c++: indirect change of active union member in constexpr [PR101631,PR102286]
[official-gcc.git] / gcc / lra-constraints.cc
blobd10a2a3dc5128a7d84db18cdd16a8eade98f09bf
1 /* Code for RTL transformations to satisfy insn constraints.
2 Copyright (C) 2010-2023 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file contains code for 3 passes: constraint pass,
23 inheritance/split pass, and pass for undoing failed inheritance and
24 split.
26 The major goal of constraint pass is to transform RTL to satisfy
27 insn and address constraints by:
28 o choosing insn alternatives;
29 o generating *reload insns* (or reloads in brief) and *reload
30 pseudos* which will get necessary hard registers later;
31 o substituting pseudos with equivalent values and removing the
32 instructions that initialized those pseudos.
34 The constraint pass has biggest and most complicated code in LRA.
35 There are a lot of important details like:
36 o reuse of input reload pseudos to simplify reload pseudo
37 allocations;
38 o some heuristics to choose insn alternative to improve the
39 inheritance;
40 o early clobbers etc.
42 The pass is mimicking former reload pass in alternative choosing
43 because the reload pass is oriented to current machine description
44 model. It might be changed if the machine description model is
45 changed.
47 There is special code for preventing all LRA and this pass cycling
48 in case of bugs.
50 On the first iteration of the pass we process every instruction and
51 choose an alternative for each one. On subsequent iterations we try
52 to avoid reprocessing instructions if we can be sure that the old
53 choice is still valid.
55 The inheritance/spilt pass is to transform code to achieve
56 ineheritance and live range splitting. It is done on backward
57 traversal of EBBs.
59 The inheritance optimization goal is to reuse values in hard
60 registers. There is analogous optimization in old reload pass. The
61 inheritance is achieved by following transformation:
63 reload_p1 <- p reload_p1 <- p
64 ... new_p <- reload_p1
65 ... => ...
66 reload_p2 <- p reload_p2 <- new_p
68 where p is spilled and not changed between the insns. Reload_p1 is
69 also called *original pseudo* and new_p is called *inheritance
70 pseudo*.
72 The subsequent assignment pass will try to assign the same (or
73 another if it is not possible) hard register to new_p as to
74 reload_p1 or reload_p2.
76 If the assignment pass fails to assign a hard register to new_p,
77 this file will undo the inheritance and restore the original code.
78 This is because implementing the above sequence with a spilled
79 new_p would make the code much worse. The inheritance is done in
80 EBB scope. The above is just a simplified example to get an idea
81 of the inheritance as the inheritance is also done for non-reload
82 insns.
84 Splitting (transformation) is also done in EBB scope on the same
85 pass as the inheritance:
87 r <- ... or ... <- r r <- ... or ... <- r
88 ... s <- r (new insn -- save)
89 ... =>
90 ... r <- s (new insn -- restore)
91 ... <- r ... <- r
93 The *split pseudo* s is assigned to the hard register of the
94 original pseudo or hard register r.
96 Splitting is done:
97 o In EBBs with high register pressure for global pseudos (living
98 in at least 2 BBs) and assigned to hard registers when there
99 are more one reloads needing the hard registers;
100 o for pseudos needing save/restore code around calls.
102 If the split pseudo still has the same hard register as the
103 original pseudo after the subsequent assignment pass or the
104 original pseudo was split, the opposite transformation is done on
105 the same pass for undoing inheritance. */
107 #undef REG_OK_STRICT
109 #include "config.h"
110 #include "system.h"
111 #include "coretypes.h"
112 #include "backend.h"
113 #include "hooks.h"
114 #include "target.h"
115 #include "rtl.h"
116 #include "tree.h"
117 #include "predict.h"
118 #include "df.h"
119 #include "memmodel.h"
120 #include "tm_p.h"
121 #include "expmed.h"
122 #include "optabs.h"
123 #include "regs.h"
124 #include "ira.h"
125 #include "recog.h"
126 #include "output.h"
127 #include "addresses.h"
128 #include "expr.h"
129 #include "cfgrtl.h"
130 #include "rtl-error.h"
131 #include "lra.h"
132 #include "lra-int.h"
133 #include "print-rtl.h"
134 #include "function-abi.h"
135 #include "rtl-iter.h"
137 /* Value of LRA_CURR_RELOAD_NUM at the beginning of BB of the current
138 insn. Remember that LRA_CURR_RELOAD_NUM is the number of emitted
139 reload insns. */
140 static int bb_reload_num;
142 /* The current insn being processed and corresponding its single set
143 (NULL otherwise), its data (basic block, the insn data, the insn
144 static data, and the mode of each operand). */
145 static rtx_insn *curr_insn;
146 static rtx curr_insn_set;
147 static basic_block curr_bb;
148 static lra_insn_recog_data_t curr_id;
149 static struct lra_static_insn_data *curr_static_id;
150 static machine_mode curr_operand_mode[MAX_RECOG_OPERANDS];
151 /* Mode of the register substituted by its equivalence with VOIDmode
152 (e.g. constant) and whose subreg is given operand of the current
153 insn. VOIDmode in all other cases. */
154 static machine_mode original_subreg_reg_mode[MAX_RECOG_OPERANDS];
158 /* Start numbers for new registers and insns at the current constraints
159 pass start. */
160 static int new_regno_start;
161 static int new_insn_uid_start;
163 /* If LOC is nonnull, strip any outer subreg from it. */
164 static inline rtx *
165 strip_subreg (rtx *loc)
167 return loc && GET_CODE (*loc) == SUBREG ? &SUBREG_REG (*loc) : loc;
170 /* Return hard regno of REGNO or if it is was not assigned to a hard
171 register, use a hard register from its allocno class. */
172 static int
173 get_try_hard_regno (int regno)
175 int hard_regno;
176 enum reg_class rclass;
178 if ((hard_regno = regno) >= FIRST_PSEUDO_REGISTER)
179 hard_regno = lra_get_regno_hard_regno (regno);
180 if (hard_regno >= 0)
181 return hard_regno;
182 rclass = lra_get_allocno_class (regno);
183 if (rclass == NO_REGS)
184 return -1;
185 return ira_class_hard_regs[rclass][0];
188 /* Return the hard regno of X after removing its subreg. If X is not a
189 register or a subreg of a register, return -1. If X is a pseudo, use its
190 assignment. If X is a hard regno, return the final hard regno which will be
191 after elimination. */
192 static int
193 get_hard_regno (rtx x)
195 rtx reg;
196 int hard_regno;
198 reg = x;
199 if (SUBREG_P (x))
200 reg = SUBREG_REG (x);
201 if (! REG_P (reg))
202 return -1;
203 if (! HARD_REGISTER_NUM_P (hard_regno = REGNO (reg)))
204 hard_regno = lra_get_regno_hard_regno (hard_regno);
205 if (hard_regno < 0)
206 return -1;
207 if (HARD_REGISTER_NUM_P (REGNO (reg)))
208 hard_regno = lra_get_elimination_hard_regno (hard_regno);
209 if (SUBREG_P (x))
210 hard_regno += subreg_regno_offset (hard_regno, GET_MODE (reg),
211 SUBREG_BYTE (x), GET_MODE (x));
212 return hard_regno;
215 /* If REGNO is a hard register or has been allocated a hard register,
216 return the class of that register. If REGNO is a reload pseudo
217 created by the current constraints pass, return its allocno class.
218 Return NO_REGS otherwise. */
219 static enum reg_class
220 get_reg_class (int regno)
222 int hard_regno;
224 if (! HARD_REGISTER_NUM_P (hard_regno = regno))
225 hard_regno = lra_get_regno_hard_regno (regno);
226 if (hard_regno >= 0)
228 hard_regno = lra_get_elimination_hard_regno (hard_regno);
229 return REGNO_REG_CLASS (hard_regno);
231 if (regno >= new_regno_start)
232 return lra_get_allocno_class (regno);
233 return NO_REGS;
236 /* Return true if REG_CLASS has enough allocatable hard regs to keep value of
237 REG_MODE. */
238 static bool
239 enough_allocatable_hard_regs_p (enum reg_class reg_class,
240 enum machine_mode reg_mode)
242 int i, j, hard_regno, class_size, nregs;
244 if (hard_reg_set_subset_p (reg_class_contents[reg_class], lra_no_alloc_regs))
245 return false;
246 class_size = ira_class_hard_regs_num[reg_class];
247 for (i = 0; i < class_size; i++)
249 hard_regno = ira_class_hard_regs[reg_class][i];
250 nregs = hard_regno_nregs (hard_regno, reg_mode);
251 if (nregs == 1)
252 return true;
253 for (j = 0; j < nregs; j++)
254 if (TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno + j)
255 || ! TEST_HARD_REG_BIT (reg_class_contents[reg_class],
256 hard_regno + j))
257 break;
258 if (j >= nregs)
259 return true;
261 return false;
264 /* Return true if REG satisfies (or will satisfy) reg class constraint
265 CL. Use elimination first if REG is a hard register. If REG is a
266 reload pseudo created by this constraints pass, assume that it will
267 be allocated a hard register from its allocno class, but allow that
268 class to be narrowed to CL if it is currently a superset of CL and
269 if either:
271 - ALLOW_ALL_RELOAD_CLASS_CHANGES_P is true or
272 - the instruction we're processing is not a reload move.
274 If NEW_CLASS is nonnull, set *NEW_CLASS to the new allocno class of
275 REGNO (reg), or NO_REGS if no change in its class was needed. */
276 static bool
277 in_class_p (rtx reg, enum reg_class cl, enum reg_class *new_class,
278 bool allow_all_reload_class_changes_p = false)
280 enum reg_class rclass, common_class;
281 machine_mode reg_mode;
282 rtx src;
283 int regno = REGNO (reg);
285 if (new_class != NULL)
286 *new_class = NO_REGS;
287 if (regno < FIRST_PSEUDO_REGISTER)
289 rtx final_reg = reg;
290 rtx *final_loc = &final_reg;
292 lra_eliminate_reg_if_possible (final_loc);
293 return TEST_HARD_REG_BIT (reg_class_contents[cl], REGNO (*final_loc));
295 reg_mode = GET_MODE (reg);
296 rclass = get_reg_class (regno);
297 src = curr_insn_set != NULL ? SET_SRC (curr_insn_set) : NULL;
298 if (regno < new_regno_start
299 /* Do not allow the constraints for reload instructions to
300 influence the classes of new pseudos. These reloads are
301 typically moves that have many alternatives, and restricting
302 reload pseudos for one alternative may lead to situations
303 where other reload pseudos are no longer allocatable. */
304 || (!allow_all_reload_class_changes_p
305 && INSN_UID (curr_insn) >= new_insn_uid_start
306 && src != NULL
307 && ((REG_P (src) || MEM_P (src))
308 || (GET_CODE (src) == SUBREG
309 && (REG_P (SUBREG_REG (src)) || MEM_P (SUBREG_REG (src)))))))
310 /* When we don't know what class will be used finally for reload
311 pseudos, we use ALL_REGS. */
312 return ((regno >= new_regno_start && rclass == ALL_REGS)
313 || (rclass != NO_REGS && ira_class_subset_p[rclass][cl]
314 && ! hard_reg_set_subset_p (reg_class_contents[cl],
315 lra_no_alloc_regs)));
316 else
318 common_class = ira_reg_class_subset[rclass][cl];
319 if (new_class != NULL)
320 *new_class = common_class;
321 return enough_allocatable_hard_regs_p (common_class, reg_mode);
325 /* Return true if REGNO satisfies a memory constraint. */
326 static bool
327 in_mem_p (int regno)
329 return get_reg_class (regno) == NO_REGS;
332 /* Return true if ADDR is a valid memory address for mode MODE in address
333 space AS, and check that each pseudo has the proper kind of hard
334 reg. */
335 static bool
336 valid_address_p (machine_mode mode ATTRIBUTE_UNUSED,
337 rtx addr, addr_space_t as)
339 #ifdef GO_IF_LEGITIMATE_ADDRESS
340 lra_assert (ADDR_SPACE_GENERIC_P (as));
341 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
342 return false;
344 win:
345 return true;
346 #else
347 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as,
348 ERROR_MARK);
349 #endif
352 namespace {
353 /* Temporarily eliminates registers in an address (for the lifetime of
354 the object). */
355 class address_eliminator {
356 public:
357 address_eliminator (struct address_info *ad);
358 ~address_eliminator ();
360 private:
361 struct address_info *m_ad;
362 rtx *m_base_loc;
363 rtx m_base_reg;
364 rtx *m_index_loc;
365 rtx m_index_reg;
369 address_eliminator::address_eliminator (struct address_info *ad)
370 : m_ad (ad),
371 m_base_loc (strip_subreg (ad->base_term)),
372 m_base_reg (NULL_RTX),
373 m_index_loc (strip_subreg (ad->index_term)),
374 m_index_reg (NULL_RTX)
376 if (m_base_loc != NULL)
378 m_base_reg = *m_base_loc;
379 /* If we have non-legitimate address which is decomposed not in
380 the way we expected, don't do elimination here. In such case
381 the address will be reloaded and elimination will be done in
382 reload insn finally. */
383 if (REG_P (m_base_reg))
384 lra_eliminate_reg_if_possible (m_base_loc);
385 if (m_ad->base_term2 != NULL)
386 *m_ad->base_term2 = *m_ad->base_term;
388 if (m_index_loc != NULL)
390 m_index_reg = *m_index_loc;
391 if (REG_P (m_index_reg))
392 lra_eliminate_reg_if_possible (m_index_loc);
396 address_eliminator::~address_eliminator ()
398 if (m_base_loc && *m_base_loc != m_base_reg)
400 *m_base_loc = m_base_reg;
401 if (m_ad->base_term2 != NULL)
402 *m_ad->base_term2 = *m_ad->base_term;
404 if (m_index_loc && *m_index_loc != m_index_reg)
405 *m_index_loc = m_index_reg;
408 /* Return true if the eliminated form of AD is a legitimate target address.
409 If OP is a MEM, AD is the address within OP, otherwise OP should be
410 ignored. CONSTRAINT is one constraint that the operand may need
411 to meet. */
412 static bool
413 valid_address_p (rtx op, struct address_info *ad,
414 enum constraint_num constraint)
416 address_eliminator eliminator (ad);
418 /* Allow a memory OP if it matches CONSTRAINT, even if CONSTRAINT is more
419 forgiving than "m".
420 Need to extract memory from op for special memory constraint,
421 i.e. bcst_mem_operand in i386 backend. */
422 if (MEM_P (extract_mem_from_operand (op))
423 && insn_extra_relaxed_memory_constraint (constraint)
424 && constraint_satisfied_p (op, constraint))
425 return true;
427 return valid_address_p (ad->mode, *ad->outer, ad->as);
430 /* For special_memory_operand, it could be false for MEM_P (op),
431 i.e. bcst_mem_operand in i386 backend.
432 Extract and return real memory operand or op. */
434 extract_mem_from_operand (rtx op)
436 for (rtx x = op;; x = XEXP (x, 0))
438 if (MEM_P (x))
439 return x;
440 if (GET_RTX_LENGTH (GET_CODE (x)) != 1
441 || GET_RTX_FORMAT (GET_CODE (x))[0] != 'e')
442 break;
444 return op;
447 /* Return true if the eliminated form of memory reference OP satisfies
448 extra (special) memory constraint CONSTRAINT. */
449 static bool
450 satisfies_memory_constraint_p (rtx op, enum constraint_num constraint)
452 struct address_info ad;
453 rtx mem = extract_mem_from_operand (op);
454 if (!MEM_P (mem))
455 return false;
457 decompose_mem_address (&ad, mem);
458 address_eliminator eliminator (&ad);
459 return constraint_satisfied_p (op, constraint);
462 /* Return true if the eliminated form of address AD satisfies extra
463 address constraint CONSTRAINT. */
464 static bool
465 satisfies_address_constraint_p (struct address_info *ad,
466 enum constraint_num constraint)
468 address_eliminator eliminator (ad);
469 return constraint_satisfied_p (*ad->outer, constraint);
472 /* Return true if the eliminated form of address OP satisfies extra
473 address constraint CONSTRAINT. */
474 static bool
475 satisfies_address_constraint_p (rtx op, enum constraint_num constraint)
477 struct address_info ad;
479 decompose_lea_address (&ad, &op);
480 return satisfies_address_constraint_p (&ad, constraint);
483 /* Initiate equivalences for LRA. As we keep original equivalences
484 before any elimination, we need to make copies otherwise any change
485 in insns might change the equivalences. */
486 void
487 lra_init_equiv (void)
489 ira_expand_reg_equiv ();
490 for (int i = FIRST_PSEUDO_REGISTER; i < max_reg_num (); i++)
492 rtx res;
494 if ((res = ira_reg_equiv[i].memory) != NULL_RTX)
495 ira_reg_equiv[i].memory = copy_rtx (res);
496 if ((res = ira_reg_equiv[i].invariant) != NULL_RTX)
497 ira_reg_equiv[i].invariant = copy_rtx (res);
501 static rtx loc_equivalence_callback (rtx, const_rtx, void *);
503 /* Update equivalence for REGNO. We need to this as the equivalence
504 might contain other pseudos which are changed by their
505 equivalences. */
506 static void
507 update_equiv (int regno)
509 rtx x;
511 if ((x = ira_reg_equiv[regno].memory) != NULL_RTX)
512 ira_reg_equiv[regno].memory
513 = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
514 NULL_RTX);
515 if ((x = ira_reg_equiv[regno].invariant) != NULL_RTX)
516 ira_reg_equiv[regno].invariant
517 = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
518 NULL_RTX);
521 /* If we have decided to substitute X with another value, return that
522 value, otherwise return X. */
523 static rtx
524 get_equiv (rtx x)
526 int regno;
527 rtx res;
529 if (! REG_P (x) || (regno = REGNO (x)) < FIRST_PSEUDO_REGISTER
530 || ! ira_reg_equiv[regno].defined_p
531 || ! ira_reg_equiv[regno].profitable_p
532 || lra_get_regno_hard_regno (regno) >= 0)
533 return x;
534 if ((res = ira_reg_equiv[regno].memory) != NULL_RTX)
536 if (targetm.cannot_substitute_mem_equiv_p (res))
537 return x;
538 return res;
540 if ((res = ira_reg_equiv[regno].constant) != NULL_RTX)
541 return res;
542 if ((res = ira_reg_equiv[regno].invariant) != NULL_RTX)
543 return res;
544 gcc_unreachable ();
547 /* If we have decided to substitute X with the equivalent value,
548 return that value after elimination for INSN, otherwise return
549 X. */
550 static rtx
551 get_equiv_with_elimination (rtx x, rtx_insn *insn)
553 rtx res = get_equiv (x);
555 if (x == res || CONSTANT_P (res))
556 return res;
557 return lra_eliminate_regs_1 (insn, res, GET_MODE (res),
558 false, false, 0, true);
561 /* Set up curr_operand_mode. */
562 static void
563 init_curr_operand_mode (void)
565 int nop = curr_static_id->n_operands;
566 for (int i = 0; i < nop; i++)
568 machine_mode mode = GET_MODE (*curr_id->operand_loc[i]);
569 if (mode == VOIDmode)
571 /* The .md mode for address operands is the mode of the
572 addressed value rather than the mode of the address itself. */
573 if (curr_id->icode >= 0 && curr_static_id->operand[i].is_address)
574 mode = Pmode;
575 else
576 mode = curr_static_id->operand[i].mode;
578 curr_operand_mode[i] = mode;
584 /* The page contains code to reuse input reloads. */
586 /* Structure describes input reload of the current insns. */
587 struct input_reload
589 /* True for input reload of matched operands. */
590 bool match_p;
591 /* Reloaded value. */
592 rtx input;
593 /* Reload pseudo used. */
594 rtx reg;
597 /* The number of elements in the following array. */
598 static int curr_insn_input_reloads_num;
599 /* Array containing info about input reloads. It is used to find the
600 same input reload and reuse the reload pseudo in this case. */
601 static struct input_reload curr_insn_input_reloads[LRA_MAX_INSN_RELOADS];
603 /* Initiate data concerning reuse of input reloads for the current
604 insn. */
605 static void
606 init_curr_insn_input_reloads (void)
608 curr_insn_input_reloads_num = 0;
611 /* The canonical form of an rtx inside a MEM is not necessarily the same as the
612 canonical form of the rtx outside the MEM. Fix this up in the case that
613 we're reloading an address (and therefore pulling it outside a MEM). */
614 static rtx
615 canonicalize_reload_addr (rtx addr)
617 subrtx_var_iterator::array_type array;
618 FOR_EACH_SUBRTX_VAR (iter, array, addr, NONCONST)
620 rtx x = *iter;
621 if (GET_CODE (x) == MULT && CONST_INT_P (XEXP (x, 1)))
623 const HOST_WIDE_INT ci = INTVAL (XEXP (x, 1));
624 const int pwr2 = exact_log2 (ci);
625 if (pwr2 > 0)
627 /* Rewrite this to use a shift instead, which is canonical when
628 outside of a MEM. */
629 PUT_CODE (x, ASHIFT);
630 XEXP (x, 1) = GEN_INT (pwr2);
635 return addr;
638 /* Create a new pseudo using MODE, RCLASS, EXCLUDE_START_HARD_REGS, ORIGINAL or
639 reuse an existing reload pseudo. Don't reuse an existing reload pseudo if
640 IN_SUBREG_P is true and the reused pseudo should be wrapped up in a SUBREG.
641 The result pseudo is returned through RESULT_REG. Return TRUE if we created
642 a new pseudo, FALSE if we reused an existing reload pseudo. Use TITLE to
643 describe new registers for debug purposes. */
644 static bool
645 get_reload_reg (enum op_type type, machine_mode mode, rtx original,
646 enum reg_class rclass, HARD_REG_SET *exclude_start_hard_regs,
647 bool in_subreg_p, const char *title, rtx *result_reg)
649 int i, regno;
650 enum reg_class new_class;
651 bool unique_p = false;
653 if (type == OP_OUT)
655 /* Output reload registers tend to start out with a conservative
656 choice of register class. Usually this is ALL_REGS, although
657 a target might narrow it (for performance reasons) through
658 targetm.preferred_reload_class. It's therefore quite common
659 for a reload instruction to require a more restrictive class
660 than the class that was originally assigned to the reload register.
662 In these situations, it's more efficient to refine the choice
663 of register class rather than create a second reload register.
664 This also helps to avoid cycling for registers that are only
665 used by reload instructions. */
666 if (REG_P (original)
667 && (int) REGNO (original) >= new_regno_start
668 && INSN_UID (curr_insn) >= new_insn_uid_start
669 && in_class_p (original, rclass, &new_class, true))
671 unsigned int regno = REGNO (original);
672 if (lra_dump_file != NULL)
674 fprintf (lra_dump_file, " Reuse r%d for output ", regno);
675 dump_value_slim (lra_dump_file, original, 1);
677 if (new_class != lra_get_allocno_class (regno))
678 lra_change_class (regno, new_class, ", change to", false);
679 if (lra_dump_file != NULL)
680 fprintf (lra_dump_file, "\n");
681 *result_reg = original;
682 return false;
684 *result_reg
685 = lra_create_new_reg_with_unique_value (mode, original, rclass,
686 exclude_start_hard_regs, title);
687 return true;
689 /* Prevent reuse value of expression with side effects,
690 e.g. volatile memory. */
691 if (! side_effects_p (original))
692 for (i = 0; i < curr_insn_input_reloads_num; i++)
694 if (! curr_insn_input_reloads[i].match_p
695 && rtx_equal_p (curr_insn_input_reloads[i].input, original)
696 && in_class_p (curr_insn_input_reloads[i].reg, rclass, &new_class))
698 rtx reg = curr_insn_input_reloads[i].reg;
699 regno = REGNO (reg);
700 /* If input is equal to original and both are VOIDmode,
701 GET_MODE (reg) might be still different from mode.
702 Ensure we don't return *result_reg with wrong mode. */
703 if (GET_MODE (reg) != mode)
705 if (in_subreg_p)
706 continue;
707 if (maybe_lt (GET_MODE_SIZE (GET_MODE (reg)),
708 GET_MODE_SIZE (mode)))
709 continue;
710 reg = lowpart_subreg (mode, reg, GET_MODE (reg));
711 if (reg == NULL_RTX || GET_CODE (reg) != SUBREG)
712 continue;
714 *result_reg = reg;
715 if (lra_dump_file != NULL)
717 fprintf (lra_dump_file, " Reuse r%d for reload ", regno);
718 dump_value_slim (lra_dump_file, original, 1);
720 if (new_class != lra_get_allocno_class (regno))
721 lra_change_class (regno, new_class, ", change to", false);
722 if (lra_dump_file != NULL)
723 fprintf (lra_dump_file, "\n");
724 return false;
726 /* If we have an input reload with a different mode, make sure it
727 will get a different hard reg. */
728 else if (REG_P (original)
729 && REG_P (curr_insn_input_reloads[i].input)
730 && REGNO (original) == REGNO (curr_insn_input_reloads[i].input)
731 && (GET_MODE (original)
732 != GET_MODE (curr_insn_input_reloads[i].input)))
733 unique_p = true;
735 *result_reg = (unique_p
736 ? lra_create_new_reg_with_unique_value
737 : lra_create_new_reg) (mode, original, rclass,
738 exclude_start_hard_regs, title);
739 lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
740 curr_insn_input_reloads[curr_insn_input_reloads_num].input = original;
741 curr_insn_input_reloads[curr_insn_input_reloads_num].match_p = false;
742 curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = *result_reg;
743 return true;
747 /* The page contains major code to choose the current insn alternative
748 and generate reloads for it. */
750 /* Return the offset from REGNO of the least significant register
751 in (reg:MODE REGNO).
753 This function is used to tell whether two registers satisfy
754 a matching constraint. (reg:MODE1 REGNO1) matches (reg:MODE2 REGNO2) if:
756 REGNO1 + lra_constraint_offset (REGNO1, MODE1)
757 == REGNO2 + lra_constraint_offset (REGNO2, MODE2) */
759 lra_constraint_offset (int regno, machine_mode mode)
761 lra_assert (regno < FIRST_PSEUDO_REGISTER);
763 scalar_int_mode int_mode;
764 if (WORDS_BIG_ENDIAN
765 && is_a <scalar_int_mode> (mode, &int_mode)
766 && GET_MODE_SIZE (int_mode) > UNITS_PER_WORD)
767 return hard_regno_nregs (regno, mode) - 1;
768 return 0;
771 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
772 if they are the same hard reg, and has special hacks for
773 auto-increment and auto-decrement. This is specifically intended for
774 process_alt_operands to use in determining whether two operands
775 match. X is the operand whose number is the lower of the two.
777 It is supposed that X is the output operand and Y is the input
778 operand. Y_HARD_REGNO is the final hard regno of register Y or
779 register in subreg Y as we know it now. Otherwise, it is a
780 negative value. */
781 static bool
782 operands_match_p (rtx x, rtx y, int y_hard_regno)
784 int i;
785 RTX_CODE code = GET_CODE (x);
786 const char *fmt;
788 if (x == y)
789 return true;
790 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
791 && (REG_P (y) || (GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y)))))
793 int j;
795 i = get_hard_regno (x);
796 if (i < 0)
797 goto slow;
799 if ((j = y_hard_regno) < 0)
800 goto slow;
802 i += lra_constraint_offset (i, GET_MODE (x));
803 j += lra_constraint_offset (j, GET_MODE (y));
805 return i == j;
808 /* If two operands must match, because they are really a single
809 operand of an assembler insn, then two post-increments are invalid
810 because the assembler insn would increment only once. On the
811 other hand, a post-increment matches ordinary indexing if the
812 post-increment is the output operand. */
813 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
814 return operands_match_p (XEXP (x, 0), y, y_hard_regno);
816 /* Two pre-increments are invalid because the assembler insn would
817 increment only once. On the other hand, a pre-increment matches
818 ordinary indexing if the pre-increment is the input operand. */
819 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
820 || GET_CODE (y) == PRE_MODIFY)
821 return operands_match_p (x, XEXP (y, 0), -1);
823 slow:
825 if (code == REG && REG_P (y))
826 return REGNO (x) == REGNO (y);
828 if (code == REG && GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y))
829 && x == SUBREG_REG (y))
830 return true;
831 if (GET_CODE (y) == REG && code == SUBREG && REG_P (SUBREG_REG (x))
832 && SUBREG_REG (x) == y)
833 return true;
835 /* Now we have disposed of all the cases in which different rtx
836 codes can match. */
837 if (code != GET_CODE (y))
838 return false;
840 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
841 if (GET_MODE (x) != GET_MODE (y))
842 return false;
844 switch (code)
846 CASE_CONST_UNIQUE:
847 return false;
849 case CONST_VECTOR:
850 if (!same_vector_encodings_p (x, y))
851 return false;
852 break;
854 case LABEL_REF:
855 return label_ref_label (x) == label_ref_label (y);
856 case SYMBOL_REF:
857 return XSTR (x, 0) == XSTR (y, 0);
859 default:
860 break;
863 /* Compare the elements. If any pair of corresponding elements fail
864 to match, return false for the whole things. */
866 fmt = GET_RTX_FORMAT (code);
867 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
869 int val, j;
870 switch (fmt[i])
872 case 'w':
873 if (XWINT (x, i) != XWINT (y, i))
874 return false;
875 break;
877 case 'i':
878 if (XINT (x, i) != XINT (y, i))
879 return false;
880 break;
882 case 'p':
883 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
884 return false;
885 break;
887 case 'e':
888 val = operands_match_p (XEXP (x, i), XEXP (y, i), -1);
889 if (val == 0)
890 return false;
891 break;
893 case '0':
894 break;
896 case 'E':
897 if (XVECLEN (x, i) != XVECLEN (y, i))
898 return false;
899 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
901 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j), -1);
902 if (val == 0)
903 return false;
905 break;
907 /* It is believed that rtx's at this level will never
908 contain anything but integers and other rtx's, except for
909 within LABEL_REFs and SYMBOL_REFs. */
910 default:
911 gcc_unreachable ();
914 return true;
917 /* True if X is a constant that can be forced into the constant pool.
918 MODE is the mode of the operand, or VOIDmode if not known. */
919 #define CONST_POOL_OK_P(MODE, X) \
920 ((MODE) != VOIDmode \
921 && CONSTANT_P (X) \
922 && GET_CODE (X) != HIGH \
923 && GET_MODE_SIZE (MODE).is_constant () \
924 && !targetm.cannot_force_const_mem (MODE, X))
926 /* True if C is a non-empty register class that has too few registers
927 to be safely used as a reload target class. */
928 #define SMALL_REGISTER_CLASS_P(C) \
929 (ira_class_hard_regs_num [(C)] == 1 \
930 || (ira_class_hard_regs_num [(C)] >= 1 \
931 && targetm.class_likely_spilled_p (C)))
933 /* If REG is a reload pseudo, try to make its class satisfying CL. */
934 static void
935 narrow_reload_pseudo_class (rtx reg, enum reg_class cl)
937 enum reg_class rclass;
939 /* Do not make more accurate class from reloads generated. They are
940 mostly moves with a lot of constraints. Making more accurate
941 class may results in very narrow class and impossibility of find
942 registers for several reloads of one insn. */
943 if (INSN_UID (curr_insn) >= new_insn_uid_start)
944 return;
945 if (GET_CODE (reg) == SUBREG)
946 reg = SUBREG_REG (reg);
947 if (! REG_P (reg) || (int) REGNO (reg) < new_regno_start)
948 return;
949 if (in_class_p (reg, cl, &rclass) && rclass != cl)
950 lra_change_class (REGNO (reg), rclass, " Change to", true);
953 /* Searches X for any reference to a reg with the same value as REGNO,
954 returning the rtx of the reference found if any. Otherwise,
955 returns NULL_RTX. */
956 static rtx
957 regno_val_use_in (unsigned int regno, rtx x)
959 const char *fmt;
960 int i, j;
961 rtx tem;
963 if (REG_P (x) && lra_reg_info[REGNO (x)].val == lra_reg_info[regno].val)
964 return x;
966 fmt = GET_RTX_FORMAT (GET_CODE (x));
967 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
969 if (fmt[i] == 'e')
971 if ((tem = regno_val_use_in (regno, XEXP (x, i))))
972 return tem;
974 else if (fmt[i] == 'E')
975 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
976 if ((tem = regno_val_use_in (regno , XVECEXP (x, i, j))))
977 return tem;
980 return NULL_RTX;
983 /* Return true if all current insn non-output operands except INS (it
984 has a negaitve end marker) do not use pseudos with the same value
985 as REGNO. */
986 static bool
987 check_conflict_input_operands (int regno, signed char *ins)
989 int in;
990 int n_operands = curr_static_id->n_operands;
992 for (int nop = 0; nop < n_operands; nop++)
993 if (! curr_static_id->operand[nop].is_operator
994 && curr_static_id->operand[nop].type != OP_OUT)
996 for (int i = 0; (in = ins[i]) >= 0; i++)
997 if (in == nop)
998 break;
999 if (in < 0
1000 && regno_val_use_in (regno, *curr_id->operand_loc[nop]) != NULL_RTX)
1001 return false;
1003 return true;
1006 /* Generate reloads for matching OUT and INS (array of input operand numbers
1007 with end marker -1) with reg class GOAL_CLASS and EXCLUDE_START_HARD_REGS,
1008 considering output operands OUTS (similar array to INS) needing to be in
1009 different registers. Add input and output reloads correspondingly to the
1010 lists *BEFORE and *AFTER. OUT might be negative. In this case we generate
1011 input reloads for matched input operands INS. EARLY_CLOBBER_P is a flag
1012 that the output operand is early clobbered for chosen alternative. */
1013 static void
1014 match_reload (signed char out, signed char *ins, signed char *outs,
1015 enum reg_class goal_class, HARD_REG_SET *exclude_start_hard_regs,
1016 rtx_insn **before, rtx_insn **after, bool early_clobber_p)
1018 bool out_conflict;
1019 int i, in;
1020 rtx new_in_reg, new_out_reg, reg;
1021 machine_mode inmode, outmode;
1022 rtx in_rtx = *curr_id->operand_loc[ins[0]];
1023 rtx out_rtx = out < 0 ? in_rtx : *curr_id->operand_loc[out];
1025 inmode = curr_operand_mode[ins[0]];
1026 outmode = out < 0 ? inmode : curr_operand_mode[out];
1027 push_to_sequence (*before);
1028 if (inmode != outmode)
1030 /* process_alt_operands has already checked that the mode sizes
1031 are ordered. */
1032 if (partial_subreg_p (outmode, inmode))
1034 bool asm_p = asm_noperands (PATTERN (curr_insn)) >= 0;
1035 int hr;
1036 HARD_REG_SET temp_hard_reg_set;
1038 if (asm_p && (hr = get_hard_regno (out_rtx)) >= 0
1039 && hard_regno_nregs (hr, inmode) > 1)
1041 /* See gcc.c-torture/execute/20030222-1.c.
1042 Consider the code for 32-bit (e.g. BE) target:
1043 int i, v; long x; x = v; asm ("" : "=r" (i) : "0" (x));
1044 We generate the following RTL with reload insns:
1045 1. subreg:si(x:di, 0) = 0;
1046 2. subreg:si(x:di, 4) = v:si;
1047 3. t:di = x:di, dead x;
1048 4. asm ("" : "=r" (subreg:si(t:di,4)) : "0" (t:di))
1049 5. i:si = subreg:si(t:di,4);
1050 If we assign hard reg of x to t, dead code elimination
1051 will remove insn #2 and we will use unitialized hard reg.
1052 So exclude the hard reg of x for t. We could ignore this
1053 problem for non-empty asm using all x value but it is hard to
1054 check that the asm are expanded into insn realy using x
1055 and setting r. */
1056 CLEAR_HARD_REG_SET (temp_hard_reg_set);
1057 if (exclude_start_hard_regs != NULL)
1058 temp_hard_reg_set = *exclude_start_hard_regs;
1059 SET_HARD_REG_BIT (temp_hard_reg_set, hr);
1060 exclude_start_hard_regs = &temp_hard_reg_set;
1062 reg = new_in_reg
1063 = lra_create_new_reg_with_unique_value (inmode, in_rtx, goal_class,
1064 exclude_start_hard_regs,
1065 "");
1066 new_out_reg = gen_lowpart_SUBREG (outmode, reg);
1067 LRA_SUBREG_P (new_out_reg) = 1;
1068 /* If the input reg is dying here, we can use the same hard
1069 register for REG and IN_RTX. We do it only for original
1070 pseudos as reload pseudos can die although original
1071 pseudos still live where reload pseudos dies. */
1072 if (REG_P (in_rtx) && (int) REGNO (in_rtx) < lra_new_regno_start
1073 && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))
1074 && (!early_clobber_p
1075 || check_conflict_input_operands(REGNO (in_rtx), ins)))
1076 lra_assign_reg_val (REGNO (in_rtx), REGNO (reg));
1078 else
1080 reg = new_out_reg
1081 = lra_create_new_reg_with_unique_value (outmode, out_rtx,
1082 goal_class,
1083 exclude_start_hard_regs,
1084 "");
1085 new_in_reg = gen_lowpart_SUBREG (inmode, reg);
1086 /* NEW_IN_REG is non-paradoxical subreg. We don't want
1087 NEW_OUT_REG living above. We add clobber clause for
1088 this. This is just a temporary clobber. We can remove
1089 it at the end of LRA work. */
1090 rtx_insn *clobber = emit_clobber (new_out_reg);
1091 LRA_TEMP_CLOBBER_P (PATTERN (clobber)) = 1;
1092 LRA_SUBREG_P (new_in_reg) = 1;
1093 if (GET_CODE (in_rtx) == SUBREG)
1095 rtx subreg_reg = SUBREG_REG (in_rtx);
1097 /* If SUBREG_REG is dying here and sub-registers IN_RTX
1098 and NEW_IN_REG are similar, we can use the same hard
1099 register for REG and SUBREG_REG. */
1100 if (REG_P (subreg_reg)
1101 && (int) REGNO (subreg_reg) < lra_new_regno_start
1102 && GET_MODE (subreg_reg) == outmode
1103 && known_eq (SUBREG_BYTE (in_rtx), SUBREG_BYTE (new_in_reg))
1104 && find_regno_note (curr_insn, REG_DEAD, REGNO (subreg_reg))
1105 && (! early_clobber_p
1106 || check_conflict_input_operands (REGNO (subreg_reg),
1107 ins)))
1108 lra_assign_reg_val (REGNO (subreg_reg), REGNO (reg));
1112 else
1114 /* Pseudos have values -- see comments for lra_reg_info.
1115 Different pseudos with the same value do not conflict even if
1116 they live in the same place. When we create a pseudo we
1117 assign value of original pseudo (if any) from which we
1118 created the new pseudo. If we create the pseudo from the
1119 input pseudo, the new pseudo will have no conflict with the
1120 input pseudo which is wrong when the input pseudo lives after
1121 the insn and as the new pseudo value is changed by the insn
1122 output. Therefore we create the new pseudo from the output
1123 except the case when we have single matched dying input
1124 pseudo.
1126 We cannot reuse the current output register because we might
1127 have a situation like "a <- a op b", where the constraints
1128 force the second input operand ("b") to match the output
1129 operand ("a"). "b" must then be copied into a new register
1130 so that it doesn't clobber the current value of "a".
1132 We cannot use the same value if the output pseudo is
1133 early clobbered or the input pseudo is mentioned in the
1134 output, e.g. as an address part in memory, because
1135 output reload will actually extend the pseudo liveness.
1136 We don't care about eliminable hard regs here as we are
1137 interesting only in pseudos. */
1139 /* Matching input's register value is the same as one of the other
1140 output operand. Output operands in a parallel insn must be in
1141 different registers. */
1142 out_conflict = false;
1143 if (REG_P (in_rtx))
1145 for (i = 0; outs[i] >= 0; i++)
1147 rtx other_out_rtx = *curr_id->operand_loc[outs[i]];
1148 if (outs[i] != out && REG_P (other_out_rtx)
1149 && (regno_val_use_in (REGNO (in_rtx), other_out_rtx)
1150 != NULL_RTX))
1152 out_conflict = true;
1153 break;
1158 new_in_reg = new_out_reg
1159 = (! early_clobber_p && ins[1] < 0 && REG_P (in_rtx)
1160 && (int) REGNO (in_rtx) < lra_new_regno_start
1161 && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))
1162 && (! early_clobber_p
1163 || check_conflict_input_operands (REGNO (in_rtx), ins))
1164 && (out < 0
1165 || regno_val_use_in (REGNO (in_rtx), out_rtx) == NULL_RTX)
1166 && !out_conflict
1167 ? lra_create_new_reg (inmode, in_rtx, goal_class,
1168 exclude_start_hard_regs, "")
1169 : lra_create_new_reg_with_unique_value (outmode, out_rtx, goal_class,
1170 exclude_start_hard_regs,
1171 ""));
1173 /* In operand can be got from transformations before processing insn
1174 constraints. One example of such transformations is subreg
1175 reloading (see function simplify_operand_subreg). The new
1176 pseudos created by the transformations might have inaccurate
1177 class (ALL_REGS) and we should make their classes more
1178 accurate. */
1179 narrow_reload_pseudo_class (in_rtx, goal_class);
1180 lra_emit_move (copy_rtx (new_in_reg), in_rtx);
1181 *before = get_insns ();
1182 end_sequence ();
1183 /* Add the new pseudo to consider values of subsequent input reload
1184 pseudos. */
1185 lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
1186 curr_insn_input_reloads[curr_insn_input_reloads_num].input = in_rtx;
1187 curr_insn_input_reloads[curr_insn_input_reloads_num].match_p = true;
1188 curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = new_in_reg;
1189 for (i = 0; (in = ins[i]) >= 0; i++)
1190 if (GET_MODE (*curr_id->operand_loc[in]) == VOIDmode
1191 || GET_MODE (new_in_reg) == GET_MODE (*curr_id->operand_loc[in]))
1192 *curr_id->operand_loc[in] = new_in_reg;
1193 else
1195 lra_assert
1196 (GET_MODE (new_out_reg) == GET_MODE (*curr_id->operand_loc[in]));
1197 *curr_id->operand_loc[in] = new_out_reg;
1199 lra_update_dups (curr_id, ins);
1200 if (out < 0)
1201 return;
1202 /* See a comment for the input operand above. */
1203 narrow_reload_pseudo_class (out_rtx, goal_class);
1204 if (find_reg_note (curr_insn, REG_UNUSED, out_rtx) == NULL_RTX)
1206 reg = SUBREG_P (out_rtx) ? SUBREG_REG (out_rtx) : out_rtx;
1207 start_sequence ();
1208 /* If we had strict_low_part, use it also in reload to keep other
1209 parts unchanged but do it only for regs as strict_low_part
1210 has no sense for memory and probably there is no insn pattern
1211 to match the reload insn in memory case. */
1212 if (out >= 0 && curr_static_id->operand[out].strict_low && REG_P (reg))
1213 out_rtx = gen_rtx_STRICT_LOW_PART (VOIDmode, out_rtx);
1214 lra_emit_move (out_rtx, copy_rtx (new_out_reg));
1215 emit_insn (*after);
1216 *after = get_insns ();
1217 end_sequence ();
1219 *curr_id->operand_loc[out] = new_out_reg;
1220 lra_update_dup (curr_id, out);
1223 /* Return register class which is union of all reg classes in insn
1224 constraint alternative string starting with P. */
1225 static enum reg_class
1226 reg_class_from_constraints (const char *p)
1228 int c, len;
1229 enum reg_class op_class = NO_REGS;
1232 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
1234 case '#':
1235 case ',':
1236 return op_class;
1238 case 'g':
1239 op_class = reg_class_subunion[op_class][GENERAL_REGS];
1240 break;
1242 default:
1243 enum constraint_num cn = lookup_constraint (p);
1244 enum reg_class cl = reg_class_for_constraint (cn);
1245 if (cl == NO_REGS)
1247 if (insn_extra_address_constraint (cn))
1248 op_class
1249 = (reg_class_subunion
1250 [op_class][base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1251 ADDRESS, SCRATCH)]);
1252 break;
1255 op_class = reg_class_subunion[op_class][cl];
1256 break;
1258 while ((p += len), c);
1259 return op_class;
1262 /* If OP is a register, return the class of the register as per
1263 get_reg_class, otherwise return NO_REGS. */
1264 static inline enum reg_class
1265 get_op_class (rtx op)
1267 return REG_P (op) ? get_reg_class (REGNO (op)) : NO_REGS;
1270 /* Return generated insn mem_pseudo:=val if TO_P or val:=mem_pseudo
1271 otherwise. If modes of MEM_PSEUDO and VAL are different, use
1272 SUBREG for VAL to make them equal. */
1273 static rtx_insn *
1274 emit_spill_move (bool to_p, rtx mem_pseudo, rtx val)
1276 if (GET_MODE (mem_pseudo) != GET_MODE (val))
1278 /* Usually size of mem_pseudo is greater than val size but in
1279 rare cases it can be less as it can be defined by target
1280 dependent macro HARD_REGNO_CALLER_SAVE_MODE. */
1281 if (! MEM_P (val))
1283 val = gen_lowpart_SUBREG (GET_MODE (mem_pseudo),
1284 GET_CODE (val) == SUBREG
1285 ? SUBREG_REG (val) : val);
1286 LRA_SUBREG_P (val) = 1;
1288 else
1290 mem_pseudo = gen_lowpart_SUBREG (GET_MODE (val), mem_pseudo);
1291 LRA_SUBREG_P (mem_pseudo) = 1;
1294 return to_p ? gen_move_insn (mem_pseudo, val)
1295 : gen_move_insn (val, mem_pseudo);
1298 /* Process a special case insn (register move), return true if we
1299 don't need to process it anymore. INSN should be a single set
1300 insn. Set up that RTL was changed through CHANGE_P and that hook
1301 TARGET_SECONDARY_MEMORY_NEEDED says to use secondary memory through
1302 SEC_MEM_P. */
1303 static bool
1304 check_and_process_move (bool *change_p, bool *sec_mem_p ATTRIBUTE_UNUSED)
1306 int sregno, dregno;
1307 rtx dest, src, dreg, sreg, new_reg, scratch_reg;
1308 rtx_insn *before;
1309 enum reg_class dclass, sclass, secondary_class;
1310 secondary_reload_info sri;
1312 lra_assert (curr_insn_set != NULL_RTX);
1313 dreg = dest = SET_DEST (curr_insn_set);
1314 sreg = src = SET_SRC (curr_insn_set);
1315 if (GET_CODE (dest) == SUBREG)
1316 dreg = SUBREG_REG (dest);
1317 if (GET_CODE (src) == SUBREG)
1318 sreg = SUBREG_REG (src);
1319 if (! (REG_P (dreg) || MEM_P (dreg)) || ! (REG_P (sreg) || MEM_P (sreg)))
1320 return false;
1321 sclass = dclass = NO_REGS;
1322 if (REG_P (dreg))
1323 dclass = get_reg_class (REGNO (dreg));
1324 gcc_assert (dclass < LIM_REG_CLASSES && dclass >= NO_REGS);
1325 if (dclass == ALL_REGS)
1326 /* ALL_REGS is used for new pseudos created by transformations
1327 like reload of SUBREG_REG (see function
1328 simplify_operand_subreg). We don't know their class yet. We
1329 should figure out the class from processing the insn
1330 constraints not in this fast path function. Even if ALL_REGS
1331 were a right class for the pseudo, secondary_... hooks usually
1332 are not define for ALL_REGS. */
1333 return false;
1334 if (REG_P (sreg))
1335 sclass = get_reg_class (REGNO (sreg));
1336 gcc_assert (sclass < LIM_REG_CLASSES && sclass >= NO_REGS);
1337 if (sclass == ALL_REGS)
1338 /* See comments above. */
1339 return false;
1340 if (sclass == NO_REGS && dclass == NO_REGS)
1341 return false;
1342 if (targetm.secondary_memory_needed (GET_MODE (src), sclass, dclass)
1343 && ((sclass != NO_REGS && dclass != NO_REGS)
1344 || (GET_MODE (src)
1345 != targetm.secondary_memory_needed_mode (GET_MODE (src)))))
1347 *sec_mem_p = true;
1348 return false;
1350 if (! REG_P (dreg) || ! REG_P (sreg))
1351 return false;
1352 sri.prev_sri = NULL;
1353 sri.icode = CODE_FOR_nothing;
1354 sri.extra_cost = 0;
1355 secondary_class = NO_REGS;
1356 /* Set up hard register for a reload pseudo for hook
1357 secondary_reload because some targets just ignore unassigned
1358 pseudos in the hook. */
1359 if (dclass != NO_REGS && lra_get_regno_hard_regno (REGNO (dreg)) < 0)
1361 dregno = REGNO (dreg);
1362 reg_renumber[dregno] = ira_class_hard_regs[dclass][0];
1364 else
1365 dregno = -1;
1366 if (sclass != NO_REGS && lra_get_regno_hard_regno (REGNO (sreg)) < 0)
1368 sregno = REGNO (sreg);
1369 reg_renumber[sregno] = ira_class_hard_regs[sclass][0];
1371 else
1372 sregno = -1;
1373 if (sclass != NO_REGS)
1374 secondary_class
1375 = (enum reg_class) targetm.secondary_reload (false, dest,
1376 (reg_class_t) sclass,
1377 GET_MODE (src), &sri);
1378 if (sclass == NO_REGS
1379 || ((secondary_class != NO_REGS || sri.icode != CODE_FOR_nothing)
1380 && dclass != NO_REGS))
1382 enum reg_class old_sclass = secondary_class;
1383 secondary_reload_info old_sri = sri;
1385 sri.prev_sri = NULL;
1386 sri.icode = CODE_FOR_nothing;
1387 sri.extra_cost = 0;
1388 secondary_class
1389 = (enum reg_class) targetm.secondary_reload (true, src,
1390 (reg_class_t) dclass,
1391 GET_MODE (src), &sri);
1392 /* Check the target hook consistency. */
1393 lra_assert
1394 ((secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1395 || (old_sclass == NO_REGS && old_sri.icode == CODE_FOR_nothing)
1396 || (secondary_class == old_sclass && sri.icode == old_sri.icode));
1398 if (sregno >= 0)
1399 reg_renumber [sregno] = -1;
1400 if (dregno >= 0)
1401 reg_renumber [dregno] = -1;
1402 if (secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1403 return false;
1404 *change_p = true;
1405 new_reg = NULL_RTX;
1406 if (secondary_class != NO_REGS)
1407 new_reg = lra_create_new_reg_with_unique_value (GET_MODE (src), NULL_RTX,
1408 secondary_class, NULL,
1409 "secondary");
1410 start_sequence ();
1411 if (sri.icode == CODE_FOR_nothing)
1412 lra_emit_move (new_reg, src);
1413 else
1415 enum reg_class scratch_class;
1417 scratch_class = (reg_class_from_constraints
1418 (insn_data[sri.icode].operand[2].constraint));
1419 scratch_reg = (lra_create_new_reg_with_unique_value
1420 (insn_data[sri.icode].operand[2].mode, NULL_RTX,
1421 scratch_class, NULL, "scratch"));
1422 emit_insn (GEN_FCN (sri.icode) (new_reg != NULL_RTX ? new_reg : dest,
1423 src, scratch_reg));
1425 before = get_insns ();
1426 end_sequence ();
1427 lra_process_new_insns (curr_insn, before, NULL, "Inserting the move");
1428 if (new_reg != NULL_RTX)
1429 SET_SRC (curr_insn_set) = new_reg;
1430 else
1432 if (lra_dump_file != NULL)
1434 fprintf (lra_dump_file, "Deleting move %u\n", INSN_UID (curr_insn));
1435 dump_insn_slim (lra_dump_file, curr_insn);
1437 lra_set_insn_deleted (curr_insn);
1438 return true;
1440 return false;
1443 /* The following data describe the result of process_alt_operands.
1444 The data are used in curr_insn_transform to generate reloads. */
1446 /* The chosen reg classes which should be used for the corresponding
1447 operands. */
1448 static enum reg_class goal_alt[MAX_RECOG_OPERANDS];
1449 /* Hard registers which cannot be a start hard register for the corresponding
1450 operands. */
1451 static HARD_REG_SET goal_alt_exclude_start_hard_regs[MAX_RECOG_OPERANDS];
1452 /* True if the operand should be the same as another operand and that
1453 other operand does not need a reload. */
1454 static bool goal_alt_match_win[MAX_RECOG_OPERANDS];
1455 /* True if the operand does not need a reload. */
1456 static bool goal_alt_win[MAX_RECOG_OPERANDS];
1457 /* True if the operand can be offsetable memory. */
1458 static bool goal_alt_offmemok[MAX_RECOG_OPERANDS];
1459 /* The number of an operand to which given operand can be matched to. */
1460 static int goal_alt_matches[MAX_RECOG_OPERANDS];
1461 /* The number of elements in the following array. */
1462 static int goal_alt_dont_inherit_ops_num;
1463 /* Numbers of operands whose reload pseudos should not be inherited. */
1464 static int goal_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1465 /* True if we should try only this alternative for the next constraint sub-pass
1466 to speed up the sub-pass. */
1467 static bool goal_reuse_alt_p;
1468 /* True if the insn commutative operands should be swapped. */
1469 static bool goal_alt_swapped;
1470 /* The chosen insn alternative. */
1471 static int goal_alt_number;
1472 /* True if output reload of the stack pointer should be generated. */
1473 static bool goal_alt_out_sp_reload_p;
1475 /* True if the corresponding operand is the result of an equivalence
1476 substitution. */
1477 static bool equiv_substition_p[MAX_RECOG_OPERANDS];
1479 /* The following five variables are used to choose the best insn
1480 alternative. They reflect final characteristics of the best
1481 alternative. */
1483 /* Number of necessary reloads and overall cost reflecting the
1484 previous value and other unpleasantness of the best alternative. */
1485 static int best_losers, best_overall;
1486 /* Overall number hard registers used for reloads. For example, on
1487 some targets we need 2 general registers to reload DFmode and only
1488 one floating point register. */
1489 static int best_reload_nregs;
1490 /* Overall number reflecting distances of previous reloading the same
1491 value. The distances are counted from the current BB start. It is
1492 used to improve inheritance chances. */
1493 static int best_reload_sum;
1495 /* True if the current insn should have no correspondingly input or
1496 output reloads. */
1497 static bool no_input_reloads_p, no_output_reloads_p;
1499 /* True if we swapped the commutative operands in the current
1500 insn. */
1501 static int curr_swapped;
1503 /* if CHECK_ONLY_P is false, arrange for address element *LOC to be a
1504 register of class CL. Add any input reloads to list BEFORE. AFTER
1505 is nonnull if *LOC is an automodified value; handle that case by
1506 adding the required output reloads to list AFTER. Return true if
1507 the RTL was changed.
1509 if CHECK_ONLY_P is true, check that the *LOC is a correct address
1510 register. Return false if the address register is correct. */
1511 static bool
1512 process_addr_reg (rtx *loc, bool check_only_p, rtx_insn **before, rtx_insn **after,
1513 enum reg_class cl)
1515 int regno;
1516 enum reg_class rclass, new_class;
1517 rtx reg;
1518 rtx new_reg;
1519 machine_mode mode;
1520 bool subreg_p, before_p = false;
1522 subreg_p = GET_CODE (*loc) == SUBREG;
1523 if (subreg_p)
1525 reg = SUBREG_REG (*loc);
1526 mode = GET_MODE (reg);
1528 /* For mode with size bigger than ptr_mode, there unlikely to be "mov"
1529 between two registers with different classes, but there normally will
1530 be "mov" which transfers element of vector register into the general
1531 register, and this normally will be a subreg which should be reloaded
1532 as a whole. This is particularly likely to be triggered when
1533 -fno-split-wide-types specified. */
1534 if (!REG_P (reg)
1535 || in_class_p (reg, cl, &new_class)
1536 || known_le (GET_MODE_SIZE (mode), GET_MODE_SIZE (ptr_mode)))
1537 loc = &SUBREG_REG (*loc);
1540 reg = *loc;
1541 mode = GET_MODE (reg);
1542 if (! REG_P (reg))
1544 if (check_only_p)
1545 return true;
1546 /* Always reload memory in an address even if the target supports
1547 such addresses. */
1548 new_reg = lra_create_new_reg_with_unique_value (mode, reg, cl, NULL,
1549 "address");
1550 before_p = true;
1552 else
1554 regno = REGNO (reg);
1555 rclass = get_reg_class (regno);
1556 if (! check_only_p
1557 && (*loc = get_equiv_with_elimination (reg, curr_insn)) != reg)
1559 if (lra_dump_file != NULL)
1561 fprintf (lra_dump_file,
1562 "Changing pseudo %d in address of insn %u on equiv ",
1563 REGNO (reg), INSN_UID (curr_insn));
1564 dump_value_slim (lra_dump_file, *loc, 1);
1565 fprintf (lra_dump_file, "\n");
1567 *loc = copy_rtx (*loc);
1569 if (*loc != reg || ! in_class_p (reg, cl, &new_class))
1571 if (check_only_p)
1572 return true;
1573 reg = *loc;
1574 if (get_reload_reg (after == NULL ? OP_IN : OP_INOUT,
1575 mode, reg, cl, NULL,
1576 subreg_p, "address", &new_reg))
1577 before_p = true;
1579 else if (new_class != NO_REGS && rclass != new_class)
1581 if (check_only_p)
1582 return true;
1583 lra_change_class (regno, new_class, " Change to", true);
1584 return false;
1586 else
1587 return false;
1589 if (before_p)
1591 push_to_sequence (*before);
1592 lra_emit_move (new_reg, reg);
1593 *before = get_insns ();
1594 end_sequence ();
1596 *loc = new_reg;
1597 if (after != NULL)
1599 start_sequence ();
1600 lra_emit_move (before_p ? copy_rtx (reg) : reg, new_reg);
1601 emit_insn (*after);
1602 *after = get_insns ();
1603 end_sequence ();
1605 return true;
1608 /* Insert move insn in simplify_operand_subreg. BEFORE returns
1609 the insn to be inserted before curr insn. AFTER returns the
1610 the insn to be inserted after curr insn. ORIGREG and NEWREG
1611 are the original reg and new reg for reload. */
1612 static void
1613 insert_move_for_subreg (rtx_insn **before, rtx_insn **after, rtx origreg,
1614 rtx newreg)
1616 if (before)
1618 push_to_sequence (*before);
1619 lra_emit_move (newreg, origreg);
1620 *before = get_insns ();
1621 end_sequence ();
1623 if (after)
1625 start_sequence ();
1626 lra_emit_move (origreg, newreg);
1627 emit_insn (*after);
1628 *after = get_insns ();
1629 end_sequence ();
1633 static bool valid_address_p (machine_mode mode, rtx addr, addr_space_t as);
1634 static bool process_address (int, bool, rtx_insn **, rtx_insn **);
1636 /* Make reloads for subreg in operand NOP with internal subreg mode
1637 REG_MODE, add new reloads for further processing. Return true if
1638 any change was done. */
1639 static bool
1640 simplify_operand_subreg (int nop, machine_mode reg_mode)
1642 int hard_regno, inner_hard_regno;
1643 rtx_insn *before, *after;
1644 machine_mode mode, innermode;
1645 rtx reg, new_reg;
1646 rtx operand = *curr_id->operand_loc[nop];
1647 enum reg_class regclass;
1648 enum op_type type;
1650 before = after = NULL;
1652 if (GET_CODE (operand) != SUBREG)
1653 return false;
1655 mode = GET_MODE (operand);
1656 reg = SUBREG_REG (operand);
1657 innermode = GET_MODE (reg);
1658 type = curr_static_id->operand[nop].type;
1659 if (MEM_P (reg))
1661 const bool addr_was_valid
1662 = valid_address_p (innermode, XEXP (reg, 0), MEM_ADDR_SPACE (reg));
1663 alter_subreg (curr_id->operand_loc[nop], false);
1664 rtx subst = *curr_id->operand_loc[nop];
1665 lra_assert (MEM_P (subst));
1666 const bool addr_is_valid = valid_address_p (GET_MODE (subst),
1667 XEXP (subst, 0),
1668 MEM_ADDR_SPACE (subst));
1669 if (!addr_was_valid
1670 || addr_is_valid
1671 || ((get_constraint_type (lookup_constraint
1672 (curr_static_id->operand[nop].constraint))
1673 != CT_SPECIAL_MEMORY)
1674 /* We still can reload address and if the address is
1675 valid, we can remove subreg without reloading its
1676 inner memory. */
1677 && valid_address_p (GET_MODE (subst),
1678 regno_reg_rtx
1679 [ira_class_hard_regs
1680 [base_reg_class (GET_MODE (subst),
1681 MEM_ADDR_SPACE (subst),
1682 ADDRESS, SCRATCH)][0]],
1683 MEM_ADDR_SPACE (subst))))
1685 /* If we change the address for a paradoxical subreg of memory, the
1686 new address might violate the necessary alignment or the access
1687 might be slow; take this into consideration. We need not worry
1688 about accesses beyond allocated memory for paradoxical memory
1689 subregs as we don't substitute such equiv memory (see processing
1690 equivalences in function lra_constraints) and because for spilled
1691 pseudos we allocate stack memory enough for the biggest
1692 corresponding paradoxical subreg.
1694 However, do not blindly simplify a (subreg (mem ...)) for
1695 WORD_REGISTER_OPERATIONS targets as this may lead to loading junk
1696 data into a register when the inner is narrower than outer or
1697 missing important data from memory when the inner is wider than
1698 outer. This rule only applies to modes that are no wider than
1699 a word.
1701 If valid memory becomes invalid after subreg elimination
1702 and address might be different we still have to reload
1703 memory.
1705 if ((! addr_was_valid
1706 || addr_is_valid
1707 || known_eq (GET_MODE_SIZE (mode), GET_MODE_SIZE (innermode)))
1708 && !(maybe_ne (GET_MODE_PRECISION (mode),
1709 GET_MODE_PRECISION (innermode))
1710 && known_le (GET_MODE_SIZE (mode), UNITS_PER_WORD)
1711 && known_le (GET_MODE_SIZE (innermode), UNITS_PER_WORD)
1712 && WORD_REGISTER_OPERATIONS)
1713 && (!(MEM_ALIGN (subst) < GET_MODE_ALIGNMENT (mode)
1714 && targetm.slow_unaligned_access (mode, MEM_ALIGN (subst)))
1715 || (MEM_ALIGN (reg) < GET_MODE_ALIGNMENT (innermode)
1716 && targetm.slow_unaligned_access (innermode,
1717 MEM_ALIGN (reg)))))
1718 return true;
1720 *curr_id->operand_loc[nop] = operand;
1722 /* But if the address was not valid, we cannot reload the MEM without
1723 reloading the address first. */
1724 if (!addr_was_valid)
1725 process_address (nop, false, &before, &after);
1727 /* INNERMODE is fast, MODE slow. Reload the mem in INNERMODE. */
1728 enum reg_class rclass
1729 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1730 if (get_reload_reg (curr_static_id->operand[nop].type, innermode,
1731 reg, rclass, NULL,
1732 true, "slow/invalid mem", &new_reg))
1734 bool insert_before, insert_after;
1735 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1737 insert_before = (type != OP_OUT
1738 || partial_subreg_p (mode, innermode));
1739 insert_after = type != OP_IN;
1740 insert_move_for_subreg (insert_before ? &before : NULL,
1741 insert_after ? &after : NULL,
1742 reg, new_reg);
1744 SUBREG_REG (operand) = new_reg;
1746 /* Convert to MODE. */
1747 reg = operand;
1748 rclass
1749 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1750 if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1751 rclass, NULL,
1752 true, "slow/invalid mem", &new_reg))
1754 bool insert_before, insert_after;
1755 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1757 insert_before = type != OP_OUT;
1758 insert_after = type != OP_IN;
1759 insert_move_for_subreg (insert_before ? &before : NULL,
1760 insert_after ? &after : NULL,
1761 reg, new_reg);
1763 *curr_id->operand_loc[nop] = new_reg;
1764 lra_process_new_insns (curr_insn, before, after,
1765 "Inserting slow/invalid mem reload");
1766 return true;
1769 /* If the address was valid and became invalid, prefer to reload
1770 the memory. Typical case is when the index scale should
1771 correspond the memory. */
1772 *curr_id->operand_loc[nop] = operand;
1773 /* Do not return false here as the MEM_P (reg) will be processed
1774 later in this function. */
1776 else if (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER)
1778 alter_subreg (curr_id->operand_loc[nop], false);
1779 return true;
1781 else if (CONSTANT_P (reg))
1783 /* Try to simplify subreg of constant. It is usually result of
1784 equivalence substitution. */
1785 if (innermode == VOIDmode
1786 && (innermode = original_subreg_reg_mode[nop]) == VOIDmode)
1787 innermode = curr_static_id->operand[nop].mode;
1788 if ((new_reg = simplify_subreg (mode, reg, innermode,
1789 SUBREG_BYTE (operand))) != NULL_RTX)
1791 *curr_id->operand_loc[nop] = new_reg;
1792 return true;
1795 /* Put constant into memory when we have mixed modes. It generates
1796 a better code in most cases as it does not need a secondary
1797 reload memory. It also prevents LRA looping when LRA is using
1798 secondary reload memory again and again. */
1799 if (CONSTANT_P (reg) && CONST_POOL_OK_P (reg_mode, reg)
1800 && SCALAR_INT_MODE_P (reg_mode) != SCALAR_INT_MODE_P (mode))
1802 SUBREG_REG (operand) = force_const_mem (reg_mode, reg);
1803 alter_subreg (curr_id->operand_loc[nop], false);
1804 return true;
1806 auto fp_subreg_can_be_simplified_after_reload_p = [] (machine_mode innermode,
1807 poly_uint64 offset,
1808 machine_mode mode) {
1809 reload_completed = 1;
1810 bool res = simplify_subreg_regno (FRAME_POINTER_REGNUM,
1811 innermode,
1812 offset, mode) >= 0;
1813 reload_completed = 0;
1814 return res;
1816 /* Force a reload of the SUBREG_REG if this is a constant or PLUS or
1817 if there may be a problem accessing OPERAND in the outer
1818 mode. */
1819 if ((REG_P (reg)
1820 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1821 && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1822 /* Don't reload paradoxical subregs because we could be looping
1823 having repeatedly final regno out of hard regs range. */
1824 && (hard_regno_nregs (hard_regno, innermode)
1825 >= hard_regno_nregs (hard_regno, mode))
1826 && simplify_subreg_regno (hard_regno, innermode,
1827 SUBREG_BYTE (operand), mode) < 0
1828 /* Exclude reloading of frame pointer in subreg if frame pointer can not
1829 be simplified here only because the reload is not finished yet. */
1830 && (hard_regno != FRAME_POINTER_REGNUM
1831 || !fp_subreg_can_be_simplified_after_reload_p (innermode,
1832 SUBREG_BYTE (operand),
1833 mode))
1834 /* Don't reload subreg for matching reload. It is actually
1835 valid subreg in LRA. */
1836 && ! LRA_SUBREG_P (operand))
1837 || CONSTANT_P (reg) || GET_CODE (reg) == PLUS || MEM_P (reg))
1839 enum reg_class rclass;
1841 if (REG_P (reg))
1842 /* There is a big probability that we will get the same class
1843 for the new pseudo and we will get the same insn which
1844 means infinite looping. So spill the new pseudo. */
1845 rclass = NO_REGS;
1846 else
1847 /* The class will be defined later in curr_insn_transform. */
1848 rclass
1849 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1851 if (get_reload_reg (curr_static_id->operand[nop].type, reg_mode, reg,
1852 rclass, NULL,
1853 true, "subreg reg", &new_reg))
1855 bool insert_before, insert_after;
1856 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1858 insert_before = (type != OP_OUT
1859 || read_modify_subreg_p (operand));
1860 insert_after = (type != OP_IN);
1861 insert_move_for_subreg (insert_before ? &before : NULL,
1862 insert_after ? &after : NULL,
1863 reg, new_reg);
1865 SUBREG_REG (operand) = new_reg;
1866 lra_process_new_insns (curr_insn, before, after,
1867 "Inserting subreg reload");
1868 return true;
1870 /* Force a reload for a paradoxical subreg. For paradoxical subreg,
1871 IRA allocates hardreg to the inner pseudo reg according to its mode
1872 instead of the outermode, so the size of the hardreg may not be enough
1873 to contain the outermode operand, in that case we may need to insert
1874 reload for the reg. For the following two types of paradoxical subreg,
1875 we need to insert reload:
1876 1. If the op_type is OP_IN, and the hardreg could not be paired with
1877 other hardreg to contain the outermode operand
1878 (checked by in_hard_reg_set_p), we need to insert the reload.
1879 2. If the op_type is OP_OUT or OP_INOUT.
1881 Here is a paradoxical subreg example showing how the reload is generated:
1883 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1884 (subreg:TI (reg:DI 107 [ __comp ]) 0)) {*movti_internal_rex64}
1886 In IRA, reg107 is allocated to a DImode hardreg. We use x86-64 as example
1887 here, if reg107 is assigned to hardreg R15, because R15 is the last
1888 hardreg, compiler cannot find another hardreg to pair with R15 to
1889 contain TImode data. So we insert a TImode reload reg180 for it.
1890 After reload is inserted:
1892 (insn 283 0 0 (set (subreg:DI (reg:TI 180 [orig:107 __comp ] [107]) 0)
1893 (reg:DI 107 [ __comp ])) -1
1894 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1895 (subreg:TI (reg:TI 180 [orig:107 __comp ] [107]) 0)) {*movti_internal_rex64}
1897 Two reload hard registers will be allocated to reg180 to save TImode data
1898 in LRA_assign.
1900 For LRA pseudos this should normally be handled by the biggest_mode
1901 mechanism. However, it's possible for new uses of an LRA pseudo
1902 to be introduced after we've allocated it, such as when undoing
1903 inheritance, and the allocated register might not then be appropriate
1904 for the new uses. */
1905 else if (REG_P (reg)
1906 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1907 && paradoxical_subreg_p (operand)
1908 && (inner_hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1909 && ((hard_regno
1910 = simplify_subreg_regno (inner_hard_regno, innermode,
1911 SUBREG_BYTE (operand), mode)) < 0
1912 || ((hard_regno_nregs (inner_hard_regno, innermode)
1913 < hard_regno_nregs (hard_regno, mode))
1914 && (regclass = lra_get_allocno_class (REGNO (reg)))
1915 && (type != OP_IN
1916 || !in_hard_reg_set_p (reg_class_contents[regclass],
1917 mode, hard_regno)
1918 || overlaps_hard_reg_set_p (lra_no_alloc_regs,
1919 mode, hard_regno)))))
1921 /* The class will be defined later in curr_insn_transform. */
1922 enum reg_class rclass
1923 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1925 if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1926 rclass, NULL,
1927 true, "paradoxical subreg", &new_reg))
1929 rtx subreg;
1930 bool insert_before, insert_after;
1932 PUT_MODE (new_reg, mode);
1933 subreg = gen_lowpart_SUBREG (innermode, new_reg);
1934 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1936 insert_before = (type != OP_OUT);
1937 insert_after = (type != OP_IN);
1938 insert_move_for_subreg (insert_before ? &before : NULL,
1939 insert_after ? &after : NULL,
1940 reg, subreg);
1942 SUBREG_REG (operand) = new_reg;
1943 lra_process_new_insns (curr_insn, before, after,
1944 "Inserting paradoxical subreg reload");
1945 return true;
1947 return false;
1950 /* Return TRUE if X refers for a hard register from SET. */
1951 static bool
1952 uses_hard_regs_p (rtx x, HARD_REG_SET set)
1954 int i, j, x_hard_regno;
1955 machine_mode mode;
1956 const char *fmt;
1957 enum rtx_code code;
1959 if (x == NULL_RTX)
1960 return false;
1961 code = GET_CODE (x);
1962 mode = GET_MODE (x);
1964 if (code == SUBREG)
1966 /* For all SUBREGs we want to check whether the full multi-register
1967 overlaps the set. For normal SUBREGs this means 'get_hard_regno' of
1968 the inner register, for paradoxical SUBREGs this means the
1969 'get_hard_regno' of the full SUBREG and for complete SUBREGs either is
1970 fine. Use the wider mode for all cases. */
1971 rtx subreg = SUBREG_REG (x);
1972 mode = wider_subreg_mode (x);
1973 if (mode == GET_MODE (subreg))
1975 x = subreg;
1976 code = GET_CODE (x);
1980 if (REG_P (x) || SUBREG_P (x))
1982 x_hard_regno = get_hard_regno (x);
1983 return (x_hard_regno >= 0
1984 && overlaps_hard_reg_set_p (set, mode, x_hard_regno));
1986 fmt = GET_RTX_FORMAT (code);
1987 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1989 if (fmt[i] == 'e')
1991 if (uses_hard_regs_p (XEXP (x, i), set))
1992 return true;
1994 else if (fmt[i] == 'E')
1996 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1997 if (uses_hard_regs_p (XVECEXP (x, i, j), set))
1998 return true;
2001 return false;
2004 /* Return true if OP is a spilled pseudo. */
2005 static inline bool
2006 spilled_pseudo_p (rtx op)
2008 return (REG_P (op)
2009 && REGNO (op) >= FIRST_PSEUDO_REGISTER && in_mem_p (REGNO (op)));
2012 /* Return true if X is a general constant. */
2013 static inline bool
2014 general_constant_p (rtx x)
2016 return CONSTANT_P (x) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (x));
2019 static bool
2020 reg_in_class_p (rtx reg, enum reg_class cl)
2022 if (cl == NO_REGS)
2023 return get_reg_class (REGNO (reg)) == NO_REGS;
2024 return in_class_p (reg, cl, NULL);
2027 /* Return true if SET of RCLASS contains no hard regs which can be
2028 used in MODE. */
2029 static bool
2030 prohibited_class_reg_set_mode_p (enum reg_class rclass,
2031 HARD_REG_SET &set,
2032 machine_mode mode)
2034 HARD_REG_SET temp;
2036 lra_assert (hard_reg_set_subset_p (reg_class_contents[rclass], set));
2037 temp = set & ~lra_no_alloc_regs;
2038 return (hard_reg_set_subset_p
2039 (temp, ira_prohibited_class_mode_regs[rclass][mode]));
2043 /* Used to check validity info about small class input operands. It
2044 should be incremented at start of processing an insn
2045 alternative. */
2046 static unsigned int curr_small_class_check = 0;
2048 /* Update number of used inputs of class OP_CLASS for operand NOP
2049 of alternative NALT. Return true if we have more such class operands
2050 than the number of available regs. */
2051 static bool
2052 update_and_check_small_class_inputs (int nop, int nalt,
2053 enum reg_class op_class)
2055 static unsigned int small_class_check[LIM_REG_CLASSES];
2056 static int small_class_input_nums[LIM_REG_CLASSES];
2058 if (SMALL_REGISTER_CLASS_P (op_class)
2059 /* We are interesting in classes became small because of fixing
2060 some hard regs, e.g. by an user through GCC options. */
2061 && hard_reg_set_intersect_p (reg_class_contents[op_class],
2062 ira_no_alloc_regs)
2063 && (curr_static_id->operand[nop].type != OP_OUT
2064 || TEST_BIT (curr_static_id->operand[nop].early_clobber_alts, nalt)))
2066 if (small_class_check[op_class] == curr_small_class_check)
2067 small_class_input_nums[op_class]++;
2068 else
2070 small_class_check[op_class] = curr_small_class_check;
2071 small_class_input_nums[op_class] = 1;
2073 if (small_class_input_nums[op_class] > ira_class_hard_regs_num[op_class])
2074 return true;
2076 return false;
2079 /* Print operand constraints for alternative ALT_NUMBER of the current
2080 insn. */
2081 static void
2082 print_curr_insn_alt (int alt_number)
2084 for (int i = 0; i < curr_static_id->n_operands; i++)
2086 const char *p = (curr_static_id->operand_alternative
2087 [alt_number * curr_static_id->n_operands + i].constraint);
2088 if (*p == '\0')
2089 continue;
2090 fprintf (lra_dump_file, " (%d) ", i);
2091 for (; *p != '\0' && *p != ',' && *p != '#'; p++)
2092 fputc (*p, lra_dump_file);
2096 /* Major function to choose the current insn alternative and what
2097 operands should be reloaded and how. If ONLY_ALTERNATIVE is not
2098 negative we should consider only this alternative. Return false if
2099 we cannot choose the alternative or find how to reload the
2100 operands. */
2101 static bool
2102 process_alt_operands (int only_alternative)
2104 bool ok_p = false;
2105 int nop, overall, nalt;
2106 int n_alternatives = curr_static_id->n_alternatives;
2107 int n_operands = curr_static_id->n_operands;
2108 /* LOSERS counts the operands that don't fit this alternative and
2109 would require loading. */
2110 int losers;
2111 int addr_losers;
2112 /* REJECT is a count of how undesirable this alternative says it is
2113 if any reloading is required. If the alternative matches exactly
2114 then REJECT is ignored, but otherwise it gets this much counted
2115 against it in addition to the reloading needed. */
2116 int reject;
2117 /* This is defined by '!' or '?' alternative constraint and added to
2118 reject. But in some cases it can be ignored. */
2119 int static_reject;
2120 int op_reject;
2121 /* The number of elements in the following array. */
2122 int early_clobbered_regs_num;
2123 /* Numbers of operands which are early clobber registers. */
2124 int early_clobbered_nops[MAX_RECOG_OPERANDS];
2125 enum reg_class curr_alt[MAX_RECOG_OPERANDS];
2126 HARD_REG_SET curr_alt_set[MAX_RECOG_OPERANDS];
2127 HARD_REG_SET curr_alt_exclude_start_hard_regs[MAX_RECOG_OPERANDS];
2128 bool curr_alt_match_win[MAX_RECOG_OPERANDS];
2129 bool curr_alt_win[MAX_RECOG_OPERANDS];
2130 bool curr_alt_offmemok[MAX_RECOG_OPERANDS];
2131 int curr_alt_matches[MAX_RECOG_OPERANDS];
2132 /* The number of elements in the following array. */
2133 int curr_alt_dont_inherit_ops_num;
2134 /* Numbers of operands whose reload pseudos should not be inherited. */
2135 int curr_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
2136 bool curr_reuse_alt_p;
2137 /* True if output stack pointer reload should be generated for the current
2138 alternative. */
2139 bool curr_alt_out_sp_reload_p;
2140 rtx op;
2141 /* The register when the operand is a subreg of register, otherwise the
2142 operand itself. */
2143 rtx no_subreg_reg_operand[MAX_RECOG_OPERANDS];
2144 /* The register if the operand is a register or subreg of register,
2145 otherwise NULL. */
2146 rtx operand_reg[MAX_RECOG_OPERANDS];
2147 int hard_regno[MAX_RECOG_OPERANDS];
2148 machine_mode biggest_mode[MAX_RECOG_OPERANDS];
2149 int reload_nregs, reload_sum;
2150 bool costly_p;
2151 enum reg_class cl;
2153 /* Calculate some data common for all alternatives to speed up the
2154 function. */
2155 for (nop = 0; nop < n_operands; nop++)
2157 rtx reg;
2159 op = no_subreg_reg_operand[nop] = *curr_id->operand_loc[nop];
2160 /* The real hard regno of the operand after the allocation. */
2161 hard_regno[nop] = get_hard_regno (op);
2163 operand_reg[nop] = reg = op;
2164 biggest_mode[nop] = GET_MODE (op);
2165 if (GET_CODE (op) == SUBREG)
2167 biggest_mode[nop] = wider_subreg_mode (op);
2168 operand_reg[nop] = reg = SUBREG_REG (op);
2170 if (! REG_P (reg))
2171 operand_reg[nop] = NULL_RTX;
2172 else if (REGNO (reg) >= FIRST_PSEUDO_REGISTER
2173 || ((int) REGNO (reg)
2174 == lra_get_elimination_hard_regno (REGNO (reg))))
2175 no_subreg_reg_operand[nop] = reg;
2176 else
2177 operand_reg[nop] = no_subreg_reg_operand[nop]
2178 /* Just use natural mode for elimination result. It should
2179 be enough for extra constraints hooks. */
2180 = regno_reg_rtx[hard_regno[nop]];
2183 /* The constraints are made of several alternatives. Each operand's
2184 constraint looks like foo,bar,... with commas separating the
2185 alternatives. The first alternatives for all operands go
2186 together, the second alternatives go together, etc.
2188 First loop over alternatives. */
2189 alternative_mask preferred = curr_id->preferred_alternatives;
2190 if (only_alternative >= 0)
2191 preferred &= ALTERNATIVE_BIT (only_alternative);
2193 for (nalt = 0; nalt < n_alternatives; nalt++)
2195 /* Loop over operands for one constraint alternative. */
2196 if (!TEST_BIT (preferred, nalt))
2197 continue;
2199 if (lra_dump_file != NULL)
2201 fprintf (lra_dump_file, " Considering alt=%d of insn %d: ",
2202 nalt, INSN_UID (curr_insn));
2203 print_curr_insn_alt (nalt);
2204 fprintf (lra_dump_file, "\n");
2207 bool matching_early_clobber[MAX_RECOG_OPERANDS];
2208 curr_small_class_check++;
2209 overall = losers = addr_losers = 0;
2210 static_reject = reject = reload_nregs = reload_sum = 0;
2211 for (nop = 0; nop < n_operands; nop++)
2213 int inc = (curr_static_id
2214 ->operand_alternative[nalt * n_operands + nop].reject);
2215 if (lra_dump_file != NULL && inc != 0)
2216 fprintf (lra_dump_file,
2217 " Staticly defined alt reject+=%d\n", inc);
2218 static_reject += inc;
2219 matching_early_clobber[nop] = 0;
2221 reject += static_reject;
2222 early_clobbered_regs_num = 0;
2223 curr_alt_out_sp_reload_p = false;
2224 curr_reuse_alt_p = true;
2226 for (nop = 0; nop < n_operands; nop++)
2228 const char *p;
2229 char *end;
2230 int len, c, m, i, opalt_num, this_alternative_matches;
2231 bool win, did_match, offmemok, early_clobber_p;
2232 /* false => this operand can be reloaded somehow for this
2233 alternative. */
2234 bool badop;
2235 /* true => this operand can be reloaded if the alternative
2236 allows regs. */
2237 bool winreg;
2238 /* True if a constant forced into memory would be OK for
2239 this operand. */
2240 bool constmemok;
2241 enum reg_class this_alternative, this_costly_alternative;
2242 HARD_REG_SET this_alternative_set, this_costly_alternative_set;
2243 HARD_REG_SET this_alternative_exclude_start_hard_regs;
2244 bool this_alternative_match_win, this_alternative_win;
2245 bool this_alternative_offmemok;
2246 bool scratch_p;
2247 machine_mode mode;
2248 enum constraint_num cn;
2250 opalt_num = nalt * n_operands + nop;
2251 if (curr_static_id->operand_alternative[opalt_num].anything_ok)
2253 /* Fast track for no constraints at all. */
2254 curr_alt[nop] = NO_REGS;
2255 CLEAR_HARD_REG_SET (curr_alt_set[nop]);
2256 curr_alt_win[nop] = true;
2257 curr_alt_match_win[nop] = false;
2258 curr_alt_offmemok[nop] = false;
2259 curr_alt_matches[nop] = -1;
2260 continue;
2263 op = no_subreg_reg_operand[nop];
2264 mode = curr_operand_mode[nop];
2266 win = did_match = winreg = offmemok = constmemok = false;
2267 badop = true;
2269 early_clobber_p = false;
2270 p = curr_static_id->operand_alternative[opalt_num].constraint;
2272 this_costly_alternative = this_alternative = NO_REGS;
2273 /* We update set of possible hard regs besides its class
2274 because reg class might be inaccurate. For example,
2275 union of LO_REGS (l), HI_REGS(h), and STACK_REG(k) in ARM
2276 is translated in HI_REGS because classes are merged by
2277 pairs and there is no accurate intermediate class. */
2278 CLEAR_HARD_REG_SET (this_alternative_set);
2279 CLEAR_HARD_REG_SET (this_costly_alternative_set);
2280 CLEAR_HARD_REG_SET (this_alternative_exclude_start_hard_regs);
2281 this_alternative_win = false;
2282 this_alternative_match_win = false;
2283 this_alternative_offmemok = false;
2284 this_alternative_matches = -1;
2286 /* An empty constraint should be excluded by the fast
2287 track. */
2288 lra_assert (*p != 0 && *p != ',');
2290 op_reject = 0;
2291 /* Scan this alternative's specs for this operand; set WIN
2292 if the operand fits any letter in this alternative.
2293 Otherwise, clear BADOP if this operand could fit some
2294 letter after reloads, or set WINREG if this operand could
2295 fit after reloads provided the constraint allows some
2296 registers. */
2297 costly_p = false;
2300 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
2302 case '\0':
2303 len = 0;
2304 break;
2305 case ',':
2306 c = '\0';
2307 break;
2309 case '&':
2310 early_clobber_p = true;
2311 break;
2313 case '$':
2314 op_reject += LRA_MAX_REJECT;
2315 break;
2316 case '^':
2317 op_reject += LRA_LOSER_COST_FACTOR;
2318 break;
2320 case '#':
2321 /* Ignore rest of this alternative. */
2322 c = '\0';
2323 break;
2325 case '0': case '1': case '2': case '3': case '4':
2326 case '5': case '6': case '7': case '8': case '9':
2328 int m_hregno;
2329 bool match_p;
2331 m = strtoul (p, &end, 10);
2332 p = end;
2333 len = 0;
2334 lra_assert (nop > m);
2336 /* Reject matches if we don't know which operand is
2337 bigger. This situation would arguably be a bug in
2338 an .md pattern, but could also occur in a user asm. */
2339 if (!ordered_p (GET_MODE_SIZE (biggest_mode[m]),
2340 GET_MODE_SIZE (biggest_mode[nop])))
2341 break;
2343 /* Don't match wrong asm insn operands for proper
2344 diagnostic later. */
2345 if (INSN_CODE (curr_insn) < 0
2346 && (curr_operand_mode[m] == BLKmode
2347 || curr_operand_mode[nop] == BLKmode)
2348 && curr_operand_mode[m] != curr_operand_mode[nop])
2349 break;
2351 m_hregno = get_hard_regno (*curr_id->operand_loc[m]);
2352 /* We are supposed to match a previous operand.
2353 If we do, we win if that one did. If we do
2354 not, count both of the operands as losers.
2355 (This is too conservative, since most of the
2356 time only a single reload insn will be needed
2357 to make the two operands win. As a result,
2358 this alternative may be rejected when it is
2359 actually desirable.) */
2360 match_p = false;
2361 if (operands_match_p (*curr_id->operand_loc[nop],
2362 *curr_id->operand_loc[m], m_hregno))
2364 /* We should reject matching of an early
2365 clobber operand if the matching operand is
2366 not dying in the insn. */
2367 if (!TEST_BIT (curr_static_id->operand[m]
2368 .early_clobber_alts, nalt)
2369 || operand_reg[nop] == NULL_RTX
2370 || (find_regno_note (curr_insn, REG_DEAD,
2371 REGNO (op))
2372 || REGNO (op) == REGNO (operand_reg[m])))
2373 match_p = true;
2375 if (match_p)
2377 /* If we are matching a non-offsettable
2378 address where an offsettable address was
2379 expected, then we must reject this
2380 combination, because we can't reload
2381 it. */
2382 if (curr_alt_offmemok[m]
2383 && MEM_P (*curr_id->operand_loc[m])
2384 && curr_alt[m] == NO_REGS && ! curr_alt_win[m])
2385 continue;
2387 else
2389 /* If the operands do not match and one
2390 operand is INOUT, we can not match them.
2391 Try other possibilities, e.g. other
2392 alternatives or commutative operand
2393 exchange. */
2394 if (curr_static_id->operand[nop].type == OP_INOUT
2395 || curr_static_id->operand[m].type == OP_INOUT)
2396 break;
2397 /* Operands don't match. If the operands are
2398 different user defined explicit hard
2399 registers, then we cannot make them match
2400 when one is early clobber operand. */
2401 if ((REG_P (*curr_id->operand_loc[nop])
2402 || SUBREG_P (*curr_id->operand_loc[nop]))
2403 && (REG_P (*curr_id->operand_loc[m])
2404 || SUBREG_P (*curr_id->operand_loc[m])))
2406 rtx nop_reg = *curr_id->operand_loc[nop];
2407 if (SUBREG_P (nop_reg))
2408 nop_reg = SUBREG_REG (nop_reg);
2409 rtx m_reg = *curr_id->operand_loc[m];
2410 if (SUBREG_P (m_reg))
2411 m_reg = SUBREG_REG (m_reg);
2413 if (REG_P (nop_reg)
2414 && HARD_REGISTER_P (nop_reg)
2415 && REG_USERVAR_P (nop_reg)
2416 && REG_P (m_reg)
2417 && HARD_REGISTER_P (m_reg)
2418 && REG_USERVAR_P (m_reg))
2420 int i;
2422 for (i = 0; i < early_clobbered_regs_num; i++)
2423 if (m == early_clobbered_nops[i])
2424 break;
2425 if (i < early_clobbered_regs_num
2426 || early_clobber_p)
2427 break;
2430 /* Both operands must allow a reload register,
2431 otherwise we cannot make them match. */
2432 if (curr_alt[m] == NO_REGS)
2433 break;
2434 /* Retroactively mark the operand we had to
2435 match as a loser, if it wasn't already and
2436 it wasn't matched to a register constraint
2437 (e.g it might be matched by memory). */
2438 if (curr_alt_win[m]
2439 && (operand_reg[m] == NULL_RTX
2440 || hard_regno[m] < 0))
2442 losers++;
2443 reload_nregs
2444 += (ira_reg_class_max_nregs[curr_alt[m]]
2445 [GET_MODE (*curr_id->operand_loc[m])]);
2448 /* Prefer matching earlyclobber alternative as
2449 it results in less hard regs required for
2450 the insn than a non-matching earlyclobber
2451 alternative. */
2452 if (TEST_BIT (curr_static_id->operand[m]
2453 .early_clobber_alts, nalt))
2455 if (lra_dump_file != NULL)
2456 fprintf
2457 (lra_dump_file,
2458 " %d Matching earlyclobber alt:"
2459 " reject--\n",
2460 nop);
2461 if (!matching_early_clobber[m])
2463 reject--;
2464 matching_early_clobber[m] = 1;
2467 /* Otherwise we prefer no matching
2468 alternatives because it gives more freedom
2469 in RA. */
2470 else if (operand_reg[nop] == NULL_RTX
2471 || (find_regno_note (curr_insn, REG_DEAD,
2472 REGNO (operand_reg[nop]))
2473 == NULL_RTX))
2475 if (lra_dump_file != NULL)
2476 fprintf
2477 (lra_dump_file,
2478 " %d Matching alt: reject+=2\n",
2479 nop);
2480 reject += 2;
2483 /* If we have to reload this operand and some
2484 previous operand also had to match the same
2485 thing as this operand, we don't know how to do
2486 that. */
2487 if (!match_p || !curr_alt_win[m])
2489 for (i = 0; i < nop; i++)
2490 if (curr_alt_matches[i] == m)
2491 break;
2492 if (i < nop)
2493 break;
2495 else
2496 did_match = true;
2498 this_alternative_matches = m;
2499 /* This can be fixed with reloads if the operand
2500 we are supposed to match can be fixed with
2501 reloads. */
2502 badop = false;
2503 this_alternative = curr_alt[m];
2504 this_alternative_set = curr_alt_set[m];
2505 this_alternative_exclude_start_hard_regs
2506 = curr_alt_exclude_start_hard_regs[m];
2507 winreg = this_alternative != NO_REGS;
2508 break;
2511 case 'g':
2512 if (MEM_P (op)
2513 || general_constant_p (op)
2514 || spilled_pseudo_p (op))
2515 win = true;
2516 cl = GENERAL_REGS;
2517 goto reg;
2519 default:
2520 cn = lookup_constraint (p);
2521 switch (get_constraint_type (cn))
2523 case CT_REGISTER:
2524 cl = reg_class_for_constraint (cn);
2525 if (cl != NO_REGS)
2526 goto reg;
2527 break;
2529 case CT_CONST_INT:
2530 if (CONST_INT_P (op)
2531 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
2532 win = true;
2533 break;
2535 case CT_MEMORY:
2536 case CT_RELAXED_MEMORY:
2537 if (MEM_P (op)
2538 && satisfies_memory_constraint_p (op, cn))
2539 win = true;
2540 else if (spilled_pseudo_p (op))
2541 win = true;
2543 /* If we didn't already win, we can reload constants
2544 via force_const_mem or put the pseudo value into
2545 memory, or make other memory by reloading the
2546 address like for 'o'. */
2547 if (CONST_POOL_OK_P (mode, op)
2548 || MEM_P (op) || REG_P (op)
2549 /* We can restore the equiv insn by a
2550 reload. */
2551 || equiv_substition_p[nop])
2552 badop = false;
2553 constmemok = true;
2554 offmemok = true;
2555 break;
2557 case CT_ADDRESS:
2558 /* An asm operand with an address constraint
2559 that doesn't satisfy address_operand has
2560 is_address cleared, so that we don't try to
2561 make a non-address fit. */
2562 if (!curr_static_id->operand[nop].is_address)
2563 break;
2564 /* If we didn't already win, we can reload the address
2565 into a base register. */
2566 if (satisfies_address_constraint_p (op, cn))
2567 win = true;
2568 cl = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2569 ADDRESS, SCRATCH);
2570 badop = false;
2571 goto reg;
2573 case CT_FIXED_FORM:
2574 if (constraint_satisfied_p (op, cn))
2575 win = true;
2576 break;
2578 case CT_SPECIAL_MEMORY:
2579 if (satisfies_memory_constraint_p (op, cn))
2580 win = true;
2581 else if (spilled_pseudo_p (op))
2583 curr_reuse_alt_p = false;
2584 win = true;
2586 break;
2588 break;
2590 reg:
2591 if (mode == BLKmode)
2592 break;
2593 this_alternative = reg_class_subunion[this_alternative][cl];
2594 if (hard_reg_set_subset_p (this_alternative_set,
2595 reg_class_contents[cl]))
2596 this_alternative_exclude_start_hard_regs
2597 = ira_exclude_class_mode_regs[cl][mode];
2598 else if (!hard_reg_set_subset_p (reg_class_contents[cl],
2599 this_alternative_set))
2600 this_alternative_exclude_start_hard_regs
2601 |= ira_exclude_class_mode_regs[cl][mode];
2602 this_alternative_set |= reg_class_contents[cl];
2603 if (costly_p)
2605 this_costly_alternative
2606 = reg_class_subunion[this_costly_alternative][cl];
2607 this_costly_alternative_set |= reg_class_contents[cl];
2609 winreg = true;
2610 if (REG_P (op))
2612 if (hard_regno[nop] >= 0
2613 && in_hard_reg_set_p (this_alternative_set,
2614 mode, hard_regno[nop])
2615 && !TEST_HARD_REG_BIT
2616 (this_alternative_exclude_start_hard_regs,
2617 hard_regno[nop]))
2618 win = true;
2619 else if (hard_regno[nop] < 0
2620 && in_class_p (op, this_alternative, NULL))
2621 win = true;
2623 break;
2625 if (c != ' ' && c != '\t')
2626 costly_p = c == '*';
2628 while ((p += len), c);
2630 scratch_p = (operand_reg[nop] != NULL_RTX
2631 && ira_former_scratch_p (REGNO (operand_reg[nop])));
2632 /* Record which operands fit this alternative. */
2633 if (win)
2635 this_alternative_win = true;
2636 if (operand_reg[nop] != NULL_RTX)
2638 if (hard_regno[nop] >= 0)
2640 if (in_hard_reg_set_p (this_costly_alternative_set,
2641 mode, hard_regno[nop]))
2643 if (lra_dump_file != NULL)
2644 fprintf (lra_dump_file,
2645 " %d Costly set: reject++\n",
2646 nop);
2647 reject++;
2650 else
2652 /* Prefer won reg to spilled pseudo under other
2653 equal conditions for possibe inheritance. */
2654 if (! scratch_p)
2656 if (lra_dump_file != NULL)
2657 fprintf
2658 (lra_dump_file,
2659 " %d Non pseudo reload: reject++\n",
2660 nop);
2661 reject++;
2663 if (in_class_p (operand_reg[nop],
2664 this_costly_alternative, NULL))
2666 if (lra_dump_file != NULL)
2667 fprintf
2668 (lra_dump_file,
2669 " %d Non pseudo costly reload:"
2670 " reject++\n",
2671 nop);
2672 reject++;
2675 /* We simulate the behavior of old reload here.
2676 Although scratches need hard registers and it
2677 might result in spilling other pseudos, no reload
2678 insns are generated for the scratches. So it
2679 might cost something but probably less than old
2680 reload pass believes. */
2681 if (scratch_p)
2683 if (lra_dump_file != NULL)
2684 fprintf (lra_dump_file,
2685 " %d Scratch win: reject+=2\n",
2686 nop);
2687 reject += 2;
2691 else if (did_match)
2692 this_alternative_match_win = true;
2693 else
2695 int const_to_mem = 0;
2696 bool no_regs_p;
2698 reject += op_reject;
2699 /* Mark output reload of the stack pointer. */
2700 if (op == stack_pointer_rtx
2701 && curr_static_id->operand[nop].type != OP_IN)
2702 curr_alt_out_sp_reload_p = true;
2704 /* If this alternative asks for a specific reg class, see if there
2705 is at least one allocatable register in that class. */
2706 no_regs_p
2707 = (this_alternative == NO_REGS
2708 || (hard_reg_set_subset_p
2709 (reg_class_contents[this_alternative],
2710 lra_no_alloc_regs)));
2712 /* For asms, verify that the class for this alternative is possible
2713 for the mode that is specified. */
2714 if (!no_regs_p && INSN_CODE (curr_insn) < 0)
2716 int i;
2717 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2718 if (targetm.hard_regno_mode_ok (i, mode)
2719 && in_hard_reg_set_p (reg_class_contents[this_alternative],
2720 mode, i))
2721 break;
2722 if (i == FIRST_PSEUDO_REGISTER)
2723 winreg = false;
2726 /* If this operand accepts a register, and if the
2727 register class has at least one allocatable register,
2728 then this operand can be reloaded. */
2729 if (winreg && !no_regs_p)
2730 badop = false;
2732 if (badop)
2734 if (lra_dump_file != NULL)
2735 fprintf (lra_dump_file,
2736 " Bad operand -- refuse\n");
2737 goto fail;
2740 if (this_alternative != NO_REGS)
2742 HARD_REG_SET available_regs
2743 = (reg_class_contents[this_alternative]
2744 & ~((ira_prohibited_class_mode_regs
2745 [this_alternative][mode])
2746 | lra_no_alloc_regs));
2747 if (hard_reg_set_empty_p (available_regs))
2749 /* There are no hard regs holding a value of given
2750 mode. */
2751 if (offmemok)
2753 this_alternative = NO_REGS;
2754 if (lra_dump_file != NULL)
2755 fprintf (lra_dump_file,
2756 " %d Using memory because of"
2757 " a bad mode: reject+=2\n",
2758 nop);
2759 reject += 2;
2761 else
2763 if (lra_dump_file != NULL)
2764 fprintf (lra_dump_file,
2765 " Wrong mode -- refuse\n");
2766 goto fail;
2771 /* If not assigned pseudo has a class which a subset of
2772 required reg class, it is a less costly alternative
2773 as the pseudo still can get a hard reg of necessary
2774 class. */
2775 if (! no_regs_p && REG_P (op) && hard_regno[nop] < 0
2776 && (cl = get_reg_class (REGNO (op))) != NO_REGS
2777 && ira_class_subset_p[this_alternative][cl])
2779 if (lra_dump_file != NULL)
2780 fprintf
2781 (lra_dump_file,
2782 " %d Super set class reg: reject-=3\n", nop);
2783 reject -= 3;
2786 this_alternative_offmemok = offmemok;
2787 if (this_costly_alternative != NO_REGS)
2789 if (lra_dump_file != NULL)
2790 fprintf (lra_dump_file,
2791 " %d Costly loser: reject++\n", nop);
2792 reject++;
2794 /* If the operand is dying, has a matching constraint,
2795 and satisfies constraints of the matched operand
2796 which failed to satisfy the own constraints, most probably
2797 the reload for this operand will be gone. */
2798 if (this_alternative_matches >= 0
2799 && !curr_alt_win[this_alternative_matches]
2800 && REG_P (op)
2801 && find_regno_note (curr_insn, REG_DEAD, REGNO (op))
2802 && (hard_regno[nop] >= 0
2803 ? in_hard_reg_set_p (this_alternative_set,
2804 mode, hard_regno[nop])
2805 : in_class_p (op, this_alternative, NULL)))
2807 if (lra_dump_file != NULL)
2808 fprintf
2809 (lra_dump_file,
2810 " %d Dying matched operand reload: reject++\n",
2811 nop);
2812 reject++;
2814 else
2816 /* Strict_low_part requires to reload the register
2817 not the sub-register. In this case we should
2818 check that a final reload hard reg can hold the
2819 value mode. */
2820 if (curr_static_id->operand[nop].strict_low
2821 && REG_P (op)
2822 && hard_regno[nop] < 0
2823 && GET_CODE (*curr_id->operand_loc[nop]) == SUBREG
2824 && ira_class_hard_regs_num[this_alternative] > 0
2825 && (!targetm.hard_regno_mode_ok
2826 (ira_class_hard_regs[this_alternative][0],
2827 GET_MODE (*curr_id->operand_loc[nop]))))
2829 if (lra_dump_file != NULL)
2830 fprintf
2831 (lra_dump_file,
2832 " Strict low subreg reload -- refuse\n");
2833 goto fail;
2835 losers++;
2837 if (operand_reg[nop] != NULL_RTX
2838 /* Output operands and matched input operands are
2839 not inherited. The following conditions do not
2840 exactly describe the previous statement but they
2841 are pretty close. */
2842 && curr_static_id->operand[nop].type != OP_OUT
2843 && (this_alternative_matches < 0
2844 || curr_static_id->operand[nop].type != OP_IN))
2846 int last_reload = (lra_reg_info[ORIGINAL_REGNO
2847 (operand_reg[nop])]
2848 .last_reload);
2850 /* The value of reload_sum has sense only if we
2851 process insns in their order. It happens only on
2852 the first constraints sub-pass when we do most of
2853 reload work. */
2854 if (lra_constraint_iter == 1 && last_reload > bb_reload_num)
2855 reload_sum += last_reload - bb_reload_num;
2857 /* If this is a constant that is reloaded into the
2858 desired class by copying it to memory first, count
2859 that as another reload. This is consistent with
2860 other code and is required to avoid choosing another
2861 alternative when the constant is moved into memory.
2862 Note that the test here is precisely the same as in
2863 the code below that calls force_const_mem. */
2864 if (CONST_POOL_OK_P (mode, op)
2865 && ((targetm.preferred_reload_class
2866 (op, this_alternative) == NO_REGS)
2867 || no_input_reloads_p))
2869 const_to_mem = 1;
2870 if (! no_regs_p)
2871 losers++;
2874 /* Alternative loses if it requires a type of reload not
2875 permitted for this insn. We can always reload
2876 objects with a REG_UNUSED note. */
2877 if ((curr_static_id->operand[nop].type != OP_IN
2878 && no_output_reloads_p
2879 && ! find_reg_note (curr_insn, REG_UNUSED, op))
2880 || (curr_static_id->operand[nop].type != OP_OUT
2881 && no_input_reloads_p && ! const_to_mem)
2882 || (this_alternative_matches >= 0
2883 && (no_input_reloads_p
2884 || (no_output_reloads_p
2885 && (curr_static_id->operand
2886 [this_alternative_matches].type != OP_IN)
2887 && ! find_reg_note (curr_insn, REG_UNUSED,
2888 no_subreg_reg_operand
2889 [this_alternative_matches])))))
2891 if (lra_dump_file != NULL)
2892 fprintf
2893 (lra_dump_file,
2894 " No input/output reload -- refuse\n");
2895 goto fail;
2898 /* Alternative loses if it required class pseudo cannot
2899 hold value of required mode. Such insns can be
2900 described by insn definitions with mode iterators. */
2901 if (GET_MODE (*curr_id->operand_loc[nop]) != VOIDmode
2902 && ! hard_reg_set_empty_p (this_alternative_set)
2903 /* It is common practice for constraints to use a
2904 class which does not have actually enough regs to
2905 hold the value (e.g. x86 AREG for mode requiring
2906 more one general reg). Therefore we have 2
2907 conditions to check that the reload pseudo cannot
2908 hold the mode value. */
2909 && (!targetm.hard_regno_mode_ok
2910 (ira_class_hard_regs[this_alternative][0],
2911 GET_MODE (*curr_id->operand_loc[nop])))
2912 /* The above condition is not enough as the first
2913 reg in ira_class_hard_regs can be not aligned for
2914 multi-words mode values. */
2915 && (prohibited_class_reg_set_mode_p
2916 (this_alternative, this_alternative_set,
2917 GET_MODE (*curr_id->operand_loc[nop]))))
2919 if (lra_dump_file != NULL)
2920 fprintf (lra_dump_file,
2921 " reload pseudo for op %d "
2922 "cannot hold the mode value -- refuse\n",
2923 nop);
2924 goto fail;
2927 /* Check strong discouragement of reload of non-constant
2928 into class THIS_ALTERNATIVE. */
2929 if (! CONSTANT_P (op) && ! no_regs_p
2930 && (targetm.preferred_reload_class
2931 (op, this_alternative) == NO_REGS
2932 || (curr_static_id->operand[nop].type == OP_OUT
2933 && (targetm.preferred_output_reload_class
2934 (op, this_alternative) == NO_REGS))))
2936 if (offmemok && REG_P (op))
2938 if (lra_dump_file != NULL)
2939 fprintf
2940 (lra_dump_file,
2941 " %d Spill pseudo into memory: reject+=3\n",
2942 nop);
2943 reject += 3;
2945 else
2947 if (lra_dump_file != NULL)
2948 fprintf
2949 (lra_dump_file,
2950 " %d Non-prefered reload: reject+=%d\n",
2951 nop, LRA_MAX_REJECT);
2952 reject += LRA_MAX_REJECT;
2956 if (! (MEM_P (op) && offmemok)
2957 && ! (const_to_mem && constmemok))
2959 /* We prefer to reload pseudos over reloading other
2960 things, since such reloads may be able to be
2961 eliminated later. So bump REJECT in other cases.
2962 Don't do this in the case where we are forcing a
2963 constant into memory and it will then win since
2964 we don't want to have a different alternative
2965 match then. */
2966 if (! (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2968 if (lra_dump_file != NULL)
2969 fprintf
2970 (lra_dump_file,
2971 " %d Non-pseudo reload: reject+=2\n",
2972 nop);
2973 reject += 2;
2976 if (! no_regs_p)
2977 reload_nregs
2978 += ira_reg_class_max_nregs[this_alternative][mode];
2980 if (SMALL_REGISTER_CLASS_P (this_alternative))
2982 if (lra_dump_file != NULL)
2983 fprintf
2984 (lra_dump_file,
2985 " %d Small class reload: reject+=%d\n",
2986 nop, LRA_LOSER_COST_FACTOR / 2);
2987 reject += LRA_LOSER_COST_FACTOR / 2;
2991 /* We are trying to spill pseudo into memory. It is
2992 usually more costly than moving to a hard register
2993 although it might takes the same number of
2994 reloads.
2996 Non-pseudo spill may happen also. Suppose a target allows both
2997 register and memory in the operand constraint alternatives,
2998 then it's typical that an eliminable register has a substition
2999 of "base + offset" which can either be reloaded by a simple
3000 "new_reg <= base + offset" which will match the register
3001 constraint, or a similar reg addition followed by further spill
3002 to and reload from memory which will match the memory
3003 constraint, but this memory spill will be much more costly
3004 usually.
3006 Code below increases the reject for both pseudo and non-pseudo
3007 spill. */
3008 if (no_regs_p
3009 && !(MEM_P (op) && offmemok)
3010 && !(REG_P (op) && hard_regno[nop] < 0))
3012 if (lra_dump_file != NULL)
3013 fprintf
3014 (lra_dump_file,
3015 " %d Spill %spseudo into memory: reject+=3\n",
3016 nop, REG_P (op) ? "" : "Non-");
3017 reject += 3;
3018 if (VECTOR_MODE_P (mode))
3020 /* Spilling vectors into memory is usually more
3021 costly as they contain big values. */
3022 if (lra_dump_file != NULL)
3023 fprintf
3024 (lra_dump_file,
3025 " %d Spill vector pseudo: reject+=2\n",
3026 nop);
3027 reject += 2;
3031 /* When we use an operand requiring memory in given
3032 alternative, the insn should write *and* read the
3033 value to/from memory it is costly in comparison with
3034 an insn alternative which does not use memory
3035 (e.g. register or immediate operand). We exclude
3036 memory operand for such case as we can satisfy the
3037 memory constraints by reloading address. */
3038 if (no_regs_p && offmemok && !MEM_P (op))
3040 if (lra_dump_file != NULL)
3041 fprintf
3042 (lra_dump_file,
3043 " Using memory insn operand %d: reject+=3\n",
3044 nop);
3045 reject += 3;
3048 /* If reload requires moving value through secondary
3049 memory, it will need one more insn at least. */
3050 if (this_alternative != NO_REGS
3051 && REG_P (op) && (cl = get_reg_class (REGNO (op))) != NO_REGS
3052 && ((curr_static_id->operand[nop].type != OP_OUT
3053 && targetm.secondary_memory_needed (GET_MODE (op), cl,
3054 this_alternative))
3055 || (curr_static_id->operand[nop].type != OP_IN
3056 && (targetm.secondary_memory_needed
3057 (GET_MODE (op), this_alternative, cl)))))
3058 losers++;
3060 if (MEM_P (op) && offmemok)
3061 addr_losers++;
3062 else
3064 /* Input reloads can be inherited more often than
3065 output reloads can be removed, so penalize output
3066 reloads. */
3067 if (!REG_P (op) || curr_static_id->operand[nop].type != OP_IN)
3069 if (lra_dump_file != NULL)
3070 fprintf
3071 (lra_dump_file,
3072 " %d Non input pseudo reload: reject++\n",
3073 nop);
3074 reject++;
3077 if (curr_static_id->operand[nop].type == OP_INOUT)
3079 if (lra_dump_file != NULL)
3080 fprintf
3081 (lra_dump_file,
3082 " %d Input/Output reload: reject+=%d\n",
3083 nop, LRA_LOSER_COST_FACTOR);
3084 reject += LRA_LOSER_COST_FACTOR;
3089 if (early_clobber_p && ! scratch_p)
3091 if (lra_dump_file != NULL)
3092 fprintf (lra_dump_file,
3093 " %d Early clobber: reject++\n", nop);
3094 reject++;
3096 /* ??? We check early clobbers after processing all operands
3097 (see loop below) and there we update the costs more.
3098 Should we update the cost (may be approximately) here
3099 because of early clobber register reloads or it is a rare
3100 or non-important thing to be worth to do it. */
3101 overall = (losers * LRA_LOSER_COST_FACTOR + reject
3102 - (addr_losers == losers ? static_reject : 0));
3103 if ((best_losers == 0 || losers != 0) && best_overall < overall)
3105 if (lra_dump_file != NULL)
3106 fprintf (lra_dump_file,
3107 " overall=%d,losers=%d -- refuse\n",
3108 overall, losers);
3109 goto fail;
3112 if (update_and_check_small_class_inputs (nop, nalt,
3113 this_alternative))
3115 if (lra_dump_file != NULL)
3116 fprintf (lra_dump_file,
3117 " not enough small class regs -- refuse\n");
3118 goto fail;
3120 curr_alt[nop] = this_alternative;
3121 curr_alt_set[nop] = this_alternative_set;
3122 curr_alt_exclude_start_hard_regs[nop]
3123 = this_alternative_exclude_start_hard_regs;
3124 curr_alt_win[nop] = this_alternative_win;
3125 curr_alt_match_win[nop] = this_alternative_match_win;
3126 curr_alt_offmemok[nop] = this_alternative_offmemok;
3127 curr_alt_matches[nop] = this_alternative_matches;
3129 if (this_alternative_matches >= 0
3130 && !did_match && !this_alternative_win)
3131 curr_alt_win[this_alternative_matches] = false;
3133 if (early_clobber_p && operand_reg[nop] != NULL_RTX)
3134 early_clobbered_nops[early_clobbered_regs_num++] = nop;
3137 if (curr_insn_set != NULL_RTX && n_operands == 2
3138 /* Prevent processing non-move insns. */
3139 && (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
3140 || SET_SRC (curr_insn_set) == no_subreg_reg_operand[1])
3141 && ((! curr_alt_win[0] && ! curr_alt_win[1]
3142 && REG_P (no_subreg_reg_operand[0])
3143 && REG_P (no_subreg_reg_operand[1])
3144 && (reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
3145 || reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0])))
3146 || (! curr_alt_win[0] && curr_alt_win[1]
3147 && REG_P (no_subreg_reg_operand[1])
3148 /* Check that we reload memory not the memory
3149 address. */
3150 && ! (curr_alt_offmemok[0]
3151 && MEM_P (no_subreg_reg_operand[0]))
3152 && reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0]))
3153 || (curr_alt_win[0] && ! curr_alt_win[1]
3154 && REG_P (no_subreg_reg_operand[0])
3155 /* Check that we reload memory not the memory
3156 address. */
3157 && ! (curr_alt_offmemok[1]
3158 && MEM_P (no_subreg_reg_operand[1]))
3159 && reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
3160 && (! CONST_POOL_OK_P (curr_operand_mode[1],
3161 no_subreg_reg_operand[1])
3162 || (targetm.preferred_reload_class
3163 (no_subreg_reg_operand[1],
3164 (enum reg_class) curr_alt[1]) != NO_REGS))
3165 /* If it is a result of recent elimination in move
3166 insn we can transform it into an add still by
3167 using this alternative. */
3168 && GET_CODE (no_subreg_reg_operand[1]) != PLUS
3169 /* Likewise if the source has been replaced with an
3170 equivalent value. This only happens once -- the reload
3171 will use the equivalent value instead of the register it
3172 replaces -- so there should be no danger of cycling. */
3173 && !equiv_substition_p[1])))
3175 /* We have a move insn and a new reload insn will be similar
3176 to the current insn. We should avoid such situation as
3177 it results in LRA cycling. */
3178 if (lra_dump_file != NULL)
3179 fprintf (lra_dump_file,
3180 " Cycle danger: overall += LRA_MAX_REJECT\n");
3181 overall += LRA_MAX_REJECT;
3183 ok_p = true;
3184 curr_alt_dont_inherit_ops_num = 0;
3185 for (nop = 0; nop < early_clobbered_regs_num; nop++)
3187 int i, j, clobbered_hard_regno, first_conflict_j, last_conflict_j;
3188 HARD_REG_SET temp_set;
3190 i = early_clobbered_nops[nop];
3191 if ((! curr_alt_win[i] && ! curr_alt_match_win[i])
3192 || hard_regno[i] < 0)
3193 continue;
3194 lra_assert (operand_reg[i] != NULL_RTX);
3195 clobbered_hard_regno = hard_regno[i];
3196 CLEAR_HARD_REG_SET (temp_set);
3197 add_to_hard_reg_set (&temp_set, GET_MODE (*curr_id->operand_loc[i]),
3198 clobbered_hard_regno);
3199 first_conflict_j = last_conflict_j = -1;
3200 for (j = 0; j < n_operands; j++)
3201 if (j == i
3202 /* We don't want process insides of match_operator and
3203 match_parallel because otherwise we would process
3204 their operands once again generating a wrong
3205 code. */
3206 || curr_static_id->operand[j].is_operator)
3207 continue;
3208 else if ((curr_alt_matches[j] == i && curr_alt_match_win[j])
3209 || (curr_alt_matches[i] == j && curr_alt_match_win[i]))
3210 continue;
3211 /* If we don't reload j-th operand, check conflicts. */
3212 else if ((curr_alt_win[j] || curr_alt_match_win[j])
3213 && uses_hard_regs_p (*curr_id->operand_loc[j], temp_set))
3215 if (first_conflict_j < 0)
3216 first_conflict_j = j;
3217 last_conflict_j = j;
3218 /* Both the earlyclobber operand and conflicting operand
3219 cannot both be user defined hard registers. */
3220 if (HARD_REGISTER_P (operand_reg[i])
3221 && REG_USERVAR_P (operand_reg[i])
3222 && operand_reg[j] != NULL_RTX
3223 && HARD_REGISTER_P (operand_reg[j])
3224 && REG_USERVAR_P (operand_reg[j]))
3226 /* For asm, let curr_insn_transform diagnose it. */
3227 if (INSN_CODE (curr_insn) < 0)
3228 return false;
3229 fatal_insn ("unable to generate reloads for "
3230 "impossible constraints:", curr_insn);
3233 if (last_conflict_j < 0)
3234 continue;
3236 /* If an earlyclobber operand conflicts with another non-matching
3237 operand (ie, they have been assigned the same hard register),
3238 then it is better to reload the other operand, as there may
3239 exist yet another operand with a matching constraint associated
3240 with the earlyclobber operand. However, if one of the operands
3241 is an explicit use of a hard register, then we must reload the
3242 other non-hard register operand. */
3243 if (HARD_REGISTER_P (operand_reg[i])
3244 || (first_conflict_j == last_conflict_j
3245 && operand_reg[last_conflict_j] != NULL_RTX
3246 && !curr_alt_match_win[last_conflict_j]
3247 && !HARD_REGISTER_P (operand_reg[last_conflict_j])))
3249 curr_alt_win[last_conflict_j] = false;
3250 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++]
3251 = last_conflict_j;
3252 losers++;
3253 if (lra_dump_file != NULL)
3254 fprintf
3255 (lra_dump_file,
3256 " %d Conflict early clobber reload: reject--\n",
3259 else
3261 /* We need to reload early clobbered register and the
3262 matched registers. */
3263 for (j = 0; j < n_operands; j++)
3264 if (curr_alt_matches[j] == i)
3266 curr_alt_match_win[j] = false;
3267 losers++;
3268 overall += LRA_LOSER_COST_FACTOR;
3270 if (! curr_alt_match_win[i])
3271 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++] = i;
3272 else
3274 /* Remember pseudos used for match reloads are never
3275 inherited. */
3276 lra_assert (curr_alt_matches[i] >= 0);
3277 curr_alt_win[curr_alt_matches[i]] = false;
3279 curr_alt_win[i] = curr_alt_match_win[i] = false;
3280 losers++;
3281 if (lra_dump_file != NULL)
3282 fprintf
3283 (lra_dump_file,
3284 " %d Matched conflict early clobber reloads: "
3285 "reject--\n",
3288 /* Early clobber was already reflected in REJECT. */
3289 if (!matching_early_clobber[i])
3291 lra_assert (reject > 0);
3292 reject--;
3293 matching_early_clobber[i] = 1;
3295 overall += LRA_LOSER_COST_FACTOR - 1;
3297 if (lra_dump_file != NULL)
3298 fprintf (lra_dump_file, " overall=%d,losers=%d,rld_nregs=%d\n",
3299 overall, losers, reload_nregs);
3301 /* If this alternative can be made to work by reloading, and it
3302 needs less reloading than the others checked so far, record
3303 it as the chosen goal for reloading. */
3304 if ((best_losers != 0 && losers == 0)
3305 || (((best_losers == 0 && losers == 0)
3306 || (best_losers != 0 && losers != 0))
3307 && (best_overall > overall
3308 || (best_overall == overall
3309 /* If the cost of the reloads is the same,
3310 prefer alternative which requires minimal
3311 number of reload regs. */
3312 && (reload_nregs < best_reload_nregs
3313 || (reload_nregs == best_reload_nregs
3314 && (best_reload_sum < reload_sum
3315 || (best_reload_sum == reload_sum
3316 && nalt < goal_alt_number))))))))
3318 for (nop = 0; nop < n_operands; nop++)
3320 goal_alt_win[nop] = curr_alt_win[nop];
3321 goal_alt_match_win[nop] = curr_alt_match_win[nop];
3322 goal_alt_matches[nop] = curr_alt_matches[nop];
3323 goal_alt[nop] = curr_alt[nop];
3324 goal_alt_exclude_start_hard_regs[nop]
3325 = curr_alt_exclude_start_hard_regs[nop];
3326 goal_alt_offmemok[nop] = curr_alt_offmemok[nop];
3328 goal_alt_dont_inherit_ops_num = curr_alt_dont_inherit_ops_num;
3329 goal_reuse_alt_p = curr_reuse_alt_p;
3330 for (nop = 0; nop < curr_alt_dont_inherit_ops_num; nop++)
3331 goal_alt_dont_inherit_ops[nop] = curr_alt_dont_inherit_ops[nop];
3332 goal_alt_swapped = curr_swapped;
3333 goal_alt_out_sp_reload_p = curr_alt_out_sp_reload_p;
3334 best_overall = overall;
3335 best_losers = losers;
3336 best_reload_nregs = reload_nregs;
3337 best_reload_sum = reload_sum;
3338 goal_alt_number = nalt;
3340 if (losers == 0)
3341 /* Everything is satisfied. Do not process alternatives
3342 anymore. */
3343 break;
3344 fail:
3347 return ok_p;
3350 /* Make reload base reg from address AD. */
3351 static rtx
3352 base_to_reg (struct address_info *ad)
3354 enum reg_class cl;
3355 int code = -1;
3356 rtx new_inner = NULL_RTX;
3357 rtx new_reg = NULL_RTX;
3358 rtx_insn *insn;
3359 rtx_insn *last_insn = get_last_insn();
3361 lra_assert (ad->disp == ad->disp_term);
3362 cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
3363 get_index_code (ad));
3364 new_reg = lra_create_new_reg (GET_MODE (*ad->base), NULL_RTX, cl, NULL,
3365 "base");
3366 new_inner = simplify_gen_binary (PLUS, GET_MODE (new_reg), new_reg,
3367 ad->disp_term == NULL
3368 ? const0_rtx
3369 : *ad->disp_term);
3370 if (!valid_address_p (ad->mode, new_inner, ad->as))
3371 return NULL_RTX;
3372 insn = emit_insn (gen_rtx_SET (new_reg, *ad->base));
3373 code = recog_memoized (insn);
3374 if (code < 0)
3376 delete_insns_since (last_insn);
3377 return NULL_RTX;
3380 return new_inner;
3383 /* Make reload base reg + DISP from address AD. Return the new pseudo. */
3384 static rtx
3385 base_plus_disp_to_reg (struct address_info *ad, rtx disp)
3387 enum reg_class cl;
3388 rtx new_reg;
3390 lra_assert (ad->base == ad->base_term);
3391 cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
3392 get_index_code (ad));
3393 new_reg = lra_create_new_reg (GET_MODE (*ad->base_term), NULL_RTX, cl, NULL,
3394 "base + disp");
3395 lra_emit_add (new_reg, *ad->base_term, disp);
3396 return new_reg;
3399 /* Make reload of index part of address AD. Return the new
3400 pseudo. */
3401 static rtx
3402 index_part_to_reg (struct address_info *ad, enum reg_class index_class)
3404 rtx new_reg;
3406 new_reg = lra_create_new_reg (GET_MODE (*ad->index), NULL_RTX,
3407 index_class, NULL, "index term");
3408 expand_mult (GET_MODE (*ad->index), *ad->index_term,
3409 GEN_INT (get_index_scale (ad)), new_reg, 1);
3410 return new_reg;
3413 /* Return true if we can add a displacement to address AD, even if that
3414 makes the address invalid. The fix-up code requires any new address
3415 to be the sum of the BASE_TERM, INDEX and DISP_TERM fields. */
3416 static bool
3417 can_add_disp_p (struct address_info *ad)
3419 return (!ad->autoinc_p
3420 && ad->segment == NULL
3421 && ad->base == ad->base_term
3422 && ad->disp == ad->disp_term);
3425 /* Make equiv substitution in address AD. Return true if a substitution
3426 was made. */
3427 static bool
3428 equiv_address_substitution (struct address_info *ad)
3430 rtx base_reg, new_base_reg, index_reg, new_index_reg, *base_term, *index_term;
3431 poly_int64 disp;
3432 HOST_WIDE_INT scale;
3433 bool change_p;
3435 base_term = strip_subreg (ad->base_term);
3436 if (base_term == NULL)
3437 base_reg = new_base_reg = NULL_RTX;
3438 else
3440 base_reg = *base_term;
3441 new_base_reg = get_equiv_with_elimination (base_reg, curr_insn);
3443 index_term = strip_subreg (ad->index_term);
3444 if (index_term == NULL)
3445 index_reg = new_index_reg = NULL_RTX;
3446 else
3448 index_reg = *index_term;
3449 new_index_reg = get_equiv_with_elimination (index_reg, curr_insn);
3451 if (base_reg == new_base_reg && index_reg == new_index_reg)
3452 return false;
3453 disp = 0;
3454 change_p = false;
3455 if (lra_dump_file != NULL)
3457 fprintf (lra_dump_file, "Changing address in insn %d ",
3458 INSN_UID (curr_insn));
3459 dump_value_slim (lra_dump_file, *ad->outer, 1);
3461 if (base_reg != new_base_reg)
3463 poly_int64 offset;
3464 if (REG_P (new_base_reg))
3466 *base_term = new_base_reg;
3467 change_p = true;
3469 else if (GET_CODE (new_base_reg) == PLUS
3470 && REG_P (XEXP (new_base_reg, 0))
3471 && poly_int_rtx_p (XEXP (new_base_reg, 1), &offset)
3472 && can_add_disp_p (ad))
3474 disp += offset;
3475 *base_term = XEXP (new_base_reg, 0);
3476 change_p = true;
3478 if (ad->base_term2 != NULL)
3479 *ad->base_term2 = *ad->base_term;
3481 if (index_reg != new_index_reg)
3483 poly_int64 offset;
3484 if (REG_P (new_index_reg))
3486 *index_term = new_index_reg;
3487 change_p = true;
3489 else if (GET_CODE (new_index_reg) == PLUS
3490 && REG_P (XEXP (new_index_reg, 0))
3491 && poly_int_rtx_p (XEXP (new_index_reg, 1), &offset)
3492 && can_add_disp_p (ad)
3493 && (scale = get_index_scale (ad)))
3495 disp += offset * scale;
3496 *index_term = XEXP (new_index_reg, 0);
3497 change_p = true;
3500 if (maybe_ne (disp, 0))
3502 if (ad->disp != NULL)
3503 *ad->disp = plus_constant (GET_MODE (*ad->inner), *ad->disp, disp);
3504 else
3506 *ad->inner = plus_constant (GET_MODE (*ad->inner), *ad->inner, disp);
3507 update_address (ad);
3509 change_p = true;
3511 if (lra_dump_file != NULL)
3513 if (! change_p)
3514 fprintf (lra_dump_file, " -- no change\n");
3515 else
3517 fprintf (lra_dump_file, " on equiv ");
3518 dump_value_slim (lra_dump_file, *ad->outer, 1);
3519 fprintf (lra_dump_file, "\n");
3522 return change_p;
3525 /* Skip all modifiers and whitespaces in constraint STR and return the
3526 result. */
3527 static const char *
3528 skip_constraint_modifiers (const char *str)
3530 for (;;str++)
3531 switch (*str)
3533 case '+': case '&' : case '=': case '*': case ' ': case '\t':
3534 case '$': case '^' : case '%': case '?': case '!':
3535 break;
3536 default: return str;
3540 /* Takes a string of 0 or more comma-separated constraints. When more
3541 than one constraint is present, evaluate whether they all correspond
3542 to a single, repeated constraint (e.g. "r,r") or whether we have
3543 more than one distinct constraints (e.g. "r,m"). */
3544 static bool
3545 constraint_unique (const char *cstr)
3547 enum constraint_num ca, cb;
3548 ca = CONSTRAINT__UNKNOWN;
3549 for (;;)
3551 cstr = skip_constraint_modifiers (cstr);
3552 if (*cstr == '\0' || *cstr == ',')
3553 cb = CONSTRAINT_X;
3554 else
3556 cb = lookup_constraint (cstr);
3557 if (cb == CONSTRAINT__UNKNOWN)
3558 return false;
3559 cstr += CONSTRAINT_LEN (cstr[0], cstr);
3561 /* Handle the first iteration of the loop. */
3562 if (ca == CONSTRAINT__UNKNOWN)
3563 ca = cb;
3564 /* Handle the general case of comparing ca with subsequent
3565 constraints. */
3566 else if (ca != cb)
3567 return false;
3568 if (*cstr == '\0')
3569 return true;
3570 if (*cstr == ',')
3571 cstr += 1;
3575 /* Major function to make reloads for an address in operand NOP or
3576 check its correctness (If CHECK_ONLY_P is true). The supported
3577 cases are:
3579 1) an address that existed before LRA started, at which point it
3580 must have been valid. These addresses are subject to elimination
3581 and may have become invalid due to the elimination offset being out
3582 of range.
3584 2) an address created by forcing a constant to memory
3585 (force_const_to_mem). The initial form of these addresses might
3586 not be valid, and it is this function's job to make them valid.
3588 3) a frame address formed from a register and a (possibly zero)
3589 constant offset. As above, these addresses might not be valid and
3590 this function must make them so.
3592 Add reloads to the lists *BEFORE and *AFTER. We might need to add
3593 reloads to *AFTER because of inc/dec, {pre, post} modify in the
3594 address. Return true for any RTL change.
3596 The function is a helper function which does not produce all
3597 transformations (when CHECK_ONLY_P is false) which can be
3598 necessary. It does just basic steps. To do all necessary
3599 transformations use function process_address. */
3600 static bool
3601 process_address_1 (int nop, bool check_only_p,
3602 rtx_insn **before, rtx_insn **after)
3604 struct address_info ad;
3605 rtx new_reg;
3606 HOST_WIDE_INT scale;
3607 rtx op = *curr_id->operand_loc[nop];
3608 rtx mem = extract_mem_from_operand (op);
3609 const char *constraint;
3610 enum constraint_num cn;
3611 bool change_p = false;
3613 if (MEM_P (mem)
3614 && GET_MODE (mem) == BLKmode
3615 && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3616 return false;
3618 constraint
3619 = skip_constraint_modifiers (curr_static_id->operand[nop].constraint);
3620 if (IN_RANGE (constraint[0], '0', '9'))
3622 char *end;
3623 unsigned long dup = strtoul (constraint, &end, 10);
3624 constraint
3625 = skip_constraint_modifiers (curr_static_id->operand[dup].constraint);
3627 cn = lookup_constraint (*constraint == '\0' ? "X" : constraint);
3628 /* If we have several alternatives or/and several constraints in an
3629 alternative and we can not say at this stage what constraint will be used,
3630 use unknown constraint. The exception is an address constraint. If
3631 operand has one address constraint, probably all others constraints are
3632 address ones. */
3633 if (constraint[0] != '\0' && get_constraint_type (cn) != CT_ADDRESS
3634 && !constraint_unique (constraint))
3635 cn = CONSTRAINT__UNKNOWN;
3636 if (insn_extra_address_constraint (cn)
3637 /* When we find an asm operand with an address constraint that
3638 doesn't satisfy address_operand to begin with, we clear
3639 is_address, so that we don't try to make a non-address fit.
3640 If the asm statement got this far, it's because other
3641 constraints are available, and we'll use them, disregarding
3642 the unsatisfiable address ones. */
3643 && curr_static_id->operand[nop].is_address)
3644 decompose_lea_address (&ad, curr_id->operand_loc[nop]);
3645 /* Do not attempt to decompose arbitrary addresses generated by combine
3646 for asm operands with loose constraints, e.g 'X'.
3647 Need to extract memory from op for special memory constraint,
3648 i.e. bcst_mem_operand in i386 backend. */
3649 else if (MEM_P (mem)
3650 && !(INSN_CODE (curr_insn) < 0
3651 && get_constraint_type (cn) == CT_FIXED_FORM
3652 && constraint_satisfied_p (op, cn)))
3653 decompose_mem_address (&ad, mem);
3654 else if (GET_CODE (op) == SUBREG
3655 && MEM_P (SUBREG_REG (op)))
3656 decompose_mem_address (&ad, SUBREG_REG (op));
3657 else
3658 return false;
3659 /* If INDEX_REG_CLASS is assigned to base_term already and isn't to
3660 index_term, swap them so to avoid assigning INDEX_REG_CLASS to both
3661 when INDEX_REG_CLASS is a single register class. */
3662 enum reg_class index_cl = index_reg_class (curr_insn);
3663 if (ad.base_term != NULL
3664 && ad.index_term != NULL
3665 && ira_class_hard_regs_num[index_cl] == 1
3666 && REG_P (*ad.base_term)
3667 && REG_P (*ad.index_term)
3668 && in_class_p (*ad.base_term, index_cl, NULL)
3669 && ! in_class_p (*ad.index_term, index_cl, NULL))
3671 std::swap (ad.base, ad.index);
3672 std::swap (ad.base_term, ad.index_term);
3674 if (! check_only_p)
3675 change_p = equiv_address_substitution (&ad);
3676 if (ad.base_term != NULL
3677 && (process_addr_reg
3678 (ad.base_term, check_only_p, before,
3679 (ad.autoinc_p
3680 && !(REG_P (*ad.base_term)
3681 && find_regno_note (curr_insn, REG_DEAD,
3682 REGNO (*ad.base_term)) != NULL_RTX)
3683 ? after : NULL),
3684 base_reg_class (ad.mode, ad.as, ad.base_outer_code,
3685 get_index_code (&ad), curr_insn))))
3687 change_p = true;
3688 if (ad.base_term2 != NULL)
3689 *ad.base_term2 = *ad.base_term;
3691 if (ad.index_term != NULL
3692 && process_addr_reg (ad.index_term, check_only_p,
3693 before, NULL, index_cl))
3694 change_p = true;
3696 /* Target hooks sometimes don't treat extra-constraint addresses as
3697 legitimate address_operands, so handle them specially. */
3698 if (insn_extra_address_constraint (cn)
3699 && satisfies_address_constraint_p (&ad, cn))
3700 return change_p;
3702 if (check_only_p)
3703 return change_p;
3705 /* There are three cases where the shape of *AD.INNER may now be invalid:
3707 1) the original address was valid, but either elimination or
3708 equiv_address_substitution was applied and that made
3709 the address invalid.
3711 2) the address is an invalid symbolic address created by
3712 force_const_to_mem.
3714 3) the address is a frame address with an invalid offset.
3716 4) the address is a frame address with an invalid base.
3718 All these cases involve a non-autoinc address, so there is no
3719 point revalidating other types. */
3720 if (ad.autoinc_p || valid_address_p (op, &ad, cn))
3721 return change_p;
3723 /* Any index existed before LRA started, so we can assume that the
3724 presence and shape of the index is valid. */
3725 push_to_sequence (*before);
3726 lra_assert (ad.disp == ad.disp_term);
3727 if (ad.base == NULL)
3729 if (ad.index == NULL)
3731 rtx_insn *insn;
3732 rtx_insn *last = get_last_insn ();
3733 int code = -1;
3734 enum reg_class cl = base_reg_class (ad.mode, ad.as,
3735 SCRATCH, SCRATCH,
3736 curr_insn);
3737 rtx addr = *ad.inner;
3739 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, NULL, "addr");
3740 if (HAVE_lo_sum)
3742 /* addr => lo_sum (new_base, addr), case (2) above. */
3743 insn = emit_insn (gen_rtx_SET
3744 (new_reg,
3745 gen_rtx_HIGH (Pmode, copy_rtx (addr))));
3746 code = recog_memoized (insn);
3747 if (code >= 0)
3749 *ad.inner = gen_rtx_LO_SUM (Pmode, new_reg, addr);
3750 if (!valid_address_p (op, &ad, cn))
3752 /* Try to put lo_sum into register. */
3753 insn = emit_insn (gen_rtx_SET
3754 (new_reg,
3755 gen_rtx_LO_SUM (Pmode, new_reg, addr)));
3756 code = recog_memoized (insn);
3757 if (code >= 0)
3759 *ad.inner = new_reg;
3760 if (!valid_address_p (op, &ad, cn))
3762 *ad.inner = addr;
3763 code = -1;
3769 if (code < 0)
3770 delete_insns_since (last);
3773 if (code < 0)
3775 /* addr => new_base, case (2) above. */
3776 lra_emit_move (new_reg, addr);
3778 for (insn = last == NULL_RTX ? get_insns () : NEXT_INSN (last);
3779 insn != NULL_RTX;
3780 insn = NEXT_INSN (insn))
3781 if (recog_memoized (insn) < 0)
3782 break;
3783 if (insn != NULL_RTX)
3785 /* Do nothing if we cannot generate right insns.
3786 This is analogous to reload pass behavior. */
3787 delete_insns_since (last);
3788 end_sequence ();
3789 return false;
3791 *ad.inner = new_reg;
3794 else
3796 /* index * scale + disp => new base + index * scale,
3797 case (1) above. */
3798 enum reg_class cl = base_reg_class (ad.mode, ad.as, PLUS,
3799 GET_CODE (*ad.index),
3800 curr_insn);
3802 lra_assert (index_cl != NO_REGS);
3803 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, NULL, "disp");
3804 lra_emit_move (new_reg, *ad.disp);
3805 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3806 new_reg, *ad.index);
3809 else if (ad.index == NULL)
3811 int regno;
3812 enum reg_class cl;
3813 rtx set;
3814 rtx_insn *insns, *last_insn;
3815 /* Try to reload base into register only if the base is invalid
3816 for the address but with valid offset, case (4) above. */
3817 start_sequence ();
3818 new_reg = base_to_reg (&ad);
3820 /* base + disp => new base, cases (1) and (3) above. */
3821 /* Another option would be to reload the displacement into an
3822 index register. However, postreload has code to optimize
3823 address reloads that have the same base and different
3824 displacements, so reloading into an index register would
3825 not necessarily be a win. */
3826 if (new_reg == NULL_RTX)
3828 /* See if the target can split the displacement into a
3829 legitimate new displacement from a local anchor. */
3830 gcc_assert (ad.disp == ad.disp_term);
3831 poly_int64 orig_offset;
3832 rtx offset1, offset2;
3833 if (poly_int_rtx_p (*ad.disp, &orig_offset)
3834 && targetm.legitimize_address_displacement (&offset1, &offset2,
3835 orig_offset,
3836 ad.mode))
3838 new_reg = base_plus_disp_to_reg (&ad, offset1);
3839 new_reg = gen_rtx_PLUS (GET_MODE (new_reg), new_reg, offset2);
3841 else
3842 new_reg = base_plus_disp_to_reg (&ad, *ad.disp);
3844 insns = get_insns ();
3845 last_insn = get_last_insn ();
3846 /* If we generated at least two insns, try last insn source as
3847 an address. If we succeed, we generate one less insn. */
3848 if (REG_P (new_reg)
3849 && last_insn != insns
3850 && (set = single_set (last_insn)) != NULL_RTX
3851 && GET_CODE (SET_SRC (set)) == PLUS
3852 && REG_P (XEXP (SET_SRC (set), 0))
3853 && CONSTANT_P (XEXP (SET_SRC (set), 1)))
3855 *ad.inner = SET_SRC (set);
3856 if (valid_address_p (op, &ad, cn))
3858 *ad.base_term = XEXP (SET_SRC (set), 0);
3859 *ad.disp_term = XEXP (SET_SRC (set), 1);
3860 cl = base_reg_class (ad.mode, ad.as, ad.base_outer_code,
3861 get_index_code (&ad), curr_insn);
3862 regno = REGNO (*ad.base_term);
3863 if (regno >= FIRST_PSEUDO_REGISTER
3864 && cl != lra_get_allocno_class (regno))
3865 lra_change_class (regno, cl, " Change to", true);
3866 new_reg = SET_SRC (set);
3867 delete_insns_since (PREV_INSN (last_insn));
3870 end_sequence ();
3871 emit_insn (insns);
3872 *ad.inner = new_reg;
3874 else if (ad.disp_term != NULL)
3876 /* base + scale * index + disp => new base + scale * index,
3877 case (1) above. */
3878 gcc_assert (ad.disp == ad.disp_term);
3879 new_reg = base_plus_disp_to_reg (&ad, *ad.disp);
3880 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3881 new_reg, *ad.index);
3883 else if ((scale = get_index_scale (&ad)) == 1)
3885 /* The last transformation to one reg will be made in
3886 curr_insn_transform function. */
3887 end_sequence ();
3888 return false;
3890 else if (scale != 0)
3892 /* base + scale * index => base + new_reg,
3893 case (1) above.
3894 Index part of address may become invalid. For example, we
3895 changed pseudo on the equivalent memory and a subreg of the
3896 pseudo onto the memory of different mode for which the scale is
3897 prohibitted. */
3898 new_reg = index_part_to_reg (&ad, index_cl);
3899 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3900 *ad.base_term, new_reg);
3902 else
3904 enum reg_class cl = base_reg_class (ad.mode, ad.as,
3905 SCRATCH, SCRATCH,
3906 curr_insn);
3907 rtx addr = *ad.inner;
3909 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, NULL, "addr");
3910 /* addr => new_base. */
3911 lra_emit_move (new_reg, addr);
3912 *ad.inner = new_reg;
3914 *before = get_insns ();
3915 end_sequence ();
3916 return true;
3919 /* If CHECK_ONLY_P is false, do address reloads until it is necessary.
3920 Use process_address_1 as a helper function. Return true for any
3921 RTL changes.
3923 If CHECK_ONLY_P is true, just check address correctness. Return
3924 false if the address correct. */
3925 static bool
3926 process_address (int nop, bool check_only_p,
3927 rtx_insn **before, rtx_insn **after)
3929 bool res = false;
3931 while (process_address_1 (nop, check_only_p, before, after))
3933 if (check_only_p)
3934 return true;
3935 res = true;
3937 return res;
3940 /* Emit insns to reload VALUE into a new register. VALUE is an
3941 auto-increment or auto-decrement RTX whose operand is a register or
3942 memory location; so reloading involves incrementing that location.
3943 IN is either identical to VALUE, or some cheaper place to reload
3944 value being incremented/decremented from.
3946 INC_AMOUNT is the number to increment or decrement by (always
3947 positive and ignored for POST_MODIFY/PRE_MODIFY).
3949 Return pseudo containing the result. */
3950 static rtx
3951 emit_inc (enum reg_class new_rclass, rtx in, rtx value, poly_int64 inc_amount)
3953 /* REG or MEM to be copied and incremented. */
3954 rtx incloc = XEXP (value, 0);
3955 /* Nonzero if increment after copying. */
3956 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
3957 || GET_CODE (value) == POST_MODIFY);
3958 rtx_insn *last;
3959 rtx inc;
3960 rtx_insn *add_insn;
3961 int code;
3962 rtx real_in = in == value ? incloc : in;
3963 rtx result;
3964 bool plus_p = true;
3966 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
3968 lra_assert (GET_CODE (XEXP (value, 1)) == PLUS
3969 || GET_CODE (XEXP (value, 1)) == MINUS);
3970 lra_assert (rtx_equal_p (XEXP (XEXP (value, 1), 0), XEXP (value, 0)));
3971 plus_p = GET_CODE (XEXP (value, 1)) == PLUS;
3972 inc = XEXP (XEXP (value, 1), 1);
3974 else
3976 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
3977 inc_amount = -inc_amount;
3979 inc = gen_int_mode (inc_amount, GET_MODE (value));
3982 if (! post && REG_P (incloc))
3983 result = incloc;
3984 else
3985 result = lra_create_new_reg (GET_MODE (value), value, new_rclass, NULL,
3986 "INC/DEC result");
3988 if (real_in != result)
3990 /* First copy the location to the result register. */
3991 lra_assert (REG_P (result));
3992 emit_insn (gen_move_insn (result, real_in));
3995 /* We suppose that there are insns to add/sub with the constant
3996 increment permitted in {PRE/POST)_{DEC/INC/MODIFY}. At least the
3997 old reload worked with this assumption. If the assumption
3998 becomes wrong, we should use approach in function
3999 base_plus_disp_to_reg. */
4000 if (in == value)
4002 /* See if we can directly increment INCLOC. */
4003 last = get_last_insn ();
4004 add_insn = emit_insn (plus_p
4005 ? gen_add2_insn (incloc, inc)
4006 : gen_sub2_insn (incloc, inc));
4008 code = recog_memoized (add_insn);
4009 if (code >= 0)
4011 if (! post && result != incloc)
4012 emit_insn (gen_move_insn (result, incloc));
4013 return result;
4015 delete_insns_since (last);
4018 /* If couldn't do the increment directly, must increment in RESULT.
4019 The way we do this depends on whether this is pre- or
4020 post-increment. For pre-increment, copy INCLOC to the reload
4021 register, increment it there, then save back. */
4022 if (! post)
4024 if (real_in != result)
4025 emit_insn (gen_move_insn (result, real_in));
4026 if (plus_p)
4027 emit_insn (gen_add2_insn (result, inc));
4028 else
4029 emit_insn (gen_sub2_insn (result, inc));
4030 if (result != incloc)
4031 emit_insn (gen_move_insn (incloc, result));
4033 else
4035 /* Post-increment.
4037 Because this might be a jump insn or a compare, and because
4038 RESULT may not be available after the insn in an input
4039 reload, we must do the incrementing before the insn being
4040 reloaded for.
4042 We have already copied IN to RESULT. Increment the copy in
4043 RESULT, save that back, then decrement RESULT so it has
4044 the original value. */
4045 if (plus_p)
4046 emit_insn (gen_add2_insn (result, inc));
4047 else
4048 emit_insn (gen_sub2_insn (result, inc));
4049 emit_insn (gen_move_insn (incloc, result));
4050 /* Restore non-modified value for the result. We prefer this
4051 way because it does not require an additional hard
4052 register. */
4053 if (plus_p)
4055 poly_int64 offset;
4056 if (poly_int_rtx_p (inc, &offset))
4057 emit_insn (gen_add2_insn (result,
4058 gen_int_mode (-offset,
4059 GET_MODE (result))));
4060 else
4061 emit_insn (gen_sub2_insn (result, inc));
4063 else
4064 emit_insn (gen_add2_insn (result, inc));
4066 return result;
4069 /* Return true if the current move insn does not need processing as we
4070 already know that it satisfies its constraints. */
4071 static bool
4072 simple_move_p (void)
4074 rtx dest, src;
4075 enum reg_class dclass, sclass;
4077 lra_assert (curr_insn_set != NULL_RTX);
4078 dest = SET_DEST (curr_insn_set);
4079 src = SET_SRC (curr_insn_set);
4081 /* If the instruction has multiple sets we need to process it even if it
4082 is single_set. This can happen if one or more of the SETs are dead.
4083 See PR73650. */
4084 if (multiple_sets (curr_insn))
4085 return false;
4087 return ((dclass = get_op_class (dest)) != NO_REGS
4088 && (sclass = get_op_class (src)) != NO_REGS
4089 /* The backend guarantees that register moves of cost 2
4090 never need reloads. */
4091 && targetm.register_move_cost (GET_MODE (src), sclass, dclass) == 2);
4094 /* Swap operands NOP and NOP + 1. */
4095 static inline void
4096 swap_operands (int nop)
4098 std::swap (curr_operand_mode[nop], curr_operand_mode[nop + 1]);
4099 std::swap (original_subreg_reg_mode[nop], original_subreg_reg_mode[nop + 1]);
4100 std::swap (*curr_id->operand_loc[nop], *curr_id->operand_loc[nop + 1]);
4101 std::swap (equiv_substition_p[nop], equiv_substition_p[nop + 1]);
4102 /* Swap the duplicates too. */
4103 lra_update_dup (curr_id, nop);
4104 lra_update_dup (curr_id, nop + 1);
4107 /* Main entry point of the constraint code: search the body of the
4108 current insn to choose the best alternative. It is mimicking insn
4109 alternative cost calculation model of former reload pass. That is
4110 because machine descriptions were written to use this model. This
4111 model can be changed in future. Make commutative operand exchange
4112 if it is chosen.
4114 if CHECK_ONLY_P is false, do RTL changes to satisfy the
4115 constraints. Return true if any change happened during function
4116 call.
4118 If CHECK_ONLY_P is true then don't do any transformation. Just
4119 check that the insn satisfies all constraints. If the insn does
4120 not satisfy any constraint, return true. */
4121 static bool
4122 curr_insn_transform (bool check_only_p)
4124 int i, j, k;
4125 int n_operands;
4126 int n_alternatives;
4127 int n_outputs;
4128 int commutative;
4129 signed char goal_alt_matched[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
4130 signed char match_inputs[MAX_RECOG_OPERANDS + 1];
4131 signed char outputs[MAX_RECOG_OPERANDS + 1];
4132 rtx_insn *before, *after;
4133 bool alt_p = false;
4134 /* Flag that the insn has been changed through a transformation. */
4135 bool change_p;
4136 bool sec_mem_p;
4137 bool use_sec_mem_p;
4138 int max_regno_before;
4139 int reused_alternative_num;
4141 curr_insn_set = single_set (curr_insn);
4142 if (curr_insn_set != NULL_RTX && simple_move_p ())
4144 /* We assume that the corresponding insn alternative has no
4145 earlier clobbers. If it is not the case, don't define move
4146 cost equal to 2 for the corresponding register classes. */
4147 lra_set_used_insn_alternative (curr_insn, LRA_NON_CLOBBERED_ALT);
4148 return false;
4151 no_input_reloads_p = no_output_reloads_p = false;
4152 goal_alt_number = -1;
4153 change_p = sec_mem_p = false;
4155 /* CALL_INSNs are not allowed to have any output reloads. */
4156 if (CALL_P (curr_insn))
4157 no_output_reloads_p = true;
4159 n_operands = curr_static_id->n_operands;
4160 n_alternatives = curr_static_id->n_alternatives;
4162 /* Just return "no reloads" if insn has no operands with
4163 constraints. */
4164 if (n_operands == 0 || n_alternatives == 0)
4165 return false;
4167 max_regno_before = max_reg_num ();
4169 for (i = 0; i < n_operands; i++)
4171 goal_alt_matched[i][0] = -1;
4172 goal_alt_matches[i] = -1;
4175 commutative = curr_static_id->commutative;
4177 /* Now see what we need for pseudos that didn't get hard regs or got
4178 the wrong kind of hard reg. For this, we must consider all the
4179 operands together against the register constraints. */
4181 best_losers = best_overall = INT_MAX;
4182 best_reload_sum = 0;
4184 curr_swapped = false;
4185 goal_alt_swapped = false;
4187 if (! check_only_p)
4188 /* Make equivalence substitution and memory subreg elimination
4189 before address processing because an address legitimacy can
4190 depend on memory mode. */
4191 for (i = 0; i < n_operands; i++)
4193 rtx op, subst, old;
4194 bool op_change_p = false;
4196 if (curr_static_id->operand[i].is_operator)
4197 continue;
4199 old = op = *curr_id->operand_loc[i];
4200 if (GET_CODE (old) == SUBREG)
4201 old = SUBREG_REG (old);
4202 subst = get_equiv_with_elimination (old, curr_insn);
4203 original_subreg_reg_mode[i] = VOIDmode;
4204 equiv_substition_p[i] = false;
4205 if (subst != old)
4207 equiv_substition_p[i] = true;
4208 subst = copy_rtx (subst);
4209 lra_assert (REG_P (old));
4210 if (GET_CODE (op) != SUBREG)
4211 *curr_id->operand_loc[i] = subst;
4212 else
4214 SUBREG_REG (op) = subst;
4215 if (GET_MODE (subst) == VOIDmode)
4216 original_subreg_reg_mode[i] = GET_MODE (old);
4218 if (lra_dump_file != NULL)
4220 fprintf (lra_dump_file,
4221 "Changing pseudo %d in operand %i of insn %u on equiv ",
4222 REGNO (old), i, INSN_UID (curr_insn));
4223 dump_value_slim (lra_dump_file, subst, 1);
4224 fprintf (lra_dump_file, "\n");
4226 op_change_p = change_p = true;
4228 if (simplify_operand_subreg (i, GET_MODE (old)) || op_change_p)
4230 change_p = true;
4231 lra_update_dup (curr_id, i);
4235 /* Reload address registers and displacements. We do it before
4236 finding an alternative because of memory constraints. */
4237 before = after = NULL;
4238 for (i = 0; i < n_operands; i++)
4239 if (! curr_static_id->operand[i].is_operator
4240 && process_address (i, check_only_p, &before, &after))
4242 if (check_only_p)
4243 return true;
4244 change_p = true;
4245 lra_update_dup (curr_id, i);
4248 if (change_p)
4249 /* If we've changed the instruction then any alternative that
4250 we chose previously may no longer be valid. */
4251 lra_set_used_insn_alternative (curr_insn, LRA_UNKNOWN_ALT);
4253 if (! check_only_p && curr_insn_set != NULL_RTX
4254 && check_and_process_move (&change_p, &sec_mem_p))
4255 return change_p;
4257 try_swapped:
4259 reused_alternative_num = check_only_p ? LRA_UNKNOWN_ALT : curr_id->used_insn_alternative;
4260 if (lra_dump_file != NULL && reused_alternative_num >= 0)
4261 fprintf (lra_dump_file, "Reusing alternative %d for insn #%u\n",
4262 reused_alternative_num, INSN_UID (curr_insn));
4264 if (process_alt_operands (reused_alternative_num))
4265 alt_p = true;
4267 if (check_only_p)
4268 return ! alt_p || best_losers != 0;
4270 /* If insn is commutative (it's safe to exchange a certain pair of
4271 operands) then we need to try each alternative twice, the second
4272 time matching those two operands as if we had exchanged them. To
4273 do this, really exchange them in operands.
4275 If we have just tried the alternatives the second time, return
4276 operands to normal and drop through. */
4278 if (reused_alternative_num < 0 && commutative >= 0)
4280 curr_swapped = !curr_swapped;
4281 if (curr_swapped)
4283 swap_operands (commutative);
4284 goto try_swapped;
4286 else
4287 swap_operands (commutative);
4290 if (! alt_p && ! sec_mem_p)
4292 /* No alternative works with reloads?? */
4293 if (INSN_CODE (curr_insn) >= 0)
4294 fatal_insn ("unable to generate reloads for:", curr_insn);
4295 error_for_asm (curr_insn,
4296 "inconsistent operand constraints in an %<asm%>");
4297 lra_asm_error_p = true;
4298 if (! JUMP_P (curr_insn))
4300 /* Avoid further trouble with this insn. Don't generate use
4301 pattern here as we could use the insn SP offset. */
4302 lra_set_insn_deleted (curr_insn);
4304 else
4306 lra_invalidate_insn_data (curr_insn);
4307 ira_nullify_asm_goto (curr_insn);
4308 lra_update_insn_regno_info (curr_insn);
4310 return true;
4313 /* If the best alternative is with operands 1 and 2 swapped, swap
4314 them. Update the operand numbers of any reloads already
4315 pushed. */
4317 if (goal_alt_swapped)
4319 if (lra_dump_file != NULL)
4320 fprintf (lra_dump_file, " Commutative operand exchange in insn %u\n",
4321 INSN_UID (curr_insn));
4323 /* Swap the duplicates too. */
4324 swap_operands (commutative);
4325 change_p = true;
4328 /* Some targets' TARGET_SECONDARY_MEMORY_NEEDED (e.g. x86) are defined
4329 too conservatively. So we use the secondary memory only if there
4330 is no any alternative without reloads. */
4331 use_sec_mem_p = false;
4332 if (! alt_p)
4333 use_sec_mem_p = true;
4334 else if (sec_mem_p)
4336 for (i = 0; i < n_operands; i++)
4337 if (! goal_alt_win[i] && ! goal_alt_match_win[i])
4338 break;
4339 use_sec_mem_p = i < n_operands;
4342 if (use_sec_mem_p)
4344 int in = -1, out = -1;
4345 rtx new_reg, src, dest, rld;
4346 machine_mode sec_mode, rld_mode;
4348 lra_assert (curr_insn_set != NULL_RTX && sec_mem_p);
4349 dest = SET_DEST (curr_insn_set);
4350 src = SET_SRC (curr_insn_set);
4351 for (i = 0; i < n_operands; i++)
4352 if (*curr_id->operand_loc[i] == dest)
4353 out = i;
4354 else if (*curr_id->operand_loc[i] == src)
4355 in = i;
4356 for (i = 0; i < curr_static_id->n_dups; i++)
4357 if (out < 0 && *curr_id->dup_loc[i] == dest)
4358 out = curr_static_id->dup_num[i];
4359 else if (in < 0 && *curr_id->dup_loc[i] == src)
4360 in = curr_static_id->dup_num[i];
4361 lra_assert (out >= 0 && in >= 0
4362 && curr_static_id->operand[out].type == OP_OUT
4363 && curr_static_id->operand[in].type == OP_IN);
4364 rld = partial_subreg_p (GET_MODE (src), GET_MODE (dest)) ? src : dest;
4365 rld_mode = GET_MODE (rld);
4366 sec_mode = targetm.secondary_memory_needed_mode (rld_mode);
4367 new_reg = lra_create_new_reg (sec_mode, NULL_RTX, NO_REGS, NULL,
4368 "secondary");
4369 /* If the mode is changed, it should be wider. */
4370 lra_assert (!partial_subreg_p (sec_mode, rld_mode));
4371 if (sec_mode != rld_mode)
4373 /* If the target says specifically to use another mode for
4374 secondary memory moves we cannot reuse the original
4375 insn. */
4376 after = emit_spill_move (false, new_reg, dest);
4377 lra_process_new_insns (curr_insn, NULL, after,
4378 "Inserting the sec. move");
4379 /* We may have non null BEFORE here (e.g. after address
4380 processing. */
4381 push_to_sequence (before);
4382 before = emit_spill_move (true, new_reg, src);
4383 emit_insn (before);
4384 before = get_insns ();
4385 end_sequence ();
4386 lra_process_new_insns (curr_insn, before, NULL, "Changing on");
4387 lra_set_insn_deleted (curr_insn);
4389 else if (dest == rld)
4391 *curr_id->operand_loc[out] = new_reg;
4392 lra_update_dup (curr_id, out);
4393 after = emit_spill_move (false, new_reg, dest);
4394 lra_process_new_insns (curr_insn, NULL, after,
4395 "Inserting the sec. move");
4397 else
4399 *curr_id->operand_loc[in] = new_reg;
4400 lra_update_dup (curr_id, in);
4401 /* See comments above. */
4402 push_to_sequence (before);
4403 before = emit_spill_move (true, new_reg, src);
4404 emit_insn (before);
4405 before = get_insns ();
4406 end_sequence ();
4407 lra_process_new_insns (curr_insn, before, NULL,
4408 "Inserting the sec. move");
4410 lra_update_insn_regno_info (curr_insn);
4411 return true;
4414 lra_assert (goal_alt_number >= 0);
4415 lra_set_used_insn_alternative (curr_insn, goal_reuse_alt_p
4416 ? goal_alt_number : LRA_UNKNOWN_ALT);
4418 if (lra_dump_file != NULL)
4420 const char *p;
4422 fprintf (lra_dump_file, " Choosing alt %d in insn %u:",
4423 goal_alt_number, INSN_UID (curr_insn));
4424 print_curr_insn_alt (goal_alt_number);
4425 if (INSN_CODE (curr_insn) >= 0
4426 && (p = get_insn_name (INSN_CODE (curr_insn))) != NULL)
4427 fprintf (lra_dump_file, " {%s}", p);
4428 if (maybe_ne (curr_id->sp_offset, 0))
4430 fprintf (lra_dump_file, " (sp_off=");
4431 print_dec (curr_id->sp_offset, lra_dump_file);
4432 fprintf (lra_dump_file, ")");
4434 fprintf (lra_dump_file, "\n");
4437 /* Right now, for any pair of operands I and J that are required to
4438 match, with J < I, goal_alt_matches[I] is J. Add I to
4439 goal_alt_matched[J]. */
4441 for (i = 0; i < n_operands; i++)
4442 if ((j = goal_alt_matches[i]) >= 0)
4444 for (k = 0; goal_alt_matched[j][k] >= 0; k++)
4446 /* We allow matching one output operand and several input
4447 operands. */
4448 lra_assert (k == 0
4449 || (curr_static_id->operand[j].type == OP_OUT
4450 && curr_static_id->operand[i].type == OP_IN
4451 && (curr_static_id->operand
4452 [goal_alt_matched[j][0]].type == OP_IN)));
4453 goal_alt_matched[j][k] = i;
4454 goal_alt_matched[j][k + 1] = -1;
4457 for (i = 0; i < n_operands; i++)
4458 goal_alt_win[i] |= goal_alt_match_win[i];
4460 /* Any constants that aren't allowed and can't be reloaded into
4461 registers are here changed into memory references. */
4462 for (i = 0; i < n_operands; i++)
4463 if (goal_alt_win[i])
4465 int regno;
4466 enum reg_class new_class;
4467 rtx reg = *curr_id->operand_loc[i];
4469 if (GET_CODE (reg) == SUBREG)
4470 reg = SUBREG_REG (reg);
4472 if (REG_P (reg) && (regno = REGNO (reg)) >= FIRST_PSEUDO_REGISTER)
4474 bool ok_p = in_class_p (reg, goal_alt[i], &new_class);
4476 if (new_class != NO_REGS && get_reg_class (regno) != new_class)
4478 lra_assert (ok_p);
4479 lra_change_class (regno, new_class, " Change to", true);
4483 else
4485 const char *constraint;
4486 char c;
4487 rtx op = *curr_id->operand_loc[i];
4488 rtx subreg = NULL_RTX;
4489 machine_mode mode = curr_operand_mode[i];
4491 if (GET_CODE (op) == SUBREG)
4493 subreg = op;
4494 op = SUBREG_REG (op);
4495 mode = GET_MODE (op);
4498 if (CONST_POOL_OK_P (mode, op)
4499 && ((targetm.preferred_reload_class
4500 (op, (enum reg_class) goal_alt[i]) == NO_REGS)
4501 || no_input_reloads_p))
4503 rtx tem = force_const_mem (mode, op);
4505 change_p = true;
4506 if (subreg != NULL_RTX)
4507 tem = gen_rtx_SUBREG (mode, tem, SUBREG_BYTE (subreg));
4509 *curr_id->operand_loc[i] = tem;
4510 lra_update_dup (curr_id, i);
4511 process_address (i, false, &before, &after);
4513 /* If the alternative accepts constant pool refs directly
4514 there will be no reload needed at all. */
4515 if (subreg != NULL_RTX)
4516 continue;
4517 /* Skip alternatives before the one requested. */
4518 constraint = (curr_static_id->operand_alternative
4519 [goal_alt_number * n_operands + i].constraint);
4520 for (;
4521 (c = *constraint) && c != ',' && c != '#';
4522 constraint += CONSTRAINT_LEN (c, constraint))
4524 enum constraint_num cn = lookup_constraint (constraint);
4525 if ((insn_extra_memory_constraint (cn)
4526 || insn_extra_special_memory_constraint (cn)
4527 || insn_extra_relaxed_memory_constraint (cn))
4528 && satisfies_memory_constraint_p (tem, cn))
4529 break;
4531 if (c == '\0' || c == ',' || c == '#')
4532 continue;
4534 goal_alt_win[i] = true;
4538 n_outputs = 0;
4539 for (i = 0; i < n_operands; i++)
4540 if (curr_static_id->operand[i].type == OP_OUT)
4541 outputs[n_outputs++] = i;
4542 outputs[n_outputs] = -1;
4543 for (i = 0; i < n_operands; i++)
4545 int regno;
4546 bool optional_p = false;
4547 rtx old, new_reg;
4548 rtx op = *curr_id->operand_loc[i];
4550 if (goal_alt_win[i])
4552 if (goal_alt[i] == NO_REGS
4553 && REG_P (op)
4554 /* When we assign NO_REGS it means that we will not
4555 assign a hard register to the scratch pseudo by
4556 assigment pass and the scratch pseudo will be
4557 spilled. Spilled scratch pseudos are transformed
4558 back to scratches at the LRA end. */
4559 && ira_former_scratch_operand_p (curr_insn, i)
4560 && ira_former_scratch_p (REGNO (op)))
4562 int regno = REGNO (op);
4563 lra_change_class (regno, NO_REGS, " Change to", true);
4564 if (lra_get_regno_hard_regno (regno) >= 0)
4565 /* We don't have to mark all insn affected by the
4566 spilled pseudo as there is only one such insn, the
4567 current one. */
4568 reg_renumber[regno] = -1;
4569 lra_assert (bitmap_single_bit_set_p
4570 (&lra_reg_info[REGNO (op)].insn_bitmap));
4572 /* We can do an optional reload. If the pseudo got a hard
4573 reg, we might improve the code through inheritance. If
4574 it does not get a hard register we coalesce memory/memory
4575 moves later. Ignore move insns to avoid cycling. */
4576 if (! lra_simple_p
4577 && lra_undo_inheritance_iter < LRA_MAX_INHERITANCE_PASSES
4578 && goal_alt[i] != NO_REGS && REG_P (op)
4579 && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER
4580 && regno < new_regno_start
4581 && ! ira_former_scratch_p (regno)
4582 && reg_renumber[regno] < 0
4583 /* Check that the optional reload pseudo will be able to
4584 hold given mode value. */
4585 && ! (prohibited_class_reg_set_mode_p
4586 (goal_alt[i], reg_class_contents[goal_alt[i]],
4587 PSEUDO_REGNO_MODE (regno)))
4588 && (curr_insn_set == NULL_RTX
4589 || !((REG_P (SET_SRC (curr_insn_set))
4590 || MEM_P (SET_SRC (curr_insn_set))
4591 || GET_CODE (SET_SRC (curr_insn_set)) == SUBREG)
4592 && (REG_P (SET_DEST (curr_insn_set))
4593 || MEM_P (SET_DEST (curr_insn_set))
4594 || GET_CODE (SET_DEST (curr_insn_set)) == SUBREG))))
4595 optional_p = true;
4596 else if (goal_alt_matched[i][0] != -1
4597 && curr_static_id->operand[i].type == OP_OUT
4598 && (curr_static_id->operand_alternative
4599 [goal_alt_number * n_operands + i].earlyclobber)
4600 && REG_P (op))
4602 for (j = 0; goal_alt_matched[i][j] != -1; j++)
4604 rtx op2 = *curr_id->operand_loc[goal_alt_matched[i][j]];
4606 if (REG_P (op2) && REGNO (op) != REGNO (op2))
4607 break;
4609 if (goal_alt_matched[i][j] != -1)
4611 /* Generate reloads for different output and matched
4612 input registers. This is the easiest way to avoid
4613 creation of non-existing register conflicts in
4614 lra-lives.cc. */
4615 match_reload (i, goal_alt_matched[i], outputs, goal_alt[i],
4616 &goal_alt_exclude_start_hard_regs[i], &before,
4617 &after, true);
4619 continue;
4621 else
4623 enum reg_class rclass, common_class;
4625 if (REG_P (op) && goal_alt[i] != NO_REGS
4626 && (regno = REGNO (op)) >= new_regno_start
4627 && (rclass = get_reg_class (regno)) == ALL_REGS
4628 && ((common_class = ira_reg_class_subset[rclass][goal_alt[i]])
4629 != NO_REGS)
4630 && common_class != ALL_REGS
4631 && enough_allocatable_hard_regs_p (common_class,
4632 GET_MODE (op)))
4633 /* Refine reload pseudo class from chosen alternative
4634 constraint. */
4635 lra_change_class (regno, common_class, " Change to", true);
4636 continue;
4640 /* Operands that match previous ones have already been handled. */
4641 if (goal_alt_matches[i] >= 0)
4642 continue;
4644 /* We should not have an operand with a non-offsettable address
4645 appearing where an offsettable address will do. It also may
4646 be a case when the address should be special in other words
4647 not a general one (e.g. it needs no index reg). */
4648 if (goal_alt_matched[i][0] == -1 && goal_alt_offmemok[i] && MEM_P (op))
4650 enum reg_class rclass;
4651 rtx *loc = &XEXP (op, 0);
4652 enum rtx_code code = GET_CODE (*loc);
4654 push_to_sequence (before);
4655 rclass = base_reg_class (GET_MODE (op), MEM_ADDR_SPACE (op),
4656 MEM, SCRATCH, curr_insn);
4657 if (GET_RTX_CLASS (code) == RTX_AUTOINC)
4658 new_reg = emit_inc (rclass, *loc, *loc,
4659 /* This value does not matter for MODIFY. */
4660 GET_MODE_SIZE (GET_MODE (op)));
4661 else if (get_reload_reg (OP_IN, Pmode, *loc, rclass,
4662 NULL, false,
4663 "offsetable address", &new_reg))
4665 rtx addr = *loc;
4666 enum rtx_code code = GET_CODE (addr);
4667 bool align_p = false;
4669 if (code == AND && CONST_INT_P (XEXP (addr, 1)))
4671 /* (and ... (const_int -X)) is used to align to X bytes. */
4672 align_p = true;
4673 addr = XEXP (*loc, 0);
4675 else
4676 addr = canonicalize_reload_addr (addr);
4678 lra_emit_move (new_reg, addr);
4679 if (align_p)
4680 emit_move_insn (new_reg, gen_rtx_AND (GET_MODE (new_reg), new_reg, XEXP (*loc, 1)));
4682 before = get_insns ();
4683 end_sequence ();
4684 *loc = new_reg;
4685 lra_update_dup (curr_id, i);
4687 else if (goal_alt_matched[i][0] == -1)
4689 machine_mode mode;
4690 rtx reg, *loc;
4691 int hard_regno;
4692 enum op_type type = curr_static_id->operand[i].type;
4694 loc = curr_id->operand_loc[i];
4695 mode = curr_operand_mode[i];
4696 if (GET_CODE (*loc) == SUBREG)
4698 reg = SUBREG_REG (*loc);
4699 poly_int64 byte = SUBREG_BYTE (*loc);
4700 if (REG_P (reg)
4701 /* Strict_low_part requires reloading the register and not
4702 just the subreg. Likewise for a strict subreg no wider
4703 than a word for WORD_REGISTER_OPERATIONS targets. */
4704 && (curr_static_id->operand[i].strict_low
4705 || (!paradoxical_subreg_p (mode, GET_MODE (reg))
4706 && (hard_regno
4707 = get_try_hard_regno (REGNO (reg))) >= 0
4708 && (simplify_subreg_regno
4709 (hard_regno,
4710 GET_MODE (reg), byte, mode) < 0)
4711 && (goal_alt[i] == NO_REGS
4712 || (simplify_subreg_regno
4713 (ira_class_hard_regs[goal_alt[i]][0],
4714 GET_MODE (reg), byte, mode) >= 0)))
4715 || (partial_subreg_p (mode, GET_MODE (reg))
4716 && known_le (GET_MODE_SIZE (GET_MODE (reg)),
4717 UNITS_PER_WORD)
4718 && WORD_REGISTER_OPERATIONS))
4719 /* Avoid the situation when there are no available hard regs
4720 for the pseudo mode but there are ones for the subreg
4721 mode: */
4722 && !(goal_alt[i] != NO_REGS
4723 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
4724 && (prohibited_class_reg_set_mode_p
4725 (goal_alt[i], reg_class_contents[goal_alt[i]],
4726 GET_MODE (reg)))
4727 && !(prohibited_class_reg_set_mode_p
4728 (goal_alt[i], reg_class_contents[goal_alt[i]],
4729 mode))))
4731 /* An OP_INOUT is required when reloading a subreg of a
4732 mode wider than a word to ensure that data beyond the
4733 word being reloaded is preserved. Also automatically
4734 ensure that strict_low_part reloads are made into
4735 OP_INOUT which should already be true from the backend
4736 constraints. */
4737 if (type == OP_OUT
4738 && (curr_static_id->operand[i].strict_low
4739 || read_modify_subreg_p (*loc)))
4740 type = OP_INOUT;
4741 loc = &SUBREG_REG (*loc);
4742 mode = GET_MODE (*loc);
4745 old = *loc;
4746 if (get_reload_reg (type, mode, old, goal_alt[i],
4747 &goal_alt_exclude_start_hard_regs[i],
4748 loc != curr_id->operand_loc[i], "", &new_reg)
4749 && type != OP_OUT)
4751 push_to_sequence (before);
4752 lra_emit_move (new_reg, old);
4753 before = get_insns ();
4754 end_sequence ();
4756 *loc = new_reg;
4757 if (type != OP_IN
4758 && find_reg_note (curr_insn, REG_UNUSED, old) == NULL_RTX)
4760 start_sequence ();
4761 lra_emit_move (type == OP_INOUT ? copy_rtx (old) : old, new_reg);
4762 emit_insn (after);
4763 after = get_insns ();
4764 end_sequence ();
4765 *loc = new_reg;
4767 for (j = 0; j < goal_alt_dont_inherit_ops_num; j++)
4768 if (goal_alt_dont_inherit_ops[j] == i)
4770 lra_set_regno_unique_value (REGNO (new_reg));
4771 break;
4773 lra_update_dup (curr_id, i);
4775 else if (curr_static_id->operand[i].type == OP_IN
4776 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4777 == OP_OUT
4778 || (curr_static_id->operand[goal_alt_matched[i][0]].type
4779 == OP_INOUT
4780 && (operands_match_p
4781 (*curr_id->operand_loc[i],
4782 *curr_id->operand_loc[goal_alt_matched[i][0]],
4783 -1)))))
4785 /* generate reloads for input and matched outputs. */
4786 match_inputs[0] = i;
4787 match_inputs[1] = -1;
4788 match_reload (goal_alt_matched[i][0], match_inputs, outputs,
4789 goal_alt[i], &goal_alt_exclude_start_hard_regs[i],
4790 &before, &after,
4791 curr_static_id->operand_alternative
4792 [goal_alt_number * n_operands + goal_alt_matched[i][0]]
4793 .earlyclobber);
4795 else if ((curr_static_id->operand[i].type == OP_OUT
4796 || (curr_static_id->operand[i].type == OP_INOUT
4797 && (operands_match_p
4798 (*curr_id->operand_loc[i],
4799 *curr_id->operand_loc[goal_alt_matched[i][0]],
4800 -1))))
4801 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4802 == OP_IN))
4803 /* Generate reloads for output and matched inputs. */
4804 match_reload (i, goal_alt_matched[i], outputs, goal_alt[i],
4805 &goal_alt_exclude_start_hard_regs[i], &before, &after,
4806 curr_static_id->operand_alternative
4807 [goal_alt_number * n_operands + i].earlyclobber);
4808 else if (curr_static_id->operand[i].type == OP_IN
4809 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4810 == OP_IN))
4812 /* Generate reloads for matched inputs. */
4813 match_inputs[0] = i;
4814 for (j = 0; (k = goal_alt_matched[i][j]) >= 0; j++)
4815 match_inputs[j + 1] = k;
4816 match_inputs[j + 1] = -1;
4817 match_reload (-1, match_inputs, outputs, goal_alt[i],
4818 &goal_alt_exclude_start_hard_regs[i],
4819 &before, &after, false);
4821 else
4822 /* We must generate code in any case when function
4823 process_alt_operands decides that it is possible. */
4824 gcc_unreachable ();
4826 if (optional_p)
4828 rtx reg = op;
4830 lra_assert (REG_P (reg));
4831 regno = REGNO (reg);
4832 op = *curr_id->operand_loc[i]; /* Substitution. */
4833 if (GET_CODE (op) == SUBREG)
4834 op = SUBREG_REG (op);
4835 gcc_assert (REG_P (op) && (int) REGNO (op) >= new_regno_start);
4836 bitmap_set_bit (&lra_optional_reload_pseudos, REGNO (op));
4837 lra_reg_info[REGNO (op)].restore_rtx = reg;
4838 if (lra_dump_file != NULL)
4839 fprintf (lra_dump_file,
4840 " Making reload reg %d for reg %d optional\n",
4841 REGNO (op), regno);
4844 if (before != NULL_RTX || after != NULL_RTX
4845 || max_regno_before != max_reg_num ())
4846 change_p = true;
4847 if (change_p)
4849 lra_update_operator_dups (curr_id);
4850 /* Something changes -- process the insn. */
4851 lra_update_insn_regno_info (curr_insn);
4852 if (asm_noperands (PATTERN (curr_insn)) >= 0
4853 && ++curr_id->asm_reloads_num >= FIRST_PSEUDO_REGISTER)
4854 /* Most probably there are no enough registers to satisfy asm insn: */
4855 lra_asm_insn_error (curr_insn);
4857 if (goal_alt_out_sp_reload_p)
4859 /* We have an output stack pointer reload -- update sp offset: */
4860 rtx set;
4861 bool done_p = false;
4862 poly_int64 sp_offset = curr_id->sp_offset;
4863 for (rtx_insn *insn = after; insn != NULL_RTX; insn = NEXT_INSN (insn))
4864 if ((set = single_set (insn)) != NULL_RTX
4865 && SET_DEST (set) == stack_pointer_rtx)
4867 lra_assert (!done_p);
4868 done_p = true;
4869 curr_id->sp_offset = 0;
4870 lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
4871 id->sp_offset = sp_offset;
4872 if (lra_dump_file != NULL)
4873 fprintf (lra_dump_file,
4874 " Moving sp offset from insn %u to %u\n",
4875 INSN_UID (curr_insn), INSN_UID (insn));
4877 lra_assert (done_p);
4879 lra_process_new_insns (curr_insn, before, after, "Inserting insn reload");
4880 return change_p;
4883 /* Return true if INSN satisfies all constraints. In other words, no
4884 reload insns are needed. */
4885 bool
4886 lra_constrain_insn (rtx_insn *insn)
4888 int saved_new_regno_start = new_regno_start;
4889 int saved_new_insn_uid_start = new_insn_uid_start;
4890 bool change_p;
4892 curr_insn = insn;
4893 curr_id = lra_get_insn_recog_data (curr_insn);
4894 curr_static_id = curr_id->insn_static_data;
4895 new_insn_uid_start = get_max_uid ();
4896 new_regno_start = max_reg_num ();
4897 change_p = curr_insn_transform (true);
4898 new_regno_start = saved_new_regno_start;
4899 new_insn_uid_start = saved_new_insn_uid_start;
4900 return ! change_p;
4903 /* Return true if X is in LIST. */
4904 static bool
4905 in_list_p (rtx x, rtx list)
4907 for (; list != NULL_RTX; list = XEXP (list, 1))
4908 if (XEXP (list, 0) == x)
4909 return true;
4910 return false;
4913 /* Return true if X contains an allocatable hard register (if
4914 HARD_REG_P) or a (spilled if SPILLED_P) pseudo. */
4915 static bool
4916 contains_reg_p (rtx x, bool hard_reg_p, bool spilled_p)
4918 int i, j;
4919 const char *fmt;
4920 enum rtx_code code;
4922 code = GET_CODE (x);
4923 if (REG_P (x))
4925 int regno = REGNO (x);
4926 HARD_REG_SET alloc_regs;
4928 if (hard_reg_p)
4930 if (regno >= FIRST_PSEUDO_REGISTER)
4931 regno = lra_get_regno_hard_regno (regno);
4932 if (regno < 0)
4933 return false;
4934 alloc_regs = ~lra_no_alloc_regs;
4935 return overlaps_hard_reg_set_p (alloc_regs, GET_MODE (x), regno);
4937 else
4939 if (regno < FIRST_PSEUDO_REGISTER)
4940 return false;
4941 if (! spilled_p)
4942 return true;
4943 return lra_get_regno_hard_regno (regno) < 0;
4946 fmt = GET_RTX_FORMAT (code);
4947 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4949 if (fmt[i] == 'e')
4951 if (contains_reg_p (XEXP (x, i), hard_reg_p, spilled_p))
4952 return true;
4954 else if (fmt[i] == 'E')
4956 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4957 if (contains_reg_p (XVECEXP (x, i, j), hard_reg_p, spilled_p))
4958 return true;
4961 return false;
4964 /* Process all regs in location *LOC and change them on equivalent
4965 substitution. Return true if any change was done. */
4966 static bool
4967 loc_equivalence_change_p (rtx *loc)
4969 rtx subst, reg, x = *loc;
4970 bool result = false;
4971 enum rtx_code code = GET_CODE (x);
4972 const char *fmt;
4973 int i, j;
4975 if (code == SUBREG)
4977 reg = SUBREG_REG (x);
4978 if ((subst = get_equiv_with_elimination (reg, curr_insn)) != reg
4979 && GET_MODE (subst) == VOIDmode)
4981 /* We cannot reload debug location. Simplify subreg here
4982 while we know the inner mode. */
4983 *loc = simplify_gen_subreg (GET_MODE (x), subst,
4984 GET_MODE (reg), SUBREG_BYTE (x));
4985 return true;
4988 if (code == REG && (subst = get_equiv_with_elimination (x, curr_insn)) != x)
4990 *loc = subst;
4991 return true;
4994 /* Scan all the operand sub-expressions. */
4995 fmt = GET_RTX_FORMAT (code);
4996 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4998 if (fmt[i] == 'e')
4999 result = loc_equivalence_change_p (&XEXP (x, i)) || result;
5000 else if (fmt[i] == 'E')
5001 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5002 result
5003 = loc_equivalence_change_p (&XVECEXP (x, i, j)) || result;
5005 return result;
5008 /* Similar to loc_equivalence_change_p, but for use as
5009 simplify_replace_fn_rtx callback. DATA is insn for which the
5010 elimination is done. If it null we don't do the elimination. */
5011 static rtx
5012 loc_equivalence_callback (rtx loc, const_rtx, void *data)
5014 if (!REG_P (loc))
5015 return NULL_RTX;
5017 rtx subst = (data == NULL
5018 ? get_equiv (loc) : get_equiv_with_elimination (loc, (rtx_insn *) data));
5019 if (subst != loc)
5020 return subst;
5022 return NULL_RTX;
5025 /* Maximum number of generated reload insns per an insn. It is for
5026 preventing this pass cycling in a bug case. */
5027 #define MAX_RELOAD_INSNS_NUMBER LRA_MAX_INSN_RELOADS
5029 /* The current iteration number of this LRA pass. */
5030 int lra_constraint_iter;
5032 /* True if we should during assignment sub-pass check assignment
5033 correctness for all pseudos and spill some of them to correct
5034 conflicts. It can be necessary when we substitute equiv which
5035 needs checking register allocation correctness because the
5036 equivalent value contains allocatable hard registers, or when we
5037 restore multi-register pseudo, or when we change the insn code and
5038 its operand became INOUT operand when it was IN one before. */
5039 bool check_and_force_assignment_correctness_p;
5041 /* Return true if REGNO is referenced in more than one block. */
5042 static bool
5043 multi_block_pseudo_p (int regno)
5045 basic_block bb = NULL;
5046 unsigned int uid;
5047 bitmap_iterator bi;
5049 if (regno < FIRST_PSEUDO_REGISTER)
5050 return false;
5052 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
5053 if (bb == NULL)
5054 bb = BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn);
5055 else if (BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn) != bb)
5056 return true;
5057 return false;
5060 /* Return true if LIST contains a deleted insn. */
5061 static bool
5062 contains_deleted_insn_p (rtx_insn_list *list)
5064 for (; list != NULL_RTX; list = list->next ())
5065 if (NOTE_P (list->insn ())
5066 && NOTE_KIND (list->insn ()) == NOTE_INSN_DELETED)
5067 return true;
5068 return false;
5071 /* Return true if X contains a pseudo dying in INSN. */
5072 static bool
5073 dead_pseudo_p (rtx x, rtx_insn *insn)
5075 int i, j;
5076 const char *fmt;
5077 enum rtx_code code;
5079 if (REG_P (x))
5080 return (insn != NULL_RTX
5081 && find_regno_note (insn, REG_DEAD, REGNO (x)) != NULL_RTX);
5082 code = GET_CODE (x);
5083 fmt = GET_RTX_FORMAT (code);
5084 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5086 if (fmt[i] == 'e')
5088 if (dead_pseudo_p (XEXP (x, i), insn))
5089 return true;
5091 else if (fmt[i] == 'E')
5093 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5094 if (dead_pseudo_p (XVECEXP (x, i, j), insn))
5095 return true;
5098 return false;
5101 /* Return true if INSN contains a dying pseudo in INSN right hand
5102 side. */
5103 static bool
5104 insn_rhs_dead_pseudo_p (rtx_insn *insn)
5106 rtx set = single_set (insn);
5108 gcc_assert (set != NULL);
5109 return dead_pseudo_p (SET_SRC (set), insn);
5112 /* Return true if any init insn of REGNO contains a dying pseudo in
5113 insn right hand side. */
5114 static bool
5115 init_insn_rhs_dead_pseudo_p (int regno)
5117 rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
5119 if (insns == NULL)
5120 return false;
5121 for (; insns != NULL_RTX; insns = insns->next ())
5122 if (insn_rhs_dead_pseudo_p (insns->insn ()))
5123 return true;
5124 return false;
5127 /* Return TRUE if REGNO has a reverse equivalence. The equivalence is
5128 reverse only if we have one init insn with given REGNO as a
5129 source. */
5130 static bool
5131 reverse_equiv_p (int regno)
5133 rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
5134 rtx set;
5136 if (insns == NULL)
5137 return false;
5138 if (! INSN_P (insns->insn ())
5139 || insns->next () != NULL)
5140 return false;
5141 if ((set = single_set (insns->insn ())) == NULL_RTX)
5142 return false;
5143 return REG_P (SET_SRC (set)) && (int) REGNO (SET_SRC (set)) == regno;
5146 /* Return TRUE if REGNO was reloaded in an equivalence init insn. We
5147 call this function only for non-reverse equivalence. */
5148 static bool
5149 contains_reloaded_insn_p (int regno)
5151 rtx set;
5152 rtx_insn_list *list = ira_reg_equiv[regno].init_insns;
5154 for (; list != NULL; list = list->next ())
5155 if ((set = single_set (list->insn ())) == NULL_RTX
5156 || ! REG_P (SET_DEST (set))
5157 || (int) REGNO (SET_DEST (set)) != regno)
5158 return true;
5159 return false;
5162 /* Try combine secondary memory reload insn FROM for insn TO into TO insn.
5163 FROM should be a load insn (usually a secondary memory reload insn). Return
5164 TRUE in case of success. */
5165 static bool
5166 combine_reload_insn (rtx_insn *from, rtx_insn *to)
5168 bool ok_p;
5169 rtx_insn *saved_insn;
5170 rtx set, from_reg, to_reg, op;
5171 enum reg_class to_class, from_class;
5172 int n, nop;
5173 signed char changed_nops[MAX_RECOG_OPERANDS + 1];
5175 /* Check conditions for second memory reload and original insn: */
5176 if ((targetm.secondary_memory_needed
5177 == hook_bool_mode_reg_class_t_reg_class_t_false)
5178 || NEXT_INSN (from) != to
5179 || !NONDEBUG_INSN_P (to)
5180 || CALL_P (to))
5181 return false;
5183 lra_insn_recog_data_t id = lra_get_insn_recog_data (to);
5184 struct lra_static_insn_data *static_id = id->insn_static_data;
5186 if (id->used_insn_alternative == LRA_UNKNOWN_ALT
5187 || (set = single_set (from)) == NULL_RTX)
5188 return false;
5189 from_reg = SET_DEST (set);
5190 to_reg = SET_SRC (set);
5191 /* Ignore optional reloads: */
5192 if (! REG_P (from_reg) || ! REG_P (to_reg)
5193 || bitmap_bit_p (&lra_optional_reload_pseudos, REGNO (from_reg)))
5194 return false;
5195 to_class = lra_get_allocno_class (REGNO (to_reg));
5196 from_class = lra_get_allocno_class (REGNO (from_reg));
5197 /* Check that reload insn is a load: */
5198 if (to_class != NO_REGS || from_class == NO_REGS)
5199 return false;
5200 for (n = nop = 0; nop < static_id->n_operands; nop++)
5202 if (static_id->operand[nop].type != OP_IN)
5203 continue;
5204 op = *id->operand_loc[nop];
5205 if (!REG_P (op) || REGNO (op) != REGNO (from_reg))
5206 continue;
5207 *id->operand_loc[nop] = to_reg;
5208 changed_nops[n++] = nop;
5210 changed_nops[n] = -1;
5211 lra_update_dups (id, changed_nops);
5212 lra_update_insn_regno_info (to);
5213 ok_p = recog_memoized (to) >= 0;
5214 if (ok_p)
5216 /* Check that combined insn does not need any reloads: */
5217 saved_insn = curr_insn;
5218 curr_insn = to;
5219 curr_id = lra_get_insn_recog_data (curr_insn);
5220 curr_static_id = curr_id->insn_static_data;
5221 for (bool swapped_p = false;;)
5223 ok_p = !curr_insn_transform (true);
5224 if (ok_p || curr_static_id->commutative < 0)
5225 break;
5226 swap_operands (curr_static_id->commutative);
5227 if (lra_dump_file != NULL)
5229 fprintf (lra_dump_file,
5230 " Swapping %scombined insn operands:\n",
5231 swapped_p ? "back " : "");
5232 dump_insn_slim (lra_dump_file, to);
5234 if (swapped_p)
5235 break;
5236 swapped_p = true;
5238 curr_insn = saved_insn;
5239 curr_id = lra_get_insn_recog_data (curr_insn);
5240 curr_static_id = curr_id->insn_static_data;
5242 if (ok_p)
5244 id->used_insn_alternative = -1;
5245 lra_push_insn_and_update_insn_regno_info (to);
5246 if (lra_dump_file != NULL)
5248 fprintf (lra_dump_file, " Use combined insn:\n");
5249 dump_insn_slim (lra_dump_file, to);
5251 return true;
5253 if (lra_dump_file != NULL)
5255 fprintf (lra_dump_file, " Failed combined insn:\n");
5256 dump_insn_slim (lra_dump_file, to);
5258 for (int i = 0; i < n; i++)
5260 nop = changed_nops[i];
5261 *id->operand_loc[nop] = from_reg;
5263 lra_update_dups (id, changed_nops);
5264 lra_update_insn_regno_info (to);
5265 if (lra_dump_file != NULL)
5267 fprintf (lra_dump_file, " Restoring insn after failed combining:\n");
5268 dump_insn_slim (lra_dump_file, to);
5270 return false;
5273 /* Entry function of LRA constraint pass. Return true if the
5274 constraint pass did change the code. */
5275 bool
5276 lra_constraints (bool first_p)
5278 bool changed_p;
5279 int i, hard_regno, new_insns_num;
5280 unsigned int min_len, new_min_len, uid;
5281 rtx set, x, reg, dest_reg;
5282 rtx_insn *original_insn;
5283 basic_block last_bb;
5284 bitmap_iterator bi;
5286 lra_constraint_iter++;
5287 if (lra_dump_file != NULL)
5288 fprintf (lra_dump_file, "\n********** Local #%d: **********\n\n",
5289 lra_constraint_iter);
5290 changed_p = false;
5291 if (pic_offset_table_rtx
5292 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5293 check_and_force_assignment_correctness_p = true;
5294 else if (first_p)
5295 /* On the first iteration we should check IRA assignment
5296 correctness. In rare cases, the assignments can be wrong as
5297 early clobbers operands are ignored in IRA or usages of
5298 paradoxical sub-registers are not taken into account by
5299 IRA. */
5300 check_and_force_assignment_correctness_p = true;
5301 new_insn_uid_start = get_max_uid ();
5302 new_regno_start = first_p ? lra_constraint_new_regno_start : max_reg_num ();
5303 /* Mark used hard regs for target stack size calulations. */
5304 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
5305 if (lra_reg_info[i].nrefs != 0
5306 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
5308 int j, nregs;
5310 nregs = hard_regno_nregs (hard_regno, lra_reg_info[i].biggest_mode);
5311 for (j = 0; j < nregs; j++)
5312 df_set_regs_ever_live (hard_regno + j, true);
5314 /* Do elimination before the equivalence processing as we can spill
5315 some pseudos during elimination. */
5316 lra_eliminate (false, first_p);
5317 auto_bitmap equiv_insn_bitmap (&reg_obstack);
5318 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
5319 if (lra_reg_info[i].nrefs != 0)
5321 ira_reg_equiv[i].profitable_p = true;
5322 reg = regno_reg_rtx[i];
5323 if (lra_get_regno_hard_regno (i) < 0 && (x = get_equiv (reg)) != reg)
5325 bool pseudo_p = contains_reg_p (x, false, false);
5327 /* After RTL transformation, we cannot guarantee that
5328 pseudo in the substitution was not reloaded which might
5329 make equivalence invalid. For example, in reverse
5330 equiv of p0
5332 p0 <- ...
5334 equiv_mem <- p0
5336 the memory address register was reloaded before the 2nd
5337 insn. */
5338 if ((! first_p && pseudo_p)
5339 /* We don't use DF for compilation speed sake. So it
5340 is problematic to update live info when we use an
5341 equivalence containing pseudos in more than one
5342 BB. */
5343 || (pseudo_p && multi_block_pseudo_p (i))
5344 /* If an init insn was deleted for some reason, cancel
5345 the equiv. We could update the equiv insns after
5346 transformations including an equiv insn deletion
5347 but it is not worthy as such cases are extremely
5348 rare. */
5349 || contains_deleted_insn_p (ira_reg_equiv[i].init_insns)
5350 /* If it is not a reverse equivalence, we check that a
5351 pseudo in rhs of the init insn is not dying in the
5352 insn. Otherwise, the live info at the beginning of
5353 the corresponding BB might be wrong after we
5354 removed the insn. When the equiv can be a
5355 constant, the right hand side of the init insn can
5356 be a pseudo. */
5357 || (! reverse_equiv_p (i)
5358 && (init_insn_rhs_dead_pseudo_p (i)
5359 /* If we reloaded the pseudo in an equivalence
5360 init insn, we cannot remove the equiv init
5361 insns and the init insns might write into
5362 const memory in this case. */
5363 || contains_reloaded_insn_p (i)))
5364 /* Prevent access beyond equivalent memory for
5365 paradoxical subregs. */
5366 || (MEM_P (x)
5367 && maybe_gt (GET_MODE_SIZE (lra_reg_info[i].biggest_mode),
5368 GET_MODE_SIZE (GET_MODE (x))))
5369 || (pic_offset_table_rtx
5370 && ((CONST_POOL_OK_P (PSEUDO_REGNO_MODE (i), x)
5371 && (targetm.preferred_reload_class
5372 (x, lra_get_allocno_class (i)) == NO_REGS))
5373 || contains_symbol_ref_p (x))))
5374 ira_reg_equiv[i].defined_p
5375 = ira_reg_equiv[i].caller_save_p = false;
5376 if (contains_reg_p (x, false, true))
5377 ira_reg_equiv[i].profitable_p = false;
5378 if (get_equiv (reg) != reg)
5379 bitmap_ior_into (equiv_insn_bitmap, &lra_reg_info[i].insn_bitmap);
5382 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
5383 update_equiv (i);
5384 /* We should add all insns containing pseudos which should be
5385 substituted by their equivalences. */
5386 EXECUTE_IF_SET_IN_BITMAP (equiv_insn_bitmap, 0, uid, bi)
5387 lra_push_insn_by_uid (uid);
5388 min_len = lra_insn_stack_length ();
5389 new_insns_num = 0;
5390 last_bb = NULL;
5391 changed_p = false;
5392 original_insn = NULL;
5393 while ((new_min_len = lra_insn_stack_length ()) != 0)
5395 curr_insn = lra_pop_insn ();
5396 --new_min_len;
5397 curr_bb = BLOCK_FOR_INSN (curr_insn);
5398 if (curr_bb != last_bb)
5400 last_bb = curr_bb;
5401 bb_reload_num = lra_curr_reload_num;
5403 if (min_len > new_min_len)
5405 min_len = new_min_len;
5406 new_insns_num = 0;
5407 original_insn = curr_insn;
5409 else if (combine_reload_insn (curr_insn, original_insn))
5411 continue;
5413 if (new_insns_num > MAX_RELOAD_INSNS_NUMBER)
5414 internal_error
5415 ("maximum number of generated reload insns per insn achieved (%d)",
5416 MAX_RELOAD_INSNS_NUMBER);
5417 new_insns_num++;
5418 if (DEBUG_INSN_P (curr_insn))
5420 /* We need to check equivalence in debug insn and change
5421 pseudo to the equivalent value if necessary. */
5422 curr_id = lra_get_insn_recog_data (curr_insn);
5423 if (bitmap_bit_p (equiv_insn_bitmap, INSN_UID (curr_insn)))
5425 rtx old = *curr_id->operand_loc[0];
5426 *curr_id->operand_loc[0]
5427 = simplify_replace_fn_rtx (old, NULL_RTX,
5428 loc_equivalence_callback, curr_insn);
5429 if (old != *curr_id->operand_loc[0])
5431 /* If we substitute pseudo by shared equivalence, we can fail
5432 to update LRA reg info and this can result in many
5433 unexpected consequences. So keep rtl unshared: */
5434 *curr_id->operand_loc[0]
5435 = copy_rtx (*curr_id->operand_loc[0]);
5436 lra_update_insn_regno_info (curr_insn);
5437 changed_p = true;
5441 else if (INSN_P (curr_insn))
5443 if ((set = single_set (curr_insn)) != NULL_RTX)
5445 dest_reg = SET_DEST (set);
5446 /* The equivalence pseudo could be set up as SUBREG in a
5447 case when it is a call restore insn in a mode
5448 different from the pseudo mode. */
5449 if (GET_CODE (dest_reg) == SUBREG)
5450 dest_reg = SUBREG_REG (dest_reg);
5451 if ((REG_P (dest_reg)
5452 && (x = get_equiv (dest_reg)) != dest_reg
5453 /* Remove insns which set up a pseudo whose value
5454 cannot be changed. Such insns might be not in
5455 init_insns because we don't update equiv data
5456 during insn transformations.
5458 As an example, let suppose that a pseudo got
5459 hard register and on the 1st pass was not
5460 changed to equivalent constant. We generate an
5461 additional insn setting up the pseudo because of
5462 secondary memory movement. Then the pseudo is
5463 spilled and we use the equiv constant. In this
5464 case we should remove the additional insn and
5465 this insn is not init_insns list. */
5466 && (! MEM_P (x) || MEM_READONLY_P (x)
5467 /* Check that this is actually an insn setting
5468 up the equivalence. */
5469 || in_list_p (curr_insn,
5470 ira_reg_equiv
5471 [REGNO (dest_reg)].init_insns)))
5472 || (((x = get_equiv (SET_SRC (set))) != SET_SRC (set))
5473 && in_list_p (curr_insn,
5474 ira_reg_equiv
5475 [REGNO (SET_SRC (set))].init_insns)))
5477 /* This is equiv init insn of pseudo which did not get a
5478 hard register -- remove the insn. */
5479 if (lra_dump_file != NULL)
5481 fprintf (lra_dump_file,
5482 " Removing equiv init insn %i (freq=%d)\n",
5483 INSN_UID (curr_insn),
5484 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (curr_insn)));
5485 dump_insn_slim (lra_dump_file, curr_insn);
5487 if (contains_reg_p (x, true, false))
5488 check_and_force_assignment_correctness_p = true;
5489 lra_set_insn_deleted (curr_insn);
5490 continue;
5493 curr_id = lra_get_insn_recog_data (curr_insn);
5494 curr_static_id = curr_id->insn_static_data;
5495 init_curr_insn_input_reloads ();
5496 init_curr_operand_mode ();
5497 if (curr_insn_transform (false))
5498 changed_p = true;
5499 /* Check non-transformed insns too for equiv change as USE
5500 or CLOBBER don't need reloads but can contain pseudos
5501 being changed on their equivalences. */
5502 else if (bitmap_bit_p (equiv_insn_bitmap, INSN_UID (curr_insn))
5503 && loc_equivalence_change_p (&PATTERN (curr_insn)))
5505 lra_update_insn_regno_info (curr_insn);
5506 changed_p = true;
5511 /* If we used a new hard regno, changed_p should be true because the
5512 hard reg is assigned to a new pseudo. */
5513 if (flag_checking && !changed_p)
5515 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
5516 if (lra_reg_info[i].nrefs != 0
5517 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
5519 int j, nregs = hard_regno_nregs (hard_regno,
5520 PSEUDO_REGNO_MODE (i));
5522 for (j = 0; j < nregs; j++)
5523 lra_assert (df_regs_ever_live_p (hard_regno + j));
5526 return changed_p;
5529 static void initiate_invariants (void);
5530 static void finish_invariants (void);
5532 /* Initiate the LRA constraint pass. It is done once per
5533 function. */
5534 void
5535 lra_constraints_init (void)
5537 initiate_invariants ();
5540 /* Finalize the LRA constraint pass. It is done once per
5541 function. */
5542 void
5543 lra_constraints_finish (void)
5545 finish_invariants ();
5550 /* Structure describes invariants for ineheritance. */
5551 struct lra_invariant
5553 /* The order number of the invariant. */
5554 int num;
5555 /* The invariant RTX. */
5556 rtx invariant_rtx;
5557 /* The origin insn of the invariant. */
5558 rtx_insn *insn;
5561 typedef lra_invariant invariant_t;
5562 typedef invariant_t *invariant_ptr_t;
5563 typedef const invariant_t *const_invariant_ptr_t;
5565 /* Pointer to the inheritance invariants. */
5566 static vec<invariant_ptr_t> invariants;
5568 /* Allocation pool for the invariants. */
5569 static object_allocator<lra_invariant> *invariants_pool;
5571 /* Hash table for the invariants. */
5572 static htab_t invariant_table;
5574 /* Hash function for INVARIANT. */
5575 static hashval_t
5576 invariant_hash (const void *invariant)
5578 rtx inv = ((const_invariant_ptr_t) invariant)->invariant_rtx;
5579 return lra_rtx_hash (inv);
5582 /* Equal function for invariants INVARIANT1 and INVARIANT2. */
5583 static int
5584 invariant_eq_p (const void *invariant1, const void *invariant2)
5586 rtx inv1 = ((const_invariant_ptr_t) invariant1)->invariant_rtx;
5587 rtx inv2 = ((const_invariant_ptr_t) invariant2)->invariant_rtx;
5589 return rtx_equal_p (inv1, inv2);
5592 /* Insert INVARIANT_RTX into the table if it is not there yet. Return
5593 invariant which is in the table. */
5594 static invariant_ptr_t
5595 insert_invariant (rtx invariant_rtx)
5597 void **entry_ptr;
5598 invariant_t invariant;
5599 invariant_ptr_t invariant_ptr;
5601 invariant.invariant_rtx = invariant_rtx;
5602 entry_ptr = htab_find_slot (invariant_table, &invariant, INSERT);
5603 if (*entry_ptr == NULL)
5605 invariant_ptr = invariants_pool->allocate ();
5606 invariant_ptr->invariant_rtx = invariant_rtx;
5607 invariant_ptr->insn = NULL;
5608 invariants.safe_push (invariant_ptr);
5609 *entry_ptr = (void *) invariant_ptr;
5611 return (invariant_ptr_t) *entry_ptr;
5614 /* Initiate the invariant table. */
5615 static void
5616 initiate_invariants (void)
5618 invariants.create (100);
5619 invariants_pool
5620 = new object_allocator<lra_invariant> ("Inheritance invariants");
5621 invariant_table = htab_create (100, invariant_hash, invariant_eq_p, NULL);
5624 /* Finish the invariant table. */
5625 static void
5626 finish_invariants (void)
5628 htab_delete (invariant_table);
5629 delete invariants_pool;
5630 invariants.release ();
5633 /* Make the invariant table empty. */
5634 static void
5635 clear_invariants (void)
5637 htab_empty (invariant_table);
5638 invariants_pool->release ();
5639 invariants.truncate (0);
5644 /* This page contains code to do inheritance/split
5645 transformations. */
5647 /* Number of reloads passed so far in current EBB. */
5648 static int reloads_num;
5650 /* Number of calls passed so far in current EBB. */
5651 static int calls_num;
5653 /* Index ID is the CALLS_NUM associated the last call we saw with
5654 ABI identifier ID. */
5655 static int last_call_for_abi[NUM_ABI_IDS];
5657 /* Which registers have been fully or partially clobbered by a call
5658 since they were last used. */
5659 static HARD_REG_SET full_and_partial_call_clobbers;
5661 /* Current reload pseudo check for validity of elements in
5662 USAGE_INSNS. */
5663 static int curr_usage_insns_check;
5665 /* Info about last usage of registers in EBB to do inheritance/split
5666 transformation. Inheritance transformation is done from a spilled
5667 pseudo and split transformations from a hard register or a pseudo
5668 assigned to a hard register. */
5669 struct usage_insns
5671 /* If the value is equal to CURR_USAGE_INSNS_CHECK, then the member
5672 value INSNS is valid. The insns is chain of optional debug insns
5673 and a finishing non-debug insn using the corresponding reg. The
5674 value is also used to mark the registers which are set up in the
5675 current insn. The negated insn uid is used for this. */
5676 int check;
5677 /* Value of global reloads_num at the last insn in INSNS. */
5678 int reloads_num;
5679 /* Value of global reloads_nums at the last insn in INSNS. */
5680 int calls_num;
5681 /* It can be true only for splitting. And it means that the restore
5682 insn should be put after insn given by the following member. */
5683 bool after_p;
5684 /* Next insns in the current EBB which use the original reg and the
5685 original reg value is not changed between the current insn and
5686 the next insns. In order words, e.g. for inheritance, if we need
5687 to use the original reg value again in the next insns we can try
5688 to use the value in a hard register from a reload insn of the
5689 current insn. */
5690 rtx insns;
5693 /* Map: regno -> corresponding pseudo usage insns. */
5694 static struct usage_insns *usage_insns;
5696 static void
5697 setup_next_usage_insn (int regno, rtx insn, int reloads_num, bool after_p)
5699 usage_insns[regno].check = curr_usage_insns_check;
5700 usage_insns[regno].insns = insn;
5701 usage_insns[regno].reloads_num = reloads_num;
5702 usage_insns[regno].calls_num = calls_num;
5703 usage_insns[regno].after_p = after_p;
5704 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] >= 0)
5705 remove_from_hard_reg_set (&full_and_partial_call_clobbers,
5706 PSEUDO_REGNO_MODE (regno),
5707 reg_renumber[regno]);
5710 /* The function is used to form list REGNO usages which consists of
5711 optional debug insns finished by a non-debug insn using REGNO.
5712 RELOADS_NUM is current number of reload insns processed so far. */
5713 static void
5714 add_next_usage_insn (int regno, rtx_insn *insn, int reloads_num)
5716 rtx next_usage_insns;
5718 if (usage_insns[regno].check == curr_usage_insns_check
5719 && (next_usage_insns = usage_insns[regno].insns) != NULL_RTX
5720 && DEBUG_INSN_P (insn))
5722 /* Check that we did not add the debug insn yet. */
5723 if (next_usage_insns != insn
5724 && (GET_CODE (next_usage_insns) != INSN_LIST
5725 || XEXP (next_usage_insns, 0) != insn))
5726 usage_insns[regno].insns = gen_rtx_INSN_LIST (VOIDmode, insn,
5727 next_usage_insns);
5729 else if (NONDEBUG_INSN_P (insn))
5730 setup_next_usage_insn (regno, insn, reloads_num, false);
5731 else
5732 usage_insns[regno].check = 0;
5735 /* Return first non-debug insn in list USAGE_INSNS. */
5736 static rtx_insn *
5737 skip_usage_debug_insns (rtx usage_insns)
5739 rtx insn;
5741 /* Skip debug insns. */
5742 for (insn = usage_insns;
5743 insn != NULL_RTX && GET_CODE (insn) == INSN_LIST;
5744 insn = XEXP (insn, 1))
5746 return safe_as_a <rtx_insn *> (insn);
5749 /* Return true if we need secondary memory moves for insn in
5750 USAGE_INSNS after inserting inherited pseudo of class INHER_CL
5751 into the insn. */
5752 static bool
5753 check_secondary_memory_needed_p (enum reg_class inher_cl ATTRIBUTE_UNUSED,
5754 rtx usage_insns ATTRIBUTE_UNUSED)
5756 rtx_insn *insn;
5757 rtx set, dest;
5758 enum reg_class cl;
5760 if (inher_cl == ALL_REGS
5761 || (insn = skip_usage_debug_insns (usage_insns)) == NULL_RTX)
5762 return false;
5763 lra_assert (INSN_P (insn));
5764 if ((set = single_set (insn)) == NULL_RTX || ! REG_P (SET_DEST (set)))
5765 return false;
5766 dest = SET_DEST (set);
5767 if (! REG_P (dest))
5768 return false;
5769 lra_assert (inher_cl != NO_REGS);
5770 cl = get_reg_class (REGNO (dest));
5771 return (cl != NO_REGS && cl != ALL_REGS
5772 && targetm.secondary_memory_needed (GET_MODE (dest), inher_cl, cl));
5775 /* Registers involved in inheritance/split in the current EBB
5776 (inheritance/split pseudos and original registers). */
5777 static bitmap_head check_only_regs;
5779 /* Reload pseudos cannot be involded in invariant inheritance in the
5780 current EBB. */
5781 static bitmap_head invalid_invariant_regs;
5783 /* Do inheritance transformations for insn INSN, which defines (if
5784 DEF_P) or uses ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which
5785 instruction in the EBB next uses ORIGINAL_REGNO; it has the same
5786 form as the "insns" field of usage_insns. Return true if we
5787 succeed in such transformation.
5789 The transformations look like:
5791 p <- ... i <- ...
5792 ... p <- i (new insn)
5793 ... =>
5794 <- ... p ... <- ... i ...
5796 ... i <- p (new insn)
5797 <- ... p ... <- ... i ...
5798 ... =>
5799 <- ... p ... <- ... i ...
5800 where p is a spilled original pseudo and i is a new inheritance pseudo.
5803 The inheritance pseudo has the smallest class of two classes CL and
5804 class of ORIGINAL REGNO. */
5805 static bool
5806 inherit_reload_reg (bool def_p, int original_regno,
5807 enum reg_class cl, rtx_insn *insn, rtx next_usage_insns)
5809 if (optimize_function_for_size_p (cfun))
5810 return false;
5812 enum reg_class rclass = lra_get_allocno_class (original_regno);
5813 rtx original_reg = regno_reg_rtx[original_regno];
5814 rtx new_reg, usage_insn;
5815 rtx_insn *new_insns;
5817 lra_assert (! usage_insns[original_regno].after_p);
5818 if (lra_dump_file != NULL)
5819 fprintf (lra_dump_file,
5820 " <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n");
5821 if (! ira_reg_classes_intersect_p[cl][rclass])
5823 if (lra_dump_file != NULL)
5825 fprintf (lra_dump_file,
5826 " Rejecting inheritance for %d "
5827 "because of disjoint classes %s and %s\n",
5828 original_regno, reg_class_names[cl],
5829 reg_class_names[rclass]);
5830 fprintf (lra_dump_file,
5831 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5833 return false;
5835 if ((ira_class_subset_p[cl][rclass] && cl != rclass)
5836 /* We don't use a subset of two classes because it can be
5837 NO_REGS. This transformation is still profitable in most
5838 cases even if the classes are not intersected as register
5839 move is probably cheaper than a memory load. */
5840 || ira_class_hard_regs_num[cl] < ira_class_hard_regs_num[rclass])
5842 if (lra_dump_file != NULL)
5843 fprintf (lra_dump_file, " Use smallest class of %s and %s\n",
5844 reg_class_names[cl], reg_class_names[rclass]);
5846 rclass = cl;
5848 if (check_secondary_memory_needed_p (rclass, next_usage_insns))
5850 /* Reject inheritance resulting in secondary memory moves.
5851 Otherwise, there is a danger in LRA cycling. Also such
5852 transformation will be unprofitable. */
5853 if (lra_dump_file != NULL)
5855 rtx_insn *insn = skip_usage_debug_insns (next_usage_insns);
5856 rtx set = single_set (insn);
5858 lra_assert (set != NULL_RTX);
5860 rtx dest = SET_DEST (set);
5862 lra_assert (REG_P (dest));
5863 fprintf (lra_dump_file,
5864 " Rejecting inheritance for insn %d(%s)<-%d(%s) "
5865 "as secondary mem is needed\n",
5866 REGNO (dest), reg_class_names[get_reg_class (REGNO (dest))],
5867 original_regno, reg_class_names[rclass]);
5868 fprintf (lra_dump_file,
5869 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5871 return false;
5873 new_reg = lra_create_new_reg (GET_MODE (original_reg), original_reg,
5874 rclass, NULL, "inheritance");
5875 start_sequence ();
5876 if (def_p)
5877 lra_emit_move (original_reg, new_reg);
5878 else
5879 lra_emit_move (new_reg, original_reg);
5880 new_insns = get_insns ();
5881 end_sequence ();
5882 if (NEXT_INSN (new_insns) != NULL_RTX)
5884 if (lra_dump_file != NULL)
5886 fprintf (lra_dump_file,
5887 " Rejecting inheritance %d->%d "
5888 "as it results in 2 or more insns:\n",
5889 original_regno, REGNO (new_reg));
5890 dump_rtl_slim (lra_dump_file, new_insns, NULL, -1, 0);
5891 fprintf (lra_dump_file,
5892 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5894 return false;
5896 lra_substitute_pseudo_within_insn (insn, original_regno, new_reg, false);
5897 lra_update_insn_regno_info (insn);
5898 if (! def_p)
5899 /* We now have a new usage insn for original regno. */
5900 setup_next_usage_insn (original_regno, new_insns, reloads_num, false);
5901 if (lra_dump_file != NULL)
5902 fprintf (lra_dump_file, " Original reg change %d->%d (bb%d):\n",
5903 original_regno, REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
5904 lra_reg_info[REGNO (new_reg)].restore_rtx = regno_reg_rtx[original_regno];
5905 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
5906 bitmap_set_bit (&check_only_regs, original_regno);
5907 bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
5908 if (def_p)
5909 lra_process_new_insns (insn, NULL, new_insns,
5910 "Add original<-inheritance");
5911 else
5912 lra_process_new_insns (insn, new_insns, NULL,
5913 "Add inheritance<-original");
5914 while (next_usage_insns != NULL_RTX)
5916 if (GET_CODE (next_usage_insns) != INSN_LIST)
5918 usage_insn = next_usage_insns;
5919 lra_assert (NONDEBUG_INSN_P (usage_insn));
5920 next_usage_insns = NULL;
5922 else
5924 usage_insn = XEXP (next_usage_insns, 0);
5925 lra_assert (DEBUG_INSN_P (usage_insn));
5926 next_usage_insns = XEXP (next_usage_insns, 1);
5928 lra_substitute_pseudo (&usage_insn, original_regno, new_reg, false,
5929 DEBUG_INSN_P (usage_insn));
5930 lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
5931 if (lra_dump_file != NULL)
5933 basic_block bb = BLOCK_FOR_INSN (usage_insn);
5934 fprintf (lra_dump_file,
5935 " Inheritance reuse change %d->%d (bb%d):\n",
5936 original_regno, REGNO (new_reg),
5937 bb ? bb->index : -1);
5938 dump_insn_slim (lra_dump_file, as_a <rtx_insn *> (usage_insn));
5941 if (lra_dump_file != NULL)
5942 fprintf (lra_dump_file,
5943 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5944 return true;
5947 /* Return true if we need a caller save/restore for pseudo REGNO which
5948 was assigned to a hard register. */
5949 static inline bool
5950 need_for_call_save_p (int regno)
5952 lra_assert (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] >= 0);
5953 if (usage_insns[regno].calls_num < calls_num)
5955 unsigned int abis = 0;
5956 for (unsigned int i = 0; i < NUM_ABI_IDS; ++i)
5957 if (last_call_for_abi[i] > usage_insns[regno].calls_num)
5958 abis |= 1 << i;
5959 gcc_assert (abis);
5960 if (call_clobbered_in_region_p (abis, full_and_partial_call_clobbers,
5961 PSEUDO_REGNO_MODE (regno),
5962 reg_renumber[regno]))
5963 return true;
5965 return false;
5968 /* Global registers occurring in the current EBB. */
5969 static bitmap_head ebb_global_regs;
5971 /* Return true if we need a split for hard register REGNO or pseudo
5972 REGNO which was assigned to a hard register.
5973 POTENTIAL_RELOAD_HARD_REGS contains hard registers which might be
5974 used for reloads since the EBB end. It is an approximation of the
5975 used hard registers in the split range. The exact value would
5976 require expensive calculations. If we were aggressive with
5977 splitting because of the approximation, the split pseudo will save
5978 the same hard register assignment and will be removed in the undo
5979 pass. We still need the approximation because too aggressive
5980 splitting would result in too inaccurate cost calculation in the
5981 assignment pass because of too many generated moves which will be
5982 probably removed in the undo pass. */
5983 static inline bool
5984 need_for_split_p (HARD_REG_SET potential_reload_hard_regs, int regno)
5986 int hard_regno = regno < FIRST_PSEUDO_REGISTER ? regno : reg_renumber[regno];
5988 lra_assert (hard_regno >= 0);
5989 return ((TEST_HARD_REG_BIT (potential_reload_hard_regs, hard_regno)
5990 /* Don't split eliminable hard registers, otherwise we can
5991 split hard registers like hard frame pointer, which
5992 lives on BB start/end according to DF-infrastructure,
5993 when there is a pseudo assigned to the register and
5994 living in the same BB. */
5995 && (regno >= FIRST_PSEUDO_REGISTER
5996 || ! TEST_HARD_REG_BIT (eliminable_regset, hard_regno))
5997 && ! TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno)
5998 /* Don't split call clobbered hard regs living through
5999 calls, otherwise we might have a check problem in the
6000 assign sub-pass as in the most cases (exception is a
6001 situation when check_and_force_assignment_correctness_p value is
6002 true) the assign pass assumes that all pseudos living
6003 through calls are assigned to call saved hard regs. */
6004 && (regno >= FIRST_PSEUDO_REGISTER
6005 || !TEST_HARD_REG_BIT (full_and_partial_call_clobbers, regno))
6006 /* We need at least 2 reloads to make pseudo splitting
6007 profitable. We should provide hard regno splitting in
6008 any case to solve 1st insn scheduling problem when
6009 moving hard register definition up might result in
6010 impossibility to find hard register for reload pseudo of
6011 small register class. */
6012 && (usage_insns[regno].reloads_num
6013 + (regno < FIRST_PSEUDO_REGISTER ? 0 : 3) < reloads_num)
6014 && (regno < FIRST_PSEUDO_REGISTER
6015 /* For short living pseudos, spilling + inheritance can
6016 be considered a substitution for splitting.
6017 Therefore we do not splitting for local pseudos. It
6018 decreases also aggressiveness of splitting. The
6019 minimal number of references is chosen taking into
6020 account that for 2 references splitting has no sense
6021 as we can just spill the pseudo. */
6022 || (regno >= FIRST_PSEUDO_REGISTER
6023 && lra_reg_info[regno].nrefs > 3
6024 && bitmap_bit_p (&ebb_global_regs, regno))))
6025 || (regno >= FIRST_PSEUDO_REGISTER && need_for_call_save_p (regno)));
6028 /* Return class for the split pseudo created from original pseudo with
6029 ALLOCNO_CLASS and MODE which got a hard register HARD_REGNO. We
6030 choose subclass of ALLOCNO_CLASS which contains HARD_REGNO and
6031 results in no secondary memory movements. */
6032 static enum reg_class
6033 choose_split_class (enum reg_class allocno_class,
6034 int hard_regno ATTRIBUTE_UNUSED,
6035 machine_mode mode ATTRIBUTE_UNUSED)
6037 int i;
6038 enum reg_class cl, best_cl = NO_REGS;
6039 enum reg_class hard_reg_class ATTRIBUTE_UNUSED
6040 = REGNO_REG_CLASS (hard_regno);
6042 if (! targetm.secondary_memory_needed (mode, allocno_class, allocno_class)
6043 && TEST_HARD_REG_BIT (reg_class_contents[allocno_class], hard_regno))
6044 return allocno_class;
6045 for (i = 0;
6046 (cl = reg_class_subclasses[allocno_class][i]) != LIM_REG_CLASSES;
6047 i++)
6048 if (! targetm.secondary_memory_needed (mode, cl, hard_reg_class)
6049 && ! targetm.secondary_memory_needed (mode, hard_reg_class, cl)
6050 && TEST_HARD_REG_BIT (reg_class_contents[cl], hard_regno)
6051 && (best_cl == NO_REGS
6052 || ira_class_hard_regs_num[best_cl] < ira_class_hard_regs_num[cl]))
6053 best_cl = cl;
6054 return best_cl;
6057 /* Copy any equivalence information from ORIGINAL_REGNO to NEW_REGNO. It only
6058 makes sense to call this function if NEW_REGNO is always equal to
6059 ORIGINAL_REGNO. Set up defined_p flag when caller_save_p flag is set up and
6060 CALL_SAVE_P is true. */
6062 static void
6063 lra_copy_reg_equiv (unsigned int new_regno, unsigned int original_regno,
6064 bool call_save_p)
6066 if (!ira_reg_equiv[original_regno].defined_p
6067 && !(call_save_p && ira_reg_equiv[original_regno].caller_save_p))
6068 return;
6070 ira_expand_reg_equiv ();
6071 ira_reg_equiv[new_regno].defined_p = true;
6072 if (ira_reg_equiv[original_regno].memory)
6073 ira_reg_equiv[new_regno].memory
6074 = copy_rtx (ira_reg_equiv[original_regno].memory);
6075 if (ira_reg_equiv[original_regno].constant)
6076 ira_reg_equiv[new_regno].constant
6077 = copy_rtx (ira_reg_equiv[original_regno].constant);
6078 if (ira_reg_equiv[original_regno].invariant)
6079 ira_reg_equiv[new_regno].invariant
6080 = copy_rtx (ira_reg_equiv[original_regno].invariant);
6083 /* Do split transformations for insn INSN, which defines or uses
6084 ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which instruction in
6085 the EBB next uses ORIGINAL_REGNO; it has the same form as the
6086 "insns" field of usage_insns. If TO is not NULL, we don't use
6087 usage_insns, we put restore insns after TO insn. It is a case when
6088 we call it from lra_split_hard_reg_for, outside the inheritance
6089 pass.
6091 The transformations look like:
6093 p <- ... p <- ...
6094 ... s <- p (new insn -- save)
6095 ... =>
6096 ... p <- s (new insn -- restore)
6097 <- ... p ... <- ... p ...
6099 <- ... p ... <- ... p ...
6100 ... s <- p (new insn -- save)
6101 ... =>
6102 ... p <- s (new insn -- restore)
6103 <- ... p ... <- ... p ...
6105 where p is an original pseudo got a hard register or a hard
6106 register and s is a new split pseudo. The save is put before INSN
6107 if BEFORE_P is true. Return true if we succeed in such
6108 transformation. */
6109 static bool
6110 split_reg (bool before_p, int original_regno, rtx_insn *insn,
6111 rtx next_usage_insns, rtx_insn *to)
6113 enum reg_class rclass;
6114 rtx original_reg;
6115 int hard_regno, nregs;
6116 rtx new_reg, usage_insn;
6117 rtx_insn *restore, *save;
6118 bool after_p;
6119 bool call_save_p;
6120 machine_mode mode;
6122 if (original_regno < FIRST_PSEUDO_REGISTER)
6124 rclass = ira_allocno_class_translate[REGNO_REG_CLASS (original_regno)];
6125 hard_regno = original_regno;
6126 call_save_p = false;
6127 nregs = 1;
6128 mode = lra_reg_info[hard_regno].biggest_mode;
6129 machine_mode reg_rtx_mode = GET_MODE (regno_reg_rtx[hard_regno]);
6130 /* A reg can have a biggest_mode of VOIDmode if it was only ever seen as
6131 part of a multi-word register. In that case, just use the reg_rtx
6132 mode. Do the same also if the biggest mode was larger than a register
6133 or we can not compare the modes. Otherwise, limit the size to that of
6134 the biggest access in the function or to the natural mode at least. */
6135 if (mode == VOIDmode
6136 || !ordered_p (GET_MODE_PRECISION (mode),
6137 GET_MODE_PRECISION (reg_rtx_mode))
6138 || paradoxical_subreg_p (mode, reg_rtx_mode)
6139 || maybe_gt (GET_MODE_PRECISION (reg_rtx_mode), GET_MODE_PRECISION (mode)))
6141 original_reg = regno_reg_rtx[hard_regno];
6142 mode = reg_rtx_mode;
6144 else
6145 original_reg = gen_rtx_REG (mode, hard_regno);
6147 else
6149 mode = PSEUDO_REGNO_MODE (original_regno);
6150 hard_regno = reg_renumber[original_regno];
6151 nregs = hard_regno_nregs (hard_regno, mode);
6152 rclass = lra_get_allocno_class (original_regno);
6153 original_reg = regno_reg_rtx[original_regno];
6154 call_save_p = need_for_call_save_p (original_regno);
6156 lra_assert (hard_regno >= 0);
6157 if (lra_dump_file != NULL)
6158 fprintf (lra_dump_file,
6159 " ((((((((((((((((((((((((((((((((((((((((((((((((\n");
6161 if (call_save_p)
6163 mode = HARD_REGNO_CALLER_SAVE_MODE (hard_regno,
6164 hard_regno_nregs (hard_regno, mode),
6165 mode);
6166 new_reg = lra_create_new_reg (mode, NULL_RTX, NO_REGS, NULL, "save");
6168 else
6170 rclass = choose_split_class (rclass, hard_regno, mode);
6171 if (rclass == NO_REGS)
6173 if (lra_dump_file != NULL)
6175 fprintf (lra_dump_file,
6176 " Rejecting split of %d(%s): "
6177 "no good reg class for %d(%s)\n",
6178 original_regno,
6179 reg_class_names[lra_get_allocno_class (original_regno)],
6180 hard_regno,
6181 reg_class_names[REGNO_REG_CLASS (hard_regno)]);
6182 fprintf
6183 (lra_dump_file,
6184 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
6186 return false;
6188 /* Split_if_necessary can split hard registers used as part of a
6189 multi-register mode but splits each register individually. The
6190 mode used for each independent register may not be supported
6191 so reject the split. Splitting the wider mode should theoretically
6192 be possible but is not implemented. */
6193 if (!targetm.hard_regno_mode_ok (hard_regno, mode))
6195 if (lra_dump_file != NULL)
6197 fprintf (lra_dump_file,
6198 " Rejecting split of %d(%s): unsuitable mode %s\n",
6199 original_regno,
6200 reg_class_names[lra_get_allocno_class (original_regno)],
6201 GET_MODE_NAME (mode));
6202 fprintf
6203 (lra_dump_file,
6204 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
6206 return false;
6208 new_reg = lra_create_new_reg (mode, original_reg, rclass, NULL, "split");
6209 reg_renumber[REGNO (new_reg)] = hard_regno;
6211 int new_regno = REGNO (new_reg);
6212 save = emit_spill_move (true, new_reg, original_reg);
6213 if (NEXT_INSN (save) != NULL_RTX && !call_save_p)
6215 if (lra_dump_file != NULL)
6217 fprintf
6218 (lra_dump_file,
6219 " Rejecting split %d->%d resulting in > 2 save insns:\n",
6220 original_regno, new_regno);
6221 dump_rtl_slim (lra_dump_file, save, NULL, -1, 0);
6222 fprintf (lra_dump_file,
6223 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
6225 return false;
6227 restore = emit_spill_move (false, new_reg, original_reg);
6228 if (NEXT_INSN (restore) != NULL_RTX && !call_save_p)
6230 if (lra_dump_file != NULL)
6232 fprintf (lra_dump_file,
6233 " Rejecting split %d->%d "
6234 "resulting in > 2 restore insns:\n",
6235 original_regno, new_regno);
6236 dump_rtl_slim (lra_dump_file, restore, NULL, -1, 0);
6237 fprintf (lra_dump_file,
6238 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
6240 return false;
6242 /* Transfer equivalence information to the spill register, so that
6243 if we fail to allocate the spill register, we have the option of
6244 rematerializing the original value instead of spilling to the stack. */
6245 if (!HARD_REGISTER_NUM_P (original_regno)
6246 && mode == PSEUDO_REGNO_MODE (original_regno))
6247 lra_copy_reg_equiv (new_regno, original_regno, call_save_p);
6248 lra_reg_info[new_regno].restore_rtx = regno_reg_rtx[original_regno];
6249 bitmap_set_bit (&lra_split_regs, new_regno);
6250 if (to != NULL)
6252 lra_assert (next_usage_insns == NULL);
6253 usage_insn = to;
6254 after_p = true;
6256 else
6258 /* We need check_only_regs only inside the inheritance pass. */
6259 bitmap_set_bit (&check_only_regs, new_regno);
6260 bitmap_set_bit (&check_only_regs, original_regno);
6261 after_p = usage_insns[original_regno].after_p;
6262 for (;;)
6264 if (GET_CODE (next_usage_insns) != INSN_LIST)
6266 usage_insn = next_usage_insns;
6267 break;
6269 usage_insn = XEXP (next_usage_insns, 0);
6270 lra_assert (DEBUG_INSN_P (usage_insn));
6271 next_usage_insns = XEXP (next_usage_insns, 1);
6272 lra_substitute_pseudo (&usage_insn, original_regno, new_reg, false,
6273 true);
6274 lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
6275 if (lra_dump_file != NULL)
6277 fprintf (lra_dump_file, " Split reuse change %d->%d:\n",
6278 original_regno, new_regno);
6279 dump_insn_slim (lra_dump_file, as_a <rtx_insn *> (usage_insn));
6283 lra_assert (NOTE_P (usage_insn) || NONDEBUG_INSN_P (usage_insn));
6284 lra_assert (usage_insn != insn || (after_p && before_p));
6285 lra_process_new_insns (as_a <rtx_insn *> (usage_insn),
6286 after_p ? NULL : restore,
6287 after_p ? restore : NULL,
6288 call_save_p
6289 ? "Add reg<-save" : "Add reg<-split");
6290 lra_process_new_insns (insn, before_p ? save : NULL,
6291 before_p ? NULL : save,
6292 call_save_p
6293 ? "Add save<-reg" : "Add split<-reg");
6294 if (nregs > 1 || original_regno < FIRST_PSEUDO_REGISTER)
6295 /* If we are trying to split multi-register. We should check
6296 conflicts on the next assignment sub-pass. IRA can allocate on
6297 sub-register levels, LRA do this on pseudos level right now and
6298 this discrepancy may create allocation conflicts after
6299 splitting.
6301 If we are trying to split hard register we should also check conflicts
6302 as such splitting can create artificial conflict of the hard register
6303 with another pseudo because of simplified conflict calculation in
6304 LRA. */
6305 check_and_force_assignment_correctness_p = true;
6306 if (lra_dump_file != NULL)
6307 fprintf (lra_dump_file,
6308 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
6309 return true;
6312 /* Split a hard reg for reload pseudo REGNO having RCLASS and living
6313 in the range [FROM, TO]. Return true if did a split. Otherwise,
6314 return false. */
6315 bool
6316 spill_hard_reg_in_range (int regno, enum reg_class rclass, rtx_insn *from, rtx_insn *to)
6318 int i, hard_regno;
6319 int rclass_size;
6320 rtx_insn *insn;
6321 unsigned int uid;
6322 bitmap_iterator bi;
6323 HARD_REG_SET ignore;
6325 lra_assert (from != NULL && to != NULL);
6326 ignore = lra_no_alloc_regs;
6327 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
6329 lra_insn_recog_data_t id = lra_insn_recog_data[uid];
6330 struct lra_static_insn_data *static_id = id->insn_static_data;
6331 struct lra_insn_reg *reg;
6333 for (reg = id->regs; reg != NULL; reg = reg->next)
6334 if (reg->regno < FIRST_PSEUDO_REGISTER)
6335 SET_HARD_REG_BIT (ignore, reg->regno);
6336 for (reg = static_id->hard_regs; reg != NULL; reg = reg->next)
6337 SET_HARD_REG_BIT (ignore, reg->regno);
6339 rclass_size = ira_class_hard_regs_num[rclass];
6340 for (i = 0; i < rclass_size; i++)
6342 hard_regno = ira_class_hard_regs[rclass][i];
6343 if (! TEST_HARD_REG_BIT (lra_reg_info[regno].conflict_hard_regs, hard_regno)
6344 || TEST_HARD_REG_BIT (ignore, hard_regno))
6345 continue;
6346 for (insn = from; insn != NEXT_INSN (to); insn = NEXT_INSN (insn))
6348 struct lra_static_insn_data *static_id;
6349 struct lra_insn_reg *reg;
6351 if (!INSN_P (insn))
6352 continue;
6353 if (bitmap_bit_p (&lra_reg_info[hard_regno].insn_bitmap,
6354 INSN_UID (insn)))
6355 break;
6356 static_id = lra_get_insn_recog_data (insn)->insn_static_data;
6357 for (reg = static_id->hard_regs; reg != NULL; reg = reg->next)
6358 if (reg->regno == hard_regno)
6359 break;
6360 if (reg != NULL)
6361 break;
6363 if (insn != NEXT_INSN (to))
6364 continue;
6365 if (split_reg (true, hard_regno, from, NULL, to))
6366 return true;
6368 return false;
6371 /* Recognize that we need a split transformation for insn INSN, which
6372 defines or uses REGNO in its insn biggest MODE (we use it only if
6373 REGNO is a hard register). POTENTIAL_RELOAD_HARD_REGS contains
6374 hard registers which might be used for reloads since the EBB end.
6375 Put the save before INSN if BEFORE_P is true. MAX_UID is maximla
6376 uid before starting INSN processing. Return true if we succeed in
6377 such transformation. */
6378 static bool
6379 split_if_necessary (int regno, machine_mode mode,
6380 HARD_REG_SET potential_reload_hard_regs,
6381 bool before_p, rtx_insn *insn, int max_uid)
6383 bool res = false;
6384 int i, nregs = 1;
6385 rtx next_usage_insns;
6387 if (regno < FIRST_PSEUDO_REGISTER)
6388 nregs = hard_regno_nregs (regno, mode);
6389 for (i = 0; i < nregs; i++)
6390 if (usage_insns[regno + i].check == curr_usage_insns_check
6391 && (next_usage_insns = usage_insns[regno + i].insns) != NULL_RTX
6392 /* To avoid processing the register twice or more. */
6393 && ((GET_CODE (next_usage_insns) != INSN_LIST
6394 && INSN_UID (next_usage_insns) < max_uid)
6395 || (GET_CODE (next_usage_insns) == INSN_LIST
6396 && (INSN_UID (XEXP (next_usage_insns, 0)) < max_uid)))
6397 && need_for_split_p (potential_reload_hard_regs, regno + i)
6398 && split_reg (before_p, regno + i, insn, next_usage_insns, NULL))
6399 res = true;
6400 return res;
6403 /* Return TRUE if rtx X is considered as an invariant for
6404 inheritance. */
6405 static bool
6406 invariant_p (const_rtx x)
6408 machine_mode mode;
6409 const char *fmt;
6410 enum rtx_code code;
6411 int i, j;
6413 if (side_effects_p (x))
6414 return false;
6416 code = GET_CODE (x);
6417 mode = GET_MODE (x);
6418 if (code == SUBREG)
6420 x = SUBREG_REG (x);
6421 code = GET_CODE (x);
6422 mode = wider_subreg_mode (mode, GET_MODE (x));
6425 if (MEM_P (x))
6426 return false;
6428 if (REG_P (x))
6430 int i, nregs, regno = REGNO (x);
6432 if (regno >= FIRST_PSEUDO_REGISTER || regno == STACK_POINTER_REGNUM
6433 || TEST_HARD_REG_BIT (eliminable_regset, regno)
6434 || GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
6435 return false;
6436 nregs = hard_regno_nregs (regno, mode);
6437 for (i = 0; i < nregs; i++)
6438 if (! fixed_regs[regno + i]
6439 /* A hard register may be clobbered in the current insn
6440 but we can ignore this case because if the hard
6441 register is used it should be set somewhere after the
6442 clobber. */
6443 || bitmap_bit_p (&invalid_invariant_regs, regno + i))
6444 return false;
6446 fmt = GET_RTX_FORMAT (code);
6447 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6449 if (fmt[i] == 'e')
6451 if (! invariant_p (XEXP (x, i)))
6452 return false;
6454 else if (fmt[i] == 'E')
6456 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6457 if (! invariant_p (XVECEXP (x, i, j)))
6458 return false;
6461 return true;
6464 /* We have 'dest_reg <- invariant'. Let us try to make an invariant
6465 inheritance transformation (using dest_reg instead invariant in a
6466 subsequent insn). */
6467 static bool
6468 process_invariant_for_inheritance (rtx dst_reg, rtx invariant_rtx)
6470 invariant_ptr_t invariant_ptr;
6471 rtx_insn *insn, *new_insns;
6472 rtx insn_set, insn_reg, new_reg;
6473 int insn_regno;
6474 bool succ_p = false;
6475 int dst_regno = REGNO (dst_reg);
6476 machine_mode dst_mode = GET_MODE (dst_reg);
6477 enum reg_class cl = lra_get_allocno_class (dst_regno), insn_reg_cl;
6479 invariant_ptr = insert_invariant (invariant_rtx);
6480 if ((insn = invariant_ptr->insn) != NULL_RTX)
6482 /* We have a subsequent insn using the invariant. */
6483 insn_set = single_set (insn);
6484 lra_assert (insn_set != NULL);
6485 insn_reg = SET_DEST (insn_set);
6486 lra_assert (REG_P (insn_reg));
6487 insn_regno = REGNO (insn_reg);
6488 insn_reg_cl = lra_get_allocno_class (insn_regno);
6490 if (dst_mode == GET_MODE (insn_reg)
6491 /* We should consider only result move reg insns which are
6492 cheap. */
6493 && targetm.register_move_cost (dst_mode, cl, insn_reg_cl) == 2
6494 && targetm.register_move_cost (dst_mode, cl, cl) == 2)
6496 if (lra_dump_file != NULL)
6497 fprintf (lra_dump_file,
6498 " [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[\n");
6499 new_reg = lra_create_new_reg (dst_mode, dst_reg, cl, NULL,
6500 "invariant inheritance");
6501 bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
6502 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
6503 lra_reg_info[REGNO (new_reg)].restore_rtx = PATTERN (insn);
6504 start_sequence ();
6505 lra_emit_move (new_reg, dst_reg);
6506 new_insns = get_insns ();
6507 end_sequence ();
6508 lra_process_new_insns (curr_insn, NULL, new_insns,
6509 "Add invariant inheritance<-original");
6510 start_sequence ();
6511 lra_emit_move (SET_DEST (insn_set), new_reg);
6512 new_insns = get_insns ();
6513 end_sequence ();
6514 lra_process_new_insns (insn, NULL, new_insns,
6515 "Changing reload<-inheritance");
6516 lra_set_insn_deleted (insn);
6517 succ_p = true;
6518 if (lra_dump_file != NULL)
6520 fprintf (lra_dump_file,
6521 " Invariant inheritance reuse change %d (bb%d):\n",
6522 REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
6523 dump_insn_slim (lra_dump_file, insn);
6524 fprintf (lra_dump_file,
6525 " ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]\n");
6529 invariant_ptr->insn = curr_insn;
6530 return succ_p;
6533 /* Check only registers living at the current program point in the
6534 current EBB. */
6535 static bitmap_head live_regs;
6537 /* Update live info in EBB given by its HEAD and TAIL insns after
6538 inheritance/split transformation. The function removes dead moves
6539 too. */
6540 static void
6541 update_ebb_live_info (rtx_insn *head, rtx_insn *tail)
6543 unsigned int j;
6544 int i, regno;
6545 bool live_p;
6546 rtx_insn *prev_insn;
6547 rtx set;
6548 bool remove_p;
6549 basic_block last_bb, prev_bb, curr_bb;
6550 bitmap_iterator bi;
6551 struct lra_insn_reg *reg;
6552 edge e;
6553 edge_iterator ei;
6555 last_bb = BLOCK_FOR_INSN (tail);
6556 prev_bb = NULL;
6557 for (curr_insn = tail;
6558 curr_insn != PREV_INSN (head);
6559 curr_insn = prev_insn)
6561 prev_insn = PREV_INSN (curr_insn);
6562 /* We need to process empty blocks too. They contain
6563 NOTE_INSN_BASIC_BLOCK referring for the basic block. */
6564 if (NOTE_P (curr_insn) && NOTE_KIND (curr_insn) != NOTE_INSN_BASIC_BLOCK)
6565 continue;
6566 curr_bb = BLOCK_FOR_INSN (curr_insn);
6567 if (curr_bb != prev_bb)
6569 if (prev_bb != NULL)
6571 /* Update df_get_live_in (prev_bb): */
6572 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
6573 if (bitmap_bit_p (&live_regs, j))
6574 bitmap_set_bit (df_get_live_in (prev_bb), j);
6575 else
6576 bitmap_clear_bit (df_get_live_in (prev_bb), j);
6578 if (curr_bb != last_bb)
6580 /* Update df_get_live_out (curr_bb): */
6581 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
6583 live_p = bitmap_bit_p (&live_regs, j);
6584 if (! live_p)
6585 FOR_EACH_EDGE (e, ei, curr_bb->succs)
6586 if (bitmap_bit_p (df_get_live_in (e->dest), j))
6588 live_p = true;
6589 break;
6591 if (live_p)
6592 bitmap_set_bit (df_get_live_out (curr_bb), j);
6593 else
6594 bitmap_clear_bit (df_get_live_out (curr_bb), j);
6597 prev_bb = curr_bb;
6598 bitmap_and (&live_regs, &check_only_regs, df_get_live_out (curr_bb));
6600 if (! NONDEBUG_INSN_P (curr_insn))
6601 continue;
6602 curr_id = lra_get_insn_recog_data (curr_insn);
6603 curr_static_id = curr_id->insn_static_data;
6604 remove_p = false;
6605 if ((set = single_set (curr_insn)) != NULL_RTX
6606 && REG_P (SET_DEST (set))
6607 && (regno = REGNO (SET_DEST (set))) >= FIRST_PSEUDO_REGISTER
6608 && SET_DEST (set) != pic_offset_table_rtx
6609 && bitmap_bit_p (&check_only_regs, regno)
6610 && ! bitmap_bit_p (&live_regs, regno))
6611 remove_p = true;
6612 /* See which defined values die here. */
6613 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6614 if (reg->type == OP_OUT && ! reg->subreg_p)
6615 bitmap_clear_bit (&live_regs, reg->regno);
6616 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
6617 if (reg->type == OP_OUT && ! reg->subreg_p)
6618 bitmap_clear_bit (&live_regs, reg->regno);
6619 if (curr_id->arg_hard_regs != NULL)
6620 /* Make clobbered argument hard registers die. */
6621 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6622 if (regno >= FIRST_PSEUDO_REGISTER)
6623 bitmap_clear_bit (&live_regs, regno - FIRST_PSEUDO_REGISTER);
6624 /* Mark each used value as live. */
6625 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6626 if (reg->type != OP_OUT
6627 && bitmap_bit_p (&check_only_regs, reg->regno))
6628 bitmap_set_bit (&live_regs, reg->regno);
6629 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
6630 if (reg->type != OP_OUT
6631 && bitmap_bit_p (&check_only_regs, reg->regno))
6632 bitmap_set_bit (&live_regs, reg->regno);
6633 if (curr_id->arg_hard_regs != NULL)
6634 /* Make used argument hard registers live. */
6635 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6636 if (regno < FIRST_PSEUDO_REGISTER
6637 && bitmap_bit_p (&check_only_regs, regno))
6638 bitmap_set_bit (&live_regs, regno);
6639 /* It is quite important to remove dead move insns because it
6640 means removing dead store. We don't need to process them for
6641 constraints. */
6642 if (remove_p)
6644 if (lra_dump_file != NULL)
6646 fprintf (lra_dump_file, " Removing dead insn:\n ");
6647 dump_insn_slim (lra_dump_file, curr_insn);
6649 lra_set_insn_deleted (curr_insn);
6654 /* The structure describes info to do an inheritance for the current
6655 insn. We need to collect such info first before doing the
6656 transformations because the transformations change the insn
6657 internal representation. */
6658 struct to_inherit
6660 /* Original regno. */
6661 int regno;
6662 /* Subsequent insns which can inherit original reg value. */
6663 rtx insns;
6666 /* Array containing all info for doing inheritance from the current
6667 insn. */
6668 static struct to_inherit to_inherit[LRA_MAX_INSN_RELOADS];
6670 /* Number elements in the previous array. */
6671 static int to_inherit_num;
6673 /* Add inheritance info REGNO and INSNS. Their meaning is described in
6674 structure to_inherit. */
6675 static void
6676 add_to_inherit (int regno, rtx insns)
6678 int i;
6680 for (i = 0; i < to_inherit_num; i++)
6681 if (to_inherit[i].regno == regno)
6682 return;
6683 lra_assert (to_inherit_num < LRA_MAX_INSN_RELOADS);
6684 to_inherit[to_inherit_num].regno = regno;
6685 to_inherit[to_inherit_num++].insns = insns;
6688 /* Return the last non-debug insn in basic block BB, or the block begin
6689 note if none. */
6690 static rtx_insn *
6691 get_last_insertion_point (basic_block bb)
6693 rtx_insn *insn;
6695 FOR_BB_INSNS_REVERSE (bb, insn)
6696 if (NONDEBUG_INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
6697 return insn;
6698 gcc_unreachable ();
6701 /* Set up RES by registers living on edges FROM except the edge (FROM,
6702 TO) or by registers set up in a jump insn in BB FROM. */
6703 static void
6704 get_live_on_other_edges (basic_block from, basic_block to, bitmap res)
6706 rtx_insn *last;
6707 struct lra_insn_reg *reg;
6708 edge e;
6709 edge_iterator ei;
6711 lra_assert (to != NULL);
6712 bitmap_clear (res);
6713 FOR_EACH_EDGE (e, ei, from->succs)
6714 if (e->dest != to)
6715 bitmap_ior_into (res, df_get_live_in (e->dest));
6716 last = get_last_insertion_point (from);
6717 if (! JUMP_P (last))
6718 return;
6719 curr_id = lra_get_insn_recog_data (last);
6720 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6721 if (reg->type != OP_IN)
6722 bitmap_set_bit (res, reg->regno);
6725 /* Used as a temporary results of some bitmap calculations. */
6726 static bitmap_head temp_bitmap;
6728 /* We split for reloads of small class of hard regs. The following
6729 defines how many hard regs the class should have to be qualified as
6730 small. The code is mostly oriented to x86/x86-64 architecture
6731 where some insns need to use only specific register or pair of
6732 registers and these register can live in RTL explicitly, e.g. for
6733 parameter passing. */
6734 static const int max_small_class_regs_num = 2;
6736 /* Do inheritance/split transformations in EBB starting with HEAD and
6737 finishing on TAIL. We process EBB insns in the reverse order.
6738 Return true if we did any inheritance/split transformation in the
6739 EBB.
6741 We should avoid excessive splitting which results in worse code
6742 because of inaccurate cost calculations for spilling new split
6743 pseudos in such case. To achieve this we do splitting only if
6744 register pressure is high in given basic block and there are reload
6745 pseudos requiring hard registers. We could do more register
6746 pressure calculations at any given program point to avoid necessary
6747 splitting even more but it is to expensive and the current approach
6748 works well enough. */
6749 static bool
6750 inherit_in_ebb (rtx_insn *head, rtx_insn *tail)
6752 int i, src_regno, dst_regno, nregs;
6753 bool change_p, succ_p, update_reloads_num_p;
6754 rtx_insn *prev_insn, *last_insn;
6755 rtx next_usage_insns, curr_set;
6756 enum reg_class cl;
6757 struct lra_insn_reg *reg;
6758 basic_block last_processed_bb, curr_bb = NULL;
6759 HARD_REG_SET potential_reload_hard_regs, live_hard_regs;
6760 bitmap to_process;
6761 unsigned int j;
6762 bitmap_iterator bi;
6763 bool head_p, after_p;
6765 change_p = false;
6766 curr_usage_insns_check++;
6767 clear_invariants ();
6768 reloads_num = calls_num = 0;
6769 for (unsigned int i = 0; i < NUM_ABI_IDS; ++i)
6770 last_call_for_abi[i] = 0;
6771 CLEAR_HARD_REG_SET (full_and_partial_call_clobbers);
6772 bitmap_clear (&check_only_regs);
6773 bitmap_clear (&invalid_invariant_regs);
6774 last_processed_bb = NULL;
6775 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
6776 live_hard_regs = eliminable_regset | lra_no_alloc_regs;
6777 /* We don't process new insns generated in the loop. */
6778 for (curr_insn = tail; curr_insn != PREV_INSN (head); curr_insn = prev_insn)
6780 prev_insn = PREV_INSN (curr_insn);
6781 if (BLOCK_FOR_INSN (curr_insn) != NULL)
6782 curr_bb = BLOCK_FOR_INSN (curr_insn);
6783 if (last_processed_bb != curr_bb)
6785 /* We are at the end of BB. Add qualified living
6786 pseudos for potential splitting. */
6787 to_process = df_get_live_out (curr_bb);
6788 if (last_processed_bb != NULL)
6790 /* We are somewhere in the middle of EBB. */
6791 get_live_on_other_edges (curr_bb, last_processed_bb,
6792 &temp_bitmap);
6793 to_process = &temp_bitmap;
6795 last_processed_bb = curr_bb;
6796 last_insn = get_last_insertion_point (curr_bb);
6797 after_p = (! JUMP_P (last_insn)
6798 && (! CALL_P (last_insn)
6799 || (find_reg_note (last_insn,
6800 REG_NORETURN, NULL_RTX) == NULL_RTX
6801 && ! SIBLING_CALL_P (last_insn))));
6802 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
6803 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
6805 if ((int) j >= lra_constraint_new_regno_start)
6806 break;
6807 if (j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
6809 if (j < FIRST_PSEUDO_REGISTER)
6810 SET_HARD_REG_BIT (live_hard_regs, j);
6811 else
6812 add_to_hard_reg_set (&live_hard_regs,
6813 PSEUDO_REGNO_MODE (j),
6814 reg_renumber[j]);
6815 setup_next_usage_insn (j, last_insn, reloads_num, after_p);
6819 src_regno = dst_regno = -1;
6820 curr_set = single_set (curr_insn);
6821 if (curr_set != NULL_RTX && REG_P (SET_DEST (curr_set)))
6822 dst_regno = REGNO (SET_DEST (curr_set));
6823 if (curr_set != NULL_RTX && REG_P (SET_SRC (curr_set)))
6824 src_regno = REGNO (SET_SRC (curr_set));
6825 update_reloads_num_p = true;
6826 if (src_regno < lra_constraint_new_regno_start
6827 && src_regno >= FIRST_PSEUDO_REGISTER
6828 && reg_renumber[src_regno] < 0
6829 && dst_regno >= lra_constraint_new_regno_start
6830 && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS)
6832 /* 'reload_pseudo <- original_pseudo'. */
6833 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6834 reloads_num++;
6835 update_reloads_num_p = false;
6836 succ_p = false;
6837 if (usage_insns[src_regno].check == curr_usage_insns_check
6838 && (next_usage_insns = usage_insns[src_regno].insns) != NULL_RTX)
6839 succ_p = inherit_reload_reg (false, src_regno, cl,
6840 curr_insn, next_usage_insns);
6841 if (succ_p)
6842 change_p = true;
6843 else
6844 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
6845 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6846 potential_reload_hard_regs |= reg_class_contents[cl];
6848 else if (src_regno < 0
6849 && dst_regno >= lra_constraint_new_regno_start
6850 && invariant_p (SET_SRC (curr_set))
6851 && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS
6852 && ! bitmap_bit_p (&invalid_invariant_regs, dst_regno)
6853 && ! bitmap_bit_p (&invalid_invariant_regs,
6854 ORIGINAL_REGNO(regno_reg_rtx[dst_regno])))
6856 /* 'reload_pseudo <- invariant'. */
6857 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6858 reloads_num++;
6859 update_reloads_num_p = false;
6860 if (process_invariant_for_inheritance (SET_DEST (curr_set), SET_SRC (curr_set)))
6861 change_p = true;
6862 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6863 potential_reload_hard_regs |= reg_class_contents[cl];
6865 else if (src_regno >= lra_constraint_new_regno_start
6866 && dst_regno < lra_constraint_new_regno_start
6867 && dst_regno >= FIRST_PSEUDO_REGISTER
6868 && reg_renumber[dst_regno] < 0
6869 && (cl = lra_get_allocno_class (src_regno)) != NO_REGS
6870 && usage_insns[dst_regno].check == curr_usage_insns_check
6871 && (next_usage_insns
6872 = usage_insns[dst_regno].insns) != NULL_RTX)
6874 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6875 reloads_num++;
6876 update_reloads_num_p = false;
6877 /* 'original_pseudo <- reload_pseudo'. */
6878 if (! JUMP_P (curr_insn)
6879 && inherit_reload_reg (true, dst_regno, cl,
6880 curr_insn, next_usage_insns))
6881 change_p = true;
6882 /* Invalidate. */
6883 usage_insns[dst_regno].check = 0;
6884 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6885 potential_reload_hard_regs |= reg_class_contents[cl];
6887 else if (INSN_P (curr_insn))
6889 int iter;
6890 int max_uid = get_max_uid ();
6892 curr_id = lra_get_insn_recog_data (curr_insn);
6893 curr_static_id = curr_id->insn_static_data;
6894 to_inherit_num = 0;
6895 /* Process insn definitions. */
6896 for (iter = 0; iter < 2; iter++)
6897 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
6898 reg != NULL;
6899 reg = reg->next)
6900 if (reg->type != OP_IN
6901 && (dst_regno = reg->regno) < lra_constraint_new_regno_start)
6903 if (dst_regno >= FIRST_PSEUDO_REGISTER && reg->type == OP_OUT
6904 && reg_renumber[dst_regno] < 0 && ! reg->subreg_p
6905 && usage_insns[dst_regno].check == curr_usage_insns_check
6906 && (next_usage_insns
6907 = usage_insns[dst_regno].insns) != NULL_RTX)
6909 struct lra_insn_reg *r;
6911 for (r = curr_id->regs; r != NULL; r = r->next)
6912 if (r->type != OP_OUT && r->regno == dst_regno)
6913 break;
6914 /* Don't do inheritance if the pseudo is also
6915 used in the insn. */
6916 if (r == NULL)
6917 /* We cannot do inheritance right now
6918 because the current insn reg info (chain
6919 regs) can change after that. */
6920 add_to_inherit (dst_regno, next_usage_insns);
6922 /* We cannot process one reg twice here because of
6923 usage_insns invalidation. */
6924 if ((dst_regno < FIRST_PSEUDO_REGISTER
6925 || reg_renumber[dst_regno] >= 0)
6926 && ! reg->subreg_p && reg->type != OP_IN)
6928 HARD_REG_SET s;
6930 if (split_if_necessary (dst_regno, reg->biggest_mode,
6931 potential_reload_hard_regs,
6932 false, curr_insn, max_uid))
6933 change_p = true;
6934 CLEAR_HARD_REG_SET (s);
6935 if (dst_regno < FIRST_PSEUDO_REGISTER)
6936 add_to_hard_reg_set (&s, reg->biggest_mode, dst_regno);
6937 else
6938 add_to_hard_reg_set (&s, PSEUDO_REGNO_MODE (dst_regno),
6939 reg_renumber[dst_regno]);
6940 live_hard_regs &= ~s;
6941 potential_reload_hard_regs &= ~s;
6943 /* We should invalidate potential inheritance or
6944 splitting for the current insn usages to the next
6945 usage insns (see code below) as the output pseudo
6946 prevents this. */
6947 if ((dst_regno >= FIRST_PSEUDO_REGISTER
6948 && reg_renumber[dst_regno] < 0)
6949 || (reg->type == OP_OUT && ! reg->subreg_p
6950 && (dst_regno < FIRST_PSEUDO_REGISTER
6951 || reg_renumber[dst_regno] >= 0)))
6953 /* Invalidate and mark definitions. */
6954 if (dst_regno >= FIRST_PSEUDO_REGISTER)
6955 usage_insns[dst_regno].check = -(int) INSN_UID (curr_insn);
6956 else
6958 nregs = hard_regno_nregs (dst_regno,
6959 reg->biggest_mode);
6960 for (i = 0; i < nregs; i++)
6961 usage_insns[dst_regno + i].check
6962 = -(int) INSN_UID (curr_insn);
6966 /* Process clobbered call regs. */
6967 if (curr_id->arg_hard_regs != NULL)
6968 for (i = 0; (dst_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6969 if (dst_regno >= FIRST_PSEUDO_REGISTER)
6970 usage_insns[dst_regno - FIRST_PSEUDO_REGISTER].check
6971 = -(int) INSN_UID (curr_insn);
6972 if (! JUMP_P (curr_insn))
6973 for (i = 0; i < to_inherit_num; i++)
6974 if (inherit_reload_reg (true, to_inherit[i].regno,
6975 ALL_REGS, curr_insn,
6976 to_inherit[i].insns))
6977 change_p = true;
6978 if (CALL_P (curr_insn))
6980 rtx cheap, pat, dest;
6981 rtx_insn *restore;
6982 int regno, hard_regno;
6984 calls_num++;
6985 function_abi callee_abi = insn_callee_abi (curr_insn);
6986 last_call_for_abi[callee_abi.id ()] = calls_num;
6987 full_and_partial_call_clobbers
6988 |= callee_abi.full_and_partial_reg_clobbers ();
6989 if ((cheap = find_reg_note (curr_insn,
6990 REG_RETURNED, NULL_RTX)) != NULL_RTX
6991 && ((cheap = XEXP (cheap, 0)), true)
6992 && (regno = REGNO (cheap)) >= FIRST_PSEUDO_REGISTER
6993 && (hard_regno = reg_renumber[regno]) >= 0
6994 && usage_insns[regno].check == curr_usage_insns_check
6995 /* If there are pending saves/restores, the
6996 optimization is not worth. */
6997 && usage_insns[regno].calls_num == calls_num - 1
6998 && callee_abi.clobbers_reg_p (GET_MODE (cheap), hard_regno))
7000 /* Restore the pseudo from the call result as
7001 REG_RETURNED note says that the pseudo value is
7002 in the call result and the pseudo is an argument
7003 of the call. */
7004 pat = PATTERN (curr_insn);
7005 if (GET_CODE (pat) == PARALLEL)
7006 pat = XVECEXP (pat, 0, 0);
7007 dest = SET_DEST (pat);
7008 /* For multiple return values dest is PARALLEL.
7009 Currently we handle only single return value case. */
7010 if (REG_P (dest))
7012 start_sequence ();
7013 emit_move_insn (cheap, copy_rtx (dest));
7014 restore = get_insns ();
7015 end_sequence ();
7016 lra_process_new_insns (curr_insn, NULL, restore,
7017 "Inserting call parameter restore");
7018 /* We don't need to save/restore of the pseudo from
7019 this call. */
7020 usage_insns[regno].calls_num = calls_num;
7021 remove_from_hard_reg_set
7022 (&full_and_partial_call_clobbers,
7023 GET_MODE (cheap), hard_regno);
7024 bitmap_set_bit (&check_only_regs, regno);
7028 to_inherit_num = 0;
7029 /* Process insn usages. */
7030 for (iter = 0; iter < 2; iter++)
7031 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
7032 reg != NULL;
7033 reg = reg->next)
7034 if ((reg->type != OP_OUT
7035 || (reg->type == OP_OUT && reg->subreg_p))
7036 && (src_regno = reg->regno) < lra_constraint_new_regno_start)
7038 if (src_regno >= FIRST_PSEUDO_REGISTER
7039 && reg_renumber[src_regno] < 0 && reg->type == OP_IN)
7041 if (usage_insns[src_regno].check == curr_usage_insns_check
7042 && (next_usage_insns
7043 = usage_insns[src_regno].insns) != NULL_RTX
7044 && NONDEBUG_INSN_P (curr_insn))
7045 add_to_inherit (src_regno, next_usage_insns);
7046 else if (usage_insns[src_regno].check
7047 != -(int) INSN_UID (curr_insn))
7048 /* Add usages but only if the reg is not set up
7049 in the same insn. */
7050 add_next_usage_insn (src_regno, curr_insn, reloads_num);
7052 else if (src_regno < FIRST_PSEUDO_REGISTER
7053 || reg_renumber[src_regno] >= 0)
7055 bool before_p;
7056 rtx_insn *use_insn = curr_insn;
7058 before_p = (JUMP_P (curr_insn)
7059 || (CALL_P (curr_insn) && reg->type == OP_IN));
7060 if (NONDEBUG_INSN_P (curr_insn)
7061 && (! JUMP_P (curr_insn) || reg->type == OP_IN)
7062 && split_if_necessary (src_regno, reg->biggest_mode,
7063 potential_reload_hard_regs,
7064 before_p, curr_insn, max_uid))
7066 if (reg->subreg_p)
7067 check_and_force_assignment_correctness_p = true;
7068 change_p = true;
7069 /* Invalidate. */
7070 usage_insns[src_regno].check = 0;
7071 if (before_p)
7072 use_insn = PREV_INSN (curr_insn);
7074 if (NONDEBUG_INSN_P (curr_insn))
7076 if (src_regno < FIRST_PSEUDO_REGISTER)
7077 add_to_hard_reg_set (&live_hard_regs,
7078 reg->biggest_mode, src_regno);
7079 else
7080 add_to_hard_reg_set (&live_hard_regs,
7081 PSEUDO_REGNO_MODE (src_regno),
7082 reg_renumber[src_regno]);
7084 if (src_regno >= FIRST_PSEUDO_REGISTER)
7085 add_next_usage_insn (src_regno, use_insn, reloads_num);
7086 else
7088 for (i = 0; i < hard_regno_nregs (src_regno, reg->biggest_mode); i++)
7089 add_next_usage_insn (src_regno + i, use_insn, reloads_num);
7093 /* Process used call regs. */
7094 if (curr_id->arg_hard_regs != NULL)
7095 for (i = 0; (src_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
7096 if (src_regno < FIRST_PSEUDO_REGISTER)
7098 SET_HARD_REG_BIT (live_hard_regs, src_regno);
7099 add_next_usage_insn (src_regno, curr_insn, reloads_num);
7101 for (i = 0; i < to_inherit_num; i++)
7103 src_regno = to_inherit[i].regno;
7104 if (inherit_reload_reg (false, src_regno, ALL_REGS,
7105 curr_insn, to_inherit[i].insns))
7106 change_p = true;
7107 else
7108 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
7111 if (update_reloads_num_p
7112 && NONDEBUG_INSN_P (curr_insn) && curr_set != NULL_RTX)
7114 int regno = -1;
7115 if ((REG_P (SET_DEST (curr_set))
7116 && (regno = REGNO (SET_DEST (curr_set))) >= lra_constraint_new_regno_start
7117 && reg_renumber[regno] < 0
7118 && (cl = lra_get_allocno_class (regno)) != NO_REGS)
7119 || (REG_P (SET_SRC (curr_set))
7120 && (regno = REGNO (SET_SRC (curr_set))) >= lra_constraint_new_regno_start
7121 && reg_renumber[regno] < 0
7122 && (cl = lra_get_allocno_class (regno)) != NO_REGS))
7124 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
7125 reloads_num++;
7126 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
7127 potential_reload_hard_regs |= reg_class_contents[cl];
7130 if (NONDEBUG_INSN_P (curr_insn))
7132 int regno;
7134 /* Invalidate invariants with changed regs. */
7135 curr_id = lra_get_insn_recog_data (curr_insn);
7136 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
7137 if (reg->type != OP_IN)
7139 bitmap_set_bit (&invalid_invariant_regs, reg->regno);
7140 bitmap_set_bit (&invalid_invariant_regs,
7141 ORIGINAL_REGNO (regno_reg_rtx[reg->regno]));
7143 curr_static_id = curr_id->insn_static_data;
7144 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
7145 if (reg->type != OP_IN)
7146 bitmap_set_bit (&invalid_invariant_regs, reg->regno);
7147 if (curr_id->arg_hard_regs != NULL)
7148 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
7149 if (regno >= FIRST_PSEUDO_REGISTER)
7150 bitmap_set_bit (&invalid_invariant_regs,
7151 regno - FIRST_PSEUDO_REGISTER);
7153 /* We reached the start of the current basic block. */
7154 if (prev_insn == NULL_RTX || prev_insn == PREV_INSN (head)
7155 || BLOCK_FOR_INSN (prev_insn) != curr_bb)
7157 /* We reached the beginning of the current block -- do
7158 rest of spliting in the current BB. */
7159 to_process = df_get_live_in (curr_bb);
7160 if (BLOCK_FOR_INSN (head) != curr_bb)
7162 /* We are somewhere in the middle of EBB. */
7163 get_live_on_other_edges (EDGE_PRED (curr_bb, 0)->src,
7164 curr_bb, &temp_bitmap);
7165 to_process = &temp_bitmap;
7167 head_p = true;
7168 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
7170 if ((int) j >= lra_constraint_new_regno_start)
7171 break;
7172 if (((int) j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
7173 && usage_insns[j].check == curr_usage_insns_check
7174 && (next_usage_insns = usage_insns[j].insns) != NULL_RTX)
7176 if (need_for_split_p (potential_reload_hard_regs, j))
7178 if (lra_dump_file != NULL && head_p)
7180 fprintf (lra_dump_file,
7181 " ----------------------------------\n");
7182 head_p = false;
7184 if (split_reg (false, j, bb_note (curr_bb),
7185 next_usage_insns, NULL))
7186 change_p = true;
7188 usage_insns[j].check = 0;
7193 return change_p;
7196 /* This value affects EBB forming. If probability of edge from EBB to
7197 a BB is not greater than the following value, we don't add the BB
7198 to EBB. */
7199 #define EBB_PROBABILITY_CUTOFF \
7200 ((REG_BR_PROB_BASE * param_lra_inheritance_ebb_probability_cutoff) / 100)
7202 /* Current number of inheritance/split iteration. */
7203 int lra_inheritance_iter;
7205 /* Entry function for inheritance/split pass. */
7206 void
7207 lra_inheritance (void)
7209 int i;
7210 basic_block bb, start_bb;
7211 edge e;
7213 lra_inheritance_iter++;
7214 if (lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
7215 return;
7216 timevar_push (TV_LRA_INHERITANCE);
7217 if (lra_dump_file != NULL)
7218 fprintf (lra_dump_file, "\n********** Inheritance #%d: **********\n\n",
7219 lra_inheritance_iter);
7220 curr_usage_insns_check = 0;
7221 usage_insns = XNEWVEC (struct usage_insns, lra_constraint_new_regno_start);
7222 for (i = 0; i < lra_constraint_new_regno_start; i++)
7223 usage_insns[i].check = 0;
7224 bitmap_initialize (&check_only_regs, &reg_obstack);
7225 bitmap_initialize (&invalid_invariant_regs, &reg_obstack);
7226 bitmap_initialize (&live_regs, &reg_obstack);
7227 bitmap_initialize (&temp_bitmap, &reg_obstack);
7228 bitmap_initialize (&ebb_global_regs, &reg_obstack);
7229 FOR_EACH_BB_FN (bb, cfun)
7231 start_bb = bb;
7232 if (lra_dump_file != NULL)
7233 fprintf (lra_dump_file, "EBB");
7234 /* Form a EBB starting with BB. */
7235 bitmap_clear (&ebb_global_regs);
7236 bitmap_ior_into (&ebb_global_regs, df_get_live_in (bb));
7237 for (;;)
7239 if (lra_dump_file != NULL)
7240 fprintf (lra_dump_file, " %d", bb->index);
7241 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
7242 || LABEL_P (BB_HEAD (bb->next_bb)))
7243 break;
7244 e = find_fallthru_edge (bb->succs);
7245 if (! e)
7246 break;
7247 if (e->probability.initialized_p ()
7248 && e->probability.to_reg_br_prob_base () < EBB_PROBABILITY_CUTOFF)
7249 break;
7250 bb = bb->next_bb;
7252 bitmap_ior_into (&ebb_global_regs, df_get_live_out (bb));
7253 if (lra_dump_file != NULL)
7254 fprintf (lra_dump_file, "\n");
7255 if (inherit_in_ebb (BB_HEAD (start_bb), BB_END (bb)))
7256 /* Remember that the EBB head and tail can change in
7257 inherit_in_ebb. */
7258 update_ebb_live_info (BB_HEAD (start_bb), BB_END (bb));
7260 bitmap_release (&ebb_global_regs);
7261 bitmap_release (&temp_bitmap);
7262 bitmap_release (&live_regs);
7263 bitmap_release (&invalid_invariant_regs);
7264 bitmap_release (&check_only_regs);
7265 free (usage_insns);
7267 timevar_pop (TV_LRA_INHERITANCE);
7272 /* This page contains code to undo failed inheritance/split
7273 transformations. */
7275 /* Current number of iteration undoing inheritance/split. */
7276 int lra_undo_inheritance_iter;
7278 /* Fix BB live info LIVE after removing pseudos created on pass doing
7279 inheritance/split which are REMOVED_PSEUDOS. */
7280 static void
7281 fix_bb_live_info (bitmap live, bitmap removed_pseudos)
7283 unsigned int regno;
7284 bitmap_iterator bi;
7286 EXECUTE_IF_SET_IN_BITMAP (removed_pseudos, 0, regno, bi)
7287 if (bitmap_clear_bit (live, regno)
7288 && REG_P (lra_reg_info[regno].restore_rtx))
7289 bitmap_set_bit (live, REGNO (lra_reg_info[regno].restore_rtx));
7292 /* Return regno of the (subreg of) REG. Otherwise, return a negative
7293 number. */
7294 static int
7295 get_regno (rtx reg)
7297 if (GET_CODE (reg) == SUBREG)
7298 reg = SUBREG_REG (reg);
7299 if (REG_P (reg))
7300 return REGNO (reg);
7301 return -1;
7304 /* Delete a move INSN with destination reg DREGNO and a previous
7305 clobber insn with the same regno. The inheritance/split code can
7306 generate moves with preceding clobber and when we delete such moves
7307 we should delete the clobber insn too to keep the correct life
7308 info. */
7309 static void
7310 delete_move_and_clobber (rtx_insn *insn, int dregno)
7312 rtx_insn *prev_insn = PREV_INSN (insn);
7314 lra_set_insn_deleted (insn);
7315 lra_assert (dregno >= 0);
7316 if (prev_insn != NULL && NONDEBUG_INSN_P (prev_insn)
7317 && GET_CODE (PATTERN (prev_insn)) == CLOBBER
7318 && dregno == get_regno (XEXP (PATTERN (prev_insn), 0)))
7319 lra_set_insn_deleted (prev_insn);
7322 /* Remove inheritance/split pseudos which are in REMOVE_PSEUDOS and
7323 return true if we did any change. The undo transformations for
7324 inheritance looks like
7325 i <- i2
7326 p <- i => p <- i2
7327 or removing
7328 p <- i, i <- p, and i <- i3
7329 where p is original pseudo from which inheritance pseudo i was
7330 created, i and i3 are removed inheritance pseudos, i2 is another
7331 not removed inheritance pseudo. All split pseudos or other
7332 occurrences of removed inheritance pseudos are changed on the
7333 corresponding original pseudos.
7335 The function also schedules insns changed and created during
7336 inheritance/split pass for processing by the subsequent constraint
7337 pass. */
7338 static bool
7339 remove_inheritance_pseudos (bitmap remove_pseudos)
7341 basic_block bb;
7342 int regno, sregno, prev_sregno, dregno;
7343 rtx restore_rtx;
7344 rtx set, prev_set;
7345 rtx_insn *prev_insn;
7346 bool change_p, done_p;
7348 change_p = ! bitmap_empty_p (remove_pseudos);
7349 /* We cannot finish the function right away if CHANGE_P is true
7350 because we need to marks insns affected by previous
7351 inheritance/split pass for processing by the subsequent
7352 constraint pass. */
7353 FOR_EACH_BB_FN (bb, cfun)
7355 fix_bb_live_info (df_get_live_in (bb), remove_pseudos);
7356 fix_bb_live_info (df_get_live_out (bb), remove_pseudos);
7357 FOR_BB_INSNS_REVERSE (bb, curr_insn)
7359 if (! INSN_P (curr_insn))
7360 continue;
7361 done_p = false;
7362 sregno = dregno = -1;
7363 if (change_p && NONDEBUG_INSN_P (curr_insn)
7364 && (set = single_set (curr_insn)) != NULL_RTX)
7366 dregno = get_regno (SET_DEST (set));
7367 sregno = get_regno (SET_SRC (set));
7370 if (sregno >= 0 && dregno >= 0)
7372 if (bitmap_bit_p (remove_pseudos, dregno)
7373 && ! REG_P (lra_reg_info[dregno].restore_rtx))
7375 /* invariant inheritance pseudo <- original pseudo */
7376 if (lra_dump_file != NULL)
7378 fprintf (lra_dump_file, " Removing invariant inheritance:\n");
7379 dump_insn_slim (lra_dump_file, curr_insn);
7380 fprintf (lra_dump_file, "\n");
7382 delete_move_and_clobber (curr_insn, dregno);
7383 done_p = true;
7385 else if (bitmap_bit_p (remove_pseudos, sregno)
7386 && ! REG_P (lra_reg_info[sregno].restore_rtx))
7388 /* reload pseudo <- invariant inheritance pseudo */
7389 start_sequence ();
7390 /* We cannot just change the source. It might be
7391 an insn different from the move. */
7392 emit_insn (lra_reg_info[sregno].restore_rtx);
7393 rtx_insn *new_insns = get_insns ();
7394 end_sequence ();
7395 lra_assert (single_set (new_insns) != NULL
7396 && SET_DEST (set) == SET_DEST (single_set (new_insns)));
7397 lra_process_new_insns (curr_insn, NULL, new_insns,
7398 "Changing reload<-invariant inheritance");
7399 delete_move_and_clobber (curr_insn, dregno);
7400 done_p = true;
7402 else if ((bitmap_bit_p (remove_pseudos, sregno)
7403 && (get_regno (lra_reg_info[sregno].restore_rtx) == dregno
7404 || (bitmap_bit_p (remove_pseudos, dregno)
7405 && get_regno (lra_reg_info[sregno].restore_rtx) >= 0
7406 && (get_regno (lra_reg_info[sregno].restore_rtx)
7407 == get_regno (lra_reg_info[dregno].restore_rtx)))))
7408 || (bitmap_bit_p (remove_pseudos, dregno)
7409 && get_regno (lra_reg_info[dregno].restore_rtx) == sregno))
7410 /* One of the following cases:
7411 original <- removed inheritance pseudo
7412 removed inherit pseudo <- another removed inherit pseudo
7413 removed inherit pseudo <- original pseudo
7415 removed_split_pseudo <- original_reg
7416 original_reg <- removed_split_pseudo */
7418 if (lra_dump_file != NULL)
7420 fprintf (lra_dump_file, " Removing %s:\n",
7421 bitmap_bit_p (&lra_split_regs, sregno)
7422 || bitmap_bit_p (&lra_split_regs, dregno)
7423 ? "split" : "inheritance");
7424 dump_insn_slim (lra_dump_file, curr_insn);
7426 delete_move_and_clobber (curr_insn, dregno);
7427 done_p = true;
7429 else if (bitmap_bit_p (remove_pseudos, sregno)
7430 && bitmap_bit_p (&lra_inheritance_pseudos, sregno))
7432 /* Search the following pattern:
7433 inherit_or_split_pseudo1 <- inherit_or_split_pseudo2
7434 original_pseudo <- inherit_or_split_pseudo1
7435 where the 2nd insn is the current insn and
7436 inherit_or_split_pseudo2 is not removed. If it is found,
7437 change the current insn onto:
7438 original_pseudo <- inherit_or_split_pseudo2. */
7439 for (prev_insn = PREV_INSN (curr_insn);
7440 prev_insn != NULL_RTX && ! NONDEBUG_INSN_P (prev_insn);
7441 prev_insn = PREV_INSN (prev_insn))
7443 if (prev_insn != NULL_RTX && BLOCK_FOR_INSN (prev_insn) == bb
7444 && (prev_set = single_set (prev_insn)) != NULL_RTX
7445 /* There should be no subregs in insn we are
7446 searching because only the original reg might
7447 be in subreg when we changed the mode of
7448 load/store for splitting. */
7449 && REG_P (SET_DEST (prev_set))
7450 && REG_P (SET_SRC (prev_set))
7451 && (int) REGNO (SET_DEST (prev_set)) == sregno
7452 && ((prev_sregno = REGNO (SET_SRC (prev_set)))
7453 >= FIRST_PSEUDO_REGISTER)
7454 && (lra_reg_info[prev_sregno].restore_rtx == NULL_RTX
7456 /* As we consider chain of inheritance or
7457 splitting described in above comment we should
7458 check that sregno and prev_sregno were
7459 inheritance/split pseudos created from the
7460 same original regno. */
7461 (get_regno (lra_reg_info[sregno].restore_rtx) >= 0
7462 && (get_regno (lra_reg_info[sregno].restore_rtx)
7463 == get_regno (lra_reg_info[prev_sregno].restore_rtx))))
7464 && ! bitmap_bit_p (remove_pseudos, prev_sregno))
7466 lra_assert (GET_MODE (SET_SRC (prev_set))
7467 == GET_MODE (regno_reg_rtx[sregno]));
7468 /* Although we have a single set, the insn can
7469 contain more one sregno register occurrence
7470 as a source. Change all occurrences. */
7471 lra_substitute_pseudo_within_insn (curr_insn, sregno,
7472 SET_SRC (prev_set),
7473 false);
7474 /* As we are finishing with processing the insn
7475 here, check the destination too as it might
7476 inheritance pseudo for another pseudo. */
7477 if (bitmap_bit_p (remove_pseudos, dregno)
7478 && bitmap_bit_p (&lra_inheritance_pseudos, dregno)
7479 && (restore_rtx
7480 = lra_reg_info[dregno].restore_rtx) != NULL_RTX)
7482 if (GET_CODE (SET_DEST (set)) == SUBREG)
7483 SUBREG_REG (SET_DEST (set)) = restore_rtx;
7484 else
7485 SET_DEST (set) = restore_rtx;
7487 lra_push_insn_and_update_insn_regno_info (curr_insn);
7488 lra_set_used_insn_alternative_by_uid
7489 (INSN_UID (curr_insn), LRA_UNKNOWN_ALT);
7490 done_p = true;
7491 if (lra_dump_file != NULL)
7493 fprintf (lra_dump_file, " Change reload insn:\n");
7494 dump_insn_slim (lra_dump_file, curr_insn);
7499 if (! done_p)
7501 struct lra_insn_reg *reg;
7502 bool restored_regs_p = false;
7503 bool kept_regs_p = false;
7505 curr_id = lra_get_insn_recog_data (curr_insn);
7506 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
7508 regno = reg->regno;
7509 restore_rtx = lra_reg_info[regno].restore_rtx;
7510 if (restore_rtx != NULL_RTX)
7512 if (change_p && bitmap_bit_p (remove_pseudos, regno))
7514 lra_substitute_pseudo_within_insn
7515 (curr_insn, regno, restore_rtx, false);
7516 restored_regs_p = true;
7518 else
7519 kept_regs_p = true;
7522 if (NONDEBUG_INSN_P (curr_insn) && kept_regs_p)
7524 /* The instruction has changed since the previous
7525 constraints pass. */
7526 lra_push_insn_and_update_insn_regno_info (curr_insn);
7527 lra_set_used_insn_alternative_by_uid
7528 (INSN_UID (curr_insn), LRA_UNKNOWN_ALT);
7530 else if (restored_regs_p)
7531 /* The instruction has been restored to the form that
7532 it had during the previous constraints pass. */
7533 lra_update_insn_regno_info (curr_insn);
7534 if (restored_regs_p && lra_dump_file != NULL)
7536 fprintf (lra_dump_file, " Insn after restoring regs:\n");
7537 dump_insn_slim (lra_dump_file, curr_insn);
7542 return change_p;
7545 /* If optional reload pseudos failed to get a hard register or was not
7546 inherited, it is better to remove optional reloads. We do this
7547 transformation after undoing inheritance to figure out necessity to
7548 remove optional reloads easier. Return true if we do any
7549 change. */
7550 static bool
7551 undo_optional_reloads (void)
7553 bool change_p, keep_p;
7554 unsigned int regno, uid;
7555 bitmap_iterator bi, bi2;
7556 rtx_insn *insn;
7557 rtx set, src, dest;
7558 auto_bitmap removed_optional_reload_pseudos (&reg_obstack);
7560 bitmap_copy (removed_optional_reload_pseudos, &lra_optional_reload_pseudos);
7561 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
7563 keep_p = false;
7564 /* Keep optional reloads from previous subpasses. */
7565 if (lra_reg_info[regno].restore_rtx == NULL_RTX
7566 /* If the original pseudo changed its allocation, just
7567 removing the optional pseudo is dangerous as the original
7568 pseudo will have longer live range. */
7569 || reg_renumber[REGNO (lra_reg_info[regno].restore_rtx)] >= 0)
7570 keep_p = true;
7571 else if (reg_renumber[regno] >= 0)
7572 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi2)
7574 insn = lra_insn_recog_data[uid]->insn;
7575 if ((set = single_set (insn)) == NULL_RTX)
7576 continue;
7577 src = SET_SRC (set);
7578 dest = SET_DEST (set);
7579 if ((! REG_P (src) && ! SUBREG_P (src))
7580 || (! REG_P (dest) && ! SUBREG_P (dest)))
7581 continue;
7582 if (get_regno (dest) == (int) regno
7583 /* Ignore insn for optional reloads itself. */
7584 && (get_regno (lra_reg_info[regno].restore_rtx)
7585 != get_regno (src))
7586 /* Check only inheritance on last inheritance pass. */
7587 && get_regno (src) >= new_regno_start
7588 /* Check that the optional reload was inherited. */
7589 && bitmap_bit_p (&lra_inheritance_pseudos, get_regno (src)))
7591 keep_p = true;
7592 break;
7595 if (keep_p)
7597 bitmap_clear_bit (removed_optional_reload_pseudos, regno);
7598 if (lra_dump_file != NULL)
7599 fprintf (lra_dump_file, "Keep optional reload reg %d\n", regno);
7602 change_p = ! bitmap_empty_p (removed_optional_reload_pseudos);
7603 auto_bitmap insn_bitmap (&reg_obstack);
7604 EXECUTE_IF_SET_IN_BITMAP (removed_optional_reload_pseudos, 0, regno, bi)
7606 if (lra_dump_file != NULL)
7607 fprintf (lra_dump_file, "Remove optional reload reg %d\n", regno);
7608 bitmap_copy (insn_bitmap, &lra_reg_info[regno].insn_bitmap);
7609 EXECUTE_IF_SET_IN_BITMAP (insn_bitmap, 0, uid, bi2)
7611 /* We may have already removed a clobber. */
7612 if (!lra_insn_recog_data[uid])
7613 continue;
7614 insn = lra_insn_recog_data[uid]->insn;
7615 if ((set = single_set (insn)) != NULL_RTX)
7617 src = SET_SRC (set);
7618 dest = SET_DEST (set);
7619 if ((REG_P (src) || SUBREG_P (src))
7620 && (REG_P (dest) || SUBREG_P (dest))
7621 && ((get_regno (src) == (int) regno
7622 && (get_regno (lra_reg_info[regno].restore_rtx)
7623 == get_regno (dest)))
7624 || (get_regno (dest) == (int) regno
7625 && (get_regno (lra_reg_info[regno].restore_rtx)
7626 == get_regno (src)))))
7628 if (lra_dump_file != NULL)
7630 fprintf (lra_dump_file, " Deleting move %u\n",
7631 INSN_UID (insn));
7632 dump_insn_slim (lra_dump_file, insn);
7634 delete_move_and_clobber (insn, get_regno (dest));
7635 continue;
7637 /* We should not worry about generation memory-memory
7638 moves here as if the corresponding inheritance did
7639 not work (inheritance pseudo did not get a hard reg),
7640 we remove the inheritance pseudo and the optional
7641 reload. */
7643 if (GET_CODE (PATTERN (insn)) == CLOBBER
7644 && REG_P (SET_DEST (insn))
7645 && get_regno (SET_DEST (insn)) == (int) regno)
7646 /* Refuse to remap clobbers to preexisting pseudos. */
7647 gcc_unreachable ();
7648 lra_substitute_pseudo_within_insn
7649 (insn, regno, lra_reg_info[regno].restore_rtx, false);
7650 lra_update_insn_regno_info (insn);
7651 if (lra_dump_file != NULL)
7653 fprintf (lra_dump_file,
7654 " Restoring original insn:\n");
7655 dump_insn_slim (lra_dump_file, insn);
7659 /* Clear restore_regnos. */
7660 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
7661 lra_reg_info[regno].restore_rtx = NULL_RTX;
7662 return change_p;
7665 /* Entry function for undoing inheritance/split transformation. Return true
7666 if we did any RTL change in this pass. */
7667 bool
7668 lra_undo_inheritance (void)
7670 unsigned int regno;
7671 int hard_regno;
7672 int n_all_inherit, n_inherit, n_all_split, n_split;
7673 rtx restore_rtx;
7674 bitmap_iterator bi;
7675 bool change_p;
7677 lra_undo_inheritance_iter++;
7678 if (lra_undo_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
7679 return false;
7680 if (lra_dump_file != NULL)
7681 fprintf (lra_dump_file,
7682 "\n********** Undoing inheritance #%d: **********\n\n",
7683 lra_undo_inheritance_iter);
7684 auto_bitmap remove_pseudos (&reg_obstack);
7685 n_inherit = n_all_inherit = 0;
7686 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
7687 if (lra_reg_info[regno].restore_rtx != NULL_RTX)
7689 n_all_inherit++;
7690 if (reg_renumber[regno] < 0
7691 /* If the original pseudo changed its allocation, just
7692 removing inheritance is dangerous as for changing
7693 allocation we used shorter live-ranges. */
7694 && (! REG_P (lra_reg_info[regno].restore_rtx)
7695 || reg_renumber[REGNO (lra_reg_info[regno].restore_rtx)] < 0))
7696 bitmap_set_bit (remove_pseudos, regno);
7697 else
7698 n_inherit++;
7700 if (lra_dump_file != NULL && n_all_inherit != 0)
7701 fprintf (lra_dump_file, "Inherit %d out of %d (%.2f%%)\n",
7702 n_inherit, n_all_inherit,
7703 (double) n_inherit / n_all_inherit * 100);
7704 n_split = n_all_split = 0;
7705 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
7706 if ((restore_rtx = lra_reg_info[regno].restore_rtx) != NULL_RTX)
7708 int restore_regno = REGNO (restore_rtx);
7710 n_all_split++;
7711 hard_regno = (restore_regno >= FIRST_PSEUDO_REGISTER
7712 ? reg_renumber[restore_regno] : restore_regno);
7713 if (hard_regno < 0 || reg_renumber[regno] == hard_regno)
7714 bitmap_set_bit (remove_pseudos, regno);
7715 else
7717 n_split++;
7718 if (lra_dump_file != NULL)
7719 fprintf (lra_dump_file, " Keep split r%d (orig=r%d)\n",
7720 regno, restore_regno);
7723 if (lra_dump_file != NULL && n_all_split != 0)
7724 fprintf (lra_dump_file, "Split %d out of %d (%.2f%%)\n",
7725 n_split, n_all_split,
7726 (double) n_split / n_all_split * 100);
7727 change_p = remove_inheritance_pseudos (remove_pseudos);
7728 /* Clear restore_regnos. */
7729 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
7730 lra_reg_info[regno].restore_rtx = NULL_RTX;
7731 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
7732 lra_reg_info[regno].restore_rtx = NULL_RTX;
7733 change_p = undo_optional_reloads () || change_p;
7734 return change_p;