
1251 SET_HARD_REG_BIT (i2_regset
, REGNO (XEXP (note
, 0)));
1253 if (!hard_reg_set_equal_p (i1_regset
, i2_regset
))
1258 if (reload_completed
1259 ? rtx_renumbered_equal_p (p1
, p2
) : rtx_equal_p (p1
, p2
))
1262 return can_replace_by (i1
, i2
);
1265 /* When comparing insns I1 and I2 in flow_find_cross_jump or
1266 flow_find_head_matching_sequence, ensure the notes match. */
1269 merge_notes (rtx_insn
*i1
, rtx_insn
*i2
)
1271 /* If the merged insns have different REG_EQUAL notes, then
1273 rtx equiv1
= find_reg_equal_equiv_note (i1
);
1274 rtx equiv2
= find_reg_equal_equiv_note (i2
);
1276 if (equiv1
&& !equiv2
)
1277 remove_note (i1
, equiv1
);
1278 else if (!equiv1
&& equiv2
)
1279 remove_note (i2
, equiv2
);
1280 else if (equiv1
&& equiv2
1281 && !rtx_equal_p (XEXP (equiv1
, 0), XEXP (equiv2
, 0)))
1283 remove_note (i1
, equiv1
);
1284 remove_note (i2
, equiv2
);
1288 /* Walks from I1 in BB1 backward till the next non-debug insn, and returns the
1289 resulting insn in I1, and the corresponding bb in BB1. At the head of a
1290 bb, if there is a predecessor bb that reaches this bb via fallthru, and
1291 FOLLOW_FALLTHRU, walks further in the predecessor bb and registers this in
1292 DID_FALLTHRU. Otherwise, stops at the head of the bb. */
1295 walk_to_nondebug_insn (rtx_insn
**i1
, basic_block
*bb1
, bool follow_fallthru
,
1300 *did_fallthru
= false;
1303 while (!NONDEBUG_INSN_P (*i1
))
1305 if (*i1
!= BB_HEAD (*bb1
))
1307 *i1
= PREV_INSN (*i1
);
1311 if (!follow_fallthru
)
1314 fallthru
= find_fallthru_edge ((*bb1
)->preds
);
1315 if (!fallthru
|| fallthru
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
)
1316 || !single_succ_p (fallthru
->src
))
1319 *bb1
= fallthru
->src
;
1320 *i1
= BB_END (*bb1
);
1321 *did_fallthru
= true;
1325 /* Look through the insns at the end of BB1 and BB2 and find the longest
1326 sequence that are either equivalent, or allow forward or backward
1327 replacement. Store the first insns for that sequence in *F1 and *F2 and
1328 return the sequence length.
1330 DIR_P indicates the allowed replacement direction on function entry, and
1331 the actual replacement direction on function exit. If NULL, only equivalent
1332 sequences are allowed.
1334 To simplify callers of this function, if the blocks match exactly,
1335 store the head of the blocks in *F1 and *F2. */
1338 flow_find_cross_jump (basic_block bb1
, basic_block bb2
, rtx_insn
**f1
,
1339 rtx_insn
**f2
, enum replace_direction
*dir_p
)
1341 rtx_insn
*i1
, *i2
, *last1
, *last2
, *afterlast1
, *afterlast2
;
1343 enum replace_direction dir
, last_dir
, afterlast_dir
;
1344 bool follow_fallthru
, did_fallthru
;
1350 afterlast_dir
= dir
;
1351 last_dir
= afterlast_dir
;
1353 /* Skip simple jumps at the end of the blocks. Complex jumps still
1354 need to be compared for equivalence, which we'll do below. */
1357 last1
= afterlast1
= last2
= afterlast2
= NULL
;
1359 || (returnjump_p (i1
) && !side_effects_p (PATTERN (i1
))))
1362 i1
= PREV_INSN (i1
);
1367 || (returnjump_p (i2
) && !side_effects_p (PATTERN (i2
))))
1370 /* Count everything except for unconditional jump as insn.
1371 Don't count any jumps if dir_p is NULL. */
1372 if (!simplejump_p (i2
) && !returnjump_p (i2
) && last1
&& dir_p
)
1374 i2
= PREV_INSN (i2
);
1379 /* In the following example, we can replace all jumps to C by jumps to A.
1381 This removes 4 duplicate insns.
1382 [bb A] insn1 [bb C] insn1
1388 We could also replace all jumps to A by jumps to C, but that leaves B
1389 alive, and removes only 2 duplicate insns. In a subsequent crossjump
1390 step, all jumps to B would be replaced with jumps to the middle of C,
1391 achieving the same result with more effort.
1392 So we allow only the first possibility, which means that we don't allow
1393 fallthru in the block that's being replaced. */
1395 follow_fallthru
= dir_p
&& dir
!= dir_forward
;
1396 walk_to_nondebug_insn (&i1
, &bb1
, follow_fallthru
, &did_fallthru
);
1400 follow_fallthru
= dir_p
&& dir
!= dir_backward
;
1401 walk_to_nondebug_insn (&i2
, &bb2
, follow_fallthru
, &did_fallthru
);
1405 if (i1
== BB_HEAD (bb1
) || i2
== BB_HEAD (bb2
))
1408 dir
= merge_dir (dir
, old_insns_match_p (0, i1
, i2
));
1409 if (dir
== dir_none
|| (!dir_p
&& dir
!= dir_both
))
1412 merge_memattrs (i1
, i2
);
1414 /* Don't begin a cross-jump with a NOTE insn. */
1417 merge_notes (i1
, i2
);
1419 afterlast1
= last1
, afterlast2
= last2
;
1420 last1
= i1
, last2
= i2
;
1421 afterlast_dir
= last_dir
;
1423 if (active_insn_p (i1
))
1427 i1
= PREV_INSN (i1
);
1428 i2
= PREV_INSN (i2
);
1431 /* Don't allow the insn after a compare to be shared by
1432 cross-jumping unless the compare is also shared. */
1433 if (HAVE_cc0
&& ninsns
&& reg_mentioned_p (cc0_rtx
, last1
)
1434 && ! sets_cc0_p (last1
))
1435 last1
= afterlast1
, last2
= afterlast2
, last_dir
= afterlast_dir
, ninsns
--;
1437 /* Include preceding notes and labels in the cross-jump. One,
1438 this may bring us to the head of the blocks as requested above.
1439 Two, it keeps line number notes as matched as may be. */
1442 bb1
= BLOCK_FOR_INSN (last1
);
1443 while (last1
!= BB_HEAD (bb1
) && !NONDEBUG_INSN_P (PREV_INSN (last1
)))
1444 last1
= PREV_INSN (last1
);
1446 if (last1
!= BB_HEAD (bb1
) && LABEL_P (PREV_INSN (last1
)))
1447 last1
= PREV_INSN (last1
);
1449 bb2
= BLOCK_FOR_INSN (last2
);
1450 while (last2
!= BB_HEAD (bb2
) && !NONDEBUG_INSN_P (PREV_INSN (last2
)))
1451 last2
= PREV_INSN (last2
);
1453 if (last2
!= BB_HEAD (bb2
) && LABEL_P (PREV_INSN (last2
)))
1454 last2
= PREV_INSN (last2
);
1465 /* Like flow_find_cross_jump, except start looking for a matching sequence from
1466 the head of the two blocks. Do not include jumps at the end.
1467 If STOP_AFTER is nonzero, stop after finding that many matching
1468 instructions. If STOP_AFTER is zero, count all INSN_P insns, if it is
1469 non-zero, only count active insns. */
1472 flow_find_head_matching_sequence (basic_block bb1
, basic_block bb2
, rtx_insn
**f1
,
1473 rtx_insn
**f2
, int stop_after
)
1475 rtx_insn
*i1
, *i2
, *last1
, *last2
, *beforelast1
, *beforelast2
;
1479 int nehedges1
= 0, nehedges2
= 0;
1481 FOR_EACH_EDGE (e
, ei
, bb1
->succs
)
1482 if (e
->flags
& EDGE_EH
)
1484 FOR_EACH_EDGE (e
, ei
, bb2
->succs
)
1485 if (e
->flags
& EDGE_EH
)
1490 last1
= beforelast1
= last2
= beforelast2
= NULL
;
1494 /* Ignore notes, except NOTE_INSN_EPILOGUE_BEG. */
1495 while (!NONDEBUG_INSN_P (i1
) && i1
!= BB_END (bb1
))
1497 if (NOTE_P (i1
) && NOTE_KIND (i1
) == NOTE_INSN_EPILOGUE_BEG
)
1499 i1
= NEXT_INSN (i1
);
1502 while (!NONDEBUG_INSN_P (i2
) && i2
!= BB_END (bb2
))
1504 if (NOTE_P (i2
) && NOTE_KIND (i2
) == NOTE_INSN_EPILOGUE_BEG
)
1506 i2
= NEXT_INSN (i2
);
1509 if ((i1
== BB_END (bb1
) && !NONDEBUG_INSN_P (i1
))
1510 || (i2
== BB_END (bb2
) && !NONDEBUG_INSN_P (i2
)))
1513 if (NOTE_P (i1
) || NOTE_P (i2
)
1514 || JUMP_P (i1
) || JUMP_P (i2
))
1517 /* A sanity check to make sure we're not merging insns with different
1518 effects on EH. If only one of them ends a basic block, it shouldn't
1519 have an EH edge; if both end a basic block, there should be the same
1520 number of EH edges. */
1521 if ((i1
== BB_END (bb1
) && i2
!= BB_END (bb2
)
1523 || (i2
== BB_END (bb2
) && i1
!= BB_END (bb1
)
1525 || (i1
== BB_END (bb1
) && i2
== BB_END (bb2
)
1526 && nehedges1
!= nehedges2
))
1529 if (old_insns_match_p (0, i1
, i2
) != dir_both
)
1532 merge_memattrs (i1
, i2
);
1534 /* Don't begin a cross-jump with a NOTE insn. */
1537 merge_notes (i1
, i2
);
1539 beforelast1
= last1
, beforelast2
= last2
;
1540 last1
= i1
, last2
= i2
;
1541 if (!stop_after
|| active_insn_p (i1
))
1545 if (i1
== BB_END (bb1
) || i2
== BB_END (bb2
)
1546 || (stop_after
> 0 && ninsns
== stop_after
))
1549 i1
= NEXT_INSN (i1
);
1550 i2
= NEXT_INSN (i2
);
1553 /* Don't allow a compare to be shared by cross-jumping unless the insn
1554 after the compare is also shared. */
1555 if (HAVE_cc0
&& ninsns
&& reg_mentioned_p (cc0_rtx
, last1
)
1556 && sets_cc0_p (last1
))
1557 last1
= beforelast1
, last2
= beforelast2
, ninsns
--;
1568 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1569 the branch instruction. This means that if we commonize the control
1570 flow before end of the basic block, the semantic remains unchanged.
1572 We may assume that there exists one edge with a common destination. */
1575 outgoing_edges_match (int mode
, basic_block bb1
, basic_block bb2
)
1577 int nehedges1
= 0, nehedges2
= 0;
1578 edge fallthru1
= 0, fallthru2
= 0;
1582 /* If we performed shrink-wrapping, edges to the exit block can
1583 only be distinguished for JUMP_INSNs. The two paths may differ in
1584 whether they went through the prologue. Sibcalls are fine, we know
1585 that we either didn't need or inserted an epilogue before them. */
1586 if (crtl
->shrink_wrapped
1587 && single_succ_p (bb1
)
1588 && single_succ (bb1
) == EXIT_BLOCK_PTR_FOR_FN (cfun
)
1589 && !JUMP_P (BB_END (bb1
))
1590 && !(CALL_P (BB_END (bb1
)) && SIBLING_CALL_P (BB_END (bb1
))))
1593 /* If BB1 has only one successor, we may be looking at either an
1594 unconditional jump, or a fake edge to exit. */
1595 if (single_succ_p (bb1
)
1596 && (single_succ_edge (bb1
)->flags
& (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1597 && (!JUMP_P (BB_END (bb1
)) || simplejump_p (BB_END (bb1
))))
1598 return (single_succ_p (bb2
)
1599 && (single_succ_edge (bb2
)->flags
1600 & (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1601 && (!JUMP_P (BB_END (bb2
)) || simplejump_p (BB_END (bb2
))));
1603 /* Match conditional jumps - this may get tricky when fallthru and branch
1604 edges are crossed. */
1605 if (EDGE_COUNT (bb1
->succs
) == 2
1606 && any_condjump_p (BB_END (bb1
))
1607 && onlyjump_p (BB_END (bb1
)))
1609 edge b1
, f1
, b2
, f2
;
1610 bool reverse
, match
;
1611 rtx set1
, set2
, cond1
, cond2
;
1612 enum rtx_code code1
, code2
;
1614 if (EDGE_COUNT (bb2
->succs
) != 2
1615 || !any_condjump_p (BB_END (bb2
))
1616 || !onlyjump_p (BB_END (bb2
)))
1619 b1
= BRANCH_EDGE (bb1
);
1620 b2
= BRANCH_EDGE (bb2
);
1621 f1
= FALLTHRU_EDGE (bb1
);
1622 f2
= FALLTHRU_EDGE (bb2
);
1624 /* Get around possible forwarders on fallthru edges. Other cases
1625 should be optimized out already. */
1626 if (FORWARDER_BLOCK_P (f1
->dest
))
1627 f1
= single_succ_edge (f1
->dest
);
1629 if (FORWARDER_BLOCK_P (f2
->dest
))
1630 f2
= single_succ_edge (f2
->dest
);
1632 /* To simplify use of this function, return false if there are
1633 unneeded forwarder blocks. These will get eliminated later
1634 during cleanup_cfg. */
1635 if (FORWARDER_BLOCK_P (f1
->dest
)
1636 || FORWARDER_BLOCK_P (f2
->dest
)
1637 || FORWARDER_BLOCK_P (b1
->dest
)
1638 || FORWARDER_BLOCK_P (b2
->dest
))
1641 if (f1
->dest
== f2
->dest
&& b1
->dest
== b2
->dest
)
1643 else if (f1
->dest
== b2
->dest
&& b1
->dest
== f2
->dest
)
1648 set1
= pc_set (BB_END (bb1
));
1649 set2
= pc_set (BB_END (bb2
));
1650 if ((XEXP (SET_SRC (set1
), 1) == pc_rtx
)
1651 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
1654 cond1
= XEXP (SET_SRC (set1
), 0);
1655 cond2
= XEXP (SET_SRC (set2
), 0);
1656 code1
= GET_CODE (cond1
);
1658 code2
= reversed_comparison_code (cond2
, BB_END (bb2
));
1660 code2
= GET_CODE (cond2
);
1662 if (code2
== UNKNOWN
)
1665 /* Verify codes and operands match. */
1666 match
= ((code1
== code2
1667 && rtx_renumbered_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
1668 && rtx_renumbered_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
1669 || (code1
== swap_condition (code2
)
1670 && rtx_renumbered_equal_p (XEXP (cond1
, 1),
1672 && rtx_renumbered_equal_p (XEXP (cond1
, 0),
1675 /* If we return true, we will join the blocks. Which means that
1676 we will only have one branch prediction bit to work with. Thus
1677 we require the existing branches to have probabilities that are
1680 && optimize_bb_for_speed_p (bb1
)
1681 && optimize_bb_for_speed_p (bb2
))
1685 if (b1
->dest
== b2
->dest
)
1686 prob2
= b2
->probability
;
1688 /* Do not use f2 probability as f2 may be forwarded. */
1689 prob2
= REG_BR_PROB_BASE
- b2
->probability
;
1691 /* Fail if the difference in probabilities is greater than 50%.
1692 This rules out two well-predicted branches with opposite
1694 if (abs (b1
->probability
- prob2
) > REG_BR_PROB_BASE
/ 2)
1698 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1699 bb1
->index
, bb2
->index
, b1
->probability
, prob2
);
1705 if (dump_file
&& match
)
1706 fprintf (dump_file
, "Conditionals in bb %i and %i match.\n",
1707 bb1
->index
, bb2
->index
);
1712 /* Generic case - we are seeing a computed jump, table jump or trapping
1715 /* Check whether there are tablejumps in the end of BB1 and BB2.
1716 Return true if they are identical. */
1719 rtx_jump_table_data
*table1
, *table2
;
1721 if (tablejump_p (BB_END (bb1
), &label1
, &table1
)
1722 && tablejump_p (BB_END (bb2
), &label2
, &table2
)
1723 && GET_CODE (PATTERN (table1
)) == GET_CODE (PATTERN (table2
)))
1725 /* The labels should never be the same rtx. If they really are same
1726 the jump tables are same too. So disable crossjumping of blocks BB1
1727 and BB2 because when deleting the common insns in the end of BB1
1728 by delete_basic_block () the jump table would be deleted too. */
1729 /* If LABEL2 is referenced in BB1->END do not do anything
1730 because we would loose information when replacing
1731 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1732 if (label1
!= label2
&& !rtx_referenced_p (label2
, BB_END (bb1
)))
1734 /* Set IDENTICAL to true when the tables are identical. */
1735 bool identical
= false;
1738 p1
= PATTERN (table1
);
1739 p2
= PATTERN (table2
);
1740 if (GET_CODE (p1
) == ADDR_VEC
&& rtx_equal_p (p1
, p2
))
1744 else if (GET_CODE (p1
) == ADDR_DIFF_VEC
1745 && (XVECLEN (p1
, 1) == XVECLEN (p2
, 1))
1746 && rtx_equal_p (XEXP (p1
, 2), XEXP (p2
, 2))
1747 && rtx_equal_p (XEXP (p1
, 3), XEXP (p2
, 3)))
1752 for (i
= XVECLEN (p1
, 1) - 1; i
>= 0 && identical
; i
--)
1753 if (!rtx_equal_p (XVECEXP (p1
, 1, i
), XVECEXP (p2
, 1, i
)))
1761 /* Temporarily replace references to LABEL1 with LABEL2
1762 in BB1->END so that we could compare the instructions. */
1763 replace_label_in_insn (BB_END (bb1
), label1
, label2
, false);
1765 match
= (old_insns_match_p (mode
, BB_END (bb1
), BB_END (bb2
))
1767 if (dump_file
&& match
)
1769 "Tablejumps in bb %i and %i match.\n",
1770 bb1
->index
, bb2
->index
);
1772 /* Set the original label in BB1->END because when deleting
1773 a block whose end is a tablejump, the tablejump referenced
1774 from the instruction is deleted too. */
1775 replace_label_in_insn (BB_END (bb1
), label2
, label1
, false);
1784 /* Find the last non-debug non-note instruction in each bb, except
1785 stop when we see the NOTE_INSN_BASIC_BLOCK, as old_insns_match_p
1786 handles that case specially. old_insns_match_p does not handle
1787 other types of instruction notes. */
1788 rtx_insn
*last1
= BB_END (bb1
);
1789 rtx_insn
*last2
= BB_END (bb2
);
1790 while (!NOTE_INSN_BASIC_BLOCK_P (last1
) &&
1791 (DEBUG_INSN_P (last1
) || NOTE_P (last1
)))
1792 last1
= PREV_INSN (last1
);
1793 while (!NOTE_INSN_BASIC_BLOCK_P (last2
) &&
1794 (DEBUG_INSN_P (last2
) || NOTE_P (last2
)))
1795 last2
= PREV_INSN (last2
);
1796 gcc_assert (last1
&& last2
);
1798 /* First ensure that the instructions match. There may be many outgoing
1799 edges so this test is generally cheaper. */
1800 if (old_insns_match_p (mode
, last1
, last2
) != dir_both
)
1803 /* Search the outgoing edges, ensure that the counts do match, find possible
1804 fallthru and exception handling edges since these needs more
1806 if (EDGE_COUNT (bb1
->succs
) != EDGE_COUNT (bb2
->succs
))
1809 bool nonfakeedges
= false;
1810 FOR_EACH_EDGE (e1
, ei
, bb1
->succs
)
1812 e2
= EDGE_SUCC (bb2
, ei
.index
);
1814 if ((e1
->flags
& EDGE_FAKE
) == 0)
1815 nonfakeedges
= true;
1817 if (e1
->flags
& EDGE_EH
)
1820 if (e2
->flags
& EDGE_EH
)
1823 if (e1
->flags
& EDGE_FALLTHRU
)
1825 if (e2
->flags
& EDGE_FALLTHRU
)
1829 /* If number of edges of various types does not match, fail. */
1830 if (nehedges1
!= nehedges2
1831 || (fallthru1
!= 0) != (fallthru2
!= 0))
1834 /* If !ACCUMULATE_OUTGOING_ARGS, bb1 (and bb2) have no successors
1835 and the last real insn doesn't have REG_ARGS_SIZE note, don't
1836 attempt to optimize, as the two basic blocks might have different
1837 REG_ARGS_SIZE depths. For noreturn calls and unconditional
1838 traps there should be REG_ARG_SIZE notes, they could be missing
1839 for __builtin_unreachable () uses though. */
1841 && !ACCUMULATE_OUTGOING_ARGS
1843 || !find_reg_note (last1
, REG_ARGS_SIZE
, NULL
)))
1846 /* fallthru edges must be forwarded to the same destination. */
1849 basic_block d1
= (forwarder_block_p (fallthru1
->dest
)
1850 ? single_succ (fallthru1
->dest
): fallthru1
->dest
);
1851 basic_block d2
= (forwarder_block_p (fallthru2
->dest
)
1852 ? single_succ (fallthru2
->dest
): fallthru2
->dest
);
1858 /* Ensure the same EH region. */
1860 rtx n1
= find_reg_note (BB_END (bb1
), REG_EH_REGION
, 0);
1861 rtx n2
= find_reg_note (BB_END (bb2
), REG_EH_REGION
, 0);
1866 if (n1
&& (!n2
|| XEXP (n1
, 0) != XEXP (n2
, 0)))
1870 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1871 version of sequence abstraction. */
1872 FOR_EACH_EDGE (e1
, ei
, bb2
->succs
)
1876 basic_block d1
= e1
->dest
;
1878 if (FORWARDER_BLOCK_P (d1
))
1879 d1
= EDGE_SUCC (d1
, 0)->dest
;
1881 FOR_EACH_EDGE (e2
, ei
, bb1
->succs
)
1883 basic_block d2
= e2
->dest
;
1884 if (FORWARDER_BLOCK_P (d2
))
1885 d2
= EDGE_SUCC (d2
, 0)->dest
;
1897 /* Returns true if BB basic block has a preserve label. */
1900 block_has_preserve_label (basic_block bb
)
1904 && LABEL_PRESERVE_P (block_label (bb
)));
1907 /* E1 and E2 are edges with the same destination block. Search their
1908 predecessors for common code. If found, redirect control flow from
1909 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC (dir_forward),
1910 or the other way around (dir_backward). DIR specifies the allowed
1911 replacement direction. */
1914 try_crossjump_to_edge (int mode
, edge e1
, edge e2
,
1915 enum replace_direction dir
)
1918 basic_block src1
= e1
->src
, src2
= e2
->src
;
1919 basic_block redirect_to
, redirect_from
, to_remove
;
1920 basic_block osrc1
, osrc2
, redirect_edges_to
, tmp
;
1921 rtx_insn
*newpos1
, *newpos2
;
1925 newpos1
= newpos2
= NULL
;
1927 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1928 to try this optimization.
1930 Basic block partitioning may result in some jumps that appear to
1931 be optimizable (or blocks that appear to be mergeable), but which really
1932 must be left untouched (they are required to make it safely across
1933 partition boundaries). See the comments at the top of
1934 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1936 if (crtl
->has_bb_partition
&& reload_completed
)
1939 /* Search backward through forwarder blocks. We don't need to worry
1940 about multiple entry or chained forwarders, as they will be optimized
1941 away. We do this to look past the unconditional jump following a
1942 conditional jump that is required due to the current CFG shape. */
1943 if (single_pred_p (src1
)
1944 && FORWARDER_BLOCK_P (src1
))
1945 e1
= single_pred_edge (src1
), src1
= e1
->src
;
1947 if (single_pred_p (src2
)
1948 && FORWARDER_BLOCK_P (src2
))
1949 e2
= single_pred_edge (src2
), src2
= e2
->src
;
1951 /* Nothing to do if we reach ENTRY, or a common source block. */
1952 if (src1
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) || src2
1953 == ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1958 /* Seeing more than 1 forwarder blocks would confuse us later... */
1959 if (FORWARDER_BLOCK_P (e1
->dest
)
1960 && FORWARDER_BLOCK_P (single_succ (e1
->dest
)))
1963 if (FORWARDER_BLOCK_P (e2
->dest
)
1964 && FORWARDER_BLOCK_P (single_succ (e2
->dest
)))
1967 /* Likewise with dead code (possibly newly created by the other optimizations
1969 if (EDGE_COUNT (src1
->preds
) == 0 || EDGE_COUNT (src2
->preds
) == 0)
1972 /* Look for the common insn sequence, part the first ... */
1973 if (!outgoing_edges_match (mode
, src1
, src2
))
1976 /* ... and part the second. */
1977 nmatch
= flow_find_cross_jump (src1
, src2
, &newpos1
, &newpos2
, &dir
);
1981 if (newpos1
!= NULL_RTX
)
1982 src1
= BLOCK_FOR_INSN (newpos1
);
1983 if (newpos2
!= NULL_RTX
)
1984 src2
= BLOCK_FOR_INSN (newpos2
);
1986 if (dir
== dir_backward
)
1988 #define SWAP(T, X, Y) do { T tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
1989 SWAP (basic_block
, osrc1
, osrc2
);
1990 SWAP (basic_block
, src1
, src2
);
1991 SWAP (edge
, e1
, e2
);
1992 SWAP (rtx_insn
*, newpos1
, newpos2
);
1996 /* Don't proceed with the crossjump unless we found a sufficient number
1997 of matching instructions or the 'from' block was totally matched
1998 (such that its predecessors will hopefully be redirected and the
2000 if ((nmatch
< PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS
))
2001 && (newpos1
!= BB_HEAD (src1
)))
2004 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
2005 if (block_has_preserve_label (e1
->dest
)
2006 && (e1
->flags
& EDGE_ABNORMAL
))
2009 /* Here we know that the insns in the end of SRC1 which are common with SRC2
2011 If we have tablejumps in the end of SRC1 and SRC2
2012 they have been already compared for equivalence in outgoing_edges_match ()
2013 so replace the references to TABLE1 by references to TABLE2. */
2016 rtx_jump_table_data
*table1
, *table2
;
2018 if (tablejump_p (BB_END (osrc1
), &label1
, &table1
)
2019 && tablejump_p (BB_END (osrc2
), &label2
, &table2
)
2020 && label1
!= label2
)
2024 /* Replace references to LABEL1 with LABEL2. */
2025 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2027 /* Do not replace the label in SRC1->END because when deleting
2028 a block whose end is a tablejump, the tablejump referenced
2029 from the instruction is deleted too. */
2030 if (insn
!= BB_END (osrc1
))
2031 replace_label_in_insn (insn
, label1
, label2
, true);
2036 /* Avoid splitting if possible. We must always split when SRC2 has
2037 EH predecessor edges, or we may end up with basic blocks with both
2038 normal and EH predecessor edges. */
2039 if (newpos2
== BB_HEAD (src2
)
2040 && !(EDGE_PRED (src2
, 0)->flags
& EDGE_EH
))
2044 if (newpos2
== BB_HEAD (src2
))
2046 /* Skip possible basic block header. */
2047 if (LABEL_P (newpos2
))
2048 newpos2
= NEXT_INSN (newpos2
);
2049 while (DEBUG_INSN_P (newpos2
))
2050 newpos2
= NEXT_INSN (newpos2
);
2051 if (NOTE_P (newpos2
))
2052 newpos2
= NEXT_INSN (newpos2
);
2053 while (DEBUG_INSN_P (newpos2
))
2054 newpos2
= NEXT_INSN (newpos2
);
2058 fprintf (dump_file
, "Splitting bb %i before %i insns\n",
2059 src2
->index
, nmatch
);
2060 redirect_to
= split_block (src2
, PREV_INSN (newpos2
))->dest
;
2065 "Cross jumping from bb %i to bb %i; %i common insns\n",
2066 src1
->index
, src2
->index
, nmatch
);
2068 /* We may have some registers visible through the block. */
2069 df_set_bb_dirty (redirect_to
);
2072 redirect_edges_to
= redirect_to
;
2074 redirect_edges_to
= osrc2
;
2076 /* Recompute the frequencies and counts of outgoing edges. */
2077 FOR_EACH_EDGE (s
, ei
, redirect_edges_to
->succs
)
2081 basic_block d
= s
->dest
;
2083 if (FORWARDER_BLOCK_P (d
))
2084 d
= single_succ (d
);
2086 FOR_EACH_EDGE (s2
, ei
, src1
->succs
)
2088 basic_block d2
= s2
->dest
;
2089 if (FORWARDER_BLOCK_P (d2
))
2090 d2
= single_succ (d2
);
2095 s
->count
+= s2
->count
;
2097 /* Take care to update possible forwarder blocks. We verified
2098 that there is no more than one in the chain, so we can't run
2099 into infinite loop. */
2100 if (FORWARDER_BLOCK_P (s
->dest
))
2102 single_succ_edge (s
->dest
)->count
+= s2
->count
;
2103 s
->dest
->count
+= s2
->count
;
2104 s
->dest
->frequency
+= EDGE_FREQUENCY (s
);
2107 if (FORWARDER_BLOCK_P (s2
->dest
))
2109 single_succ_edge (s2
->dest
)->count
-= s2
->count
;
2110 if (single_succ_edge (s2
->dest
)->count
< 0)
2111 single_succ_edge (s2
->dest
)->count
= 0;
2112 s2
->dest
->count
-= s2
->count
;
2113 s2
->dest
->frequency
-= EDGE_FREQUENCY (s
);
2114 if (s2
->dest
->frequency
< 0)
2115 s2
->dest
->frequency
= 0;
2116 if (s2
->dest
->count
< 0)
2117 s2
->dest
->count
= 0;
2120 if (!redirect_edges_to
->frequency
&& !src1
->frequency
)
2121 s
->probability
= (s
->probability
+ s2
->probability
) / 2;
2124 = ((s
->probability
* redirect_edges_to
->frequency
+
2125 s2
->probability
* src1
->frequency
)
2126 / (redirect_edges_to
->frequency
+ src1
->frequency
));
2129 /* Adjust count and frequency for the block. An earlier jump
2130 threading pass may have left the profile in an inconsistent
2131 state (see update_bb_profile_for_threading) so we must be
2132 prepared for overflows. */
2136 tmp
->count
+= src1
->count
;
2137 tmp
->frequency
+= src1
->frequency
;
2138 if (tmp
->frequency
> BB_FREQ_MAX
)
2139 tmp
->frequency
= BB_FREQ_MAX
;
2140 if (tmp
== redirect_edges_to
)
2142 tmp
= find_fallthru_edge (tmp
->succs
)->dest
;
2145 update_br_prob_note (redirect_edges_to
);
2147 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
2149 /* Skip possible basic block header. */
2150 if (LABEL_P (newpos1
))
2151 newpos1
= NEXT_INSN (newpos1
);
2153 while (DEBUG_INSN_P (newpos1
))
2154 newpos1
= NEXT_INSN (newpos1
);
2156 if (NOTE_INSN_BASIC_BLOCK_P (newpos1
))
2157 newpos1
= NEXT_INSN (newpos1
);
2159 while (DEBUG_INSN_P (newpos1
))
2160 newpos1
= NEXT_INSN (newpos1
);
2162 redirect_from
= split_block (src1
, PREV_INSN (newpos1
))->src
;
2163 to_remove
= single_succ (redirect_from
);
2165 redirect_edge_and_branch_force (single_succ_edge (redirect_from
), redirect_to
);
2166 delete_basic_block (to_remove
);
2168 update_forwarder_flag (redirect_from
);
2169 if (redirect_to
!= src2
)
2170 update_forwarder_flag (src2
);
2175 /* Search the predecessors of BB for common insn sequences. When found,
2176 share code between them by redirecting control flow. Return true if
2177 any changes made. */
2180 try_crossjump_bb (int mode
, basic_block bb
)
2182 edge e
, e2
, fallthru
;
2184 unsigned max
, ix
, ix2
;
2186 /* Nothing to do if there is not at least two incoming edges. */
2187 if (EDGE_COUNT (bb
->preds
) < 2)
2190 /* Don't crossjump if this block ends in a computed jump,
2191 unless we are optimizing for size. */
2192 if (optimize_bb_for_size_p (bb
)
2193 && bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
2194 && computed_jump_p (BB_END (bb
)))
2197 /* If we are partitioning hot/cold basic blocks, we don't want to
2198 mess up unconditional or indirect jumps that cross between hot
2201 Basic block partitioning may result in some jumps that appear to
2202 be optimizable (or blocks that appear to be mergeable), but which really
2203 must be left untouched (they are required to make it safely across
2204 partition boundaries). See the comments at the top of
2205 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2207 if (BB_PARTITION (EDGE_PRED (bb
, 0)->src
) !=
2208 BB_PARTITION (EDGE_PRED (bb
, 1)->src
)
2209 || (EDGE_PRED (bb
, 0)->flags
& EDGE_CROSSING
))
2212 /* It is always cheapest to redirect a block that ends in a branch to
2213 a block that falls through into BB, as that adds no branches to the
2214 program. We'll try that combination first. */
2216 max
= PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES
);
2218 if (EDGE_COUNT (bb
->preds
) > max
)
2221 fallthru
= find_fallthru_edge (bb
->preds
);
2224 for (ix
= 0; ix
< EDGE_COUNT (bb
->preds
);)
2226 e
= EDGE_PRED (bb
, ix
);
2229 /* As noted above, first try with the fallthru predecessor (or, a
2230 fallthru predecessor if we are in cfglayout mode). */
2233 /* Don't combine the fallthru edge into anything else.
2234 If there is a match, we'll do it the other way around. */
2237 /* If nothing changed since the last attempt, there is nothing
2240 && !((e
->src
->flags
& BB_MODIFIED
)
2241 || (fallthru
->src
->flags
& BB_MODIFIED
)))
2244 if (try_crossjump_to_edge (mode
, e
, fallthru
, dir_forward
))
2252 /* Non-obvious work limiting check: Recognize that we're going
2253 to call try_crossjump_bb on every basic block. So if we have
2254 two blocks with lots of outgoing edges (a switch) and they
2255 share lots of common destinations, then we would do the
2256 cross-jump check once for each common destination.
2258 Now, if the blocks actually are cross-jump candidates, then
2259 all of their destinations will be shared. Which means that
2260 we only need check them for cross-jump candidacy once. We
2261 can eliminate redundant checks of crossjump(A,B) by arbitrarily
2262 choosing to do the check from the block for which the edge
2263 in question is the first successor of A. */
2264 if (EDGE_SUCC (e
->src
, 0) != e
)
2267 for (ix2
= 0; ix2
< EDGE_COUNT (bb
->preds
); ix2
++)
2269 e2
= EDGE_PRED (bb
, ix2
);
2274 /* We've already checked the fallthru edge above. */
2278 /* The "first successor" check above only prevents multiple
2279 checks of crossjump(A,B). In order to prevent redundant
2280 checks of crossjump(B,A), require that A be the block
2281 with the lowest index. */
2282 if (e
->src
->index
> e2
->src
->index
)
2285 /* If nothing changed since the last attempt, there is nothing
2288 && !((e
->src
->flags
& BB_MODIFIED
)
2289 || (e2
->src
->flags
& BB_MODIFIED
)))
2292 /* Both e and e2 are not fallthru edges, so we can crossjump in either
2294 if (try_crossjump_to_edge (mode
, e
, e2
, dir_both
))
2304 crossjumps_occured
= true;
2309 /* Search the successors of BB for common insn sequences. When found,
2310 share code between them by moving it across the basic block
2311 boundary. Return true if any changes made. */
2314 try_head_merge_bb (basic_block bb
)
2316 basic_block final_dest_bb
= NULL
;
2317 int max_match
= INT_MAX
;
2319 rtx_insn
**headptr
, **currptr
, **nextptr
;
2320 bool changed
, moveall
;
2322 rtx_insn
*e0_last_head
;
2324 rtx_insn
*move_before
;
2325 unsigned nedges
= EDGE_COUNT (bb
->succs
);
2326 rtx_insn
*jump
= BB_END (bb
);
2327 regset live
, live_union
;
2329 /* Nothing to do if there is not at least two outgoing edges. */
2333 /* Don't crossjump if this block ends in a computed jump,
2334 unless we are optimizing for size. */
2335 if (optimize_bb_for_size_p (bb
)
2336 && bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
2337 && computed_jump_p (BB_END (bb
)))
2340 cond
= get_condition (jump
, &move_before
, true, false);
2341 if (cond
== NULL_RTX
)
2343 if (HAVE_cc0
&& reg_mentioned_p (cc0_rtx
, jump
))
2344 move_before
= prev_nonnote_nondebug_insn (jump
);
2349 for (ix
= 0; ix
< nedges
; ix
++)
2350 if (EDGE_SUCC (bb
, ix
)->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
2353 for (ix
= 0; ix
< nedges
; ix
++)
2355 edge e
= EDGE_SUCC (bb
, ix
);
2356 basic_block other_bb
= e
->dest
;
2358 if (df_get_bb_dirty (other_bb
))
2360 block_was_dirty
= true;
2364 if (e
->flags
& EDGE_ABNORMAL
)
2367 /* Normally, all destination blocks must only be reachable from this
2368 block, i.e. they must have one incoming edge.
2370 There is one special case we can handle, that of multiple consecutive
2371 jumps where the first jumps to one of the targets of the second jump.
2372 This happens frequently in switch statements for default labels.
2373 The structure is as follows:
2379 jump with targets A, B, C, D...
2381 has two incoming edges, from FINAL_DEST_BB and BB
2383 In this case, we can try to move the insns through BB and into
2385 if (EDGE_COUNT (other_bb
->preds
) != 1)
2387 edge incoming_edge
, incoming_bb_other_edge
;
2390 if (final_dest_bb
!= NULL
2391 || EDGE_COUNT (other_bb
->preds
) != 2)
2394 /* We must be able to move the insns across the whole block. */
2395 move_before
= BB_HEAD (bb
);
2396 while (!NONDEBUG_INSN_P (move_before
))
2397 move_before
= NEXT_INSN (move_before
);
2399 if (EDGE_COUNT (bb
->preds
) != 1)
2401 incoming_edge
= EDGE_PRED (bb
, 0);
2402 final_dest_bb
= incoming_edge
->src
;
2403 if (EDGE_COUNT (final_dest_bb
->succs
) != 2)
2405 FOR_EACH_EDGE (incoming_bb_other_edge
, ei
, final_dest_bb
->succs
)
2406 if (incoming_bb_other_edge
!= incoming_edge
)
2408 if (incoming_bb_other_edge
->dest
!= other_bb
)
2413 e0
= EDGE_SUCC (bb
, 0);
2414 e0_last_head
= NULL
;
2417 for (ix
= 1; ix
< nedges
; ix
++)
2419 edge e
= EDGE_SUCC (bb
, ix
);
2420 rtx_insn
*e0_last
, *e_last
;
2423 nmatch
= flow_find_head_matching_sequence (e0
->dest
, e
->dest
,
2424 &e0_last
, &e_last
, 0);
2428 if (nmatch
< max_match
)
2431 e0_last_head
= e0_last
;
2435 /* If we matched an entire block, we probably have to avoid moving the
2438 && e0_last_head
== BB_END (e0
->dest
)
2439 && (find_reg_note (e0_last_head
, REG_EH_REGION
, 0)
2440 || control_flow_insn_p (e0_last_head
)))
2446 e0_last_head
= prev_real_insn (e0_last_head
);
2447 while (DEBUG_INSN_P (e0_last_head
));
2453 /* We must find a union of the live registers at each of the end points. */
2454 live
= BITMAP_ALLOC (NULL
);
2455 live_union
= BITMAP_ALLOC (NULL
);
2457 currptr
= XNEWVEC (rtx_insn
*, nedges
);
2458 headptr
= XNEWVEC (rtx_insn
*, nedges
);
2459 nextptr
= XNEWVEC (rtx_insn
*, nedges
);
2461 for (ix
= 0; ix
< nedges
; ix
++)
2464 basic_block merge_bb
= EDGE_SUCC (bb
, ix
)->dest
;
2465 rtx_insn
*head
= BB_HEAD (merge_bb
);
2467 while (!NONDEBUG_INSN_P (head
))
2468 head
= NEXT_INSN (head
);
2472 /* Compute the end point and live information */
2473 for (j
= 1; j
< max_match
; j
++)
2475 head
= NEXT_INSN (head
);
2476 while (!NONDEBUG_INSN_P (head
));
2477 simulate_backwards_to_point (merge_bb
, live
, head
);
2478 IOR_REG_SET (live_union
, live
);
2481 /* If we're moving across two blocks, verify the validity of the
2482 first move, then adjust the target and let the loop below deal
2483 with the final move. */
2484 if (final_dest_bb
!= NULL
)
2486 rtx_insn
*move_upto
;
2488 moveall
= can_move_insns_across (currptr
[0], e0_last_head
, move_before
,
2489 jump
, e0
->dest
, live_union
,
2493 if (move_upto
== NULL_RTX
)
2496 while (e0_last_head
!= move_upto
)
2498 df_simulate_one_insn_backwards (e0
->dest
, e0_last_head
,
2500 e0_last_head
= PREV_INSN (e0_last_head
);
2503 if (e0_last_head
== NULL_RTX
)
2506 jump
= BB_END (final_dest_bb
);
2507 cond
= get_condition (jump
, &move_before
, true, false);
2508 if (cond
== NULL_RTX
)
2510 if (HAVE_cc0
&& reg_mentioned_p (cc0_rtx
, jump
))
2511 move_before
= prev_nonnote_nondebug_insn (jump
);
2519 rtx_insn
*move_upto
;
2520 moveall
= can_move_insns_across (currptr
[0], e0_last_head
,
2521 move_before
, jump
, e0
->dest
, live_union
,
2523 if (!moveall
&& move_upto
== NULL_RTX
)
2525 if (jump
== move_before
)
2528 /* Try again, using a different insertion point. */
2531 /* Don't try moving before a cc0 user, as that may invalidate
2533 if (HAVE_cc0
&& reg_mentioned_p (cc0_rtx
, jump
))
2539 if (final_dest_bb
&& !moveall
)
2540 /* We haven't checked whether a partial move would be OK for the first
2541 move, so we have to fail this case. */
2547 if (currptr
[0] == move_upto
)
2549 for (ix
= 0; ix
< nedges
; ix
++)
2551 rtx_insn
*curr
= currptr
[ix
];
2553 curr
= NEXT_INSN (curr
);
2554 while (!NONDEBUG_INSN_P (curr
));
2559 /* If we can't currently move all of the identical insns, remember
2560 each insn after the range that we'll merge. */
2562 for (ix
= 0; ix
< nedges
; ix
++)
2564 rtx_insn
*curr
= currptr
[ix
];
2566 curr
= NEXT_INSN (curr
);
2567 while (!NONDEBUG_INSN_P (curr
));
2571 reorder_insns (headptr
[0], currptr
[0], PREV_INSN (move_before
));
2572 df_set_bb_dirty (EDGE_SUCC (bb
, 0)->dest
);
2573 if (final_dest_bb
!= NULL
)
2574 df_set_bb_dirty (final_dest_bb
);
2575 df_set_bb_dirty (bb
);
2576 for (ix
= 1; ix
< nedges
; ix
++)
2578 df_set_bb_dirty (EDGE_SUCC (bb
, ix
)->dest
);
2579 delete_insn_chain (headptr
[ix
], currptr
[ix
], false);
2583 if (jump
== move_before
)
2586 /* For the unmerged insns, try a different insertion point. */
2589 /* Don't try moving before a cc0 user, as that may invalidate
2591 if (HAVE_cc0
&& reg_mentioned_p (cc0_rtx
, jump
))
2594 for (ix
= 0; ix
< nedges
; ix
++)
2595 currptr
[ix
] = headptr
[ix
] = nextptr
[ix
];
2605 crossjumps_occured
|= changed
;
2610 /* Return true if BB contains just bb note, or bb note followed
2611 by only DEBUG_INSNs. */
2614 trivially_empty_bb_p (basic_block bb
)
2616 rtx_insn
*insn
= BB_END (bb
);
2620 if (insn
== BB_HEAD (bb
))
2622 if (!DEBUG_INSN_P (insn
))
2624 insn
= PREV_INSN (insn
);
2628 /* Do simple CFG optimizations - basic block merging, simplifying of jump
2629 instructions etc. Return nonzero if changes were made. */
2632 try_optimize_cfg (int mode
)
2634 bool changed_overall
= false;
2637 basic_block bb
, b
, next
;
2639 if (mode
& (CLEANUP_CROSSJUMP
| CLEANUP_THREADING
))
2642 crossjumps_occured
= false;
2644 FOR_EACH_BB_FN (bb
, cfun
)
2645 update_forwarder_flag (bb
);
2647 if (! targetm
.cannot_modify_jumps_p ())
2650 /* Attempt to merge blocks as made possible by edge removal. If
2651 a block has only one successor, and the successor has only
2652 one predecessor, they may be combined. */
2655 block_was_dirty
= false;
2661 "\n\ntry_optimize_cfg iteration %i\n\n",
2664 for (b
= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
; b
2665 != EXIT_BLOCK_PTR_FOR_FN (cfun
);)
2669 bool changed_here
= false;
2671 /* Delete trivially dead basic blocks. This is either
2672 blocks with no predecessors, or empty blocks with no
2673 successors. However if the empty block with no
2674 successors is the successor of the ENTRY_BLOCK, it is
2675 kept. This ensures that the ENTRY_BLOCK will have a
2676 successor which is a precondition for many RTL
2677 passes. Empty blocks may result from expanding
2678 __builtin_unreachable (). */
2679 if (EDGE_COUNT (b
->preds
) == 0
2680 || (EDGE_COUNT (b
->succs
) == 0
2681 && trivially_empty_bb_p (b
)
2682 && single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->dest
2686 if (EDGE_COUNT (b
->preds
) > 0)
2691 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
2694 && BARRIER_P (BB_FOOTER (b
)))
2695 FOR_EACH_EDGE (e
, ei
, b
->preds
)
2696 if ((e
->flags
& EDGE_FALLTHRU
)
2697 && BB_FOOTER (e
->src
) == NULL
)
2701 BB_FOOTER (e
->src
) = BB_FOOTER (b
);
2702 BB_FOOTER (b
) = NULL
;
2707 BB_FOOTER (e
->src
) = emit_barrier ();
2714 rtx_insn
*last
= get_last_bb_insn (b
);
2715 if (last
&& BARRIER_P (last
))
2716 FOR_EACH_EDGE (e
, ei
, b
->preds
)
2717 if ((e
->flags
& EDGE_FALLTHRU
))
2718 emit_barrier_after (BB_END (e
->src
));
2721 delete_basic_block (b
);
2723 /* Avoid trying to remove the exit block. */
2724 b
= (c
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) ? c
->next_bb
: c
);
2728 /* Remove code labels no longer used. */
2729 if (single_pred_p (b
)
2730 && (single_pred_edge (b
)->flags
& EDGE_FALLTHRU
)
2731 && !(single_pred_edge (b
)->flags
& EDGE_COMPLEX
)
2732 && LABEL_P (BB_HEAD (b
))
2733 && !LABEL_PRESERVE_P (BB_HEAD (b
))
2734 /* If the previous block ends with a branch to this
2735 block, we can't delete the label. Normally this
2736 is a condjump that is yet to be simplified, but
2737 if CASE_DROPS_THRU, this can be a tablejump with
2738 some element going to the same place as the
2739 default (fallthru). */
2740 && (single_pred (b
) == ENTRY_BLOCK_PTR_FOR_FN (cfun
)
2741 || !JUMP_P (BB_END (single_pred (b
)))
2742 || ! label_is_jump_target_p (BB_HEAD (b
),
2743 BB_END (single_pred (b
)))))
2745 delete_insn (BB_HEAD (b
));
2747 fprintf (dump_file
, "Deleted label in block %i.\n",
2751 /* If we fall through an empty block, we can remove it. */
2752 if (!(mode
& (CLEANUP_CFGLAYOUT
| CLEANUP_NO_INSN_DEL
))
2753 && single_pred_p (b
)
2754 && (single_pred_edge (b
)->flags
& EDGE_FALLTHRU
)
2755 && !LABEL_P (BB_HEAD (b
))
2756 && FORWARDER_BLOCK_P (b
)
2757 /* Note that forwarder_block_p true ensures that
2758 there is a successor for this block. */
2759 && (single_succ_edge (b
)->flags
& EDGE_FALLTHRU
)
2760 && n_basic_blocks_for_fn (cfun
) > NUM_FIXED_BLOCKS
+ 1)
2764 "Deleting fallthru block %i.\n",
2767 c
= ((b
->prev_bb
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
2768 ? b
->next_bb
: b
->prev_bb
);
2769 redirect_edge_succ_nodup (single_pred_edge (b
),
2771 delete_basic_block (b
);
2777 /* Merge B with its single successor, if any. */
2778 if (single_succ_p (b
)
2779 && (s
= single_succ_edge (b
))
2780 && !(s
->flags
& EDGE_COMPLEX
)
2781 && (c
= s
->dest
) != EXIT_BLOCK_PTR_FOR_FN (cfun
)
2782 && single_pred_p (c
)
2785 /* When not in cfg_layout mode use code aware of reordering
2786 INSN. This code possibly creates new basic blocks so it
2787 does not fit merge_blocks interface and is kept here in
2788 hope that it will become useless once more of compiler
2789 is transformed to use cfg_layout mode. */
2791 if ((mode
& CLEANUP_CFGLAYOUT
)
2792 && can_merge_blocks_p (b
, c
))
2794 merge_blocks (b
, c
);
2795 update_forwarder_flag (b
);
2796 changed_here
= true;
2798 else if (!(mode
& CLEANUP_CFGLAYOUT
)
2799 /* If the jump insn has side effects,
2800 we can't kill the edge. */
2801 && (!JUMP_P (BB_END (b
))
2802 || (reload_completed
2803 ? simplejump_p (BB_END (b
))
2804 : (onlyjump_p (BB_END (b
))
2805 && !tablejump_p (BB_END (b
),
2807 && (next
= merge_blocks_move (s
, b
, c
, mode
)))
2810 changed_here
= true;
2814 /* Simplify branch over branch. */
2815 if ((mode
& CLEANUP_EXPENSIVE
)
2816 && !(mode
& CLEANUP_CFGLAYOUT
)
2817 && try_simplify_condjump (b
))
2818 changed_here
= true;
2820 /* If B has a single outgoing edge, but uses a
2821 non-trivial jump instruction without side-effects, we
2822 can either delete the jump entirely, or replace it
2823 with a simple unconditional jump. */
2824 if (single_succ_p (b
)
2825 && single_succ (b
) != EXIT_BLOCK_PTR_FOR_FN (cfun
)
2826 && onlyjump_p (BB_END (b
))
2827 && !CROSSING_JUMP_P (BB_END (b
))
2828 && try_redirect_by_replacing_jump (single_succ_edge (b
),
2830 (mode
& CLEANUP_CFGLAYOUT
) != 0))
2832 update_forwarder_flag (b
);
2833 changed_here
= true;
2836 /* Simplify branch to branch. */
2837 if (try_forward_edges (mode
, b
))
2839 update_forwarder_flag (b
);
2840 changed_here
= true;
2843 /* Look for shared code between blocks. */
2844 if ((mode
& CLEANUP_CROSSJUMP
)
2845 && try_crossjump_bb (mode
, b
))
2846 changed_here
= true;
2848 if ((mode
& CLEANUP_CROSSJUMP
)
2849 /* This can lengthen register lifetimes. Do it only after
2852 && try_head_merge_bb (b
))
2853 changed_here
= true;
2855 /* Don't get confused by the index shift caused by
2863 if ((mode
& CLEANUP_CROSSJUMP
)
2864 && try_crossjump_bb (mode
, EXIT_BLOCK_PTR_FOR_FN (cfun
)))
2867 if (block_was_dirty
)
2869 /* This should only be set by head-merging. */
2870 gcc_assert (mode
& CLEANUP_CROSSJUMP
);
2876 /* Edge forwarding in particular can cause hot blocks previously
2877 reached by both hot and cold blocks to become dominated only
2878 by cold blocks. This will cause the verification below to fail,
2879 and lead to now cold code in the hot section. This is not easy
2880 to detect and fix during edge forwarding, and in some cases
2881 is only visible after newly unreachable blocks are deleted,
2882 which will be done in fixup_partitions. */
2883 fixup_partitions ();
2885 #ifdef ENABLE_CHECKING
2886 verify_flow_info ();
2890 changed_overall
|= changed
;
2896 FOR_ALL_BB_FN (b
, cfun
)
2897 b
->flags
&= ~(BB_FORWARDER_BLOCK
| BB_NONTHREADABLE_BLOCK
);
2899 return changed_overall
;
2902 /* Delete all unreachable basic blocks. */
2905 delete_unreachable_blocks (void)
2907 bool changed
= false;
2908 basic_block b
, prev_bb
;
2910 find_unreachable_blocks ();
2912 /* When we're in GIMPLE mode and there may be debug insns, we should
2913 delete blocks in reverse dominator order, so as to get a chance
2914 to substitute all released DEFs into debug stmts. If we don't
2915 have dominators information, walking blocks backward gets us a
2916 better chance of retaining most debug information than
2918 if (MAY_HAVE_DEBUG_INSNS
&& current_ir_type () == IR_GIMPLE
2919 && dom_info_available_p (CDI_DOMINATORS
))
2921 for (b
= EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
;
2922 b
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
); b
= prev_bb
)
2924 prev_bb
= b
->prev_bb
;
2926 if (!(b
->flags
& BB_REACHABLE
))
2928 /* Speed up the removal of blocks that don't dominate
2929 others. Walking backwards, this should be the common
2931 if (!first_dom_son (CDI_DOMINATORS
, b
))
2932 delete_basic_block (b
);
2936 = get_all_dominated_blocks (CDI_DOMINATORS
, b
);
2942 prev_bb
= b
->prev_bb
;
2944 gcc_assert (!(b
->flags
& BB_REACHABLE
));
2946 delete_basic_block (b
);
2958 for (b
= EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
;
2959 b
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
); b
= prev_bb
)
2961 prev_bb
= b
->prev_bb
;
2963 if (!(b
->flags
& BB_REACHABLE
))
2965 delete_basic_block (b
);
2972 tidy_fallthru_edges ();
2976 /* Delete any jump tables never referenced. We can't delete them at the
2977 time of removing tablejump insn as they are referenced by the preceding
2978 insns computing the destination, so we delay deleting and garbagecollect
2979 them once life information is computed. */
2981 delete_dead_jumptables (void)
2985 /* A dead jump table does not belong to any basic block. Scan insns
2986 between two adjacent basic blocks. */
2987 FOR_EACH_BB_FN (bb
, cfun
)
2989 rtx_insn
*insn
, *next
;
2991 for (insn
= NEXT_INSN (BB_END (bb
));
2992 insn
&& !NOTE_INSN_BASIC_BLOCK_P (insn
);
2995 next
= NEXT_INSN (insn
);
2997 && LABEL_NUSES (insn
) == LABEL_PRESERVE_P (insn
)
2998 && JUMP_TABLE_DATA_P (next
))
3000 rtx_insn
*label
= insn
, *jump
= next
;
3003 fprintf (dump_file
, "Dead jumptable %i removed\n",
3006 next
= NEXT_INSN (next
);
3008 delete_insn (label
);
3015 /* Tidy the CFG by deleting unreachable code and whatnot. */
3018 cleanup_cfg (int mode
)
3020 bool changed
= false;
3022 /* Set the cfglayout mode flag here. We could update all the callers
3023 but that is just inconvenient, especially given that we eventually
3024 want to have cfglayout mode as the default. */
3025 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
3026 mode
|= CLEANUP_CFGLAYOUT
;
3028 timevar_push (TV_CLEANUP_CFG
);
3029 if (delete_unreachable_blocks ())
3032 /* We've possibly created trivially dead code. Cleanup it right
3033 now to introduce more opportunities for try_optimize_cfg. */
3034 if (!(mode
& (CLEANUP_NO_INSN_DEL
))
3035 && !reload_completed
)
3036 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3041 /* To tail-merge blocks ending in the same noreturn function (e.g.
3042 a call to abort) we have to insert fake edges to exit. Do this
3043 here once. The fake edges do not interfere with any other CFG
3045 if (mode
& CLEANUP_CROSSJUMP
)
3046 add_noreturn_fake_exit_edges ();
3048 if (!dbg_cnt (cfg_cleanup
))
3051 while (try_optimize_cfg (mode
))
3053 delete_unreachable_blocks (), changed
= true;
3054 if (!(mode
& CLEANUP_NO_INSN_DEL
))
3056 /* Try to remove some trivially dead insns when doing an expensive
3057 cleanup. But delete_trivially_dead_insns doesn't work after
3058 reload (it only handles pseudos) and run_fast_dce is too costly
3059 to run in every iteration.
3061 For effective cross jumping, we really want to run a fast DCE to
3062 clean up any dead conditions, or they get in the way of performing
3065 Other transformations in cleanup_cfg are not so sensitive to dead
3066 code, so delete_trivially_dead_insns or even doing nothing at all
3068 if ((mode
& CLEANUP_EXPENSIVE
) && !reload_completed
3069 && !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
3071 if ((mode
& CLEANUP_CROSSJUMP
) && crossjumps_occured
)
3078 if (mode
& CLEANUP_CROSSJUMP
)
3079 remove_fake_exit_edges ();
3081 /* Don't call delete_dead_jumptables in cfglayout mode, because
3082 that function assumes that jump tables are in the insns stream.
3083 But we also don't _have_ to delete dead jumptables in cfglayout
3084 mode because we shouldn't even be looking at things that are
3085 not in a basic block. Dead jumptables are cleaned up when
3086 going out of cfglayout mode. */
3087 if (!(mode
& CLEANUP_CFGLAYOUT
))
3088 delete_dead_jumptables ();
3090 /* ??? We probably do this way too often. */
3093 || (mode
& CLEANUP_CFG_CHANGED
)))
3095 timevar_push (TV_REPAIR_LOOPS
);
3096 /* The above doesn't preserve dominance info if available. */
3097 gcc_assert (!dom_info_available_p (CDI_DOMINATORS
));
3098 calculate_dominance_info (CDI_DOMINATORS
);
3099 fix_loop_structure (NULL
);
3100 free_dominance_info (CDI_DOMINATORS
);
3101 timevar_pop (TV_REPAIR_LOOPS
);
3104 timevar_pop (TV_CLEANUP_CFG
);
3111 const pass_data pass_data_jump
=
3113 RTL_PASS
, /* type */
3115 OPTGROUP_NONE
, /* optinfo_flags */
3116 TV_JUMP
, /* tv_id */
3117 0, /* properties_required */
3118 0, /* properties_provided */
3119 0, /* properties_destroyed */
3120 0, /* todo_flags_start */
3121 0, /* todo_flags_finish */
3124 class pass_jump
: public rtl_opt_pass
3127 pass_jump (gcc::context
*ctxt
)
3128 : rtl_opt_pass (pass_data_jump
, ctxt
)
3131 /* opt_pass methods: */
3132 virtual unsigned int execute (function
*);
3134 }; // class pass_jump
3137 pass_jump::execute (function
*)
3139 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3141 dump_flow_info (dump_file
, dump_flags
);
3142 cleanup_cfg ((optimize
? CLEANUP_EXPENSIVE
: 0)
3143 | (flag_thread_jumps
? CLEANUP_THREADING
: 0));
3150 make_pass_jump (gcc::context
*ctxt
)
3152 return new pass_jump (ctxt
);
3157 const pass_data pass_data_jump2
=
3159 RTL_PASS
, /* type */
3161 OPTGROUP_NONE
, /* optinfo_flags */
3162 TV_JUMP
, /* tv_id */
3163 0, /* properties_required */
3164 0, /* properties_provided */
3165 0, /* properties_destroyed */
3166 0, /* todo_flags_start */
3167 0, /* todo_flags_finish */
3170 class pass_jump2
: public rtl_opt_pass
3173 pass_jump2 (gcc::context
*ctxt
)
3174 : rtl_opt_pass (pass_data_jump2
, ctxt
)
3177 /* opt_pass methods: */
3178 virtual unsigned int execute (function
*)
3180 cleanup_cfg (flag_crossjumping
? CLEANUP_CROSSJUMP
: 0);
3184 }; // class pass_jump2
3189 make_pass_jump2 (gcc::context
*ctxt
)
3191 return new pass_jump2 (ctxt
);