* arm.h (REVERSE_CONDITION): Define.
[official-gcc.git] / gcc / flow.c
blobabbac675b80135a7ac3efad89c9a7838f40054f2
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
34 ** find_basic_blocks **
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
41 find_basic_blocks also finds any unreachable loops and deletes them.
43 ** life_analysis **
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
49 ** live-register info **
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
88 ** Other actions of life_analysis **
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
112 /* TODO:
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "tree.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
131 #include "regs.h"
132 #include "flags.h"
133 #include "output.h"
134 #include "function.h"
135 #include "except.h"
136 #include "toplev.h"
137 #include "recog.h"
138 #include "expr.h"
139 #include "timevar.h"
141 #include "obstack.h"
142 #include "splay-tree.h"
144 #ifndef HAVE_epilogue
145 #define HAVE_epilogue 0
146 #endif
147 #ifndef HAVE_prologue
148 #define HAVE_prologue 0
149 #endif
150 #ifndef HAVE_sibcall_epilogue
151 #define HAVE_sibcall_epilogue 0
152 #endif
154 #ifndef EPILOGUE_USES
155 #define EPILOGUE_USES(REGNO) 0
156 #endif
157 #ifndef EH_USES
158 #define EH_USES(REGNO) 0
159 #endif
161 #ifdef HAVE_conditional_execution
162 #ifndef REVERSE_CONDEXEC_PREDICATES_P
163 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) \
164 (GET_CODE ((x)) == reversed_comparison_code ((y), NULL))
165 #endif
166 #endif
168 /* Nonzero if the second flow pass has completed. */
169 int flow2_completed;
171 /* Maximum register number used in this function, plus one. */
173 int max_regno;
175 /* Indexed by n, giving various register information */
177 varray_type reg_n_info;
179 /* Size of a regset for the current function,
180 in (1) bytes and (2) elements. */
182 int regset_bytes;
183 int regset_size;
185 /* Regset of regs live when calls to `setjmp'-like functions happen. */
186 /* ??? Does this exist only for the setjmp-clobbered warning message? */
188 regset regs_live_at_setjmp;
190 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
191 that have to go in the same hard reg.
192 The first two regs in the list are a pair, and the next two
193 are another pair, etc. */
194 rtx regs_may_share;
196 /* Set of registers that may be eliminable. These are handled specially
197 in updating regs_ever_live. */
199 static HARD_REG_SET elim_reg_set;
201 /* Holds information for tracking conditional register life information. */
202 struct reg_cond_life_info
204 /* A boolean expression of conditions under which a register is dead. */
205 rtx condition;
206 /* Conditions under which a register is dead at the basic block end. */
207 rtx orig_condition;
209 /* A boolean expression of conditions under which a register has been
210 stored into. */
211 rtx stores;
213 /* ??? Could store mask of bytes that are dead, so that we could finally
214 track lifetimes of multi-word registers accessed via subregs. */
217 /* For use in communicating between propagate_block and its subroutines.
218 Holds all information needed to compute life and def-use information. */
220 struct propagate_block_info
222 /* The basic block we're considering. */
223 basic_block bb;
225 /* Bit N is set if register N is conditionally or unconditionally live. */
226 regset reg_live;
228 /* Bit N is set if register N is set this insn. */
229 regset new_set;
231 /* Element N is the next insn that uses (hard or pseudo) register N
232 within the current basic block; or zero, if there is no such insn. */
233 rtx *reg_next_use;
235 /* Contains a list of all the MEMs we are tracking for dead store
236 elimination. */
237 rtx mem_set_list;
239 /* If non-null, record the set of registers set unconditionally in the
240 basic block. */
241 regset local_set;
243 /* If non-null, record the set of registers set conditionally in the
244 basic block. */
245 regset cond_local_set;
247 #ifdef HAVE_conditional_execution
248 /* Indexed by register number, holds a reg_cond_life_info for each
249 register that is not unconditionally live or dead. */
250 splay_tree reg_cond_dead;
252 /* Bit N is set if register N is in an expression in reg_cond_dead. */
253 regset reg_cond_reg;
254 #endif
256 /* The length of mem_set_list. */
257 int mem_set_list_len;
259 /* Nonzero if the value of CC0 is live. */
260 int cc0_live;
262 /* Flags controlling the set of information propagate_block collects. */
263 int flags;
264 /* Index of instruction being processed. */
265 int insn_num;
268 /* Number of dead insns removed. */
269 static int ndead;
271 /* When PROP_REG_INFO set, array contains pbi->insn_num of instruction
272 where given register died. When the register is marked alive, we use the
273 information to compute amount of instructions life range cross.
274 (remember, we are walking backward). This can be computed as current
275 pbi->insn_num - reg_deaths[regno].
276 At the end of processing each basic block, the remaining live registers
277 are inspected and liferanges are increased same way so liverange of global
278 registers are computed correctly.
280 The array is maintained clear for dead registers, so it can be safely reused
281 for next basic block without expensive memset of the whole array after
282 reseting pbi->insn_num to 0. */
284 static int *reg_deaths;
286 /* Maximum length of pbi->mem_set_list before we start dropping
287 new elements on the floor. */
288 #define MAX_MEM_SET_LIST_LEN 100
290 /* Forward declarations */
291 static int verify_wide_reg_1 (rtx *, void *);
292 static void verify_wide_reg (int, basic_block);
293 static void verify_local_live_at_start (regset, basic_block);
294 static void notice_stack_pointer_modification_1 (rtx, rtx, void *);
295 static void notice_stack_pointer_modification (void);
296 static void mark_reg (rtx, void *);
297 static void mark_regs_live_at_end (regset);
298 static void calculate_global_regs_live (sbitmap, sbitmap, int);
299 static void propagate_block_delete_insn (rtx);
300 static rtx propagate_block_delete_libcall (rtx, rtx);
301 static int insn_dead_p (struct propagate_block_info *, rtx, int, rtx);
302 static int libcall_dead_p (struct propagate_block_info *, rtx, rtx);
303 static void mark_set_regs (struct propagate_block_info *, rtx, rtx);
304 static void mark_set_1 (struct propagate_block_info *, enum rtx_code, rtx,
305 rtx, rtx, int);
306 static int find_regno_partial (rtx *, void *);
308 #ifdef HAVE_conditional_execution
309 static int mark_regno_cond_dead (struct propagate_block_info *, int, rtx);
310 static void free_reg_cond_life_info (splay_tree_value);
311 static int flush_reg_cond_reg_1 (splay_tree_node, void *);
312 static void flush_reg_cond_reg (struct propagate_block_info *, int);
313 static rtx elim_reg_cond (rtx, unsigned int);
314 static rtx ior_reg_cond (rtx, rtx, int);
315 static rtx not_reg_cond (rtx);
316 static rtx and_reg_cond (rtx, rtx, int);
317 #endif
318 #ifdef AUTO_INC_DEC
319 static void attempt_auto_inc (struct propagate_block_info *, rtx, rtx, rtx,
320 rtx, rtx);
321 static void find_auto_inc (struct propagate_block_info *, rtx, rtx);
322 static int try_pre_increment_1 (struct propagate_block_info *, rtx);
323 static int try_pre_increment (rtx, rtx, HOST_WIDE_INT);
324 #endif
325 static void mark_used_reg (struct propagate_block_info *, rtx, rtx, rtx);
326 static void mark_used_regs (struct propagate_block_info *, rtx, rtx, rtx);
327 void debug_flow_info (void);
328 static void add_to_mem_set_list (struct propagate_block_info *, rtx);
329 static int invalidate_mems_from_autoinc (rtx *, void *);
330 static void invalidate_mems_from_set (struct propagate_block_info *, rtx);
331 static void clear_log_links (sbitmap);
332 static int count_or_remove_death_notes_bb (basic_block, int);
334 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
335 note associated with the BLOCK. */
338 first_insn_after_basic_block_note (basic_block block)
340 rtx insn;
342 /* Get the first instruction in the block. */
343 insn = BB_HEAD (block);
345 if (insn == NULL_RTX)
346 return NULL_RTX;
347 if (LABEL_P (insn))
348 insn = NEXT_INSN (insn);
349 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
350 abort ();
352 return NEXT_INSN (insn);
355 /* Perform data flow analysis for the whole control flow graph.
356 FLAGS is a set of PROP_* flags to be used in accumulating flow info. */
358 void
359 life_analysis (FILE *file, int flags)
361 #ifdef ELIMINABLE_REGS
362 int i;
363 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
364 #endif
366 /* Record which registers will be eliminated. We use this in
367 mark_used_regs. */
369 CLEAR_HARD_REG_SET (elim_reg_set);
371 #ifdef ELIMINABLE_REGS
372 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
373 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
374 #else
375 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
376 #endif
379 #ifdef CANNOT_CHANGE_MODE_CLASS
380 if (flags & PROP_REG_INFO)
381 bitmap_initialize (&subregs_of_mode, 1);
382 #endif
384 if (! optimize)
385 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
387 /* The post-reload life analysis have (on a global basis) the same
388 registers live as was computed by reload itself. elimination
389 Otherwise offsets and such may be incorrect.
391 Reload will make some registers as live even though they do not
392 appear in the rtl.
394 We don't want to create new auto-incs after reload, since they
395 are unlikely to be useful and can cause problems with shared
396 stack slots. */
397 if (reload_completed)
398 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
400 /* We want alias analysis information for local dead store elimination. */
401 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
402 init_alias_analysis ();
404 /* Always remove no-op moves. Do this before other processing so
405 that we don't have to keep re-scanning them. */
406 delete_noop_moves ();
408 /* Some targets can emit simpler epilogues if they know that sp was
409 not ever modified during the function. After reload, of course,
410 we've already emitted the epilogue so there's no sense searching. */
411 if (! reload_completed)
412 notice_stack_pointer_modification ();
414 /* Allocate and zero out data structures that will record the
415 data from lifetime analysis. */
416 allocate_reg_life_data ();
417 allocate_bb_life_data ();
419 /* Find the set of registers live on function exit. */
420 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
422 /* "Update" life info from zero. It'd be nice to begin the
423 relaxation with just the exit and noreturn blocks, but that set
424 is not immediately handy. */
426 if (flags & PROP_REG_INFO)
428 memset (regs_ever_live, 0, sizeof (regs_ever_live));
429 memset (regs_asm_clobbered, 0, sizeof (regs_asm_clobbered));
431 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
432 if (reg_deaths)
434 free (reg_deaths);
435 reg_deaths = NULL;
438 /* Clean up. */
439 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
440 end_alias_analysis ();
442 if (file)
443 dump_flow_info (file);
445 /* Removing dead insns should have made jumptables really dead. */
446 delete_dead_jumptables ();
449 /* A subroutine of verify_wide_reg, called through for_each_rtx.
450 Search for REGNO. If found, return 2 if it is not wider than
451 word_mode. */
453 static int
454 verify_wide_reg_1 (rtx *px, void *pregno)
456 rtx x = *px;
457 unsigned int regno = *(int *) pregno;
459 if (REG_P (x) && REGNO (x) == regno)
461 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
462 return 2;
463 return 1;
465 return 0;
468 /* A subroutine of verify_local_live_at_start. Search through insns
469 of BB looking for register REGNO. */
471 static void
472 verify_wide_reg (int regno, basic_block bb)
474 rtx head = BB_HEAD (bb), end = BB_END (bb);
476 while (1)
478 if (INSN_P (head))
480 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
481 if (r == 1)
482 return;
483 if (r == 2)
484 break;
486 if (head == end)
487 break;
488 head = NEXT_INSN (head);
491 if (dump_file)
493 fprintf (dump_file, "Register %d died unexpectedly.\n", regno);
494 dump_bb (bb, dump_file, 0);
496 abort ();
499 /* A subroutine of update_life_info. Verify that there are no untoward
500 changes in live_at_start during a local update. */
502 static void
503 verify_local_live_at_start (regset new_live_at_start, basic_block bb)
505 if (reload_completed)
507 /* After reload, there are no pseudos, nor subregs of multi-word
508 registers. The regsets should exactly match. */
509 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
511 if (dump_file)
513 fprintf (dump_file,
514 "live_at_start mismatch in bb %d, aborting\nNew:\n",
515 bb->index);
516 debug_bitmap_file (dump_file, new_live_at_start);
517 fputs ("Old:\n", dump_file);
518 dump_bb (bb, dump_file, 0);
520 abort ();
523 else
525 int i;
527 /* Find the set of changed registers. */
528 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
530 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
532 /* No registers should die. */
533 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
535 if (dump_file)
537 fprintf (dump_file,
538 "Register %d died unexpectedly.\n", i);
539 dump_bb (bb, dump_file, 0);
541 abort ();
544 /* Verify that the now-live register is wider than word_mode. */
545 verify_wide_reg (i, bb);
550 /* Updates life information starting with the basic blocks set in BLOCKS.
551 If BLOCKS is null, consider it to be the universal set.
553 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholing,
554 we are only expecting local modifications to basic blocks. If we find
555 extra registers live at the beginning of a block, then we either killed
556 useful data, or we have a broken split that wants data not provided.
557 If we find registers removed from live_at_start, that means we have
558 a broken peephole that is killing a register it shouldn't.
560 ??? This is not true in one situation -- when a pre-reload splitter
561 generates subregs of a multi-word pseudo, current life analysis will
562 lose the kill. So we _can_ have a pseudo go live. How irritating.
564 It is also not true when a peephole decides that it doesn't need one
565 or more of the inputs.
567 Including PROP_REG_INFO does not properly refresh regs_ever_live
568 unless the caller resets it to zero. */
571 update_life_info (sbitmap blocks, enum update_life_extent extent, int prop_flags)
573 regset tmp;
574 regset_head tmp_head;
575 int i;
576 int stabilized_prop_flags = prop_flags;
577 basic_block bb;
579 tmp = INITIALIZE_REG_SET (tmp_head);
580 ndead = 0;
582 if ((prop_flags & PROP_REG_INFO) && !reg_deaths)
583 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
585 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
586 ? TV_LIFE_UPDATE : TV_LIFE);
588 /* Changes to the CFG are only allowed when
589 doing a global update for the entire CFG. */
590 if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
591 && (extent == UPDATE_LIFE_LOCAL || blocks))
592 abort ();
594 /* For a global update, we go through the relaxation process again. */
595 if (extent != UPDATE_LIFE_LOCAL)
597 for ( ; ; )
599 int changed = 0;
601 calculate_global_regs_live (blocks, blocks,
602 prop_flags & (PROP_SCAN_DEAD_CODE
603 | PROP_SCAN_DEAD_STORES
604 | PROP_ALLOW_CFG_CHANGES));
606 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
607 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
608 break;
610 /* Removing dead code may allow the CFG to be simplified which
611 in turn may allow for further dead code detection / removal. */
612 FOR_EACH_BB_REVERSE (bb)
614 COPY_REG_SET (tmp, bb->global_live_at_end);
615 changed |= propagate_block (bb, tmp, NULL, NULL,
616 prop_flags & (PROP_SCAN_DEAD_CODE
617 | PROP_SCAN_DEAD_STORES
618 | PROP_KILL_DEAD_CODE));
621 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
622 subsequent propagate_block calls, since removing or acting as
623 removing dead code can affect global register liveness, which
624 is supposed to be finalized for this call after this loop. */
625 stabilized_prop_flags
626 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
627 | PROP_KILL_DEAD_CODE);
629 if (! changed)
630 break;
632 /* We repeat regardless of what cleanup_cfg says. If there were
633 instructions deleted above, that might have been only a
634 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
635 Further improvement may be possible. */
636 cleanup_cfg (CLEANUP_EXPENSIVE);
638 /* Zap the life information from the last round. If we don't
639 do this, we can wind up with registers that no longer appear
640 in the code being marked live at entry. */
641 FOR_EACH_BB (bb)
643 CLEAR_REG_SET (bb->global_live_at_start);
644 CLEAR_REG_SET (bb->global_live_at_end);
648 /* If asked, remove notes from the blocks we'll update. */
649 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
650 count_or_remove_death_notes (blocks, 1);
653 /* Clear log links in case we are asked to (re)compute them. */
654 if (prop_flags & PROP_LOG_LINKS)
655 clear_log_links (blocks);
657 if (blocks)
659 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
661 bb = BASIC_BLOCK (i);
663 COPY_REG_SET (tmp, bb->global_live_at_end);
664 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
666 if (extent == UPDATE_LIFE_LOCAL)
667 verify_local_live_at_start (tmp, bb);
670 else
672 FOR_EACH_BB_REVERSE (bb)
674 COPY_REG_SET (tmp, bb->global_live_at_end);
676 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
678 if (extent == UPDATE_LIFE_LOCAL)
679 verify_local_live_at_start (tmp, bb);
683 FREE_REG_SET (tmp);
685 if (prop_flags & PROP_REG_INFO)
687 /* The only pseudos that are live at the beginning of the function
688 are those that were not set anywhere in the function. local-alloc
689 doesn't know how to handle these correctly, so mark them as not
690 local to any one basic block. */
691 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
692 FIRST_PSEUDO_REGISTER, i,
693 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
695 /* We have a problem with any pseudoreg that lives across the setjmp.
696 ANSI says that if a user variable does not change in value between
697 the setjmp and the longjmp, then the longjmp preserves it. This
698 includes longjmp from a place where the pseudo appears dead.
699 (In principle, the value still exists if it is in scope.)
700 If the pseudo goes in a hard reg, some other value may occupy
701 that hard reg where this pseudo is dead, thus clobbering the pseudo.
702 Conclusion: such a pseudo must not go in a hard reg. */
703 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
704 FIRST_PSEUDO_REGISTER, i,
706 if (regno_reg_rtx[i] != 0)
708 REG_LIVE_LENGTH (i) = -1;
709 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
713 if (reg_deaths)
715 free (reg_deaths);
716 reg_deaths = NULL;
718 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
719 ? TV_LIFE_UPDATE : TV_LIFE);
720 if (ndead && dump_file)
721 fprintf (dump_file, "deleted %i dead insns\n", ndead);
722 return ndead;
725 /* Update life information in all blocks where BB_DIRTY is set. */
728 update_life_info_in_dirty_blocks (enum update_life_extent extent, int prop_flags)
730 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
731 int n = 0;
732 basic_block bb;
733 int retval = 0;
735 sbitmap_zero (update_life_blocks);
736 FOR_EACH_BB (bb)
738 if (extent == UPDATE_LIFE_LOCAL)
740 if (bb->flags & BB_DIRTY)
742 SET_BIT (update_life_blocks, bb->index);
743 n++;
746 else
748 /* ??? Bootstrap with -march=pentium4 fails to terminate
749 with only a partial life update. */
750 SET_BIT (update_life_blocks, bb->index);
751 if (bb->flags & BB_DIRTY)
752 n++;
756 if (n)
757 retval = update_life_info (update_life_blocks, extent, prop_flags);
759 sbitmap_free (update_life_blocks);
760 return retval;
763 /* Free the variables allocated by find_basic_blocks. */
765 void
766 free_basic_block_vars (void)
768 if (basic_block_info)
770 clear_edges ();
771 basic_block_info = NULL;
773 n_basic_blocks = 0;
774 last_basic_block = 0;
776 ENTRY_BLOCK_PTR->aux = NULL;
777 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
778 EXIT_BLOCK_PTR->aux = NULL;
779 EXIT_BLOCK_PTR->global_live_at_start = NULL;
782 /* Delete any insns that copy a register to itself. */
785 delete_noop_moves (void)
787 rtx insn, next;
788 basic_block bb;
789 int nnoops = 0;
791 FOR_EACH_BB (bb)
793 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
795 next = NEXT_INSN (insn);
796 if (INSN_P (insn) && noop_move_p (insn))
798 rtx note;
800 /* If we're about to remove the first insn of a libcall
801 then move the libcall note to the next real insn and
802 update the retval note. */
803 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
804 && XEXP (note, 0) != insn)
806 rtx new_libcall_insn = next_real_insn (insn);
807 rtx retval_note = find_reg_note (XEXP (note, 0),
808 REG_RETVAL, NULL_RTX);
809 REG_NOTES (new_libcall_insn)
810 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
811 REG_NOTES (new_libcall_insn));
812 XEXP (retval_note, 0) = new_libcall_insn;
815 delete_insn_and_edges (insn);
816 nnoops++;
820 if (nnoops && dump_file)
821 fprintf (dump_file, "deleted %i noop moves", nnoops);
822 return nnoops;
825 /* Delete any jump tables never referenced. We can't delete them at the
826 time of removing tablejump insn as they are referenced by the preceding
827 insns computing the destination, so we delay deleting and garbagecollect
828 them once life information is computed. */
829 void
830 delete_dead_jumptables (void)
832 rtx insn, next;
833 for (insn = get_insns (); insn; insn = next)
835 next = NEXT_INSN (insn);
836 if (LABEL_P (insn)
837 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
838 && JUMP_P (next)
839 && (GET_CODE (PATTERN (next)) == ADDR_VEC
840 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
842 if (dump_file)
843 fprintf (dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
844 delete_insn (NEXT_INSN (insn));
845 delete_insn (insn);
846 next = NEXT_INSN (next);
851 /* Determine if the stack pointer is constant over the life of the function.
852 Only useful before prologues have been emitted. */
854 static void
855 notice_stack_pointer_modification_1 (rtx x, rtx pat ATTRIBUTE_UNUSED,
856 void *data ATTRIBUTE_UNUSED)
858 if (x == stack_pointer_rtx
859 /* The stack pointer is only modified indirectly as the result
860 of a push until later in flow. See the comments in rtl.texi
861 regarding Embedded Side-Effects on Addresses. */
862 || (MEM_P (x)
863 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == RTX_AUTOINC
864 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
865 current_function_sp_is_unchanging = 0;
868 static void
869 notice_stack_pointer_modification (void)
871 basic_block bb;
872 rtx insn;
874 /* Assume that the stack pointer is unchanging if alloca hasn't
875 been used. */
876 current_function_sp_is_unchanging = !current_function_calls_alloca;
877 if (! current_function_sp_is_unchanging)
878 return;
880 FOR_EACH_BB (bb)
881 FOR_BB_INSNS (bb, insn)
883 if (INSN_P (insn))
885 /* Check if insn modifies the stack pointer. */
886 note_stores (PATTERN (insn),
887 notice_stack_pointer_modification_1,
888 NULL);
889 if (! current_function_sp_is_unchanging)
890 return;
895 /* Mark a register in SET. Hard registers in large modes get all
896 of their component registers set as well. */
898 static void
899 mark_reg (rtx reg, void *xset)
901 regset set = (regset) xset;
902 int regno = REGNO (reg);
904 if (GET_MODE (reg) == BLKmode)
905 abort ();
907 SET_REGNO_REG_SET (set, regno);
908 if (regno < FIRST_PSEUDO_REGISTER)
910 int n = hard_regno_nregs[regno][GET_MODE (reg)];
911 while (--n > 0)
912 SET_REGNO_REG_SET (set, regno + n);
916 /* Mark those regs which are needed at the end of the function as live
917 at the end of the last basic block. */
919 static void
920 mark_regs_live_at_end (regset set)
922 unsigned int i;
924 /* If exiting needs the right stack value, consider the stack pointer
925 live at the end of the function. */
926 if ((HAVE_epilogue && epilogue_completed)
927 || ! EXIT_IGNORE_STACK
928 || (! FRAME_POINTER_REQUIRED
929 && ! current_function_calls_alloca
930 && flag_omit_frame_pointer)
931 || current_function_sp_is_unchanging)
933 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
936 /* Mark the frame pointer if needed at the end of the function. If
937 we end up eliminating it, it will be removed from the live list
938 of each basic block by reload. */
940 if (! reload_completed || frame_pointer_needed)
942 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
943 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
944 /* If they are different, also mark the hard frame pointer as live. */
945 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
946 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
947 #endif
950 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
951 /* Many architectures have a GP register even without flag_pic.
952 Assume the pic register is not in use, or will be handled by
953 other means, if it is not fixed. */
954 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
955 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
956 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
957 #endif
959 /* Mark all global registers, and all registers used by the epilogue
960 as being live at the end of the function since they may be
961 referenced by our caller. */
962 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
963 if (global_regs[i] || EPILOGUE_USES (i))
964 SET_REGNO_REG_SET (set, i);
966 if (HAVE_epilogue && epilogue_completed)
968 /* Mark all call-saved registers that we actually used. */
969 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
970 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
971 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
972 SET_REGNO_REG_SET (set, i);
975 #ifdef EH_RETURN_DATA_REGNO
976 /* Mark the registers that will contain data for the handler. */
977 if (reload_completed && current_function_calls_eh_return)
978 for (i = 0; ; ++i)
980 unsigned regno = EH_RETURN_DATA_REGNO(i);
981 if (regno == INVALID_REGNUM)
982 break;
983 SET_REGNO_REG_SET (set, regno);
985 #endif
986 #ifdef EH_RETURN_STACKADJ_RTX
987 if ((! HAVE_epilogue || ! epilogue_completed)
988 && current_function_calls_eh_return)
990 rtx tmp = EH_RETURN_STACKADJ_RTX;
991 if (tmp && REG_P (tmp))
992 mark_reg (tmp, set);
994 #endif
995 #ifdef EH_RETURN_HANDLER_RTX
996 if ((! HAVE_epilogue || ! epilogue_completed)
997 && current_function_calls_eh_return)
999 rtx tmp = EH_RETURN_HANDLER_RTX;
1000 if (tmp && REG_P (tmp))
1001 mark_reg (tmp, set);
1003 #endif
1005 /* Mark function return value. */
1006 diddle_return_value (mark_reg, set);
1009 /* Propagate global life info around the graph of basic blocks. Begin
1010 considering blocks with their corresponding bit set in BLOCKS_IN.
1011 If BLOCKS_IN is null, consider it the universal set.
1013 BLOCKS_OUT is set for every block that was changed. */
1015 static void
1016 calculate_global_regs_live (sbitmap blocks_in, sbitmap blocks_out, int flags)
1018 basic_block *queue, *qhead, *qtail, *qend, bb;
1019 regset tmp, new_live_at_end, invalidated_by_call;
1020 regset_head tmp_head, invalidated_by_call_head;
1021 regset_head new_live_at_end_head;
1022 int i;
1024 /* Some passes used to forget clear aux field of basic block causing
1025 sick behavior here. */
1026 #ifdef ENABLE_CHECKING
1027 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1028 if (bb->aux)
1029 abort ();
1030 #endif
1032 tmp = INITIALIZE_REG_SET (tmp_head);
1033 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1034 invalidated_by_call = INITIALIZE_REG_SET (invalidated_by_call_head);
1036 /* Inconveniently, this is only readily available in hard reg set form. */
1037 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1038 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1039 SET_REGNO_REG_SET (invalidated_by_call, i);
1041 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1042 because the `head == tail' style test for an empty queue doesn't
1043 work with a full queue. */
1044 queue = xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1045 qtail = queue;
1046 qhead = qend = queue + n_basic_blocks + 2;
1048 /* Queue the blocks set in the initial mask. Do this in reverse block
1049 number order so that we are more likely for the first round to do
1050 useful work. We use AUX non-null to flag that the block is queued. */
1051 if (blocks_in)
1053 FOR_EACH_BB (bb)
1054 if (TEST_BIT (blocks_in, bb->index))
1056 *--qhead = bb;
1057 bb->aux = bb;
1060 else
1062 FOR_EACH_BB (bb)
1064 *--qhead = bb;
1065 bb->aux = bb;
1069 /* We clean aux when we remove the initially-enqueued bbs, but we
1070 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1071 unconditionally. */
1072 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1074 if (blocks_out)
1075 sbitmap_zero (blocks_out);
1077 /* We work through the queue until there are no more blocks. What
1078 is live at the end of this block is precisely the union of what
1079 is live at the beginning of all its successors. So, we set its
1080 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1081 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1082 this block by walking through the instructions in this block in
1083 reverse order and updating as we go. If that changed
1084 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1085 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1087 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1088 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1089 must either be live at the end of the block, or used within the
1090 block. In the latter case, it will certainly never disappear
1091 from GLOBAL_LIVE_AT_START. In the former case, the register
1092 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1093 for one of the successor blocks. By induction, that cannot
1094 occur. */
1095 while (qhead != qtail)
1097 int rescan, changed;
1098 basic_block bb;
1099 edge e;
1101 bb = *qhead++;
1102 if (qhead == qend)
1103 qhead = queue;
1104 bb->aux = NULL;
1106 /* Begin by propagating live_at_start from the successor blocks. */
1107 CLEAR_REG_SET (new_live_at_end);
1109 if (bb->succ)
1110 for (e = bb->succ; e; e = e->succ_next)
1112 basic_block sb = e->dest;
1114 /* Call-clobbered registers die across exception and
1115 call edges. */
1116 /* ??? Abnormal call edges ignored for the moment, as this gets
1117 confused by sibling call edges, which crashes reg-stack. */
1118 if (e->flags & EDGE_EH)
1120 bitmap_operation (tmp, sb->global_live_at_start,
1121 invalidated_by_call, BITMAP_AND_COMPL);
1122 IOR_REG_SET (new_live_at_end, tmp);
1124 else
1125 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1127 /* If a target saves one register in another (instead of on
1128 the stack) the save register will need to be live for EH. */
1129 if (e->flags & EDGE_EH)
1130 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1131 if (EH_USES (i))
1132 SET_REGNO_REG_SET (new_live_at_end, i);
1134 else
1136 /* This might be a noreturn function that throws. And
1137 even if it isn't, getting the unwind info right helps
1138 debugging. */
1139 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1140 if (EH_USES (i))
1141 SET_REGNO_REG_SET (new_live_at_end, i);
1144 /* The all-important stack pointer must always be live. */
1145 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1147 /* Before reload, there are a few registers that must be forced
1148 live everywhere -- which might not already be the case for
1149 blocks within infinite loops. */
1150 if (! reload_completed)
1152 /* Any reference to any pseudo before reload is a potential
1153 reference of the frame pointer. */
1154 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1156 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1157 /* Pseudos with argument area equivalences may require
1158 reloading via the argument pointer. */
1159 if (fixed_regs[ARG_POINTER_REGNUM])
1160 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1161 #endif
1163 /* Any constant, or pseudo with constant equivalences, may
1164 require reloading from memory using the pic register. */
1165 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1166 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1167 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1170 if (bb == ENTRY_BLOCK_PTR)
1172 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1173 continue;
1176 /* On our first pass through this block, we'll go ahead and continue.
1177 Recognize first pass by local_set NULL. On subsequent passes, we
1178 get to skip out early if live_at_end wouldn't have changed. */
1180 if (bb->local_set == NULL)
1182 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1183 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1184 rescan = 1;
1186 else
1188 /* If any bits were removed from live_at_end, we'll have to
1189 rescan the block. This wouldn't be necessary if we had
1190 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1191 local_live is really dependent on live_at_end. */
1192 CLEAR_REG_SET (tmp);
1193 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1194 new_live_at_end, BITMAP_AND_COMPL);
1196 if (! rescan)
1198 /* If any of the registers in the new live_at_end set are
1199 conditionally set in this basic block, we must rescan.
1200 This is because conditional lifetimes at the end of the
1201 block do not just take the live_at_end set into account,
1202 but also the liveness at the start of each successor
1203 block. We can miss changes in those sets if we only
1204 compare the new live_at_end against the previous one. */
1205 CLEAR_REG_SET (tmp);
1206 rescan = bitmap_operation (tmp, new_live_at_end,
1207 bb->cond_local_set, BITMAP_AND);
1210 if (! rescan)
1212 /* Find the set of changed bits. Take this opportunity
1213 to notice that this set is empty and early out. */
1214 CLEAR_REG_SET (tmp);
1215 changed = bitmap_operation (tmp, bb->global_live_at_end,
1216 new_live_at_end, BITMAP_XOR);
1217 if (! changed)
1218 continue;
1220 /* If any of the changed bits overlap with local_set,
1221 we'll have to rescan the block. Detect overlap by
1222 the AND with ~local_set turning off bits. */
1223 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1224 BITMAP_AND_COMPL);
1228 /* Let our caller know that BB changed enough to require its
1229 death notes updated. */
1230 if (blocks_out)
1231 SET_BIT (blocks_out, bb->index);
1233 if (! rescan)
1235 /* Add to live_at_start the set of all registers in
1236 new_live_at_end that aren't in the old live_at_end. */
1238 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1239 BITMAP_AND_COMPL);
1240 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1242 changed = bitmap_operation (bb->global_live_at_start,
1243 bb->global_live_at_start,
1244 tmp, BITMAP_IOR);
1245 if (! changed)
1246 continue;
1248 else
1250 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1252 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1253 into live_at_start. */
1254 propagate_block (bb, new_live_at_end, bb->local_set,
1255 bb->cond_local_set, flags);
1257 /* If live_at start didn't change, no need to go farther. */
1258 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1259 continue;
1261 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1264 /* Queue all predecessors of BB so that we may re-examine
1265 their live_at_end. */
1266 for (e = bb->pred; e; e = e->pred_next)
1268 basic_block pb = e->src;
1269 if (pb->aux == NULL)
1271 *qtail++ = pb;
1272 if (qtail == qend)
1273 qtail = queue;
1274 pb->aux = pb;
1279 FREE_REG_SET (tmp);
1280 FREE_REG_SET (new_live_at_end);
1281 FREE_REG_SET (invalidated_by_call);
1283 if (blocks_out)
1285 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1287 basic_block bb = BASIC_BLOCK (i);
1288 FREE_REG_SET (bb->local_set);
1289 FREE_REG_SET (bb->cond_local_set);
1292 else
1294 FOR_EACH_BB (bb)
1296 FREE_REG_SET (bb->local_set);
1297 FREE_REG_SET (bb->cond_local_set);
1301 free (queue);
1305 /* This structure is used to pass parameters to and from the
1306 the function find_regno_partial(). It is used to pass in the
1307 register number we are looking, as well as to return any rtx
1308 we find. */
1310 typedef struct {
1311 unsigned regno_to_find;
1312 rtx retval;
1313 } find_regno_partial_param;
1316 /* Find the rtx for the reg numbers specified in 'data' if it is
1317 part of an expression which only uses part of the register. Return
1318 it in the structure passed in. */
1319 static int
1320 find_regno_partial (rtx *ptr, void *data)
1322 find_regno_partial_param *param = (find_regno_partial_param *)data;
1323 unsigned reg = param->regno_to_find;
1324 param->retval = NULL_RTX;
1326 if (*ptr == NULL_RTX)
1327 return 0;
1329 switch (GET_CODE (*ptr))
1331 case ZERO_EXTRACT:
1332 case SIGN_EXTRACT:
1333 case STRICT_LOW_PART:
1334 if (REG_P (XEXP (*ptr, 0)) && REGNO (XEXP (*ptr, 0)) == reg)
1336 param->retval = XEXP (*ptr, 0);
1337 return 1;
1339 break;
1341 case SUBREG:
1342 if (REG_P (SUBREG_REG (*ptr))
1343 && REGNO (SUBREG_REG (*ptr)) == reg)
1345 param->retval = SUBREG_REG (*ptr);
1346 return 1;
1348 break;
1350 default:
1351 break;
1354 return 0;
1357 /* Process all immediate successors of the entry block looking for pseudo
1358 registers which are live on entry. Find all of those whose first
1359 instance is a partial register reference of some kind, and initialize
1360 them to 0 after the entry block. This will prevent bit sets within
1361 registers whose value is unknown, and may contain some kind of sticky
1362 bits we don't want. */
1365 initialize_uninitialized_subregs (void)
1367 rtx insn;
1368 edge e;
1369 int reg, did_something = 0;
1370 find_regno_partial_param param;
1372 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1374 basic_block bb = e->dest;
1375 regset map = bb->global_live_at_start;
1376 EXECUTE_IF_SET_IN_REG_SET (map,
1377 FIRST_PSEUDO_REGISTER, reg,
1379 int uid = REGNO_FIRST_UID (reg);
1380 rtx i;
1382 /* Find an insn which mentions the register we are looking for.
1383 Its preferable to have an instance of the register's rtl since
1384 there may be various flags set which we need to duplicate.
1385 If we can't find it, its probably an automatic whose initial
1386 value doesn't matter, or hopefully something we don't care about. */
1387 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1389 if (i != NULL_RTX)
1391 /* Found the insn, now get the REG rtx, if we can. */
1392 param.regno_to_find = reg;
1393 for_each_rtx (&i, find_regno_partial, &param);
1394 if (param.retval != NULL_RTX)
1396 start_sequence ();
1397 emit_move_insn (param.retval,
1398 CONST0_RTX (GET_MODE (param.retval)));
1399 insn = get_insns ();
1400 end_sequence ();
1401 insert_insn_on_edge (insn, e);
1402 did_something = 1;
1408 if (did_something)
1409 commit_edge_insertions ();
1410 return did_something;
1414 /* Subroutines of life analysis. */
1416 /* Allocate the permanent data structures that represent the results
1417 of life analysis. Not static since used also for stupid life analysis. */
1419 void
1420 allocate_bb_life_data (void)
1422 basic_block bb;
1424 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1426 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1427 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1430 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1433 void
1434 allocate_reg_life_data (void)
1436 int i;
1438 max_regno = max_reg_num ();
1439 if (reg_deaths)
1440 abort ();
1441 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
1443 /* Recalculate the register space, in case it has grown. Old style
1444 vector oriented regsets would set regset_{size,bytes} here also. */
1445 allocate_reg_info (max_regno, FALSE, FALSE);
1447 /* Reset all the data we'll collect in propagate_block and its
1448 subroutines. */
1449 for (i = 0; i < max_regno; i++)
1451 REG_N_SETS (i) = 0;
1452 REG_N_REFS (i) = 0;
1453 REG_N_DEATHS (i) = 0;
1454 REG_N_CALLS_CROSSED (i) = 0;
1455 REG_LIVE_LENGTH (i) = 0;
1456 REG_FREQ (i) = 0;
1457 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1461 /* Delete dead instructions for propagate_block. */
1463 static void
1464 propagate_block_delete_insn (rtx insn)
1466 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1468 /* If the insn referred to a label, and that label was attached to
1469 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1470 pretty much mandatory to delete it, because the ADDR_VEC may be
1471 referencing labels that no longer exist.
1473 INSN may reference a deleted label, particularly when a jump
1474 table has been optimized into a direct jump. There's no
1475 real good way to fix up the reference to the deleted label
1476 when the label is deleted, so we just allow it here. */
1478 if (inote && LABEL_P (inote))
1480 rtx label = XEXP (inote, 0);
1481 rtx next;
1483 /* The label may be forced if it has been put in the constant
1484 pool. If that is the only use we must discard the table
1485 jump following it, but not the label itself. */
1486 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1487 && (next = next_nonnote_insn (label)) != NULL
1488 && JUMP_P (next)
1489 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1490 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1492 rtx pat = PATTERN (next);
1493 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1494 int len = XVECLEN (pat, diff_vec_p);
1495 int i;
1497 for (i = 0; i < len; i++)
1498 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1500 delete_insn_and_edges (next);
1501 ndead++;
1505 delete_insn_and_edges (insn);
1506 ndead++;
1509 /* Delete dead libcalls for propagate_block. Return the insn
1510 before the libcall. */
1512 static rtx
1513 propagate_block_delete_libcall (rtx insn, rtx note)
1515 rtx first = XEXP (note, 0);
1516 rtx before = PREV_INSN (first);
1518 delete_insn_chain_and_edges (first, insn);
1519 ndead++;
1520 return before;
1523 /* Update the life-status of regs for one insn. Return the previous insn. */
1526 propagate_one_insn (struct propagate_block_info *pbi, rtx insn)
1528 rtx prev = PREV_INSN (insn);
1529 int flags = pbi->flags;
1530 int insn_is_dead = 0;
1531 int libcall_is_dead = 0;
1532 rtx note;
1533 int i;
1535 if (! INSN_P (insn))
1536 return prev;
1538 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1539 if (flags & PROP_SCAN_DEAD_CODE)
1541 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1542 libcall_is_dead = (insn_is_dead && note != 0
1543 && libcall_dead_p (pbi, note, insn));
1546 /* If an instruction consists of just dead store(s) on final pass,
1547 delete it. */
1548 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1550 /* If we're trying to delete a prologue or epilogue instruction
1551 that isn't flagged as possibly being dead, something is wrong.
1552 But if we are keeping the stack pointer depressed, we might well
1553 be deleting insns that are used to compute the amount to update
1554 it by, so they are fine. */
1555 if (reload_completed
1556 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1557 && (TYPE_RETURNS_STACK_DEPRESSED
1558 (TREE_TYPE (current_function_decl))))
1559 && (((HAVE_epilogue || HAVE_prologue)
1560 && prologue_epilogue_contains (insn))
1561 || (HAVE_sibcall_epilogue
1562 && sibcall_epilogue_contains (insn)))
1563 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1564 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1566 /* Record sets. Do this even for dead instructions, since they
1567 would have killed the values if they hadn't been deleted. */
1568 mark_set_regs (pbi, PATTERN (insn), insn);
1570 /* CC0 is now known to be dead. Either this insn used it,
1571 in which case it doesn't anymore, or clobbered it,
1572 so the next insn can't use it. */
1573 pbi->cc0_live = 0;
1575 if (libcall_is_dead)
1576 prev = propagate_block_delete_libcall ( insn, note);
1577 else
1580 /* If INSN contains a RETVAL note and is dead, but the libcall
1581 as a whole is not dead, then we want to remove INSN, but
1582 not the whole libcall sequence.
1584 However, we need to also remove the dangling REG_LIBCALL
1585 note so that we do not have mis-matched LIBCALL/RETVAL
1586 notes. In theory we could find a new location for the
1587 REG_RETVAL note, but it hardly seems worth the effort.
1589 NOTE at this point will be the RETVAL note if it exists. */
1590 if (note)
1592 rtx libcall_note;
1594 libcall_note
1595 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1596 remove_note (XEXP (note, 0), libcall_note);
1599 /* Similarly if INSN contains a LIBCALL note, remove the
1600 dangling REG_RETVAL note. */
1601 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1602 if (note)
1604 rtx retval_note;
1606 retval_note
1607 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1608 remove_note (XEXP (note, 0), retval_note);
1611 /* Now delete INSN. */
1612 propagate_block_delete_insn (insn);
1615 return prev;
1618 /* See if this is an increment or decrement that can be merged into
1619 a following memory address. */
1620 #ifdef AUTO_INC_DEC
1622 rtx x = single_set (insn);
1624 /* Does this instruction increment or decrement a register? */
1625 if ((flags & PROP_AUTOINC)
1626 && x != 0
1627 && REG_P (SET_DEST (x))
1628 && (GET_CODE (SET_SRC (x)) == PLUS
1629 || GET_CODE (SET_SRC (x)) == MINUS)
1630 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1631 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1632 /* Ok, look for a following memory ref we can combine with.
1633 If one is found, change the memory ref to a PRE_INC
1634 or PRE_DEC, cancel this insn, and return 1.
1635 Return 0 if nothing has been done. */
1636 && try_pre_increment_1 (pbi, insn))
1637 return prev;
1639 #endif /* AUTO_INC_DEC */
1641 CLEAR_REG_SET (pbi->new_set);
1643 /* If this is not the final pass, and this insn is copying the value of
1644 a library call and it's dead, don't scan the insns that perform the
1645 library call, so that the call's arguments are not marked live. */
1646 if (libcall_is_dead)
1648 /* Record the death of the dest reg. */
1649 mark_set_regs (pbi, PATTERN (insn), insn);
1651 insn = XEXP (note, 0);
1652 return PREV_INSN (insn);
1654 else if (GET_CODE (PATTERN (insn)) == SET
1655 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1656 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1657 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1658 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1660 /* We have an insn to pop a constant amount off the stack.
1661 (Such insns use PLUS regardless of the direction of the stack,
1662 and any insn to adjust the stack by a constant is always a pop
1663 or part of a push.)
1664 These insns, if not dead stores, have no effect on life, though
1665 they do have an effect on the memory stores we are tracking. */
1666 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1667 /* Still, we need to update local_set, lest ifcvt.c:dead_or_predicable
1668 concludes that the stack pointer is not modified. */
1669 mark_set_regs (pbi, PATTERN (insn), insn);
1671 else
1673 rtx note;
1674 /* Any regs live at the time of a call instruction must not go
1675 in a register clobbered by calls. Find all regs now live and
1676 record this for them. */
1678 if (CALL_P (insn) && (flags & PROP_REG_INFO))
1679 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1680 { REG_N_CALLS_CROSSED (i)++; });
1682 /* Record sets. Do this even for dead instructions, since they
1683 would have killed the values if they hadn't been deleted. */
1684 mark_set_regs (pbi, PATTERN (insn), insn);
1686 if (CALL_P (insn))
1688 regset live_at_end;
1689 bool sibcall_p;
1690 rtx note, cond;
1691 int i;
1693 cond = NULL_RTX;
1694 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1695 cond = COND_EXEC_TEST (PATTERN (insn));
1697 /* Non-constant calls clobber memory, constant calls do not
1698 clobber memory, though they may clobber outgoing arguments
1699 on the stack. */
1700 if (! CONST_OR_PURE_CALL_P (insn))
1702 free_EXPR_LIST_list (&pbi->mem_set_list);
1703 pbi->mem_set_list_len = 0;
1705 else
1706 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1708 /* There may be extra registers to be clobbered. */
1709 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1710 note;
1711 note = XEXP (note, 1))
1712 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1713 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1714 cond, insn, pbi->flags);
1716 /* Calls change all call-used and global registers; sibcalls do not
1717 clobber anything that must be preserved at end-of-function,
1718 except for return values. */
1720 sibcall_p = SIBLING_CALL_P (insn);
1721 live_at_end = EXIT_BLOCK_PTR->global_live_at_start;
1722 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1723 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
1724 && ! (sibcall_p
1725 && REGNO_REG_SET_P (live_at_end, i)
1726 && ! refers_to_regno_p (i, i+1,
1727 current_function_return_rtx,
1728 (rtx *) 0)))
1730 enum rtx_code code = global_regs[i] ? SET : CLOBBER;
1731 /* We do not want REG_UNUSED notes for these registers. */
1732 mark_set_1 (pbi, code, regno_reg_rtx[i], cond, insn,
1733 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1737 /* If an insn doesn't use CC0, it becomes dead since we assume
1738 that every insn clobbers it. So show it dead here;
1739 mark_used_regs will set it live if it is referenced. */
1740 pbi->cc0_live = 0;
1742 /* Record uses. */
1743 if (! insn_is_dead)
1744 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1745 if ((flags & PROP_EQUAL_NOTES)
1746 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1747 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1748 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1750 /* Sometimes we may have inserted something before INSN (such as a move)
1751 when we make an auto-inc. So ensure we will scan those insns. */
1752 #ifdef AUTO_INC_DEC
1753 prev = PREV_INSN (insn);
1754 #endif
1756 if (! insn_is_dead && CALL_P (insn))
1758 int i;
1759 rtx note, cond;
1761 cond = NULL_RTX;
1762 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1763 cond = COND_EXEC_TEST (PATTERN (insn));
1765 /* Calls use their arguments, and may clobber memory which
1766 address involves some register. */
1767 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1768 note;
1769 note = XEXP (note, 1))
1770 /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1771 of which mark_used_regs knows how to handle. */
1772 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn);
1774 /* The stack ptr is used (honorarily) by a CALL insn. */
1775 if ((flags & PROP_REG_INFO)
1776 && !REGNO_REG_SET_P (pbi->reg_live, STACK_POINTER_REGNUM))
1777 reg_deaths[STACK_POINTER_REGNUM] = pbi->insn_num;
1778 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1780 /* Calls may also reference any of the global registers,
1781 so they are made live. */
1782 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1783 if (global_regs[i])
1784 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1788 pbi->insn_num++;
1790 return prev;
1793 /* Initialize a propagate_block_info struct for public consumption.
1794 Note that the structure itself is opaque to this file, but that
1795 the user can use the regsets provided here. */
1797 struct propagate_block_info *
1798 init_propagate_block_info (basic_block bb, regset live, regset local_set,
1799 regset cond_local_set, int flags)
1801 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1803 pbi->bb = bb;
1804 pbi->reg_live = live;
1805 pbi->mem_set_list = NULL_RTX;
1806 pbi->mem_set_list_len = 0;
1807 pbi->local_set = local_set;
1808 pbi->cond_local_set = cond_local_set;
1809 pbi->cc0_live = 0;
1810 pbi->flags = flags;
1811 pbi->insn_num = 0;
1813 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1814 pbi->reg_next_use = xcalloc (max_reg_num (), sizeof (rtx));
1815 else
1816 pbi->reg_next_use = NULL;
1818 pbi->new_set = BITMAP_XMALLOC ();
1820 #ifdef HAVE_conditional_execution
1821 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1822 free_reg_cond_life_info);
1823 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1825 /* If this block ends in a conditional branch, for each register
1826 live from one side of the branch and not the other, record the
1827 register as conditionally dead. */
1828 if (JUMP_P (BB_END (bb))
1829 && any_condjump_p (BB_END (bb)))
1831 regset_head diff_head;
1832 regset diff = INITIALIZE_REG_SET (diff_head);
1833 basic_block bb_true, bb_false;
1834 int i;
1836 /* Identify the successor blocks. */
1837 bb_true = bb->succ->dest;
1838 if (bb->succ->succ_next != NULL)
1840 bb_false = bb->succ->succ_next->dest;
1842 if (bb->succ->flags & EDGE_FALLTHRU)
1844 basic_block t = bb_false;
1845 bb_false = bb_true;
1846 bb_true = t;
1848 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1849 abort ();
1851 else
1853 /* This can happen with a conditional jump to the next insn. */
1854 if (JUMP_LABEL (BB_END (bb)) != BB_HEAD (bb_true))
1855 abort ();
1857 /* Simplest way to do nothing. */
1858 bb_false = bb_true;
1861 /* Compute which register lead different lives in the successors. */
1862 if (bitmap_operation (diff, bb_true->global_live_at_start,
1863 bb_false->global_live_at_start, BITMAP_XOR))
1865 /* Extract the condition from the branch. */
1866 rtx set_src = SET_SRC (pc_set (BB_END (bb)));
1867 rtx cond_true = XEXP (set_src, 0);
1868 rtx reg = XEXP (cond_true, 0);
1869 enum rtx_code inv_cond;
1871 if (GET_CODE (reg) == SUBREG)
1872 reg = SUBREG_REG (reg);
1874 /* We can only track conditional lifetimes if the condition is
1875 in the form of a reversible comparison of a register against
1876 zero. If the condition is more complex than that, then it is
1877 safe not to record any information. */
1878 inv_cond = reversed_comparison_code (cond_true, BB_END (bb));
1879 if (inv_cond != UNKNOWN
1880 && REG_P (reg)
1881 && XEXP (cond_true, 1) == const0_rtx)
1883 rtx cond_false
1884 = gen_rtx_fmt_ee (inv_cond,
1885 GET_MODE (cond_true), XEXP (cond_true, 0),
1886 XEXP (cond_true, 1));
1887 if (GET_CODE (XEXP (set_src, 1)) == PC)
1889 rtx t = cond_false;
1890 cond_false = cond_true;
1891 cond_true = t;
1894 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1896 /* For each such register, mark it conditionally dead. */
1897 EXECUTE_IF_SET_IN_REG_SET
1898 (diff, 0, i,
1900 struct reg_cond_life_info *rcli;
1901 rtx cond;
1903 rcli = xmalloc (sizeof (*rcli));
1905 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1906 cond = cond_false;
1907 else
1908 cond = cond_true;
1909 rcli->condition = cond;
1910 rcli->stores = const0_rtx;
1911 rcli->orig_condition = cond;
1913 splay_tree_insert (pbi->reg_cond_dead, i,
1914 (splay_tree_value) rcli);
1919 FREE_REG_SET (diff);
1921 #endif
1923 /* If this block has no successors, any stores to the frame that aren't
1924 used later in the block are dead. So make a pass over the block
1925 recording any such that are made and show them dead at the end. We do
1926 a very conservative and simple job here. */
1927 if (optimize
1928 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1929 && (TYPE_RETURNS_STACK_DEPRESSED
1930 (TREE_TYPE (current_function_decl))))
1931 && (flags & PROP_SCAN_DEAD_STORES)
1932 && (bb->succ == NULL
1933 || (bb->succ->succ_next == NULL
1934 && bb->succ->dest == EXIT_BLOCK_PTR
1935 && ! current_function_calls_eh_return)))
1937 rtx insn, set;
1938 for (insn = BB_END (bb); insn != BB_HEAD (bb); insn = PREV_INSN (insn))
1939 if (NONJUMP_INSN_P (insn)
1940 && (set = single_set (insn))
1941 && MEM_P (SET_DEST (set)))
1943 rtx mem = SET_DEST (set);
1944 rtx canon_mem = canon_rtx (mem);
1946 if (XEXP (canon_mem, 0) == frame_pointer_rtx
1947 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
1948 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
1949 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
1950 add_to_mem_set_list (pbi, canon_mem);
1954 return pbi;
1957 /* Release a propagate_block_info struct. */
1959 void
1960 free_propagate_block_info (struct propagate_block_info *pbi)
1962 free_EXPR_LIST_list (&pbi->mem_set_list);
1964 BITMAP_XFREE (pbi->new_set);
1966 #ifdef HAVE_conditional_execution
1967 splay_tree_delete (pbi->reg_cond_dead);
1968 BITMAP_XFREE (pbi->reg_cond_reg);
1969 #endif
1971 if (pbi->flags & PROP_REG_INFO)
1973 int num = pbi->insn_num;
1974 int i;
1976 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1977 { REG_LIVE_LENGTH (i) += num - reg_deaths[i];
1978 reg_deaths[i] = 0;
1981 if (pbi->reg_next_use)
1982 free (pbi->reg_next_use);
1984 free (pbi);
1987 /* Compute the registers live at the beginning of a basic block BB from
1988 those live at the end.
1990 When called, REG_LIVE contains those live at the end. On return, it
1991 contains those live at the beginning.
1993 LOCAL_SET, if non-null, will be set with all registers killed
1994 unconditionally by this basic block.
1995 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
1996 killed conditionally by this basic block. If there is any unconditional
1997 set of a register, then the corresponding bit will be set in LOCAL_SET
1998 and cleared in COND_LOCAL_SET.
1999 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2000 case, the resulting set will be equal to the union of the two sets that
2001 would otherwise be computed.
2003 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2006 propagate_block (basic_block bb, regset live, regset local_set,
2007 regset cond_local_set, int flags)
2009 struct propagate_block_info *pbi;
2010 rtx insn, prev;
2011 int changed;
2013 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2015 if (flags & PROP_REG_INFO)
2017 int i;
2019 /* Process the regs live at the end of the block.
2020 Mark them as not local to any one basic block. */
2021 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2022 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2025 /* Scan the block an insn at a time from end to beginning. */
2027 changed = 0;
2028 for (insn = BB_END (bb); ; insn = prev)
2030 /* If this is a call to `setjmp' et al, warn if any
2031 non-volatile datum is live. */
2032 if ((flags & PROP_REG_INFO)
2033 && CALL_P (insn)
2034 && find_reg_note (insn, REG_SETJMP, NULL))
2035 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2037 prev = propagate_one_insn (pbi, insn);
2038 if (!prev)
2039 changed |= insn != get_insns ();
2040 else
2041 changed |= NEXT_INSN (prev) != insn;
2043 if (insn == BB_HEAD (bb))
2044 break;
2047 free_propagate_block_info (pbi);
2049 return changed;
2052 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2053 (SET expressions whose destinations are registers dead after the insn).
2054 NEEDED is the regset that says which regs are alive after the insn.
2056 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2058 If X is the entire body of an insn, NOTES contains the reg notes
2059 pertaining to the insn. */
2061 static int
2062 insn_dead_p (struct propagate_block_info *pbi, rtx x, int call_ok,
2063 rtx notes ATTRIBUTE_UNUSED)
2065 enum rtx_code code = GET_CODE (x);
2067 /* Don't eliminate insns that may trap. */
2068 if (flag_non_call_exceptions && may_trap_p (x))
2069 return 0;
2071 #ifdef AUTO_INC_DEC
2072 /* As flow is invoked after combine, we must take existing AUTO_INC
2073 expressions into account. */
2074 for (; notes; notes = XEXP (notes, 1))
2076 if (REG_NOTE_KIND (notes) == REG_INC)
2078 int regno = REGNO (XEXP (notes, 0));
2080 /* Don't delete insns to set global regs. */
2081 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2082 || REGNO_REG_SET_P (pbi->reg_live, regno))
2083 return 0;
2086 #endif
2088 /* If setting something that's a reg or part of one,
2089 see if that register's altered value will be live. */
2091 if (code == SET)
2093 rtx r = SET_DEST (x);
2095 #ifdef HAVE_cc0
2096 if (GET_CODE (r) == CC0)
2097 return ! pbi->cc0_live;
2098 #endif
2100 /* A SET that is a subroutine call cannot be dead. */
2101 if (GET_CODE (SET_SRC (x)) == CALL)
2103 if (! call_ok)
2104 return 0;
2107 /* Don't eliminate loads from volatile memory or volatile asms. */
2108 else if (volatile_refs_p (SET_SRC (x)))
2109 return 0;
2111 if (MEM_P (r))
2113 rtx temp, canon_r;
2115 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2116 return 0;
2118 canon_r = canon_rtx (r);
2120 /* Walk the set of memory locations we are currently tracking
2121 and see if one is an identical match to this memory location.
2122 If so, this memory write is dead (remember, we're walking
2123 backwards from the end of the block to the start). Since
2124 rtx_equal_p does not check the alias set or flags, we also
2125 must have the potential for them to conflict (anti_dependence). */
2126 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2127 if (anti_dependence (r, XEXP (temp, 0)))
2129 rtx mem = XEXP (temp, 0);
2131 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2132 && (GET_MODE_SIZE (GET_MODE (canon_r))
2133 <= GET_MODE_SIZE (GET_MODE (mem))))
2134 return 1;
2136 #ifdef AUTO_INC_DEC
2137 /* Check if memory reference matches an auto increment. Only
2138 post increment/decrement or modify are valid. */
2139 if (GET_MODE (mem) == GET_MODE (r)
2140 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2141 || GET_CODE (XEXP (mem, 0)) == POST_INC
2142 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2143 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2144 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2145 return 1;
2146 #endif
2149 else
2151 while (GET_CODE (r) == SUBREG
2152 || GET_CODE (r) == STRICT_LOW_PART
2153 || GET_CODE (r) == ZERO_EXTRACT)
2154 r = XEXP (r, 0);
2156 if (REG_P (r))
2158 int regno = REGNO (r);
2160 /* Obvious. */
2161 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2162 return 0;
2164 /* If this is a hard register, verify that subsequent
2165 words are not needed. */
2166 if (regno < FIRST_PSEUDO_REGISTER)
2168 int n = hard_regno_nregs[regno][GET_MODE (r)];
2170 while (--n > 0)
2171 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2172 return 0;
2175 /* Don't delete insns to set global regs. */
2176 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2177 return 0;
2179 /* Make sure insns to set the stack pointer aren't deleted. */
2180 if (regno == STACK_POINTER_REGNUM)
2181 return 0;
2183 /* ??? These bits might be redundant with the force live bits
2184 in calculate_global_regs_live. We would delete from
2185 sequential sets; whether this actually affects real code
2186 for anything but the stack pointer I don't know. */
2187 /* Make sure insns to set the frame pointer aren't deleted. */
2188 if (regno == FRAME_POINTER_REGNUM
2189 && (! reload_completed || frame_pointer_needed))
2190 return 0;
2191 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2192 if (regno == HARD_FRAME_POINTER_REGNUM
2193 && (! reload_completed || frame_pointer_needed))
2194 return 0;
2195 #endif
2197 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2198 /* Make sure insns to set arg pointer are never deleted
2199 (if the arg pointer isn't fixed, there will be a USE
2200 for it, so we can treat it normally). */
2201 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2202 return 0;
2203 #endif
2205 /* Otherwise, the set is dead. */
2206 return 1;
2211 /* If performing several activities, insn is dead if each activity
2212 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2213 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2214 worth keeping. */
2215 else if (code == PARALLEL)
2217 int i = XVECLEN (x, 0);
2219 for (i--; i >= 0; i--)
2220 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2221 && GET_CODE (XVECEXP (x, 0, i)) != USE
2222 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2223 return 0;
2225 return 1;
2228 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2229 is not necessarily true for hard registers until after reload. */
2230 else if (code == CLOBBER)
2232 if (REG_P (XEXP (x, 0))
2233 && (REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2234 || reload_completed)
2235 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2236 return 1;
2239 /* ??? A base USE is a historical relic. It ought not be needed anymore.
2240 Instances where it is still used are either (1) temporary and the USE
2241 escaped the pass, (2) cruft and the USE need not be emitted anymore,
2242 or (3) hiding bugs elsewhere that are not properly representing data
2243 flow. */
2245 return 0;
2248 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2249 return 1 if the entire library call is dead.
2250 This is true if INSN copies a register (hard or pseudo)
2251 and if the hard return reg of the call insn is dead.
2252 (The caller should have tested the destination of the SET inside
2253 INSN already for death.)
2255 If this insn doesn't just copy a register, then we don't
2256 have an ordinary libcall. In that case, cse could not have
2257 managed to substitute the source for the dest later on,
2258 so we can assume the libcall is dead.
2260 PBI is the block info giving pseudoregs live before this insn.
2261 NOTE is the REG_RETVAL note of the insn. */
2263 static int
2264 libcall_dead_p (struct propagate_block_info *pbi, rtx note, rtx insn)
2266 rtx x = single_set (insn);
2268 if (x)
2270 rtx r = SET_SRC (x);
2272 if (REG_P (r))
2274 rtx call = XEXP (note, 0);
2275 rtx call_pat;
2276 int i;
2278 /* Find the call insn. */
2279 while (call != insn && !CALL_P (call))
2280 call = NEXT_INSN (call);
2282 /* If there is none, do nothing special,
2283 since ordinary death handling can understand these insns. */
2284 if (call == insn)
2285 return 0;
2287 /* See if the hard reg holding the value is dead.
2288 If this is a PARALLEL, find the call within it. */
2289 call_pat = PATTERN (call);
2290 if (GET_CODE (call_pat) == PARALLEL)
2292 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2293 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2294 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2295 break;
2297 /* This may be a library call that is returning a value
2298 via invisible pointer. Do nothing special, since
2299 ordinary death handling can understand these insns. */
2300 if (i < 0)
2301 return 0;
2303 call_pat = XVECEXP (call_pat, 0, i);
2306 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2309 return 1;
2312 /* 1 if register REGNO was alive at a place where `setjmp' was called
2313 and was set more than once or is an argument.
2314 Such regs may be clobbered by `longjmp'. */
2317 regno_clobbered_at_setjmp (int regno)
2319 if (n_basic_blocks == 0)
2320 return 0;
2322 return ((REG_N_SETS (regno) > 1
2323 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno))
2324 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2327 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2328 maximal list size; look for overlaps in mode and select the largest. */
2329 static void
2330 add_to_mem_set_list (struct propagate_block_info *pbi, rtx mem)
2332 rtx i;
2334 /* We don't know how large a BLKmode store is, so we must not
2335 take them into consideration. */
2336 if (GET_MODE (mem) == BLKmode)
2337 return;
2339 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2341 rtx e = XEXP (i, 0);
2342 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2344 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2346 #ifdef AUTO_INC_DEC
2347 /* If we must store a copy of the mem, we can just modify
2348 the mode of the stored copy. */
2349 if (pbi->flags & PROP_AUTOINC)
2350 PUT_MODE (e, GET_MODE (mem));
2351 else
2352 #endif
2353 XEXP (i, 0) = mem;
2355 return;
2359 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2361 #ifdef AUTO_INC_DEC
2362 /* Store a copy of mem, otherwise the address may be
2363 scrogged by find_auto_inc. */
2364 if (pbi->flags & PROP_AUTOINC)
2365 mem = shallow_copy_rtx (mem);
2366 #endif
2367 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2368 pbi->mem_set_list_len++;
2372 /* INSN references memory, possibly using autoincrement addressing modes.
2373 Find any entries on the mem_set_list that need to be invalidated due
2374 to an address change. */
2376 static int
2377 invalidate_mems_from_autoinc (rtx *px, void *data)
2379 rtx x = *px;
2380 struct propagate_block_info *pbi = data;
2382 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
2384 invalidate_mems_from_set (pbi, XEXP (x, 0));
2385 return -1;
2388 return 0;
2391 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2393 static void
2394 invalidate_mems_from_set (struct propagate_block_info *pbi, rtx exp)
2396 rtx temp = pbi->mem_set_list;
2397 rtx prev = NULL_RTX;
2398 rtx next;
2400 while (temp)
2402 next = XEXP (temp, 1);
2403 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2405 /* Splice this entry out of the list. */
2406 if (prev)
2407 XEXP (prev, 1) = next;
2408 else
2409 pbi->mem_set_list = next;
2410 free_EXPR_LIST_node (temp);
2411 pbi->mem_set_list_len--;
2413 else
2414 prev = temp;
2415 temp = next;
2419 /* Process the registers that are set within X. Their bits are set to
2420 1 in the regset DEAD, because they are dead prior to this insn.
2422 If INSN is nonzero, it is the insn being processed.
2424 FLAGS is the set of operations to perform. */
2426 static void
2427 mark_set_regs (struct propagate_block_info *pbi, rtx x, rtx insn)
2429 rtx cond = NULL_RTX;
2430 rtx link;
2431 enum rtx_code code;
2432 int flags = pbi->flags;
2434 if (insn)
2435 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2437 if (REG_NOTE_KIND (link) == REG_INC)
2438 mark_set_1 (pbi, SET, XEXP (link, 0),
2439 (GET_CODE (x) == COND_EXEC
2440 ? COND_EXEC_TEST (x) : NULL_RTX),
2441 insn, flags);
2443 retry:
2444 switch (code = GET_CODE (x))
2446 case SET:
2447 if (GET_CODE (XEXP (x, 1)) == ASM_OPERANDS)
2448 flags |= PROP_ASM_SCAN;
2449 /* Fall through */
2450 case CLOBBER:
2451 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, flags);
2452 return;
2454 case COND_EXEC:
2455 cond = COND_EXEC_TEST (x);
2456 x = COND_EXEC_CODE (x);
2457 goto retry;
2459 case PARALLEL:
2461 int i;
2463 /* We must scan forwards. If we have an asm, we need to set
2464 the PROP_ASM_SCAN flag before scanning the clobbers. */
2465 for (i = 0; i < XVECLEN (x, 0); i++)
2467 rtx sub = XVECEXP (x, 0, i);
2468 switch (code = GET_CODE (sub))
2470 case COND_EXEC:
2471 if (cond != NULL_RTX)
2472 abort ();
2474 cond = COND_EXEC_TEST (sub);
2475 sub = COND_EXEC_CODE (sub);
2476 if (GET_CODE (sub) == SET)
2477 goto mark_set;
2478 if (GET_CODE (sub) == CLOBBER)
2479 goto mark_clob;
2480 break;
2482 case SET:
2483 mark_set:
2484 if (GET_CODE (XEXP (sub, 1)) == ASM_OPERANDS)
2485 flags |= PROP_ASM_SCAN;
2486 /* Fall through */
2487 case CLOBBER:
2488 mark_clob:
2489 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, flags);
2490 break;
2492 case ASM_OPERANDS:
2493 flags |= PROP_ASM_SCAN;
2494 break;
2496 default:
2497 break;
2500 break;
2503 default:
2504 break;
2508 /* Process a single set, which appears in INSN. REG (which may not
2509 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2510 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2511 If the set is conditional (because it appear in a COND_EXEC), COND
2512 will be the condition. */
2514 static void
2515 mark_set_1 (struct propagate_block_info *pbi, enum rtx_code code, rtx reg, rtx cond, rtx insn, int flags)
2517 int regno_first = -1, regno_last = -1;
2518 unsigned long not_dead = 0;
2519 int i;
2521 /* Modifying just one hardware register of a multi-reg value or just a
2522 byte field of a register does not mean the value from before this insn
2523 is now dead. Of course, if it was dead after it's unused now. */
2525 switch (GET_CODE (reg))
2527 case PARALLEL:
2528 /* Some targets place small structures in registers for return values of
2529 functions. We have to detect this case specially here to get correct
2530 flow information. */
2531 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2532 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2533 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2534 flags);
2535 return;
2537 case ZERO_EXTRACT:
2538 case SIGN_EXTRACT:
2539 case STRICT_LOW_PART:
2540 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2542 reg = XEXP (reg, 0);
2543 while (GET_CODE (reg) == SUBREG
2544 || GET_CODE (reg) == ZERO_EXTRACT
2545 || GET_CODE (reg) == SIGN_EXTRACT
2546 || GET_CODE (reg) == STRICT_LOW_PART);
2547 if (MEM_P (reg))
2548 break;
2549 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2550 /* Fall through. */
2552 case REG:
2553 regno_last = regno_first = REGNO (reg);
2554 if (regno_first < FIRST_PSEUDO_REGISTER)
2555 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
2556 break;
2558 case SUBREG:
2559 if (REG_P (SUBREG_REG (reg)))
2561 enum machine_mode outer_mode = GET_MODE (reg);
2562 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2564 /* Identify the range of registers affected. This is moderately
2565 tricky for hard registers. See alter_subreg. */
2567 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2568 if (regno_first < FIRST_PSEUDO_REGISTER)
2570 regno_first += subreg_regno_offset (regno_first, inner_mode,
2571 SUBREG_BYTE (reg),
2572 outer_mode);
2573 regno_last = (regno_first
2574 + hard_regno_nregs[regno_first][outer_mode] - 1);
2576 /* Since we've just adjusted the register number ranges, make
2577 sure REG matches. Otherwise some_was_live will be clear
2578 when it shouldn't have been, and we'll create incorrect
2579 REG_UNUSED notes. */
2580 reg = gen_rtx_REG (outer_mode, regno_first);
2582 else
2584 /* If the number of words in the subreg is less than the number
2585 of words in the full register, we have a well-defined partial
2586 set. Otherwise the high bits are undefined.
2588 This is only really applicable to pseudos, since we just took
2589 care of multi-word hard registers. */
2590 if (((GET_MODE_SIZE (outer_mode)
2591 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2592 < ((GET_MODE_SIZE (inner_mode)
2593 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2594 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2595 regno_first);
2597 reg = SUBREG_REG (reg);
2600 else
2601 reg = SUBREG_REG (reg);
2602 break;
2604 default:
2605 break;
2608 /* If this set is a MEM, then it kills any aliased writes.
2609 If this set is a REG, then it kills any MEMs which use the reg. */
2610 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2612 if (REG_P (reg))
2613 invalidate_mems_from_set (pbi, reg);
2615 /* If the memory reference had embedded side effects (autoincrement
2616 address modes. Then we may need to kill some entries on the
2617 memory set list. */
2618 if (insn && MEM_P (reg))
2619 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2621 if (MEM_P (reg) && ! side_effects_p (reg)
2622 /* ??? With more effort we could track conditional memory life. */
2623 && ! cond)
2624 add_to_mem_set_list (pbi, canon_rtx (reg));
2627 if (REG_P (reg)
2628 && ! (regno_first == FRAME_POINTER_REGNUM
2629 && (! reload_completed || frame_pointer_needed))
2630 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2631 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2632 && (! reload_completed || frame_pointer_needed))
2633 #endif
2634 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2635 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2636 #endif
2639 int some_was_live = 0, some_was_dead = 0;
2641 for (i = regno_first; i <= regno_last; ++i)
2643 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2644 if (pbi->local_set)
2646 /* Order of the set operation matters here since both
2647 sets may be the same. */
2648 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2649 if (cond != NULL_RTX
2650 && ! REGNO_REG_SET_P (pbi->local_set, i))
2651 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2652 else
2653 SET_REGNO_REG_SET (pbi->local_set, i);
2655 if (code != CLOBBER)
2656 SET_REGNO_REG_SET (pbi->new_set, i);
2658 some_was_live |= needed_regno;
2659 some_was_dead |= ! needed_regno;
2662 #ifdef HAVE_conditional_execution
2663 /* Consider conditional death in deciding that the register needs
2664 a death note. */
2665 if (some_was_live && ! not_dead
2666 /* The stack pointer is never dead. Well, not strictly true,
2667 but it's very difficult to tell from here. Hopefully
2668 combine_stack_adjustments will fix up the most egregious
2669 errors. */
2670 && regno_first != STACK_POINTER_REGNUM)
2672 for (i = regno_first; i <= regno_last; ++i)
2673 if (! mark_regno_cond_dead (pbi, i, cond))
2674 not_dead |= ((unsigned long) 1) << (i - regno_first);
2676 #endif
2678 /* Additional data to record if this is the final pass. */
2679 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2680 | PROP_DEATH_NOTES | PROP_AUTOINC))
2682 rtx y;
2683 int blocknum = pbi->bb->index;
2685 y = NULL_RTX;
2686 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2688 y = pbi->reg_next_use[regno_first];
2690 /* The next use is no longer next, since a store intervenes. */
2691 for (i = regno_first; i <= regno_last; ++i)
2692 pbi->reg_next_use[i] = 0;
2695 if (flags & PROP_REG_INFO)
2697 for (i = regno_first; i <= regno_last; ++i)
2699 /* Count (weighted) references, stores, etc. This counts a
2700 register twice if it is modified, but that is correct. */
2701 REG_N_SETS (i) += 1;
2702 REG_N_REFS (i) += 1;
2703 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2705 /* The insns where a reg is live are normally counted
2706 elsewhere, but we want the count to include the insn
2707 where the reg is set, and the normal counting mechanism
2708 would not count it. */
2709 REG_LIVE_LENGTH (i) += 1;
2712 /* If this is a hard reg, record this function uses the reg. */
2713 if (regno_first < FIRST_PSEUDO_REGISTER)
2715 for (i = regno_first; i <= regno_last; i++)
2716 regs_ever_live[i] = 1;
2717 if (flags & PROP_ASM_SCAN)
2718 for (i = regno_first; i <= regno_last; i++)
2719 regs_asm_clobbered[i] = 1;
2721 else
2723 /* Keep track of which basic blocks each reg appears in. */
2724 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2725 REG_BASIC_BLOCK (regno_first) = blocknum;
2726 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2727 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2731 if (! some_was_dead)
2733 if (flags & PROP_LOG_LINKS)
2735 /* Make a logical link from the next following insn
2736 that uses this register, back to this insn.
2737 The following insns have already been processed.
2739 We don't build a LOG_LINK for hard registers containing
2740 in ASM_OPERANDs. If these registers get replaced,
2741 we might wind up changing the semantics of the insn,
2742 even if reload can make what appear to be valid
2743 assignments later.
2745 We don't build a LOG_LINK for global registers to
2746 or from a function call. We don't want to let
2747 combine think that it knows what is going on with
2748 global registers. */
2749 if (y && (BLOCK_NUM (y) == blocknum)
2750 && (regno_first >= FIRST_PSEUDO_REGISTER
2751 || (asm_noperands (PATTERN (y)) < 0
2752 && ! ((CALL_P (insn)
2753 || CALL_P (y))
2754 && global_regs[regno_first]))))
2755 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2758 else if (not_dead)
2760 else if (! some_was_live)
2762 if (flags & PROP_REG_INFO)
2763 REG_N_DEATHS (regno_first) += 1;
2765 if (flags & PROP_DEATH_NOTES)
2767 /* Note that dead stores have already been deleted
2768 when possible. If we get here, we have found a
2769 dead store that cannot be eliminated (because the
2770 same insn does something useful). Indicate this
2771 by marking the reg being set as dying here. */
2772 REG_NOTES (insn)
2773 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2776 else
2778 if (flags & PROP_DEATH_NOTES)
2780 /* This is a case where we have a multi-word hard register
2781 and some, but not all, of the words of the register are
2782 needed in subsequent insns. Write REG_UNUSED notes
2783 for those parts that were not needed. This case should
2784 be rare. */
2786 for (i = regno_first; i <= regno_last; ++i)
2787 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2788 REG_NOTES (insn)
2789 = alloc_EXPR_LIST (REG_UNUSED,
2790 regno_reg_rtx[i],
2791 REG_NOTES (insn));
2796 /* Mark the register as being dead. */
2797 if (some_was_live
2798 /* The stack pointer is never dead. Well, not strictly true,
2799 but it's very difficult to tell from here. Hopefully
2800 combine_stack_adjustments will fix up the most egregious
2801 errors. */
2802 && regno_first != STACK_POINTER_REGNUM)
2804 for (i = regno_first; i <= regno_last; ++i)
2805 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2807 if ((pbi->flags & PROP_REG_INFO)
2808 && REGNO_REG_SET_P (pbi->reg_live, i))
2810 REG_LIVE_LENGTH (i) += pbi->insn_num - reg_deaths[i];
2811 reg_deaths[i] = 0;
2813 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2817 else if (REG_P (reg))
2819 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2820 pbi->reg_next_use[regno_first] = 0;
2822 if ((flags & PROP_REG_INFO) != 0
2823 && (flags & PROP_ASM_SCAN) != 0
2824 && regno_first < FIRST_PSEUDO_REGISTER)
2826 for (i = regno_first; i <= regno_last; i++)
2827 regs_asm_clobbered[i] = 1;
2831 /* If this is the last pass and this is a SCRATCH, show it will be dying
2832 here and count it. */
2833 else if (GET_CODE (reg) == SCRATCH)
2835 if (flags & PROP_DEATH_NOTES)
2836 REG_NOTES (insn)
2837 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2841 #ifdef HAVE_conditional_execution
2842 /* Mark REGNO conditionally dead.
2843 Return true if the register is now unconditionally dead. */
2845 static int
2846 mark_regno_cond_dead (struct propagate_block_info *pbi, int regno, rtx cond)
2848 /* If this is a store to a predicate register, the value of the
2849 predicate is changing, we don't know that the predicate as seen
2850 before is the same as that seen after. Flush all dependent
2851 conditions from reg_cond_dead. This will make all such
2852 conditionally live registers unconditionally live. */
2853 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2854 flush_reg_cond_reg (pbi, regno);
2856 /* If this is an unconditional store, remove any conditional
2857 life that may have existed. */
2858 if (cond == NULL_RTX)
2859 splay_tree_remove (pbi->reg_cond_dead, regno);
2860 else
2862 splay_tree_node node;
2863 struct reg_cond_life_info *rcli;
2864 rtx ncond;
2866 /* Otherwise this is a conditional set. Record that fact.
2867 It may have been conditionally used, or there may be a
2868 subsequent set with a complimentary condition. */
2870 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2871 if (node == NULL)
2873 /* The register was unconditionally live previously.
2874 Record the current condition as the condition under
2875 which it is dead. */
2876 rcli = xmalloc (sizeof (*rcli));
2877 rcli->condition = cond;
2878 rcli->stores = cond;
2879 rcli->orig_condition = const0_rtx;
2880 splay_tree_insert (pbi->reg_cond_dead, regno,
2881 (splay_tree_value) rcli);
2883 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2885 /* Not unconditionally dead. */
2886 return 0;
2888 else
2890 /* The register was conditionally live previously.
2891 Add the new condition to the old. */
2892 rcli = (struct reg_cond_life_info *) node->value;
2893 ncond = rcli->condition;
2894 ncond = ior_reg_cond (ncond, cond, 1);
2895 if (rcli->stores == const0_rtx)
2896 rcli->stores = cond;
2897 else if (rcli->stores != const1_rtx)
2898 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2900 /* If the register is now unconditionally dead, remove the entry
2901 in the splay_tree. A register is unconditionally dead if the
2902 dead condition ncond is true. A register is also unconditionally
2903 dead if the sum of all conditional stores is an unconditional
2904 store (stores is true), and the dead condition is identically the
2905 same as the original dead condition initialized at the end of
2906 the block. This is a pointer compare, not an rtx_equal_p
2907 compare. */
2908 if (ncond == const1_rtx
2909 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2910 splay_tree_remove (pbi->reg_cond_dead, regno);
2911 else
2913 rcli->condition = ncond;
2915 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2917 /* Not unconditionally dead. */
2918 return 0;
2923 return 1;
2926 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2928 static void
2929 free_reg_cond_life_info (splay_tree_value value)
2931 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2932 free (rcli);
2935 /* Helper function for flush_reg_cond_reg. */
2937 static int
2938 flush_reg_cond_reg_1 (splay_tree_node node, void *data)
2940 struct reg_cond_life_info *rcli;
2941 int *xdata = (int *) data;
2942 unsigned int regno = xdata[0];
2944 /* Don't need to search if last flushed value was farther on in
2945 the in-order traversal. */
2946 if (xdata[1] >= (int) node->key)
2947 return 0;
2949 /* Splice out portions of the expression that refer to regno. */
2950 rcli = (struct reg_cond_life_info *) node->value;
2951 rcli->condition = elim_reg_cond (rcli->condition, regno);
2952 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
2953 rcli->stores = elim_reg_cond (rcli->stores, regno);
2955 /* If the entire condition is now false, signal the node to be removed. */
2956 if (rcli->condition == const0_rtx)
2958 xdata[1] = node->key;
2959 return -1;
2961 else if (rcli->condition == const1_rtx)
2962 abort ();
2964 return 0;
2967 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
2969 static void
2970 flush_reg_cond_reg (struct propagate_block_info *pbi, int regno)
2972 int pair[2];
2974 pair[0] = regno;
2975 pair[1] = -1;
2976 while (splay_tree_foreach (pbi->reg_cond_dead,
2977 flush_reg_cond_reg_1, pair) == -1)
2978 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
2980 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
2983 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
2984 For ior/and, the ADD flag determines whether we want to add the new
2985 condition X to the old one unconditionally. If it is zero, we will
2986 only return a new expression if X allows us to simplify part of
2987 OLD, otherwise we return NULL to the caller.
2988 If ADD is nonzero, we will return a new condition in all cases. The
2989 toplevel caller of one of these functions should always pass 1 for
2990 ADD. */
2992 static rtx
2993 ior_reg_cond (rtx old, rtx x, int add)
2995 rtx op0, op1;
2997 if (COMPARISON_P (old))
2999 if (COMPARISON_P (x)
3000 && REVERSE_CONDEXEC_PREDICATES_P (x, old)
3001 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3002 return const1_rtx;
3003 if (GET_CODE (x) == GET_CODE (old)
3004 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3005 return old;
3006 if (! add)
3007 return NULL;
3008 return gen_rtx_IOR (0, old, x);
3011 switch (GET_CODE (old))
3013 case IOR:
3014 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3015 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3016 if (op0 != NULL || op1 != NULL)
3018 if (op0 == const0_rtx)
3019 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3020 if (op1 == const0_rtx)
3021 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3022 if (op0 == const1_rtx || op1 == const1_rtx)
3023 return const1_rtx;
3024 if (op0 == NULL)
3025 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3026 else if (rtx_equal_p (x, op0))
3027 /* (x | A) | x ~ (x | A). */
3028 return old;
3029 if (op1 == NULL)
3030 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3031 else if (rtx_equal_p (x, op1))
3032 /* (A | x) | x ~ (A | x). */
3033 return old;
3034 return gen_rtx_IOR (0, op0, op1);
3036 if (! add)
3037 return NULL;
3038 return gen_rtx_IOR (0, old, x);
3040 case AND:
3041 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3042 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3043 if (op0 != NULL || op1 != NULL)
3045 if (op0 == const1_rtx)
3046 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3047 if (op1 == const1_rtx)
3048 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3049 if (op0 == const0_rtx || op1 == const0_rtx)
3050 return const0_rtx;
3051 if (op0 == NULL)
3052 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3053 else if (rtx_equal_p (x, op0))
3054 /* (x & A) | x ~ x. */
3055 return op0;
3056 if (op1 == NULL)
3057 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3058 else if (rtx_equal_p (x, op1))
3059 /* (A & x) | x ~ x. */
3060 return op1;
3061 return gen_rtx_AND (0, op0, op1);
3063 if (! add)
3064 return NULL;
3065 return gen_rtx_IOR (0, old, x);
3067 case NOT:
3068 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3069 if (op0 != NULL)
3070 return not_reg_cond (op0);
3071 if (! add)
3072 return NULL;
3073 return gen_rtx_IOR (0, old, x);
3075 default:
3076 abort ();
3080 static rtx
3081 not_reg_cond (rtx x)
3083 if (x == const0_rtx)
3084 return const1_rtx;
3085 else if (x == const1_rtx)
3086 return const0_rtx;
3087 if (GET_CODE (x) == NOT)
3088 return XEXP (x, 0);
3089 if (COMPARISON_P (x)
3090 && REG_P (XEXP (x, 0)))
3092 if (XEXP (x, 1) != const0_rtx)
3093 abort ();
3095 return gen_rtx_fmt_ee (reversed_comparison_code (x, NULL),
3096 VOIDmode, XEXP (x, 0), const0_rtx);
3098 return gen_rtx_NOT (0, x);
3101 static rtx
3102 and_reg_cond (rtx old, rtx x, int add)
3104 rtx op0, op1;
3106 if (COMPARISON_P (old))
3108 if (COMPARISON_P (x)
3109 && GET_CODE (x) == reversed_comparison_code (old, NULL)
3110 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3111 return const0_rtx;
3112 if (GET_CODE (x) == GET_CODE (old)
3113 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3114 return old;
3115 if (! add)
3116 return NULL;
3117 return gen_rtx_AND (0, old, x);
3120 switch (GET_CODE (old))
3122 case IOR:
3123 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3124 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3125 if (op0 != NULL || op1 != NULL)
3127 if (op0 == const0_rtx)
3128 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3129 if (op1 == const0_rtx)
3130 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3131 if (op0 == const1_rtx || op1 == const1_rtx)
3132 return const1_rtx;
3133 if (op0 == NULL)
3134 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3135 else if (rtx_equal_p (x, op0))
3136 /* (x | A) & x ~ x. */
3137 return op0;
3138 if (op1 == NULL)
3139 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3140 else if (rtx_equal_p (x, op1))
3141 /* (A | x) & x ~ x. */
3142 return op1;
3143 return gen_rtx_IOR (0, op0, op1);
3145 if (! add)
3146 return NULL;
3147 return gen_rtx_AND (0, old, x);
3149 case AND:
3150 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3151 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3152 if (op0 != NULL || op1 != NULL)
3154 if (op0 == const1_rtx)
3155 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3156 if (op1 == const1_rtx)
3157 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3158 if (op0 == const0_rtx || op1 == const0_rtx)
3159 return const0_rtx;
3160 if (op0 == NULL)
3161 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3162 else if (rtx_equal_p (x, op0))
3163 /* (x & A) & x ~ (x & A). */
3164 return old;
3165 if (op1 == NULL)
3166 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3167 else if (rtx_equal_p (x, op1))
3168 /* (A & x) & x ~ (A & x). */
3169 return old;
3170 return gen_rtx_AND (0, op0, op1);
3172 if (! add)
3173 return NULL;
3174 return gen_rtx_AND (0, old, x);
3176 case NOT:
3177 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3178 if (op0 != NULL)
3179 return not_reg_cond (op0);
3180 if (! add)
3181 return NULL;
3182 return gen_rtx_AND (0, old, x);
3184 default:
3185 abort ();
3189 /* Given a condition X, remove references to reg REGNO and return the
3190 new condition. The removal will be done so that all conditions
3191 involving REGNO are considered to evaluate to false. This function
3192 is used when the value of REGNO changes. */
3194 static rtx
3195 elim_reg_cond (rtx x, unsigned int regno)
3197 rtx op0, op1;
3199 if (COMPARISON_P (x))
3201 if (REGNO (XEXP (x, 0)) == regno)
3202 return const0_rtx;
3203 return x;
3206 switch (GET_CODE (x))
3208 case AND:
3209 op0 = elim_reg_cond (XEXP (x, 0), regno);
3210 op1 = elim_reg_cond (XEXP (x, 1), regno);
3211 if (op0 == const0_rtx || op1 == const0_rtx)
3212 return const0_rtx;
3213 if (op0 == const1_rtx)
3214 return op1;
3215 if (op1 == const1_rtx)
3216 return op0;
3217 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3218 return x;
3219 return gen_rtx_AND (0, op0, op1);
3221 case IOR:
3222 op0 = elim_reg_cond (XEXP (x, 0), regno);
3223 op1 = elim_reg_cond (XEXP (x, 1), regno);
3224 if (op0 == const1_rtx || op1 == const1_rtx)
3225 return const1_rtx;
3226 if (op0 == const0_rtx)
3227 return op1;
3228 if (op1 == const0_rtx)
3229 return op0;
3230 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3231 return x;
3232 return gen_rtx_IOR (0, op0, op1);
3234 case NOT:
3235 op0 = elim_reg_cond (XEXP (x, 0), regno);
3236 if (op0 == const0_rtx)
3237 return const1_rtx;
3238 if (op0 == const1_rtx)
3239 return const0_rtx;
3240 if (op0 != XEXP (x, 0))
3241 return not_reg_cond (op0);
3242 return x;
3244 default:
3245 abort ();
3248 #endif /* HAVE_conditional_execution */
3250 #ifdef AUTO_INC_DEC
3252 /* Try to substitute the auto-inc expression INC as the address inside
3253 MEM which occurs in INSN. Currently, the address of MEM is an expression
3254 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3255 that has a single set whose source is a PLUS of INCR_REG and something
3256 else. */
3258 static void
3259 attempt_auto_inc (struct propagate_block_info *pbi, rtx inc, rtx insn,
3260 rtx mem, rtx incr, rtx incr_reg)
3262 int regno = REGNO (incr_reg);
3263 rtx set = single_set (incr);
3264 rtx q = SET_DEST (set);
3265 rtx y = SET_SRC (set);
3266 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3268 /* Make sure this reg appears only once in this insn. */
3269 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3270 return;
3272 if (dead_or_set_p (incr, incr_reg)
3273 /* Mustn't autoinc an eliminable register. */
3274 && (regno >= FIRST_PSEUDO_REGISTER
3275 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3277 /* This is the simple case. Try to make the auto-inc. If
3278 we can't, we are done. Otherwise, we will do any
3279 needed updates below. */
3280 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3281 return;
3283 else if (REG_P (q)
3284 /* PREV_INSN used here to check the semi-open interval
3285 [insn,incr). */
3286 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3287 /* We must also check for sets of q as q may be
3288 a call clobbered hard register and there may
3289 be a call between PREV_INSN (insn) and incr. */
3290 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3292 /* We have *p followed sometime later by q = p+size.
3293 Both p and q must be live afterward,
3294 and q is not used between INSN and its assignment.
3295 Change it to q = p, ...*q..., q = q+size.
3296 Then fall into the usual case. */
3297 rtx insns, temp;
3299 start_sequence ();
3300 emit_move_insn (q, incr_reg);
3301 insns = get_insns ();
3302 end_sequence ();
3304 /* If we can't make the auto-inc, or can't make the
3305 replacement into Y, exit. There's no point in making
3306 the change below if we can't do the auto-inc and doing
3307 so is not correct in the pre-inc case. */
3309 XEXP (inc, 0) = q;
3310 validate_change (insn, &XEXP (mem, 0), inc, 1);
3311 validate_change (incr, &XEXP (y, opnum), q, 1);
3312 if (! apply_change_group ())
3313 return;
3315 /* We now know we'll be doing this change, so emit the
3316 new insn(s) and do the updates. */
3317 emit_insn_before (insns, insn);
3319 if (BB_HEAD (pbi->bb) == insn)
3320 BB_HEAD (pbi->bb) = insns;
3322 /* INCR will become a NOTE and INSN won't contain a
3323 use of INCR_REG. If a use of INCR_REG was just placed in
3324 the insn before INSN, make that the next use.
3325 Otherwise, invalidate it. */
3326 if (NONJUMP_INSN_P (PREV_INSN (insn))
3327 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3328 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3329 pbi->reg_next_use[regno] = PREV_INSN (insn);
3330 else
3331 pbi->reg_next_use[regno] = 0;
3333 incr_reg = q;
3334 regno = REGNO (q);
3336 if ((pbi->flags & PROP_REG_INFO)
3337 && !REGNO_REG_SET_P (pbi->reg_live, regno))
3338 reg_deaths[regno] = pbi->insn_num;
3340 /* REGNO is now used in INCR which is below INSN, but
3341 it previously wasn't live here. If we don't mark
3342 it as live, we'll put a REG_DEAD note for it
3343 on this insn, which is incorrect. */
3344 SET_REGNO_REG_SET (pbi->reg_live, regno);
3346 /* If there are any calls between INSN and INCR, show
3347 that REGNO now crosses them. */
3348 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3349 if (CALL_P (temp))
3350 REG_N_CALLS_CROSSED (regno)++;
3352 /* Invalidate alias info for Q since we just changed its value. */
3353 clear_reg_alias_info (q);
3355 else
3356 return;
3358 /* If we haven't returned, it means we were able to make the
3359 auto-inc, so update the status. First, record that this insn
3360 has an implicit side effect. */
3362 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3364 /* Modify the old increment-insn to simply copy
3365 the already-incremented value of our register. */
3366 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3367 abort ();
3369 /* If that makes it a no-op (copying the register into itself) delete
3370 it so it won't appear to be a "use" and a "set" of this
3371 register. */
3372 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3374 /* If the original source was dead, it's dead now. */
3375 rtx note;
3377 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3379 remove_note (incr, note);
3380 if (XEXP (note, 0) != incr_reg)
3382 unsigned int regno = REGNO (XEXP (note, 0));
3384 if ((pbi->flags & PROP_REG_INFO)
3385 && REGNO_REG_SET_P (pbi->reg_live, regno))
3387 REG_LIVE_LENGTH (regno) += pbi->insn_num - reg_deaths[regno];
3388 reg_deaths[regno] = 0;
3390 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3394 SET_INSN_DELETED (incr);
3397 if (regno >= FIRST_PSEUDO_REGISTER)
3399 /* Count an extra reference to the reg. When a reg is
3400 incremented, spilling it is worse, so we want to make
3401 that less likely. */
3402 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3404 /* Count the increment as a setting of the register,
3405 even though it isn't a SET in rtl. */
3406 REG_N_SETS (regno)++;
3410 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3411 reference. */
3413 static void
3414 find_auto_inc (struct propagate_block_info *pbi, rtx x, rtx insn)
3416 rtx addr = XEXP (x, 0);
3417 HOST_WIDE_INT offset = 0;
3418 rtx set, y, incr, inc_val;
3419 int regno;
3420 int size = GET_MODE_SIZE (GET_MODE (x));
3422 if (JUMP_P (insn))
3423 return;
3425 /* Here we detect use of an index register which might be good for
3426 postincrement, postdecrement, preincrement, or predecrement. */
3428 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3429 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3431 if (!REG_P (addr))
3432 return;
3434 regno = REGNO (addr);
3436 /* Is the next use an increment that might make auto-increment? */
3437 incr = pbi->reg_next_use[regno];
3438 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3439 return;
3440 set = single_set (incr);
3441 if (set == 0 || GET_CODE (set) != SET)
3442 return;
3443 y = SET_SRC (set);
3445 if (GET_CODE (y) != PLUS)
3446 return;
3448 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3449 inc_val = XEXP (y, 1);
3450 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3451 inc_val = XEXP (y, 0);
3452 else
3453 return;
3455 if (GET_CODE (inc_val) == CONST_INT)
3457 if (HAVE_POST_INCREMENT
3458 && (INTVAL (inc_val) == size && offset == 0))
3459 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3460 incr, addr);
3461 else if (HAVE_POST_DECREMENT
3462 && (INTVAL (inc_val) == -size && offset == 0))
3463 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3464 incr, addr);
3465 else if (HAVE_PRE_INCREMENT
3466 && (INTVAL (inc_val) == size && offset == size))
3467 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3468 incr, addr);
3469 else if (HAVE_PRE_DECREMENT
3470 && (INTVAL (inc_val) == -size && offset == -size))
3471 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3472 incr, addr);
3473 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3474 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3475 gen_rtx_PLUS (Pmode,
3476 addr,
3477 inc_val)),
3478 insn, x, incr, addr);
3479 else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3480 attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3481 gen_rtx_PLUS (Pmode,
3482 addr,
3483 inc_val)),
3484 insn, x, incr, addr);
3486 else if (REG_P (inc_val)
3487 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3488 NEXT_INSN (incr)))
3491 if (HAVE_POST_MODIFY_REG && offset == 0)
3492 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3493 gen_rtx_PLUS (Pmode,
3494 addr,
3495 inc_val)),
3496 insn, x, incr, addr);
3500 #endif /* AUTO_INC_DEC */
3502 static void
3503 mark_used_reg (struct propagate_block_info *pbi, rtx reg,
3504 rtx cond ATTRIBUTE_UNUSED, rtx insn)
3506 unsigned int regno_first, regno_last, i;
3507 int some_was_live, some_was_dead, some_not_set;
3509 regno_last = regno_first = REGNO (reg);
3510 if (regno_first < FIRST_PSEUDO_REGISTER)
3511 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
3513 /* Find out if any of this register is live after this instruction. */
3514 some_was_live = some_was_dead = 0;
3515 for (i = regno_first; i <= regno_last; ++i)
3517 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3518 some_was_live |= needed_regno;
3519 some_was_dead |= ! needed_regno;
3522 /* Find out if any of the register was set this insn. */
3523 some_not_set = 0;
3524 for (i = regno_first; i <= regno_last; ++i)
3525 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3527 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3529 /* Record where each reg is used, so when the reg is set we know
3530 the next insn that uses it. */
3531 pbi->reg_next_use[regno_first] = insn;
3534 if (pbi->flags & PROP_REG_INFO)
3536 if (regno_first < FIRST_PSEUDO_REGISTER)
3538 /* If this is a register we are going to try to eliminate,
3539 don't mark it live here. If we are successful in
3540 eliminating it, it need not be live unless it is used for
3541 pseudos, in which case it will have been set live when it
3542 was allocated to the pseudos. If the register will not
3543 be eliminated, reload will set it live at that point.
3545 Otherwise, record that this function uses this register. */
3546 /* ??? The PPC backend tries to "eliminate" on the pic
3547 register to itself. This should be fixed. In the mean
3548 time, hack around it. */
3550 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3551 && (regno_first == FRAME_POINTER_REGNUM
3552 || regno_first == ARG_POINTER_REGNUM)))
3553 for (i = regno_first; i <= regno_last; ++i)
3554 regs_ever_live[i] = 1;
3556 else
3558 /* Keep track of which basic block each reg appears in. */
3560 int blocknum = pbi->bb->index;
3561 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3562 REG_BASIC_BLOCK (regno_first) = blocknum;
3563 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3564 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3566 /* Count (weighted) number of uses of each reg. */
3567 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3568 REG_N_REFS (regno_first)++;
3570 for (i = regno_first; i <= regno_last; ++i)
3571 if (! REGNO_REG_SET_P (pbi->reg_live, i))
3573 #ifdef ENABLE_CHECKING
3574 if (reg_deaths[i])
3575 abort ();
3576 #endif
3577 reg_deaths[i] = pbi->insn_num;
3581 /* Record and count the insns in which a reg dies. If it is used in
3582 this insn and was dead below the insn then it dies in this insn.
3583 If it was set in this insn, we do not make a REG_DEAD note;
3584 likewise if we already made such a note. */
3585 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3586 && some_was_dead
3587 && some_not_set)
3589 /* Check for the case where the register dying partially
3590 overlaps the register set by this insn. */
3591 if (regno_first != regno_last)
3592 for (i = regno_first; i <= regno_last; ++i)
3593 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3595 /* If none of the words in X is needed, make a REG_DEAD note.
3596 Otherwise, we must make partial REG_DEAD notes. */
3597 if (! some_was_live)
3599 if ((pbi->flags & PROP_DEATH_NOTES)
3600 && ! find_regno_note (insn, REG_DEAD, regno_first))
3601 REG_NOTES (insn)
3602 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3604 if (pbi->flags & PROP_REG_INFO)
3605 REG_N_DEATHS (regno_first)++;
3607 else
3609 /* Don't make a REG_DEAD note for a part of a register
3610 that is set in the insn. */
3611 for (i = regno_first; i <= regno_last; ++i)
3612 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3613 && ! dead_or_set_regno_p (insn, i))
3614 REG_NOTES (insn)
3615 = alloc_EXPR_LIST (REG_DEAD,
3616 regno_reg_rtx[i],
3617 REG_NOTES (insn));
3621 /* Mark the register as being live. */
3622 for (i = regno_first; i <= regno_last; ++i)
3624 #ifdef HAVE_conditional_execution
3625 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3626 #endif
3628 SET_REGNO_REG_SET (pbi->reg_live, i);
3630 #ifdef HAVE_conditional_execution
3631 /* If this is a conditional use, record that fact. If it is later
3632 conditionally set, we'll know to kill the register. */
3633 if (cond != NULL_RTX)
3635 splay_tree_node node;
3636 struct reg_cond_life_info *rcli;
3637 rtx ncond;
3639 if (this_was_live)
3641 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3642 if (node == NULL)
3644 /* The register was unconditionally live previously.
3645 No need to do anything. */
3647 else
3649 /* The register was conditionally live previously.
3650 Subtract the new life cond from the old death cond. */
3651 rcli = (struct reg_cond_life_info *) node->value;
3652 ncond = rcli->condition;
3653 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3655 /* If the register is now unconditionally live,
3656 remove the entry in the splay_tree. */
3657 if (ncond == const0_rtx)
3658 splay_tree_remove (pbi->reg_cond_dead, i);
3659 else
3661 rcli->condition = ncond;
3662 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3663 REGNO (XEXP (cond, 0)));
3667 else
3669 /* The register was not previously live at all. Record
3670 the condition under which it is still dead. */
3671 rcli = xmalloc (sizeof (*rcli));
3672 rcli->condition = not_reg_cond (cond);
3673 rcli->stores = const0_rtx;
3674 rcli->orig_condition = const0_rtx;
3675 splay_tree_insert (pbi->reg_cond_dead, i,
3676 (splay_tree_value) rcli);
3678 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3681 else if (this_was_live)
3683 /* The register may have been conditionally live previously, but
3684 is now unconditionally live. Remove it from the conditionally
3685 dead list, so that a conditional set won't cause us to think
3686 it dead. */
3687 splay_tree_remove (pbi->reg_cond_dead, i);
3689 #endif
3693 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3694 This is done assuming the registers needed from X are those that
3695 have 1-bits in PBI->REG_LIVE.
3697 INSN is the containing instruction. If INSN is dead, this function
3698 is not called. */
3700 static void
3701 mark_used_regs (struct propagate_block_info *pbi, rtx x, rtx cond, rtx insn)
3703 RTX_CODE code;
3704 int regno;
3705 int flags = pbi->flags;
3707 retry:
3708 if (!x)
3709 return;
3710 code = GET_CODE (x);
3711 switch (code)
3713 case LABEL_REF:
3714 case SYMBOL_REF:
3715 case CONST_INT:
3716 case CONST:
3717 case CONST_DOUBLE:
3718 case CONST_VECTOR:
3719 case PC:
3720 case ADDR_VEC:
3721 case ADDR_DIFF_VEC:
3722 return;
3724 #ifdef HAVE_cc0
3725 case CC0:
3726 pbi->cc0_live = 1;
3727 return;
3728 #endif
3730 case CLOBBER:
3731 /* If we are clobbering a MEM, mark any registers inside the address
3732 as being used. */
3733 if (MEM_P (XEXP (x, 0)))
3734 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3735 return;
3737 case MEM:
3738 /* Don't bother watching stores to mems if this is not the
3739 final pass. We'll not be deleting dead stores this round. */
3740 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3742 /* Invalidate the data for the last MEM stored, but only if MEM is
3743 something that can be stored into. */
3744 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3745 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3746 /* Needn't clear the memory set list. */
3748 else
3750 rtx temp = pbi->mem_set_list;
3751 rtx prev = NULL_RTX;
3752 rtx next;
3754 while (temp)
3756 next = XEXP (temp, 1);
3757 if (anti_dependence (XEXP (temp, 0), x))
3759 /* Splice temp out of the list. */
3760 if (prev)
3761 XEXP (prev, 1) = next;
3762 else
3763 pbi->mem_set_list = next;
3764 free_EXPR_LIST_node (temp);
3765 pbi->mem_set_list_len--;
3767 else
3768 prev = temp;
3769 temp = next;
3773 /* If the memory reference had embedded side effects (autoincrement
3774 address modes. Then we may need to kill some entries on the
3775 memory set list. */
3776 if (insn)
3777 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3780 #ifdef AUTO_INC_DEC
3781 if (flags & PROP_AUTOINC)
3782 find_auto_inc (pbi, x, insn);
3783 #endif
3784 break;
3786 case SUBREG:
3787 #ifdef CANNOT_CHANGE_MODE_CLASS
3788 if ((flags & PROP_REG_INFO)
3789 && REG_P (SUBREG_REG (x))
3790 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
3791 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (x))
3792 * MAX_MACHINE_MODE
3793 + GET_MODE (x));
3794 #endif
3796 /* While we're here, optimize this case. */
3797 x = SUBREG_REG (x);
3798 if (!REG_P (x))
3799 goto retry;
3800 /* Fall through. */
3802 case REG:
3803 /* See a register other than being set => mark it as needed. */
3804 mark_used_reg (pbi, x, cond, insn);
3805 return;
3807 case SET:
3809 rtx testreg = SET_DEST (x);
3810 int mark_dest = 0;
3812 /* If storing into MEM, don't show it as being used. But do
3813 show the address as being used. */
3814 if (MEM_P (testreg))
3816 #ifdef AUTO_INC_DEC
3817 if (flags & PROP_AUTOINC)
3818 find_auto_inc (pbi, testreg, insn);
3819 #endif
3820 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3821 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3822 return;
3825 /* Storing in STRICT_LOW_PART is like storing in a reg
3826 in that this SET might be dead, so ignore it in TESTREG.
3827 but in some other ways it is like using the reg.
3829 Storing in a SUBREG or a bit field is like storing the entire
3830 register in that if the register's value is not used
3831 then this SET is not needed. */
3832 while (GET_CODE (testreg) == STRICT_LOW_PART
3833 || GET_CODE (testreg) == ZERO_EXTRACT
3834 || GET_CODE (testreg) == SIGN_EXTRACT
3835 || GET_CODE (testreg) == SUBREG)
3837 #ifdef CANNOT_CHANGE_MODE_CLASS
3838 if ((flags & PROP_REG_INFO)
3839 && GET_CODE (testreg) == SUBREG
3840 && REG_P (SUBREG_REG (testreg))
3841 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER)
3842 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (testreg))
3843 * MAX_MACHINE_MODE
3844 + GET_MODE (testreg));
3845 #endif
3847 /* Modifying a single register in an alternate mode
3848 does not use any of the old value. But these other
3849 ways of storing in a register do use the old value. */
3850 if (GET_CODE (testreg) == SUBREG
3851 && !((REG_BYTES (SUBREG_REG (testreg))
3852 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3853 > (REG_BYTES (testreg)
3854 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3856 else
3857 mark_dest = 1;
3859 testreg = XEXP (testreg, 0);
3862 /* If this is a store into a register or group of registers,
3863 recursively scan the value being stored. */
3865 if ((GET_CODE (testreg) == PARALLEL
3866 && GET_MODE (testreg) == BLKmode)
3867 || (REG_P (testreg)
3868 && (regno = REGNO (testreg),
3869 ! (regno == FRAME_POINTER_REGNUM
3870 && (! reload_completed || frame_pointer_needed)))
3871 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3872 && ! (regno == HARD_FRAME_POINTER_REGNUM
3873 && (! reload_completed || frame_pointer_needed))
3874 #endif
3875 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3876 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3877 #endif
3880 if (mark_dest)
3881 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3882 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3883 return;
3886 break;
3888 case ASM_OPERANDS:
3889 case UNSPEC_VOLATILE:
3890 case TRAP_IF:
3891 case ASM_INPUT:
3893 /* Traditional and volatile asm instructions must be considered to use
3894 and clobber all hard registers, all pseudo-registers and all of
3895 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3897 Consider for instance a volatile asm that changes the fpu rounding
3898 mode. An insn should not be moved across this even if it only uses
3899 pseudo-regs because it might give an incorrectly rounded result.
3901 ?!? Unfortunately, marking all hard registers as live causes massive
3902 problems for the register allocator and marking all pseudos as live
3903 creates mountains of uninitialized variable warnings.
3905 So for now, just clear the memory set list and mark any regs
3906 we can find in ASM_OPERANDS as used. */
3907 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3909 free_EXPR_LIST_list (&pbi->mem_set_list);
3910 pbi->mem_set_list_len = 0;
3913 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3914 We can not just fall through here since then we would be confused
3915 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3916 traditional asms unlike their normal usage. */
3917 if (code == ASM_OPERANDS)
3919 int j;
3921 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3922 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3924 break;
3927 case COND_EXEC:
3928 if (cond != NULL_RTX)
3929 abort ();
3931 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3933 cond = COND_EXEC_TEST (x);
3934 x = COND_EXEC_CODE (x);
3935 goto retry;
3937 default:
3938 break;
3941 /* Recursively scan the operands of this expression. */
3944 const char * const fmt = GET_RTX_FORMAT (code);
3945 int i;
3947 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3949 if (fmt[i] == 'e')
3951 /* Tail recursive case: save a function call level. */
3952 if (i == 0)
3954 x = XEXP (x, 0);
3955 goto retry;
3957 mark_used_regs (pbi, XEXP (x, i), cond, insn);
3959 else if (fmt[i] == 'E')
3961 int j;
3962 for (j = 0; j < XVECLEN (x, i); j++)
3963 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
3969 #ifdef AUTO_INC_DEC
3971 static int
3972 try_pre_increment_1 (struct propagate_block_info *pbi, rtx insn)
3974 /* Find the next use of this reg. If in same basic block,
3975 make it do pre-increment or pre-decrement if appropriate. */
3976 rtx x = single_set (insn);
3977 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
3978 * INTVAL (XEXP (SET_SRC (x), 1)));
3979 int regno = REGNO (SET_DEST (x));
3980 rtx y = pbi->reg_next_use[regno];
3981 if (y != 0
3982 && SET_DEST (x) != stack_pointer_rtx
3983 && BLOCK_NUM (y) == BLOCK_NUM (insn)
3984 /* Don't do this if the reg dies, or gets set in y; a standard addressing
3985 mode would be better. */
3986 && ! dead_or_set_p (y, SET_DEST (x))
3987 && try_pre_increment (y, SET_DEST (x), amount))
3989 /* We have found a suitable auto-increment and already changed
3990 insn Y to do it. So flush this increment instruction. */
3991 propagate_block_delete_insn (insn);
3993 /* Count a reference to this reg for the increment insn we are
3994 deleting. When a reg is incremented, spilling it is worse,
3995 so we want to make that less likely. */
3996 if (regno >= FIRST_PSEUDO_REGISTER)
3998 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3999 REG_N_SETS (regno)++;
4002 /* Flush any remembered memories depending on the value of
4003 the incremented register. */
4004 invalidate_mems_from_set (pbi, SET_DEST (x));
4006 return 1;
4008 return 0;
4011 /* Try to change INSN so that it does pre-increment or pre-decrement
4012 addressing on register REG in order to add AMOUNT to REG.
4013 AMOUNT is negative for pre-decrement.
4014 Returns 1 if the change could be made.
4015 This checks all about the validity of the result of modifying INSN. */
4017 static int
4018 try_pre_increment (rtx insn, rtx reg, HOST_WIDE_INT amount)
4020 rtx use;
4022 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4023 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4024 int pre_ok = 0;
4025 /* Nonzero if we can try to make a post-increment or post-decrement.
4026 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4027 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4028 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4029 int post_ok = 0;
4031 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4032 int do_post = 0;
4034 /* From the sign of increment, see which possibilities are conceivable
4035 on this target machine. */
4036 if (HAVE_PRE_INCREMENT && amount > 0)
4037 pre_ok = 1;
4038 if (HAVE_POST_INCREMENT && amount > 0)
4039 post_ok = 1;
4041 if (HAVE_PRE_DECREMENT && amount < 0)
4042 pre_ok = 1;
4043 if (HAVE_POST_DECREMENT && amount < 0)
4044 post_ok = 1;
4046 if (! (pre_ok || post_ok))
4047 return 0;
4049 /* It is not safe to add a side effect to a jump insn
4050 because if the incremented register is spilled and must be reloaded
4051 there would be no way to store the incremented value back in memory. */
4053 if (JUMP_P (insn))
4054 return 0;
4056 use = 0;
4057 if (pre_ok)
4058 use = find_use_as_address (PATTERN (insn), reg, 0);
4059 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4061 use = find_use_as_address (PATTERN (insn), reg, -amount);
4062 do_post = 1;
4065 if (use == 0 || use == (rtx) (size_t) 1)
4066 return 0;
4068 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4069 return 0;
4071 /* See if this combination of instruction and addressing mode exists. */
4072 if (! validate_change (insn, &XEXP (use, 0),
4073 gen_rtx_fmt_e (amount > 0
4074 ? (do_post ? POST_INC : PRE_INC)
4075 : (do_post ? POST_DEC : PRE_DEC),
4076 Pmode, reg), 0))
4077 return 0;
4079 /* Record that this insn now has an implicit side effect on X. */
4080 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4081 return 1;
4084 #endif /* AUTO_INC_DEC */
4086 /* Find the place in the rtx X where REG is used as a memory address.
4087 Return the MEM rtx that so uses it.
4088 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4089 (plus REG (const_int PLUSCONST)).
4091 If such an address does not appear, return 0.
4092 If REG appears more than once, or is used other than in such an address,
4093 return (rtx) 1. */
4096 find_use_as_address (rtx x, rtx reg, HOST_WIDE_INT plusconst)
4098 enum rtx_code code = GET_CODE (x);
4099 const char * const fmt = GET_RTX_FORMAT (code);
4100 int i;
4101 rtx value = 0;
4102 rtx tem;
4104 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4105 return x;
4107 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4108 && XEXP (XEXP (x, 0), 0) == reg
4109 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4110 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4111 return x;
4113 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4115 /* If REG occurs inside a MEM used in a bit-field reference,
4116 that is unacceptable. */
4117 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4118 return (rtx) (size_t) 1;
4121 if (x == reg)
4122 return (rtx) (size_t) 1;
4124 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4126 if (fmt[i] == 'e')
4128 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4129 if (value == 0)
4130 value = tem;
4131 else if (tem != 0)
4132 return (rtx) (size_t) 1;
4134 else if (fmt[i] == 'E')
4136 int j;
4137 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4139 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4140 if (value == 0)
4141 value = tem;
4142 else if (tem != 0)
4143 return (rtx) (size_t) 1;
4148 return value;
4151 /* Write information about registers and basic blocks into FILE.
4152 This is part of making a debugging dump. */
4154 void
4155 dump_regset (regset r, FILE *outf)
4157 int i;
4158 if (r == NULL)
4160 fputs (" (nil)", outf);
4161 return;
4164 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4166 fprintf (outf, " %d", i);
4167 if (i < FIRST_PSEUDO_REGISTER)
4168 fprintf (outf, " [%s]",
4169 reg_names[i]);
4173 /* Print a human-readable representation of R on the standard error
4174 stream. This function is designed to be used from within the
4175 debugger. */
4177 void
4178 debug_regset (regset r)
4180 dump_regset (r, stderr);
4181 putc ('\n', stderr);
4184 /* Recompute register set/reference counts immediately prior to register
4185 allocation.
4187 This avoids problems with set/reference counts changing to/from values
4188 which have special meanings to the register allocators.
4190 Additionally, the reference counts are the primary component used by the
4191 register allocators to prioritize pseudos for allocation to hard regs.
4192 More accurate reference counts generally lead to better register allocation.
4194 F is the first insn to be scanned.
4196 LOOP_STEP denotes how much loop_depth should be incremented per
4197 loop nesting level in order to increase the ref count more for
4198 references in a loop.
4200 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4201 possibly other information which is used by the register allocators. */
4203 void
4204 recompute_reg_usage (rtx f ATTRIBUTE_UNUSED, int loop_step ATTRIBUTE_UNUSED)
4206 allocate_reg_life_data ();
4207 /* distribute_notes in combiner fails to convert some of the REG_UNUSED notes
4208 to REG_DEAD notes. This causes CHECK_DEAD_NOTES in sched1 to abort. To
4209 solve this update the DEATH_NOTES here. */
4210 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO | PROP_DEATH_NOTES);
4213 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4214 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4215 of the number of registers that died. */
4218 count_or_remove_death_notes (sbitmap blocks, int kill)
4220 int count = 0;
4221 int i;
4222 basic_block bb;
4224 /* This used to be a loop over all the blocks with a membership test
4225 inside the loop. That can be amazingly expensive on a large CFG
4226 when only a small number of bits are set in BLOCKs (for example,
4227 the calls from the scheduler typically have very few bits set).
4229 For extra credit, someone should convert BLOCKS to a bitmap rather
4230 than an sbitmap. */
4231 if (blocks)
4233 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4235 count += count_or_remove_death_notes_bb (BASIC_BLOCK (i), kill);
4238 else
4240 FOR_EACH_BB (bb)
4242 count += count_or_remove_death_notes_bb (bb, kill);
4246 return count;
4249 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from basic
4250 block BB. Returns a count of the number of registers that died. */
4252 static int
4253 count_or_remove_death_notes_bb (basic_block bb, int kill)
4255 int count = 0;
4256 rtx insn;
4258 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
4260 if (INSN_P (insn))
4262 rtx *pprev = &REG_NOTES (insn);
4263 rtx link = *pprev;
4265 while (link)
4267 switch (REG_NOTE_KIND (link))
4269 case REG_DEAD:
4270 if (REG_P (XEXP (link, 0)))
4272 rtx reg = XEXP (link, 0);
4273 int n;
4275 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4276 n = 1;
4277 else
4278 n = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
4279 count += n;
4282 /* Fall through. */
4284 case REG_UNUSED:
4285 if (kill)
4287 rtx next = XEXP (link, 1);
4288 free_EXPR_LIST_node (link);
4289 *pprev = link = next;
4290 break;
4292 /* Fall through. */
4294 default:
4295 pprev = &XEXP (link, 1);
4296 link = *pprev;
4297 break;
4302 if (insn == BB_END (bb))
4303 break;
4306 return count;
4309 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4310 if blocks is NULL. */
4312 static void
4313 clear_log_links (sbitmap blocks)
4315 rtx insn;
4316 int i;
4318 if (!blocks)
4320 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4321 if (INSN_P (insn))
4322 free_INSN_LIST_list (&LOG_LINKS (insn));
4324 else
4325 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4327 basic_block bb = BASIC_BLOCK (i);
4329 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
4330 insn = NEXT_INSN (insn))
4331 if (INSN_P (insn))
4332 free_INSN_LIST_list (&LOG_LINKS (insn));
4336 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4337 correspond to the hard registers, if any, set in that map. This
4338 could be done far more efficiently by having all sorts of special-cases
4339 with moving single words, but probably isn't worth the trouble. */
4341 void
4342 reg_set_to_hard_reg_set (HARD_REG_SET *to, bitmap from)
4344 int i;
4346 EXECUTE_IF_SET_IN_BITMAP
4347 (from, 0, i,
4349 if (i >= FIRST_PSEUDO_REGISTER)
4350 return;
4351 SET_HARD_REG_BIT (*to, i);