1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
80 #include "coretypes.h"
84 #include "stor-layout.h"
88 #include "hard-reg-set.h"
89 #include "basic-block.h"
90 #include "insn-config.h"
92 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
94 #include "insn-attr.h"
96 #include "diagnostic-core.h"
99 #include "insn-codes.h"
100 #include "rtlhooks-def.h"
102 #include "tree-pass.h"
104 #include "valtrack.h"
108 /* Number of attempts to combine instructions in this function. */
110 static int combine_attempts
;
112 /* Number of attempts that got as far as substitution in this function. */
114 static int combine_merges
;
116 /* Number of instructions combined with added SETs in this function. */
118 static int combine_extras
;
120 /* Number of instructions combined in this function. */
122 static int combine_successes
;
124 /* Totals over entire compilation. */
126 static int total_attempts
, total_merges
, total_extras
, total_successes
;
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139 static rtx i2mod_old_rhs
;
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143 static rtx i2mod_new_rhs
;
145 typedef struct reg_stat_struct
{
146 /* Record last point of death of (hard or pseudo) register n. */
149 /* Record last point of modification of (hard or pseudo) register n. */
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
158 We use an approach similar to that used by cse, but change it in the
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
165 Therefore, we maintain the following fields:
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
181 (The next two parameters are out of date).
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
195 /* Record last value assigned to (hard or pseudo) register n. */
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
202 int last_set_table_tick
;
204 /* Record the value of label_tick when the value for register n is placed in
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
214 unsigned HOST_WIDE_INT last_set_nonzero_bits
;
215 char last_set_sign_bit_copies
;
216 ENUM_BITFIELD(machine_mode
) last_set_mode
: 8;
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
222 char last_set_invalid
;
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
234 If an entry is zero, it means that we don't know anything special. */
236 unsigned char sign_bit_copies
;
238 unsigned HOST_WIDE_INT nonzero_bits
;
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
244 int truncation_label
;
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
251 ENUM_BITFIELD(machine_mode
) truncated_to_mode
: 8;
255 static vec
<reg_stat_type
> reg_stat
;
257 /* Record the luid of the last insn that invalidated memory
258 (anything that writes memory, and subroutine calls, but not pushes). */
260 static int mem_last_set
;
262 /* Record the luid of the last CALL_INSN
263 so we can tell whether a potential combination crosses any calls. */
265 static int last_call_luid
;
267 /* When `subst' is called, this is the insn that is being modified
268 (by combining in a previous insn). The PATTERN of this insn
269 is still the old pattern partially modified and it should not be
270 looked at, but this may be used to examine the successors of the insn
271 to judge whether a simplification is valid. */
273 static rtx subst_insn
;
275 /* This is the lowest LUID that `subst' is currently dealing with.
276 get_last_value will not return a value if the register was set at or
277 after this LUID. If not for this mechanism, we could get confused if
278 I2 or I1 in try_combine were an insn that used the old value of a register
279 to obtain a new value. In that case, we might erroneously get the
280 new value of the register when we wanted the old one. */
282 static int subst_low_luid
;
284 /* This contains any hard registers that are used in newpat; reg_dead_at_p
285 must consider all these registers to be always live. */
287 static HARD_REG_SET newpat_used_regs
;
289 /* This is an insn to which a LOG_LINKS entry has been added. If this
290 insn is the earlier than I2 or I3, combine should rescan starting at
293 static rtx added_links_insn
;
295 /* Basic block in which we are performing combines. */
296 static basic_block this_basic_block
;
297 static bool optimize_this_for_speed_p
;
300 /* Length of the currently allocated uid_insn_cost array. */
302 static int max_uid_known
;
304 /* The following array records the insn_rtx_cost for every insn
305 in the instruction stream. */
307 static int *uid_insn_cost
;
309 /* The following array records the LOG_LINKS for every insn in the
310 instruction stream as struct insn_link pointers. */
314 struct insn_link
*next
;
317 static struct insn_link
**uid_log_links
;
319 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
320 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
322 #define FOR_EACH_LOG_LINK(L, INSN) \
323 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
325 /* Links for LOG_LINKS are allocated from this obstack. */
327 static struct obstack insn_link_obstack
;
329 /* Allocate a link. */
331 static inline struct insn_link
*
332 alloc_insn_link (rtx insn
, struct insn_link
*next
)
335 = (struct insn_link
*) obstack_alloc (&insn_link_obstack
,
336 sizeof (struct insn_link
));
342 /* Incremented for each basic block. */
344 static int label_tick
;
346 /* Reset to label_tick for each extended basic block in scanning order. */
348 static int label_tick_ebb_start
;
350 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
351 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
353 static enum machine_mode nonzero_bits_mode
;
355 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
356 be safely used. It is zero while computing them and after combine has
357 completed. This former test prevents propagating values based on
358 previously set values, which can be incorrect if a variable is modified
361 static int nonzero_sign_valid
;
364 /* Record one modification to rtl structure
365 to be undone by storing old_contents into *where. */
367 enum undo_kind
{ UNDO_RTX
, UNDO_INT
, UNDO_MODE
, UNDO_LINKS
};
373 union { rtx r
; int i
; enum machine_mode m
; struct insn_link
*l
; } old_contents
;
374 union { rtx
*r
; int *i
; struct insn_link
**l
; } where
;
377 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
378 num_undo says how many are currently recorded.
380 other_insn is nonzero if we have modified some other insn in the process
381 of working on subst_insn. It must be verified too. */
390 static struct undobuf undobuf
;
392 /* Number of times the pseudo being substituted for
393 was found and replaced. */
395 static int n_occurrences
;
397 static rtx
reg_nonzero_bits_for_combine (const_rtx
, enum machine_mode
, const_rtx
,
399 unsigned HOST_WIDE_INT
,
400 unsigned HOST_WIDE_INT
*);
401 static rtx
reg_num_sign_bit_copies_for_combine (const_rtx
, enum machine_mode
, const_rtx
,
403 unsigned int, unsigned int *);
404 static void do_SUBST (rtx
*, rtx
);
405 static void do_SUBST_INT (int *, int);
406 static void init_reg_last (void);
407 static void setup_incoming_promotions (rtx
);
408 static void set_nonzero_bits_and_sign_copies (rtx
, const_rtx
, void *);
409 static int cant_combine_insn_p (rtx
);
410 static int can_combine_p (rtx
, rtx
, rtx
, rtx
, rtx
, rtx
, rtx
*, rtx
*);
411 static int combinable_i3pat (rtx
, rtx
*, rtx
, rtx
, rtx
, int, int, rtx
*);
412 static int contains_muldiv (rtx
);
413 static rtx
try_combine (rtx
, rtx
, rtx
, rtx
, int *, rtx
);
414 static void undo_all (void);
415 static void undo_commit (void);
416 static rtx
*find_split_point (rtx
*, rtx
, bool);
417 static rtx
subst (rtx
, rtx
, rtx
, int, int, int);
418 static rtx
combine_simplify_rtx (rtx
, enum machine_mode
, int, int);
419 static rtx
simplify_if_then_else (rtx
);
420 static rtx
simplify_set (rtx
);
421 static rtx
simplify_logical (rtx
);
422 static rtx
expand_compound_operation (rtx
);
423 static const_rtx
expand_field_assignment (const_rtx
);
424 static rtx
make_extraction (enum machine_mode
, rtx
, HOST_WIDE_INT
,
425 rtx
, unsigned HOST_WIDE_INT
, int, int, int);
426 static rtx
extract_left_shift (rtx
, int);
427 static int get_pos_from_mask (unsigned HOST_WIDE_INT
,
428 unsigned HOST_WIDE_INT
*);
429 static rtx
canon_reg_for_combine (rtx
, rtx
);
430 static rtx
force_to_mode (rtx
, enum machine_mode
,
431 unsigned HOST_WIDE_INT
, int);
432 static rtx
if_then_else_cond (rtx
, rtx
*, rtx
*);
433 static rtx
known_cond (rtx
, enum rtx_code
, rtx
, rtx
);
434 static int rtx_equal_for_field_assignment_p (rtx
, rtx
);
435 static rtx
make_field_assignment (rtx
);
436 static rtx
apply_distributive_law (rtx
);
437 static rtx
distribute_and_simplify_rtx (rtx
, int);
438 static rtx
simplify_and_const_int_1 (enum machine_mode
, rtx
,
439 unsigned HOST_WIDE_INT
);
440 static rtx
simplify_and_const_int (rtx
, enum machine_mode
, rtx
,
441 unsigned HOST_WIDE_INT
);
442 static int merge_outer_ops (enum rtx_code
*, HOST_WIDE_INT
*, enum rtx_code
,
443 HOST_WIDE_INT
, enum machine_mode
, int *);
444 static rtx
simplify_shift_const_1 (enum rtx_code
, enum machine_mode
, rtx
, int);
445 static rtx
simplify_shift_const (rtx
, enum rtx_code
, enum machine_mode
, rtx
,
447 static int recog_for_combine (rtx
*, rtx
, rtx
*);
448 static rtx
gen_lowpart_for_combine (enum machine_mode
, rtx
);
449 static enum rtx_code
simplify_compare_const (enum rtx_code
, enum machine_mode
,
451 static enum rtx_code
simplify_comparison (enum rtx_code
, rtx
*, rtx
*);
452 static void update_table_tick (rtx
);
453 static void record_value_for_reg (rtx
, rtx
, rtx
);
454 static void check_promoted_subreg (rtx
, rtx
);
455 static void record_dead_and_set_regs_1 (rtx
, const_rtx
, void *);
456 static void record_dead_and_set_regs (rtx
);
457 static int get_last_value_validate (rtx
*, rtx
, int, int);
458 static rtx
get_last_value (const_rtx
);
459 static int use_crosses_set_p (const_rtx
, int);
460 static void reg_dead_at_p_1 (rtx
, const_rtx
, void *);
461 static int reg_dead_at_p (rtx
, rtx
);
462 static void move_deaths (rtx
, rtx
, int, rtx
, rtx
*);
463 static int reg_bitfield_target_p (rtx
, rtx
);
464 static void distribute_notes (rtx
, rtx
, rtx
, rtx
, rtx
, rtx
, rtx
);
465 static void distribute_links (struct insn_link
*);
466 static void mark_used_regs_combine (rtx
);
467 static void record_promoted_value (rtx
, rtx
);
468 static int unmentioned_reg_p_1 (rtx
*, void *);
469 static bool unmentioned_reg_p (rtx
, rtx
);
470 static int record_truncated_value (rtx
*, void *);
471 static void record_truncated_values (rtx
*, void *);
472 static bool reg_truncated_to_mode (enum machine_mode
, const_rtx
);
473 static rtx
gen_lowpart_or_truncate (enum machine_mode
, rtx
);
476 /* It is not safe to use ordinary gen_lowpart in combine.
477 See comments in gen_lowpart_for_combine. */
478 #undef RTL_HOOKS_GEN_LOWPART
479 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
481 /* Our implementation of gen_lowpart never emits a new pseudo. */
482 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
483 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
485 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
486 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
488 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
489 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
491 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
492 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
494 static const struct rtl_hooks combine_rtl_hooks
= RTL_HOOKS_INITIALIZER
;
497 /* Convenience wrapper for the canonicalize_comparison target hook.
498 Target hooks cannot use enum rtx_code. */
500 target_canonicalize_comparison (enum rtx_code
*code
, rtx
*op0
, rtx
*op1
,
501 bool op0_preserve_value
)
503 int code_int
= (int)*code
;
504 targetm
.canonicalize_comparison (&code_int
, op0
, op1
, op0_preserve_value
);
505 *code
= (enum rtx_code
)code_int
;
508 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
509 PATTERN can not be split. Otherwise, it returns an insn sequence.
510 This is a wrapper around split_insns which ensures that the
511 reg_stat vector is made larger if the splitter creates a new
515 combine_split_insns (rtx pattern
, rtx insn
)
520 ret
= split_insns (pattern
, insn
);
521 nregs
= max_reg_num ();
522 if (nregs
> reg_stat
.length ())
523 reg_stat
.safe_grow_cleared (nregs
);
527 /* This is used by find_single_use to locate an rtx in LOC that
528 contains exactly one use of DEST, which is typically either a REG
529 or CC0. It returns a pointer to the innermost rtx expression
530 containing DEST. Appearances of DEST that are being used to
531 totally replace it are not counted. */
534 find_single_use_1 (rtx dest
, rtx
*loc
)
537 enum rtx_code code
= GET_CODE (x
);
553 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
554 of a REG that occupies all of the REG, the insn uses DEST if
555 it is mentioned in the destination or the source. Otherwise, we
556 need just check the source. */
557 if (GET_CODE (SET_DEST (x
)) != CC0
558 && GET_CODE (SET_DEST (x
)) != PC
559 && !REG_P (SET_DEST (x
))
560 && ! (GET_CODE (SET_DEST (x
)) == SUBREG
561 && REG_P (SUBREG_REG (SET_DEST (x
)))
562 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
563 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
564 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
565 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))))
568 return find_single_use_1 (dest
, &SET_SRC (x
));
572 return find_single_use_1 (dest
, &XEXP (x
, 0));
578 /* If it wasn't one of the common cases above, check each expression and
579 vector of this code. Look for a unique usage of DEST. */
581 fmt
= GET_RTX_FORMAT (code
);
582 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
586 if (dest
== XEXP (x
, i
)
587 || (REG_P (dest
) && REG_P (XEXP (x
, i
))
588 && REGNO (dest
) == REGNO (XEXP (x
, i
))))
591 this_result
= find_single_use_1 (dest
, &XEXP (x
, i
));
594 result
= this_result
;
595 else if (this_result
)
596 /* Duplicate usage. */
599 else if (fmt
[i
] == 'E')
603 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
605 if (XVECEXP (x
, i
, j
) == dest
607 && REG_P (XVECEXP (x
, i
, j
))
608 && REGNO (XVECEXP (x
, i
, j
)) == REGNO (dest
)))
611 this_result
= find_single_use_1 (dest
, &XVECEXP (x
, i
, j
));
614 result
= this_result
;
615 else if (this_result
)
625 /* See if DEST, produced in INSN, is used only a single time in the
626 sequel. If so, return a pointer to the innermost rtx expression in which
629 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
631 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
632 care about REG_DEAD notes or LOG_LINKS.
634 Otherwise, we find the single use by finding an insn that has a
635 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
636 only referenced once in that insn, we know that it must be the first
637 and last insn referencing DEST. */
640 find_single_use (rtx dest
, rtx insn
, rtx
*ploc
)
645 struct insn_link
*link
;
650 next
= NEXT_INSN (insn
);
652 || (!NONJUMP_INSN_P (next
) && !JUMP_P (next
)))
655 result
= find_single_use_1 (dest
, &PATTERN (next
));
665 bb
= BLOCK_FOR_INSN (insn
);
666 for (next
= NEXT_INSN (insn
);
667 next
&& BLOCK_FOR_INSN (next
) == bb
;
668 next
= NEXT_INSN (next
))
669 if (INSN_P (next
) && dead_or_set_p (next
, dest
))
671 FOR_EACH_LOG_LINK (link
, next
)
672 if (link
->insn
== insn
)
677 result
= find_single_use_1 (dest
, &PATTERN (next
));
687 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
688 insn. The substitution can be undone by undo_all. If INTO is already
689 set to NEWVAL, do not record this change. Because computing NEWVAL might
690 also call SUBST, we have to compute it before we put anything into
694 do_SUBST (rtx
*into
, rtx newval
)
699 if (oldval
== newval
)
702 /* We'd like to catch as many invalid transformations here as
703 possible. Unfortunately, there are way too many mode changes
704 that are perfectly valid, so we'd waste too much effort for
705 little gain doing the checks here. Focus on catching invalid
706 transformations involving integer constants. */
707 if (GET_MODE_CLASS (GET_MODE (oldval
)) == MODE_INT
708 && CONST_INT_P (newval
))
710 /* Sanity check that we're replacing oldval with a CONST_INT
711 that is a valid sign-extension for the original mode. */
712 gcc_assert (INTVAL (newval
)
713 == trunc_int_for_mode (INTVAL (newval
), GET_MODE (oldval
)));
715 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
716 CONST_INT is not valid, because after the replacement, the
717 original mode would be gone. Unfortunately, we can't tell
718 when do_SUBST is called to replace the operand thereof, so we
719 perform this test on oldval instead, checking whether an
720 invalid replacement took place before we got here. */
721 gcc_assert (!(GET_CODE (oldval
) == SUBREG
722 && CONST_INT_P (SUBREG_REG (oldval
))));
723 gcc_assert (!(GET_CODE (oldval
) == ZERO_EXTEND
724 && CONST_INT_P (XEXP (oldval
, 0))));
728 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
730 buf
= XNEW (struct undo
);
732 buf
->kind
= UNDO_RTX
;
734 buf
->old_contents
.r
= oldval
;
737 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
740 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
742 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
743 for the value of a HOST_WIDE_INT value (including CONST_INT) is
747 do_SUBST_INT (int *into
, int newval
)
752 if (oldval
== newval
)
756 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
758 buf
= XNEW (struct undo
);
760 buf
->kind
= UNDO_INT
;
762 buf
->old_contents
.i
= oldval
;
765 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
768 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
770 /* Similar to SUBST, but just substitute the mode. This is used when
771 changing the mode of a pseudo-register, so that any other
772 references to the entry in the regno_reg_rtx array will change as
776 do_SUBST_MODE (rtx
*into
, enum machine_mode newval
)
779 enum machine_mode oldval
= GET_MODE (*into
);
781 if (oldval
== newval
)
785 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
787 buf
= XNEW (struct undo
);
789 buf
->kind
= UNDO_MODE
;
791 buf
->old_contents
.m
= oldval
;
792 adjust_reg_mode (*into
, newval
);
794 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
797 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
800 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
803 do_SUBST_LINK (struct insn_link
**into
, struct insn_link
*newval
)
806 struct insn_link
* oldval
= *into
;
808 if (oldval
== newval
)
812 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
814 buf
= XNEW (struct undo
);
816 buf
->kind
= UNDO_LINKS
;
818 buf
->old_contents
.l
= oldval
;
821 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
824 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
827 /* Subroutine of try_combine. Determine whether the replacement patterns
828 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
829 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
830 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
831 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
832 of all the instructions can be estimated and the replacements are more
833 expensive than the original sequence. */
836 combine_validate_cost (rtx i0
, rtx i1
, rtx i2
, rtx i3
, rtx newpat
,
837 rtx newi2pat
, rtx newotherpat
)
839 int i0_cost
, i1_cost
, i2_cost
, i3_cost
;
840 int new_i2_cost
, new_i3_cost
;
841 int old_cost
, new_cost
;
843 /* Lookup the original insn_rtx_costs. */
844 i2_cost
= INSN_COST (i2
);
845 i3_cost
= INSN_COST (i3
);
849 i1_cost
= INSN_COST (i1
);
852 i0_cost
= INSN_COST (i0
);
853 old_cost
= (i0_cost
> 0 && i1_cost
> 0 && i2_cost
> 0 && i3_cost
> 0
854 ? i0_cost
+ i1_cost
+ i2_cost
+ i3_cost
: 0);
858 old_cost
= (i1_cost
> 0 && i2_cost
> 0 && i3_cost
> 0
859 ? i1_cost
+ i2_cost
+ i3_cost
: 0);
865 old_cost
= (i2_cost
> 0 && i3_cost
> 0) ? i2_cost
+ i3_cost
: 0;
866 i1_cost
= i0_cost
= 0;
869 /* Calculate the replacement insn_rtx_costs. */
870 new_i3_cost
= insn_rtx_cost (newpat
, optimize_this_for_speed_p
);
873 new_i2_cost
= insn_rtx_cost (newi2pat
, optimize_this_for_speed_p
);
874 new_cost
= (new_i2_cost
> 0 && new_i3_cost
> 0)
875 ? new_i2_cost
+ new_i3_cost
: 0;
879 new_cost
= new_i3_cost
;
883 if (undobuf
.other_insn
)
885 int old_other_cost
, new_other_cost
;
887 old_other_cost
= INSN_COST (undobuf
.other_insn
);
888 new_other_cost
= insn_rtx_cost (newotherpat
, optimize_this_for_speed_p
);
889 if (old_other_cost
> 0 && new_other_cost
> 0)
891 old_cost
+= old_other_cost
;
892 new_cost
+= new_other_cost
;
898 /* Disallow this combination if both new_cost and old_cost are greater than
899 zero, and new_cost is greater than old cost. */
900 if (old_cost
> 0 && new_cost
> old_cost
)
907 "rejecting combination of insns %d, %d, %d and %d\n",
908 INSN_UID (i0
), INSN_UID (i1
), INSN_UID (i2
),
910 fprintf (dump_file
, "original costs %d + %d + %d + %d = %d\n",
911 i0_cost
, i1_cost
, i2_cost
, i3_cost
, old_cost
);
916 "rejecting combination of insns %d, %d and %d\n",
917 INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
918 fprintf (dump_file
, "original costs %d + %d + %d = %d\n",
919 i1_cost
, i2_cost
, i3_cost
, old_cost
);
924 "rejecting combination of insns %d and %d\n",
925 INSN_UID (i2
), INSN_UID (i3
));
926 fprintf (dump_file
, "original costs %d + %d = %d\n",
927 i2_cost
, i3_cost
, old_cost
);
932 fprintf (dump_file
, "replacement costs %d + %d = %d\n",
933 new_i2_cost
, new_i3_cost
, new_cost
);
936 fprintf (dump_file
, "replacement cost %d\n", new_cost
);
942 /* Update the uid_insn_cost array with the replacement costs. */
943 INSN_COST (i2
) = new_i2_cost
;
944 INSN_COST (i3
) = new_i3_cost
;
956 /* Delete any insns that copy a register to itself. */
959 delete_noop_moves (void)
964 FOR_EACH_BB_FN (bb
, cfun
)
966 for (insn
= BB_HEAD (bb
); insn
!= NEXT_INSN (BB_END (bb
)); insn
= next
)
968 next
= NEXT_INSN (insn
);
969 if (INSN_P (insn
) && noop_move_p (insn
))
972 fprintf (dump_file
, "deleting noop move %d\n", INSN_UID (insn
));
974 delete_insn_and_edges (insn
);
981 /* Fill in log links field for all insns. */
984 create_log_links (void)
990 next_use
= XCNEWVEC (rtx
, max_reg_num ());
992 /* Pass through each block from the end, recording the uses of each
993 register and establishing log links when def is encountered.
994 Note that we do not clear next_use array in order to save time,
995 so we have to test whether the use is in the same basic block as def.
997 There are a few cases below when we do not consider the definition or
998 usage -- these are taken from original flow.c did. Don't ask me why it is
999 done this way; I don't know and if it works, I don't want to know. */
1001 FOR_EACH_BB_FN (bb
, cfun
)
1003 FOR_BB_INSNS_REVERSE (bb
, insn
)
1005 if (!NONDEBUG_INSN_P (insn
))
1008 /* Log links are created only once. */
1009 gcc_assert (!LOG_LINKS (insn
));
1011 FOR_EACH_INSN_DEF (def
, insn
)
1013 int regno
= DF_REF_REGNO (def
);
1016 if (!next_use
[regno
])
1019 /* Do not consider if it is pre/post modification in MEM. */
1020 if (DF_REF_FLAGS (def
) & DF_REF_PRE_POST_MODIFY
)
1023 /* Do not make the log link for frame pointer. */
1024 if ((regno
== FRAME_POINTER_REGNUM
1025 && (! reload_completed
|| frame_pointer_needed
))
1026 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1027 || (regno
== HARD_FRAME_POINTER_REGNUM
1028 && (! reload_completed
|| frame_pointer_needed
))
1030 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1031 || (regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
1036 use_insn
= next_use
[regno
];
1037 if (BLOCK_FOR_INSN (use_insn
) == bb
)
1041 We don't build a LOG_LINK for hard registers contained
1042 in ASM_OPERANDs. If these registers get replaced,
1043 we might wind up changing the semantics of the insn,
1044 even if reload can make what appear to be valid
1045 assignments later. */
1046 if (regno
>= FIRST_PSEUDO_REGISTER
1047 || asm_noperands (PATTERN (use_insn
)) < 0)
1049 /* Don't add duplicate links between instructions. */
1050 struct insn_link
*links
;
1051 FOR_EACH_LOG_LINK (links
, use_insn
)
1052 if (insn
== links
->insn
)
1056 LOG_LINKS (use_insn
)
1057 = alloc_insn_link (insn
, LOG_LINKS (use_insn
));
1060 next_use
[regno
] = NULL_RTX
;
1063 FOR_EACH_INSN_USE (use
, insn
)
1065 int regno
= DF_REF_REGNO (use
);
1067 /* Do not consider the usage of the stack pointer
1068 by function call. */
1069 if (DF_REF_FLAGS (use
) & DF_REF_CALL_STACK_USAGE
)
1072 next_use
[regno
] = insn
;
1080 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1081 true if we found a LOG_LINK that proves that A feeds B. This only works
1082 if there are no instructions between A and B which could have a link
1083 depending on A, since in that case we would not record a link for B.
1084 We also check the implicit dependency created by a cc0 setter/user
1088 insn_a_feeds_b (rtx a
, rtx b
)
1090 struct insn_link
*links
;
1091 FOR_EACH_LOG_LINK (links
, b
)
1092 if (links
->insn
== a
)
1101 /* Main entry point for combiner. F is the first insn of the function.
1102 NREGS is the first unused pseudo-reg number.
1104 Return nonzero if the combiner has turned an indirect jump
1105 instruction into a direct jump. */
1107 combine_instructions (rtx f
, unsigned int nregs
)
1113 struct insn_link
*links
, *nextlinks
;
1115 basic_block last_bb
;
1117 int new_direct_jump_p
= 0;
1119 for (first
= f
; first
&& !INSN_P (first
); )
1120 first
= NEXT_INSN (first
);
1124 combine_attempts
= 0;
1127 combine_successes
= 0;
1129 rtl_hooks
= combine_rtl_hooks
;
1131 reg_stat
.safe_grow_cleared (nregs
);
1133 init_recog_no_volatile ();
1135 /* Allocate array for insn info. */
1136 max_uid_known
= get_max_uid ();
1137 uid_log_links
= XCNEWVEC (struct insn_link
*, max_uid_known
+ 1);
1138 uid_insn_cost
= XCNEWVEC (int, max_uid_known
+ 1);
1139 gcc_obstack_init (&insn_link_obstack
);
1141 nonzero_bits_mode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1143 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1144 problems when, for example, we have j <<= 1 in a loop. */
1146 nonzero_sign_valid
= 0;
1147 label_tick
= label_tick_ebb_start
= 1;
1149 /* Scan all SETs and see if we can deduce anything about what
1150 bits are known to be zero for some registers and how many copies
1151 of the sign bit are known to exist for those registers.
1153 Also set any known values so that we can use it while searching
1154 for what bits are known to be set. */
1156 setup_incoming_promotions (first
);
1157 /* Allow the entry block and the first block to fall into the same EBB.
1158 Conceptually the incoming promotions are assigned to the entry block. */
1159 last_bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
1161 create_log_links ();
1162 FOR_EACH_BB_FN (this_basic_block
, cfun
)
1164 optimize_this_for_speed_p
= optimize_bb_for_speed_p (this_basic_block
);
1169 if (!single_pred_p (this_basic_block
)
1170 || single_pred (this_basic_block
) != last_bb
)
1171 label_tick_ebb_start
= label_tick
;
1172 last_bb
= this_basic_block
;
1174 FOR_BB_INSNS (this_basic_block
, insn
)
1175 if (INSN_P (insn
) && BLOCK_FOR_INSN (insn
))
1181 subst_low_luid
= DF_INSN_LUID (insn
);
1184 note_stores (PATTERN (insn
), set_nonzero_bits_and_sign_copies
,
1186 record_dead_and_set_regs (insn
);
1189 for (links
= REG_NOTES (insn
); links
; links
= XEXP (links
, 1))
1190 if (REG_NOTE_KIND (links
) == REG_INC
)
1191 set_nonzero_bits_and_sign_copies (XEXP (links
, 0), NULL_RTX
,
1195 /* Record the current insn_rtx_cost of this instruction. */
1196 if (NONJUMP_INSN_P (insn
))
1197 INSN_COST (insn
) = insn_rtx_cost (PATTERN (insn
),
1198 optimize_this_for_speed_p
);
1200 fprintf (dump_file
, "insn_cost %d: %d\n",
1201 INSN_UID (insn
), INSN_COST (insn
));
1205 nonzero_sign_valid
= 1;
1207 /* Now scan all the insns in forward order. */
1208 label_tick
= label_tick_ebb_start
= 1;
1210 setup_incoming_promotions (first
);
1211 last_bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
1213 FOR_EACH_BB_FN (this_basic_block
, cfun
)
1215 rtx last_combined_insn
= NULL_RTX
;
1216 optimize_this_for_speed_p
= optimize_bb_for_speed_p (this_basic_block
);
1221 if (!single_pred_p (this_basic_block
)
1222 || single_pred (this_basic_block
) != last_bb
)
1223 label_tick_ebb_start
= label_tick
;
1224 last_bb
= this_basic_block
;
1226 rtl_profile_for_bb (this_basic_block
);
1227 for (insn
= BB_HEAD (this_basic_block
);
1228 insn
!= NEXT_INSN (BB_END (this_basic_block
));
1229 insn
= next
? next
: NEXT_INSN (insn
))
1232 if (NONDEBUG_INSN_P (insn
))
1234 while (last_combined_insn
1235 && INSN_DELETED_P (last_combined_insn
))
1236 last_combined_insn
= PREV_INSN (last_combined_insn
);
1237 if (last_combined_insn
== NULL_RTX
1238 || BARRIER_P (last_combined_insn
)
1239 || BLOCK_FOR_INSN (last_combined_insn
) != this_basic_block
1240 || DF_INSN_LUID (last_combined_insn
) <= DF_INSN_LUID (insn
))
1241 last_combined_insn
= insn
;
1243 /* See if we know about function return values before this
1244 insn based upon SUBREG flags. */
1245 check_promoted_subreg (insn
, PATTERN (insn
));
1247 /* See if we can find hardregs and subreg of pseudos in
1248 narrower modes. This could help turning TRUNCATEs
1250 note_uses (&PATTERN (insn
), record_truncated_values
, NULL
);
1252 /* Try this insn with each insn it links back to. */
1254 FOR_EACH_LOG_LINK (links
, insn
)
1255 if ((next
= try_combine (insn
, links
->insn
, NULL_RTX
,
1256 NULL_RTX
, &new_direct_jump_p
,
1257 last_combined_insn
)) != 0)
1260 /* Try each sequence of three linked insns ending with this one. */
1262 FOR_EACH_LOG_LINK (links
, insn
)
1264 rtx link
= links
->insn
;
1266 /* If the linked insn has been replaced by a note, then there
1267 is no point in pursuing this chain any further. */
1271 FOR_EACH_LOG_LINK (nextlinks
, link
)
1272 if ((next
= try_combine (insn
, link
, nextlinks
->insn
,
1273 NULL_RTX
, &new_direct_jump_p
,
1274 last_combined_insn
)) != 0)
1279 /* Try to combine a jump insn that uses CC0
1280 with a preceding insn that sets CC0, and maybe with its
1281 logical predecessor as well.
1282 This is how we make decrement-and-branch insns.
1283 We need this special code because data flow connections
1284 via CC0 do not get entered in LOG_LINKS. */
1287 && (prev
= prev_nonnote_insn (insn
)) != 0
1288 && NONJUMP_INSN_P (prev
)
1289 && sets_cc0_p (PATTERN (prev
)))
1291 if ((next
= try_combine (insn
, prev
, NULL_RTX
, NULL_RTX
,
1293 last_combined_insn
)) != 0)
1296 FOR_EACH_LOG_LINK (nextlinks
, prev
)
1297 if ((next
= try_combine (insn
, prev
, nextlinks
->insn
,
1298 NULL_RTX
, &new_direct_jump_p
,
1299 last_combined_insn
)) != 0)
1303 /* Do the same for an insn that explicitly references CC0. */
1304 if (NONJUMP_INSN_P (insn
)
1305 && (prev
= prev_nonnote_insn (insn
)) != 0
1306 && NONJUMP_INSN_P (prev
)
1307 && sets_cc0_p (PATTERN (prev
))
1308 && GET_CODE (PATTERN (insn
)) == SET
1309 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (insn
))))
1311 if ((next
= try_combine (insn
, prev
, NULL_RTX
, NULL_RTX
,
1313 last_combined_insn
)) != 0)
1316 FOR_EACH_LOG_LINK (nextlinks
, prev
)
1317 if ((next
= try_combine (insn
, prev
, nextlinks
->insn
,
1318 NULL_RTX
, &new_direct_jump_p
,
1319 last_combined_insn
)) != 0)
1323 /* Finally, see if any of the insns that this insn links to
1324 explicitly references CC0. If so, try this insn, that insn,
1325 and its predecessor if it sets CC0. */
1326 FOR_EACH_LOG_LINK (links
, insn
)
1327 if (NONJUMP_INSN_P (links
->insn
)
1328 && GET_CODE (PATTERN (links
->insn
)) == SET
1329 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (links
->insn
)))
1330 && (prev
= prev_nonnote_insn (links
->insn
)) != 0
1331 && NONJUMP_INSN_P (prev
)
1332 && sets_cc0_p (PATTERN (prev
))
1333 && (next
= try_combine (insn
, links
->insn
,
1334 prev
, NULL_RTX
, &new_direct_jump_p
,
1335 last_combined_insn
)) != 0)
1339 /* Try combining an insn with two different insns whose results it
1341 FOR_EACH_LOG_LINK (links
, insn
)
1342 for (nextlinks
= links
->next
; nextlinks
;
1343 nextlinks
= nextlinks
->next
)
1344 if ((next
= try_combine (insn
, links
->insn
,
1345 nextlinks
->insn
, NULL_RTX
,
1347 last_combined_insn
)) != 0)
1350 /* Try four-instruction combinations. */
1351 FOR_EACH_LOG_LINK (links
, insn
)
1353 struct insn_link
*next1
;
1354 rtx link
= links
->insn
;
1356 /* If the linked insn has been replaced by a note, then there
1357 is no point in pursuing this chain any further. */
1361 FOR_EACH_LOG_LINK (next1
, link
)
1363 rtx link1
= next1
->insn
;
1366 /* I0 -> I1 -> I2 -> I3. */
1367 FOR_EACH_LOG_LINK (nextlinks
, link1
)
1368 if ((next
= try_combine (insn
, link
, link1
,
1371 last_combined_insn
)) != 0)
1373 /* I0, I1 -> I2, I2 -> I3. */
1374 for (nextlinks
= next1
->next
; nextlinks
;
1375 nextlinks
= nextlinks
->next
)
1376 if ((next
= try_combine (insn
, link
, link1
,
1379 last_combined_insn
)) != 0)
1383 for (next1
= links
->next
; next1
; next1
= next1
->next
)
1385 rtx link1
= next1
->insn
;
1388 /* I0 -> I2; I1, I2 -> I3. */
1389 FOR_EACH_LOG_LINK (nextlinks
, link
)
1390 if ((next
= try_combine (insn
, link
, link1
,
1393 last_combined_insn
)) != 0)
1395 /* I0 -> I1; I1, I2 -> I3. */
1396 FOR_EACH_LOG_LINK (nextlinks
, link1
)
1397 if ((next
= try_combine (insn
, link
, link1
,
1400 last_combined_insn
)) != 0)
1405 /* Try this insn with each REG_EQUAL note it links back to. */
1406 FOR_EACH_LOG_LINK (links
, insn
)
1409 rtx temp
= links
->insn
;
1410 if ((set
= single_set (temp
)) != 0
1411 && (note
= find_reg_equal_equiv_note (temp
)) != 0
1412 && (note
= XEXP (note
, 0), GET_CODE (note
)) != EXPR_LIST
1413 /* Avoid using a register that may already been marked
1414 dead by an earlier instruction. */
1415 && ! unmentioned_reg_p (note
, SET_SRC (set
))
1416 && (GET_MODE (note
) == VOIDmode
1417 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set
)))
1418 : GET_MODE (SET_DEST (set
)) == GET_MODE (note
)))
1420 /* Temporarily replace the set's source with the
1421 contents of the REG_EQUAL note. The insn will
1422 be deleted or recognized by try_combine. */
1423 rtx orig
= SET_SRC (set
);
1424 SET_SRC (set
) = note
;
1426 i2mod_old_rhs
= copy_rtx (orig
);
1427 i2mod_new_rhs
= copy_rtx (note
);
1428 next
= try_combine (insn
, i2mod
, NULL_RTX
, NULL_RTX
,
1430 last_combined_insn
);
1434 SET_SRC (set
) = orig
;
1439 record_dead_and_set_regs (insn
);
1447 default_rtl_profile ();
1449 new_direct_jump_p
|= purge_all_dead_edges ();
1450 delete_noop_moves ();
1453 obstack_free (&insn_link_obstack
, NULL
);
1454 free (uid_log_links
);
1455 free (uid_insn_cost
);
1456 reg_stat
.release ();
1459 struct undo
*undo
, *next
;
1460 for (undo
= undobuf
.frees
; undo
; undo
= next
)
1468 total_attempts
+= combine_attempts
;
1469 total_merges
+= combine_merges
;
1470 total_extras
+= combine_extras
;
1471 total_successes
+= combine_successes
;
1473 nonzero_sign_valid
= 0;
1474 rtl_hooks
= general_rtl_hooks
;
1476 /* Make recognizer allow volatile MEMs again. */
1479 return new_direct_jump_p
;
1482 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1485 init_reg_last (void)
1490 FOR_EACH_VEC_ELT (reg_stat
, i
, p
)
1491 memset (p
, 0, offsetof (reg_stat_type
, sign_bit_copies
));
1494 /* Set up any promoted values for incoming argument registers. */
1497 setup_incoming_promotions (rtx first
)
1500 bool strictly_local
= false;
1502 for (arg
= DECL_ARGUMENTS (current_function_decl
); arg
;
1503 arg
= DECL_CHAIN (arg
))
1505 rtx x
, reg
= DECL_INCOMING_RTL (arg
);
1507 enum machine_mode mode1
, mode2
, mode3
, mode4
;
1509 /* Only continue if the incoming argument is in a register. */
1513 /* Determine, if possible, whether all call sites of the current
1514 function lie within the current compilation unit. (This does
1515 take into account the exporting of a function via taking its
1516 address, and so forth.) */
1517 strictly_local
= cgraph_local_info (current_function_decl
)->local
;
1519 /* The mode and signedness of the argument before any promotions happen
1520 (equal to the mode of the pseudo holding it at that stage). */
1521 mode1
= TYPE_MODE (TREE_TYPE (arg
));
1522 uns1
= TYPE_UNSIGNED (TREE_TYPE (arg
));
1524 /* The mode and signedness of the argument after any source language and
1525 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1526 mode2
= TYPE_MODE (DECL_ARG_TYPE (arg
));
1527 uns3
= TYPE_UNSIGNED (DECL_ARG_TYPE (arg
));
1529 /* The mode and signedness of the argument as it is actually passed,
1530 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1531 mode3
= promote_function_mode (DECL_ARG_TYPE (arg
), mode2
, &uns3
,
1532 TREE_TYPE (cfun
->decl
), 0);
1534 /* The mode of the register in which the argument is being passed. */
1535 mode4
= GET_MODE (reg
);
1537 /* Eliminate sign extensions in the callee when:
1538 (a) A mode promotion has occurred; */
1541 /* (b) The mode of the register is the same as the mode of
1542 the argument as it is passed; */
1545 /* (c) There's no language level extension; */
1548 /* (c.1) All callers are from the current compilation unit. If that's
1549 the case we don't have to rely on an ABI, we only have to know
1550 what we're generating right now, and we know that we will do the
1551 mode1 to mode2 promotion with the given sign. */
1552 else if (!strictly_local
)
1554 /* (c.2) The combination of the two promotions is useful. This is
1555 true when the signs match, or if the first promotion is unsigned.
1556 In the later case, (sign_extend (zero_extend x)) is the same as
1557 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1563 /* Record that the value was promoted from mode1 to mode3,
1564 so that any sign extension at the head of the current
1565 function may be eliminated. */
1566 x
= gen_rtx_CLOBBER (mode1
, const0_rtx
);
1567 x
= gen_rtx_fmt_e ((uns3
? ZERO_EXTEND
: SIGN_EXTEND
), mode3
, x
);
1568 record_value_for_reg (reg
, first
, x
);
1572 /* Called via note_stores. If X is a pseudo that is narrower than
1573 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1575 If we are setting only a portion of X and we can't figure out what
1576 portion, assume all bits will be used since we don't know what will
1579 Similarly, set how many bits of X are known to be copies of the sign bit
1580 at all locations in the function. This is the smallest number implied
1584 set_nonzero_bits_and_sign_copies (rtx x
, const_rtx set
, void *data
)
1586 rtx insn
= (rtx
) data
;
1590 && REGNO (x
) >= FIRST_PSEUDO_REGISTER
1591 /* If this register is undefined at the start of the file, we can't
1592 say what its contents were. */
1593 && ! REGNO_REG_SET_P
1594 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
), REGNO (x
))
1595 && HWI_COMPUTABLE_MODE_P (GET_MODE (x
)))
1597 reg_stat_type
*rsp
= ®_stat
[REGNO (x
)];
1599 if (set
== 0 || GET_CODE (set
) == CLOBBER
)
1601 rsp
->nonzero_bits
= GET_MODE_MASK (GET_MODE (x
));
1602 rsp
->sign_bit_copies
= 1;
1606 /* If this register is being initialized using itself, and the
1607 register is uninitialized in this basic block, and there are
1608 no LOG_LINKS which set the register, then part of the
1609 register is uninitialized. In that case we can't assume
1610 anything about the number of nonzero bits.
1612 ??? We could do better if we checked this in
1613 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1614 could avoid making assumptions about the insn which initially
1615 sets the register, while still using the information in other
1616 insns. We would have to be careful to check every insn
1617 involved in the combination. */
1620 && reg_referenced_p (x
, PATTERN (insn
))
1621 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn
)),
1624 struct insn_link
*link
;
1626 FOR_EACH_LOG_LINK (link
, insn
)
1627 if (dead_or_set_p (link
->insn
, x
))
1631 rsp
->nonzero_bits
= GET_MODE_MASK (GET_MODE (x
));
1632 rsp
->sign_bit_copies
= 1;
1637 /* If this is a complex assignment, see if we can convert it into a
1638 simple assignment. */
1639 set
= expand_field_assignment (set
);
1641 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1642 set what we know about X. */
1644 if (SET_DEST (set
) == x
1645 || (paradoxical_subreg_p (SET_DEST (set
))
1646 && SUBREG_REG (SET_DEST (set
)) == x
))
1648 rtx src
= SET_SRC (set
);
1650 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1651 /* If X is narrower than a word and SRC is a non-negative
1652 constant that would appear negative in the mode of X,
1653 sign-extend it for use in reg_stat[].nonzero_bits because some
1654 machines (maybe most) will actually do the sign-extension
1655 and this is the conservative approach.
1657 ??? For 2.5, try to tighten up the MD files in this regard
1658 instead of this kludge. */
1660 if (GET_MODE_PRECISION (GET_MODE (x
)) < BITS_PER_WORD
1661 && CONST_INT_P (src
)
1663 && val_signbit_known_set_p (GET_MODE (x
), INTVAL (src
)))
1664 src
= GEN_INT (INTVAL (src
) | ~GET_MODE_MASK (GET_MODE (x
)));
1667 /* Don't call nonzero_bits if it cannot change anything. */
1668 if (rsp
->nonzero_bits
!= ~(unsigned HOST_WIDE_INT
) 0)
1669 rsp
->nonzero_bits
|= nonzero_bits (src
, nonzero_bits_mode
);
1670 num
= num_sign_bit_copies (SET_SRC (set
), GET_MODE (x
));
1671 if (rsp
->sign_bit_copies
== 0
1672 || rsp
->sign_bit_copies
> num
)
1673 rsp
->sign_bit_copies
= num
;
1677 rsp
->nonzero_bits
= GET_MODE_MASK (GET_MODE (x
));
1678 rsp
->sign_bit_copies
= 1;
1683 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1684 optionally insns that were previously combined into I3 or that will be
1685 combined into the merger of INSN and I3. The order is PRED, PRED2,
1686 INSN, SUCC, SUCC2, I3.
1688 Return 0 if the combination is not allowed for any reason.
1690 If the combination is allowed, *PDEST will be set to the single
1691 destination of INSN and *PSRC to the single source, and this function
1695 can_combine_p (rtx insn
, rtx i3
, rtx pred ATTRIBUTE_UNUSED
,
1696 rtx pred2 ATTRIBUTE_UNUSED
, rtx succ
, rtx succ2
,
1697 rtx
*pdest
, rtx
*psrc
)
1706 bool all_adjacent
= true;
1707 int (*is_volatile_p
) (const_rtx
);
1713 if (next_active_insn (succ2
) != i3
)
1714 all_adjacent
= false;
1715 if (next_active_insn (succ
) != succ2
)
1716 all_adjacent
= false;
1718 else if (next_active_insn (succ
) != i3
)
1719 all_adjacent
= false;
1720 if (next_active_insn (insn
) != succ
)
1721 all_adjacent
= false;
1723 else if (next_active_insn (insn
) != i3
)
1724 all_adjacent
= false;
1726 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1727 or a PARALLEL consisting of such a SET and CLOBBERs.
1729 If INSN has CLOBBER parallel parts, ignore them for our processing.
1730 By definition, these happen during the execution of the insn. When it
1731 is merged with another insn, all bets are off. If they are, in fact,
1732 needed and aren't also supplied in I3, they may be added by
1733 recog_for_combine. Otherwise, it won't match.
1735 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1738 Get the source and destination of INSN. If more than one, can't
1741 if (GET_CODE (PATTERN (insn
)) == SET
)
1742 set
= PATTERN (insn
);
1743 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
1744 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
1746 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1748 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
1750 switch (GET_CODE (elt
))
1752 /* This is important to combine floating point insns
1753 for the SH4 port. */
1755 /* Combining an isolated USE doesn't make sense.
1756 We depend here on combinable_i3pat to reject them. */
1757 /* The code below this loop only verifies that the inputs of
1758 the SET in INSN do not change. We call reg_set_between_p
1759 to verify that the REG in the USE does not change between
1761 If the USE in INSN was for a pseudo register, the matching
1762 insn pattern will likely match any register; combining this
1763 with any other USE would only be safe if we knew that the
1764 used registers have identical values, or if there was
1765 something to tell them apart, e.g. different modes. For
1766 now, we forgo such complicated tests and simply disallow
1767 combining of USES of pseudo registers with any other USE. */
1768 if (REG_P (XEXP (elt
, 0))
1769 && GET_CODE (PATTERN (i3
)) == PARALLEL
)
1771 rtx i3pat
= PATTERN (i3
);
1772 int i
= XVECLEN (i3pat
, 0) - 1;
1773 unsigned int regno
= REGNO (XEXP (elt
, 0));
1777 rtx i3elt
= XVECEXP (i3pat
, 0, i
);
1779 if (GET_CODE (i3elt
) == USE
1780 && REG_P (XEXP (i3elt
, 0))
1781 && (REGNO (XEXP (i3elt
, 0)) == regno
1782 ? reg_set_between_p (XEXP (elt
, 0),
1783 PREV_INSN (insn
), i3
)
1784 : regno
>= FIRST_PSEUDO_REGISTER
))
1791 /* We can ignore CLOBBERs. */
1796 /* Ignore SETs whose result isn't used but not those that
1797 have side-effects. */
1798 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (elt
))
1799 && insn_nothrow_p (insn
)
1800 && !side_effects_p (elt
))
1803 /* If we have already found a SET, this is a second one and
1804 so we cannot combine with this insn. */
1812 /* Anything else means we can't combine. */
1818 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1819 so don't do anything with it. */
1820 || GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
)
1829 /* The simplification in expand_field_assignment may call back to
1830 get_last_value, so set safe guard here. */
1831 subst_low_luid
= DF_INSN_LUID (insn
);
1833 set
= expand_field_assignment (set
);
1834 src
= SET_SRC (set
), dest
= SET_DEST (set
);
1836 /* Don't eliminate a store in the stack pointer. */
1837 if (dest
== stack_pointer_rtx
1838 /* Don't combine with an insn that sets a register to itself if it has
1839 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1840 || (rtx_equal_p (src
, dest
) && find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1841 /* Can't merge an ASM_OPERANDS. */
1842 || GET_CODE (src
) == ASM_OPERANDS
1843 /* Can't merge a function call. */
1844 || GET_CODE (src
) == CALL
1845 /* Don't eliminate a function call argument. */
1847 && (find_reg_fusage (i3
, USE
, dest
)
1849 && REGNO (dest
) < FIRST_PSEUDO_REGISTER
1850 && global_regs
[REGNO (dest
)])))
1851 /* Don't substitute into an incremented register. */
1852 || FIND_REG_INC_NOTE (i3
, dest
)
1853 || (succ
&& FIND_REG_INC_NOTE (succ
, dest
))
1854 || (succ2
&& FIND_REG_INC_NOTE (succ2
, dest
))
1855 /* Don't substitute into a non-local goto, this confuses CFG. */
1856 || (JUMP_P (i3
) && find_reg_note (i3
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
1857 /* Make sure that DEST is not used after SUCC but before I3. */
1860 && (reg_used_between_p (dest
, succ2
, i3
)
1861 || reg_used_between_p (dest
, succ
, succ2
)))
1862 || (!succ2
&& succ
&& reg_used_between_p (dest
, succ
, i3
))))
1863 /* Make sure that the value that is to be substituted for the register
1864 does not use any registers whose values alter in between. However,
1865 If the insns are adjacent, a use can't cross a set even though we
1866 think it might (this can happen for a sequence of insns each setting
1867 the same destination; last_set of that register might point to
1868 a NOTE). If INSN has a REG_EQUIV note, the register is always
1869 equivalent to the memory so the substitution is valid even if there
1870 are intervening stores. Also, don't move a volatile asm or
1871 UNSPEC_VOLATILE across any other insns. */
1874 || ! find_reg_note (insn
, REG_EQUIV
, src
))
1875 && use_crosses_set_p (src
, DF_INSN_LUID (insn
)))
1876 || (GET_CODE (src
) == ASM_OPERANDS
&& MEM_VOLATILE_P (src
))
1877 || GET_CODE (src
) == UNSPEC_VOLATILE
))
1878 /* Don't combine across a CALL_INSN, because that would possibly
1879 change whether the life span of some REGs crosses calls or not,
1880 and it is a pain to update that information.
1881 Exception: if source is a constant, moving it later can't hurt.
1882 Accept that as a special case. */
1883 || (DF_INSN_LUID (insn
) < last_call_luid
&& ! CONSTANT_P (src
)))
1886 /* DEST must either be a REG or CC0. */
1889 /* If register alignment is being enforced for multi-word items in all
1890 cases except for parameters, it is possible to have a register copy
1891 insn referencing a hard register that is not allowed to contain the
1892 mode being copied and which would not be valid as an operand of most
1893 insns. Eliminate this problem by not combining with such an insn.
1895 Also, on some machines we don't want to extend the life of a hard
1899 && ((REGNO (dest
) < FIRST_PSEUDO_REGISTER
1900 && ! HARD_REGNO_MODE_OK (REGNO (dest
), GET_MODE (dest
)))
1901 /* Don't extend the life of a hard register unless it is
1902 user variable (if we have few registers) or it can't
1903 fit into the desired register (meaning something special
1905 Also avoid substituting a return register into I3, because
1906 reload can't handle a conflict with constraints of other
1908 || (REGNO (src
) < FIRST_PSEUDO_REGISTER
1909 && ! HARD_REGNO_MODE_OK (REGNO (src
), GET_MODE (src
)))))
1912 else if (GET_CODE (dest
) != CC0
)
1916 if (GET_CODE (PATTERN (i3
)) == PARALLEL
)
1917 for (i
= XVECLEN (PATTERN (i3
), 0) - 1; i
>= 0; i
--)
1918 if (GET_CODE (XVECEXP (PATTERN (i3
), 0, i
)) == CLOBBER
)
1920 /* Don't substitute for a register intended as a clobberable
1922 rtx reg
= XEXP (XVECEXP (PATTERN (i3
), 0, i
), 0);
1923 if (rtx_equal_p (reg
, dest
))
1926 /* If the clobber represents an earlyclobber operand, we must not
1927 substitute an expression containing the clobbered register.
1928 As we do not analyze the constraint strings here, we have to
1929 make the conservative assumption. However, if the register is
1930 a fixed hard reg, the clobber cannot represent any operand;
1931 we leave it up to the machine description to either accept or
1932 reject use-and-clobber patterns. */
1934 || REGNO (reg
) >= FIRST_PSEUDO_REGISTER
1935 || !fixed_regs
[REGNO (reg
)])
1936 if (reg_overlap_mentioned_p (reg
, src
))
1940 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1941 or not), reject, unless nothing volatile comes between it and I3 */
1943 if (GET_CODE (src
) == ASM_OPERANDS
|| volatile_refs_p (src
))
1945 /* Make sure neither succ nor succ2 contains a volatile reference. */
1946 if (succ2
!= 0 && volatile_refs_p (PATTERN (succ2
)))
1948 if (succ
!= 0 && volatile_refs_p (PATTERN (succ
)))
1950 /* We'll check insns between INSN and I3 below. */
1953 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1954 to be an explicit register variable, and was chosen for a reason. */
1956 if (GET_CODE (src
) == ASM_OPERANDS
1957 && REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
1960 /* If INSN contains volatile references (specifically volatile MEMs),
1961 we cannot combine across any other volatile references.
1962 Even if INSN doesn't contain volatile references, any intervening
1963 volatile insn might affect machine state. */
1965 is_volatile_p
= volatile_refs_p (PATTERN (insn
))
1969 for (p
= NEXT_INSN (insn
); p
!= i3
; p
= NEXT_INSN (p
))
1970 if (INSN_P (p
) && p
!= succ
&& p
!= succ2
&& is_volatile_p (PATTERN (p
)))
1973 /* If INSN contains an autoincrement or autodecrement, make sure that
1974 register is not used between there and I3, and not already used in
1975 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1976 Also insist that I3 not be a jump; if it were one
1977 and the incremented register were spilled, we would lose. */
1980 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1981 if (REG_NOTE_KIND (link
) == REG_INC
1983 || reg_used_between_p (XEXP (link
, 0), insn
, i3
)
1984 || (pred
!= NULL_RTX
1985 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (pred
)))
1986 || (pred2
!= NULL_RTX
1987 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (pred2
)))
1988 || (succ
!= NULL_RTX
1989 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (succ
)))
1990 || (succ2
!= NULL_RTX
1991 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (succ2
)))
1992 || reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i3
))))
1997 /* Don't combine an insn that follows a CC0-setting insn.
1998 An insn that uses CC0 must not be separated from the one that sets it.
1999 We do, however, allow I2 to follow a CC0-setting insn if that insn
2000 is passed as I1; in that case it will be deleted also.
2001 We also allow combining in this case if all the insns are adjacent
2002 because that would leave the two CC0 insns adjacent as well.
2003 It would be more logical to test whether CC0 occurs inside I1 or I2,
2004 but that would be much slower, and this ought to be equivalent. */
2006 p
= prev_nonnote_insn (insn
);
2007 if (p
&& p
!= pred
&& NONJUMP_INSN_P (p
) && sets_cc0_p (PATTERN (p
))
2012 /* If we get here, we have passed all the tests and the combination is
2021 /* LOC is the location within I3 that contains its pattern or the component
2022 of a PARALLEL of the pattern. We validate that it is valid for combining.
2024 One problem is if I3 modifies its output, as opposed to replacing it
2025 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2026 doing so would produce an insn that is not equivalent to the original insns.
2030 (set (reg:DI 101) (reg:DI 100))
2031 (set (subreg:SI (reg:DI 101) 0) <foo>)
2033 This is NOT equivalent to:
2035 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2036 (set (reg:DI 101) (reg:DI 100))])
2038 Not only does this modify 100 (in which case it might still be valid
2039 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2041 We can also run into a problem if I2 sets a register that I1
2042 uses and I1 gets directly substituted into I3 (not via I2). In that
2043 case, we would be getting the wrong value of I2DEST into I3, so we
2044 must reject the combination. This case occurs when I2 and I1 both
2045 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2046 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2047 of a SET must prevent combination from occurring. The same situation
2048 can occur for I0, in which case I0_NOT_IN_SRC is set.
2050 Before doing the above check, we first try to expand a field assignment
2051 into a set of logical operations.
2053 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2054 we place a register that is both set and used within I3. If more than one
2055 such register is detected, we fail.
2057 Return 1 if the combination is valid, zero otherwise. */
2060 combinable_i3pat (rtx i3
, rtx
*loc
, rtx i2dest
, rtx i1dest
, rtx i0dest
,
2061 int i1_not_in_src
, int i0_not_in_src
, rtx
*pi3dest_killed
)
2065 if (GET_CODE (x
) == SET
)
2068 rtx dest
= SET_DEST (set
);
2069 rtx src
= SET_SRC (set
);
2070 rtx inner_dest
= dest
;
2073 while (GET_CODE (inner_dest
) == STRICT_LOW_PART
2074 || GET_CODE (inner_dest
) == SUBREG
2075 || GET_CODE (inner_dest
) == ZERO_EXTRACT
)
2076 inner_dest
= XEXP (inner_dest
, 0);
2078 /* Check for the case where I3 modifies its output, as discussed
2079 above. We don't want to prevent pseudos from being combined
2080 into the address of a MEM, so only prevent the combination if
2081 i1 or i2 set the same MEM. */
2082 if ((inner_dest
!= dest
&&
2083 (!MEM_P (inner_dest
)
2084 || rtx_equal_p (i2dest
, inner_dest
)
2085 || (i1dest
&& rtx_equal_p (i1dest
, inner_dest
))
2086 || (i0dest
&& rtx_equal_p (i0dest
, inner_dest
)))
2087 && (reg_overlap_mentioned_p (i2dest
, inner_dest
)
2088 || (i1dest
&& reg_overlap_mentioned_p (i1dest
, inner_dest
))
2089 || (i0dest
&& reg_overlap_mentioned_p (i0dest
, inner_dest
))))
2091 /* This is the same test done in can_combine_p except we can't test
2092 all_adjacent; we don't have to, since this instruction will stay
2093 in place, thus we are not considering increasing the lifetime of
2096 Also, if this insn sets a function argument, combining it with
2097 something that might need a spill could clobber a previous
2098 function argument; the all_adjacent test in can_combine_p also
2099 checks this; here, we do a more specific test for this case. */
2101 || (REG_P (inner_dest
)
2102 && REGNO (inner_dest
) < FIRST_PSEUDO_REGISTER
2103 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest
),
2104 GET_MODE (inner_dest
))))
2105 || (i1_not_in_src
&& reg_overlap_mentioned_p (i1dest
, src
))
2106 || (i0_not_in_src
&& reg_overlap_mentioned_p (i0dest
, src
)))
2109 /* If DEST is used in I3, it is being killed in this insn, so
2110 record that for later. We have to consider paradoxical
2111 subregs here, since they kill the whole register, but we
2112 ignore partial subregs, STRICT_LOW_PART, etc.
2113 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2114 STACK_POINTER_REGNUM, since these are always considered to be
2115 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2117 if (GET_CODE (subdest
) == SUBREG
2118 && (GET_MODE_SIZE (GET_MODE (subdest
))
2119 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest
)))))
2120 subdest
= SUBREG_REG (subdest
);
2123 && reg_referenced_p (subdest
, PATTERN (i3
))
2124 && REGNO (subdest
) != FRAME_POINTER_REGNUM
2125 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2126 && REGNO (subdest
) != HARD_FRAME_POINTER_REGNUM
2128 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2129 && (REGNO (subdest
) != ARG_POINTER_REGNUM
2130 || ! fixed_regs
[REGNO (subdest
)])
2132 && REGNO (subdest
) != STACK_POINTER_REGNUM
)
2134 if (*pi3dest_killed
)
2137 *pi3dest_killed
= subdest
;
2141 else if (GET_CODE (x
) == PARALLEL
)
2145 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
2146 if (! combinable_i3pat (i3
, &XVECEXP (x
, 0, i
), i2dest
, i1dest
, i0dest
,
2147 i1_not_in_src
, i0_not_in_src
, pi3dest_killed
))
2154 /* Return 1 if X is an arithmetic expression that contains a multiplication
2155 and division. We don't count multiplications by powers of two here. */
2158 contains_muldiv (rtx x
)
2160 switch (GET_CODE (x
))
2162 case MOD
: case DIV
: case UMOD
: case UDIV
:
2166 return ! (CONST_INT_P (XEXP (x
, 1))
2167 && exact_log2 (UINTVAL (XEXP (x
, 1))) >= 0);
2170 return contains_muldiv (XEXP (x
, 0))
2171 || contains_muldiv (XEXP (x
, 1));
2174 return contains_muldiv (XEXP (x
, 0));
2180 /* Determine whether INSN can be used in a combination. Return nonzero if
2181 not. This is used in try_combine to detect early some cases where we
2182 can't perform combinations. */
2185 cant_combine_insn_p (rtx insn
)
2190 /* If this isn't really an insn, we can't do anything.
2191 This can occur when flow deletes an insn that it has merged into an
2192 auto-increment address. */
2193 if (! INSN_P (insn
))
2196 /* Never combine loads and stores involving hard regs that are likely
2197 to be spilled. The register allocator can usually handle such
2198 reg-reg moves by tying. If we allow the combiner to make
2199 substitutions of likely-spilled regs, reload might die.
2200 As an exception, we allow combinations involving fixed regs; these are
2201 not available to the register allocator so there's no risk involved. */
2203 set
= single_set (insn
);
2206 src
= SET_SRC (set
);
2207 dest
= SET_DEST (set
);
2208 if (GET_CODE (src
) == SUBREG
)
2209 src
= SUBREG_REG (src
);
2210 if (GET_CODE (dest
) == SUBREG
)
2211 dest
= SUBREG_REG (dest
);
2212 if (REG_P (src
) && REG_P (dest
)
2213 && ((HARD_REGISTER_P (src
)
2214 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (src
))
2215 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src
))))
2216 || (HARD_REGISTER_P (dest
)
2217 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (dest
))
2218 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest
))))))
2224 struct likely_spilled_retval_info
2226 unsigned regno
, nregs
;
2230 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2231 hard registers that are known to be written to / clobbered in full. */
2233 likely_spilled_retval_1 (rtx x
, const_rtx set
, void *data
)
2235 struct likely_spilled_retval_info
*const info
=
2236 (struct likely_spilled_retval_info
*) data
;
2237 unsigned regno
, nregs
;
2240 if (!REG_P (XEXP (set
, 0)))
2243 if (regno
>= info
->regno
+ info
->nregs
)
2245 nregs
= hard_regno_nregs
[regno
][GET_MODE (x
)];
2246 if (regno
+ nregs
<= info
->regno
)
2248 new_mask
= (2U << (nregs
- 1)) - 1;
2249 if (regno
< info
->regno
)
2250 new_mask
>>= info
->regno
- regno
;
2252 new_mask
<<= regno
- info
->regno
;
2253 info
->mask
&= ~new_mask
;
2256 /* Return nonzero iff part of the return value is live during INSN, and
2257 it is likely spilled. This can happen when more than one insn is needed
2258 to copy the return value, e.g. when we consider to combine into the
2259 second copy insn for a complex value. */
2262 likely_spilled_retval_p (rtx insn
)
2264 rtx use
= BB_END (this_basic_block
);
2266 unsigned regno
, nregs
;
2267 /* We assume here that no machine mode needs more than
2268 32 hard registers when the value overlaps with a register
2269 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2271 struct likely_spilled_retval_info info
;
2273 if (!NONJUMP_INSN_P (use
) || GET_CODE (PATTERN (use
)) != USE
|| insn
== use
)
2275 reg
= XEXP (PATTERN (use
), 0);
2276 if (!REG_P (reg
) || !targetm
.calls
.function_value_regno_p (REGNO (reg
)))
2278 regno
= REGNO (reg
);
2279 nregs
= hard_regno_nregs
[regno
][GET_MODE (reg
)];
2282 mask
= (2U << (nregs
- 1)) - 1;
2284 /* Disregard parts of the return value that are set later. */
2288 for (p
= PREV_INSN (use
); info
.mask
&& p
!= insn
; p
= PREV_INSN (p
))
2290 note_stores (PATTERN (p
), likely_spilled_retval_1
, &info
);
2293 /* Check if any of the (probably) live return value registers is
2298 if ((mask
& 1 << nregs
)
2299 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (regno
+ nregs
)))
2305 /* Adjust INSN after we made a change to its destination.
2307 Changing the destination can invalidate notes that say something about
2308 the results of the insn and a LOG_LINK pointing to the insn. */
2311 adjust_for_new_dest (rtx insn
)
2313 /* For notes, be conservative and simply remove them. */
2314 remove_reg_equal_equiv_notes (insn
);
2316 /* The new insn will have a destination that was previously the destination
2317 of an insn just above it. Call distribute_links to make a LOG_LINK from
2318 the next use of that destination. */
2319 distribute_links (alloc_insn_link (insn
, NULL
));
2321 df_insn_rescan (insn
);
2324 /* Return TRUE if combine can reuse reg X in mode MODE.
2325 ADDED_SETS is nonzero if the original set is still required. */
2327 can_change_dest_mode (rtx x
, int added_sets
, enum machine_mode mode
)
2335 /* Allow hard registers if the new mode is legal, and occupies no more
2336 registers than the old mode. */
2337 if (regno
< FIRST_PSEUDO_REGISTER
)
2338 return (HARD_REGNO_MODE_OK (regno
, mode
)
2339 && (hard_regno_nregs
[regno
][GET_MODE (x
)]
2340 >= hard_regno_nregs
[regno
][mode
]));
2342 /* Or a pseudo that is only used once. */
2343 return (REG_N_SETS (regno
) == 1 && !added_sets
2344 && !REG_USERVAR_P (x
));
2348 /* Check whether X, the destination of a set, refers to part of
2349 the register specified by REG. */
2352 reg_subword_p (rtx x
, rtx reg
)
2354 /* Check that reg is an integer mode register. */
2355 if (!REG_P (reg
) || GET_MODE_CLASS (GET_MODE (reg
)) != MODE_INT
)
2358 if (GET_CODE (x
) == STRICT_LOW_PART
2359 || GET_CODE (x
) == ZERO_EXTRACT
)
2362 return GET_CODE (x
) == SUBREG
2363 && SUBREG_REG (x
) == reg
2364 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
;
2367 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2368 Note that the INSN should be deleted *after* removing dead edges, so
2369 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2370 but not for a (set (pc) (label_ref FOO)). */
2373 update_cfg_for_uncondjump (rtx insn
)
2375 basic_block bb
= BLOCK_FOR_INSN (insn
);
2376 gcc_assert (BB_END (bb
) == insn
);
2378 purge_dead_edges (bb
);
2381 if (EDGE_COUNT (bb
->succs
) == 1)
2385 single_succ_edge (bb
)->flags
|= EDGE_FALLTHRU
;
2387 /* Remove barriers from the footer if there are any. */
2388 for (insn
= BB_FOOTER (bb
); insn
; insn
= NEXT_INSN (insn
))
2389 if (BARRIER_P (insn
))
2391 if (PREV_INSN (insn
))
2392 NEXT_INSN (PREV_INSN (insn
)) = NEXT_INSN (insn
);
2394 BB_FOOTER (bb
) = NEXT_INSN (insn
);
2395 if (NEXT_INSN (insn
))
2396 PREV_INSN (NEXT_INSN (insn
)) = PREV_INSN (insn
);
2398 else if (LABEL_P (insn
))
2403 /* Try to combine the insns I0, I1 and I2 into I3.
2404 Here I0, I1 and I2 appear earlier than I3.
2405 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2408 If we are combining more than two insns and the resulting insn is not
2409 recognized, try splitting it into two insns. If that happens, I2 and I3
2410 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2411 Otherwise, I0, I1 and I2 are pseudo-deleted.
2413 Return 0 if the combination does not work. Then nothing is changed.
2414 If we did the combination, return the insn at which combine should
2417 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2418 new direct jump instruction.
2420 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2421 been I3 passed to an earlier try_combine within the same basic
2425 try_combine (rtx i3
, rtx i2
, rtx i1
, rtx i0
, int *new_direct_jump_p
,
2426 rtx last_combined_insn
)
2428 /* New patterns for I3 and I2, respectively. */
2429 rtx newpat
, newi2pat
= 0;
2430 rtvec newpat_vec_with_clobbers
= 0;
2431 int substed_i2
= 0, substed_i1
= 0, substed_i0
= 0;
2432 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2434 int added_sets_0
, added_sets_1
, added_sets_2
;
2435 /* Total number of SETs to put into I3. */
2437 /* Nonzero if I2's or I1's body now appears in I3. */
2438 int i2_is_used
= 0, i1_is_used
= 0;
2439 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2440 int insn_code_number
, i2_code_number
= 0, other_code_number
= 0;
2441 /* Contains I3 if the destination of I3 is used in its source, which means
2442 that the old life of I3 is being killed. If that usage is placed into
2443 I2 and not in I3, a REG_DEAD note must be made. */
2444 rtx i3dest_killed
= 0;
2445 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2446 rtx i2dest
= 0, i2src
= 0, i1dest
= 0, i1src
= 0, i0dest
= 0, i0src
= 0;
2447 /* Copy of SET_SRC of I1 and I0, if needed. */
2448 rtx i1src_copy
= 0, i0src_copy
= 0, i0src_copy2
= 0;
2449 /* Set if I2DEST was reused as a scratch register. */
2450 bool i2scratch
= false;
2451 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2452 rtx i0pat
= 0, i1pat
= 0, i2pat
= 0;
2453 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2454 int i2dest_in_i2src
= 0, i1dest_in_i1src
= 0, i2dest_in_i1src
= 0;
2455 int i0dest_in_i0src
= 0, i1dest_in_i0src
= 0, i2dest_in_i0src
= 0;
2456 int i2dest_killed
= 0, i1dest_killed
= 0, i0dest_killed
= 0;
2457 int i1_feeds_i2_n
= 0, i0_feeds_i2_n
= 0, i0_feeds_i1_n
= 0;
2458 /* Notes that must be added to REG_NOTES in I3 and I2. */
2459 rtx new_i3_notes
, new_i2_notes
;
2460 /* Notes that we substituted I3 into I2 instead of the normal case. */
2461 int i3_subst_into_i2
= 0;
2462 /* Notes that I1, I2 or I3 is a MULT operation. */
2465 int changed_i3_dest
= 0;
2469 struct insn_link
*link
;
2471 rtx new_other_notes
;
2474 /* Only try four-insn combinations when there's high likelihood of
2475 success. Look for simple insns, such as loads of constants or
2476 binary operations involving a constant. */
2483 if (!flag_expensive_optimizations
)
2486 for (i
= 0; i
< 4; i
++)
2488 rtx insn
= i
== 0 ? i0
: i
== 1 ? i1
: i
== 2 ? i2
: i3
;
2489 rtx set
= single_set (insn
);
2493 src
= SET_SRC (set
);
2494 if (CONSTANT_P (src
))
2499 else if (BINARY_P (src
) && CONSTANT_P (XEXP (src
, 1)))
2501 else if (GET_CODE (src
) == ASHIFT
|| GET_CODE (src
) == ASHIFTRT
2502 || GET_CODE (src
) == LSHIFTRT
)
2505 if (ngood
< 2 && nshift
< 2)
2509 /* Exit early if one of the insns involved can't be used for
2511 if (cant_combine_insn_p (i3
)
2512 || cant_combine_insn_p (i2
)
2513 || (i1
&& cant_combine_insn_p (i1
))
2514 || (i0
&& cant_combine_insn_p (i0
))
2515 || likely_spilled_retval_p (i3
))
2519 undobuf
.other_insn
= 0;
2521 /* Reset the hard register usage information. */
2522 CLEAR_HARD_REG_SET (newpat_used_regs
);
2524 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2527 fprintf (dump_file
, "\nTrying %d, %d, %d -> %d:\n",
2528 INSN_UID (i0
), INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
2530 fprintf (dump_file
, "\nTrying %d, %d -> %d:\n",
2531 INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
2533 fprintf (dump_file
, "\nTrying %d -> %d:\n",
2534 INSN_UID (i2
), INSN_UID (i3
));
2537 /* If multiple insns feed into one of I2 or I3, they can be in any
2538 order. To simplify the code below, reorder them in sequence. */
2539 if (i0
&& DF_INSN_LUID (i0
) > DF_INSN_LUID (i2
))
2540 temp
= i2
, i2
= i0
, i0
= temp
;
2541 if (i0
&& DF_INSN_LUID (i0
) > DF_INSN_LUID (i1
))
2542 temp
= i1
, i1
= i0
, i0
= temp
;
2543 if (i1
&& DF_INSN_LUID (i1
) > DF_INSN_LUID (i2
))
2544 temp
= i1
, i1
= i2
, i2
= temp
;
2546 added_links_insn
= 0;
2548 /* First check for one important special case that the code below will
2549 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2550 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2551 we may be able to replace that destination with the destination of I3.
2552 This occurs in the common code where we compute both a quotient and
2553 remainder into a structure, in which case we want to do the computation
2554 directly into the structure to avoid register-register copies.
2556 Note that this case handles both multiple sets in I2 and also cases
2557 where I2 has a number of CLOBBERs inside the PARALLEL.
2559 We make very conservative checks below and only try to handle the
2560 most common cases of this. For example, we only handle the case
2561 where I2 and I3 are adjacent to avoid making difficult register
2564 if (i1
== 0 && NONJUMP_INSN_P (i3
) && GET_CODE (PATTERN (i3
)) == SET
2565 && REG_P (SET_SRC (PATTERN (i3
)))
2566 && REGNO (SET_SRC (PATTERN (i3
))) >= FIRST_PSEUDO_REGISTER
2567 && find_reg_note (i3
, REG_DEAD
, SET_SRC (PATTERN (i3
)))
2568 && GET_CODE (PATTERN (i2
)) == PARALLEL
2569 && ! side_effects_p (SET_DEST (PATTERN (i3
)))
2570 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2571 below would need to check what is inside (and reg_overlap_mentioned_p
2572 doesn't support those codes anyway). Don't allow those destinations;
2573 the resulting insn isn't likely to be recognized anyway. */
2574 && GET_CODE (SET_DEST (PATTERN (i3
))) != ZERO_EXTRACT
2575 && GET_CODE (SET_DEST (PATTERN (i3
))) != STRICT_LOW_PART
2576 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3
)),
2577 SET_DEST (PATTERN (i3
)))
2578 && next_active_insn (i2
) == i3
)
2580 rtx p2
= PATTERN (i2
);
2582 /* Make sure that the destination of I3,
2583 which we are going to substitute into one output of I2,
2584 is not used within another output of I2. We must avoid making this:
2585 (parallel [(set (mem (reg 69)) ...)
2586 (set (reg 69) ...)])
2587 which is not well-defined as to order of actions.
2588 (Besides, reload can't handle output reloads for this.)
2590 The problem can also happen if the dest of I3 is a memory ref,
2591 if another dest in I2 is an indirect memory ref. */
2592 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
2593 if ((GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2594 || GET_CODE (XVECEXP (p2
, 0, i
)) == CLOBBER
)
2595 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3
)),
2596 SET_DEST (XVECEXP (p2
, 0, i
))))
2599 if (i
== XVECLEN (p2
, 0))
2600 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
2601 if (GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2602 && SET_DEST (XVECEXP (p2
, 0, i
)) == SET_SRC (PATTERN (i3
)))
2607 subst_low_luid
= DF_INSN_LUID (i2
);
2609 added_sets_2
= added_sets_1
= added_sets_0
= 0;
2610 i2src
= SET_SRC (XVECEXP (p2
, 0, i
));
2611 i2dest
= SET_DEST (XVECEXP (p2
, 0, i
));
2612 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2614 /* Replace the dest in I2 with our dest and make the resulting
2615 insn the new pattern for I3. Then skip to where we validate
2616 the pattern. Everything was set up above. */
2617 SUBST (SET_DEST (XVECEXP (p2
, 0, i
)), SET_DEST (PATTERN (i3
)));
2619 i3_subst_into_i2
= 1;
2620 goto validate_replacement
;
2624 /* If I2 is setting a pseudo to a constant and I3 is setting some
2625 sub-part of it to another constant, merge them by making a new
2628 && (temp
= single_set (i2
)) != 0
2629 && CONST_SCALAR_INT_P (SET_SRC (temp
))
2630 && GET_CODE (PATTERN (i3
)) == SET
2631 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3
)))
2632 && reg_subword_p (SET_DEST (PATTERN (i3
)), SET_DEST (temp
)))
2634 rtx dest
= SET_DEST (PATTERN (i3
));
2638 if (GET_CODE (dest
) == ZERO_EXTRACT
)
2640 if (CONST_INT_P (XEXP (dest
, 1))
2641 && CONST_INT_P (XEXP (dest
, 2)))
2643 width
= INTVAL (XEXP (dest
, 1));
2644 offset
= INTVAL (XEXP (dest
, 2));
2645 dest
= XEXP (dest
, 0);
2646 if (BITS_BIG_ENDIAN
)
2647 offset
= GET_MODE_PRECISION (GET_MODE (dest
)) - width
- offset
;
2652 if (GET_CODE (dest
) == STRICT_LOW_PART
)
2653 dest
= XEXP (dest
, 0);
2654 width
= GET_MODE_PRECISION (GET_MODE (dest
));
2660 /* If this is the low part, we're done. */
2661 if (subreg_lowpart_p (dest
))
2663 /* Handle the case where inner is twice the size of outer. */
2664 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp
)))
2665 == 2 * GET_MODE_PRECISION (GET_MODE (dest
)))
2666 offset
+= GET_MODE_PRECISION (GET_MODE (dest
));
2667 /* Otherwise give up for now. */
2674 rtx inner
= SET_SRC (PATTERN (i3
));
2675 rtx outer
= SET_SRC (temp
);
2678 = wi::insert (std::make_pair (outer
, GET_MODE (SET_DEST (temp
))),
2679 std::make_pair (inner
, GET_MODE (dest
)),
2684 subst_low_luid
= DF_INSN_LUID (i2
);
2685 added_sets_2
= added_sets_1
= added_sets_0
= 0;
2686 i2dest
= SET_DEST (temp
);
2687 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2689 /* Replace the source in I2 with the new constant and make the
2690 resulting insn the new pattern for I3. Then skip to where we
2691 validate the pattern. Everything was set up above. */
2692 SUBST (SET_SRC (temp
),
2693 immed_wide_int_const (o
, GET_MODE (SET_DEST (temp
))));
2695 newpat
= PATTERN (i2
);
2697 /* The dest of I3 has been replaced with the dest of I2. */
2698 changed_i3_dest
= 1;
2699 goto validate_replacement
;
2704 /* If we have no I1 and I2 looks like:
2705 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2707 make up a dummy I1 that is
2710 (set (reg:CC X) (compare:CC Y (const_int 0)))
2712 (We can ignore any trailing CLOBBERs.)
2714 This undoes a previous combination and allows us to match a branch-and-
2717 if (i1
== 0 && GET_CODE (PATTERN (i2
)) == PARALLEL
2718 && XVECLEN (PATTERN (i2
), 0) >= 2
2719 && GET_CODE (XVECEXP (PATTERN (i2
), 0, 0)) == SET
2720 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0))))
2722 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0))) == COMPARE
2723 && XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 1) == const0_rtx
2724 && GET_CODE (XVECEXP (PATTERN (i2
), 0, 1)) == SET
2725 && REG_P (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1)))
2726 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 0),
2727 SET_SRC (XVECEXP (PATTERN (i2
), 0, 1))))
2729 for (i
= XVECLEN (PATTERN (i2
), 0) - 1; i
>= 2; i
--)
2730 if (GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) != CLOBBER
)
2735 /* We make I1 with the same INSN_UID as I2. This gives it
2736 the same DF_INSN_LUID for value tracking. Our fake I1 will
2737 never appear in the insn stream so giving it the same INSN_UID
2738 as I2 will not cause a problem. */
2740 i1
= gen_rtx_INSN (VOIDmode
, NULL_RTX
, i2
, BLOCK_FOR_INSN (i2
),
2741 XVECEXP (PATTERN (i2
), 0, 1), INSN_LOCATION (i2
),
2743 INSN_UID (i1
) = INSN_UID (i2
);
2745 SUBST (PATTERN (i2
), XVECEXP (PATTERN (i2
), 0, 0));
2746 SUBST (XEXP (SET_SRC (PATTERN (i2
)), 0),
2747 SET_DEST (PATTERN (i1
)));
2748 SUBST_LINK (LOG_LINKS (i2
), alloc_insn_link (i1
, LOG_LINKS (i2
)));
2753 /* Verify that I2 and I1 are valid for combining. */
2754 if (! can_combine_p (i2
, i3
, i0
, i1
, NULL_RTX
, NULL_RTX
, &i2dest
, &i2src
)
2755 || (i1
&& ! can_combine_p (i1
, i3
, i0
, NULL_RTX
, i2
, NULL_RTX
,
2757 || (i0
&& ! can_combine_p (i0
, i3
, NULL_RTX
, NULL_RTX
, i1
, i2
,
2764 /* Record whether I2DEST is used in I2SRC and similarly for the other
2765 cases. Knowing this will help in register status updating below. */
2766 i2dest_in_i2src
= reg_overlap_mentioned_p (i2dest
, i2src
);
2767 i1dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i1dest
, i1src
);
2768 i2dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i2dest
, i1src
);
2769 i0dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i0dest
, i0src
);
2770 i1dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i1dest
, i0src
);
2771 i2dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i2dest
, i0src
);
2772 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2773 i1dest_killed
= i1
&& dead_or_set_p (i1
, i1dest
);
2774 i0dest_killed
= i0
&& dead_or_set_p (i0
, i0dest
);
2776 /* For the earlier insns, determine which of the subsequent ones they
2778 i1_feeds_i2_n
= i1
&& insn_a_feeds_b (i1
, i2
);
2779 i0_feeds_i1_n
= i0
&& insn_a_feeds_b (i0
, i1
);
2780 i0_feeds_i2_n
= (i0
&& (!i0_feeds_i1_n
? insn_a_feeds_b (i0
, i2
)
2781 : (!reg_overlap_mentioned_p (i1dest
, i0dest
)
2782 && reg_overlap_mentioned_p (i0dest
, i2src
))));
2784 /* Ensure that I3's pattern can be the destination of combines. */
2785 if (! combinable_i3pat (i3
, &PATTERN (i3
), i2dest
, i1dest
, i0dest
,
2786 i1
&& i2dest_in_i1src
&& !i1_feeds_i2_n
,
2787 i0
&& ((i2dest_in_i0src
&& !i0_feeds_i2_n
)
2788 || (i1dest_in_i0src
&& !i0_feeds_i1_n
)),
2795 /* See if any of the insns is a MULT operation. Unless one is, we will
2796 reject a combination that is, since it must be slower. Be conservative
2798 if (GET_CODE (i2src
) == MULT
2799 || (i1
!= 0 && GET_CODE (i1src
) == MULT
)
2800 || (i0
!= 0 && GET_CODE (i0src
) == MULT
)
2801 || (GET_CODE (PATTERN (i3
)) == SET
2802 && GET_CODE (SET_SRC (PATTERN (i3
))) == MULT
))
2805 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2806 We used to do this EXCEPT in one case: I3 has a post-inc in an
2807 output operand. However, that exception can give rise to insns like
2809 which is a famous insn on the PDP-11 where the value of r3 used as the
2810 source was model-dependent. Avoid this sort of thing. */
2813 if (!(GET_CODE (PATTERN (i3
)) == SET
2814 && REG_P (SET_SRC (PATTERN (i3
)))
2815 && MEM_P (SET_DEST (PATTERN (i3
)))
2816 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_INC
2817 || GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_DEC
)))
2818 /* It's not the exception. */
2823 for (link
= REG_NOTES (i3
); link
; link
= XEXP (link
, 1))
2824 if (REG_NOTE_KIND (link
) == REG_INC
2825 && (reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i2
))
2827 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i1
)))))
2835 /* See if the SETs in I1 or I2 need to be kept around in the merged
2836 instruction: whenever the value set there is still needed past I3.
2837 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
2839 For the SET in I1, we have two cases: if I1 and I2 independently feed
2840 into I3, the set in I1 needs to be kept around unless I1DEST dies
2841 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2842 in I1 needs to be kept around unless I1DEST dies or is set in either
2843 I2 or I3. The same considerations apply to I0. */
2845 added_sets_2
= !dead_or_set_p (i3
, i2dest
);
2848 added_sets_1
= !(dead_or_set_p (i3
, i1dest
)
2849 || (i1_feeds_i2_n
&& dead_or_set_p (i2
, i1dest
)));
2854 added_sets_0
= !(dead_or_set_p (i3
, i0dest
)
2855 || (i0_feeds_i1_n
&& dead_or_set_p (i1
, i0dest
))
2856 || ((i0_feeds_i2_n
|| (i0_feeds_i1_n
&& i1_feeds_i2_n
))
2857 && dead_or_set_p (i2
, i0dest
)));
2861 /* We are about to copy insns for the case where they need to be kept
2862 around. Check that they can be copied in the merged instruction. */
2864 if (targetm
.cannot_copy_insn_p
2865 && ((added_sets_2
&& targetm
.cannot_copy_insn_p (i2
))
2866 || (i1
&& added_sets_1
&& targetm
.cannot_copy_insn_p (i1
))
2867 || (i0
&& added_sets_0
&& targetm
.cannot_copy_insn_p (i0
))))
2873 /* If the set in I2 needs to be kept around, we must make a copy of
2874 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2875 PATTERN (I2), we are only substituting for the original I1DEST, not into
2876 an already-substituted copy. This also prevents making self-referential
2877 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2882 if (GET_CODE (PATTERN (i2
)) == PARALLEL
)
2883 i2pat
= gen_rtx_SET (VOIDmode
, i2dest
, copy_rtx (i2src
));
2885 i2pat
= copy_rtx (PATTERN (i2
));
2890 if (GET_CODE (PATTERN (i1
)) == PARALLEL
)
2891 i1pat
= gen_rtx_SET (VOIDmode
, i1dest
, copy_rtx (i1src
));
2893 i1pat
= copy_rtx (PATTERN (i1
));
2898 if (GET_CODE (PATTERN (i0
)) == PARALLEL
)
2899 i0pat
= gen_rtx_SET (VOIDmode
, i0dest
, copy_rtx (i0src
));
2901 i0pat
= copy_rtx (PATTERN (i0
));
2906 /* Substitute in the latest insn for the regs set by the earlier ones. */
2908 maxreg
= max_reg_num ();
2913 /* Many machines that don't use CC0 have insns that can both perform an
2914 arithmetic operation and set the condition code. These operations will
2915 be represented as a PARALLEL with the first element of the vector
2916 being a COMPARE of an arithmetic operation with the constant zero.
2917 The second element of the vector will set some pseudo to the result
2918 of the same arithmetic operation. If we simplify the COMPARE, we won't
2919 match such a pattern and so will generate an extra insn. Here we test
2920 for this case, where both the comparison and the operation result are
2921 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2922 I2SRC. Later we will make the PARALLEL that contains I2. */
2924 if (i1
== 0 && added_sets_2
&& GET_CODE (PATTERN (i3
)) == SET
2925 && GET_CODE (SET_SRC (PATTERN (i3
))) == COMPARE
2926 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3
)), 1))
2927 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3
)), 0), i2dest
))
2930 rtx
*cc_use_loc
= NULL
, cc_use_insn
= NULL_RTX
;
2931 rtx op0
= i2src
, op1
= XEXP (SET_SRC (PATTERN (i3
)), 1);
2932 enum machine_mode compare_mode
, orig_compare_mode
;
2933 enum rtx_code compare_code
= UNKNOWN
, orig_compare_code
= UNKNOWN
;
2935 newpat
= PATTERN (i3
);
2936 newpat_dest
= SET_DEST (newpat
);
2937 compare_mode
= orig_compare_mode
= GET_MODE (newpat_dest
);
2939 if (undobuf
.other_insn
== 0
2940 && (cc_use_loc
= find_single_use (SET_DEST (newpat
), i3
,
2943 compare_code
= orig_compare_code
= GET_CODE (*cc_use_loc
);
2944 compare_code
= simplify_compare_const (compare_code
,
2945 GET_MODE (i2dest
), op0
, &op1
);
2946 target_canonicalize_comparison (&compare_code
, &op0
, &op1
, 1);
2949 /* Do the rest only if op1 is const0_rtx, which may be the
2950 result of simplification. */
2951 if (op1
== const0_rtx
)
2953 /* If a single use of the CC is found, prepare to modify it
2954 when SELECT_CC_MODE returns a new CC-class mode, or when
2955 the above simplify_compare_const() returned a new comparison
2956 operator. undobuf.other_insn is assigned the CC use insn
2957 when modifying it. */
2960 #ifdef SELECT_CC_MODE
2961 enum machine_mode new_mode
2962 = SELECT_CC_MODE (compare_code
, op0
, op1
);
2963 if (new_mode
!= orig_compare_mode
2964 && can_change_dest_mode (SET_DEST (newpat
),
2965 added_sets_2
, new_mode
))
2967 unsigned int regno
= REGNO (newpat_dest
);
2968 compare_mode
= new_mode
;
2969 if (regno
< FIRST_PSEUDO_REGISTER
)
2970 newpat_dest
= gen_rtx_REG (compare_mode
, regno
);
2973 SUBST_MODE (regno_reg_rtx
[regno
], compare_mode
);
2974 newpat_dest
= regno_reg_rtx
[regno
];
2978 /* Cases for modifying the CC-using comparison. */
2979 if (compare_code
!= orig_compare_code
2980 /* ??? Do we need to verify the zero rtx? */
2981 && XEXP (*cc_use_loc
, 1) == const0_rtx
)
2983 /* Replace cc_use_loc with entire new RTX. */
2985 gen_rtx_fmt_ee (compare_code
, compare_mode
,
2986 newpat_dest
, const0_rtx
));
2987 undobuf
.other_insn
= cc_use_insn
;
2989 else if (compare_mode
!= orig_compare_mode
)
2991 /* Just replace the CC reg with a new mode. */
2992 SUBST (XEXP (*cc_use_loc
, 0), newpat_dest
);
2993 undobuf
.other_insn
= cc_use_insn
;
2997 /* Now we modify the current newpat:
2998 First, SET_DEST(newpat) is updated if the CC mode has been
2999 altered. For targets without SELECT_CC_MODE, this should be
3001 if (compare_mode
!= orig_compare_mode
)
3002 SUBST (SET_DEST (newpat
), newpat_dest
);
3003 /* This is always done to propagate i2src into newpat. */
3004 SUBST (SET_SRC (newpat
),
3005 gen_rtx_COMPARE (compare_mode
, op0
, op1
));
3006 /* Create new version of i2pat if needed; the below PARALLEL
3007 creation needs this to work correctly. */
3008 if (! rtx_equal_p (i2src
, op0
))
3009 i2pat
= gen_rtx_SET (VOIDmode
, i2dest
, op0
);
3015 if (i2_is_used
== 0)
3017 /* It is possible that the source of I2 or I1 may be performing
3018 an unneeded operation, such as a ZERO_EXTEND of something
3019 that is known to have the high part zero. Handle that case
3020 by letting subst look at the inner insns.
3022 Another way to do this would be to have a function that tries
3023 to simplify a single insn instead of merging two or more
3024 insns. We don't do this because of the potential of infinite
3025 loops and because of the potential extra memory required.
3026 However, doing it the way we are is a bit of a kludge and
3027 doesn't catch all cases.
3029 But only do this if -fexpensive-optimizations since it slows
3030 things down and doesn't usually win.
3032 This is not done in the COMPARE case above because the
3033 unmodified I2PAT is used in the PARALLEL and so a pattern
3034 with a modified I2SRC would not match. */
3036 if (flag_expensive_optimizations
)
3038 /* Pass pc_rtx so no substitutions are done, just
3042 subst_low_luid
= DF_INSN_LUID (i1
);
3043 i1src
= subst (i1src
, pc_rtx
, pc_rtx
, 0, 0, 0);
3046 subst_low_luid
= DF_INSN_LUID (i2
);
3047 i2src
= subst (i2src
, pc_rtx
, pc_rtx
, 0, 0, 0);
3050 n_occurrences
= 0; /* `subst' counts here */
3051 subst_low_luid
= DF_INSN_LUID (i2
);
3053 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3054 copy of I2SRC each time we substitute it, in order to avoid creating
3055 self-referential RTL when we will be substituting I1SRC for I1DEST
3056 later. Likewise if I0 feeds into I2, either directly or indirectly
3057 through I1, and I0DEST is in I0SRC. */
3058 newpat
= subst (PATTERN (i3
), i2dest
, i2src
, 0, 0,
3059 (i1_feeds_i2_n
&& i1dest_in_i1src
)
3060 || ((i0_feeds_i2_n
|| (i0_feeds_i1_n
&& i1_feeds_i2_n
))
3061 && i0dest_in_i0src
));
3064 /* Record whether I2's body now appears within I3's body. */
3065 i2_is_used
= n_occurrences
;
3068 /* If we already got a failure, don't try to do more. Otherwise, try to
3069 substitute I1 if we have it. */
3071 if (i1
&& GET_CODE (newpat
) != CLOBBER
)
3073 /* Check that an autoincrement side-effect on I1 has not been lost.
3074 This happens if I1DEST is mentioned in I2 and dies there, and
3075 has disappeared from the new pattern. */
3076 if ((FIND_REG_INC_NOTE (i1
, NULL_RTX
) != 0
3078 && dead_or_set_p (i2
, i1dest
)
3079 && !reg_overlap_mentioned_p (i1dest
, newpat
))
3080 /* Before we can do this substitution, we must redo the test done
3081 above (see detailed comments there) that ensures I1DEST isn't
3082 mentioned in any SETs in NEWPAT that are field assignments. */
3083 || !combinable_i3pat (NULL_RTX
, &newpat
, i1dest
, NULL_RTX
, NULL_RTX
,
3091 subst_low_luid
= DF_INSN_LUID (i1
);
3093 /* If the following substitution will modify I1SRC, make a copy of it
3094 for the case where it is substituted for I1DEST in I2PAT later. */
3095 if (added_sets_2
&& i1_feeds_i2_n
)
3096 i1src_copy
= copy_rtx (i1src
);
3098 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3099 copy of I1SRC each time we substitute it, in order to avoid creating
3100 self-referential RTL when we will be substituting I0SRC for I0DEST
3102 newpat
= subst (newpat
, i1dest
, i1src
, 0, 0,
3103 i0_feeds_i1_n
&& i0dest_in_i0src
);
3106 /* Record whether I1's body now appears within I3's body. */
3107 i1_is_used
= n_occurrences
;
3110 /* Likewise for I0 if we have it. */
3112 if (i0
&& GET_CODE (newpat
) != CLOBBER
)
3114 if ((FIND_REG_INC_NOTE (i0
, NULL_RTX
) != 0
3115 && ((i0_feeds_i2_n
&& dead_or_set_p (i2
, i0dest
))
3116 || (i0_feeds_i1_n
&& dead_or_set_p (i1
, i0dest
)))
3117 && !reg_overlap_mentioned_p (i0dest
, newpat
))
3118 || !combinable_i3pat (NULL_RTX
, &newpat
, i0dest
, NULL_RTX
, NULL_RTX
,
3125 /* If the following substitution will modify I0SRC, make a copy of it
3126 for the case where it is substituted for I0DEST in I1PAT later. */
3127 if (added_sets_1
&& i0_feeds_i1_n
)
3128 i0src_copy
= copy_rtx (i0src
);
3129 /* And a copy for I0DEST in I2PAT substitution. */
3130 if (added_sets_2
&& ((i0_feeds_i1_n
&& i1_feeds_i2_n
)
3131 || (i0_feeds_i2_n
)))
3132 i0src_copy2
= copy_rtx (i0src
);
3135 subst_low_luid
= DF_INSN_LUID (i0
);
3136 newpat
= subst (newpat
, i0dest
, i0src
, 0, 0, 0);
3140 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3141 to count all the ways that I2SRC and I1SRC can be used. */
3142 if ((FIND_REG_INC_NOTE (i2
, NULL_RTX
) != 0
3143 && i2_is_used
+ added_sets_2
> 1)
3144 || (i1
!= 0 && FIND_REG_INC_NOTE (i1
, NULL_RTX
) != 0
3145 && (i1_is_used
+ added_sets_1
+ (added_sets_2
&& i1_feeds_i2_n
)
3147 || (i0
!= 0 && FIND_REG_INC_NOTE (i0
, NULL_RTX
) != 0
3148 && (n_occurrences
+ added_sets_0
3149 + (added_sets_1
&& i0_feeds_i1_n
)
3150 + (added_sets_2
&& i0_feeds_i2_n
)
3152 /* Fail if we tried to make a new register. */
3153 || max_reg_num () != maxreg
3154 /* Fail if we couldn't do something and have a CLOBBER. */
3155 || GET_CODE (newpat
) == CLOBBER
3156 /* Fail if this new pattern is a MULT and we didn't have one before
3157 at the outer level. */
3158 || (GET_CODE (newpat
) == SET
&& GET_CODE (SET_SRC (newpat
)) == MULT
3165 /* If the actions of the earlier insns must be kept
3166 in addition to substituting them into the latest one,
3167 we must make a new PARALLEL for the latest insn
3168 to hold additional the SETs. */
3170 if (added_sets_0
|| added_sets_1
|| added_sets_2
)
3172 int extra_sets
= added_sets_0
+ added_sets_1
+ added_sets_2
;
3175 if (GET_CODE (newpat
) == PARALLEL
)
3177 rtvec old
= XVEC (newpat
, 0);
3178 total_sets
= XVECLEN (newpat
, 0) + extra_sets
;
3179 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
3180 memcpy (XVEC (newpat
, 0)->elem
, &old
->elem
[0],
3181 sizeof (old
->elem
[0]) * old
->num_elem
);
3186 total_sets
= 1 + extra_sets
;
3187 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
3188 XVECEXP (newpat
, 0, 0) = old
;
3192 XVECEXP (newpat
, 0, --total_sets
) = i0pat
;
3198 t
= subst (t
, i0dest
, i0src_copy
? i0src_copy
: i0src
, 0, 0, 0);
3200 XVECEXP (newpat
, 0, --total_sets
) = t
;
3206 t
= subst (t
, i1dest
, i1src_copy
? i1src_copy
: i1src
, 0, 0,
3207 i0_feeds_i1_n
&& i0dest_in_i0src
);
3208 if ((i0_feeds_i1_n
&& i1_feeds_i2_n
) || i0_feeds_i2_n
)
3209 t
= subst (t
, i0dest
, i0src_copy2
? i0src_copy2
: i0src
, 0, 0, 0);
3211 XVECEXP (newpat
, 0, --total_sets
) = t
;
3215 validate_replacement
:
3217 /* Note which hard regs this insn has as inputs. */
3218 mark_used_regs_combine (newpat
);
3220 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3221 consider splitting this pattern, we might need these clobbers. */
3222 if (i1
&& GET_CODE (newpat
) == PARALLEL
3223 && GET_CODE (XVECEXP (newpat
, 0, XVECLEN (newpat
, 0) - 1)) == CLOBBER
)
3225 int len
= XVECLEN (newpat
, 0);
3227 newpat_vec_with_clobbers
= rtvec_alloc (len
);
3228 for (i
= 0; i
< len
; i
++)
3229 RTVEC_ELT (newpat_vec_with_clobbers
, i
) = XVECEXP (newpat
, 0, i
);
3232 /* Is the result of combination a valid instruction? */
3233 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3235 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3236 the second SET's destination is a register that is unused and isn't
3237 marked as an instruction that might trap in an EH region. In that case,
3238 we just need the first SET. This can occur when simplifying a divmod
3239 insn. We *must* test for this case here because the code below that
3240 splits two independent SETs doesn't handle this case correctly when it
3241 updates the register status.
3243 It's pointless doing this if we originally had two sets, one from
3244 i3, and one from i2. Combining then splitting the parallel results
3245 in the original i2 again plus an invalid insn (which we delete).
3246 The net effect is only to move instructions around, which makes
3247 debug info less accurate.
3249 Also check the case where the first SET's destination is unused.
3250 That would not cause incorrect code, but does cause an unneeded
3253 if (insn_code_number
< 0
3254 && !(added_sets_2
&& i1
== 0)
3255 && GET_CODE (newpat
) == PARALLEL
3256 && XVECLEN (newpat
, 0) == 2
3257 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
3258 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
3259 && asm_noperands (newpat
) < 0)
3261 rtx set0
= XVECEXP (newpat
, 0, 0);
3262 rtx set1
= XVECEXP (newpat
, 0, 1);
3264 if (((REG_P (SET_DEST (set1
))
3265 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set1
)))
3266 || (GET_CODE (SET_DEST (set1
)) == SUBREG
3267 && find_reg_note (i3
, REG_UNUSED
, SUBREG_REG (SET_DEST (set1
)))))
3268 && insn_nothrow_p (i3
)
3269 && !side_effects_p (SET_SRC (set1
)))
3272 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3275 else if (((REG_P (SET_DEST (set0
))
3276 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set0
)))
3277 || (GET_CODE (SET_DEST (set0
)) == SUBREG
3278 && find_reg_note (i3
, REG_UNUSED
,
3279 SUBREG_REG (SET_DEST (set0
)))))
3280 && insn_nothrow_p (i3
)
3281 && !side_effects_p (SET_SRC (set0
)))
3284 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3286 if (insn_code_number
>= 0)
3287 changed_i3_dest
= 1;
3291 /* If we were combining three insns and the result is a simple SET
3292 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3293 insns. There are two ways to do this. It can be split using a
3294 machine-specific method (like when you have an addition of a large
3295 constant) or by combine in the function find_split_point. */
3297 if (i1
&& insn_code_number
< 0 && GET_CODE (newpat
) == SET
3298 && asm_noperands (newpat
) < 0)
3300 rtx parallel
, m_split
, *split
;
3302 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3303 use I2DEST as a scratch register will help. In the latter case,
3304 convert I2DEST to the mode of the source of NEWPAT if we can. */
3306 m_split
= combine_split_insns (newpat
, i3
);
3308 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3309 inputs of NEWPAT. */
3311 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3312 possible to try that as a scratch reg. This would require adding
3313 more code to make it work though. */
3315 if (m_split
== 0 && ! reg_overlap_mentioned_p (i2dest
, newpat
))
3317 enum machine_mode new_mode
= GET_MODE (SET_DEST (newpat
));
3319 /* First try to split using the original register as a
3320 scratch register. */
3321 parallel
= gen_rtx_PARALLEL (VOIDmode
,
3322 gen_rtvec (2, newpat
,
3323 gen_rtx_CLOBBER (VOIDmode
,
3325 m_split
= combine_split_insns (parallel
, i3
);
3327 /* If that didn't work, try changing the mode of I2DEST if
3330 && new_mode
!= GET_MODE (i2dest
)
3331 && new_mode
!= VOIDmode
3332 && can_change_dest_mode (i2dest
, added_sets_2
, new_mode
))
3334 enum machine_mode old_mode
= GET_MODE (i2dest
);
3337 if (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
)
3338 ni2dest
= gen_rtx_REG (new_mode
, REGNO (i2dest
));
3341 SUBST_MODE (regno_reg_rtx
[REGNO (i2dest
)], new_mode
);
3342 ni2dest
= regno_reg_rtx
[REGNO (i2dest
)];
3345 parallel
= (gen_rtx_PARALLEL
3347 gen_rtvec (2, newpat
,
3348 gen_rtx_CLOBBER (VOIDmode
,
3350 m_split
= combine_split_insns (parallel
, i3
);
3353 && REGNO (i2dest
) >= FIRST_PSEUDO_REGISTER
)
3357 adjust_reg_mode (regno_reg_rtx
[REGNO (i2dest
)], old_mode
);
3358 buf
= undobuf
.undos
;
3359 undobuf
.undos
= buf
->next
;
3360 buf
->next
= undobuf
.frees
;
3361 undobuf
.frees
= buf
;
3365 i2scratch
= m_split
!= 0;
3368 /* If recog_for_combine has discarded clobbers, try to use them
3369 again for the split. */
3370 if (m_split
== 0 && newpat_vec_with_clobbers
)
3372 parallel
= gen_rtx_PARALLEL (VOIDmode
, newpat_vec_with_clobbers
);
3373 m_split
= combine_split_insns (parallel
, i3
);
3376 if (m_split
&& NEXT_INSN (m_split
) == NULL_RTX
)
3378 m_split
= PATTERN (m_split
);
3379 insn_code_number
= recog_for_combine (&m_split
, i3
, &new_i3_notes
);
3380 if (insn_code_number
>= 0)
3383 else if (m_split
&& NEXT_INSN (NEXT_INSN (m_split
)) == NULL_RTX
3384 && (next_nonnote_nondebug_insn (i2
) == i3
3385 || ! use_crosses_set_p (PATTERN (m_split
), DF_INSN_LUID (i2
))))
3388 rtx newi3pat
= PATTERN (NEXT_INSN (m_split
));
3389 newi2pat
= PATTERN (m_split
);
3391 i3set
= single_set (NEXT_INSN (m_split
));
3392 i2set
= single_set (m_split
);
3394 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3396 /* If I2 or I3 has multiple SETs, we won't know how to track
3397 register status, so don't use these insns. If I2's destination
3398 is used between I2 and I3, we also can't use these insns. */
3400 if (i2_code_number
>= 0 && i2set
&& i3set
3401 && (next_nonnote_nondebug_insn (i2
) == i3
3402 || ! reg_used_between_p (SET_DEST (i2set
), i2
, i3
)))
3403 insn_code_number
= recog_for_combine (&newi3pat
, i3
,
3405 if (insn_code_number
>= 0)
3408 /* It is possible that both insns now set the destination of I3.
3409 If so, we must show an extra use of it. */
3411 if (insn_code_number
>= 0)
3413 rtx new_i3_dest
= SET_DEST (i3set
);
3414 rtx new_i2_dest
= SET_DEST (i2set
);
3416 while (GET_CODE (new_i3_dest
) == ZERO_EXTRACT
3417 || GET_CODE (new_i3_dest
) == STRICT_LOW_PART
3418 || GET_CODE (new_i3_dest
) == SUBREG
)
3419 new_i3_dest
= XEXP (new_i3_dest
, 0);
3421 while (GET_CODE (new_i2_dest
) == ZERO_EXTRACT
3422 || GET_CODE (new_i2_dest
) == STRICT_LOW_PART
3423 || GET_CODE (new_i2_dest
) == SUBREG
)
3424 new_i2_dest
= XEXP (new_i2_dest
, 0);
3426 if (REG_P (new_i3_dest
)
3427 && REG_P (new_i2_dest
)
3428 && REGNO (new_i3_dest
) == REGNO (new_i2_dest
))
3429 INC_REG_N_SETS (REGNO (new_i2_dest
), 1);
3433 /* If we can split it and use I2DEST, go ahead and see if that
3434 helps things be recognized. Verify that none of the registers
3435 are set between I2 and I3. */
3436 if (insn_code_number
< 0
3437 && (split
= find_split_point (&newpat
, i3
, false)) != 0
3441 /* We need I2DEST in the proper mode. If it is a hard register
3442 or the only use of a pseudo, we can change its mode.
3443 Make sure we don't change a hard register to have a mode that
3444 isn't valid for it, or change the number of registers. */
3445 && (GET_MODE (*split
) == GET_MODE (i2dest
)
3446 || GET_MODE (*split
) == VOIDmode
3447 || can_change_dest_mode (i2dest
, added_sets_2
,
3449 && (next_nonnote_nondebug_insn (i2
) == i3
3450 || ! use_crosses_set_p (*split
, DF_INSN_LUID (i2
)))
3451 /* We can't overwrite I2DEST if its value is still used by
3453 && ! reg_referenced_p (i2dest
, newpat
))
3455 rtx newdest
= i2dest
;
3456 enum rtx_code split_code
= GET_CODE (*split
);
3457 enum machine_mode split_mode
= GET_MODE (*split
);
3458 bool subst_done
= false;
3459 newi2pat
= NULL_RTX
;
3463 /* *SPLIT may be part of I2SRC, so make sure we have the
3464 original expression around for later debug processing.
3465 We should not need I2SRC any more in other cases. */
3466 if (MAY_HAVE_DEBUG_INSNS
)
3467 i2src
= copy_rtx (i2src
);
3471 /* Get NEWDEST as a register in the proper mode. We have already
3472 validated that we can do this. */
3473 if (GET_MODE (i2dest
) != split_mode
&& split_mode
!= VOIDmode
)
3475 if (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
)
3476 newdest
= gen_rtx_REG (split_mode
, REGNO (i2dest
));
3479 SUBST_MODE (regno_reg_rtx
[REGNO (i2dest
)], split_mode
);
3480 newdest
= regno_reg_rtx
[REGNO (i2dest
)];
3484 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3485 an ASHIFT. This can occur if it was inside a PLUS and hence
3486 appeared to be a memory address. This is a kludge. */
3487 if (split_code
== MULT
3488 && CONST_INT_P (XEXP (*split
, 1))
3489 && INTVAL (XEXP (*split
, 1)) > 0
3490 && (i
= exact_log2 (UINTVAL (XEXP (*split
, 1)))) >= 0)
3492 SUBST (*split
, gen_rtx_ASHIFT (split_mode
,
3493 XEXP (*split
, 0), GEN_INT (i
)));
3494 /* Update split_code because we may not have a multiply
3496 split_code
= GET_CODE (*split
);
3499 #ifdef INSN_SCHEDULING
3500 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3501 be written as a ZERO_EXTEND. */
3502 if (split_code
== SUBREG
&& MEM_P (SUBREG_REG (*split
)))
3504 #ifdef LOAD_EXTEND_OP
3505 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3506 what it really is. */
3507 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split
)))
3509 SUBST (*split
, gen_rtx_SIGN_EXTEND (split_mode
,
3510 SUBREG_REG (*split
)));
3513 SUBST (*split
, gen_rtx_ZERO_EXTEND (split_mode
,
3514 SUBREG_REG (*split
)));
3518 /* Attempt to split binary operators using arithmetic identities. */
3519 if (BINARY_P (SET_SRC (newpat
))
3520 && split_mode
== GET_MODE (SET_SRC (newpat
))
3521 && ! side_effects_p (SET_SRC (newpat
)))
3523 rtx setsrc
= SET_SRC (newpat
);
3524 enum machine_mode mode
= GET_MODE (setsrc
);
3525 enum rtx_code code
= GET_CODE (setsrc
);
3526 rtx src_op0
= XEXP (setsrc
, 0);
3527 rtx src_op1
= XEXP (setsrc
, 1);
3529 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3530 if (rtx_equal_p (src_op0
, src_op1
))
3532 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
, src_op0
);
3533 SUBST (XEXP (setsrc
, 0), newdest
);
3534 SUBST (XEXP (setsrc
, 1), newdest
);
3537 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3538 else if ((code
== PLUS
|| code
== MULT
)
3539 && GET_CODE (src_op0
) == code
3540 && GET_CODE (XEXP (src_op0
, 0)) == code
3541 && (INTEGRAL_MODE_P (mode
)
3542 || (FLOAT_MODE_P (mode
)
3543 && flag_unsafe_math_optimizations
)))
3545 rtx p
= XEXP (XEXP (src_op0
, 0), 0);
3546 rtx q
= XEXP (XEXP (src_op0
, 0), 1);
3547 rtx r
= XEXP (src_op0
, 1);
3550 /* Split both "((X op Y) op X) op Y" and
3551 "((X op Y) op Y) op X" as "T op T" where T is
3553 if ((rtx_equal_p (p
,r
) && rtx_equal_p (q
,s
))
3554 || (rtx_equal_p (p
,s
) && rtx_equal_p (q
,r
)))
3556 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
,
3558 SUBST (XEXP (setsrc
, 0), newdest
);
3559 SUBST (XEXP (setsrc
, 1), newdest
);
3562 /* Split "((X op X) op Y) op Y)" as "T op T" where
3564 else if (rtx_equal_p (p
,q
) && rtx_equal_p (r
,s
))
3566 rtx tmp
= simplify_gen_binary (code
, mode
, p
, r
);
3567 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
, tmp
);
3568 SUBST (XEXP (setsrc
, 0), newdest
);
3569 SUBST (XEXP (setsrc
, 1), newdest
);
3577 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
, *split
);
3578 SUBST (*split
, newdest
);
3581 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3583 /* recog_for_combine might have added CLOBBERs to newi2pat.
3584 Make sure NEWPAT does not depend on the clobbered regs. */
3585 if (GET_CODE (newi2pat
) == PARALLEL
)
3586 for (i
= XVECLEN (newi2pat
, 0) - 1; i
>= 0; i
--)
3587 if (GET_CODE (XVECEXP (newi2pat
, 0, i
)) == CLOBBER
)
3589 rtx reg
= XEXP (XVECEXP (newi2pat
, 0, i
), 0);
3590 if (reg_overlap_mentioned_p (reg
, newpat
))
3597 /* If the split point was a MULT and we didn't have one before,
3598 don't use one now. */
3599 if (i2_code_number
>= 0 && ! (split_code
== MULT
&& ! have_mult
))
3600 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3604 /* Check for a case where we loaded from memory in a narrow mode and
3605 then sign extended it, but we need both registers. In that case,
3606 we have a PARALLEL with both loads from the same memory location.
3607 We can split this into a load from memory followed by a register-register
3608 copy. This saves at least one insn, more if register allocation can
3611 We cannot do this if the destination of the first assignment is a
3612 condition code register or cc0. We eliminate this case by making sure
3613 the SET_DEST and SET_SRC have the same mode.
3615 We cannot do this if the destination of the second assignment is
3616 a register that we have already assumed is zero-extended. Similarly
3617 for a SUBREG of such a register. */
3619 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
3620 && GET_CODE (newpat
) == PARALLEL
3621 && XVECLEN (newpat
, 0) == 2
3622 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
3623 && GET_CODE (SET_SRC (XVECEXP (newpat
, 0, 0))) == SIGN_EXTEND
3624 && (GET_MODE (SET_DEST (XVECEXP (newpat
, 0, 0)))
3625 == GET_MODE (SET_SRC (XVECEXP (newpat
, 0, 0))))
3626 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
3627 && rtx_equal_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
3628 XEXP (SET_SRC (XVECEXP (newpat
, 0, 0)), 0))
3629 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
3631 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
3632 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
3633 && ! (temp
= SET_DEST (XVECEXP (newpat
, 0, 1)),
3635 && reg_stat
[REGNO (temp
)].nonzero_bits
!= 0
3636 && GET_MODE_PRECISION (GET_MODE (temp
)) < BITS_PER_WORD
3637 && GET_MODE_PRECISION (GET_MODE (temp
)) < HOST_BITS_PER_INT
3638 && (reg_stat
[REGNO (temp
)].nonzero_bits
3639 != GET_MODE_MASK (word_mode
))))
3640 && ! (GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) == SUBREG
3641 && (temp
= SUBREG_REG (SET_DEST (XVECEXP (newpat
, 0, 1))),
3643 && reg_stat
[REGNO (temp
)].nonzero_bits
!= 0
3644 && GET_MODE_PRECISION (GET_MODE (temp
)) < BITS_PER_WORD
3645 && GET_MODE_PRECISION (GET_MODE (temp
)) < HOST_BITS_PER_INT
3646 && (reg_stat
[REGNO (temp
)].nonzero_bits
3647 != GET_MODE_MASK (word_mode
)))))
3648 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
3649 SET_SRC (XVECEXP (newpat
, 0, 1)))
3650 && ! find_reg_note (i3
, REG_UNUSED
,
3651 SET_DEST (XVECEXP (newpat
, 0, 0))))
3655 newi2pat
= XVECEXP (newpat
, 0, 0);
3656 ni2dest
= SET_DEST (XVECEXP (newpat
, 0, 0));
3657 newpat
= XVECEXP (newpat
, 0, 1);
3658 SUBST (SET_SRC (newpat
),
3659 gen_lowpart (GET_MODE (SET_SRC (newpat
)), ni2dest
));
3660 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3662 if (i2_code_number
>= 0)
3663 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3665 if (insn_code_number
>= 0)
3669 /* Similarly, check for a case where we have a PARALLEL of two independent
3670 SETs but we started with three insns. In this case, we can do the sets
3671 as two separate insns. This case occurs when some SET allows two
3672 other insns to combine, but the destination of that SET is still live. */
3674 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
3675 && GET_CODE (newpat
) == PARALLEL
3676 && XVECLEN (newpat
, 0) == 2
3677 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
3678 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != ZERO_EXTRACT
3679 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != STRICT_LOW_PART
3680 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
3681 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
3682 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
3683 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
3684 XVECEXP (newpat
, 0, 0))
3685 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 0)),
3686 XVECEXP (newpat
, 0, 1))
3687 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 0)))
3688 && contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 1)))))
3690 rtx set0
= XVECEXP (newpat
, 0, 0);
3691 rtx set1
= XVECEXP (newpat
, 0, 1);
3693 /* Normally, it doesn't matter which of the two is done first,
3694 but the one that references cc0 can't be the second, and
3695 one which uses any regs/memory set in between i2 and i3 can't
3696 be first. The PARALLEL might also have been pre-existing in i3,
3697 so we need to make sure that we won't wrongly hoist a SET to i2
3698 that would conflict with a death note present in there. */
3699 if (!use_crosses_set_p (SET_SRC (set1
), DF_INSN_LUID (i2
))
3700 && !(REG_P (SET_DEST (set1
))
3701 && find_reg_note (i2
, REG_DEAD
, SET_DEST (set1
)))
3702 && !(GET_CODE (SET_DEST (set1
)) == SUBREG
3703 && find_reg_note (i2
, REG_DEAD
,
3704 SUBREG_REG (SET_DEST (set1
))))
3706 && !reg_referenced_p (cc0_rtx
, set0
)
3708 /* If I3 is a jump, ensure that set0 is a jump so that
3709 we do not create invalid RTL. */
3710 && (!JUMP_P (i3
) || SET_DEST (set0
) == pc_rtx
)
3716 else if (!use_crosses_set_p (SET_SRC (set0
), DF_INSN_LUID (i2
))
3717 && !(REG_P (SET_DEST (set0
))
3718 && find_reg_note (i2
, REG_DEAD
, SET_DEST (set0
)))
3719 && !(GET_CODE (SET_DEST (set0
)) == SUBREG
3720 && find_reg_note (i2
, REG_DEAD
,
3721 SUBREG_REG (SET_DEST (set0
))))
3723 && !reg_referenced_p (cc0_rtx
, set1
)
3725 /* If I3 is a jump, ensure that set1 is a jump so that
3726 we do not create invalid RTL. */
3727 && (!JUMP_P (i3
) || SET_DEST (set1
) == pc_rtx
)
3739 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3741 if (i2_code_number
>= 0)
3743 /* recog_for_combine might have added CLOBBERs to newi2pat.
3744 Make sure NEWPAT does not depend on the clobbered regs. */
3745 if (GET_CODE (newi2pat
) == PARALLEL
)
3747 for (i
= XVECLEN (newi2pat
, 0) - 1; i
>= 0; i
--)
3748 if (GET_CODE (XVECEXP (newi2pat
, 0, i
)) == CLOBBER
)
3750 rtx reg
= XEXP (XVECEXP (newi2pat
, 0, i
), 0);
3751 if (reg_overlap_mentioned_p (reg
, newpat
))
3759 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3763 /* If it still isn't recognized, fail and change things back the way they
3765 if ((insn_code_number
< 0
3766 /* Is the result a reasonable ASM_OPERANDS? */
3767 && (! check_asm_operands (newpat
) || added_sets_1
|| added_sets_2
)))
3773 /* If we had to change another insn, make sure it is valid also. */
3774 if (undobuf
.other_insn
)
3776 CLEAR_HARD_REG_SET (newpat_used_regs
);
3778 other_pat
= PATTERN (undobuf
.other_insn
);
3779 other_code_number
= recog_for_combine (&other_pat
, undobuf
.other_insn
,
3782 if (other_code_number
< 0 && ! check_asm_operands (other_pat
))
3790 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3791 they are adjacent to each other or not. */
3793 rtx p
= prev_nonnote_insn (i3
);
3794 if (p
&& p
!= i2
&& NONJUMP_INSN_P (p
) && newi2pat
3795 && sets_cc0_p (newi2pat
))
3803 /* Only allow this combination if insn_rtx_costs reports that the
3804 replacement instructions are cheaper than the originals. */
3805 if (!combine_validate_cost (i0
, i1
, i2
, i3
, newpat
, newi2pat
, other_pat
))
3811 if (MAY_HAVE_DEBUG_INSNS
)
3815 for (undo
= undobuf
.undos
; undo
; undo
= undo
->next
)
3816 if (undo
->kind
== UNDO_MODE
)
3818 rtx reg
= *undo
->where
.r
;
3819 enum machine_mode new_mode
= GET_MODE (reg
);
3820 enum machine_mode old_mode
= undo
->old_contents
.m
;
3822 /* Temporarily revert mode back. */
3823 adjust_reg_mode (reg
, old_mode
);
3825 if (reg
== i2dest
&& i2scratch
)
3827 /* If we used i2dest as a scratch register with a
3828 different mode, substitute it for the original
3829 i2src while its original mode is temporarily
3830 restored, and then clear i2scratch so that we don't
3831 do it again later. */
3832 propagate_for_debug (i2
, last_combined_insn
, reg
, i2src
,
3835 /* Put back the new mode. */
3836 adjust_reg_mode (reg
, new_mode
);
3840 rtx tempreg
= gen_raw_REG (old_mode
, REGNO (reg
));
3846 last
= last_combined_insn
;
3851 last
= undobuf
.other_insn
;
3853 if (DF_INSN_LUID (last
)
3854 < DF_INSN_LUID (last_combined_insn
))
3855 last
= last_combined_insn
;
3858 /* We're dealing with a reg that changed mode but not
3859 meaning, so we want to turn it into a subreg for
3860 the new mode. However, because of REG sharing and
3861 because its mode had already changed, we have to do
3862 it in two steps. First, replace any debug uses of
3863 reg, with its original mode temporarily restored,
3864 with this copy we have created; then, replace the
3865 copy with the SUBREG of the original shared reg,
3866 once again changed to the new mode. */
3867 propagate_for_debug (first
, last
, reg
, tempreg
,
3869 adjust_reg_mode (reg
, new_mode
);
3870 propagate_for_debug (first
, last
, tempreg
,
3871 lowpart_subreg (old_mode
, reg
, new_mode
),
3877 /* If we will be able to accept this, we have made a
3878 change to the destination of I3. This requires us to
3879 do a few adjustments. */
3881 if (changed_i3_dest
)
3883 PATTERN (i3
) = newpat
;
3884 adjust_for_new_dest (i3
);
3887 /* We now know that we can do this combination. Merge the insns and
3888 update the status of registers and LOG_LINKS. */
3890 if (undobuf
.other_insn
)
3894 PATTERN (undobuf
.other_insn
) = other_pat
;
3896 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
3897 ensure that they are still valid. Then add any non-duplicate
3898 notes added by recog_for_combine. */
3899 for (note
= REG_NOTES (undobuf
.other_insn
); note
; note
= next
)
3901 next
= XEXP (note
, 1);
3903 if ((REG_NOTE_KIND (note
) == REG_DEAD
3904 && !reg_referenced_p (XEXP (note
, 0),
3905 PATTERN (undobuf
.other_insn
)))
3906 ||(REG_NOTE_KIND (note
) == REG_UNUSED
3907 && !reg_set_p (XEXP (note
, 0),
3908 PATTERN (undobuf
.other_insn
))))
3909 remove_note (undobuf
.other_insn
, note
);
3912 distribute_notes (new_other_notes
, undobuf
.other_insn
,
3913 undobuf
.other_insn
, NULL_RTX
, NULL_RTX
, NULL_RTX
,
3920 struct insn_link
*link
;
3923 /* I3 now uses what used to be its destination and which is now
3924 I2's destination. This requires us to do a few adjustments. */
3925 PATTERN (i3
) = newpat
;
3926 adjust_for_new_dest (i3
);
3928 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3931 However, some later insn might be using I2's dest and have
3932 a LOG_LINK pointing at I3. We must remove this link.
3933 The simplest way to remove the link is to point it at I1,
3934 which we know will be a NOTE. */
3936 /* newi2pat is usually a SET here; however, recog_for_combine might
3937 have added some clobbers. */
3938 if (GET_CODE (newi2pat
) == PARALLEL
)
3939 ni2dest
= SET_DEST (XVECEXP (newi2pat
, 0, 0));
3941 ni2dest
= SET_DEST (newi2pat
);
3943 for (insn
= NEXT_INSN (i3
);
3944 insn
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
3945 || insn
!= BB_HEAD (this_basic_block
->next_bb
));
3946 insn
= NEXT_INSN (insn
))
3948 if (INSN_P (insn
) && reg_referenced_p (ni2dest
, PATTERN (insn
)))
3950 FOR_EACH_LOG_LINK (link
, insn
)
3951 if (link
->insn
== i3
)
3960 rtx i3notes
, i2notes
, i1notes
= 0, i0notes
= 0;
3961 struct insn_link
*i3links
, *i2links
, *i1links
= 0, *i0links
= 0;
3964 /* Compute which registers we expect to eliminate. newi2pat may be setting
3965 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3966 same as i3dest, in which case newi2pat may be setting i1dest. */
3967 rtx elim_i2
= ((newi2pat
&& reg_set_p (i2dest
, newi2pat
))
3968 || i2dest_in_i2src
|| i2dest_in_i1src
|| i2dest_in_i0src
3971 rtx elim_i1
= (i1
== 0 || i1dest_in_i1src
|| i1dest_in_i0src
3972 || (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
3975 rtx elim_i0
= (i0
== 0 || i0dest_in_i0src
3976 || (newi2pat
&& reg_set_p (i0dest
, newi2pat
))
3980 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3982 i3notes
= REG_NOTES (i3
), i3links
= LOG_LINKS (i3
);
3983 i2notes
= REG_NOTES (i2
), i2links
= LOG_LINKS (i2
);
3985 i1notes
= REG_NOTES (i1
), i1links
= LOG_LINKS (i1
);
3987 i0notes
= REG_NOTES (i0
), i0links
= LOG_LINKS (i0
);
3989 /* Ensure that we do not have something that should not be shared but
3990 occurs multiple times in the new insns. Check this by first
3991 resetting all the `used' flags and then copying anything is shared. */
3993 reset_used_flags (i3notes
);
3994 reset_used_flags (i2notes
);
3995 reset_used_flags (i1notes
);
3996 reset_used_flags (i0notes
);
3997 reset_used_flags (newpat
);
3998 reset_used_flags (newi2pat
);
3999 if (undobuf
.other_insn
)
4000 reset_used_flags (PATTERN (undobuf
.other_insn
));
4002 i3notes
= copy_rtx_if_shared (i3notes
);
4003 i2notes
= copy_rtx_if_shared (i2notes
);
4004 i1notes
= copy_rtx_if_shared (i1notes
);
4005 i0notes
= copy_rtx_if_shared (i0notes
);
4006 newpat
= copy_rtx_if_shared (newpat
);
4007 newi2pat
= copy_rtx_if_shared (newi2pat
);
4008 if (undobuf
.other_insn
)
4009 reset_used_flags (PATTERN (undobuf
.other_insn
));
4011 INSN_CODE (i3
) = insn_code_number
;
4012 PATTERN (i3
) = newpat
;
4014 if (CALL_P (i3
) && CALL_INSN_FUNCTION_USAGE (i3
))
4016 rtx call_usage
= CALL_INSN_FUNCTION_USAGE (i3
);
4018 reset_used_flags (call_usage
);
4019 call_usage
= copy_rtx (call_usage
);
4023 /* I2SRC must still be meaningful at this point. Some splitting
4024 operations can invalidate I2SRC, but those operations do not
4027 replace_rtx (call_usage
, i2dest
, i2src
);
4031 replace_rtx (call_usage
, i1dest
, i1src
);
4033 replace_rtx (call_usage
, i0dest
, i0src
);
4035 CALL_INSN_FUNCTION_USAGE (i3
) = call_usage
;
4038 if (undobuf
.other_insn
)
4039 INSN_CODE (undobuf
.other_insn
) = other_code_number
;
4041 /* We had one special case above where I2 had more than one set and
4042 we replaced a destination of one of those sets with the destination
4043 of I3. In that case, we have to update LOG_LINKS of insns later
4044 in this basic block. Note that this (expensive) case is rare.
4046 Also, in this case, we must pretend that all REG_NOTEs for I2
4047 actually came from I3, so that REG_UNUSED notes from I2 will be
4048 properly handled. */
4050 if (i3_subst_into_i2
)
4052 for (i
= 0; i
< XVECLEN (PATTERN (i2
), 0); i
++)
4053 if ((GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) == SET
4054 || GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) == CLOBBER
)
4055 && REG_P (SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)))
4056 && SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)) != i2dest
4057 && ! find_reg_note (i2
, REG_UNUSED
,
4058 SET_DEST (XVECEXP (PATTERN (i2
), 0, i
))))
4059 for (temp
= NEXT_INSN (i2
);
4061 && (this_basic_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
4062 || BB_HEAD (this_basic_block
) != temp
);
4063 temp
= NEXT_INSN (temp
))
4064 if (temp
!= i3
&& INSN_P (temp
))
4065 FOR_EACH_LOG_LINK (link
, temp
)
4066 if (link
->insn
== i2
)
4072 while (XEXP (link
, 1))
4073 link
= XEXP (link
, 1);
4074 XEXP (link
, 1) = i2notes
;
4081 LOG_LINKS (i3
) = NULL
;
4083 LOG_LINKS (i2
) = NULL
;
4088 if (MAY_HAVE_DEBUG_INSNS
&& i2scratch
)
4089 propagate_for_debug (i2
, last_combined_insn
, i2dest
, i2src
,
4091 INSN_CODE (i2
) = i2_code_number
;
4092 PATTERN (i2
) = newi2pat
;
4096 if (MAY_HAVE_DEBUG_INSNS
&& i2src
)
4097 propagate_for_debug (i2
, last_combined_insn
, i2dest
, i2src
,
4099 SET_INSN_DELETED (i2
);
4104 LOG_LINKS (i1
) = NULL
;
4106 if (MAY_HAVE_DEBUG_INSNS
)
4107 propagate_for_debug (i1
, last_combined_insn
, i1dest
, i1src
,
4109 SET_INSN_DELETED (i1
);
4114 LOG_LINKS (i0
) = NULL
;
4116 if (MAY_HAVE_DEBUG_INSNS
)
4117 propagate_for_debug (i0
, last_combined_insn
, i0dest
, i0src
,
4119 SET_INSN_DELETED (i0
);
4122 /* Get death notes for everything that is now used in either I3 or
4123 I2 and used to die in a previous insn. If we built two new
4124 patterns, move from I1 to I2 then I2 to I3 so that we get the
4125 proper movement on registers that I2 modifies. */
4128 from_luid
= DF_INSN_LUID (i0
);
4130 from_luid
= DF_INSN_LUID (i1
);
4132 from_luid
= DF_INSN_LUID (i2
);
4134 move_deaths (newi2pat
, NULL_RTX
, from_luid
, i2
, &midnotes
);
4135 move_deaths (newpat
, newi2pat
, from_luid
, i3
, &midnotes
);
4137 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4139 distribute_notes (i3notes
, i3
, i3
, newi2pat
? i2
: NULL_RTX
,
4140 elim_i2
, elim_i1
, elim_i0
);
4142 distribute_notes (i2notes
, i2
, i3
, newi2pat
? i2
: NULL_RTX
,
4143 elim_i2
, elim_i1
, elim_i0
);
4145 distribute_notes (i1notes
, i1
, i3
, newi2pat
? i2
: NULL_RTX
,
4146 elim_i2
, elim_i1
, elim_i0
);
4148 distribute_notes (i0notes
, i0
, i3
, newi2pat
? i2
: NULL_RTX
,
4149 elim_i2
, elim_i1
, elim_i0
);
4151 distribute_notes (midnotes
, NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
4152 elim_i2
, elim_i1
, elim_i0
);
4154 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4155 know these are REG_UNUSED and want them to go to the desired insn,
4156 so we always pass it as i3. */
4158 if (newi2pat
&& new_i2_notes
)
4159 distribute_notes (new_i2_notes
, i2
, i2
, NULL_RTX
, NULL_RTX
, NULL_RTX
,
4163 distribute_notes (new_i3_notes
, i3
, i3
, NULL_RTX
, NULL_RTX
, NULL_RTX
,
4166 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4167 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4168 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4169 in that case, it might delete I2. Similarly for I2 and I1.
4170 Show an additional death due to the REG_DEAD note we make here. If
4171 we discard it in distribute_notes, we will decrement it again. */
4175 rtx new_note
= alloc_reg_note (REG_DEAD
, i3dest_killed
, NULL_RTX
);
4176 if (newi2pat
&& reg_set_p (i3dest_killed
, newi2pat
))
4177 distribute_notes (new_note
, NULL_RTX
, i2
, NULL_RTX
, elim_i2
,
4180 distribute_notes (new_note
, NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
4181 elim_i2
, elim_i1
, elim_i0
);
4184 if (i2dest_in_i2src
)
4186 rtx new_note
= alloc_reg_note (REG_DEAD
, i2dest
, NULL_RTX
);
4187 if (newi2pat
&& reg_set_p (i2dest
, newi2pat
))
4188 distribute_notes (new_note
, NULL_RTX
, i2
, NULL_RTX
, NULL_RTX
,
4189 NULL_RTX
, NULL_RTX
);
4191 distribute_notes (new_note
, NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
4192 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4195 if (i1dest_in_i1src
)
4197 rtx new_note
= alloc_reg_note (REG_DEAD
, i1dest
, NULL_RTX
);
4198 if (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
4199 distribute_notes (new_note
, NULL_RTX
, i2
, NULL_RTX
, NULL_RTX
,
4200 NULL_RTX
, NULL_RTX
);
4202 distribute_notes (new_note
, NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
4203 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4206 if (i0dest_in_i0src
)
4208 rtx new_note
= alloc_reg_note (REG_DEAD
, i0dest
, NULL_RTX
);
4209 if (newi2pat
&& reg_set_p (i0dest
, newi2pat
))
4210 distribute_notes (new_note
, NULL_RTX
, i2
, NULL_RTX
, NULL_RTX
,
4211 NULL_RTX
, NULL_RTX
);
4213 distribute_notes (new_note
, NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
4214 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4217 distribute_links (i3links
);
4218 distribute_links (i2links
);
4219 distribute_links (i1links
);
4220 distribute_links (i0links
);
4224 struct insn_link
*link
;
4225 rtx i2_insn
= 0, i2_val
= 0, set
;
4227 /* The insn that used to set this register doesn't exist, and
4228 this life of the register may not exist either. See if one of
4229 I3's links points to an insn that sets I2DEST. If it does,
4230 that is now the last known value for I2DEST. If we don't update
4231 this and I2 set the register to a value that depended on its old
4232 contents, we will get confused. If this insn is used, thing
4233 will be set correctly in combine_instructions. */
4234 FOR_EACH_LOG_LINK (link
, i3
)
4235 if ((set
= single_set (link
->insn
)) != 0
4236 && rtx_equal_p (i2dest
, SET_DEST (set
)))
4237 i2_insn
= link
->insn
, i2_val
= SET_SRC (set
);
4239 record_value_for_reg (i2dest
, i2_insn
, i2_val
);
4241 /* If the reg formerly set in I2 died only once and that was in I3,
4242 zero its use count so it won't make `reload' do any work. */
4244 && (newi2pat
== 0 || ! reg_mentioned_p (i2dest
, newi2pat
))
4245 && ! i2dest_in_i2src
)
4246 INC_REG_N_SETS (REGNO (i2dest
), -1);
4249 if (i1
&& REG_P (i1dest
))
4251 struct insn_link
*link
;
4252 rtx i1_insn
= 0, i1_val
= 0, set
;
4254 FOR_EACH_LOG_LINK (link
, i3
)
4255 if ((set
= single_set (link
->insn
)) != 0
4256 && rtx_equal_p (i1dest
, SET_DEST (set
)))
4257 i1_insn
= link
->insn
, i1_val
= SET_SRC (set
);
4259 record_value_for_reg (i1dest
, i1_insn
, i1_val
);
4261 if (! added_sets_1
&& ! i1dest_in_i1src
)
4262 INC_REG_N_SETS (REGNO (i1dest
), -1);
4265 if (i0
&& REG_P (i0dest
))
4267 struct insn_link
*link
;
4268 rtx i0_insn
= 0, i0_val
= 0, set
;
4270 FOR_EACH_LOG_LINK (link
, i3
)
4271 if ((set
= single_set (link
->insn
)) != 0
4272 && rtx_equal_p (i0dest
, SET_DEST (set
)))
4273 i0_insn
= link
->insn
, i0_val
= SET_SRC (set
);
4275 record_value_for_reg (i0dest
, i0_insn
, i0_val
);
4277 if (! added_sets_0
&& ! i0dest_in_i0src
)
4278 INC_REG_N_SETS (REGNO (i0dest
), -1);
4281 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4282 been made to this insn. The order is important, because newi2pat
4283 can affect nonzero_bits of newpat. */
4285 note_stores (newi2pat
, set_nonzero_bits_and_sign_copies
, NULL
);
4286 note_stores (newpat
, set_nonzero_bits_and_sign_copies
, NULL
);
4289 if (undobuf
.other_insn
!= NULL_RTX
)
4293 fprintf (dump_file
, "modifying other_insn ");
4294 dump_insn_slim (dump_file
, undobuf
.other_insn
);
4296 df_insn_rescan (undobuf
.other_insn
);
4299 if (i0
&& !(NOTE_P (i0
) && (NOTE_KIND (i0
) == NOTE_INSN_DELETED
)))
4303 fprintf (dump_file
, "modifying insn i0 ");
4304 dump_insn_slim (dump_file
, i0
);
4306 df_insn_rescan (i0
);
4309 if (i1
&& !(NOTE_P (i1
) && (NOTE_KIND (i1
) == NOTE_INSN_DELETED
)))
4313 fprintf (dump_file
, "modifying insn i1 ");
4314 dump_insn_slim (dump_file
, i1
);
4316 df_insn_rescan (i1
);
4319 if (i2
&& !(NOTE_P (i2
) && (NOTE_KIND (i2
) == NOTE_INSN_DELETED
)))
4323 fprintf (dump_file
, "modifying insn i2 ");
4324 dump_insn_slim (dump_file
, i2
);
4326 df_insn_rescan (i2
);
4329 if (i3
&& !(NOTE_P (i3
) && (NOTE_KIND (i3
) == NOTE_INSN_DELETED
)))
4333 fprintf (dump_file
, "modifying insn i3 ");
4334 dump_insn_slim (dump_file
, i3
);
4336 df_insn_rescan (i3
);
4339 /* Set new_direct_jump_p if a new return or simple jump instruction
4340 has been created. Adjust the CFG accordingly. */
4341 if (returnjump_p (i3
) || any_uncondjump_p (i3
))
4343 *new_direct_jump_p
= 1;
4344 mark_jump_label (PATTERN (i3
), i3
, 0);
4345 update_cfg_for_uncondjump (i3
);
4348 if (undobuf
.other_insn
!= NULL_RTX
4349 && (returnjump_p (undobuf
.other_insn
)
4350 || any_uncondjump_p (undobuf
.other_insn
)))
4352 *new_direct_jump_p
= 1;
4353 update_cfg_for_uncondjump (undobuf
.other_insn
);
4356 /* A noop might also need cleaning up of CFG, if it comes from the
4357 simplification of a jump. */
4359 && GET_CODE (newpat
) == SET
4360 && SET_SRC (newpat
) == pc_rtx
4361 && SET_DEST (newpat
) == pc_rtx
)
4363 *new_direct_jump_p
= 1;
4364 update_cfg_for_uncondjump (i3
);
4367 if (undobuf
.other_insn
!= NULL_RTX
4368 && JUMP_P (undobuf
.other_insn
)
4369 && GET_CODE (PATTERN (undobuf
.other_insn
)) == SET
4370 && SET_SRC (PATTERN (undobuf
.other_insn
)) == pc_rtx
4371 && SET_DEST (PATTERN (undobuf
.other_insn
)) == pc_rtx
)
4373 *new_direct_jump_p
= 1;
4374 update_cfg_for_uncondjump (undobuf
.other_insn
);
4377 combine_successes
++;
4380 if (added_links_insn
4381 && (newi2pat
== 0 || DF_INSN_LUID (added_links_insn
) < DF_INSN_LUID (i2
))
4382 && DF_INSN_LUID (added_links_insn
) < DF_INSN_LUID (i3
))
4383 return added_links_insn
;
4385 return newi2pat
? i2
: i3
;
4388 /* Undo all the modifications recorded in undobuf. */
4393 struct undo
*undo
, *next
;
4395 for (undo
= undobuf
.undos
; undo
; undo
= next
)
4401 *undo
->where
.r
= undo
->old_contents
.r
;
4404 *undo
->where
.i
= undo
->old_contents
.i
;
4407 adjust_reg_mode (*undo
->where
.r
, undo
->old_contents
.m
);
4410 *undo
->where
.l
= undo
->old_contents
.l
;
4416 undo
->next
= undobuf
.frees
;
4417 undobuf
.frees
= undo
;
4423 /* We've committed to accepting the changes we made. Move all
4424 of the undos to the free list. */
4429 struct undo
*undo
, *next
;
4431 for (undo
= undobuf
.undos
; undo
; undo
= next
)
4434 undo
->next
= undobuf
.frees
;
4435 undobuf
.frees
= undo
;
4440 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4441 where we have an arithmetic expression and return that point. LOC will
4444 try_combine will call this function to see if an insn can be split into
4448 find_split_point (rtx
*loc
, rtx insn
, bool set_src
)
4451 enum rtx_code code
= GET_CODE (x
);
4453 unsigned HOST_WIDE_INT len
= 0;
4454 HOST_WIDE_INT pos
= 0;
4456 rtx inner
= NULL_RTX
;
4458 /* First special-case some codes. */
4462 #ifdef INSN_SCHEDULING
4463 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4465 if (MEM_P (SUBREG_REG (x
)))
4468 return find_split_point (&SUBREG_REG (x
), insn
, false);
4472 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4473 using LO_SUM and HIGH. */
4474 if (GET_CODE (XEXP (x
, 0)) == CONST
4475 || GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
4477 enum machine_mode address_mode
= get_address_mode (x
);
4480 gen_rtx_LO_SUM (address_mode
,
4481 gen_rtx_HIGH (address_mode
, XEXP (x
, 0)),
4483 return &XEXP (XEXP (x
, 0), 0);
4487 /* If we have a PLUS whose second operand is a constant and the
4488 address is not valid, perhaps will can split it up using
4489 the machine-specific way to split large constants. We use
4490 the first pseudo-reg (one of the virtual regs) as a placeholder;
4491 it will not remain in the result. */
4492 if (GET_CODE (XEXP (x
, 0)) == PLUS
4493 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
4494 && ! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4495 MEM_ADDR_SPACE (x
)))
4497 rtx reg
= regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
4498 rtx seq
= combine_split_insns (gen_rtx_SET (VOIDmode
, reg
,
4502 /* This should have produced two insns, each of which sets our
4503 placeholder. If the source of the second is a valid address,
4504 we can make put both sources together and make a split point
4508 && NEXT_INSN (seq
) != NULL_RTX
4509 && NEXT_INSN (NEXT_INSN (seq
)) == NULL_RTX
4510 && NONJUMP_INSN_P (seq
)
4511 && GET_CODE (PATTERN (seq
)) == SET
4512 && SET_DEST (PATTERN (seq
)) == reg
4513 && ! reg_mentioned_p (reg
,
4514 SET_SRC (PATTERN (seq
)))
4515 && NONJUMP_INSN_P (NEXT_INSN (seq
))
4516 && GET_CODE (PATTERN (NEXT_INSN (seq
))) == SET
4517 && SET_DEST (PATTERN (NEXT_INSN (seq
))) == reg
4518 && memory_address_addr_space_p
4519 (GET_MODE (x
), SET_SRC (PATTERN (NEXT_INSN (seq
))),
4520 MEM_ADDR_SPACE (x
)))
4522 rtx src1
= SET_SRC (PATTERN (seq
));
4523 rtx src2
= SET_SRC (PATTERN (NEXT_INSN (seq
)));
4525 /* Replace the placeholder in SRC2 with SRC1. If we can
4526 find where in SRC2 it was placed, that can become our
4527 split point and we can replace this address with SRC2.
4528 Just try two obvious places. */
4530 src2
= replace_rtx (src2
, reg
, src1
);
4532 if (XEXP (src2
, 0) == src1
)
4533 split
= &XEXP (src2
, 0);
4534 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2
, 0)))[0] == 'e'
4535 && XEXP (XEXP (src2
, 0), 0) == src1
)
4536 split
= &XEXP (XEXP (src2
, 0), 0);
4540 SUBST (XEXP (x
, 0), src2
);
4545 /* If that didn't work, perhaps the first operand is complex and
4546 needs to be computed separately, so make a split point there.
4547 This will occur on machines that just support REG + CONST
4548 and have a constant moved through some previous computation. */
4550 else if (!OBJECT_P (XEXP (XEXP (x
, 0), 0))
4551 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
4552 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x
, 0), 0)))))
4553 return &XEXP (XEXP (x
, 0), 0);
4556 /* If we have a PLUS whose first operand is complex, try computing it
4557 separately by making a split there. */
4558 if (GET_CODE (XEXP (x
, 0)) == PLUS
4559 && ! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4561 && ! OBJECT_P (XEXP (XEXP (x
, 0), 0))
4562 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
4563 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x
, 0), 0)))))
4564 return &XEXP (XEXP (x
, 0), 0);
4569 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4570 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4571 we need to put the operand into a register. So split at that
4574 if (SET_DEST (x
) == cc0_rtx
4575 && GET_CODE (SET_SRC (x
)) != COMPARE
4576 && GET_CODE (SET_SRC (x
)) != ZERO_EXTRACT
4577 && !OBJECT_P (SET_SRC (x
))
4578 && ! (GET_CODE (SET_SRC (x
)) == SUBREG
4579 && OBJECT_P (SUBREG_REG (SET_SRC (x
)))))
4580 return &SET_SRC (x
);
4583 /* See if we can split SET_SRC as it stands. */
4584 split
= find_split_point (&SET_SRC (x
), insn
, true);
4585 if (split
&& split
!= &SET_SRC (x
))
4588 /* See if we can split SET_DEST as it stands. */
4589 split
= find_split_point (&SET_DEST (x
), insn
, false);
4590 if (split
&& split
!= &SET_DEST (x
))
4593 /* See if this is a bitfield assignment with everything constant. If
4594 so, this is an IOR of an AND, so split it into that. */
4595 if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
4596 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x
), 0)))
4597 && CONST_INT_P (XEXP (SET_DEST (x
), 1))
4598 && CONST_INT_P (XEXP (SET_DEST (x
), 2))
4599 && CONST_INT_P (SET_SRC (x
))
4600 && ((INTVAL (XEXP (SET_DEST (x
), 1))
4601 + INTVAL (XEXP (SET_DEST (x
), 2)))
4602 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x
), 0))))
4603 && ! side_effects_p (XEXP (SET_DEST (x
), 0)))
4605 HOST_WIDE_INT pos
= INTVAL (XEXP (SET_DEST (x
), 2));
4606 unsigned HOST_WIDE_INT len
= INTVAL (XEXP (SET_DEST (x
), 1));
4607 unsigned HOST_WIDE_INT src
= INTVAL (SET_SRC (x
));
4608 rtx dest
= XEXP (SET_DEST (x
), 0);
4609 enum machine_mode mode
= GET_MODE (dest
);
4610 unsigned HOST_WIDE_INT mask
4611 = ((unsigned HOST_WIDE_INT
) 1 << len
) - 1;
4614 if (BITS_BIG_ENDIAN
)
4615 pos
= GET_MODE_PRECISION (mode
) - len
- pos
;
4617 or_mask
= gen_int_mode (src
<< pos
, mode
);
4620 simplify_gen_binary (IOR
, mode
, dest
, or_mask
));
4623 rtx negmask
= gen_int_mode (~(mask
<< pos
), mode
);
4625 simplify_gen_binary (IOR
, mode
,
4626 simplify_gen_binary (AND
, mode
,
4631 SUBST (SET_DEST (x
), dest
);
4633 split
= find_split_point (&SET_SRC (x
), insn
, true);
4634 if (split
&& split
!= &SET_SRC (x
))
4638 /* Otherwise, see if this is an operation that we can split into two.
4639 If so, try to split that. */
4640 code
= GET_CODE (SET_SRC (x
));
4645 /* If we are AND'ing with a large constant that is only a single
4646 bit and the result is only being used in a context where we
4647 need to know if it is zero or nonzero, replace it with a bit
4648 extraction. This will avoid the large constant, which might
4649 have taken more than one insn to make. If the constant were
4650 not a valid argument to the AND but took only one insn to make,
4651 this is no worse, but if it took more than one insn, it will
4654 if (CONST_INT_P (XEXP (SET_SRC (x
), 1))
4655 && REG_P (XEXP (SET_SRC (x
), 0))
4656 && (pos
= exact_log2 (UINTVAL (XEXP (SET_SRC (x
), 1)))) >= 7
4657 && REG_P (SET_DEST (x
))
4658 && (split
= find_single_use (SET_DEST (x
), insn
, (rtx
*) 0)) != 0
4659 && (GET_CODE (*split
) == EQ
|| GET_CODE (*split
) == NE
)
4660 && XEXP (*split
, 0) == SET_DEST (x
)
4661 && XEXP (*split
, 1) == const0_rtx
)
4663 rtx extraction
= make_extraction (GET_MODE (SET_DEST (x
)),
4664 XEXP (SET_SRC (x
), 0),
4665 pos
, NULL_RTX
, 1, 1, 0, 0);
4666 if (extraction
!= 0)
4668 SUBST (SET_SRC (x
), extraction
);
4669 return find_split_point (loc
, insn
, false);
4675 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4676 is known to be on, this can be converted into a NEG of a shift. */
4677 if (STORE_FLAG_VALUE
== -1 && XEXP (SET_SRC (x
), 1) == const0_rtx
4678 && GET_MODE (SET_SRC (x
)) == GET_MODE (XEXP (SET_SRC (x
), 0))
4679 && 1 <= (pos
= exact_log2
4680 (nonzero_bits (XEXP (SET_SRC (x
), 0),
4681 GET_MODE (XEXP (SET_SRC (x
), 0))))))
4683 enum machine_mode mode
= GET_MODE (XEXP (SET_SRC (x
), 0));
4687 gen_rtx_LSHIFTRT (mode
,
4688 XEXP (SET_SRC (x
), 0),
4691 split
= find_split_point (&SET_SRC (x
), insn
, true);
4692 if (split
&& split
!= &SET_SRC (x
))
4698 inner
= XEXP (SET_SRC (x
), 0);
4700 /* We can't optimize if either mode is a partial integer
4701 mode as we don't know how many bits are significant
4703 if (GET_MODE_CLASS (GET_MODE (inner
)) == MODE_PARTIAL_INT
4704 || GET_MODE_CLASS (GET_MODE (SET_SRC (x
))) == MODE_PARTIAL_INT
)
4708 len
= GET_MODE_PRECISION (GET_MODE (inner
));
4714 if (CONST_INT_P (XEXP (SET_SRC (x
), 1))
4715 && CONST_INT_P (XEXP (SET_SRC (x
), 2)))
4717 inner
= XEXP (SET_SRC (x
), 0);
4718 len
= INTVAL (XEXP (SET_SRC (x
), 1));
4719 pos
= INTVAL (XEXP (SET_SRC (x
), 2));
4721 if (BITS_BIG_ENDIAN
)
4722 pos
= GET_MODE_PRECISION (GET_MODE (inner
)) - len
- pos
;
4723 unsignedp
= (code
== ZERO_EXTRACT
);
4732 && pos
+ len
<= GET_MODE_PRECISION (GET_MODE (inner
)))
4734 enum machine_mode mode
= GET_MODE (SET_SRC (x
));
4736 /* For unsigned, we have a choice of a shift followed by an
4737 AND or two shifts. Use two shifts for field sizes where the
4738 constant might be too large. We assume here that we can
4739 always at least get 8-bit constants in an AND insn, which is
4740 true for every current RISC. */
4742 if (unsignedp
&& len
<= 8)
4744 unsigned HOST_WIDE_INT mask
4745 = ((unsigned HOST_WIDE_INT
) 1 << len
) - 1;
4749 (mode
, gen_lowpart (mode
, inner
),
4751 gen_int_mode (mask
, mode
)));
4753 split
= find_split_point (&SET_SRC (x
), insn
, true);
4754 if (split
&& split
!= &SET_SRC (x
))
4761 (unsignedp
? LSHIFTRT
: ASHIFTRT
, mode
,
4762 gen_rtx_ASHIFT (mode
,
4763 gen_lowpart (mode
, inner
),
4764 GEN_INT (GET_MODE_PRECISION (mode
)
4766 GEN_INT (GET_MODE_PRECISION (mode
) - len
)));
4768 split
= find_split_point (&SET_SRC (x
), insn
, true);
4769 if (split
&& split
!= &SET_SRC (x
))
4774 /* See if this is a simple operation with a constant as the second
4775 operand. It might be that this constant is out of range and hence
4776 could be used as a split point. */
4777 if (BINARY_P (SET_SRC (x
))
4778 && CONSTANT_P (XEXP (SET_SRC (x
), 1))
4779 && (OBJECT_P (XEXP (SET_SRC (x
), 0))
4780 || (GET_CODE (XEXP (SET_SRC (x
), 0)) == SUBREG
4781 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x
), 0))))))
4782 return &XEXP (SET_SRC (x
), 1);
4784 /* Finally, see if this is a simple operation with its first operand
4785 not in a register. The operation might require this operand in a
4786 register, so return it as a split point. We can always do this
4787 because if the first operand were another operation, we would have
4788 already found it as a split point. */
4789 if ((BINARY_P (SET_SRC (x
)) || UNARY_P (SET_SRC (x
)))
4790 && ! register_operand (XEXP (SET_SRC (x
), 0), VOIDmode
))
4791 return &XEXP (SET_SRC (x
), 0);
4797 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4798 it is better to write this as (not (ior A B)) so we can split it.
4799 Similarly for IOR. */
4800 if (GET_CODE (XEXP (x
, 0)) == NOT
&& GET_CODE (XEXP (x
, 1)) == NOT
)
4803 gen_rtx_NOT (GET_MODE (x
),
4804 gen_rtx_fmt_ee (code
== IOR
? AND
: IOR
,
4806 XEXP (XEXP (x
, 0), 0),
4807 XEXP (XEXP (x
, 1), 0))));
4808 return find_split_point (loc
, insn
, set_src
);
4811 /* Many RISC machines have a large set of logical insns. If the
4812 second operand is a NOT, put it first so we will try to split the
4813 other operand first. */
4814 if (GET_CODE (XEXP (x
, 1)) == NOT
)
4816 rtx tem
= XEXP (x
, 0);
4817 SUBST (XEXP (x
, 0), XEXP (x
, 1));
4818 SUBST (XEXP (x
, 1), tem
);
4824 /* Canonicalization can produce (minus A (mult B C)), where C is a
4825 constant. It may be better to try splitting (plus (mult B -C) A)
4826 instead if this isn't a multiply by a power of two. */
4827 if (set_src
&& code
== MINUS
&& GET_CODE (XEXP (x
, 1)) == MULT
4828 && GET_CODE (XEXP (XEXP (x
, 1), 1)) == CONST_INT
4829 && exact_log2 (INTVAL (XEXP (XEXP (x
, 1), 1))) < 0)
4831 enum machine_mode mode
= GET_MODE (x
);
4832 unsigned HOST_WIDE_INT this_int
= INTVAL (XEXP (XEXP (x
, 1), 1));
4833 HOST_WIDE_INT other_int
= trunc_int_for_mode (-this_int
, mode
);
4834 SUBST (*loc
, gen_rtx_PLUS (mode
,
4836 XEXP (XEXP (x
, 1), 0),
4837 gen_int_mode (other_int
,
4840 return find_split_point (loc
, insn
, set_src
);
4843 /* Split at a multiply-accumulate instruction. However if this is
4844 the SET_SRC, we likely do not have such an instruction and it's
4845 worthless to try this split. */
4846 if (!set_src
&& GET_CODE (XEXP (x
, 0)) == MULT
)
4853 /* Otherwise, select our actions depending on our rtx class. */
4854 switch (GET_RTX_CLASS (code
))
4856 case RTX_BITFIELD_OPS
: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4858 split
= find_split_point (&XEXP (x
, 2), insn
, false);
4861 /* ... fall through ... */
4863 case RTX_COMM_ARITH
:
4865 case RTX_COMM_COMPARE
:
4866 split
= find_split_point (&XEXP (x
, 1), insn
, false);
4869 /* ... fall through ... */
4871 /* Some machines have (and (shift ...) ...) insns. If X is not
4872 an AND, but XEXP (X, 0) is, use it as our split point. */
4873 if (GET_CODE (x
) != AND
&& GET_CODE (XEXP (x
, 0)) == AND
)
4874 return &XEXP (x
, 0);
4876 split
= find_split_point (&XEXP (x
, 0), insn
, false);
4882 /* Otherwise, we don't have a split point. */
4887 /* Throughout X, replace FROM with TO, and return the result.
4888 The result is TO if X is FROM;
4889 otherwise the result is X, but its contents may have been modified.
4890 If they were modified, a record was made in undobuf so that
4891 undo_all will (among other things) return X to its original state.
4893 If the number of changes necessary is too much to record to undo,
4894 the excess changes are not made, so the result is invalid.
4895 The changes already made can still be undone.
4896 undobuf.num_undo is incremented for such changes, so by testing that
4897 the caller can tell whether the result is valid.
4899 `n_occurrences' is incremented each time FROM is replaced.
4901 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4903 IN_COND is nonzero if we are at the top level of a condition.
4905 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4906 by copying if `n_occurrences' is nonzero. */
4909 subst (rtx x
, rtx from
, rtx to
, int in_dest
, int in_cond
, int unique_copy
)
4911 enum rtx_code code
= GET_CODE (x
);
4912 enum machine_mode op0_mode
= VOIDmode
;
4917 /* Two expressions are equal if they are identical copies of a shared
4918 RTX or if they are both registers with the same register number
4921 #define COMBINE_RTX_EQUAL_P(X,Y) \
4923 || (REG_P (X) && REG_P (Y) \
4924 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4926 if (! in_dest
&& COMBINE_RTX_EQUAL_P (x
, from
))
4929 return (unique_copy
&& n_occurrences
> 1 ? copy_rtx (to
) : to
);
4932 /* If X and FROM are the same register but different modes, they
4933 will not have been seen as equal above. However, the log links code
4934 will make a LOG_LINKS entry for that case. If we do nothing, we
4935 will try to rerecognize our original insn and, when it succeeds,
4936 we will delete the feeding insn, which is incorrect.
4938 So force this insn not to match in this (rare) case. */
4939 if (! in_dest
&& code
== REG
&& REG_P (from
)
4940 && reg_overlap_mentioned_p (x
, from
))
4941 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
4943 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4944 of which may contain things that can be combined. */
4945 if (code
!= MEM
&& code
!= LO_SUM
&& OBJECT_P (x
))
4948 /* It is possible to have a subexpression appear twice in the insn.
4949 Suppose that FROM is a register that appears within TO.
4950 Then, after that subexpression has been scanned once by `subst',
4951 the second time it is scanned, TO may be found. If we were
4952 to scan TO here, we would find FROM within it and create a
4953 self-referent rtl structure which is completely wrong. */
4954 if (COMBINE_RTX_EQUAL_P (x
, to
))
4957 /* Parallel asm_operands need special attention because all of the
4958 inputs are shared across the arms. Furthermore, unsharing the
4959 rtl results in recognition failures. Failure to handle this case
4960 specially can result in circular rtl.
4962 Solve this by doing a normal pass across the first entry of the
4963 parallel, and only processing the SET_DESTs of the subsequent
4966 if (code
== PARALLEL
4967 && GET_CODE (XVECEXP (x
, 0, 0)) == SET
4968 && GET_CODE (SET_SRC (XVECEXP (x
, 0, 0))) == ASM_OPERANDS
)
4970 new_rtx
= subst (XVECEXP (x
, 0, 0), from
, to
, 0, 0, unique_copy
);
4972 /* If this substitution failed, this whole thing fails. */
4973 if (GET_CODE (new_rtx
) == CLOBBER
4974 && XEXP (new_rtx
, 0) == const0_rtx
)
4977 SUBST (XVECEXP (x
, 0, 0), new_rtx
);
4979 for (i
= XVECLEN (x
, 0) - 1; i
>= 1; i
--)
4981 rtx dest
= SET_DEST (XVECEXP (x
, 0, i
));
4984 && GET_CODE (dest
) != CC0
4985 && GET_CODE (dest
) != PC
)
4987 new_rtx
= subst (dest
, from
, to
, 0, 0, unique_copy
);
4989 /* If this substitution failed, this whole thing fails. */
4990 if (GET_CODE (new_rtx
) == CLOBBER
4991 && XEXP (new_rtx
, 0) == const0_rtx
)
4994 SUBST (SET_DEST (XVECEXP (x
, 0, i
)), new_rtx
);
5000 len
= GET_RTX_LENGTH (code
);
5001 fmt
= GET_RTX_FORMAT (code
);
5003 /* We don't need to process a SET_DEST that is a register, CC0,
5004 or PC, so set up to skip this common case. All other cases
5005 where we want to suppress replacing something inside a
5006 SET_SRC are handled via the IN_DEST operand. */
5008 && (REG_P (SET_DEST (x
))
5009 || GET_CODE (SET_DEST (x
)) == CC0
5010 || GET_CODE (SET_DEST (x
)) == PC
))
5013 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5016 op0_mode
= GET_MODE (XEXP (x
, 0));
5018 for (i
= 0; i
< len
; i
++)
5023 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5025 if (COMBINE_RTX_EQUAL_P (XVECEXP (x
, i
, j
), from
))
5027 new_rtx
= (unique_copy
&& n_occurrences
5028 ? copy_rtx (to
) : to
);
5033 new_rtx
= subst (XVECEXP (x
, i
, j
), from
, to
, 0, 0,
5036 /* If this substitution failed, this whole thing
5038 if (GET_CODE (new_rtx
) == CLOBBER
5039 && XEXP (new_rtx
, 0) == const0_rtx
)
5043 SUBST (XVECEXP (x
, i
, j
), new_rtx
);
5046 else if (fmt
[i
] == 'e')
5048 /* If this is a register being set, ignore it. */
5049 new_rtx
= XEXP (x
, i
);
5052 && (((code
== SUBREG
|| code
== ZERO_EXTRACT
)
5054 || code
== STRICT_LOW_PART
))
5057 else if (COMBINE_RTX_EQUAL_P (XEXP (x
, i
), from
))
5059 /* In general, don't install a subreg involving two
5060 modes not tieable. It can worsen register
5061 allocation, and can even make invalid reload
5062 insns, since the reg inside may need to be copied
5063 from in the outside mode, and that may be invalid
5064 if it is an fp reg copied in integer mode.
5066 We allow two exceptions to this: It is valid if
5067 it is inside another SUBREG and the mode of that
5068 SUBREG and the mode of the inside of TO is
5069 tieable and it is valid if X is a SET that copies
5072 if (GET_CODE (to
) == SUBREG
5073 && ! MODES_TIEABLE_P (GET_MODE (to
),
5074 GET_MODE (SUBREG_REG (to
)))
5075 && ! (code
== SUBREG
5076 && MODES_TIEABLE_P (GET_MODE (x
),
5077 GET_MODE (SUBREG_REG (to
))))
5079 && ! (code
== SET
&& i
== 1 && XEXP (x
, 0) == cc0_rtx
)
5082 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5084 #ifdef CANNOT_CHANGE_MODE_CLASS
5087 && REGNO (to
) < FIRST_PSEUDO_REGISTER
5088 && REG_CANNOT_CHANGE_MODE_P (REGNO (to
),
5091 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5094 new_rtx
= (unique_copy
&& n_occurrences
? copy_rtx (to
) : to
);
5098 /* If we are in a SET_DEST, suppress most cases unless we
5099 have gone inside a MEM, in which case we want to
5100 simplify the address. We assume here that things that
5101 are actually part of the destination have their inner
5102 parts in the first expression. This is true for SUBREG,
5103 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5104 things aside from REG and MEM that should appear in a
5106 new_rtx
= subst (XEXP (x
, i
), from
, to
,
5108 && (code
== SUBREG
|| code
== STRICT_LOW_PART
5109 || code
== ZERO_EXTRACT
))
5112 code
== IF_THEN_ELSE
&& i
== 0,
5115 /* If we found that we will have to reject this combination,
5116 indicate that by returning the CLOBBER ourselves, rather than
5117 an expression containing it. This will speed things up as
5118 well as prevent accidents where two CLOBBERs are considered
5119 to be equal, thus producing an incorrect simplification. */
5121 if (GET_CODE (new_rtx
) == CLOBBER
&& XEXP (new_rtx
, 0) == const0_rtx
)
5124 if (GET_CODE (x
) == SUBREG
&& CONST_SCALAR_INT_P (new_rtx
))
5126 enum machine_mode mode
= GET_MODE (x
);
5128 x
= simplify_subreg (GET_MODE (x
), new_rtx
,
5129 GET_MODE (SUBREG_REG (x
)),
5132 x
= gen_rtx_CLOBBER (mode
, const0_rtx
);
5134 else if (CONST_SCALAR_INT_P (new_rtx
)
5135 && GET_CODE (x
) == ZERO_EXTEND
)
5137 x
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
5138 new_rtx
, GET_MODE (XEXP (x
, 0)));
5142 SUBST (XEXP (x
, i
), new_rtx
);
5147 /* Check if we are loading something from the constant pool via float
5148 extension; in this case we would undo compress_float_constant
5149 optimization and degenerate constant load to an immediate value. */
5150 if (GET_CODE (x
) == FLOAT_EXTEND
5151 && MEM_P (XEXP (x
, 0))
5152 && MEM_READONLY_P (XEXP (x
, 0)))
5154 rtx tmp
= avoid_constant_pool_reference (x
);
5159 /* Try to simplify X. If the simplification changed the code, it is likely
5160 that further simplification will help, so loop, but limit the number
5161 of repetitions that will be performed. */
5163 for (i
= 0; i
< 4; i
++)
5165 /* If X is sufficiently simple, don't bother trying to do anything
5167 if (code
!= CONST_INT
&& code
!= REG
&& code
!= CLOBBER
)
5168 x
= combine_simplify_rtx (x
, op0_mode
, in_dest
, in_cond
);
5170 if (GET_CODE (x
) == code
)
5173 code
= GET_CODE (x
);
5175 /* We no longer know the original mode of operand 0 since we
5176 have changed the form of X) */
5177 op0_mode
= VOIDmode
;
5183 /* Simplify X, a piece of RTL. We just operate on the expression at the
5184 outer level; call `subst' to simplify recursively. Return the new
5187 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5188 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5192 combine_simplify_rtx (rtx x
, enum machine_mode op0_mode
, int in_dest
,
5195 enum rtx_code code
= GET_CODE (x
);
5196 enum machine_mode mode
= GET_MODE (x
);
5200 /* If this is a commutative operation, put a constant last and a complex
5201 expression first. We don't need to do this for comparisons here. */
5202 if (COMMUTATIVE_ARITH_P (x
)
5203 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
5206 SUBST (XEXP (x
, 0), XEXP (x
, 1));
5207 SUBST (XEXP (x
, 1), temp
);
5210 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5211 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5212 things. Check for cases where both arms are testing the same
5215 Don't do anything if all operands are very simple. */
5218 && ((!OBJECT_P (XEXP (x
, 0))
5219 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5220 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))
5221 || (!OBJECT_P (XEXP (x
, 1))
5222 && ! (GET_CODE (XEXP (x
, 1)) == SUBREG
5223 && OBJECT_P (SUBREG_REG (XEXP (x
, 1)))))))
5225 && (!OBJECT_P (XEXP (x
, 0))
5226 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5227 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))))
5229 rtx cond
, true_rtx
, false_rtx
;
5231 cond
= if_then_else_cond (x
, &true_rtx
, &false_rtx
);
5233 /* If everything is a comparison, what we have is highly unlikely
5234 to be simpler, so don't use it. */
5235 && ! (COMPARISON_P (x
)
5236 && (COMPARISON_P (true_rtx
) || COMPARISON_P (false_rtx
))))
5238 rtx cop1
= const0_rtx
;
5239 enum rtx_code cond_code
= simplify_comparison (NE
, &cond
, &cop1
);
5241 if (cond_code
== NE
&& COMPARISON_P (cond
))
5244 /* Simplify the alternative arms; this may collapse the true and
5245 false arms to store-flag values. Be careful to use copy_rtx
5246 here since true_rtx or false_rtx might share RTL with x as a
5247 result of the if_then_else_cond call above. */
5248 true_rtx
= subst (copy_rtx (true_rtx
), pc_rtx
, pc_rtx
, 0, 0, 0);
5249 false_rtx
= subst (copy_rtx (false_rtx
), pc_rtx
, pc_rtx
, 0, 0, 0);
5251 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5252 is unlikely to be simpler. */
5253 if (general_operand (true_rtx
, VOIDmode
)
5254 && general_operand (false_rtx
, VOIDmode
))
5256 enum rtx_code reversed
;
5258 /* Restarting if we generate a store-flag expression will cause
5259 us to loop. Just drop through in this case. */
5261 /* If the result values are STORE_FLAG_VALUE and zero, we can
5262 just make the comparison operation. */
5263 if (true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
5264 x
= simplify_gen_relational (cond_code
, mode
, VOIDmode
,
5266 else if (true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
5267 && ((reversed
= reversed_comparison_code_parts
5268 (cond_code
, cond
, cop1
, NULL
))
5270 x
= simplify_gen_relational (reversed
, mode
, VOIDmode
,
5273 /* Likewise, we can make the negate of a comparison operation
5274 if the result values are - STORE_FLAG_VALUE and zero. */
5275 else if (CONST_INT_P (true_rtx
)
5276 && INTVAL (true_rtx
) == - STORE_FLAG_VALUE
5277 && false_rtx
== const0_rtx
)
5278 x
= simplify_gen_unary (NEG
, mode
,
5279 simplify_gen_relational (cond_code
,
5283 else if (CONST_INT_P (false_rtx
)
5284 && INTVAL (false_rtx
) == - STORE_FLAG_VALUE
5285 && true_rtx
== const0_rtx
5286 && ((reversed
= reversed_comparison_code_parts
5287 (cond_code
, cond
, cop1
, NULL
))
5289 x
= simplify_gen_unary (NEG
, mode
,
5290 simplify_gen_relational (reversed
,
5295 return gen_rtx_IF_THEN_ELSE (mode
,
5296 simplify_gen_relational (cond_code
,
5301 true_rtx
, false_rtx
);
5303 code
= GET_CODE (x
);
5304 op0_mode
= VOIDmode
;
5309 /* Try to fold this expression in case we have constants that weren't
5312 switch (GET_RTX_CLASS (code
))
5315 if (op0_mode
== VOIDmode
)
5316 op0_mode
= GET_MODE (XEXP (x
, 0));
5317 temp
= simplify_unary_operation (code
, mode
, XEXP (x
, 0), op0_mode
);
5320 case RTX_COMM_COMPARE
:
5322 enum machine_mode cmp_mode
= GET_MODE (XEXP (x
, 0));
5323 if (cmp_mode
== VOIDmode
)
5325 cmp_mode
= GET_MODE (XEXP (x
, 1));
5326 if (cmp_mode
== VOIDmode
)
5327 cmp_mode
= op0_mode
;
5329 temp
= simplify_relational_operation (code
, mode
, cmp_mode
,
5330 XEXP (x
, 0), XEXP (x
, 1));
5333 case RTX_COMM_ARITH
:
5335 temp
= simplify_binary_operation (code
, mode
, XEXP (x
, 0), XEXP (x
, 1));
5337 case RTX_BITFIELD_OPS
:
5339 temp
= simplify_ternary_operation (code
, mode
, op0_mode
, XEXP (x
, 0),
5340 XEXP (x
, 1), XEXP (x
, 2));
5349 code
= GET_CODE (temp
);
5350 op0_mode
= VOIDmode
;
5351 mode
= GET_MODE (temp
);
5354 /* First see if we can apply the inverse distributive law. */
5355 if (code
== PLUS
|| code
== MINUS
5356 || code
== AND
|| code
== IOR
|| code
== XOR
)
5358 x
= apply_distributive_law (x
);
5359 code
= GET_CODE (x
);
5360 op0_mode
= VOIDmode
;
5363 /* If CODE is an associative operation not otherwise handled, see if we
5364 can associate some operands. This can win if they are constants or
5365 if they are logically related (i.e. (a & b) & a). */
5366 if ((code
== PLUS
|| code
== MINUS
|| code
== MULT
|| code
== DIV
5367 || code
== AND
|| code
== IOR
|| code
== XOR
5368 || code
== SMAX
|| code
== SMIN
|| code
== UMAX
|| code
== UMIN
)
5369 && ((INTEGRAL_MODE_P (mode
) && code
!= DIV
)
5370 || (flag_associative_math
&& FLOAT_MODE_P (mode
))))
5372 if (GET_CODE (XEXP (x
, 0)) == code
)
5374 rtx other
= XEXP (XEXP (x
, 0), 0);
5375 rtx inner_op0
= XEXP (XEXP (x
, 0), 1);
5376 rtx inner_op1
= XEXP (x
, 1);
5379 /* Make sure we pass the constant operand if any as the second
5380 one if this is a commutative operation. */
5381 if (CONSTANT_P (inner_op0
) && COMMUTATIVE_ARITH_P (x
))
5383 rtx tem
= inner_op0
;
5384 inner_op0
= inner_op1
;
5387 inner
= simplify_binary_operation (code
== MINUS
? PLUS
5388 : code
== DIV
? MULT
5390 mode
, inner_op0
, inner_op1
);
5392 /* For commutative operations, try the other pair if that one
5394 if (inner
== 0 && COMMUTATIVE_ARITH_P (x
))
5396 other
= XEXP (XEXP (x
, 0), 1);
5397 inner
= simplify_binary_operation (code
, mode
,
5398 XEXP (XEXP (x
, 0), 0),
5403 return simplify_gen_binary (code
, mode
, other
, inner
);
5407 /* A little bit of algebraic simplification here. */
5411 /* Ensure that our address has any ASHIFTs converted to MULT in case
5412 address-recognizing predicates are called later. */
5413 temp
= make_compound_operation (XEXP (x
, 0), MEM
);
5414 SUBST (XEXP (x
, 0), temp
);
5418 if (op0_mode
== VOIDmode
)
5419 op0_mode
= GET_MODE (SUBREG_REG (x
));
5421 /* See if this can be moved to simplify_subreg. */
5422 if (CONSTANT_P (SUBREG_REG (x
))
5423 && subreg_lowpart_offset (mode
, op0_mode
) == SUBREG_BYTE (x
)
5424 /* Don't call gen_lowpart if the inner mode
5425 is VOIDmode and we cannot simplify it, as SUBREG without
5426 inner mode is invalid. */
5427 && (GET_MODE (SUBREG_REG (x
)) != VOIDmode
5428 || gen_lowpart_common (mode
, SUBREG_REG (x
))))
5429 return gen_lowpart (mode
, SUBREG_REG (x
));
5431 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x
))) == MODE_CC
)
5435 temp
= simplify_subreg (mode
, SUBREG_REG (x
), op0_mode
,
5440 /* If op is known to have all lower bits zero, the result is zero. */
5442 && SCALAR_INT_MODE_P (mode
)
5443 && SCALAR_INT_MODE_P (op0_mode
)
5444 && GET_MODE_PRECISION (mode
) < GET_MODE_PRECISION (op0_mode
)
5445 && subreg_lowpart_offset (mode
, op0_mode
) == SUBREG_BYTE (x
)
5446 && HWI_COMPUTABLE_MODE_P (op0_mode
)
5447 && (nonzero_bits (SUBREG_REG (x
), op0_mode
)
5448 & GET_MODE_MASK (mode
)) == 0)
5449 return CONST0_RTX (mode
);
5452 /* Don't change the mode of the MEM if that would change the meaning
5454 if (MEM_P (SUBREG_REG (x
))
5455 && (MEM_VOLATILE_P (SUBREG_REG (x
))
5456 || mode_dependent_address_p (XEXP (SUBREG_REG (x
), 0),
5457 MEM_ADDR_SPACE (SUBREG_REG (x
)))))
5458 return gen_rtx_CLOBBER (mode
, const0_rtx
);
5460 /* Note that we cannot do any narrowing for non-constants since
5461 we might have been counting on using the fact that some bits were
5462 zero. We now do this in the SET. */
5467 temp
= expand_compound_operation (XEXP (x
, 0));
5469 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5470 replaced by (lshiftrt X C). This will convert
5471 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5473 if (GET_CODE (temp
) == ASHIFTRT
5474 && CONST_INT_P (XEXP (temp
, 1))
5475 && INTVAL (XEXP (temp
, 1)) == GET_MODE_PRECISION (mode
) - 1)
5476 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
, XEXP (temp
, 0),
5477 INTVAL (XEXP (temp
, 1)));
5479 /* If X has only a single bit that might be nonzero, say, bit I, convert
5480 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5481 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5482 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5483 or a SUBREG of one since we'd be making the expression more
5484 complex if it was just a register. */
5487 && ! (GET_CODE (temp
) == SUBREG
5488 && REG_P (SUBREG_REG (temp
)))
5489 && (i
= exact_log2 (nonzero_bits (temp
, mode
))) >= 0)
5491 rtx temp1
= simplify_shift_const
5492 (NULL_RTX
, ASHIFTRT
, mode
,
5493 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, temp
,
5494 GET_MODE_PRECISION (mode
) - 1 - i
),
5495 GET_MODE_PRECISION (mode
) - 1 - i
);
5497 /* If all we did was surround TEMP with the two shifts, we
5498 haven't improved anything, so don't use it. Otherwise,
5499 we are better off with TEMP1. */
5500 if (GET_CODE (temp1
) != ASHIFTRT
5501 || GET_CODE (XEXP (temp1
, 0)) != ASHIFT
5502 || XEXP (XEXP (temp1
, 0), 0) != temp
)
5508 /* We can't handle truncation to a partial integer mode here
5509 because we don't know the real bitsize of the partial
5511 if (GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
5514 if (HWI_COMPUTABLE_MODE_P (mode
))
5516 force_to_mode (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)),
5517 GET_MODE_MASK (mode
), 0));
5519 /* We can truncate a constant value and return it. */
5520 if (CONST_INT_P (XEXP (x
, 0)))
5521 return gen_int_mode (INTVAL (XEXP (x
, 0)), mode
);
5523 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5524 whose value is a comparison can be replaced with a subreg if
5525 STORE_FLAG_VALUE permits. */
5526 if (HWI_COMPUTABLE_MODE_P (mode
)
5527 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (mode
)) == 0
5528 && (temp
= get_last_value (XEXP (x
, 0)))
5529 && COMPARISON_P (temp
))
5530 return gen_lowpart (mode
, XEXP (x
, 0));
5534 /* (const (const X)) can become (const X). Do it this way rather than
5535 returning the inner CONST since CONST can be shared with a
5537 if (GET_CODE (XEXP (x
, 0)) == CONST
)
5538 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
5543 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5544 can add in an offset. find_split_point will split this address up
5545 again if it doesn't match. */
5546 if (GET_CODE (XEXP (x
, 0)) == HIGH
5547 && rtx_equal_p (XEXP (XEXP (x
, 0), 0), XEXP (x
, 1)))
5553 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5554 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5555 bit-field and can be replaced by either a sign_extend or a
5556 sign_extract. The `and' may be a zero_extend and the two
5557 <c>, -<c> constants may be reversed. */
5558 if (GET_CODE (XEXP (x
, 0)) == XOR
5559 && CONST_INT_P (XEXP (x
, 1))
5560 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
5561 && INTVAL (XEXP (x
, 1)) == -INTVAL (XEXP (XEXP (x
, 0), 1))
5562 && ((i
= exact_log2 (UINTVAL (XEXP (XEXP (x
, 0), 1)))) >= 0
5563 || (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0)
5564 && HWI_COMPUTABLE_MODE_P (mode
)
5565 && ((GET_CODE (XEXP (XEXP (x
, 0), 0)) == AND
5566 && CONST_INT_P (XEXP (XEXP (XEXP (x
, 0), 0), 1))
5567 && (UINTVAL (XEXP (XEXP (XEXP (x
, 0), 0), 1))
5568 == ((unsigned HOST_WIDE_INT
) 1 << (i
+ 1)) - 1))
5569 || (GET_CODE (XEXP (XEXP (x
, 0), 0)) == ZERO_EXTEND
5570 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)))
5571 == (unsigned int) i
+ 1))))
5572 return simplify_shift_const
5573 (NULL_RTX
, ASHIFTRT
, mode
,
5574 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
5575 XEXP (XEXP (XEXP (x
, 0), 0), 0),
5576 GET_MODE_PRECISION (mode
) - (i
+ 1)),
5577 GET_MODE_PRECISION (mode
) - (i
+ 1));
5579 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5580 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5581 the bitsize of the mode - 1. This allows simplification of
5582 "a = (b & 8) == 0;" */
5583 if (XEXP (x
, 1) == constm1_rtx
5584 && !REG_P (XEXP (x
, 0))
5585 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5586 && REG_P (SUBREG_REG (XEXP (x
, 0))))
5587 && nonzero_bits (XEXP (x
, 0), mode
) == 1)
5588 return simplify_shift_const (NULL_RTX
, ASHIFTRT
, mode
,
5589 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
5590 gen_rtx_XOR (mode
, XEXP (x
, 0), const1_rtx
),
5591 GET_MODE_PRECISION (mode
) - 1),
5592 GET_MODE_PRECISION (mode
) - 1);
5594 /* If we are adding two things that have no bits in common, convert
5595 the addition into an IOR. This will often be further simplified,
5596 for example in cases like ((a & 1) + (a & 2)), which can
5599 if (HWI_COMPUTABLE_MODE_P (mode
)
5600 && (nonzero_bits (XEXP (x
, 0), mode
)
5601 & nonzero_bits (XEXP (x
, 1), mode
)) == 0)
5603 /* Try to simplify the expression further. */
5604 rtx tor
= simplify_gen_binary (IOR
, mode
, XEXP (x
, 0), XEXP (x
, 1));
5605 temp
= combine_simplify_rtx (tor
, VOIDmode
, in_dest
, 0);
5607 /* If we could, great. If not, do not go ahead with the IOR
5608 replacement, since PLUS appears in many special purpose
5609 address arithmetic instructions. */
5610 if (GET_CODE (temp
) != CLOBBER
5611 && (GET_CODE (temp
) != IOR
5612 || ((XEXP (temp
, 0) != XEXP (x
, 0)
5613 || XEXP (temp
, 1) != XEXP (x
, 1))
5614 && (XEXP (temp
, 0) != XEXP (x
, 1)
5615 || XEXP (temp
, 1) != XEXP (x
, 0)))))
5621 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5622 (and <foo> (const_int pow2-1)) */
5623 if (GET_CODE (XEXP (x
, 1)) == AND
5624 && CONST_INT_P (XEXP (XEXP (x
, 1), 1))
5625 && exact_log2 (-UINTVAL (XEXP (XEXP (x
, 1), 1))) >= 0
5626 && rtx_equal_p (XEXP (XEXP (x
, 1), 0), XEXP (x
, 0)))
5627 return simplify_and_const_int (NULL_RTX
, mode
, XEXP (x
, 0),
5628 -INTVAL (XEXP (XEXP (x
, 1), 1)) - 1);
5632 /* If we have (mult (plus A B) C), apply the distributive law and then
5633 the inverse distributive law to see if things simplify. This
5634 occurs mostly in addresses, often when unrolling loops. */
5636 if (GET_CODE (XEXP (x
, 0)) == PLUS
)
5638 rtx result
= distribute_and_simplify_rtx (x
, 0);
5643 /* Try simplify a*(b/c) as (a*b)/c. */
5644 if (FLOAT_MODE_P (mode
) && flag_associative_math
5645 && GET_CODE (XEXP (x
, 0)) == DIV
)
5647 rtx tem
= simplify_binary_operation (MULT
, mode
,
5648 XEXP (XEXP (x
, 0), 0),
5651 return simplify_gen_binary (DIV
, mode
, tem
, XEXP (XEXP (x
, 0), 1));
5656 /* If this is a divide by a power of two, treat it as a shift if
5657 its first operand is a shift. */
5658 if (CONST_INT_P (XEXP (x
, 1))
5659 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0
5660 && (GET_CODE (XEXP (x
, 0)) == ASHIFT
5661 || GET_CODE (XEXP (x
, 0)) == LSHIFTRT
5662 || GET_CODE (XEXP (x
, 0)) == ASHIFTRT
5663 || GET_CODE (XEXP (x
, 0)) == ROTATE
5664 || GET_CODE (XEXP (x
, 0)) == ROTATERT
))
5665 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
, XEXP (x
, 0), i
);
5669 case GT
: case GTU
: case GE
: case GEU
:
5670 case LT
: case LTU
: case LE
: case LEU
:
5671 case UNEQ
: case LTGT
:
5672 case UNGT
: case UNGE
:
5673 case UNLT
: case UNLE
:
5674 case UNORDERED
: case ORDERED
:
5675 /* If the first operand is a condition code, we can't do anything
5677 if (GET_CODE (XEXP (x
, 0)) == COMPARE
5678 || (GET_MODE_CLASS (GET_MODE (XEXP (x
, 0))) != MODE_CC
5679 && ! CC0_P (XEXP (x
, 0))))
5681 rtx op0
= XEXP (x
, 0);
5682 rtx op1
= XEXP (x
, 1);
5683 enum rtx_code new_code
;
5685 if (GET_CODE (op0
) == COMPARE
)
5686 op1
= XEXP (op0
, 1), op0
= XEXP (op0
, 0);
5688 /* Simplify our comparison, if possible. */
5689 new_code
= simplify_comparison (code
, &op0
, &op1
);
5691 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5692 if only the low-order bit is possibly nonzero in X (such as when
5693 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5694 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5695 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5698 Remove any ZERO_EXTRACT we made when thinking this was a
5699 comparison. It may now be simpler to use, e.g., an AND. If a
5700 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5701 the call to make_compound_operation in the SET case.
5703 Don't apply these optimizations if the caller would
5704 prefer a comparison rather than a value.
5705 E.g., for the condition in an IF_THEN_ELSE most targets need
5706 an explicit comparison. */
5711 else if (STORE_FLAG_VALUE
== 1
5712 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
5713 && op1
== const0_rtx
5714 && mode
== GET_MODE (op0
)
5715 && nonzero_bits (op0
, mode
) == 1)
5716 return gen_lowpart (mode
,
5717 expand_compound_operation (op0
));
5719 else if (STORE_FLAG_VALUE
== 1
5720 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
5721 && op1
== const0_rtx
5722 && mode
== GET_MODE (op0
)
5723 && (num_sign_bit_copies (op0
, mode
)
5724 == GET_MODE_PRECISION (mode
)))
5726 op0
= expand_compound_operation (op0
);
5727 return simplify_gen_unary (NEG
, mode
,
5728 gen_lowpart (mode
, op0
),
5732 else if (STORE_FLAG_VALUE
== 1
5733 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
5734 && op1
== const0_rtx
5735 && mode
== GET_MODE (op0
)
5736 && nonzero_bits (op0
, mode
) == 1)
5738 op0
= expand_compound_operation (op0
);
5739 return simplify_gen_binary (XOR
, mode
,
5740 gen_lowpart (mode
, op0
),
5744 else if (STORE_FLAG_VALUE
== 1
5745 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
5746 && op1
== const0_rtx
5747 && mode
== GET_MODE (op0
)
5748 && (num_sign_bit_copies (op0
, mode
)
5749 == GET_MODE_PRECISION (mode
)))
5751 op0
= expand_compound_operation (op0
);
5752 return plus_constant (mode
, gen_lowpart (mode
, op0
), 1);
5755 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5760 else if (STORE_FLAG_VALUE
== -1
5761 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
5762 && op1
== const0_rtx
5763 && (num_sign_bit_copies (op0
, mode
)
5764 == GET_MODE_PRECISION (mode
)))
5765 return gen_lowpart (mode
,
5766 expand_compound_operation (op0
));
5768 else if (STORE_FLAG_VALUE
== -1
5769 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
5770 && op1
== const0_rtx
5771 && mode
== GET_MODE (op0
)
5772 && nonzero_bits (op0
, mode
) == 1)
5774 op0
= expand_compound_operation (op0
);
5775 return simplify_gen_unary (NEG
, mode
,
5776 gen_lowpart (mode
, op0
),
5780 else if (STORE_FLAG_VALUE
== -1
5781 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
5782 && op1
== const0_rtx
5783 && mode
== GET_MODE (op0
)
5784 && (num_sign_bit_copies (op0
, mode
)
5785 == GET_MODE_PRECISION (mode
)))
5787 op0
= expand_compound_operation (op0
);
5788 return simplify_gen_unary (NOT
, mode
,
5789 gen_lowpart (mode
, op0
),
5793 /* If X is 0/1, (eq X 0) is X-1. */
5794 else if (STORE_FLAG_VALUE
== -1
5795 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
5796 && op1
== const0_rtx
5797 && mode
== GET_MODE (op0
)
5798 && nonzero_bits (op0
, mode
) == 1)
5800 op0
= expand_compound_operation (op0
);
5801 return plus_constant (mode
, gen_lowpart (mode
, op0
), -1);
5804 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5805 one bit that might be nonzero, we can convert (ne x 0) to
5806 (ashift x c) where C puts the bit in the sign bit. Remove any
5807 AND with STORE_FLAG_VALUE when we are done, since we are only
5808 going to test the sign bit. */
5809 if (new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
5810 && HWI_COMPUTABLE_MODE_P (mode
)
5811 && val_signbit_p (mode
, STORE_FLAG_VALUE
)
5812 && op1
== const0_rtx
5813 && mode
== GET_MODE (op0
)
5814 && (i
= exact_log2 (nonzero_bits (op0
, mode
))) >= 0)
5816 x
= simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
5817 expand_compound_operation (op0
),
5818 GET_MODE_PRECISION (mode
) - 1 - i
);
5819 if (GET_CODE (x
) == AND
&& XEXP (x
, 1) == const_true_rtx
)
5825 /* If the code changed, return a whole new comparison.
5826 We also need to avoid using SUBST in cases where
5827 simplify_comparison has widened a comparison with a CONST_INT,
5828 since in that case the wider CONST_INT may fail the sanity
5829 checks in do_SUBST. */
5830 if (new_code
!= code
5831 || (CONST_INT_P (op1
)
5832 && GET_MODE (op0
) != GET_MODE (XEXP (x
, 0))
5833 && GET_MODE (op0
) != GET_MODE (XEXP (x
, 1))))
5834 return gen_rtx_fmt_ee (new_code
, mode
, op0
, op1
);
5836 /* Otherwise, keep this operation, but maybe change its operands.
5837 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5838 SUBST (XEXP (x
, 0), op0
);
5839 SUBST (XEXP (x
, 1), op1
);
5844 return simplify_if_then_else (x
);
5850 /* If we are processing SET_DEST, we are done. */
5854 return expand_compound_operation (x
);
5857 return simplify_set (x
);
5861 return simplify_logical (x
);
5868 /* If this is a shift by a constant amount, simplify it. */
5869 if (CONST_INT_P (XEXP (x
, 1)))
5870 return simplify_shift_const (x
, code
, mode
, XEXP (x
, 0),
5871 INTVAL (XEXP (x
, 1)));
5873 else if (SHIFT_COUNT_TRUNCATED
&& !REG_P (XEXP (x
, 1)))
5875 force_to_mode (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)),
5876 ((unsigned HOST_WIDE_INT
) 1
5877 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x
))))
5889 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5892 simplify_if_then_else (rtx x
)
5894 enum machine_mode mode
= GET_MODE (x
);
5895 rtx cond
= XEXP (x
, 0);
5896 rtx true_rtx
= XEXP (x
, 1);
5897 rtx false_rtx
= XEXP (x
, 2);
5898 enum rtx_code true_code
= GET_CODE (cond
);
5899 int comparison_p
= COMPARISON_P (cond
);
5902 enum rtx_code false_code
;
5905 /* Simplify storing of the truth value. */
5906 if (comparison_p
&& true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
5907 return simplify_gen_relational (true_code
, mode
, VOIDmode
,
5908 XEXP (cond
, 0), XEXP (cond
, 1));
5910 /* Also when the truth value has to be reversed. */
5912 && true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
5913 && (reversed
= reversed_comparison (cond
, mode
)))
5916 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5917 in it is being compared against certain values. Get the true and false
5918 comparisons and see if that says anything about the value of each arm. */
5921 && ((false_code
= reversed_comparison_code (cond
, NULL
))
5923 && REG_P (XEXP (cond
, 0)))
5926 rtx from
= XEXP (cond
, 0);
5927 rtx true_val
= XEXP (cond
, 1);
5928 rtx false_val
= true_val
;
5931 /* If FALSE_CODE is EQ, swap the codes and arms. */
5933 if (false_code
== EQ
)
5935 swapped
= 1, true_code
= EQ
, false_code
= NE
;
5936 temp
= true_rtx
, true_rtx
= false_rtx
, false_rtx
= temp
;
5939 /* If we are comparing against zero and the expression being tested has
5940 only a single bit that might be nonzero, that is its value when it is
5941 not equal to zero. Similarly if it is known to be -1 or 0. */
5943 if (true_code
== EQ
&& true_val
== const0_rtx
5944 && exact_log2 (nzb
= nonzero_bits (from
, GET_MODE (from
))) >= 0)
5947 false_val
= gen_int_mode (nzb
, GET_MODE (from
));
5949 else if (true_code
== EQ
&& true_val
== const0_rtx
5950 && (num_sign_bit_copies (from
, GET_MODE (from
))
5951 == GET_MODE_PRECISION (GET_MODE (from
))))
5954 false_val
= constm1_rtx
;
5957 /* Now simplify an arm if we know the value of the register in the
5958 branch and it is used in the arm. Be careful due to the potential
5959 of locally-shared RTL. */
5961 if (reg_mentioned_p (from
, true_rtx
))
5962 true_rtx
= subst (known_cond (copy_rtx (true_rtx
), true_code
,
5964 pc_rtx
, pc_rtx
, 0, 0, 0);
5965 if (reg_mentioned_p (from
, false_rtx
))
5966 false_rtx
= subst (known_cond (copy_rtx (false_rtx
), false_code
,
5968 pc_rtx
, pc_rtx
, 0, 0, 0);
5970 SUBST (XEXP (x
, 1), swapped
? false_rtx
: true_rtx
);
5971 SUBST (XEXP (x
, 2), swapped
? true_rtx
: false_rtx
);
5973 true_rtx
= XEXP (x
, 1);
5974 false_rtx
= XEXP (x
, 2);
5975 true_code
= GET_CODE (cond
);
5978 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5979 reversed, do so to avoid needing two sets of patterns for
5980 subtract-and-branch insns. Similarly if we have a constant in the true
5981 arm, the false arm is the same as the first operand of the comparison, or
5982 the false arm is more complicated than the true arm. */
5985 && reversed_comparison_code (cond
, NULL
) != UNKNOWN
5986 && (true_rtx
== pc_rtx
5987 || (CONSTANT_P (true_rtx
)
5988 && !CONST_INT_P (false_rtx
) && false_rtx
!= pc_rtx
)
5989 || true_rtx
== const0_rtx
5990 || (OBJECT_P (true_rtx
) && !OBJECT_P (false_rtx
))
5991 || (GET_CODE (true_rtx
) == SUBREG
&& OBJECT_P (SUBREG_REG (true_rtx
))
5992 && !OBJECT_P (false_rtx
))
5993 || reg_mentioned_p (true_rtx
, false_rtx
)
5994 || rtx_equal_p (false_rtx
, XEXP (cond
, 0))))
5996 true_code
= reversed_comparison_code (cond
, NULL
);
5997 SUBST (XEXP (x
, 0), reversed_comparison (cond
, GET_MODE (cond
)));
5998 SUBST (XEXP (x
, 1), false_rtx
);
5999 SUBST (XEXP (x
, 2), true_rtx
);
6001 temp
= true_rtx
, true_rtx
= false_rtx
, false_rtx
= temp
;
6004 /* It is possible that the conditional has been simplified out. */
6005 true_code
= GET_CODE (cond
);
6006 comparison_p
= COMPARISON_P (cond
);
6009 /* If the two arms are identical, we don't need the comparison. */
6011 if (rtx_equal_p (true_rtx
, false_rtx
) && ! side_effects_p (cond
))
6014 /* Convert a == b ? b : a to "a". */
6015 if (true_code
== EQ
&& ! side_effects_p (cond
)
6016 && !HONOR_NANS (mode
)
6017 && rtx_equal_p (XEXP (cond
, 0), false_rtx
)
6018 && rtx_equal_p (XEXP (cond
, 1), true_rtx
))
6020 else if (true_code
== NE
&& ! side_effects_p (cond
)
6021 && !HONOR_NANS (mode
)
6022 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
6023 && rtx_equal_p (XEXP (cond
, 1), false_rtx
))
6026 /* Look for cases where we have (abs x) or (neg (abs X)). */
6028 if (GET_MODE_CLASS (mode
) == MODE_INT
6030 && XEXP (cond
, 1) == const0_rtx
6031 && GET_CODE (false_rtx
) == NEG
6032 && rtx_equal_p (true_rtx
, XEXP (false_rtx
, 0))
6033 && rtx_equal_p (true_rtx
, XEXP (cond
, 0))
6034 && ! side_effects_p (true_rtx
))
6039 return simplify_gen_unary (ABS
, mode
, true_rtx
, mode
);
6043 simplify_gen_unary (NEG
, mode
,
6044 simplify_gen_unary (ABS
, mode
, true_rtx
, mode
),
6050 /* Look for MIN or MAX. */
6052 if ((! FLOAT_MODE_P (mode
) || flag_unsafe_math_optimizations
)
6054 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
6055 && rtx_equal_p (XEXP (cond
, 1), false_rtx
)
6056 && ! side_effects_p (cond
))
6061 return simplify_gen_binary (SMAX
, mode
, true_rtx
, false_rtx
);
6064 return simplify_gen_binary (SMIN
, mode
, true_rtx
, false_rtx
);
6067 return simplify_gen_binary (UMAX
, mode
, true_rtx
, false_rtx
);
6070 return simplify_gen_binary (UMIN
, mode
, true_rtx
, false_rtx
);
6075 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6076 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6077 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6078 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6079 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6080 neither 1 or -1, but it isn't worth checking for. */
6082 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
6084 && GET_MODE_CLASS (mode
) == MODE_INT
6085 && ! side_effects_p (x
))
6087 rtx t
= make_compound_operation (true_rtx
, SET
);
6088 rtx f
= make_compound_operation (false_rtx
, SET
);
6089 rtx cond_op0
= XEXP (cond
, 0);
6090 rtx cond_op1
= XEXP (cond
, 1);
6091 enum rtx_code op
= UNKNOWN
, extend_op
= UNKNOWN
;
6092 enum machine_mode m
= mode
;
6093 rtx z
= 0, c1
= NULL_RTX
;
6095 if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == MINUS
6096 || GET_CODE (t
) == IOR
|| GET_CODE (t
) == XOR
6097 || GET_CODE (t
) == ASHIFT
6098 || GET_CODE (t
) == LSHIFTRT
|| GET_CODE (t
) == ASHIFTRT
)
6099 && rtx_equal_p (XEXP (t
, 0), f
))
6100 c1
= XEXP (t
, 1), op
= GET_CODE (t
), z
= f
;
6102 /* If an identity-zero op is commutative, check whether there
6103 would be a match if we swapped the operands. */
6104 else if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == IOR
6105 || GET_CODE (t
) == XOR
)
6106 && rtx_equal_p (XEXP (t
, 1), f
))
6107 c1
= XEXP (t
, 0), op
= GET_CODE (t
), z
= f
;
6108 else if (GET_CODE (t
) == SIGN_EXTEND
6109 && (GET_CODE (XEXP (t
, 0)) == PLUS
6110 || GET_CODE (XEXP (t
, 0)) == MINUS
6111 || GET_CODE (XEXP (t
, 0)) == IOR
6112 || GET_CODE (XEXP (t
, 0)) == XOR
6113 || GET_CODE (XEXP (t
, 0)) == ASHIFT
6114 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
6115 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
6116 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
6117 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
6118 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
6119 && (num_sign_bit_copies (f
, GET_MODE (f
))
6121 (GET_MODE_PRECISION (mode
)
6122 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t
, 0), 0))))))
6124 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6125 extend_op
= SIGN_EXTEND
;
6126 m
= GET_MODE (XEXP (t
, 0));
6128 else if (GET_CODE (t
) == SIGN_EXTEND
6129 && (GET_CODE (XEXP (t
, 0)) == PLUS
6130 || GET_CODE (XEXP (t
, 0)) == IOR
6131 || GET_CODE (XEXP (t
, 0)) == XOR
)
6132 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
6133 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
6134 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
6135 && (num_sign_bit_copies (f
, GET_MODE (f
))
6137 (GET_MODE_PRECISION (mode
)
6138 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t
, 0), 1))))))
6140 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6141 extend_op
= SIGN_EXTEND
;
6142 m
= GET_MODE (XEXP (t
, 0));
6144 else if (GET_CODE (t
) == ZERO_EXTEND
6145 && (GET_CODE (XEXP (t
, 0)) == PLUS
6146 || GET_CODE (XEXP (t
, 0)) == MINUS
6147 || GET_CODE (XEXP (t
, 0)) == IOR
6148 || GET_CODE (XEXP (t
, 0)) == XOR
6149 || GET_CODE (XEXP (t
, 0)) == ASHIFT
6150 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
6151 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
6152 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
6153 && HWI_COMPUTABLE_MODE_P (mode
)
6154 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
6155 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
6156 && ((nonzero_bits (f
, GET_MODE (f
))
6157 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t
, 0), 0))))
6160 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6161 extend_op
= ZERO_EXTEND
;
6162 m
= GET_MODE (XEXP (t
, 0));
6164 else if (GET_CODE (t
) == ZERO_EXTEND
6165 && (GET_CODE (XEXP (t
, 0)) == PLUS
6166 || GET_CODE (XEXP (t
, 0)) == IOR
6167 || GET_CODE (XEXP (t
, 0)) == XOR
)
6168 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
6169 && HWI_COMPUTABLE_MODE_P (mode
)
6170 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
6171 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
6172 && ((nonzero_bits (f
, GET_MODE (f
))
6173 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t
, 0), 1))))
6176 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6177 extend_op
= ZERO_EXTEND
;
6178 m
= GET_MODE (XEXP (t
, 0));
6183 temp
= subst (simplify_gen_relational (true_code
, m
, VOIDmode
,
6184 cond_op0
, cond_op1
),
6185 pc_rtx
, pc_rtx
, 0, 0, 0);
6186 temp
= simplify_gen_binary (MULT
, m
, temp
,
6187 simplify_gen_binary (MULT
, m
, c1
,
6189 temp
= subst (temp
, pc_rtx
, pc_rtx
, 0, 0, 0);
6190 temp
= simplify_gen_binary (op
, m
, gen_lowpart (m
, z
), temp
);
6192 if (extend_op
!= UNKNOWN
)
6193 temp
= simplify_gen_unary (extend_op
, mode
, temp
, m
);
6199 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6200 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6201 negation of a single bit, we can convert this operation to a shift. We
6202 can actually do this more generally, but it doesn't seem worth it. */
6204 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
6205 && false_rtx
== const0_rtx
&& CONST_INT_P (true_rtx
)
6206 && ((1 == nonzero_bits (XEXP (cond
, 0), mode
)
6207 && (i
= exact_log2 (UINTVAL (true_rtx
))) >= 0)
6208 || ((num_sign_bit_copies (XEXP (cond
, 0), mode
)
6209 == GET_MODE_PRECISION (mode
))
6210 && (i
= exact_log2 (-UINTVAL (true_rtx
))) >= 0)))
6212 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
6213 gen_lowpart (mode
, XEXP (cond
, 0)), i
);
6215 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6216 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
6217 && false_rtx
== const0_rtx
&& CONST_INT_P (true_rtx
)
6218 && GET_MODE (XEXP (cond
, 0)) == mode
6219 && (UINTVAL (true_rtx
) & GET_MODE_MASK (mode
))
6220 == nonzero_bits (XEXP (cond
, 0), mode
)
6221 && (i
= exact_log2 (UINTVAL (true_rtx
) & GET_MODE_MASK (mode
))) >= 0)
6222 return XEXP (cond
, 0);
6227 /* Simplify X, a SET expression. Return the new expression. */
6230 simplify_set (rtx x
)
6232 rtx src
= SET_SRC (x
);
6233 rtx dest
= SET_DEST (x
);
6234 enum machine_mode mode
6235 = GET_MODE (src
) != VOIDmode
? GET_MODE (src
) : GET_MODE (dest
);
6239 /* (set (pc) (return)) gets written as (return). */
6240 if (GET_CODE (dest
) == PC
&& ANY_RETURN_P (src
))
6243 /* Now that we know for sure which bits of SRC we are using, see if we can
6244 simplify the expression for the object knowing that we only need the
6247 if (GET_MODE_CLASS (mode
) == MODE_INT
&& HWI_COMPUTABLE_MODE_P (mode
))
6249 src
= force_to_mode (src
, mode
, ~(unsigned HOST_WIDE_INT
) 0, 0);
6250 SUBST (SET_SRC (x
), src
);
6253 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6254 the comparison result and try to simplify it unless we already have used
6255 undobuf.other_insn. */
6256 if ((GET_MODE_CLASS (mode
) == MODE_CC
6257 || GET_CODE (src
) == COMPARE
6259 && (cc_use
= find_single_use (dest
, subst_insn
, &other_insn
)) != 0
6260 && (undobuf
.other_insn
== 0 || other_insn
== undobuf
.other_insn
)
6261 && COMPARISON_P (*cc_use
)
6262 && rtx_equal_p (XEXP (*cc_use
, 0), dest
))
6264 enum rtx_code old_code
= GET_CODE (*cc_use
);
6265 enum rtx_code new_code
;
6267 int other_changed
= 0;
6268 rtx inner_compare
= NULL_RTX
;
6269 enum machine_mode compare_mode
= GET_MODE (dest
);
6271 if (GET_CODE (src
) == COMPARE
)
6273 op0
= XEXP (src
, 0), op1
= XEXP (src
, 1);
6274 if (GET_CODE (op0
) == COMPARE
&& op1
== const0_rtx
)
6276 inner_compare
= op0
;
6277 op0
= XEXP (inner_compare
, 0), op1
= XEXP (inner_compare
, 1);
6281 op0
= src
, op1
= CONST0_RTX (GET_MODE (src
));
6283 tmp
= simplify_relational_operation (old_code
, compare_mode
, VOIDmode
,
6286 new_code
= old_code
;
6287 else if (!CONSTANT_P (tmp
))
6289 new_code
= GET_CODE (tmp
);
6290 op0
= XEXP (tmp
, 0);
6291 op1
= XEXP (tmp
, 1);
6295 rtx pat
= PATTERN (other_insn
);
6296 undobuf
.other_insn
= other_insn
;
6297 SUBST (*cc_use
, tmp
);
6299 /* Attempt to simplify CC user. */
6300 if (GET_CODE (pat
) == SET
)
6302 rtx new_rtx
= simplify_rtx (SET_SRC (pat
));
6303 if (new_rtx
!= NULL_RTX
)
6304 SUBST (SET_SRC (pat
), new_rtx
);
6307 /* Convert X into a no-op move. */
6308 SUBST (SET_DEST (x
), pc_rtx
);
6309 SUBST (SET_SRC (x
), pc_rtx
);
6313 /* Simplify our comparison, if possible. */
6314 new_code
= simplify_comparison (new_code
, &op0
, &op1
);
6316 #ifdef SELECT_CC_MODE
6317 /* If this machine has CC modes other than CCmode, check to see if we
6318 need to use a different CC mode here. */
6319 if (GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
6320 compare_mode
= GET_MODE (op0
);
6321 else if (inner_compare
6322 && GET_MODE_CLASS (GET_MODE (inner_compare
)) == MODE_CC
6323 && new_code
== old_code
6324 && op0
== XEXP (inner_compare
, 0)
6325 && op1
== XEXP (inner_compare
, 1))
6326 compare_mode
= GET_MODE (inner_compare
);
6328 compare_mode
= SELECT_CC_MODE (new_code
, op0
, op1
);
6331 /* If the mode changed, we have to change SET_DEST, the mode in the
6332 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6333 a hard register, just build new versions with the proper mode. If it
6334 is a pseudo, we lose unless it is only time we set the pseudo, in
6335 which case we can safely change its mode. */
6336 if (compare_mode
!= GET_MODE (dest
))
6338 if (can_change_dest_mode (dest
, 0, compare_mode
))
6340 unsigned int regno
= REGNO (dest
);
6343 if (regno
< FIRST_PSEUDO_REGISTER
)
6344 new_dest
= gen_rtx_REG (compare_mode
, regno
);
6347 SUBST_MODE (regno_reg_rtx
[regno
], compare_mode
);
6348 new_dest
= regno_reg_rtx
[regno
];
6351 SUBST (SET_DEST (x
), new_dest
);
6352 SUBST (XEXP (*cc_use
, 0), new_dest
);
6359 #endif /* SELECT_CC_MODE */
6361 /* If the code changed, we have to build a new comparison in
6362 undobuf.other_insn. */
6363 if (new_code
!= old_code
)
6365 int other_changed_previously
= other_changed
;
6366 unsigned HOST_WIDE_INT mask
;
6367 rtx old_cc_use
= *cc_use
;
6369 SUBST (*cc_use
, gen_rtx_fmt_ee (new_code
, GET_MODE (*cc_use
),
6373 /* If the only change we made was to change an EQ into an NE or
6374 vice versa, OP0 has only one bit that might be nonzero, and OP1
6375 is zero, check if changing the user of the condition code will
6376 produce a valid insn. If it won't, we can keep the original code
6377 in that insn by surrounding our operation with an XOR. */
6379 if (((old_code
== NE
&& new_code
== EQ
)
6380 || (old_code
== EQ
&& new_code
== NE
))
6381 && ! other_changed_previously
&& op1
== const0_rtx
6382 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0
))
6383 && exact_log2 (mask
= nonzero_bits (op0
, GET_MODE (op0
))) >= 0)
6385 rtx pat
= PATTERN (other_insn
), note
= 0;
6387 if ((recog_for_combine (&pat
, other_insn
, ¬e
) < 0
6388 && ! check_asm_operands (pat
)))
6390 *cc_use
= old_cc_use
;
6393 op0
= simplify_gen_binary (XOR
, GET_MODE (op0
), op0
,
6401 undobuf
.other_insn
= other_insn
;
6403 /* Otherwise, if we didn't previously have a COMPARE in the
6404 correct mode, we need one. */
6405 if (GET_CODE (src
) != COMPARE
|| GET_MODE (src
) != compare_mode
)
6407 SUBST (SET_SRC (x
), gen_rtx_COMPARE (compare_mode
, op0
, op1
));
6410 else if (GET_MODE (op0
) == compare_mode
&& op1
== const0_rtx
)
6412 SUBST (SET_SRC (x
), op0
);
6415 /* Otherwise, update the COMPARE if needed. */
6416 else if (XEXP (src
, 0) != op0
|| XEXP (src
, 1) != op1
)
6418 SUBST (SET_SRC (x
), gen_rtx_COMPARE (compare_mode
, op0
, op1
));
6424 /* Get SET_SRC in a form where we have placed back any
6425 compound expressions. Then do the checks below. */
6426 src
= make_compound_operation (src
, SET
);
6427 SUBST (SET_SRC (x
), src
);
6430 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6431 and X being a REG or (subreg (reg)), we may be able to convert this to
6432 (set (subreg:m2 x) (op)).
6434 We can always do this if M1 is narrower than M2 because that means that
6435 we only care about the low bits of the result.
6437 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6438 perform a narrower operation than requested since the high-order bits will
6439 be undefined. On machine where it is defined, this transformation is safe
6440 as long as M1 and M2 have the same number of words. */
6442 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
6443 && !OBJECT_P (SUBREG_REG (src
))
6444 && (((GET_MODE_SIZE (GET_MODE (src
)) + (UNITS_PER_WORD
- 1))
6446 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
)))
6447 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
6448 #ifndef WORD_REGISTER_OPERATIONS
6449 && (GET_MODE_SIZE (GET_MODE (src
))
6450 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
))))
6452 #ifdef CANNOT_CHANGE_MODE_CLASS
6453 && ! (REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
6454 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest
),
6455 GET_MODE (SUBREG_REG (src
)),
6459 || (GET_CODE (dest
) == SUBREG
6460 && REG_P (SUBREG_REG (dest
)))))
6462 SUBST (SET_DEST (x
),
6463 gen_lowpart (GET_MODE (SUBREG_REG (src
)),
6465 SUBST (SET_SRC (x
), SUBREG_REG (src
));
6467 src
= SET_SRC (x
), dest
= SET_DEST (x
);
6471 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6474 && GET_CODE (src
) == SUBREG
6475 && subreg_lowpart_p (src
)
6476 && (GET_MODE_PRECISION (GET_MODE (src
))
6477 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src
)))))
6479 rtx inner
= SUBREG_REG (src
);
6480 enum machine_mode inner_mode
= GET_MODE (inner
);
6482 /* Here we make sure that we don't have a sign bit on. */
6483 if (val_signbit_known_clear_p (GET_MODE (src
),
6484 nonzero_bits (inner
, inner_mode
)))
6486 SUBST (SET_SRC (x
), inner
);
6492 #ifdef LOAD_EXTEND_OP
6493 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6494 would require a paradoxical subreg. Replace the subreg with a
6495 zero_extend to avoid the reload that would otherwise be required. */
6497 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
6498 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src
)))
6499 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src
))) != UNKNOWN
6500 && SUBREG_BYTE (src
) == 0
6501 && paradoxical_subreg_p (src
)
6502 && MEM_P (SUBREG_REG (src
)))
6505 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src
))),
6506 GET_MODE (src
), SUBREG_REG (src
)));
6512 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6513 are comparing an item known to be 0 or -1 against 0, use a logical
6514 operation instead. Check for one of the arms being an IOR of the other
6515 arm with some value. We compute three terms to be IOR'ed together. In
6516 practice, at most two will be nonzero. Then we do the IOR's. */
6518 if (GET_CODE (dest
) != PC
6519 && GET_CODE (src
) == IF_THEN_ELSE
6520 && GET_MODE_CLASS (GET_MODE (src
)) == MODE_INT
6521 && (GET_CODE (XEXP (src
, 0)) == EQ
|| GET_CODE (XEXP (src
, 0)) == NE
)
6522 && XEXP (XEXP (src
, 0), 1) == const0_rtx
6523 && GET_MODE (src
) == GET_MODE (XEXP (XEXP (src
, 0), 0))
6524 #ifdef HAVE_conditional_move
6525 && ! can_conditionally_move_p (GET_MODE (src
))
6527 && (num_sign_bit_copies (XEXP (XEXP (src
, 0), 0),
6528 GET_MODE (XEXP (XEXP (src
, 0), 0)))
6529 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src
, 0), 0))))
6530 && ! side_effects_p (src
))
6532 rtx true_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
6533 ? XEXP (src
, 1) : XEXP (src
, 2));
6534 rtx false_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
6535 ? XEXP (src
, 2) : XEXP (src
, 1));
6536 rtx term1
= const0_rtx
, term2
, term3
;
6538 if (GET_CODE (true_rtx
) == IOR
6539 && rtx_equal_p (XEXP (true_rtx
, 0), false_rtx
))
6540 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 1), false_rtx
= const0_rtx
;
6541 else if (GET_CODE (true_rtx
) == IOR
6542 && rtx_equal_p (XEXP (true_rtx
, 1), false_rtx
))
6543 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 0), false_rtx
= const0_rtx
;
6544 else if (GET_CODE (false_rtx
) == IOR
6545 && rtx_equal_p (XEXP (false_rtx
, 0), true_rtx
))
6546 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 1), true_rtx
= const0_rtx
;
6547 else if (GET_CODE (false_rtx
) == IOR
6548 && rtx_equal_p (XEXP (false_rtx
, 1), true_rtx
))
6549 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 0), true_rtx
= const0_rtx
;
6551 term2
= simplify_gen_binary (AND
, GET_MODE (src
),
6552 XEXP (XEXP (src
, 0), 0), true_rtx
);
6553 term3
= simplify_gen_binary (AND
, GET_MODE (src
),
6554 simplify_gen_unary (NOT
, GET_MODE (src
),
6555 XEXP (XEXP (src
, 0), 0),
6560 simplify_gen_binary (IOR
, GET_MODE (src
),
6561 simplify_gen_binary (IOR
, GET_MODE (src
),
6568 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6569 whole thing fail. */
6570 if (GET_CODE (src
) == CLOBBER
&& XEXP (src
, 0) == const0_rtx
)
6572 else if (GET_CODE (dest
) == CLOBBER
&& XEXP (dest
, 0) == const0_rtx
)
6575 /* Convert this into a field assignment operation, if possible. */
6576 return make_field_assignment (x
);
6579 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6583 simplify_logical (rtx x
)
6585 enum machine_mode mode
= GET_MODE (x
);
6586 rtx op0
= XEXP (x
, 0);
6587 rtx op1
= XEXP (x
, 1);
6589 switch (GET_CODE (x
))
6592 /* We can call simplify_and_const_int only if we don't lose
6593 any (sign) bits when converting INTVAL (op1) to
6594 "unsigned HOST_WIDE_INT". */
6595 if (CONST_INT_P (op1
)
6596 && (HWI_COMPUTABLE_MODE_P (mode
)
6597 || INTVAL (op1
) > 0))
6599 x
= simplify_and_const_int (x
, mode
, op0
, INTVAL (op1
));
6600 if (GET_CODE (x
) != AND
)
6607 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6608 apply the distributive law and then the inverse distributive
6609 law to see if things simplify. */
6610 if (GET_CODE (op0
) == IOR
|| GET_CODE (op0
) == XOR
)
6612 rtx result
= distribute_and_simplify_rtx (x
, 0);
6616 if (GET_CODE (op1
) == IOR
|| GET_CODE (op1
) == XOR
)
6618 rtx result
= distribute_and_simplify_rtx (x
, 1);
6625 /* If we have (ior (and A B) C), apply the distributive law and then
6626 the inverse distributive law to see if things simplify. */
6628 if (GET_CODE (op0
) == AND
)
6630 rtx result
= distribute_and_simplify_rtx (x
, 0);
6635 if (GET_CODE (op1
) == AND
)
6637 rtx result
= distribute_and_simplify_rtx (x
, 1);
6650 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6651 operations" because they can be replaced with two more basic operations.
6652 ZERO_EXTEND is also considered "compound" because it can be replaced with
6653 an AND operation, which is simpler, though only one operation.
6655 The function expand_compound_operation is called with an rtx expression
6656 and will convert it to the appropriate shifts and AND operations,
6657 simplifying at each stage.
6659 The function make_compound_operation is called to convert an expression
6660 consisting of shifts and ANDs into the equivalent compound expression.
6661 It is the inverse of this function, loosely speaking. */
6664 expand_compound_operation (rtx x
)
6666 unsigned HOST_WIDE_INT pos
= 0, len
;
6668 unsigned int modewidth
;
6671 switch (GET_CODE (x
))
6676 /* We can't necessarily use a const_int for a multiword mode;
6677 it depends on implicitly extending the value.
6678 Since we don't know the right way to extend it,
6679 we can't tell whether the implicit way is right.
6681 Even for a mode that is no wider than a const_int,
6682 we can't win, because we need to sign extend one of its bits through
6683 the rest of it, and we don't know which bit. */
6684 if (CONST_INT_P (XEXP (x
, 0)))
6687 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6688 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6689 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6690 reloaded. If not for that, MEM's would very rarely be safe.
6692 Reject MODEs bigger than a word, because we might not be able
6693 to reference a two-register group starting with an arbitrary register
6694 (and currently gen_lowpart might crash for a SUBREG). */
6696 if (GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))) > UNITS_PER_WORD
)
6699 /* Reject MODEs that aren't scalar integers because turning vector
6700 or complex modes into shifts causes problems. */
6702 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x
, 0))))
6705 len
= GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)));
6706 /* If the inner object has VOIDmode (the only way this can happen
6707 is if it is an ASM_OPERANDS), we can't do anything since we don't
6708 know how much masking to do. */
6717 /* ... fall through ... */
6720 /* If the operand is a CLOBBER, just return it. */
6721 if (GET_CODE (XEXP (x
, 0)) == CLOBBER
)
6724 if (!CONST_INT_P (XEXP (x
, 1))
6725 || !CONST_INT_P (XEXP (x
, 2))
6726 || GET_MODE (XEXP (x
, 0)) == VOIDmode
)
6729 /* Reject MODEs that aren't scalar integers because turning vector
6730 or complex modes into shifts causes problems. */
6732 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x
, 0))))
6735 len
= INTVAL (XEXP (x
, 1));
6736 pos
= INTVAL (XEXP (x
, 2));
6738 /* This should stay within the object being extracted, fail otherwise. */
6739 if (len
+ pos
> GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0))))
6742 if (BITS_BIG_ENDIAN
)
6743 pos
= GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0))) - len
- pos
;
6750 /* Convert sign extension to zero extension, if we know that the high
6751 bit is not set, as this is easier to optimize. It will be converted
6752 back to cheaper alternative in make_extraction. */
6753 if (GET_CODE (x
) == SIGN_EXTEND
6754 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x
))
6755 && ((nonzero_bits (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
6756 & ~(((unsigned HOST_WIDE_INT
)
6757 GET_MODE_MASK (GET_MODE (XEXP (x
, 0))))
6761 rtx temp
= gen_rtx_ZERO_EXTEND (GET_MODE (x
), XEXP (x
, 0));
6762 rtx temp2
= expand_compound_operation (temp
);
6764 /* Make sure this is a profitable operation. */
6765 if (set_src_cost (x
, optimize_this_for_speed_p
)
6766 > set_src_cost (temp2
, optimize_this_for_speed_p
))
6768 else if (set_src_cost (x
, optimize_this_for_speed_p
)
6769 > set_src_cost (temp
, optimize_this_for_speed_p
))
6775 /* We can optimize some special cases of ZERO_EXTEND. */
6776 if (GET_CODE (x
) == ZERO_EXTEND
)
6778 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6779 know that the last value didn't have any inappropriate bits
6781 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
6782 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == GET_MODE (x
)
6783 && HWI_COMPUTABLE_MODE_P (GET_MODE (x
))
6784 && (nonzero_bits (XEXP (XEXP (x
, 0), 0), GET_MODE (x
))
6785 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
6786 return XEXP (XEXP (x
, 0), 0);
6788 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6789 if (GET_CODE (XEXP (x
, 0)) == SUBREG
6790 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == GET_MODE (x
)
6791 && subreg_lowpart_p (XEXP (x
, 0))
6792 && HWI_COMPUTABLE_MODE_P (GET_MODE (x
))
6793 && (nonzero_bits (SUBREG_REG (XEXP (x
, 0)), GET_MODE (x
))
6794 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
6795 return SUBREG_REG (XEXP (x
, 0));
6797 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6798 is a comparison and STORE_FLAG_VALUE permits. This is like
6799 the first case, but it works even when GET_MODE (x) is larger
6800 than HOST_WIDE_INT. */
6801 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
6802 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == GET_MODE (x
)
6803 && COMPARISON_P (XEXP (XEXP (x
, 0), 0))
6804 && (GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)))
6805 <= HOST_BITS_PER_WIDE_INT
)
6806 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
6807 return XEXP (XEXP (x
, 0), 0);
6809 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6810 if (GET_CODE (XEXP (x
, 0)) == SUBREG
6811 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == GET_MODE (x
)
6812 && subreg_lowpart_p (XEXP (x
, 0))
6813 && COMPARISON_P (SUBREG_REG (XEXP (x
, 0)))
6814 && (GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)))
6815 <= HOST_BITS_PER_WIDE_INT
)
6816 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
6817 return SUBREG_REG (XEXP (x
, 0));
6821 /* If we reach here, we want to return a pair of shifts. The inner
6822 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6823 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6824 logical depending on the value of UNSIGNEDP.
6826 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6827 converted into an AND of a shift.
6829 We must check for the case where the left shift would have a negative
6830 count. This can happen in a case like (x >> 31) & 255 on machines
6831 that can't shift by a constant. On those machines, we would first
6832 combine the shift with the AND to produce a variable-position
6833 extraction. Then the constant of 31 would be substituted in
6834 to produce such a position. */
6836 modewidth
= GET_MODE_PRECISION (GET_MODE (x
));
6837 if (modewidth
>= pos
+ len
)
6839 enum machine_mode mode
= GET_MODE (x
);
6840 tem
= gen_lowpart (mode
, XEXP (x
, 0));
6841 if (!tem
|| GET_CODE (tem
) == CLOBBER
)
6843 tem
= simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
6844 tem
, modewidth
- pos
- len
);
6845 tem
= simplify_shift_const (NULL_RTX
, unsignedp
? LSHIFTRT
: ASHIFTRT
,
6846 mode
, tem
, modewidth
- len
);
6848 else if (unsignedp
&& len
< HOST_BITS_PER_WIDE_INT
)
6849 tem
= simplify_and_const_int (NULL_RTX
, GET_MODE (x
),
6850 simplify_shift_const (NULL_RTX
, LSHIFTRT
,
6853 ((unsigned HOST_WIDE_INT
) 1 << len
) - 1);
6855 /* Any other cases we can't handle. */
6858 /* If we couldn't do this for some reason, return the original
6860 if (GET_CODE (tem
) == CLOBBER
)
6866 /* X is a SET which contains an assignment of one object into
6867 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6868 or certain SUBREGS). If possible, convert it into a series of
6871 We half-heartedly support variable positions, but do not at all
6872 support variable lengths. */
6875 expand_field_assignment (const_rtx x
)
6878 rtx pos
; /* Always counts from low bit. */
6880 rtx mask
, cleared
, masked
;
6881 enum machine_mode compute_mode
;
6883 /* Loop until we find something we can't simplify. */
6886 if (GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
6887 && GET_CODE (XEXP (SET_DEST (x
), 0)) == SUBREG
)
6889 inner
= SUBREG_REG (XEXP (SET_DEST (x
), 0));
6890 len
= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x
), 0)));
6891 pos
= GEN_INT (subreg_lsb (XEXP (SET_DEST (x
), 0)));
6893 else if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
6894 && CONST_INT_P (XEXP (SET_DEST (x
), 1)))
6896 inner
= XEXP (SET_DEST (x
), 0);
6897 len
= INTVAL (XEXP (SET_DEST (x
), 1));
6898 pos
= XEXP (SET_DEST (x
), 2);
6900 /* A constant position should stay within the width of INNER. */
6901 if (CONST_INT_P (pos
)
6902 && INTVAL (pos
) + len
> GET_MODE_PRECISION (GET_MODE (inner
)))
6905 if (BITS_BIG_ENDIAN
)
6907 if (CONST_INT_P (pos
))
6908 pos
= GEN_INT (GET_MODE_PRECISION (GET_MODE (inner
)) - len
6910 else if (GET_CODE (pos
) == MINUS
6911 && CONST_INT_P (XEXP (pos
, 1))
6912 && (INTVAL (XEXP (pos
, 1))
6913 == GET_MODE_PRECISION (GET_MODE (inner
)) - len
))
6914 /* If position is ADJUST - X, new position is X. */
6915 pos
= XEXP (pos
, 0);
6918 HOST_WIDE_INT prec
= GET_MODE_PRECISION (GET_MODE (inner
));
6919 pos
= simplify_gen_binary (MINUS
, GET_MODE (pos
),
6920 gen_int_mode (prec
- len
,
6927 /* A SUBREG between two modes that occupy the same numbers of words
6928 can be done by moving the SUBREG to the source. */
6929 else if (GET_CODE (SET_DEST (x
)) == SUBREG
6930 /* We need SUBREGs to compute nonzero_bits properly. */
6931 && nonzero_sign_valid
6932 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
6933 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
6934 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
6935 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
6937 x
= gen_rtx_SET (VOIDmode
, SUBREG_REG (SET_DEST (x
)),
6939 (GET_MODE (SUBREG_REG (SET_DEST (x
))),
6946 while (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
6947 inner
= SUBREG_REG (inner
);
6949 compute_mode
= GET_MODE (inner
);
6951 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6952 if (! SCALAR_INT_MODE_P (compute_mode
))
6954 enum machine_mode imode
;
6956 /* Don't do anything for vector or complex integral types. */
6957 if (! FLOAT_MODE_P (compute_mode
))
6960 /* Try to find an integral mode to pun with. */
6961 imode
= mode_for_size (GET_MODE_BITSIZE (compute_mode
), MODE_INT
, 0);
6962 if (imode
== BLKmode
)
6965 compute_mode
= imode
;
6966 inner
= gen_lowpart (imode
, inner
);
6969 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6970 if (len
>= HOST_BITS_PER_WIDE_INT
)
6973 /* Now compute the equivalent expression. Make a copy of INNER
6974 for the SET_DEST in case it is a MEM into which we will substitute;
6975 we don't want shared RTL in that case. */
6976 mask
= gen_int_mode (((unsigned HOST_WIDE_INT
) 1 << len
) - 1,
6978 cleared
= simplify_gen_binary (AND
, compute_mode
,
6979 simplify_gen_unary (NOT
, compute_mode
,
6980 simplify_gen_binary (ASHIFT
,
6985 masked
= simplify_gen_binary (ASHIFT
, compute_mode
,
6986 simplify_gen_binary (
6988 gen_lowpart (compute_mode
, SET_SRC (x
)),
6992 x
= gen_rtx_SET (VOIDmode
, copy_rtx (inner
),
6993 simplify_gen_binary (IOR
, compute_mode
,
7000 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7001 it is an RTX that represents the (variable) starting position; otherwise,
7002 POS is the (constant) starting bit position. Both are counted from the LSB.
7004 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7006 IN_DEST is nonzero if this is a reference in the destination of a SET.
7007 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7008 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7011 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7012 ZERO_EXTRACT should be built even for bits starting at bit 0.
7014 MODE is the desired mode of the result (if IN_DEST == 0).
7016 The result is an RTX for the extraction or NULL_RTX if the target
7020 make_extraction (enum machine_mode mode
, rtx inner
, HOST_WIDE_INT pos
,
7021 rtx pos_rtx
, unsigned HOST_WIDE_INT len
, int unsignedp
,
7022 int in_dest
, int in_compare
)
7024 /* This mode describes the size of the storage area
7025 to fetch the overall value from. Within that, we
7026 ignore the POS lowest bits, etc. */
7027 enum machine_mode is_mode
= GET_MODE (inner
);
7028 enum machine_mode inner_mode
;
7029 enum machine_mode wanted_inner_mode
;
7030 enum machine_mode wanted_inner_reg_mode
= word_mode
;
7031 enum machine_mode pos_mode
= word_mode
;
7032 enum machine_mode extraction_mode
= word_mode
;
7033 enum machine_mode tmode
= mode_for_size (len
, MODE_INT
, 1);
7035 rtx orig_pos_rtx
= pos_rtx
;
7036 HOST_WIDE_INT orig_pos
;
7038 if (pos_rtx
&& CONST_INT_P (pos_rtx
))
7039 pos
= INTVAL (pos_rtx
), pos_rtx
= 0;
7041 if (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
7043 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7044 consider just the QI as the memory to extract from.
7045 The subreg adds or removes high bits; its mode is
7046 irrelevant to the meaning of this extraction,
7047 since POS and LEN count from the lsb. */
7048 if (MEM_P (SUBREG_REG (inner
)))
7049 is_mode
= GET_MODE (SUBREG_REG (inner
));
7050 inner
= SUBREG_REG (inner
);
7052 else if (GET_CODE (inner
) == ASHIFT
7053 && CONST_INT_P (XEXP (inner
, 1))
7054 && pos_rtx
== 0 && pos
== 0
7055 && len
> UINTVAL (XEXP (inner
, 1)))
7057 /* We're extracting the least significant bits of an rtx
7058 (ashift X (const_int C)), where LEN > C. Extract the
7059 least significant (LEN - C) bits of X, giving an rtx
7060 whose mode is MODE, then shift it left C times. */
7061 new_rtx
= make_extraction (mode
, XEXP (inner
, 0),
7062 0, 0, len
- INTVAL (XEXP (inner
, 1)),
7063 unsignedp
, in_dest
, in_compare
);
7065 return gen_rtx_ASHIFT (mode
, new_rtx
, XEXP (inner
, 1));
7067 else if (GET_CODE (inner
) == TRUNCATE
)
7068 inner
= XEXP (inner
, 0);
7070 inner_mode
= GET_MODE (inner
);
7072 /* See if this can be done without an extraction. We never can if the
7073 width of the field is not the same as that of some integer mode. For
7074 registers, we can only avoid the extraction if the position is at the
7075 low-order bit and this is either not in the destination or we have the
7076 appropriate STRICT_LOW_PART operation available.
7078 For MEM, we can avoid an extract if the field starts on an appropriate
7079 boundary and we can change the mode of the memory reference. */
7081 if (tmode
!= BLKmode
7082 && ((pos_rtx
== 0 && (pos
% BITS_PER_WORD
) == 0
7084 && (inner_mode
== tmode
7086 || TRULY_NOOP_TRUNCATION_MODES_P (tmode
, inner_mode
)
7087 || reg_truncated_to_mode (tmode
, inner
))
7090 && have_insn_for (STRICT_LOW_PART
, tmode
))))
7091 || (MEM_P (inner
) && pos_rtx
== 0
7093 % (STRICT_ALIGNMENT
? GET_MODE_ALIGNMENT (tmode
)
7094 : BITS_PER_UNIT
)) == 0
7095 /* We can't do this if we are widening INNER_MODE (it
7096 may not be aligned, for one thing). */
7097 && GET_MODE_PRECISION (inner_mode
) >= GET_MODE_PRECISION (tmode
)
7098 && (inner_mode
== tmode
7099 || (! mode_dependent_address_p (XEXP (inner
, 0),
7100 MEM_ADDR_SPACE (inner
))
7101 && ! MEM_VOLATILE_P (inner
))))))
7103 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7104 field. If the original and current mode are the same, we need not
7105 adjust the offset. Otherwise, we do if bytes big endian.
7107 If INNER is not a MEM, get a piece consisting of just the field
7108 of interest (in this case POS % BITS_PER_WORD must be 0). */
7112 HOST_WIDE_INT offset
;
7114 /* POS counts from lsb, but make OFFSET count in memory order. */
7115 if (BYTES_BIG_ENDIAN
)
7116 offset
= (GET_MODE_PRECISION (is_mode
) - len
- pos
) / BITS_PER_UNIT
;
7118 offset
= pos
/ BITS_PER_UNIT
;
7120 new_rtx
= adjust_address_nv (inner
, tmode
, offset
);
7122 else if (REG_P (inner
))
7124 if (tmode
!= inner_mode
)
7126 /* We can't call gen_lowpart in a DEST since we
7127 always want a SUBREG (see below) and it would sometimes
7128 return a new hard register. */
7131 HOST_WIDE_INT final_word
= pos
/ BITS_PER_WORD
;
7133 if (WORDS_BIG_ENDIAN
7134 && GET_MODE_SIZE (inner_mode
) > UNITS_PER_WORD
)
7135 final_word
= ((GET_MODE_SIZE (inner_mode
)
7136 - GET_MODE_SIZE (tmode
))
7137 / UNITS_PER_WORD
) - final_word
;
7139 final_word
*= UNITS_PER_WORD
;
7140 if (BYTES_BIG_ENDIAN
&&
7141 GET_MODE_SIZE (inner_mode
) > GET_MODE_SIZE (tmode
))
7142 final_word
+= (GET_MODE_SIZE (inner_mode
)
7143 - GET_MODE_SIZE (tmode
)) % UNITS_PER_WORD
;
7145 /* Avoid creating invalid subregs, for example when
7146 simplifying (x>>32)&255. */
7147 if (!validate_subreg (tmode
, inner_mode
, inner
, final_word
))
7150 new_rtx
= gen_rtx_SUBREG (tmode
, inner
, final_word
);
7153 new_rtx
= gen_lowpart (tmode
, inner
);
7159 new_rtx
= force_to_mode (inner
, tmode
,
7160 len
>= HOST_BITS_PER_WIDE_INT
7161 ? ~(unsigned HOST_WIDE_INT
) 0
7162 : ((unsigned HOST_WIDE_INT
) 1 << len
) - 1,
7165 /* If this extraction is going into the destination of a SET,
7166 make a STRICT_LOW_PART unless we made a MEM. */
7169 return (MEM_P (new_rtx
) ? new_rtx
7170 : (GET_CODE (new_rtx
) != SUBREG
7171 ? gen_rtx_CLOBBER (tmode
, const0_rtx
)
7172 : gen_rtx_STRICT_LOW_PART (VOIDmode
, new_rtx
)));
7177 if (CONST_SCALAR_INT_P (new_rtx
))
7178 return simplify_unary_operation (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
7179 mode
, new_rtx
, tmode
);
7181 /* If we know that no extraneous bits are set, and that the high
7182 bit is not set, convert the extraction to the cheaper of
7183 sign and zero extension, that are equivalent in these cases. */
7184 if (flag_expensive_optimizations
7185 && (HWI_COMPUTABLE_MODE_P (tmode
)
7186 && ((nonzero_bits (new_rtx
, tmode
)
7187 & ~(((unsigned HOST_WIDE_INT
)GET_MODE_MASK (tmode
)) >> 1))
7190 rtx temp
= gen_rtx_ZERO_EXTEND (mode
, new_rtx
);
7191 rtx temp1
= gen_rtx_SIGN_EXTEND (mode
, new_rtx
);
7193 /* Prefer ZERO_EXTENSION, since it gives more information to
7195 if (set_src_cost (temp
, optimize_this_for_speed_p
)
7196 <= set_src_cost (temp1
, optimize_this_for_speed_p
))
7201 /* Otherwise, sign- or zero-extend unless we already are in the
7204 return (gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
7208 /* Unless this is a COMPARE or we have a funny memory reference,
7209 don't do anything with zero-extending field extracts starting at
7210 the low-order bit since they are simple AND operations. */
7211 if (pos_rtx
== 0 && pos
== 0 && ! in_dest
7212 && ! in_compare
&& unsignedp
)
7215 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7216 if the position is not a constant and the length is not 1. In all
7217 other cases, we would only be going outside our object in cases when
7218 an original shift would have been undefined. */
7220 && ((pos_rtx
== 0 && pos
+ len
> GET_MODE_PRECISION (is_mode
))
7221 || (pos_rtx
!= 0 && len
!= 1)))
7224 enum extraction_pattern pattern
= (in_dest
? EP_insv
7225 : unsignedp
? EP_extzv
: EP_extv
);
7227 /* If INNER is not from memory, we want it to have the mode of a register
7228 extraction pattern's structure operand, or word_mode if there is no
7229 such pattern. The same applies to extraction_mode and pos_mode
7230 and their respective operands.
7232 For memory, assume that the desired extraction_mode and pos_mode
7233 are the same as for a register operation, since at present we don't
7234 have named patterns for aligned memory structures. */
7235 struct extraction_insn insn
;
7236 if (get_best_reg_extraction_insn (&insn
, pattern
,
7237 GET_MODE_BITSIZE (inner_mode
), mode
))
7239 wanted_inner_reg_mode
= insn
.struct_mode
;
7240 pos_mode
= insn
.pos_mode
;
7241 extraction_mode
= insn
.field_mode
;
7244 /* Never narrow an object, since that might not be safe. */
7246 if (mode
!= VOIDmode
7247 && GET_MODE_SIZE (extraction_mode
) < GET_MODE_SIZE (mode
))
7248 extraction_mode
= mode
;
7251 wanted_inner_mode
= wanted_inner_reg_mode
;
7254 /* Be careful not to go beyond the extracted object and maintain the
7255 natural alignment of the memory. */
7256 wanted_inner_mode
= smallest_mode_for_size (len
, MODE_INT
);
7257 while (pos
% GET_MODE_BITSIZE (wanted_inner_mode
) + len
7258 > GET_MODE_BITSIZE (wanted_inner_mode
))
7260 wanted_inner_mode
= GET_MODE_WIDER_MODE (wanted_inner_mode
);
7261 gcc_assert (wanted_inner_mode
!= VOIDmode
);
7267 if (BITS_BIG_ENDIAN
)
7269 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7270 BITS_BIG_ENDIAN style. If position is constant, compute new
7271 position. Otherwise, build subtraction.
7272 Note that POS is relative to the mode of the original argument.
7273 If it's a MEM we need to recompute POS relative to that.
7274 However, if we're extracting from (or inserting into) a register,
7275 we want to recompute POS relative to wanted_inner_mode. */
7276 int width
= (MEM_P (inner
)
7277 ? GET_MODE_BITSIZE (is_mode
)
7278 : GET_MODE_BITSIZE (wanted_inner_mode
));
7281 pos
= width
- len
- pos
;
7284 = gen_rtx_MINUS (GET_MODE (pos_rtx
),
7285 gen_int_mode (width
- len
, GET_MODE (pos_rtx
)),
7287 /* POS may be less than 0 now, but we check for that below.
7288 Note that it can only be less than 0 if !MEM_P (inner). */
7291 /* If INNER has a wider mode, and this is a constant extraction, try to
7292 make it smaller and adjust the byte to point to the byte containing
7294 if (wanted_inner_mode
!= VOIDmode
7295 && inner_mode
!= wanted_inner_mode
7297 && GET_MODE_SIZE (wanted_inner_mode
) < GET_MODE_SIZE (is_mode
)
7299 && ! mode_dependent_address_p (XEXP (inner
, 0), MEM_ADDR_SPACE (inner
))
7300 && ! MEM_VOLATILE_P (inner
))
7304 /* The computations below will be correct if the machine is big
7305 endian in both bits and bytes or little endian in bits and bytes.
7306 If it is mixed, we must adjust. */
7308 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7309 adjust OFFSET to compensate. */
7310 if (BYTES_BIG_ENDIAN
7311 && GET_MODE_SIZE (inner_mode
) < GET_MODE_SIZE (is_mode
))
7312 offset
-= GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (inner_mode
);
7314 /* We can now move to the desired byte. */
7315 offset
+= (pos
/ GET_MODE_BITSIZE (wanted_inner_mode
))
7316 * GET_MODE_SIZE (wanted_inner_mode
);
7317 pos
%= GET_MODE_BITSIZE (wanted_inner_mode
);
7319 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
7320 && is_mode
!= wanted_inner_mode
)
7321 offset
= (GET_MODE_SIZE (is_mode
)
7322 - GET_MODE_SIZE (wanted_inner_mode
) - offset
);
7324 inner
= adjust_address_nv (inner
, wanted_inner_mode
, offset
);
7327 /* If INNER is not memory, get it into the proper mode. If we are changing
7328 its mode, POS must be a constant and smaller than the size of the new
7330 else if (!MEM_P (inner
))
7332 /* On the LHS, don't create paradoxical subregs implicitely truncating
7333 the register unless TRULY_NOOP_TRUNCATION. */
7335 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner
),
7339 if (GET_MODE (inner
) != wanted_inner_mode
7341 || orig_pos
+ len
> GET_MODE_BITSIZE (wanted_inner_mode
)))
7347 inner
= force_to_mode (inner
, wanted_inner_mode
,
7349 || len
+ orig_pos
>= HOST_BITS_PER_WIDE_INT
7350 ? ~(unsigned HOST_WIDE_INT
) 0
7351 : ((((unsigned HOST_WIDE_INT
) 1 << len
) - 1)
7356 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7357 have to zero extend. Otherwise, we can just use a SUBREG. */
7359 && GET_MODE_SIZE (pos_mode
) > GET_MODE_SIZE (GET_MODE (pos_rtx
)))
7361 rtx temp
= simplify_gen_unary (ZERO_EXTEND
, pos_mode
, pos_rtx
,
7362 GET_MODE (pos_rtx
));
7364 /* If we know that no extraneous bits are set, and that the high
7365 bit is not set, convert extraction to cheaper one - either
7366 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7368 if (flag_expensive_optimizations
7369 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx
))
7370 && ((nonzero_bits (pos_rtx
, GET_MODE (pos_rtx
))
7371 & ~(((unsigned HOST_WIDE_INT
)
7372 GET_MODE_MASK (GET_MODE (pos_rtx
)))
7376 rtx temp1
= simplify_gen_unary (SIGN_EXTEND
, pos_mode
, pos_rtx
,
7377 GET_MODE (pos_rtx
));
7379 /* Prefer ZERO_EXTENSION, since it gives more information to
7381 if (set_src_cost (temp1
, optimize_this_for_speed_p
)
7382 < set_src_cost (temp
, optimize_this_for_speed_p
))
7388 /* Make POS_RTX unless we already have it and it is correct. If we don't
7389 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7391 if (pos_rtx
== 0 && orig_pos_rtx
!= 0 && INTVAL (orig_pos_rtx
) == pos
)
7392 pos_rtx
= orig_pos_rtx
;
7394 else if (pos_rtx
== 0)
7395 pos_rtx
= GEN_INT (pos
);
7397 /* Make the required operation. See if we can use existing rtx. */
7398 new_rtx
= gen_rtx_fmt_eee (unsignedp
? ZERO_EXTRACT
: SIGN_EXTRACT
,
7399 extraction_mode
, inner
, GEN_INT (len
), pos_rtx
);
7401 new_rtx
= gen_lowpart (mode
, new_rtx
);
7406 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7407 with any other operations in X. Return X without that shift if so. */
7410 extract_left_shift (rtx x
, int count
)
7412 enum rtx_code code
= GET_CODE (x
);
7413 enum machine_mode mode
= GET_MODE (x
);
7419 /* This is the shift itself. If it is wide enough, we will return
7420 either the value being shifted if the shift count is equal to
7421 COUNT or a shift for the difference. */
7422 if (CONST_INT_P (XEXP (x
, 1))
7423 && INTVAL (XEXP (x
, 1)) >= count
)
7424 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (x
, 0),
7425 INTVAL (XEXP (x
, 1)) - count
);
7429 if ((tem
= extract_left_shift (XEXP (x
, 0), count
)) != 0)
7430 return simplify_gen_unary (code
, mode
, tem
, mode
);
7434 case PLUS
: case IOR
: case XOR
: case AND
:
7435 /* If we can safely shift this constant and we find the inner shift,
7436 make a new operation. */
7437 if (CONST_INT_P (XEXP (x
, 1))
7438 && (UINTVAL (XEXP (x
, 1))
7439 & ((((unsigned HOST_WIDE_INT
) 1 << count
)) - 1)) == 0
7440 && (tem
= extract_left_shift (XEXP (x
, 0), count
)) != 0)
7442 HOST_WIDE_INT val
= INTVAL (XEXP (x
, 1)) >> count
;
7443 return simplify_gen_binary (code
, mode
, tem
,
7444 gen_int_mode (val
, mode
));
7455 /* Look at the expression rooted at X. Look for expressions
7456 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7457 Form these expressions.
7459 Return the new rtx, usually just X.
7461 Also, for machines like the VAX that don't have logical shift insns,
7462 try to convert logical to arithmetic shift operations in cases where
7463 they are equivalent. This undoes the canonicalizations to logical
7464 shifts done elsewhere.
7466 We try, as much as possible, to re-use rtl expressions to save memory.
7468 IN_CODE says what kind of expression we are processing. Normally, it is
7469 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7470 being kludges), it is MEM. When processing the arguments of a comparison
7471 or a COMPARE against zero, it is COMPARE. */
7474 make_compound_operation (rtx x
, enum rtx_code in_code
)
7476 enum rtx_code code
= GET_CODE (x
);
7477 enum machine_mode mode
= GET_MODE (x
);
7478 int mode_width
= GET_MODE_PRECISION (mode
);
7480 enum rtx_code next_code
;
7486 /* Select the code to be used in recursive calls. Once we are inside an
7487 address, we stay there. If we have a comparison, set to COMPARE,
7488 but once inside, go back to our default of SET. */
7490 next_code
= (code
== MEM
? MEM
7491 : ((code
== PLUS
|| code
== MINUS
)
7492 && SCALAR_INT_MODE_P (mode
)) ? MEM
7493 : ((code
== COMPARE
|| COMPARISON_P (x
))
7494 && XEXP (x
, 1) == const0_rtx
) ? COMPARE
7495 : in_code
== COMPARE
? SET
: in_code
);
7497 /* Process depending on the code of this operation. If NEW is set
7498 nonzero, it will be returned. */
7503 /* Convert shifts by constants into multiplications if inside
7505 if (in_code
== MEM
&& CONST_INT_P (XEXP (x
, 1))
7506 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
7507 && INTVAL (XEXP (x
, 1)) >= 0
7508 && SCALAR_INT_MODE_P (mode
))
7510 HOST_WIDE_INT count
= INTVAL (XEXP (x
, 1));
7511 HOST_WIDE_INT multval
= (HOST_WIDE_INT
) 1 << count
;
7513 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
7514 if (GET_CODE (new_rtx
) == NEG
)
7516 new_rtx
= XEXP (new_rtx
, 0);
7519 multval
= trunc_int_for_mode (multval
, mode
);
7520 new_rtx
= gen_rtx_MULT (mode
, new_rtx
, gen_int_mode (multval
, mode
));
7527 lhs
= make_compound_operation (lhs
, next_code
);
7528 rhs
= make_compound_operation (rhs
, next_code
);
7529 if (GET_CODE (lhs
) == MULT
&& GET_CODE (XEXP (lhs
, 0)) == NEG
7530 && SCALAR_INT_MODE_P (mode
))
7532 tem
= simplify_gen_binary (MULT
, mode
, XEXP (XEXP (lhs
, 0), 0),
7534 new_rtx
= simplify_gen_binary (MINUS
, mode
, rhs
, tem
);
7536 else if (GET_CODE (lhs
) == MULT
7537 && (CONST_INT_P (XEXP (lhs
, 1)) && INTVAL (XEXP (lhs
, 1)) < 0))
7539 tem
= simplify_gen_binary (MULT
, mode
, XEXP (lhs
, 0),
7540 simplify_gen_unary (NEG
, mode
,
7543 new_rtx
= simplify_gen_binary (MINUS
, mode
, rhs
, tem
);
7547 SUBST (XEXP (x
, 0), lhs
);
7548 SUBST (XEXP (x
, 1), rhs
);
7551 x
= gen_lowpart (mode
, new_rtx
);
7557 lhs
= make_compound_operation (lhs
, next_code
);
7558 rhs
= make_compound_operation (rhs
, next_code
);
7559 if (GET_CODE (rhs
) == MULT
&& GET_CODE (XEXP (rhs
, 0)) == NEG
7560 && SCALAR_INT_MODE_P (mode
))
7562 tem
= simplify_gen_binary (MULT
, mode
, XEXP (XEXP (rhs
, 0), 0),
7564 new_rtx
= simplify_gen_binary (PLUS
, mode
, tem
, lhs
);
7566 else if (GET_CODE (rhs
) == MULT
7567 && (CONST_INT_P (XEXP (rhs
, 1)) && INTVAL (XEXP (rhs
, 1)) < 0))
7569 tem
= simplify_gen_binary (MULT
, mode
, XEXP (rhs
, 0),
7570 simplify_gen_unary (NEG
, mode
,
7573 new_rtx
= simplify_gen_binary (PLUS
, mode
, tem
, lhs
);
7577 SUBST (XEXP (x
, 0), lhs
);
7578 SUBST (XEXP (x
, 1), rhs
);
7581 return gen_lowpart (mode
, new_rtx
);
7584 /* If the second operand is not a constant, we can't do anything
7586 if (!CONST_INT_P (XEXP (x
, 1)))
7589 /* If the constant is a power of two minus one and the first operand
7590 is a logical right shift, make an extraction. */
7591 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
7592 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
7594 new_rtx
= make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
7595 new_rtx
= make_extraction (mode
, new_rtx
, 0, XEXP (XEXP (x
, 0), 1), i
, 1,
7596 0, in_code
== COMPARE
);
7599 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7600 else if (GET_CODE (XEXP (x
, 0)) == SUBREG
7601 && subreg_lowpart_p (XEXP (x
, 0))
7602 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == LSHIFTRT
7603 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
7605 new_rtx
= make_compound_operation (XEXP (SUBREG_REG (XEXP (x
, 0)), 0),
7607 new_rtx
= make_extraction (GET_MODE (SUBREG_REG (XEXP (x
, 0))), new_rtx
, 0,
7608 XEXP (SUBREG_REG (XEXP (x
, 0)), 1), i
, 1,
7609 0, in_code
== COMPARE
);
7611 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7612 else if ((GET_CODE (XEXP (x
, 0)) == XOR
7613 || GET_CODE (XEXP (x
, 0)) == IOR
)
7614 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == LSHIFTRT
7615 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == LSHIFTRT
7616 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
7618 /* Apply the distributive law, and then try to make extractions. */
7619 new_rtx
= gen_rtx_fmt_ee (GET_CODE (XEXP (x
, 0)), mode
,
7620 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 0),
7622 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 1),
7624 new_rtx
= make_compound_operation (new_rtx
, in_code
);
7627 /* If we are have (and (rotate X C) M) and C is larger than the number
7628 of bits in M, this is an extraction. */
7630 else if (GET_CODE (XEXP (x
, 0)) == ROTATE
7631 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
7632 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0
7633 && i
<= INTVAL (XEXP (XEXP (x
, 0), 1)))
7635 new_rtx
= make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
7636 new_rtx
= make_extraction (mode
, new_rtx
,
7637 (GET_MODE_PRECISION (mode
)
7638 - INTVAL (XEXP (XEXP (x
, 0), 1))),
7639 NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
7642 /* On machines without logical shifts, if the operand of the AND is
7643 a logical shift and our mask turns off all the propagated sign
7644 bits, we can replace the logical shift with an arithmetic shift. */
7645 else if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
7646 && !have_insn_for (LSHIFTRT
, mode
)
7647 && have_insn_for (ASHIFTRT
, mode
)
7648 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
7649 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
7650 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
7651 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
7653 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
7655 mask
>>= INTVAL (XEXP (XEXP (x
, 0), 1));
7656 if ((INTVAL (XEXP (x
, 1)) & ~mask
) == 0)
7658 gen_rtx_ASHIFTRT (mode
,
7659 make_compound_operation
7660 (XEXP (XEXP (x
, 0), 0), next_code
),
7661 XEXP (XEXP (x
, 0), 1)));
7664 /* If the constant is one less than a power of two, this might be
7665 representable by an extraction even if no shift is present.
7666 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7667 we are in a COMPARE. */
7668 else if ((i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
7669 new_rtx
= make_extraction (mode
,
7670 make_compound_operation (XEXP (x
, 0),
7672 0, NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
7674 /* If we are in a comparison and this is an AND with a power of two,
7675 convert this into the appropriate bit extract. */
7676 else if (in_code
== COMPARE
7677 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0)
7678 new_rtx
= make_extraction (mode
,
7679 make_compound_operation (XEXP (x
, 0),
7681 i
, NULL_RTX
, 1, 1, 0, 1);
7686 /* If the sign bit is known to be zero, replace this with an
7687 arithmetic shift. */
7688 if (have_insn_for (ASHIFTRT
, mode
)
7689 && ! have_insn_for (LSHIFTRT
, mode
)
7690 && mode_width
<= HOST_BITS_PER_WIDE_INT
7691 && (nonzero_bits (XEXP (x
, 0), mode
) & (1 << (mode_width
- 1))) == 0)
7693 new_rtx
= gen_rtx_ASHIFTRT (mode
,
7694 make_compound_operation (XEXP (x
, 0),
7700 /* ... fall through ... */
7706 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7707 this is a SIGN_EXTRACT. */
7708 if (CONST_INT_P (rhs
)
7709 && GET_CODE (lhs
) == ASHIFT
7710 && CONST_INT_P (XEXP (lhs
, 1))
7711 && INTVAL (rhs
) >= INTVAL (XEXP (lhs
, 1))
7712 && INTVAL (XEXP (lhs
, 1)) >= 0
7713 && INTVAL (rhs
) < mode_width
)
7715 new_rtx
= make_compound_operation (XEXP (lhs
, 0), next_code
);
7716 new_rtx
= make_extraction (mode
, new_rtx
,
7717 INTVAL (rhs
) - INTVAL (XEXP (lhs
, 1)),
7718 NULL_RTX
, mode_width
- INTVAL (rhs
),
7719 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
7723 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7724 If so, try to merge the shifts into a SIGN_EXTEND. We could
7725 also do this for some cases of SIGN_EXTRACT, but it doesn't
7726 seem worth the effort; the case checked for occurs on Alpha. */
7729 && ! (GET_CODE (lhs
) == SUBREG
7730 && (OBJECT_P (SUBREG_REG (lhs
))))
7731 && CONST_INT_P (rhs
)
7732 && INTVAL (rhs
) < HOST_BITS_PER_WIDE_INT
7733 && INTVAL (rhs
) < mode_width
7734 && (new_rtx
= extract_left_shift (lhs
, INTVAL (rhs
))) != 0)
7735 new_rtx
= make_extraction (mode
, make_compound_operation (new_rtx
, next_code
),
7736 0, NULL_RTX
, mode_width
- INTVAL (rhs
),
7737 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
7742 /* Call ourselves recursively on the inner expression. If we are
7743 narrowing the object and it has a different RTL code from
7744 what it originally did, do this SUBREG as a force_to_mode. */
7746 rtx inner
= SUBREG_REG (x
), simplified
;
7747 enum rtx_code subreg_code
= in_code
;
7749 /* If in_code is COMPARE, it isn't always safe to pass it through
7750 to the recursive make_compound_operation call. */
7751 if (subreg_code
== COMPARE
7752 && (!subreg_lowpart_p (x
)
7753 || GET_CODE (inner
) == SUBREG
7754 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
7755 is (const_int 0), rather than
7756 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
7757 || (GET_CODE (inner
) == AND
7758 && CONST_INT_P (XEXP (inner
, 1))
7759 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (inner
))
7760 && exact_log2 (UINTVAL (XEXP (inner
, 1)))
7761 >= GET_MODE_BITSIZE (mode
))))
7764 tem
= make_compound_operation (inner
, subreg_code
);
7767 = simplify_subreg (mode
, tem
, GET_MODE (inner
), SUBREG_BYTE (x
));
7771 if (GET_CODE (tem
) != GET_CODE (inner
)
7772 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (inner
))
7773 && subreg_lowpart_p (x
))
7776 = force_to_mode (tem
, mode
, ~(unsigned HOST_WIDE_INT
) 0, 0);
7778 /* If we have something other than a SUBREG, we might have
7779 done an expansion, so rerun ourselves. */
7780 if (GET_CODE (newer
) != SUBREG
)
7781 newer
= make_compound_operation (newer
, in_code
);
7783 /* force_to_mode can expand compounds. If it just re-expanded the
7784 compound, use gen_lowpart to convert to the desired mode. */
7785 if (rtx_equal_p (newer
, x
)
7786 /* Likewise if it re-expanded the compound only partially.
7787 This happens for SUBREG of ZERO_EXTRACT if they extract
7788 the same number of bits. */
7789 || (GET_CODE (newer
) == SUBREG
7790 && (GET_CODE (SUBREG_REG (newer
)) == LSHIFTRT
7791 || GET_CODE (SUBREG_REG (newer
)) == ASHIFTRT
)
7792 && GET_CODE (inner
) == AND
7793 && rtx_equal_p (SUBREG_REG (newer
), XEXP (inner
, 0))))
7794 return gen_lowpart (GET_MODE (x
), tem
);
7810 x
= gen_lowpart (mode
, new_rtx
);
7811 code
= GET_CODE (x
);
7814 /* Now recursively process each operand of this operation. We need to
7815 handle ZERO_EXTEND specially so that we don't lose track of the
7817 if (GET_CODE (x
) == ZERO_EXTEND
)
7819 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
7820 tem
= simplify_const_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
7821 new_rtx
, GET_MODE (XEXP (x
, 0)));
7824 SUBST (XEXP (x
, 0), new_rtx
);
7828 fmt
= GET_RTX_FORMAT (code
);
7829 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
7832 new_rtx
= make_compound_operation (XEXP (x
, i
), next_code
);
7833 SUBST (XEXP (x
, i
), new_rtx
);
7835 else if (fmt
[i
] == 'E')
7836 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
7838 new_rtx
= make_compound_operation (XVECEXP (x
, i
, j
), next_code
);
7839 SUBST (XVECEXP (x
, i
, j
), new_rtx
);
7843 /* If this is a commutative operation, the changes to the operands
7844 may have made it noncanonical. */
7845 if (COMMUTATIVE_ARITH_P (x
)
7846 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
7849 SUBST (XEXP (x
, 0), XEXP (x
, 1));
7850 SUBST (XEXP (x
, 1), tem
);
7856 /* Given M see if it is a value that would select a field of bits
7857 within an item, but not the entire word. Return -1 if not.
7858 Otherwise, return the starting position of the field, where 0 is the
7861 *PLEN is set to the length of the field. */
7864 get_pos_from_mask (unsigned HOST_WIDE_INT m
, unsigned HOST_WIDE_INT
*plen
)
7866 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7867 int pos
= m
? ctz_hwi (m
) : -1;
7871 /* Now shift off the low-order zero bits and see if we have a
7872 power of two minus 1. */
7873 len
= exact_log2 ((m
>> pos
) + 1);
7882 /* If X refers to a register that equals REG in value, replace these
7883 references with REG. */
7885 canon_reg_for_combine (rtx x
, rtx reg
)
7892 enum rtx_code code
= GET_CODE (x
);
7893 switch (GET_RTX_CLASS (code
))
7896 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
7897 if (op0
!= XEXP (x
, 0))
7898 return simplify_gen_unary (GET_CODE (x
), GET_MODE (x
), op0
,
7903 case RTX_COMM_ARITH
:
7904 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
7905 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
7906 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
7907 return simplify_gen_binary (GET_CODE (x
), GET_MODE (x
), op0
, op1
);
7911 case RTX_COMM_COMPARE
:
7912 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
7913 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
7914 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
7915 return simplify_gen_relational (GET_CODE (x
), GET_MODE (x
),
7916 GET_MODE (op0
), op0
, op1
);
7920 case RTX_BITFIELD_OPS
:
7921 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
7922 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
7923 op2
= canon_reg_for_combine (XEXP (x
, 2), reg
);
7924 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1) || op2
!= XEXP (x
, 2))
7925 return simplify_gen_ternary (GET_CODE (x
), GET_MODE (x
),
7926 GET_MODE (op0
), op0
, op1
, op2
);
7931 if (rtx_equal_p (get_last_value (reg
), x
)
7932 || rtx_equal_p (reg
, get_last_value (x
)))
7941 fmt
= GET_RTX_FORMAT (code
);
7943 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
7946 rtx op
= canon_reg_for_combine (XEXP (x
, i
), reg
);
7947 if (op
!= XEXP (x
, i
))
7957 else if (fmt
[i
] == 'E')
7960 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
7962 rtx op
= canon_reg_for_combine (XVECEXP (x
, i
, j
), reg
);
7963 if (op
!= XVECEXP (x
, i
, j
))
7970 XVECEXP (x
, i
, j
) = op
;
7981 /* Return X converted to MODE. If the value is already truncated to
7982 MODE we can just return a subreg even though in the general case we
7983 would need an explicit truncation. */
7986 gen_lowpart_or_truncate (enum machine_mode mode
, rtx x
)
7988 if (!CONST_INT_P (x
)
7989 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (x
))
7990 && !TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (x
))
7991 && !(REG_P (x
) && reg_truncated_to_mode (mode
, x
)))
7993 /* Bit-cast X into an integer mode. */
7994 if (!SCALAR_INT_MODE_P (GET_MODE (x
)))
7995 x
= gen_lowpart (int_mode_for_mode (GET_MODE (x
)), x
);
7996 x
= simplify_gen_unary (TRUNCATE
, int_mode_for_mode (mode
),
8000 return gen_lowpart (mode
, x
);
8003 /* See if X can be simplified knowing that we will only refer to it in
8004 MODE and will only refer to those bits that are nonzero in MASK.
8005 If other bits are being computed or if masking operations are done
8006 that select a superset of the bits in MASK, they can sometimes be
8009 Return a possibly simplified expression, but always convert X to
8010 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8012 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8013 are all off in X. This is used when X will be complemented, by either
8014 NOT, NEG, or XOR. */
8017 force_to_mode (rtx x
, enum machine_mode mode
, unsigned HOST_WIDE_INT mask
,
8020 enum rtx_code code
= GET_CODE (x
);
8021 int next_select
= just_select
|| code
== XOR
|| code
== NOT
|| code
== NEG
;
8022 enum machine_mode op_mode
;
8023 unsigned HOST_WIDE_INT fuller_mask
, nonzero
;
8026 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8027 code below will do the wrong thing since the mode of such an
8028 expression is VOIDmode.
8030 Also do nothing if X is a CLOBBER; this can happen if X was
8031 the return value from a call to gen_lowpart. */
8032 if (code
== CALL
|| code
== ASM_OPERANDS
|| code
== CLOBBER
)
8035 /* We want to perform the operation in its present mode unless we know
8036 that the operation is valid in MODE, in which case we do the operation
8038 op_mode
= ((GET_MODE_CLASS (mode
) == GET_MODE_CLASS (GET_MODE (x
))
8039 && have_insn_for (code
, mode
))
8040 ? mode
: GET_MODE (x
));
8042 /* It is not valid to do a right-shift in a narrower mode
8043 than the one it came in with. */
8044 if ((code
== LSHIFTRT
|| code
== ASHIFTRT
)
8045 && GET_MODE_PRECISION (mode
) < GET_MODE_PRECISION (GET_MODE (x
)))
8046 op_mode
= GET_MODE (x
);
8048 /* Truncate MASK to fit OP_MODE. */
8050 mask
&= GET_MODE_MASK (op_mode
);
8052 /* When we have an arithmetic operation, or a shift whose count we
8053 do not know, we need to assume that all bits up to the highest-order
8054 bit in MASK will be needed. This is how we form such a mask. */
8055 if (mask
& ((unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)))
8056 fuller_mask
= ~(unsigned HOST_WIDE_INT
) 0;
8058 fuller_mask
= (((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mask
) + 1))
8061 /* Determine what bits of X are guaranteed to be (non)zero. */
8062 nonzero
= nonzero_bits (x
, mode
);
8064 /* If none of the bits in X are needed, return a zero. */
8065 if (!just_select
&& (nonzero
& mask
) == 0 && !side_effects_p (x
))
8068 /* If X is a CONST_INT, return a new one. Do this here since the
8069 test below will fail. */
8070 if (CONST_INT_P (x
))
8072 if (SCALAR_INT_MODE_P (mode
))
8073 return gen_int_mode (INTVAL (x
) & mask
, mode
);
8076 x
= GEN_INT (INTVAL (x
) & mask
);
8077 return gen_lowpart_common (mode
, x
);
8081 /* If X is narrower than MODE and we want all the bits in X's mode, just
8082 get X in the proper mode. */
8083 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (mode
)
8084 && (GET_MODE_MASK (GET_MODE (x
)) & ~mask
) == 0)
8085 return gen_lowpart (mode
, x
);
8087 /* We can ignore the effect of a SUBREG if it narrows the mode or
8088 if the constant masks to zero all the bits the mode doesn't have. */
8089 if (GET_CODE (x
) == SUBREG
8090 && subreg_lowpart_p (x
)
8091 && ((GET_MODE_SIZE (GET_MODE (x
))
8092 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
8094 & GET_MODE_MASK (GET_MODE (x
))
8095 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x
)))))))
8096 return force_to_mode (SUBREG_REG (x
), mode
, mask
, next_select
);
8098 /* The arithmetic simplifications here only work for scalar integer modes. */
8099 if (!SCALAR_INT_MODE_P (mode
) || !SCALAR_INT_MODE_P (GET_MODE (x
)))
8100 return gen_lowpart_or_truncate (mode
, x
);
8105 /* If X is a (clobber (const_int)), return it since we know we are
8106 generating something that won't match. */
8113 x
= expand_compound_operation (x
);
8114 if (GET_CODE (x
) != code
)
8115 return force_to_mode (x
, mode
, mask
, next_select
);
8119 /* Similarly for a truncate. */
8120 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8123 /* If this is an AND with a constant, convert it into an AND
8124 whose constant is the AND of that constant with MASK. If it
8125 remains an AND of MASK, delete it since it is redundant. */
8127 if (CONST_INT_P (XEXP (x
, 1)))
8129 x
= simplify_and_const_int (x
, op_mode
, XEXP (x
, 0),
8130 mask
& INTVAL (XEXP (x
, 1)));
8132 /* If X is still an AND, see if it is an AND with a mask that
8133 is just some low-order bits. If so, and it is MASK, we don't
8136 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1))
8137 && ((INTVAL (XEXP (x
, 1)) & GET_MODE_MASK (GET_MODE (x
)))
8141 /* If it remains an AND, try making another AND with the bits
8142 in the mode mask that aren't in MASK turned on. If the
8143 constant in the AND is wide enough, this might make a
8144 cheaper constant. */
8146 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1))
8147 && GET_MODE_MASK (GET_MODE (x
)) != mask
8148 && HWI_COMPUTABLE_MODE_P (GET_MODE (x
)))
8150 unsigned HOST_WIDE_INT cval
8151 = UINTVAL (XEXP (x
, 1))
8152 | (GET_MODE_MASK (GET_MODE (x
)) & ~mask
);
8155 y
= simplify_gen_binary (AND
, GET_MODE (x
), XEXP (x
, 0),
8156 gen_int_mode (cval
, GET_MODE (x
)));
8157 if (set_src_cost (y
, optimize_this_for_speed_p
)
8158 < set_src_cost (x
, optimize_this_for_speed_p
))
8168 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8169 low-order bits (as in an alignment operation) and FOO is already
8170 aligned to that boundary, mask C1 to that boundary as well.
8171 This may eliminate that PLUS and, later, the AND. */
8174 unsigned int width
= GET_MODE_PRECISION (mode
);
8175 unsigned HOST_WIDE_INT smask
= mask
;
8177 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8178 number, sign extend it. */
8180 if (width
< HOST_BITS_PER_WIDE_INT
8181 && (smask
& (HOST_WIDE_INT_1U
<< (width
- 1))) != 0)
8182 smask
|= HOST_WIDE_INT_M1U
<< width
;
8184 if (CONST_INT_P (XEXP (x
, 1))
8185 && exact_log2 (- smask
) >= 0
8186 && (nonzero_bits (XEXP (x
, 0), mode
) & ~smask
) == 0
8187 && (INTVAL (XEXP (x
, 1)) & ~smask
) != 0)
8188 return force_to_mode (plus_constant (GET_MODE (x
), XEXP (x
, 0),
8189 (INTVAL (XEXP (x
, 1)) & smask
)),
8190 mode
, smask
, next_select
);
8193 /* ... fall through ... */
8196 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8197 most significant bit in MASK since carries from those bits will
8198 affect the bits we are interested in. */
8203 /* If X is (minus C Y) where C's least set bit is larger than any bit
8204 in the mask, then we may replace with (neg Y). */
8205 if (CONST_INT_P (XEXP (x
, 0))
8206 && ((UINTVAL (XEXP (x
, 0)) & -UINTVAL (XEXP (x
, 0))) > mask
))
8208 x
= simplify_gen_unary (NEG
, GET_MODE (x
), XEXP (x
, 1),
8210 return force_to_mode (x
, mode
, mask
, next_select
);
8213 /* Similarly, if C contains every bit in the fuller_mask, then we may
8214 replace with (not Y). */
8215 if (CONST_INT_P (XEXP (x
, 0))
8216 && ((UINTVAL (XEXP (x
, 0)) | fuller_mask
) == UINTVAL (XEXP (x
, 0))))
8218 x
= simplify_gen_unary (NOT
, GET_MODE (x
),
8219 XEXP (x
, 1), GET_MODE (x
));
8220 return force_to_mode (x
, mode
, mask
, next_select
);
8228 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8229 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8230 operation which may be a bitfield extraction. Ensure that the
8231 constant we form is not wider than the mode of X. */
8233 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8234 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8235 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
8236 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
8237 && CONST_INT_P (XEXP (x
, 1))
8238 && ((INTVAL (XEXP (XEXP (x
, 0), 1))
8239 + floor_log2 (INTVAL (XEXP (x
, 1))))
8240 < GET_MODE_PRECISION (GET_MODE (x
)))
8241 && (UINTVAL (XEXP (x
, 1))
8242 & ~nonzero_bits (XEXP (x
, 0), GET_MODE (x
))) == 0)
8244 temp
= gen_int_mode ((INTVAL (XEXP (x
, 1)) & mask
)
8245 << INTVAL (XEXP (XEXP (x
, 0), 1)),
8247 temp
= simplify_gen_binary (GET_CODE (x
), GET_MODE (x
),
8248 XEXP (XEXP (x
, 0), 0), temp
);
8249 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
), temp
,
8250 XEXP (XEXP (x
, 0), 1));
8251 return force_to_mode (x
, mode
, mask
, next_select
);
8255 /* For most binary operations, just propagate into the operation and
8256 change the mode if we have an operation of that mode. */
8258 op0
= force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8259 op1
= force_to_mode (XEXP (x
, 1), mode
, mask
, next_select
);
8261 /* If we ended up truncating both operands, truncate the result of the
8262 operation instead. */
8263 if (GET_CODE (op0
) == TRUNCATE
8264 && GET_CODE (op1
) == TRUNCATE
)
8266 op0
= XEXP (op0
, 0);
8267 op1
= XEXP (op1
, 0);
8270 op0
= gen_lowpart_or_truncate (op_mode
, op0
);
8271 op1
= gen_lowpart_or_truncate (op_mode
, op1
);
8273 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
8274 x
= simplify_gen_binary (code
, op_mode
, op0
, op1
);
8278 /* For left shifts, do the same, but just for the first operand.
8279 However, we cannot do anything with shifts where we cannot
8280 guarantee that the counts are smaller than the size of the mode
8281 because such a count will have a different meaning in a
8284 if (! (CONST_INT_P (XEXP (x
, 1))
8285 && INTVAL (XEXP (x
, 1)) >= 0
8286 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (mode
))
8287 && ! (GET_MODE (XEXP (x
, 1)) != VOIDmode
8288 && (nonzero_bits (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)))
8289 < (unsigned HOST_WIDE_INT
) GET_MODE_PRECISION (mode
))))
8292 /* If the shift count is a constant and we can do arithmetic in
8293 the mode of the shift, refine which bits we need. Otherwise, use the
8294 conservative form of the mask. */
8295 if (CONST_INT_P (XEXP (x
, 1))
8296 && INTVAL (XEXP (x
, 1)) >= 0
8297 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (op_mode
)
8298 && HWI_COMPUTABLE_MODE_P (op_mode
))
8299 mask
>>= INTVAL (XEXP (x
, 1));
8303 op0
= gen_lowpart_or_truncate (op_mode
,
8304 force_to_mode (XEXP (x
, 0), op_mode
,
8305 mask
, next_select
));
8307 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0))
8308 x
= simplify_gen_binary (code
, op_mode
, op0
, XEXP (x
, 1));
8312 /* Here we can only do something if the shift count is a constant,
8313 this shift constant is valid for the host, and we can do arithmetic
8316 if (CONST_INT_P (XEXP (x
, 1))
8317 && INTVAL (XEXP (x
, 1)) >= 0
8318 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
8319 && HWI_COMPUTABLE_MODE_P (op_mode
))
8321 rtx inner
= XEXP (x
, 0);
8322 unsigned HOST_WIDE_INT inner_mask
;
8324 /* Select the mask of the bits we need for the shift operand. */
8325 inner_mask
= mask
<< INTVAL (XEXP (x
, 1));
8327 /* We can only change the mode of the shift if we can do arithmetic
8328 in the mode of the shift and INNER_MASK is no wider than the
8329 width of X's mode. */
8330 if ((inner_mask
& ~GET_MODE_MASK (GET_MODE (x
))) != 0)
8331 op_mode
= GET_MODE (x
);
8333 inner
= force_to_mode (inner
, op_mode
, inner_mask
, next_select
);
8335 if (GET_MODE (x
) != op_mode
|| inner
!= XEXP (x
, 0))
8336 x
= simplify_gen_binary (LSHIFTRT
, op_mode
, inner
, XEXP (x
, 1));
8339 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8340 shift and AND produces only copies of the sign bit (C2 is one less
8341 than a power of two), we can do this with just a shift. */
8343 if (GET_CODE (x
) == LSHIFTRT
8344 && CONST_INT_P (XEXP (x
, 1))
8345 /* The shift puts one of the sign bit copies in the least significant
8347 && ((INTVAL (XEXP (x
, 1))
8348 + num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0))))
8349 >= GET_MODE_PRECISION (GET_MODE (x
)))
8350 && exact_log2 (mask
+ 1) >= 0
8351 /* Number of bits left after the shift must be more than the mask
8353 && ((INTVAL (XEXP (x
, 1)) + exact_log2 (mask
+ 1))
8354 <= GET_MODE_PRECISION (GET_MODE (x
)))
8355 /* Must be more sign bit copies than the mask needs. */
8356 && ((int) num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
8357 >= exact_log2 (mask
+ 1)))
8358 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0),
8359 GEN_INT (GET_MODE_PRECISION (GET_MODE (x
))
8360 - exact_log2 (mask
+ 1)));
8365 /* If we are just looking for the sign bit, we don't need this shift at
8366 all, even if it has a variable count. */
8367 if (val_signbit_p (GET_MODE (x
), mask
))
8368 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8370 /* If this is a shift by a constant, get a mask that contains those bits
8371 that are not copies of the sign bit. We then have two cases: If
8372 MASK only includes those bits, this can be a logical shift, which may
8373 allow simplifications. If MASK is a single-bit field not within
8374 those bits, we are requesting a copy of the sign bit and hence can
8375 shift the sign bit to the appropriate location. */
8377 if (CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0
8378 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
8382 /* If the considered data is wider than HOST_WIDE_INT, we can't
8383 represent a mask for all its bits in a single scalar.
8384 But we only care about the lower bits, so calculate these. */
8386 if (GET_MODE_PRECISION (GET_MODE (x
)) > HOST_BITS_PER_WIDE_INT
)
8388 nonzero
= ~(unsigned HOST_WIDE_INT
) 0;
8390 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8391 is the number of bits a full-width mask would have set.
8392 We need only shift if these are fewer than nonzero can
8393 hold. If not, we must keep all bits set in nonzero. */
8395 if (GET_MODE_PRECISION (GET_MODE (x
)) - INTVAL (XEXP (x
, 1))
8396 < HOST_BITS_PER_WIDE_INT
)
8397 nonzero
>>= INTVAL (XEXP (x
, 1))
8398 + HOST_BITS_PER_WIDE_INT
8399 - GET_MODE_PRECISION (GET_MODE (x
)) ;
8403 nonzero
= GET_MODE_MASK (GET_MODE (x
));
8404 nonzero
>>= INTVAL (XEXP (x
, 1));
8407 if ((mask
& ~nonzero
) == 0)
8409 x
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, GET_MODE (x
),
8410 XEXP (x
, 0), INTVAL (XEXP (x
, 1)));
8411 if (GET_CODE (x
) != ASHIFTRT
)
8412 return force_to_mode (x
, mode
, mask
, next_select
);
8415 else if ((i
= exact_log2 (mask
)) >= 0)
8417 x
= simplify_shift_const
8418 (NULL_RTX
, LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0),
8419 GET_MODE_PRECISION (GET_MODE (x
)) - 1 - i
);
8421 if (GET_CODE (x
) != ASHIFTRT
)
8422 return force_to_mode (x
, mode
, mask
, next_select
);
8426 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8427 even if the shift count isn't a constant. */
8429 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
),
8430 XEXP (x
, 0), XEXP (x
, 1));
8434 /* If this is a zero- or sign-extension operation that just affects bits
8435 we don't care about, remove it. Be sure the call above returned
8436 something that is still a shift. */
8438 if ((GET_CODE (x
) == LSHIFTRT
|| GET_CODE (x
) == ASHIFTRT
)
8439 && CONST_INT_P (XEXP (x
, 1))
8440 && INTVAL (XEXP (x
, 1)) >= 0
8441 && (INTVAL (XEXP (x
, 1))
8442 <= GET_MODE_PRECISION (GET_MODE (x
)) - (floor_log2 (mask
) + 1))
8443 && GET_CODE (XEXP (x
, 0)) == ASHIFT
8444 && XEXP (XEXP (x
, 0), 1) == XEXP (x
, 1))
8445 return force_to_mode (XEXP (XEXP (x
, 0), 0), mode
, mask
,
8452 /* If the shift count is constant and we can do computations
8453 in the mode of X, compute where the bits we care about are.
8454 Otherwise, we can't do anything. Don't change the mode of
8455 the shift or propagate MODE into the shift, though. */
8456 if (CONST_INT_P (XEXP (x
, 1))
8457 && INTVAL (XEXP (x
, 1)) >= 0)
8459 temp
= simplify_binary_operation (code
== ROTATE
? ROTATERT
: ROTATE
,
8461 gen_int_mode (mask
, GET_MODE (x
)),
8463 if (temp
&& CONST_INT_P (temp
))
8464 x
= simplify_gen_binary (code
, GET_MODE (x
),
8465 force_to_mode (XEXP (x
, 0), GET_MODE (x
),
8466 INTVAL (temp
), next_select
),
8472 /* If we just want the low-order bit, the NEG isn't needed since it
8473 won't change the low-order bit. */
8475 return force_to_mode (XEXP (x
, 0), mode
, mask
, just_select
);
8477 /* We need any bits less significant than the most significant bit in
8478 MASK since carries from those bits will affect the bits we are
8484 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8485 same as the XOR case above. Ensure that the constant we form is not
8486 wider than the mode of X. */
8488 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8489 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8490 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
8491 && (INTVAL (XEXP (XEXP (x
, 0), 1)) + floor_log2 (mask
)
8492 < GET_MODE_PRECISION (GET_MODE (x
)))
8493 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
8495 temp
= gen_int_mode (mask
<< INTVAL (XEXP (XEXP (x
, 0), 1)),
8497 temp
= simplify_gen_binary (XOR
, GET_MODE (x
),
8498 XEXP (XEXP (x
, 0), 0), temp
);
8499 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
),
8500 temp
, XEXP (XEXP (x
, 0), 1));
8502 return force_to_mode (x
, mode
, mask
, next_select
);
8505 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8506 use the full mask inside the NOT. */
8510 op0
= gen_lowpart_or_truncate (op_mode
,
8511 force_to_mode (XEXP (x
, 0), mode
, mask
,
8513 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0))
8514 x
= simplify_gen_unary (code
, op_mode
, op0
, op_mode
);
8518 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8519 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8520 which is equal to STORE_FLAG_VALUE. */
8521 if ((mask
& ~STORE_FLAG_VALUE
) == 0
8522 && XEXP (x
, 1) == const0_rtx
8523 && GET_MODE (XEXP (x
, 0)) == mode
8524 && exact_log2 (nonzero_bits (XEXP (x
, 0), mode
)) >= 0
8525 && (nonzero_bits (XEXP (x
, 0), mode
)
8526 == (unsigned HOST_WIDE_INT
) STORE_FLAG_VALUE
))
8527 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8532 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8533 written in a narrower mode. We play it safe and do not do so. */
8535 op0
= gen_lowpart_or_truncate (GET_MODE (x
),
8536 force_to_mode (XEXP (x
, 1), mode
,
8537 mask
, next_select
));
8538 op1
= gen_lowpart_or_truncate (GET_MODE (x
),
8539 force_to_mode (XEXP (x
, 2), mode
,
8540 mask
, next_select
));
8541 if (op0
!= XEXP (x
, 1) || op1
!= XEXP (x
, 2))
8542 x
= simplify_gen_ternary (IF_THEN_ELSE
, GET_MODE (x
),
8543 GET_MODE (XEXP (x
, 0)), XEXP (x
, 0),
8551 /* Ensure we return a value of the proper mode. */
8552 return gen_lowpart_or_truncate (mode
, x
);
8555 /* Return nonzero if X is an expression that has one of two values depending on
8556 whether some other value is zero or nonzero. In that case, we return the
8557 value that is being tested, *PTRUE is set to the value if the rtx being
8558 returned has a nonzero value, and *PFALSE is set to the other alternative.
8560 If we return zero, we set *PTRUE and *PFALSE to X. */
8563 if_then_else_cond (rtx x
, rtx
*ptrue
, rtx
*pfalse
)
8565 enum machine_mode mode
= GET_MODE (x
);
8566 enum rtx_code code
= GET_CODE (x
);
8567 rtx cond0
, cond1
, true0
, true1
, false0
, false1
;
8568 unsigned HOST_WIDE_INT nz
;
8570 /* If we are comparing a value against zero, we are done. */
8571 if ((code
== NE
|| code
== EQ
)
8572 && XEXP (x
, 1) == const0_rtx
)
8574 *ptrue
= (code
== NE
) ? const_true_rtx
: const0_rtx
;
8575 *pfalse
= (code
== NE
) ? const0_rtx
: const_true_rtx
;
8579 /* If this is a unary operation whose operand has one of two values, apply
8580 our opcode to compute those values. */
8581 else if (UNARY_P (x
)
8582 && (cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
)) != 0)
8584 *ptrue
= simplify_gen_unary (code
, mode
, true0
, GET_MODE (XEXP (x
, 0)));
8585 *pfalse
= simplify_gen_unary (code
, mode
, false0
,
8586 GET_MODE (XEXP (x
, 0)));
8590 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8591 make can't possibly match and would suppress other optimizations. */
8592 else if (code
== COMPARE
)
8595 /* If this is a binary operation, see if either side has only one of two
8596 values. If either one does or if both do and they are conditional on
8597 the same value, compute the new true and false values. */
8598 else if (BINARY_P (x
))
8600 cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
);
8601 cond1
= if_then_else_cond (XEXP (x
, 1), &true1
, &false1
);
8603 if ((cond0
!= 0 || cond1
!= 0)
8604 && ! (cond0
!= 0 && cond1
!= 0 && ! rtx_equal_p (cond0
, cond1
)))
8606 /* If if_then_else_cond returned zero, then true/false are the
8607 same rtl. We must copy one of them to prevent invalid rtl
8610 true0
= copy_rtx (true0
);
8611 else if (cond1
== 0)
8612 true1
= copy_rtx (true1
);
8614 if (COMPARISON_P (x
))
8616 *ptrue
= simplify_gen_relational (code
, mode
, VOIDmode
,
8618 *pfalse
= simplify_gen_relational (code
, mode
, VOIDmode
,
8623 *ptrue
= simplify_gen_binary (code
, mode
, true0
, true1
);
8624 *pfalse
= simplify_gen_binary (code
, mode
, false0
, false1
);
8627 return cond0
? cond0
: cond1
;
8630 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8631 operands is zero when the other is nonzero, and vice-versa,
8632 and STORE_FLAG_VALUE is 1 or -1. */
8634 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
8635 && (code
== PLUS
|| code
== IOR
|| code
== XOR
|| code
== MINUS
8637 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
8639 rtx op0
= XEXP (XEXP (x
, 0), 1);
8640 rtx op1
= XEXP (XEXP (x
, 1), 1);
8642 cond0
= XEXP (XEXP (x
, 0), 0);
8643 cond1
= XEXP (XEXP (x
, 1), 0);
8645 if (COMPARISON_P (cond0
)
8646 && COMPARISON_P (cond1
)
8647 && ((GET_CODE (cond0
) == reversed_comparison_code (cond1
, NULL
)
8648 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
8649 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
8650 || ((swap_condition (GET_CODE (cond0
))
8651 == reversed_comparison_code (cond1
, NULL
))
8652 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
8653 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
8654 && ! side_effects_p (x
))
8656 *ptrue
= simplify_gen_binary (MULT
, mode
, op0
, const_true_rtx
);
8657 *pfalse
= simplify_gen_binary (MULT
, mode
,
8659 ? simplify_gen_unary (NEG
, mode
,
8667 /* Similarly for MULT, AND and UMIN, except that for these the result
8669 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
8670 && (code
== MULT
|| code
== AND
|| code
== UMIN
)
8671 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
8673 cond0
= XEXP (XEXP (x
, 0), 0);
8674 cond1
= XEXP (XEXP (x
, 1), 0);
8676 if (COMPARISON_P (cond0
)
8677 && COMPARISON_P (cond1
)
8678 && ((GET_CODE (cond0
) == reversed_comparison_code (cond1
, NULL
)
8679 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
8680 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
8681 || ((swap_condition (GET_CODE (cond0
))
8682 == reversed_comparison_code (cond1
, NULL
))
8683 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
8684 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
8685 && ! side_effects_p (x
))
8687 *ptrue
= *pfalse
= const0_rtx
;
8693 else if (code
== IF_THEN_ELSE
)
8695 /* If we have IF_THEN_ELSE already, extract the condition and
8696 canonicalize it if it is NE or EQ. */
8697 cond0
= XEXP (x
, 0);
8698 *ptrue
= XEXP (x
, 1), *pfalse
= XEXP (x
, 2);
8699 if (GET_CODE (cond0
) == NE
&& XEXP (cond0
, 1) == const0_rtx
)
8700 return XEXP (cond0
, 0);
8701 else if (GET_CODE (cond0
) == EQ
&& XEXP (cond0
, 1) == const0_rtx
)
8703 *ptrue
= XEXP (x
, 2), *pfalse
= XEXP (x
, 1);
8704 return XEXP (cond0
, 0);
8710 /* If X is a SUBREG, we can narrow both the true and false values
8711 if the inner expression, if there is a condition. */
8712 else if (code
== SUBREG
8713 && 0 != (cond0
= if_then_else_cond (SUBREG_REG (x
),
8716 true0
= simplify_gen_subreg (mode
, true0
,
8717 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
8718 false0
= simplify_gen_subreg (mode
, false0
,
8719 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
8720 if (true0
&& false0
)
8728 /* If X is a constant, this isn't special and will cause confusions
8729 if we treat it as such. Likewise if it is equivalent to a constant. */
8730 else if (CONSTANT_P (x
)
8731 || ((cond0
= get_last_value (x
)) != 0 && CONSTANT_P (cond0
)))
8734 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8735 will be least confusing to the rest of the compiler. */
8736 else if (mode
== BImode
)
8738 *ptrue
= GEN_INT (STORE_FLAG_VALUE
), *pfalse
= const0_rtx
;
8742 /* If X is known to be either 0 or -1, those are the true and
8743 false values when testing X. */
8744 else if (x
== constm1_rtx
|| x
== const0_rtx
8745 || (mode
!= VOIDmode
8746 && num_sign_bit_copies (x
, mode
) == GET_MODE_PRECISION (mode
)))
8748 *ptrue
= constm1_rtx
, *pfalse
= const0_rtx
;
8752 /* Likewise for 0 or a single bit. */
8753 else if (HWI_COMPUTABLE_MODE_P (mode
)
8754 && exact_log2 (nz
= nonzero_bits (x
, mode
)) >= 0)
8756 *ptrue
= gen_int_mode (nz
, mode
), *pfalse
= const0_rtx
;
8760 /* Otherwise fail; show no condition with true and false values the same. */
8761 *ptrue
= *pfalse
= x
;
8765 /* Return the value of expression X given the fact that condition COND
8766 is known to be true when applied to REG as its first operand and VAL
8767 as its second. X is known to not be shared and so can be modified in
8770 We only handle the simplest cases, and specifically those cases that
8771 arise with IF_THEN_ELSE expressions. */
8774 known_cond (rtx x
, enum rtx_code cond
, rtx reg
, rtx val
)
8776 enum rtx_code code
= GET_CODE (x
);
8781 if (side_effects_p (x
))
8784 /* If either operand of the condition is a floating point value,
8785 then we have to avoid collapsing an EQ comparison. */
8787 && rtx_equal_p (x
, reg
)
8788 && ! FLOAT_MODE_P (GET_MODE (x
))
8789 && ! FLOAT_MODE_P (GET_MODE (val
)))
8792 if (cond
== UNEQ
&& rtx_equal_p (x
, reg
))
8795 /* If X is (abs REG) and we know something about REG's relationship
8796 with zero, we may be able to simplify this. */
8798 if (code
== ABS
&& rtx_equal_p (XEXP (x
, 0), reg
) && val
== const0_rtx
)
8801 case GE
: case GT
: case EQ
:
8804 return simplify_gen_unary (NEG
, GET_MODE (XEXP (x
, 0)),
8806 GET_MODE (XEXP (x
, 0)));
8811 /* The only other cases we handle are MIN, MAX, and comparisons if the
8812 operands are the same as REG and VAL. */
8814 else if (COMPARISON_P (x
) || COMMUTATIVE_ARITH_P (x
))
8816 if (rtx_equal_p (XEXP (x
, 0), val
))
8817 cond
= swap_condition (cond
), temp
= val
, val
= reg
, reg
= temp
;
8819 if (rtx_equal_p (XEXP (x
, 0), reg
) && rtx_equal_p (XEXP (x
, 1), val
))
8821 if (COMPARISON_P (x
))
8823 if (comparison_dominates_p (cond
, code
))
8824 return const_true_rtx
;
8826 code
= reversed_comparison_code (x
, NULL
);
8828 && comparison_dominates_p (cond
, code
))
8833 else if (code
== SMAX
|| code
== SMIN
8834 || code
== UMIN
|| code
== UMAX
)
8836 int unsignedp
= (code
== UMIN
|| code
== UMAX
);
8838 /* Do not reverse the condition when it is NE or EQ.
8839 This is because we cannot conclude anything about
8840 the value of 'SMAX (x, y)' when x is not equal to y,
8841 but we can when x equals y. */
8842 if ((code
== SMAX
|| code
== UMAX
)
8843 && ! (cond
== EQ
|| cond
== NE
))
8844 cond
= reverse_condition (cond
);
8849 return unsignedp
? x
: XEXP (x
, 1);
8851 return unsignedp
? x
: XEXP (x
, 0);
8853 return unsignedp
? XEXP (x
, 1) : x
;
8855 return unsignedp
? XEXP (x
, 0) : x
;
8862 else if (code
== SUBREG
)
8864 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (x
));
8865 rtx new_rtx
, r
= known_cond (SUBREG_REG (x
), cond
, reg
, val
);
8867 if (SUBREG_REG (x
) != r
)
8869 /* We must simplify subreg here, before we lose track of the
8870 original inner_mode. */
8871 new_rtx
= simplify_subreg (GET_MODE (x
), r
,
8872 inner_mode
, SUBREG_BYTE (x
));
8876 SUBST (SUBREG_REG (x
), r
);
8881 /* We don't have to handle SIGN_EXTEND here, because even in the
8882 case of replacing something with a modeless CONST_INT, a
8883 CONST_INT is already (supposed to be) a valid sign extension for
8884 its narrower mode, which implies it's already properly
8885 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8886 story is different. */
8887 else if (code
== ZERO_EXTEND
)
8889 enum machine_mode inner_mode
= GET_MODE (XEXP (x
, 0));
8890 rtx new_rtx
, r
= known_cond (XEXP (x
, 0), cond
, reg
, val
);
8892 if (XEXP (x
, 0) != r
)
8894 /* We must simplify the zero_extend here, before we lose
8895 track of the original inner_mode. */
8896 new_rtx
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
8901 SUBST (XEXP (x
, 0), r
);
8907 fmt
= GET_RTX_FORMAT (code
);
8908 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
8911 SUBST (XEXP (x
, i
), known_cond (XEXP (x
, i
), cond
, reg
, val
));
8912 else if (fmt
[i
] == 'E')
8913 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
8914 SUBST (XVECEXP (x
, i
, j
), known_cond (XVECEXP (x
, i
, j
),
8921 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8922 assignment as a field assignment. */
8925 rtx_equal_for_field_assignment_p (rtx x
, rtx y
)
8927 if (x
== y
|| rtx_equal_p (x
, y
))
8930 if (x
== 0 || y
== 0 || GET_MODE (x
) != GET_MODE (y
))
8933 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8934 Note that all SUBREGs of MEM are paradoxical; otherwise they
8935 would have been rewritten. */
8936 if (MEM_P (x
) && GET_CODE (y
) == SUBREG
8937 && MEM_P (SUBREG_REG (y
))
8938 && rtx_equal_p (SUBREG_REG (y
),
8939 gen_lowpart (GET_MODE (SUBREG_REG (y
)), x
)))
8942 if (MEM_P (y
) && GET_CODE (x
) == SUBREG
8943 && MEM_P (SUBREG_REG (x
))
8944 && rtx_equal_p (SUBREG_REG (x
),
8945 gen_lowpart (GET_MODE (SUBREG_REG (x
)), y
)))
8948 /* We used to see if get_last_value of X and Y were the same but that's
8949 not correct. In one direction, we'll cause the assignment to have
8950 the wrong destination and in the case, we'll import a register into this
8951 insn that might have already have been dead. So fail if none of the
8952 above cases are true. */
8956 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8957 Return that assignment if so.
8959 We only handle the most common cases. */
8962 make_field_assignment (rtx x
)
8964 rtx dest
= SET_DEST (x
);
8965 rtx src
= SET_SRC (x
);
8970 unsigned HOST_WIDE_INT len
;
8972 enum machine_mode mode
;
8974 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8975 a clear of a one-bit field. We will have changed it to
8976 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8979 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == ROTATE
8980 && CONST_INT_P (XEXP (XEXP (src
, 0), 0))
8981 && INTVAL (XEXP (XEXP (src
, 0), 0)) == -2
8982 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
8984 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
8987 return gen_rtx_SET (VOIDmode
, assign
, const0_rtx
);
8991 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == SUBREG
8992 && subreg_lowpart_p (XEXP (src
, 0))
8993 && (GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)))
8994 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src
, 0)))))
8995 && GET_CODE (SUBREG_REG (XEXP (src
, 0))) == ROTATE
8996 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src
, 0)), 0))
8997 && INTVAL (XEXP (SUBREG_REG (XEXP (src
, 0)), 0)) == -2
8998 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9000 assign
= make_extraction (VOIDmode
, dest
, 0,
9001 XEXP (SUBREG_REG (XEXP (src
, 0)), 1),
9004 return gen_rtx_SET (VOIDmode
, assign
, const0_rtx
);
9008 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9010 if (GET_CODE (src
) == IOR
&& GET_CODE (XEXP (src
, 0)) == ASHIFT
9011 && XEXP (XEXP (src
, 0), 0) == const1_rtx
9012 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9014 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
9017 return gen_rtx_SET (VOIDmode
, assign
, const1_rtx
);
9021 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9022 SRC is an AND with all bits of that field set, then we can discard
9024 if (GET_CODE (dest
) == ZERO_EXTRACT
9025 && CONST_INT_P (XEXP (dest
, 1))
9026 && GET_CODE (src
) == AND
9027 && CONST_INT_P (XEXP (src
, 1)))
9029 HOST_WIDE_INT width
= INTVAL (XEXP (dest
, 1));
9030 unsigned HOST_WIDE_INT and_mask
= INTVAL (XEXP (src
, 1));
9031 unsigned HOST_WIDE_INT ze_mask
;
9033 if (width
>= HOST_BITS_PER_WIDE_INT
)
9036 ze_mask
= ((unsigned HOST_WIDE_INT
)1 << width
) - 1;
9038 /* Complete overlap. We can remove the source AND. */
9039 if ((and_mask
& ze_mask
) == ze_mask
)
9040 return gen_rtx_SET (VOIDmode
, dest
, XEXP (src
, 0));
9042 /* Partial overlap. We can reduce the source AND. */
9043 if ((and_mask
& ze_mask
) != and_mask
)
9045 mode
= GET_MODE (src
);
9046 src
= gen_rtx_AND (mode
, XEXP (src
, 0),
9047 gen_int_mode (and_mask
& ze_mask
, mode
));
9048 return gen_rtx_SET (VOIDmode
, dest
, src
);
9052 /* The other case we handle is assignments into a constant-position
9053 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9054 a mask that has all one bits except for a group of zero bits and
9055 OTHER is known to have zeros where C1 has ones, this is such an
9056 assignment. Compute the position and length from C1. Shift OTHER
9057 to the appropriate position, force it to the required mode, and
9058 make the extraction. Check for the AND in both operands. */
9060 if (GET_CODE (src
) != IOR
&& GET_CODE (src
) != XOR
)
9063 rhs
= expand_compound_operation (XEXP (src
, 0));
9064 lhs
= expand_compound_operation (XEXP (src
, 1));
9066 if (GET_CODE (rhs
) == AND
9067 && CONST_INT_P (XEXP (rhs
, 1))
9068 && rtx_equal_for_field_assignment_p (XEXP (rhs
, 0), dest
))
9069 c1
= INTVAL (XEXP (rhs
, 1)), other
= lhs
;
9070 else if (GET_CODE (lhs
) == AND
9071 && CONST_INT_P (XEXP (lhs
, 1))
9072 && rtx_equal_for_field_assignment_p (XEXP (lhs
, 0), dest
))
9073 c1
= INTVAL (XEXP (lhs
, 1)), other
= rhs
;
9077 pos
= get_pos_from_mask ((~c1
) & GET_MODE_MASK (GET_MODE (dest
)), &len
);
9078 if (pos
< 0 || pos
+ len
> GET_MODE_PRECISION (GET_MODE (dest
))
9079 || GET_MODE_PRECISION (GET_MODE (dest
)) > HOST_BITS_PER_WIDE_INT
9080 || (c1
& nonzero_bits (other
, GET_MODE (dest
))) != 0)
9083 assign
= make_extraction (VOIDmode
, dest
, pos
, NULL_RTX
, len
, 1, 1, 0);
9087 /* The mode to use for the source is the mode of the assignment, or of
9088 what is inside a possible STRICT_LOW_PART. */
9089 mode
= (GET_CODE (assign
) == STRICT_LOW_PART
9090 ? GET_MODE (XEXP (assign
, 0)) : GET_MODE (assign
));
9092 /* Shift OTHER right POS places and make it the source, restricting it
9093 to the proper length and mode. */
9095 src
= canon_reg_for_combine (simplify_shift_const (NULL_RTX
, LSHIFTRT
,
9099 src
= force_to_mode (src
, mode
,
9100 GET_MODE_PRECISION (mode
) >= HOST_BITS_PER_WIDE_INT
9101 ? ~(unsigned HOST_WIDE_INT
) 0
9102 : ((unsigned HOST_WIDE_INT
) 1 << len
) - 1,
9105 /* If SRC is masked by an AND that does not make a difference in
9106 the value being stored, strip it. */
9107 if (GET_CODE (assign
) == ZERO_EXTRACT
9108 && CONST_INT_P (XEXP (assign
, 1))
9109 && INTVAL (XEXP (assign
, 1)) < HOST_BITS_PER_WIDE_INT
9110 && GET_CODE (src
) == AND
9111 && CONST_INT_P (XEXP (src
, 1))
9112 && UINTVAL (XEXP (src
, 1))
9113 == ((unsigned HOST_WIDE_INT
) 1 << INTVAL (XEXP (assign
, 1))) - 1)
9114 src
= XEXP (src
, 0);
9116 return gen_rtx_SET (VOIDmode
, assign
, src
);
9119 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9123 apply_distributive_law (rtx x
)
9125 enum rtx_code code
= GET_CODE (x
);
9126 enum rtx_code inner_code
;
9127 rtx lhs
, rhs
, other
;
9130 /* Distributivity is not true for floating point as it can change the
9131 value. So we don't do it unless -funsafe-math-optimizations. */
9132 if (FLOAT_MODE_P (GET_MODE (x
))
9133 && ! flag_unsafe_math_optimizations
)
9136 /* The outer operation can only be one of the following: */
9137 if (code
!= IOR
&& code
!= AND
&& code
!= XOR
9138 && code
!= PLUS
&& code
!= MINUS
)
9144 /* If either operand is a primitive we can't do anything, so get out
9146 if (OBJECT_P (lhs
) || OBJECT_P (rhs
))
9149 lhs
= expand_compound_operation (lhs
);
9150 rhs
= expand_compound_operation (rhs
);
9151 inner_code
= GET_CODE (lhs
);
9152 if (inner_code
!= GET_CODE (rhs
))
9155 /* See if the inner and outer operations distribute. */
9162 /* These all distribute except over PLUS. */
9163 if (code
== PLUS
|| code
== MINUS
)
9168 if (code
!= PLUS
&& code
!= MINUS
)
9173 /* This is also a multiply, so it distributes over everything. */
9176 /* This used to handle SUBREG, but this turned out to be counter-
9177 productive, since (subreg (op ...)) usually is not handled by
9178 insn patterns, and this "optimization" therefore transformed
9179 recognizable patterns into unrecognizable ones. Therefore the
9180 SUBREG case was removed from here.
9182 It is possible that distributing SUBREG over arithmetic operations
9183 leads to an intermediate result than can then be optimized further,
9184 e.g. by moving the outer SUBREG to the other side of a SET as done
9185 in simplify_set. This seems to have been the original intent of
9186 handling SUBREGs here.
9188 However, with current GCC this does not appear to actually happen,
9189 at least on major platforms. If some case is found where removing
9190 the SUBREG case here prevents follow-on optimizations, distributing
9191 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9197 /* Set LHS and RHS to the inner operands (A and B in the example
9198 above) and set OTHER to the common operand (C in the example).
9199 There is only one way to do this unless the inner operation is
9201 if (COMMUTATIVE_ARITH_P (lhs
)
9202 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 0)))
9203 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 1);
9204 else if (COMMUTATIVE_ARITH_P (lhs
)
9205 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 1)))
9206 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 0);
9207 else if (COMMUTATIVE_ARITH_P (lhs
)
9208 && rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 0)))
9209 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 1);
9210 else if (rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 1)))
9211 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 0);
9215 /* Form the new inner operation, seeing if it simplifies first. */
9216 tem
= simplify_gen_binary (code
, GET_MODE (x
), lhs
, rhs
);
9218 /* There is one exception to the general way of distributing:
9219 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9220 if (code
== XOR
&& inner_code
== IOR
)
9223 other
= simplify_gen_unary (NOT
, GET_MODE (x
), other
, GET_MODE (x
));
9226 /* We may be able to continuing distributing the result, so call
9227 ourselves recursively on the inner operation before forming the
9228 outer operation, which we return. */
9229 return simplify_gen_binary (inner_code
, GET_MODE (x
),
9230 apply_distributive_law (tem
), other
);
9233 /* See if X is of the form (* (+ A B) C), and if so convert to
9234 (+ (* A C) (* B C)) and try to simplify.
9236 Most of the time, this results in no change. However, if some of
9237 the operands are the same or inverses of each other, simplifications
9240 For example, (and (ior A B) (not B)) can occur as the result of
9241 expanding a bit field assignment. When we apply the distributive
9242 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9243 which then simplifies to (and (A (not B))).
9245 Note that no checks happen on the validity of applying the inverse
9246 distributive law. This is pointless since we can do it in the
9247 few places where this routine is called.
9249 N is the index of the term that is decomposed (the arithmetic operation,
9250 i.e. (+ A B) in the first example above). !N is the index of the term that
9251 is distributed, i.e. of C in the first example above. */
9253 distribute_and_simplify_rtx (rtx x
, int n
)
9255 enum machine_mode mode
;
9256 enum rtx_code outer_code
, inner_code
;
9257 rtx decomposed
, distributed
, inner_op0
, inner_op1
, new_op0
, new_op1
, tmp
;
9259 /* Distributivity is not true for floating point as it can change the
9260 value. So we don't do it unless -funsafe-math-optimizations. */
9261 if (FLOAT_MODE_P (GET_MODE (x
))
9262 && ! flag_unsafe_math_optimizations
)
9265 decomposed
= XEXP (x
, n
);
9266 if (!ARITHMETIC_P (decomposed
))
9269 mode
= GET_MODE (x
);
9270 outer_code
= GET_CODE (x
);
9271 distributed
= XEXP (x
, !n
);
9273 inner_code
= GET_CODE (decomposed
);
9274 inner_op0
= XEXP (decomposed
, 0);
9275 inner_op1
= XEXP (decomposed
, 1);
9277 /* Special case (and (xor B C) (not A)), which is equivalent to
9278 (xor (ior A B) (ior A C)) */
9279 if (outer_code
== AND
&& inner_code
== XOR
&& GET_CODE (distributed
) == NOT
)
9281 distributed
= XEXP (distributed
, 0);
9287 /* Distribute the second term. */
9288 new_op0
= simplify_gen_binary (outer_code
, mode
, inner_op0
, distributed
);
9289 new_op1
= simplify_gen_binary (outer_code
, mode
, inner_op1
, distributed
);
9293 /* Distribute the first term. */
9294 new_op0
= simplify_gen_binary (outer_code
, mode
, distributed
, inner_op0
);
9295 new_op1
= simplify_gen_binary (outer_code
, mode
, distributed
, inner_op1
);
9298 tmp
= apply_distributive_law (simplify_gen_binary (inner_code
, mode
,
9300 if (GET_CODE (tmp
) != outer_code
9301 && (set_src_cost (tmp
, optimize_this_for_speed_p
)
9302 < set_src_cost (x
, optimize_this_for_speed_p
)))
9308 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9309 in MODE. Return an equivalent form, if different from (and VAROP
9310 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9313 simplify_and_const_int_1 (enum machine_mode mode
, rtx varop
,
9314 unsigned HOST_WIDE_INT constop
)
9316 unsigned HOST_WIDE_INT nonzero
;
9317 unsigned HOST_WIDE_INT orig_constop
;
9322 orig_constop
= constop
;
9323 if (GET_CODE (varop
) == CLOBBER
)
9326 /* Simplify VAROP knowing that we will be only looking at some of the
9329 Note by passing in CONSTOP, we guarantee that the bits not set in
9330 CONSTOP are not significant and will never be examined. We must
9331 ensure that is the case by explicitly masking out those bits
9332 before returning. */
9333 varop
= force_to_mode (varop
, mode
, constop
, 0);
9335 /* If VAROP is a CLOBBER, we will fail so return it. */
9336 if (GET_CODE (varop
) == CLOBBER
)
9339 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9340 to VAROP and return the new constant. */
9341 if (CONST_INT_P (varop
))
9342 return gen_int_mode (INTVAL (varop
) & constop
, mode
);
9344 /* See what bits may be nonzero in VAROP. Unlike the general case of
9345 a call to nonzero_bits, here we don't care about bits outside
9348 nonzero
= nonzero_bits (varop
, mode
) & GET_MODE_MASK (mode
);
9350 /* Turn off all bits in the constant that are known to already be zero.
9351 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9352 which is tested below. */
9356 /* If we don't have any bits left, return zero. */
9360 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9361 a power of two, we can replace this with an ASHIFT. */
9362 if (GET_CODE (varop
) == NEG
&& nonzero_bits (XEXP (varop
, 0), mode
) == 1
9363 && (i
= exact_log2 (constop
)) >= 0)
9364 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (varop
, 0), i
);
9366 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9367 or XOR, then try to apply the distributive law. This may eliminate
9368 operations if either branch can be simplified because of the AND.
9369 It may also make some cases more complex, but those cases probably
9370 won't match a pattern either with or without this. */
9372 if (GET_CODE (varop
) == IOR
|| GET_CODE (varop
) == XOR
)
9376 apply_distributive_law
9377 (simplify_gen_binary (GET_CODE (varop
), GET_MODE (varop
),
9378 simplify_and_const_int (NULL_RTX
,
9382 simplify_and_const_int (NULL_RTX
,
9387 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9388 the AND and see if one of the operands simplifies to zero. If so, we
9389 may eliminate it. */
9391 if (GET_CODE (varop
) == PLUS
9392 && exact_log2 (constop
+ 1) >= 0)
9396 o0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 0), constop
);
9397 o1
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 1), constop
);
9398 if (o0
== const0_rtx
)
9400 if (o1
== const0_rtx
)
9404 /* Make a SUBREG if necessary. If we can't make it, fail. */
9405 varop
= gen_lowpart (mode
, varop
);
9406 if (varop
== NULL_RTX
|| GET_CODE (varop
) == CLOBBER
)
9409 /* If we are only masking insignificant bits, return VAROP. */
9410 if (constop
== nonzero
)
9413 if (varop
== orig_varop
&& constop
== orig_constop
)
9416 /* Otherwise, return an AND. */
9417 return simplify_gen_binary (AND
, mode
, varop
, gen_int_mode (constop
, mode
));
9421 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9424 Return an equivalent form, if different from X. Otherwise, return X. If
9425 X is zero, we are to always construct the equivalent form. */
9428 simplify_and_const_int (rtx x
, enum machine_mode mode
, rtx varop
,
9429 unsigned HOST_WIDE_INT constop
)
9431 rtx tem
= simplify_and_const_int_1 (mode
, varop
, constop
);
9436 x
= simplify_gen_binary (AND
, GET_MODE (varop
), varop
,
9437 gen_int_mode (constop
, mode
));
9438 if (GET_MODE (x
) != mode
)
9439 x
= gen_lowpart (mode
, x
);
9443 /* Given a REG, X, compute which bits in X can be nonzero.
9444 We don't care about bits outside of those defined in MODE.
9446 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9447 a shift, AND, or zero_extract, we can do better. */
9450 reg_nonzero_bits_for_combine (const_rtx x
, enum machine_mode mode
,
9451 const_rtx known_x ATTRIBUTE_UNUSED
,
9452 enum machine_mode known_mode ATTRIBUTE_UNUSED
,
9453 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED
,
9454 unsigned HOST_WIDE_INT
*nonzero
)
9459 /* If X is a register whose nonzero bits value is current, use it.
9460 Otherwise, if X is a register whose value we can find, use that
9461 value. Otherwise, use the previously-computed global nonzero bits
9462 for this register. */
9464 rsp
= ®_stat
[REGNO (x
)];
9465 if (rsp
->last_set_value
!= 0
9466 && (rsp
->last_set_mode
== mode
9467 || (GET_MODE_CLASS (rsp
->last_set_mode
) == MODE_INT
9468 && GET_MODE_CLASS (mode
) == MODE_INT
))
9469 && ((rsp
->last_set_label
>= label_tick_ebb_start
9470 && rsp
->last_set_label
< label_tick
)
9471 || (rsp
->last_set_label
== label_tick
9472 && DF_INSN_LUID (rsp
->last_set
) < subst_low_luid
)
9473 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
9474 && REG_N_SETS (REGNO (x
)) == 1
9476 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
9479 unsigned HOST_WIDE_INT mask
= rsp
->last_set_nonzero_bits
;
9481 if (GET_MODE_PRECISION (rsp
->last_set_mode
) < GET_MODE_PRECISION (mode
))
9482 /* We don't know anything about the upper bits. */
9483 mask
|= GET_MODE_MASK (mode
) ^ GET_MODE_MASK (rsp
->last_set_mode
);
9489 tem
= get_last_value (x
);
9493 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9494 /* If X is narrower than MODE and TEM is a non-negative
9495 constant that would appear negative in the mode of X,
9496 sign-extend it for use in reg_nonzero_bits because some
9497 machines (maybe most) will actually do the sign-extension
9498 and this is the conservative approach.
9500 ??? For 2.5, try to tighten up the MD files in this regard
9501 instead of this kludge. */
9503 if (GET_MODE_PRECISION (GET_MODE (x
)) < GET_MODE_PRECISION (mode
)
9504 && CONST_INT_P (tem
)
9506 && val_signbit_known_set_p (GET_MODE (x
), INTVAL (tem
)))
9507 tem
= GEN_INT (INTVAL (tem
) | ~GET_MODE_MASK (GET_MODE (x
)));
9511 else if (nonzero_sign_valid
&& rsp
->nonzero_bits
)
9513 unsigned HOST_WIDE_INT mask
= rsp
->nonzero_bits
;
9515 if (GET_MODE_PRECISION (GET_MODE (x
)) < GET_MODE_PRECISION (mode
))
9516 /* We don't know anything about the upper bits. */
9517 mask
|= GET_MODE_MASK (mode
) ^ GET_MODE_MASK (GET_MODE (x
));
9525 /* Return the number of bits at the high-order end of X that are known to
9526 be equal to the sign bit. X will be used in mode MODE; if MODE is
9527 VOIDmode, X will be used in its own mode. The returned value will always
9528 be between 1 and the number of bits in MODE. */
9531 reg_num_sign_bit_copies_for_combine (const_rtx x
, enum machine_mode mode
,
9532 const_rtx known_x ATTRIBUTE_UNUSED
,
9533 enum machine_mode known_mode
9535 unsigned int known_ret ATTRIBUTE_UNUSED
,
9536 unsigned int *result
)
9541 rsp
= ®_stat
[REGNO (x
)];
9542 if (rsp
->last_set_value
!= 0
9543 && rsp
->last_set_mode
== mode
9544 && ((rsp
->last_set_label
>= label_tick_ebb_start
9545 && rsp
->last_set_label
< label_tick
)
9546 || (rsp
->last_set_label
== label_tick
9547 && DF_INSN_LUID (rsp
->last_set
) < subst_low_luid
)
9548 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
9549 && REG_N_SETS (REGNO (x
)) == 1
9551 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
9554 *result
= rsp
->last_set_sign_bit_copies
;
9558 tem
= get_last_value (x
);
9562 if (nonzero_sign_valid
&& rsp
->sign_bit_copies
!= 0
9563 && GET_MODE_PRECISION (GET_MODE (x
)) == GET_MODE_PRECISION (mode
))
9564 *result
= rsp
->sign_bit_copies
;
9569 /* Return the number of "extended" bits there are in X, when interpreted
9570 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9571 unsigned quantities, this is the number of high-order zero bits.
9572 For signed quantities, this is the number of copies of the sign bit
9573 minus 1. In both case, this function returns the number of "spare"
9574 bits. For example, if two quantities for which this function returns
9575 at least 1 are added, the addition is known not to overflow.
9577 This function will always return 0 unless called during combine, which
9578 implies that it must be called from a define_split. */
9581 extended_count (const_rtx x
, enum machine_mode mode
, int unsignedp
)
9583 if (nonzero_sign_valid
== 0)
9587 ? (HWI_COMPUTABLE_MODE_P (mode
)
9588 ? (unsigned int) (GET_MODE_PRECISION (mode
) - 1
9589 - floor_log2 (nonzero_bits (x
, mode
)))
9591 : num_sign_bit_copies (x
, mode
) - 1);
9594 /* This function is called from `simplify_shift_const' to merge two
9595 outer operations. Specifically, we have already found that we need
9596 to perform operation *POP0 with constant *PCONST0 at the outermost
9597 position. We would now like to also perform OP1 with constant CONST1
9598 (with *POP0 being done last).
9600 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9601 the resulting operation. *PCOMP_P is set to 1 if we would need to
9602 complement the innermost operand, otherwise it is unchanged.
9604 MODE is the mode in which the operation will be done. No bits outside
9605 the width of this mode matter. It is assumed that the width of this mode
9606 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9608 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9609 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9610 result is simply *PCONST0.
9612 If the resulting operation cannot be expressed as one operation, we
9613 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9616 merge_outer_ops (enum rtx_code
*pop0
, HOST_WIDE_INT
*pconst0
, enum rtx_code op1
, HOST_WIDE_INT const1
, enum machine_mode mode
, int *pcomp_p
)
9618 enum rtx_code op0
= *pop0
;
9619 HOST_WIDE_INT const0
= *pconst0
;
9621 const0
&= GET_MODE_MASK (mode
);
9622 const1
&= GET_MODE_MASK (mode
);
9624 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9628 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9631 if (op1
== UNKNOWN
|| op0
== SET
)
9634 else if (op0
== UNKNOWN
)
9635 op0
= op1
, const0
= const1
;
9637 else if (op0
== op1
)
9661 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9662 else if (op0
== PLUS
|| op1
== PLUS
|| op0
== NEG
|| op1
== NEG
)
9665 /* If the two constants aren't the same, we can't do anything. The
9666 remaining six cases can all be done. */
9667 else if (const0
!= const1
)
9675 /* (a & b) | b == b */
9677 else /* op1 == XOR */
9678 /* (a ^ b) | b == a | b */
9684 /* (a & b) ^ b == (~a) & b */
9685 op0
= AND
, *pcomp_p
= 1;
9686 else /* op1 == IOR */
9687 /* (a | b) ^ b == a & ~b */
9688 op0
= AND
, const0
= ~const0
;
9693 /* (a | b) & b == b */
9695 else /* op1 == XOR */
9696 /* (a ^ b) & b) == (~a) & b */
9703 /* Check for NO-OP cases. */
9704 const0
&= GET_MODE_MASK (mode
);
9706 && (op0
== IOR
|| op0
== XOR
|| op0
== PLUS
))
9708 else if (const0
== 0 && op0
== AND
)
9710 else if ((unsigned HOST_WIDE_INT
) const0
== GET_MODE_MASK (mode
)
9716 /* ??? Slightly redundant with the above mask, but not entirely.
9717 Moving this above means we'd have to sign-extend the mode mask
9718 for the final test. */
9719 if (op0
!= UNKNOWN
&& op0
!= NEG
)
9720 *pconst0
= trunc_int_for_mode (const0
, mode
);
9725 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9726 the shift in. The original shift operation CODE is performed on OP in
9727 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9728 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9729 result of the shift is subject to operation OUTER_CODE with operand
9732 static enum machine_mode
9733 try_widen_shift_mode (enum rtx_code code
, rtx op
, int count
,
9734 enum machine_mode orig_mode
, enum machine_mode mode
,
9735 enum rtx_code outer_code
, HOST_WIDE_INT outer_const
)
9737 if (orig_mode
== mode
)
9739 gcc_assert (GET_MODE_PRECISION (mode
) > GET_MODE_PRECISION (orig_mode
));
9741 /* In general we can't perform in wider mode for right shift and rotate. */
9745 /* We can still widen if the bits brought in from the left are identical
9746 to the sign bit of ORIG_MODE. */
9747 if (num_sign_bit_copies (op
, mode
)
9748 > (unsigned) (GET_MODE_PRECISION (mode
)
9749 - GET_MODE_PRECISION (orig_mode
)))
9754 /* Similarly here but with zero bits. */
9755 if (HWI_COMPUTABLE_MODE_P (mode
)
9756 && (nonzero_bits (op
, mode
) & ~GET_MODE_MASK (orig_mode
)) == 0)
9759 /* We can also widen if the bits brought in will be masked off. This
9760 operation is performed in ORIG_MODE. */
9761 if (outer_code
== AND
)
9763 int care_bits
= low_bitmask_len (orig_mode
, outer_const
);
9766 && GET_MODE_PRECISION (orig_mode
) - care_bits
>= count
)
9782 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
9783 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
9784 if we cannot simplify it. Otherwise, return a simplified value.
9786 The shift is normally computed in the widest mode we find in VAROP, as
9787 long as it isn't a different number of words than RESULT_MODE. Exceptions
9788 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9791 simplify_shift_const_1 (enum rtx_code code
, enum machine_mode result_mode
,
9792 rtx varop
, int orig_count
)
9794 enum rtx_code orig_code
= code
;
9795 rtx orig_varop
= varop
;
9797 enum machine_mode mode
= result_mode
;
9798 enum machine_mode shift_mode
, tmode
;
9799 unsigned int mode_words
9800 = (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
9801 /* We form (outer_op (code varop count) (outer_const)). */
9802 enum rtx_code outer_op
= UNKNOWN
;
9803 HOST_WIDE_INT outer_const
= 0;
9804 int complement_p
= 0;
9807 /* Make sure and truncate the "natural" shift on the way in. We don't
9808 want to do this inside the loop as it makes it more difficult to
9810 if (SHIFT_COUNT_TRUNCATED
)
9811 orig_count
&= GET_MODE_BITSIZE (mode
) - 1;
9813 /* If we were given an invalid count, don't do anything except exactly
9814 what was requested. */
9816 if (orig_count
< 0 || orig_count
>= (int) GET_MODE_PRECISION (mode
))
9821 /* Unless one of the branches of the `if' in this loop does a `continue',
9822 we will `break' the loop after the `if'. */
9826 /* If we have an operand of (clobber (const_int 0)), fail. */
9827 if (GET_CODE (varop
) == CLOBBER
)
9830 /* Convert ROTATERT to ROTATE. */
9831 if (code
== ROTATERT
)
9833 unsigned int bitsize
= GET_MODE_PRECISION (result_mode
);
9835 if (VECTOR_MODE_P (result_mode
))
9836 count
= bitsize
/ GET_MODE_NUNITS (result_mode
) - count
;
9838 count
= bitsize
- count
;
9841 shift_mode
= try_widen_shift_mode (code
, varop
, count
, result_mode
,
9842 mode
, outer_op
, outer_const
);
9844 /* Handle cases where the count is greater than the size of the mode
9845 minus 1. For ASHIFT, use the size minus one as the count (this can
9846 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9847 take the count modulo the size. For other shifts, the result is
9850 Since these shifts are being produced by the compiler by combining
9851 multiple operations, each of which are defined, we know what the
9852 result is supposed to be. */
9854 if (count
> (GET_MODE_PRECISION (shift_mode
) - 1))
9856 if (code
== ASHIFTRT
)
9857 count
= GET_MODE_PRECISION (shift_mode
) - 1;
9858 else if (code
== ROTATE
|| code
== ROTATERT
)
9859 count
%= GET_MODE_PRECISION (shift_mode
);
9862 /* We can't simply return zero because there may be an
9870 /* If we discovered we had to complement VAROP, leave. Making a NOT
9871 here would cause an infinite loop. */
9875 /* An arithmetic right shift of a quantity known to be -1 or 0
9877 if (code
== ASHIFTRT
9878 && (num_sign_bit_copies (varop
, shift_mode
)
9879 == GET_MODE_PRECISION (shift_mode
)))
9885 /* If we are doing an arithmetic right shift and discarding all but
9886 the sign bit copies, this is equivalent to doing a shift by the
9887 bitsize minus one. Convert it into that shift because it will often
9888 allow other simplifications. */
9890 if (code
== ASHIFTRT
9891 && (count
+ num_sign_bit_copies (varop
, shift_mode
)
9892 >= GET_MODE_PRECISION (shift_mode
)))
9893 count
= GET_MODE_PRECISION (shift_mode
) - 1;
9895 /* We simplify the tests below and elsewhere by converting
9896 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9897 `make_compound_operation' will convert it to an ASHIFTRT for
9898 those machines (such as VAX) that don't have an LSHIFTRT. */
9899 if (code
== ASHIFTRT
9900 && val_signbit_known_clear_p (shift_mode
,
9901 nonzero_bits (varop
, shift_mode
)))
9904 if (((code
== LSHIFTRT
9905 && HWI_COMPUTABLE_MODE_P (shift_mode
)
9906 && !(nonzero_bits (varop
, shift_mode
) >> count
))
9908 && HWI_COMPUTABLE_MODE_P (shift_mode
)
9909 && !((nonzero_bits (varop
, shift_mode
) << count
)
9910 & GET_MODE_MASK (shift_mode
))))
9911 && !side_effects_p (varop
))
9914 switch (GET_CODE (varop
))
9920 new_rtx
= expand_compound_operation (varop
);
9921 if (new_rtx
!= varop
)
9929 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9930 minus the width of a smaller mode, we can do this with a
9931 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9932 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
9933 && ! mode_dependent_address_p (XEXP (varop
, 0),
9934 MEM_ADDR_SPACE (varop
))
9935 && ! MEM_VOLATILE_P (varop
)
9936 && (tmode
= mode_for_size (GET_MODE_BITSIZE (mode
) - count
,
9937 MODE_INT
, 1)) != BLKmode
)
9939 new_rtx
= adjust_address_nv (varop
, tmode
,
9940 BYTES_BIG_ENDIAN
? 0
9941 : count
/ BITS_PER_UNIT
);
9943 varop
= gen_rtx_fmt_e (code
== ASHIFTRT
? SIGN_EXTEND
9944 : ZERO_EXTEND
, mode
, new_rtx
);
9951 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9952 the same number of words as what we've seen so far. Then store
9953 the widest mode in MODE. */
9954 if (subreg_lowpart_p (varop
)
9955 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop
)))
9956 > GET_MODE_SIZE (GET_MODE (varop
)))
9957 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop
)))
9958 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
9960 && GET_MODE_CLASS (GET_MODE (varop
)) == MODE_INT
9961 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop
))) == MODE_INT
)
9963 varop
= SUBREG_REG (varop
);
9964 if (GET_MODE_SIZE (GET_MODE (varop
)) > GET_MODE_SIZE (mode
))
9965 mode
= GET_MODE (varop
);
9971 /* Some machines use MULT instead of ASHIFT because MULT
9972 is cheaper. But it is still better on those machines to
9973 merge two shifts into one. */
9974 if (CONST_INT_P (XEXP (varop
, 1))
9975 && exact_log2 (UINTVAL (XEXP (varop
, 1))) >= 0)
9978 = simplify_gen_binary (ASHIFT
, GET_MODE (varop
),
9980 GEN_INT (exact_log2 (
9981 UINTVAL (XEXP (varop
, 1)))));
9987 /* Similar, for when divides are cheaper. */
9988 if (CONST_INT_P (XEXP (varop
, 1))
9989 && exact_log2 (UINTVAL (XEXP (varop
, 1))) >= 0)
9992 = simplify_gen_binary (LSHIFTRT
, GET_MODE (varop
),
9994 GEN_INT (exact_log2 (
9995 UINTVAL (XEXP (varop
, 1)))));
10001 /* If we are extracting just the sign bit of an arithmetic
10002 right shift, that shift is not needed. However, the sign
10003 bit of a wider mode may be different from what would be
10004 interpreted as the sign bit in a narrower mode, so, if
10005 the result is narrower, don't discard the shift. */
10006 if (code
== LSHIFTRT
10007 && count
== (GET_MODE_BITSIZE (result_mode
) - 1)
10008 && (GET_MODE_BITSIZE (result_mode
)
10009 >= GET_MODE_BITSIZE (GET_MODE (varop
))))
10011 varop
= XEXP (varop
, 0);
10015 /* ... fall through ... */
10020 /* Here we have two nested shifts. The result is usually the
10021 AND of a new shift with a mask. We compute the result below. */
10022 if (CONST_INT_P (XEXP (varop
, 1))
10023 && INTVAL (XEXP (varop
, 1)) >= 0
10024 && INTVAL (XEXP (varop
, 1)) < GET_MODE_PRECISION (GET_MODE (varop
))
10025 && HWI_COMPUTABLE_MODE_P (result_mode
)
10026 && HWI_COMPUTABLE_MODE_P (mode
)
10027 && !VECTOR_MODE_P (result_mode
))
10029 enum rtx_code first_code
= GET_CODE (varop
);
10030 unsigned int first_count
= INTVAL (XEXP (varop
, 1));
10031 unsigned HOST_WIDE_INT mask
;
10034 /* We have one common special case. We can't do any merging if
10035 the inner code is an ASHIFTRT of a smaller mode. However, if
10036 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10037 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10038 we can convert it to
10039 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10040 This simplifies certain SIGN_EXTEND operations. */
10041 if (code
== ASHIFT
&& first_code
== ASHIFTRT
10042 && count
== (GET_MODE_PRECISION (result_mode
)
10043 - GET_MODE_PRECISION (GET_MODE (varop
))))
10045 /* C3 has the low-order C1 bits zero. */
10047 mask
= GET_MODE_MASK (mode
)
10048 & ~(((unsigned HOST_WIDE_INT
) 1 << first_count
) - 1);
10050 varop
= simplify_and_const_int (NULL_RTX
, result_mode
,
10051 XEXP (varop
, 0), mask
);
10052 varop
= simplify_shift_const (NULL_RTX
, ASHIFT
, result_mode
,
10054 count
= first_count
;
10059 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10060 than C1 high-order bits equal to the sign bit, we can convert
10061 this to either an ASHIFT or an ASHIFTRT depending on the
10064 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10066 if (code
== ASHIFTRT
&& first_code
== ASHIFT
10067 && GET_MODE (varop
) == shift_mode
10068 && (num_sign_bit_copies (XEXP (varop
, 0), shift_mode
)
10071 varop
= XEXP (varop
, 0);
10072 count
-= first_count
;
10082 /* There are some cases we can't do. If CODE is ASHIFTRT,
10083 we can only do this if FIRST_CODE is also ASHIFTRT.
10085 We can't do the case when CODE is ROTATE and FIRST_CODE is
10088 If the mode of this shift is not the mode of the outer shift,
10089 we can't do this if either shift is a right shift or ROTATE.
10091 Finally, we can't do any of these if the mode is too wide
10092 unless the codes are the same.
10094 Handle the case where the shift codes are the same
10097 if (code
== first_code
)
10099 if (GET_MODE (varop
) != result_mode
10100 && (code
== ASHIFTRT
|| code
== LSHIFTRT
10101 || code
== ROTATE
))
10104 count
+= first_count
;
10105 varop
= XEXP (varop
, 0);
10109 if (code
== ASHIFTRT
10110 || (code
== ROTATE
&& first_code
== ASHIFTRT
)
10111 || GET_MODE_PRECISION (mode
) > HOST_BITS_PER_WIDE_INT
10112 || (GET_MODE (varop
) != result_mode
10113 && (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
10114 || first_code
== ROTATE
10115 || code
== ROTATE
)))
10118 /* To compute the mask to apply after the shift, shift the
10119 nonzero bits of the inner shift the same way the
10120 outer shift will. */
10122 mask_rtx
= gen_int_mode (nonzero_bits (varop
, GET_MODE (varop
)),
10126 = simplify_const_binary_operation (code
, result_mode
, mask_rtx
,
10129 /* Give up if we can't compute an outer operation to use. */
10131 || !CONST_INT_P (mask_rtx
)
10132 || ! merge_outer_ops (&outer_op
, &outer_const
, AND
,
10134 result_mode
, &complement_p
))
10137 /* If the shifts are in the same direction, we add the
10138 counts. Otherwise, we subtract them. */
10139 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10140 == (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
))
10141 count
+= first_count
;
10143 count
-= first_count
;
10145 /* If COUNT is positive, the new shift is usually CODE,
10146 except for the two exceptions below, in which case it is
10147 FIRST_CODE. If the count is negative, FIRST_CODE should
10150 && ((first_code
== ROTATE
&& code
== ASHIFT
)
10151 || (first_code
== ASHIFTRT
&& code
== LSHIFTRT
)))
10153 else if (count
< 0)
10154 code
= first_code
, count
= -count
;
10156 varop
= XEXP (varop
, 0);
10160 /* If we have (A << B << C) for any shift, we can convert this to
10161 (A << C << B). This wins if A is a constant. Only try this if
10162 B is not a constant. */
10164 else if (GET_CODE (varop
) == code
10165 && CONST_INT_P (XEXP (varop
, 0))
10166 && !CONST_INT_P (XEXP (varop
, 1)))
10168 rtx new_rtx
= simplify_const_binary_operation (code
, mode
,
10171 varop
= gen_rtx_fmt_ee (code
, mode
, new_rtx
, XEXP (varop
, 1));
10178 if (VECTOR_MODE_P (mode
))
10181 /* Make this fit the case below. */
10182 varop
= gen_rtx_XOR (mode
, XEXP (varop
, 0), constm1_rtx
);
10188 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10189 with C the size of VAROP - 1 and the shift is logical if
10190 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10191 we have an (le X 0) operation. If we have an arithmetic shift
10192 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10193 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10195 if (GET_CODE (varop
) == IOR
&& GET_CODE (XEXP (varop
, 0)) == PLUS
10196 && XEXP (XEXP (varop
, 0), 1) == constm1_rtx
10197 && (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
10198 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
10199 && count
== (GET_MODE_PRECISION (GET_MODE (varop
)) - 1)
10200 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
10203 varop
= gen_rtx_LE (GET_MODE (varop
), XEXP (varop
, 1),
10206 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
10207 varop
= gen_rtx_NEG (GET_MODE (varop
), varop
);
10212 /* If we have (shift (logical)), move the logical to the outside
10213 to allow it to possibly combine with another logical and the
10214 shift to combine with another shift. This also canonicalizes to
10215 what a ZERO_EXTRACT looks like. Also, some machines have
10216 (and (shift)) insns. */
10218 if (CONST_INT_P (XEXP (varop
, 1))
10219 /* We can't do this if we have (ashiftrt (xor)) and the
10220 constant has its sign bit set in shift_mode. */
10221 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
10222 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
10224 && (new_rtx
= simplify_const_binary_operation
10225 (code
, result_mode
,
10226 gen_int_mode (INTVAL (XEXP (varop
, 1)), result_mode
),
10227 GEN_INT (count
))) != 0
10228 && CONST_INT_P (new_rtx
)
10229 && merge_outer_ops (&outer_op
, &outer_const
, GET_CODE (varop
),
10230 INTVAL (new_rtx
), result_mode
, &complement_p
))
10232 varop
= XEXP (varop
, 0);
10236 /* If we can't do that, try to simplify the shift in each arm of the
10237 logical expression, make a new logical expression, and apply
10238 the inverse distributive law. This also can't be done
10239 for some (ashiftrt (xor)). */
10240 if (CONST_INT_P (XEXP (varop
, 1))
10241 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
10242 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
10245 rtx lhs
= simplify_shift_const (NULL_RTX
, code
, shift_mode
,
10246 XEXP (varop
, 0), count
);
10247 rtx rhs
= simplify_shift_const (NULL_RTX
, code
, shift_mode
,
10248 XEXP (varop
, 1), count
);
10250 varop
= simplify_gen_binary (GET_CODE (varop
), shift_mode
,
10252 varop
= apply_distributive_law (varop
);
10260 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10261 says that the sign bit can be tested, FOO has mode MODE, C is
10262 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10263 that may be nonzero. */
10264 if (code
== LSHIFTRT
10265 && XEXP (varop
, 1) == const0_rtx
10266 && GET_MODE (XEXP (varop
, 0)) == result_mode
10267 && count
== (GET_MODE_PRECISION (result_mode
) - 1)
10268 && HWI_COMPUTABLE_MODE_P (result_mode
)
10269 && STORE_FLAG_VALUE
== -1
10270 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1
10271 && merge_outer_ops (&outer_op
, &outer_const
, XOR
, 1, result_mode
,
10274 varop
= XEXP (varop
, 0);
10281 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10282 than the number of bits in the mode is equivalent to A. */
10283 if (code
== LSHIFTRT
10284 && count
== (GET_MODE_PRECISION (result_mode
) - 1)
10285 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1)
10287 varop
= XEXP (varop
, 0);
10292 /* NEG commutes with ASHIFT since it is multiplication. Move the
10293 NEG outside to allow shifts to combine. */
10295 && merge_outer_ops (&outer_op
, &outer_const
, NEG
, 0, result_mode
,
10298 varop
= XEXP (varop
, 0);
10304 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10305 is one less than the number of bits in the mode is
10306 equivalent to (xor A 1). */
10307 if (code
== LSHIFTRT
10308 && count
== (GET_MODE_PRECISION (result_mode
) - 1)
10309 && XEXP (varop
, 1) == constm1_rtx
10310 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1
10311 && merge_outer_ops (&outer_op
, &outer_const
, XOR
, 1, result_mode
,
10315 varop
= XEXP (varop
, 0);
10319 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10320 that might be nonzero in BAR are those being shifted out and those
10321 bits are known zero in FOO, we can replace the PLUS with FOO.
10322 Similarly in the other operand order. This code occurs when
10323 we are computing the size of a variable-size array. */
10325 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10326 && count
< HOST_BITS_PER_WIDE_INT
10327 && nonzero_bits (XEXP (varop
, 1), result_mode
) >> count
== 0
10328 && (nonzero_bits (XEXP (varop
, 1), result_mode
)
10329 & nonzero_bits (XEXP (varop
, 0), result_mode
)) == 0)
10331 varop
= XEXP (varop
, 0);
10334 else if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10335 && count
< HOST_BITS_PER_WIDE_INT
10336 && HWI_COMPUTABLE_MODE_P (result_mode
)
10337 && 0 == (nonzero_bits (XEXP (varop
, 0), result_mode
)
10339 && 0 == (nonzero_bits (XEXP (varop
, 0), result_mode
)
10340 & nonzero_bits (XEXP (varop
, 1),
10343 varop
= XEXP (varop
, 1);
10347 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10349 && CONST_INT_P (XEXP (varop
, 1))
10350 && (new_rtx
= simplify_const_binary_operation
10351 (ASHIFT
, result_mode
,
10352 gen_int_mode (INTVAL (XEXP (varop
, 1)), result_mode
),
10353 GEN_INT (count
))) != 0
10354 && CONST_INT_P (new_rtx
)
10355 && merge_outer_ops (&outer_op
, &outer_const
, PLUS
,
10356 INTVAL (new_rtx
), result_mode
, &complement_p
))
10358 varop
= XEXP (varop
, 0);
10362 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10363 signbit', and attempt to change the PLUS to an XOR and move it to
10364 the outer operation as is done above in the AND/IOR/XOR case
10365 leg for shift(logical). See details in logical handling above
10366 for reasoning in doing so. */
10367 if (code
== LSHIFTRT
10368 && CONST_INT_P (XEXP (varop
, 1))
10369 && mode_signbit_p (result_mode
, XEXP (varop
, 1))
10370 && (new_rtx
= simplify_const_binary_operation
10371 (code
, result_mode
,
10372 gen_int_mode (INTVAL (XEXP (varop
, 1)), result_mode
),
10373 GEN_INT (count
))) != 0
10374 && CONST_INT_P (new_rtx
)
10375 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
10376 INTVAL (new_rtx
), result_mode
, &complement_p
))
10378 varop
= XEXP (varop
, 0);
10385 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10386 with C the size of VAROP - 1 and the shift is logical if
10387 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10388 we have a (gt X 0) operation. If the shift is arithmetic with
10389 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10390 we have a (neg (gt X 0)) operation. */
10392 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
10393 && GET_CODE (XEXP (varop
, 0)) == ASHIFTRT
10394 && count
== (GET_MODE_PRECISION (GET_MODE (varop
)) - 1)
10395 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
10396 && CONST_INT_P (XEXP (XEXP (varop
, 0), 1))
10397 && INTVAL (XEXP (XEXP (varop
, 0), 1)) == count
10398 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
10401 varop
= gen_rtx_GT (GET_MODE (varop
), XEXP (varop
, 1),
10404 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
10405 varop
= gen_rtx_NEG (GET_MODE (varop
), varop
);
10412 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10413 if the truncate does not affect the value. */
10414 if (code
== LSHIFTRT
10415 && GET_CODE (XEXP (varop
, 0)) == LSHIFTRT
10416 && CONST_INT_P (XEXP (XEXP (varop
, 0), 1))
10417 && (INTVAL (XEXP (XEXP (varop
, 0), 1))
10418 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop
, 0)))
10419 - GET_MODE_PRECISION (GET_MODE (varop
)))))
10421 rtx varop_inner
= XEXP (varop
, 0);
10424 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner
),
10425 XEXP (varop_inner
, 0),
10427 (count
+ INTVAL (XEXP (varop_inner
, 1))));
10428 varop
= gen_rtx_TRUNCATE (GET_MODE (varop
), varop_inner
);
10441 shift_mode
= try_widen_shift_mode (code
, varop
, count
, result_mode
, mode
,
10442 outer_op
, outer_const
);
10444 /* We have now finished analyzing the shift. The result should be
10445 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10446 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10447 to the result of the shift. OUTER_CONST is the relevant constant,
10448 but we must turn off all bits turned off in the shift. */
10450 if (outer_op
== UNKNOWN
10451 && orig_code
== code
&& orig_count
== count
10452 && varop
== orig_varop
10453 && shift_mode
== GET_MODE (varop
))
10456 /* Make a SUBREG if necessary. If we can't make it, fail. */
10457 varop
= gen_lowpart (shift_mode
, varop
);
10458 if (varop
== NULL_RTX
|| GET_CODE (varop
) == CLOBBER
)
10461 /* If we have an outer operation and we just made a shift, it is
10462 possible that we could have simplified the shift were it not
10463 for the outer operation. So try to do the simplification
10466 if (outer_op
!= UNKNOWN
)
10467 x
= simplify_shift_const_1 (code
, shift_mode
, varop
, count
);
10472 x
= simplify_gen_binary (code
, shift_mode
, varop
, GEN_INT (count
));
10474 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10475 turn off all the bits that the shift would have turned off. */
10476 if (orig_code
== LSHIFTRT
&& result_mode
!= shift_mode
)
10477 x
= simplify_and_const_int (NULL_RTX
, shift_mode
, x
,
10478 GET_MODE_MASK (result_mode
) >> orig_count
);
10480 /* Do the remainder of the processing in RESULT_MODE. */
10481 x
= gen_lowpart_or_truncate (result_mode
, x
);
10483 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10486 x
= simplify_gen_unary (NOT
, result_mode
, x
, result_mode
);
10488 if (outer_op
!= UNKNOWN
)
10490 if (GET_RTX_CLASS (outer_op
) != RTX_UNARY
10491 && GET_MODE_PRECISION (result_mode
) < HOST_BITS_PER_WIDE_INT
)
10492 outer_const
= trunc_int_for_mode (outer_const
, result_mode
);
10494 if (outer_op
== AND
)
10495 x
= simplify_and_const_int (NULL_RTX
, result_mode
, x
, outer_const
);
10496 else if (outer_op
== SET
)
10498 /* This means that we have determined that the result is
10499 equivalent to a constant. This should be rare. */
10500 if (!side_effects_p (x
))
10501 x
= GEN_INT (outer_const
);
10503 else if (GET_RTX_CLASS (outer_op
) == RTX_UNARY
)
10504 x
= simplify_gen_unary (outer_op
, result_mode
, x
, result_mode
);
10506 x
= simplify_gen_binary (outer_op
, result_mode
, x
,
10507 GEN_INT (outer_const
));
10513 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10514 The result of the shift is RESULT_MODE. If we cannot simplify it,
10515 return X or, if it is NULL, synthesize the expression with
10516 simplify_gen_binary. Otherwise, return a simplified value.
10518 The shift is normally computed in the widest mode we find in VAROP, as
10519 long as it isn't a different number of words than RESULT_MODE. Exceptions
10520 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10523 simplify_shift_const (rtx x
, enum rtx_code code
, enum machine_mode result_mode
,
10524 rtx varop
, int count
)
10526 rtx tem
= simplify_shift_const_1 (code
, result_mode
, varop
, count
);
10531 x
= simplify_gen_binary (code
, GET_MODE (varop
), varop
, GEN_INT (count
));
10532 if (GET_MODE (x
) != result_mode
)
10533 x
= gen_lowpart (result_mode
, x
);
10538 /* Like recog, but we receive the address of a pointer to a new pattern.
10539 We try to match the rtx that the pointer points to.
10540 If that fails, we may try to modify or replace the pattern,
10541 storing the replacement into the same pointer object.
10543 Modifications include deletion or addition of CLOBBERs.
10545 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10546 the CLOBBERs are placed.
10548 The value is the final insn code from the pattern ultimately matched,
10552 recog_for_combine (rtx
*pnewpat
, rtx insn
, rtx
*pnotes
)
10554 rtx pat
= *pnewpat
;
10555 rtx pat_without_clobbers
;
10556 int insn_code_number
;
10557 int num_clobbers_to_add
= 0;
10559 rtx notes
= NULL_RTX
;
10560 rtx old_notes
, old_pat
;
10563 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10564 we use to indicate that something didn't match. If we find such a
10565 thing, force rejection. */
10566 if (GET_CODE (pat
) == PARALLEL
)
10567 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
10568 if (GET_CODE (XVECEXP (pat
, 0, i
)) == CLOBBER
10569 && XEXP (XVECEXP (pat
, 0, i
), 0) == const0_rtx
)
10572 old_pat
= PATTERN (insn
);
10573 old_notes
= REG_NOTES (insn
);
10574 PATTERN (insn
) = pat
;
10575 REG_NOTES (insn
) = NULL_RTX
;
10577 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
10578 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10580 if (insn_code_number
< 0)
10581 fputs ("Failed to match this instruction:\n", dump_file
);
10583 fputs ("Successfully matched this instruction:\n", dump_file
);
10584 print_rtl_single (dump_file
, pat
);
10587 /* If it isn't, there is the possibility that we previously had an insn
10588 that clobbered some register as a side effect, but the combined
10589 insn doesn't need to do that. So try once more without the clobbers
10590 unless this represents an ASM insn. */
10592 if (insn_code_number
< 0 && ! check_asm_operands (pat
)
10593 && GET_CODE (pat
) == PARALLEL
)
10597 for (pos
= 0, i
= 0; i
< XVECLEN (pat
, 0); i
++)
10598 if (GET_CODE (XVECEXP (pat
, 0, i
)) != CLOBBER
)
10601 SUBST (XVECEXP (pat
, 0, pos
), XVECEXP (pat
, 0, i
));
10605 SUBST_INT (XVECLEN (pat
, 0), pos
);
10608 pat
= XVECEXP (pat
, 0, 0);
10610 PATTERN (insn
) = pat
;
10611 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
10612 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10614 if (insn_code_number
< 0)
10615 fputs ("Failed to match this instruction:\n", dump_file
);
10617 fputs ("Successfully matched this instruction:\n", dump_file
);
10618 print_rtl_single (dump_file
, pat
);
10622 pat_without_clobbers
= pat
;
10624 PATTERN (insn
) = old_pat
;
10625 REG_NOTES (insn
) = old_notes
;
10627 /* Recognize all noop sets, these will be killed by followup pass. */
10628 if (insn_code_number
< 0 && GET_CODE (pat
) == SET
&& set_noop_p (pat
))
10629 insn_code_number
= NOOP_MOVE_INSN_CODE
, num_clobbers_to_add
= 0;
10631 /* If we had any clobbers to add, make a new pattern than contains
10632 them. Then check to make sure that all of them are dead. */
10633 if (num_clobbers_to_add
)
10635 rtx newpat
= gen_rtx_PARALLEL (VOIDmode
,
10636 rtvec_alloc (GET_CODE (pat
) == PARALLEL
10637 ? (XVECLEN (pat
, 0)
10638 + num_clobbers_to_add
)
10639 : num_clobbers_to_add
+ 1));
10641 if (GET_CODE (pat
) == PARALLEL
)
10642 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
10643 XVECEXP (newpat
, 0, i
) = XVECEXP (pat
, 0, i
);
10645 XVECEXP (newpat
, 0, 0) = pat
;
10647 add_clobbers (newpat
, insn_code_number
);
10649 for (i
= XVECLEN (newpat
, 0) - num_clobbers_to_add
;
10650 i
< XVECLEN (newpat
, 0); i
++)
10652 if (REG_P (XEXP (XVECEXP (newpat
, 0, i
), 0))
10653 && ! reg_dead_at_p (XEXP (XVECEXP (newpat
, 0, i
), 0), insn
))
10655 if (GET_CODE (XEXP (XVECEXP (newpat
, 0, i
), 0)) != SCRATCH
)
10657 gcc_assert (REG_P (XEXP (XVECEXP (newpat
, 0, i
), 0)));
10658 notes
= alloc_reg_note (REG_UNUSED
,
10659 XEXP (XVECEXP (newpat
, 0, i
), 0), notes
);
10665 if (insn_code_number
>= 0
10666 && insn_code_number
!= NOOP_MOVE_INSN_CODE
)
10668 old_pat
= PATTERN (insn
);
10669 old_notes
= REG_NOTES (insn
);
10670 old_icode
= INSN_CODE (insn
);
10671 PATTERN (insn
) = pat
;
10672 REG_NOTES (insn
) = notes
;
10674 /* Allow targets to reject combined insn. */
10675 if (!targetm
.legitimate_combined_insn (insn
))
10677 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10678 fputs ("Instruction not appropriate for target.",
10681 /* Callers expect recog_for_combine to strip
10682 clobbers from the pattern on failure. */
10683 pat
= pat_without_clobbers
;
10686 insn_code_number
= -1;
10689 PATTERN (insn
) = old_pat
;
10690 REG_NOTES (insn
) = old_notes
;
10691 INSN_CODE (insn
) = old_icode
;
10697 return insn_code_number
;
10700 /* Like gen_lowpart_general but for use by combine. In combine it
10701 is not possible to create any new pseudoregs. However, it is
10702 safe to create invalid memory addresses, because combine will
10703 try to recognize them and all they will do is make the combine
10706 If for some reason this cannot do its job, an rtx
10707 (clobber (const_int 0)) is returned.
10708 An insn containing that will not be recognized. */
10711 gen_lowpart_for_combine (enum machine_mode omode
, rtx x
)
10713 enum machine_mode imode
= GET_MODE (x
);
10714 unsigned int osize
= GET_MODE_SIZE (omode
);
10715 unsigned int isize
= GET_MODE_SIZE (imode
);
10718 if (omode
== imode
)
10721 /* We can only support MODE being wider than a word if X is a
10722 constant integer or has a mode the same size. */
10723 if (GET_MODE_SIZE (omode
) > UNITS_PER_WORD
10724 && ! (CONST_SCALAR_INT_P (x
) || isize
== osize
))
10727 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10728 won't know what to do. So we will strip off the SUBREG here and
10729 process normally. */
10730 if (GET_CODE (x
) == SUBREG
&& MEM_P (SUBREG_REG (x
)))
10732 x
= SUBREG_REG (x
);
10734 /* For use in case we fall down into the address adjustments
10735 further below, we need to adjust the known mode and size of
10736 x; imode and isize, since we just adjusted x. */
10737 imode
= GET_MODE (x
);
10739 if (imode
== omode
)
10742 isize
= GET_MODE_SIZE (imode
);
10745 result
= gen_lowpart_common (omode
, x
);
10754 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10756 if (MEM_VOLATILE_P (x
)
10757 || mode_dependent_address_p (XEXP (x
, 0), MEM_ADDR_SPACE (x
)))
10760 /* If we want to refer to something bigger than the original memref,
10761 generate a paradoxical subreg instead. That will force a reload
10762 of the original memref X. */
10764 return gen_rtx_SUBREG (omode
, x
, 0);
10766 if (WORDS_BIG_ENDIAN
)
10767 offset
= MAX (isize
, UNITS_PER_WORD
) - MAX (osize
, UNITS_PER_WORD
);
10769 /* Adjust the address so that the address-after-the-data is
10771 if (BYTES_BIG_ENDIAN
)
10772 offset
-= MIN (UNITS_PER_WORD
, osize
) - MIN (UNITS_PER_WORD
, isize
);
10774 return adjust_address_nv (x
, omode
, offset
);
10777 /* If X is a comparison operator, rewrite it in a new mode. This
10778 probably won't match, but may allow further simplifications. */
10779 else if (COMPARISON_P (x
))
10780 return gen_rtx_fmt_ee (GET_CODE (x
), omode
, XEXP (x
, 0), XEXP (x
, 1));
10782 /* If we couldn't simplify X any other way, just enclose it in a
10783 SUBREG. Normally, this SUBREG won't match, but some patterns may
10784 include an explicit SUBREG or we may simplify it further in combine. */
10790 offset
= subreg_lowpart_offset (omode
, imode
);
10791 if (imode
== VOIDmode
)
10793 imode
= int_mode_for_mode (omode
);
10794 x
= gen_lowpart_common (imode
, x
);
10798 res
= simplify_gen_subreg (omode
, x
, imode
, offset
);
10804 return gen_rtx_CLOBBER (omode
, const0_rtx
);
10807 /* Try to simplify a comparison between OP0 and a constant OP1,
10808 where CODE is the comparison code that will be tested, into a
10809 (CODE OP0 const0_rtx) form.
10811 The result is a possibly different comparison code to use.
10812 *POP1 may be updated. */
10814 static enum rtx_code
10815 simplify_compare_const (enum rtx_code code
, enum machine_mode mode
,
10816 rtx op0
, rtx
*pop1
)
10818 unsigned int mode_width
= GET_MODE_PRECISION (mode
);
10819 HOST_WIDE_INT const_op
= INTVAL (*pop1
);
10821 /* Get the constant we are comparing against and turn off all bits
10822 not on in our mode. */
10823 if (mode
!= VOIDmode
)
10824 const_op
= trunc_int_for_mode (const_op
, mode
);
10826 /* If we are comparing against a constant power of two and the value
10827 being compared can only have that single bit nonzero (e.g., it was
10828 `and'ed with that bit), we can replace this with a comparison
10831 && (code
== EQ
|| code
== NE
|| code
== GE
|| code
== GEU
10832 || code
== LT
|| code
== LTU
)
10833 && mode_width
- 1 < HOST_BITS_PER_WIDE_INT
10834 && exact_log2 (const_op
& GET_MODE_MASK (mode
)) >= 0
10835 && (nonzero_bits (op0
, mode
)
10836 == (unsigned HOST_WIDE_INT
) (const_op
& GET_MODE_MASK (mode
))))
10838 code
= (code
== EQ
|| code
== GE
|| code
== GEU
? NE
: EQ
);
10842 /* Similarly, if we are comparing a value known to be either -1 or
10843 0 with -1, change it to the opposite comparison against zero. */
10845 && (code
== EQ
|| code
== NE
|| code
== GT
|| code
== LE
10846 || code
== GEU
|| code
== LTU
)
10847 && num_sign_bit_copies (op0
, mode
) == mode_width
)
10849 code
= (code
== EQ
|| code
== LE
|| code
== GEU
? NE
: EQ
);
10853 /* Do some canonicalizations based on the comparison code. We prefer
10854 comparisons against zero and then prefer equality comparisons.
10855 If we can reduce the size of a constant, we will do that too. */
10859 /* < C is equivalent to <= (C - 1) */
10864 /* ... fall through to LE case below. */
10870 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10877 /* If we are doing a <= 0 comparison on a value known to have
10878 a zero sign bit, we can replace this with == 0. */
10879 else if (const_op
== 0
10880 && mode_width
- 1 < HOST_BITS_PER_WIDE_INT
10881 && (nonzero_bits (op0
, mode
)
10882 & ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
10888 /* >= C is equivalent to > (C - 1). */
10893 /* ... fall through to GT below. */
10899 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10906 /* If we are doing a > 0 comparison on a value known to have
10907 a zero sign bit, we can replace this with != 0. */
10908 else if (const_op
== 0
10909 && mode_width
- 1 < HOST_BITS_PER_WIDE_INT
10910 && (nonzero_bits (op0
, mode
)
10911 & ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
10917 /* < C is equivalent to <= (C - 1). */
10922 /* ... fall through ... */
10924 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10925 else if (mode_width
- 1 < HOST_BITS_PER_WIDE_INT
10926 && (unsigned HOST_WIDE_INT
) const_op
10927 == (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1))
10937 /* unsigned <= 0 is equivalent to == 0 */
10940 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10941 else if (mode_width
- 1 < HOST_BITS_PER_WIDE_INT
10942 && (unsigned HOST_WIDE_INT
) const_op
10943 == ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)) - 1)
10951 /* >= C is equivalent to > (C - 1). */
10956 /* ... fall through ... */
10959 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10960 else if (mode_width
- 1 < HOST_BITS_PER_WIDE_INT
10961 && (unsigned HOST_WIDE_INT
) const_op
10962 == (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1))
10972 /* unsigned > 0 is equivalent to != 0 */
10975 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10976 else if (mode_width
- 1 < HOST_BITS_PER_WIDE_INT
10977 && (unsigned HOST_WIDE_INT
) const_op
10978 == ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)) - 1)
10989 *pop1
= GEN_INT (const_op
);
10993 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10994 comparison code that will be tested.
10996 The result is a possibly different comparison code to use. *POP0 and
10997 *POP1 may be updated.
10999 It is possible that we might detect that a comparison is either always
11000 true or always false. However, we do not perform general constant
11001 folding in combine, so this knowledge isn't useful. Such tautologies
11002 should have been detected earlier. Hence we ignore all such cases. */
11004 static enum rtx_code
11005 simplify_comparison (enum rtx_code code
, rtx
*pop0
, rtx
*pop1
)
11011 enum machine_mode mode
, tmode
;
11013 /* Try a few ways of applying the same transformation to both operands. */
11016 #ifndef WORD_REGISTER_OPERATIONS
11017 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11018 so check specially. */
11019 if (code
!= GTU
&& code
!= GEU
&& code
!= LTU
&& code
!= LEU
11020 && GET_CODE (op0
) == ASHIFTRT
&& GET_CODE (op1
) == ASHIFTRT
11021 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
11022 && GET_CODE (XEXP (op1
, 0)) == ASHIFT
11023 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == SUBREG
11024 && GET_CODE (XEXP (XEXP (op1
, 0), 0)) == SUBREG
11025 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0)))
11026 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1
, 0), 0))))
11027 && CONST_INT_P (XEXP (op0
, 1))
11028 && XEXP (op0
, 1) == XEXP (op1
, 1)
11029 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
11030 && XEXP (op0
, 1) == XEXP (XEXP (op1
, 0), 1)
11031 && (INTVAL (XEXP (op0
, 1))
11032 == (GET_MODE_PRECISION (GET_MODE (op0
))
11033 - (GET_MODE_PRECISION
11034 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0))))))))
11036 op0
= SUBREG_REG (XEXP (XEXP (op0
, 0), 0));
11037 op1
= SUBREG_REG (XEXP (XEXP (op1
, 0), 0));
11041 /* If both operands are the same constant shift, see if we can ignore the
11042 shift. We can if the shift is a rotate or if the bits shifted out of
11043 this shift are known to be zero for both inputs and if the type of
11044 comparison is compatible with the shift. */
11045 if (GET_CODE (op0
) == GET_CODE (op1
)
11046 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0
))
11047 && ((GET_CODE (op0
) == ROTATE
&& (code
== NE
|| code
== EQ
))
11048 || ((GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFT
)
11049 && (code
!= GT
&& code
!= LT
&& code
!= GE
&& code
!= LE
))
11050 || (GET_CODE (op0
) == ASHIFTRT
11051 && (code
!= GTU
&& code
!= LTU
11052 && code
!= GEU
&& code
!= LEU
)))
11053 && CONST_INT_P (XEXP (op0
, 1))
11054 && INTVAL (XEXP (op0
, 1)) >= 0
11055 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
11056 && XEXP (op0
, 1) == XEXP (op1
, 1))
11058 enum machine_mode mode
= GET_MODE (op0
);
11059 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
11060 int shift_count
= INTVAL (XEXP (op0
, 1));
11062 if (GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFTRT
)
11063 mask
&= (mask
>> shift_count
) << shift_count
;
11064 else if (GET_CODE (op0
) == ASHIFT
)
11065 mask
= (mask
& (mask
<< shift_count
)) >> shift_count
;
11067 if ((nonzero_bits (XEXP (op0
, 0), mode
) & ~mask
) == 0
11068 && (nonzero_bits (XEXP (op1
, 0), mode
) & ~mask
) == 0)
11069 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0);
11074 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11075 SUBREGs are of the same mode, and, in both cases, the AND would
11076 be redundant if the comparison was done in the narrower mode,
11077 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11078 and the operand's possibly nonzero bits are 0xffffff01; in that case
11079 if we only care about QImode, we don't need the AND). This case
11080 occurs if the output mode of an scc insn is not SImode and
11081 STORE_FLAG_VALUE == 1 (e.g., the 386).
11083 Similarly, check for a case where the AND's are ZERO_EXTEND
11084 operations from some narrower mode even though a SUBREG is not
11087 else if (GET_CODE (op0
) == AND
&& GET_CODE (op1
) == AND
11088 && CONST_INT_P (XEXP (op0
, 1))
11089 && CONST_INT_P (XEXP (op1
, 1)))
11091 rtx inner_op0
= XEXP (op0
, 0);
11092 rtx inner_op1
= XEXP (op1
, 0);
11093 HOST_WIDE_INT c0
= INTVAL (XEXP (op0
, 1));
11094 HOST_WIDE_INT c1
= INTVAL (XEXP (op1
, 1));
11097 if (paradoxical_subreg_p (inner_op0
)
11098 && GET_CODE (inner_op1
) == SUBREG
11099 && (GET_MODE (SUBREG_REG (inner_op0
))
11100 == GET_MODE (SUBREG_REG (inner_op1
)))
11101 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0
)))
11102 <= HOST_BITS_PER_WIDE_INT
)
11103 && (0 == ((~c0
) & nonzero_bits (SUBREG_REG (inner_op0
),
11104 GET_MODE (SUBREG_REG (inner_op0
)))))
11105 && (0 == ((~c1
) & nonzero_bits (SUBREG_REG (inner_op1
),
11106 GET_MODE (SUBREG_REG (inner_op1
))))))
11108 op0
= SUBREG_REG (inner_op0
);
11109 op1
= SUBREG_REG (inner_op1
);
11111 /* The resulting comparison is always unsigned since we masked
11112 off the original sign bit. */
11113 code
= unsigned_condition (code
);
11119 for (tmode
= GET_CLASS_NARROWEST_MODE
11120 (GET_MODE_CLASS (GET_MODE (op0
)));
11121 tmode
!= GET_MODE (op0
); tmode
= GET_MODE_WIDER_MODE (tmode
))
11122 if ((unsigned HOST_WIDE_INT
) c0
== GET_MODE_MASK (tmode
))
11124 op0
= gen_lowpart (tmode
, inner_op0
);
11125 op1
= gen_lowpart (tmode
, inner_op1
);
11126 code
= unsigned_condition (code
);
11135 /* If both operands are NOT, we can strip off the outer operation
11136 and adjust the comparison code for swapped operands; similarly for
11137 NEG, except that this must be an equality comparison. */
11138 else if ((GET_CODE (op0
) == NOT
&& GET_CODE (op1
) == NOT
)
11139 || (GET_CODE (op0
) == NEG
&& GET_CODE (op1
) == NEG
11140 && (code
== EQ
|| code
== NE
)))
11141 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0), code
= swap_condition (code
);
11147 /* If the first operand is a constant, swap the operands and adjust the
11148 comparison code appropriately, but don't do this if the second operand
11149 is already a constant integer. */
11150 if (swap_commutative_operands_p (op0
, op1
))
11152 tem
= op0
, op0
= op1
, op1
= tem
;
11153 code
= swap_condition (code
);
11156 /* We now enter a loop during which we will try to simplify the comparison.
11157 For the most part, we only are concerned with comparisons with zero,
11158 but some things may really be comparisons with zero but not start
11159 out looking that way. */
11161 while (CONST_INT_P (op1
))
11163 enum machine_mode mode
= GET_MODE (op0
);
11164 unsigned int mode_width
= GET_MODE_PRECISION (mode
);
11165 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
11166 int equality_comparison_p
;
11167 int sign_bit_comparison_p
;
11168 int unsigned_comparison_p
;
11169 HOST_WIDE_INT const_op
;
11171 /* We only want to handle integral modes. This catches VOIDmode,
11172 CCmode, and the floating-point modes. An exception is that we
11173 can handle VOIDmode if OP0 is a COMPARE or a comparison
11176 if (GET_MODE_CLASS (mode
) != MODE_INT
11177 && ! (mode
== VOIDmode
11178 && (GET_CODE (op0
) == COMPARE
|| COMPARISON_P (op0
))))
11181 /* Try to simplify the compare to constant, possibly changing the
11182 comparison op, and/or changing op1 to zero. */
11183 code
= simplify_compare_const (code
, mode
, op0
, &op1
);
11184 const_op
= INTVAL (op1
);
11186 /* Compute some predicates to simplify code below. */
11188 equality_comparison_p
= (code
== EQ
|| code
== NE
);
11189 sign_bit_comparison_p
= ((code
== LT
|| code
== GE
) && const_op
== 0);
11190 unsigned_comparison_p
= (code
== LTU
|| code
== LEU
|| code
== GTU
11193 /* If this is a sign bit comparison and we can do arithmetic in
11194 MODE, say that we will only be needing the sign bit of OP0. */
11195 if (sign_bit_comparison_p
&& HWI_COMPUTABLE_MODE_P (mode
))
11196 op0
= force_to_mode (op0
, mode
,
11197 (unsigned HOST_WIDE_INT
) 1
11198 << (GET_MODE_PRECISION (mode
) - 1),
11201 /* Now try cases based on the opcode of OP0. If none of the cases
11202 does a "continue", we exit this loop immediately after the
11205 switch (GET_CODE (op0
))
11208 /* If we are extracting a single bit from a variable position in
11209 a constant that has only a single bit set and are comparing it
11210 with zero, we can convert this into an equality comparison
11211 between the position and the location of the single bit. */
11212 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11213 have already reduced the shift count modulo the word size. */
11214 if (!SHIFT_COUNT_TRUNCATED
11215 && CONST_INT_P (XEXP (op0
, 0))
11216 && XEXP (op0
, 1) == const1_rtx
11217 && equality_comparison_p
&& const_op
== 0
11218 && (i
= exact_log2 (UINTVAL (XEXP (op0
, 0)))) >= 0)
11220 if (BITS_BIG_ENDIAN
)
11221 i
= BITS_PER_WORD
- 1 - i
;
11223 op0
= XEXP (op0
, 2);
11227 /* Result is nonzero iff shift count is equal to I. */
11228 code
= reverse_condition (code
);
11232 /* ... fall through ... */
11235 tem
= expand_compound_operation (op0
);
11244 /* If testing for equality, we can take the NOT of the constant. */
11245 if (equality_comparison_p
11246 && (tem
= simplify_unary_operation (NOT
, mode
, op1
, mode
)) != 0)
11248 op0
= XEXP (op0
, 0);
11253 /* If just looking at the sign bit, reverse the sense of the
11255 if (sign_bit_comparison_p
)
11257 op0
= XEXP (op0
, 0);
11258 code
= (code
== GE
? LT
: GE
);
11264 /* If testing for equality, we can take the NEG of the constant. */
11265 if (equality_comparison_p
11266 && (tem
= simplify_unary_operation (NEG
, mode
, op1
, mode
)) != 0)
11268 op0
= XEXP (op0
, 0);
11273 /* The remaining cases only apply to comparisons with zero. */
11277 /* When X is ABS or is known positive,
11278 (neg X) is < 0 if and only if X != 0. */
11280 if (sign_bit_comparison_p
11281 && (GET_CODE (XEXP (op0
, 0)) == ABS
11282 || (mode_width
<= HOST_BITS_PER_WIDE_INT
11283 && (nonzero_bits (XEXP (op0
, 0), mode
)
11284 & ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
11287 op0
= XEXP (op0
, 0);
11288 code
= (code
== LT
? NE
: EQ
);
11292 /* If we have NEG of something whose two high-order bits are the
11293 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11294 if (num_sign_bit_copies (op0
, mode
) >= 2)
11296 op0
= XEXP (op0
, 0);
11297 code
= swap_condition (code
);
11303 /* If we are testing equality and our count is a constant, we
11304 can perform the inverse operation on our RHS. */
11305 if (equality_comparison_p
&& CONST_INT_P (XEXP (op0
, 1))
11306 && (tem
= simplify_binary_operation (ROTATERT
, mode
,
11307 op1
, XEXP (op0
, 1))) != 0)
11309 op0
= XEXP (op0
, 0);
11314 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11315 a particular bit. Convert it to an AND of a constant of that
11316 bit. This will be converted into a ZERO_EXTRACT. */
11317 if (const_op
== 0 && sign_bit_comparison_p
11318 && CONST_INT_P (XEXP (op0
, 1))
11319 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
11321 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
11322 ((unsigned HOST_WIDE_INT
) 1
11324 - INTVAL (XEXP (op0
, 1)))));
11325 code
= (code
== LT
? NE
: EQ
);
11329 /* Fall through. */
11332 /* ABS is ignorable inside an equality comparison with zero. */
11333 if (const_op
== 0 && equality_comparison_p
)
11335 op0
= XEXP (op0
, 0);
11341 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11342 (compare FOO CONST) if CONST fits in FOO's mode and we
11343 are either testing inequality or have an unsigned
11344 comparison with ZERO_EXTEND or a signed comparison with
11345 SIGN_EXTEND. But don't do it if we don't have a compare
11346 insn of the given mode, since we'd have to revert it
11347 later on, and then we wouldn't know whether to sign- or
11349 mode
= GET_MODE (XEXP (op0
, 0));
11350 if (GET_MODE_CLASS (mode
) == MODE_INT
11351 && ! unsigned_comparison_p
11352 && HWI_COMPUTABLE_MODE_P (mode
)
11353 && trunc_int_for_mode (const_op
, mode
) == const_op
11354 && have_insn_for (COMPARE
, mode
))
11356 op0
= XEXP (op0
, 0);
11362 /* Check for the case where we are comparing A - C1 with C2, that is
11364 (subreg:MODE (plus (A) (-C1))) op (C2)
11366 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11367 comparison in the wider mode. One of the following two conditions
11368 must be true in order for this to be valid:
11370 1. The mode extension results in the same bit pattern being added
11371 on both sides and the comparison is equality or unsigned. As
11372 C2 has been truncated to fit in MODE, the pattern can only be
11375 2. The mode extension results in the sign bit being copied on
11378 The difficulty here is that we have predicates for A but not for
11379 (A - C1) so we need to check that C1 is within proper bounds so
11380 as to perturbate A as little as possible. */
11382 if (mode_width
<= HOST_BITS_PER_WIDE_INT
11383 && subreg_lowpart_p (op0
)
11384 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0
))) > mode_width
11385 && GET_CODE (SUBREG_REG (op0
)) == PLUS
11386 && CONST_INT_P (XEXP (SUBREG_REG (op0
), 1)))
11388 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (op0
));
11389 rtx a
= XEXP (SUBREG_REG (op0
), 0);
11390 HOST_WIDE_INT c1
= -INTVAL (XEXP (SUBREG_REG (op0
), 1));
11393 && (unsigned HOST_WIDE_INT
) c1
11394 < (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)
11395 && (equality_comparison_p
|| unsigned_comparison_p
)
11396 /* (A - C1) zero-extends if it is positive and sign-extends
11397 if it is negative, C2 both zero- and sign-extends. */
11398 && ((0 == (nonzero_bits (a
, inner_mode
)
11399 & ~GET_MODE_MASK (mode
))
11401 /* (A - C1) sign-extends if it is positive and 1-extends
11402 if it is negative, C2 both sign- and 1-extends. */
11403 || (num_sign_bit_copies (a
, inner_mode
)
11404 > (unsigned int) (GET_MODE_PRECISION (inner_mode
)
11407 || ((unsigned HOST_WIDE_INT
) c1
11408 < (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 2)
11409 /* (A - C1) always sign-extends, like C2. */
11410 && num_sign_bit_copies (a
, inner_mode
)
11411 > (unsigned int) (GET_MODE_PRECISION (inner_mode
)
11412 - (mode_width
- 1))))
11414 op0
= SUBREG_REG (op0
);
11419 /* If the inner mode is narrower and we are extracting the low part,
11420 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11421 if (subreg_lowpart_p (op0
)
11422 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0
))) < mode_width
)
11423 /* Fall through */ ;
11427 /* ... fall through ... */
11430 mode
= GET_MODE (XEXP (op0
, 0));
11431 if (GET_MODE_CLASS (mode
) == MODE_INT
11432 && (unsigned_comparison_p
|| equality_comparison_p
)
11433 && HWI_COMPUTABLE_MODE_P (mode
)
11434 && (unsigned HOST_WIDE_INT
) const_op
<= GET_MODE_MASK (mode
)
11436 && have_insn_for (COMPARE
, mode
))
11438 op0
= XEXP (op0
, 0);
11444 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11445 this for equality comparisons due to pathological cases involving
11447 if (equality_comparison_p
11448 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
,
11449 op1
, XEXP (op0
, 1))))
11451 op0
= XEXP (op0
, 0);
11456 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11457 if (const_op
== 0 && XEXP (op0
, 1) == constm1_rtx
11458 && GET_CODE (XEXP (op0
, 0)) == ABS
&& sign_bit_comparison_p
)
11460 op0
= XEXP (XEXP (op0
, 0), 0);
11461 code
= (code
== LT
? EQ
: NE
);
11467 /* We used to optimize signed comparisons against zero, but that
11468 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11469 arrive here as equality comparisons, or (GEU, LTU) are
11470 optimized away. No need to special-case them. */
11472 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11473 (eq B (minus A C)), whichever simplifies. We can only do
11474 this for equality comparisons due to pathological cases involving
11476 if (equality_comparison_p
11477 && 0 != (tem
= simplify_binary_operation (PLUS
, mode
,
11478 XEXP (op0
, 1), op1
)))
11480 op0
= XEXP (op0
, 0);
11485 if (equality_comparison_p
11486 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
,
11487 XEXP (op0
, 0), op1
)))
11489 op0
= XEXP (op0
, 1);
11494 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11495 of bits in X minus 1, is one iff X > 0. */
11496 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == ASHIFTRT
11497 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
11498 && UINTVAL (XEXP (XEXP (op0
, 0), 1)) == mode_width
- 1
11499 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
11501 op0
= XEXP (op0
, 1);
11502 code
= (code
== GE
? LE
: GT
);
11508 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11509 if C is zero or B is a constant. */
11510 if (equality_comparison_p
11511 && 0 != (tem
= simplify_binary_operation (XOR
, mode
,
11512 XEXP (op0
, 1), op1
)))
11514 op0
= XEXP (op0
, 0);
11521 case UNEQ
: case LTGT
:
11522 case LT
: case LTU
: case UNLT
: case LE
: case LEU
: case UNLE
:
11523 case GT
: case GTU
: case UNGT
: case GE
: case GEU
: case UNGE
:
11524 case UNORDERED
: case ORDERED
:
11525 /* We can't do anything if OP0 is a condition code value, rather
11526 than an actual data value. */
11528 || CC0_P (XEXP (op0
, 0))
11529 || GET_MODE_CLASS (GET_MODE (XEXP (op0
, 0))) == MODE_CC
)
11532 /* Get the two operands being compared. */
11533 if (GET_CODE (XEXP (op0
, 0)) == COMPARE
)
11534 tem
= XEXP (XEXP (op0
, 0), 0), tem1
= XEXP (XEXP (op0
, 0), 1);
11536 tem
= XEXP (op0
, 0), tem1
= XEXP (op0
, 1);
11538 /* Check for the cases where we simply want the result of the
11539 earlier test or the opposite of that result. */
11540 if (code
== NE
|| code
== EQ
11541 || (val_signbit_known_set_p (GET_MODE (op0
), STORE_FLAG_VALUE
)
11542 && (code
== LT
|| code
== GE
)))
11544 enum rtx_code new_code
;
11545 if (code
== LT
|| code
== NE
)
11546 new_code
= GET_CODE (op0
);
11548 new_code
= reversed_comparison_code (op0
, NULL
);
11550 if (new_code
!= UNKNOWN
)
11561 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11563 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == PLUS
11564 && XEXP (XEXP (op0
, 0), 1) == constm1_rtx
11565 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
11567 op0
= XEXP (op0
, 1);
11568 code
= (code
== GE
? GT
: LE
);
11574 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11575 will be converted to a ZERO_EXTRACT later. */
11576 if (const_op
== 0 && equality_comparison_p
11577 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
11578 && XEXP (XEXP (op0
, 0), 0) == const1_rtx
)
11580 op0
= gen_rtx_LSHIFTRT (mode
, XEXP (op0
, 1),
11581 XEXP (XEXP (op0
, 0), 1));
11582 op0
= simplify_and_const_int (NULL_RTX
, mode
, op0
, 1);
11586 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11587 zero and X is a comparison and C1 and C2 describe only bits set
11588 in STORE_FLAG_VALUE, we can compare with X. */
11589 if (const_op
== 0 && equality_comparison_p
11590 && mode_width
<= HOST_BITS_PER_WIDE_INT
11591 && CONST_INT_P (XEXP (op0
, 1))
11592 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
11593 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
11594 && INTVAL (XEXP (XEXP (op0
, 0), 1)) >= 0
11595 && INTVAL (XEXP (XEXP (op0
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
11597 mask
= ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
11598 << INTVAL (XEXP (XEXP (op0
, 0), 1)));
11599 if ((~STORE_FLAG_VALUE
& mask
) == 0
11600 && (COMPARISON_P (XEXP (XEXP (op0
, 0), 0))
11601 || ((tem
= get_last_value (XEXP (XEXP (op0
, 0), 0))) != 0
11602 && COMPARISON_P (tem
))))
11604 op0
= XEXP (XEXP (op0
, 0), 0);
11609 /* If we are doing an equality comparison of an AND of a bit equal
11610 to the sign bit, replace this with a LT or GE comparison of
11611 the underlying value. */
11612 if (equality_comparison_p
11614 && CONST_INT_P (XEXP (op0
, 1))
11615 && mode_width
<= HOST_BITS_PER_WIDE_INT
11616 && ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
11617 == (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
11619 op0
= XEXP (op0
, 0);
11620 code
= (code
== EQ
? GE
: LT
);
11624 /* If this AND operation is really a ZERO_EXTEND from a narrower
11625 mode, the constant fits within that mode, and this is either an
11626 equality or unsigned comparison, try to do this comparison in
11631 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11632 -> (ne:DI (reg:SI 4) (const_int 0))
11634 unless TRULY_NOOP_TRUNCATION allows it or the register is
11635 known to hold a value of the required mode the
11636 transformation is invalid. */
11637 if ((equality_comparison_p
|| unsigned_comparison_p
)
11638 && CONST_INT_P (XEXP (op0
, 1))
11639 && (i
= exact_log2 ((UINTVAL (XEXP (op0
, 1))
11640 & GET_MODE_MASK (mode
))
11642 && const_op
>> i
== 0
11643 && (tmode
= mode_for_size (i
, MODE_INT
, 1)) != BLKmode
11644 && (TRULY_NOOP_TRUNCATION_MODES_P (tmode
, GET_MODE (op0
))
11645 || (REG_P (XEXP (op0
, 0))
11646 && reg_truncated_to_mode (tmode
, XEXP (op0
, 0)))))
11648 op0
= gen_lowpart (tmode
, XEXP (op0
, 0));
11652 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11653 fits in both M1 and M2 and the SUBREG is either paradoxical
11654 or represents the low part, permute the SUBREG and the AND
11656 if (GET_CODE (XEXP (op0
, 0)) == SUBREG
)
11658 unsigned HOST_WIDE_INT c1
;
11659 tmode
= GET_MODE (SUBREG_REG (XEXP (op0
, 0)));
11660 /* Require an integral mode, to avoid creating something like
11662 if (SCALAR_INT_MODE_P (tmode
)
11663 /* It is unsafe to commute the AND into the SUBREG if the
11664 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11665 not defined. As originally written the upper bits
11666 have a defined value due to the AND operation.
11667 However, if we commute the AND inside the SUBREG then
11668 they no longer have defined values and the meaning of
11669 the code has been changed. */
11671 #ifdef WORD_REGISTER_OPERATIONS
11672 || (mode_width
> GET_MODE_PRECISION (tmode
)
11673 && mode_width
<= BITS_PER_WORD
)
11675 || (mode_width
<= GET_MODE_PRECISION (tmode
)
11676 && subreg_lowpart_p (XEXP (op0
, 0))))
11677 && CONST_INT_P (XEXP (op0
, 1))
11678 && mode_width
<= HOST_BITS_PER_WIDE_INT
11679 && HWI_COMPUTABLE_MODE_P (tmode
)
11680 && ((c1
= INTVAL (XEXP (op0
, 1))) & ~mask
) == 0
11681 && (c1
& ~GET_MODE_MASK (tmode
)) == 0
11683 && c1
!= GET_MODE_MASK (tmode
))
11685 op0
= simplify_gen_binary (AND
, tmode
,
11686 SUBREG_REG (XEXP (op0
, 0)),
11687 gen_int_mode (c1
, tmode
));
11688 op0
= gen_lowpart (mode
, op0
);
11693 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11694 if (const_op
== 0 && equality_comparison_p
11695 && XEXP (op0
, 1) == const1_rtx
11696 && GET_CODE (XEXP (op0
, 0)) == NOT
)
11698 op0
= simplify_and_const_int (NULL_RTX
, mode
,
11699 XEXP (XEXP (op0
, 0), 0), 1);
11700 code
= (code
== NE
? EQ
: NE
);
11704 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11705 (eq (and (lshiftrt X) 1) 0).
11706 Also handle the case where (not X) is expressed using xor. */
11707 if (const_op
== 0 && equality_comparison_p
11708 && XEXP (op0
, 1) == const1_rtx
11709 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
)
11711 rtx shift_op
= XEXP (XEXP (op0
, 0), 0);
11712 rtx shift_count
= XEXP (XEXP (op0
, 0), 1);
11714 if (GET_CODE (shift_op
) == NOT
11715 || (GET_CODE (shift_op
) == XOR
11716 && CONST_INT_P (XEXP (shift_op
, 1))
11717 && CONST_INT_P (shift_count
)
11718 && HWI_COMPUTABLE_MODE_P (mode
)
11719 && (UINTVAL (XEXP (shift_op
, 1))
11720 == (unsigned HOST_WIDE_INT
) 1
11721 << INTVAL (shift_count
))))
11724 = gen_rtx_LSHIFTRT (mode
, XEXP (shift_op
, 0), shift_count
);
11725 op0
= simplify_and_const_int (NULL_RTX
, mode
, op0
, 1);
11726 code
= (code
== NE
? EQ
: NE
);
11733 /* If we have (compare (ashift FOO N) (const_int C)) and
11734 the high order N bits of FOO (N+1 if an inequality comparison)
11735 are known to be zero, we can do this by comparing FOO with C
11736 shifted right N bits so long as the low-order N bits of C are
11738 if (CONST_INT_P (XEXP (op0
, 1))
11739 && INTVAL (XEXP (op0
, 1)) >= 0
11740 && ((INTVAL (XEXP (op0
, 1)) + ! equality_comparison_p
)
11741 < HOST_BITS_PER_WIDE_INT
)
11742 && (((unsigned HOST_WIDE_INT
) const_op
11743 & (((unsigned HOST_WIDE_INT
) 1 << INTVAL (XEXP (op0
, 1)))
11745 && mode_width
<= HOST_BITS_PER_WIDE_INT
11746 && (nonzero_bits (XEXP (op0
, 0), mode
)
11747 & ~(mask
>> (INTVAL (XEXP (op0
, 1))
11748 + ! equality_comparison_p
))) == 0)
11750 /* We must perform a logical shift, not an arithmetic one,
11751 as we want the top N bits of C to be zero. */
11752 unsigned HOST_WIDE_INT temp
= const_op
& GET_MODE_MASK (mode
);
11754 temp
>>= INTVAL (XEXP (op0
, 1));
11755 op1
= gen_int_mode (temp
, mode
);
11756 op0
= XEXP (op0
, 0);
11760 /* If we are doing a sign bit comparison, it means we are testing
11761 a particular bit. Convert it to the appropriate AND. */
11762 if (sign_bit_comparison_p
&& CONST_INT_P (XEXP (op0
, 1))
11763 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
11765 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
11766 ((unsigned HOST_WIDE_INT
) 1
11768 - INTVAL (XEXP (op0
, 1)))));
11769 code
= (code
== LT
? NE
: EQ
);
11773 /* If this an equality comparison with zero and we are shifting
11774 the low bit to the sign bit, we can convert this to an AND of the
11776 if (const_op
== 0 && equality_comparison_p
11777 && CONST_INT_P (XEXP (op0
, 1))
11778 && UINTVAL (XEXP (op0
, 1)) == mode_width
- 1)
11780 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0), 1);
11786 /* If this is an equality comparison with zero, we can do this
11787 as a logical shift, which might be much simpler. */
11788 if (equality_comparison_p
&& const_op
== 0
11789 && CONST_INT_P (XEXP (op0
, 1)))
11791 op0
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
,
11793 INTVAL (XEXP (op0
, 1)));
11797 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11798 do the comparison in a narrower mode. */
11799 if (! unsigned_comparison_p
11800 && CONST_INT_P (XEXP (op0
, 1))
11801 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
11802 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
11803 && (tmode
= mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)),
11804 MODE_INT
, 1)) != BLKmode
11805 && (((unsigned HOST_WIDE_INT
) const_op
11806 + (GET_MODE_MASK (tmode
) >> 1) + 1)
11807 <= GET_MODE_MASK (tmode
)))
11809 op0
= gen_lowpart (tmode
, XEXP (XEXP (op0
, 0), 0));
11813 /* Likewise if OP0 is a PLUS of a sign extension with a
11814 constant, which is usually represented with the PLUS
11815 between the shifts. */
11816 if (! unsigned_comparison_p
11817 && CONST_INT_P (XEXP (op0
, 1))
11818 && GET_CODE (XEXP (op0
, 0)) == PLUS
11819 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
11820 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == ASHIFT
11821 && XEXP (op0
, 1) == XEXP (XEXP (XEXP (op0
, 0), 0), 1)
11822 && (tmode
= mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)),
11823 MODE_INT
, 1)) != BLKmode
11824 && (((unsigned HOST_WIDE_INT
) const_op
11825 + (GET_MODE_MASK (tmode
) >> 1) + 1)
11826 <= GET_MODE_MASK (tmode
)))
11828 rtx inner
= XEXP (XEXP (XEXP (op0
, 0), 0), 0);
11829 rtx add_const
= XEXP (XEXP (op0
, 0), 1);
11830 rtx new_const
= simplify_gen_binary (ASHIFTRT
, GET_MODE (op0
),
11831 add_const
, XEXP (op0
, 1));
11833 op0
= simplify_gen_binary (PLUS
, tmode
,
11834 gen_lowpart (tmode
, inner
),
11839 /* ... fall through ... */
11841 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11842 the low order N bits of FOO are known to be zero, we can do this
11843 by comparing FOO with C shifted left N bits so long as no
11844 overflow occurs. Even if the low order N bits of FOO aren't known
11845 to be zero, if the comparison is >= or < we can use the same
11846 optimization and for > or <= by setting all the low
11847 order N bits in the comparison constant. */
11848 if (CONST_INT_P (XEXP (op0
, 1))
11849 && INTVAL (XEXP (op0
, 1)) > 0
11850 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
11851 && mode_width
<= HOST_BITS_PER_WIDE_INT
11852 && (((unsigned HOST_WIDE_INT
) const_op
11853 + (GET_CODE (op0
) != LSHIFTRT
11854 ? ((GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1)) >> 1)
11857 <= GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1))))
11859 unsigned HOST_WIDE_INT low_bits
11860 = (nonzero_bits (XEXP (op0
, 0), mode
)
11861 & (((unsigned HOST_WIDE_INT
) 1
11862 << INTVAL (XEXP (op0
, 1))) - 1));
11863 if (low_bits
== 0 || !equality_comparison_p
)
11865 /* If the shift was logical, then we must make the condition
11867 if (GET_CODE (op0
) == LSHIFTRT
)
11868 code
= unsigned_condition (code
);
11870 const_op
<<= INTVAL (XEXP (op0
, 1));
11872 && (code
== GT
|| code
== GTU
11873 || code
== LE
|| code
== LEU
))
11875 |= (((HOST_WIDE_INT
) 1 << INTVAL (XEXP (op0
, 1))) - 1);
11876 op1
= GEN_INT (const_op
);
11877 op0
= XEXP (op0
, 0);
11882 /* If we are using this shift to extract just the sign bit, we
11883 can replace this with an LT or GE comparison. */
11885 && (equality_comparison_p
|| sign_bit_comparison_p
)
11886 && CONST_INT_P (XEXP (op0
, 1))
11887 && UINTVAL (XEXP (op0
, 1)) == mode_width
- 1)
11889 op0
= XEXP (op0
, 0);
11890 code
= (code
== NE
|| code
== GT
? LT
: GE
);
11902 /* Now make any compound operations involved in this comparison. Then,
11903 check for an outmost SUBREG on OP0 that is not doing anything or is
11904 paradoxical. The latter transformation must only be performed when
11905 it is known that the "extra" bits will be the same in op0 and op1 or
11906 that they don't matter. There are three cases to consider:
11908 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11909 care bits and we can assume they have any convenient value. So
11910 making the transformation is safe.
11912 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11913 In this case the upper bits of op0 are undefined. We should not make
11914 the simplification in that case as we do not know the contents of
11917 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11918 UNKNOWN. In that case we know those bits are zeros or ones. We must
11919 also be sure that they are the same as the upper bits of op1.
11921 We can never remove a SUBREG for a non-equality comparison because
11922 the sign bit is in a different place in the underlying object. */
11924 op0
= make_compound_operation (op0
, op1
== const0_rtx
? COMPARE
: SET
);
11925 op1
= make_compound_operation (op1
, SET
);
11927 if (GET_CODE (op0
) == SUBREG
&& subreg_lowpart_p (op0
)
11928 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
11929 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0
))) == MODE_INT
11930 && (code
== NE
|| code
== EQ
))
11932 if (paradoxical_subreg_p (op0
))
11934 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11936 if (REG_P (SUBREG_REG (op0
)))
11938 op0
= SUBREG_REG (op0
);
11939 op1
= gen_lowpart (GET_MODE (op0
), op1
);
11942 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0
)))
11943 <= HOST_BITS_PER_WIDE_INT
)
11944 && (nonzero_bits (SUBREG_REG (op0
),
11945 GET_MODE (SUBREG_REG (op0
)))
11946 & ~GET_MODE_MASK (GET_MODE (op0
))) == 0)
11948 tem
= gen_lowpart (GET_MODE (SUBREG_REG (op0
)), op1
);
11950 if ((nonzero_bits (tem
, GET_MODE (SUBREG_REG (op0
)))
11951 & ~GET_MODE_MASK (GET_MODE (op0
))) == 0)
11952 op0
= SUBREG_REG (op0
), op1
= tem
;
11956 /* We now do the opposite procedure: Some machines don't have compare
11957 insns in all modes. If OP0's mode is an integer mode smaller than a
11958 word and we can't do a compare in that mode, see if there is a larger
11959 mode for which we can do the compare. There are a number of cases in
11960 which we can use the wider mode. */
11962 mode
= GET_MODE (op0
);
11963 if (mode
!= VOIDmode
&& GET_MODE_CLASS (mode
) == MODE_INT
11964 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
11965 && ! have_insn_for (COMPARE
, mode
))
11966 for (tmode
= GET_MODE_WIDER_MODE (mode
);
11967 (tmode
!= VOIDmode
&& HWI_COMPUTABLE_MODE_P (tmode
));
11968 tmode
= GET_MODE_WIDER_MODE (tmode
))
11969 if (have_insn_for (COMPARE
, tmode
))
11973 /* If this is a test for negative, we can make an explicit
11974 test of the sign bit. Test this first so we can use
11975 a paradoxical subreg to extend OP0. */
11977 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
11978 && HWI_COMPUTABLE_MODE_P (mode
))
11980 unsigned HOST_WIDE_INT sign
11981 = (unsigned HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (mode
) - 1);
11982 op0
= simplify_gen_binary (AND
, tmode
,
11983 gen_lowpart (tmode
, op0
),
11984 gen_int_mode (sign
, mode
));
11985 code
= (code
== LT
) ? NE
: EQ
;
11989 /* If the only nonzero bits in OP0 and OP1 are those in the
11990 narrower mode and this is an equality or unsigned comparison,
11991 we can use the wider mode. Similarly for sign-extended
11992 values, in which case it is true for all comparisons. */
11993 zero_extended
= ((code
== EQ
|| code
== NE
11994 || code
== GEU
|| code
== GTU
11995 || code
== LEU
|| code
== LTU
)
11996 && (nonzero_bits (op0
, tmode
)
11997 & ~GET_MODE_MASK (mode
)) == 0
11998 && ((CONST_INT_P (op1
)
11999 || (nonzero_bits (op1
, tmode
)
12000 & ~GET_MODE_MASK (mode
)) == 0)));
12003 || ((num_sign_bit_copies (op0
, tmode
)
12004 > (unsigned int) (GET_MODE_PRECISION (tmode
)
12005 - GET_MODE_PRECISION (mode
)))
12006 && (num_sign_bit_copies (op1
, tmode
)
12007 > (unsigned int) (GET_MODE_PRECISION (tmode
)
12008 - GET_MODE_PRECISION (mode
)))))
12010 /* If OP0 is an AND and we don't have an AND in MODE either,
12011 make a new AND in the proper mode. */
12012 if (GET_CODE (op0
) == AND
12013 && !have_insn_for (AND
, mode
))
12014 op0
= simplify_gen_binary (AND
, tmode
,
12015 gen_lowpart (tmode
,
12017 gen_lowpart (tmode
,
12023 op0
= simplify_gen_unary (ZERO_EXTEND
, tmode
, op0
, mode
);
12024 op1
= simplify_gen_unary (ZERO_EXTEND
, tmode
, op1
, mode
);
12028 op0
= simplify_gen_unary (SIGN_EXTEND
, tmode
, op0
, mode
);
12029 op1
= simplify_gen_unary (SIGN_EXTEND
, tmode
, op1
, mode
);
12036 /* We may have changed the comparison operands. Re-canonicalize. */
12037 if (swap_commutative_operands_p (op0
, op1
))
12039 tem
= op0
, op0
= op1
, op1
= tem
;
12040 code
= swap_condition (code
);
12043 /* If this machine only supports a subset of valid comparisons, see if we
12044 can convert an unsupported one into a supported one. */
12045 target_canonicalize_comparison (&code
, &op0
, &op1
, 0);
12053 /* Utility function for record_value_for_reg. Count number of
12058 enum rtx_code code
= GET_CODE (x
);
12062 if (GET_RTX_CLASS (code
) == RTX_BIN_ARITH
12063 || GET_RTX_CLASS (code
) == RTX_COMM_ARITH
)
12065 rtx x0
= XEXP (x
, 0);
12066 rtx x1
= XEXP (x
, 1);
12069 return 1 + 2 * count_rtxs (x0
);
12071 if ((GET_RTX_CLASS (GET_CODE (x1
)) == RTX_BIN_ARITH
12072 || GET_RTX_CLASS (GET_CODE (x1
)) == RTX_COMM_ARITH
)
12073 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
12074 return 2 + 2 * count_rtxs (x0
)
12075 + count_rtxs (x
== XEXP (x1
, 0)
12076 ? XEXP (x1
, 1) : XEXP (x1
, 0));
12078 if ((GET_RTX_CLASS (GET_CODE (x0
)) == RTX_BIN_ARITH
12079 || GET_RTX_CLASS (GET_CODE (x0
)) == RTX_COMM_ARITH
)
12080 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
12081 return 2 + 2 * count_rtxs (x1
)
12082 + count_rtxs (x
== XEXP (x0
, 0)
12083 ? XEXP (x0
, 1) : XEXP (x0
, 0));
12086 fmt
= GET_RTX_FORMAT (code
);
12087 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
12089 ret
+= count_rtxs (XEXP (x
, i
));
12090 else if (fmt
[i
] == 'E')
12091 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
12092 ret
+= count_rtxs (XVECEXP (x
, i
, j
));
12097 /* Utility function for following routine. Called when X is part of a value
12098 being stored into last_set_value. Sets last_set_table_tick
12099 for each register mentioned. Similar to mention_regs in cse.c */
12102 update_table_tick (rtx x
)
12104 enum rtx_code code
= GET_CODE (x
);
12105 const char *fmt
= GET_RTX_FORMAT (code
);
12110 unsigned int regno
= REGNO (x
);
12111 unsigned int endregno
= END_REGNO (x
);
12114 for (r
= regno
; r
< endregno
; r
++)
12116 reg_stat_type
*rsp
= ®_stat
[r
];
12117 rsp
->last_set_table_tick
= label_tick
;
12123 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
12126 /* Check for identical subexpressions. If x contains
12127 identical subexpression we only have to traverse one of
12129 if (i
== 0 && ARITHMETIC_P (x
))
12131 /* Note that at this point x1 has already been
12133 rtx x0
= XEXP (x
, 0);
12134 rtx x1
= XEXP (x
, 1);
12136 /* If x0 and x1 are identical then there is no need to
12141 /* If x0 is identical to a subexpression of x1 then while
12142 processing x1, x0 has already been processed. Thus we
12143 are done with x. */
12144 if (ARITHMETIC_P (x1
)
12145 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
12148 /* If x1 is identical to a subexpression of x0 then we
12149 still have to process the rest of x0. */
12150 if (ARITHMETIC_P (x0
)
12151 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
12153 update_table_tick (XEXP (x0
, x1
== XEXP (x0
, 0) ? 1 : 0));
12158 update_table_tick (XEXP (x
, i
));
12160 else if (fmt
[i
] == 'E')
12161 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
12162 update_table_tick (XVECEXP (x
, i
, j
));
12165 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12166 are saying that the register is clobbered and we no longer know its
12167 value. If INSN is zero, don't update reg_stat[].last_set; this is
12168 only permitted with VALUE also zero and is used to invalidate the
12172 record_value_for_reg (rtx reg
, rtx insn
, rtx value
)
12174 unsigned int regno
= REGNO (reg
);
12175 unsigned int endregno
= END_REGNO (reg
);
12177 reg_stat_type
*rsp
;
12179 /* If VALUE contains REG and we have a previous value for REG, substitute
12180 the previous value. */
12181 if (value
&& insn
&& reg_overlap_mentioned_p (reg
, value
))
12185 /* Set things up so get_last_value is allowed to see anything set up to
12187 subst_low_luid
= DF_INSN_LUID (insn
);
12188 tem
= get_last_value (reg
);
12190 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12191 it isn't going to be useful and will take a lot of time to process,
12192 so just use the CLOBBER. */
12196 if (ARITHMETIC_P (tem
)
12197 && GET_CODE (XEXP (tem
, 0)) == CLOBBER
12198 && GET_CODE (XEXP (tem
, 1)) == CLOBBER
)
12199 tem
= XEXP (tem
, 0);
12200 else if (count_occurrences (value
, reg
, 1) >= 2)
12202 /* If there are two or more occurrences of REG in VALUE,
12203 prevent the value from growing too much. */
12204 if (count_rtxs (tem
) > MAX_LAST_VALUE_RTL
)
12205 tem
= gen_rtx_CLOBBER (GET_MODE (tem
), const0_rtx
);
12208 value
= replace_rtx (copy_rtx (value
), reg
, tem
);
12212 /* For each register modified, show we don't know its value, that
12213 we don't know about its bitwise content, that its value has been
12214 updated, and that we don't know the location of the death of the
12216 for (i
= regno
; i
< endregno
; i
++)
12218 rsp
= ®_stat
[i
];
12221 rsp
->last_set
= insn
;
12223 rsp
->last_set_value
= 0;
12224 rsp
->last_set_mode
= VOIDmode
;
12225 rsp
->last_set_nonzero_bits
= 0;
12226 rsp
->last_set_sign_bit_copies
= 0;
12227 rsp
->last_death
= 0;
12228 rsp
->truncated_to_mode
= VOIDmode
;
12231 /* Mark registers that are being referenced in this value. */
12233 update_table_tick (value
);
12235 /* Now update the status of each register being set.
12236 If someone is using this register in this block, set this register
12237 to invalid since we will get confused between the two lives in this
12238 basic block. This makes using this register always invalid. In cse, we
12239 scan the table to invalidate all entries using this register, but this
12240 is too much work for us. */
12242 for (i
= regno
; i
< endregno
; i
++)
12244 rsp
= ®_stat
[i
];
12245 rsp
->last_set_label
= label_tick
;
12247 || (value
&& rsp
->last_set_table_tick
>= label_tick_ebb_start
))
12248 rsp
->last_set_invalid
= 1;
12250 rsp
->last_set_invalid
= 0;
12253 /* The value being assigned might refer to X (like in "x++;"). In that
12254 case, we must replace it with (clobber (const_int 0)) to prevent
12256 rsp
= ®_stat
[regno
];
12257 if (value
&& !get_last_value_validate (&value
, insn
, label_tick
, 0))
12259 value
= copy_rtx (value
);
12260 if (!get_last_value_validate (&value
, insn
, label_tick
, 1))
12264 /* For the main register being modified, update the value, the mode, the
12265 nonzero bits, and the number of sign bit copies. */
12267 rsp
->last_set_value
= value
;
12271 enum machine_mode mode
= GET_MODE (reg
);
12272 subst_low_luid
= DF_INSN_LUID (insn
);
12273 rsp
->last_set_mode
= mode
;
12274 if (GET_MODE_CLASS (mode
) == MODE_INT
12275 && HWI_COMPUTABLE_MODE_P (mode
))
12276 mode
= nonzero_bits_mode
;
12277 rsp
->last_set_nonzero_bits
= nonzero_bits (value
, mode
);
12278 rsp
->last_set_sign_bit_copies
12279 = num_sign_bit_copies (value
, GET_MODE (reg
));
12283 /* Called via note_stores from record_dead_and_set_regs to handle one
12284 SET or CLOBBER in an insn. DATA is the instruction in which the
12285 set is occurring. */
12288 record_dead_and_set_regs_1 (rtx dest
, const_rtx setter
, void *data
)
12290 rtx record_dead_insn
= (rtx
) data
;
12292 if (GET_CODE (dest
) == SUBREG
)
12293 dest
= SUBREG_REG (dest
);
12295 if (!record_dead_insn
)
12298 record_value_for_reg (dest
, NULL_RTX
, NULL_RTX
);
12304 /* If we are setting the whole register, we know its value. Otherwise
12305 show that we don't know the value. We can handle SUBREG in
12307 if (GET_CODE (setter
) == SET
&& dest
== SET_DEST (setter
))
12308 record_value_for_reg (dest
, record_dead_insn
, SET_SRC (setter
));
12309 else if (GET_CODE (setter
) == SET
12310 && GET_CODE (SET_DEST (setter
)) == SUBREG
12311 && SUBREG_REG (SET_DEST (setter
)) == dest
12312 && GET_MODE_PRECISION (GET_MODE (dest
)) <= BITS_PER_WORD
12313 && subreg_lowpart_p (SET_DEST (setter
)))
12314 record_value_for_reg (dest
, record_dead_insn
,
12315 gen_lowpart (GET_MODE (dest
),
12316 SET_SRC (setter
)));
12318 record_value_for_reg (dest
, record_dead_insn
, NULL_RTX
);
12320 else if (MEM_P (dest
)
12321 /* Ignore pushes, they clobber nothing. */
12322 && ! push_operand (dest
, GET_MODE (dest
)))
12323 mem_last_set
= DF_INSN_LUID (record_dead_insn
);
12326 /* Update the records of when each REG was most recently set or killed
12327 for the things done by INSN. This is the last thing done in processing
12328 INSN in the combiner loop.
12330 We update reg_stat[], in particular fields last_set, last_set_value,
12331 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12332 last_death, and also the similar information mem_last_set (which insn
12333 most recently modified memory) and last_call_luid (which insn was the
12334 most recent subroutine call). */
12337 record_dead_and_set_regs (rtx insn
)
12342 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
12344 if (REG_NOTE_KIND (link
) == REG_DEAD
12345 && REG_P (XEXP (link
, 0)))
12347 unsigned int regno
= REGNO (XEXP (link
, 0));
12348 unsigned int endregno
= END_REGNO (XEXP (link
, 0));
12350 for (i
= regno
; i
< endregno
; i
++)
12352 reg_stat_type
*rsp
;
12354 rsp
= ®_stat
[i
];
12355 rsp
->last_death
= insn
;
12358 else if (REG_NOTE_KIND (link
) == REG_INC
)
12359 record_value_for_reg (XEXP (link
, 0), insn
, NULL_RTX
);
12364 hard_reg_set_iterator hrsi
;
12365 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call
, 0, i
, hrsi
)
12367 reg_stat_type
*rsp
;
12369 rsp
= ®_stat
[i
];
12370 rsp
->last_set_invalid
= 1;
12371 rsp
->last_set
= insn
;
12372 rsp
->last_set_value
= 0;
12373 rsp
->last_set_mode
= VOIDmode
;
12374 rsp
->last_set_nonzero_bits
= 0;
12375 rsp
->last_set_sign_bit_copies
= 0;
12376 rsp
->last_death
= 0;
12377 rsp
->truncated_to_mode
= VOIDmode
;
12380 last_call_luid
= mem_last_set
= DF_INSN_LUID (insn
);
12382 /* We can't combine into a call pattern. Remember, though, that
12383 the return value register is set at this LUID. We could
12384 still replace a register with the return value from the
12385 wrong subroutine call! */
12386 note_stores (PATTERN (insn
), record_dead_and_set_regs_1
, NULL_RTX
);
12389 note_stores (PATTERN (insn
), record_dead_and_set_regs_1
, insn
);
12392 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12393 register present in the SUBREG, so for each such SUBREG go back and
12394 adjust nonzero and sign bit information of the registers that are
12395 known to have some zero/sign bits set.
12397 This is needed because when combine blows the SUBREGs away, the
12398 information on zero/sign bits is lost and further combines can be
12399 missed because of that. */
12402 record_promoted_value (rtx insn
, rtx subreg
)
12404 struct insn_link
*links
;
12406 unsigned int regno
= REGNO (SUBREG_REG (subreg
));
12407 enum machine_mode mode
= GET_MODE (subreg
);
12409 if (GET_MODE_PRECISION (mode
) > HOST_BITS_PER_WIDE_INT
)
12412 for (links
= LOG_LINKS (insn
); links
;)
12414 reg_stat_type
*rsp
;
12416 insn
= links
->insn
;
12417 set
= single_set (insn
);
12419 if (! set
|| !REG_P (SET_DEST (set
))
12420 || REGNO (SET_DEST (set
)) != regno
12421 || GET_MODE (SET_DEST (set
)) != GET_MODE (SUBREG_REG (subreg
)))
12423 links
= links
->next
;
12427 rsp
= ®_stat
[regno
];
12428 if (rsp
->last_set
== insn
)
12430 if (SUBREG_PROMOTED_UNSIGNED_P (subreg
) > 0)
12431 rsp
->last_set_nonzero_bits
&= GET_MODE_MASK (mode
);
12434 if (REG_P (SET_SRC (set
)))
12436 regno
= REGNO (SET_SRC (set
));
12437 links
= LOG_LINKS (insn
);
12444 /* Check if X, a register, is known to contain a value already
12445 truncated to MODE. In this case we can use a subreg to refer to
12446 the truncated value even though in the generic case we would need
12447 an explicit truncation. */
12450 reg_truncated_to_mode (enum machine_mode mode
, const_rtx x
)
12452 reg_stat_type
*rsp
= ®_stat
[REGNO (x
)];
12453 enum machine_mode truncated
= rsp
->truncated_to_mode
;
12456 || rsp
->truncation_label
< label_tick_ebb_start
)
12458 if (GET_MODE_SIZE (truncated
) <= GET_MODE_SIZE (mode
))
12460 if (TRULY_NOOP_TRUNCATION_MODES_P (mode
, truncated
))
12465 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12466 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12467 might be able to turn a truncate into a subreg using this information.
12468 Return -1 if traversing *P is complete or 0 otherwise. */
12471 record_truncated_value (rtx
*p
, void *data ATTRIBUTE_UNUSED
)
12474 enum machine_mode truncated_mode
;
12475 reg_stat_type
*rsp
;
12477 if (GET_CODE (x
) == SUBREG
&& REG_P (SUBREG_REG (x
)))
12479 enum machine_mode original_mode
= GET_MODE (SUBREG_REG (x
));
12480 truncated_mode
= GET_MODE (x
);
12482 if (GET_MODE_SIZE (original_mode
) <= GET_MODE_SIZE (truncated_mode
))
12485 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode
, original_mode
))
12488 x
= SUBREG_REG (x
);
12490 /* ??? For hard-regs we now record everything. We might be able to
12491 optimize this using last_set_mode. */
12492 else if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
12493 truncated_mode
= GET_MODE (x
);
12497 rsp
= ®_stat
[REGNO (x
)];
12498 if (rsp
->truncated_to_mode
== 0
12499 || rsp
->truncation_label
< label_tick_ebb_start
12500 || (GET_MODE_SIZE (truncated_mode
)
12501 < GET_MODE_SIZE (rsp
->truncated_to_mode
)))
12503 rsp
->truncated_to_mode
= truncated_mode
;
12504 rsp
->truncation_label
= label_tick
;
12510 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12511 the modes they are used in. This can help truning TRUNCATEs into
12515 record_truncated_values (rtx
*x
, void *data ATTRIBUTE_UNUSED
)
12517 for_each_rtx (x
, record_truncated_value
, NULL
);
12520 /* Scan X for promoted SUBREGs. For each one found,
12521 note what it implies to the registers used in it. */
12524 check_promoted_subreg (rtx insn
, rtx x
)
12526 if (GET_CODE (x
) == SUBREG
12527 && SUBREG_PROMOTED_VAR_P (x
)
12528 && REG_P (SUBREG_REG (x
)))
12529 record_promoted_value (insn
, x
);
12532 const char *format
= GET_RTX_FORMAT (GET_CODE (x
));
12535 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (x
)); i
++)
12539 check_promoted_subreg (insn
, XEXP (x
, i
));
12543 if (XVEC (x
, i
) != 0)
12544 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
12545 check_promoted_subreg (insn
, XVECEXP (x
, i
, j
));
12551 /* Verify that all the registers and memory references mentioned in *LOC are
12552 still valid. *LOC was part of a value set in INSN when label_tick was
12553 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12554 the invalid references with (clobber (const_int 0)) and return 1. This
12555 replacement is useful because we often can get useful information about
12556 the form of a value (e.g., if it was produced by a shift that always
12557 produces -1 or 0) even though we don't know exactly what registers it
12558 was produced from. */
12561 get_last_value_validate (rtx
*loc
, rtx insn
, int tick
, int replace
)
12564 const char *fmt
= GET_RTX_FORMAT (GET_CODE (x
));
12565 int len
= GET_RTX_LENGTH (GET_CODE (x
));
12570 unsigned int regno
= REGNO (x
);
12571 unsigned int endregno
= END_REGNO (x
);
12574 for (j
= regno
; j
< endregno
; j
++)
12576 reg_stat_type
*rsp
= ®_stat
[j
];
12577 if (rsp
->last_set_invalid
12578 /* If this is a pseudo-register that was only set once and not
12579 live at the beginning of the function, it is always valid. */
12580 || (! (regno
>= FIRST_PSEUDO_REGISTER
12581 && REG_N_SETS (regno
) == 1
12582 && (!REGNO_REG_SET_P
12583 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
12585 && rsp
->last_set_label
> tick
))
12588 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
12595 /* If this is a memory reference, make sure that there were no stores after
12596 it that might have clobbered the value. We don't have alias info, so we
12597 assume any store invalidates it. Moreover, we only have local UIDs, so
12598 we also assume that there were stores in the intervening basic blocks. */
12599 else if (MEM_P (x
) && !MEM_READONLY_P (x
)
12600 && (tick
!= label_tick
|| DF_INSN_LUID (insn
) <= mem_last_set
))
12603 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
12607 for (i
= 0; i
< len
; i
++)
12611 /* Check for identical subexpressions. If x contains
12612 identical subexpression we only have to traverse one of
12614 if (i
== 1 && ARITHMETIC_P (x
))
12616 /* Note that at this point x0 has already been checked
12617 and found valid. */
12618 rtx x0
= XEXP (x
, 0);
12619 rtx x1
= XEXP (x
, 1);
12621 /* If x0 and x1 are identical then x is also valid. */
12625 /* If x1 is identical to a subexpression of x0 then
12626 while checking x0, x1 has already been checked. Thus
12627 it is valid and so as x. */
12628 if (ARITHMETIC_P (x0
)
12629 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
12632 /* If x0 is identical to a subexpression of x1 then x is
12633 valid iff the rest of x1 is valid. */
12634 if (ARITHMETIC_P (x1
)
12635 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
12637 get_last_value_validate (&XEXP (x1
,
12638 x0
== XEXP (x1
, 0) ? 1 : 0),
12639 insn
, tick
, replace
);
12642 if (get_last_value_validate (&XEXP (x
, i
), insn
, tick
,
12646 else if (fmt
[i
] == 'E')
12647 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
12648 if (get_last_value_validate (&XVECEXP (x
, i
, j
),
12649 insn
, tick
, replace
) == 0)
12653 /* If we haven't found a reason for it to be invalid, it is valid. */
12657 /* Get the last value assigned to X, if known. Some registers
12658 in the value may be replaced with (clobber (const_int 0)) if their value
12659 is known longer known reliably. */
12662 get_last_value (const_rtx x
)
12664 unsigned int regno
;
12666 reg_stat_type
*rsp
;
12668 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12669 then convert it to the desired mode. If this is a paradoxical SUBREG,
12670 we cannot predict what values the "extra" bits might have. */
12671 if (GET_CODE (x
) == SUBREG
12672 && subreg_lowpart_p (x
)
12673 && !paradoxical_subreg_p (x
)
12674 && (value
= get_last_value (SUBREG_REG (x
))) != 0)
12675 return gen_lowpart (GET_MODE (x
), value
);
12681 rsp
= ®_stat
[regno
];
12682 value
= rsp
->last_set_value
;
12684 /* If we don't have a value, or if it isn't for this basic block and
12685 it's either a hard register, set more than once, or it's a live
12686 at the beginning of the function, return 0.
12688 Because if it's not live at the beginning of the function then the reg
12689 is always set before being used (is never used without being set).
12690 And, if it's set only once, and it's always set before use, then all
12691 uses must have the same last value, even if it's not from this basic
12695 || (rsp
->last_set_label
< label_tick_ebb_start
12696 && (regno
< FIRST_PSEUDO_REGISTER
12697 || REG_N_SETS (regno
) != 1
12699 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
), regno
))))
12702 /* If the value was set in a later insn than the ones we are processing,
12703 we can't use it even if the register was only set once. */
12704 if (rsp
->last_set_label
== label_tick
12705 && DF_INSN_LUID (rsp
->last_set
) >= subst_low_luid
)
12708 /* If the value has all its registers valid, return it. */
12709 if (get_last_value_validate (&value
, rsp
->last_set
, rsp
->last_set_label
, 0))
12712 /* Otherwise, make a copy and replace any invalid register with
12713 (clobber (const_int 0)). If that fails for some reason, return 0. */
12715 value
= copy_rtx (value
);
12716 if (get_last_value_validate (&value
, rsp
->last_set
, rsp
->last_set_label
, 1))
12722 /* Return nonzero if expression X refers to a REG or to memory
12723 that is set in an instruction more recent than FROM_LUID. */
12726 use_crosses_set_p (const_rtx x
, int from_luid
)
12730 enum rtx_code code
= GET_CODE (x
);
12734 unsigned int regno
= REGNO (x
);
12735 unsigned endreg
= END_REGNO (x
);
12737 #ifdef PUSH_ROUNDING
12738 /* Don't allow uses of the stack pointer to be moved,
12739 because we don't know whether the move crosses a push insn. */
12740 if (regno
== STACK_POINTER_REGNUM
&& PUSH_ARGS
)
12743 for (; regno
< endreg
; regno
++)
12745 reg_stat_type
*rsp
= ®_stat
[regno
];
12747 && rsp
->last_set_label
== label_tick
12748 && DF_INSN_LUID (rsp
->last_set
) > from_luid
)
12754 if (code
== MEM
&& mem_last_set
> from_luid
)
12757 fmt
= GET_RTX_FORMAT (code
);
12759 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
12764 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
12765 if (use_crosses_set_p (XVECEXP (x
, i
, j
), from_luid
))
12768 else if (fmt
[i
] == 'e'
12769 && use_crosses_set_p (XEXP (x
, i
), from_luid
))
12775 /* Define three variables used for communication between the following
12778 static unsigned int reg_dead_regno
, reg_dead_endregno
;
12779 static int reg_dead_flag
;
12781 /* Function called via note_stores from reg_dead_at_p.
12783 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12784 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12787 reg_dead_at_p_1 (rtx dest
, const_rtx x
, void *data ATTRIBUTE_UNUSED
)
12789 unsigned int regno
, endregno
;
12794 regno
= REGNO (dest
);
12795 endregno
= END_REGNO (dest
);
12796 if (reg_dead_endregno
> regno
&& reg_dead_regno
< endregno
)
12797 reg_dead_flag
= (GET_CODE (x
) == CLOBBER
) ? 1 : -1;
12800 /* Return nonzero if REG is known to be dead at INSN.
12802 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12803 referencing REG, it is dead. If we hit a SET referencing REG, it is
12804 live. Otherwise, see if it is live or dead at the start of the basic
12805 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12806 must be assumed to be always live. */
12809 reg_dead_at_p (rtx reg
, rtx insn
)
12814 /* Set variables for reg_dead_at_p_1. */
12815 reg_dead_regno
= REGNO (reg
);
12816 reg_dead_endregno
= END_REGNO (reg
);
12820 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12821 we allow the machine description to decide whether use-and-clobber
12822 patterns are OK. */
12823 if (reg_dead_regno
< FIRST_PSEUDO_REGISTER
)
12825 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
12826 if (!fixed_regs
[i
] && TEST_HARD_REG_BIT (newpat_used_regs
, i
))
12830 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12831 beginning of basic block. */
12832 block
= BLOCK_FOR_INSN (insn
);
12837 note_stores (PATTERN (insn
), reg_dead_at_p_1
, NULL
);
12839 return reg_dead_flag
== 1 ? 1 : 0;
12841 if (find_regno_note (insn
, REG_DEAD
, reg_dead_regno
))
12845 if (insn
== BB_HEAD (block
))
12848 insn
= PREV_INSN (insn
);
12851 /* Look at live-in sets for the basic block that we were in. */
12852 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
12853 if (REGNO_REG_SET_P (df_get_live_in (block
), i
))
12859 /* Note hard registers in X that are used. */
12862 mark_used_regs_combine (rtx x
)
12864 RTX_CODE code
= GET_CODE (x
);
12865 unsigned int regno
;
12876 case ADDR_DIFF_VEC
:
12879 /* CC0 must die in the insn after it is set, so we don't need to take
12880 special note of it here. */
12886 /* If we are clobbering a MEM, mark any hard registers inside the
12887 address as used. */
12888 if (MEM_P (XEXP (x
, 0)))
12889 mark_used_regs_combine (XEXP (XEXP (x
, 0), 0));
12894 /* A hard reg in a wide mode may really be multiple registers.
12895 If so, mark all of them just like the first. */
12896 if (regno
< FIRST_PSEUDO_REGISTER
)
12898 /* None of this applies to the stack, frame or arg pointers. */
12899 if (regno
== STACK_POINTER_REGNUM
12900 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12901 || regno
== HARD_FRAME_POINTER_REGNUM
12903 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12904 || (regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
12906 || regno
== FRAME_POINTER_REGNUM
)
12909 add_to_hard_reg_set (&newpat_used_regs
, GET_MODE (x
), regno
);
12915 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12917 rtx testreg
= SET_DEST (x
);
12919 while (GET_CODE (testreg
) == SUBREG
12920 || GET_CODE (testreg
) == ZERO_EXTRACT
12921 || GET_CODE (testreg
) == STRICT_LOW_PART
)
12922 testreg
= XEXP (testreg
, 0);
12924 if (MEM_P (testreg
))
12925 mark_used_regs_combine (XEXP (testreg
, 0));
12927 mark_used_regs_combine (SET_SRC (x
));
12935 /* Recursively scan the operands of this expression. */
12938 const char *fmt
= GET_RTX_FORMAT (code
);
12940 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
12943 mark_used_regs_combine (XEXP (x
, i
));
12944 else if (fmt
[i
] == 'E')
12948 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
12949 mark_used_regs_combine (XVECEXP (x
, i
, j
));
12955 /* Remove register number REGNO from the dead registers list of INSN.
12957 Return the note used to record the death, if there was one. */
12960 remove_death (unsigned int regno
, rtx insn
)
12962 rtx note
= find_regno_note (insn
, REG_DEAD
, regno
);
12965 remove_note (insn
, note
);
12970 /* For each register (hardware or pseudo) used within expression X, if its
12971 death is in an instruction with luid between FROM_LUID (inclusive) and
12972 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12973 list headed by PNOTES.
12975 That said, don't move registers killed by maybe_kill_insn.
12977 This is done when X is being merged by combination into TO_INSN. These
12978 notes will then be distributed as needed. */
12981 move_deaths (rtx x
, rtx maybe_kill_insn
, int from_luid
, rtx to_insn
,
12986 enum rtx_code code
= GET_CODE (x
);
12990 unsigned int regno
= REGNO (x
);
12991 rtx where_dead
= reg_stat
[regno
].last_death
;
12993 /* Don't move the register if it gets killed in between from and to. */
12994 if (maybe_kill_insn
&& reg_set_p (x
, maybe_kill_insn
)
12995 && ! reg_referenced_p (x
, maybe_kill_insn
))
12999 && BLOCK_FOR_INSN (where_dead
) == BLOCK_FOR_INSN (to_insn
)
13000 && DF_INSN_LUID (where_dead
) >= from_luid
13001 && DF_INSN_LUID (where_dead
) < DF_INSN_LUID (to_insn
))
13003 rtx note
= remove_death (regno
, where_dead
);
13005 /* It is possible for the call above to return 0. This can occur
13006 when last_death points to I2 or I1 that we combined with.
13007 In that case make a new note.
13009 We must also check for the case where X is a hard register
13010 and NOTE is a death note for a range of hard registers
13011 including X. In that case, we must put REG_DEAD notes for
13012 the remaining registers in place of NOTE. */
13014 if (note
!= 0 && regno
< FIRST_PSEUDO_REGISTER
13015 && (GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
13016 > GET_MODE_SIZE (GET_MODE (x
))))
13018 unsigned int deadregno
= REGNO (XEXP (note
, 0));
13019 unsigned int deadend
= END_HARD_REGNO (XEXP (note
, 0));
13020 unsigned int ourend
= END_HARD_REGNO (x
);
13023 for (i
= deadregno
; i
< deadend
; i
++)
13024 if (i
< regno
|| i
>= ourend
)
13025 add_reg_note (where_dead
, REG_DEAD
, regno_reg_rtx
[i
]);
13028 /* If we didn't find any note, or if we found a REG_DEAD note that
13029 covers only part of the given reg, and we have a multi-reg hard
13030 register, then to be safe we must check for REG_DEAD notes
13031 for each register other than the first. They could have
13032 their own REG_DEAD notes lying around. */
13033 else if ((note
== 0
13035 && (GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
13036 < GET_MODE_SIZE (GET_MODE (x
)))))
13037 && regno
< FIRST_PSEUDO_REGISTER
13038 && hard_regno_nregs
[regno
][GET_MODE (x
)] > 1)
13040 unsigned int ourend
= END_HARD_REGNO (x
);
13041 unsigned int i
, offset
;
13045 offset
= hard_regno_nregs
[regno
][GET_MODE (XEXP (note
, 0))];
13049 for (i
= regno
+ offset
; i
< ourend
; i
++)
13050 move_deaths (regno_reg_rtx
[i
],
13051 maybe_kill_insn
, from_luid
, to_insn
, &oldnotes
);
13054 if (note
!= 0 && GET_MODE (XEXP (note
, 0)) == GET_MODE (x
))
13056 XEXP (note
, 1) = *pnotes
;
13060 *pnotes
= alloc_reg_note (REG_DEAD
, x
, *pnotes
);
13066 else if (GET_CODE (x
) == SET
)
13068 rtx dest
= SET_DEST (x
);
13070 move_deaths (SET_SRC (x
), maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
13072 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13073 that accesses one word of a multi-word item, some
13074 piece of everything register in the expression is used by
13075 this insn, so remove any old death. */
13076 /* ??? So why do we test for equality of the sizes? */
13078 if (GET_CODE (dest
) == ZERO_EXTRACT
13079 || GET_CODE (dest
) == STRICT_LOW_PART
13080 || (GET_CODE (dest
) == SUBREG
13081 && (((GET_MODE_SIZE (GET_MODE (dest
))
13082 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
13083 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
13084 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
))))
13086 move_deaths (dest
, maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
13090 /* If this is some other SUBREG, we know it replaces the entire
13091 value, so use that as the destination. */
13092 if (GET_CODE (dest
) == SUBREG
)
13093 dest
= SUBREG_REG (dest
);
13095 /* If this is a MEM, adjust deaths of anything used in the address.
13096 For a REG (the only other possibility), the entire value is
13097 being replaced so the old value is not used in this insn. */
13100 move_deaths (XEXP (dest
, 0), maybe_kill_insn
, from_luid
,
13105 else if (GET_CODE (x
) == CLOBBER
)
13108 len
= GET_RTX_LENGTH (code
);
13109 fmt
= GET_RTX_FORMAT (code
);
13111 for (i
= 0; i
< len
; i
++)
13116 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
13117 move_deaths (XVECEXP (x
, i
, j
), maybe_kill_insn
, from_luid
,
13120 else if (fmt
[i
] == 'e')
13121 move_deaths (XEXP (x
, i
), maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
13125 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13126 pattern of an insn. X must be a REG. */
13129 reg_bitfield_target_p (rtx x
, rtx body
)
13133 if (GET_CODE (body
) == SET
)
13135 rtx dest
= SET_DEST (body
);
13137 unsigned int regno
, tregno
, endregno
, endtregno
;
13139 if (GET_CODE (dest
) == ZERO_EXTRACT
)
13140 target
= XEXP (dest
, 0);
13141 else if (GET_CODE (dest
) == STRICT_LOW_PART
)
13142 target
= SUBREG_REG (XEXP (dest
, 0));
13146 if (GET_CODE (target
) == SUBREG
)
13147 target
= SUBREG_REG (target
);
13149 if (!REG_P (target
))
13152 tregno
= REGNO (target
), regno
= REGNO (x
);
13153 if (tregno
>= FIRST_PSEUDO_REGISTER
|| regno
>= FIRST_PSEUDO_REGISTER
)
13154 return target
== x
;
13156 endtregno
= end_hard_regno (GET_MODE (target
), tregno
);
13157 endregno
= end_hard_regno (GET_MODE (x
), regno
);
13159 return endregno
> tregno
&& regno
< endtregno
;
13162 else if (GET_CODE (body
) == PARALLEL
)
13163 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
13164 if (reg_bitfield_target_p (x
, XVECEXP (body
, 0, i
)))
13170 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13171 as appropriate. I3 and I2 are the insns resulting from the combination
13172 insns including FROM (I2 may be zero).
13174 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13175 not need REG_DEAD notes because they are being substituted for. This
13176 saves searching in the most common cases.
13178 Each note in the list is either ignored or placed on some insns, depending
13179 on the type of note. */
13182 distribute_notes (rtx notes
, rtx from_insn
, rtx i3
, rtx i2
, rtx elim_i2
,
13183 rtx elim_i1
, rtx elim_i0
)
13185 rtx note
, next_note
;
13188 for (note
= notes
; note
; note
= next_note
)
13190 rtx place
= 0, place2
= 0;
13192 next_note
= XEXP (note
, 1);
13193 switch (REG_NOTE_KIND (note
))
13197 /* Doesn't matter much where we put this, as long as it's somewhere.
13198 It is preferable to keep these notes on branches, which is most
13199 likely to be i3. */
13203 case REG_NON_LOCAL_GOTO
:
13208 gcc_assert (i2
&& JUMP_P (i2
));
13213 case REG_EH_REGION
:
13214 /* These notes must remain with the call or trapping instruction. */
13217 else if (i2
&& CALL_P (i2
))
13221 gcc_assert (cfun
->can_throw_non_call_exceptions
);
13222 if (may_trap_p (i3
))
13224 else if (i2
&& may_trap_p (i2
))
13226 /* ??? Otherwise assume we've combined things such that we
13227 can now prove that the instructions can't trap. Drop the
13228 note in this case. */
13232 case REG_ARGS_SIZE
:
13233 /* ??? How to distribute between i3-i1. Assume i3 contains the
13234 entire adjustment. Assert i3 contains at least some adjust. */
13235 if (!noop_move_p (i3
))
13237 int old_size
, args_size
= INTVAL (XEXP (note
, 0));
13238 /* fixup_args_size_notes looks at REG_NORETURN note,
13239 so ensure the note is placed there first. */
13243 for (np
= &next_note
; *np
; np
= &XEXP (*np
, 1))
13244 if (REG_NOTE_KIND (*np
) == REG_NORETURN
)
13248 XEXP (n
, 1) = REG_NOTES (i3
);
13249 REG_NOTES (i3
) = n
;
13253 old_size
= fixup_args_size_notes (PREV_INSN (i3
), i3
, args_size
);
13254 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13255 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13256 gcc_assert (old_size
!= args_size
13258 && !ACCUMULATE_OUTGOING_ARGS
13259 && find_reg_note (i3
, REG_NORETURN
, NULL_RTX
)));
13266 case REG_CALL_DECL
:
13267 /* These notes must remain with the call. It should not be
13268 possible for both I2 and I3 to be a call. */
13273 gcc_assert (i2
&& CALL_P (i2
));
13279 /* Any clobbers for i3 may still exist, and so we must process
13280 REG_UNUSED notes from that insn.
13282 Any clobbers from i2 or i1 can only exist if they were added by
13283 recog_for_combine. In that case, recog_for_combine created the
13284 necessary REG_UNUSED notes. Trying to keep any original
13285 REG_UNUSED notes from these insns can cause incorrect output
13286 if it is for the same register as the original i3 dest.
13287 In that case, we will notice that the register is set in i3,
13288 and then add a REG_UNUSED note for the destination of i3, which
13289 is wrong. However, it is possible to have REG_UNUSED notes from
13290 i2 or i1 for register which were both used and clobbered, so
13291 we keep notes from i2 or i1 if they will turn into REG_DEAD
13294 /* If this register is set or clobbered in I3, put the note there
13295 unless there is one already. */
13296 if (reg_set_p (XEXP (note
, 0), PATTERN (i3
)))
13298 if (from_insn
!= i3
)
13301 if (! (REG_P (XEXP (note
, 0))
13302 ? find_regno_note (i3
, REG_UNUSED
, REGNO (XEXP (note
, 0)))
13303 : find_reg_note (i3
, REG_UNUSED
, XEXP (note
, 0))))
13306 /* Otherwise, if this register is used by I3, then this register
13307 now dies here, so we must put a REG_DEAD note here unless there
13309 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
))
13310 && ! (REG_P (XEXP (note
, 0))
13311 ? find_regno_note (i3
, REG_DEAD
,
13312 REGNO (XEXP (note
, 0)))
13313 : find_reg_note (i3
, REG_DEAD
, XEXP (note
, 0))))
13315 PUT_REG_NOTE_KIND (note
, REG_DEAD
);
13323 /* These notes say something about results of an insn. We can
13324 only support them if they used to be on I3 in which case they
13325 remain on I3. Otherwise they are ignored.
13327 If the note refers to an expression that is not a constant, we
13328 must also ignore the note since we cannot tell whether the
13329 equivalence is still true. It might be possible to do
13330 slightly better than this (we only have a problem if I2DEST
13331 or I1DEST is present in the expression), but it doesn't
13332 seem worth the trouble. */
13334 if (from_insn
== i3
13335 && (XEXP (note
, 0) == 0 || CONSTANT_P (XEXP (note
, 0))))
13340 /* These notes say something about how a register is used. They must
13341 be present on any use of the register in I2 or I3. */
13342 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
)))
13345 if (i2
&& reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
)))
13354 case REG_LABEL_TARGET
:
13355 case REG_LABEL_OPERAND
:
13356 /* This can show up in several ways -- either directly in the
13357 pattern, or hidden off in the constant pool with (or without?)
13358 a REG_EQUAL note. */
13359 /* ??? Ignore the without-reg_equal-note problem for now. */
13360 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
))
13361 || ((tem
= find_reg_note (i3
, REG_EQUAL
, NULL_RTX
))
13362 && GET_CODE (XEXP (tem
, 0)) == LABEL_REF
13363 && XEXP (XEXP (tem
, 0), 0) == XEXP (note
, 0)))
13367 && (reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
))
13368 || ((tem
= find_reg_note (i2
, REG_EQUAL
, NULL_RTX
))
13369 && GET_CODE (XEXP (tem
, 0)) == LABEL_REF
13370 && XEXP (XEXP (tem
, 0), 0) == XEXP (note
, 0))))
13378 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13379 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13381 if (place
&& JUMP_P (place
)
13382 && REG_NOTE_KIND (note
) == REG_LABEL_TARGET
13383 && (JUMP_LABEL (place
) == NULL
13384 || JUMP_LABEL (place
) == XEXP (note
, 0)))
13386 rtx label
= JUMP_LABEL (place
);
13389 JUMP_LABEL (place
) = XEXP (note
, 0);
13390 else if (LABEL_P (label
))
13391 LABEL_NUSES (label
)--;
13394 if (place2
&& JUMP_P (place2
)
13395 && REG_NOTE_KIND (note
) == REG_LABEL_TARGET
13396 && (JUMP_LABEL (place2
) == NULL
13397 || JUMP_LABEL (place2
) == XEXP (note
, 0)))
13399 rtx label
= JUMP_LABEL (place2
);
13402 JUMP_LABEL (place2
) = XEXP (note
, 0);
13403 else if (LABEL_P (label
))
13404 LABEL_NUSES (label
)--;
13410 /* This note says something about the value of a register prior
13411 to the execution of an insn. It is too much trouble to see
13412 if the note is still correct in all situations. It is better
13413 to simply delete it. */
13417 /* If we replaced the right hand side of FROM_INSN with a
13418 REG_EQUAL note, the original use of the dying register
13419 will not have been combined into I3 and I2. In such cases,
13420 FROM_INSN is guaranteed to be the first of the combined
13421 instructions, so we simply need to search back before
13422 FROM_INSN for the previous use or set of this register,
13423 then alter the notes there appropriately.
13425 If the register is used as an input in I3, it dies there.
13426 Similarly for I2, if it is nonzero and adjacent to I3.
13428 If the register is not used as an input in either I3 or I2
13429 and it is not one of the registers we were supposed to eliminate,
13430 there are two possibilities. We might have a non-adjacent I2
13431 or we might have somehow eliminated an additional register
13432 from a computation. For example, we might have had A & B where
13433 we discover that B will always be zero. In this case we will
13434 eliminate the reference to A.
13436 In both cases, we must search to see if we can find a previous
13437 use of A and put the death note there. */
13440 && from_insn
== i2mod
13441 && !reg_overlap_mentioned_p (XEXP (note
, 0), i2mod_new_rhs
))
13446 && CALL_P (from_insn
)
13447 && find_reg_fusage (from_insn
, USE
, XEXP (note
, 0)))
13449 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
)))
13451 else if (i2
!= 0 && next_nonnote_nondebug_insn (i2
) == i3
13452 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
13454 else if ((rtx_equal_p (XEXP (note
, 0), elim_i2
)
13456 && reg_overlap_mentioned_p (XEXP (note
, 0),
13458 || rtx_equal_p (XEXP (note
, 0), elim_i1
)
13459 || rtx_equal_p (XEXP (note
, 0), elim_i0
))
13466 basic_block bb
= this_basic_block
;
13468 for (tem
= PREV_INSN (tem
); place
== 0; tem
= PREV_INSN (tem
))
13470 if (!NONDEBUG_INSN_P (tem
))
13472 if (tem
== BB_HEAD (bb
))
13477 /* If the register is being set at TEM, see if that is all
13478 TEM is doing. If so, delete TEM. Otherwise, make this
13479 into a REG_UNUSED note instead. Don't delete sets to
13480 global register vars. */
13481 if ((REGNO (XEXP (note
, 0)) >= FIRST_PSEUDO_REGISTER
13482 || !global_regs
[REGNO (XEXP (note
, 0))])
13483 && reg_set_p (XEXP (note
, 0), PATTERN (tem
)))
13485 rtx set
= single_set (tem
);
13486 rtx inner_dest
= 0;
13488 rtx cc0_setter
= NULL_RTX
;
13492 for (inner_dest
= SET_DEST (set
);
13493 (GET_CODE (inner_dest
) == STRICT_LOW_PART
13494 || GET_CODE (inner_dest
) == SUBREG
13495 || GET_CODE (inner_dest
) == ZERO_EXTRACT
);
13496 inner_dest
= XEXP (inner_dest
, 0))
13499 /* Verify that it was the set, and not a clobber that
13500 modified the register.
13502 CC0 targets must be careful to maintain setter/user
13503 pairs. If we cannot delete the setter due to side
13504 effects, mark the user with an UNUSED note instead
13507 if (set
!= 0 && ! side_effects_p (SET_SRC (set
))
13508 && rtx_equal_p (XEXP (note
, 0), inner_dest
)
13510 && (! reg_mentioned_p (cc0_rtx
, SET_SRC (set
))
13511 || ((cc0_setter
= prev_cc0_setter (tem
)) != NULL
13512 && sets_cc0_p (PATTERN (cc0_setter
)) > 0))
13516 /* Move the notes and links of TEM elsewhere.
13517 This might delete other dead insns recursively.
13518 First set the pattern to something that won't use
13520 rtx old_notes
= REG_NOTES (tem
);
13522 PATTERN (tem
) = pc_rtx
;
13523 REG_NOTES (tem
) = NULL
;
13525 distribute_notes (old_notes
, tem
, tem
, NULL_RTX
,
13526 NULL_RTX
, NULL_RTX
, NULL_RTX
);
13527 distribute_links (LOG_LINKS (tem
));
13529 SET_INSN_DELETED (tem
);
13534 /* Delete the setter too. */
13537 PATTERN (cc0_setter
) = pc_rtx
;
13538 old_notes
= REG_NOTES (cc0_setter
);
13539 REG_NOTES (cc0_setter
) = NULL
;
13541 distribute_notes (old_notes
, cc0_setter
,
13542 cc0_setter
, NULL_RTX
,
13543 NULL_RTX
, NULL_RTX
, NULL_RTX
);
13544 distribute_links (LOG_LINKS (cc0_setter
));
13546 SET_INSN_DELETED (cc0_setter
);
13547 if (cc0_setter
== i2
)
13554 PUT_REG_NOTE_KIND (note
, REG_UNUSED
);
13556 /* If there isn't already a REG_UNUSED note, put one
13557 here. Do not place a REG_DEAD note, even if
13558 the register is also used here; that would not
13559 match the algorithm used in lifetime analysis
13560 and can cause the consistency check in the
13561 scheduler to fail. */
13562 if (! find_regno_note (tem
, REG_UNUSED
,
13563 REGNO (XEXP (note
, 0))))
13568 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (tem
))
13570 && find_reg_fusage (tem
, USE
, XEXP (note
, 0))))
13574 /* If we are doing a 3->2 combination, and we have a
13575 register which formerly died in i3 and was not used
13576 by i2, which now no longer dies in i3 and is used in
13577 i2 but does not die in i2, and place is between i2
13578 and i3, then we may need to move a link from place to
13580 if (i2
&& DF_INSN_LUID (place
) > DF_INSN_LUID (i2
)
13582 && DF_INSN_LUID (from_insn
) > DF_INSN_LUID (i2
)
13583 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
13585 struct insn_link
*links
= LOG_LINKS (place
);
13586 LOG_LINKS (place
) = NULL
;
13587 distribute_links (links
);
13592 if (tem
== BB_HEAD (bb
))
13598 /* If the register is set or already dead at PLACE, we needn't do
13599 anything with this note if it is still a REG_DEAD note.
13600 We check here if it is set at all, not if is it totally replaced,
13601 which is what `dead_or_set_p' checks, so also check for it being
13604 if (place
&& REG_NOTE_KIND (note
) == REG_DEAD
)
13606 unsigned int regno
= REGNO (XEXP (note
, 0));
13607 reg_stat_type
*rsp
= ®_stat
[regno
];
13609 if (dead_or_set_p (place
, XEXP (note
, 0))
13610 || reg_bitfield_target_p (XEXP (note
, 0), PATTERN (place
)))
13612 /* Unless the register previously died in PLACE, clear
13613 last_death. [I no longer understand why this is
13615 if (rsp
->last_death
!= place
)
13616 rsp
->last_death
= 0;
13620 rsp
->last_death
= place
;
13622 /* If this is a death note for a hard reg that is occupying
13623 multiple registers, ensure that we are still using all
13624 parts of the object. If we find a piece of the object
13625 that is unused, we must arrange for an appropriate REG_DEAD
13626 note to be added for it. However, we can't just emit a USE
13627 and tag the note to it, since the register might actually
13628 be dead; so we recourse, and the recursive call then finds
13629 the previous insn that used this register. */
13631 if (place
&& regno
< FIRST_PSEUDO_REGISTER
13632 && hard_regno_nregs
[regno
][GET_MODE (XEXP (note
, 0))] > 1)
13634 unsigned int endregno
= END_HARD_REGNO (XEXP (note
, 0));
13635 bool all_used
= true;
13638 for (i
= regno
; i
< endregno
; i
++)
13639 if ((! refers_to_regno_p (i
, i
+ 1, PATTERN (place
), 0)
13640 && ! find_regno_fusage (place
, USE
, i
))
13641 || dead_or_set_regno_p (place
, i
))
13649 /* Put only REG_DEAD notes for pieces that are
13650 not already dead or set. */
13652 for (i
= regno
; i
< endregno
;
13653 i
+= hard_regno_nregs
[i
][reg_raw_mode
[i
]])
13655 rtx piece
= regno_reg_rtx
[i
];
13656 basic_block bb
= this_basic_block
;
13658 if (! dead_or_set_p (place
, piece
)
13659 && ! reg_bitfield_target_p (piece
,
13662 rtx new_note
= alloc_reg_note (REG_DEAD
, piece
,
13665 distribute_notes (new_note
, place
, place
,
13666 NULL_RTX
, NULL_RTX
, NULL_RTX
,
13669 else if (! refers_to_regno_p (i
, i
+ 1,
13670 PATTERN (place
), 0)
13671 && ! find_regno_fusage (place
, USE
, i
))
13672 for (tem
= PREV_INSN (place
); ;
13673 tem
= PREV_INSN (tem
))
13675 if (!NONDEBUG_INSN_P (tem
))
13677 if (tem
== BB_HEAD (bb
))
13681 if (dead_or_set_p (tem
, piece
)
13682 || reg_bitfield_target_p (piece
,
13685 add_reg_note (tem
, REG_UNUSED
, piece
);
13698 /* Any other notes should not be present at this point in the
13700 gcc_unreachable ();
13705 XEXP (note
, 1) = REG_NOTES (place
);
13706 REG_NOTES (place
) = note
;
13710 add_shallow_copy_of_reg_note (place2
, note
);
13714 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13715 I3, I2, and I1 to new locations. This is also called to add a link
13716 pointing at I3 when I3's destination is changed. */
13719 distribute_links (struct insn_link
*links
)
13721 struct insn_link
*link
, *next_link
;
13723 for (link
= links
; link
; link
= next_link
)
13729 next_link
= link
->next
;
13731 /* If the insn that this link points to is a NOTE or isn't a single
13732 set, ignore it. In the latter case, it isn't clear what we
13733 can do other than ignore the link, since we can't tell which
13734 register it was for. Such links wouldn't be used by combine
13737 It is not possible for the destination of the target of the link to
13738 have been changed by combine. The only potential of this is if we
13739 replace I3, I2, and I1 by I3 and I2. But in that case the
13740 destination of I2 also remains unchanged. */
13742 if (NOTE_P (link
->insn
)
13743 || (set
= single_set (link
->insn
)) == 0)
13746 reg
= SET_DEST (set
);
13747 while (GET_CODE (reg
) == SUBREG
|| GET_CODE (reg
) == ZERO_EXTRACT
13748 || GET_CODE (reg
) == STRICT_LOW_PART
)
13749 reg
= XEXP (reg
, 0);
13751 /* A LOG_LINK is defined as being placed on the first insn that uses
13752 a register and points to the insn that sets the register. Start
13753 searching at the next insn after the target of the link and stop
13754 when we reach a set of the register or the end of the basic block.
13756 Note that this correctly handles the link that used to point from
13757 I3 to I2. Also note that not much searching is typically done here
13758 since most links don't point very far away. */
13760 for (insn
= NEXT_INSN (link
->insn
);
13761 (insn
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
13762 || BB_HEAD (this_basic_block
->next_bb
) != insn
));
13763 insn
= NEXT_INSN (insn
))
13764 if (DEBUG_INSN_P (insn
))
13766 else if (INSN_P (insn
) && reg_overlap_mentioned_p (reg
, PATTERN (insn
)))
13768 if (reg_referenced_p (reg
, PATTERN (insn
)))
13772 else if (CALL_P (insn
)
13773 && find_reg_fusage (insn
, USE
, reg
))
13778 else if (INSN_P (insn
) && reg_set_p (reg
, insn
))
13781 /* If we found a place to put the link, place it there unless there
13782 is already a link to the same insn as LINK at that point. */
13786 struct insn_link
*link2
;
13788 FOR_EACH_LOG_LINK (link2
, place
)
13789 if (link2
->insn
== link
->insn
)
13794 link
->next
= LOG_LINKS (place
);
13795 LOG_LINKS (place
) = link
;
13797 /* Set added_links_insn to the earliest insn we added a
13799 if (added_links_insn
== 0
13800 || DF_INSN_LUID (added_links_insn
) > DF_INSN_LUID (place
))
13801 added_links_insn
= place
;
13807 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13808 Check whether the expression pointer to by LOC is a register or
13809 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13810 Otherwise return zero. */
13813 unmentioned_reg_p_1 (rtx
*loc
, void *expr
)
13818 && (REG_P (x
) || MEM_P (x
))
13819 && ! reg_mentioned_p (x
, (rtx
) expr
))
13824 /* Check for any register or memory mentioned in EQUIV that is not
13825 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13826 of EXPR where some registers may have been replaced by constants. */
13829 unmentioned_reg_p (rtx equiv
, rtx expr
)
13831 return for_each_rtx (&equiv
, unmentioned_reg_p_1
, expr
);
13834 DEBUG_FUNCTION
void
13835 dump_combine_stats (FILE *file
)
13839 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13840 combine_attempts
, combine_merges
, combine_extras
, combine_successes
);
13844 dump_combine_total_stats (FILE *file
)
13848 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13849 total_attempts
, total_merges
, total_extras
, total_successes
);
13852 /* Try combining insns through substitution. */
13853 static unsigned int
13854 rest_of_handle_combine (void)
13856 int rebuild_jump_labels_after_combine
;
13858 df_set_flags (DF_LR_RUN_DCE
+ DF_DEFER_INSN_RESCAN
);
13859 df_note_add_problem ();
13862 regstat_init_n_sets_and_refs ();
13864 rebuild_jump_labels_after_combine
13865 = combine_instructions (get_insns (), max_reg_num ());
13867 /* Combining insns may have turned an indirect jump into a
13868 direct jump. Rebuild the JUMP_LABEL fields of jumping
13870 if (rebuild_jump_labels_after_combine
)
13872 timevar_push (TV_JUMP
);
13873 rebuild_jump_labels (get_insns ());
13875 timevar_pop (TV_JUMP
);
13878 regstat_free_n_sets_and_refs ();
13884 const pass_data pass_data_combine
=
13886 RTL_PASS
, /* type */
13887 "combine", /* name */
13888 OPTGROUP_NONE
, /* optinfo_flags */
13889 true, /* has_execute */
13890 TV_COMBINE
, /* tv_id */
13891 PROP_cfglayout
, /* properties_required */
13892 0, /* properties_provided */
13893 0, /* properties_destroyed */
13894 0, /* todo_flags_start */
13895 TODO_df_finish
, /* todo_flags_finish */
13898 class pass_combine
: public rtl_opt_pass
13901 pass_combine (gcc::context
*ctxt
)
13902 : rtl_opt_pass (pass_data_combine
, ctxt
)
13905 /* opt_pass methods: */
13906 virtual bool gate (function
*) { return (optimize
> 0); }
13907 virtual unsigned int execute (function
*)
13909 return rest_of_handle_combine ();
13912 }; // class pass_combine
13914 } // anon namespace
13917 make_pass_combine (gcc::context
*ctxt
)
13919 return new pass_combine (ctxt
);