* gthr.h (__gthread_cond_timedwait_recursive): Do not require.
[official-gcc.git] / gcc / reload1.c
blob0c9468f541b0033ad4e89212493d282656d684d1
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011, 2012 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl-error.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "ggc.h"
34 #include "flags.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "optabs.h"
38 #include "regs.h"
39 #include "addresses.h"
40 #include "basic-block.h"
41 #include "df.h"
42 #include "reload.h"
43 #include "recog.h"
44 #include "except.h"
45 #include "tree.h"
46 #include "ira.h"
47 #include "target.h"
48 #include "emit-rtl.h"
49 #include "dumpfile.h"
51 /* This file contains the reload pass of the compiler, which is
52 run after register allocation has been done. It checks that
53 each insn is valid (operands required to be in registers really
54 are in registers of the proper class) and fixes up invalid ones
55 by copying values temporarily into registers for the insns
56 that need them.
58 The results of register allocation are described by the vector
59 reg_renumber; the insns still contain pseudo regs, but reg_renumber
60 can be used to find which hard reg, if any, a pseudo reg is in.
62 The technique we always use is to free up a few hard regs that are
63 called ``reload regs'', and for each place where a pseudo reg
64 must be in a hard reg, copy it temporarily into one of the reload regs.
66 Reload regs are allocated locally for every instruction that needs
67 reloads. When there are pseudos which are allocated to a register that
68 has been chosen as a reload reg, such pseudos must be ``spilled''.
69 This means that they go to other hard regs, or to stack slots if no other
70 available hard regs can be found. Spilling can invalidate more
71 insns, requiring additional need for reloads, so we must keep checking
72 until the process stabilizes.
74 For machines with different classes of registers, we must keep track
75 of the register class needed for each reload, and make sure that
76 we allocate enough reload registers of each class.
78 The file reload.c contains the code that checks one insn for
79 validity and reports the reloads that it needs. This file
80 is in charge of scanning the entire rtl code, accumulating the
81 reload needs, spilling, assigning reload registers to use for
82 fixing up each insn, and generating the new insns to copy values
83 into the reload registers. */
85 struct target_reload default_target_reload;
86 #if SWITCHABLE_TARGET
87 struct target_reload *this_target_reload = &default_target_reload;
88 #endif
90 #define spill_indirect_levels \
91 (this_target_reload->x_spill_indirect_levels)
93 /* During reload_as_needed, element N contains a REG rtx for the hard reg
94 into which reg N has been reloaded (perhaps for a previous insn). */
95 static rtx *reg_last_reload_reg;
97 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
98 for an output reload that stores into reg N. */
99 static regset_head reg_has_output_reload;
101 /* Indicates which hard regs are reload-registers for an output reload
102 in the current insn. */
103 static HARD_REG_SET reg_is_output_reload;
105 /* Widest width in which each pseudo reg is referred to (via subreg). */
106 static unsigned int *reg_max_ref_width;
108 /* Vector to remember old contents of reg_renumber before spilling. */
109 static short *reg_old_renumber;
111 /* During reload_as_needed, element N contains the last pseudo regno reloaded
112 into hard register N. If that pseudo reg occupied more than one register,
113 reg_reloaded_contents points to that pseudo for each spill register in
114 use; all of these must remain set for an inheritance to occur. */
115 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
117 /* During reload_as_needed, element N contains the insn for which
118 hard register N was last used. Its contents are significant only
119 when reg_reloaded_valid is set for this register. */
120 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
122 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
123 static HARD_REG_SET reg_reloaded_valid;
124 /* Indicate if the register was dead at the end of the reload.
125 This is only valid if reg_reloaded_contents is set and valid. */
126 static HARD_REG_SET reg_reloaded_dead;
128 /* Indicate whether the register's current value is one that is not
129 safe to retain across a call, even for registers that are normally
130 call-saved. This is only meaningful for members of reg_reloaded_valid. */
131 static HARD_REG_SET reg_reloaded_call_part_clobbered;
133 /* Number of spill-regs so far; number of valid elements of spill_regs. */
134 static int n_spills;
136 /* In parallel with spill_regs, contains REG rtx's for those regs.
137 Holds the last rtx used for any given reg, or 0 if it has never
138 been used for spilling yet. This rtx is reused, provided it has
139 the proper mode. */
140 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
142 /* In parallel with spill_regs, contains nonzero for a spill reg
143 that was stored after the last time it was used.
144 The precise value is the insn generated to do the store. */
145 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
147 /* This is the register that was stored with spill_reg_store. This is a
148 copy of reload_out / reload_out_reg when the value was stored; if
149 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
150 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
152 /* This table is the inverse mapping of spill_regs:
153 indexed by hard reg number,
154 it contains the position of that reg in spill_regs,
155 or -1 for something that is not in spill_regs.
157 ?!? This is no longer accurate. */
158 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
160 /* This reg set indicates registers that can't be used as spill registers for
161 the currently processed insn. These are the hard registers which are live
162 during the insn, but not allocated to pseudos, as well as fixed
163 registers. */
164 static HARD_REG_SET bad_spill_regs;
166 /* These are the hard registers that can't be used as spill register for any
167 insn. This includes registers used for user variables and registers that
168 we can't eliminate. A register that appears in this set also can't be used
169 to retry register allocation. */
170 static HARD_REG_SET bad_spill_regs_global;
172 /* Describes order of use of registers for reloading
173 of spilled pseudo-registers. `n_spills' is the number of
174 elements that are actually valid; new ones are added at the end.
176 Both spill_regs and spill_reg_order are used on two occasions:
177 once during find_reload_regs, where they keep track of the spill registers
178 for a single insn, but also during reload_as_needed where they show all
179 the registers ever used by reload. For the latter case, the information
180 is calculated during finish_spills. */
181 static short spill_regs[FIRST_PSEUDO_REGISTER];
183 /* This vector of reg sets indicates, for each pseudo, which hard registers
184 may not be used for retrying global allocation because the register was
185 formerly spilled from one of them. If we allowed reallocating a pseudo to
186 a register that it was already allocated to, reload might not
187 terminate. */
188 static HARD_REG_SET *pseudo_previous_regs;
190 /* This vector of reg sets indicates, for each pseudo, which hard
191 registers may not be used for retrying global allocation because they
192 are used as spill registers during one of the insns in which the
193 pseudo is live. */
194 static HARD_REG_SET *pseudo_forbidden_regs;
196 /* All hard regs that have been used as spill registers for any insn are
197 marked in this set. */
198 static HARD_REG_SET used_spill_regs;
200 /* Index of last register assigned as a spill register. We allocate in
201 a round-robin fashion. */
202 static int last_spill_reg;
204 /* Record the stack slot for each spilled hard register. */
205 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
207 /* Width allocated so far for that stack slot. */
208 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
210 /* Record which pseudos needed to be spilled. */
211 static regset_head spilled_pseudos;
213 /* Record which pseudos changed their allocation in finish_spills. */
214 static regset_head changed_allocation_pseudos;
216 /* Used for communication between order_regs_for_reload and count_pseudo.
217 Used to avoid counting one pseudo twice. */
218 static regset_head pseudos_counted;
220 /* First uid used by insns created by reload in this function.
221 Used in find_equiv_reg. */
222 int reload_first_uid;
224 /* Flag set by local-alloc or global-alloc if anything is live in
225 a call-clobbered reg across calls. */
226 int caller_save_needed;
228 /* Set to 1 while reload_as_needed is operating.
229 Required by some machines to handle any generated moves differently. */
230 int reload_in_progress = 0;
232 /* This obstack is used for allocation of rtl during register elimination.
233 The allocated storage can be freed once find_reloads has processed the
234 insn. */
235 static struct obstack reload_obstack;
237 /* Points to the beginning of the reload_obstack. All insn_chain structures
238 are allocated first. */
239 static char *reload_startobj;
241 /* The point after all insn_chain structures. Used to quickly deallocate
242 memory allocated in copy_reloads during calculate_needs_all_insns. */
243 static char *reload_firstobj;
245 /* This points before all local rtl generated by register elimination.
246 Used to quickly free all memory after processing one insn. */
247 static char *reload_insn_firstobj;
249 /* List of insn_chain instructions, one for every insn that reload needs to
250 examine. */
251 struct insn_chain *reload_insn_chain;
253 /* TRUE if we potentially left dead insns in the insn stream and want to
254 run DCE immediately after reload, FALSE otherwise. */
255 static bool need_dce;
257 /* List of all insns needing reloads. */
258 static struct insn_chain *insns_need_reload;
260 /* This structure is used to record information about register eliminations.
261 Each array entry describes one possible way of eliminating a register
262 in favor of another. If there is more than one way of eliminating a
263 particular register, the most preferred should be specified first. */
265 struct elim_table
267 int from; /* Register number to be eliminated. */
268 int to; /* Register number used as replacement. */
269 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
270 int can_eliminate; /* Nonzero if this elimination can be done. */
271 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
272 target hook in previous scan over insns
273 made by reload. */
274 HOST_WIDE_INT offset; /* Current offset between the two regs. */
275 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
276 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
277 rtx from_rtx; /* REG rtx for the register to be eliminated.
278 We cannot simply compare the number since
279 we might then spuriously replace a hard
280 register corresponding to a pseudo
281 assigned to the reg to be eliminated. */
282 rtx to_rtx; /* REG rtx for the replacement. */
285 static struct elim_table *reg_eliminate = 0;
287 /* This is an intermediate structure to initialize the table. It has
288 exactly the members provided by ELIMINABLE_REGS. */
289 static const struct elim_table_1
291 const int from;
292 const int to;
293 } reg_eliminate_1[] =
295 /* If a set of eliminable registers was specified, define the table from it.
296 Otherwise, default to the normal case of the frame pointer being
297 replaced by the stack pointer. */
299 #ifdef ELIMINABLE_REGS
300 ELIMINABLE_REGS;
301 #else
302 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
303 #endif
305 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
307 /* Record the number of pending eliminations that have an offset not equal
308 to their initial offset. If nonzero, we use a new copy of each
309 replacement result in any insns encountered. */
310 int num_not_at_initial_offset;
312 /* Count the number of registers that we may be able to eliminate. */
313 static int num_eliminable;
314 /* And the number of registers that are equivalent to a constant that
315 can be eliminated to frame_pointer / arg_pointer + constant. */
316 static int num_eliminable_invariants;
318 /* For each label, we record the offset of each elimination. If we reach
319 a label by more than one path and an offset differs, we cannot do the
320 elimination. This information is indexed by the difference of the
321 number of the label and the first label number. We can't offset the
322 pointer itself as this can cause problems on machines with segmented
323 memory. The first table is an array of flags that records whether we
324 have yet encountered a label and the second table is an array of arrays,
325 one entry in the latter array for each elimination. */
327 static int first_label_num;
328 static char *offsets_known_at;
329 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
331 vec<reg_equivs_t, va_gc> *reg_equivs;
333 /* Stack of addresses where an rtx has been changed. We can undo the
334 changes by popping items off the stack and restoring the original
335 value at each location.
337 We use this simplistic undo capability rather than copy_rtx as copy_rtx
338 will not make a deep copy of a normally sharable rtx, such as
339 (const (plus (symbol_ref) (const_int))). If such an expression appears
340 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
341 rtx expression would be changed. See PR 42431. */
343 typedef rtx *rtx_p;
344 static vec<rtx_p> substitute_stack;
346 /* Number of labels in the current function. */
348 static int num_labels;
350 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
351 static void maybe_fix_stack_asms (void);
352 static void copy_reloads (struct insn_chain *);
353 static void calculate_needs_all_insns (int);
354 static int find_reg (struct insn_chain *, int);
355 static void find_reload_regs (struct insn_chain *);
356 static void select_reload_regs (void);
357 static void delete_caller_save_insns (void);
359 static void spill_failure (rtx, enum reg_class);
360 static void count_spilled_pseudo (int, int, int);
361 static void delete_dead_insn (rtx);
362 static void alter_reg (int, int, bool);
363 static void set_label_offsets (rtx, rtx, int);
364 static void check_eliminable_occurrences (rtx);
365 static void elimination_effects (rtx, enum machine_mode);
366 static rtx eliminate_regs_1 (rtx, enum machine_mode, rtx, bool, bool);
367 static int eliminate_regs_in_insn (rtx, int);
368 static void update_eliminable_offsets (void);
369 static void mark_not_eliminable (rtx, const_rtx, void *);
370 static void set_initial_elim_offsets (void);
371 static bool verify_initial_elim_offsets (void);
372 static void set_initial_label_offsets (void);
373 static void set_offsets_for_label (rtx);
374 static void init_eliminable_invariants (rtx, bool);
375 static void init_elim_table (void);
376 static void free_reg_equiv (void);
377 static void update_eliminables (HARD_REG_SET *);
378 static void elimination_costs_in_insn (rtx);
379 static void spill_hard_reg (unsigned int, int);
380 static int finish_spills (int);
381 static void scan_paradoxical_subregs (rtx);
382 static void count_pseudo (int);
383 static void order_regs_for_reload (struct insn_chain *);
384 static void reload_as_needed (int);
385 static void forget_old_reloads_1 (rtx, const_rtx, void *);
386 static void forget_marked_reloads (regset);
387 static int reload_reg_class_lower (const void *, const void *);
388 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
389 enum machine_mode);
390 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
391 enum machine_mode);
392 static int reload_reg_free_p (unsigned int, int, enum reload_type);
393 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
394 rtx, rtx, int, int);
395 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
396 rtx, rtx, int, int);
397 static int allocate_reload_reg (struct insn_chain *, int, int);
398 static int conflicts_with_override (rtx);
399 static void failed_reload (rtx, int);
400 static int set_reload_reg (int, int);
401 static void choose_reload_regs_init (struct insn_chain *, rtx *);
402 static void choose_reload_regs (struct insn_chain *);
403 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
404 rtx, int);
405 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
406 int);
407 static void do_input_reload (struct insn_chain *, struct reload *, int);
408 static void do_output_reload (struct insn_chain *, struct reload *, int);
409 static void emit_reload_insns (struct insn_chain *);
410 static void delete_output_reload (rtx, int, int, rtx);
411 static void delete_address_reloads (rtx, rtx);
412 static void delete_address_reloads_1 (rtx, rtx, rtx);
413 static void inc_for_reload (rtx, rtx, rtx, int);
414 #ifdef AUTO_INC_DEC
415 static void add_auto_inc_notes (rtx, rtx);
416 #endif
417 static void substitute (rtx *, const_rtx, rtx);
418 static bool gen_reload_chain_without_interm_reg_p (int, int);
419 static int reloads_conflict (int, int);
420 static rtx gen_reload (rtx, rtx, int, enum reload_type);
421 static rtx emit_insn_if_valid_for_reload (rtx);
423 /* Initialize the reload pass. This is called at the beginning of compilation
424 and may be called again if the target is reinitialized. */
426 void
427 init_reload (void)
429 int i;
431 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
432 Set spill_indirect_levels to the number of levels such addressing is
433 permitted, zero if it is not permitted at all. */
435 rtx tem
436 = gen_rtx_MEM (Pmode,
437 gen_rtx_PLUS (Pmode,
438 gen_rtx_REG (Pmode,
439 LAST_VIRTUAL_REGISTER + 1),
440 GEN_INT (4)));
441 spill_indirect_levels = 0;
443 while (memory_address_p (QImode, tem))
445 spill_indirect_levels++;
446 tem = gen_rtx_MEM (Pmode, tem);
449 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
451 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
452 indirect_symref_ok = memory_address_p (QImode, tem);
454 /* See if reg+reg is a valid (and offsettable) address. */
456 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
458 tem = gen_rtx_PLUS (Pmode,
459 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
460 gen_rtx_REG (Pmode, i));
462 /* This way, we make sure that reg+reg is an offsettable address. */
463 tem = plus_constant (Pmode, tem, 4);
465 if (memory_address_p (QImode, tem))
467 double_reg_address_ok = 1;
468 break;
472 /* Initialize obstack for our rtl allocation. */
473 gcc_obstack_init (&reload_obstack);
474 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
476 INIT_REG_SET (&spilled_pseudos);
477 INIT_REG_SET (&changed_allocation_pseudos);
478 INIT_REG_SET (&pseudos_counted);
481 /* List of insn chains that are currently unused. */
482 static struct insn_chain *unused_insn_chains = 0;
484 /* Allocate an empty insn_chain structure. */
485 struct insn_chain *
486 new_insn_chain (void)
488 struct insn_chain *c;
490 if (unused_insn_chains == 0)
492 c = XOBNEW (&reload_obstack, struct insn_chain);
493 INIT_REG_SET (&c->live_throughout);
494 INIT_REG_SET (&c->dead_or_set);
496 else
498 c = unused_insn_chains;
499 unused_insn_chains = c->next;
501 c->is_caller_save_insn = 0;
502 c->need_operand_change = 0;
503 c->need_reload = 0;
504 c->need_elim = 0;
505 return c;
508 /* Small utility function to set all regs in hard reg set TO which are
509 allocated to pseudos in regset FROM. */
511 void
512 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
514 unsigned int regno;
515 reg_set_iterator rsi;
517 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
519 int r = reg_renumber[regno];
521 if (r < 0)
523 /* reload_combine uses the information from DF_LIVE_IN,
524 which might still contain registers that have not
525 actually been allocated since they have an
526 equivalence. */
527 gcc_assert (ira_conflicts_p || reload_completed);
529 else
530 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
534 /* Replace all pseudos found in LOC with their corresponding
535 equivalences. */
537 static void
538 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
540 rtx x = *loc;
541 enum rtx_code code;
542 const char *fmt;
543 int i, j;
545 if (! x)
546 return;
548 code = GET_CODE (x);
549 if (code == REG)
551 unsigned int regno = REGNO (x);
553 if (regno < FIRST_PSEUDO_REGISTER)
554 return;
556 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
557 if (x != *loc)
559 *loc = x;
560 replace_pseudos_in (loc, mem_mode, usage);
561 return;
564 if (reg_equiv_constant (regno))
565 *loc = reg_equiv_constant (regno);
566 else if (reg_equiv_invariant (regno))
567 *loc = reg_equiv_invariant (regno);
568 else if (reg_equiv_mem (regno))
569 *loc = reg_equiv_mem (regno);
570 else if (reg_equiv_address (regno))
571 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
572 else
574 gcc_assert (!REG_P (regno_reg_rtx[regno])
575 || REGNO (regno_reg_rtx[regno]) != regno);
576 *loc = regno_reg_rtx[regno];
579 return;
581 else if (code == MEM)
583 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
584 return;
587 /* Process each of our operands recursively. */
588 fmt = GET_RTX_FORMAT (code);
589 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
590 if (*fmt == 'e')
591 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
592 else if (*fmt == 'E')
593 for (j = 0; j < XVECLEN (x, i); j++)
594 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
597 /* Determine if the current function has an exception receiver block
598 that reaches the exit block via non-exceptional edges */
600 static bool
601 has_nonexceptional_receiver (void)
603 edge e;
604 edge_iterator ei;
605 basic_block *tos, *worklist, bb;
607 /* If we're not optimizing, then just err on the safe side. */
608 if (!optimize)
609 return true;
611 /* First determine which blocks can reach exit via normal paths. */
612 tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
614 FOR_EACH_BB (bb)
615 bb->flags &= ~BB_REACHABLE;
617 /* Place the exit block on our worklist. */
618 EXIT_BLOCK_PTR->flags |= BB_REACHABLE;
619 *tos++ = EXIT_BLOCK_PTR;
621 /* Iterate: find everything reachable from what we've already seen. */
622 while (tos != worklist)
624 bb = *--tos;
626 FOR_EACH_EDGE (e, ei, bb->preds)
627 if (!(e->flags & EDGE_ABNORMAL))
629 basic_block src = e->src;
631 if (!(src->flags & BB_REACHABLE))
633 src->flags |= BB_REACHABLE;
634 *tos++ = src;
638 free (worklist);
640 /* Now see if there's a reachable block with an exceptional incoming
641 edge. */
642 FOR_EACH_BB (bb)
643 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
644 return true;
646 /* No exceptional block reached exit unexceptionally. */
647 return false;
650 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
651 zero elements) to MAX_REG_NUM elements.
653 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
654 void
655 grow_reg_equivs (void)
657 int old_size = vec_safe_length (reg_equivs);
658 int max_regno = max_reg_num ();
659 int i;
660 reg_equivs_t ze;
662 memset (&ze, 0, sizeof (reg_equivs_t));
663 vec_safe_reserve (reg_equivs, max_regno);
664 for (i = old_size; i < max_regno; i++)
665 reg_equivs->quick_insert (i, ze);
669 /* Global variables used by reload and its subroutines. */
671 /* The current basic block while in calculate_elim_costs_all_insns. */
672 static basic_block elim_bb;
674 /* Set during calculate_needs if an insn needs register elimination. */
675 static int something_needs_elimination;
676 /* Set during calculate_needs if an insn needs an operand changed. */
677 static int something_needs_operands_changed;
678 /* Set by alter_regs if we spilled a register to the stack. */
679 static bool something_was_spilled;
681 /* Nonzero means we couldn't get enough spill regs. */
682 static int failure;
684 /* Temporary array of pseudo-register number. */
685 static int *temp_pseudo_reg_arr;
687 /* Main entry point for the reload pass.
689 FIRST is the first insn of the function being compiled.
691 GLOBAL nonzero means we were called from global_alloc
692 and should attempt to reallocate any pseudoregs that we
693 displace from hard regs we will use for reloads.
694 If GLOBAL is zero, we do not have enough information to do that,
695 so any pseudo reg that is spilled must go to the stack.
697 Return value is TRUE if reload likely left dead insns in the
698 stream and a DCE pass should be run to elimiante them. Else the
699 return value is FALSE. */
701 bool
702 reload (rtx first, int global)
704 int i, n;
705 rtx insn;
706 struct elim_table *ep;
707 basic_block bb;
708 bool inserted;
710 /* Make sure even insns with volatile mem refs are recognizable. */
711 init_recog ();
713 failure = 0;
715 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
717 /* Make sure that the last insn in the chain
718 is not something that needs reloading. */
719 emit_note (NOTE_INSN_DELETED);
721 /* Enable find_equiv_reg to distinguish insns made by reload. */
722 reload_first_uid = get_max_uid ();
724 #ifdef SECONDARY_MEMORY_NEEDED
725 /* Initialize the secondary memory table. */
726 clear_secondary_mem ();
727 #endif
729 /* We don't have a stack slot for any spill reg yet. */
730 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
731 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
733 /* Initialize the save area information for caller-save, in case some
734 are needed. */
735 init_save_areas ();
737 /* Compute which hard registers are now in use
738 as homes for pseudo registers.
739 This is done here rather than (eg) in global_alloc
740 because this point is reached even if not optimizing. */
741 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
742 mark_home_live (i);
744 /* A function that has a nonlocal label that can reach the exit
745 block via non-exceptional paths must save all call-saved
746 registers. */
747 if (cfun->has_nonlocal_label
748 && has_nonexceptional_receiver ())
749 crtl->saves_all_registers = 1;
751 if (crtl->saves_all_registers)
752 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
753 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
754 df_set_regs_ever_live (i, true);
756 /* Find all the pseudo registers that didn't get hard regs
757 but do have known equivalent constants or memory slots.
758 These include parameters (known equivalent to parameter slots)
759 and cse'd or loop-moved constant memory addresses.
761 Record constant equivalents in reg_equiv_constant
762 so they will be substituted by find_reloads.
763 Record memory equivalents in reg_mem_equiv so they can
764 be substituted eventually by altering the REG-rtx's. */
766 grow_reg_equivs ();
767 reg_old_renumber = XCNEWVEC (short, max_regno);
768 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
769 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
770 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
772 CLEAR_HARD_REG_SET (bad_spill_regs_global);
774 init_eliminable_invariants (first, true);
775 init_elim_table ();
777 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
778 stack slots to the pseudos that lack hard regs or equivalents.
779 Do not touch virtual registers. */
781 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
782 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
783 temp_pseudo_reg_arr[n++] = i;
785 if (ira_conflicts_p)
786 /* Ask IRA to order pseudo-registers for better stack slot
787 sharing. */
788 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
790 for (i = 0; i < n; i++)
791 alter_reg (temp_pseudo_reg_arr[i], -1, false);
793 /* If we have some registers we think can be eliminated, scan all insns to
794 see if there is an insn that sets one of these registers to something
795 other than itself plus a constant. If so, the register cannot be
796 eliminated. Doing this scan here eliminates an extra pass through the
797 main reload loop in the most common case where register elimination
798 cannot be done. */
799 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
800 if (INSN_P (insn))
801 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
803 maybe_fix_stack_asms ();
805 insns_need_reload = 0;
806 something_needs_elimination = 0;
808 /* Initialize to -1, which means take the first spill register. */
809 last_spill_reg = -1;
811 /* Spill any hard regs that we know we can't eliminate. */
812 CLEAR_HARD_REG_SET (used_spill_regs);
813 /* There can be multiple ways to eliminate a register;
814 they should be listed adjacently.
815 Elimination for any register fails only if all possible ways fail. */
816 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
818 int from = ep->from;
819 int can_eliminate = 0;
822 can_eliminate |= ep->can_eliminate;
823 ep++;
825 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
826 if (! can_eliminate)
827 spill_hard_reg (from, 1);
830 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
831 if (frame_pointer_needed)
832 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
833 #endif
834 finish_spills (global);
836 /* From now on, we may need to generate moves differently. We may also
837 allow modifications of insns which cause them to not be recognized.
838 Any such modifications will be cleaned up during reload itself. */
839 reload_in_progress = 1;
841 /* This loop scans the entire function each go-round
842 and repeats until one repetition spills no additional hard regs. */
843 for (;;)
845 int something_changed;
846 int did_spill;
847 HOST_WIDE_INT starting_frame_size;
849 starting_frame_size = get_frame_size ();
850 something_was_spilled = false;
852 set_initial_elim_offsets ();
853 set_initial_label_offsets ();
855 /* For each pseudo register that has an equivalent location defined,
856 try to eliminate any eliminable registers (such as the frame pointer)
857 assuming initial offsets for the replacement register, which
858 is the normal case.
860 If the resulting location is directly addressable, substitute
861 the MEM we just got directly for the old REG.
863 If it is not addressable but is a constant or the sum of a hard reg
864 and constant, it is probably not addressable because the constant is
865 out of range, in that case record the address; we will generate
866 hairy code to compute the address in a register each time it is
867 needed. Similarly if it is a hard register, but one that is not
868 valid as an address register.
870 If the location is not addressable, but does not have one of the
871 above forms, assign a stack slot. We have to do this to avoid the
872 potential of producing lots of reloads if, e.g., a location involves
873 a pseudo that didn't get a hard register and has an equivalent memory
874 location that also involves a pseudo that didn't get a hard register.
876 Perhaps at some point we will improve reload_when_needed handling
877 so this problem goes away. But that's very hairy. */
879 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
880 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
882 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
883 NULL_RTX);
885 if (strict_memory_address_addr_space_p
886 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
887 MEM_ADDR_SPACE (x)))
888 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
889 else if (CONSTANT_P (XEXP (x, 0))
890 || (REG_P (XEXP (x, 0))
891 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
892 || (GET_CODE (XEXP (x, 0)) == PLUS
893 && REG_P (XEXP (XEXP (x, 0), 0))
894 && (REGNO (XEXP (XEXP (x, 0), 0))
895 < FIRST_PSEUDO_REGISTER)
896 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
897 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
898 else
900 /* Make a new stack slot. Then indicate that something
901 changed so we go back and recompute offsets for
902 eliminable registers because the allocation of memory
903 below might change some offset. reg_equiv_{mem,address}
904 will be set up for this pseudo on the next pass around
905 the loop. */
906 reg_equiv_memory_loc (i) = 0;
907 reg_equiv_init (i) = 0;
908 alter_reg (i, -1, true);
912 if (caller_save_needed)
913 setup_save_areas ();
915 /* If we allocated another stack slot, redo elimination bookkeeping. */
916 if (something_was_spilled || starting_frame_size != get_frame_size ())
917 continue;
918 if (starting_frame_size && crtl->stack_alignment_needed)
920 /* If we have a stack frame, we must align it now. The
921 stack size may be a part of the offset computation for
922 register elimination. So if this changes the stack size,
923 then repeat the elimination bookkeeping. We don't
924 realign when there is no stack, as that will cause a
925 stack frame when none is needed should
926 STARTING_FRAME_OFFSET not be already aligned to
927 STACK_BOUNDARY. */
928 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
929 if (starting_frame_size != get_frame_size ())
930 continue;
933 if (caller_save_needed)
935 save_call_clobbered_regs ();
936 /* That might have allocated new insn_chain structures. */
937 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
940 calculate_needs_all_insns (global);
942 if (! ira_conflicts_p)
943 /* Don't do it for IRA. We need this info because we don't
944 change live_throughout and dead_or_set for chains when IRA
945 is used. */
946 CLEAR_REG_SET (&spilled_pseudos);
948 did_spill = 0;
950 something_changed = 0;
952 /* If we allocated any new memory locations, make another pass
953 since it might have changed elimination offsets. */
954 if (something_was_spilled || starting_frame_size != get_frame_size ())
955 something_changed = 1;
957 /* Even if the frame size remained the same, we might still have
958 changed elimination offsets, e.g. if find_reloads called
959 force_const_mem requiring the back end to allocate a constant
960 pool base register that needs to be saved on the stack. */
961 else if (!verify_initial_elim_offsets ())
962 something_changed = 1;
965 HARD_REG_SET to_spill;
966 CLEAR_HARD_REG_SET (to_spill);
967 update_eliminables (&to_spill);
968 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
970 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
971 if (TEST_HARD_REG_BIT (to_spill, i))
973 spill_hard_reg (i, 1);
974 did_spill = 1;
976 /* Regardless of the state of spills, if we previously had
977 a register that we thought we could eliminate, but now can
978 not eliminate, we must run another pass.
980 Consider pseudos which have an entry in reg_equiv_* which
981 reference an eliminable register. We must make another pass
982 to update reg_equiv_* so that we do not substitute in the
983 old value from when we thought the elimination could be
984 performed. */
985 something_changed = 1;
989 select_reload_regs ();
990 if (failure)
991 goto failed;
993 if (insns_need_reload != 0 || did_spill)
994 something_changed |= finish_spills (global);
996 if (! something_changed)
997 break;
999 if (caller_save_needed)
1000 delete_caller_save_insns ();
1002 obstack_free (&reload_obstack, reload_firstobj);
1005 /* If global-alloc was run, notify it of any register eliminations we have
1006 done. */
1007 if (global)
1008 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1009 if (ep->can_eliminate)
1010 mark_elimination (ep->from, ep->to);
1012 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1013 If that insn didn't set the register (i.e., it copied the register to
1014 memory), just delete that insn instead of the equivalencing insn plus
1015 anything now dead. If we call delete_dead_insn on that insn, we may
1016 delete the insn that actually sets the register if the register dies
1017 there and that is incorrect. */
1019 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1021 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
1023 rtx list;
1024 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
1026 rtx equiv_insn = XEXP (list, 0);
1028 /* If we already deleted the insn or if it may trap, we can't
1029 delete it. The latter case shouldn't happen, but can
1030 if an insn has a variable address, gets a REG_EH_REGION
1031 note added to it, and then gets converted into a load
1032 from a constant address. */
1033 if (NOTE_P (equiv_insn)
1034 || can_throw_internal (equiv_insn))
1036 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1037 delete_dead_insn (equiv_insn);
1038 else
1039 SET_INSN_DELETED (equiv_insn);
1044 /* Use the reload registers where necessary
1045 by generating move instructions to move the must-be-register
1046 values into or out of the reload registers. */
1048 if (insns_need_reload != 0 || something_needs_elimination
1049 || something_needs_operands_changed)
1051 HOST_WIDE_INT old_frame_size = get_frame_size ();
1053 reload_as_needed (global);
1055 gcc_assert (old_frame_size == get_frame_size ());
1057 gcc_assert (verify_initial_elim_offsets ());
1060 /* If we were able to eliminate the frame pointer, show that it is no
1061 longer live at the start of any basic block. If it ls live by
1062 virtue of being in a pseudo, that pseudo will be marked live
1063 and hence the frame pointer will be known to be live via that
1064 pseudo. */
1066 if (! frame_pointer_needed)
1067 FOR_EACH_BB (bb)
1068 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1070 /* Come here (with failure set nonzero) if we can't get enough spill
1071 regs. */
1072 failed:
1074 CLEAR_REG_SET (&changed_allocation_pseudos);
1075 CLEAR_REG_SET (&spilled_pseudos);
1076 reload_in_progress = 0;
1078 /* Now eliminate all pseudo regs by modifying them into
1079 their equivalent memory references.
1080 The REG-rtx's for the pseudos are modified in place,
1081 so all insns that used to refer to them now refer to memory.
1083 For a reg that has a reg_equiv_address, all those insns
1084 were changed by reloading so that no insns refer to it any longer;
1085 but the DECL_RTL of a variable decl may refer to it,
1086 and if so this causes the debugging info to mention the variable. */
1088 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1090 rtx addr = 0;
1092 if (reg_equiv_mem (i))
1093 addr = XEXP (reg_equiv_mem (i), 0);
1095 if (reg_equiv_address (i))
1096 addr = reg_equiv_address (i);
1098 if (addr)
1100 if (reg_renumber[i] < 0)
1102 rtx reg = regno_reg_rtx[i];
1104 REG_USERVAR_P (reg) = 0;
1105 PUT_CODE (reg, MEM);
1106 XEXP (reg, 0) = addr;
1107 if (reg_equiv_memory_loc (i))
1108 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1109 else
1110 MEM_ATTRS (reg) = 0;
1111 MEM_NOTRAP_P (reg) = 1;
1113 else if (reg_equiv_mem (i))
1114 XEXP (reg_equiv_mem (i), 0) = addr;
1117 /* We don't want complex addressing modes in debug insns
1118 if simpler ones will do, so delegitimize equivalences
1119 in debug insns. */
1120 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1122 rtx reg = regno_reg_rtx[i];
1123 rtx equiv = 0;
1124 df_ref use, next;
1126 if (reg_equiv_constant (i))
1127 equiv = reg_equiv_constant (i);
1128 else if (reg_equiv_invariant (i))
1129 equiv = reg_equiv_invariant (i);
1130 else if (reg && MEM_P (reg))
1131 equiv = targetm.delegitimize_address (reg);
1132 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1133 equiv = reg;
1135 if (equiv == reg)
1136 continue;
1138 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1140 insn = DF_REF_INSN (use);
1142 /* Make sure the next ref is for a different instruction,
1143 so that we're not affected by the rescan. */
1144 next = DF_REF_NEXT_REG (use);
1145 while (next && DF_REF_INSN (next) == insn)
1146 next = DF_REF_NEXT_REG (next);
1148 if (DEBUG_INSN_P (insn))
1150 if (!equiv)
1152 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1153 df_insn_rescan_debug_internal (insn);
1155 else
1156 INSN_VAR_LOCATION_LOC (insn)
1157 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1158 reg, equiv);
1164 /* We must set reload_completed now since the cleanup_subreg_operands call
1165 below will re-recognize each insn and reload may have generated insns
1166 which are only valid during and after reload. */
1167 reload_completed = 1;
1169 /* Make a pass over all the insns and delete all USEs which we inserted
1170 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1171 notes. Delete all CLOBBER insns, except those that refer to the return
1172 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1173 from misarranging variable-array code, and simplify (subreg (reg))
1174 operands. Strip and regenerate REG_INC notes that may have been moved
1175 around. */
1177 for (insn = first; insn; insn = NEXT_INSN (insn))
1178 if (INSN_P (insn))
1180 rtx *pnote;
1182 if (CALL_P (insn))
1183 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1184 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1186 if ((GET_CODE (PATTERN (insn)) == USE
1187 /* We mark with QImode USEs introduced by reload itself. */
1188 && (GET_MODE (insn) == QImode
1189 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1190 || (GET_CODE (PATTERN (insn)) == CLOBBER
1191 && (!MEM_P (XEXP (PATTERN (insn), 0))
1192 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1193 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1194 && XEXP (XEXP (PATTERN (insn), 0), 0)
1195 != stack_pointer_rtx))
1196 && (!REG_P (XEXP (PATTERN (insn), 0))
1197 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1199 delete_insn (insn);
1200 continue;
1203 /* Some CLOBBERs may survive until here and still reference unassigned
1204 pseudos with const equivalent, which may in turn cause ICE in later
1205 passes if the reference remains in place. */
1206 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1207 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1208 VOIDmode, PATTERN (insn));
1210 /* Discard obvious no-ops, even without -O. This optimization
1211 is fast and doesn't interfere with debugging. */
1212 if (NONJUMP_INSN_P (insn)
1213 && GET_CODE (PATTERN (insn)) == SET
1214 && REG_P (SET_SRC (PATTERN (insn)))
1215 && REG_P (SET_DEST (PATTERN (insn)))
1216 && (REGNO (SET_SRC (PATTERN (insn)))
1217 == REGNO (SET_DEST (PATTERN (insn)))))
1219 delete_insn (insn);
1220 continue;
1223 pnote = &REG_NOTES (insn);
1224 while (*pnote != 0)
1226 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1227 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1228 || REG_NOTE_KIND (*pnote) == REG_INC)
1229 *pnote = XEXP (*pnote, 1);
1230 else
1231 pnote = &XEXP (*pnote, 1);
1234 #ifdef AUTO_INC_DEC
1235 add_auto_inc_notes (insn, PATTERN (insn));
1236 #endif
1238 /* Simplify (subreg (reg)) if it appears as an operand. */
1239 cleanup_subreg_operands (insn);
1241 /* Clean up invalid ASMs so that they don't confuse later passes.
1242 See PR 21299. */
1243 if (asm_noperands (PATTERN (insn)) >= 0)
1245 extract_insn (insn);
1246 if (!constrain_operands (1))
1248 error_for_asm (insn,
1249 "%<asm%> operand has impossible constraints");
1250 delete_insn (insn);
1251 continue;
1256 /* If we are doing generic stack checking, give a warning if this
1257 function's frame size is larger than we expect. */
1258 if (flag_stack_check == GENERIC_STACK_CHECK)
1260 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1261 static int verbose_warned = 0;
1263 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1264 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1265 size += UNITS_PER_WORD;
1267 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1269 warning (0, "frame size too large for reliable stack checking");
1270 if (! verbose_warned)
1272 warning (0, "try reducing the number of local variables");
1273 verbose_warned = 1;
1278 free (temp_pseudo_reg_arr);
1280 /* Indicate that we no longer have known memory locations or constants. */
1281 free_reg_equiv ();
1283 free (reg_max_ref_width);
1284 free (reg_old_renumber);
1285 free (pseudo_previous_regs);
1286 free (pseudo_forbidden_regs);
1288 CLEAR_HARD_REG_SET (used_spill_regs);
1289 for (i = 0; i < n_spills; i++)
1290 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1292 /* Free all the insn_chain structures at once. */
1293 obstack_free (&reload_obstack, reload_startobj);
1294 unused_insn_chains = 0;
1296 inserted = fixup_abnormal_edges ();
1298 /* We've possibly turned single trapping insn into multiple ones. */
1299 if (cfun->can_throw_non_call_exceptions)
1301 sbitmap blocks;
1302 blocks = sbitmap_alloc (last_basic_block);
1303 bitmap_ones (blocks);
1304 find_many_sub_basic_blocks (blocks);
1305 sbitmap_free (blocks);
1308 if (inserted)
1309 commit_edge_insertions ();
1311 /* Replacing pseudos with their memory equivalents might have
1312 created shared rtx. Subsequent passes would get confused
1313 by this, so unshare everything here. */
1314 unshare_all_rtl_again (first);
1316 #ifdef STACK_BOUNDARY
1317 /* init_emit has set the alignment of the hard frame pointer
1318 to STACK_BOUNDARY. It is very likely no longer valid if
1319 the hard frame pointer was used for register allocation. */
1320 if (!frame_pointer_needed)
1321 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1322 #endif
1324 substitute_stack.release ();
1326 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1328 reload_completed = !failure;
1330 return need_dce;
1333 /* Yet another special case. Unfortunately, reg-stack forces people to
1334 write incorrect clobbers in asm statements. These clobbers must not
1335 cause the register to appear in bad_spill_regs, otherwise we'll call
1336 fatal_insn later. We clear the corresponding regnos in the live
1337 register sets to avoid this.
1338 The whole thing is rather sick, I'm afraid. */
1340 static void
1341 maybe_fix_stack_asms (void)
1343 #ifdef STACK_REGS
1344 const char *constraints[MAX_RECOG_OPERANDS];
1345 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1346 struct insn_chain *chain;
1348 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1350 int i, noperands;
1351 HARD_REG_SET clobbered, allowed;
1352 rtx pat;
1354 if (! INSN_P (chain->insn)
1355 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1356 continue;
1357 pat = PATTERN (chain->insn);
1358 if (GET_CODE (pat) != PARALLEL)
1359 continue;
1361 CLEAR_HARD_REG_SET (clobbered);
1362 CLEAR_HARD_REG_SET (allowed);
1364 /* First, make a mask of all stack regs that are clobbered. */
1365 for (i = 0; i < XVECLEN (pat, 0); i++)
1367 rtx t = XVECEXP (pat, 0, i);
1368 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1369 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1372 /* Get the operand values and constraints out of the insn. */
1373 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1374 constraints, operand_mode, NULL);
1376 /* For every operand, see what registers are allowed. */
1377 for (i = 0; i < noperands; i++)
1379 const char *p = constraints[i];
1380 /* For every alternative, we compute the class of registers allowed
1381 for reloading in CLS, and merge its contents into the reg set
1382 ALLOWED. */
1383 int cls = (int) NO_REGS;
1385 for (;;)
1387 char c = *p;
1389 if (c == '\0' || c == ',' || c == '#')
1391 /* End of one alternative - mark the regs in the current
1392 class, and reset the class. */
1393 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1394 cls = NO_REGS;
1395 p++;
1396 if (c == '#')
1397 do {
1398 c = *p++;
1399 } while (c != '\0' && c != ',');
1400 if (c == '\0')
1401 break;
1402 continue;
1405 switch (c)
1407 case '=': case '+': case '*': case '%': case '?': case '!':
1408 case '0': case '1': case '2': case '3': case '4': case '<':
1409 case '>': case 'V': case 'o': case '&': case 'E': case 'F':
1410 case 's': case 'i': case 'n': case 'X': case 'I': case 'J':
1411 case 'K': case 'L': case 'M': case 'N': case 'O': case 'P':
1412 case TARGET_MEM_CONSTRAINT:
1413 break;
1415 case 'p':
1416 cls = (int) reg_class_subunion[cls]
1417 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1418 ADDRESS, SCRATCH)];
1419 break;
1421 case 'g':
1422 case 'r':
1423 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1424 break;
1426 default:
1427 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1428 cls = (int) reg_class_subunion[cls]
1429 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1430 ADDRESS, SCRATCH)];
1431 else
1432 cls = (int) reg_class_subunion[cls]
1433 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1435 p += CONSTRAINT_LEN (c, p);
1438 /* Those of the registers which are clobbered, but allowed by the
1439 constraints, must be usable as reload registers. So clear them
1440 out of the life information. */
1441 AND_HARD_REG_SET (allowed, clobbered);
1442 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1443 if (TEST_HARD_REG_BIT (allowed, i))
1445 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1446 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1450 #endif
1453 /* Copy the global variables n_reloads and rld into the corresponding elts
1454 of CHAIN. */
1455 static void
1456 copy_reloads (struct insn_chain *chain)
1458 chain->n_reloads = n_reloads;
1459 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1460 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1461 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1464 /* Walk the chain of insns, and determine for each whether it needs reloads
1465 and/or eliminations. Build the corresponding insns_need_reload list, and
1466 set something_needs_elimination as appropriate. */
1467 static void
1468 calculate_needs_all_insns (int global)
1470 struct insn_chain **pprev_reload = &insns_need_reload;
1471 struct insn_chain *chain, *next = 0;
1473 something_needs_elimination = 0;
1475 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1476 for (chain = reload_insn_chain; chain != 0; chain = next)
1478 rtx insn = chain->insn;
1480 next = chain->next;
1482 /* Clear out the shortcuts. */
1483 chain->n_reloads = 0;
1484 chain->need_elim = 0;
1485 chain->need_reload = 0;
1486 chain->need_operand_change = 0;
1488 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1489 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1490 what effects this has on the known offsets at labels. */
1492 if (LABEL_P (insn) || JUMP_P (insn)
1493 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1494 set_label_offsets (insn, insn, 0);
1496 if (INSN_P (insn))
1498 rtx old_body = PATTERN (insn);
1499 int old_code = INSN_CODE (insn);
1500 rtx old_notes = REG_NOTES (insn);
1501 int did_elimination = 0;
1502 int operands_changed = 0;
1503 rtx set = single_set (insn);
1505 /* Skip insns that only set an equivalence. */
1506 if (set && REG_P (SET_DEST (set))
1507 && reg_renumber[REGNO (SET_DEST (set))] < 0
1508 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1509 || (reg_equiv_invariant (REGNO (SET_DEST (set)))))
1510 && reg_equiv_init (REGNO (SET_DEST (set))))
1511 continue;
1513 /* If needed, eliminate any eliminable registers. */
1514 if (num_eliminable || num_eliminable_invariants)
1515 did_elimination = eliminate_regs_in_insn (insn, 0);
1517 /* Analyze the instruction. */
1518 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1519 global, spill_reg_order);
1521 /* If a no-op set needs more than one reload, this is likely
1522 to be something that needs input address reloads. We
1523 can't get rid of this cleanly later, and it is of no use
1524 anyway, so discard it now.
1525 We only do this when expensive_optimizations is enabled,
1526 since this complements reload inheritance / output
1527 reload deletion, and it can make debugging harder. */
1528 if (flag_expensive_optimizations && n_reloads > 1)
1530 rtx set = single_set (insn);
1531 if (set
1533 ((SET_SRC (set) == SET_DEST (set)
1534 && REG_P (SET_SRC (set))
1535 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1536 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1537 && reg_renumber[REGNO (SET_SRC (set))] < 0
1538 && reg_renumber[REGNO (SET_DEST (set))] < 0
1539 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1540 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1541 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1542 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1544 if (ira_conflicts_p)
1545 /* Inform IRA about the insn deletion. */
1546 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1547 REGNO (SET_SRC (set)));
1548 delete_insn (insn);
1549 /* Delete it from the reload chain. */
1550 if (chain->prev)
1551 chain->prev->next = next;
1552 else
1553 reload_insn_chain = next;
1554 if (next)
1555 next->prev = chain->prev;
1556 chain->next = unused_insn_chains;
1557 unused_insn_chains = chain;
1558 continue;
1561 if (num_eliminable)
1562 update_eliminable_offsets ();
1564 /* Remember for later shortcuts which insns had any reloads or
1565 register eliminations. */
1566 chain->need_elim = did_elimination;
1567 chain->need_reload = n_reloads > 0;
1568 chain->need_operand_change = operands_changed;
1570 /* Discard any register replacements done. */
1571 if (did_elimination)
1573 obstack_free (&reload_obstack, reload_insn_firstobj);
1574 PATTERN (insn) = old_body;
1575 INSN_CODE (insn) = old_code;
1576 REG_NOTES (insn) = old_notes;
1577 something_needs_elimination = 1;
1580 something_needs_operands_changed |= operands_changed;
1582 if (n_reloads != 0)
1584 copy_reloads (chain);
1585 *pprev_reload = chain;
1586 pprev_reload = &chain->next_need_reload;
1590 *pprev_reload = 0;
1593 /* This function is called from the register allocator to set up estimates
1594 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1595 an invariant. The structure is similar to calculate_needs_all_insns. */
1597 void
1598 calculate_elim_costs_all_insns (void)
1600 int *reg_equiv_init_cost;
1601 basic_block bb;
1602 int i;
1604 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1605 init_elim_table ();
1606 init_eliminable_invariants (get_insns (), false);
1608 set_initial_elim_offsets ();
1609 set_initial_label_offsets ();
1611 FOR_EACH_BB (bb)
1613 rtx insn;
1614 elim_bb = bb;
1616 FOR_BB_INSNS (bb, insn)
1618 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1619 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1620 what effects this has on the known offsets at labels. */
1622 if (LABEL_P (insn) || JUMP_P (insn)
1623 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1624 set_label_offsets (insn, insn, 0);
1626 if (INSN_P (insn))
1628 rtx set = single_set (insn);
1630 /* Skip insns that only set an equivalence. */
1631 if (set && REG_P (SET_DEST (set))
1632 && reg_renumber[REGNO (SET_DEST (set))] < 0
1633 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1634 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1636 unsigned regno = REGNO (SET_DEST (set));
1637 rtx init = reg_equiv_init (regno);
1638 if (init)
1640 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1641 false, true);
1642 int cost = set_src_cost (t, optimize_bb_for_speed_p (bb));
1643 int freq = REG_FREQ_FROM_BB (bb);
1645 reg_equiv_init_cost[regno] = cost * freq;
1646 continue;
1649 /* If needed, eliminate any eliminable registers. */
1650 if (num_eliminable || num_eliminable_invariants)
1651 elimination_costs_in_insn (insn);
1653 if (num_eliminable)
1654 update_eliminable_offsets ();
1658 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1660 if (reg_equiv_invariant (i))
1662 if (reg_equiv_init (i))
1664 int cost = reg_equiv_init_cost[i];
1665 if (dump_file)
1666 fprintf (dump_file,
1667 "Reg %d has equivalence, initial gains %d\n", i, cost);
1668 if (cost != 0)
1669 ira_adjust_equiv_reg_cost (i, cost);
1671 else
1673 if (dump_file)
1674 fprintf (dump_file,
1675 "Reg %d had equivalence, but can't be eliminated\n",
1677 ira_adjust_equiv_reg_cost (i, 0);
1682 free (reg_equiv_init_cost);
1683 free (offsets_known_at);
1684 free (offsets_at);
1685 offsets_at = NULL;
1686 offsets_known_at = NULL;
1689 /* Comparison function for qsort to decide which of two reloads
1690 should be handled first. *P1 and *P2 are the reload numbers. */
1692 static int
1693 reload_reg_class_lower (const void *r1p, const void *r2p)
1695 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1696 int t;
1698 /* Consider required reloads before optional ones. */
1699 t = rld[r1].optional - rld[r2].optional;
1700 if (t != 0)
1701 return t;
1703 /* Count all solitary classes before non-solitary ones. */
1704 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1705 - (reg_class_size[(int) rld[r1].rclass] == 1));
1706 if (t != 0)
1707 return t;
1709 /* Aside from solitaires, consider all multi-reg groups first. */
1710 t = rld[r2].nregs - rld[r1].nregs;
1711 if (t != 0)
1712 return t;
1714 /* Consider reloads in order of increasing reg-class number. */
1715 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1716 if (t != 0)
1717 return t;
1719 /* If reloads are equally urgent, sort by reload number,
1720 so that the results of qsort leave nothing to chance. */
1721 return r1 - r2;
1724 /* The cost of spilling each hard reg. */
1725 static int spill_cost[FIRST_PSEUDO_REGISTER];
1727 /* When spilling multiple hard registers, we use SPILL_COST for the first
1728 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1729 only the first hard reg for a multi-reg pseudo. */
1730 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1732 /* Map of hard regno to pseudo regno currently occupying the hard
1733 reg. */
1734 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1736 /* Update the spill cost arrays, considering that pseudo REG is live. */
1738 static void
1739 count_pseudo (int reg)
1741 int freq = REG_FREQ (reg);
1742 int r = reg_renumber[reg];
1743 int nregs;
1745 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1746 if (ira_conflicts_p && r < 0)
1747 return;
1749 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1750 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1751 return;
1753 SET_REGNO_REG_SET (&pseudos_counted, reg);
1755 gcc_assert (r >= 0);
1757 spill_add_cost[r] += freq;
1758 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1759 while (nregs-- > 0)
1761 hard_regno_to_pseudo_regno[r + nregs] = reg;
1762 spill_cost[r + nregs] += freq;
1766 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1767 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1769 static void
1770 order_regs_for_reload (struct insn_chain *chain)
1772 unsigned i;
1773 HARD_REG_SET used_by_pseudos;
1774 HARD_REG_SET used_by_pseudos2;
1775 reg_set_iterator rsi;
1777 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1779 memset (spill_cost, 0, sizeof spill_cost);
1780 memset (spill_add_cost, 0, sizeof spill_add_cost);
1781 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1782 hard_regno_to_pseudo_regno[i] = -1;
1784 /* Count number of uses of each hard reg by pseudo regs allocated to it
1785 and then order them by decreasing use. First exclude hard registers
1786 that are live in or across this insn. */
1788 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1789 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1790 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1791 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1793 /* Now find out which pseudos are allocated to it, and update
1794 hard_reg_n_uses. */
1795 CLEAR_REG_SET (&pseudos_counted);
1797 EXECUTE_IF_SET_IN_REG_SET
1798 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1800 count_pseudo (i);
1802 EXECUTE_IF_SET_IN_REG_SET
1803 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1805 count_pseudo (i);
1807 CLEAR_REG_SET (&pseudos_counted);
1810 /* Vector of reload-numbers showing the order in which the reloads should
1811 be processed. */
1812 static short reload_order[MAX_RELOADS];
1814 /* This is used to keep track of the spill regs used in one insn. */
1815 static HARD_REG_SET used_spill_regs_local;
1817 /* We decided to spill hard register SPILLED, which has a size of
1818 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1819 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1820 update SPILL_COST/SPILL_ADD_COST. */
1822 static void
1823 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1825 int freq = REG_FREQ (reg);
1826 int r = reg_renumber[reg];
1827 int nregs;
1829 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1830 if (ira_conflicts_p && r < 0)
1831 return;
1833 gcc_assert (r >= 0);
1835 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1837 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1838 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1839 return;
1841 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1843 spill_add_cost[r] -= freq;
1844 while (nregs-- > 0)
1846 hard_regno_to_pseudo_regno[r + nregs] = -1;
1847 spill_cost[r + nregs] -= freq;
1851 /* Find reload register to use for reload number ORDER. */
1853 static int
1854 find_reg (struct insn_chain *chain, int order)
1856 int rnum = reload_order[order];
1857 struct reload *rl = rld + rnum;
1858 int best_cost = INT_MAX;
1859 int best_reg = -1;
1860 unsigned int i, j, n;
1861 int k;
1862 HARD_REG_SET not_usable;
1863 HARD_REG_SET used_by_other_reload;
1864 reg_set_iterator rsi;
1865 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1866 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1868 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1869 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1870 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1872 CLEAR_HARD_REG_SET (used_by_other_reload);
1873 for (k = 0; k < order; k++)
1875 int other = reload_order[k];
1877 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1878 for (j = 0; j < rld[other].nregs; j++)
1879 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1882 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1884 #ifdef REG_ALLOC_ORDER
1885 unsigned int regno = reg_alloc_order[i];
1886 #else
1887 unsigned int regno = i;
1888 #endif
1890 if (! TEST_HARD_REG_BIT (not_usable, regno)
1891 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1892 && HARD_REGNO_MODE_OK (regno, rl->mode))
1894 int this_cost = spill_cost[regno];
1895 int ok = 1;
1896 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1898 for (j = 1; j < this_nregs; j++)
1900 this_cost += spill_add_cost[regno + j];
1901 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1902 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1903 ok = 0;
1905 if (! ok)
1906 continue;
1908 if (ira_conflicts_p)
1910 /* Ask IRA to find a better pseudo-register for
1911 spilling. */
1912 for (n = j = 0; j < this_nregs; j++)
1914 int r = hard_regno_to_pseudo_regno[regno + j];
1916 if (r < 0)
1917 continue;
1918 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1919 regno_pseudo_regs[n++] = r;
1921 regno_pseudo_regs[n++] = -1;
1922 if (best_reg < 0
1923 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1924 best_regno_pseudo_regs,
1925 rl->in, rl->out,
1926 chain->insn))
1928 best_reg = regno;
1929 for (j = 0;; j++)
1931 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1932 if (regno_pseudo_regs[j] < 0)
1933 break;
1936 continue;
1939 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1940 this_cost--;
1941 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1942 this_cost--;
1943 if (this_cost < best_cost
1944 /* Among registers with equal cost, prefer caller-saved ones, or
1945 use REG_ALLOC_ORDER if it is defined. */
1946 || (this_cost == best_cost
1947 #ifdef REG_ALLOC_ORDER
1948 && (inv_reg_alloc_order[regno]
1949 < inv_reg_alloc_order[best_reg])
1950 #else
1951 && call_used_regs[regno]
1952 && ! call_used_regs[best_reg]
1953 #endif
1956 best_reg = regno;
1957 best_cost = this_cost;
1961 if (best_reg == -1)
1962 return 0;
1964 if (dump_file)
1965 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1967 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1968 rl->regno = best_reg;
1970 EXECUTE_IF_SET_IN_REG_SET
1971 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1973 count_spilled_pseudo (best_reg, rl->nregs, j);
1976 EXECUTE_IF_SET_IN_REG_SET
1977 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1979 count_spilled_pseudo (best_reg, rl->nregs, j);
1982 for (i = 0; i < rl->nregs; i++)
1984 gcc_assert (spill_cost[best_reg + i] == 0);
1985 gcc_assert (spill_add_cost[best_reg + i] == 0);
1986 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1987 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1989 return 1;
1992 /* Find more reload regs to satisfy the remaining need of an insn, which
1993 is given by CHAIN.
1994 Do it by ascending class number, since otherwise a reg
1995 might be spilled for a big class and might fail to count
1996 for a smaller class even though it belongs to that class. */
1998 static void
1999 find_reload_regs (struct insn_chain *chain)
2001 int i;
2003 /* In order to be certain of getting the registers we need,
2004 we must sort the reloads into order of increasing register class.
2005 Then our grabbing of reload registers will parallel the process
2006 that provided the reload registers. */
2007 for (i = 0; i < chain->n_reloads; i++)
2009 /* Show whether this reload already has a hard reg. */
2010 if (chain->rld[i].reg_rtx)
2012 int regno = REGNO (chain->rld[i].reg_rtx);
2013 chain->rld[i].regno = regno;
2014 chain->rld[i].nregs
2015 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
2017 else
2018 chain->rld[i].regno = -1;
2019 reload_order[i] = i;
2022 n_reloads = chain->n_reloads;
2023 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
2025 CLEAR_HARD_REG_SET (used_spill_regs_local);
2027 if (dump_file)
2028 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2030 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2032 /* Compute the order of preference for hard registers to spill. */
2034 order_regs_for_reload (chain);
2036 for (i = 0; i < n_reloads; i++)
2038 int r = reload_order[i];
2040 /* Ignore reloads that got marked inoperative. */
2041 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2042 && ! rld[r].optional
2043 && rld[r].regno == -1)
2044 if (! find_reg (chain, i))
2046 if (dump_file)
2047 fprintf (dump_file, "reload failure for reload %d\n", r);
2048 spill_failure (chain->insn, rld[r].rclass);
2049 failure = 1;
2050 return;
2054 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2055 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2057 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2060 static void
2061 select_reload_regs (void)
2063 struct insn_chain *chain;
2065 /* Try to satisfy the needs for each insn. */
2066 for (chain = insns_need_reload; chain != 0;
2067 chain = chain->next_need_reload)
2068 find_reload_regs (chain);
2071 /* Delete all insns that were inserted by emit_caller_save_insns during
2072 this iteration. */
2073 static void
2074 delete_caller_save_insns (void)
2076 struct insn_chain *c = reload_insn_chain;
2078 while (c != 0)
2080 while (c != 0 && c->is_caller_save_insn)
2082 struct insn_chain *next = c->next;
2083 rtx insn = c->insn;
2085 if (c == reload_insn_chain)
2086 reload_insn_chain = next;
2087 delete_insn (insn);
2089 if (next)
2090 next->prev = c->prev;
2091 if (c->prev)
2092 c->prev->next = next;
2093 c->next = unused_insn_chains;
2094 unused_insn_chains = c;
2095 c = next;
2097 if (c != 0)
2098 c = c->next;
2102 /* Handle the failure to find a register to spill.
2103 INSN should be one of the insns which needed this particular spill reg. */
2105 static void
2106 spill_failure (rtx insn, enum reg_class rclass)
2108 if (asm_noperands (PATTERN (insn)) >= 0)
2109 error_for_asm (insn, "can%'t find a register in class %qs while "
2110 "reloading %<asm%>",
2111 reg_class_names[rclass]);
2112 else
2114 error ("unable to find a register to spill in class %qs",
2115 reg_class_names[rclass]);
2117 if (dump_file)
2119 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2120 debug_reload_to_stream (dump_file);
2122 fatal_insn ("this is the insn:", insn);
2126 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2127 data that is dead in INSN. */
2129 static void
2130 delete_dead_insn (rtx insn)
2132 rtx prev = prev_active_insn (insn);
2133 rtx prev_dest;
2135 /* If the previous insn sets a register that dies in our insn make
2136 a note that we want to run DCE immediately after reload.
2138 We used to delete the previous insn & recurse, but that's wrong for
2139 block local equivalences. Instead of trying to figure out the exact
2140 circumstances where we can delete the potentially dead insns, just
2141 let DCE do the job. */
2142 if (prev && GET_CODE (PATTERN (prev)) == SET
2143 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2144 && reg_mentioned_p (prev_dest, PATTERN (insn))
2145 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2146 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2147 need_dce = 1;
2149 SET_INSN_DELETED (insn);
2152 /* Modify the home of pseudo-reg I.
2153 The new home is present in reg_renumber[I].
2155 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2156 or it may be -1, meaning there is none or it is not relevant.
2157 This is used so that all pseudos spilled from a given hard reg
2158 can share one stack slot. */
2160 static void
2161 alter_reg (int i, int from_reg, bool dont_share_p)
2163 /* When outputting an inline function, this can happen
2164 for a reg that isn't actually used. */
2165 if (regno_reg_rtx[i] == 0)
2166 return;
2168 /* If the reg got changed to a MEM at rtl-generation time,
2169 ignore it. */
2170 if (!REG_P (regno_reg_rtx[i]))
2171 return;
2173 /* Modify the reg-rtx to contain the new hard reg
2174 number or else to contain its pseudo reg number. */
2175 SET_REGNO (regno_reg_rtx[i],
2176 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2178 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2179 allocate a stack slot for it. */
2181 if (reg_renumber[i] < 0
2182 && REG_N_REFS (i) > 0
2183 && reg_equiv_constant (i) == 0
2184 && (reg_equiv_invariant (i) == 0
2185 || reg_equiv_init (i) == 0)
2186 && reg_equiv_memory_loc (i) == 0)
2188 rtx x = NULL_RTX;
2189 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2190 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2191 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2192 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2193 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2194 int adjust = 0;
2196 something_was_spilled = true;
2198 if (ira_conflicts_p)
2200 /* Mark the spill for IRA. */
2201 SET_REGNO_REG_SET (&spilled_pseudos, i);
2202 if (!dont_share_p)
2203 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2206 if (x)
2209 /* Each pseudo reg has an inherent size which comes from its own mode,
2210 and a total size which provides room for paradoxical subregs
2211 which refer to the pseudo reg in wider modes.
2213 We can use a slot already allocated if it provides both
2214 enough inherent space and enough total space.
2215 Otherwise, we allocate a new slot, making sure that it has no less
2216 inherent space, and no less total space, then the previous slot. */
2217 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2219 rtx stack_slot;
2221 /* No known place to spill from => no slot to reuse. */
2222 x = assign_stack_local (mode, total_size,
2223 min_align > inherent_align
2224 || total_size > inherent_size ? -1 : 0);
2226 stack_slot = x;
2228 /* Cancel the big-endian correction done in assign_stack_local.
2229 Get the address of the beginning of the slot. This is so we
2230 can do a big-endian correction unconditionally below. */
2231 if (BYTES_BIG_ENDIAN)
2233 adjust = inherent_size - total_size;
2234 if (adjust)
2235 stack_slot
2236 = adjust_address_nv (x, mode_for_size (total_size
2237 * BITS_PER_UNIT,
2238 MODE_INT, 1),
2239 adjust);
2242 if (! dont_share_p && ira_conflicts_p)
2243 /* Inform IRA about allocation a new stack slot. */
2244 ira_mark_new_stack_slot (stack_slot, i, total_size);
2247 /* Reuse a stack slot if possible. */
2248 else if (spill_stack_slot[from_reg] != 0
2249 && spill_stack_slot_width[from_reg] >= total_size
2250 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2251 >= inherent_size)
2252 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2253 x = spill_stack_slot[from_reg];
2255 /* Allocate a bigger slot. */
2256 else
2258 /* Compute maximum size needed, both for inherent size
2259 and for total size. */
2260 rtx stack_slot;
2262 if (spill_stack_slot[from_reg])
2264 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2265 > inherent_size)
2266 mode = GET_MODE (spill_stack_slot[from_reg]);
2267 if (spill_stack_slot_width[from_reg] > total_size)
2268 total_size = spill_stack_slot_width[from_reg];
2269 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2270 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2273 /* Make a slot with that size. */
2274 x = assign_stack_local (mode, total_size,
2275 min_align > inherent_align
2276 || total_size > inherent_size ? -1 : 0);
2277 stack_slot = x;
2279 /* Cancel the big-endian correction done in assign_stack_local.
2280 Get the address of the beginning of the slot. This is so we
2281 can do a big-endian correction unconditionally below. */
2282 if (BYTES_BIG_ENDIAN)
2284 adjust = GET_MODE_SIZE (mode) - total_size;
2285 if (adjust)
2286 stack_slot
2287 = adjust_address_nv (x, mode_for_size (total_size
2288 * BITS_PER_UNIT,
2289 MODE_INT, 1),
2290 adjust);
2293 spill_stack_slot[from_reg] = stack_slot;
2294 spill_stack_slot_width[from_reg] = total_size;
2297 /* On a big endian machine, the "address" of the slot
2298 is the address of the low part that fits its inherent mode. */
2299 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2300 adjust += (total_size - inherent_size);
2302 /* If we have any adjustment to make, or if the stack slot is the
2303 wrong mode, make a new stack slot. */
2304 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2306 /* Set all of the memory attributes as appropriate for a spill. */
2307 set_mem_attrs_for_spill (x);
2309 /* Save the stack slot for later. */
2310 reg_equiv_memory_loc (i) = x;
2314 /* Mark the slots in regs_ever_live for the hard regs used by
2315 pseudo-reg number REGNO, accessed in MODE. */
2317 static void
2318 mark_home_live_1 (int regno, enum machine_mode mode)
2320 int i, lim;
2322 i = reg_renumber[regno];
2323 if (i < 0)
2324 return;
2325 lim = end_hard_regno (mode, i);
2326 while (i < lim)
2327 df_set_regs_ever_live(i++, true);
2330 /* Mark the slots in regs_ever_live for the hard regs
2331 used by pseudo-reg number REGNO. */
2333 void
2334 mark_home_live (int regno)
2336 if (reg_renumber[regno] >= 0)
2337 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2340 /* This function handles the tracking of elimination offsets around branches.
2342 X is a piece of RTL being scanned.
2344 INSN is the insn that it came from, if any.
2346 INITIAL_P is nonzero if we are to set the offset to be the initial
2347 offset and zero if we are setting the offset of the label to be the
2348 current offset. */
2350 static void
2351 set_label_offsets (rtx x, rtx insn, int initial_p)
2353 enum rtx_code code = GET_CODE (x);
2354 rtx tem;
2355 unsigned int i;
2356 struct elim_table *p;
2358 switch (code)
2360 case LABEL_REF:
2361 if (LABEL_REF_NONLOCAL_P (x))
2362 return;
2364 x = XEXP (x, 0);
2366 /* ... fall through ... */
2368 case CODE_LABEL:
2369 /* If we know nothing about this label, set the desired offsets. Note
2370 that this sets the offset at a label to be the offset before a label
2371 if we don't know anything about the label. This is not correct for
2372 the label after a BARRIER, but is the best guess we can make. If
2373 we guessed wrong, we will suppress an elimination that might have
2374 been possible had we been able to guess correctly. */
2376 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2378 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2379 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2380 = (initial_p ? reg_eliminate[i].initial_offset
2381 : reg_eliminate[i].offset);
2382 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2385 /* Otherwise, if this is the definition of a label and it is
2386 preceded by a BARRIER, set our offsets to the known offset of
2387 that label. */
2389 else if (x == insn
2390 && (tem = prev_nonnote_insn (insn)) != 0
2391 && BARRIER_P (tem))
2392 set_offsets_for_label (insn);
2393 else
2394 /* If neither of the above cases is true, compare each offset
2395 with those previously recorded and suppress any eliminations
2396 where the offsets disagree. */
2398 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2399 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2400 != (initial_p ? reg_eliminate[i].initial_offset
2401 : reg_eliminate[i].offset))
2402 reg_eliminate[i].can_eliminate = 0;
2404 return;
2406 case JUMP_INSN:
2407 set_label_offsets (PATTERN (insn), insn, initial_p);
2409 /* ... fall through ... */
2411 case INSN:
2412 case CALL_INSN:
2413 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2414 to indirectly and hence must have all eliminations at their
2415 initial offsets. */
2416 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2417 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2418 set_label_offsets (XEXP (tem, 0), insn, 1);
2419 return;
2421 case PARALLEL:
2422 case ADDR_VEC:
2423 case ADDR_DIFF_VEC:
2424 /* Each of the labels in the parallel or address vector must be
2425 at their initial offsets. We want the first field for PARALLEL
2426 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2428 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2429 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2430 insn, initial_p);
2431 return;
2433 case SET:
2434 /* We only care about setting PC. If the source is not RETURN,
2435 IF_THEN_ELSE, or a label, disable any eliminations not at
2436 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2437 isn't one of those possibilities. For branches to a label,
2438 call ourselves recursively.
2440 Note that this can disable elimination unnecessarily when we have
2441 a non-local goto since it will look like a non-constant jump to
2442 someplace in the current function. This isn't a significant
2443 problem since such jumps will normally be when all elimination
2444 pairs are back to their initial offsets. */
2446 if (SET_DEST (x) != pc_rtx)
2447 return;
2449 switch (GET_CODE (SET_SRC (x)))
2451 case PC:
2452 case RETURN:
2453 return;
2455 case LABEL_REF:
2456 set_label_offsets (SET_SRC (x), insn, initial_p);
2457 return;
2459 case IF_THEN_ELSE:
2460 tem = XEXP (SET_SRC (x), 1);
2461 if (GET_CODE (tem) == LABEL_REF)
2462 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2463 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2464 break;
2466 tem = XEXP (SET_SRC (x), 2);
2467 if (GET_CODE (tem) == LABEL_REF)
2468 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2469 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2470 break;
2471 return;
2473 default:
2474 break;
2477 /* If we reach here, all eliminations must be at their initial
2478 offset because we are doing a jump to a variable address. */
2479 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2480 if (p->offset != p->initial_offset)
2481 p->can_eliminate = 0;
2482 break;
2484 default:
2485 break;
2489 /* Called through for_each_rtx, this function examines every reg that occurs
2490 in PX and adjusts the costs for its elimination which are gathered by IRA.
2491 DATA is the insn in which PX occurs. We do not recurse into MEM
2492 expressions. */
2494 static int
2495 note_reg_elim_costly (rtx *px, void *data)
2497 rtx insn = (rtx)data;
2498 rtx x = *px;
2500 if (MEM_P (x))
2501 return -1;
2503 if (REG_P (x)
2504 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2505 && reg_equiv_init (REGNO (x))
2506 && reg_equiv_invariant (REGNO (x)))
2508 rtx t = reg_equiv_invariant (REGNO (x));
2509 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2510 int cost = set_src_cost (new_rtx, optimize_bb_for_speed_p (elim_bb));
2511 int freq = REG_FREQ_FROM_BB (elim_bb);
2513 if (cost != 0)
2514 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2516 return 0;
2519 /* Scan X and replace any eliminable registers (such as fp) with a
2520 replacement (such as sp), plus an offset.
2522 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2523 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2524 MEM, we are allowed to replace a sum of a register and the constant zero
2525 with the register, which we cannot do outside a MEM. In addition, we need
2526 to record the fact that a register is referenced outside a MEM.
2528 If INSN is an insn, it is the insn containing X. If we replace a REG
2529 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2530 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2531 the REG is being modified.
2533 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2534 That's used when we eliminate in expressions stored in notes.
2535 This means, do not set ref_outside_mem even if the reference
2536 is outside of MEMs.
2538 If FOR_COSTS is true, we are being called before reload in order to
2539 estimate the costs of keeping registers with an equivalence unallocated.
2541 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2542 replacements done assuming all offsets are at their initial values. If
2543 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2544 encounter, return the actual location so that find_reloads will do
2545 the proper thing. */
2547 static rtx
2548 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2549 bool may_use_invariant, bool for_costs)
2551 enum rtx_code code = GET_CODE (x);
2552 struct elim_table *ep;
2553 int regno;
2554 rtx new_rtx;
2555 int i, j;
2556 const char *fmt;
2557 int copied = 0;
2559 if (! current_function_decl)
2560 return x;
2562 switch (code)
2564 CASE_CONST_ANY:
2565 case CONST:
2566 case SYMBOL_REF:
2567 case CODE_LABEL:
2568 case PC:
2569 case CC0:
2570 case ASM_INPUT:
2571 case ADDR_VEC:
2572 case ADDR_DIFF_VEC:
2573 case RETURN:
2574 return x;
2576 case REG:
2577 regno = REGNO (x);
2579 /* First handle the case where we encounter a bare register that
2580 is eliminable. Replace it with a PLUS. */
2581 if (regno < FIRST_PSEUDO_REGISTER)
2583 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2584 ep++)
2585 if (ep->from_rtx == x && ep->can_eliminate)
2586 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2589 else if (reg_renumber && reg_renumber[regno] < 0
2590 && reg_equivs
2591 && reg_equiv_invariant (regno))
2593 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2594 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2595 mem_mode, insn, true, for_costs);
2596 /* There exists at least one use of REGNO that cannot be
2597 eliminated. Prevent the defining insn from being deleted. */
2598 reg_equiv_init (regno) = NULL_RTX;
2599 if (!for_costs)
2600 alter_reg (regno, -1, true);
2602 return x;
2604 /* You might think handling MINUS in a manner similar to PLUS is a
2605 good idea. It is not. It has been tried multiple times and every
2606 time the change has had to have been reverted.
2608 Other parts of reload know a PLUS is special (gen_reload for example)
2609 and require special code to handle code a reloaded PLUS operand.
2611 Also consider backends where the flags register is clobbered by a
2612 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2613 lea instruction comes to mind). If we try to reload a MINUS, we
2614 may kill the flags register that was holding a useful value.
2616 So, please before trying to handle MINUS, consider reload as a
2617 whole instead of this little section as well as the backend issues. */
2618 case PLUS:
2619 /* If this is the sum of an eliminable register and a constant, rework
2620 the sum. */
2621 if (REG_P (XEXP (x, 0))
2622 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2623 && CONSTANT_P (XEXP (x, 1)))
2625 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2626 ep++)
2627 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2629 /* The only time we want to replace a PLUS with a REG (this
2630 occurs when the constant operand of the PLUS is the negative
2631 of the offset) is when we are inside a MEM. We won't want
2632 to do so at other times because that would change the
2633 structure of the insn in a way that reload can't handle.
2634 We special-case the commonest situation in
2635 eliminate_regs_in_insn, so just replace a PLUS with a
2636 PLUS here, unless inside a MEM. */
2637 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2638 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2639 return ep->to_rtx;
2640 else
2641 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2642 plus_constant (Pmode, XEXP (x, 1),
2643 ep->previous_offset));
2646 /* If the register is not eliminable, we are done since the other
2647 operand is a constant. */
2648 return x;
2651 /* If this is part of an address, we want to bring any constant to the
2652 outermost PLUS. We will do this by doing register replacement in
2653 our operands and seeing if a constant shows up in one of them.
2655 Note that there is no risk of modifying the structure of the insn,
2656 since we only get called for its operands, thus we are either
2657 modifying the address inside a MEM, or something like an address
2658 operand of a load-address insn. */
2661 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2662 for_costs);
2663 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2664 for_costs);
2666 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2668 /* If one side is a PLUS and the other side is a pseudo that
2669 didn't get a hard register but has a reg_equiv_constant,
2670 we must replace the constant here since it may no longer
2671 be in the position of any operand. */
2672 if (GET_CODE (new0) == PLUS && REG_P (new1)
2673 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2674 && reg_renumber[REGNO (new1)] < 0
2675 && reg_equivs
2676 && reg_equiv_constant (REGNO (new1)) != 0)
2677 new1 = reg_equiv_constant (REGNO (new1));
2678 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2679 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2680 && reg_renumber[REGNO (new0)] < 0
2681 && reg_equiv_constant (REGNO (new0)) != 0)
2682 new0 = reg_equiv_constant (REGNO (new0));
2684 new_rtx = form_sum (GET_MODE (x), new0, new1);
2686 /* As above, if we are not inside a MEM we do not want to
2687 turn a PLUS into something else. We might try to do so here
2688 for an addition of 0 if we aren't optimizing. */
2689 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2690 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2691 else
2692 return new_rtx;
2695 return x;
2697 case MULT:
2698 /* If this is the product of an eliminable register and a
2699 constant, apply the distribute law and move the constant out
2700 so that we have (plus (mult ..) ..). This is needed in order
2701 to keep load-address insns valid. This case is pathological.
2702 We ignore the possibility of overflow here. */
2703 if (REG_P (XEXP (x, 0))
2704 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2705 && CONST_INT_P (XEXP (x, 1)))
2706 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2707 ep++)
2708 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2710 if (! mem_mode
2711 /* Refs inside notes or in DEBUG_INSNs don't count for
2712 this purpose. */
2713 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2714 || GET_CODE (insn) == INSN_LIST
2715 || DEBUG_INSN_P (insn))))
2716 ep->ref_outside_mem = 1;
2718 return
2719 plus_constant (Pmode,
2720 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2721 ep->previous_offset * INTVAL (XEXP (x, 1)));
2724 /* ... fall through ... */
2726 case CALL:
2727 case COMPARE:
2728 /* See comments before PLUS about handling MINUS. */
2729 case MINUS:
2730 case DIV: case UDIV:
2731 case MOD: case UMOD:
2732 case AND: case IOR: case XOR:
2733 case ROTATERT: case ROTATE:
2734 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2735 case NE: case EQ:
2736 case GE: case GT: case GEU: case GTU:
2737 case LE: case LT: case LEU: case LTU:
2739 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2740 for_costs);
2741 rtx new1 = XEXP (x, 1)
2742 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2743 for_costs) : 0;
2745 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2746 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2748 return x;
2750 case EXPR_LIST:
2751 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2752 if (XEXP (x, 0))
2754 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2755 for_costs);
2756 if (new_rtx != XEXP (x, 0))
2758 /* If this is a REG_DEAD note, it is not valid anymore.
2759 Using the eliminated version could result in creating a
2760 REG_DEAD note for the stack or frame pointer. */
2761 if (REG_NOTE_KIND (x) == REG_DEAD)
2762 return (XEXP (x, 1)
2763 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2764 for_costs)
2765 : NULL_RTX);
2767 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2771 /* ... fall through ... */
2773 case INSN_LIST:
2774 /* Now do eliminations in the rest of the chain. If this was
2775 an EXPR_LIST, this might result in allocating more memory than is
2776 strictly needed, but it simplifies the code. */
2777 if (XEXP (x, 1))
2779 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2780 for_costs);
2781 if (new_rtx != XEXP (x, 1))
2782 return
2783 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2785 return x;
2787 case PRE_INC:
2788 case POST_INC:
2789 case PRE_DEC:
2790 case POST_DEC:
2791 /* We do not support elimination of a register that is modified.
2792 elimination_effects has already make sure that this does not
2793 happen. */
2794 return x;
2796 case PRE_MODIFY:
2797 case POST_MODIFY:
2798 /* We do not support elimination of a register that is modified.
2799 elimination_effects has already make sure that this does not
2800 happen. The only remaining case we need to consider here is
2801 that the increment value may be an eliminable register. */
2802 if (GET_CODE (XEXP (x, 1)) == PLUS
2803 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2805 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2806 insn, true, for_costs);
2808 if (new_rtx != XEXP (XEXP (x, 1), 1))
2809 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2810 gen_rtx_PLUS (GET_MODE (x),
2811 XEXP (x, 0), new_rtx));
2813 return x;
2815 case STRICT_LOW_PART:
2816 case NEG: case NOT:
2817 case SIGN_EXTEND: case ZERO_EXTEND:
2818 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2819 case FLOAT: case FIX:
2820 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2821 case ABS:
2822 case SQRT:
2823 case FFS:
2824 case CLZ:
2825 case CTZ:
2826 case POPCOUNT:
2827 case PARITY:
2828 case BSWAP:
2829 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2830 for_costs);
2831 if (new_rtx != XEXP (x, 0))
2832 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2833 return x;
2835 case SUBREG:
2836 /* Similar to above processing, but preserve SUBREG_BYTE.
2837 Convert (subreg (mem)) to (mem) if not paradoxical.
2838 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2839 pseudo didn't get a hard reg, we must replace this with the
2840 eliminated version of the memory location because push_reload
2841 may do the replacement in certain circumstances. */
2842 if (REG_P (SUBREG_REG (x))
2843 && !paradoxical_subreg_p (x)
2844 && reg_equivs
2845 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2847 new_rtx = SUBREG_REG (x);
2849 else
2850 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2852 if (new_rtx != SUBREG_REG (x))
2854 int x_size = GET_MODE_SIZE (GET_MODE (x));
2855 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2857 if (MEM_P (new_rtx)
2858 && ((x_size < new_size
2859 #ifdef WORD_REGISTER_OPERATIONS
2860 /* On these machines, combine can create rtl of the form
2861 (set (subreg:m1 (reg:m2 R) 0) ...)
2862 where m1 < m2, and expects something interesting to
2863 happen to the entire word. Moreover, it will use the
2864 (reg:m2 R) later, expecting all bits to be preserved.
2865 So if the number of words is the same, preserve the
2866 subreg so that push_reload can see it. */
2867 && ! ((x_size - 1) / UNITS_PER_WORD
2868 == (new_size -1 ) / UNITS_PER_WORD)
2869 #endif
2871 || x_size == new_size)
2873 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2874 else
2875 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2878 return x;
2880 case MEM:
2881 /* Our only special processing is to pass the mode of the MEM to our
2882 recursive call and copy the flags. While we are here, handle this
2883 case more efficiently. */
2885 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2886 for_costs);
2887 if (for_costs
2888 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2889 && !memory_address_p (GET_MODE (x), new_rtx))
2890 for_each_rtx (&XEXP (x, 0), note_reg_elim_costly, insn);
2892 return replace_equiv_address_nv (x, new_rtx);
2894 case USE:
2895 /* Handle insn_list USE that a call to a pure function may generate. */
2896 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2897 for_costs);
2898 if (new_rtx != XEXP (x, 0))
2899 return gen_rtx_USE (GET_MODE (x), new_rtx);
2900 return x;
2902 case CLOBBER:
2903 case ASM_OPERANDS:
2904 gcc_assert (insn && DEBUG_INSN_P (insn));
2905 break;
2907 case SET:
2908 gcc_unreachable ();
2910 default:
2911 break;
2914 /* Process each of our operands recursively. If any have changed, make a
2915 copy of the rtx. */
2916 fmt = GET_RTX_FORMAT (code);
2917 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2919 if (*fmt == 'e')
2921 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2922 for_costs);
2923 if (new_rtx != XEXP (x, i) && ! copied)
2925 x = shallow_copy_rtx (x);
2926 copied = 1;
2928 XEXP (x, i) = new_rtx;
2930 else if (*fmt == 'E')
2932 int copied_vec = 0;
2933 for (j = 0; j < XVECLEN (x, i); j++)
2935 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2936 for_costs);
2937 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2939 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2940 XVEC (x, i)->elem);
2941 if (! copied)
2943 x = shallow_copy_rtx (x);
2944 copied = 1;
2946 XVEC (x, i) = new_v;
2947 copied_vec = 1;
2949 XVECEXP (x, i, j) = new_rtx;
2954 return x;
2958 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2960 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2963 /* Scan rtx X for modifications of elimination target registers. Update
2964 the table of eliminables to reflect the changed state. MEM_MODE is
2965 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2967 static void
2968 elimination_effects (rtx x, enum machine_mode mem_mode)
2970 enum rtx_code code = GET_CODE (x);
2971 struct elim_table *ep;
2972 int regno;
2973 int i, j;
2974 const char *fmt;
2976 switch (code)
2978 CASE_CONST_ANY:
2979 case CONST:
2980 case SYMBOL_REF:
2981 case CODE_LABEL:
2982 case PC:
2983 case CC0:
2984 case ASM_INPUT:
2985 case ADDR_VEC:
2986 case ADDR_DIFF_VEC:
2987 case RETURN:
2988 return;
2990 case REG:
2991 regno = REGNO (x);
2993 /* First handle the case where we encounter a bare register that
2994 is eliminable. Replace it with a PLUS. */
2995 if (regno < FIRST_PSEUDO_REGISTER)
2997 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2998 ep++)
2999 if (ep->from_rtx == x && ep->can_eliminate)
3001 if (! mem_mode)
3002 ep->ref_outside_mem = 1;
3003 return;
3007 else if (reg_renumber[regno] < 0
3008 && reg_equivs
3009 && reg_equiv_constant (regno)
3010 && ! function_invariant_p (reg_equiv_constant (regno)))
3011 elimination_effects (reg_equiv_constant (regno), mem_mode);
3012 return;
3014 case PRE_INC:
3015 case POST_INC:
3016 case PRE_DEC:
3017 case POST_DEC:
3018 case POST_MODIFY:
3019 case PRE_MODIFY:
3020 /* If we modify the source of an elimination rule, disable it. */
3021 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3022 if (ep->from_rtx == XEXP (x, 0))
3023 ep->can_eliminate = 0;
3025 /* If we modify the target of an elimination rule by adding a constant,
3026 update its offset. If we modify the target in any other way, we'll
3027 have to disable the rule as well. */
3028 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3029 if (ep->to_rtx == XEXP (x, 0))
3031 int size = GET_MODE_SIZE (mem_mode);
3033 /* If more bytes than MEM_MODE are pushed, account for them. */
3034 #ifdef PUSH_ROUNDING
3035 if (ep->to_rtx == stack_pointer_rtx)
3036 size = PUSH_ROUNDING (size);
3037 #endif
3038 if (code == PRE_DEC || code == POST_DEC)
3039 ep->offset += size;
3040 else if (code == PRE_INC || code == POST_INC)
3041 ep->offset -= size;
3042 else if (code == PRE_MODIFY || code == POST_MODIFY)
3044 if (GET_CODE (XEXP (x, 1)) == PLUS
3045 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3046 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3047 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3048 else
3049 ep->can_eliminate = 0;
3053 /* These two aren't unary operators. */
3054 if (code == POST_MODIFY || code == PRE_MODIFY)
3055 break;
3057 /* Fall through to generic unary operation case. */
3058 case STRICT_LOW_PART:
3059 case NEG: case NOT:
3060 case SIGN_EXTEND: case ZERO_EXTEND:
3061 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3062 case FLOAT: case FIX:
3063 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3064 case ABS:
3065 case SQRT:
3066 case FFS:
3067 case CLZ:
3068 case CTZ:
3069 case POPCOUNT:
3070 case PARITY:
3071 case BSWAP:
3072 elimination_effects (XEXP (x, 0), mem_mode);
3073 return;
3075 case SUBREG:
3076 if (REG_P (SUBREG_REG (x))
3077 && (GET_MODE_SIZE (GET_MODE (x))
3078 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3079 && reg_equivs
3080 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3081 return;
3083 elimination_effects (SUBREG_REG (x), mem_mode);
3084 return;
3086 case USE:
3087 /* If using a register that is the source of an eliminate we still
3088 think can be performed, note it cannot be performed since we don't
3089 know how this register is used. */
3090 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3091 if (ep->from_rtx == XEXP (x, 0))
3092 ep->can_eliminate = 0;
3094 elimination_effects (XEXP (x, 0), mem_mode);
3095 return;
3097 case CLOBBER:
3098 /* If clobbering a register that is the replacement register for an
3099 elimination we still think can be performed, note that it cannot
3100 be performed. Otherwise, we need not be concerned about it. */
3101 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3102 if (ep->to_rtx == XEXP (x, 0))
3103 ep->can_eliminate = 0;
3105 elimination_effects (XEXP (x, 0), mem_mode);
3106 return;
3108 case SET:
3109 /* Check for setting a register that we know about. */
3110 if (REG_P (SET_DEST (x)))
3112 /* See if this is setting the replacement register for an
3113 elimination.
3115 If DEST is the hard frame pointer, we do nothing because we
3116 assume that all assignments to the frame pointer are for
3117 non-local gotos and are being done at a time when they are valid
3118 and do not disturb anything else. Some machines want to
3119 eliminate a fake argument pointer (or even a fake frame pointer)
3120 with either the real frame or the stack pointer. Assignments to
3121 the hard frame pointer must not prevent this elimination. */
3123 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3124 ep++)
3125 if (ep->to_rtx == SET_DEST (x)
3126 && SET_DEST (x) != hard_frame_pointer_rtx)
3128 /* If it is being incremented, adjust the offset. Otherwise,
3129 this elimination can't be done. */
3130 rtx src = SET_SRC (x);
3132 if (GET_CODE (src) == PLUS
3133 && XEXP (src, 0) == SET_DEST (x)
3134 && CONST_INT_P (XEXP (src, 1)))
3135 ep->offset -= INTVAL (XEXP (src, 1));
3136 else
3137 ep->can_eliminate = 0;
3141 elimination_effects (SET_DEST (x), VOIDmode);
3142 elimination_effects (SET_SRC (x), VOIDmode);
3143 return;
3145 case MEM:
3146 /* Our only special processing is to pass the mode of the MEM to our
3147 recursive call. */
3148 elimination_effects (XEXP (x, 0), GET_MODE (x));
3149 return;
3151 default:
3152 break;
3155 fmt = GET_RTX_FORMAT (code);
3156 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3158 if (*fmt == 'e')
3159 elimination_effects (XEXP (x, i), mem_mode);
3160 else if (*fmt == 'E')
3161 for (j = 0; j < XVECLEN (x, i); j++)
3162 elimination_effects (XVECEXP (x, i, j), mem_mode);
3166 /* Descend through rtx X and verify that no references to eliminable registers
3167 remain. If any do remain, mark the involved register as not
3168 eliminable. */
3170 static void
3171 check_eliminable_occurrences (rtx x)
3173 const char *fmt;
3174 int i;
3175 enum rtx_code code;
3177 if (x == 0)
3178 return;
3180 code = GET_CODE (x);
3182 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3184 struct elim_table *ep;
3186 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3187 if (ep->from_rtx == x)
3188 ep->can_eliminate = 0;
3189 return;
3192 fmt = GET_RTX_FORMAT (code);
3193 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3195 if (*fmt == 'e')
3196 check_eliminable_occurrences (XEXP (x, i));
3197 else if (*fmt == 'E')
3199 int j;
3200 for (j = 0; j < XVECLEN (x, i); j++)
3201 check_eliminable_occurrences (XVECEXP (x, i, j));
3206 /* Scan INSN and eliminate all eliminable registers in it.
3208 If REPLACE is nonzero, do the replacement destructively. Also
3209 delete the insn as dead it if it is setting an eliminable register.
3211 If REPLACE is zero, do all our allocations in reload_obstack.
3213 If no eliminations were done and this insn doesn't require any elimination
3214 processing (these are not identical conditions: it might be updating sp,
3215 but not referencing fp; this needs to be seen during reload_as_needed so
3216 that the offset between fp and sp can be taken into consideration), zero
3217 is returned. Otherwise, 1 is returned. */
3219 static int
3220 eliminate_regs_in_insn (rtx insn, int replace)
3222 int icode = recog_memoized (insn);
3223 rtx old_body = PATTERN (insn);
3224 int insn_is_asm = asm_noperands (old_body) >= 0;
3225 rtx old_set = single_set (insn);
3226 rtx new_body;
3227 int val = 0;
3228 int i;
3229 rtx substed_operand[MAX_RECOG_OPERANDS];
3230 rtx orig_operand[MAX_RECOG_OPERANDS];
3231 struct elim_table *ep;
3232 rtx plus_src, plus_cst_src;
3234 if (! insn_is_asm && icode < 0)
3236 gcc_assert (GET_CODE (PATTERN (insn)) == USE
3237 || GET_CODE (PATTERN (insn)) == CLOBBER
3238 || GET_CODE (PATTERN (insn)) == ADDR_VEC
3239 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3240 || GET_CODE (PATTERN (insn)) == ASM_INPUT
3241 || DEBUG_INSN_P (insn));
3242 if (DEBUG_INSN_P (insn))
3243 INSN_VAR_LOCATION_LOC (insn)
3244 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3245 return 0;
3248 if (old_set != 0 && REG_P (SET_DEST (old_set))
3249 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3251 /* Check for setting an eliminable register. */
3252 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3253 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3255 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
3256 /* If this is setting the frame pointer register to the
3257 hardware frame pointer register and this is an elimination
3258 that will be done (tested above), this insn is really
3259 adjusting the frame pointer downward to compensate for
3260 the adjustment done before a nonlocal goto. */
3261 if (ep->from == FRAME_POINTER_REGNUM
3262 && ep->to == HARD_FRAME_POINTER_REGNUM)
3264 rtx base = SET_SRC (old_set);
3265 rtx base_insn = insn;
3266 HOST_WIDE_INT offset = 0;
3268 while (base != ep->to_rtx)
3270 rtx prev_insn, prev_set;
3272 if (GET_CODE (base) == PLUS
3273 && CONST_INT_P (XEXP (base, 1)))
3275 offset += INTVAL (XEXP (base, 1));
3276 base = XEXP (base, 0);
3278 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3279 && (prev_set = single_set (prev_insn)) != 0
3280 && rtx_equal_p (SET_DEST (prev_set), base))
3282 base = SET_SRC (prev_set);
3283 base_insn = prev_insn;
3285 else
3286 break;
3289 if (base == ep->to_rtx)
3291 rtx src = plus_constant (Pmode, ep->to_rtx,
3292 offset - ep->offset);
3294 new_body = old_body;
3295 if (! replace)
3297 new_body = copy_insn (old_body);
3298 if (REG_NOTES (insn))
3299 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3301 PATTERN (insn) = new_body;
3302 old_set = single_set (insn);
3304 /* First see if this insn remains valid when we
3305 make the change. If not, keep the INSN_CODE
3306 the same and let reload fit it up. */
3307 validate_change (insn, &SET_SRC (old_set), src, 1);
3308 validate_change (insn, &SET_DEST (old_set),
3309 ep->to_rtx, 1);
3310 if (! apply_change_group ())
3312 SET_SRC (old_set) = src;
3313 SET_DEST (old_set) = ep->to_rtx;
3316 val = 1;
3317 goto done;
3320 #endif
3322 /* In this case this insn isn't serving a useful purpose. We
3323 will delete it in reload_as_needed once we know that this
3324 elimination is, in fact, being done.
3326 If REPLACE isn't set, we can't delete this insn, but needn't
3327 process it since it won't be used unless something changes. */
3328 if (replace)
3330 delete_dead_insn (insn);
3331 return 1;
3333 val = 1;
3334 goto done;
3338 /* We allow one special case which happens to work on all machines we
3339 currently support: a single set with the source or a REG_EQUAL
3340 note being a PLUS of an eliminable register and a constant. */
3341 plus_src = plus_cst_src = 0;
3342 if (old_set && REG_P (SET_DEST (old_set)))
3344 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3345 plus_src = SET_SRC (old_set);
3346 /* First see if the source is of the form (plus (...) CST). */
3347 if (plus_src
3348 && CONST_INT_P (XEXP (plus_src, 1)))
3349 plus_cst_src = plus_src;
3350 else if (REG_P (SET_SRC (old_set))
3351 || plus_src)
3353 /* Otherwise, see if we have a REG_EQUAL note of the form
3354 (plus (...) CST). */
3355 rtx links;
3356 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3358 if ((REG_NOTE_KIND (links) == REG_EQUAL
3359 || REG_NOTE_KIND (links) == REG_EQUIV)
3360 && GET_CODE (XEXP (links, 0)) == PLUS
3361 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3363 plus_cst_src = XEXP (links, 0);
3364 break;
3369 /* Check that the first operand of the PLUS is a hard reg or
3370 the lowpart subreg of one. */
3371 if (plus_cst_src)
3373 rtx reg = XEXP (plus_cst_src, 0);
3374 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3375 reg = SUBREG_REG (reg);
3377 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3378 plus_cst_src = 0;
3381 if (plus_cst_src)
3383 rtx reg = XEXP (plus_cst_src, 0);
3384 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3386 if (GET_CODE (reg) == SUBREG)
3387 reg = SUBREG_REG (reg);
3389 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3390 if (ep->from_rtx == reg && ep->can_eliminate)
3392 rtx to_rtx = ep->to_rtx;
3393 offset += ep->offset;
3394 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3396 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3397 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3398 to_rtx);
3399 /* If we have a nonzero offset, and the source is already
3400 a simple REG, the following transformation would
3401 increase the cost of the insn by replacing a simple REG
3402 with (plus (reg sp) CST). So try only when we already
3403 had a PLUS before. */
3404 if (offset == 0 || plus_src)
3406 rtx new_src = plus_constant (GET_MODE (to_rtx),
3407 to_rtx, offset);
3409 new_body = old_body;
3410 if (! replace)
3412 new_body = copy_insn (old_body);
3413 if (REG_NOTES (insn))
3414 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3416 PATTERN (insn) = new_body;
3417 old_set = single_set (insn);
3419 /* First see if this insn remains valid when we make the
3420 change. If not, try to replace the whole pattern with
3421 a simple set (this may help if the original insn was a
3422 PARALLEL that was only recognized as single_set due to
3423 REG_UNUSED notes). If this isn't valid either, keep
3424 the INSN_CODE the same and let reload fix it up. */
3425 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3427 rtx new_pat = gen_rtx_SET (VOIDmode,
3428 SET_DEST (old_set), new_src);
3430 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3431 SET_SRC (old_set) = new_src;
3434 else
3435 break;
3437 val = 1;
3438 /* This can't have an effect on elimination offsets, so skip right
3439 to the end. */
3440 goto done;
3444 /* Determine the effects of this insn on elimination offsets. */
3445 elimination_effects (old_body, VOIDmode);
3447 /* Eliminate all eliminable registers occurring in operands that
3448 can be handled by reload. */
3449 extract_insn (insn);
3450 for (i = 0; i < recog_data.n_operands; i++)
3452 orig_operand[i] = recog_data.operand[i];
3453 substed_operand[i] = recog_data.operand[i];
3455 /* For an asm statement, every operand is eliminable. */
3456 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3458 bool is_set_src, in_plus;
3460 /* Check for setting a register that we know about. */
3461 if (recog_data.operand_type[i] != OP_IN
3462 && REG_P (orig_operand[i]))
3464 /* If we are assigning to a register that can be eliminated, it
3465 must be as part of a PARALLEL, since the code above handles
3466 single SETs. We must indicate that we can no longer
3467 eliminate this reg. */
3468 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3469 ep++)
3470 if (ep->from_rtx == orig_operand[i])
3471 ep->can_eliminate = 0;
3474 /* Companion to the above plus substitution, we can allow
3475 invariants as the source of a plain move. */
3476 is_set_src = false;
3477 if (old_set
3478 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3479 is_set_src = true;
3480 in_plus = false;
3481 if (plus_src
3482 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3483 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3484 in_plus = true;
3486 substed_operand[i]
3487 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3488 replace ? insn : NULL_RTX,
3489 is_set_src || in_plus, false);
3490 if (substed_operand[i] != orig_operand[i])
3491 val = 1;
3492 /* Terminate the search in check_eliminable_occurrences at
3493 this point. */
3494 *recog_data.operand_loc[i] = 0;
3496 /* If an output operand changed from a REG to a MEM and INSN is an
3497 insn, write a CLOBBER insn. */
3498 if (recog_data.operand_type[i] != OP_IN
3499 && REG_P (orig_operand[i])
3500 && MEM_P (substed_operand[i])
3501 && replace)
3502 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3506 for (i = 0; i < recog_data.n_dups; i++)
3507 *recog_data.dup_loc[i]
3508 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3510 /* If any eliminable remain, they aren't eliminable anymore. */
3511 check_eliminable_occurrences (old_body);
3513 /* Substitute the operands; the new values are in the substed_operand
3514 array. */
3515 for (i = 0; i < recog_data.n_operands; i++)
3516 *recog_data.operand_loc[i] = substed_operand[i];
3517 for (i = 0; i < recog_data.n_dups; i++)
3518 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3520 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3521 re-recognize the insn. We do this in case we had a simple addition
3522 but now can do this as a load-address. This saves an insn in this
3523 common case.
3524 If re-recognition fails, the old insn code number will still be used,
3525 and some register operands may have changed into PLUS expressions.
3526 These will be handled by find_reloads by loading them into a register
3527 again. */
3529 if (val)
3531 /* If we aren't replacing things permanently and we changed something,
3532 make another copy to ensure that all the RTL is new. Otherwise
3533 things can go wrong if find_reload swaps commutative operands
3534 and one is inside RTL that has been copied while the other is not. */
3535 new_body = old_body;
3536 if (! replace)
3538 new_body = copy_insn (old_body);
3539 if (REG_NOTES (insn))
3540 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3542 PATTERN (insn) = new_body;
3544 /* If we had a move insn but now we don't, rerecognize it. This will
3545 cause spurious re-recognition if the old move had a PARALLEL since
3546 the new one still will, but we can't call single_set without
3547 having put NEW_BODY into the insn and the re-recognition won't
3548 hurt in this rare case. */
3549 /* ??? Why this huge if statement - why don't we just rerecognize the
3550 thing always? */
3551 if (! insn_is_asm
3552 && old_set != 0
3553 && ((REG_P (SET_SRC (old_set))
3554 && (GET_CODE (new_body) != SET
3555 || !REG_P (SET_SRC (new_body))))
3556 /* If this was a load from or store to memory, compare
3557 the MEM in recog_data.operand to the one in the insn.
3558 If they are not equal, then rerecognize the insn. */
3559 || (old_set != 0
3560 && ((MEM_P (SET_SRC (old_set))
3561 && SET_SRC (old_set) != recog_data.operand[1])
3562 || (MEM_P (SET_DEST (old_set))
3563 && SET_DEST (old_set) != recog_data.operand[0])))
3564 /* If this was an add insn before, rerecognize. */
3565 || GET_CODE (SET_SRC (old_set)) == PLUS))
3567 int new_icode = recog (PATTERN (insn), insn, 0);
3568 if (new_icode >= 0)
3569 INSN_CODE (insn) = new_icode;
3573 /* Restore the old body. If there were any changes to it, we made a copy
3574 of it while the changes were still in place, so we'll correctly return
3575 a modified insn below. */
3576 if (! replace)
3578 /* Restore the old body. */
3579 for (i = 0; i < recog_data.n_operands; i++)
3580 /* Restoring a top-level match_parallel would clobber the new_body
3581 we installed in the insn. */
3582 if (recog_data.operand_loc[i] != &PATTERN (insn))
3583 *recog_data.operand_loc[i] = orig_operand[i];
3584 for (i = 0; i < recog_data.n_dups; i++)
3585 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3588 /* Update all elimination pairs to reflect the status after the current
3589 insn. The changes we make were determined by the earlier call to
3590 elimination_effects.
3592 We also detect cases where register elimination cannot be done,
3593 namely, if a register would be both changed and referenced outside a MEM
3594 in the resulting insn since such an insn is often undefined and, even if
3595 not, we cannot know what meaning will be given to it. Note that it is
3596 valid to have a register used in an address in an insn that changes it
3597 (presumably with a pre- or post-increment or decrement).
3599 If anything changes, return nonzero. */
3601 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3603 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3604 ep->can_eliminate = 0;
3606 ep->ref_outside_mem = 0;
3608 if (ep->previous_offset != ep->offset)
3609 val = 1;
3612 done:
3613 /* If we changed something, perform elimination in REG_NOTES. This is
3614 needed even when REPLACE is zero because a REG_DEAD note might refer
3615 to a register that we eliminate and could cause a different number
3616 of spill registers to be needed in the final reload pass than in
3617 the pre-passes. */
3618 if (val && REG_NOTES (insn) != 0)
3619 REG_NOTES (insn)
3620 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3621 false);
3623 return val;
3626 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3627 register allocator. INSN is the instruction we need to examine, we perform
3628 eliminations in its operands and record cases where eliminating a reg with
3629 an invariant equivalence would add extra cost. */
3631 static void
3632 elimination_costs_in_insn (rtx insn)
3634 int icode = recog_memoized (insn);
3635 rtx old_body = PATTERN (insn);
3636 int insn_is_asm = asm_noperands (old_body) >= 0;
3637 rtx old_set = single_set (insn);
3638 int i;
3639 rtx orig_operand[MAX_RECOG_OPERANDS];
3640 rtx orig_dup[MAX_RECOG_OPERANDS];
3641 struct elim_table *ep;
3642 rtx plus_src, plus_cst_src;
3643 bool sets_reg_p;
3645 if (! insn_is_asm && icode < 0)
3647 gcc_assert (GET_CODE (PATTERN (insn)) == USE
3648 || GET_CODE (PATTERN (insn)) == CLOBBER
3649 || GET_CODE (PATTERN (insn)) == ADDR_VEC
3650 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3651 || GET_CODE (PATTERN (insn)) == ASM_INPUT
3652 || DEBUG_INSN_P (insn));
3653 return;
3656 if (old_set != 0 && REG_P (SET_DEST (old_set))
3657 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3659 /* Check for setting an eliminable register. */
3660 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3661 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3662 return;
3665 /* We allow one special case which happens to work on all machines we
3666 currently support: a single set with the source or a REG_EQUAL
3667 note being a PLUS of an eliminable register and a constant. */
3668 plus_src = plus_cst_src = 0;
3669 sets_reg_p = false;
3670 if (old_set && REG_P (SET_DEST (old_set)))
3672 sets_reg_p = true;
3673 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3674 plus_src = SET_SRC (old_set);
3675 /* First see if the source is of the form (plus (...) CST). */
3676 if (plus_src
3677 && CONST_INT_P (XEXP (plus_src, 1)))
3678 plus_cst_src = plus_src;
3679 else if (REG_P (SET_SRC (old_set))
3680 || plus_src)
3682 /* Otherwise, see if we have a REG_EQUAL note of the form
3683 (plus (...) CST). */
3684 rtx links;
3685 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3687 if ((REG_NOTE_KIND (links) == REG_EQUAL
3688 || REG_NOTE_KIND (links) == REG_EQUIV)
3689 && GET_CODE (XEXP (links, 0)) == PLUS
3690 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3692 plus_cst_src = XEXP (links, 0);
3693 break;
3699 /* Determine the effects of this insn on elimination offsets. */
3700 elimination_effects (old_body, VOIDmode);
3702 /* Eliminate all eliminable registers occurring in operands that
3703 can be handled by reload. */
3704 extract_insn (insn);
3705 for (i = 0; i < recog_data.n_dups; i++)
3706 orig_dup[i] = *recog_data.dup_loc[i];
3708 for (i = 0; i < recog_data.n_operands; i++)
3710 orig_operand[i] = recog_data.operand[i];
3712 /* For an asm statement, every operand is eliminable. */
3713 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3715 bool is_set_src, in_plus;
3717 /* Check for setting a register that we know about. */
3718 if (recog_data.operand_type[i] != OP_IN
3719 && REG_P (orig_operand[i]))
3721 /* If we are assigning to a register that can be eliminated, it
3722 must be as part of a PARALLEL, since the code above handles
3723 single SETs. We must indicate that we can no longer
3724 eliminate this reg. */
3725 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3726 ep++)
3727 if (ep->from_rtx == orig_operand[i])
3728 ep->can_eliminate = 0;
3731 /* Companion to the above plus substitution, we can allow
3732 invariants as the source of a plain move. */
3733 is_set_src = false;
3734 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3735 is_set_src = true;
3736 if (is_set_src && !sets_reg_p)
3737 note_reg_elim_costly (&SET_SRC (old_set), insn);
3738 in_plus = false;
3739 if (plus_src && sets_reg_p
3740 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3741 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3742 in_plus = true;
3744 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3745 NULL_RTX,
3746 is_set_src || in_plus, true);
3747 /* Terminate the search in check_eliminable_occurrences at
3748 this point. */
3749 *recog_data.operand_loc[i] = 0;
3753 for (i = 0; i < recog_data.n_dups; i++)
3754 *recog_data.dup_loc[i]
3755 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3757 /* If any eliminable remain, they aren't eliminable anymore. */
3758 check_eliminable_occurrences (old_body);
3760 /* Restore the old body. */
3761 for (i = 0; i < recog_data.n_operands; i++)
3762 *recog_data.operand_loc[i] = orig_operand[i];
3763 for (i = 0; i < recog_data.n_dups; i++)
3764 *recog_data.dup_loc[i] = orig_dup[i];
3766 /* Update all elimination pairs to reflect the status after the current
3767 insn. The changes we make were determined by the earlier call to
3768 elimination_effects. */
3770 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3772 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3773 ep->can_eliminate = 0;
3775 ep->ref_outside_mem = 0;
3778 return;
3781 /* Loop through all elimination pairs.
3782 Recalculate the number not at initial offset.
3784 Compute the maximum offset (minimum offset if the stack does not
3785 grow downward) for each elimination pair. */
3787 static void
3788 update_eliminable_offsets (void)
3790 struct elim_table *ep;
3792 num_not_at_initial_offset = 0;
3793 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3795 ep->previous_offset = ep->offset;
3796 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3797 num_not_at_initial_offset++;
3801 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3802 replacement we currently believe is valid, mark it as not eliminable if X
3803 modifies DEST in any way other than by adding a constant integer to it.
3805 If DEST is the frame pointer, we do nothing because we assume that
3806 all assignments to the hard frame pointer are nonlocal gotos and are being
3807 done at a time when they are valid and do not disturb anything else.
3808 Some machines want to eliminate a fake argument pointer with either the
3809 frame or stack pointer. Assignments to the hard frame pointer must not
3810 prevent this elimination.
3812 Called via note_stores from reload before starting its passes to scan
3813 the insns of the function. */
3815 static void
3816 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3818 unsigned int i;
3820 /* A SUBREG of a hard register here is just changing its mode. We should
3821 not see a SUBREG of an eliminable hard register, but check just in
3822 case. */
3823 if (GET_CODE (dest) == SUBREG)
3824 dest = SUBREG_REG (dest);
3826 if (dest == hard_frame_pointer_rtx)
3827 return;
3829 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3830 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3831 && (GET_CODE (x) != SET
3832 || GET_CODE (SET_SRC (x)) != PLUS
3833 || XEXP (SET_SRC (x), 0) != dest
3834 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3836 reg_eliminate[i].can_eliminate_previous
3837 = reg_eliminate[i].can_eliminate = 0;
3838 num_eliminable--;
3842 /* Verify that the initial elimination offsets did not change since the
3843 last call to set_initial_elim_offsets. This is used to catch cases
3844 where something illegal happened during reload_as_needed that could
3845 cause incorrect code to be generated if we did not check for it. */
3847 static bool
3848 verify_initial_elim_offsets (void)
3850 HOST_WIDE_INT t;
3852 if (!num_eliminable)
3853 return true;
3855 #ifdef ELIMINABLE_REGS
3857 struct elim_table *ep;
3859 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3861 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3862 if (t != ep->initial_offset)
3863 return false;
3866 #else
3867 INITIAL_FRAME_POINTER_OFFSET (t);
3868 if (t != reg_eliminate[0].initial_offset)
3869 return false;
3870 #endif
3872 return true;
3875 /* Reset all offsets on eliminable registers to their initial values. */
3877 static void
3878 set_initial_elim_offsets (void)
3880 struct elim_table *ep = reg_eliminate;
3882 #ifdef ELIMINABLE_REGS
3883 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3885 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3886 ep->previous_offset = ep->offset = ep->initial_offset;
3888 #else
3889 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3890 ep->previous_offset = ep->offset = ep->initial_offset;
3891 #endif
3893 num_not_at_initial_offset = 0;
3896 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3898 static void
3899 set_initial_eh_label_offset (rtx label)
3901 set_label_offsets (label, NULL_RTX, 1);
3904 /* Initialize the known label offsets.
3905 Set a known offset for each forced label to be at the initial offset
3906 of each elimination. We do this because we assume that all
3907 computed jumps occur from a location where each elimination is
3908 at its initial offset.
3909 For all other labels, show that we don't know the offsets. */
3911 static void
3912 set_initial_label_offsets (void)
3914 rtx x;
3915 memset (offsets_known_at, 0, num_labels);
3917 for (x = forced_labels; x; x = XEXP (x, 1))
3918 if (XEXP (x, 0))
3919 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3921 for (x = nonlocal_goto_handler_labels; x; x = XEXP (x, 1))
3922 if (XEXP (x, 0))
3923 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3925 for_each_eh_label (set_initial_eh_label_offset);
3928 /* Set all elimination offsets to the known values for the code label given
3929 by INSN. */
3931 static void
3932 set_offsets_for_label (rtx insn)
3934 unsigned int i;
3935 int label_nr = CODE_LABEL_NUMBER (insn);
3936 struct elim_table *ep;
3938 num_not_at_initial_offset = 0;
3939 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3941 ep->offset = ep->previous_offset
3942 = offsets_at[label_nr - first_label_num][i];
3943 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3944 num_not_at_initial_offset++;
3948 /* See if anything that happened changes which eliminations are valid.
3949 For example, on the SPARC, whether or not the frame pointer can
3950 be eliminated can depend on what registers have been used. We need
3951 not check some conditions again (such as flag_omit_frame_pointer)
3952 since they can't have changed. */
3954 static void
3955 update_eliminables (HARD_REG_SET *pset)
3957 int previous_frame_pointer_needed = frame_pointer_needed;
3958 struct elim_table *ep;
3960 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3961 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3962 && targetm.frame_pointer_required ())
3963 #ifdef ELIMINABLE_REGS
3964 || ! targetm.can_eliminate (ep->from, ep->to)
3965 #endif
3967 ep->can_eliminate = 0;
3969 /* Look for the case where we have discovered that we can't replace
3970 register A with register B and that means that we will now be
3971 trying to replace register A with register C. This means we can
3972 no longer replace register C with register B and we need to disable
3973 such an elimination, if it exists. This occurs often with A == ap,
3974 B == sp, and C == fp. */
3976 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3978 struct elim_table *op;
3979 int new_to = -1;
3981 if (! ep->can_eliminate && ep->can_eliminate_previous)
3983 /* Find the current elimination for ep->from, if there is a
3984 new one. */
3985 for (op = reg_eliminate;
3986 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3987 if (op->from == ep->from && op->can_eliminate)
3989 new_to = op->to;
3990 break;
3993 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3994 disable it. */
3995 for (op = reg_eliminate;
3996 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3997 if (op->from == new_to && op->to == ep->to)
3998 op->can_eliminate = 0;
4002 /* See if any registers that we thought we could eliminate the previous
4003 time are no longer eliminable. If so, something has changed and we
4004 must spill the register. Also, recompute the number of eliminable
4005 registers and see if the frame pointer is needed; it is if there is
4006 no elimination of the frame pointer that we can perform. */
4008 frame_pointer_needed = 1;
4009 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4011 if (ep->can_eliminate
4012 && ep->from == FRAME_POINTER_REGNUM
4013 && ep->to != HARD_FRAME_POINTER_REGNUM
4014 && (! SUPPORTS_STACK_ALIGNMENT
4015 || ! crtl->stack_realign_needed))
4016 frame_pointer_needed = 0;
4018 if (! ep->can_eliminate && ep->can_eliminate_previous)
4020 ep->can_eliminate_previous = 0;
4021 SET_HARD_REG_BIT (*pset, ep->from);
4022 num_eliminable--;
4026 /* If we didn't need a frame pointer last time, but we do now, spill
4027 the hard frame pointer. */
4028 if (frame_pointer_needed && ! previous_frame_pointer_needed)
4029 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
4032 /* Return true if X is used as the target register of an elimination. */
4034 bool
4035 elimination_target_reg_p (rtx x)
4037 struct elim_table *ep;
4039 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4040 if (ep->to_rtx == x && ep->can_eliminate)
4041 return true;
4043 return false;
4046 /* Initialize the table of registers to eliminate.
4047 Pre-condition: global flag frame_pointer_needed has been set before
4048 calling this function. */
4050 static void
4051 init_elim_table (void)
4053 struct elim_table *ep;
4054 #ifdef ELIMINABLE_REGS
4055 const struct elim_table_1 *ep1;
4056 #endif
4058 if (!reg_eliminate)
4059 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4061 num_eliminable = 0;
4063 #ifdef ELIMINABLE_REGS
4064 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4065 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4067 ep->from = ep1->from;
4068 ep->to = ep1->to;
4069 ep->can_eliminate = ep->can_eliminate_previous
4070 = (targetm.can_eliminate (ep->from, ep->to)
4071 && ! (ep->to == STACK_POINTER_REGNUM
4072 && frame_pointer_needed
4073 && (! SUPPORTS_STACK_ALIGNMENT
4074 || ! stack_realign_fp)));
4076 #else
4077 reg_eliminate[0].from = reg_eliminate_1[0].from;
4078 reg_eliminate[0].to = reg_eliminate_1[0].to;
4079 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
4080 = ! frame_pointer_needed;
4081 #endif
4083 /* Count the number of eliminable registers and build the FROM and TO
4084 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4085 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4086 We depend on this. */
4087 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4089 num_eliminable += ep->can_eliminate;
4090 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4091 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4095 /* Find all the pseudo registers that didn't get hard regs
4096 but do have known equivalent constants or memory slots.
4097 These include parameters (known equivalent to parameter slots)
4098 and cse'd or loop-moved constant memory addresses.
4100 Record constant equivalents in reg_equiv_constant
4101 so they will be substituted by find_reloads.
4102 Record memory equivalents in reg_mem_equiv so they can
4103 be substituted eventually by altering the REG-rtx's. */
4105 static void
4106 init_eliminable_invariants (rtx first, bool do_subregs)
4108 int i;
4109 rtx insn;
4111 grow_reg_equivs ();
4112 if (do_subregs)
4113 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4114 else
4115 reg_max_ref_width = NULL;
4117 num_eliminable_invariants = 0;
4119 first_label_num = get_first_label_num ();
4120 num_labels = max_label_num () - first_label_num;
4122 /* Allocate the tables used to store offset information at labels. */
4123 offsets_known_at = XNEWVEC (char, num_labels);
4124 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4126 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4127 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4128 find largest such for each pseudo. FIRST is the head of the insn
4129 list. */
4131 for (insn = first; insn; insn = NEXT_INSN (insn))
4133 rtx set = single_set (insn);
4135 /* We may introduce USEs that we want to remove at the end, so
4136 we'll mark them with QImode. Make sure there are no
4137 previously-marked insns left by say regmove. */
4138 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4139 && GET_MODE (insn) != VOIDmode)
4140 PUT_MODE (insn, VOIDmode);
4142 if (do_subregs && NONDEBUG_INSN_P (insn))
4143 scan_paradoxical_subregs (PATTERN (insn));
4145 if (set != 0 && REG_P (SET_DEST (set)))
4147 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4148 rtx x;
4150 if (! note)
4151 continue;
4153 i = REGNO (SET_DEST (set));
4154 x = XEXP (note, 0);
4156 if (i <= LAST_VIRTUAL_REGISTER)
4157 continue;
4159 /* If flag_pic and we have constant, verify it's legitimate. */
4160 if (!CONSTANT_P (x)
4161 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4163 /* It can happen that a REG_EQUIV note contains a MEM
4164 that is not a legitimate memory operand. As later
4165 stages of reload assume that all addresses found
4166 in the reg_equiv_* arrays were originally legitimate,
4167 we ignore such REG_EQUIV notes. */
4168 if (memory_operand (x, VOIDmode))
4170 /* Always unshare the equivalence, so we can
4171 substitute into this insn without touching the
4172 equivalence. */
4173 reg_equiv_memory_loc (i) = copy_rtx (x);
4175 else if (function_invariant_p (x))
4177 enum machine_mode mode;
4179 mode = GET_MODE (SET_DEST (set));
4180 if (GET_CODE (x) == PLUS)
4182 /* This is PLUS of frame pointer and a constant,
4183 and might be shared. Unshare it. */
4184 reg_equiv_invariant (i) = copy_rtx (x);
4185 num_eliminable_invariants++;
4187 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4189 reg_equiv_invariant (i) = x;
4190 num_eliminable_invariants++;
4192 else if (targetm.legitimate_constant_p (mode, x))
4193 reg_equiv_constant (i) = x;
4194 else
4196 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4197 if (! reg_equiv_memory_loc (i))
4198 reg_equiv_init (i) = NULL_RTX;
4201 else
4203 reg_equiv_init (i) = NULL_RTX;
4204 continue;
4207 else
4208 reg_equiv_init (i) = NULL_RTX;
4212 if (dump_file)
4213 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4214 if (reg_equiv_init (i))
4216 fprintf (dump_file, "init_insns for %u: ", i);
4217 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4218 fprintf (dump_file, "\n");
4222 /* Indicate that we no longer have known memory locations or constants.
4223 Free all data involved in tracking these. */
4225 static void
4226 free_reg_equiv (void)
4228 int i;
4230 free (offsets_known_at);
4231 free (offsets_at);
4232 offsets_at = 0;
4233 offsets_known_at = 0;
4235 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4236 if (reg_equiv_alt_mem_list (i))
4237 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4238 vec_free (reg_equivs);
4241 /* Kick all pseudos out of hard register REGNO.
4243 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4244 because we found we can't eliminate some register. In the case, no pseudos
4245 are allowed to be in the register, even if they are only in a block that
4246 doesn't require spill registers, unlike the case when we are spilling this
4247 hard reg to produce another spill register.
4249 Return nonzero if any pseudos needed to be kicked out. */
4251 static void
4252 spill_hard_reg (unsigned int regno, int cant_eliminate)
4254 int i;
4256 if (cant_eliminate)
4258 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4259 df_set_regs_ever_live (regno, true);
4262 /* Spill every pseudo reg that was allocated to this reg
4263 or to something that overlaps this reg. */
4265 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4266 if (reg_renumber[i] >= 0
4267 && (unsigned int) reg_renumber[i] <= regno
4268 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4269 SET_REGNO_REG_SET (&spilled_pseudos, i);
4272 /* After find_reload_regs has been run for all insn that need reloads,
4273 and/or spill_hard_regs was called, this function is used to actually
4274 spill pseudo registers and try to reallocate them. It also sets up the
4275 spill_regs array for use by choose_reload_regs. */
4277 static int
4278 finish_spills (int global)
4280 struct insn_chain *chain;
4281 int something_changed = 0;
4282 unsigned i;
4283 reg_set_iterator rsi;
4285 /* Build the spill_regs array for the function. */
4286 /* If there are some registers still to eliminate and one of the spill regs
4287 wasn't ever used before, additional stack space may have to be
4288 allocated to store this register. Thus, we may have changed the offset
4289 between the stack and frame pointers, so mark that something has changed.
4291 One might think that we need only set VAL to 1 if this is a call-used
4292 register. However, the set of registers that must be saved by the
4293 prologue is not identical to the call-used set. For example, the
4294 register used by the call insn for the return PC is a call-used register,
4295 but must be saved by the prologue. */
4297 n_spills = 0;
4298 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4299 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4301 spill_reg_order[i] = n_spills;
4302 spill_regs[n_spills++] = i;
4303 if (num_eliminable && ! df_regs_ever_live_p (i))
4304 something_changed = 1;
4305 df_set_regs_ever_live (i, true);
4307 else
4308 spill_reg_order[i] = -1;
4310 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4311 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4313 /* Record the current hard register the pseudo is allocated to
4314 in pseudo_previous_regs so we avoid reallocating it to the
4315 same hard reg in a later pass. */
4316 gcc_assert (reg_renumber[i] >= 0);
4318 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4319 /* Mark it as no longer having a hard register home. */
4320 reg_renumber[i] = -1;
4321 if (ira_conflicts_p)
4322 /* Inform IRA about the change. */
4323 ira_mark_allocation_change (i);
4324 /* We will need to scan everything again. */
4325 something_changed = 1;
4328 /* Retry global register allocation if possible. */
4329 if (global && ira_conflicts_p)
4331 unsigned int n;
4333 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4334 /* For every insn that needs reloads, set the registers used as spill
4335 regs in pseudo_forbidden_regs for every pseudo live across the
4336 insn. */
4337 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4339 EXECUTE_IF_SET_IN_REG_SET
4340 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4342 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4343 chain->used_spill_regs);
4345 EXECUTE_IF_SET_IN_REG_SET
4346 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4348 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4349 chain->used_spill_regs);
4353 /* Retry allocating the pseudos spilled in IRA and the
4354 reload. For each reg, merge the various reg sets that
4355 indicate which hard regs can't be used, and call
4356 ira_reassign_pseudos. */
4357 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4358 if (reg_old_renumber[i] != reg_renumber[i])
4360 if (reg_renumber[i] < 0)
4361 temp_pseudo_reg_arr[n++] = i;
4362 else
4363 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4365 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4366 bad_spill_regs_global,
4367 pseudo_forbidden_regs, pseudo_previous_regs,
4368 &spilled_pseudos))
4369 something_changed = 1;
4371 /* Fix up the register information in the insn chain.
4372 This involves deleting those of the spilled pseudos which did not get
4373 a new hard register home from the live_{before,after} sets. */
4374 for (chain = reload_insn_chain; chain; chain = chain->next)
4376 HARD_REG_SET used_by_pseudos;
4377 HARD_REG_SET used_by_pseudos2;
4379 if (! ira_conflicts_p)
4381 /* Don't do it for IRA because IRA and the reload still can
4382 assign hard registers to the spilled pseudos on next
4383 reload iterations. */
4384 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4385 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4387 /* Mark any unallocated hard regs as available for spills. That
4388 makes inheritance work somewhat better. */
4389 if (chain->need_reload)
4391 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4392 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4393 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4395 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4396 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4397 /* Value of chain->used_spill_regs from previous iteration
4398 may be not included in the value calculated here because
4399 of possible removing caller-saves insns (see function
4400 delete_caller_save_insns. */
4401 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4402 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4406 CLEAR_REG_SET (&changed_allocation_pseudos);
4407 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4408 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4410 int regno = reg_renumber[i];
4411 if (reg_old_renumber[i] == regno)
4412 continue;
4414 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4416 alter_reg (i, reg_old_renumber[i], false);
4417 reg_old_renumber[i] = regno;
4418 if (dump_file)
4420 if (regno == -1)
4421 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4422 else
4423 fprintf (dump_file, " Register %d now in %d.\n\n",
4424 i, reg_renumber[i]);
4428 return something_changed;
4431 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4433 static void
4434 scan_paradoxical_subregs (rtx x)
4436 int i;
4437 const char *fmt;
4438 enum rtx_code code = GET_CODE (x);
4440 switch (code)
4442 case REG:
4443 case CONST:
4444 case SYMBOL_REF:
4445 case LABEL_REF:
4446 CASE_CONST_ANY:
4447 case CC0:
4448 case PC:
4449 case USE:
4450 case CLOBBER:
4451 return;
4453 case SUBREG:
4454 if (REG_P (SUBREG_REG (x))
4455 && (GET_MODE_SIZE (GET_MODE (x))
4456 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4458 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4459 = GET_MODE_SIZE (GET_MODE (x));
4460 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4462 return;
4464 default:
4465 break;
4468 fmt = GET_RTX_FORMAT (code);
4469 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4471 if (fmt[i] == 'e')
4472 scan_paradoxical_subregs (XEXP (x, i));
4473 else if (fmt[i] == 'E')
4475 int j;
4476 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4477 scan_paradoxical_subregs (XVECEXP (x, i, j));
4482 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4483 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4484 and apply the corresponding narrowing subreg to *OTHER_PTR.
4485 Return true if the operands were changed, false otherwise. */
4487 static bool
4488 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4490 rtx op, inner, other, tem;
4492 op = *op_ptr;
4493 if (!paradoxical_subreg_p (op))
4494 return false;
4495 inner = SUBREG_REG (op);
4497 other = *other_ptr;
4498 tem = gen_lowpart_common (GET_MODE (inner), other);
4499 if (!tem)
4500 return false;
4502 /* If the lowpart operation turned a hard register into a subreg,
4503 rather than simplifying it to another hard register, then the
4504 mode change cannot be properly represented. For example, OTHER
4505 might be valid in its current mode, but not in the new one. */
4506 if (GET_CODE (tem) == SUBREG
4507 && REG_P (other)
4508 && HARD_REGISTER_P (other))
4509 return false;
4511 *op_ptr = inner;
4512 *other_ptr = tem;
4513 return true;
4516 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4517 examine all of the reload insns between PREV and NEXT exclusive, and
4518 annotate all that may trap. */
4520 static void
4521 fixup_eh_region_note (rtx insn, rtx prev, rtx next)
4523 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4524 if (note == NULL)
4525 return;
4526 if (!insn_could_throw_p (insn))
4527 remove_note (insn, note);
4528 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4531 /* Reload pseudo-registers into hard regs around each insn as needed.
4532 Additional register load insns are output before the insn that needs it
4533 and perhaps store insns after insns that modify the reloaded pseudo reg.
4535 reg_last_reload_reg and reg_reloaded_contents keep track of
4536 which registers are already available in reload registers.
4537 We update these for the reloads that we perform,
4538 as the insns are scanned. */
4540 static void
4541 reload_as_needed (int live_known)
4543 struct insn_chain *chain;
4544 #if defined (AUTO_INC_DEC)
4545 int i;
4546 #endif
4547 rtx x, marker;
4549 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4550 memset (spill_reg_store, 0, sizeof spill_reg_store);
4551 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4552 INIT_REG_SET (&reg_has_output_reload);
4553 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4554 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4556 set_initial_elim_offsets ();
4558 /* Generate a marker insn that we will move around. */
4559 marker = emit_note (NOTE_INSN_DELETED);
4560 unlink_insn_chain (marker, marker);
4562 for (chain = reload_insn_chain; chain; chain = chain->next)
4564 rtx prev = 0;
4565 rtx insn = chain->insn;
4566 rtx old_next = NEXT_INSN (insn);
4567 #ifdef AUTO_INC_DEC
4568 rtx old_prev = PREV_INSN (insn);
4569 #endif
4571 /* If we pass a label, copy the offsets from the label information
4572 into the current offsets of each elimination. */
4573 if (LABEL_P (insn))
4574 set_offsets_for_label (insn);
4576 else if (INSN_P (insn))
4578 regset_head regs_to_forget;
4579 INIT_REG_SET (&regs_to_forget);
4580 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4582 /* If this is a USE and CLOBBER of a MEM, ensure that any
4583 references to eliminable registers have been removed. */
4585 if ((GET_CODE (PATTERN (insn)) == USE
4586 || GET_CODE (PATTERN (insn)) == CLOBBER)
4587 && MEM_P (XEXP (PATTERN (insn), 0)))
4588 XEXP (XEXP (PATTERN (insn), 0), 0)
4589 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4590 GET_MODE (XEXP (PATTERN (insn), 0)),
4591 NULL_RTX);
4593 /* If we need to do register elimination processing, do so.
4594 This might delete the insn, in which case we are done. */
4595 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4597 eliminate_regs_in_insn (insn, 1);
4598 if (NOTE_P (insn))
4600 update_eliminable_offsets ();
4601 CLEAR_REG_SET (&regs_to_forget);
4602 continue;
4606 /* If need_elim is nonzero but need_reload is zero, one might think
4607 that we could simply set n_reloads to 0. However, find_reloads
4608 could have done some manipulation of the insn (such as swapping
4609 commutative operands), and these manipulations are lost during
4610 the first pass for every insn that needs register elimination.
4611 So the actions of find_reloads must be redone here. */
4613 if (! chain->need_elim && ! chain->need_reload
4614 && ! chain->need_operand_change)
4615 n_reloads = 0;
4616 /* First find the pseudo regs that must be reloaded for this insn.
4617 This info is returned in the tables reload_... (see reload.h).
4618 Also modify the body of INSN by substituting RELOAD
4619 rtx's for those pseudo regs. */
4620 else
4622 CLEAR_REG_SET (&reg_has_output_reload);
4623 CLEAR_HARD_REG_SET (reg_is_output_reload);
4625 find_reloads (insn, 1, spill_indirect_levels, live_known,
4626 spill_reg_order);
4629 if (n_reloads > 0)
4631 rtx next = NEXT_INSN (insn);
4632 rtx p;
4634 /* ??? PREV can get deleted by reload inheritance.
4635 Work around this by emitting a marker note. */
4636 prev = PREV_INSN (insn);
4637 reorder_insns_nobb (marker, marker, prev);
4639 /* Now compute which reload regs to reload them into. Perhaps
4640 reusing reload regs from previous insns, or else output
4641 load insns to reload them. Maybe output store insns too.
4642 Record the choices of reload reg in reload_reg_rtx. */
4643 choose_reload_regs (chain);
4645 /* Generate the insns to reload operands into or out of
4646 their reload regs. */
4647 emit_reload_insns (chain);
4649 /* Substitute the chosen reload regs from reload_reg_rtx
4650 into the insn's body (or perhaps into the bodies of other
4651 load and store insn that we just made for reloading
4652 and that we moved the structure into). */
4653 subst_reloads (insn);
4655 prev = PREV_INSN (marker);
4656 unlink_insn_chain (marker, marker);
4658 /* Adjust the exception region notes for loads and stores. */
4659 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4660 fixup_eh_region_note (insn, prev, next);
4662 /* Adjust the location of REG_ARGS_SIZE. */
4663 p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4664 if (p)
4666 remove_note (insn, p);
4667 fixup_args_size_notes (prev, PREV_INSN (next),
4668 INTVAL (XEXP (p, 0)));
4671 /* If this was an ASM, make sure that all the reload insns
4672 we have generated are valid. If not, give an error
4673 and delete them. */
4674 if (asm_noperands (PATTERN (insn)) >= 0)
4675 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4676 if (p != insn && INSN_P (p)
4677 && GET_CODE (PATTERN (p)) != USE
4678 && (recog_memoized (p) < 0
4679 || (extract_insn (p), ! constrain_operands (1))))
4681 error_for_asm (insn,
4682 "%<asm%> operand requires "
4683 "impossible reload");
4684 delete_insn (p);
4688 if (num_eliminable && chain->need_elim)
4689 update_eliminable_offsets ();
4691 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4692 is no longer validly lying around to save a future reload.
4693 Note that this does not detect pseudos that were reloaded
4694 for this insn in order to be stored in
4695 (obeying register constraints). That is correct; such reload
4696 registers ARE still valid. */
4697 forget_marked_reloads (&regs_to_forget);
4698 CLEAR_REG_SET (&regs_to_forget);
4700 /* There may have been CLOBBER insns placed after INSN. So scan
4701 between INSN and NEXT and use them to forget old reloads. */
4702 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4703 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4704 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4706 #ifdef AUTO_INC_DEC
4707 /* Likewise for regs altered by auto-increment in this insn.
4708 REG_INC notes have been changed by reloading:
4709 find_reloads_address_1 records substitutions for them,
4710 which have been performed by subst_reloads above. */
4711 for (i = n_reloads - 1; i >= 0; i--)
4713 rtx in_reg = rld[i].in_reg;
4714 if (in_reg)
4716 enum rtx_code code = GET_CODE (in_reg);
4717 /* PRE_INC / PRE_DEC will have the reload register ending up
4718 with the same value as the stack slot, but that doesn't
4719 hold true for POST_INC / POST_DEC. Either we have to
4720 convert the memory access to a true POST_INC / POST_DEC,
4721 or we can't use the reload register for inheritance. */
4722 if ((code == POST_INC || code == POST_DEC)
4723 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4724 REGNO (rld[i].reg_rtx))
4725 /* Make sure it is the inc/dec pseudo, and not
4726 some other (e.g. output operand) pseudo. */
4727 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4728 == REGNO (XEXP (in_reg, 0))))
4731 rtx reload_reg = rld[i].reg_rtx;
4732 enum machine_mode mode = GET_MODE (reload_reg);
4733 int n = 0;
4734 rtx p;
4736 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4738 /* We really want to ignore REG_INC notes here, so
4739 use PATTERN (p) as argument to reg_set_p . */
4740 if (reg_set_p (reload_reg, PATTERN (p)))
4741 break;
4742 n = count_occurrences (PATTERN (p), reload_reg, 0);
4743 if (! n)
4744 continue;
4745 if (n == 1)
4747 rtx replace_reg
4748 = gen_rtx_fmt_e (code, mode, reload_reg);
4750 validate_replace_rtx_group (reload_reg,
4751 replace_reg, p);
4752 n = verify_changes (0);
4754 /* We must also verify that the constraints
4755 are met after the replacement. Make sure
4756 extract_insn is only called for an insn
4757 where the replacements were found to be
4758 valid so far. */
4759 if (n)
4761 extract_insn (p);
4762 n = constrain_operands (1);
4765 /* If the constraints were not met, then
4766 undo the replacement, else confirm it. */
4767 if (!n)
4768 cancel_changes (0);
4769 else
4770 confirm_change_group ();
4772 break;
4774 if (n == 1)
4776 add_reg_note (p, REG_INC, reload_reg);
4777 /* Mark this as having an output reload so that the
4778 REG_INC processing code below won't invalidate
4779 the reload for inheritance. */
4780 SET_HARD_REG_BIT (reg_is_output_reload,
4781 REGNO (reload_reg));
4782 SET_REGNO_REG_SET (&reg_has_output_reload,
4783 REGNO (XEXP (in_reg, 0)));
4785 else
4786 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4787 NULL);
4789 else if ((code == PRE_INC || code == PRE_DEC)
4790 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4791 REGNO (rld[i].reg_rtx))
4792 /* Make sure it is the inc/dec pseudo, and not
4793 some other (e.g. output operand) pseudo. */
4794 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4795 == REGNO (XEXP (in_reg, 0))))
4797 SET_HARD_REG_BIT (reg_is_output_reload,
4798 REGNO (rld[i].reg_rtx));
4799 SET_REGNO_REG_SET (&reg_has_output_reload,
4800 REGNO (XEXP (in_reg, 0)));
4802 else if (code == PRE_INC || code == PRE_DEC
4803 || code == POST_INC || code == POST_DEC)
4805 int in_regno = REGNO (XEXP (in_reg, 0));
4807 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4809 int in_hard_regno;
4810 bool forget_p = true;
4812 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4813 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4814 in_hard_regno))
4816 for (x = old_prev ? NEXT_INSN (old_prev) : insn;
4817 x != old_next;
4818 x = NEXT_INSN (x))
4819 if (x == reg_reloaded_insn[in_hard_regno])
4821 forget_p = false;
4822 break;
4825 /* If for some reasons, we didn't set up
4826 reg_last_reload_reg in this insn,
4827 invalidate inheritance from previous
4828 insns for the incremented/decremented
4829 register. Such registers will be not in
4830 reg_has_output_reload. Invalidate it
4831 also if the corresponding element in
4832 reg_reloaded_insn is also
4833 invalidated. */
4834 if (forget_p)
4835 forget_old_reloads_1 (XEXP (in_reg, 0),
4836 NULL_RTX, NULL);
4841 /* If a pseudo that got a hard register is auto-incremented,
4842 we must purge records of copying it into pseudos without
4843 hard registers. */
4844 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4845 if (REG_NOTE_KIND (x) == REG_INC)
4847 /* See if this pseudo reg was reloaded in this insn.
4848 If so, its last-reload info is still valid
4849 because it is based on this insn's reload. */
4850 for (i = 0; i < n_reloads; i++)
4851 if (rld[i].out == XEXP (x, 0))
4852 break;
4854 if (i == n_reloads)
4855 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4857 #endif
4859 /* A reload reg's contents are unknown after a label. */
4860 if (LABEL_P (insn))
4861 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4863 /* Don't assume a reload reg is still good after a call insn
4864 if it is a call-used reg, or if it contains a value that will
4865 be partially clobbered by the call. */
4866 else if (CALL_P (insn))
4868 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4869 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4871 /* If this is a call to a setjmp-type function, we must not
4872 reuse any reload reg contents across the call; that will
4873 just be clobbered by other uses of the register in later
4874 code, before the longjmp. */
4875 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4876 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4880 /* Clean up. */
4881 free (reg_last_reload_reg);
4882 CLEAR_REG_SET (&reg_has_output_reload);
4885 /* Discard all record of any value reloaded from X,
4886 or reloaded in X from someplace else;
4887 unless X is an output reload reg of the current insn.
4889 X may be a hard reg (the reload reg)
4890 or it may be a pseudo reg that was reloaded from.
4892 When DATA is non-NULL just mark the registers in regset
4893 to be forgotten later. */
4895 static void
4896 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4897 void *data)
4899 unsigned int regno;
4900 unsigned int nr;
4901 regset regs = (regset) data;
4903 /* note_stores does give us subregs of hard regs,
4904 subreg_regno_offset requires a hard reg. */
4905 while (GET_CODE (x) == SUBREG)
4907 /* We ignore the subreg offset when calculating the regno,
4908 because we are using the entire underlying hard register
4909 below. */
4910 x = SUBREG_REG (x);
4913 if (!REG_P (x))
4914 return;
4916 regno = REGNO (x);
4918 if (regno >= FIRST_PSEUDO_REGISTER)
4919 nr = 1;
4920 else
4922 unsigned int i;
4924 nr = hard_regno_nregs[regno][GET_MODE (x)];
4925 /* Storing into a spilled-reg invalidates its contents.
4926 This can happen if a block-local pseudo is allocated to that reg
4927 and it wasn't spilled because this block's total need is 0.
4928 Then some insn might have an optional reload and use this reg. */
4929 if (!regs)
4930 for (i = 0; i < nr; i++)
4931 /* But don't do this if the reg actually serves as an output
4932 reload reg in the current instruction. */
4933 if (n_reloads == 0
4934 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4936 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4937 spill_reg_store[regno + i] = 0;
4941 if (regs)
4942 while (nr-- > 0)
4943 SET_REGNO_REG_SET (regs, regno + nr);
4944 else
4946 /* Since value of X has changed,
4947 forget any value previously copied from it. */
4949 while (nr-- > 0)
4950 /* But don't forget a copy if this is the output reload
4951 that establishes the copy's validity. */
4952 if (n_reloads == 0
4953 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4954 reg_last_reload_reg[regno + nr] = 0;
4958 /* Forget the reloads marked in regset by previous function. */
4959 static void
4960 forget_marked_reloads (regset regs)
4962 unsigned int reg;
4963 reg_set_iterator rsi;
4964 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4966 if (reg < FIRST_PSEUDO_REGISTER
4967 /* But don't do this if the reg actually serves as an output
4968 reload reg in the current instruction. */
4969 && (n_reloads == 0
4970 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4972 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4973 spill_reg_store[reg] = 0;
4975 if (n_reloads == 0
4976 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4977 reg_last_reload_reg[reg] = 0;
4981 /* The following HARD_REG_SETs indicate when each hard register is
4982 used for a reload of various parts of the current insn. */
4984 /* If reg is unavailable for all reloads. */
4985 static HARD_REG_SET reload_reg_unavailable;
4986 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4987 static HARD_REG_SET reload_reg_used;
4988 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4989 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4990 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4991 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4992 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4993 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4994 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4995 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4996 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4997 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4998 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4999 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
5000 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
5001 static HARD_REG_SET reload_reg_used_in_op_addr;
5002 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
5003 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
5004 /* If reg is in use for a RELOAD_FOR_INSN reload. */
5005 static HARD_REG_SET reload_reg_used_in_insn;
5006 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
5007 static HARD_REG_SET reload_reg_used_in_other_addr;
5009 /* If reg is in use as a reload reg for any sort of reload. */
5010 static HARD_REG_SET reload_reg_used_at_all;
5012 /* If reg is use as an inherited reload. We just mark the first register
5013 in the group. */
5014 static HARD_REG_SET reload_reg_used_for_inherit;
5016 /* Records which hard regs are used in any way, either as explicit use or
5017 by being allocated to a pseudo during any point of the current insn. */
5018 static HARD_REG_SET reg_used_in_insn;
5020 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5021 TYPE. MODE is used to indicate how many consecutive regs are
5022 actually used. */
5024 static void
5025 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5026 enum machine_mode mode)
5028 switch (type)
5030 case RELOAD_OTHER:
5031 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5032 break;
5034 case RELOAD_FOR_INPUT_ADDRESS:
5035 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5036 break;
5038 case RELOAD_FOR_INPADDR_ADDRESS:
5039 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5040 break;
5042 case RELOAD_FOR_OUTPUT_ADDRESS:
5043 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5044 break;
5046 case RELOAD_FOR_OUTADDR_ADDRESS:
5047 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5048 break;
5050 case RELOAD_FOR_OPERAND_ADDRESS:
5051 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5052 break;
5054 case RELOAD_FOR_OPADDR_ADDR:
5055 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5056 break;
5058 case RELOAD_FOR_OTHER_ADDRESS:
5059 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5060 break;
5062 case RELOAD_FOR_INPUT:
5063 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5064 break;
5066 case RELOAD_FOR_OUTPUT:
5067 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5068 break;
5070 case RELOAD_FOR_INSN:
5071 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5072 break;
5075 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5078 /* Similarly, but show REGNO is no longer in use for a reload. */
5080 static void
5081 clear_reload_reg_in_use (unsigned int regno, int opnum,
5082 enum reload_type type, enum machine_mode mode)
5084 unsigned int nregs = hard_regno_nregs[regno][mode];
5085 unsigned int start_regno, end_regno, r;
5086 int i;
5087 /* A complication is that for some reload types, inheritance might
5088 allow multiple reloads of the same types to share a reload register.
5089 We set check_opnum if we have to check only reloads with the same
5090 operand number, and check_any if we have to check all reloads. */
5091 int check_opnum = 0;
5092 int check_any = 0;
5093 HARD_REG_SET *used_in_set;
5095 switch (type)
5097 case RELOAD_OTHER:
5098 used_in_set = &reload_reg_used;
5099 break;
5101 case RELOAD_FOR_INPUT_ADDRESS:
5102 used_in_set = &reload_reg_used_in_input_addr[opnum];
5103 break;
5105 case RELOAD_FOR_INPADDR_ADDRESS:
5106 check_opnum = 1;
5107 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5108 break;
5110 case RELOAD_FOR_OUTPUT_ADDRESS:
5111 used_in_set = &reload_reg_used_in_output_addr[opnum];
5112 break;
5114 case RELOAD_FOR_OUTADDR_ADDRESS:
5115 check_opnum = 1;
5116 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5117 break;
5119 case RELOAD_FOR_OPERAND_ADDRESS:
5120 used_in_set = &reload_reg_used_in_op_addr;
5121 break;
5123 case RELOAD_FOR_OPADDR_ADDR:
5124 check_any = 1;
5125 used_in_set = &reload_reg_used_in_op_addr_reload;
5126 break;
5128 case RELOAD_FOR_OTHER_ADDRESS:
5129 used_in_set = &reload_reg_used_in_other_addr;
5130 check_any = 1;
5131 break;
5133 case RELOAD_FOR_INPUT:
5134 used_in_set = &reload_reg_used_in_input[opnum];
5135 break;
5137 case RELOAD_FOR_OUTPUT:
5138 used_in_set = &reload_reg_used_in_output[opnum];
5139 break;
5141 case RELOAD_FOR_INSN:
5142 used_in_set = &reload_reg_used_in_insn;
5143 break;
5144 default:
5145 gcc_unreachable ();
5147 /* We resolve conflicts with remaining reloads of the same type by
5148 excluding the intervals of reload registers by them from the
5149 interval of freed reload registers. Since we only keep track of
5150 one set of interval bounds, we might have to exclude somewhat
5151 more than what would be necessary if we used a HARD_REG_SET here.
5152 But this should only happen very infrequently, so there should
5153 be no reason to worry about it. */
5155 start_regno = regno;
5156 end_regno = regno + nregs;
5157 if (check_opnum || check_any)
5159 for (i = n_reloads - 1; i >= 0; i--)
5161 if (rld[i].when_needed == type
5162 && (check_any || rld[i].opnum == opnum)
5163 && rld[i].reg_rtx)
5165 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5166 unsigned int conflict_end
5167 = end_hard_regno (rld[i].mode, conflict_start);
5169 /* If there is an overlap with the first to-be-freed register,
5170 adjust the interval start. */
5171 if (conflict_start <= start_regno && conflict_end > start_regno)
5172 start_regno = conflict_end;
5173 /* Otherwise, if there is a conflict with one of the other
5174 to-be-freed registers, adjust the interval end. */
5175 if (conflict_start > start_regno && conflict_start < end_regno)
5176 end_regno = conflict_start;
5181 for (r = start_regno; r < end_regno; r++)
5182 CLEAR_HARD_REG_BIT (*used_in_set, r);
5185 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5186 specified by OPNUM and TYPE. */
5188 static int
5189 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5191 int i;
5193 /* In use for a RELOAD_OTHER means it's not available for anything. */
5194 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5195 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5196 return 0;
5198 switch (type)
5200 case RELOAD_OTHER:
5201 /* In use for anything means we can't use it for RELOAD_OTHER. */
5202 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5203 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5204 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5205 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5206 return 0;
5208 for (i = 0; i < reload_n_operands; i++)
5209 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5210 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5211 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5212 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5213 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5214 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5215 return 0;
5217 return 1;
5219 case RELOAD_FOR_INPUT:
5220 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5221 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5222 return 0;
5224 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5225 return 0;
5227 /* If it is used for some other input, can't use it. */
5228 for (i = 0; i < reload_n_operands; i++)
5229 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5230 return 0;
5232 /* If it is used in a later operand's address, can't use it. */
5233 for (i = opnum + 1; i < reload_n_operands; i++)
5234 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5235 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5236 return 0;
5238 return 1;
5240 case RELOAD_FOR_INPUT_ADDRESS:
5241 /* Can't use a register if it is used for an input address for this
5242 operand or used as an input in an earlier one. */
5243 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5244 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5245 return 0;
5247 for (i = 0; i < opnum; i++)
5248 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5249 return 0;
5251 return 1;
5253 case RELOAD_FOR_INPADDR_ADDRESS:
5254 /* Can't use a register if it is used for an input address
5255 for this operand or used as an input in an earlier
5256 one. */
5257 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5258 return 0;
5260 for (i = 0; i < opnum; i++)
5261 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5262 return 0;
5264 return 1;
5266 case RELOAD_FOR_OUTPUT_ADDRESS:
5267 /* Can't use a register if it is used for an output address for this
5268 operand or used as an output in this or a later operand. Note
5269 that multiple output operands are emitted in reverse order, so
5270 the conflicting ones are those with lower indices. */
5271 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5272 return 0;
5274 for (i = 0; i <= opnum; i++)
5275 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5276 return 0;
5278 return 1;
5280 case RELOAD_FOR_OUTADDR_ADDRESS:
5281 /* Can't use a register if it is used for an output address
5282 for this operand or used as an output in this or a
5283 later operand. Note that multiple output operands are
5284 emitted in reverse order, so the conflicting ones are
5285 those with lower indices. */
5286 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5287 return 0;
5289 for (i = 0; i <= opnum; i++)
5290 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5291 return 0;
5293 return 1;
5295 case RELOAD_FOR_OPERAND_ADDRESS:
5296 for (i = 0; i < reload_n_operands; i++)
5297 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5298 return 0;
5300 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5301 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5303 case RELOAD_FOR_OPADDR_ADDR:
5304 for (i = 0; i < reload_n_operands; i++)
5305 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5306 return 0;
5308 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5310 case RELOAD_FOR_OUTPUT:
5311 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5312 outputs, or an operand address for this or an earlier output.
5313 Note that multiple output operands are emitted in reverse order,
5314 so the conflicting ones are those with higher indices. */
5315 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5316 return 0;
5318 for (i = 0; i < reload_n_operands; i++)
5319 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5320 return 0;
5322 for (i = opnum; i < reload_n_operands; i++)
5323 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5324 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5325 return 0;
5327 return 1;
5329 case RELOAD_FOR_INSN:
5330 for (i = 0; i < reload_n_operands; i++)
5331 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5332 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5333 return 0;
5335 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5336 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5338 case RELOAD_FOR_OTHER_ADDRESS:
5339 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5341 default:
5342 gcc_unreachable ();
5346 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5347 the number RELOADNUM, is still available in REGNO at the end of the insn.
5349 We can assume that the reload reg was already tested for availability
5350 at the time it is needed, and we should not check this again,
5351 in case the reg has already been marked in use. */
5353 static int
5354 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5356 int opnum = rld[reloadnum].opnum;
5357 enum reload_type type = rld[reloadnum].when_needed;
5358 int i;
5360 /* See if there is a reload with the same type for this operand, using
5361 the same register. This case is not handled by the code below. */
5362 for (i = reloadnum + 1; i < n_reloads; i++)
5364 rtx reg;
5365 int nregs;
5367 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5368 continue;
5369 reg = rld[i].reg_rtx;
5370 if (reg == NULL_RTX)
5371 continue;
5372 nregs = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
5373 if (regno >= REGNO (reg) && regno < REGNO (reg) + nregs)
5374 return 0;
5377 switch (type)
5379 case RELOAD_OTHER:
5380 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5381 its value must reach the end. */
5382 return 1;
5384 /* If this use is for part of the insn,
5385 its value reaches if no subsequent part uses the same register.
5386 Just like the above function, don't try to do this with lots
5387 of fallthroughs. */
5389 case RELOAD_FOR_OTHER_ADDRESS:
5390 /* Here we check for everything else, since these don't conflict
5391 with anything else and everything comes later. */
5393 for (i = 0; i < reload_n_operands; i++)
5394 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5395 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5396 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5397 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5398 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5399 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5400 return 0;
5402 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5403 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5404 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5405 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5407 case RELOAD_FOR_INPUT_ADDRESS:
5408 case RELOAD_FOR_INPADDR_ADDRESS:
5409 /* Similar, except that we check only for this and subsequent inputs
5410 and the address of only subsequent inputs and we do not need
5411 to check for RELOAD_OTHER objects since they are known not to
5412 conflict. */
5414 for (i = opnum; i < reload_n_operands; i++)
5415 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5416 return 0;
5418 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5419 could be killed if the register is also used by reload with type
5420 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5421 if (type == RELOAD_FOR_INPADDR_ADDRESS
5422 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5423 return 0;
5425 for (i = opnum + 1; i < reload_n_operands; i++)
5426 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5427 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5428 return 0;
5430 for (i = 0; i < reload_n_operands; i++)
5431 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5432 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5433 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5434 return 0;
5436 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5437 return 0;
5439 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5440 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5441 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5443 case RELOAD_FOR_INPUT:
5444 /* Similar to input address, except we start at the next operand for
5445 both input and input address and we do not check for
5446 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5447 would conflict. */
5449 for (i = opnum + 1; i < reload_n_operands; i++)
5450 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5451 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5452 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5453 return 0;
5455 /* ... fall through ... */
5457 case RELOAD_FOR_OPERAND_ADDRESS:
5458 /* Check outputs and their addresses. */
5460 for (i = 0; i < reload_n_operands; i++)
5461 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5462 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5463 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5464 return 0;
5466 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5468 case RELOAD_FOR_OPADDR_ADDR:
5469 for (i = 0; i < reload_n_operands; i++)
5470 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5471 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5472 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5473 return 0;
5475 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5476 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5477 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5479 case RELOAD_FOR_INSN:
5480 /* These conflict with other outputs with RELOAD_OTHER. So
5481 we need only check for output addresses. */
5483 opnum = reload_n_operands;
5485 /* ... fall through ... */
5487 case RELOAD_FOR_OUTPUT:
5488 case RELOAD_FOR_OUTPUT_ADDRESS:
5489 case RELOAD_FOR_OUTADDR_ADDRESS:
5490 /* We already know these can't conflict with a later output. So the
5491 only thing to check are later output addresses.
5492 Note that multiple output operands are emitted in reverse order,
5493 so the conflicting ones are those with lower indices. */
5494 for (i = 0; i < opnum; i++)
5495 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5496 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5497 return 0;
5499 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5500 could be killed if the register is also used by reload with type
5501 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5502 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5503 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5504 return 0;
5506 return 1;
5508 default:
5509 gcc_unreachable ();
5513 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5514 every register in REG. */
5516 static bool
5517 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5519 unsigned int i;
5521 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5522 if (!reload_reg_reaches_end_p (i, reloadnum))
5523 return false;
5524 return true;
5528 /* Returns whether R1 and R2 are uniquely chained: the value of one
5529 is used by the other, and that value is not used by any other
5530 reload for this insn. This is used to partially undo the decision
5531 made in find_reloads when in the case of multiple
5532 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5533 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5534 reloads. This code tries to avoid the conflict created by that
5535 change. It might be cleaner to explicitly keep track of which
5536 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5537 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5538 this after the fact. */
5539 static bool
5540 reloads_unique_chain_p (int r1, int r2)
5542 int i;
5544 /* We only check input reloads. */
5545 if (! rld[r1].in || ! rld[r2].in)
5546 return false;
5548 /* Avoid anything with output reloads. */
5549 if (rld[r1].out || rld[r2].out)
5550 return false;
5552 /* "chained" means one reload is a component of the other reload,
5553 not the same as the other reload. */
5554 if (rld[r1].opnum != rld[r2].opnum
5555 || rtx_equal_p (rld[r1].in, rld[r2].in)
5556 || rld[r1].optional || rld[r2].optional
5557 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5558 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5559 return false;
5561 for (i = 0; i < n_reloads; i ++)
5562 /* Look for input reloads that aren't our two */
5563 if (i != r1 && i != r2 && rld[i].in)
5565 /* If our reload is mentioned at all, it isn't a simple chain. */
5566 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5567 return false;
5569 return true;
5572 /* The recursive function change all occurrences of WHAT in *WHERE
5573 to REPL. */
5574 static void
5575 substitute (rtx *where, const_rtx what, rtx repl)
5577 const char *fmt;
5578 int i;
5579 enum rtx_code code;
5581 if (*where == 0)
5582 return;
5584 if (*where == what || rtx_equal_p (*where, what))
5586 /* Record the location of the changed rtx. */
5587 substitute_stack.safe_push (where);
5588 *where = repl;
5589 return;
5592 code = GET_CODE (*where);
5593 fmt = GET_RTX_FORMAT (code);
5594 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5596 if (fmt[i] == 'E')
5598 int j;
5600 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5601 substitute (&XVECEXP (*where, i, j), what, repl);
5603 else if (fmt[i] == 'e')
5604 substitute (&XEXP (*where, i), what, repl);
5608 /* The function returns TRUE if chain of reload R1 and R2 (in any
5609 order) can be evaluated without usage of intermediate register for
5610 the reload containing another reload. It is important to see
5611 gen_reload to understand what the function is trying to do. As an
5612 example, let us have reload chain
5614 r2: const
5615 r1: <something> + const
5617 and reload R2 got reload reg HR. The function returns true if
5618 there is a correct insn HR = HR + <something>. Otherwise,
5619 gen_reload will use intermediate register (and this is the reload
5620 reg for R1) to reload <something>.
5622 We need this function to find a conflict for chain reloads. In our
5623 example, if HR = HR + <something> is incorrect insn, then we cannot
5624 use HR as a reload register for R2. If we do use it then we get a
5625 wrong code:
5627 HR = const
5628 HR = <something>
5629 HR = HR + HR
5632 static bool
5633 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5635 /* Assume other cases in gen_reload are not possible for
5636 chain reloads or do need an intermediate hard registers. */
5637 bool result = true;
5638 int regno, n, code;
5639 rtx out, in, insn;
5640 rtx last = get_last_insn ();
5642 /* Make r2 a component of r1. */
5643 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5645 n = r1;
5646 r1 = r2;
5647 r2 = n;
5649 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5650 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5651 gcc_assert (regno >= 0);
5652 out = gen_rtx_REG (rld[r1].mode, regno);
5653 in = rld[r1].in;
5654 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5656 /* If IN is a paradoxical SUBREG, remove it and try to put the
5657 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5658 strip_paradoxical_subreg (&in, &out);
5660 if (GET_CODE (in) == PLUS
5661 && (REG_P (XEXP (in, 0))
5662 || GET_CODE (XEXP (in, 0)) == SUBREG
5663 || MEM_P (XEXP (in, 0)))
5664 && (REG_P (XEXP (in, 1))
5665 || GET_CODE (XEXP (in, 1)) == SUBREG
5666 || CONSTANT_P (XEXP (in, 1))
5667 || MEM_P (XEXP (in, 1))))
5669 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
5670 code = recog_memoized (insn);
5671 result = false;
5673 if (code >= 0)
5675 extract_insn (insn);
5676 /* We want constrain operands to treat this insn strictly in
5677 its validity determination, i.e., the way it would after
5678 reload has completed. */
5679 result = constrain_operands (1);
5682 delete_insns_since (last);
5685 /* Restore the original value at each changed address within R1. */
5686 while (!substitute_stack.is_empty ())
5688 rtx *where = substitute_stack.pop ();
5689 *where = rld[r2].in;
5692 return result;
5695 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5696 Return 0 otherwise.
5698 This function uses the same algorithm as reload_reg_free_p above. */
5700 static int
5701 reloads_conflict (int r1, int r2)
5703 enum reload_type r1_type = rld[r1].when_needed;
5704 enum reload_type r2_type = rld[r2].when_needed;
5705 int r1_opnum = rld[r1].opnum;
5706 int r2_opnum = rld[r2].opnum;
5708 /* RELOAD_OTHER conflicts with everything. */
5709 if (r2_type == RELOAD_OTHER)
5710 return 1;
5712 /* Otherwise, check conflicts differently for each type. */
5714 switch (r1_type)
5716 case RELOAD_FOR_INPUT:
5717 return (r2_type == RELOAD_FOR_INSN
5718 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5719 || r2_type == RELOAD_FOR_OPADDR_ADDR
5720 || r2_type == RELOAD_FOR_INPUT
5721 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5722 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5723 && r2_opnum > r1_opnum));
5725 case RELOAD_FOR_INPUT_ADDRESS:
5726 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5727 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5729 case RELOAD_FOR_INPADDR_ADDRESS:
5730 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5731 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5733 case RELOAD_FOR_OUTPUT_ADDRESS:
5734 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5735 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5737 case RELOAD_FOR_OUTADDR_ADDRESS:
5738 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5739 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5741 case RELOAD_FOR_OPERAND_ADDRESS:
5742 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5743 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5744 && (!reloads_unique_chain_p (r1, r2)
5745 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5747 case RELOAD_FOR_OPADDR_ADDR:
5748 return (r2_type == RELOAD_FOR_INPUT
5749 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5751 case RELOAD_FOR_OUTPUT:
5752 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5753 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5754 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5755 && r2_opnum >= r1_opnum));
5757 case RELOAD_FOR_INSN:
5758 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5759 || r2_type == RELOAD_FOR_INSN
5760 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5762 case RELOAD_FOR_OTHER_ADDRESS:
5763 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5765 case RELOAD_OTHER:
5766 return 1;
5768 default:
5769 gcc_unreachable ();
5773 /* Indexed by reload number, 1 if incoming value
5774 inherited from previous insns. */
5775 static char reload_inherited[MAX_RELOADS];
5777 /* For an inherited reload, this is the insn the reload was inherited from,
5778 if we know it. Otherwise, this is 0. */
5779 static rtx reload_inheritance_insn[MAX_RELOADS];
5781 /* If nonzero, this is a place to get the value of the reload,
5782 rather than using reload_in. */
5783 static rtx reload_override_in[MAX_RELOADS];
5785 /* For each reload, the hard register number of the register used,
5786 or -1 if we did not need a register for this reload. */
5787 static int reload_spill_index[MAX_RELOADS];
5789 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5790 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5792 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5793 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5795 /* Subroutine of free_for_value_p, used to check a single register.
5796 START_REGNO is the starting regno of the full reload register
5797 (possibly comprising multiple hard registers) that we are considering. */
5799 static int
5800 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5801 enum reload_type type, rtx value, rtx out,
5802 int reloadnum, int ignore_address_reloads)
5804 int time1;
5805 /* Set if we see an input reload that must not share its reload register
5806 with any new earlyclobber, but might otherwise share the reload
5807 register with an output or input-output reload. */
5808 int check_earlyclobber = 0;
5809 int i;
5810 int copy = 0;
5812 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5813 return 0;
5815 if (out == const0_rtx)
5817 copy = 1;
5818 out = NULL_RTX;
5821 /* We use some pseudo 'time' value to check if the lifetimes of the
5822 new register use would overlap with the one of a previous reload
5823 that is not read-only or uses a different value.
5824 The 'time' used doesn't have to be linear in any shape or form, just
5825 monotonic.
5826 Some reload types use different 'buckets' for each operand.
5827 So there are MAX_RECOG_OPERANDS different time values for each
5828 such reload type.
5829 We compute TIME1 as the time when the register for the prospective
5830 new reload ceases to be live, and TIME2 for each existing
5831 reload as the time when that the reload register of that reload
5832 becomes live.
5833 Where there is little to be gained by exact lifetime calculations,
5834 we just make conservative assumptions, i.e. a longer lifetime;
5835 this is done in the 'default:' cases. */
5836 switch (type)
5838 case RELOAD_FOR_OTHER_ADDRESS:
5839 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5840 time1 = copy ? 0 : 1;
5841 break;
5842 case RELOAD_OTHER:
5843 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5844 break;
5845 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5846 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5847 respectively, to the time values for these, we get distinct time
5848 values. To get distinct time values for each operand, we have to
5849 multiply opnum by at least three. We round that up to four because
5850 multiply by four is often cheaper. */
5851 case RELOAD_FOR_INPADDR_ADDRESS:
5852 time1 = opnum * 4 + 2;
5853 break;
5854 case RELOAD_FOR_INPUT_ADDRESS:
5855 time1 = opnum * 4 + 3;
5856 break;
5857 case RELOAD_FOR_INPUT:
5858 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5859 executes (inclusive). */
5860 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5861 break;
5862 case RELOAD_FOR_OPADDR_ADDR:
5863 /* opnum * 4 + 4
5864 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5865 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5866 break;
5867 case RELOAD_FOR_OPERAND_ADDRESS:
5868 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5869 is executed. */
5870 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5871 break;
5872 case RELOAD_FOR_OUTADDR_ADDRESS:
5873 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5874 break;
5875 case RELOAD_FOR_OUTPUT_ADDRESS:
5876 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5877 break;
5878 default:
5879 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5882 for (i = 0; i < n_reloads; i++)
5884 rtx reg = rld[i].reg_rtx;
5885 if (reg && REG_P (reg)
5886 && ((unsigned) regno - true_regnum (reg)
5887 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5888 && i != reloadnum)
5890 rtx other_input = rld[i].in;
5892 /* If the other reload loads the same input value, that
5893 will not cause a conflict only if it's loading it into
5894 the same register. */
5895 if (true_regnum (reg) != start_regno)
5896 other_input = NULL_RTX;
5897 if (! other_input || ! rtx_equal_p (other_input, value)
5898 || rld[i].out || out)
5900 int time2;
5901 switch (rld[i].when_needed)
5903 case RELOAD_FOR_OTHER_ADDRESS:
5904 time2 = 0;
5905 break;
5906 case RELOAD_FOR_INPADDR_ADDRESS:
5907 /* find_reloads makes sure that a
5908 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5909 by at most one - the first -
5910 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5911 address reload is inherited, the address address reload
5912 goes away, so we can ignore this conflict. */
5913 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5914 && ignore_address_reloads
5915 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5916 Then the address address is still needed to store
5917 back the new address. */
5918 && ! rld[reloadnum].out)
5919 continue;
5920 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5921 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5922 reloads go away. */
5923 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5924 && ignore_address_reloads
5925 /* Unless we are reloading an auto_inc expression. */
5926 && ! rld[reloadnum].out)
5927 continue;
5928 time2 = rld[i].opnum * 4 + 2;
5929 break;
5930 case RELOAD_FOR_INPUT_ADDRESS:
5931 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5932 && ignore_address_reloads
5933 && ! rld[reloadnum].out)
5934 continue;
5935 time2 = rld[i].opnum * 4 + 3;
5936 break;
5937 case RELOAD_FOR_INPUT:
5938 time2 = rld[i].opnum * 4 + 4;
5939 check_earlyclobber = 1;
5940 break;
5941 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5942 == MAX_RECOG_OPERAND * 4 */
5943 case RELOAD_FOR_OPADDR_ADDR:
5944 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5945 && ignore_address_reloads
5946 && ! rld[reloadnum].out)
5947 continue;
5948 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5949 break;
5950 case RELOAD_FOR_OPERAND_ADDRESS:
5951 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5952 check_earlyclobber = 1;
5953 break;
5954 case RELOAD_FOR_INSN:
5955 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5956 break;
5957 case RELOAD_FOR_OUTPUT:
5958 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5959 instruction is executed. */
5960 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5961 break;
5962 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5963 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5964 value. */
5965 case RELOAD_FOR_OUTADDR_ADDRESS:
5966 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5967 && ignore_address_reloads
5968 && ! rld[reloadnum].out)
5969 continue;
5970 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5971 break;
5972 case RELOAD_FOR_OUTPUT_ADDRESS:
5973 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5974 break;
5975 case RELOAD_OTHER:
5976 /* If there is no conflict in the input part, handle this
5977 like an output reload. */
5978 if (! rld[i].in || rtx_equal_p (other_input, value))
5980 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5981 /* Earlyclobbered outputs must conflict with inputs. */
5982 if (earlyclobber_operand_p (rld[i].out))
5983 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5985 break;
5987 time2 = 1;
5988 /* RELOAD_OTHER might be live beyond instruction execution,
5989 but this is not obvious when we set time2 = 1. So check
5990 here if there might be a problem with the new reload
5991 clobbering the register used by the RELOAD_OTHER. */
5992 if (out)
5993 return 0;
5994 break;
5995 default:
5996 return 0;
5998 if ((time1 >= time2
5999 && (! rld[i].in || rld[i].out
6000 || ! rtx_equal_p (other_input, value)))
6001 || (out && rld[reloadnum].out_reg
6002 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
6003 return 0;
6008 /* Earlyclobbered outputs must conflict with inputs. */
6009 if (check_earlyclobber && out && earlyclobber_operand_p (out))
6010 return 0;
6012 return 1;
6015 /* Return 1 if the value in reload reg REGNO, as used by a reload
6016 needed for the part of the insn specified by OPNUM and TYPE,
6017 may be used to load VALUE into it.
6019 MODE is the mode in which the register is used, this is needed to
6020 determine how many hard regs to test.
6022 Other read-only reloads with the same value do not conflict
6023 unless OUT is nonzero and these other reloads have to live while
6024 output reloads live.
6025 If OUT is CONST0_RTX, this is a special case: it means that the
6026 test should not be for using register REGNO as reload register, but
6027 for copying from register REGNO into the reload register.
6029 RELOADNUM is the number of the reload we want to load this value for;
6030 a reload does not conflict with itself.
6032 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6033 reloads that load an address for the very reload we are considering.
6035 The caller has to make sure that there is no conflict with the return
6036 register. */
6038 static int
6039 free_for_value_p (int regno, enum machine_mode mode, int opnum,
6040 enum reload_type type, rtx value, rtx out, int reloadnum,
6041 int ignore_address_reloads)
6043 int nregs = hard_regno_nregs[regno][mode];
6044 while (nregs-- > 0)
6045 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6046 value, out, reloadnum,
6047 ignore_address_reloads))
6048 return 0;
6049 return 1;
6052 /* Return nonzero if the rtx X is invariant over the current function. */
6053 /* ??? Actually, the places where we use this expect exactly what is
6054 tested here, and not everything that is function invariant. In
6055 particular, the frame pointer and arg pointer are special cased;
6056 pic_offset_table_rtx is not, and we must not spill these things to
6057 memory. */
6060 function_invariant_p (const_rtx x)
6062 if (CONSTANT_P (x))
6063 return 1;
6064 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6065 return 1;
6066 if (GET_CODE (x) == PLUS
6067 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6068 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6069 return 1;
6070 return 0;
6073 /* Determine whether the reload reg X overlaps any rtx'es used for
6074 overriding inheritance. Return nonzero if so. */
6076 static int
6077 conflicts_with_override (rtx x)
6079 int i;
6080 for (i = 0; i < n_reloads; i++)
6081 if (reload_override_in[i]
6082 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6083 return 1;
6084 return 0;
6087 /* Give an error message saying we failed to find a reload for INSN,
6088 and clear out reload R. */
6089 static void
6090 failed_reload (rtx insn, int r)
6092 if (asm_noperands (PATTERN (insn)) < 0)
6093 /* It's the compiler's fault. */
6094 fatal_insn ("could not find a spill register", insn);
6096 /* It's the user's fault; the operand's mode and constraint
6097 don't match. Disable this reload so we don't crash in final. */
6098 error_for_asm (insn,
6099 "%<asm%> operand constraint incompatible with operand size");
6100 rld[r].in = 0;
6101 rld[r].out = 0;
6102 rld[r].reg_rtx = 0;
6103 rld[r].optional = 1;
6104 rld[r].secondary_p = 1;
6107 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6108 for reload R. If it's valid, get an rtx for it. Return nonzero if
6109 successful. */
6110 static int
6111 set_reload_reg (int i, int r)
6113 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6114 parameter. */
6115 int regno ATTRIBUTE_UNUSED;
6116 rtx reg = spill_reg_rtx[i];
6118 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6119 spill_reg_rtx[i] = reg
6120 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6122 regno = true_regnum (reg);
6124 /* Detect when the reload reg can't hold the reload mode.
6125 This used to be one `if', but Sequent compiler can't handle that. */
6126 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6128 enum machine_mode test_mode = VOIDmode;
6129 if (rld[r].in)
6130 test_mode = GET_MODE (rld[r].in);
6131 /* If rld[r].in has VOIDmode, it means we will load it
6132 in whatever mode the reload reg has: to wit, rld[r].mode.
6133 We have already tested that for validity. */
6134 /* Aside from that, we need to test that the expressions
6135 to reload from or into have modes which are valid for this
6136 reload register. Otherwise the reload insns would be invalid. */
6137 if (! (rld[r].in != 0 && test_mode != VOIDmode
6138 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6139 if (! (rld[r].out != 0
6140 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6142 /* The reg is OK. */
6143 last_spill_reg = i;
6145 /* Mark as in use for this insn the reload regs we use
6146 for this. */
6147 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6148 rld[r].when_needed, rld[r].mode);
6150 rld[r].reg_rtx = reg;
6151 reload_spill_index[r] = spill_regs[i];
6152 return 1;
6155 return 0;
6158 /* Find a spill register to use as a reload register for reload R.
6159 LAST_RELOAD is nonzero if this is the last reload for the insn being
6160 processed.
6162 Set rld[R].reg_rtx to the register allocated.
6164 We return 1 if successful, or 0 if we couldn't find a spill reg and
6165 we didn't change anything. */
6167 static int
6168 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6169 int last_reload)
6171 int i, pass, count;
6173 /* If we put this reload ahead, thinking it is a group,
6174 then insist on finding a group. Otherwise we can grab a
6175 reg that some other reload needs.
6176 (That can happen when we have a 68000 DATA_OR_FP_REG
6177 which is a group of data regs or one fp reg.)
6178 We need not be so restrictive if there are no more reloads
6179 for this insn.
6181 ??? Really it would be nicer to have smarter handling
6182 for that kind of reg class, where a problem like this is normal.
6183 Perhaps those classes should be avoided for reloading
6184 by use of more alternatives. */
6186 int force_group = rld[r].nregs > 1 && ! last_reload;
6188 /* If we want a single register and haven't yet found one,
6189 take any reg in the right class and not in use.
6190 If we want a consecutive group, here is where we look for it.
6192 We use three passes so we can first look for reload regs to
6193 reuse, which are already in use for other reloads in this insn,
6194 and only then use additional registers which are not "bad", then
6195 finally any register.
6197 I think that maximizing reuse is needed to make sure we don't
6198 run out of reload regs. Suppose we have three reloads, and
6199 reloads A and B can share regs. These need two regs.
6200 Suppose A and B are given different regs.
6201 That leaves none for C. */
6202 for (pass = 0; pass < 3; pass++)
6204 /* I is the index in spill_regs.
6205 We advance it round-robin between insns to use all spill regs
6206 equally, so that inherited reloads have a chance
6207 of leapfrogging each other. */
6209 i = last_spill_reg;
6211 for (count = 0; count < n_spills; count++)
6213 int rclass = (int) rld[r].rclass;
6214 int regnum;
6216 i++;
6217 if (i >= n_spills)
6218 i -= n_spills;
6219 regnum = spill_regs[i];
6221 if ((reload_reg_free_p (regnum, rld[r].opnum,
6222 rld[r].when_needed)
6223 || (rld[r].in
6224 /* We check reload_reg_used to make sure we
6225 don't clobber the return register. */
6226 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6227 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6228 rld[r].when_needed, rld[r].in,
6229 rld[r].out, r, 1)))
6230 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6231 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6232 /* Look first for regs to share, then for unshared. But
6233 don't share regs used for inherited reloads; they are
6234 the ones we want to preserve. */
6235 && (pass
6236 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6237 regnum)
6238 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6239 regnum))))
6241 int nr = hard_regno_nregs[regnum][rld[r].mode];
6243 /* During the second pass we want to avoid reload registers
6244 which are "bad" for this reload. */
6245 if (pass == 1
6246 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6247 continue;
6249 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6250 (on 68000) got us two FP regs. If NR is 1,
6251 we would reject both of them. */
6252 if (force_group)
6253 nr = rld[r].nregs;
6254 /* If we need only one reg, we have already won. */
6255 if (nr == 1)
6257 /* But reject a single reg if we demand a group. */
6258 if (force_group)
6259 continue;
6260 break;
6262 /* Otherwise check that as many consecutive regs as we need
6263 are available here. */
6264 while (nr > 1)
6266 int regno = regnum + nr - 1;
6267 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6268 && spill_reg_order[regno] >= 0
6269 && reload_reg_free_p (regno, rld[r].opnum,
6270 rld[r].when_needed)))
6271 break;
6272 nr--;
6274 if (nr == 1)
6275 break;
6279 /* If we found something on the current pass, omit later passes. */
6280 if (count < n_spills)
6281 break;
6284 /* We should have found a spill register by now. */
6285 if (count >= n_spills)
6286 return 0;
6288 /* I is the index in SPILL_REG_RTX of the reload register we are to
6289 allocate. Get an rtx for it and find its register number. */
6291 return set_reload_reg (i, r);
6294 /* Initialize all the tables needed to allocate reload registers.
6295 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6296 is the array we use to restore the reg_rtx field for every reload. */
6298 static void
6299 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6301 int i;
6303 for (i = 0; i < n_reloads; i++)
6304 rld[i].reg_rtx = save_reload_reg_rtx[i];
6306 memset (reload_inherited, 0, MAX_RELOADS);
6307 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6308 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6310 CLEAR_HARD_REG_SET (reload_reg_used);
6311 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6312 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6313 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6314 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6315 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6317 CLEAR_HARD_REG_SET (reg_used_in_insn);
6319 HARD_REG_SET tmp;
6320 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6321 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6322 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6323 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6324 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6325 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6328 for (i = 0; i < reload_n_operands; i++)
6330 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6331 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6332 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6333 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6334 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6335 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6338 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6340 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6342 for (i = 0; i < n_reloads; i++)
6343 /* If we have already decided to use a certain register,
6344 don't use it in another way. */
6345 if (rld[i].reg_rtx)
6346 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6347 rld[i].when_needed, rld[i].mode);
6350 #ifdef SECONDARY_MEMORY_NEEDED
6351 /* If X is not a subreg, return it unmodified. If it is a subreg,
6352 look up whether we made a replacement for the SUBREG_REG. Return
6353 either the replacement or the SUBREG_REG. */
6355 static rtx
6356 replaced_subreg (rtx x)
6358 if (GET_CODE (x) == SUBREG)
6359 return find_replacement (&SUBREG_REG (x));
6360 return x;
6362 #endif
6364 /* Assign hard reg targets for the pseudo-registers we must reload
6365 into hard regs for this insn.
6366 Also output the instructions to copy them in and out of the hard regs.
6368 For machines with register classes, we are responsible for
6369 finding a reload reg in the proper class. */
6371 static void
6372 choose_reload_regs (struct insn_chain *chain)
6374 rtx insn = chain->insn;
6375 int i, j;
6376 unsigned int max_group_size = 1;
6377 enum reg_class group_class = NO_REGS;
6378 int pass, win, inheritance;
6380 rtx save_reload_reg_rtx[MAX_RELOADS];
6382 /* In order to be certain of getting the registers we need,
6383 we must sort the reloads into order of increasing register class.
6384 Then our grabbing of reload registers will parallel the process
6385 that provided the reload registers.
6387 Also note whether any of the reloads wants a consecutive group of regs.
6388 If so, record the maximum size of the group desired and what
6389 register class contains all the groups needed by this insn. */
6391 for (j = 0; j < n_reloads; j++)
6393 reload_order[j] = j;
6394 if (rld[j].reg_rtx != NULL_RTX)
6396 gcc_assert (REG_P (rld[j].reg_rtx)
6397 && HARD_REGISTER_P (rld[j].reg_rtx));
6398 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6400 else
6401 reload_spill_index[j] = -1;
6403 if (rld[j].nregs > 1)
6405 max_group_size = MAX (rld[j].nregs, max_group_size);
6406 group_class
6407 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6410 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6413 if (n_reloads > 1)
6414 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6416 /* If -O, try first with inheritance, then turning it off.
6417 If not -O, don't do inheritance.
6418 Using inheritance when not optimizing leads to paradoxes
6419 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6420 because one side of the comparison might be inherited. */
6421 win = 0;
6422 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6424 choose_reload_regs_init (chain, save_reload_reg_rtx);
6426 /* Process the reloads in order of preference just found.
6427 Beyond this point, subregs can be found in reload_reg_rtx.
6429 This used to look for an existing reloaded home for all of the
6430 reloads, and only then perform any new reloads. But that could lose
6431 if the reloads were done out of reg-class order because a later
6432 reload with a looser constraint might have an old home in a register
6433 needed by an earlier reload with a tighter constraint.
6435 To solve this, we make two passes over the reloads, in the order
6436 described above. In the first pass we try to inherit a reload
6437 from a previous insn. If there is a later reload that needs a
6438 class that is a proper subset of the class being processed, we must
6439 also allocate a spill register during the first pass.
6441 Then make a second pass over the reloads to allocate any reloads
6442 that haven't been given registers yet. */
6444 for (j = 0; j < n_reloads; j++)
6446 int r = reload_order[j];
6447 rtx search_equiv = NULL_RTX;
6449 /* Ignore reloads that got marked inoperative. */
6450 if (rld[r].out == 0 && rld[r].in == 0
6451 && ! rld[r].secondary_p)
6452 continue;
6454 /* If find_reloads chose to use reload_in or reload_out as a reload
6455 register, we don't need to chose one. Otherwise, try even if it
6456 found one since we might save an insn if we find the value lying
6457 around.
6458 Try also when reload_in is a pseudo without a hard reg. */
6459 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6460 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6461 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6462 && !MEM_P (rld[r].in)
6463 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6464 continue;
6466 #if 0 /* No longer needed for correct operation.
6467 It might give better code, or might not; worth an experiment? */
6468 /* If this is an optional reload, we can't inherit from earlier insns
6469 until we are sure that any non-optional reloads have been allocated.
6470 The following code takes advantage of the fact that optional reloads
6471 are at the end of reload_order. */
6472 if (rld[r].optional != 0)
6473 for (i = 0; i < j; i++)
6474 if ((rld[reload_order[i]].out != 0
6475 || rld[reload_order[i]].in != 0
6476 || rld[reload_order[i]].secondary_p)
6477 && ! rld[reload_order[i]].optional
6478 && rld[reload_order[i]].reg_rtx == 0)
6479 allocate_reload_reg (chain, reload_order[i], 0);
6480 #endif
6482 /* First see if this pseudo is already available as reloaded
6483 for a previous insn. We cannot try to inherit for reloads
6484 that are smaller than the maximum number of registers needed
6485 for groups unless the register we would allocate cannot be used
6486 for the groups.
6488 We could check here to see if this is a secondary reload for
6489 an object that is already in a register of the desired class.
6490 This would avoid the need for the secondary reload register.
6491 But this is complex because we can't easily determine what
6492 objects might want to be loaded via this reload. So let a
6493 register be allocated here. In `emit_reload_insns' we suppress
6494 one of the loads in the case described above. */
6496 if (inheritance)
6498 int byte = 0;
6499 int regno = -1;
6500 enum machine_mode mode = VOIDmode;
6502 if (rld[r].in == 0)
6504 else if (REG_P (rld[r].in))
6506 regno = REGNO (rld[r].in);
6507 mode = GET_MODE (rld[r].in);
6509 else if (REG_P (rld[r].in_reg))
6511 regno = REGNO (rld[r].in_reg);
6512 mode = GET_MODE (rld[r].in_reg);
6514 else if (GET_CODE (rld[r].in_reg) == SUBREG
6515 && REG_P (SUBREG_REG (rld[r].in_reg)))
6517 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6518 if (regno < FIRST_PSEUDO_REGISTER)
6519 regno = subreg_regno (rld[r].in_reg);
6520 else
6521 byte = SUBREG_BYTE (rld[r].in_reg);
6522 mode = GET_MODE (rld[r].in_reg);
6524 #ifdef AUTO_INC_DEC
6525 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6526 && REG_P (XEXP (rld[r].in_reg, 0)))
6528 regno = REGNO (XEXP (rld[r].in_reg, 0));
6529 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6530 rld[r].out = rld[r].in;
6532 #endif
6533 #if 0
6534 /* This won't work, since REGNO can be a pseudo reg number.
6535 Also, it takes much more hair to keep track of all the things
6536 that can invalidate an inherited reload of part of a pseudoreg. */
6537 else if (GET_CODE (rld[r].in) == SUBREG
6538 && REG_P (SUBREG_REG (rld[r].in)))
6539 regno = subreg_regno (rld[r].in);
6540 #endif
6542 if (regno >= 0
6543 && reg_last_reload_reg[regno] != 0
6544 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6545 >= GET_MODE_SIZE (mode) + byte)
6546 #ifdef CANNOT_CHANGE_MODE_CLASS
6547 /* Verify that the register it's in can be used in
6548 mode MODE. */
6549 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6550 GET_MODE (reg_last_reload_reg[regno]),
6551 mode)
6552 #endif
6555 enum reg_class rclass = rld[r].rclass, last_class;
6556 rtx last_reg = reg_last_reload_reg[regno];
6558 i = REGNO (last_reg);
6559 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6560 last_class = REGNO_REG_CLASS (i);
6562 if (reg_reloaded_contents[i] == regno
6563 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6564 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6565 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6566 /* Even if we can't use this register as a reload
6567 register, we might use it for reload_override_in,
6568 if copying it to the desired class is cheap
6569 enough. */
6570 || ((register_move_cost (mode, last_class, rclass)
6571 < memory_move_cost (mode, rclass, true))
6572 && (secondary_reload_class (1, rclass, mode,
6573 last_reg)
6574 == NO_REGS)
6575 #ifdef SECONDARY_MEMORY_NEEDED
6576 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6577 mode)
6578 #endif
6581 && (rld[r].nregs == max_group_size
6582 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6584 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6585 rld[r].when_needed, rld[r].in,
6586 const0_rtx, r, 1))
6588 /* If a group is needed, verify that all the subsequent
6589 registers still have their values intact. */
6590 int nr = hard_regno_nregs[i][rld[r].mode];
6591 int k;
6593 for (k = 1; k < nr; k++)
6594 if (reg_reloaded_contents[i + k] != regno
6595 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6596 break;
6598 if (k == nr)
6600 int i1;
6601 int bad_for_class;
6603 last_reg = (GET_MODE (last_reg) == mode
6604 ? last_reg : gen_rtx_REG (mode, i));
6606 bad_for_class = 0;
6607 for (k = 0; k < nr; k++)
6608 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6609 i+k);
6611 /* We found a register that contains the
6612 value we need. If this register is the
6613 same as an `earlyclobber' operand of the
6614 current insn, just mark it as a place to
6615 reload from since we can't use it as the
6616 reload register itself. */
6618 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6619 if (reg_overlap_mentioned_for_reload_p
6620 (reg_last_reload_reg[regno],
6621 reload_earlyclobbers[i1]))
6622 break;
6624 if (i1 != n_earlyclobbers
6625 || ! (free_for_value_p (i, rld[r].mode,
6626 rld[r].opnum,
6627 rld[r].when_needed, rld[r].in,
6628 rld[r].out, r, 1))
6629 /* Don't use it if we'd clobber a pseudo reg. */
6630 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6631 && rld[r].out
6632 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6633 /* Don't clobber the frame pointer. */
6634 || (i == HARD_FRAME_POINTER_REGNUM
6635 && frame_pointer_needed
6636 && rld[r].out)
6637 /* Don't really use the inherited spill reg
6638 if we need it wider than we've got it. */
6639 || (GET_MODE_SIZE (rld[r].mode)
6640 > GET_MODE_SIZE (mode))
6641 || bad_for_class
6643 /* If find_reloads chose reload_out as reload
6644 register, stay with it - that leaves the
6645 inherited register for subsequent reloads. */
6646 || (rld[r].out && rld[r].reg_rtx
6647 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6649 if (! rld[r].optional)
6651 reload_override_in[r] = last_reg;
6652 reload_inheritance_insn[r]
6653 = reg_reloaded_insn[i];
6656 else
6658 int k;
6659 /* We can use this as a reload reg. */
6660 /* Mark the register as in use for this part of
6661 the insn. */
6662 mark_reload_reg_in_use (i,
6663 rld[r].opnum,
6664 rld[r].when_needed,
6665 rld[r].mode);
6666 rld[r].reg_rtx = last_reg;
6667 reload_inherited[r] = 1;
6668 reload_inheritance_insn[r]
6669 = reg_reloaded_insn[i];
6670 reload_spill_index[r] = i;
6671 for (k = 0; k < nr; k++)
6672 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6673 i + k);
6680 /* Here's another way to see if the value is already lying around. */
6681 if (inheritance
6682 && rld[r].in != 0
6683 && ! reload_inherited[r]
6684 && rld[r].out == 0
6685 && (CONSTANT_P (rld[r].in)
6686 || GET_CODE (rld[r].in) == PLUS
6687 || REG_P (rld[r].in)
6688 || MEM_P (rld[r].in))
6689 && (rld[r].nregs == max_group_size
6690 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6691 search_equiv = rld[r].in;
6693 if (search_equiv)
6695 rtx equiv
6696 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6697 -1, NULL, 0, rld[r].mode);
6698 int regno = 0;
6700 if (equiv != 0)
6702 if (REG_P (equiv))
6703 regno = REGNO (equiv);
6704 else
6706 /* This must be a SUBREG of a hard register.
6707 Make a new REG since this might be used in an
6708 address and not all machines support SUBREGs
6709 there. */
6710 gcc_assert (GET_CODE (equiv) == SUBREG);
6711 regno = subreg_regno (equiv);
6712 equiv = gen_rtx_REG (rld[r].mode, regno);
6713 /* If we choose EQUIV as the reload register, but the
6714 loop below decides to cancel the inheritance, we'll
6715 end up reloading EQUIV in rld[r].mode, not the mode
6716 it had originally. That isn't safe when EQUIV isn't
6717 available as a spill register since its value might
6718 still be live at this point. */
6719 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6720 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6721 equiv = 0;
6725 /* If we found a spill reg, reject it unless it is free
6726 and of the desired class. */
6727 if (equiv != 0)
6729 int regs_used = 0;
6730 int bad_for_class = 0;
6731 int max_regno = regno + rld[r].nregs;
6733 for (i = regno; i < max_regno; i++)
6735 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6737 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6741 if ((regs_used
6742 && ! free_for_value_p (regno, rld[r].mode,
6743 rld[r].opnum, rld[r].when_needed,
6744 rld[r].in, rld[r].out, r, 1))
6745 || bad_for_class)
6746 equiv = 0;
6749 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6750 equiv = 0;
6752 /* We found a register that contains the value we need.
6753 If this register is the same as an `earlyclobber' operand
6754 of the current insn, just mark it as a place to reload from
6755 since we can't use it as the reload register itself. */
6757 if (equiv != 0)
6758 for (i = 0; i < n_earlyclobbers; i++)
6759 if (reg_overlap_mentioned_for_reload_p (equiv,
6760 reload_earlyclobbers[i]))
6762 if (! rld[r].optional)
6763 reload_override_in[r] = equiv;
6764 equiv = 0;
6765 break;
6768 /* If the equiv register we have found is explicitly clobbered
6769 in the current insn, it depends on the reload type if we
6770 can use it, use it for reload_override_in, or not at all.
6771 In particular, we then can't use EQUIV for a
6772 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6774 if (equiv != 0)
6776 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6777 switch (rld[r].when_needed)
6779 case RELOAD_FOR_OTHER_ADDRESS:
6780 case RELOAD_FOR_INPADDR_ADDRESS:
6781 case RELOAD_FOR_INPUT_ADDRESS:
6782 case RELOAD_FOR_OPADDR_ADDR:
6783 break;
6784 case RELOAD_OTHER:
6785 case RELOAD_FOR_INPUT:
6786 case RELOAD_FOR_OPERAND_ADDRESS:
6787 if (! rld[r].optional)
6788 reload_override_in[r] = equiv;
6789 /* Fall through. */
6790 default:
6791 equiv = 0;
6792 break;
6794 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6795 switch (rld[r].when_needed)
6797 case RELOAD_FOR_OTHER_ADDRESS:
6798 case RELOAD_FOR_INPADDR_ADDRESS:
6799 case RELOAD_FOR_INPUT_ADDRESS:
6800 case RELOAD_FOR_OPADDR_ADDR:
6801 case RELOAD_FOR_OPERAND_ADDRESS:
6802 case RELOAD_FOR_INPUT:
6803 break;
6804 case RELOAD_OTHER:
6805 if (! rld[r].optional)
6806 reload_override_in[r] = equiv;
6807 /* Fall through. */
6808 default:
6809 equiv = 0;
6810 break;
6814 /* If we found an equivalent reg, say no code need be generated
6815 to load it, and use it as our reload reg. */
6816 if (equiv != 0
6817 && (regno != HARD_FRAME_POINTER_REGNUM
6818 || !frame_pointer_needed))
6820 int nr = hard_regno_nregs[regno][rld[r].mode];
6821 int k;
6822 rld[r].reg_rtx = equiv;
6823 reload_spill_index[r] = regno;
6824 reload_inherited[r] = 1;
6826 /* If reg_reloaded_valid is not set for this register,
6827 there might be a stale spill_reg_store lying around.
6828 We must clear it, since otherwise emit_reload_insns
6829 might delete the store. */
6830 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6831 spill_reg_store[regno] = NULL_RTX;
6832 /* If any of the hard registers in EQUIV are spill
6833 registers, mark them as in use for this insn. */
6834 for (k = 0; k < nr; k++)
6836 i = spill_reg_order[regno + k];
6837 if (i >= 0)
6839 mark_reload_reg_in_use (regno, rld[r].opnum,
6840 rld[r].when_needed,
6841 rld[r].mode);
6842 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6843 regno + k);
6849 /* If we found a register to use already, or if this is an optional
6850 reload, we are done. */
6851 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6852 continue;
6854 #if 0
6855 /* No longer needed for correct operation. Might or might
6856 not give better code on the average. Want to experiment? */
6858 /* See if there is a later reload that has a class different from our
6859 class that intersects our class or that requires less register
6860 than our reload. If so, we must allocate a register to this
6861 reload now, since that reload might inherit a previous reload
6862 and take the only available register in our class. Don't do this
6863 for optional reloads since they will force all previous reloads
6864 to be allocated. Also don't do this for reloads that have been
6865 turned off. */
6867 for (i = j + 1; i < n_reloads; i++)
6869 int s = reload_order[i];
6871 if ((rld[s].in == 0 && rld[s].out == 0
6872 && ! rld[s].secondary_p)
6873 || rld[s].optional)
6874 continue;
6876 if ((rld[s].rclass != rld[r].rclass
6877 && reg_classes_intersect_p (rld[r].rclass,
6878 rld[s].rclass))
6879 || rld[s].nregs < rld[r].nregs)
6880 break;
6883 if (i == n_reloads)
6884 continue;
6886 allocate_reload_reg (chain, r, j == n_reloads - 1);
6887 #endif
6890 /* Now allocate reload registers for anything non-optional that
6891 didn't get one yet. */
6892 for (j = 0; j < n_reloads; j++)
6894 int r = reload_order[j];
6896 /* Ignore reloads that got marked inoperative. */
6897 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6898 continue;
6900 /* Skip reloads that already have a register allocated or are
6901 optional. */
6902 if (rld[r].reg_rtx != 0 || rld[r].optional)
6903 continue;
6905 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6906 break;
6909 /* If that loop got all the way, we have won. */
6910 if (j == n_reloads)
6912 win = 1;
6913 break;
6916 /* Loop around and try without any inheritance. */
6919 if (! win)
6921 /* First undo everything done by the failed attempt
6922 to allocate with inheritance. */
6923 choose_reload_regs_init (chain, save_reload_reg_rtx);
6925 /* Some sanity tests to verify that the reloads found in the first
6926 pass are identical to the ones we have now. */
6927 gcc_assert (chain->n_reloads == n_reloads);
6929 for (i = 0; i < n_reloads; i++)
6931 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6932 continue;
6933 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6934 for (j = 0; j < n_spills; j++)
6935 if (spill_regs[j] == chain->rld[i].regno)
6936 if (! set_reload_reg (j, i))
6937 failed_reload (chain->insn, i);
6941 /* If we thought we could inherit a reload, because it seemed that
6942 nothing else wanted the same reload register earlier in the insn,
6943 verify that assumption, now that all reloads have been assigned.
6944 Likewise for reloads where reload_override_in has been set. */
6946 /* If doing expensive optimizations, do one preliminary pass that doesn't
6947 cancel any inheritance, but removes reloads that have been needed only
6948 for reloads that we know can be inherited. */
6949 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6951 for (j = 0; j < n_reloads; j++)
6953 int r = reload_order[j];
6954 rtx check_reg;
6955 #ifdef SECONDARY_MEMORY_NEEDED
6956 rtx tem;
6957 #endif
6958 if (reload_inherited[r] && rld[r].reg_rtx)
6959 check_reg = rld[r].reg_rtx;
6960 else if (reload_override_in[r]
6961 && (REG_P (reload_override_in[r])
6962 || GET_CODE (reload_override_in[r]) == SUBREG))
6963 check_reg = reload_override_in[r];
6964 else
6965 continue;
6966 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6967 rld[r].opnum, rld[r].when_needed, rld[r].in,
6968 (reload_inherited[r]
6969 ? rld[r].out : const0_rtx),
6970 r, 1))
6972 if (pass)
6973 continue;
6974 reload_inherited[r] = 0;
6975 reload_override_in[r] = 0;
6977 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6978 reload_override_in, then we do not need its related
6979 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6980 likewise for other reload types.
6981 We handle this by removing a reload when its only replacement
6982 is mentioned in reload_in of the reload we are going to inherit.
6983 A special case are auto_inc expressions; even if the input is
6984 inherited, we still need the address for the output. We can
6985 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6986 If we succeeded removing some reload and we are doing a preliminary
6987 pass just to remove such reloads, make another pass, since the
6988 removal of one reload might allow us to inherit another one. */
6989 else if (rld[r].in
6990 && rld[r].out != rld[r].in
6991 && remove_address_replacements (rld[r].in))
6993 if (pass)
6994 pass = 2;
6996 #ifdef SECONDARY_MEMORY_NEEDED
6997 /* If we needed a memory location for the reload, we also have to
6998 remove its related reloads. */
6999 else if (rld[r].in
7000 && rld[r].out != rld[r].in
7001 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7002 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7003 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem)),
7004 rld[r].rclass, rld[r].inmode)
7005 && remove_address_replacements
7006 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7007 rld[r].when_needed)))
7009 if (pass)
7010 pass = 2;
7012 #endif
7016 /* Now that reload_override_in is known valid,
7017 actually override reload_in. */
7018 for (j = 0; j < n_reloads; j++)
7019 if (reload_override_in[j])
7020 rld[j].in = reload_override_in[j];
7022 /* If this reload won't be done because it has been canceled or is
7023 optional and not inherited, clear reload_reg_rtx so other
7024 routines (such as subst_reloads) don't get confused. */
7025 for (j = 0; j < n_reloads; j++)
7026 if (rld[j].reg_rtx != 0
7027 && ((rld[j].optional && ! reload_inherited[j])
7028 || (rld[j].in == 0 && rld[j].out == 0
7029 && ! rld[j].secondary_p)))
7031 int regno = true_regnum (rld[j].reg_rtx);
7033 if (spill_reg_order[regno] >= 0)
7034 clear_reload_reg_in_use (regno, rld[j].opnum,
7035 rld[j].when_needed, rld[j].mode);
7036 rld[j].reg_rtx = 0;
7037 reload_spill_index[j] = -1;
7040 /* Record which pseudos and which spill regs have output reloads. */
7041 for (j = 0; j < n_reloads; j++)
7043 int r = reload_order[j];
7045 i = reload_spill_index[r];
7047 /* I is nonneg if this reload uses a register.
7048 If rld[r].reg_rtx is 0, this is an optional reload
7049 that we opted to ignore. */
7050 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7051 && rld[r].reg_rtx != 0)
7053 int nregno = REGNO (rld[r].out_reg);
7054 int nr = 1;
7056 if (nregno < FIRST_PSEUDO_REGISTER)
7057 nr = hard_regno_nregs[nregno][rld[r].mode];
7059 while (--nr >= 0)
7060 SET_REGNO_REG_SET (&reg_has_output_reload,
7061 nregno + nr);
7063 if (i >= 0)
7064 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7066 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7067 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7068 || rld[r].when_needed == RELOAD_FOR_INSN);
7073 /* Deallocate the reload register for reload R. This is called from
7074 remove_address_replacements. */
7076 void
7077 deallocate_reload_reg (int r)
7079 int regno;
7081 if (! rld[r].reg_rtx)
7082 return;
7083 regno = true_regnum (rld[r].reg_rtx);
7084 rld[r].reg_rtx = 0;
7085 if (spill_reg_order[regno] >= 0)
7086 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7087 rld[r].mode);
7088 reload_spill_index[r] = -1;
7091 /* These arrays are filled by emit_reload_insns and its subroutines. */
7092 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
7093 static rtx other_input_address_reload_insns = 0;
7094 static rtx other_input_reload_insns = 0;
7095 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
7096 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7097 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
7098 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
7099 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7100 static rtx operand_reload_insns = 0;
7101 static rtx other_operand_reload_insns = 0;
7102 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
7104 /* Values to be put in spill_reg_store are put here first. Instructions
7105 must only be placed here if the associated reload register reaches
7106 the end of the instruction's reload sequence. */
7107 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7108 static HARD_REG_SET reg_reloaded_died;
7110 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7111 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7112 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7113 adjusted register, and return true. Otherwise, return false. */
7114 static bool
7115 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7116 enum reg_class new_class,
7117 enum machine_mode new_mode)
7120 rtx reg;
7122 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7124 unsigned regno = REGNO (reg);
7126 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7127 continue;
7128 if (GET_MODE (reg) != new_mode)
7130 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7131 continue;
7132 if (hard_regno_nregs[regno][new_mode]
7133 > hard_regno_nregs[regno][GET_MODE (reg)])
7134 continue;
7135 reg = reload_adjust_reg_for_mode (reg, new_mode);
7137 *reload_reg = reg;
7138 return true;
7140 return false;
7143 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7144 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7145 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7146 adjusted register, and return true. Otherwise, return false. */
7147 static bool
7148 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7149 enum insn_code icode)
7152 enum reg_class new_class = scratch_reload_class (icode);
7153 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7155 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7156 new_class, new_mode);
7159 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7160 has the number J. OLD contains the value to be used as input. */
7162 static void
7163 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7164 rtx old, int j)
7166 rtx insn = chain->insn;
7167 rtx reloadreg;
7168 rtx oldequiv_reg = 0;
7169 rtx oldequiv = 0;
7170 int special = 0;
7171 enum machine_mode mode;
7172 rtx *where;
7174 /* delete_output_reload is only invoked properly if old contains
7175 the original pseudo register. Since this is replaced with a
7176 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7177 find the pseudo in RELOAD_IN_REG. */
7178 if (reload_override_in[j]
7179 && REG_P (rl->in_reg))
7181 oldequiv = old;
7182 old = rl->in_reg;
7184 if (oldequiv == 0)
7185 oldequiv = old;
7186 else if (REG_P (oldequiv))
7187 oldequiv_reg = oldequiv;
7188 else if (GET_CODE (oldequiv) == SUBREG)
7189 oldequiv_reg = SUBREG_REG (oldequiv);
7191 reloadreg = reload_reg_rtx_for_input[j];
7192 mode = GET_MODE (reloadreg);
7194 /* If we are reloading from a register that was recently stored in
7195 with an output-reload, see if we can prove there was
7196 actually no need to store the old value in it. */
7198 if (optimize && REG_P (oldequiv)
7199 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7200 && spill_reg_store[REGNO (oldequiv)]
7201 && REG_P (old)
7202 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7203 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7204 rl->out_reg)))
7205 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7207 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7208 OLDEQUIV. */
7210 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7211 oldequiv = SUBREG_REG (oldequiv);
7212 if (GET_MODE (oldequiv) != VOIDmode
7213 && mode != GET_MODE (oldequiv))
7214 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7216 /* Switch to the right place to emit the reload insns. */
7217 switch (rl->when_needed)
7219 case RELOAD_OTHER:
7220 where = &other_input_reload_insns;
7221 break;
7222 case RELOAD_FOR_INPUT:
7223 where = &input_reload_insns[rl->opnum];
7224 break;
7225 case RELOAD_FOR_INPUT_ADDRESS:
7226 where = &input_address_reload_insns[rl->opnum];
7227 break;
7228 case RELOAD_FOR_INPADDR_ADDRESS:
7229 where = &inpaddr_address_reload_insns[rl->opnum];
7230 break;
7231 case RELOAD_FOR_OUTPUT_ADDRESS:
7232 where = &output_address_reload_insns[rl->opnum];
7233 break;
7234 case RELOAD_FOR_OUTADDR_ADDRESS:
7235 where = &outaddr_address_reload_insns[rl->opnum];
7236 break;
7237 case RELOAD_FOR_OPERAND_ADDRESS:
7238 where = &operand_reload_insns;
7239 break;
7240 case RELOAD_FOR_OPADDR_ADDR:
7241 where = &other_operand_reload_insns;
7242 break;
7243 case RELOAD_FOR_OTHER_ADDRESS:
7244 where = &other_input_address_reload_insns;
7245 break;
7246 default:
7247 gcc_unreachable ();
7250 push_to_sequence (*where);
7252 /* Auto-increment addresses must be reloaded in a special way. */
7253 if (rl->out && ! rl->out_reg)
7255 /* We are not going to bother supporting the case where a
7256 incremented register can't be copied directly from
7257 OLDEQUIV since this seems highly unlikely. */
7258 gcc_assert (rl->secondary_in_reload < 0);
7260 if (reload_inherited[j])
7261 oldequiv = reloadreg;
7263 old = XEXP (rl->in_reg, 0);
7265 /* Prevent normal processing of this reload. */
7266 special = 1;
7267 /* Output a special code sequence for this case. */
7268 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7271 /* If we are reloading a pseudo-register that was set by the previous
7272 insn, see if we can get rid of that pseudo-register entirely
7273 by redirecting the previous insn into our reload register. */
7275 else if (optimize && REG_P (old)
7276 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7277 && dead_or_set_p (insn, old)
7278 /* This is unsafe if some other reload
7279 uses the same reg first. */
7280 && ! conflicts_with_override (reloadreg)
7281 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7282 rl->when_needed, old, rl->out, j, 0))
7284 rtx temp = PREV_INSN (insn);
7285 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7286 temp = PREV_INSN (temp);
7287 if (temp
7288 && NONJUMP_INSN_P (temp)
7289 && GET_CODE (PATTERN (temp)) == SET
7290 && SET_DEST (PATTERN (temp)) == old
7291 /* Make sure we can access insn_operand_constraint. */
7292 && asm_noperands (PATTERN (temp)) < 0
7293 /* This is unsafe if operand occurs more than once in current
7294 insn. Perhaps some occurrences aren't reloaded. */
7295 && count_occurrences (PATTERN (insn), old, 0) == 1)
7297 rtx old = SET_DEST (PATTERN (temp));
7298 /* Store into the reload register instead of the pseudo. */
7299 SET_DEST (PATTERN (temp)) = reloadreg;
7301 /* Verify that resulting insn is valid. */
7302 extract_insn (temp);
7303 if (constrain_operands (1))
7305 /* If the previous insn is an output reload, the source is
7306 a reload register, and its spill_reg_store entry will
7307 contain the previous destination. This is now
7308 invalid. */
7309 if (REG_P (SET_SRC (PATTERN (temp)))
7310 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7312 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7313 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7316 /* If these are the only uses of the pseudo reg,
7317 pretend for GDB it lives in the reload reg we used. */
7318 if (REG_N_DEATHS (REGNO (old)) == 1
7319 && REG_N_SETS (REGNO (old)) == 1)
7321 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7322 if (ira_conflicts_p)
7323 /* Inform IRA about the change. */
7324 ira_mark_allocation_change (REGNO (old));
7325 alter_reg (REGNO (old), -1, false);
7327 special = 1;
7329 /* Adjust any debug insns between temp and insn. */
7330 while ((temp = NEXT_INSN (temp)) != insn)
7331 if (DEBUG_INSN_P (temp))
7332 replace_rtx (PATTERN (temp), old, reloadreg);
7333 else
7334 gcc_assert (NOTE_P (temp));
7336 else
7338 SET_DEST (PATTERN (temp)) = old;
7343 /* We can't do that, so output an insn to load RELOADREG. */
7345 /* If we have a secondary reload, pick up the secondary register
7346 and icode, if any. If OLDEQUIV and OLD are different or
7347 if this is an in-out reload, recompute whether or not we
7348 still need a secondary register and what the icode should
7349 be. If we still need a secondary register and the class or
7350 icode is different, go back to reloading from OLD if using
7351 OLDEQUIV means that we got the wrong type of register. We
7352 cannot have different class or icode due to an in-out reload
7353 because we don't make such reloads when both the input and
7354 output need secondary reload registers. */
7356 if (! special && rl->secondary_in_reload >= 0)
7358 rtx second_reload_reg = 0;
7359 rtx third_reload_reg = 0;
7360 int secondary_reload = rl->secondary_in_reload;
7361 rtx real_oldequiv = oldequiv;
7362 rtx real_old = old;
7363 rtx tmp;
7364 enum insn_code icode;
7365 enum insn_code tertiary_icode = CODE_FOR_nothing;
7367 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7368 and similarly for OLD.
7369 See comments in get_secondary_reload in reload.c. */
7370 /* If it is a pseudo that cannot be replaced with its
7371 equivalent MEM, we must fall back to reload_in, which
7372 will have all the necessary substitutions registered.
7373 Likewise for a pseudo that can't be replaced with its
7374 equivalent constant.
7376 Take extra care for subregs of such pseudos. Note that
7377 we cannot use reg_equiv_mem in this case because it is
7378 not in the right mode. */
7380 tmp = oldequiv;
7381 if (GET_CODE (tmp) == SUBREG)
7382 tmp = SUBREG_REG (tmp);
7383 if (REG_P (tmp)
7384 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7385 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7386 || reg_equiv_constant (REGNO (tmp)) != 0))
7388 if (! reg_equiv_mem (REGNO (tmp))
7389 || num_not_at_initial_offset
7390 || GET_CODE (oldequiv) == SUBREG)
7391 real_oldequiv = rl->in;
7392 else
7393 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7396 tmp = old;
7397 if (GET_CODE (tmp) == SUBREG)
7398 tmp = SUBREG_REG (tmp);
7399 if (REG_P (tmp)
7400 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7401 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7402 || reg_equiv_constant (REGNO (tmp)) != 0))
7404 if (! reg_equiv_mem (REGNO (tmp))
7405 || num_not_at_initial_offset
7406 || GET_CODE (old) == SUBREG)
7407 real_old = rl->in;
7408 else
7409 real_old = reg_equiv_mem (REGNO (tmp));
7412 second_reload_reg = rld[secondary_reload].reg_rtx;
7413 if (rld[secondary_reload].secondary_in_reload >= 0)
7415 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7417 third_reload_reg = rld[tertiary_reload].reg_rtx;
7418 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7419 /* We'd have to add more code for quartary reloads. */
7420 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7422 icode = rl->secondary_in_icode;
7424 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7425 || (rl->in != 0 && rl->out != 0))
7427 secondary_reload_info sri, sri2;
7428 enum reg_class new_class, new_t_class;
7430 sri.icode = CODE_FOR_nothing;
7431 sri.prev_sri = NULL;
7432 new_class
7433 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7434 rl->rclass, mode,
7435 &sri);
7437 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7438 second_reload_reg = 0;
7439 else if (new_class == NO_REGS)
7441 if (reload_adjust_reg_for_icode (&second_reload_reg,
7442 third_reload_reg,
7443 (enum insn_code) sri.icode))
7445 icode = (enum insn_code) sri.icode;
7446 third_reload_reg = 0;
7448 else
7450 oldequiv = old;
7451 real_oldequiv = real_old;
7454 else if (sri.icode != CODE_FOR_nothing)
7455 /* We currently lack a way to express this in reloads. */
7456 gcc_unreachable ();
7457 else
7459 sri2.icode = CODE_FOR_nothing;
7460 sri2.prev_sri = &sri;
7461 new_t_class
7462 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7463 new_class, mode,
7464 &sri);
7465 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7467 if (reload_adjust_reg_for_temp (&second_reload_reg,
7468 third_reload_reg,
7469 new_class, mode))
7471 third_reload_reg = 0;
7472 tertiary_icode = (enum insn_code) sri2.icode;
7474 else
7476 oldequiv = old;
7477 real_oldequiv = real_old;
7480 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7482 rtx intermediate = second_reload_reg;
7484 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7485 new_class, mode)
7486 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7487 ((enum insn_code)
7488 sri2.icode)))
7490 second_reload_reg = intermediate;
7491 tertiary_icode = (enum insn_code) sri2.icode;
7493 else
7495 oldequiv = old;
7496 real_oldequiv = real_old;
7499 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7501 rtx intermediate = second_reload_reg;
7503 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7504 new_class, mode)
7505 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7506 new_t_class, mode))
7508 second_reload_reg = intermediate;
7509 tertiary_icode = (enum insn_code) sri2.icode;
7511 else
7513 oldequiv = old;
7514 real_oldequiv = real_old;
7517 else
7519 /* This could be handled more intelligently too. */
7520 oldequiv = old;
7521 real_oldequiv = real_old;
7526 /* If we still need a secondary reload register, check
7527 to see if it is being used as a scratch or intermediate
7528 register and generate code appropriately. If we need
7529 a scratch register, use REAL_OLDEQUIV since the form of
7530 the insn may depend on the actual address if it is
7531 a MEM. */
7533 if (second_reload_reg)
7535 if (icode != CODE_FOR_nothing)
7537 /* We'd have to add extra code to handle this case. */
7538 gcc_assert (!third_reload_reg);
7540 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7541 second_reload_reg));
7542 special = 1;
7544 else
7546 /* See if we need a scratch register to load the
7547 intermediate register (a tertiary reload). */
7548 if (tertiary_icode != CODE_FOR_nothing)
7550 emit_insn ((GEN_FCN (tertiary_icode)
7551 (second_reload_reg, real_oldequiv,
7552 third_reload_reg)));
7554 else if (third_reload_reg)
7556 gen_reload (third_reload_reg, real_oldequiv,
7557 rl->opnum,
7558 rl->when_needed);
7559 gen_reload (second_reload_reg, third_reload_reg,
7560 rl->opnum,
7561 rl->when_needed);
7563 else
7564 gen_reload (second_reload_reg, real_oldequiv,
7565 rl->opnum,
7566 rl->when_needed);
7568 oldequiv = second_reload_reg;
7573 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7575 rtx real_oldequiv = oldequiv;
7577 if ((REG_P (oldequiv)
7578 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7579 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7580 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7581 || (GET_CODE (oldequiv) == SUBREG
7582 && REG_P (SUBREG_REG (oldequiv))
7583 && (REGNO (SUBREG_REG (oldequiv))
7584 >= FIRST_PSEUDO_REGISTER)
7585 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7586 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7587 || (CONSTANT_P (oldequiv)
7588 && (targetm.preferred_reload_class (oldequiv,
7589 REGNO_REG_CLASS (REGNO (reloadreg)))
7590 == NO_REGS)))
7591 real_oldequiv = rl->in;
7592 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7593 rl->when_needed);
7596 if (cfun->can_throw_non_call_exceptions)
7597 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7599 /* End this sequence. */
7600 *where = get_insns ();
7601 end_sequence ();
7603 /* Update reload_override_in so that delete_address_reloads_1
7604 can see the actual register usage. */
7605 if (oldequiv_reg)
7606 reload_override_in[j] = oldequiv;
7609 /* Generate insns to for the output reload RL, which is for the insn described
7610 by CHAIN and has the number J. */
7611 static void
7612 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7613 int j)
7615 rtx reloadreg;
7616 rtx insn = chain->insn;
7617 int special = 0;
7618 rtx old = rl->out;
7619 enum machine_mode mode;
7620 rtx p;
7621 rtx rl_reg_rtx;
7623 if (rl->when_needed == RELOAD_OTHER)
7624 start_sequence ();
7625 else
7626 push_to_sequence (output_reload_insns[rl->opnum]);
7628 rl_reg_rtx = reload_reg_rtx_for_output[j];
7629 mode = GET_MODE (rl_reg_rtx);
7631 reloadreg = rl_reg_rtx;
7633 /* If we need two reload regs, set RELOADREG to the intermediate
7634 one, since it will be stored into OLD. We might need a secondary
7635 register only for an input reload, so check again here. */
7637 if (rl->secondary_out_reload >= 0)
7639 rtx real_old = old;
7640 int secondary_reload = rl->secondary_out_reload;
7641 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7643 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7644 && reg_equiv_mem (REGNO (old)) != 0)
7645 real_old = reg_equiv_mem (REGNO (old));
7647 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7649 rtx second_reloadreg = reloadreg;
7650 reloadreg = rld[secondary_reload].reg_rtx;
7652 /* See if RELOADREG is to be used as a scratch register
7653 or as an intermediate register. */
7654 if (rl->secondary_out_icode != CODE_FOR_nothing)
7656 /* We'd have to add extra code to handle this case. */
7657 gcc_assert (tertiary_reload < 0);
7659 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7660 (real_old, second_reloadreg, reloadreg)));
7661 special = 1;
7663 else
7665 /* See if we need both a scratch and intermediate reload
7666 register. */
7668 enum insn_code tertiary_icode
7669 = rld[secondary_reload].secondary_out_icode;
7671 /* We'd have to add more code for quartary reloads. */
7672 gcc_assert (tertiary_reload < 0
7673 || rld[tertiary_reload].secondary_out_reload < 0);
7675 if (GET_MODE (reloadreg) != mode)
7676 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7678 if (tertiary_icode != CODE_FOR_nothing)
7680 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7682 /* Copy primary reload reg to secondary reload reg.
7683 (Note that these have been swapped above, then
7684 secondary reload reg to OLD using our insn.) */
7686 /* If REAL_OLD is a paradoxical SUBREG, remove it
7687 and try to put the opposite SUBREG on
7688 RELOADREG. */
7689 strip_paradoxical_subreg (&real_old, &reloadreg);
7691 gen_reload (reloadreg, second_reloadreg,
7692 rl->opnum, rl->when_needed);
7693 emit_insn ((GEN_FCN (tertiary_icode)
7694 (real_old, reloadreg, third_reloadreg)));
7695 special = 1;
7698 else
7700 /* Copy between the reload regs here and then to
7701 OUT later. */
7703 gen_reload (reloadreg, second_reloadreg,
7704 rl->opnum, rl->when_needed);
7705 if (tertiary_reload >= 0)
7707 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7709 gen_reload (third_reloadreg, reloadreg,
7710 rl->opnum, rl->when_needed);
7711 reloadreg = third_reloadreg;
7718 /* Output the last reload insn. */
7719 if (! special)
7721 rtx set;
7723 /* Don't output the last reload if OLD is not the dest of
7724 INSN and is in the src and is clobbered by INSN. */
7725 if (! flag_expensive_optimizations
7726 || !REG_P (old)
7727 || !(set = single_set (insn))
7728 || rtx_equal_p (old, SET_DEST (set))
7729 || !reg_mentioned_p (old, SET_SRC (set))
7730 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7731 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7732 gen_reload (old, reloadreg, rl->opnum,
7733 rl->when_needed);
7736 /* Look at all insns we emitted, just to be safe. */
7737 for (p = get_insns (); p; p = NEXT_INSN (p))
7738 if (INSN_P (p))
7740 rtx pat = PATTERN (p);
7742 /* If this output reload doesn't come from a spill reg,
7743 clear any memory of reloaded copies of the pseudo reg.
7744 If this output reload comes from a spill reg,
7745 reg_has_output_reload will make this do nothing. */
7746 note_stores (pat, forget_old_reloads_1, NULL);
7748 if (reg_mentioned_p (rl_reg_rtx, pat))
7750 rtx set = single_set (insn);
7751 if (reload_spill_index[j] < 0
7752 && set
7753 && SET_SRC (set) == rl_reg_rtx)
7755 int src = REGNO (SET_SRC (set));
7757 reload_spill_index[j] = src;
7758 SET_HARD_REG_BIT (reg_is_output_reload, src);
7759 if (find_regno_note (insn, REG_DEAD, src))
7760 SET_HARD_REG_BIT (reg_reloaded_died, src);
7762 if (HARD_REGISTER_P (rl_reg_rtx))
7764 int s = rl->secondary_out_reload;
7765 set = single_set (p);
7766 /* If this reload copies only to the secondary reload
7767 register, the secondary reload does the actual
7768 store. */
7769 if (s >= 0 && set == NULL_RTX)
7770 /* We can't tell what function the secondary reload
7771 has and where the actual store to the pseudo is
7772 made; leave new_spill_reg_store alone. */
7774 else if (s >= 0
7775 && SET_SRC (set) == rl_reg_rtx
7776 && SET_DEST (set) == rld[s].reg_rtx)
7778 /* Usually the next instruction will be the
7779 secondary reload insn; if we can confirm
7780 that it is, setting new_spill_reg_store to
7781 that insn will allow an extra optimization. */
7782 rtx s_reg = rld[s].reg_rtx;
7783 rtx next = NEXT_INSN (p);
7784 rld[s].out = rl->out;
7785 rld[s].out_reg = rl->out_reg;
7786 set = single_set (next);
7787 if (set && SET_SRC (set) == s_reg
7788 && reload_reg_rtx_reaches_end_p (s_reg, s))
7790 SET_HARD_REG_BIT (reg_is_output_reload,
7791 REGNO (s_reg));
7792 new_spill_reg_store[REGNO (s_reg)] = next;
7795 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7796 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7801 if (rl->when_needed == RELOAD_OTHER)
7803 emit_insn (other_output_reload_insns[rl->opnum]);
7804 other_output_reload_insns[rl->opnum] = get_insns ();
7806 else
7807 output_reload_insns[rl->opnum] = get_insns ();
7809 if (cfun->can_throw_non_call_exceptions)
7810 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7812 end_sequence ();
7815 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7816 and has the number J. */
7817 static void
7818 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7820 rtx insn = chain->insn;
7821 rtx old = (rl->in && MEM_P (rl->in)
7822 ? rl->in_reg : rl->in);
7823 rtx reg_rtx = rl->reg_rtx;
7825 if (old && reg_rtx)
7827 enum machine_mode mode;
7829 /* Determine the mode to reload in.
7830 This is very tricky because we have three to choose from.
7831 There is the mode the insn operand wants (rl->inmode).
7832 There is the mode of the reload register RELOADREG.
7833 There is the intrinsic mode of the operand, which we could find
7834 by stripping some SUBREGs.
7835 It turns out that RELOADREG's mode is irrelevant:
7836 we can change that arbitrarily.
7838 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7839 then the reload reg may not support QImode moves, so use SImode.
7840 If foo is in memory due to spilling a pseudo reg, this is safe,
7841 because the QImode value is in the least significant part of a
7842 slot big enough for a SImode. If foo is some other sort of
7843 memory reference, then it is impossible to reload this case,
7844 so previous passes had better make sure this never happens.
7846 Then consider a one-word union which has SImode and one of its
7847 members is a float, being fetched as (SUBREG:SF union:SI).
7848 We must fetch that as SFmode because we could be loading into
7849 a float-only register. In this case OLD's mode is correct.
7851 Consider an immediate integer: it has VOIDmode. Here we need
7852 to get a mode from something else.
7854 In some cases, there is a fourth mode, the operand's
7855 containing mode. If the insn specifies a containing mode for
7856 this operand, it overrides all others.
7858 I am not sure whether the algorithm here is always right,
7859 but it does the right things in those cases. */
7861 mode = GET_MODE (old);
7862 if (mode == VOIDmode)
7863 mode = rl->inmode;
7865 /* We cannot use gen_lowpart_common since it can do the wrong thing
7866 when REG_RTX has a multi-word mode. Note that REG_RTX must
7867 always be a REG here. */
7868 if (GET_MODE (reg_rtx) != mode)
7869 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7871 reload_reg_rtx_for_input[j] = reg_rtx;
7873 if (old != 0
7874 /* AUTO_INC reloads need to be handled even if inherited. We got an
7875 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7876 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7877 && ! rtx_equal_p (reg_rtx, old)
7878 && reg_rtx != 0)
7879 emit_input_reload_insns (chain, rld + j, old, j);
7881 /* When inheriting a wider reload, we have a MEM in rl->in,
7882 e.g. inheriting a SImode output reload for
7883 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7884 if (optimize && reload_inherited[j] && rl->in
7885 && MEM_P (rl->in)
7886 && MEM_P (rl->in_reg)
7887 && reload_spill_index[j] >= 0
7888 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7889 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7891 /* If we are reloading a register that was recently stored in with an
7892 output-reload, see if we can prove there was
7893 actually no need to store the old value in it. */
7895 if (optimize
7896 && (reload_inherited[j] || reload_override_in[j])
7897 && reg_rtx
7898 && REG_P (reg_rtx)
7899 && spill_reg_store[REGNO (reg_rtx)] != 0
7900 #if 0
7901 /* There doesn't seem to be any reason to restrict this to pseudos
7902 and doing so loses in the case where we are copying from a
7903 register of the wrong class. */
7904 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7905 #endif
7906 /* The insn might have already some references to stackslots
7907 replaced by MEMs, while reload_out_reg still names the
7908 original pseudo. */
7909 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7910 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7911 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7914 /* Do output reloading for reload RL, which is for the insn described by
7915 CHAIN and has the number J.
7916 ??? At some point we need to support handling output reloads of
7917 JUMP_INSNs or insns that set cc0. */
7918 static void
7919 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7921 rtx note, old;
7922 rtx insn = chain->insn;
7923 /* If this is an output reload that stores something that is
7924 not loaded in this same reload, see if we can eliminate a previous
7925 store. */
7926 rtx pseudo = rl->out_reg;
7927 rtx reg_rtx = rl->reg_rtx;
7929 if (rl->out && reg_rtx)
7931 enum machine_mode mode;
7933 /* Determine the mode to reload in.
7934 See comments above (for input reloading). */
7935 mode = GET_MODE (rl->out);
7936 if (mode == VOIDmode)
7938 /* VOIDmode should never happen for an output. */
7939 if (asm_noperands (PATTERN (insn)) < 0)
7940 /* It's the compiler's fault. */
7941 fatal_insn ("VOIDmode on an output", insn);
7942 error_for_asm (insn, "output operand is constant in %<asm%>");
7943 /* Prevent crash--use something we know is valid. */
7944 mode = word_mode;
7945 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7947 if (GET_MODE (reg_rtx) != mode)
7948 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7950 reload_reg_rtx_for_output[j] = reg_rtx;
7952 if (pseudo
7953 && optimize
7954 && REG_P (pseudo)
7955 && ! rtx_equal_p (rl->in_reg, pseudo)
7956 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7957 && reg_last_reload_reg[REGNO (pseudo)])
7959 int pseudo_no = REGNO (pseudo);
7960 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7962 /* We don't need to test full validity of last_regno for
7963 inherit here; we only want to know if the store actually
7964 matches the pseudo. */
7965 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7966 && reg_reloaded_contents[last_regno] == pseudo_no
7967 && spill_reg_store[last_regno]
7968 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7969 delete_output_reload (insn, j, last_regno, reg_rtx);
7972 old = rl->out_reg;
7973 if (old == 0
7974 || reg_rtx == 0
7975 || rtx_equal_p (old, reg_rtx))
7976 return;
7978 /* An output operand that dies right away does need a reload,
7979 but need not be copied from it. Show the new location in the
7980 REG_UNUSED note. */
7981 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7982 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7984 XEXP (note, 0) = reg_rtx;
7985 return;
7987 /* Likewise for a SUBREG of an operand that dies. */
7988 else if (GET_CODE (old) == SUBREG
7989 && REG_P (SUBREG_REG (old))
7990 && 0 != (note = find_reg_note (insn, REG_UNUSED,
7991 SUBREG_REG (old))))
7993 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
7994 return;
7996 else if (GET_CODE (old) == SCRATCH)
7997 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7998 but we don't want to make an output reload. */
7999 return;
8001 /* If is a JUMP_INSN, we can't support output reloads yet. */
8002 gcc_assert (NONJUMP_INSN_P (insn));
8004 emit_output_reload_insns (chain, rld + j, j);
8007 /* A reload copies values of MODE from register SRC to register DEST.
8008 Return true if it can be treated for inheritance purposes like a
8009 group of reloads, each one reloading a single hard register. The
8010 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8011 occupy the same number of hard registers. */
8013 static bool
8014 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8015 int src ATTRIBUTE_UNUSED,
8016 enum machine_mode mode ATTRIBUTE_UNUSED)
8018 #ifdef CANNOT_CHANGE_MODE_CLASS
8019 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8020 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8021 #else
8022 return true;
8023 #endif
8026 /* Output insns to reload values in and out of the chosen reload regs. */
8028 static void
8029 emit_reload_insns (struct insn_chain *chain)
8031 rtx insn = chain->insn;
8033 int j;
8035 CLEAR_HARD_REG_SET (reg_reloaded_died);
8037 for (j = 0; j < reload_n_operands; j++)
8038 input_reload_insns[j] = input_address_reload_insns[j]
8039 = inpaddr_address_reload_insns[j]
8040 = output_reload_insns[j] = output_address_reload_insns[j]
8041 = outaddr_address_reload_insns[j]
8042 = other_output_reload_insns[j] = 0;
8043 other_input_address_reload_insns = 0;
8044 other_input_reload_insns = 0;
8045 operand_reload_insns = 0;
8046 other_operand_reload_insns = 0;
8048 /* Dump reloads into the dump file. */
8049 if (dump_file)
8051 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8052 debug_reload_to_stream (dump_file);
8055 for (j = 0; j < n_reloads; j++)
8056 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8058 unsigned int i;
8060 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8061 new_spill_reg_store[i] = 0;
8064 /* Now output the instructions to copy the data into and out of the
8065 reload registers. Do these in the order that the reloads were reported,
8066 since reloads of base and index registers precede reloads of operands
8067 and the operands may need the base and index registers reloaded. */
8069 for (j = 0; j < n_reloads; j++)
8071 do_input_reload (chain, rld + j, j);
8072 do_output_reload (chain, rld + j, j);
8075 /* Now write all the insns we made for reloads in the order expected by
8076 the allocation functions. Prior to the insn being reloaded, we write
8077 the following reloads:
8079 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8081 RELOAD_OTHER reloads.
8083 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8084 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8085 RELOAD_FOR_INPUT reload for the operand.
8087 RELOAD_FOR_OPADDR_ADDRS reloads.
8089 RELOAD_FOR_OPERAND_ADDRESS reloads.
8091 After the insn being reloaded, we write the following:
8093 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8094 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8095 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8096 reloads for the operand. The RELOAD_OTHER output reloads are
8097 output in descending order by reload number. */
8099 emit_insn_before (other_input_address_reload_insns, insn);
8100 emit_insn_before (other_input_reload_insns, insn);
8102 for (j = 0; j < reload_n_operands; j++)
8104 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8105 emit_insn_before (input_address_reload_insns[j], insn);
8106 emit_insn_before (input_reload_insns[j], insn);
8109 emit_insn_before (other_operand_reload_insns, insn);
8110 emit_insn_before (operand_reload_insns, insn);
8112 for (j = 0; j < reload_n_operands; j++)
8114 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8115 x = emit_insn_after (output_address_reload_insns[j], x);
8116 x = emit_insn_after (output_reload_insns[j], x);
8117 emit_insn_after (other_output_reload_insns[j], x);
8120 /* For all the spill regs newly reloaded in this instruction,
8121 record what they were reloaded from, so subsequent instructions
8122 can inherit the reloads.
8124 Update spill_reg_store for the reloads of this insn.
8125 Copy the elements that were updated in the loop above. */
8127 for (j = 0; j < n_reloads; j++)
8129 int r = reload_order[j];
8130 int i = reload_spill_index[r];
8132 /* If this is a non-inherited input reload from a pseudo, we must
8133 clear any memory of a previous store to the same pseudo. Only do
8134 something if there will not be an output reload for the pseudo
8135 being reloaded. */
8136 if (rld[r].in_reg != 0
8137 && ! (reload_inherited[r] || reload_override_in[r]))
8139 rtx reg = rld[r].in_reg;
8141 if (GET_CODE (reg) == SUBREG)
8142 reg = SUBREG_REG (reg);
8144 if (REG_P (reg)
8145 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8146 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8148 int nregno = REGNO (reg);
8150 if (reg_last_reload_reg[nregno])
8152 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8154 if (reg_reloaded_contents[last_regno] == nregno)
8155 spill_reg_store[last_regno] = 0;
8160 /* I is nonneg if this reload used a register.
8161 If rld[r].reg_rtx is 0, this is an optional reload
8162 that we opted to ignore. */
8164 if (i >= 0 && rld[r].reg_rtx != 0)
8166 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8167 int k;
8169 /* For a multi register reload, we need to check if all or part
8170 of the value lives to the end. */
8171 for (k = 0; k < nr; k++)
8172 if (reload_reg_reaches_end_p (i + k, r))
8173 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8175 /* Maybe the spill reg contains a copy of reload_out. */
8176 if (rld[r].out != 0
8177 && (REG_P (rld[r].out)
8178 || (rld[r].out_reg
8179 ? REG_P (rld[r].out_reg)
8180 /* The reload value is an auto-modification of
8181 some kind. For PRE_INC, POST_INC, PRE_DEC
8182 and POST_DEC, we record an equivalence
8183 between the reload register and the operand
8184 on the optimistic assumption that we can make
8185 the equivalence hold. reload_as_needed must
8186 then either make it hold or invalidate the
8187 equivalence.
8189 PRE_MODIFY and POST_MODIFY addresses are reloaded
8190 somewhat differently, and allowing them here leads
8191 to problems. */
8192 : (GET_CODE (rld[r].out) != POST_MODIFY
8193 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8195 rtx reg;
8197 reg = reload_reg_rtx_for_output[r];
8198 if (reload_reg_rtx_reaches_end_p (reg, r))
8200 enum machine_mode mode = GET_MODE (reg);
8201 int regno = REGNO (reg);
8202 int nregs = hard_regno_nregs[regno][mode];
8203 rtx out = (REG_P (rld[r].out)
8204 ? rld[r].out
8205 : rld[r].out_reg
8206 ? rld[r].out_reg
8207 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8208 int out_regno = REGNO (out);
8209 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8210 : hard_regno_nregs[out_regno][mode]);
8211 bool piecemeal;
8213 spill_reg_store[regno] = new_spill_reg_store[regno];
8214 spill_reg_stored_to[regno] = out;
8215 reg_last_reload_reg[out_regno] = reg;
8217 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8218 && nregs == out_nregs
8219 && inherit_piecemeal_p (out_regno, regno, mode));
8221 /* If OUT_REGNO is a hard register, it may occupy more than
8222 one register. If it does, say what is in the
8223 rest of the registers assuming that both registers
8224 agree on how many words the object takes. If not,
8225 invalidate the subsequent registers. */
8227 if (HARD_REGISTER_NUM_P (out_regno))
8228 for (k = 1; k < out_nregs; k++)
8229 reg_last_reload_reg[out_regno + k]
8230 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8232 /* Now do the inverse operation. */
8233 for (k = 0; k < nregs; k++)
8235 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8236 reg_reloaded_contents[regno + k]
8237 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8238 ? out_regno
8239 : out_regno + k);
8240 reg_reloaded_insn[regno + k] = insn;
8241 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8242 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8243 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8244 regno + k);
8245 else
8246 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8247 regno + k);
8251 /* Maybe the spill reg contains a copy of reload_in. Only do
8252 something if there will not be an output reload for
8253 the register being reloaded. */
8254 else if (rld[r].out_reg == 0
8255 && rld[r].in != 0
8256 && ((REG_P (rld[r].in)
8257 && !HARD_REGISTER_P (rld[r].in)
8258 && !REGNO_REG_SET_P (&reg_has_output_reload,
8259 REGNO (rld[r].in)))
8260 || (REG_P (rld[r].in_reg)
8261 && !REGNO_REG_SET_P (&reg_has_output_reload,
8262 REGNO (rld[r].in_reg))))
8263 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8265 rtx reg;
8267 reg = reload_reg_rtx_for_input[r];
8268 if (reload_reg_rtx_reaches_end_p (reg, r))
8270 enum machine_mode mode;
8271 int regno;
8272 int nregs;
8273 int in_regno;
8274 int in_nregs;
8275 rtx in;
8276 bool piecemeal;
8278 mode = GET_MODE (reg);
8279 regno = REGNO (reg);
8280 nregs = hard_regno_nregs[regno][mode];
8281 if (REG_P (rld[r].in)
8282 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8283 in = rld[r].in;
8284 else if (REG_P (rld[r].in_reg))
8285 in = rld[r].in_reg;
8286 else
8287 in = XEXP (rld[r].in_reg, 0);
8288 in_regno = REGNO (in);
8290 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8291 : hard_regno_nregs[in_regno][mode]);
8293 reg_last_reload_reg[in_regno] = reg;
8295 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8296 && nregs == in_nregs
8297 && inherit_piecemeal_p (regno, in_regno, mode));
8299 if (HARD_REGISTER_NUM_P (in_regno))
8300 for (k = 1; k < in_nregs; k++)
8301 reg_last_reload_reg[in_regno + k]
8302 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8304 /* Unless we inherited this reload, show we haven't
8305 recently done a store.
8306 Previous stores of inherited auto_inc expressions
8307 also have to be discarded. */
8308 if (! reload_inherited[r]
8309 || (rld[r].out && ! rld[r].out_reg))
8310 spill_reg_store[regno] = 0;
8312 for (k = 0; k < nregs; k++)
8314 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8315 reg_reloaded_contents[regno + k]
8316 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8317 ? in_regno
8318 : in_regno + k);
8319 reg_reloaded_insn[regno + k] = insn;
8320 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8321 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8322 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8323 regno + k);
8324 else
8325 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8326 regno + k);
8332 /* The following if-statement was #if 0'd in 1.34 (or before...).
8333 It's reenabled in 1.35 because supposedly nothing else
8334 deals with this problem. */
8336 /* If a register gets output-reloaded from a non-spill register,
8337 that invalidates any previous reloaded copy of it.
8338 But forget_old_reloads_1 won't get to see it, because
8339 it thinks only about the original insn. So invalidate it here.
8340 Also do the same thing for RELOAD_OTHER constraints where the
8341 output is discarded. */
8342 if (i < 0
8343 && ((rld[r].out != 0
8344 && (REG_P (rld[r].out)
8345 || (MEM_P (rld[r].out)
8346 && REG_P (rld[r].out_reg))))
8347 || (rld[r].out == 0 && rld[r].out_reg
8348 && REG_P (rld[r].out_reg))))
8350 rtx out = ((rld[r].out && REG_P (rld[r].out))
8351 ? rld[r].out : rld[r].out_reg);
8352 int out_regno = REGNO (out);
8353 enum machine_mode mode = GET_MODE (out);
8355 /* REG_RTX is now set or clobbered by the main instruction.
8356 As the comment above explains, forget_old_reloads_1 only
8357 sees the original instruction, and there is no guarantee
8358 that the original instruction also clobbered REG_RTX.
8359 For example, if find_reloads sees that the input side of
8360 a matched operand pair dies in this instruction, it may
8361 use the input register as the reload register.
8363 Calling forget_old_reloads_1 is a waste of effort if
8364 REG_RTX is also the output register.
8366 If we know that REG_RTX holds the value of a pseudo
8367 register, the code after the call will record that fact. */
8368 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8369 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8371 if (!HARD_REGISTER_NUM_P (out_regno))
8373 rtx src_reg, store_insn = NULL_RTX;
8375 reg_last_reload_reg[out_regno] = 0;
8377 /* If we can find a hard register that is stored, record
8378 the storing insn so that we may delete this insn with
8379 delete_output_reload. */
8380 src_reg = reload_reg_rtx_for_output[r];
8382 if (src_reg)
8384 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8385 store_insn = new_spill_reg_store[REGNO (src_reg)];
8386 else
8387 src_reg = NULL_RTX;
8389 else
8391 /* If this is an optional reload, try to find the
8392 source reg from an input reload. */
8393 rtx set = single_set (insn);
8394 if (set && SET_DEST (set) == rld[r].out)
8396 int k;
8398 src_reg = SET_SRC (set);
8399 store_insn = insn;
8400 for (k = 0; k < n_reloads; k++)
8402 if (rld[k].in == src_reg)
8404 src_reg = reload_reg_rtx_for_input[k];
8405 break;
8410 if (src_reg && REG_P (src_reg)
8411 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8413 int src_regno, src_nregs, k;
8414 rtx note;
8416 gcc_assert (GET_MODE (src_reg) == mode);
8417 src_regno = REGNO (src_reg);
8418 src_nregs = hard_regno_nregs[src_regno][mode];
8419 /* The place where to find a death note varies with
8420 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8421 necessarily checked exactly in the code that moves
8422 notes, so just check both locations. */
8423 note = find_regno_note (insn, REG_DEAD, src_regno);
8424 if (! note && store_insn)
8425 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8426 for (k = 0; k < src_nregs; k++)
8428 spill_reg_store[src_regno + k] = store_insn;
8429 spill_reg_stored_to[src_regno + k] = out;
8430 reg_reloaded_contents[src_regno + k] = out_regno;
8431 reg_reloaded_insn[src_regno + k] = store_insn;
8432 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8433 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8434 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8435 mode))
8436 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8437 src_regno + k);
8438 else
8439 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8440 src_regno + k);
8441 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8442 if (note)
8443 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8444 else
8445 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8447 reg_last_reload_reg[out_regno] = src_reg;
8448 /* We have to set reg_has_output_reload here, or else
8449 forget_old_reloads_1 will clear reg_last_reload_reg
8450 right away. */
8451 SET_REGNO_REG_SET (&reg_has_output_reload,
8452 out_regno);
8455 else
8457 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8459 for (k = 0; k < out_nregs; k++)
8460 reg_last_reload_reg[out_regno + k] = 0;
8464 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8467 /* Go through the motions to emit INSN and test if it is strictly valid.
8468 Return the emitted insn if valid, else return NULL. */
8470 static rtx
8471 emit_insn_if_valid_for_reload (rtx insn)
8473 rtx last = get_last_insn ();
8474 int code;
8476 insn = emit_insn (insn);
8477 code = recog_memoized (insn);
8479 if (code >= 0)
8481 extract_insn (insn);
8482 /* We want constrain operands to treat this insn strictly in its
8483 validity determination, i.e., the way it would after reload has
8484 completed. */
8485 if (constrain_operands (1))
8486 return insn;
8489 delete_insns_since (last);
8490 return NULL;
8493 /* Emit code to perform a reload from IN (which may be a reload register) to
8494 OUT (which may also be a reload register). IN or OUT is from operand
8495 OPNUM with reload type TYPE.
8497 Returns first insn emitted. */
8499 static rtx
8500 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8502 rtx last = get_last_insn ();
8503 rtx tem;
8504 #ifdef SECONDARY_MEMORY_NEEDED
8505 rtx tem1, tem2;
8506 #endif
8508 /* If IN is a paradoxical SUBREG, remove it and try to put the
8509 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8510 if (!strip_paradoxical_subreg (&in, &out))
8511 strip_paradoxical_subreg (&out, &in);
8513 /* How to do this reload can get quite tricky. Normally, we are being
8514 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8515 register that didn't get a hard register. In that case we can just
8516 call emit_move_insn.
8518 We can also be asked to reload a PLUS that adds a register or a MEM to
8519 another register, constant or MEM. This can occur during frame pointer
8520 elimination and while reloading addresses. This case is handled by
8521 trying to emit a single insn to perform the add. If it is not valid,
8522 we use a two insn sequence.
8524 Or we can be asked to reload an unary operand that was a fragment of
8525 an addressing mode, into a register. If it isn't recognized as-is,
8526 we try making the unop operand and the reload-register the same:
8527 (set reg:X (unop:X expr:Y))
8528 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8530 Finally, we could be called to handle an 'o' constraint by putting
8531 an address into a register. In that case, we first try to do this
8532 with a named pattern of "reload_load_address". If no such pattern
8533 exists, we just emit a SET insn and hope for the best (it will normally
8534 be valid on machines that use 'o').
8536 This entire process is made complex because reload will never
8537 process the insns we generate here and so we must ensure that
8538 they will fit their constraints and also by the fact that parts of
8539 IN might be being reloaded separately and replaced with spill registers.
8540 Because of this, we are, in some sense, just guessing the right approach
8541 here. The one listed above seems to work.
8543 ??? At some point, this whole thing needs to be rethought. */
8545 if (GET_CODE (in) == PLUS
8546 && (REG_P (XEXP (in, 0))
8547 || GET_CODE (XEXP (in, 0)) == SUBREG
8548 || MEM_P (XEXP (in, 0)))
8549 && (REG_P (XEXP (in, 1))
8550 || GET_CODE (XEXP (in, 1)) == SUBREG
8551 || CONSTANT_P (XEXP (in, 1))
8552 || MEM_P (XEXP (in, 1))))
8554 /* We need to compute the sum of a register or a MEM and another
8555 register, constant, or MEM, and put it into the reload
8556 register. The best possible way of doing this is if the machine
8557 has a three-operand ADD insn that accepts the required operands.
8559 The simplest approach is to try to generate such an insn and see if it
8560 is recognized and matches its constraints. If so, it can be used.
8562 It might be better not to actually emit the insn unless it is valid,
8563 but we need to pass the insn as an operand to `recog' and
8564 `extract_insn' and it is simpler to emit and then delete the insn if
8565 not valid than to dummy things up. */
8567 rtx op0, op1, tem, insn;
8568 enum insn_code code;
8570 op0 = find_replacement (&XEXP (in, 0));
8571 op1 = find_replacement (&XEXP (in, 1));
8573 /* Since constraint checking is strict, commutativity won't be
8574 checked, so we need to do that here to avoid spurious failure
8575 if the add instruction is two-address and the second operand
8576 of the add is the same as the reload reg, which is frequently
8577 the case. If the insn would be A = B + A, rearrange it so
8578 it will be A = A + B as constrain_operands expects. */
8580 if (REG_P (XEXP (in, 1))
8581 && REGNO (out) == REGNO (XEXP (in, 1)))
8582 tem = op0, op0 = op1, op1 = tem;
8584 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8585 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8587 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8588 if (insn)
8589 return insn;
8591 /* If that failed, we must use a conservative two-insn sequence.
8593 Use a move to copy one operand into the reload register. Prefer
8594 to reload a constant, MEM or pseudo since the move patterns can
8595 handle an arbitrary operand. If OP1 is not a constant, MEM or
8596 pseudo and OP1 is not a valid operand for an add instruction, then
8597 reload OP1.
8599 After reloading one of the operands into the reload register, add
8600 the reload register to the output register.
8602 If there is another way to do this for a specific machine, a
8603 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8604 we emit below. */
8606 code = optab_handler (add_optab, GET_MODE (out));
8608 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8609 || (REG_P (op1)
8610 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8611 || (code != CODE_FOR_nothing
8612 && !insn_operand_matches (code, 2, op1)))
8613 tem = op0, op0 = op1, op1 = tem;
8615 gen_reload (out, op0, opnum, type);
8617 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8618 This fixes a problem on the 32K where the stack pointer cannot
8619 be used as an operand of an add insn. */
8621 if (rtx_equal_p (op0, op1))
8622 op1 = out;
8624 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8625 if (insn)
8627 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8628 set_dst_reg_note (insn, REG_EQUIV, in, out);
8629 return insn;
8632 /* If that failed, copy the address register to the reload register.
8633 Then add the constant to the reload register. */
8635 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8636 gen_reload (out, op1, opnum, type);
8637 insn = emit_insn (gen_add2_insn (out, op0));
8638 set_dst_reg_note (insn, REG_EQUIV, in, out);
8641 #ifdef SECONDARY_MEMORY_NEEDED
8642 /* If we need a memory location to do the move, do it that way. */
8643 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8644 (REG_P (tem1) && REG_P (tem2)))
8645 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8646 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8647 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem1)),
8648 REGNO_REG_CLASS (REGNO (tem2)),
8649 GET_MODE (out)))
8651 /* Get the memory to use and rewrite both registers to its mode. */
8652 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8654 if (GET_MODE (loc) != GET_MODE (out))
8655 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8657 if (GET_MODE (loc) != GET_MODE (in))
8658 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8660 gen_reload (loc, in, opnum, type);
8661 gen_reload (out, loc, opnum, type);
8663 #endif
8664 else if (REG_P (out) && UNARY_P (in))
8666 rtx insn;
8667 rtx op1;
8668 rtx out_moded;
8669 rtx set;
8671 op1 = find_replacement (&XEXP (in, 0));
8672 if (op1 != XEXP (in, 0))
8673 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8675 /* First, try a plain SET. */
8676 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8677 if (set)
8678 return set;
8680 /* If that failed, move the inner operand to the reload
8681 register, and try the same unop with the inner expression
8682 replaced with the reload register. */
8684 if (GET_MODE (op1) != GET_MODE (out))
8685 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8686 else
8687 out_moded = out;
8689 gen_reload (out_moded, op1, opnum, type);
8691 insn
8692 = gen_rtx_SET (VOIDmode, out,
8693 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8694 out_moded));
8695 insn = emit_insn_if_valid_for_reload (insn);
8696 if (insn)
8698 set_unique_reg_note (insn, REG_EQUIV, in);
8699 return insn;
8702 fatal_insn ("failure trying to reload:", set);
8704 /* If IN is a simple operand, use gen_move_insn. */
8705 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8707 tem = emit_insn (gen_move_insn (out, in));
8708 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8709 mark_jump_label (in, tem, 0);
8712 #ifdef HAVE_reload_load_address
8713 else if (HAVE_reload_load_address)
8714 emit_insn (gen_reload_load_address (out, in));
8715 #endif
8717 /* Otherwise, just write (set OUT IN) and hope for the best. */
8718 else
8719 emit_insn (gen_rtx_SET (VOIDmode, out, in));
8721 /* Return the first insn emitted.
8722 We can not just return get_last_insn, because there may have
8723 been multiple instructions emitted. Also note that gen_move_insn may
8724 emit more than one insn itself, so we can not assume that there is one
8725 insn emitted per emit_insn_before call. */
8727 return last ? NEXT_INSN (last) : get_insns ();
8730 /* Delete a previously made output-reload whose result we now believe
8731 is not needed. First we double-check.
8733 INSN is the insn now being processed.
8734 LAST_RELOAD_REG is the hard register number for which we want to delete
8735 the last output reload.
8736 J is the reload-number that originally used REG. The caller has made
8737 certain that reload J doesn't use REG any longer for input.
8738 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8740 static void
8741 delete_output_reload (rtx insn, int j, int last_reload_reg, rtx new_reload_reg)
8743 rtx output_reload_insn = spill_reg_store[last_reload_reg];
8744 rtx reg = spill_reg_stored_to[last_reload_reg];
8745 int k;
8746 int n_occurrences;
8747 int n_inherited = 0;
8748 rtx i1;
8749 rtx substed;
8750 unsigned regno;
8751 int nregs;
8753 /* It is possible that this reload has been only used to set another reload
8754 we eliminated earlier and thus deleted this instruction too. */
8755 if (INSN_DELETED_P (output_reload_insn))
8756 return;
8758 /* Get the raw pseudo-register referred to. */
8760 while (GET_CODE (reg) == SUBREG)
8761 reg = SUBREG_REG (reg);
8762 substed = reg_equiv_memory_loc (REGNO (reg));
8764 /* This is unsafe if the operand occurs more often in the current
8765 insn than it is inherited. */
8766 for (k = n_reloads - 1; k >= 0; k--)
8768 rtx reg2 = rld[k].in;
8769 if (! reg2)
8770 continue;
8771 if (MEM_P (reg2) || reload_override_in[k])
8772 reg2 = rld[k].in_reg;
8773 #ifdef AUTO_INC_DEC
8774 if (rld[k].out && ! rld[k].out_reg)
8775 reg2 = XEXP (rld[k].in_reg, 0);
8776 #endif
8777 while (GET_CODE (reg2) == SUBREG)
8778 reg2 = SUBREG_REG (reg2);
8779 if (rtx_equal_p (reg2, reg))
8781 if (reload_inherited[k] || reload_override_in[k] || k == j)
8782 n_inherited++;
8783 else
8784 return;
8787 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8788 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8789 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8790 reg, 0);
8791 if (substed)
8792 n_occurrences += count_occurrences (PATTERN (insn),
8793 eliminate_regs (substed, VOIDmode,
8794 NULL_RTX), 0);
8795 for (i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8797 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8798 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8800 if (n_occurrences > n_inherited)
8801 return;
8803 regno = REGNO (reg);
8804 if (regno >= FIRST_PSEUDO_REGISTER)
8805 nregs = 1;
8806 else
8807 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8809 /* If the pseudo-reg we are reloading is no longer referenced
8810 anywhere between the store into it and here,
8811 and we're within the same basic block, then the value can only
8812 pass through the reload reg and end up here.
8813 Otherwise, give up--return. */
8814 for (i1 = NEXT_INSN (output_reload_insn);
8815 i1 != insn; i1 = NEXT_INSN (i1))
8817 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8818 return;
8819 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8820 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8822 /* If this is USE in front of INSN, we only have to check that
8823 there are no more references than accounted for by inheritance. */
8824 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8826 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8827 i1 = NEXT_INSN (i1);
8829 if (n_occurrences <= n_inherited && i1 == insn)
8830 break;
8831 return;
8835 /* We will be deleting the insn. Remove the spill reg information. */
8836 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8838 spill_reg_store[last_reload_reg + k] = 0;
8839 spill_reg_stored_to[last_reload_reg + k] = 0;
8842 /* The caller has already checked that REG dies or is set in INSN.
8843 It has also checked that we are optimizing, and thus some
8844 inaccuracies in the debugging information are acceptable.
8845 So we could just delete output_reload_insn. But in some cases
8846 we can improve the debugging information without sacrificing
8847 optimization - maybe even improving the code: See if the pseudo
8848 reg has been completely replaced with reload regs. If so, delete
8849 the store insn and forget we had a stack slot for the pseudo. */
8850 if (rld[j].out != rld[j].in
8851 && REG_N_DEATHS (REGNO (reg)) == 1
8852 && REG_N_SETS (REGNO (reg)) == 1
8853 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8854 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8856 rtx i2;
8858 /* We know that it was used only between here and the beginning of
8859 the current basic block. (We also know that the last use before
8860 INSN was the output reload we are thinking of deleting, but never
8861 mind that.) Search that range; see if any ref remains. */
8862 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8864 rtx set = single_set (i2);
8866 /* Uses which just store in the pseudo don't count,
8867 since if they are the only uses, they are dead. */
8868 if (set != 0 && SET_DEST (set) == reg)
8869 continue;
8870 if (LABEL_P (i2)
8871 || JUMP_P (i2))
8872 break;
8873 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8874 && reg_mentioned_p (reg, PATTERN (i2)))
8876 /* Some other ref remains; just delete the output reload we
8877 know to be dead. */
8878 delete_address_reloads (output_reload_insn, insn);
8879 delete_insn (output_reload_insn);
8880 return;
8884 /* Delete the now-dead stores into this pseudo. Note that this
8885 loop also takes care of deleting output_reload_insn. */
8886 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8888 rtx set = single_set (i2);
8890 if (set != 0 && SET_DEST (set) == reg)
8892 delete_address_reloads (i2, insn);
8893 delete_insn (i2);
8895 if (LABEL_P (i2)
8896 || JUMP_P (i2))
8897 break;
8900 /* For the debugging info, say the pseudo lives in this reload reg. */
8901 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8902 if (ira_conflicts_p)
8903 /* Inform IRA about the change. */
8904 ira_mark_allocation_change (REGNO (reg));
8905 alter_reg (REGNO (reg), -1, false);
8907 else
8909 delete_address_reloads (output_reload_insn, insn);
8910 delete_insn (output_reload_insn);
8914 /* We are going to delete DEAD_INSN. Recursively delete loads of
8915 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8916 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8917 static void
8918 delete_address_reloads (rtx dead_insn, rtx current_insn)
8920 rtx set = single_set (dead_insn);
8921 rtx set2, dst, prev, next;
8922 if (set)
8924 rtx dst = SET_DEST (set);
8925 if (MEM_P (dst))
8926 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8928 /* If we deleted the store from a reloaded post_{in,de}c expression,
8929 we can delete the matching adds. */
8930 prev = PREV_INSN (dead_insn);
8931 next = NEXT_INSN (dead_insn);
8932 if (! prev || ! next)
8933 return;
8934 set = single_set (next);
8935 set2 = single_set (prev);
8936 if (! set || ! set2
8937 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8938 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8939 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8940 return;
8941 dst = SET_DEST (set);
8942 if (! rtx_equal_p (dst, SET_DEST (set2))
8943 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8944 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8945 || (INTVAL (XEXP (SET_SRC (set), 1))
8946 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8947 return;
8948 delete_related_insns (prev);
8949 delete_related_insns (next);
8952 /* Subfunction of delete_address_reloads: process registers found in X. */
8953 static void
8954 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
8956 rtx prev, set, dst, i2;
8957 int i, j;
8958 enum rtx_code code = GET_CODE (x);
8960 if (code != REG)
8962 const char *fmt = GET_RTX_FORMAT (code);
8963 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8965 if (fmt[i] == 'e')
8966 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8967 else if (fmt[i] == 'E')
8969 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8970 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8971 current_insn);
8974 return;
8977 if (spill_reg_order[REGNO (x)] < 0)
8978 return;
8980 /* Scan backwards for the insn that sets x. This might be a way back due
8981 to inheritance. */
8982 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8984 code = GET_CODE (prev);
8985 if (code == CODE_LABEL || code == JUMP_INSN)
8986 return;
8987 if (!INSN_P (prev))
8988 continue;
8989 if (reg_set_p (x, PATTERN (prev)))
8990 break;
8991 if (reg_referenced_p (x, PATTERN (prev)))
8992 return;
8994 if (! prev || INSN_UID (prev) < reload_first_uid)
8995 return;
8996 /* Check that PREV only sets the reload register. */
8997 set = single_set (prev);
8998 if (! set)
8999 return;
9000 dst = SET_DEST (set);
9001 if (!REG_P (dst)
9002 || ! rtx_equal_p (dst, x))
9003 return;
9004 if (! reg_set_p (dst, PATTERN (dead_insn)))
9006 /* Check if DST was used in a later insn -
9007 it might have been inherited. */
9008 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9010 if (LABEL_P (i2))
9011 break;
9012 if (! INSN_P (i2))
9013 continue;
9014 if (reg_referenced_p (dst, PATTERN (i2)))
9016 /* If there is a reference to the register in the current insn,
9017 it might be loaded in a non-inherited reload. If no other
9018 reload uses it, that means the register is set before
9019 referenced. */
9020 if (i2 == current_insn)
9022 for (j = n_reloads - 1; j >= 0; j--)
9023 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9024 || reload_override_in[j] == dst)
9025 return;
9026 for (j = n_reloads - 1; j >= 0; j--)
9027 if (rld[j].in && rld[j].reg_rtx == dst)
9028 break;
9029 if (j >= 0)
9030 break;
9032 return;
9034 if (JUMP_P (i2))
9035 break;
9036 /* If DST is still live at CURRENT_INSN, check if it is used for
9037 any reload. Note that even if CURRENT_INSN sets DST, we still
9038 have to check the reloads. */
9039 if (i2 == current_insn)
9041 for (j = n_reloads - 1; j >= 0; j--)
9042 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9043 || reload_override_in[j] == dst)
9044 return;
9045 /* ??? We can't finish the loop here, because dst might be
9046 allocated to a pseudo in this block if no reload in this
9047 block needs any of the classes containing DST - see
9048 spill_hard_reg. There is no easy way to tell this, so we
9049 have to scan till the end of the basic block. */
9051 if (reg_set_p (dst, PATTERN (i2)))
9052 break;
9055 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9056 reg_reloaded_contents[REGNO (dst)] = -1;
9057 delete_insn (prev);
9060 /* Output reload-insns to reload VALUE into RELOADREG.
9061 VALUE is an autoincrement or autodecrement RTX whose operand
9062 is a register or memory location;
9063 so reloading involves incrementing that location.
9064 IN is either identical to VALUE, or some cheaper place to reload from.
9066 INC_AMOUNT is the number to increment or decrement by (always positive).
9067 This cannot be deduced from VALUE. */
9069 static void
9070 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9072 /* REG or MEM to be copied and incremented. */
9073 rtx incloc = find_replacement (&XEXP (value, 0));
9074 /* Nonzero if increment after copying. */
9075 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9076 || GET_CODE (value) == POST_MODIFY);
9077 rtx last;
9078 rtx inc;
9079 rtx add_insn;
9080 int code;
9081 rtx real_in = in == value ? incloc : in;
9083 /* No hard register is equivalent to this register after
9084 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9085 we could inc/dec that register as well (maybe even using it for
9086 the source), but I'm not sure it's worth worrying about. */
9087 if (REG_P (incloc))
9088 reg_last_reload_reg[REGNO (incloc)] = 0;
9090 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9092 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9093 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9095 else
9097 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9098 inc_amount = -inc_amount;
9100 inc = GEN_INT (inc_amount);
9103 /* If this is post-increment, first copy the location to the reload reg. */
9104 if (post && real_in != reloadreg)
9105 emit_insn (gen_move_insn (reloadreg, real_in));
9107 if (in == value)
9109 /* See if we can directly increment INCLOC. Use a method similar to
9110 that in gen_reload. */
9112 last = get_last_insn ();
9113 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
9114 gen_rtx_PLUS (GET_MODE (incloc),
9115 incloc, inc)));
9117 code = recog_memoized (add_insn);
9118 if (code >= 0)
9120 extract_insn (add_insn);
9121 if (constrain_operands (1))
9123 /* If this is a pre-increment and we have incremented the value
9124 where it lives, copy the incremented value to RELOADREG to
9125 be used as an address. */
9127 if (! post)
9128 emit_insn (gen_move_insn (reloadreg, incloc));
9129 return;
9132 delete_insns_since (last);
9135 /* If couldn't do the increment directly, must increment in RELOADREG.
9136 The way we do this depends on whether this is pre- or post-increment.
9137 For pre-increment, copy INCLOC to the reload register, increment it
9138 there, then save back. */
9140 if (! post)
9142 if (in != reloadreg)
9143 emit_insn (gen_move_insn (reloadreg, real_in));
9144 emit_insn (gen_add2_insn (reloadreg, inc));
9145 emit_insn (gen_move_insn (incloc, reloadreg));
9147 else
9149 /* Postincrement.
9150 Because this might be a jump insn or a compare, and because RELOADREG
9151 may not be available after the insn in an input reload, we must do
9152 the incrementation before the insn being reloaded for.
9154 We have already copied IN to RELOADREG. Increment the copy in
9155 RELOADREG, save that back, then decrement RELOADREG so it has
9156 the original value. */
9158 emit_insn (gen_add2_insn (reloadreg, inc));
9159 emit_insn (gen_move_insn (incloc, reloadreg));
9160 if (CONST_INT_P (inc))
9161 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL (inc))));
9162 else
9163 emit_insn (gen_sub2_insn (reloadreg, inc));
9167 #ifdef AUTO_INC_DEC
9168 static void
9169 add_auto_inc_notes (rtx insn, rtx x)
9171 enum rtx_code code = GET_CODE (x);
9172 const char *fmt;
9173 int i, j;
9175 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9177 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9178 return;
9181 /* Scan all the operand sub-expressions. */
9182 fmt = GET_RTX_FORMAT (code);
9183 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9185 if (fmt[i] == 'e')
9186 add_auto_inc_notes (insn, XEXP (x, i));
9187 else if (fmt[i] == 'E')
9188 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9189 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9192 #endif