* arm.h (REVERSE_CONDITION): Define.
[official-gcc.git] / gcc / local-alloc.c
bloba01b99a04250d7740e4897d5f9e8b3dc3b2ca431
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
58 /* Pseudos allocated here can be reallocated by global.c if the hard register
59 is used as a spill register. Currently we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
62 #include "config.h"
63 #include "system.h"
64 #include "coretypes.h"
65 #include "tm.h"
66 #include "hard-reg-set.h"
67 #include "rtl.h"
68 #include "tm_p.h"
69 #include "flags.h"
70 #include "basic-block.h"
71 #include "regs.h"
72 #include "function.h"
73 #include "insn-config.h"
74 #include "insn-attr.h"
75 #include "recog.h"
76 #include "output.h"
77 #include "toplev.h"
78 #include "except.h"
79 #include "integrate.h"
81 /* Next quantity number available for allocation. */
83 static int next_qty;
85 /* Information we maintain about each quantity. */
86 struct qty
88 /* The number of refs to quantity Q. */
90 int n_refs;
92 /* The frequency of uses of quantity Q. */
94 int freq;
96 /* Insn number (counting from head of basic block)
97 where quantity Q was born. -1 if birth has not been recorded. */
99 int birth;
101 /* Insn number (counting from head of basic block)
102 where given quantity died. Due to the way tying is done,
103 and the fact that we consider in this pass only regs that die but once,
104 a quantity can die only once. Each quantity's life span
105 is a set of consecutive insns. -1 if death has not been recorded. */
107 int death;
109 /* Number of words needed to hold the data in given quantity.
110 This depends on its machine mode. It is used for these purposes:
111 1. It is used in computing the relative importance of qtys,
112 which determines the order in which we look for regs for them.
113 2. It is used in rules that prevent tying several registers of
114 different sizes in a way that is geometrically impossible
115 (see combine_regs). */
117 int size;
119 /* Number of times a reg tied to given qty lives across a CALL_INSN. */
121 int n_calls_crossed;
123 /* The register number of one pseudo register whose reg_qty value is Q.
124 This register should be the head of the chain
125 maintained in reg_next_in_qty. */
127 int first_reg;
129 /* Reg class contained in (smaller than) the preferred classes of all
130 the pseudo regs that are tied in given quantity.
131 This is the preferred class for allocating that quantity. */
133 enum reg_class min_class;
135 /* Register class within which we allocate given qty if we can't get
136 its preferred class. */
138 enum reg_class alternate_class;
140 /* This holds the mode of the registers that are tied to given qty,
141 or VOIDmode if registers with differing modes are tied together. */
143 enum machine_mode mode;
145 /* the hard reg number chosen for given quantity,
146 or -1 if none was found. */
148 short phys_reg;
151 static struct qty *qty;
153 /* These fields are kept separately to speedup their clearing. */
155 /* We maintain two hard register sets that indicate suggested hard registers
156 for each quantity. The first, phys_copy_sugg, contains hard registers
157 that are tied to the quantity by a simple copy. The second contains all
158 hard registers that are tied to the quantity via an arithmetic operation.
160 The former register set is given priority for allocation. This tends to
161 eliminate copy insns. */
163 /* Element Q is a set of hard registers that are suggested for quantity Q by
164 copy insns. */
166 static HARD_REG_SET *qty_phys_copy_sugg;
168 /* Element Q is a set of hard registers that are suggested for quantity Q by
169 arithmetic insns. */
171 static HARD_REG_SET *qty_phys_sugg;
173 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
175 static short *qty_phys_num_copy_sugg;
177 /* Element Q is the number of suggested registers in qty_phys_sugg. */
179 static short *qty_phys_num_sugg;
181 /* If (REG N) has been assigned a quantity number, is a register number
182 of another register assigned the same quantity number, or -1 for the
183 end of the chain. qty->first_reg point to the head of this chain. */
185 static int *reg_next_in_qty;
187 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
188 if it is >= 0,
189 of -1 if this register cannot be allocated by local-alloc,
190 or -2 if not known yet.
192 Note that if we see a use or death of pseudo register N with
193 reg_qty[N] == -2, register N must be local to the current block. If
194 it were used in more than one block, we would have reg_qty[N] == -1.
195 This relies on the fact that if reg_basic_block[N] is >= 0, register N
196 will not appear in any other block. We save a considerable number of
197 tests by exploiting this.
199 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
200 be referenced. */
202 static int *reg_qty;
204 /* The offset (in words) of register N within its quantity.
205 This can be nonzero if register N is SImode, and has been tied
206 to a subreg of a DImode register. */
208 static char *reg_offset;
210 /* Vector of substitutions of register numbers,
211 used to map pseudo regs into hardware regs.
212 This is set up as a result of register allocation.
213 Element N is the hard reg assigned to pseudo reg N,
214 or is -1 if no hard reg was assigned.
215 If N is a hard reg number, element N is N. */
217 short *reg_renumber;
219 /* Set of hard registers live at the current point in the scan
220 of the instructions in a basic block. */
222 static HARD_REG_SET regs_live;
224 /* Each set of hard registers indicates registers live at a particular
225 point in the basic block. For N even, regs_live_at[N] says which
226 hard registers are needed *after* insn N/2 (i.e., they may not
227 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
229 If an object is to conflict with the inputs of insn J but not the
230 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
231 if it is to conflict with the outputs of insn J but not the inputs of
232 insn J + 1, it is said to die at index J*2 + 1. */
234 static HARD_REG_SET *regs_live_at;
236 /* Communicate local vars `insn_number' and `insn'
237 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
238 static int this_insn_number;
239 static rtx this_insn;
241 struct equivalence
243 /* Set when an attempt should be made to replace a register
244 with the associated src_p entry. */
246 char replace;
248 /* Set when a REG_EQUIV note is found or created. Use to
249 keep track of what memory accesses might be created later,
250 e.g. by reload. */
252 rtx replacement;
254 rtx *src_p;
256 /* Loop depth is used to recognize equivalences which appear
257 to be present within the same loop (or in an inner loop). */
259 int loop_depth;
261 /* The list of each instruction which initializes this register. */
263 rtx init_insns;
266 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
267 structure for that register. */
269 static struct equivalence *reg_equiv;
271 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
272 static int recorded_label_ref;
274 static void alloc_qty (int, enum machine_mode, int, int);
275 static void validate_equiv_mem_from_store (rtx, rtx, void *);
276 static int validate_equiv_mem (rtx, rtx, rtx);
277 static int equiv_init_varies_p (rtx);
278 static int equiv_init_movable_p (rtx, int);
279 static int contains_replace_regs (rtx);
280 static int memref_referenced_p (rtx, rtx);
281 static int memref_used_between_p (rtx, rtx, rtx);
282 static void update_equiv_regs (void);
283 static void no_equiv (rtx, rtx, void *);
284 static void block_alloc (int);
285 static int qty_sugg_compare (int, int);
286 static int qty_sugg_compare_1 (const void *, const void *);
287 static int qty_compare (int, int);
288 static int qty_compare_1 (const void *, const void *);
289 static int combine_regs (rtx, rtx, int, int, rtx, int);
290 static int reg_meets_class_p (int, enum reg_class);
291 static void update_qty_class (int, int);
292 static void reg_is_set (rtx, rtx, void *);
293 static void reg_is_born (rtx, int);
294 static void wipe_dead_reg (rtx, int);
295 static int find_free_reg (enum reg_class, enum machine_mode, int, int, int,
296 int, int);
297 static void mark_life (int, enum machine_mode, int);
298 static void post_mark_life (int, enum machine_mode, int, int, int);
299 static int no_conflict_p (rtx, rtx, rtx);
300 static int requires_inout (const char *);
302 /* Allocate a new quantity (new within current basic block)
303 for register number REGNO which is born at index BIRTH
304 within the block. MODE and SIZE are info on reg REGNO. */
306 static void
307 alloc_qty (int regno, enum machine_mode mode, int size, int birth)
309 int qtyno = next_qty++;
311 reg_qty[regno] = qtyno;
312 reg_offset[regno] = 0;
313 reg_next_in_qty[regno] = -1;
315 qty[qtyno].first_reg = regno;
316 qty[qtyno].size = size;
317 qty[qtyno].mode = mode;
318 qty[qtyno].birth = birth;
319 qty[qtyno].n_calls_crossed = REG_N_CALLS_CROSSED (regno);
320 qty[qtyno].min_class = reg_preferred_class (regno);
321 qty[qtyno].alternate_class = reg_alternate_class (regno);
322 qty[qtyno].n_refs = REG_N_REFS (regno);
323 qty[qtyno].freq = REG_FREQ (regno);
326 /* Main entry point of this file. */
329 local_alloc (void)
331 int i;
332 int max_qty;
333 basic_block b;
335 /* We need to keep track of whether or not we recorded a LABEL_REF so
336 that we know if the jump optimizer needs to be rerun. */
337 recorded_label_ref = 0;
339 /* Leaf functions and non-leaf functions have different needs.
340 If defined, let the machine say what kind of ordering we
341 should use. */
342 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
343 ORDER_REGS_FOR_LOCAL_ALLOC;
344 #endif
346 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
347 registers. */
348 if (optimize)
349 update_equiv_regs ();
351 /* This sets the maximum number of quantities we can have. Quantity
352 numbers start at zero and we can have one for each pseudo. */
353 max_qty = (max_regno - FIRST_PSEUDO_REGISTER);
355 /* Allocate vectors of temporary data.
356 See the declarations of these variables, above,
357 for what they mean. */
359 qty = xmalloc (max_qty * sizeof (struct qty));
360 qty_phys_copy_sugg = xmalloc (max_qty * sizeof (HARD_REG_SET));
361 qty_phys_num_copy_sugg = xmalloc (max_qty * sizeof (short));
362 qty_phys_sugg = xmalloc (max_qty * sizeof (HARD_REG_SET));
363 qty_phys_num_sugg = xmalloc (max_qty * sizeof (short));
365 reg_qty = xmalloc (max_regno * sizeof (int));
366 reg_offset = xmalloc (max_regno * sizeof (char));
367 reg_next_in_qty = xmalloc (max_regno * sizeof (int));
369 /* Determine which pseudo-registers can be allocated by local-alloc.
370 In general, these are the registers used only in a single block and
371 which only die once.
373 We need not be concerned with which block actually uses the register
374 since we will never see it outside that block. */
376 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
378 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1)
379 reg_qty[i] = -2;
380 else
381 reg_qty[i] = -1;
384 /* Force loop below to initialize entire quantity array. */
385 next_qty = max_qty;
387 /* Allocate each block's local registers, block by block. */
389 FOR_EACH_BB (b)
391 /* NEXT_QTY indicates which elements of the `qty_...'
392 vectors might need to be initialized because they were used
393 for the previous block; it is set to the entire array before
394 block 0. Initialize those, with explicit loop if there are few,
395 else with bzero and bcopy. Do not initialize vectors that are
396 explicit set by `alloc_qty'. */
398 if (next_qty < 6)
400 for (i = 0; i < next_qty; i++)
402 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
403 qty_phys_num_copy_sugg[i] = 0;
404 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
405 qty_phys_num_sugg[i] = 0;
408 else
410 #define CLEAR(vector) \
411 memset ((vector), 0, (sizeof (*(vector))) * next_qty);
413 CLEAR (qty_phys_copy_sugg);
414 CLEAR (qty_phys_num_copy_sugg);
415 CLEAR (qty_phys_sugg);
416 CLEAR (qty_phys_num_sugg);
419 next_qty = 0;
421 block_alloc (b->index);
424 free (qty);
425 free (qty_phys_copy_sugg);
426 free (qty_phys_num_copy_sugg);
427 free (qty_phys_sugg);
428 free (qty_phys_num_sugg);
430 free (reg_qty);
431 free (reg_offset);
432 free (reg_next_in_qty);
434 return recorded_label_ref;
437 /* Used for communication between the following two functions: contains
438 a MEM that we wish to ensure remains unchanged. */
439 static rtx equiv_mem;
441 /* Set nonzero if EQUIV_MEM is modified. */
442 static int equiv_mem_modified;
444 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
445 Called via note_stores. */
447 static void
448 validate_equiv_mem_from_store (rtx dest, rtx set ATTRIBUTE_UNUSED,
449 void *data ATTRIBUTE_UNUSED)
451 if ((REG_P (dest)
452 && reg_overlap_mentioned_p (dest, equiv_mem))
453 || (MEM_P (dest)
454 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
455 equiv_mem_modified = 1;
458 /* Verify that no store between START and the death of REG invalidates
459 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
460 by storing into an overlapping memory location, or with a non-const
461 CALL_INSN.
463 Return 1 if MEMREF remains valid. */
465 static int
466 validate_equiv_mem (rtx start, rtx reg, rtx memref)
468 rtx insn;
469 rtx note;
471 equiv_mem = memref;
472 equiv_mem_modified = 0;
474 /* If the memory reference has side effects or is volatile, it isn't a
475 valid equivalence. */
476 if (side_effects_p (memref))
477 return 0;
479 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
481 if (! INSN_P (insn))
482 continue;
484 if (find_reg_note (insn, REG_DEAD, reg))
485 return 1;
487 if (CALL_P (insn) && ! MEM_READONLY_P (memref)
488 && ! CONST_OR_PURE_CALL_P (insn))
489 return 0;
491 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
493 /* If a register mentioned in MEMREF is modified via an
494 auto-increment, we lose the equivalence. Do the same if one
495 dies; although we could extend the life, it doesn't seem worth
496 the trouble. */
498 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
499 if ((REG_NOTE_KIND (note) == REG_INC
500 || REG_NOTE_KIND (note) == REG_DEAD)
501 && REG_P (XEXP (note, 0))
502 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
503 return 0;
506 return 0;
509 /* Returns zero if X is known to be invariant. */
511 static int
512 equiv_init_varies_p (rtx x)
514 RTX_CODE code = GET_CODE (x);
515 int i;
516 const char *fmt;
518 switch (code)
520 case MEM:
521 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
523 case CONST:
524 case CONST_INT:
525 case CONST_DOUBLE:
526 case CONST_VECTOR:
527 case SYMBOL_REF:
528 case LABEL_REF:
529 return 0;
531 case REG:
532 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
534 case ASM_OPERANDS:
535 if (MEM_VOLATILE_P (x))
536 return 1;
538 /* Fall through. */
540 default:
541 break;
544 fmt = GET_RTX_FORMAT (code);
545 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
546 if (fmt[i] == 'e')
548 if (equiv_init_varies_p (XEXP (x, i)))
549 return 1;
551 else if (fmt[i] == 'E')
553 int j;
554 for (j = 0; j < XVECLEN (x, i); j++)
555 if (equiv_init_varies_p (XVECEXP (x, i, j)))
556 return 1;
559 return 0;
562 /* Returns nonzero if X (used to initialize register REGNO) is movable.
563 X is only movable if the registers it uses have equivalent initializations
564 which appear to be within the same loop (or in an inner loop) and movable
565 or if they are not candidates for local_alloc and don't vary. */
567 static int
568 equiv_init_movable_p (rtx x, int regno)
570 int i, j;
571 const char *fmt;
572 enum rtx_code code = GET_CODE (x);
574 switch (code)
576 case SET:
577 return equiv_init_movable_p (SET_SRC (x), regno);
579 case CC0:
580 case CLOBBER:
581 return 0;
583 case PRE_INC:
584 case PRE_DEC:
585 case POST_INC:
586 case POST_DEC:
587 case PRE_MODIFY:
588 case POST_MODIFY:
589 return 0;
591 case REG:
592 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
593 && reg_equiv[REGNO (x)].replace)
594 || (REG_BASIC_BLOCK (REGNO (x)) < 0 && ! rtx_varies_p (x, 0));
596 case UNSPEC_VOLATILE:
597 return 0;
599 case ASM_OPERANDS:
600 if (MEM_VOLATILE_P (x))
601 return 0;
603 /* Fall through. */
605 default:
606 break;
609 fmt = GET_RTX_FORMAT (code);
610 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
611 switch (fmt[i])
613 case 'e':
614 if (! equiv_init_movable_p (XEXP (x, i), regno))
615 return 0;
616 break;
617 case 'E':
618 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
619 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
620 return 0;
621 break;
624 return 1;
627 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
629 static int
630 contains_replace_regs (rtx x)
632 int i, j;
633 const char *fmt;
634 enum rtx_code code = GET_CODE (x);
636 switch (code)
638 case CONST_INT:
639 case CONST:
640 case LABEL_REF:
641 case SYMBOL_REF:
642 case CONST_DOUBLE:
643 case CONST_VECTOR:
644 case PC:
645 case CC0:
646 case HIGH:
647 return 0;
649 case REG:
650 return reg_equiv[REGNO (x)].replace;
652 default:
653 break;
656 fmt = GET_RTX_FORMAT (code);
657 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
658 switch (fmt[i])
660 case 'e':
661 if (contains_replace_regs (XEXP (x, i)))
662 return 1;
663 break;
664 case 'E':
665 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
666 if (contains_replace_regs (XVECEXP (x, i, j)))
667 return 1;
668 break;
671 return 0;
674 /* TRUE if X references a memory location that would be affected by a store
675 to MEMREF. */
677 static int
678 memref_referenced_p (rtx memref, rtx x)
680 int i, j;
681 const char *fmt;
682 enum rtx_code code = GET_CODE (x);
684 switch (code)
686 case CONST_INT:
687 case CONST:
688 case LABEL_REF:
689 case SYMBOL_REF:
690 case CONST_DOUBLE:
691 case CONST_VECTOR:
692 case PC:
693 case CC0:
694 case HIGH:
695 case LO_SUM:
696 return 0;
698 case REG:
699 return (reg_equiv[REGNO (x)].replacement
700 && memref_referenced_p (memref,
701 reg_equiv[REGNO (x)].replacement));
703 case MEM:
704 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
705 return 1;
706 break;
708 case SET:
709 /* If we are setting a MEM, it doesn't count (its address does), but any
710 other SET_DEST that has a MEM in it is referencing the MEM. */
711 if (MEM_P (SET_DEST (x)))
713 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
714 return 1;
716 else if (memref_referenced_p (memref, SET_DEST (x)))
717 return 1;
719 return memref_referenced_p (memref, SET_SRC (x));
721 default:
722 break;
725 fmt = GET_RTX_FORMAT (code);
726 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
727 switch (fmt[i])
729 case 'e':
730 if (memref_referenced_p (memref, XEXP (x, i)))
731 return 1;
732 break;
733 case 'E':
734 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
735 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
736 return 1;
737 break;
740 return 0;
743 /* TRUE if some insn in the range (START, END] references a memory location
744 that would be affected by a store to MEMREF. */
746 static int
747 memref_used_between_p (rtx memref, rtx start, rtx end)
749 rtx insn;
751 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
752 insn = NEXT_INSN (insn))
753 if (INSN_P (insn) && memref_referenced_p (memref, PATTERN (insn)))
754 return 1;
756 return 0;
759 /* Find registers that are equivalent to a single value throughout the
760 compilation (either because they can be referenced in memory or are set once
761 from a single constant). Lower their priority for a register.
763 If such a register is only referenced once, try substituting its value
764 into the using insn. If it succeeds, we can eliminate the register
765 completely. */
767 static void
768 update_equiv_regs (void)
770 rtx insn;
771 basic_block bb;
772 int loop_depth;
773 regset_head cleared_regs;
774 int clear_regnos = 0;
776 reg_equiv = xcalloc (max_regno, sizeof *reg_equiv);
777 INIT_REG_SET (&cleared_regs);
779 init_alias_analysis ();
781 /* Scan the insns and find which registers have equivalences. Do this
782 in a separate scan of the insns because (due to -fcse-follow-jumps)
783 a register can be set below its use. */
784 FOR_EACH_BB (bb)
786 loop_depth = bb->loop_depth;
788 for (insn = BB_HEAD (bb);
789 insn != NEXT_INSN (BB_END (bb));
790 insn = NEXT_INSN (insn))
792 rtx note;
793 rtx set;
794 rtx dest, src;
795 int regno;
797 if (! INSN_P (insn))
798 continue;
800 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
801 if (REG_NOTE_KIND (note) == REG_INC)
802 no_equiv (XEXP (note, 0), note, NULL);
804 set = single_set (insn);
806 /* If this insn contains more (or less) than a single SET,
807 only mark all destinations as having no known equivalence. */
808 if (set == 0)
810 note_stores (PATTERN (insn), no_equiv, NULL);
811 continue;
813 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
815 int i;
817 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
819 rtx part = XVECEXP (PATTERN (insn), 0, i);
820 if (part != set)
821 note_stores (part, no_equiv, NULL);
825 dest = SET_DEST (set);
826 src = SET_SRC (set);
828 /* If this sets a MEM to the contents of a REG that is only used
829 in a single basic block, see if the register is always equivalent
830 to that memory location and if moving the store from INSN to the
831 insn that set REG is safe. If so, put a REG_EQUIV note on the
832 initializing insn.
834 Don't add a REG_EQUIV note if the insn already has one. The existing
835 REG_EQUIV is likely more useful than the one we are adding.
837 If one of the regs in the address has reg_equiv[REGNO].replace set,
838 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
839 optimization may move the set of this register immediately before
840 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
841 the mention in the REG_EQUIV note would be to an uninitialized
842 pseudo. */
843 /* ????? This test isn't good enough; we might see a MEM with a use of
844 a pseudo register before we see its setting insn that will cause
845 reg_equiv[].replace for that pseudo to be set.
846 Equivalences to MEMs should be made in another pass, after the
847 reg_equiv[].replace information has been gathered. */
849 if (MEM_P (dest) && REG_P (src)
850 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
851 && REG_BASIC_BLOCK (regno) >= 0
852 && REG_N_SETS (regno) == 1
853 && reg_equiv[regno].init_insns != 0
854 && reg_equiv[regno].init_insns != const0_rtx
855 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
856 REG_EQUIV, NULL_RTX)
857 && ! contains_replace_regs (XEXP (dest, 0)))
859 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
860 if (validate_equiv_mem (init_insn, src, dest)
861 && ! memref_used_between_p (dest, init_insn, insn))
862 REG_NOTES (init_insn)
863 = gen_rtx_EXPR_LIST (REG_EQUIV, dest, REG_NOTES (init_insn));
866 /* We only handle the case of a pseudo register being set
867 once, or always to the same value. */
868 /* ??? The mn10200 port breaks if we add equivalences for
869 values that need an ADDRESS_REGS register and set them equivalent
870 to a MEM of a pseudo. The actual problem is in the over-conservative
871 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
872 calculate_needs, but we traditionally work around this problem
873 here by rejecting equivalences when the destination is in a register
874 that's likely spilled. This is fragile, of course, since the
875 preferred class of a pseudo depends on all instructions that set
876 or use it. */
878 if (!REG_P (dest)
879 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
880 || reg_equiv[regno].init_insns == const0_rtx
881 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
882 && MEM_P (src)))
884 /* This might be setting a SUBREG of a pseudo, a pseudo that is
885 also set somewhere else to a constant. */
886 note_stores (set, no_equiv, NULL);
887 continue;
890 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
892 /* cse sometimes generates function invariants, but doesn't put a
893 REG_EQUAL note on the insn. Since this note would be redundant,
894 there's no point creating it earlier than here. */
895 if (! note && ! rtx_varies_p (src, 0))
896 note = set_unique_reg_note (insn, REG_EQUAL, src);
898 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
899 since it represents a function call */
900 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
901 note = NULL_RTX;
903 if (REG_N_SETS (regno) != 1
904 && (! note
905 || rtx_varies_p (XEXP (note, 0), 0)
906 || (reg_equiv[regno].replacement
907 && ! rtx_equal_p (XEXP (note, 0),
908 reg_equiv[regno].replacement))))
910 no_equiv (dest, set, NULL);
911 continue;
913 /* Record this insn as initializing this register. */
914 reg_equiv[regno].init_insns
915 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
917 /* If this register is known to be equal to a constant, record that
918 it is always equivalent to the constant. */
919 if (note && ! rtx_varies_p (XEXP (note, 0), 0))
920 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
922 /* If this insn introduces a "constant" register, decrease the priority
923 of that register. Record this insn if the register is only used once
924 more and the equivalence value is the same as our source.
926 The latter condition is checked for two reasons: First, it is an
927 indication that it may be more efficient to actually emit the insn
928 as written (if no registers are available, reload will substitute
929 the equivalence). Secondly, it avoids problems with any registers
930 dying in this insn whose death notes would be missed.
932 If we don't have a REG_EQUIV note, see if this insn is loading
933 a register used only in one basic block from a MEM. If so, and the
934 MEM remains unchanged for the life of the register, add a REG_EQUIV
935 note. */
937 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
939 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
940 && MEM_P (SET_SRC (set))
941 && validate_equiv_mem (insn, dest, SET_SRC (set)))
942 REG_NOTES (insn) = note = gen_rtx_EXPR_LIST (REG_EQUIV, SET_SRC (set),
943 REG_NOTES (insn));
945 if (note)
947 int regno = REGNO (dest);
949 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
950 We might end up substituting the LABEL_REF for uses of the
951 pseudo here or later. That kind of transformation may turn an
952 indirect jump into a direct jump, in which case we must rerun the
953 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
954 if (GET_CODE (XEXP (note, 0)) == LABEL_REF
955 || (GET_CODE (XEXP (note, 0)) == CONST
956 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
957 && (GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0))
958 == LABEL_REF)))
959 recorded_label_ref = 1;
961 reg_equiv[regno].replacement = XEXP (note, 0);
962 reg_equiv[regno].src_p = &SET_SRC (set);
963 reg_equiv[regno].loop_depth = loop_depth;
965 /* Don't mess with things live during setjmp. */
966 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
968 /* Note that the statement below does not affect the priority
969 in local-alloc! */
970 REG_LIVE_LENGTH (regno) *= 2;
973 /* If the register is referenced exactly twice, meaning it is
974 set once and used once, indicate that the reference may be
975 replaced by the equivalence we computed above. Do this
976 even if the register is only used in one block so that
977 dependencies can be handled where the last register is
978 used in a different block (i.e. HIGH / LO_SUM sequences)
979 and to reduce the number of registers alive across
980 calls. */
982 if (REG_N_REFS (regno) == 2
983 && (rtx_equal_p (XEXP (note, 0), src)
984 || ! equiv_init_varies_p (src))
985 && NONJUMP_INSN_P (insn)
986 && equiv_init_movable_p (PATTERN (insn), regno))
987 reg_equiv[regno].replace = 1;
993 /* Now scan all regs killed in an insn to see if any of them are
994 registers only used that once. If so, see if we can replace the
995 reference with the equivalent from. If we can, delete the
996 initializing reference and this register will go away. If we
997 can't replace the reference, and the initializing reference is
998 within the same loop (or in an inner loop), then move the register
999 initialization just before the use, so that they are in the same
1000 basic block. */
1001 FOR_EACH_BB_REVERSE (bb)
1003 loop_depth = bb->loop_depth;
1004 for (insn = BB_END (bb);
1005 insn != PREV_INSN (BB_HEAD (bb));
1006 insn = PREV_INSN (insn))
1008 rtx link;
1010 if (! INSN_P (insn))
1011 continue;
1013 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1015 if (REG_NOTE_KIND (link) == REG_DEAD
1016 /* Make sure this insn still refers to the register. */
1017 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1019 int regno = REGNO (XEXP (link, 0));
1020 rtx equiv_insn;
1022 if (! reg_equiv[regno].replace
1023 || reg_equiv[regno].loop_depth < loop_depth)
1024 continue;
1026 /* reg_equiv[REGNO].replace gets set only when
1027 REG_N_REFS[REGNO] is 2, i.e. the register is set
1028 once and used once. (If it were only set, but not used,
1029 flow would have deleted the setting insns.) Hence
1030 there can only be one insn in reg_equiv[REGNO].init_insns. */
1031 if (reg_equiv[regno].init_insns == NULL_RTX
1032 || XEXP (reg_equiv[regno].init_insns, 1) != NULL_RTX)
1033 abort ();
1034 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
1036 /* We may not move instructions that can throw, since
1037 that changes basic block boundaries and we are not
1038 prepared to adjust the CFG to match. */
1039 if (can_throw_internal (equiv_insn))
1040 continue;
1042 if (asm_noperands (PATTERN (equiv_insn)) < 0
1043 && validate_replace_rtx (regno_reg_rtx[regno],
1044 *(reg_equiv[regno].src_p), insn))
1046 rtx equiv_link;
1047 rtx last_link;
1048 rtx note;
1050 /* Find the last note. */
1051 for (last_link = link; XEXP (last_link, 1);
1052 last_link = XEXP (last_link, 1))
1055 /* Append the REG_DEAD notes from equiv_insn. */
1056 equiv_link = REG_NOTES (equiv_insn);
1057 while (equiv_link)
1059 note = equiv_link;
1060 equiv_link = XEXP (equiv_link, 1);
1061 if (REG_NOTE_KIND (note) == REG_DEAD)
1063 remove_note (equiv_insn, note);
1064 XEXP (last_link, 1) = note;
1065 XEXP (note, 1) = NULL_RTX;
1066 last_link = note;
1070 remove_death (regno, insn);
1071 REG_N_REFS (regno) = 0;
1072 REG_FREQ (regno) = 0;
1073 delete_insn (equiv_insn);
1075 reg_equiv[regno].init_insns
1076 = XEXP (reg_equiv[regno].init_insns, 1);
1078 /* Move the initialization of the register to just before
1079 INSN. Update the flow information. */
1080 else if (PREV_INSN (insn) != equiv_insn)
1082 rtx new_insn;
1084 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
1085 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
1086 REG_NOTES (equiv_insn) = 0;
1088 /* Make sure this insn is recognized before reload begins,
1089 otherwise eliminate_regs_in_insn will abort. */
1090 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
1092 delete_insn (equiv_insn);
1094 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
1096 REG_BASIC_BLOCK (regno) = bb->index;
1097 REG_N_CALLS_CROSSED (regno) = 0;
1098 REG_LIVE_LENGTH (regno) = 2;
1100 if (insn == BB_HEAD (bb))
1101 BB_HEAD (bb) = PREV_INSN (insn);
1103 /* Remember to clear REGNO from all basic block's live
1104 info. */
1105 SET_REGNO_REG_SET (&cleared_regs, regno);
1106 clear_regnos++;
1113 /* Clear all dead REGNOs from all basic block's live info. */
1114 if (clear_regnos)
1116 int j;
1117 if (clear_regnos > 8)
1119 FOR_EACH_BB (bb)
1121 AND_COMPL_REG_SET (bb->global_live_at_start, &cleared_regs);
1122 AND_COMPL_REG_SET (bb->global_live_at_end, &cleared_regs);
1125 else
1126 EXECUTE_IF_SET_IN_REG_SET (&cleared_regs, 0, j,
1128 FOR_EACH_BB (bb)
1130 CLEAR_REGNO_REG_SET (bb->global_live_at_start, j);
1131 CLEAR_REGNO_REG_SET (bb->global_live_at_end, j);
1136 /* Clean up. */
1137 end_alias_analysis ();
1138 CLEAR_REG_SET (&cleared_regs);
1139 free (reg_equiv);
1142 /* Mark REG as having no known equivalence.
1143 Some instructions might have been processed before and furnished
1144 with REG_EQUIV notes for this register; these notes will have to be
1145 removed.
1146 STORE is the piece of RTL that does the non-constant / conflicting
1147 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
1148 but needs to be there because this function is called from note_stores. */
1149 static void
1150 no_equiv (rtx reg, rtx store ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
1152 int regno;
1153 rtx list;
1155 if (!REG_P (reg))
1156 return;
1157 regno = REGNO (reg);
1158 list = reg_equiv[regno].init_insns;
1159 if (list == const0_rtx)
1160 return;
1161 for (; list; list = XEXP (list, 1))
1163 rtx insn = XEXP (list, 0);
1164 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
1166 reg_equiv[regno].init_insns = const0_rtx;
1167 reg_equiv[regno].replacement = NULL_RTX;
1170 /* Allocate hard regs to the pseudo regs used only within block number B.
1171 Only the pseudos that die but once can be handled. */
1173 static void
1174 block_alloc (int b)
1176 int i, q;
1177 rtx insn;
1178 rtx note, hard_reg;
1179 int insn_number = 0;
1180 int insn_count = 0;
1181 int max_uid = get_max_uid ();
1182 int *qty_order;
1183 int no_conflict_combined_regno = -1;
1185 /* Count the instructions in the basic block. */
1187 insn = BB_END (BASIC_BLOCK (b));
1188 while (1)
1190 if (!NOTE_P (insn))
1191 if (++insn_count > max_uid)
1192 abort ();
1193 if (insn == BB_HEAD (BASIC_BLOCK (b)))
1194 break;
1195 insn = PREV_INSN (insn);
1198 /* +2 to leave room for a post_mark_life at the last insn and for
1199 the birth of a CLOBBER in the first insn. */
1200 regs_live_at = xcalloc ((2 * insn_count + 2), sizeof (HARD_REG_SET));
1202 /* Initialize table of hardware registers currently live. */
1204 REG_SET_TO_HARD_REG_SET (regs_live, BASIC_BLOCK (b)->global_live_at_start);
1206 /* This loop scans the instructions of the basic block
1207 and assigns quantities to registers.
1208 It computes which registers to tie. */
1210 insn = BB_HEAD (BASIC_BLOCK (b));
1211 while (1)
1213 if (!NOTE_P (insn))
1214 insn_number++;
1216 if (INSN_P (insn))
1218 rtx link, set;
1219 int win = 0;
1220 rtx r0, r1 = NULL_RTX;
1221 int combined_regno = -1;
1222 int i;
1224 this_insn_number = insn_number;
1225 this_insn = insn;
1227 extract_insn (insn);
1228 which_alternative = -1;
1230 /* Is this insn suitable for tying two registers?
1231 If so, try doing that.
1232 Suitable insns are those with at least two operands and where
1233 operand 0 is an output that is a register that is not
1234 earlyclobber.
1236 We can tie operand 0 with some operand that dies in this insn.
1237 First look for operands that are required to be in the same
1238 register as operand 0. If we find such, only try tying that
1239 operand or one that can be put into that operand if the
1240 operation is commutative. If we don't find an operand
1241 that is required to be in the same register as operand 0,
1242 we can tie with any operand.
1244 Subregs in place of regs are also ok.
1246 If tying is done, WIN is set nonzero. */
1248 if (optimize
1249 && recog_data.n_operands > 1
1250 && recog_data.constraints[0][0] == '='
1251 && recog_data.constraints[0][1] != '&')
1253 /* If non-negative, is an operand that must match operand 0. */
1254 int must_match_0 = -1;
1255 /* Counts number of alternatives that require a match with
1256 operand 0. */
1257 int n_matching_alts = 0;
1259 for (i = 1; i < recog_data.n_operands; i++)
1261 const char *p = recog_data.constraints[i];
1262 int this_match = requires_inout (p);
1264 n_matching_alts += this_match;
1265 if (this_match == recog_data.n_alternatives)
1266 must_match_0 = i;
1269 r0 = recog_data.operand[0];
1270 for (i = 1; i < recog_data.n_operands; i++)
1272 /* Skip this operand if we found an operand that
1273 must match operand 0 and this operand isn't it
1274 and can't be made to be it by commutativity. */
1276 if (must_match_0 >= 0 && i != must_match_0
1277 && ! (i == must_match_0 + 1
1278 && recog_data.constraints[i-1][0] == '%')
1279 && ! (i == must_match_0 - 1
1280 && recog_data.constraints[i][0] == '%'))
1281 continue;
1283 /* Likewise if each alternative has some operand that
1284 must match operand zero. In that case, skip any
1285 operand that doesn't list operand 0 since we know that
1286 the operand always conflicts with operand 0. We
1287 ignore commutativity in this case to keep things simple. */
1288 if (n_matching_alts == recog_data.n_alternatives
1289 && 0 == requires_inout (recog_data.constraints[i]))
1290 continue;
1292 r1 = recog_data.operand[i];
1294 /* If the operand is an address, find a register in it.
1295 There may be more than one register, but we only try one
1296 of them. */
1297 if (recog_data.constraints[i][0] == 'p'
1298 || EXTRA_ADDRESS_CONSTRAINT (recog_data.constraints[i][0],
1299 recog_data.constraints[i]))
1300 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1301 r1 = XEXP (r1, 0);
1303 /* Avoid making a call-saved register unnecessarily
1304 clobbered. */
1305 hard_reg = get_hard_reg_initial_reg (cfun, r1);
1306 if (hard_reg != NULL_RTX)
1308 if (REG_P (hard_reg)
1309 && IN_RANGE (REGNO (hard_reg),
1310 0, FIRST_PSEUDO_REGISTER - 1)
1311 && ! call_used_regs[REGNO (hard_reg)])
1312 continue;
1315 if (REG_P (r0) || GET_CODE (r0) == SUBREG)
1317 /* We have two priorities for hard register preferences.
1318 If we have a move insn or an insn whose first input
1319 can only be in the same register as the output, give
1320 priority to an equivalence found from that insn. */
1321 int may_save_copy
1322 = (r1 == recog_data.operand[i] && must_match_0 >= 0);
1324 if (REG_P (r1) || GET_CODE (r1) == SUBREG)
1325 win = combine_regs (r1, r0, may_save_copy,
1326 insn_number, insn, 0);
1328 if (win)
1329 break;
1333 /* Recognize an insn sequence with an ultimate result
1334 which can safely overlap one of the inputs.
1335 The sequence begins with a CLOBBER of its result,
1336 and ends with an insn that copies the result to itself
1337 and has a REG_EQUAL note for an equivalent formula.
1338 That note indicates what the inputs are.
1339 The result and the input can overlap if each insn in
1340 the sequence either doesn't mention the input
1341 or has a REG_NO_CONFLICT note to inhibit the conflict.
1343 We do the combining test at the CLOBBER so that the
1344 destination register won't have had a quantity number
1345 assigned, since that would prevent combining. */
1347 if (optimize
1348 && GET_CODE (PATTERN (insn)) == CLOBBER
1349 && (r0 = XEXP (PATTERN (insn), 0),
1350 REG_P (r0))
1351 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1352 && XEXP (link, 0) != 0
1353 && NONJUMP_INSN_P (XEXP (link, 0))
1354 && (set = single_set (XEXP (link, 0))) != 0
1355 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1356 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1357 NULL_RTX)) != 0)
1359 if (r1 = XEXP (note, 0), REG_P (r1)
1360 /* Check that we have such a sequence. */
1361 && no_conflict_p (insn, r0, r1))
1362 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1363 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1364 && (r1 = XEXP (XEXP (note, 0), 0),
1365 REG_P (r1) || GET_CODE (r1) == SUBREG)
1366 && no_conflict_p (insn, r0, r1))
1367 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1369 /* Here we care if the operation to be computed is
1370 commutative. */
1371 else if (COMMUTATIVE_P (XEXP (note, 0))
1372 && (r1 = XEXP (XEXP (note, 0), 1),
1373 (REG_P (r1) || GET_CODE (r1) == SUBREG))
1374 && no_conflict_p (insn, r0, r1))
1375 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1377 /* If we did combine something, show the register number
1378 in question so that we know to ignore its death. */
1379 if (win)
1380 no_conflict_combined_regno = REGNO (r1);
1383 /* If registers were just tied, set COMBINED_REGNO
1384 to the number of the register used in this insn
1385 that was tied to the register set in this insn.
1386 This register's qty should not be "killed". */
1388 if (win)
1390 while (GET_CODE (r1) == SUBREG)
1391 r1 = SUBREG_REG (r1);
1392 combined_regno = REGNO (r1);
1395 /* Mark the death of everything that dies in this instruction,
1396 except for anything that was just combined. */
1398 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1399 if (REG_NOTE_KIND (link) == REG_DEAD
1400 && REG_P (XEXP (link, 0))
1401 && combined_regno != (int) REGNO (XEXP (link, 0))
1402 && (no_conflict_combined_regno != (int) REGNO (XEXP (link, 0))
1403 || ! find_reg_note (insn, REG_NO_CONFLICT,
1404 XEXP (link, 0))))
1405 wipe_dead_reg (XEXP (link, 0), 0);
1407 /* Allocate qty numbers for all registers local to this block
1408 that are born (set) in this instruction.
1409 A pseudo that already has a qty is not changed. */
1411 note_stores (PATTERN (insn), reg_is_set, NULL);
1413 /* If anything is set in this insn and then unused, mark it as dying
1414 after this insn, so it will conflict with our outputs. This
1415 can't match with something that combined, and it doesn't matter
1416 if it did. Do this after the calls to reg_is_set since these
1417 die after, not during, the current insn. */
1419 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1420 if (REG_NOTE_KIND (link) == REG_UNUSED
1421 && REG_P (XEXP (link, 0)))
1422 wipe_dead_reg (XEXP (link, 0), 1);
1424 /* If this is an insn that has a REG_RETVAL note pointing at a
1425 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1426 block, so clear any register number that combined within it. */
1427 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1428 && NONJUMP_INSN_P (XEXP (note, 0))
1429 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1430 no_conflict_combined_regno = -1;
1433 /* Set the registers live after INSN_NUMBER. Note that we never
1434 record the registers live before the block's first insn, since no
1435 pseudos we care about are live before that insn. */
1437 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1438 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1440 if (insn == BB_END (BASIC_BLOCK (b)))
1441 break;
1443 insn = NEXT_INSN (insn);
1446 /* Now every register that is local to this basic block
1447 should have been given a quantity, or else -1 meaning ignore it.
1448 Every quantity should have a known birth and death.
1450 Order the qtys so we assign them registers in order of the
1451 number of suggested registers they need so we allocate those with
1452 the most restrictive needs first. */
1454 qty_order = xmalloc (next_qty * sizeof (int));
1455 for (i = 0; i < next_qty; i++)
1456 qty_order[i] = i;
1458 #define EXCHANGE(I1, I2) \
1459 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1461 switch (next_qty)
1463 case 3:
1464 /* Make qty_order[2] be the one to allocate last. */
1465 if (qty_sugg_compare (0, 1) > 0)
1466 EXCHANGE (0, 1);
1467 if (qty_sugg_compare (1, 2) > 0)
1468 EXCHANGE (2, 1);
1470 /* ... Fall through ... */
1471 case 2:
1472 /* Put the best one to allocate in qty_order[0]. */
1473 if (qty_sugg_compare (0, 1) > 0)
1474 EXCHANGE (0, 1);
1476 /* ... Fall through ... */
1478 case 1:
1479 case 0:
1480 /* Nothing to do here. */
1481 break;
1483 default:
1484 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1487 /* Try to put each quantity in a suggested physical register, if it has one.
1488 This may cause registers to be allocated that otherwise wouldn't be, but
1489 this seems acceptable in local allocation (unlike global allocation). */
1490 for (i = 0; i < next_qty; i++)
1492 q = qty_order[i];
1493 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1494 qty[q].phys_reg = find_free_reg (qty[q].min_class, qty[q].mode, q,
1495 0, 1, qty[q].birth, qty[q].death);
1496 else
1497 qty[q].phys_reg = -1;
1500 /* Order the qtys so we assign them registers in order of
1501 decreasing length of life. Normally call qsort, but if we
1502 have only a very small number of quantities, sort them ourselves. */
1504 for (i = 0; i < next_qty; i++)
1505 qty_order[i] = i;
1507 #define EXCHANGE(I1, I2) \
1508 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1510 switch (next_qty)
1512 case 3:
1513 /* Make qty_order[2] be the one to allocate last. */
1514 if (qty_compare (0, 1) > 0)
1515 EXCHANGE (0, 1);
1516 if (qty_compare (1, 2) > 0)
1517 EXCHANGE (2, 1);
1519 /* ... Fall through ... */
1520 case 2:
1521 /* Put the best one to allocate in qty_order[0]. */
1522 if (qty_compare (0, 1) > 0)
1523 EXCHANGE (0, 1);
1525 /* ... Fall through ... */
1527 case 1:
1528 case 0:
1529 /* Nothing to do here. */
1530 break;
1532 default:
1533 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1536 /* Now for each qty that is not a hardware register,
1537 look for a hardware register to put it in.
1538 First try the register class that is cheapest for this qty,
1539 if there is more than one class. */
1541 for (i = 0; i < next_qty; i++)
1543 q = qty_order[i];
1544 if (qty[q].phys_reg < 0)
1546 #ifdef INSN_SCHEDULING
1547 /* These values represent the adjusted lifetime of a qty so
1548 that it conflicts with qtys which appear near the start/end
1549 of this qty's lifetime.
1551 The purpose behind extending the lifetime of this qty is to
1552 discourage the register allocator from creating false
1553 dependencies.
1555 The adjustment value is chosen to indicate that this qty
1556 conflicts with all the qtys in the instructions immediately
1557 before and after the lifetime of this qty.
1559 Experiments have shown that higher values tend to hurt
1560 overall code performance.
1562 If allocation using the extended lifetime fails we will try
1563 again with the qty's unadjusted lifetime. */
1564 int fake_birth = MAX (0, qty[q].birth - 2 + qty[q].birth % 2);
1565 int fake_death = MIN (insn_number * 2 + 1,
1566 qty[q].death + 2 - qty[q].death % 2);
1567 #endif
1569 if (N_REG_CLASSES > 1)
1571 #ifdef INSN_SCHEDULING
1572 /* We try to avoid using hard registers allocated to qtys which
1573 are born immediately after this qty or die immediately before
1574 this qty.
1576 This optimization is only appropriate when we will run
1577 a scheduling pass after reload and we are not optimizing
1578 for code size. */
1579 if (flag_schedule_insns_after_reload
1580 && !optimize_size
1581 && !SMALL_REGISTER_CLASSES)
1583 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1584 qty[q].mode, q, 0, 0,
1585 fake_birth, fake_death);
1586 if (qty[q].phys_reg >= 0)
1587 continue;
1589 #endif
1590 qty[q].phys_reg = find_free_reg (qty[q].min_class,
1591 qty[q].mode, q, 0, 0,
1592 qty[q].birth, qty[q].death);
1593 if (qty[q].phys_reg >= 0)
1594 continue;
1597 #ifdef INSN_SCHEDULING
1598 /* Similarly, avoid false dependencies. */
1599 if (flag_schedule_insns_after_reload
1600 && !optimize_size
1601 && !SMALL_REGISTER_CLASSES
1602 && qty[q].alternate_class != NO_REGS)
1603 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1604 qty[q].mode, q, 0, 0,
1605 fake_birth, fake_death);
1606 #endif
1607 if (qty[q].alternate_class != NO_REGS)
1608 qty[q].phys_reg = find_free_reg (qty[q].alternate_class,
1609 qty[q].mode, q, 0, 0,
1610 qty[q].birth, qty[q].death);
1614 /* Now propagate the register assignments
1615 to the pseudo regs belonging to the qtys. */
1617 for (q = 0; q < next_qty; q++)
1618 if (qty[q].phys_reg >= 0)
1620 for (i = qty[q].first_reg; i >= 0; i = reg_next_in_qty[i])
1621 reg_renumber[i] = qty[q].phys_reg + reg_offset[i];
1624 /* Clean up. */
1625 free (regs_live_at);
1626 free (qty_order);
1629 /* Compare two quantities' priority for getting real registers.
1630 We give shorter-lived quantities higher priority.
1631 Quantities with more references are also preferred, as are quantities that
1632 require multiple registers. This is the identical prioritization as
1633 done by global-alloc.
1635 We used to give preference to registers with *longer* lives, but using
1636 the same algorithm in both local- and global-alloc can speed up execution
1637 of some programs by as much as a factor of three! */
1639 /* Note that the quotient will never be bigger than
1640 the value of floor_log2 times the maximum number of
1641 times a register can occur in one insn (surely less than 100)
1642 weighted by frequency (max REG_FREQ_MAX).
1643 Multiplying this by 10000/REG_FREQ_MAX can't overflow.
1644 QTY_CMP_PRI is also used by qty_sugg_compare. */
1646 #define QTY_CMP_PRI(q) \
1647 ((int) (((double) (floor_log2 (qty[q].n_refs) * qty[q].freq * qty[q].size) \
1648 / (qty[q].death - qty[q].birth)) * (10000 / REG_FREQ_MAX)))
1650 static int
1651 qty_compare (int q1, int q2)
1653 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1656 static int
1657 qty_compare_1 (const void *q1p, const void *q2p)
1659 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1660 int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1662 if (tem != 0)
1663 return tem;
1665 /* If qtys are equally good, sort by qty number,
1666 so that the results of qsort leave nothing to chance. */
1667 return q1 - q2;
1670 /* Compare two quantities' priority for getting real registers. This version
1671 is called for quantities that have suggested hard registers. First priority
1672 goes to quantities that have copy preferences, then to those that have
1673 normal preferences. Within those groups, quantities with the lower
1674 number of preferences have the highest priority. Of those, we use the same
1675 algorithm as above. */
1677 #define QTY_CMP_SUGG(q) \
1678 (qty_phys_num_copy_sugg[q] \
1679 ? qty_phys_num_copy_sugg[q] \
1680 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1682 static int
1683 qty_sugg_compare (int q1, int q2)
1685 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1687 if (tem != 0)
1688 return tem;
1690 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1693 static int
1694 qty_sugg_compare_1 (const void *q1p, const void *q2p)
1696 int q1 = *(const int *) q1p, q2 = *(const int *) q2p;
1697 int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1699 if (tem != 0)
1700 return tem;
1702 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1703 if (tem != 0)
1704 return tem;
1706 /* If qtys are equally good, sort by qty number,
1707 so that the results of qsort leave nothing to chance. */
1708 return q1 - q2;
1711 #undef QTY_CMP_SUGG
1712 #undef QTY_CMP_PRI
1714 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1715 Returns 1 if have done so, or 0 if cannot.
1717 Combining registers means marking them as having the same quantity
1718 and adjusting the offsets within the quantity if either of
1719 them is a SUBREG.
1721 We don't actually combine a hard reg with a pseudo; instead
1722 we just record the hard reg as the suggestion for the pseudo's quantity.
1723 If we really combined them, we could lose if the pseudo lives
1724 across an insn that clobbers the hard reg (eg, movmem).
1726 ALREADY_DEAD is nonzero if USEDREG is known to be dead even though
1727 there is no REG_DEAD note on INSN. This occurs during the processing
1728 of REG_NO_CONFLICT blocks.
1730 MAY_SAVE_COPY is nonzero if this insn is simply copying USEDREG to
1731 SETREG or if the input and output must share a register.
1732 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1734 There are elaborate checks for the validity of combining. */
1736 static int
1737 combine_regs (rtx usedreg, rtx setreg, int may_save_copy, int insn_number,
1738 rtx insn, int already_dead)
1740 int ureg, sreg;
1741 int offset = 0;
1742 int usize, ssize;
1743 int sqty;
1745 /* Determine the numbers and sizes of registers being used. If a subreg
1746 is present that does not change the entire register, don't consider
1747 this a copy insn. */
1749 while (GET_CODE (usedreg) == SUBREG)
1751 rtx subreg = SUBREG_REG (usedreg);
1753 if (REG_P (subreg))
1755 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1756 may_save_copy = 0;
1758 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1759 offset += subreg_regno_offset (REGNO (subreg),
1760 GET_MODE (subreg),
1761 SUBREG_BYTE (usedreg),
1762 GET_MODE (usedreg));
1763 else
1764 offset += (SUBREG_BYTE (usedreg)
1765 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1768 usedreg = subreg;
1771 if (!REG_P (usedreg))
1772 return 0;
1774 ureg = REGNO (usedreg);
1775 if (ureg < FIRST_PSEUDO_REGISTER)
1776 usize = hard_regno_nregs[ureg][GET_MODE (usedreg)];
1777 else
1778 usize = ((GET_MODE_SIZE (GET_MODE (usedreg))
1779 + (REGMODE_NATURAL_SIZE (GET_MODE (usedreg)) - 1))
1780 / REGMODE_NATURAL_SIZE (GET_MODE (usedreg)));
1782 while (GET_CODE (setreg) == SUBREG)
1784 rtx subreg = SUBREG_REG (setreg);
1786 if (REG_P (subreg))
1788 if (GET_MODE_SIZE (GET_MODE (subreg)) > UNITS_PER_WORD)
1789 may_save_copy = 0;
1791 if (REGNO (subreg) < FIRST_PSEUDO_REGISTER)
1792 offset -= subreg_regno_offset (REGNO (subreg),
1793 GET_MODE (subreg),
1794 SUBREG_BYTE (setreg),
1795 GET_MODE (setreg));
1796 else
1797 offset -= (SUBREG_BYTE (setreg)
1798 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1801 setreg = subreg;
1804 if (!REG_P (setreg))
1805 return 0;
1807 sreg = REGNO (setreg);
1808 if (sreg < FIRST_PSEUDO_REGISTER)
1809 ssize = hard_regno_nregs[sreg][GET_MODE (setreg)];
1810 else
1811 ssize = ((GET_MODE_SIZE (GET_MODE (setreg))
1812 + (REGMODE_NATURAL_SIZE (GET_MODE (setreg)) - 1))
1813 / REGMODE_NATURAL_SIZE (GET_MODE (setreg)));
1815 /* If UREG is a pseudo-register that hasn't already been assigned a
1816 quantity number, it means that it is not local to this block or dies
1817 more than once. In either event, we can't do anything with it. */
1818 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1819 /* Do not combine registers unless one fits within the other. */
1820 || (offset > 0 && usize + offset > ssize)
1821 || (offset < 0 && usize + offset < ssize)
1822 /* Do not combine with a smaller already-assigned object
1823 if that smaller object is already combined with something bigger. */
1824 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1825 && usize < qty[reg_qty[ureg]].size)
1826 /* Can't combine if SREG is not a register we can allocate. */
1827 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1828 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1829 These have already been taken care of. This probably wouldn't
1830 combine anyway, but don't take any chances. */
1831 || (ureg >= FIRST_PSEUDO_REGISTER
1832 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1833 /* Don't tie something to itself. In most cases it would make no
1834 difference, but it would screw up if the reg being tied to itself
1835 also dies in this insn. */
1836 || ureg == sreg
1837 /* Don't try to connect two different hardware registers. */
1838 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1839 /* Don't connect two different machine modes if they have different
1840 implications as to which registers may be used. */
1841 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1842 return 0;
1844 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1845 qty_phys_sugg for the pseudo instead of tying them.
1847 Return "failure" so that the lifespan of UREG is terminated here;
1848 that way the two lifespans will be disjoint and nothing will prevent
1849 the pseudo reg from being given this hard reg. */
1851 if (ureg < FIRST_PSEUDO_REGISTER)
1853 /* Allocate a quantity number so we have a place to put our
1854 suggestions. */
1855 if (reg_qty[sreg] == -2)
1856 reg_is_born (setreg, 2 * insn_number);
1858 if (reg_qty[sreg] >= 0)
1860 if (may_save_copy
1861 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1863 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1864 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1866 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1868 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1869 qty_phys_num_sugg[reg_qty[sreg]]++;
1872 return 0;
1875 /* Similarly for SREG a hard register and UREG a pseudo register. */
1877 if (sreg < FIRST_PSEUDO_REGISTER)
1879 if (may_save_copy
1880 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1882 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1883 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1885 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1887 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1888 qty_phys_num_sugg[reg_qty[ureg]]++;
1890 return 0;
1893 /* At this point we know that SREG and UREG are both pseudos.
1894 Do nothing if SREG already has a quantity or is a register that we
1895 don't allocate. */
1896 if (reg_qty[sreg] >= -1
1897 /* If we are not going to let any regs live across calls,
1898 don't tie a call-crossing reg to a non-call-crossing reg. */
1899 || (current_function_has_nonlocal_label
1900 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1901 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1902 return 0;
1904 /* We don't already know about SREG, so tie it to UREG
1905 if this is the last use of UREG, provided the classes they want
1906 are compatible. */
1908 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1909 && reg_meets_class_p (sreg, qty[reg_qty[ureg]].min_class))
1911 /* Add SREG to UREG's quantity. */
1912 sqty = reg_qty[ureg];
1913 reg_qty[sreg] = sqty;
1914 reg_offset[sreg] = reg_offset[ureg] + offset;
1915 reg_next_in_qty[sreg] = qty[sqty].first_reg;
1916 qty[sqty].first_reg = sreg;
1918 /* If SREG's reg class is smaller, set qty[SQTY].min_class. */
1919 update_qty_class (sqty, sreg);
1921 /* Update info about quantity SQTY. */
1922 qty[sqty].n_calls_crossed += REG_N_CALLS_CROSSED (sreg);
1923 qty[sqty].n_refs += REG_N_REFS (sreg);
1924 qty[sqty].freq += REG_FREQ (sreg);
1925 if (usize < ssize)
1927 int i;
1929 for (i = qty[sqty].first_reg; i >= 0; i = reg_next_in_qty[i])
1930 reg_offset[i] -= offset;
1932 qty[sqty].size = ssize;
1933 qty[sqty].mode = GET_MODE (setreg);
1936 else
1937 return 0;
1939 return 1;
1942 /* Return 1 if the preferred class of REG allows it to be tied
1943 to a quantity or register whose class is CLASS.
1944 True if REG's reg class either contains or is contained in CLASS. */
1946 static int
1947 reg_meets_class_p (int reg, enum reg_class class)
1949 enum reg_class rclass = reg_preferred_class (reg);
1950 return (reg_class_subset_p (rclass, class)
1951 || reg_class_subset_p (class, rclass));
1954 /* Update the class of QTYNO assuming that REG is being tied to it. */
1956 static void
1957 update_qty_class (int qtyno, int reg)
1959 enum reg_class rclass = reg_preferred_class (reg);
1960 if (reg_class_subset_p (rclass, qty[qtyno].min_class))
1961 qty[qtyno].min_class = rclass;
1963 rclass = reg_alternate_class (reg);
1964 if (reg_class_subset_p (rclass, qty[qtyno].alternate_class))
1965 qty[qtyno].alternate_class = rclass;
1968 /* Handle something which alters the value of an rtx REG.
1970 REG is whatever is set or clobbered. SETTER is the rtx that
1971 is modifying the register.
1973 If it is not really a register, we do nothing.
1974 The file-global variables `this_insn' and `this_insn_number'
1975 carry info from `block_alloc'. */
1977 static void
1978 reg_is_set (rtx reg, rtx setter, void *data ATTRIBUTE_UNUSED)
1980 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1981 a hard register. These may actually not exist any more. */
1983 if (GET_CODE (reg) != SUBREG
1984 && !REG_P (reg))
1985 return;
1987 /* Mark this register as being born. If it is used in a CLOBBER, mark
1988 it as being born halfway between the previous insn and this insn so that
1989 it conflicts with our inputs but not the outputs of the previous insn. */
1991 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
1994 /* Handle beginning of the life of register REG.
1995 BIRTH is the index at which this is happening. */
1997 static void
1998 reg_is_born (rtx reg, int birth)
2000 int regno;
2002 if (GET_CODE (reg) == SUBREG)
2004 regno = REGNO (SUBREG_REG (reg));
2005 if (regno < FIRST_PSEUDO_REGISTER)
2006 regno = subreg_hard_regno (reg, 1);
2008 else
2009 regno = REGNO (reg);
2011 if (regno < FIRST_PSEUDO_REGISTER)
2013 mark_life (regno, GET_MODE (reg), 1);
2015 /* If the register was to have been born earlier that the present
2016 insn, mark it as live where it is actually born. */
2017 if (birth < 2 * this_insn_number)
2018 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2020 else
2022 if (reg_qty[regno] == -2)
2023 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2025 /* If this register has a quantity number, show that it isn't dead. */
2026 if (reg_qty[regno] >= 0)
2027 qty[reg_qty[regno]].death = -1;
2031 /* Record the death of REG in the current insn. If OUTPUT_P is nonzero,
2032 REG is an output that is dying (i.e., it is never used), otherwise it
2033 is an input (the normal case).
2034 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2036 static void
2037 wipe_dead_reg (rtx reg, int output_p)
2039 int regno = REGNO (reg);
2041 /* If this insn has multiple results,
2042 and the dead reg is used in one of the results,
2043 extend its life to after this insn,
2044 so it won't get allocated together with any other result of this insn.
2046 It is unsafe to use !single_set here since it will ignore an unused
2047 output. Just because an output is unused does not mean the compiler
2048 can assume the side effect will not occur. Consider if REG appears
2049 in the address of an output and we reload the output. If we allocate
2050 REG to the same hard register as an unused output we could set the hard
2051 register before the output reload insn. */
2052 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2053 && multiple_sets (this_insn))
2055 int i;
2056 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2058 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2059 if (GET_CODE (set) == SET
2060 && !REG_P (SET_DEST (set))
2061 && !rtx_equal_p (reg, SET_DEST (set))
2062 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2063 output_p = 1;
2067 /* If this register is used in an auto-increment address, then extend its
2068 life to after this insn, so that it won't get allocated together with
2069 the result of this insn. */
2070 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2071 output_p = 1;
2073 if (regno < FIRST_PSEUDO_REGISTER)
2075 mark_life (regno, GET_MODE (reg), 0);
2077 /* If a hard register is dying as an output, mark it as in use at
2078 the beginning of this insn (the above statement would cause this
2079 not to happen). */
2080 if (output_p)
2081 post_mark_life (regno, GET_MODE (reg), 1,
2082 2 * this_insn_number, 2 * this_insn_number + 1);
2085 else if (reg_qty[regno] >= 0)
2086 qty[reg_qty[regno]].death = 2 * this_insn_number + output_p;
2089 /* Find a block of SIZE words of hard regs in reg_class CLASS
2090 that can hold something of machine-mode MODE
2091 (but actually we test only the first of the block for holding MODE)
2092 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2093 and return the number of the first of them.
2094 Return -1 if such a block cannot be found.
2095 If QTYNO crosses calls, insist on a register preserved by calls,
2096 unless ACCEPT_CALL_CLOBBERED is nonzero.
2098 If JUST_TRY_SUGGESTED is nonzero, only try to see if the suggested
2099 register is available. If not, return -1. */
2101 static int
2102 find_free_reg (enum reg_class class, enum machine_mode mode, int qtyno,
2103 int accept_call_clobbered, int just_try_suggested,
2104 int born_index, int dead_index)
2106 int i, ins;
2107 HARD_REG_SET first_used, used;
2108 #ifdef ELIMINABLE_REGS
2109 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2110 #endif
2112 /* Validate our parameters. */
2113 if (born_index < 0 || born_index > dead_index)
2114 abort ();
2116 /* Don't let a pseudo live in a reg across a function call
2117 if we might get a nonlocal goto. */
2118 if (current_function_has_nonlocal_label
2119 && qty[qtyno].n_calls_crossed > 0)
2120 return -1;
2122 if (accept_call_clobbered)
2123 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2124 else if (qty[qtyno].n_calls_crossed == 0)
2125 COPY_HARD_REG_SET (used, fixed_reg_set);
2126 else
2127 COPY_HARD_REG_SET (used, call_used_reg_set);
2129 if (accept_call_clobbered)
2130 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2132 for (ins = born_index; ins < dead_index; ins++)
2133 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2135 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2137 /* Don't use the frame pointer reg in local-alloc even if
2138 we may omit the frame pointer, because if we do that and then we
2139 need a frame pointer, reload won't know how to move the pseudo
2140 to another hard reg. It can move only regs made by global-alloc.
2142 This is true of any register that can be eliminated. */
2143 #ifdef ELIMINABLE_REGS
2144 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2145 SET_HARD_REG_BIT (used, eliminables[i].from);
2146 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2147 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2148 that it might be eliminated into. */
2149 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2150 #endif
2151 #else
2152 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2153 #endif
2155 #ifdef CANNOT_CHANGE_MODE_CLASS
2156 cannot_change_mode_set_regs (&used, mode, qty[qtyno].first_reg);
2157 #endif
2159 /* Normally, the registers that can be used for the first register in
2160 a multi-register quantity are the same as those that can be used for
2161 subsequent registers. However, if just trying suggested registers,
2162 restrict our consideration to them. If there are copy-suggested
2163 register, try them. Otherwise, try the arithmetic-suggested
2164 registers. */
2165 COPY_HARD_REG_SET (first_used, used);
2167 if (just_try_suggested)
2169 if (qty_phys_num_copy_sugg[qtyno] != 0)
2170 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qtyno]);
2171 else
2172 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qtyno]);
2175 /* If all registers are excluded, we can't do anything. */
2176 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2178 /* If at least one would be suitable, test each hard reg. */
2180 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2182 #ifdef REG_ALLOC_ORDER
2183 int regno = reg_alloc_order[i];
2184 #else
2185 int regno = i;
2186 #endif
2187 if (! TEST_HARD_REG_BIT (first_used, regno)
2188 && HARD_REGNO_MODE_OK (regno, mode)
2189 && (qty[qtyno].n_calls_crossed == 0
2190 || accept_call_clobbered
2191 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2193 int j;
2194 int size1 = hard_regno_nregs[regno][mode];
2195 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2196 if (j == size1)
2198 /* Mark that this register is in use between its birth and death
2199 insns. */
2200 post_mark_life (regno, mode, 1, born_index, dead_index);
2201 return regno;
2203 #ifndef REG_ALLOC_ORDER
2204 /* Skip starting points we know will lose. */
2205 i += j;
2206 #endif
2210 fail:
2211 /* If we are just trying suggested register, we have just tried copy-
2212 suggested registers, and there are arithmetic-suggested registers,
2213 try them. */
2215 /* If it would be profitable to allocate a call-clobbered register
2216 and save and restore it around calls, do that. */
2217 if (just_try_suggested && qty_phys_num_copy_sugg[qtyno] != 0
2218 && qty_phys_num_sugg[qtyno] != 0)
2220 /* Don't try the copy-suggested regs again. */
2221 qty_phys_num_copy_sugg[qtyno] = 0;
2222 return find_free_reg (class, mode, qtyno, accept_call_clobbered, 1,
2223 born_index, dead_index);
2226 /* We need not check to see if the current function has nonlocal
2227 labels because we don't put any pseudos that are live over calls in
2228 registers in that case. */
2230 if (! accept_call_clobbered
2231 && flag_caller_saves
2232 && ! just_try_suggested
2233 && qty[qtyno].n_calls_crossed != 0
2234 && CALLER_SAVE_PROFITABLE (qty[qtyno].n_refs,
2235 qty[qtyno].n_calls_crossed))
2237 i = find_free_reg (class, mode, qtyno, 1, 0, born_index, dead_index);
2238 if (i >= 0)
2239 caller_save_needed = 1;
2240 return i;
2242 return -1;
2245 /* Mark that REGNO with machine-mode MODE is live starting from the current
2246 insn (if LIFE is nonzero) or dead starting at the current insn (if LIFE
2247 is zero). */
2249 static void
2250 mark_life (int regno, enum machine_mode mode, int life)
2252 int j = hard_regno_nregs[regno][mode];
2253 if (life)
2254 while (--j >= 0)
2255 SET_HARD_REG_BIT (regs_live, regno + j);
2256 else
2257 while (--j >= 0)
2258 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2261 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2262 is nonzero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2263 to insn number DEATH (exclusive). */
2265 static void
2266 post_mark_life (int regno, enum machine_mode mode, int life, int birth,
2267 int death)
2269 int j = hard_regno_nregs[regno][mode];
2270 HARD_REG_SET this_reg;
2272 CLEAR_HARD_REG_SET (this_reg);
2273 while (--j >= 0)
2274 SET_HARD_REG_BIT (this_reg, regno + j);
2276 if (life)
2277 while (birth < death)
2279 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2280 birth++;
2282 else
2283 while (birth < death)
2285 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2286 birth++;
2290 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2291 is the register being clobbered, and R1 is a register being used in
2292 the equivalent expression.
2294 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2295 in which it is used, return 1.
2297 Otherwise, return 0. */
2299 static int
2300 no_conflict_p (rtx insn, rtx r0 ATTRIBUTE_UNUSED, rtx r1)
2302 int ok = 0;
2303 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2304 rtx p, last;
2306 /* If R1 is a hard register, return 0 since we handle this case
2307 when we scan the insns that actually use it. */
2309 if (note == 0
2310 || (REG_P (r1) && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2311 || (GET_CODE (r1) == SUBREG && REG_P (SUBREG_REG (r1))
2312 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2313 return 0;
2315 last = XEXP (note, 0);
2317 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2318 if (INSN_P (p))
2320 if (find_reg_note (p, REG_DEAD, r1))
2321 ok = 1;
2323 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2324 some earlier optimization pass has inserted instructions into
2325 the sequence, and it is not safe to perform this optimization.
2326 Note that emit_no_conflict_block always ensures that this is
2327 true when these sequences are created. */
2328 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2329 return 0;
2332 return ok;
2335 /* Return the number of alternatives for which the constraint string P
2336 indicates that the operand must be equal to operand 0 and that no register
2337 is acceptable. */
2339 static int
2340 requires_inout (const char *p)
2342 char c;
2343 int found_zero = 0;
2344 int reg_allowed = 0;
2345 int num_matching_alts = 0;
2346 int len;
2348 for ( ; (c = *p); p += len)
2350 len = CONSTRAINT_LEN (c, p);
2351 switch (c)
2353 case '=': case '+': case '?':
2354 case '#': case '&': case '!':
2355 case '*': case '%':
2356 case 'm': case '<': case '>': case 'V': case 'o':
2357 case 'E': case 'F': case 'G': case 'H':
2358 case 's': case 'i': case 'n':
2359 case 'I': case 'J': case 'K': case 'L':
2360 case 'M': case 'N': case 'O': case 'P':
2361 case 'X':
2362 /* These don't say anything we care about. */
2363 break;
2365 case ',':
2366 if (found_zero && ! reg_allowed)
2367 num_matching_alts++;
2369 found_zero = reg_allowed = 0;
2370 break;
2372 case '0':
2373 found_zero = 1;
2374 break;
2376 case '1': case '2': case '3': case '4': case '5':
2377 case '6': case '7': case '8': case '9':
2378 /* Skip the balance of the matching constraint. */
2380 p++;
2381 while (ISDIGIT (*p));
2382 len = 0;
2383 break;
2385 default:
2386 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS
2387 && !EXTRA_ADDRESS_CONSTRAINT (c, p))
2388 break;
2389 /* Fall through. */
2390 case 'p':
2391 case 'g': case 'r':
2392 reg_allowed = 1;
2393 break;
2397 if (found_zero && ! reg_allowed)
2398 num_matching_alts++;
2400 return num_matching_alts;
2403 void
2404 dump_local_alloc (FILE *file)
2406 int i;
2407 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2408 if (reg_renumber[i] != -1)
2409 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);