* arm.h (REVERSE_CONDITION): Define.
[official-gcc.git] / gcc / tree-ssa-propagate.c
blob0eeee606ab56d48cb5b397fea1992bdab1df92cd
1 /* Generic SSA value propagation engine.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 2, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "ggc.h"
31 #include "basic-block.h"
32 #include "output.h"
33 #include "errors.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "diagnostic.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-flow.h"
40 #include "tree-pass.h"
41 #include "tree-ssa-propagate.h"
42 #include "langhooks.h"
45 /* This file implements a generic value propagation engine based on
46 the same propagation used by the SSA-CCP algorithm [1].
48 Propagation is performed by simulating the execution of every
49 statement that produces the value being propagated. Simulation
50 proceeds as follows:
52 1- Initially, all edges of the CFG are marked not executable and
53 the CFG worklist is seeded with all the statements in the entry
54 basic block (block 0).
56 2- Every statement S is simulated with a call to the call-back
57 function SSA_PROP_VISIT_STMT. This evaluation may produce 3
58 results:
60 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
61 interest and does not affect any of the work lists.
63 SSA_PROP_VARYING: The value produced by S cannot be determined
64 at compile time. Further simulation of S is not required.
65 If S is a conditional jump, all the outgoing edges for the
66 block are considered executable and added to the work
67 list.
69 SSA_PROP_INTERESTING: S produces a value that can be computed
70 at compile time. Its result can be propagated into the
71 statements that feed from S. Furhtermore, if S is a
72 conditional jump, only the edge known to be taken is added
73 to the work list. Edges that are known not to execute are
74 never simulated.
76 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
77 return value from SSA_PROP_VISIT_PHI has the same semantics as
78 described in #2.
80 4- Three work lists are kept. Statements are only added to these
81 lists if they produce one of SSA_PROP_INTERESTING or
82 SSA_PROP_VARYING.
84 CFG_BLOCKS contains the list of blocks to be simulated.
85 Blocks are added to this list if their incoming edges are
86 found executable.
88 VARYING_SSA_EDGES contains the list of statements that feed
89 from statements that produce an SSA_PROP_VARYING result.
90 These are simulated first to speed up processing.
92 INTERESTING_SSA_EDGES contains the list of statements that
93 feed from statements that produce an SSA_PROP_INTERESTING
94 result.
96 5- Simulation terminates when all three work lists are drained.
98 Before calling ssa_propagate, it is important to clear
99 DONT_SIMULATE_AGAIN for all the statements in the program that
100 should be simulated. This initialization allows an implementation
101 to specify which statements should never be simulated.
103 It is also important to compute def-use information before calling
104 ssa_propagate.
106 References:
108 [1] Constant propagation with conditional branches,
109 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
111 [2] Building an Optimizing Compiler,
112 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
114 [3] Advanced Compiler Design and Implementation,
115 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
117 /* Function pointers used to parameterize the propagation engine. */
118 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
119 static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
121 /* Use the TREE_DEPRECATED bitflag to mark statements that have been
122 added to one of the SSA edges worklists. This flag is used to
123 avoid visiting statements unnecessarily when draining an SSA edge
124 worklist. If while simulating a basic block, we find a statement with
125 STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
126 processing from visiting it again. */
127 #define STMT_IN_SSA_EDGE_WORKLIST(T) TREE_DEPRECATED (T)
129 /* A bitmap to keep track of executable blocks in the CFG. */
130 static sbitmap executable_blocks;
132 /* Array of control flow edges on the worklist. */
133 static GTY(()) varray_type cfg_blocks = NULL;
135 static unsigned int cfg_blocks_num = 0;
136 static int cfg_blocks_tail;
137 static int cfg_blocks_head;
139 static sbitmap bb_in_list;
141 /* Worklist of SSA edges which will need reexamination as their
142 definition has changed. SSA edges are def-use edges in the SSA
143 web. For each D-U edge, we store the target statement or PHI node
144 U. */
145 static GTY(()) varray_type interesting_ssa_edges;
147 /* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
148 list of SSA edges is split into two. One contains all SSA edges
149 who need to be reexamined because their lattice value changed to
150 varying (this worklist), and the other contains all other SSA edges
151 to be reexamined (INTERESTING_SSA_EDGES).
153 Since most values in the program are VARYING, the ideal situation
154 is to move them to that lattice value as quickly as possible.
155 Thus, it doesn't make sense to process any other type of lattice
156 value until all VARYING values are propagated fully, which is one
157 thing using the VARYING worklist achieves. In addition, if we
158 don't use a separate worklist for VARYING edges, we end up with
159 situations where lattice values move from
160 UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
161 static GTY(()) varray_type varying_ssa_edges;
164 /* Return true if the block worklist empty. */
166 static inline bool
167 cfg_blocks_empty_p (void)
169 return (cfg_blocks_num == 0);
173 /* Add a basic block to the worklist. */
175 static void
176 cfg_blocks_add (basic_block bb)
178 if (bb == ENTRY_BLOCK_PTR || bb == EXIT_BLOCK_PTR)
179 return;
181 if (TEST_BIT (bb_in_list, bb->index))
182 return;
184 if (cfg_blocks_empty_p ())
186 cfg_blocks_tail = cfg_blocks_head = 0;
187 cfg_blocks_num = 1;
189 else
191 cfg_blocks_num++;
192 if (cfg_blocks_num > VARRAY_SIZE (cfg_blocks))
194 /* We have to grow the array now. Adjust to queue to occupy the
195 full space of the original array. */
196 cfg_blocks_tail = VARRAY_SIZE (cfg_blocks);
197 cfg_blocks_head = 0;
198 VARRAY_GROW (cfg_blocks, 2 * VARRAY_SIZE (cfg_blocks));
200 else
201 cfg_blocks_tail = (cfg_blocks_tail + 1) % VARRAY_SIZE (cfg_blocks);
204 VARRAY_BB (cfg_blocks, cfg_blocks_tail) = bb;
205 SET_BIT (bb_in_list, bb->index);
209 /* Remove a block from the worklist. */
211 static basic_block
212 cfg_blocks_get (void)
214 basic_block bb;
216 bb = VARRAY_BB (cfg_blocks, cfg_blocks_head);
218 #ifdef ENABLE_CHECKING
219 if (cfg_blocks_empty_p () || !bb)
220 abort ();
221 #endif
223 cfg_blocks_head = (cfg_blocks_head + 1) % VARRAY_SIZE (cfg_blocks);
224 --cfg_blocks_num;
225 RESET_BIT (bb_in_list, bb->index);
227 return bb;
231 /* We have just defined a new value for VAR. If IS_VARYING is true,
232 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
233 them to INTERESTING_SSA_EDGES. */
235 static void
236 add_ssa_edge (tree var, bool is_varying)
238 tree stmt = SSA_NAME_DEF_STMT (var);
239 dataflow_t df = get_immediate_uses (stmt);
240 int num_uses = num_immediate_uses (df);
241 int i;
243 for (i = 0; i < num_uses; i++)
245 tree use_stmt = immediate_use (df, i);
247 if (!DONT_SIMULATE_AGAIN (use_stmt)
248 && !STMT_IN_SSA_EDGE_WORKLIST (use_stmt))
250 STMT_IN_SSA_EDGE_WORKLIST (use_stmt) = 1;
251 if (is_varying)
252 VARRAY_PUSH_TREE (varying_ssa_edges, use_stmt);
253 else
254 VARRAY_PUSH_TREE (interesting_ssa_edges, use_stmt);
260 /* Add edge E to the control flow worklist. */
262 static void
263 add_control_edge (edge e)
265 basic_block bb = e->dest;
266 if (bb == EXIT_BLOCK_PTR)
267 return;
269 /* If the edge had already been executed, skip it. */
270 if (e->flags & EDGE_EXECUTABLE)
271 return;
273 e->flags |= EDGE_EXECUTABLE;
275 /* If the block is already in the list, we're done. */
276 if (TEST_BIT (bb_in_list, bb->index))
277 return;
279 cfg_blocks_add (bb);
281 if (dump_file && (dump_flags & TDF_DETAILS))
282 fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
283 e->src->index, e->dest->index);
287 /* Simulate the execution of STMT and update the work lists accordingly. */
289 static void
290 simulate_stmt (tree stmt)
292 enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
293 edge taken_edge = NULL;
294 tree output_name = NULL_TREE;
296 /* Don't bother visiting statements that are already
297 considered varying by the propagator. */
298 if (DONT_SIMULATE_AGAIN (stmt))
299 return;
301 if (TREE_CODE (stmt) == PHI_NODE)
303 val = ssa_prop_visit_phi (stmt);
304 output_name = PHI_RESULT (stmt);
306 else
307 val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
309 if (val == SSA_PROP_VARYING)
311 DONT_SIMULATE_AGAIN (stmt) = 1;
313 /* If the statement produced a new varying value, add the SSA
314 edges coming out of OUTPUT_NAME. */
315 if (output_name)
316 add_ssa_edge (output_name, true);
318 /* If STMT transfers control out of its basic block, add
319 all outgoing edges to the work list. */
320 if (stmt_ends_bb_p (stmt))
322 edge e;
323 basic_block bb = bb_for_stmt (stmt);
324 for (e = bb->succ; e; e = e->succ_next)
325 add_control_edge (e);
328 else if (val == SSA_PROP_INTERESTING)
330 /* If the statement produced new value, add the SSA edges coming
331 out of OUTPUT_NAME. */
332 if (output_name)
333 add_ssa_edge (output_name, false);
335 /* If we know which edge is going to be taken out of this block,
336 add it to the CFG work list. */
337 if (taken_edge)
338 add_control_edge (taken_edge);
342 /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
343 drain. This pops statements off the given WORKLIST and processes
344 them until there are no more statements on WORKLIST. */
346 static void
347 process_ssa_edge_worklist (varray_type *worklist)
349 /* Drain the entire worklist. */
350 while (VARRAY_ACTIVE_SIZE (*worklist) > 0)
352 basic_block bb;
354 /* Pull the statement to simulate off the worklist. */
355 tree stmt = VARRAY_TOP_TREE (*worklist);
356 VARRAY_POP (*worklist);
358 /* If this statement was already visited by simulate_block, then
359 we don't need to visit it again here. */
360 if (!STMT_IN_SSA_EDGE_WORKLIST (stmt))
361 continue;
363 /* STMT is no longer in a worklist. */
364 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
366 if (dump_file && (dump_flags & TDF_DETAILS))
368 fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
369 print_generic_stmt (dump_file, stmt, dump_flags);
372 bb = bb_for_stmt (stmt);
374 /* PHI nodes are always visited, regardless of whether or not
375 the destination block is executable. Otherwise, visit the
376 statement only if its block is marked executable. */
377 if (TREE_CODE (stmt) == PHI_NODE
378 || TEST_BIT (executable_blocks, bb->index))
379 simulate_stmt (stmt);
384 /* Simulate the execution of BLOCK. Evaluate the statement associated
385 with each variable reference inside the block. */
387 static void
388 simulate_block (basic_block block)
390 tree phi;
392 /* There is nothing to do for the exit block. */
393 if (block == EXIT_BLOCK_PTR)
394 return;
396 if (dump_file && (dump_flags & TDF_DETAILS))
397 fprintf (dump_file, "\nSimulating block %d\n", block->index);
399 /* Always simulate PHI nodes, even if we have simulated this block
400 before. */
401 for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi))
402 simulate_stmt (phi);
404 /* If this is the first time we've simulated this block, then we
405 must simulate each of its statements. */
406 if (!TEST_BIT (executable_blocks, block->index))
408 block_stmt_iterator j;
409 unsigned int normal_edge_count;
410 edge e, normal_edge;
412 /* Note that we have simulated this block. */
413 SET_BIT (executable_blocks, block->index);
415 for (j = bsi_start (block); !bsi_end_p (j); bsi_next (&j))
417 tree stmt = bsi_stmt (j);
419 /* If this statement is already in the worklist then
420 "cancel" it. The reevaluation implied by the worklist
421 entry will produce the same value we generate here and
422 thus reevaluating it again from the worklist is
423 pointless. */
424 if (STMT_IN_SSA_EDGE_WORKLIST (stmt))
425 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
427 simulate_stmt (stmt);
430 /* We can not predict when abnormal edges will be executed, so
431 once a block is considered executable, we consider any
432 outgoing abnormal edges as executable.
434 At the same time, if this block has only one successor that is
435 reached by non-abnormal edges, then add that successor to the
436 worklist. */
437 normal_edge_count = 0;
438 normal_edge = NULL;
439 for (e = block->succ; e; e = e->succ_next)
441 if (e->flags & EDGE_ABNORMAL)
442 add_control_edge (e);
443 else
445 normal_edge_count++;
446 normal_edge = e;
450 if (normal_edge_count == 1)
451 add_control_edge (normal_edge);
456 /* Initialize local data structures and work lists. */
458 static void
459 ssa_prop_init (void)
461 edge e;
462 basic_block bb;
464 /* Worklists of SSA edges. */
465 VARRAY_TREE_INIT (interesting_ssa_edges, 20, "interesting_ssa_edges");
466 VARRAY_TREE_INIT (varying_ssa_edges, 20, "varying_ssa_edges");
468 executable_blocks = sbitmap_alloc (last_basic_block);
469 sbitmap_zero (executable_blocks);
471 bb_in_list = sbitmap_alloc (last_basic_block);
472 sbitmap_zero (bb_in_list);
474 if (dump_file && (dump_flags & TDF_DETAILS))
475 dump_immediate_uses (dump_file);
477 VARRAY_BB_INIT (cfg_blocks, 20, "cfg_blocks");
479 /* Initially assume that every edge in the CFG is not executable. */
480 FOR_EACH_BB (bb)
482 block_stmt_iterator si;
484 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
485 STMT_IN_SSA_EDGE_WORKLIST (bsi_stmt (si)) = 0;
487 for (e = bb->succ; e; e = e->succ_next)
488 e->flags &= ~EDGE_EXECUTABLE;
491 /* Seed the algorithm by adding the successors of the entry block to the
492 edge worklist. */
493 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
495 if (e->dest != EXIT_BLOCK_PTR)
497 e->flags |= EDGE_EXECUTABLE;
498 cfg_blocks_add (e->dest);
504 /* Free allocated storage. */
506 static void
507 ssa_prop_fini (void)
509 interesting_ssa_edges = NULL;
510 varying_ssa_edges = NULL;
511 cfg_blocks = NULL;
512 sbitmap_free (bb_in_list);
513 sbitmap_free (executable_blocks);
514 free_df ();
518 /* Get the main expression from statement STMT. */
520 tree
521 get_rhs (tree stmt)
523 enum tree_code code = TREE_CODE (stmt);
525 switch (code)
527 case RETURN_EXPR:
528 stmt = TREE_OPERAND (stmt, 0);
529 if (!stmt || TREE_CODE (stmt) != MODIFY_EXPR)
530 return stmt;
531 /* FALLTHRU */
533 case MODIFY_EXPR:
534 stmt = TREE_OPERAND (stmt, 1);
535 if (TREE_CODE (stmt) == WITH_SIZE_EXPR)
536 return TREE_OPERAND (stmt, 0);
537 else
538 return stmt;
540 case COND_EXPR:
541 return COND_EXPR_COND (stmt);
542 case SWITCH_EXPR:
543 return SWITCH_COND (stmt);
544 case GOTO_EXPR:
545 return GOTO_DESTINATION (stmt);
546 case LABEL_EXPR:
547 return LABEL_EXPR_LABEL (stmt);
549 default:
550 return stmt;
555 /* Set the main expression of *STMT_P to EXPR. If EXPR is not a valid
556 GIMPLE expression no changes are done and the function returns
557 false. */
559 bool
560 set_rhs (tree *stmt_p, tree expr)
562 tree stmt = *stmt_p, op;
563 enum tree_code code = TREE_CODE (expr);
564 stmt_ann_t ann;
565 tree var;
566 ssa_op_iter iter;
568 /* Verify the constant folded result is valid gimple. */
569 if (TREE_CODE_CLASS (code) == '2')
571 if (!is_gimple_val (TREE_OPERAND (expr, 0))
572 || !is_gimple_val (TREE_OPERAND (expr, 1)))
573 return false;
575 else if (TREE_CODE_CLASS (code) == '1')
577 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
578 return false;
581 switch (TREE_CODE (stmt))
583 case RETURN_EXPR:
584 op = TREE_OPERAND (stmt, 0);
585 if (TREE_CODE (op) != MODIFY_EXPR)
587 TREE_OPERAND (stmt, 0) = expr;
588 break;
590 stmt = op;
591 /* FALLTHRU */
593 case MODIFY_EXPR:
594 op = TREE_OPERAND (stmt, 1);
595 if (TREE_CODE (op) == WITH_SIZE_EXPR)
596 stmt = op;
597 TREE_OPERAND (stmt, 1) = expr;
598 break;
600 case COND_EXPR:
601 COND_EXPR_COND (stmt) = expr;
602 break;
603 case SWITCH_EXPR:
604 SWITCH_COND (stmt) = expr;
605 break;
606 case GOTO_EXPR:
607 GOTO_DESTINATION (stmt) = expr;
608 break;
609 case LABEL_EXPR:
610 LABEL_EXPR_LABEL (stmt) = expr;
611 break;
613 default:
614 /* Replace the whole statement with EXPR. If EXPR has no side
615 effects, then replace *STMT_P with an empty statement. */
616 ann = stmt_ann (stmt);
617 *stmt_p = TREE_SIDE_EFFECTS (expr) ? expr : build_empty_stmt ();
618 (*stmt_p)->common.ann = (tree_ann_t) ann;
620 if (TREE_SIDE_EFFECTS (expr))
622 /* Fix all the SSA_NAMEs created by *STMT_P to point to its new
623 replacement. */
624 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_DEFS)
626 if (TREE_CODE (var) == SSA_NAME)
627 SSA_NAME_DEF_STMT (var) = *stmt_p;
630 break;
633 return true;
637 /* Entry point to the propagation engine.
639 VISIT_STMT is called for every statement visited.
640 VISIT_PHI is called for every PHI node visited. */
642 void
643 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
644 ssa_prop_visit_phi_fn visit_phi)
646 ssa_prop_visit_stmt = visit_stmt;
647 ssa_prop_visit_phi = visit_phi;
649 ssa_prop_init ();
651 /* Iterate until the worklists are empty. */
652 while (!cfg_blocks_empty_p ()
653 || VARRAY_ACTIVE_SIZE (interesting_ssa_edges) > 0
654 || VARRAY_ACTIVE_SIZE (varying_ssa_edges) > 0)
656 if (!cfg_blocks_empty_p ())
658 /* Pull the next block to simulate off the worklist. */
659 basic_block dest_block = cfg_blocks_get ();
660 simulate_block (dest_block);
663 /* In order to move things to varying as quickly as
664 possible,process the VARYING_SSA_EDGES worklist first. */
665 process_ssa_edge_worklist (&varying_ssa_edges);
667 /* Now process the INTERESTING_SSA_EDGES worklist. */
668 process_ssa_edge_worklist (&interesting_ssa_edges);
671 ssa_prop_fini ();
674 #include "gt-tree-ssa-propagate.h"