* arm.h (REVERSE_CONDITION): Define.
[official-gcc.git] / gcc / combine.c
blob4bd1555b1eda89cd7a5d9b418609b269ab5f0466
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
58 linking
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tree.h"
79 #include "tm_p.h"
80 #include "flags.h"
81 #include "regs.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
85 #include "function.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
87 #include "expr.h"
88 #include "insn-attr.h"
89 #include "recog.h"
90 #include "real.h"
91 #include "toplev.h"
92 #include "target.h"
93 #include "rtlhooks-def.h"
94 /* Include output.h for dump_file. */
95 #include "output.h"
97 /* Number of attempts to combine instructions in this function. */
99 static int combine_attempts;
101 /* Number of attempts that got as far as substitution in this function. */
103 static int combine_merges;
105 /* Number of instructions combined with added SETs in this function. */
107 static int combine_extras;
109 /* Number of instructions combined in this function. */
111 static int combine_successes;
113 /* Totals over entire compilation. */
115 static int total_attempts, total_merges, total_extras, total_successes;
118 /* Vector mapping INSN_UIDs to cuids.
119 The cuids are like uids but increase monotonically always.
120 Combine always uses cuids so that it can compare them.
121 But actually renumbering the uids, which we used to do,
122 proves to be a bad idea because it makes it hard to compare
123 the dumps produced by earlier passes with those from later passes. */
125 static int *uid_cuid;
126 static int max_uid_cuid;
128 /* Get the cuid of an insn. */
130 #define INSN_CUID(INSN) \
131 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
133 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
134 BITS_PER_WORD would invoke undefined behavior. Work around it. */
136 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
137 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
139 /* Maximum register number, which is the size of the tables below. */
141 static unsigned int combine_max_regno;
143 struct reg_stat {
144 /* Record last point of death of (hard or pseudo) register n. */
145 rtx last_death;
147 /* Record last point of modification of (hard or pseudo) register n. */
148 rtx last_set;
150 /* The next group of fields allows the recording of the last value assigned
151 to (hard or pseudo) register n. We use this information to see if an
152 operation being processed is redundant given a prior operation performed
153 on the register. For example, an `and' with a constant is redundant if
154 all the zero bits are already known to be turned off.
156 We use an approach similar to that used by cse, but change it in the
157 following ways:
159 (1) We do not want to reinitialize at each label.
160 (2) It is useful, but not critical, to know the actual value assigned
161 to a register. Often just its form is helpful.
163 Therefore, we maintain the following fields:
165 last_set_value the last value assigned
166 last_set_label records the value of label_tick when the
167 register was assigned
168 last_set_table_tick records the value of label_tick when a
169 value using the register is assigned
170 last_set_invalid set to nonzero when it is not valid
171 to use the value of this register in some
172 register's value
174 To understand the usage of these tables, it is important to understand
175 the distinction between the value in last_set_value being valid and
176 the register being validly contained in some other expression in the
177 table.
179 (The next two parameters are out of date).
181 reg_stat[i].last_set_value is valid if it is nonzero, and either
182 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
184 Register I may validly appear in any expression returned for the value
185 of another register if reg_n_sets[i] is 1. It may also appear in the
186 value for register J if reg_stat[j].last_set_invalid is zero, or
187 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
189 If an expression is found in the table containing a register which may
190 not validly appear in an expression, the register is replaced by
191 something that won't match, (clobber (const_int 0)). */
193 /* Record last value assigned to (hard or pseudo) register n. */
195 rtx last_set_value;
197 /* Record the value of label_tick when an expression involving register n
198 is placed in last_set_value. */
200 int last_set_table_tick;
202 /* Record the value of label_tick when the value for register n is placed in
203 last_set_value. */
205 int last_set_label;
207 /* These fields are maintained in parallel with last_set_value and are
208 used to store the mode in which the register was last set, the bits
209 that were known to be zero when it was last set, and the number of
210 sign bits copies it was known to have when it was last set. */
212 unsigned HOST_WIDE_INT last_set_nonzero_bits;
213 char last_set_sign_bit_copies;
214 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
216 /* Set nonzero if references to register n in expressions should not be
217 used. last_set_invalid is set nonzero when this register is being
218 assigned to and last_set_table_tick == label_tick. */
220 char last_set_invalid;
222 /* Some registers that are set more than once and used in more than one
223 basic block are nevertheless always set in similar ways. For example,
224 a QImode register may be loaded from memory in two places on a machine
225 where byte loads zero extend.
227 We record in the following fields if a register has some leading bits
228 that are always equal to the sign bit, and what we know about the
229 nonzero bits of a register, specifically which bits are known to be
230 zero.
232 If an entry is zero, it means that we don't know anything special. */
234 unsigned char sign_bit_copies;
236 unsigned HOST_WIDE_INT nonzero_bits;
239 static struct reg_stat *reg_stat;
241 /* Record the cuid of the last insn that invalidated memory
242 (anything that writes memory, and subroutine calls, but not pushes). */
244 static int mem_last_set;
246 /* Record the cuid of the last CALL_INSN
247 so we can tell whether a potential combination crosses any calls. */
249 static int last_call_cuid;
251 /* When `subst' is called, this is the insn that is being modified
252 (by combining in a previous insn). The PATTERN of this insn
253 is still the old pattern partially modified and it should not be
254 looked at, but this may be used to examine the successors of the insn
255 to judge whether a simplification is valid. */
257 static rtx subst_insn;
259 /* This is the lowest CUID that `subst' is currently dealing with.
260 get_last_value will not return a value if the register was set at or
261 after this CUID. If not for this mechanism, we could get confused if
262 I2 or I1 in try_combine were an insn that used the old value of a register
263 to obtain a new value. In that case, we might erroneously get the
264 new value of the register when we wanted the old one. */
266 static int subst_low_cuid;
268 /* This contains any hard registers that are used in newpat; reg_dead_at_p
269 must consider all these registers to be always live. */
271 static HARD_REG_SET newpat_used_regs;
273 /* This is an insn to which a LOG_LINKS entry has been added. If this
274 insn is the earlier than I2 or I3, combine should rescan starting at
275 that location. */
277 static rtx added_links_insn;
279 /* Basic block in which we are performing combines. */
280 static basic_block this_basic_block;
282 /* A bitmap indicating which blocks had registers go dead at entry.
283 After combine, we'll need to re-do global life analysis with
284 those blocks as starting points. */
285 static sbitmap refresh_blocks;
287 /* The following array records the insn_rtx_cost for every insn
288 in the instruction stream. */
290 static int *uid_insn_cost;
292 /* Length of the currently allocated uid_insn_cost array. */
294 static int last_insn_cost;
296 /* Incremented for each label. */
298 static int label_tick;
300 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
301 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
303 static enum machine_mode nonzero_bits_mode;
305 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
306 be safely used. It is zero while computing them and after combine has
307 completed. This former test prevents propagating values based on
308 previously set values, which can be incorrect if a variable is modified
309 in a loop. */
311 static int nonzero_sign_valid;
314 /* Record one modification to rtl structure
315 to be undone by storing old_contents into *where.
316 is_int is 1 if the contents are an int. */
318 struct undo
320 struct undo *next;
321 int is_int;
322 union {rtx r; int i;} old_contents;
323 union {rtx *r; int *i;} where;
326 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
327 num_undo says how many are currently recorded.
329 other_insn is nonzero if we have modified some other insn in the process
330 of working on subst_insn. It must be verified too. */
332 struct undobuf
334 struct undo *undos;
335 struct undo *frees;
336 rtx other_insn;
339 static struct undobuf undobuf;
341 /* Number of times the pseudo being substituted for
342 was found and replaced. */
344 static int n_occurrences;
346 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
347 enum machine_mode,
348 unsigned HOST_WIDE_INT,
349 unsigned HOST_WIDE_INT *);
350 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
351 enum machine_mode,
352 unsigned int, unsigned int *);
353 static void do_SUBST (rtx *, rtx);
354 static void do_SUBST_INT (int *, int);
355 static void init_reg_last (void);
356 static void setup_incoming_promotions (void);
357 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
358 static int cant_combine_insn_p (rtx);
359 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
360 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
361 static int contains_muldiv (rtx);
362 static rtx try_combine (rtx, rtx, rtx, int *);
363 static void undo_all (void);
364 static void undo_commit (void);
365 static rtx *find_split_point (rtx *, rtx);
366 static rtx subst (rtx, rtx, rtx, int, int);
367 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
368 static rtx simplify_if_then_else (rtx);
369 static rtx simplify_set (rtx);
370 static rtx simplify_logical (rtx);
371 static rtx expand_compound_operation (rtx);
372 static rtx expand_field_assignment (rtx);
373 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
374 rtx, unsigned HOST_WIDE_INT, int, int, int);
375 static rtx extract_left_shift (rtx, int);
376 static rtx make_compound_operation (rtx, enum rtx_code);
377 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
378 unsigned HOST_WIDE_INT *);
379 static rtx force_to_mode (rtx, enum machine_mode,
380 unsigned HOST_WIDE_INT, rtx, int);
381 static rtx if_then_else_cond (rtx, rtx *, rtx *);
382 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
383 static int rtx_equal_for_field_assignment_p (rtx, rtx);
384 static rtx make_field_assignment (rtx);
385 static rtx apply_distributive_law (rtx);
386 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
387 unsigned HOST_WIDE_INT);
388 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
389 HOST_WIDE_INT, enum machine_mode, int *);
390 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
391 int);
392 static int recog_for_combine (rtx *, rtx, rtx *);
393 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
394 static rtx gen_binary (enum rtx_code, enum machine_mode, rtx, rtx);
395 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
396 static void update_table_tick (rtx);
397 static void record_value_for_reg (rtx, rtx, rtx);
398 static void check_promoted_subreg (rtx, rtx);
399 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
400 static void record_dead_and_set_regs (rtx);
401 static int get_last_value_validate (rtx *, rtx, int, int);
402 static rtx get_last_value (rtx);
403 static int use_crosses_set_p (rtx, int);
404 static void reg_dead_at_p_1 (rtx, rtx, void *);
405 static int reg_dead_at_p (rtx, rtx);
406 static void move_deaths (rtx, rtx, int, rtx, rtx *);
407 static int reg_bitfield_target_p (rtx, rtx);
408 static void distribute_notes (rtx, rtx, rtx, rtx);
409 static void distribute_links (rtx);
410 static void mark_used_regs_combine (rtx);
411 static int insn_cuid (rtx);
412 static void record_promoted_value (rtx, rtx);
413 static rtx reversed_comparison (rtx, enum machine_mode, rtx, rtx);
414 static enum rtx_code combine_reversed_comparison_code (rtx);
415 static int unmentioned_reg_p_1 (rtx *, void *);
416 static bool unmentioned_reg_p (rtx, rtx);
419 /* It is not safe to use ordinary gen_lowpart in combine.
420 See comments in gen_lowpart_for_combine. */
421 #undef RTL_HOOKS_GEN_LOWPART
422 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
424 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
425 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
427 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
428 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
430 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
433 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
434 insn. The substitution can be undone by undo_all. If INTO is already
435 set to NEWVAL, do not record this change. Because computing NEWVAL might
436 also call SUBST, we have to compute it before we put anything into
437 the undo table. */
439 static void
440 do_SUBST (rtx *into, rtx newval)
442 struct undo *buf;
443 rtx oldval = *into;
445 if (oldval == newval)
446 return;
448 /* We'd like to catch as many invalid transformations here as
449 possible. Unfortunately, there are way too many mode changes
450 that are perfectly valid, so we'd waste too much effort for
451 little gain doing the checks here. Focus on catching invalid
452 transformations involving integer constants. */
453 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
454 && GET_CODE (newval) == CONST_INT)
456 /* Sanity check that we're replacing oldval with a CONST_INT
457 that is a valid sign-extension for the original mode. */
458 if (INTVAL (newval) != trunc_int_for_mode (INTVAL (newval),
459 GET_MODE (oldval)))
460 abort ();
462 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
463 CONST_INT is not valid, because after the replacement, the
464 original mode would be gone. Unfortunately, we can't tell
465 when do_SUBST is called to replace the operand thereof, so we
466 perform this test on oldval instead, checking whether an
467 invalid replacement took place before we got here. */
468 if ((GET_CODE (oldval) == SUBREG
469 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT)
470 || (GET_CODE (oldval) == ZERO_EXTEND
471 && GET_CODE (XEXP (oldval, 0)) == CONST_INT))
472 abort ();
475 if (undobuf.frees)
476 buf = undobuf.frees, undobuf.frees = buf->next;
477 else
478 buf = xmalloc (sizeof (struct undo));
480 buf->is_int = 0;
481 buf->where.r = into;
482 buf->old_contents.r = oldval;
483 *into = newval;
485 buf->next = undobuf.undos, undobuf.undos = buf;
488 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
490 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
491 for the value of a HOST_WIDE_INT value (including CONST_INT) is
492 not safe. */
494 static void
495 do_SUBST_INT (int *into, int newval)
497 struct undo *buf;
498 int oldval = *into;
500 if (oldval == newval)
501 return;
503 if (undobuf.frees)
504 buf = undobuf.frees, undobuf.frees = buf->next;
505 else
506 buf = xmalloc (sizeof (struct undo));
508 buf->is_int = 1;
509 buf->where.i = into;
510 buf->old_contents.i = oldval;
511 *into = newval;
513 buf->next = undobuf.undos, undobuf.undos = buf;
516 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
518 /* Subroutine of try_combine. Determine whether the combine replacement
519 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
520 that the original instruction sequence I1, I2 and I3. Note that I1
521 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
522 costs of all instructions can be estimated, and the replacements are
523 more expensive than the original sequence. */
525 static bool
526 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
528 int i1_cost, i2_cost, i3_cost;
529 int new_i2_cost, new_i3_cost;
530 int old_cost, new_cost;
532 /* Lookup the original insn_rtx_costs. */
533 i2_cost = INSN_UID (i2) <= last_insn_cost
534 ? uid_insn_cost[INSN_UID (i2)] : 0;
535 i3_cost = INSN_UID (i3) <= last_insn_cost
536 ? uid_insn_cost[INSN_UID (i3)] : 0;
538 if (i1)
540 i1_cost = INSN_UID (i1) <= last_insn_cost
541 ? uid_insn_cost[INSN_UID (i1)] : 0;
542 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
543 ? i1_cost + i2_cost + i3_cost : 0;
545 else
547 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
548 i1_cost = 0;
551 /* Calculate the replacement insn_rtx_costs. */
552 new_i3_cost = insn_rtx_cost (newpat);
553 if (newi2pat)
555 new_i2_cost = insn_rtx_cost (newi2pat);
556 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
557 ? new_i2_cost + new_i3_cost : 0;
559 else
561 new_cost = new_i3_cost;
562 new_i2_cost = 0;
565 /* Disallow this recombination if both new_cost and old_cost are
566 greater than zero, and new_cost is greater than old cost. */
567 if (!undobuf.other_insn
568 && old_cost > 0
569 && new_cost > old_cost)
571 if (dump_file)
573 if (i1)
575 fprintf (dump_file,
576 "rejecting combination of insns %d, %d and %d\n",
577 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
578 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
579 i1_cost, i2_cost, i3_cost, old_cost);
581 else
583 fprintf (dump_file,
584 "rejecting combination of insns %d and %d\n",
585 INSN_UID (i2), INSN_UID (i3));
586 fprintf (dump_file, "original costs %d + %d = %d\n",
587 i2_cost, i3_cost, old_cost);
590 if (newi2pat)
592 fprintf (dump_file, "replacement costs %d + %d = %d\n",
593 new_i2_cost, new_i3_cost, new_cost);
595 else
596 fprintf (dump_file, "replacement cost %d\n", new_cost);
599 return false;
602 /* Update the uid_insn_cost array with the replacement costs. */
603 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
604 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
605 if (i1)
606 uid_insn_cost[INSN_UID (i1)] = 0;
608 return true;
611 /* Main entry point for combiner. F is the first insn of the function.
612 NREGS is the first unused pseudo-reg number.
614 Return nonzero if the combiner has turned an indirect jump
615 instruction into a direct jump. */
617 combine_instructions (rtx f, unsigned int nregs)
619 rtx insn, next;
620 #ifdef HAVE_cc0
621 rtx prev;
622 #endif
623 int i;
624 rtx links, nextlinks;
626 int new_direct_jump_p = 0;
628 combine_attempts = 0;
629 combine_merges = 0;
630 combine_extras = 0;
631 combine_successes = 0;
633 combine_max_regno = nregs;
635 rtl_hooks = combine_rtl_hooks;
637 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
639 init_recog_no_volatile ();
641 /* Compute maximum uid value so uid_cuid can be allocated. */
643 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
644 if (INSN_UID (insn) > i)
645 i = INSN_UID (insn);
647 uid_cuid = xmalloc ((i + 1) * sizeof (int));
648 max_uid_cuid = i;
650 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
652 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
653 problems when, for example, we have j <<= 1 in a loop. */
655 nonzero_sign_valid = 0;
657 /* Compute the mapping from uids to cuids.
658 Cuids are numbers assigned to insns, like uids,
659 except that cuids increase monotonically through the code.
661 Scan all SETs and see if we can deduce anything about what
662 bits are known to be zero for some registers and how many copies
663 of the sign bit are known to exist for those registers.
665 Also set any known values so that we can use it while searching
666 for what bits are known to be set. */
668 label_tick = 1;
670 setup_incoming_promotions ();
672 refresh_blocks = sbitmap_alloc (last_basic_block);
673 sbitmap_zero (refresh_blocks);
675 /* Allocate array of current insn_rtx_costs. */
676 uid_insn_cost = xcalloc (max_uid_cuid + 1, sizeof (int));
677 last_insn_cost = max_uid_cuid;
679 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
681 uid_cuid[INSN_UID (insn)] = ++i;
682 subst_low_cuid = i;
683 subst_insn = insn;
685 if (INSN_P (insn))
687 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
688 NULL);
689 record_dead_and_set_regs (insn);
691 #ifdef AUTO_INC_DEC
692 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
693 if (REG_NOTE_KIND (links) == REG_INC)
694 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
695 NULL);
696 #endif
698 /* Record the current insn_rtx_cost of this instruction. */
699 if (NONJUMP_INSN_P (insn))
700 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
701 if (dump_file)
702 fprintf(dump_file, "insn_cost %d: %d\n",
703 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
706 if (LABEL_P (insn))
707 label_tick++;
710 nonzero_sign_valid = 1;
712 /* Now scan all the insns in forward order. */
714 label_tick = 1;
715 last_call_cuid = 0;
716 mem_last_set = 0;
717 init_reg_last ();
718 setup_incoming_promotions ();
720 FOR_EACH_BB (this_basic_block)
722 for (insn = BB_HEAD (this_basic_block);
723 insn != NEXT_INSN (BB_END (this_basic_block));
724 insn = next ? next : NEXT_INSN (insn))
726 next = 0;
728 if (LABEL_P (insn))
729 label_tick++;
731 else if (INSN_P (insn))
733 /* See if we know about function return values before this
734 insn based upon SUBREG flags. */
735 check_promoted_subreg (insn, PATTERN (insn));
737 /* Try this insn with each insn it links back to. */
739 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
740 if ((next = try_combine (insn, XEXP (links, 0),
741 NULL_RTX, &new_direct_jump_p)) != 0)
742 goto retry;
744 /* Try each sequence of three linked insns ending with this one. */
746 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
748 rtx link = XEXP (links, 0);
750 /* If the linked insn has been replaced by a note, then there
751 is no point in pursuing this chain any further. */
752 if (NOTE_P (link))
753 continue;
755 for (nextlinks = LOG_LINKS (link);
756 nextlinks;
757 nextlinks = XEXP (nextlinks, 1))
758 if ((next = try_combine (insn, link,
759 XEXP (nextlinks, 0),
760 &new_direct_jump_p)) != 0)
761 goto retry;
764 #ifdef HAVE_cc0
765 /* Try to combine a jump insn that uses CC0
766 with a preceding insn that sets CC0, and maybe with its
767 logical predecessor as well.
768 This is how we make decrement-and-branch insns.
769 We need this special code because data flow connections
770 via CC0 do not get entered in LOG_LINKS. */
772 if (JUMP_P (insn)
773 && (prev = prev_nonnote_insn (insn)) != 0
774 && NONJUMP_INSN_P (prev)
775 && sets_cc0_p (PATTERN (prev)))
777 if ((next = try_combine (insn, prev,
778 NULL_RTX, &new_direct_jump_p)) != 0)
779 goto retry;
781 for (nextlinks = LOG_LINKS (prev); nextlinks;
782 nextlinks = XEXP (nextlinks, 1))
783 if ((next = try_combine (insn, prev,
784 XEXP (nextlinks, 0),
785 &new_direct_jump_p)) != 0)
786 goto retry;
789 /* Do the same for an insn that explicitly references CC0. */
790 if (NONJUMP_INSN_P (insn)
791 && (prev = prev_nonnote_insn (insn)) != 0
792 && NONJUMP_INSN_P (prev)
793 && sets_cc0_p (PATTERN (prev))
794 && GET_CODE (PATTERN (insn)) == SET
795 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
797 if ((next = try_combine (insn, prev,
798 NULL_RTX, &new_direct_jump_p)) != 0)
799 goto retry;
801 for (nextlinks = LOG_LINKS (prev); nextlinks;
802 nextlinks = XEXP (nextlinks, 1))
803 if ((next = try_combine (insn, prev,
804 XEXP (nextlinks, 0),
805 &new_direct_jump_p)) != 0)
806 goto retry;
809 /* Finally, see if any of the insns that this insn links to
810 explicitly references CC0. If so, try this insn, that insn,
811 and its predecessor if it sets CC0. */
812 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
813 if (NONJUMP_INSN_P (XEXP (links, 0))
814 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
815 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
816 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
817 && NONJUMP_INSN_P (prev)
818 && sets_cc0_p (PATTERN (prev))
819 && (next = try_combine (insn, XEXP (links, 0),
820 prev, &new_direct_jump_p)) != 0)
821 goto retry;
822 #endif
824 /* Try combining an insn with two different insns whose results it
825 uses. */
826 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
827 for (nextlinks = XEXP (links, 1); nextlinks;
828 nextlinks = XEXP (nextlinks, 1))
829 if ((next = try_combine (insn, XEXP (links, 0),
830 XEXP (nextlinks, 0),
831 &new_direct_jump_p)) != 0)
832 goto retry;
834 /* Try this insn with each REG_EQUAL note it links back to. */
835 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
837 rtx set, note;
838 rtx temp = XEXP (links, 0);
839 if ((set = single_set (temp)) != 0
840 && (note = find_reg_equal_equiv_note (temp)) != 0
841 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
842 /* Avoid using a register that may already been marked
843 dead by an earlier instruction. */
844 && ! unmentioned_reg_p (XEXP (note, 0), SET_SRC (set)))
846 /* Temporarily replace the set's source with the
847 contents of the REG_EQUAL note. The insn will
848 be deleted or recognized by try_combine. */
849 rtx orig = SET_SRC (set);
850 SET_SRC (set) = XEXP (note, 0);
851 next = try_combine (insn, temp, NULL_RTX,
852 &new_direct_jump_p);
853 if (next)
854 goto retry;
855 SET_SRC (set) = orig;
859 if (!NOTE_P (insn))
860 record_dead_and_set_regs (insn);
862 retry:
867 clear_bb_flags ();
869 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
870 BASIC_BLOCK (i)->flags |= BB_DIRTY);
871 new_direct_jump_p |= purge_all_dead_edges (0);
872 delete_noop_moves ();
874 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
875 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
876 | PROP_KILL_DEAD_CODE);
878 /* Clean up. */
879 sbitmap_free (refresh_blocks);
880 free (uid_insn_cost);
881 free (reg_stat);
882 free (uid_cuid);
885 struct undo *undo, *next;
886 for (undo = undobuf.frees; undo; undo = next)
888 next = undo->next;
889 free (undo);
891 undobuf.frees = 0;
894 total_attempts += combine_attempts;
895 total_merges += combine_merges;
896 total_extras += combine_extras;
897 total_successes += combine_successes;
899 nonzero_sign_valid = 0;
900 rtl_hooks = general_rtl_hooks;
902 /* Make recognizer allow volatile MEMs again. */
903 init_recog ();
905 return new_direct_jump_p;
908 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
910 static void
911 init_reg_last (void)
913 unsigned int i;
914 for (i = 0; i < combine_max_regno; i++)
915 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
918 /* Set up any promoted values for incoming argument registers. */
920 static void
921 setup_incoming_promotions (void)
923 unsigned int regno;
924 rtx reg;
925 enum machine_mode mode;
926 int unsignedp;
927 rtx first = get_insns ();
929 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
931 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
932 /* Check whether this register can hold an incoming pointer
933 argument. FUNCTION_ARG_REGNO_P tests outgoing register
934 numbers, so translate if necessary due to register windows. */
935 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
936 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
938 record_value_for_reg
939 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
940 : SIGN_EXTEND),
941 GET_MODE (reg),
942 gen_rtx_CLOBBER (mode, const0_rtx)));
947 /* Called via note_stores. If X is a pseudo that is narrower than
948 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
950 If we are setting only a portion of X and we can't figure out what
951 portion, assume all bits will be used since we don't know what will
952 be happening.
954 Similarly, set how many bits of X are known to be copies of the sign bit
955 at all locations in the function. This is the smallest number implied
956 by any set of X. */
958 static void
959 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
960 void *data ATTRIBUTE_UNUSED)
962 unsigned int num;
964 if (REG_P (x)
965 && REGNO (x) >= FIRST_PSEUDO_REGISTER
966 /* If this register is undefined at the start of the file, we can't
967 say what its contents were. */
968 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
969 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
971 if (set == 0 || GET_CODE (set) == CLOBBER)
973 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
974 reg_stat[REGNO (x)].sign_bit_copies = 1;
975 return;
978 /* If this is a complex assignment, see if we can convert it into a
979 simple assignment. */
980 set = expand_field_assignment (set);
982 /* If this is a simple assignment, or we have a paradoxical SUBREG,
983 set what we know about X. */
985 if (SET_DEST (set) == x
986 || (GET_CODE (SET_DEST (set)) == SUBREG
987 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
988 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
989 && SUBREG_REG (SET_DEST (set)) == x))
991 rtx src = SET_SRC (set);
993 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
994 /* If X is narrower than a word and SRC is a non-negative
995 constant that would appear negative in the mode of X,
996 sign-extend it for use in reg_stat[].nonzero_bits because some
997 machines (maybe most) will actually do the sign-extension
998 and this is the conservative approach.
1000 ??? For 2.5, try to tighten up the MD files in this regard
1001 instead of this kludge. */
1003 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1004 && GET_CODE (src) == CONST_INT
1005 && INTVAL (src) > 0
1006 && 0 != (INTVAL (src)
1007 & ((HOST_WIDE_INT) 1
1008 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1009 src = GEN_INT (INTVAL (src)
1010 | ((HOST_WIDE_INT) (-1)
1011 << GET_MODE_BITSIZE (GET_MODE (x))));
1012 #endif
1014 /* Don't call nonzero_bits if it cannot change anything. */
1015 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1016 reg_stat[REGNO (x)].nonzero_bits
1017 |= nonzero_bits (src, nonzero_bits_mode);
1018 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1019 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1020 || reg_stat[REGNO (x)].sign_bit_copies > num)
1021 reg_stat[REGNO (x)].sign_bit_copies = num;
1023 else
1025 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1026 reg_stat[REGNO (x)].sign_bit_copies = 1;
1031 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1032 insns that were previously combined into I3 or that will be combined
1033 into the merger of INSN and I3.
1035 Return 0 if the combination is not allowed for any reason.
1037 If the combination is allowed, *PDEST will be set to the single
1038 destination of INSN and *PSRC to the single source, and this function
1039 will return 1. */
1041 static int
1042 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1043 rtx *pdest, rtx *psrc)
1045 int i;
1046 rtx set = 0, src, dest;
1047 rtx p;
1048 #ifdef AUTO_INC_DEC
1049 rtx link;
1050 #endif
1051 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1052 && next_active_insn (succ) == i3)
1053 : next_active_insn (insn) == i3);
1055 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1056 or a PARALLEL consisting of such a SET and CLOBBERs.
1058 If INSN has CLOBBER parallel parts, ignore them for our processing.
1059 By definition, these happen during the execution of the insn. When it
1060 is merged with another insn, all bets are off. If they are, in fact,
1061 needed and aren't also supplied in I3, they may be added by
1062 recog_for_combine. Otherwise, it won't match.
1064 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1065 note.
1067 Get the source and destination of INSN. If more than one, can't
1068 combine. */
1070 if (GET_CODE (PATTERN (insn)) == SET)
1071 set = PATTERN (insn);
1072 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1073 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1075 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1077 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1078 rtx note;
1080 switch (GET_CODE (elt))
1082 /* This is important to combine floating point insns
1083 for the SH4 port. */
1084 case USE:
1085 /* Combining an isolated USE doesn't make sense.
1086 We depend here on combinable_i3pat to reject them. */
1087 /* The code below this loop only verifies that the inputs of
1088 the SET in INSN do not change. We call reg_set_between_p
1089 to verify that the REG in the USE does not change between
1090 I3 and INSN.
1091 If the USE in INSN was for a pseudo register, the matching
1092 insn pattern will likely match any register; combining this
1093 with any other USE would only be safe if we knew that the
1094 used registers have identical values, or if there was
1095 something to tell them apart, e.g. different modes. For
1096 now, we forgo such complicated tests and simply disallow
1097 combining of USES of pseudo registers with any other USE. */
1098 if (REG_P (XEXP (elt, 0))
1099 && GET_CODE (PATTERN (i3)) == PARALLEL)
1101 rtx i3pat = PATTERN (i3);
1102 int i = XVECLEN (i3pat, 0) - 1;
1103 unsigned int regno = REGNO (XEXP (elt, 0));
1107 rtx i3elt = XVECEXP (i3pat, 0, i);
1109 if (GET_CODE (i3elt) == USE
1110 && REG_P (XEXP (i3elt, 0))
1111 && (REGNO (XEXP (i3elt, 0)) == regno
1112 ? reg_set_between_p (XEXP (elt, 0),
1113 PREV_INSN (insn), i3)
1114 : regno >= FIRST_PSEUDO_REGISTER))
1115 return 0;
1117 while (--i >= 0);
1119 break;
1121 /* We can ignore CLOBBERs. */
1122 case CLOBBER:
1123 break;
1125 case SET:
1126 /* Ignore SETs whose result isn't used but not those that
1127 have side-effects. */
1128 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1129 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1130 || INTVAL (XEXP (note, 0)) <= 0)
1131 && ! side_effects_p (elt))
1132 break;
1134 /* If we have already found a SET, this is a second one and
1135 so we cannot combine with this insn. */
1136 if (set)
1137 return 0;
1139 set = elt;
1140 break;
1142 default:
1143 /* Anything else means we can't combine. */
1144 return 0;
1148 if (set == 0
1149 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1150 so don't do anything with it. */
1151 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1152 return 0;
1154 else
1155 return 0;
1157 if (set == 0)
1158 return 0;
1160 set = expand_field_assignment (set);
1161 src = SET_SRC (set), dest = SET_DEST (set);
1163 /* Don't eliminate a store in the stack pointer. */
1164 if (dest == stack_pointer_rtx
1165 /* Don't combine with an insn that sets a register to itself if it has
1166 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1167 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1168 /* Can't merge an ASM_OPERANDS. */
1169 || GET_CODE (src) == ASM_OPERANDS
1170 /* Can't merge a function call. */
1171 || GET_CODE (src) == CALL
1172 /* Don't eliminate a function call argument. */
1173 || (CALL_P (i3)
1174 && (find_reg_fusage (i3, USE, dest)
1175 || (REG_P (dest)
1176 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1177 && global_regs[REGNO (dest)])))
1178 /* Don't substitute into an incremented register. */
1179 || FIND_REG_INC_NOTE (i3, dest)
1180 || (succ && FIND_REG_INC_NOTE (succ, dest))
1181 #if 0
1182 /* Don't combine the end of a libcall into anything. */
1183 /* ??? This gives worse code, and appears to be unnecessary, since no
1184 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1185 use REG_RETVAL notes for noconflict blocks, but other code here
1186 makes sure that those insns don't disappear. */
1187 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1188 #endif
1189 /* Make sure that DEST is not used after SUCC but before I3. */
1190 || (succ && ! all_adjacent
1191 && reg_used_between_p (dest, succ, i3))
1192 /* Make sure that the value that is to be substituted for the register
1193 does not use any registers whose values alter in between. However,
1194 If the insns are adjacent, a use can't cross a set even though we
1195 think it might (this can happen for a sequence of insns each setting
1196 the same destination; last_set of that register might point to
1197 a NOTE). If INSN has a REG_EQUIV note, the register is always
1198 equivalent to the memory so the substitution is valid even if there
1199 are intervening stores. Also, don't move a volatile asm or
1200 UNSPEC_VOLATILE across any other insns. */
1201 || (! all_adjacent
1202 && (((!MEM_P (src)
1203 || ! find_reg_note (insn, REG_EQUIV, src))
1204 && use_crosses_set_p (src, INSN_CUID (insn)))
1205 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1206 || GET_CODE (src) == UNSPEC_VOLATILE))
1207 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1208 better register allocation by not doing the combine. */
1209 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1210 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1211 /* Don't combine across a CALL_INSN, because that would possibly
1212 change whether the life span of some REGs crosses calls or not,
1213 and it is a pain to update that information.
1214 Exception: if source is a constant, moving it later can't hurt.
1215 Accept that special case, because it helps -fforce-addr a lot. */
1216 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1217 return 0;
1219 /* DEST must either be a REG or CC0. */
1220 if (REG_P (dest))
1222 /* If register alignment is being enforced for multi-word items in all
1223 cases except for parameters, it is possible to have a register copy
1224 insn referencing a hard register that is not allowed to contain the
1225 mode being copied and which would not be valid as an operand of most
1226 insns. Eliminate this problem by not combining with such an insn.
1228 Also, on some machines we don't want to extend the life of a hard
1229 register. */
1231 if (REG_P (src)
1232 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1233 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1234 /* Don't extend the life of a hard register unless it is
1235 user variable (if we have few registers) or it can't
1236 fit into the desired register (meaning something special
1237 is going on).
1238 Also avoid substituting a return register into I3, because
1239 reload can't handle a conflict with constraints of other
1240 inputs. */
1241 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1242 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1243 return 0;
1245 else if (GET_CODE (dest) != CC0)
1246 return 0;
1249 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1250 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1251 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1253 /* Don't substitute for a register intended as a clobberable
1254 operand. */
1255 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1256 if (rtx_equal_p (reg, dest))
1257 return 0;
1259 /* If the clobber represents an earlyclobber operand, we must not
1260 substitute an expression containing the clobbered register.
1261 As we do not analyse the constraint strings here, we have to
1262 make the conservative assumption. However, if the register is
1263 a fixed hard reg, the clobber cannot represent any operand;
1264 we leave it up to the machine description to either accept or
1265 reject use-and-clobber patterns. */
1266 if (!REG_P (reg)
1267 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1268 || !fixed_regs[REGNO (reg)])
1269 if (reg_overlap_mentioned_p (reg, src))
1270 return 0;
1273 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1274 or not), reject, unless nothing volatile comes between it and I3 */
1276 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1278 /* Make sure succ doesn't contain a volatile reference. */
1279 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1280 return 0;
1282 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1283 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1284 return 0;
1287 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1288 to be an explicit register variable, and was chosen for a reason. */
1290 if (GET_CODE (src) == ASM_OPERANDS
1291 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1292 return 0;
1294 /* If there are any volatile insns between INSN and I3, reject, because
1295 they might affect machine state. */
1297 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1298 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1299 return 0;
1301 /* If INSN or I2 contains an autoincrement or autodecrement,
1302 make sure that register is not used between there and I3,
1303 and not already used in I3 either.
1304 Also insist that I3 not be a jump; if it were one
1305 and the incremented register were spilled, we would lose. */
1307 #ifdef AUTO_INC_DEC
1308 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1309 if (REG_NOTE_KIND (link) == REG_INC
1310 && (JUMP_P (i3)
1311 || reg_used_between_p (XEXP (link, 0), insn, i3)
1312 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1313 return 0;
1314 #endif
1316 #ifdef HAVE_cc0
1317 /* Don't combine an insn that follows a CC0-setting insn.
1318 An insn that uses CC0 must not be separated from the one that sets it.
1319 We do, however, allow I2 to follow a CC0-setting insn if that insn
1320 is passed as I1; in that case it will be deleted also.
1321 We also allow combining in this case if all the insns are adjacent
1322 because that would leave the two CC0 insns adjacent as well.
1323 It would be more logical to test whether CC0 occurs inside I1 or I2,
1324 but that would be much slower, and this ought to be equivalent. */
1326 p = prev_nonnote_insn (insn);
1327 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1328 && ! all_adjacent)
1329 return 0;
1330 #endif
1332 /* If we get here, we have passed all the tests and the combination is
1333 to be allowed. */
1335 *pdest = dest;
1336 *psrc = src;
1338 return 1;
1341 /* LOC is the location within I3 that contains its pattern or the component
1342 of a PARALLEL of the pattern. We validate that it is valid for combining.
1344 One problem is if I3 modifies its output, as opposed to replacing it
1345 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1346 so would produce an insn that is not equivalent to the original insns.
1348 Consider:
1350 (set (reg:DI 101) (reg:DI 100))
1351 (set (subreg:SI (reg:DI 101) 0) <foo>)
1353 This is NOT equivalent to:
1355 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1356 (set (reg:DI 101) (reg:DI 100))])
1358 Not only does this modify 100 (in which case it might still be valid
1359 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1361 We can also run into a problem if I2 sets a register that I1
1362 uses and I1 gets directly substituted into I3 (not via I2). In that
1363 case, we would be getting the wrong value of I2DEST into I3, so we
1364 must reject the combination. This case occurs when I2 and I1 both
1365 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1366 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1367 of a SET must prevent combination from occurring.
1369 Before doing the above check, we first try to expand a field assignment
1370 into a set of logical operations.
1372 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1373 we place a register that is both set and used within I3. If more than one
1374 such register is detected, we fail.
1376 Return 1 if the combination is valid, zero otherwise. */
1378 static int
1379 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1380 int i1_not_in_src, rtx *pi3dest_killed)
1382 rtx x = *loc;
1384 if (GET_CODE (x) == SET)
1386 rtx set = x ;
1387 rtx dest = SET_DEST (set);
1388 rtx src = SET_SRC (set);
1389 rtx inner_dest = dest;
1391 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1392 || GET_CODE (inner_dest) == SUBREG
1393 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1394 inner_dest = XEXP (inner_dest, 0);
1396 /* Check for the case where I3 modifies its output, as discussed
1397 above. We don't want to prevent pseudos from being combined
1398 into the address of a MEM, so only prevent the combination if
1399 i1 or i2 set the same MEM. */
1400 if ((inner_dest != dest &&
1401 (!MEM_P (inner_dest)
1402 || rtx_equal_p (i2dest, inner_dest)
1403 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1404 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1405 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1407 /* This is the same test done in can_combine_p except we can't test
1408 all_adjacent; we don't have to, since this instruction will stay
1409 in place, thus we are not considering increasing the lifetime of
1410 INNER_DEST.
1412 Also, if this insn sets a function argument, combining it with
1413 something that might need a spill could clobber a previous
1414 function argument; the all_adjacent test in can_combine_p also
1415 checks this; here, we do a more specific test for this case. */
1417 || (REG_P (inner_dest)
1418 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1419 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1420 GET_MODE (inner_dest))))
1421 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1422 return 0;
1424 /* If DEST is used in I3, it is being killed in this insn,
1425 so record that for later.
1426 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1427 STACK_POINTER_REGNUM, since these are always considered to be
1428 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1429 if (pi3dest_killed && REG_P (dest)
1430 && reg_referenced_p (dest, PATTERN (i3))
1431 && REGNO (dest) != FRAME_POINTER_REGNUM
1432 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1433 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1434 #endif
1435 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1436 && (REGNO (dest) != ARG_POINTER_REGNUM
1437 || ! fixed_regs [REGNO (dest)])
1438 #endif
1439 && REGNO (dest) != STACK_POINTER_REGNUM)
1441 if (*pi3dest_killed)
1442 return 0;
1444 *pi3dest_killed = dest;
1448 else if (GET_CODE (x) == PARALLEL)
1450 int i;
1452 for (i = 0; i < XVECLEN (x, 0); i++)
1453 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1454 i1_not_in_src, pi3dest_killed))
1455 return 0;
1458 return 1;
1461 /* Return 1 if X is an arithmetic expression that contains a multiplication
1462 and division. We don't count multiplications by powers of two here. */
1464 static int
1465 contains_muldiv (rtx x)
1467 switch (GET_CODE (x))
1469 case MOD: case DIV: case UMOD: case UDIV:
1470 return 1;
1472 case MULT:
1473 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1474 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1475 default:
1476 if (BINARY_P (x))
1477 return contains_muldiv (XEXP (x, 0))
1478 || contains_muldiv (XEXP (x, 1));
1480 if (UNARY_P (x))
1481 return contains_muldiv (XEXP (x, 0));
1483 return 0;
1487 /* Determine whether INSN can be used in a combination. Return nonzero if
1488 not. This is used in try_combine to detect early some cases where we
1489 can't perform combinations. */
1491 static int
1492 cant_combine_insn_p (rtx insn)
1494 rtx set;
1495 rtx src, dest;
1497 /* If this isn't really an insn, we can't do anything.
1498 This can occur when flow deletes an insn that it has merged into an
1499 auto-increment address. */
1500 if (! INSN_P (insn))
1501 return 1;
1503 /* Never combine loads and stores involving hard regs that are likely
1504 to be spilled. The register allocator can usually handle such
1505 reg-reg moves by tying. If we allow the combiner to make
1506 substitutions of likely-spilled regs, we may abort in reload.
1507 As an exception, we allow combinations involving fixed regs; these are
1508 not available to the register allocator so there's no risk involved. */
1510 set = single_set (insn);
1511 if (! set)
1512 return 0;
1513 src = SET_SRC (set);
1514 dest = SET_DEST (set);
1515 if (GET_CODE (src) == SUBREG)
1516 src = SUBREG_REG (src);
1517 if (GET_CODE (dest) == SUBREG)
1518 dest = SUBREG_REG (dest);
1519 if (REG_P (src) && REG_P (dest)
1520 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1521 && ! fixed_regs[REGNO (src)]
1522 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1523 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1524 && ! fixed_regs[REGNO (dest)]
1525 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1526 return 1;
1528 return 0;
1531 /* Adjust INSN after we made a change to its destination.
1533 Changing the destination can invalidate notes that say something about
1534 the results of the insn and a LOG_LINK pointing to the insn. */
1536 static void
1537 adjust_for_new_dest (rtx insn)
1539 rtx *loc;
1541 /* For notes, be conservative and simply remove them. */
1542 loc = &REG_NOTES (insn);
1543 while (*loc)
1545 enum reg_note kind = REG_NOTE_KIND (*loc);
1546 if (kind == REG_EQUAL || kind == REG_EQUIV)
1547 *loc = XEXP (*loc, 1);
1548 else
1549 loc = &XEXP (*loc, 1);
1552 /* The new insn will have a destination that was previously the destination
1553 of an insn just above it. Call distribute_links to make a LOG_LINK from
1554 the next use of that destination. */
1555 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1558 /* Try to combine the insns I1 and I2 into I3.
1559 Here I1 and I2 appear earlier than I3.
1560 I1 can be zero; then we combine just I2 into I3.
1562 If we are combining three insns and the resulting insn is not recognized,
1563 try splitting it into two insns. If that happens, I2 and I3 are retained
1564 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1565 are pseudo-deleted.
1567 Return 0 if the combination does not work. Then nothing is changed.
1568 If we did the combination, return the insn at which combine should
1569 resume scanning.
1571 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1572 new direct jump instruction. */
1574 static rtx
1575 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1577 /* New patterns for I3 and I2, respectively. */
1578 rtx newpat, newi2pat = 0;
1579 int substed_i2 = 0, substed_i1 = 0;
1580 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1581 int added_sets_1, added_sets_2;
1582 /* Total number of SETs to put into I3. */
1583 int total_sets;
1584 /* Nonzero if I2's body now appears in I3. */
1585 int i2_is_used;
1586 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1587 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1588 /* Contains I3 if the destination of I3 is used in its source, which means
1589 that the old life of I3 is being killed. If that usage is placed into
1590 I2 and not in I3, a REG_DEAD note must be made. */
1591 rtx i3dest_killed = 0;
1592 /* SET_DEST and SET_SRC of I2 and I1. */
1593 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1594 /* PATTERN (I2), or a copy of it in certain cases. */
1595 rtx i2pat;
1596 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1597 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1598 int i1_feeds_i3 = 0;
1599 /* Notes that must be added to REG_NOTES in I3 and I2. */
1600 rtx new_i3_notes, new_i2_notes;
1601 /* Notes that we substituted I3 into I2 instead of the normal case. */
1602 int i3_subst_into_i2 = 0;
1603 /* Notes that I1, I2 or I3 is a MULT operation. */
1604 int have_mult = 0;
1606 int maxreg;
1607 rtx temp;
1608 rtx link;
1609 int i;
1611 /* Exit early if one of the insns involved can't be used for
1612 combinations. */
1613 if (cant_combine_insn_p (i3)
1614 || cant_combine_insn_p (i2)
1615 || (i1 && cant_combine_insn_p (i1))
1616 /* We also can't do anything if I3 has a
1617 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1618 libcall. */
1619 #if 0
1620 /* ??? This gives worse code, and appears to be unnecessary, since no
1621 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1622 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1623 #endif
1625 return 0;
1627 combine_attempts++;
1628 undobuf.other_insn = 0;
1630 /* Reset the hard register usage information. */
1631 CLEAR_HARD_REG_SET (newpat_used_regs);
1633 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1634 code below, set I1 to be the earlier of the two insns. */
1635 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1636 temp = i1, i1 = i2, i2 = temp;
1638 added_links_insn = 0;
1640 /* First check for one important special-case that the code below will
1641 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1642 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1643 we may be able to replace that destination with the destination of I3.
1644 This occurs in the common code where we compute both a quotient and
1645 remainder into a structure, in which case we want to do the computation
1646 directly into the structure to avoid register-register copies.
1648 Note that this case handles both multiple sets in I2 and also
1649 cases where I2 has a number of CLOBBER or PARALLELs.
1651 We make very conservative checks below and only try to handle the
1652 most common cases of this. For example, we only handle the case
1653 where I2 and I3 are adjacent to avoid making difficult register
1654 usage tests. */
1656 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1657 && REG_P (SET_SRC (PATTERN (i3)))
1658 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1659 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1660 && GET_CODE (PATTERN (i2)) == PARALLEL
1661 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1662 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1663 below would need to check what is inside (and reg_overlap_mentioned_p
1664 doesn't support those codes anyway). Don't allow those destinations;
1665 the resulting insn isn't likely to be recognized anyway. */
1666 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1667 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1668 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1669 SET_DEST (PATTERN (i3)))
1670 && next_real_insn (i2) == i3)
1672 rtx p2 = PATTERN (i2);
1674 /* Make sure that the destination of I3,
1675 which we are going to substitute into one output of I2,
1676 is not used within another output of I2. We must avoid making this:
1677 (parallel [(set (mem (reg 69)) ...)
1678 (set (reg 69) ...)])
1679 which is not well-defined as to order of actions.
1680 (Besides, reload can't handle output reloads for this.)
1682 The problem can also happen if the dest of I3 is a memory ref,
1683 if another dest in I2 is an indirect memory ref. */
1684 for (i = 0; i < XVECLEN (p2, 0); i++)
1685 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1686 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1687 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1688 SET_DEST (XVECEXP (p2, 0, i))))
1689 break;
1691 if (i == XVECLEN (p2, 0))
1692 for (i = 0; i < XVECLEN (p2, 0); i++)
1693 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1694 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1695 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1697 combine_merges++;
1699 subst_insn = i3;
1700 subst_low_cuid = INSN_CUID (i2);
1702 added_sets_2 = added_sets_1 = 0;
1703 i2dest = SET_SRC (PATTERN (i3));
1705 /* Replace the dest in I2 with our dest and make the resulting
1706 insn the new pattern for I3. Then skip to where we
1707 validate the pattern. Everything was set up above. */
1708 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1709 SET_DEST (PATTERN (i3)));
1711 newpat = p2;
1712 i3_subst_into_i2 = 1;
1713 goto validate_replacement;
1717 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1718 one of those words to another constant, merge them by making a new
1719 constant. */
1720 if (i1 == 0
1721 && (temp = single_set (i2)) != 0
1722 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1723 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1724 && REG_P (SET_DEST (temp))
1725 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1726 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1727 && GET_CODE (PATTERN (i3)) == SET
1728 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1729 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1730 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1731 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1732 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1734 HOST_WIDE_INT lo, hi;
1736 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1737 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1738 else
1740 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1741 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1744 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1746 /* We don't handle the case of the target word being wider
1747 than a host wide int. */
1748 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1749 abort ();
1751 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1752 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1753 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1755 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1756 hi = INTVAL (SET_SRC (PATTERN (i3)));
1757 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1759 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1760 >> (HOST_BITS_PER_WIDE_INT - 1));
1762 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1763 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1764 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1765 (INTVAL (SET_SRC (PATTERN (i3)))));
1766 if (hi == sign)
1767 hi = lo < 0 ? -1 : 0;
1769 else
1770 /* We don't handle the case of the higher word not fitting
1771 entirely in either hi or lo. */
1772 abort ();
1774 combine_merges++;
1775 subst_insn = i3;
1776 subst_low_cuid = INSN_CUID (i2);
1777 added_sets_2 = added_sets_1 = 0;
1778 i2dest = SET_DEST (temp);
1780 SUBST (SET_SRC (temp),
1781 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1783 newpat = PATTERN (i2);
1784 goto validate_replacement;
1787 #ifndef HAVE_cc0
1788 /* If we have no I1 and I2 looks like:
1789 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1790 (set Y OP)])
1791 make up a dummy I1 that is
1792 (set Y OP)
1793 and change I2 to be
1794 (set (reg:CC X) (compare:CC Y (const_int 0)))
1796 (We can ignore any trailing CLOBBERs.)
1798 This undoes a previous combination and allows us to match a branch-and-
1799 decrement insn. */
1801 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1802 && XVECLEN (PATTERN (i2), 0) >= 2
1803 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1804 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1805 == MODE_CC)
1806 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1807 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1808 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1809 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
1810 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1811 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1813 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1814 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1815 break;
1817 if (i == 1)
1819 /* We make I1 with the same INSN_UID as I2. This gives it
1820 the same INSN_CUID for value tracking. Our fake I1 will
1821 never appear in the insn stream so giving it the same INSN_UID
1822 as I2 will not cause a problem. */
1824 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1825 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1826 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1827 NULL_RTX);
1829 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1830 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1831 SET_DEST (PATTERN (i1)));
1834 #endif
1836 /* Verify that I2 and I1 are valid for combining. */
1837 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1838 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1840 undo_all ();
1841 return 0;
1844 /* Record whether I2DEST is used in I2SRC and similarly for the other
1845 cases. Knowing this will help in register status updating below. */
1846 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1847 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1848 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1850 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1851 in I2SRC. */
1852 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1854 /* Ensure that I3's pattern can be the destination of combines. */
1855 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1856 i1 && i2dest_in_i1src && i1_feeds_i3,
1857 &i3dest_killed))
1859 undo_all ();
1860 return 0;
1863 /* See if any of the insns is a MULT operation. Unless one is, we will
1864 reject a combination that is, since it must be slower. Be conservative
1865 here. */
1866 if (GET_CODE (i2src) == MULT
1867 || (i1 != 0 && GET_CODE (i1src) == MULT)
1868 || (GET_CODE (PATTERN (i3)) == SET
1869 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1870 have_mult = 1;
1872 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1873 We used to do this EXCEPT in one case: I3 has a post-inc in an
1874 output operand. However, that exception can give rise to insns like
1875 mov r3,(r3)+
1876 which is a famous insn on the PDP-11 where the value of r3 used as the
1877 source was model-dependent. Avoid this sort of thing. */
1879 #if 0
1880 if (!(GET_CODE (PATTERN (i3)) == SET
1881 && REG_P (SET_SRC (PATTERN (i3)))
1882 && MEM_P (SET_DEST (PATTERN (i3)))
1883 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1884 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1885 /* It's not the exception. */
1886 #endif
1887 #ifdef AUTO_INC_DEC
1888 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1889 if (REG_NOTE_KIND (link) == REG_INC
1890 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1891 || (i1 != 0
1892 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1894 undo_all ();
1895 return 0;
1897 #endif
1899 /* See if the SETs in I1 or I2 need to be kept around in the merged
1900 instruction: whenever the value set there is still needed past I3.
1901 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1903 For the SET in I1, we have two cases: If I1 and I2 independently
1904 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1905 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1906 in I1 needs to be kept around unless I1DEST dies or is set in either
1907 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1908 I1DEST. If so, we know I1 feeds into I2. */
1910 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1912 added_sets_1
1913 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1914 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1916 /* If the set in I2 needs to be kept around, we must make a copy of
1917 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1918 PATTERN (I2), we are only substituting for the original I1DEST, not into
1919 an already-substituted copy. This also prevents making self-referential
1920 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1921 I2DEST. */
1923 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1924 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1925 : PATTERN (i2));
1927 if (added_sets_2)
1928 i2pat = copy_rtx (i2pat);
1930 combine_merges++;
1932 /* Substitute in the latest insn for the regs set by the earlier ones. */
1934 maxreg = max_reg_num ();
1936 subst_insn = i3;
1938 /* It is possible that the source of I2 or I1 may be performing an
1939 unneeded operation, such as a ZERO_EXTEND of something that is known
1940 to have the high part zero. Handle that case by letting subst look at
1941 the innermost one of them.
1943 Another way to do this would be to have a function that tries to
1944 simplify a single insn instead of merging two or more insns. We don't
1945 do this because of the potential of infinite loops and because
1946 of the potential extra memory required. However, doing it the way
1947 we are is a bit of a kludge and doesn't catch all cases.
1949 But only do this if -fexpensive-optimizations since it slows things down
1950 and doesn't usually win. */
1952 if (flag_expensive_optimizations)
1954 /* Pass pc_rtx so no substitutions are done, just simplifications. */
1955 if (i1)
1957 subst_low_cuid = INSN_CUID (i1);
1958 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1960 else
1962 subst_low_cuid = INSN_CUID (i2);
1963 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1967 #ifndef HAVE_cc0
1968 /* Many machines that don't use CC0 have insns that can both perform an
1969 arithmetic operation and set the condition code. These operations will
1970 be represented as a PARALLEL with the first element of the vector
1971 being a COMPARE of an arithmetic operation with the constant zero.
1972 The second element of the vector will set some pseudo to the result
1973 of the same arithmetic operation. If we simplify the COMPARE, we won't
1974 match such a pattern and so will generate an extra insn. Here we test
1975 for this case, where both the comparison and the operation result are
1976 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1977 I2SRC. Later we will make the PARALLEL that contains I2. */
1979 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1980 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1981 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1982 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1984 #ifdef SELECT_CC_MODE
1985 rtx *cc_use;
1986 enum machine_mode compare_mode;
1987 #endif
1989 newpat = PATTERN (i3);
1990 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1992 i2_is_used = 1;
1994 #ifdef SELECT_CC_MODE
1995 /* See if a COMPARE with the operand we substituted in should be done
1996 with the mode that is currently being used. If not, do the same
1997 processing we do in `subst' for a SET; namely, if the destination
1998 is used only once, try to replace it with a register of the proper
1999 mode and also replace the COMPARE. */
2000 if (undobuf.other_insn == 0
2001 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2002 &undobuf.other_insn))
2003 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2004 i2src, const0_rtx))
2005 != GET_MODE (SET_DEST (newpat))))
2007 unsigned int regno = REGNO (SET_DEST (newpat));
2008 rtx new_dest = gen_rtx_REG (compare_mode, regno);
2010 if (regno < FIRST_PSEUDO_REGISTER
2011 || (REG_N_SETS (regno) == 1 && ! added_sets_2
2012 && ! REG_USERVAR_P (SET_DEST (newpat))))
2014 if (regno >= FIRST_PSEUDO_REGISTER)
2015 SUBST (regno_reg_rtx[regno], new_dest);
2017 SUBST (SET_DEST (newpat), new_dest);
2018 SUBST (XEXP (*cc_use, 0), new_dest);
2019 SUBST (SET_SRC (newpat),
2020 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2022 else
2023 undobuf.other_insn = 0;
2025 #endif
2027 else
2028 #endif
2030 n_occurrences = 0; /* `subst' counts here */
2032 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2033 need to make a unique copy of I2SRC each time we substitute it
2034 to avoid self-referential rtl. */
2036 subst_low_cuid = INSN_CUID (i2);
2037 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2038 ! i1_feeds_i3 && i1dest_in_i1src);
2039 substed_i2 = 1;
2041 /* Record whether i2's body now appears within i3's body. */
2042 i2_is_used = n_occurrences;
2045 /* If we already got a failure, don't try to do more. Otherwise,
2046 try to substitute in I1 if we have it. */
2048 if (i1 && GET_CODE (newpat) != CLOBBER)
2050 /* Before we can do this substitution, we must redo the test done
2051 above (see detailed comments there) that ensures that I1DEST
2052 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2054 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2055 0, (rtx*) 0))
2057 undo_all ();
2058 return 0;
2061 n_occurrences = 0;
2062 subst_low_cuid = INSN_CUID (i1);
2063 newpat = subst (newpat, i1dest, i1src, 0, 0);
2064 substed_i1 = 1;
2067 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2068 to count all the ways that I2SRC and I1SRC can be used. */
2069 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2070 && i2_is_used + added_sets_2 > 1)
2071 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2072 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2073 > 1))
2074 /* Fail if we tried to make a new register (we used to abort, but there's
2075 really no reason to). */
2076 || max_reg_num () != maxreg
2077 /* Fail if we couldn't do something and have a CLOBBER. */
2078 || GET_CODE (newpat) == CLOBBER
2079 /* Fail if this new pattern is a MULT and we didn't have one before
2080 at the outer level. */
2081 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2082 && ! have_mult))
2084 undo_all ();
2085 return 0;
2088 /* If the actions of the earlier insns must be kept
2089 in addition to substituting them into the latest one,
2090 we must make a new PARALLEL for the latest insn
2091 to hold additional the SETs. */
2093 if (added_sets_1 || added_sets_2)
2095 combine_extras++;
2097 if (GET_CODE (newpat) == PARALLEL)
2099 rtvec old = XVEC (newpat, 0);
2100 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2101 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2102 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2103 sizeof (old->elem[0]) * old->num_elem);
2105 else
2107 rtx old = newpat;
2108 total_sets = 1 + added_sets_1 + added_sets_2;
2109 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2110 XVECEXP (newpat, 0, 0) = old;
2113 if (added_sets_1)
2114 XVECEXP (newpat, 0, --total_sets)
2115 = (GET_CODE (PATTERN (i1)) == PARALLEL
2116 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2118 if (added_sets_2)
2120 /* If there is no I1, use I2's body as is. We used to also not do
2121 the subst call below if I2 was substituted into I3,
2122 but that could lose a simplification. */
2123 if (i1 == 0)
2124 XVECEXP (newpat, 0, --total_sets) = i2pat;
2125 else
2126 /* See comment where i2pat is assigned. */
2127 XVECEXP (newpat, 0, --total_sets)
2128 = subst (i2pat, i1dest, i1src, 0, 0);
2132 /* We come here when we are replacing a destination in I2 with the
2133 destination of I3. */
2134 validate_replacement:
2136 /* Note which hard regs this insn has as inputs. */
2137 mark_used_regs_combine (newpat);
2139 /* Is the result of combination a valid instruction? */
2140 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2142 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2143 the second SET's destination is a register that is unused and isn't
2144 marked as an instruction that might trap in an EH region. In that case,
2145 we just need the first SET. This can occur when simplifying a divmod
2146 insn. We *must* test for this case here because the code below that
2147 splits two independent SETs doesn't handle this case correctly when it
2148 updates the register status.
2150 It's pointless doing this if we originally had two sets, one from
2151 i3, and one from i2. Combining then splitting the parallel results
2152 in the original i2 again plus an invalid insn (which we delete).
2153 The net effect is only to move instructions around, which makes
2154 debug info less accurate.
2156 Also check the case where the first SET's destination is unused.
2157 That would not cause incorrect code, but does cause an unneeded
2158 insn to remain. */
2160 if (insn_code_number < 0
2161 && !(added_sets_2 && i1 == 0)
2162 && GET_CODE (newpat) == PARALLEL
2163 && XVECLEN (newpat, 0) == 2
2164 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2165 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2166 && asm_noperands (newpat) < 0)
2168 rtx set0 = XVECEXP (newpat, 0, 0);
2169 rtx set1 = XVECEXP (newpat, 0, 1);
2170 rtx note;
2172 if (((REG_P (SET_DEST (set1))
2173 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2174 || (GET_CODE (SET_DEST (set1)) == SUBREG
2175 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2176 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2177 || INTVAL (XEXP (note, 0)) <= 0)
2178 && ! side_effects_p (SET_SRC (set1)))
2180 newpat = set0;
2181 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2184 else if (((REG_P (SET_DEST (set0))
2185 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2186 || (GET_CODE (SET_DEST (set0)) == SUBREG
2187 && find_reg_note (i3, REG_UNUSED,
2188 SUBREG_REG (SET_DEST (set0)))))
2189 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2190 || INTVAL (XEXP (note, 0)) <= 0)
2191 && ! side_effects_p (SET_SRC (set0)))
2193 newpat = set1;
2194 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2196 if (insn_code_number >= 0)
2198 /* If we will be able to accept this, we have made a
2199 change to the destination of I3. This requires us to
2200 do a few adjustments. */
2202 PATTERN (i3) = newpat;
2203 adjust_for_new_dest (i3);
2208 /* If we were combining three insns and the result is a simple SET
2209 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2210 insns. There are two ways to do this. It can be split using a
2211 machine-specific method (like when you have an addition of a large
2212 constant) or by combine in the function find_split_point. */
2214 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2215 && asm_noperands (newpat) < 0)
2217 rtx m_split, *split;
2218 rtx ni2dest = i2dest;
2220 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2221 use I2DEST as a scratch register will help. In the latter case,
2222 convert I2DEST to the mode of the source of NEWPAT if we can. */
2224 m_split = split_insns (newpat, i3);
2226 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2227 inputs of NEWPAT. */
2229 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2230 possible to try that as a scratch reg. This would require adding
2231 more code to make it work though. */
2233 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2235 /* If I2DEST is a hard register or the only use of a pseudo,
2236 we can change its mode. */
2237 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2238 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2239 && REG_P (i2dest)
2240 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2241 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2242 && ! REG_USERVAR_P (i2dest))))
2243 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2244 REGNO (i2dest));
2246 m_split = split_insns (gen_rtx_PARALLEL
2247 (VOIDmode,
2248 gen_rtvec (2, newpat,
2249 gen_rtx_CLOBBER (VOIDmode,
2250 ni2dest))),
2251 i3);
2252 /* If the split with the mode-changed register didn't work, try
2253 the original register. */
2254 if (! m_split && ni2dest != i2dest)
2256 ni2dest = i2dest;
2257 m_split = split_insns (gen_rtx_PARALLEL
2258 (VOIDmode,
2259 gen_rtvec (2, newpat,
2260 gen_rtx_CLOBBER (VOIDmode,
2261 i2dest))),
2262 i3);
2266 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2268 m_split = PATTERN (m_split);
2269 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2270 if (insn_code_number >= 0)
2271 newpat = m_split;
2273 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2274 && (next_real_insn (i2) == i3
2275 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2277 rtx i2set, i3set;
2278 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2279 newi2pat = PATTERN (m_split);
2281 i3set = single_set (NEXT_INSN (m_split));
2282 i2set = single_set (m_split);
2284 /* In case we changed the mode of I2DEST, replace it in the
2285 pseudo-register table here. We can't do it above in case this
2286 code doesn't get executed and we do a split the other way. */
2288 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2289 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2291 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2293 /* If I2 or I3 has multiple SETs, we won't know how to track
2294 register status, so don't use these insns. If I2's destination
2295 is used between I2 and I3, we also can't use these insns. */
2297 if (i2_code_number >= 0 && i2set && i3set
2298 && (next_real_insn (i2) == i3
2299 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2300 insn_code_number = recog_for_combine (&newi3pat, i3,
2301 &new_i3_notes);
2302 if (insn_code_number >= 0)
2303 newpat = newi3pat;
2305 /* It is possible that both insns now set the destination of I3.
2306 If so, we must show an extra use of it. */
2308 if (insn_code_number >= 0)
2310 rtx new_i3_dest = SET_DEST (i3set);
2311 rtx new_i2_dest = SET_DEST (i2set);
2313 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2314 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2315 || GET_CODE (new_i3_dest) == SUBREG)
2316 new_i3_dest = XEXP (new_i3_dest, 0);
2318 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2319 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2320 || GET_CODE (new_i2_dest) == SUBREG)
2321 new_i2_dest = XEXP (new_i2_dest, 0);
2323 if (REG_P (new_i3_dest)
2324 && REG_P (new_i2_dest)
2325 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2326 REG_N_SETS (REGNO (new_i2_dest))++;
2330 /* If we can split it and use I2DEST, go ahead and see if that
2331 helps things be recognized. Verify that none of the registers
2332 are set between I2 and I3. */
2333 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2334 #ifdef HAVE_cc0
2335 && REG_P (i2dest)
2336 #endif
2337 /* We need I2DEST in the proper mode. If it is a hard register
2338 or the only use of a pseudo, we can change its mode. */
2339 && (GET_MODE (*split) == GET_MODE (i2dest)
2340 || GET_MODE (*split) == VOIDmode
2341 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2342 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2343 && ! REG_USERVAR_P (i2dest)))
2344 && (next_real_insn (i2) == i3
2345 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2346 /* We can't overwrite I2DEST if its value is still used by
2347 NEWPAT. */
2348 && ! reg_referenced_p (i2dest, newpat))
2350 rtx newdest = i2dest;
2351 enum rtx_code split_code = GET_CODE (*split);
2352 enum machine_mode split_mode = GET_MODE (*split);
2354 /* Get NEWDEST as a register in the proper mode. We have already
2355 validated that we can do this. */
2356 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2358 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2360 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2361 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2364 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2365 an ASHIFT. This can occur if it was inside a PLUS and hence
2366 appeared to be a memory address. This is a kludge. */
2367 if (split_code == MULT
2368 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2369 && INTVAL (XEXP (*split, 1)) > 0
2370 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2372 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2373 XEXP (*split, 0), GEN_INT (i)));
2374 /* Update split_code because we may not have a multiply
2375 anymore. */
2376 split_code = GET_CODE (*split);
2379 #ifdef INSN_SCHEDULING
2380 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2381 be written as a ZERO_EXTEND. */
2382 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2384 #ifdef LOAD_EXTEND_OP
2385 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2386 what it really is. */
2387 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2388 == SIGN_EXTEND)
2389 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2390 SUBREG_REG (*split)));
2391 else
2392 #endif
2393 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2394 SUBREG_REG (*split)));
2396 #endif
2398 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2399 SUBST (*split, newdest);
2400 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2402 /* If the split point was a MULT and we didn't have one before,
2403 don't use one now. */
2404 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2405 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2409 /* Check for a case where we loaded from memory in a narrow mode and
2410 then sign extended it, but we need both registers. In that case,
2411 we have a PARALLEL with both loads from the same memory location.
2412 We can split this into a load from memory followed by a register-register
2413 copy. This saves at least one insn, more if register allocation can
2414 eliminate the copy.
2416 We cannot do this if the destination of the first assignment is a
2417 condition code register or cc0. We eliminate this case by making sure
2418 the SET_DEST and SET_SRC have the same mode.
2420 We cannot do this if the destination of the second assignment is
2421 a register that we have already assumed is zero-extended. Similarly
2422 for a SUBREG of such a register. */
2424 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2425 && GET_CODE (newpat) == PARALLEL
2426 && XVECLEN (newpat, 0) == 2
2427 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2428 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2429 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2430 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2431 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2432 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2433 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2434 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2435 INSN_CUID (i2))
2436 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2437 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2438 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2439 (REG_P (temp)
2440 && reg_stat[REGNO (temp)].nonzero_bits != 0
2441 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2442 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2443 && (reg_stat[REGNO (temp)].nonzero_bits
2444 != GET_MODE_MASK (word_mode))))
2445 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2446 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2447 (REG_P (temp)
2448 && reg_stat[REGNO (temp)].nonzero_bits != 0
2449 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2450 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2451 && (reg_stat[REGNO (temp)].nonzero_bits
2452 != GET_MODE_MASK (word_mode)))))
2453 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2454 SET_SRC (XVECEXP (newpat, 0, 1)))
2455 && ! find_reg_note (i3, REG_UNUSED,
2456 SET_DEST (XVECEXP (newpat, 0, 0))))
2458 rtx ni2dest;
2460 newi2pat = XVECEXP (newpat, 0, 0);
2461 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2462 newpat = XVECEXP (newpat, 0, 1);
2463 SUBST (SET_SRC (newpat),
2464 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2465 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2467 if (i2_code_number >= 0)
2468 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2470 if (insn_code_number >= 0)
2472 rtx insn;
2473 rtx link;
2475 /* If we will be able to accept this, we have made a change to the
2476 destination of I3. This requires us to do a few adjustments. */
2477 PATTERN (i3) = newpat;
2478 adjust_for_new_dest (i3);
2480 /* I3 now uses what used to be its destination and which is
2481 now I2's destination. That means we need a LOG_LINK from
2482 I3 to I2. But we used to have one, so we still will.
2484 However, some later insn might be using I2's dest and have
2485 a LOG_LINK pointing at I3. We must remove this link.
2486 The simplest way to remove the link is to point it at I1,
2487 which we know will be a NOTE. */
2489 for (insn = NEXT_INSN (i3);
2490 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2491 || insn != BB_HEAD (this_basic_block->next_bb));
2492 insn = NEXT_INSN (insn))
2494 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2496 for (link = LOG_LINKS (insn); link;
2497 link = XEXP (link, 1))
2498 if (XEXP (link, 0) == i3)
2499 XEXP (link, 0) = i1;
2501 break;
2507 /* Similarly, check for a case where we have a PARALLEL of two independent
2508 SETs but we started with three insns. In this case, we can do the sets
2509 as two separate insns. This case occurs when some SET allows two
2510 other insns to combine, but the destination of that SET is still live. */
2512 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2513 && GET_CODE (newpat) == PARALLEL
2514 && XVECLEN (newpat, 0) == 2
2515 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2516 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2517 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2518 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2519 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2520 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2521 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2522 INSN_CUID (i2))
2523 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2524 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2525 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2526 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2527 XVECEXP (newpat, 0, 0))
2528 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2529 XVECEXP (newpat, 0, 1))
2530 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2531 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2533 /* Normally, it doesn't matter which of the two is done first,
2534 but it does if one references cc0. In that case, it has to
2535 be first. */
2536 #ifdef HAVE_cc0
2537 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2539 newi2pat = XVECEXP (newpat, 0, 0);
2540 newpat = XVECEXP (newpat, 0, 1);
2542 else
2543 #endif
2545 newi2pat = XVECEXP (newpat, 0, 1);
2546 newpat = XVECEXP (newpat, 0, 0);
2549 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2551 if (i2_code_number >= 0)
2552 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2555 /* If it still isn't recognized, fail and change things back the way they
2556 were. */
2557 if ((insn_code_number < 0
2558 /* Is the result a reasonable ASM_OPERANDS? */
2559 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2561 undo_all ();
2562 return 0;
2565 /* If we had to change another insn, make sure it is valid also. */
2566 if (undobuf.other_insn)
2568 rtx other_pat = PATTERN (undobuf.other_insn);
2569 rtx new_other_notes;
2570 rtx note, next;
2572 CLEAR_HARD_REG_SET (newpat_used_regs);
2574 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2575 &new_other_notes);
2577 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2579 undo_all ();
2580 return 0;
2583 PATTERN (undobuf.other_insn) = other_pat;
2585 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2586 are still valid. Then add any non-duplicate notes added by
2587 recog_for_combine. */
2588 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2590 next = XEXP (note, 1);
2592 if (REG_NOTE_KIND (note) == REG_UNUSED
2593 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2595 if (REG_P (XEXP (note, 0)))
2596 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2598 remove_note (undobuf.other_insn, note);
2602 for (note = new_other_notes; note; note = XEXP (note, 1))
2603 if (REG_P (XEXP (note, 0)))
2604 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2606 distribute_notes (new_other_notes, undobuf.other_insn,
2607 undobuf.other_insn, NULL_RTX);
2609 #ifdef HAVE_cc0
2610 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2611 they are adjacent to each other or not. */
2613 rtx p = prev_nonnote_insn (i3);
2614 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2615 && sets_cc0_p (newi2pat))
2617 undo_all ();
2618 return 0;
2621 #endif
2623 /* Only allow this combination if insn_rtx_costs reports that the
2624 replacement instructions are cheaper than the originals. */
2625 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2627 undo_all ();
2628 return 0;
2631 /* We now know that we can do this combination. Merge the insns and
2632 update the status of registers and LOG_LINKS. */
2635 rtx i3notes, i2notes, i1notes = 0;
2636 rtx i3links, i2links, i1links = 0;
2637 rtx midnotes = 0;
2638 unsigned int regno;
2640 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2641 clear them. */
2642 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2643 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2644 if (i1)
2645 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2647 /* Ensure that we do not have something that should not be shared but
2648 occurs multiple times in the new insns. Check this by first
2649 resetting all the `used' flags and then copying anything is shared. */
2651 reset_used_flags (i3notes);
2652 reset_used_flags (i2notes);
2653 reset_used_flags (i1notes);
2654 reset_used_flags (newpat);
2655 reset_used_flags (newi2pat);
2656 if (undobuf.other_insn)
2657 reset_used_flags (PATTERN (undobuf.other_insn));
2659 i3notes = copy_rtx_if_shared (i3notes);
2660 i2notes = copy_rtx_if_shared (i2notes);
2661 i1notes = copy_rtx_if_shared (i1notes);
2662 newpat = copy_rtx_if_shared (newpat);
2663 newi2pat = copy_rtx_if_shared (newi2pat);
2664 if (undobuf.other_insn)
2665 reset_used_flags (PATTERN (undobuf.other_insn));
2667 INSN_CODE (i3) = insn_code_number;
2668 PATTERN (i3) = newpat;
2670 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
2672 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2674 reset_used_flags (call_usage);
2675 call_usage = copy_rtx (call_usage);
2677 if (substed_i2)
2678 replace_rtx (call_usage, i2dest, i2src);
2680 if (substed_i1)
2681 replace_rtx (call_usage, i1dest, i1src);
2683 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2686 if (undobuf.other_insn)
2687 INSN_CODE (undobuf.other_insn) = other_code_number;
2689 /* We had one special case above where I2 had more than one set and
2690 we replaced a destination of one of those sets with the destination
2691 of I3. In that case, we have to update LOG_LINKS of insns later
2692 in this basic block. Note that this (expensive) case is rare.
2694 Also, in this case, we must pretend that all REG_NOTEs for I2
2695 actually came from I3, so that REG_UNUSED notes from I2 will be
2696 properly handled. */
2698 if (i3_subst_into_i2)
2700 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2701 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2702 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
2703 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2704 && ! find_reg_note (i2, REG_UNUSED,
2705 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2706 for (temp = NEXT_INSN (i2);
2707 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2708 || BB_HEAD (this_basic_block) != temp);
2709 temp = NEXT_INSN (temp))
2710 if (temp != i3 && INSN_P (temp))
2711 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2712 if (XEXP (link, 0) == i2)
2713 XEXP (link, 0) = i3;
2715 if (i3notes)
2717 rtx link = i3notes;
2718 while (XEXP (link, 1))
2719 link = XEXP (link, 1);
2720 XEXP (link, 1) = i2notes;
2722 else
2723 i3notes = i2notes;
2724 i2notes = 0;
2727 LOG_LINKS (i3) = 0;
2728 REG_NOTES (i3) = 0;
2729 LOG_LINKS (i2) = 0;
2730 REG_NOTES (i2) = 0;
2732 if (newi2pat)
2734 INSN_CODE (i2) = i2_code_number;
2735 PATTERN (i2) = newi2pat;
2737 else
2738 SET_INSN_DELETED (i2);
2740 if (i1)
2742 LOG_LINKS (i1) = 0;
2743 REG_NOTES (i1) = 0;
2744 SET_INSN_DELETED (i1);
2747 /* Get death notes for everything that is now used in either I3 or
2748 I2 and used to die in a previous insn. If we built two new
2749 patterns, move from I1 to I2 then I2 to I3 so that we get the
2750 proper movement on registers that I2 modifies. */
2752 if (newi2pat)
2754 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2755 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2757 else
2758 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2759 i3, &midnotes);
2761 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2762 if (i3notes)
2763 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2764 if (i2notes)
2765 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2766 if (i1notes)
2767 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2768 if (midnotes)
2769 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2771 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2772 know these are REG_UNUSED and want them to go to the desired insn,
2773 so we always pass it as i3. We have not counted the notes in
2774 reg_n_deaths yet, so we need to do so now. */
2776 if (newi2pat && new_i2_notes)
2778 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2779 if (REG_P (XEXP (temp, 0)))
2780 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2782 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2785 if (new_i3_notes)
2787 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2788 if (REG_P (XEXP (temp, 0)))
2789 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2791 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2794 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2795 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2796 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2797 in that case, it might delete I2. Similarly for I2 and I1.
2798 Show an additional death due to the REG_DEAD note we make here. If
2799 we discard it in distribute_notes, we will decrement it again. */
2801 if (i3dest_killed)
2803 if (REG_P (i3dest_killed))
2804 REG_N_DEATHS (REGNO (i3dest_killed))++;
2806 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2807 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2808 NULL_RTX),
2809 NULL_RTX, i2, NULL_RTX);
2810 else
2811 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2812 NULL_RTX),
2813 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2816 if (i2dest_in_i2src)
2818 if (REG_P (i2dest))
2819 REG_N_DEATHS (REGNO (i2dest))++;
2821 if (newi2pat && reg_set_p (i2dest, newi2pat))
2822 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2823 NULL_RTX, i2, NULL_RTX);
2824 else
2825 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2826 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2829 if (i1dest_in_i1src)
2831 if (REG_P (i1dest))
2832 REG_N_DEATHS (REGNO (i1dest))++;
2834 if (newi2pat && reg_set_p (i1dest, newi2pat))
2835 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2836 NULL_RTX, i2, NULL_RTX);
2837 else
2838 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2839 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2842 distribute_links (i3links);
2843 distribute_links (i2links);
2844 distribute_links (i1links);
2846 if (REG_P (i2dest))
2848 rtx link;
2849 rtx i2_insn = 0, i2_val = 0, set;
2851 /* The insn that used to set this register doesn't exist, and
2852 this life of the register may not exist either. See if one of
2853 I3's links points to an insn that sets I2DEST. If it does,
2854 that is now the last known value for I2DEST. If we don't update
2855 this and I2 set the register to a value that depended on its old
2856 contents, we will get confused. If this insn is used, thing
2857 will be set correctly in combine_instructions. */
2859 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2860 if ((set = single_set (XEXP (link, 0))) != 0
2861 && rtx_equal_p (i2dest, SET_DEST (set)))
2862 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2864 record_value_for_reg (i2dest, i2_insn, i2_val);
2866 /* If the reg formerly set in I2 died only once and that was in I3,
2867 zero its use count so it won't make `reload' do any work. */
2868 if (! added_sets_2
2869 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2870 && ! i2dest_in_i2src)
2872 regno = REGNO (i2dest);
2873 REG_N_SETS (regno)--;
2877 if (i1 && REG_P (i1dest))
2879 rtx link;
2880 rtx i1_insn = 0, i1_val = 0, set;
2882 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2883 if ((set = single_set (XEXP (link, 0))) != 0
2884 && rtx_equal_p (i1dest, SET_DEST (set)))
2885 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2887 record_value_for_reg (i1dest, i1_insn, i1_val);
2889 regno = REGNO (i1dest);
2890 if (! added_sets_1 && ! i1dest_in_i1src)
2891 REG_N_SETS (regno)--;
2894 /* Update reg_stat[].nonzero_bits et al for any changes that may have
2895 been made to this insn. The order of
2896 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
2897 can affect nonzero_bits of newpat */
2898 if (newi2pat)
2899 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2900 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2902 /* Set new_direct_jump_p if a new return or simple jump instruction
2903 has been created.
2905 If I3 is now an unconditional jump, ensure that it has a
2906 BARRIER following it since it may have initially been a
2907 conditional jump. It may also be the last nonnote insn. */
2909 if (returnjump_p (i3) || any_uncondjump_p (i3))
2911 *new_direct_jump_p = 1;
2912 mark_jump_label (PATTERN (i3), i3, 0);
2914 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2915 || !BARRIER_P (temp))
2916 emit_barrier_after (i3);
2919 if (undobuf.other_insn != NULL_RTX
2920 && (returnjump_p (undobuf.other_insn)
2921 || any_uncondjump_p (undobuf.other_insn)))
2923 *new_direct_jump_p = 1;
2925 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2926 || !BARRIER_P (temp))
2927 emit_barrier_after (undobuf.other_insn);
2930 /* An NOOP jump does not need barrier, but it does need cleaning up
2931 of CFG. */
2932 if (GET_CODE (newpat) == SET
2933 && SET_SRC (newpat) == pc_rtx
2934 && SET_DEST (newpat) == pc_rtx)
2935 *new_direct_jump_p = 1;
2938 combine_successes++;
2939 undo_commit ();
2941 if (added_links_insn
2942 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2943 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2944 return added_links_insn;
2945 else
2946 return newi2pat ? i2 : i3;
2949 /* Undo all the modifications recorded in undobuf. */
2951 static void
2952 undo_all (void)
2954 struct undo *undo, *next;
2956 for (undo = undobuf.undos; undo; undo = next)
2958 next = undo->next;
2959 if (undo->is_int)
2960 *undo->where.i = undo->old_contents.i;
2961 else
2962 *undo->where.r = undo->old_contents.r;
2964 undo->next = undobuf.frees;
2965 undobuf.frees = undo;
2968 undobuf.undos = 0;
2971 /* We've committed to accepting the changes we made. Move all
2972 of the undos to the free list. */
2974 static void
2975 undo_commit (void)
2977 struct undo *undo, *next;
2979 for (undo = undobuf.undos; undo; undo = next)
2981 next = undo->next;
2982 undo->next = undobuf.frees;
2983 undobuf.frees = undo;
2985 undobuf.undos = 0;
2989 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2990 where we have an arithmetic expression and return that point. LOC will
2991 be inside INSN.
2993 try_combine will call this function to see if an insn can be split into
2994 two insns. */
2996 static rtx *
2997 find_split_point (rtx *loc, rtx insn)
2999 rtx x = *loc;
3000 enum rtx_code code = GET_CODE (x);
3001 rtx *split;
3002 unsigned HOST_WIDE_INT len = 0;
3003 HOST_WIDE_INT pos = 0;
3004 int unsignedp = 0;
3005 rtx inner = NULL_RTX;
3007 /* First special-case some codes. */
3008 switch (code)
3010 case SUBREG:
3011 #ifdef INSN_SCHEDULING
3012 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3013 point. */
3014 if (MEM_P (SUBREG_REG (x)))
3015 return loc;
3016 #endif
3017 return find_split_point (&SUBREG_REG (x), insn);
3019 case MEM:
3020 #ifdef HAVE_lo_sum
3021 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3022 using LO_SUM and HIGH. */
3023 if (GET_CODE (XEXP (x, 0)) == CONST
3024 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3026 SUBST (XEXP (x, 0),
3027 gen_rtx_LO_SUM (Pmode,
3028 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3029 XEXP (x, 0)));
3030 return &XEXP (XEXP (x, 0), 0);
3032 #endif
3034 /* If we have a PLUS whose second operand is a constant and the
3035 address is not valid, perhaps will can split it up using
3036 the machine-specific way to split large constants. We use
3037 the first pseudo-reg (one of the virtual regs) as a placeholder;
3038 it will not remain in the result. */
3039 if (GET_CODE (XEXP (x, 0)) == PLUS
3040 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3041 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3043 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3044 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3045 subst_insn);
3047 /* This should have produced two insns, each of which sets our
3048 placeholder. If the source of the second is a valid address,
3049 we can make put both sources together and make a split point
3050 in the middle. */
3052 if (seq
3053 && NEXT_INSN (seq) != NULL_RTX
3054 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3055 && NONJUMP_INSN_P (seq)
3056 && GET_CODE (PATTERN (seq)) == SET
3057 && SET_DEST (PATTERN (seq)) == reg
3058 && ! reg_mentioned_p (reg,
3059 SET_SRC (PATTERN (seq)))
3060 && NONJUMP_INSN_P (NEXT_INSN (seq))
3061 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3062 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3063 && memory_address_p (GET_MODE (x),
3064 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3066 rtx src1 = SET_SRC (PATTERN (seq));
3067 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3069 /* Replace the placeholder in SRC2 with SRC1. If we can
3070 find where in SRC2 it was placed, that can become our
3071 split point and we can replace this address with SRC2.
3072 Just try two obvious places. */
3074 src2 = replace_rtx (src2, reg, src1);
3075 split = 0;
3076 if (XEXP (src2, 0) == src1)
3077 split = &XEXP (src2, 0);
3078 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3079 && XEXP (XEXP (src2, 0), 0) == src1)
3080 split = &XEXP (XEXP (src2, 0), 0);
3082 if (split)
3084 SUBST (XEXP (x, 0), src2);
3085 return split;
3089 /* If that didn't work, perhaps the first operand is complex and
3090 needs to be computed separately, so make a split point there.
3091 This will occur on machines that just support REG + CONST
3092 and have a constant moved through some previous computation. */
3094 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3095 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3096 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3097 return &XEXP (XEXP (x, 0), 0);
3099 break;
3101 case SET:
3102 #ifdef HAVE_cc0
3103 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3104 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3105 we need to put the operand into a register. So split at that
3106 point. */
3108 if (SET_DEST (x) == cc0_rtx
3109 && GET_CODE (SET_SRC (x)) != COMPARE
3110 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3111 && !OBJECT_P (SET_SRC (x))
3112 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3113 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3114 return &SET_SRC (x);
3115 #endif
3117 /* See if we can split SET_SRC as it stands. */
3118 split = find_split_point (&SET_SRC (x), insn);
3119 if (split && split != &SET_SRC (x))
3120 return split;
3122 /* See if we can split SET_DEST as it stands. */
3123 split = find_split_point (&SET_DEST (x), insn);
3124 if (split && split != &SET_DEST (x))
3125 return split;
3127 /* See if this is a bitfield assignment with everything constant. If
3128 so, this is an IOR of an AND, so split it into that. */
3129 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3130 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3131 <= HOST_BITS_PER_WIDE_INT)
3132 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3133 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3134 && GET_CODE (SET_SRC (x)) == CONST_INT
3135 && ((INTVAL (XEXP (SET_DEST (x), 1))
3136 + INTVAL (XEXP (SET_DEST (x), 2)))
3137 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3138 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3140 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3141 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3142 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3143 rtx dest = XEXP (SET_DEST (x), 0);
3144 enum machine_mode mode = GET_MODE (dest);
3145 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3147 if (BITS_BIG_ENDIAN)
3148 pos = GET_MODE_BITSIZE (mode) - len - pos;
3150 if (src == mask)
3151 SUBST (SET_SRC (x),
3152 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3153 else
3154 SUBST (SET_SRC (x),
3155 gen_binary (IOR, mode,
3156 gen_binary (AND, mode, dest,
3157 gen_int_mode (~(mask << pos),
3158 mode)),
3159 GEN_INT (src << pos)));
3161 SUBST (SET_DEST (x), dest);
3163 split = find_split_point (&SET_SRC (x), insn);
3164 if (split && split != &SET_SRC (x))
3165 return split;
3168 /* Otherwise, see if this is an operation that we can split into two.
3169 If so, try to split that. */
3170 code = GET_CODE (SET_SRC (x));
3172 switch (code)
3174 case AND:
3175 /* If we are AND'ing with a large constant that is only a single
3176 bit and the result is only being used in a context where we
3177 need to know if it is zero or nonzero, replace it with a bit
3178 extraction. This will avoid the large constant, which might
3179 have taken more than one insn to make. If the constant were
3180 not a valid argument to the AND but took only one insn to make,
3181 this is no worse, but if it took more than one insn, it will
3182 be better. */
3184 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3185 && REG_P (XEXP (SET_SRC (x), 0))
3186 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3187 && REG_P (SET_DEST (x))
3188 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3189 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3190 && XEXP (*split, 0) == SET_DEST (x)
3191 && XEXP (*split, 1) == const0_rtx)
3193 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3194 XEXP (SET_SRC (x), 0),
3195 pos, NULL_RTX, 1, 1, 0, 0);
3196 if (extraction != 0)
3198 SUBST (SET_SRC (x), extraction);
3199 return find_split_point (loc, insn);
3202 break;
3204 case NE:
3205 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3206 is known to be on, this can be converted into a NEG of a shift. */
3207 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3208 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3209 && 1 <= (pos = exact_log2
3210 (nonzero_bits (XEXP (SET_SRC (x), 0),
3211 GET_MODE (XEXP (SET_SRC (x), 0))))))
3213 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3215 SUBST (SET_SRC (x),
3216 gen_rtx_NEG (mode,
3217 gen_rtx_LSHIFTRT (mode,
3218 XEXP (SET_SRC (x), 0),
3219 GEN_INT (pos))));
3221 split = find_split_point (&SET_SRC (x), insn);
3222 if (split && split != &SET_SRC (x))
3223 return split;
3225 break;
3227 case SIGN_EXTEND:
3228 inner = XEXP (SET_SRC (x), 0);
3230 /* We can't optimize if either mode is a partial integer
3231 mode as we don't know how many bits are significant
3232 in those modes. */
3233 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3234 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3235 break;
3237 pos = 0;
3238 len = GET_MODE_BITSIZE (GET_MODE (inner));
3239 unsignedp = 0;
3240 break;
3242 case SIGN_EXTRACT:
3243 case ZERO_EXTRACT:
3244 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3245 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3247 inner = XEXP (SET_SRC (x), 0);
3248 len = INTVAL (XEXP (SET_SRC (x), 1));
3249 pos = INTVAL (XEXP (SET_SRC (x), 2));
3251 if (BITS_BIG_ENDIAN)
3252 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3253 unsignedp = (code == ZERO_EXTRACT);
3255 break;
3257 default:
3258 break;
3261 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3263 enum machine_mode mode = GET_MODE (SET_SRC (x));
3265 /* For unsigned, we have a choice of a shift followed by an
3266 AND or two shifts. Use two shifts for field sizes where the
3267 constant might be too large. We assume here that we can
3268 always at least get 8-bit constants in an AND insn, which is
3269 true for every current RISC. */
3271 if (unsignedp && len <= 8)
3273 SUBST (SET_SRC (x),
3274 gen_rtx_AND (mode,
3275 gen_rtx_LSHIFTRT
3276 (mode, gen_lowpart (mode, inner),
3277 GEN_INT (pos)),
3278 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3280 split = find_split_point (&SET_SRC (x), insn);
3281 if (split && split != &SET_SRC (x))
3282 return split;
3284 else
3286 SUBST (SET_SRC (x),
3287 gen_rtx_fmt_ee
3288 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3289 gen_rtx_ASHIFT (mode,
3290 gen_lowpart (mode, inner),
3291 GEN_INT (GET_MODE_BITSIZE (mode)
3292 - len - pos)),
3293 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3295 split = find_split_point (&SET_SRC (x), insn);
3296 if (split && split != &SET_SRC (x))
3297 return split;
3301 /* See if this is a simple operation with a constant as the second
3302 operand. It might be that this constant is out of range and hence
3303 could be used as a split point. */
3304 if (BINARY_P (SET_SRC (x))
3305 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3306 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3307 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3308 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3309 return &XEXP (SET_SRC (x), 1);
3311 /* Finally, see if this is a simple operation with its first operand
3312 not in a register. The operation might require this operand in a
3313 register, so return it as a split point. We can always do this
3314 because if the first operand were another operation, we would have
3315 already found it as a split point. */
3316 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3317 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3318 return &XEXP (SET_SRC (x), 0);
3320 return 0;
3322 case AND:
3323 case IOR:
3324 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3325 it is better to write this as (not (ior A B)) so we can split it.
3326 Similarly for IOR. */
3327 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3329 SUBST (*loc,
3330 gen_rtx_NOT (GET_MODE (x),
3331 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3332 GET_MODE (x),
3333 XEXP (XEXP (x, 0), 0),
3334 XEXP (XEXP (x, 1), 0))));
3335 return find_split_point (loc, insn);
3338 /* Many RISC machines have a large set of logical insns. If the
3339 second operand is a NOT, put it first so we will try to split the
3340 other operand first. */
3341 if (GET_CODE (XEXP (x, 1)) == NOT)
3343 rtx tem = XEXP (x, 0);
3344 SUBST (XEXP (x, 0), XEXP (x, 1));
3345 SUBST (XEXP (x, 1), tem);
3347 break;
3349 default:
3350 break;
3353 /* Otherwise, select our actions depending on our rtx class. */
3354 switch (GET_RTX_CLASS (code))
3356 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3357 case RTX_TERNARY:
3358 split = find_split_point (&XEXP (x, 2), insn);
3359 if (split)
3360 return split;
3361 /* ... fall through ... */
3362 case RTX_BIN_ARITH:
3363 case RTX_COMM_ARITH:
3364 case RTX_COMPARE:
3365 case RTX_COMM_COMPARE:
3366 split = find_split_point (&XEXP (x, 1), insn);
3367 if (split)
3368 return split;
3369 /* ... fall through ... */
3370 case RTX_UNARY:
3371 /* Some machines have (and (shift ...) ...) insns. If X is not
3372 an AND, but XEXP (X, 0) is, use it as our split point. */
3373 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3374 return &XEXP (x, 0);
3376 split = find_split_point (&XEXP (x, 0), insn);
3377 if (split)
3378 return split;
3379 return loc;
3381 default:
3382 /* Otherwise, we don't have a split point. */
3383 return 0;
3387 /* Throughout X, replace FROM with TO, and return the result.
3388 The result is TO if X is FROM;
3389 otherwise the result is X, but its contents may have been modified.
3390 If they were modified, a record was made in undobuf so that
3391 undo_all will (among other things) return X to its original state.
3393 If the number of changes necessary is too much to record to undo,
3394 the excess changes are not made, so the result is invalid.
3395 The changes already made can still be undone.
3396 undobuf.num_undo is incremented for such changes, so by testing that
3397 the caller can tell whether the result is valid.
3399 `n_occurrences' is incremented each time FROM is replaced.
3401 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3403 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3404 by copying if `n_occurrences' is nonzero. */
3406 static rtx
3407 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3409 enum rtx_code code = GET_CODE (x);
3410 enum machine_mode op0_mode = VOIDmode;
3411 const char *fmt;
3412 int len, i;
3413 rtx new;
3415 /* Two expressions are equal if they are identical copies of a shared
3416 RTX or if they are both registers with the same register number
3417 and mode. */
3419 #define COMBINE_RTX_EQUAL_P(X,Y) \
3420 ((X) == (Y) \
3421 || (REG_P (X) && REG_P (Y) \
3422 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3424 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3426 n_occurrences++;
3427 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3430 /* If X and FROM are the same register but different modes, they will
3431 not have been seen as equal above. However, flow.c will make a
3432 LOG_LINKS entry for that case. If we do nothing, we will try to
3433 rerecognize our original insn and, when it succeeds, we will
3434 delete the feeding insn, which is incorrect.
3436 So force this insn not to match in this (rare) case. */
3437 if (! in_dest && code == REG && REG_P (from)
3438 && REGNO (x) == REGNO (from))
3439 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3441 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3442 of which may contain things that can be combined. */
3443 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3444 return x;
3446 /* It is possible to have a subexpression appear twice in the insn.
3447 Suppose that FROM is a register that appears within TO.
3448 Then, after that subexpression has been scanned once by `subst',
3449 the second time it is scanned, TO may be found. If we were
3450 to scan TO here, we would find FROM within it and create a
3451 self-referent rtl structure which is completely wrong. */
3452 if (COMBINE_RTX_EQUAL_P (x, to))
3453 return to;
3455 /* Parallel asm_operands need special attention because all of the
3456 inputs are shared across the arms. Furthermore, unsharing the
3457 rtl results in recognition failures. Failure to handle this case
3458 specially can result in circular rtl.
3460 Solve this by doing a normal pass across the first entry of the
3461 parallel, and only processing the SET_DESTs of the subsequent
3462 entries. Ug. */
3464 if (code == PARALLEL
3465 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3466 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3468 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3470 /* If this substitution failed, this whole thing fails. */
3471 if (GET_CODE (new) == CLOBBER
3472 && XEXP (new, 0) == const0_rtx)
3473 return new;
3475 SUBST (XVECEXP (x, 0, 0), new);
3477 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3479 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3481 if (!REG_P (dest)
3482 && GET_CODE (dest) != CC0
3483 && GET_CODE (dest) != PC)
3485 new = subst (dest, from, to, 0, unique_copy);
3487 /* If this substitution failed, this whole thing fails. */
3488 if (GET_CODE (new) == CLOBBER
3489 && XEXP (new, 0) == const0_rtx)
3490 return new;
3492 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3496 else
3498 len = GET_RTX_LENGTH (code);
3499 fmt = GET_RTX_FORMAT (code);
3501 /* We don't need to process a SET_DEST that is a register, CC0,
3502 or PC, so set up to skip this common case. All other cases
3503 where we want to suppress replacing something inside a
3504 SET_SRC are handled via the IN_DEST operand. */
3505 if (code == SET
3506 && (REG_P (SET_DEST (x))
3507 || GET_CODE (SET_DEST (x)) == CC0
3508 || GET_CODE (SET_DEST (x)) == PC))
3509 fmt = "ie";
3511 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3512 constant. */
3513 if (fmt[0] == 'e')
3514 op0_mode = GET_MODE (XEXP (x, 0));
3516 for (i = 0; i < len; i++)
3518 if (fmt[i] == 'E')
3520 int j;
3521 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3523 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3525 new = (unique_copy && n_occurrences
3526 ? copy_rtx (to) : to);
3527 n_occurrences++;
3529 else
3531 new = subst (XVECEXP (x, i, j), from, to, 0,
3532 unique_copy);
3534 /* If this substitution failed, this whole thing
3535 fails. */
3536 if (GET_CODE (new) == CLOBBER
3537 && XEXP (new, 0) == const0_rtx)
3538 return new;
3541 SUBST (XVECEXP (x, i, j), new);
3544 else if (fmt[i] == 'e')
3546 /* If this is a register being set, ignore it. */
3547 new = XEXP (x, i);
3548 if (in_dest
3549 && (code == SUBREG || code == STRICT_LOW_PART
3550 || code == ZERO_EXTRACT)
3551 && i == 0
3552 && REG_P (new))
3555 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3557 /* In general, don't install a subreg involving two
3558 modes not tieable. It can worsen register
3559 allocation, and can even make invalid reload
3560 insns, since the reg inside may need to be copied
3561 from in the outside mode, and that may be invalid
3562 if it is an fp reg copied in integer mode.
3564 We allow two exceptions to this: It is valid if
3565 it is inside another SUBREG and the mode of that
3566 SUBREG and the mode of the inside of TO is
3567 tieable and it is valid if X is a SET that copies
3568 FROM to CC0. */
3570 if (GET_CODE (to) == SUBREG
3571 && ! MODES_TIEABLE_P (GET_MODE (to),
3572 GET_MODE (SUBREG_REG (to)))
3573 && ! (code == SUBREG
3574 && MODES_TIEABLE_P (GET_MODE (x),
3575 GET_MODE (SUBREG_REG (to))))
3576 #ifdef HAVE_cc0
3577 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3578 #endif
3580 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3582 #ifdef CANNOT_CHANGE_MODE_CLASS
3583 if (code == SUBREG
3584 && REG_P (to)
3585 && REGNO (to) < FIRST_PSEUDO_REGISTER
3586 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3587 GET_MODE (to),
3588 GET_MODE (x)))
3589 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3590 #endif
3592 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3593 n_occurrences++;
3595 else
3596 /* If we are in a SET_DEST, suppress most cases unless we
3597 have gone inside a MEM, in which case we want to
3598 simplify the address. We assume here that things that
3599 are actually part of the destination have their inner
3600 parts in the first expression. This is true for SUBREG,
3601 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3602 things aside from REG and MEM that should appear in a
3603 SET_DEST. */
3604 new = subst (XEXP (x, i), from, to,
3605 (((in_dest
3606 && (code == SUBREG || code == STRICT_LOW_PART
3607 || code == ZERO_EXTRACT))
3608 || code == SET)
3609 && i == 0), unique_copy);
3611 /* If we found that we will have to reject this combination,
3612 indicate that by returning the CLOBBER ourselves, rather than
3613 an expression containing it. This will speed things up as
3614 well as prevent accidents where two CLOBBERs are considered
3615 to be equal, thus producing an incorrect simplification. */
3617 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3618 return new;
3620 if (GET_CODE (x) == SUBREG
3621 && (GET_CODE (new) == CONST_INT
3622 || GET_CODE (new) == CONST_DOUBLE))
3624 enum machine_mode mode = GET_MODE (x);
3626 x = simplify_subreg (GET_MODE (x), new,
3627 GET_MODE (SUBREG_REG (x)),
3628 SUBREG_BYTE (x));
3629 if (! x)
3630 x = gen_rtx_CLOBBER (mode, const0_rtx);
3632 else if (GET_CODE (new) == CONST_INT
3633 && GET_CODE (x) == ZERO_EXTEND)
3635 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3636 new, GET_MODE (XEXP (x, 0)));
3637 if (! x)
3638 abort ();
3640 else
3641 SUBST (XEXP (x, i), new);
3646 /* Try to simplify X. If the simplification changed the code, it is likely
3647 that further simplification will help, so loop, but limit the number
3648 of repetitions that will be performed. */
3650 for (i = 0; i < 4; i++)
3652 /* If X is sufficiently simple, don't bother trying to do anything
3653 with it. */
3654 if (code != CONST_INT && code != REG && code != CLOBBER)
3655 x = combine_simplify_rtx (x, op0_mode, in_dest);
3657 if (GET_CODE (x) == code)
3658 break;
3660 code = GET_CODE (x);
3662 /* We no longer know the original mode of operand 0 since we
3663 have changed the form of X) */
3664 op0_mode = VOIDmode;
3667 return x;
3670 /* Simplify X, a piece of RTL. We just operate on the expression at the
3671 outer level; call `subst' to simplify recursively. Return the new
3672 expression.
3674 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3675 if we are inside a SET_DEST. */
3677 static rtx
3678 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
3680 enum rtx_code code = GET_CODE (x);
3681 enum machine_mode mode = GET_MODE (x);
3682 rtx temp;
3683 rtx reversed;
3684 int i;
3686 /* If this is a commutative operation, put a constant last and a complex
3687 expression first. We don't need to do this for comparisons here. */
3688 if (COMMUTATIVE_ARITH_P (x)
3689 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3691 temp = XEXP (x, 0);
3692 SUBST (XEXP (x, 0), XEXP (x, 1));
3693 SUBST (XEXP (x, 1), temp);
3696 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3697 sign extension of a PLUS with a constant, reverse the order of the sign
3698 extension and the addition. Note that this not the same as the original
3699 code, but overflow is undefined for signed values. Also note that the
3700 PLUS will have been partially moved "inside" the sign-extension, so that
3701 the first operand of X will really look like:
3702 (ashiftrt (plus (ashift A C4) C5) C4).
3703 We convert this to
3704 (plus (ashiftrt (ashift A C4) C2) C4)
3705 and replace the first operand of X with that expression. Later parts
3706 of this function may simplify the expression further.
3708 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3709 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3710 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3712 We do this to simplify address expressions. */
3714 if ((code == PLUS || code == MINUS || code == MULT)
3715 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3716 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3717 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3718 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3719 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3720 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3721 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3722 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3723 XEXP (XEXP (XEXP (x, 0), 0), 1),
3724 XEXP (XEXP (x, 0), 1))) != 0)
3726 rtx new
3727 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3728 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3729 INTVAL (XEXP (XEXP (x, 0), 1)));
3731 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3732 INTVAL (XEXP (XEXP (x, 0), 1)));
3734 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3737 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3738 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3739 things. Check for cases where both arms are testing the same
3740 condition.
3742 Don't do anything if all operands are very simple. */
3744 if ((BINARY_P (x)
3745 && ((!OBJECT_P (XEXP (x, 0))
3746 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3747 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3748 || (!OBJECT_P (XEXP (x, 1))
3749 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3750 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3751 || (UNARY_P (x)
3752 && (!OBJECT_P (XEXP (x, 0))
3753 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3754 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3756 rtx cond, true_rtx, false_rtx;
3758 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3759 if (cond != 0
3760 /* If everything is a comparison, what we have is highly unlikely
3761 to be simpler, so don't use it. */
3762 && ! (COMPARISON_P (x)
3763 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3765 rtx cop1 = const0_rtx;
3766 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3768 if (cond_code == NE && COMPARISON_P (cond))
3769 return x;
3771 /* Simplify the alternative arms; this may collapse the true and
3772 false arms to store-flag values. Be careful to use copy_rtx
3773 here since true_rtx or false_rtx might share RTL with x as a
3774 result of the if_then_else_cond call above. */
3775 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3776 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3778 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3779 is unlikely to be simpler. */
3780 if (general_operand (true_rtx, VOIDmode)
3781 && general_operand (false_rtx, VOIDmode))
3783 enum rtx_code reversed;
3785 /* Restarting if we generate a store-flag expression will cause
3786 us to loop. Just drop through in this case. */
3788 /* If the result values are STORE_FLAG_VALUE and zero, we can
3789 just make the comparison operation. */
3790 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3791 x = gen_binary (cond_code, mode, cond, cop1);
3792 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3793 && ((reversed = reversed_comparison_code_parts
3794 (cond_code, cond, cop1, NULL))
3795 != UNKNOWN))
3796 x = gen_binary (reversed, mode, cond, cop1);
3798 /* Likewise, we can make the negate of a comparison operation
3799 if the result values are - STORE_FLAG_VALUE and zero. */
3800 else if (GET_CODE (true_rtx) == CONST_INT
3801 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3802 && false_rtx == const0_rtx)
3803 x = simplify_gen_unary (NEG, mode,
3804 gen_binary (cond_code, mode, cond,
3805 cop1),
3806 mode);
3807 else if (GET_CODE (false_rtx) == CONST_INT
3808 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3809 && true_rtx == const0_rtx
3810 && ((reversed = reversed_comparison_code_parts
3811 (cond_code, cond, cop1, NULL))
3812 != UNKNOWN))
3813 x = simplify_gen_unary (NEG, mode,
3814 gen_binary (reversed, mode,
3815 cond, cop1),
3816 mode);
3817 else
3818 return gen_rtx_IF_THEN_ELSE (mode,
3819 gen_binary (cond_code, VOIDmode,
3820 cond, cop1),
3821 true_rtx, false_rtx);
3823 code = GET_CODE (x);
3824 op0_mode = VOIDmode;
3829 /* Try to fold this expression in case we have constants that weren't
3830 present before. */
3831 temp = 0;
3832 switch (GET_RTX_CLASS (code))
3834 case RTX_UNARY:
3835 if (op0_mode == VOIDmode)
3836 op0_mode = GET_MODE (XEXP (x, 0));
3837 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3838 break;
3839 case RTX_COMPARE:
3840 case RTX_COMM_COMPARE:
3842 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3843 if (cmp_mode == VOIDmode)
3845 cmp_mode = GET_MODE (XEXP (x, 1));
3846 if (cmp_mode == VOIDmode)
3847 cmp_mode = op0_mode;
3849 temp = simplify_relational_operation (code, mode, cmp_mode,
3850 XEXP (x, 0), XEXP (x, 1));
3852 break;
3853 case RTX_COMM_ARITH:
3854 case RTX_BIN_ARITH:
3855 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3856 break;
3857 case RTX_BITFIELD_OPS:
3858 case RTX_TERNARY:
3859 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3860 XEXP (x, 1), XEXP (x, 2));
3861 break;
3862 default:
3863 break;
3866 if (temp)
3868 x = temp;
3869 code = GET_CODE (temp);
3870 op0_mode = VOIDmode;
3871 mode = GET_MODE (temp);
3874 /* First see if we can apply the inverse distributive law. */
3875 if (code == PLUS || code == MINUS
3876 || code == AND || code == IOR || code == XOR)
3878 x = apply_distributive_law (x);
3879 code = GET_CODE (x);
3880 op0_mode = VOIDmode;
3883 /* If CODE is an associative operation not otherwise handled, see if we
3884 can associate some operands. This can win if they are constants or
3885 if they are logically related (i.e. (a & b) & a). */
3886 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3887 || code == AND || code == IOR || code == XOR
3888 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3889 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3890 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3892 if (GET_CODE (XEXP (x, 0)) == code)
3894 rtx other = XEXP (XEXP (x, 0), 0);
3895 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3896 rtx inner_op1 = XEXP (x, 1);
3897 rtx inner;
3899 /* Make sure we pass the constant operand if any as the second
3900 one if this is a commutative operation. */
3901 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
3903 rtx tem = inner_op0;
3904 inner_op0 = inner_op1;
3905 inner_op1 = tem;
3907 inner = simplify_binary_operation (code == MINUS ? PLUS
3908 : code == DIV ? MULT
3909 : code,
3910 mode, inner_op0, inner_op1);
3912 /* For commutative operations, try the other pair if that one
3913 didn't simplify. */
3914 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
3916 other = XEXP (XEXP (x, 0), 1);
3917 inner = simplify_binary_operation (code, mode,
3918 XEXP (XEXP (x, 0), 0),
3919 XEXP (x, 1));
3922 if (inner)
3923 return gen_binary (code, mode, other, inner);
3927 /* A little bit of algebraic simplification here. */
3928 switch (code)
3930 case MEM:
3931 /* Ensure that our address has any ASHIFTs converted to MULT in case
3932 address-recognizing predicates are called later. */
3933 temp = make_compound_operation (XEXP (x, 0), MEM);
3934 SUBST (XEXP (x, 0), temp);
3935 break;
3937 case SUBREG:
3938 if (op0_mode == VOIDmode)
3939 op0_mode = GET_MODE (SUBREG_REG (x));
3941 /* See if this can be moved to simplify_subreg. */
3942 if (CONSTANT_P (SUBREG_REG (x))
3943 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3944 /* Don't call gen_lowpart if the inner mode
3945 is VOIDmode and we cannot simplify it, as SUBREG without
3946 inner mode is invalid. */
3947 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3948 || gen_lowpart_common (mode, SUBREG_REG (x))))
3949 return gen_lowpart (mode, SUBREG_REG (x));
3951 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3952 break;
3954 rtx temp;
3955 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3956 SUBREG_BYTE (x));
3957 if (temp)
3958 return temp;
3961 /* Don't change the mode of the MEM if that would change the meaning
3962 of the address. */
3963 if (MEM_P (SUBREG_REG (x))
3964 && (MEM_VOLATILE_P (SUBREG_REG (x))
3965 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3966 return gen_rtx_CLOBBER (mode, const0_rtx);
3968 /* Note that we cannot do any narrowing for non-constants since
3969 we might have been counting on using the fact that some bits were
3970 zero. We now do this in the SET. */
3972 break;
3974 case NOT:
3975 if (GET_CODE (XEXP (x, 0)) == SUBREG
3976 && subreg_lowpart_p (XEXP (x, 0))
3977 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3978 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3979 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3980 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3982 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3984 x = gen_rtx_ROTATE (inner_mode,
3985 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3986 inner_mode),
3987 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3988 return gen_lowpart (mode, x);
3991 /* Apply De Morgan's laws to reduce number of patterns for machines
3992 with negating logical insns (and-not, nand, etc.). If result has
3993 only one NOT, put it first, since that is how the patterns are
3994 coded. */
3996 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3998 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3999 enum machine_mode op_mode;
4001 op_mode = GET_MODE (in1);
4002 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
4004 op_mode = GET_MODE (in2);
4005 if (op_mode == VOIDmode)
4006 op_mode = mode;
4007 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
4009 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
4011 rtx tem = in2;
4012 in2 = in1; in1 = tem;
4015 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4016 mode, in1, in2);
4018 break;
4020 case NEG:
4021 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4022 if (GET_CODE (XEXP (x, 0)) == XOR
4023 && XEXP (XEXP (x, 0), 1) == const1_rtx
4024 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4025 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
4027 temp = expand_compound_operation (XEXP (x, 0));
4029 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4030 replaced by (lshiftrt X C). This will convert
4031 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4033 if (GET_CODE (temp) == ASHIFTRT
4034 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4035 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4036 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4037 INTVAL (XEXP (temp, 1)));
4039 /* If X has only a single bit that might be nonzero, say, bit I, convert
4040 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4041 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4042 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4043 or a SUBREG of one since we'd be making the expression more
4044 complex if it was just a register. */
4046 if (!REG_P (temp)
4047 && ! (GET_CODE (temp) == SUBREG
4048 && REG_P (SUBREG_REG (temp)))
4049 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4051 rtx temp1 = simplify_shift_const
4052 (NULL_RTX, ASHIFTRT, mode,
4053 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4054 GET_MODE_BITSIZE (mode) - 1 - i),
4055 GET_MODE_BITSIZE (mode) - 1 - i);
4057 /* If all we did was surround TEMP with the two shifts, we
4058 haven't improved anything, so don't use it. Otherwise,
4059 we are better off with TEMP1. */
4060 if (GET_CODE (temp1) != ASHIFTRT
4061 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4062 || XEXP (XEXP (temp1, 0), 0) != temp)
4063 return temp1;
4065 break;
4067 case TRUNCATE:
4068 /* We can't handle truncation to a partial integer mode here
4069 because we don't know the real bitsize of the partial
4070 integer mode. */
4071 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4072 break;
4074 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4075 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4076 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4077 SUBST (XEXP (x, 0),
4078 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4079 GET_MODE_MASK (mode), NULL_RTX, 0));
4081 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4082 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4083 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4084 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4085 return XEXP (XEXP (x, 0), 0);
4087 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4088 (OP:SI foo:SI) if OP is NEG or ABS. */
4089 if ((GET_CODE (XEXP (x, 0)) == ABS
4090 || GET_CODE (XEXP (x, 0)) == NEG)
4091 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4092 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4093 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4094 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4095 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4097 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4098 (truncate:SI x). */
4099 if (GET_CODE (XEXP (x, 0)) == SUBREG
4100 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4101 && subreg_lowpart_p (XEXP (x, 0)))
4102 return SUBREG_REG (XEXP (x, 0));
4104 /* If we know that the value is already truncated, we can
4105 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4106 is nonzero for the corresponding modes. But don't do this
4107 for an (LSHIFTRT (MULT ...)) since this will cause problems
4108 with the umulXi3_highpart patterns. */
4109 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4110 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4111 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4112 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4113 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4114 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4115 return gen_lowpart (mode, XEXP (x, 0));
4117 /* A truncate of a comparison can be replaced with a subreg if
4118 STORE_FLAG_VALUE permits. This is like the previous test,
4119 but it works even if the comparison is done in a mode larger
4120 than HOST_BITS_PER_WIDE_INT. */
4121 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4122 && COMPARISON_P (XEXP (x, 0))
4123 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4124 return gen_lowpart (mode, XEXP (x, 0));
4126 /* Similarly, a truncate of a register whose value is a
4127 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4128 permits. */
4129 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4130 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4131 && (temp = get_last_value (XEXP (x, 0)))
4132 && COMPARISON_P (temp))
4133 return gen_lowpart (mode, XEXP (x, 0));
4135 break;
4137 case FLOAT_TRUNCATE:
4138 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4139 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4140 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4141 return XEXP (XEXP (x, 0), 0);
4143 /* (float_truncate:SF (float_truncate:DF foo:XF))
4144 = (float_truncate:SF foo:XF).
4145 This may eliminate double rounding, so it is unsafe.
4147 (float_truncate:SF (float_extend:XF foo:DF))
4148 = (float_truncate:SF foo:DF).
4150 (float_truncate:DF (float_extend:XF foo:SF))
4151 = (float_extend:SF foo:DF). */
4152 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4153 && flag_unsafe_math_optimizations)
4154 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4155 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4156 0)))
4157 > GET_MODE_SIZE (mode)
4158 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4159 mode,
4160 XEXP (XEXP (x, 0), 0), mode);
4162 /* (float_truncate (float x)) is (float x) */
4163 if (GET_CODE (XEXP (x, 0)) == FLOAT
4164 && (flag_unsafe_math_optimizations
4165 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4166 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4167 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4168 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4169 return simplify_gen_unary (FLOAT, mode,
4170 XEXP (XEXP (x, 0), 0),
4171 GET_MODE (XEXP (XEXP (x, 0), 0)));
4173 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4174 (OP:SF foo:SF) if OP is NEG or ABS. */
4175 if ((GET_CODE (XEXP (x, 0)) == ABS
4176 || GET_CODE (XEXP (x, 0)) == NEG)
4177 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4178 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4179 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4180 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4182 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4183 is (float_truncate:SF x). */
4184 if (GET_CODE (XEXP (x, 0)) == SUBREG
4185 && subreg_lowpart_p (XEXP (x, 0))
4186 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4187 return SUBREG_REG (XEXP (x, 0));
4188 break;
4189 case FLOAT_EXTEND:
4190 /* (float_extend (float_extend x)) is (float_extend x)
4192 (float_extend (float x)) is (float x) assuming that double
4193 rounding can't happen.
4195 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4196 || (GET_CODE (XEXP (x, 0)) == FLOAT
4197 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4198 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4199 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4200 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4201 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4202 XEXP (XEXP (x, 0), 0),
4203 GET_MODE (XEXP (XEXP (x, 0), 0)));
4205 break;
4206 #ifdef HAVE_cc0
4207 case COMPARE:
4208 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4209 using cc0, in which case we want to leave it as a COMPARE
4210 so we can distinguish it from a register-register-copy. */
4211 if (XEXP (x, 1) == const0_rtx)
4212 return XEXP (x, 0);
4214 /* x - 0 is the same as x unless x's mode has signed zeros and
4215 allows rounding towards -infinity. Under those conditions,
4216 0 - 0 is -0. */
4217 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4218 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4219 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4220 return XEXP (x, 0);
4221 break;
4222 #endif
4224 case CONST:
4225 /* (const (const X)) can become (const X). Do it this way rather than
4226 returning the inner CONST since CONST can be shared with a
4227 REG_EQUAL note. */
4228 if (GET_CODE (XEXP (x, 0)) == CONST)
4229 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4230 break;
4232 #ifdef HAVE_lo_sum
4233 case LO_SUM:
4234 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4235 can add in an offset. find_split_point will split this address up
4236 again if it doesn't match. */
4237 if (GET_CODE (XEXP (x, 0)) == HIGH
4238 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4239 return XEXP (x, 1);
4240 break;
4241 #endif
4243 case PLUS:
4244 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4246 if (GET_CODE (XEXP (x, 0)) == MULT
4247 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4249 rtx in1, in2;
4251 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4252 in2 = XEXP (XEXP (x, 0), 1);
4253 return gen_binary (MINUS, mode, XEXP (x, 1),
4254 gen_binary (MULT, mode, in1, in2));
4257 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4258 outermost. That's because that's the way indexed addresses are
4259 supposed to appear. This code used to check many more cases, but
4260 they are now checked elsewhere. */
4261 if (GET_CODE (XEXP (x, 0)) == PLUS
4262 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4263 return gen_binary (PLUS, mode,
4264 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4265 XEXP (x, 1)),
4266 XEXP (XEXP (x, 0), 1));
4268 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4269 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4270 bit-field and can be replaced by either a sign_extend or a
4271 sign_extract. The `and' may be a zero_extend and the two
4272 <c>, -<c> constants may be reversed. */
4273 if (GET_CODE (XEXP (x, 0)) == XOR
4274 && GET_CODE (XEXP (x, 1)) == CONST_INT
4275 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4276 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4277 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4278 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4279 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4280 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4281 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4282 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4283 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4284 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4285 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4286 == (unsigned int) i + 1))))
4287 return simplify_shift_const
4288 (NULL_RTX, ASHIFTRT, mode,
4289 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4290 XEXP (XEXP (XEXP (x, 0), 0), 0),
4291 GET_MODE_BITSIZE (mode) - (i + 1)),
4292 GET_MODE_BITSIZE (mode) - (i + 1));
4294 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4295 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4296 is 1. This produces better code than the alternative immediately
4297 below. */
4298 if (COMPARISON_P (XEXP (x, 0))
4299 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4300 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4301 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4302 XEXP (XEXP (x, 0), 0),
4303 XEXP (XEXP (x, 0), 1))))
4304 return
4305 simplify_gen_unary (NEG, mode, reversed, mode);
4307 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4308 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4309 the bitsize of the mode - 1. This allows simplification of
4310 "a = (b & 8) == 0;" */
4311 if (XEXP (x, 1) == constm1_rtx
4312 && !REG_P (XEXP (x, 0))
4313 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4314 && REG_P (SUBREG_REG (XEXP (x, 0))))
4315 && nonzero_bits (XEXP (x, 0), mode) == 1)
4316 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4317 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4318 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4319 GET_MODE_BITSIZE (mode) - 1),
4320 GET_MODE_BITSIZE (mode) - 1);
4322 /* If we are adding two things that have no bits in common, convert
4323 the addition into an IOR. This will often be further simplified,
4324 for example in cases like ((a & 1) + (a & 2)), which can
4325 become a & 3. */
4327 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4328 && (nonzero_bits (XEXP (x, 0), mode)
4329 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4331 /* Try to simplify the expression further. */
4332 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4333 temp = combine_simplify_rtx (tor, mode, in_dest);
4335 /* If we could, great. If not, do not go ahead with the IOR
4336 replacement, since PLUS appears in many special purpose
4337 address arithmetic instructions. */
4338 if (GET_CODE (temp) != CLOBBER && temp != tor)
4339 return temp;
4341 break;
4343 case MINUS:
4344 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4345 by reversing the comparison code if valid. */
4346 if (STORE_FLAG_VALUE == 1
4347 && XEXP (x, 0) == const1_rtx
4348 && COMPARISON_P (XEXP (x, 1))
4349 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4350 XEXP (XEXP (x, 1), 0),
4351 XEXP (XEXP (x, 1), 1))))
4352 return reversed;
4354 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4355 (and <foo> (const_int pow2-1)) */
4356 if (GET_CODE (XEXP (x, 1)) == AND
4357 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4358 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4359 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4360 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4361 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4363 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4365 if (GET_CODE (XEXP (x, 1)) == MULT
4366 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4368 rtx in1, in2;
4370 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4371 in2 = XEXP (XEXP (x, 1), 1);
4372 return gen_binary (PLUS, mode, gen_binary (MULT, mode, in1, in2),
4373 XEXP (x, 0));
4376 /* Canonicalize (minus (neg A) (mult B C)) to
4377 (minus (mult (neg B) C) A). */
4378 if (GET_CODE (XEXP (x, 1)) == MULT
4379 && GET_CODE (XEXP (x, 0)) == NEG)
4381 rtx in1, in2;
4383 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4384 in2 = XEXP (XEXP (x, 1), 1);
4385 return gen_binary (MINUS, mode, gen_binary (MULT, mode, in1, in2),
4386 XEXP (XEXP (x, 0), 0));
4389 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4390 integers. */
4391 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4392 return gen_binary (MINUS, mode,
4393 gen_binary (MINUS, mode, XEXP (x, 0),
4394 XEXP (XEXP (x, 1), 0)),
4395 XEXP (XEXP (x, 1), 1));
4396 break;
4398 case MULT:
4399 /* If we have (mult (plus A B) C), apply the distributive law and then
4400 the inverse distributive law to see if things simplify. This
4401 occurs mostly in addresses, often when unrolling loops. */
4403 if (GET_CODE (XEXP (x, 0)) == PLUS)
4405 x = apply_distributive_law
4406 (gen_binary (PLUS, mode,
4407 gen_binary (MULT, mode,
4408 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4409 gen_binary (MULT, mode,
4410 XEXP (XEXP (x, 0), 1),
4411 copy_rtx (XEXP (x, 1)))));
4413 if (GET_CODE (x) != MULT)
4414 return x;
4416 /* Try simplify a*(b/c) as (a*b)/c. */
4417 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4418 && GET_CODE (XEXP (x, 0)) == DIV)
4420 rtx tem = simplify_binary_operation (MULT, mode,
4421 XEXP (XEXP (x, 0), 0),
4422 XEXP (x, 1));
4423 if (tem)
4424 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4426 break;
4428 case UDIV:
4429 /* If this is a divide by a power of two, treat it as a shift if
4430 its first operand is a shift. */
4431 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4432 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4433 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4434 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4435 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4436 || GET_CODE (XEXP (x, 0)) == ROTATE
4437 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4438 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4439 break;
4441 case EQ: case NE:
4442 case GT: case GTU: case GE: case GEU:
4443 case LT: case LTU: case LE: case LEU:
4444 case UNEQ: case LTGT:
4445 case UNGT: case UNGE:
4446 case UNLT: case UNLE:
4447 case UNORDERED: case ORDERED:
4448 /* If the first operand is a condition code, we can't do anything
4449 with it. */
4450 if (GET_CODE (XEXP (x, 0)) == COMPARE
4451 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4452 && ! CC0_P (XEXP (x, 0))))
4454 rtx op0 = XEXP (x, 0);
4455 rtx op1 = XEXP (x, 1);
4456 enum rtx_code new_code;
4458 if (GET_CODE (op0) == COMPARE)
4459 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4461 /* Simplify our comparison, if possible. */
4462 new_code = simplify_comparison (code, &op0, &op1);
4464 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4465 if only the low-order bit is possibly nonzero in X (such as when
4466 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4467 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4468 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4469 (plus X 1).
4471 Remove any ZERO_EXTRACT we made when thinking this was a
4472 comparison. It may now be simpler to use, e.g., an AND. If a
4473 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4474 the call to make_compound_operation in the SET case. */
4476 if (STORE_FLAG_VALUE == 1
4477 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4478 && op1 == const0_rtx
4479 && mode == GET_MODE (op0)
4480 && nonzero_bits (op0, mode) == 1)
4481 return gen_lowpart (mode,
4482 expand_compound_operation (op0));
4484 else if (STORE_FLAG_VALUE == 1
4485 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4486 && op1 == const0_rtx
4487 && mode == GET_MODE (op0)
4488 && (num_sign_bit_copies (op0, mode)
4489 == GET_MODE_BITSIZE (mode)))
4491 op0 = expand_compound_operation (op0);
4492 return simplify_gen_unary (NEG, mode,
4493 gen_lowpart (mode, op0),
4494 mode);
4497 else if (STORE_FLAG_VALUE == 1
4498 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4499 && op1 == const0_rtx
4500 && mode == GET_MODE (op0)
4501 && nonzero_bits (op0, mode) == 1)
4503 op0 = expand_compound_operation (op0);
4504 return gen_binary (XOR, mode,
4505 gen_lowpart (mode, op0),
4506 const1_rtx);
4509 else if (STORE_FLAG_VALUE == 1
4510 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4511 && op1 == const0_rtx
4512 && mode == GET_MODE (op0)
4513 && (num_sign_bit_copies (op0, mode)
4514 == GET_MODE_BITSIZE (mode)))
4516 op0 = expand_compound_operation (op0);
4517 return plus_constant (gen_lowpart (mode, op0), 1);
4520 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4521 those above. */
4522 if (STORE_FLAG_VALUE == -1
4523 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4524 && op1 == const0_rtx
4525 && (num_sign_bit_copies (op0, mode)
4526 == GET_MODE_BITSIZE (mode)))
4527 return gen_lowpart (mode,
4528 expand_compound_operation (op0));
4530 else if (STORE_FLAG_VALUE == -1
4531 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4532 && op1 == const0_rtx
4533 && mode == GET_MODE (op0)
4534 && nonzero_bits (op0, mode) == 1)
4536 op0 = expand_compound_operation (op0);
4537 return simplify_gen_unary (NEG, mode,
4538 gen_lowpart (mode, op0),
4539 mode);
4542 else if (STORE_FLAG_VALUE == -1
4543 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4544 && op1 == const0_rtx
4545 && mode == GET_MODE (op0)
4546 && (num_sign_bit_copies (op0, mode)
4547 == GET_MODE_BITSIZE (mode)))
4549 op0 = expand_compound_operation (op0);
4550 return simplify_gen_unary (NOT, mode,
4551 gen_lowpart (mode, op0),
4552 mode);
4555 /* If X is 0/1, (eq X 0) is X-1. */
4556 else if (STORE_FLAG_VALUE == -1
4557 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4558 && op1 == const0_rtx
4559 && mode == GET_MODE (op0)
4560 && nonzero_bits (op0, mode) == 1)
4562 op0 = expand_compound_operation (op0);
4563 return plus_constant (gen_lowpart (mode, op0), -1);
4566 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4567 one bit that might be nonzero, we can convert (ne x 0) to
4568 (ashift x c) where C puts the bit in the sign bit. Remove any
4569 AND with STORE_FLAG_VALUE when we are done, since we are only
4570 going to test the sign bit. */
4571 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4572 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4573 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4574 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4575 && op1 == const0_rtx
4576 && mode == GET_MODE (op0)
4577 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4579 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4580 expand_compound_operation (op0),
4581 GET_MODE_BITSIZE (mode) - 1 - i);
4582 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4583 return XEXP (x, 0);
4584 else
4585 return x;
4588 /* If the code changed, return a whole new comparison. */
4589 if (new_code != code)
4590 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4592 /* Otherwise, keep this operation, but maybe change its operands.
4593 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4594 SUBST (XEXP (x, 0), op0);
4595 SUBST (XEXP (x, 1), op1);
4597 break;
4599 case IF_THEN_ELSE:
4600 return simplify_if_then_else (x);
4602 case ZERO_EXTRACT:
4603 case SIGN_EXTRACT:
4604 case ZERO_EXTEND:
4605 case SIGN_EXTEND:
4606 /* If we are processing SET_DEST, we are done. */
4607 if (in_dest)
4608 return x;
4610 return expand_compound_operation (x);
4612 case SET:
4613 return simplify_set (x);
4615 case AND:
4616 case IOR:
4617 case XOR:
4618 return simplify_logical (x);
4620 case ABS:
4621 /* (abs (neg <foo>)) -> (abs <foo>) */
4622 if (GET_CODE (XEXP (x, 0)) == NEG)
4623 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4625 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4626 do nothing. */
4627 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4628 break;
4630 /* If operand is something known to be positive, ignore the ABS. */
4631 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4632 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4633 <= HOST_BITS_PER_WIDE_INT)
4634 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4635 & ((HOST_WIDE_INT) 1
4636 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4637 == 0)))
4638 return XEXP (x, 0);
4640 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4641 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4642 return gen_rtx_NEG (mode, XEXP (x, 0));
4644 break;
4646 case FFS:
4647 /* (ffs (*_extend <X>)) = (ffs <X>) */
4648 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4649 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4650 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4651 break;
4653 case POPCOUNT:
4654 case PARITY:
4655 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4656 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4657 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4658 break;
4660 case FLOAT:
4661 /* (float (sign_extend <X>)) = (float <X>). */
4662 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4663 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4664 break;
4666 case ASHIFT:
4667 case LSHIFTRT:
4668 case ASHIFTRT:
4669 case ROTATE:
4670 case ROTATERT:
4671 /* If this is a shift by a constant amount, simplify it. */
4672 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4673 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4674 INTVAL (XEXP (x, 1)));
4676 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4677 SUBST (XEXP (x, 1),
4678 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4679 ((HOST_WIDE_INT) 1
4680 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4681 - 1,
4682 NULL_RTX, 0));
4683 break;
4685 case VEC_SELECT:
4687 rtx op0 = XEXP (x, 0);
4688 rtx op1 = XEXP (x, 1);
4689 int len;
4691 if (GET_CODE (op1) != PARALLEL)
4692 abort ();
4693 len = XVECLEN (op1, 0);
4694 if (len == 1
4695 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4696 && GET_CODE (op0) == VEC_CONCAT)
4698 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4700 /* Try to find the element in the VEC_CONCAT. */
4701 for (;;)
4703 if (GET_MODE (op0) == GET_MODE (x))
4704 return op0;
4705 if (GET_CODE (op0) == VEC_CONCAT)
4707 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4708 if (op0_size < offset)
4709 op0 = XEXP (op0, 0);
4710 else
4712 offset -= op0_size;
4713 op0 = XEXP (op0, 1);
4716 else
4717 break;
4722 break;
4724 default:
4725 break;
4728 return x;
4731 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4733 static rtx
4734 simplify_if_then_else (rtx x)
4736 enum machine_mode mode = GET_MODE (x);
4737 rtx cond = XEXP (x, 0);
4738 rtx true_rtx = XEXP (x, 1);
4739 rtx false_rtx = XEXP (x, 2);
4740 enum rtx_code true_code = GET_CODE (cond);
4741 int comparison_p = COMPARISON_P (cond);
4742 rtx temp;
4743 int i;
4744 enum rtx_code false_code;
4745 rtx reversed;
4747 /* Simplify storing of the truth value. */
4748 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4749 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4751 /* Also when the truth value has to be reversed. */
4752 if (comparison_p
4753 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4754 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4755 XEXP (cond, 1))))
4756 return reversed;
4758 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4759 in it is being compared against certain values. Get the true and false
4760 comparisons and see if that says anything about the value of each arm. */
4762 if (comparison_p
4763 && ((false_code = combine_reversed_comparison_code (cond))
4764 != UNKNOWN)
4765 && REG_P (XEXP (cond, 0)))
4767 HOST_WIDE_INT nzb;
4768 rtx from = XEXP (cond, 0);
4769 rtx true_val = XEXP (cond, 1);
4770 rtx false_val = true_val;
4771 int swapped = 0;
4773 /* If FALSE_CODE is EQ, swap the codes and arms. */
4775 if (false_code == EQ)
4777 swapped = 1, true_code = EQ, false_code = NE;
4778 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4781 /* If we are comparing against zero and the expression being tested has
4782 only a single bit that might be nonzero, that is its value when it is
4783 not equal to zero. Similarly if it is known to be -1 or 0. */
4785 if (true_code == EQ && true_val == const0_rtx
4786 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4787 false_code = EQ, false_val = GEN_INT (nzb);
4788 else if (true_code == EQ && true_val == const0_rtx
4789 && (num_sign_bit_copies (from, GET_MODE (from))
4790 == GET_MODE_BITSIZE (GET_MODE (from))))
4791 false_code = EQ, false_val = constm1_rtx;
4793 /* Now simplify an arm if we know the value of the register in the
4794 branch and it is used in the arm. Be careful due to the potential
4795 of locally-shared RTL. */
4797 if (reg_mentioned_p (from, true_rtx))
4798 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4799 from, true_val),
4800 pc_rtx, pc_rtx, 0, 0);
4801 if (reg_mentioned_p (from, false_rtx))
4802 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4803 from, false_val),
4804 pc_rtx, pc_rtx, 0, 0);
4806 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4807 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4809 true_rtx = XEXP (x, 1);
4810 false_rtx = XEXP (x, 2);
4811 true_code = GET_CODE (cond);
4814 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4815 reversed, do so to avoid needing two sets of patterns for
4816 subtract-and-branch insns. Similarly if we have a constant in the true
4817 arm, the false arm is the same as the first operand of the comparison, or
4818 the false arm is more complicated than the true arm. */
4820 if (comparison_p
4821 && combine_reversed_comparison_code (cond) != UNKNOWN
4822 && (true_rtx == pc_rtx
4823 || (CONSTANT_P (true_rtx)
4824 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4825 || true_rtx == const0_rtx
4826 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4827 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4828 && !OBJECT_P (false_rtx))
4829 || reg_mentioned_p (true_rtx, false_rtx)
4830 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4832 true_code = reversed_comparison_code (cond, NULL);
4833 SUBST (XEXP (x, 0),
4834 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4835 XEXP (cond, 1)));
4837 SUBST (XEXP (x, 1), false_rtx);
4838 SUBST (XEXP (x, 2), true_rtx);
4840 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4841 cond = XEXP (x, 0);
4843 /* It is possible that the conditional has been simplified out. */
4844 true_code = GET_CODE (cond);
4845 comparison_p = COMPARISON_P (cond);
4848 /* If the two arms are identical, we don't need the comparison. */
4850 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4851 return true_rtx;
4853 /* Convert a == b ? b : a to "a". */
4854 if (true_code == EQ && ! side_effects_p (cond)
4855 && !HONOR_NANS (mode)
4856 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4857 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4858 return false_rtx;
4859 else if (true_code == NE && ! side_effects_p (cond)
4860 && !HONOR_NANS (mode)
4861 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4862 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4863 return true_rtx;
4865 /* Look for cases where we have (abs x) or (neg (abs X)). */
4867 if (GET_MODE_CLASS (mode) == MODE_INT
4868 && GET_CODE (false_rtx) == NEG
4869 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4870 && comparison_p
4871 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4872 && ! side_effects_p (true_rtx))
4873 switch (true_code)
4875 case GT:
4876 case GE:
4877 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4878 case LT:
4879 case LE:
4880 return
4881 simplify_gen_unary (NEG, mode,
4882 simplify_gen_unary (ABS, mode, true_rtx, mode),
4883 mode);
4884 default:
4885 break;
4888 /* Look for MIN or MAX. */
4890 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4891 && comparison_p
4892 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4893 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4894 && ! side_effects_p (cond))
4895 switch (true_code)
4897 case GE:
4898 case GT:
4899 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4900 case LE:
4901 case LT:
4902 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4903 case GEU:
4904 case GTU:
4905 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4906 case LEU:
4907 case LTU:
4908 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4909 default:
4910 break;
4913 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4914 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4915 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4916 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4917 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4918 neither 1 or -1, but it isn't worth checking for. */
4920 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4921 && comparison_p
4922 && GET_MODE_CLASS (mode) == MODE_INT
4923 && ! side_effects_p (x))
4925 rtx t = make_compound_operation (true_rtx, SET);
4926 rtx f = make_compound_operation (false_rtx, SET);
4927 rtx cond_op0 = XEXP (cond, 0);
4928 rtx cond_op1 = XEXP (cond, 1);
4929 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
4930 enum machine_mode m = mode;
4931 rtx z = 0, c1 = NULL_RTX;
4933 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4934 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4935 || GET_CODE (t) == ASHIFT
4936 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4937 && rtx_equal_p (XEXP (t, 0), f))
4938 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4940 /* If an identity-zero op is commutative, check whether there
4941 would be a match if we swapped the operands. */
4942 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4943 || GET_CODE (t) == XOR)
4944 && rtx_equal_p (XEXP (t, 1), f))
4945 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4946 else if (GET_CODE (t) == SIGN_EXTEND
4947 && (GET_CODE (XEXP (t, 0)) == PLUS
4948 || GET_CODE (XEXP (t, 0)) == MINUS
4949 || GET_CODE (XEXP (t, 0)) == IOR
4950 || GET_CODE (XEXP (t, 0)) == XOR
4951 || GET_CODE (XEXP (t, 0)) == ASHIFT
4952 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4953 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4954 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4955 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4956 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4957 && (num_sign_bit_copies (f, GET_MODE (f))
4958 > (unsigned int)
4959 (GET_MODE_BITSIZE (mode)
4960 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4962 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4963 extend_op = SIGN_EXTEND;
4964 m = GET_MODE (XEXP (t, 0));
4966 else if (GET_CODE (t) == SIGN_EXTEND
4967 && (GET_CODE (XEXP (t, 0)) == PLUS
4968 || GET_CODE (XEXP (t, 0)) == IOR
4969 || GET_CODE (XEXP (t, 0)) == XOR)
4970 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4971 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4972 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4973 && (num_sign_bit_copies (f, GET_MODE (f))
4974 > (unsigned int)
4975 (GET_MODE_BITSIZE (mode)
4976 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4978 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4979 extend_op = SIGN_EXTEND;
4980 m = GET_MODE (XEXP (t, 0));
4982 else if (GET_CODE (t) == ZERO_EXTEND
4983 && (GET_CODE (XEXP (t, 0)) == PLUS
4984 || GET_CODE (XEXP (t, 0)) == MINUS
4985 || GET_CODE (XEXP (t, 0)) == IOR
4986 || GET_CODE (XEXP (t, 0)) == XOR
4987 || GET_CODE (XEXP (t, 0)) == ASHIFT
4988 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4989 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4990 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4991 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4992 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4993 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4994 && ((nonzero_bits (f, GET_MODE (f))
4995 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4996 == 0))
4998 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4999 extend_op = ZERO_EXTEND;
5000 m = GET_MODE (XEXP (t, 0));
5002 else if (GET_CODE (t) == ZERO_EXTEND
5003 && (GET_CODE (XEXP (t, 0)) == PLUS
5004 || GET_CODE (XEXP (t, 0)) == IOR
5005 || GET_CODE (XEXP (t, 0)) == XOR)
5006 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5007 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5008 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5009 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5010 && ((nonzero_bits (f, GET_MODE (f))
5011 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5012 == 0))
5014 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5015 extend_op = ZERO_EXTEND;
5016 m = GET_MODE (XEXP (t, 0));
5019 if (z)
5021 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
5022 pc_rtx, pc_rtx, 0, 0);
5023 temp = gen_binary (MULT, m, temp,
5024 gen_binary (MULT, m, c1, const_true_rtx));
5025 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5026 temp = gen_binary (op, m, gen_lowpart (m, z), temp);
5028 if (extend_op != UNKNOWN)
5029 temp = simplify_gen_unary (extend_op, mode, temp, m);
5031 return temp;
5035 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5036 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5037 negation of a single bit, we can convert this operation to a shift. We
5038 can actually do this more generally, but it doesn't seem worth it. */
5040 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5041 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5042 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5043 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5044 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5045 == GET_MODE_BITSIZE (mode))
5046 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5047 return
5048 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5049 gen_lowpart (mode, XEXP (cond, 0)), i);
5051 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5052 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5053 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5054 && GET_MODE (XEXP (cond, 0)) == mode
5055 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5056 == nonzero_bits (XEXP (cond, 0), mode)
5057 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5058 return XEXP (cond, 0);
5060 return x;
5063 /* Simplify X, a SET expression. Return the new expression. */
5065 static rtx
5066 simplify_set (rtx x)
5068 rtx src = SET_SRC (x);
5069 rtx dest = SET_DEST (x);
5070 enum machine_mode mode
5071 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5072 rtx other_insn;
5073 rtx *cc_use;
5075 /* (set (pc) (return)) gets written as (return). */
5076 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5077 return src;
5079 /* Now that we know for sure which bits of SRC we are using, see if we can
5080 simplify the expression for the object knowing that we only need the
5081 low-order bits. */
5083 if (GET_MODE_CLASS (mode) == MODE_INT
5084 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5086 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5087 SUBST (SET_SRC (x), src);
5090 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5091 the comparison result and try to simplify it unless we already have used
5092 undobuf.other_insn. */
5093 if ((GET_MODE_CLASS (mode) == MODE_CC
5094 || GET_CODE (src) == COMPARE
5095 || CC0_P (dest))
5096 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5097 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5098 && COMPARISON_P (*cc_use)
5099 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5101 enum rtx_code old_code = GET_CODE (*cc_use);
5102 enum rtx_code new_code;
5103 rtx op0, op1, tmp;
5104 int other_changed = 0;
5105 enum machine_mode compare_mode = GET_MODE (dest);
5107 if (GET_CODE (src) == COMPARE)
5108 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5109 else
5110 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5112 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5113 op0, op1);
5114 if (!tmp)
5115 new_code = old_code;
5116 else if (!CONSTANT_P (tmp))
5118 new_code = GET_CODE (tmp);
5119 op0 = XEXP (tmp, 0);
5120 op1 = XEXP (tmp, 1);
5122 else
5124 rtx pat = PATTERN (other_insn);
5125 undobuf.other_insn = other_insn;
5126 SUBST (*cc_use, tmp);
5128 /* Attempt to simplify CC user. */
5129 if (GET_CODE (pat) == SET)
5131 rtx new = simplify_rtx (SET_SRC (pat));
5132 if (new != NULL_RTX)
5133 SUBST (SET_SRC (pat), new);
5136 /* Convert X into a no-op move. */
5137 SUBST (SET_DEST (x), pc_rtx);
5138 SUBST (SET_SRC (x), pc_rtx);
5139 return x;
5142 /* Simplify our comparison, if possible. */
5143 new_code = simplify_comparison (new_code, &op0, &op1);
5145 #ifdef SELECT_CC_MODE
5146 /* If this machine has CC modes other than CCmode, check to see if we
5147 need to use a different CC mode here. */
5148 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5149 compare_mode = GET_MODE (op0);
5150 else
5151 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5153 #ifndef HAVE_cc0
5154 /* If the mode changed, we have to change SET_DEST, the mode in the
5155 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5156 a hard register, just build new versions with the proper mode. If it
5157 is a pseudo, we lose unless it is only time we set the pseudo, in
5158 which case we can safely change its mode. */
5159 if (compare_mode != GET_MODE (dest))
5161 unsigned int regno = REGNO (dest);
5162 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5164 if (regno < FIRST_PSEUDO_REGISTER
5165 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5167 if (regno >= FIRST_PSEUDO_REGISTER)
5168 SUBST (regno_reg_rtx[regno], new_dest);
5170 SUBST (SET_DEST (x), new_dest);
5171 SUBST (XEXP (*cc_use, 0), new_dest);
5172 other_changed = 1;
5174 dest = new_dest;
5177 #endif /* cc0 */
5178 #endif /* SELECT_CC_MODE */
5180 /* If the code changed, we have to build a new comparison in
5181 undobuf.other_insn. */
5182 if (new_code != old_code)
5184 int other_changed_previously = other_changed;
5185 unsigned HOST_WIDE_INT mask;
5187 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5188 dest, const0_rtx));
5189 other_changed = 1;
5191 /* If the only change we made was to change an EQ into an NE or
5192 vice versa, OP0 has only one bit that might be nonzero, and OP1
5193 is zero, check if changing the user of the condition code will
5194 produce a valid insn. If it won't, we can keep the original code
5195 in that insn by surrounding our operation with an XOR. */
5197 if (((old_code == NE && new_code == EQ)
5198 || (old_code == EQ && new_code == NE))
5199 && ! other_changed_previously && op1 == const0_rtx
5200 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5201 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5203 rtx pat = PATTERN (other_insn), note = 0;
5205 if ((recog_for_combine (&pat, other_insn, &note) < 0
5206 && ! check_asm_operands (pat)))
5208 PUT_CODE (*cc_use, old_code);
5209 other_changed = 0;
5211 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5216 if (other_changed)
5217 undobuf.other_insn = other_insn;
5219 #ifdef HAVE_cc0
5220 /* If we are now comparing against zero, change our source if
5221 needed. If we do not use cc0, we always have a COMPARE. */
5222 if (op1 == const0_rtx && dest == cc0_rtx)
5224 SUBST (SET_SRC (x), op0);
5225 src = op0;
5227 else
5228 #endif
5230 /* Otherwise, if we didn't previously have a COMPARE in the
5231 correct mode, we need one. */
5232 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5234 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5235 src = SET_SRC (x);
5237 else
5239 /* Otherwise, update the COMPARE if needed. */
5240 SUBST (XEXP (src, 0), op0);
5241 SUBST (XEXP (src, 1), op1);
5244 else
5246 /* Get SET_SRC in a form where we have placed back any
5247 compound expressions. Then do the checks below. */
5248 src = make_compound_operation (src, SET);
5249 SUBST (SET_SRC (x), src);
5252 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5253 and X being a REG or (subreg (reg)), we may be able to convert this to
5254 (set (subreg:m2 x) (op)).
5256 We can always do this if M1 is narrower than M2 because that means that
5257 we only care about the low bits of the result.
5259 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5260 perform a narrower operation than requested since the high-order bits will
5261 be undefined. On machine where it is defined, this transformation is safe
5262 as long as M1 and M2 have the same number of words. */
5264 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5265 && !OBJECT_P (SUBREG_REG (src))
5266 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5267 / UNITS_PER_WORD)
5268 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5269 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5270 #ifndef WORD_REGISTER_OPERATIONS
5271 && (GET_MODE_SIZE (GET_MODE (src))
5272 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5273 #endif
5274 #ifdef CANNOT_CHANGE_MODE_CLASS
5275 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5276 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5277 GET_MODE (SUBREG_REG (src)),
5278 GET_MODE (src)))
5279 #endif
5280 && (REG_P (dest)
5281 || (GET_CODE (dest) == SUBREG
5282 && REG_P (SUBREG_REG (dest)))))
5284 SUBST (SET_DEST (x),
5285 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5286 dest));
5287 SUBST (SET_SRC (x), SUBREG_REG (src));
5289 src = SET_SRC (x), dest = SET_DEST (x);
5292 #ifdef HAVE_cc0
5293 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5294 in SRC. */
5295 if (dest == cc0_rtx
5296 && GET_CODE (src) == SUBREG
5297 && subreg_lowpart_p (src)
5298 && (GET_MODE_BITSIZE (GET_MODE (src))
5299 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5301 rtx inner = SUBREG_REG (src);
5302 enum machine_mode inner_mode = GET_MODE (inner);
5304 /* Here we make sure that we don't have a sign bit on. */
5305 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5306 && (nonzero_bits (inner, inner_mode)
5307 < ((unsigned HOST_WIDE_INT) 1
5308 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5310 SUBST (SET_SRC (x), inner);
5311 src = SET_SRC (x);
5314 #endif
5316 #ifdef LOAD_EXTEND_OP
5317 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5318 would require a paradoxical subreg. Replace the subreg with a
5319 zero_extend to avoid the reload that would otherwise be required. */
5321 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5322 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5323 && SUBREG_BYTE (src) == 0
5324 && (GET_MODE_SIZE (GET_MODE (src))
5325 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5326 && MEM_P (SUBREG_REG (src)))
5328 SUBST (SET_SRC (x),
5329 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5330 GET_MODE (src), SUBREG_REG (src)));
5332 src = SET_SRC (x);
5334 #endif
5336 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5337 are comparing an item known to be 0 or -1 against 0, use a logical
5338 operation instead. Check for one of the arms being an IOR of the other
5339 arm with some value. We compute three terms to be IOR'ed together. In
5340 practice, at most two will be nonzero. Then we do the IOR's. */
5342 if (GET_CODE (dest) != PC
5343 && GET_CODE (src) == IF_THEN_ELSE
5344 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5345 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5346 && XEXP (XEXP (src, 0), 1) == const0_rtx
5347 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5348 #ifdef HAVE_conditional_move
5349 && ! can_conditionally_move_p (GET_MODE (src))
5350 #endif
5351 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5352 GET_MODE (XEXP (XEXP (src, 0), 0)))
5353 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5354 && ! side_effects_p (src))
5356 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5357 ? XEXP (src, 1) : XEXP (src, 2));
5358 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5359 ? XEXP (src, 2) : XEXP (src, 1));
5360 rtx term1 = const0_rtx, term2, term3;
5362 if (GET_CODE (true_rtx) == IOR
5363 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5364 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5365 else if (GET_CODE (true_rtx) == IOR
5366 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5367 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5368 else if (GET_CODE (false_rtx) == IOR
5369 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5370 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5371 else if (GET_CODE (false_rtx) == IOR
5372 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5373 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5375 term2 = gen_binary (AND, GET_MODE (src),
5376 XEXP (XEXP (src, 0), 0), true_rtx);
5377 term3 = gen_binary (AND, GET_MODE (src),
5378 simplify_gen_unary (NOT, GET_MODE (src),
5379 XEXP (XEXP (src, 0), 0),
5380 GET_MODE (src)),
5381 false_rtx);
5383 SUBST (SET_SRC (x),
5384 gen_binary (IOR, GET_MODE (src),
5385 gen_binary (IOR, GET_MODE (src), term1, term2),
5386 term3));
5388 src = SET_SRC (x);
5391 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5392 whole thing fail. */
5393 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5394 return src;
5395 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5396 return dest;
5397 else
5398 /* Convert this into a field assignment operation, if possible. */
5399 return make_field_assignment (x);
5402 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5403 result. */
5405 static rtx
5406 simplify_logical (rtx x)
5408 enum machine_mode mode = GET_MODE (x);
5409 rtx op0 = XEXP (x, 0);
5410 rtx op1 = XEXP (x, 1);
5411 rtx reversed;
5413 switch (GET_CODE (x))
5415 case AND:
5416 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5417 insn (and may simplify more). */
5418 if (GET_CODE (op0) == XOR
5419 && rtx_equal_p (XEXP (op0, 0), op1)
5420 && ! side_effects_p (op1))
5421 x = gen_binary (AND, mode,
5422 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5423 op1);
5425 if (GET_CODE (op0) == XOR
5426 && rtx_equal_p (XEXP (op0, 1), op1)
5427 && ! side_effects_p (op1))
5428 x = gen_binary (AND, mode,
5429 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5430 op1);
5432 /* Similarly for (~(A ^ B)) & A. */
5433 if (GET_CODE (op0) == NOT
5434 && GET_CODE (XEXP (op0, 0)) == XOR
5435 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5436 && ! side_effects_p (op1))
5437 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5439 if (GET_CODE (op0) == NOT
5440 && GET_CODE (XEXP (op0, 0)) == XOR
5441 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5442 && ! side_effects_p (op1))
5443 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5445 /* We can call simplify_and_const_int only if we don't lose
5446 any (sign) bits when converting INTVAL (op1) to
5447 "unsigned HOST_WIDE_INT". */
5448 if (GET_CODE (op1) == CONST_INT
5449 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5450 || INTVAL (op1) > 0))
5452 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5454 /* If we have (ior (and (X C1) C2)) and the next restart would be
5455 the last, simplify this by making C1 as small as possible
5456 and then exit. Only do this if C1 actually changes: for now
5457 this only saves memory but, should this transformation be
5458 moved to simplify-rtx.c, we'd risk unbounded recursion there. */
5459 if (GET_CODE (x) == IOR && GET_CODE (op0) == AND
5460 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5461 && GET_CODE (op1) == CONST_INT
5462 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
5463 return gen_binary (IOR, mode,
5464 gen_binary (AND, mode, XEXP (op0, 0),
5465 GEN_INT (INTVAL (XEXP (op0, 1))
5466 & ~INTVAL (op1))), op1);
5468 if (GET_CODE (x) != AND)
5469 return x;
5471 op0 = XEXP (x, 0);
5472 op1 = XEXP (x, 1);
5475 /* Convert (A | B) & A to A. */
5476 if (GET_CODE (op0) == IOR
5477 && (rtx_equal_p (XEXP (op0, 0), op1)
5478 || rtx_equal_p (XEXP (op0, 1), op1))
5479 && ! side_effects_p (XEXP (op0, 0))
5480 && ! side_effects_p (XEXP (op0, 1)))
5481 return op1;
5483 /* In the following group of tests (and those in case IOR below),
5484 we start with some combination of logical operations and apply
5485 the distributive law followed by the inverse distributive law.
5486 Most of the time, this results in no change. However, if some of
5487 the operands are the same or inverses of each other, simplifications
5488 will result.
5490 For example, (and (ior A B) (not B)) can occur as the result of
5491 expanding a bit field assignment. When we apply the distributive
5492 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5493 which then simplifies to (and (A (not B))).
5495 If we have (and (ior A B) C), apply the distributive law and then
5496 the inverse distributive law to see if things simplify. */
5498 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5500 x = apply_distributive_law
5501 (gen_binary (GET_CODE (op0), mode,
5502 gen_binary (AND, mode, XEXP (op0, 0), op1),
5503 gen_binary (AND, mode, XEXP (op0, 1),
5504 copy_rtx (op1))));
5505 if (GET_CODE (x) != AND)
5506 return x;
5509 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5510 return apply_distributive_law
5511 (gen_binary (GET_CODE (op1), mode,
5512 gen_binary (AND, mode, XEXP (op1, 0), op0),
5513 gen_binary (AND, mode, XEXP (op1, 1),
5514 copy_rtx (op0))));
5516 /* Similarly, taking advantage of the fact that
5517 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5519 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5520 return apply_distributive_law
5521 (gen_binary (XOR, mode,
5522 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5523 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5524 XEXP (op1, 1))));
5526 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5527 return apply_distributive_law
5528 (gen_binary (XOR, mode,
5529 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5530 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5531 break;
5533 case IOR:
5534 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5535 if (GET_CODE (op1) == CONST_INT
5536 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5537 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5538 return op1;
5540 /* Convert (A & B) | A to A. */
5541 if (GET_CODE (op0) == AND
5542 && (rtx_equal_p (XEXP (op0, 0), op1)
5543 || rtx_equal_p (XEXP (op0, 1), op1))
5544 && ! side_effects_p (XEXP (op0, 0))
5545 && ! side_effects_p (XEXP (op0, 1)))
5546 return op1;
5548 /* If we have (ior (and A B) C), apply the distributive law and then
5549 the inverse distributive law to see if things simplify. */
5551 if (GET_CODE (op0) == AND)
5553 x = apply_distributive_law
5554 (gen_binary (AND, mode,
5555 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5556 gen_binary (IOR, mode, XEXP (op0, 1),
5557 copy_rtx (op1))));
5559 if (GET_CODE (x) != IOR)
5560 return x;
5563 if (GET_CODE (op1) == AND)
5565 x = apply_distributive_law
5566 (gen_binary (AND, mode,
5567 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5568 gen_binary (IOR, mode, XEXP (op1, 1),
5569 copy_rtx (op0))));
5571 if (GET_CODE (x) != IOR)
5572 return x;
5575 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5576 mode size to (rotate A CX). */
5578 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5579 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5580 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5581 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5582 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5583 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5584 == GET_MODE_BITSIZE (mode)))
5585 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5586 (GET_CODE (op0) == ASHIFT
5587 ? XEXP (op0, 1) : XEXP (op1, 1)));
5589 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5590 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5591 does not affect any of the bits in OP1, it can really be done
5592 as a PLUS and we can associate. We do this by seeing if OP1
5593 can be safely shifted left C bits. */
5594 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5595 && GET_CODE (XEXP (op0, 0)) == PLUS
5596 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5597 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5598 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5600 int count = INTVAL (XEXP (op0, 1));
5601 HOST_WIDE_INT mask = INTVAL (op1) << count;
5603 if (mask >> count == INTVAL (op1)
5604 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5606 SUBST (XEXP (XEXP (op0, 0), 1),
5607 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5608 return op0;
5611 break;
5613 case XOR:
5614 /* If we are XORing two things that have no bits in common,
5615 convert them into an IOR. This helps to detect rotation encoded
5616 using those methods and possibly other simplifications. */
5618 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5619 && (nonzero_bits (op0, mode)
5620 & nonzero_bits (op1, mode)) == 0)
5621 return (gen_binary (IOR, mode, op0, op1));
5623 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5624 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5625 (NOT y). */
5627 int num_negated = 0;
5629 if (GET_CODE (op0) == NOT)
5630 num_negated++, op0 = XEXP (op0, 0);
5631 if (GET_CODE (op1) == NOT)
5632 num_negated++, op1 = XEXP (op1, 0);
5634 if (num_negated == 2)
5636 SUBST (XEXP (x, 0), op0);
5637 SUBST (XEXP (x, 1), op1);
5639 else if (num_negated == 1)
5640 return
5641 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5642 mode);
5645 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5646 correspond to a machine insn or result in further simplifications
5647 if B is a constant. */
5649 if (GET_CODE (op0) == AND
5650 && rtx_equal_p (XEXP (op0, 1), op1)
5651 && ! side_effects_p (op1))
5652 return gen_binary (AND, mode,
5653 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5654 op1);
5656 else if (GET_CODE (op0) == AND
5657 && rtx_equal_p (XEXP (op0, 0), op1)
5658 && ! side_effects_p (op1))
5659 return gen_binary (AND, mode,
5660 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5661 op1);
5663 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5664 comparison if STORE_FLAG_VALUE is 1. */
5665 if (STORE_FLAG_VALUE == 1
5666 && op1 == const1_rtx
5667 && COMPARISON_P (op0)
5668 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5669 XEXP (op0, 1))))
5670 return reversed;
5672 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5673 is (lt foo (const_int 0)), so we can perform the above
5674 simplification if STORE_FLAG_VALUE is 1. */
5676 if (STORE_FLAG_VALUE == 1
5677 && op1 == const1_rtx
5678 && GET_CODE (op0) == LSHIFTRT
5679 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5680 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5681 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5683 /* (xor (comparison foo bar) (const_int sign-bit))
5684 when STORE_FLAG_VALUE is the sign bit. */
5685 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5686 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5687 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5688 && op1 == const_true_rtx
5689 && COMPARISON_P (op0)
5690 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5691 XEXP (op0, 1))))
5692 return reversed;
5694 break;
5696 default:
5697 abort ();
5700 return x;
5703 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5704 operations" because they can be replaced with two more basic operations.
5705 ZERO_EXTEND is also considered "compound" because it can be replaced with
5706 an AND operation, which is simpler, though only one operation.
5708 The function expand_compound_operation is called with an rtx expression
5709 and will convert it to the appropriate shifts and AND operations,
5710 simplifying at each stage.
5712 The function make_compound_operation is called to convert an expression
5713 consisting of shifts and ANDs into the equivalent compound expression.
5714 It is the inverse of this function, loosely speaking. */
5716 static rtx
5717 expand_compound_operation (rtx x)
5719 unsigned HOST_WIDE_INT pos = 0, len;
5720 int unsignedp = 0;
5721 unsigned int modewidth;
5722 rtx tem;
5724 switch (GET_CODE (x))
5726 case ZERO_EXTEND:
5727 unsignedp = 1;
5728 case SIGN_EXTEND:
5729 /* We can't necessarily use a const_int for a multiword mode;
5730 it depends on implicitly extending the value.
5731 Since we don't know the right way to extend it,
5732 we can't tell whether the implicit way is right.
5734 Even for a mode that is no wider than a const_int,
5735 we can't win, because we need to sign extend one of its bits through
5736 the rest of it, and we don't know which bit. */
5737 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5738 return x;
5740 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5741 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5742 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5743 reloaded. If not for that, MEM's would very rarely be safe.
5745 Reject MODEs bigger than a word, because we might not be able
5746 to reference a two-register group starting with an arbitrary register
5747 (and currently gen_lowpart might crash for a SUBREG). */
5749 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5750 return x;
5752 /* Reject MODEs that aren't scalar integers because turning vector
5753 or complex modes into shifts causes problems. */
5755 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5756 return x;
5758 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5759 /* If the inner object has VOIDmode (the only way this can happen
5760 is if it is an ASM_OPERANDS), we can't do anything since we don't
5761 know how much masking to do. */
5762 if (len == 0)
5763 return x;
5765 break;
5767 case ZERO_EXTRACT:
5768 unsignedp = 1;
5769 case SIGN_EXTRACT:
5770 /* If the operand is a CLOBBER, just return it. */
5771 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5772 return XEXP (x, 0);
5774 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5775 || GET_CODE (XEXP (x, 2)) != CONST_INT
5776 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5777 return x;
5779 /* Reject MODEs that aren't scalar integers because turning vector
5780 or complex modes into shifts causes problems. */
5782 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5783 return x;
5785 len = INTVAL (XEXP (x, 1));
5786 pos = INTVAL (XEXP (x, 2));
5788 /* If this goes outside the object being extracted, replace the object
5789 with a (use (mem ...)) construct that only combine understands
5790 and is used only for this purpose. */
5791 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5792 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5794 if (BITS_BIG_ENDIAN)
5795 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5797 break;
5799 default:
5800 return x;
5802 /* Convert sign extension to zero extension, if we know that the high
5803 bit is not set, as this is easier to optimize. It will be converted
5804 back to cheaper alternative in make_extraction. */
5805 if (GET_CODE (x) == SIGN_EXTEND
5806 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5807 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5808 & ~(((unsigned HOST_WIDE_INT)
5809 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5810 >> 1))
5811 == 0)))
5813 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5814 rtx temp2 = expand_compound_operation (temp);
5816 /* Make sure this is a profitable operation. */
5817 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5818 return temp2;
5819 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5820 return temp;
5821 else
5822 return x;
5825 /* We can optimize some special cases of ZERO_EXTEND. */
5826 if (GET_CODE (x) == ZERO_EXTEND)
5828 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5829 know that the last value didn't have any inappropriate bits
5830 set. */
5831 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5832 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5833 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5834 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5835 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5836 return XEXP (XEXP (x, 0), 0);
5838 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5839 if (GET_CODE (XEXP (x, 0)) == SUBREG
5840 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5841 && subreg_lowpart_p (XEXP (x, 0))
5842 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5843 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5844 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5845 return SUBREG_REG (XEXP (x, 0));
5847 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5848 is a comparison and STORE_FLAG_VALUE permits. This is like
5849 the first case, but it works even when GET_MODE (x) is larger
5850 than HOST_WIDE_INT. */
5851 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5852 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5853 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5854 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5855 <= HOST_BITS_PER_WIDE_INT)
5856 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5857 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5858 return XEXP (XEXP (x, 0), 0);
5860 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5861 if (GET_CODE (XEXP (x, 0)) == SUBREG
5862 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5863 && subreg_lowpart_p (XEXP (x, 0))
5864 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5865 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5866 <= HOST_BITS_PER_WIDE_INT)
5867 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5868 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5869 return SUBREG_REG (XEXP (x, 0));
5873 /* If we reach here, we want to return a pair of shifts. The inner
5874 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5875 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5876 logical depending on the value of UNSIGNEDP.
5878 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5879 converted into an AND of a shift.
5881 We must check for the case where the left shift would have a negative
5882 count. This can happen in a case like (x >> 31) & 255 on machines
5883 that can't shift by a constant. On those machines, we would first
5884 combine the shift with the AND to produce a variable-position
5885 extraction. Then the constant of 31 would be substituted in to produce
5886 a such a position. */
5888 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5889 if (modewidth + len >= pos)
5890 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5891 GET_MODE (x),
5892 simplify_shift_const (NULL_RTX, ASHIFT,
5893 GET_MODE (x),
5894 XEXP (x, 0),
5895 modewidth - pos - len),
5896 modewidth - len);
5898 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5899 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5900 simplify_shift_const (NULL_RTX, LSHIFTRT,
5901 GET_MODE (x),
5902 XEXP (x, 0), pos),
5903 ((HOST_WIDE_INT) 1 << len) - 1);
5904 else
5905 /* Any other cases we can't handle. */
5906 return x;
5908 /* If we couldn't do this for some reason, return the original
5909 expression. */
5910 if (GET_CODE (tem) == CLOBBER)
5911 return x;
5913 return tem;
5916 /* X is a SET which contains an assignment of one object into
5917 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5918 or certain SUBREGS). If possible, convert it into a series of
5919 logical operations.
5921 We half-heartedly support variable positions, but do not at all
5922 support variable lengths. */
5924 static rtx
5925 expand_field_assignment (rtx x)
5927 rtx inner;
5928 rtx pos; /* Always counts from low bit. */
5929 int len;
5930 rtx mask;
5931 enum machine_mode compute_mode;
5933 /* Loop until we find something we can't simplify. */
5934 while (1)
5936 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5937 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5939 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5940 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5941 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5943 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5944 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5946 inner = XEXP (SET_DEST (x), 0);
5947 len = INTVAL (XEXP (SET_DEST (x), 1));
5948 pos = XEXP (SET_DEST (x), 2);
5950 /* If the position is constant and spans the width of INNER,
5951 surround INNER with a USE to indicate this. */
5952 if (GET_CODE (pos) == CONST_INT
5953 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5954 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5956 if (BITS_BIG_ENDIAN)
5958 if (GET_CODE (pos) == CONST_INT)
5959 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5960 - INTVAL (pos));
5961 else if (GET_CODE (pos) == MINUS
5962 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5963 && (INTVAL (XEXP (pos, 1))
5964 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5965 /* If position is ADJUST - X, new position is X. */
5966 pos = XEXP (pos, 0);
5967 else
5968 pos = gen_binary (MINUS, GET_MODE (pos),
5969 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5970 - len),
5971 pos);
5975 /* A SUBREG between two modes that occupy the same numbers of words
5976 can be done by moving the SUBREG to the source. */
5977 else if (GET_CODE (SET_DEST (x)) == SUBREG
5978 /* We need SUBREGs to compute nonzero_bits properly. */
5979 && nonzero_sign_valid
5980 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5981 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5982 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5983 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5985 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5986 gen_lowpart
5987 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5988 SET_SRC (x)));
5989 continue;
5991 else
5992 break;
5994 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5995 inner = SUBREG_REG (inner);
5997 compute_mode = GET_MODE (inner);
5999 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6000 if (! SCALAR_INT_MODE_P (compute_mode))
6002 enum machine_mode imode;
6004 /* Don't do anything for vector or complex integral types. */
6005 if (! FLOAT_MODE_P (compute_mode))
6006 break;
6008 /* Try to find an integral mode to pun with. */
6009 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6010 if (imode == BLKmode)
6011 break;
6013 compute_mode = imode;
6014 inner = gen_lowpart (imode, inner);
6017 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6018 if (len < HOST_BITS_PER_WIDE_INT)
6019 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6020 else
6021 break;
6023 /* Now compute the equivalent expression. Make a copy of INNER
6024 for the SET_DEST in case it is a MEM into which we will substitute;
6025 we don't want shared RTL in that case. */
6026 x = gen_rtx_SET
6027 (VOIDmode, copy_rtx (inner),
6028 gen_binary (IOR, compute_mode,
6029 gen_binary (AND, compute_mode,
6030 simplify_gen_unary (NOT, compute_mode,
6031 gen_binary (ASHIFT,
6032 compute_mode,
6033 mask, pos),
6034 compute_mode),
6035 inner),
6036 gen_binary (ASHIFT, compute_mode,
6037 gen_binary (AND, compute_mode,
6038 gen_lowpart
6039 (compute_mode, SET_SRC (x)),
6040 mask),
6041 pos)));
6044 return x;
6047 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6048 it is an RTX that represents a variable starting position; otherwise,
6049 POS is the (constant) starting bit position (counted from the LSB).
6051 INNER may be a USE. This will occur when we started with a bitfield
6052 that went outside the boundary of the object in memory, which is
6053 allowed on most machines. To isolate this case, we produce a USE
6054 whose mode is wide enough and surround the MEM with it. The only
6055 code that understands the USE is this routine. If it is not removed,
6056 it will cause the resulting insn not to match.
6058 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6059 signed reference.
6061 IN_DEST is nonzero if this is a reference in the destination of a
6062 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6063 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6064 be used.
6066 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6067 ZERO_EXTRACT should be built even for bits starting at bit 0.
6069 MODE is the desired mode of the result (if IN_DEST == 0).
6071 The result is an RTX for the extraction or NULL_RTX if the target
6072 can't handle it. */
6074 static rtx
6075 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6076 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6077 int in_dest, int in_compare)
6079 /* This mode describes the size of the storage area
6080 to fetch the overall value from. Within that, we
6081 ignore the POS lowest bits, etc. */
6082 enum machine_mode is_mode = GET_MODE (inner);
6083 enum machine_mode inner_mode;
6084 enum machine_mode wanted_inner_mode = byte_mode;
6085 enum machine_mode wanted_inner_reg_mode = word_mode;
6086 enum machine_mode pos_mode = word_mode;
6087 enum machine_mode extraction_mode = word_mode;
6088 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6089 int spans_byte = 0;
6090 rtx new = 0;
6091 rtx orig_pos_rtx = pos_rtx;
6092 HOST_WIDE_INT orig_pos;
6094 /* Get some information about INNER and get the innermost object. */
6095 if (GET_CODE (inner) == USE)
6096 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6097 /* We don't need to adjust the position because we set up the USE
6098 to pretend that it was a full-word object. */
6099 spans_byte = 1, inner = XEXP (inner, 0);
6100 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6102 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6103 consider just the QI as the memory to extract from.
6104 The subreg adds or removes high bits; its mode is
6105 irrelevant to the meaning of this extraction,
6106 since POS and LEN count from the lsb. */
6107 if (MEM_P (SUBREG_REG (inner)))
6108 is_mode = GET_MODE (SUBREG_REG (inner));
6109 inner = SUBREG_REG (inner);
6111 else if (GET_CODE (inner) == ASHIFT
6112 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6113 && pos_rtx == 0 && pos == 0
6114 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6116 /* We're extracting the least significant bits of an rtx
6117 (ashift X (const_int C)), where LEN > C. Extract the
6118 least significant (LEN - C) bits of X, giving an rtx
6119 whose mode is MODE, then shift it left C times. */
6120 new = make_extraction (mode, XEXP (inner, 0),
6121 0, 0, len - INTVAL (XEXP (inner, 1)),
6122 unsignedp, in_dest, in_compare);
6123 if (new != 0)
6124 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6127 inner_mode = GET_MODE (inner);
6129 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6130 pos = INTVAL (pos_rtx), pos_rtx = 0;
6132 /* See if this can be done without an extraction. We never can if the
6133 width of the field is not the same as that of some integer mode. For
6134 registers, we can only avoid the extraction if the position is at the
6135 low-order bit and this is either not in the destination or we have the
6136 appropriate STRICT_LOW_PART operation available.
6138 For MEM, we can avoid an extract if the field starts on an appropriate
6139 boundary and we can change the mode of the memory reference. However,
6140 we cannot directly access the MEM if we have a USE and the underlying
6141 MEM is not TMODE. This combination means that MEM was being used in a
6142 context where bits outside its mode were being referenced; that is only
6143 valid in bit-field insns. */
6145 if (tmode != BLKmode
6146 && ! (spans_byte && inner_mode != tmode)
6147 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6148 && !MEM_P (inner)
6149 && (! in_dest
6150 || (REG_P (inner)
6151 && have_insn_for (STRICT_LOW_PART, tmode))))
6152 || (MEM_P (inner) && pos_rtx == 0
6153 && (pos
6154 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6155 : BITS_PER_UNIT)) == 0
6156 /* We can't do this if we are widening INNER_MODE (it
6157 may not be aligned, for one thing). */
6158 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6159 && (inner_mode == tmode
6160 || (! mode_dependent_address_p (XEXP (inner, 0))
6161 && ! MEM_VOLATILE_P (inner))))))
6163 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6164 field. If the original and current mode are the same, we need not
6165 adjust the offset. Otherwise, we do if bytes big endian.
6167 If INNER is not a MEM, get a piece consisting of just the field
6168 of interest (in this case POS % BITS_PER_WORD must be 0). */
6170 if (MEM_P (inner))
6172 HOST_WIDE_INT offset;
6174 /* POS counts from lsb, but make OFFSET count in memory order. */
6175 if (BYTES_BIG_ENDIAN)
6176 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6177 else
6178 offset = pos / BITS_PER_UNIT;
6180 new = adjust_address_nv (inner, tmode, offset);
6182 else if (REG_P (inner))
6184 if (tmode != inner_mode)
6186 /* We can't call gen_lowpart in a DEST since we
6187 always want a SUBREG (see below) and it would sometimes
6188 return a new hard register. */
6189 if (pos || in_dest)
6191 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6193 if (WORDS_BIG_ENDIAN
6194 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6195 final_word = ((GET_MODE_SIZE (inner_mode)
6196 - GET_MODE_SIZE (tmode))
6197 / UNITS_PER_WORD) - final_word;
6199 final_word *= UNITS_PER_WORD;
6200 if (BYTES_BIG_ENDIAN &&
6201 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6202 final_word += (GET_MODE_SIZE (inner_mode)
6203 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6205 /* Avoid creating invalid subregs, for example when
6206 simplifying (x>>32)&255. */
6207 if (final_word >= GET_MODE_SIZE (inner_mode))
6208 return NULL_RTX;
6210 new = gen_rtx_SUBREG (tmode, inner, final_word);
6212 else
6213 new = gen_lowpart (tmode, inner);
6215 else
6216 new = inner;
6218 else
6219 new = force_to_mode (inner, tmode,
6220 len >= HOST_BITS_PER_WIDE_INT
6221 ? ~(unsigned HOST_WIDE_INT) 0
6222 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6223 NULL_RTX, 0);
6225 /* If this extraction is going into the destination of a SET,
6226 make a STRICT_LOW_PART unless we made a MEM. */
6228 if (in_dest)
6229 return (MEM_P (new) ? new
6230 : (GET_CODE (new) != SUBREG
6231 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6232 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6234 if (mode == tmode)
6235 return new;
6237 if (GET_CODE (new) == CONST_INT)
6238 return gen_int_mode (INTVAL (new), mode);
6240 /* If we know that no extraneous bits are set, and that the high
6241 bit is not set, convert the extraction to the cheaper of
6242 sign and zero extension, that are equivalent in these cases. */
6243 if (flag_expensive_optimizations
6244 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6245 && ((nonzero_bits (new, tmode)
6246 & ~(((unsigned HOST_WIDE_INT)
6247 GET_MODE_MASK (tmode))
6248 >> 1))
6249 == 0)))
6251 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6252 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6254 /* Prefer ZERO_EXTENSION, since it gives more information to
6255 backends. */
6256 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6257 return temp;
6258 return temp1;
6261 /* Otherwise, sign- or zero-extend unless we already are in the
6262 proper mode. */
6264 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6265 mode, new));
6268 /* Unless this is a COMPARE or we have a funny memory reference,
6269 don't do anything with zero-extending field extracts starting at
6270 the low-order bit since they are simple AND operations. */
6271 if (pos_rtx == 0 && pos == 0 && ! in_dest
6272 && ! in_compare && ! spans_byte && unsignedp)
6273 return 0;
6275 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6276 we would be spanning bytes or if the position is not a constant and the
6277 length is not 1. In all other cases, we would only be going outside
6278 our object in cases when an original shift would have been
6279 undefined. */
6280 if (! spans_byte && MEM_P (inner)
6281 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6282 || (pos_rtx != 0 && len != 1)))
6283 return 0;
6285 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6286 and the mode for the result. */
6287 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6289 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6290 pos_mode = mode_for_extraction (EP_insv, 2);
6291 extraction_mode = mode_for_extraction (EP_insv, 3);
6294 if (! in_dest && unsignedp
6295 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6297 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6298 pos_mode = mode_for_extraction (EP_extzv, 3);
6299 extraction_mode = mode_for_extraction (EP_extzv, 0);
6302 if (! in_dest && ! unsignedp
6303 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6305 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6306 pos_mode = mode_for_extraction (EP_extv, 3);
6307 extraction_mode = mode_for_extraction (EP_extv, 0);
6310 /* Never narrow an object, since that might not be safe. */
6312 if (mode != VOIDmode
6313 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6314 extraction_mode = mode;
6316 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6317 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6318 pos_mode = GET_MODE (pos_rtx);
6320 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6321 if we have to change the mode of memory and cannot, the desired mode is
6322 EXTRACTION_MODE. */
6323 if (!MEM_P (inner))
6324 wanted_inner_mode = wanted_inner_reg_mode;
6325 else if (inner_mode != wanted_inner_mode
6326 && (mode_dependent_address_p (XEXP (inner, 0))
6327 || MEM_VOLATILE_P (inner)))
6328 wanted_inner_mode = extraction_mode;
6330 orig_pos = pos;
6332 if (BITS_BIG_ENDIAN)
6334 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6335 BITS_BIG_ENDIAN style. If position is constant, compute new
6336 position. Otherwise, build subtraction.
6337 Note that POS is relative to the mode of the original argument.
6338 If it's a MEM we need to recompute POS relative to that.
6339 However, if we're extracting from (or inserting into) a register,
6340 we want to recompute POS relative to wanted_inner_mode. */
6341 int width = (MEM_P (inner)
6342 ? GET_MODE_BITSIZE (is_mode)
6343 : GET_MODE_BITSIZE (wanted_inner_mode));
6345 if (pos_rtx == 0)
6346 pos = width - len - pos;
6347 else
6348 pos_rtx
6349 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6350 /* POS may be less than 0 now, but we check for that below.
6351 Note that it can only be less than 0 if !MEM_P (inner). */
6354 /* If INNER has a wider mode, make it smaller. If this is a constant
6355 extract, try to adjust the byte to point to the byte containing
6356 the value. */
6357 if (wanted_inner_mode != VOIDmode
6358 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6359 && ((MEM_P (inner)
6360 && (inner_mode == wanted_inner_mode
6361 || (! mode_dependent_address_p (XEXP (inner, 0))
6362 && ! MEM_VOLATILE_P (inner))))))
6364 int offset = 0;
6366 /* The computations below will be correct if the machine is big
6367 endian in both bits and bytes or little endian in bits and bytes.
6368 If it is mixed, we must adjust. */
6370 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6371 adjust OFFSET to compensate. */
6372 if (BYTES_BIG_ENDIAN
6373 && ! spans_byte
6374 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6375 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6377 /* If this is a constant position, we can move to the desired byte. */
6378 if (pos_rtx == 0)
6380 offset += pos / BITS_PER_UNIT;
6381 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6384 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6385 && ! spans_byte
6386 && is_mode != wanted_inner_mode)
6387 offset = (GET_MODE_SIZE (is_mode)
6388 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6390 if (offset != 0 || inner_mode != wanted_inner_mode)
6391 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6394 /* If INNER is not memory, we can always get it into the proper mode. If we
6395 are changing its mode, POS must be a constant and smaller than the size
6396 of the new mode. */
6397 else if (!MEM_P (inner))
6399 if (GET_MODE (inner) != wanted_inner_mode
6400 && (pos_rtx != 0
6401 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6402 return 0;
6404 inner = force_to_mode (inner, wanted_inner_mode,
6405 pos_rtx
6406 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6407 ? ~(unsigned HOST_WIDE_INT) 0
6408 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6409 << orig_pos),
6410 NULL_RTX, 0);
6413 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6414 have to zero extend. Otherwise, we can just use a SUBREG. */
6415 if (pos_rtx != 0
6416 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6418 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6420 /* If we know that no extraneous bits are set, and that the high
6421 bit is not set, convert extraction to cheaper one - either
6422 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6423 cases. */
6424 if (flag_expensive_optimizations
6425 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6426 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6427 & ~(((unsigned HOST_WIDE_INT)
6428 GET_MODE_MASK (GET_MODE (pos_rtx)))
6429 >> 1))
6430 == 0)))
6432 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6434 /* Prefer ZERO_EXTENSION, since it gives more information to
6435 backends. */
6436 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6437 temp = temp1;
6439 pos_rtx = temp;
6441 else if (pos_rtx != 0
6442 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6443 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6445 /* Make POS_RTX unless we already have it and it is correct. If we don't
6446 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6447 be a CONST_INT. */
6448 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6449 pos_rtx = orig_pos_rtx;
6451 else if (pos_rtx == 0)
6452 pos_rtx = GEN_INT (pos);
6454 /* Make the required operation. See if we can use existing rtx. */
6455 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6456 extraction_mode, inner, GEN_INT (len), pos_rtx);
6457 if (! in_dest)
6458 new = gen_lowpart (mode, new);
6460 return new;
6463 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6464 with any other operations in X. Return X without that shift if so. */
6466 static rtx
6467 extract_left_shift (rtx x, int count)
6469 enum rtx_code code = GET_CODE (x);
6470 enum machine_mode mode = GET_MODE (x);
6471 rtx tem;
6473 switch (code)
6475 case ASHIFT:
6476 /* This is the shift itself. If it is wide enough, we will return
6477 either the value being shifted if the shift count is equal to
6478 COUNT or a shift for the difference. */
6479 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6480 && INTVAL (XEXP (x, 1)) >= count)
6481 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6482 INTVAL (XEXP (x, 1)) - count);
6483 break;
6485 case NEG: case NOT:
6486 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6487 return simplify_gen_unary (code, mode, tem, mode);
6489 break;
6491 case PLUS: case IOR: case XOR: case AND:
6492 /* If we can safely shift this constant and we find the inner shift,
6493 make a new operation. */
6494 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6495 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6496 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6497 return gen_binary (code, mode, tem,
6498 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6500 break;
6502 default:
6503 break;
6506 return 0;
6509 /* Look at the expression rooted at X. Look for expressions
6510 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6511 Form these expressions.
6513 Return the new rtx, usually just X.
6515 Also, for machines like the VAX that don't have logical shift insns,
6516 try to convert logical to arithmetic shift operations in cases where
6517 they are equivalent. This undoes the canonicalizations to logical
6518 shifts done elsewhere.
6520 We try, as much as possible, to re-use rtl expressions to save memory.
6522 IN_CODE says what kind of expression we are processing. Normally, it is
6523 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6524 being kludges), it is MEM. When processing the arguments of a comparison
6525 or a COMPARE against zero, it is COMPARE. */
6527 static rtx
6528 make_compound_operation (rtx x, enum rtx_code in_code)
6530 enum rtx_code code = GET_CODE (x);
6531 enum machine_mode mode = GET_MODE (x);
6532 int mode_width = GET_MODE_BITSIZE (mode);
6533 rtx rhs, lhs;
6534 enum rtx_code next_code;
6535 int i;
6536 rtx new = 0;
6537 rtx tem;
6538 const char *fmt;
6540 /* Select the code to be used in recursive calls. Once we are inside an
6541 address, we stay there. If we have a comparison, set to COMPARE,
6542 but once inside, go back to our default of SET. */
6544 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6545 : ((code == COMPARE || COMPARISON_P (x))
6546 && XEXP (x, 1) == const0_rtx) ? COMPARE
6547 : in_code == COMPARE ? SET : in_code);
6549 /* Process depending on the code of this operation. If NEW is set
6550 nonzero, it will be returned. */
6552 switch (code)
6554 case ASHIFT:
6555 /* Convert shifts by constants into multiplications if inside
6556 an address. */
6557 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6558 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6559 && INTVAL (XEXP (x, 1)) >= 0)
6561 new = make_compound_operation (XEXP (x, 0), next_code);
6562 new = gen_rtx_MULT (mode, new,
6563 GEN_INT ((HOST_WIDE_INT) 1
6564 << INTVAL (XEXP (x, 1))));
6566 break;
6568 case AND:
6569 /* If the second operand is not a constant, we can't do anything
6570 with it. */
6571 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6572 break;
6574 /* If the constant is a power of two minus one and the first operand
6575 is a logical right shift, make an extraction. */
6576 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6577 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6579 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6580 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6581 0, in_code == COMPARE);
6584 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6585 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6586 && subreg_lowpart_p (XEXP (x, 0))
6587 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6588 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6590 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6591 next_code);
6592 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6593 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6594 0, in_code == COMPARE);
6596 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6597 else if ((GET_CODE (XEXP (x, 0)) == XOR
6598 || GET_CODE (XEXP (x, 0)) == IOR)
6599 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6600 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6601 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6603 /* Apply the distributive law, and then try to make extractions. */
6604 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6605 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6606 XEXP (x, 1)),
6607 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6608 XEXP (x, 1)));
6609 new = make_compound_operation (new, in_code);
6612 /* If we are have (and (rotate X C) M) and C is larger than the number
6613 of bits in M, this is an extraction. */
6615 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6616 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6617 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6618 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6620 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6621 new = make_extraction (mode, new,
6622 (GET_MODE_BITSIZE (mode)
6623 - INTVAL (XEXP (XEXP (x, 0), 1))),
6624 NULL_RTX, i, 1, 0, in_code == COMPARE);
6627 /* On machines without logical shifts, if the operand of the AND is
6628 a logical shift and our mask turns off all the propagated sign
6629 bits, we can replace the logical shift with an arithmetic shift. */
6630 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6631 && !have_insn_for (LSHIFTRT, mode)
6632 && have_insn_for (ASHIFTRT, mode)
6633 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6634 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6635 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6636 && mode_width <= HOST_BITS_PER_WIDE_INT)
6638 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6640 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6641 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6642 SUBST (XEXP (x, 0),
6643 gen_rtx_ASHIFTRT (mode,
6644 make_compound_operation
6645 (XEXP (XEXP (x, 0), 0), next_code),
6646 XEXP (XEXP (x, 0), 1)));
6649 /* If the constant is one less than a power of two, this might be
6650 representable by an extraction even if no shift is present.
6651 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6652 we are in a COMPARE. */
6653 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6654 new = make_extraction (mode,
6655 make_compound_operation (XEXP (x, 0),
6656 next_code),
6657 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6659 /* If we are in a comparison and this is an AND with a power of two,
6660 convert this into the appropriate bit extract. */
6661 else if (in_code == COMPARE
6662 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6663 new = make_extraction (mode,
6664 make_compound_operation (XEXP (x, 0),
6665 next_code),
6666 i, NULL_RTX, 1, 1, 0, 1);
6668 break;
6670 case LSHIFTRT:
6671 /* If the sign bit is known to be zero, replace this with an
6672 arithmetic shift. */
6673 if (have_insn_for (ASHIFTRT, mode)
6674 && ! have_insn_for (LSHIFTRT, mode)
6675 && mode_width <= HOST_BITS_PER_WIDE_INT
6676 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6678 new = gen_rtx_ASHIFTRT (mode,
6679 make_compound_operation (XEXP (x, 0),
6680 next_code),
6681 XEXP (x, 1));
6682 break;
6685 /* ... fall through ... */
6687 case ASHIFTRT:
6688 lhs = XEXP (x, 0);
6689 rhs = XEXP (x, 1);
6691 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6692 this is a SIGN_EXTRACT. */
6693 if (GET_CODE (rhs) == CONST_INT
6694 && GET_CODE (lhs) == ASHIFT
6695 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6696 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6698 new = make_compound_operation (XEXP (lhs, 0), next_code);
6699 new = make_extraction (mode, new,
6700 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6701 NULL_RTX, mode_width - INTVAL (rhs),
6702 code == LSHIFTRT, 0, in_code == COMPARE);
6703 break;
6706 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6707 If so, try to merge the shifts into a SIGN_EXTEND. We could
6708 also do this for some cases of SIGN_EXTRACT, but it doesn't
6709 seem worth the effort; the case checked for occurs on Alpha. */
6711 if (!OBJECT_P (lhs)
6712 && ! (GET_CODE (lhs) == SUBREG
6713 && (OBJECT_P (SUBREG_REG (lhs))))
6714 && GET_CODE (rhs) == CONST_INT
6715 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6716 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6717 new = make_extraction (mode, make_compound_operation (new, next_code),
6718 0, NULL_RTX, mode_width - INTVAL (rhs),
6719 code == LSHIFTRT, 0, in_code == COMPARE);
6721 break;
6723 case SUBREG:
6724 /* Call ourselves recursively on the inner expression. If we are
6725 narrowing the object and it has a different RTL code from
6726 what it originally did, do this SUBREG as a force_to_mode. */
6728 tem = make_compound_operation (SUBREG_REG (x), in_code);
6729 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6730 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6731 && subreg_lowpart_p (x))
6733 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6734 NULL_RTX, 0);
6736 /* If we have something other than a SUBREG, we might have
6737 done an expansion, so rerun ourselves. */
6738 if (GET_CODE (newer) != SUBREG)
6739 newer = make_compound_operation (newer, in_code);
6741 return newer;
6744 /* If this is a paradoxical subreg, and the new code is a sign or
6745 zero extension, omit the subreg and widen the extension. If it
6746 is a regular subreg, we can still get rid of the subreg by not
6747 widening so much, or in fact removing the extension entirely. */
6748 if ((GET_CODE (tem) == SIGN_EXTEND
6749 || GET_CODE (tem) == ZERO_EXTEND)
6750 && subreg_lowpart_p (x))
6752 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6753 || (GET_MODE_SIZE (mode) >
6754 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6756 if (! SCALAR_INT_MODE_P (mode))
6757 break;
6758 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6760 else
6761 tem = gen_lowpart (mode, XEXP (tem, 0));
6762 return tem;
6764 break;
6766 default:
6767 break;
6770 if (new)
6772 x = gen_lowpart (mode, new);
6773 code = GET_CODE (x);
6776 /* Now recursively process each operand of this operation. */
6777 fmt = GET_RTX_FORMAT (code);
6778 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6779 if (fmt[i] == 'e')
6781 new = make_compound_operation (XEXP (x, i), next_code);
6782 SUBST (XEXP (x, i), new);
6785 return x;
6788 /* Given M see if it is a value that would select a field of bits
6789 within an item, but not the entire word. Return -1 if not.
6790 Otherwise, return the starting position of the field, where 0 is the
6791 low-order bit.
6793 *PLEN is set to the length of the field. */
6795 static int
6796 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6798 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6799 int pos = exact_log2 (m & -m);
6800 int len = 0;
6802 if (pos >= 0)
6803 /* Now shift off the low-order zero bits and see if we have a
6804 power of two minus 1. */
6805 len = exact_log2 ((m >> pos) + 1);
6807 if (len <= 0)
6808 pos = -1;
6810 *plen = len;
6811 return pos;
6814 /* See if X can be simplified knowing that we will only refer to it in
6815 MODE and will only refer to those bits that are nonzero in MASK.
6816 If other bits are being computed or if masking operations are done
6817 that select a superset of the bits in MASK, they can sometimes be
6818 ignored.
6820 Return a possibly simplified expression, but always convert X to
6821 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6823 Also, if REG is nonzero and X is a register equal in value to REG,
6824 replace X with REG.
6826 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6827 are all off in X. This is used when X will be complemented, by either
6828 NOT, NEG, or XOR. */
6830 static rtx
6831 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6832 rtx reg, int just_select)
6834 enum rtx_code code = GET_CODE (x);
6835 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6836 enum machine_mode op_mode;
6837 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6838 rtx op0, op1, temp;
6840 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6841 code below will do the wrong thing since the mode of such an
6842 expression is VOIDmode.
6844 Also do nothing if X is a CLOBBER; this can happen if X was
6845 the return value from a call to gen_lowpart. */
6846 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6847 return x;
6849 /* We want to perform the operation is its present mode unless we know
6850 that the operation is valid in MODE, in which case we do the operation
6851 in MODE. */
6852 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6853 && have_insn_for (code, mode))
6854 ? mode : GET_MODE (x));
6856 /* It is not valid to do a right-shift in a narrower mode
6857 than the one it came in with. */
6858 if ((code == LSHIFTRT || code == ASHIFTRT)
6859 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6860 op_mode = GET_MODE (x);
6862 /* Truncate MASK to fit OP_MODE. */
6863 if (op_mode)
6864 mask &= GET_MODE_MASK (op_mode);
6866 /* When we have an arithmetic operation, or a shift whose count we
6867 do not know, we need to assume that all bits up to the highest-order
6868 bit in MASK will be needed. This is how we form such a mask. */
6869 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6870 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6871 else
6872 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6873 - 1);
6875 /* Determine what bits of X are guaranteed to be (non)zero. */
6876 nonzero = nonzero_bits (x, mode);
6878 /* If none of the bits in X are needed, return a zero. */
6879 if (! just_select && (nonzero & mask) == 0)
6880 x = const0_rtx;
6882 /* If X is a CONST_INT, return a new one. Do this here since the
6883 test below will fail. */
6884 if (GET_CODE (x) == CONST_INT)
6886 if (SCALAR_INT_MODE_P (mode))
6887 return gen_int_mode (INTVAL (x) & mask, mode);
6888 else
6890 x = GEN_INT (INTVAL (x) & mask);
6891 return gen_lowpart_common (mode, x);
6895 /* If X is narrower than MODE and we want all the bits in X's mode, just
6896 get X in the proper mode. */
6897 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6898 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6899 return gen_lowpart (mode, x);
6901 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6902 MASK are already known to be zero in X, we need not do anything. */
6903 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6904 return x;
6906 switch (code)
6908 case CLOBBER:
6909 /* If X is a (clobber (const_int)), return it since we know we are
6910 generating something that won't match. */
6911 return x;
6913 case USE:
6914 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6915 spanned the boundary of the MEM. If we are now masking so it is
6916 within that boundary, we don't need the USE any more. */
6917 if (! BITS_BIG_ENDIAN
6918 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6919 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6920 break;
6922 case SIGN_EXTEND:
6923 case ZERO_EXTEND:
6924 case ZERO_EXTRACT:
6925 case SIGN_EXTRACT:
6926 x = expand_compound_operation (x);
6927 if (GET_CODE (x) != code)
6928 return force_to_mode (x, mode, mask, reg, next_select);
6929 break;
6931 case REG:
6932 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6933 || rtx_equal_p (reg, get_last_value (x))))
6934 x = reg;
6935 break;
6937 case SUBREG:
6938 if (subreg_lowpart_p (x)
6939 /* We can ignore the effect of this SUBREG if it narrows the mode or
6940 if the constant masks to zero all the bits the mode doesn't
6941 have. */
6942 && ((GET_MODE_SIZE (GET_MODE (x))
6943 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6944 || (0 == (mask
6945 & GET_MODE_MASK (GET_MODE (x))
6946 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6947 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6948 break;
6950 case AND:
6951 /* If this is an AND with a constant, convert it into an AND
6952 whose constant is the AND of that constant with MASK. If it
6953 remains an AND of MASK, delete it since it is redundant. */
6955 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6957 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6958 mask & INTVAL (XEXP (x, 1)));
6960 /* If X is still an AND, see if it is an AND with a mask that
6961 is just some low-order bits. If so, and it is MASK, we don't
6962 need it. */
6964 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6965 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6966 == mask))
6967 x = XEXP (x, 0);
6969 /* If it remains an AND, try making another AND with the bits
6970 in the mode mask that aren't in MASK turned on. If the
6971 constant in the AND is wide enough, this might make a
6972 cheaper constant. */
6974 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6975 && GET_MODE_MASK (GET_MODE (x)) != mask
6976 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6978 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6979 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6980 int width = GET_MODE_BITSIZE (GET_MODE (x));
6981 rtx y;
6983 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
6984 number, sign extend it. */
6985 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6986 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6987 cval |= (HOST_WIDE_INT) -1 << width;
6989 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6990 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6991 x = y;
6994 break;
6997 goto binop;
6999 case PLUS:
7000 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7001 low-order bits (as in an alignment operation) and FOO is already
7002 aligned to that boundary, mask C1 to that boundary as well.
7003 This may eliminate that PLUS and, later, the AND. */
7006 unsigned int width = GET_MODE_BITSIZE (mode);
7007 unsigned HOST_WIDE_INT smask = mask;
7009 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7010 number, sign extend it. */
7012 if (width < HOST_BITS_PER_WIDE_INT
7013 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7014 smask |= (HOST_WIDE_INT) -1 << width;
7016 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7017 && exact_log2 (- smask) >= 0
7018 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7019 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7020 return force_to_mode (plus_constant (XEXP (x, 0),
7021 (INTVAL (XEXP (x, 1)) & smask)),
7022 mode, smask, reg, next_select);
7025 /* ... fall through ... */
7027 case MULT:
7028 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7029 most significant bit in MASK since carries from those bits will
7030 affect the bits we are interested in. */
7031 mask = fuller_mask;
7032 goto binop;
7034 case MINUS:
7035 /* If X is (minus C Y) where C's least set bit is larger than any bit
7036 in the mask, then we may replace with (neg Y). */
7037 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7038 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7039 & -INTVAL (XEXP (x, 0))))
7040 > mask))
7042 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7043 GET_MODE (x));
7044 return force_to_mode (x, mode, mask, reg, next_select);
7047 /* Similarly, if C contains every bit in the fuller_mask, then we may
7048 replace with (not Y). */
7049 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7050 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7051 == INTVAL (XEXP (x, 0))))
7053 x = simplify_gen_unary (NOT, GET_MODE (x),
7054 XEXP (x, 1), GET_MODE (x));
7055 return force_to_mode (x, mode, mask, reg, next_select);
7058 mask = fuller_mask;
7059 goto binop;
7061 case IOR:
7062 case XOR:
7063 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7064 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7065 operation which may be a bitfield extraction. Ensure that the
7066 constant we form is not wider than the mode of X. */
7068 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7069 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7070 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7071 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7072 && GET_CODE (XEXP (x, 1)) == CONST_INT
7073 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7074 + floor_log2 (INTVAL (XEXP (x, 1))))
7075 < GET_MODE_BITSIZE (GET_MODE (x)))
7076 && (INTVAL (XEXP (x, 1))
7077 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7079 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7080 << INTVAL (XEXP (XEXP (x, 0), 1)));
7081 temp = gen_binary (GET_CODE (x), GET_MODE (x),
7082 XEXP (XEXP (x, 0), 0), temp);
7083 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
7084 XEXP (XEXP (x, 0), 1));
7085 return force_to_mode (x, mode, mask, reg, next_select);
7088 binop:
7089 /* For most binary operations, just propagate into the operation and
7090 change the mode if we have an operation of that mode. */
7092 op0 = gen_lowpart (op_mode,
7093 force_to_mode (XEXP (x, 0), mode, mask,
7094 reg, next_select));
7095 op1 = gen_lowpart (op_mode,
7096 force_to_mode (XEXP (x, 1), mode, mask,
7097 reg, next_select));
7099 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7100 x = gen_binary (code, op_mode, op0, op1);
7101 break;
7103 case ASHIFT:
7104 /* For left shifts, do the same, but just for the first operand.
7105 However, we cannot do anything with shifts where we cannot
7106 guarantee that the counts are smaller than the size of the mode
7107 because such a count will have a different meaning in a
7108 wider mode. */
7110 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7111 && INTVAL (XEXP (x, 1)) >= 0
7112 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7113 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7114 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7115 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7116 break;
7118 /* If the shift count is a constant and we can do arithmetic in
7119 the mode of the shift, refine which bits we need. Otherwise, use the
7120 conservative form of the mask. */
7121 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7122 && INTVAL (XEXP (x, 1)) >= 0
7123 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7124 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7125 mask >>= INTVAL (XEXP (x, 1));
7126 else
7127 mask = fuller_mask;
7129 op0 = gen_lowpart (op_mode,
7130 force_to_mode (XEXP (x, 0), op_mode,
7131 mask, reg, next_select));
7133 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7134 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
7135 break;
7137 case LSHIFTRT:
7138 /* Here we can only do something if the shift count is a constant,
7139 this shift constant is valid for the host, and we can do arithmetic
7140 in OP_MODE. */
7142 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7143 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7144 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7146 rtx inner = XEXP (x, 0);
7147 unsigned HOST_WIDE_INT inner_mask;
7149 /* Select the mask of the bits we need for the shift operand. */
7150 inner_mask = mask << INTVAL (XEXP (x, 1));
7152 /* We can only change the mode of the shift if we can do arithmetic
7153 in the mode of the shift and INNER_MASK is no wider than the
7154 width of X's mode. */
7155 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7156 op_mode = GET_MODE (x);
7158 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7160 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7161 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7164 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7165 shift and AND produces only copies of the sign bit (C2 is one less
7166 than a power of two), we can do this with just a shift. */
7168 if (GET_CODE (x) == LSHIFTRT
7169 && GET_CODE (XEXP (x, 1)) == CONST_INT
7170 /* The shift puts one of the sign bit copies in the least significant
7171 bit. */
7172 && ((INTVAL (XEXP (x, 1))
7173 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7174 >= GET_MODE_BITSIZE (GET_MODE (x)))
7175 && exact_log2 (mask + 1) >= 0
7176 /* Number of bits left after the shift must be more than the mask
7177 needs. */
7178 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7179 <= GET_MODE_BITSIZE (GET_MODE (x)))
7180 /* Must be more sign bit copies than the mask needs. */
7181 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7182 >= exact_log2 (mask + 1)))
7183 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7184 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7185 - exact_log2 (mask + 1)));
7187 goto shiftrt;
7189 case ASHIFTRT:
7190 /* If we are just looking for the sign bit, we don't need this shift at
7191 all, even if it has a variable count. */
7192 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7193 && (mask == ((unsigned HOST_WIDE_INT) 1
7194 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7195 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7197 /* If this is a shift by a constant, get a mask that contains those bits
7198 that are not copies of the sign bit. We then have two cases: If
7199 MASK only includes those bits, this can be a logical shift, which may
7200 allow simplifications. If MASK is a single-bit field not within
7201 those bits, we are requesting a copy of the sign bit and hence can
7202 shift the sign bit to the appropriate location. */
7204 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7205 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7207 int i = -1;
7209 /* If the considered data is wider than HOST_WIDE_INT, we can't
7210 represent a mask for all its bits in a single scalar.
7211 But we only care about the lower bits, so calculate these. */
7213 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7215 nonzero = ~(HOST_WIDE_INT) 0;
7217 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7218 is the number of bits a full-width mask would have set.
7219 We need only shift if these are fewer than nonzero can
7220 hold. If not, we must keep all bits set in nonzero. */
7222 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7223 < HOST_BITS_PER_WIDE_INT)
7224 nonzero >>= INTVAL (XEXP (x, 1))
7225 + HOST_BITS_PER_WIDE_INT
7226 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7228 else
7230 nonzero = GET_MODE_MASK (GET_MODE (x));
7231 nonzero >>= INTVAL (XEXP (x, 1));
7234 if ((mask & ~nonzero) == 0
7235 || (i = exact_log2 (mask)) >= 0)
7237 x = simplify_shift_const
7238 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7239 i < 0 ? INTVAL (XEXP (x, 1))
7240 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7242 if (GET_CODE (x) != ASHIFTRT)
7243 return force_to_mode (x, mode, mask, reg, next_select);
7247 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7248 even if the shift count isn't a constant. */
7249 if (mask == 1)
7250 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7252 shiftrt:
7254 /* If this is a zero- or sign-extension operation that just affects bits
7255 we don't care about, remove it. Be sure the call above returned
7256 something that is still a shift. */
7258 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7259 && GET_CODE (XEXP (x, 1)) == CONST_INT
7260 && INTVAL (XEXP (x, 1)) >= 0
7261 && (INTVAL (XEXP (x, 1))
7262 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7263 && GET_CODE (XEXP (x, 0)) == ASHIFT
7264 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7265 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7266 reg, next_select);
7268 break;
7270 case ROTATE:
7271 case ROTATERT:
7272 /* If the shift count is constant and we can do computations
7273 in the mode of X, compute where the bits we care about are.
7274 Otherwise, we can't do anything. Don't change the mode of
7275 the shift or propagate MODE into the shift, though. */
7276 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7277 && INTVAL (XEXP (x, 1)) >= 0)
7279 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7280 GET_MODE (x), GEN_INT (mask),
7281 XEXP (x, 1));
7282 if (temp && GET_CODE (temp) == CONST_INT)
7283 SUBST (XEXP (x, 0),
7284 force_to_mode (XEXP (x, 0), GET_MODE (x),
7285 INTVAL (temp), reg, next_select));
7287 break;
7289 case NEG:
7290 /* If we just want the low-order bit, the NEG isn't needed since it
7291 won't change the low-order bit. */
7292 if (mask == 1)
7293 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7295 /* We need any bits less significant than the most significant bit in
7296 MASK since carries from those bits will affect the bits we are
7297 interested in. */
7298 mask = fuller_mask;
7299 goto unop;
7301 case NOT:
7302 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7303 same as the XOR case above. Ensure that the constant we form is not
7304 wider than the mode of X. */
7306 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7307 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7308 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7309 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7310 < GET_MODE_BITSIZE (GET_MODE (x)))
7311 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7313 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7314 GET_MODE (x));
7315 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7316 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7318 return force_to_mode (x, mode, mask, reg, next_select);
7321 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7322 use the full mask inside the NOT. */
7323 mask = fuller_mask;
7325 unop:
7326 op0 = gen_lowpart (op_mode,
7327 force_to_mode (XEXP (x, 0), mode, mask,
7328 reg, next_select));
7329 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7330 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7331 break;
7333 case NE:
7334 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7335 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7336 which is equal to STORE_FLAG_VALUE. */
7337 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7338 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7339 && (nonzero_bits (XEXP (x, 0), mode)
7340 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7341 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7343 break;
7345 case IF_THEN_ELSE:
7346 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7347 written in a narrower mode. We play it safe and do not do so. */
7349 SUBST (XEXP (x, 1),
7350 gen_lowpart (GET_MODE (x),
7351 force_to_mode (XEXP (x, 1), mode,
7352 mask, reg, next_select)));
7353 SUBST (XEXP (x, 2),
7354 gen_lowpart (GET_MODE (x),
7355 force_to_mode (XEXP (x, 2), mode,
7356 mask, reg, next_select)));
7357 break;
7359 default:
7360 break;
7363 /* Ensure we return a value of the proper mode. */
7364 return gen_lowpart (mode, x);
7367 /* Return nonzero if X is an expression that has one of two values depending on
7368 whether some other value is zero or nonzero. In that case, we return the
7369 value that is being tested, *PTRUE is set to the value if the rtx being
7370 returned has a nonzero value, and *PFALSE is set to the other alternative.
7372 If we return zero, we set *PTRUE and *PFALSE to X. */
7374 static rtx
7375 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7377 enum machine_mode mode = GET_MODE (x);
7378 enum rtx_code code = GET_CODE (x);
7379 rtx cond0, cond1, true0, true1, false0, false1;
7380 unsigned HOST_WIDE_INT nz;
7382 /* If we are comparing a value against zero, we are done. */
7383 if ((code == NE || code == EQ)
7384 && XEXP (x, 1) == const0_rtx)
7386 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7387 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7388 return XEXP (x, 0);
7391 /* If this is a unary operation whose operand has one of two values, apply
7392 our opcode to compute those values. */
7393 else if (UNARY_P (x)
7394 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7396 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7397 *pfalse = simplify_gen_unary (code, mode, false0,
7398 GET_MODE (XEXP (x, 0)));
7399 return cond0;
7402 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7403 make can't possibly match and would suppress other optimizations. */
7404 else if (code == COMPARE)
7407 /* If this is a binary operation, see if either side has only one of two
7408 values. If either one does or if both do and they are conditional on
7409 the same value, compute the new true and false values. */
7410 else if (BINARY_P (x))
7412 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7413 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7415 if ((cond0 != 0 || cond1 != 0)
7416 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7418 /* If if_then_else_cond returned zero, then true/false are the
7419 same rtl. We must copy one of them to prevent invalid rtl
7420 sharing. */
7421 if (cond0 == 0)
7422 true0 = copy_rtx (true0);
7423 else if (cond1 == 0)
7424 true1 = copy_rtx (true1);
7426 *ptrue = gen_binary (code, mode, true0, true1);
7427 *pfalse = gen_binary (code, mode, false0, false1);
7428 return cond0 ? cond0 : cond1;
7431 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7432 operands is zero when the other is nonzero, and vice-versa,
7433 and STORE_FLAG_VALUE is 1 or -1. */
7435 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7436 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7437 || code == UMAX)
7438 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7440 rtx op0 = XEXP (XEXP (x, 0), 1);
7441 rtx op1 = XEXP (XEXP (x, 1), 1);
7443 cond0 = XEXP (XEXP (x, 0), 0);
7444 cond1 = XEXP (XEXP (x, 1), 0);
7446 if (COMPARISON_P (cond0)
7447 && COMPARISON_P (cond1)
7448 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7449 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7450 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7451 || ((swap_condition (GET_CODE (cond0))
7452 == combine_reversed_comparison_code (cond1))
7453 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7454 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7455 && ! side_effects_p (x))
7457 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7458 *pfalse = gen_binary (MULT, mode,
7459 (code == MINUS
7460 ? simplify_gen_unary (NEG, mode, op1,
7461 mode)
7462 : op1),
7463 const_true_rtx);
7464 return cond0;
7468 /* Similarly for MULT, AND and UMIN, except that for these the result
7469 is always zero. */
7470 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7471 && (code == MULT || code == AND || code == UMIN)
7472 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7474 cond0 = XEXP (XEXP (x, 0), 0);
7475 cond1 = XEXP (XEXP (x, 1), 0);
7477 if (COMPARISON_P (cond0)
7478 && COMPARISON_P (cond1)
7479 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7480 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7481 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7482 || ((swap_condition (GET_CODE (cond0))
7483 == combine_reversed_comparison_code (cond1))
7484 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7485 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7486 && ! side_effects_p (x))
7488 *ptrue = *pfalse = const0_rtx;
7489 return cond0;
7494 else if (code == IF_THEN_ELSE)
7496 /* If we have IF_THEN_ELSE already, extract the condition and
7497 canonicalize it if it is NE or EQ. */
7498 cond0 = XEXP (x, 0);
7499 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7500 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7501 return XEXP (cond0, 0);
7502 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7504 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7505 return XEXP (cond0, 0);
7507 else
7508 return cond0;
7511 /* If X is a SUBREG, we can narrow both the true and false values
7512 if the inner expression, if there is a condition. */
7513 else if (code == SUBREG
7514 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7515 &true0, &false0)))
7517 true0 = simplify_gen_subreg (mode, true0,
7518 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7519 false0 = simplify_gen_subreg (mode, false0,
7520 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7521 if (true0 && false0)
7523 *ptrue = true0;
7524 *pfalse = false0;
7525 return cond0;
7529 /* If X is a constant, this isn't special and will cause confusions
7530 if we treat it as such. Likewise if it is equivalent to a constant. */
7531 else if (CONSTANT_P (x)
7532 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7535 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7536 will be least confusing to the rest of the compiler. */
7537 else if (mode == BImode)
7539 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7540 return x;
7543 /* If X is known to be either 0 or -1, those are the true and
7544 false values when testing X. */
7545 else if (x == constm1_rtx || x == const0_rtx
7546 || (mode != VOIDmode
7547 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7549 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7550 return x;
7553 /* Likewise for 0 or a single bit. */
7554 else if (SCALAR_INT_MODE_P (mode)
7555 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7556 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7558 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7559 return x;
7562 /* Otherwise fail; show no condition with true and false values the same. */
7563 *ptrue = *pfalse = x;
7564 return 0;
7567 /* Return the value of expression X given the fact that condition COND
7568 is known to be true when applied to REG as its first operand and VAL
7569 as its second. X is known to not be shared and so can be modified in
7570 place.
7572 We only handle the simplest cases, and specifically those cases that
7573 arise with IF_THEN_ELSE expressions. */
7575 static rtx
7576 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7578 enum rtx_code code = GET_CODE (x);
7579 rtx temp;
7580 const char *fmt;
7581 int i, j;
7583 if (side_effects_p (x))
7584 return x;
7586 /* If either operand of the condition is a floating point value,
7587 then we have to avoid collapsing an EQ comparison. */
7588 if (cond == EQ
7589 && rtx_equal_p (x, reg)
7590 && ! FLOAT_MODE_P (GET_MODE (x))
7591 && ! FLOAT_MODE_P (GET_MODE (val)))
7592 return val;
7594 if (cond == UNEQ && rtx_equal_p (x, reg))
7595 return val;
7597 /* If X is (abs REG) and we know something about REG's relationship
7598 with zero, we may be able to simplify this. */
7600 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7601 switch (cond)
7603 case GE: case GT: case EQ:
7604 return XEXP (x, 0);
7605 case LT: case LE:
7606 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7607 XEXP (x, 0),
7608 GET_MODE (XEXP (x, 0)));
7609 default:
7610 break;
7613 /* The only other cases we handle are MIN, MAX, and comparisons if the
7614 operands are the same as REG and VAL. */
7616 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7618 if (rtx_equal_p (XEXP (x, 0), val))
7619 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7621 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7623 if (COMPARISON_P (x))
7625 if (comparison_dominates_p (cond, code))
7626 return const_true_rtx;
7628 code = combine_reversed_comparison_code (x);
7629 if (code != UNKNOWN
7630 && comparison_dominates_p (cond, code))
7631 return const0_rtx;
7632 else
7633 return x;
7635 else if (code == SMAX || code == SMIN
7636 || code == UMIN || code == UMAX)
7638 int unsignedp = (code == UMIN || code == UMAX);
7640 /* Do not reverse the condition when it is NE or EQ.
7641 This is because we cannot conclude anything about
7642 the value of 'SMAX (x, y)' when x is not equal to y,
7643 but we can when x equals y. */
7644 if ((code == SMAX || code == UMAX)
7645 && ! (cond == EQ || cond == NE))
7646 cond = reverse_condition (cond);
7648 switch (cond)
7650 case GE: case GT:
7651 return unsignedp ? x : XEXP (x, 1);
7652 case LE: case LT:
7653 return unsignedp ? x : XEXP (x, 0);
7654 case GEU: case GTU:
7655 return unsignedp ? XEXP (x, 1) : x;
7656 case LEU: case LTU:
7657 return unsignedp ? XEXP (x, 0) : x;
7658 default:
7659 break;
7664 else if (code == SUBREG)
7666 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7667 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7669 if (SUBREG_REG (x) != r)
7671 /* We must simplify subreg here, before we lose track of the
7672 original inner_mode. */
7673 new = simplify_subreg (GET_MODE (x), r,
7674 inner_mode, SUBREG_BYTE (x));
7675 if (new)
7676 return new;
7677 else
7678 SUBST (SUBREG_REG (x), r);
7681 return x;
7683 /* We don't have to handle SIGN_EXTEND here, because even in the
7684 case of replacing something with a modeless CONST_INT, a
7685 CONST_INT is already (supposed to be) a valid sign extension for
7686 its narrower mode, which implies it's already properly
7687 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7688 story is different. */
7689 else if (code == ZERO_EXTEND)
7691 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7692 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7694 if (XEXP (x, 0) != r)
7696 /* We must simplify the zero_extend here, before we lose
7697 track of the original inner_mode. */
7698 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7699 r, inner_mode);
7700 if (new)
7701 return new;
7702 else
7703 SUBST (XEXP (x, 0), r);
7706 return x;
7709 fmt = GET_RTX_FORMAT (code);
7710 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7712 if (fmt[i] == 'e')
7713 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7714 else if (fmt[i] == 'E')
7715 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7716 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7717 cond, reg, val));
7720 return x;
7723 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7724 assignment as a field assignment. */
7726 static int
7727 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7729 if (x == y || rtx_equal_p (x, y))
7730 return 1;
7732 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7733 return 0;
7735 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7736 Note that all SUBREGs of MEM are paradoxical; otherwise they
7737 would have been rewritten. */
7738 if (MEM_P (x) && GET_CODE (y) == SUBREG
7739 && MEM_P (SUBREG_REG (y))
7740 && rtx_equal_p (SUBREG_REG (y),
7741 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7742 return 1;
7744 if (MEM_P (y) && GET_CODE (x) == SUBREG
7745 && MEM_P (SUBREG_REG (x))
7746 && rtx_equal_p (SUBREG_REG (x),
7747 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7748 return 1;
7750 /* We used to see if get_last_value of X and Y were the same but that's
7751 not correct. In one direction, we'll cause the assignment to have
7752 the wrong destination and in the case, we'll import a register into this
7753 insn that might have already have been dead. So fail if none of the
7754 above cases are true. */
7755 return 0;
7758 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7759 Return that assignment if so.
7761 We only handle the most common cases. */
7763 static rtx
7764 make_field_assignment (rtx x)
7766 rtx dest = SET_DEST (x);
7767 rtx src = SET_SRC (x);
7768 rtx assign;
7769 rtx rhs, lhs;
7770 HOST_WIDE_INT c1;
7771 HOST_WIDE_INT pos;
7772 unsigned HOST_WIDE_INT len;
7773 rtx other;
7774 enum machine_mode mode;
7776 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7777 a clear of a one-bit field. We will have changed it to
7778 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7779 for a SUBREG. */
7781 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7782 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7783 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7784 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7786 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7787 1, 1, 1, 0);
7788 if (assign != 0)
7789 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7790 return x;
7793 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7794 && subreg_lowpart_p (XEXP (src, 0))
7795 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7796 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7797 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7798 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7799 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7800 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7802 assign = make_extraction (VOIDmode, dest, 0,
7803 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7804 1, 1, 1, 0);
7805 if (assign != 0)
7806 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7807 return x;
7810 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7811 one-bit field. */
7812 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7813 && XEXP (XEXP (src, 0), 0) == const1_rtx
7814 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7816 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7817 1, 1, 1, 0);
7818 if (assign != 0)
7819 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7820 return x;
7823 /* The other case we handle is assignments into a constant-position
7824 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7825 a mask that has all one bits except for a group of zero bits and
7826 OTHER is known to have zeros where C1 has ones, this is such an
7827 assignment. Compute the position and length from C1. Shift OTHER
7828 to the appropriate position, force it to the required mode, and
7829 make the extraction. Check for the AND in both operands. */
7831 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7832 return x;
7834 rhs = expand_compound_operation (XEXP (src, 0));
7835 lhs = expand_compound_operation (XEXP (src, 1));
7837 if (GET_CODE (rhs) == AND
7838 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7839 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7840 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7841 else if (GET_CODE (lhs) == AND
7842 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7843 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7844 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7845 else
7846 return x;
7848 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7849 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7850 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7851 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7852 return x;
7854 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7855 if (assign == 0)
7856 return x;
7858 /* The mode to use for the source is the mode of the assignment, or of
7859 what is inside a possible STRICT_LOW_PART. */
7860 mode = (GET_CODE (assign) == STRICT_LOW_PART
7861 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7863 /* Shift OTHER right POS places and make it the source, restricting it
7864 to the proper length and mode. */
7866 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7867 GET_MODE (src), other, pos),
7868 mode,
7869 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7870 ? ~(unsigned HOST_WIDE_INT) 0
7871 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7872 dest, 0);
7874 /* If SRC is masked by an AND that does not make a difference in
7875 the value being stored, strip it. */
7876 if (GET_CODE (assign) == ZERO_EXTRACT
7877 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7878 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7879 && GET_CODE (src) == AND
7880 && GET_CODE (XEXP (src, 1)) == CONST_INT
7881 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7882 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7883 src = XEXP (src, 0);
7885 return gen_rtx_SET (VOIDmode, assign, src);
7888 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7889 if so. */
7891 static rtx
7892 apply_distributive_law (rtx x)
7894 enum rtx_code code = GET_CODE (x);
7895 enum rtx_code inner_code;
7896 rtx lhs, rhs, other;
7897 rtx tem;
7899 /* Distributivity is not true for floating point as it can change the
7900 value. So we don't do it unless -funsafe-math-optimizations. */
7901 if (FLOAT_MODE_P (GET_MODE (x))
7902 && ! flag_unsafe_math_optimizations)
7903 return x;
7905 /* The outer operation can only be one of the following: */
7906 if (code != IOR && code != AND && code != XOR
7907 && code != PLUS && code != MINUS)
7908 return x;
7910 lhs = XEXP (x, 0);
7911 rhs = XEXP (x, 1);
7913 /* If either operand is a primitive we can't do anything, so get out
7914 fast. */
7915 if (OBJECT_P (lhs) || OBJECT_P (rhs))
7916 return x;
7918 lhs = expand_compound_operation (lhs);
7919 rhs = expand_compound_operation (rhs);
7920 inner_code = GET_CODE (lhs);
7921 if (inner_code != GET_CODE (rhs))
7922 return x;
7924 /* See if the inner and outer operations distribute. */
7925 switch (inner_code)
7927 case LSHIFTRT:
7928 case ASHIFTRT:
7929 case AND:
7930 case IOR:
7931 /* These all distribute except over PLUS. */
7932 if (code == PLUS || code == MINUS)
7933 return x;
7934 break;
7936 case MULT:
7937 if (code != PLUS && code != MINUS)
7938 return x;
7939 break;
7941 case ASHIFT:
7942 /* This is also a multiply, so it distributes over everything. */
7943 break;
7945 case SUBREG:
7946 /* Non-paradoxical SUBREGs distributes over all operations, provided
7947 the inner modes and byte offsets are the same, this is an extraction
7948 of a low-order part, we don't convert an fp operation to int or
7949 vice versa, and we would not be converting a single-word
7950 operation into a multi-word operation. The latter test is not
7951 required, but it prevents generating unneeded multi-word operations.
7952 Some of the previous tests are redundant given the latter test, but
7953 are retained because they are required for correctness.
7955 We produce the result slightly differently in this case. */
7957 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7958 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7959 || ! subreg_lowpart_p (lhs)
7960 || (GET_MODE_CLASS (GET_MODE (lhs))
7961 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7962 || (GET_MODE_SIZE (GET_MODE (lhs))
7963 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7964 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7965 return x;
7967 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7968 SUBREG_REG (lhs), SUBREG_REG (rhs));
7969 return gen_lowpart (GET_MODE (x), tem);
7971 default:
7972 return x;
7975 /* Set LHS and RHS to the inner operands (A and B in the example
7976 above) and set OTHER to the common operand (C in the example).
7977 There is only one way to do this unless the inner operation is
7978 commutative. */
7979 if (COMMUTATIVE_ARITH_P (lhs)
7980 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7981 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7982 else if (COMMUTATIVE_ARITH_P (lhs)
7983 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7984 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7985 else if (COMMUTATIVE_ARITH_P (lhs)
7986 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7987 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7988 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7989 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7990 else
7991 return x;
7993 /* Form the new inner operation, seeing if it simplifies first. */
7994 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7996 /* There is one exception to the general way of distributing:
7997 (a | c) ^ (b | c) -> (a ^ b) & ~c */
7998 if (code == XOR && inner_code == IOR)
8000 inner_code = AND;
8001 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8004 /* We may be able to continuing distributing the result, so call
8005 ourselves recursively on the inner operation before forming the
8006 outer operation, which we return. */
8007 return gen_binary (inner_code, GET_MODE (x),
8008 apply_distributive_law (tem), other);
8011 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8012 in MODE.
8014 Return an equivalent form, if different from X. Otherwise, return X. If
8015 X is zero, we are to always construct the equivalent form. */
8017 static rtx
8018 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8019 unsigned HOST_WIDE_INT constop)
8021 unsigned HOST_WIDE_INT nonzero;
8022 int i;
8024 /* Simplify VAROP knowing that we will be only looking at some of the
8025 bits in it.
8027 Note by passing in CONSTOP, we guarantee that the bits not set in
8028 CONSTOP are not significant and will never be examined. We must
8029 ensure that is the case by explicitly masking out those bits
8030 before returning. */
8031 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8033 /* If VAROP is a CLOBBER, we will fail so return it. */
8034 if (GET_CODE (varop) == CLOBBER)
8035 return varop;
8037 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8038 to VAROP and return the new constant. */
8039 if (GET_CODE (varop) == CONST_INT)
8040 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
8042 /* See what bits may be nonzero in VAROP. Unlike the general case of
8043 a call to nonzero_bits, here we don't care about bits outside
8044 MODE. */
8046 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8048 /* Turn off all bits in the constant that are known to already be zero.
8049 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8050 which is tested below. */
8052 constop &= nonzero;
8054 /* If we don't have any bits left, return zero. */
8055 if (constop == 0)
8056 return const0_rtx;
8058 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8059 a power of two, we can replace this with an ASHIFT. */
8060 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8061 && (i = exact_log2 (constop)) >= 0)
8062 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8064 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8065 or XOR, then try to apply the distributive law. This may eliminate
8066 operations if either branch can be simplified because of the AND.
8067 It may also make some cases more complex, but those cases probably
8068 won't match a pattern either with or without this. */
8070 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8071 return
8072 gen_lowpart
8073 (mode,
8074 apply_distributive_law
8075 (gen_binary (GET_CODE (varop), GET_MODE (varop),
8076 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8077 XEXP (varop, 0), constop),
8078 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8079 XEXP (varop, 1), constop))));
8081 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8082 the AND and see if one of the operands simplifies to zero. If so, we
8083 may eliminate it. */
8085 if (GET_CODE (varop) == PLUS
8086 && exact_log2 (constop + 1) >= 0)
8088 rtx o0, o1;
8090 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8091 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8092 if (o0 == const0_rtx)
8093 return o1;
8094 if (o1 == const0_rtx)
8095 return o0;
8098 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8099 if we already had one (just check for the simplest cases). */
8100 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8101 && GET_MODE (XEXP (x, 0)) == mode
8102 && SUBREG_REG (XEXP (x, 0)) == varop)
8103 varop = XEXP (x, 0);
8104 else
8105 varop = gen_lowpart (mode, varop);
8107 /* If we can't make the SUBREG, try to return what we were given. */
8108 if (GET_CODE (varop) == CLOBBER)
8109 return x ? x : varop;
8111 /* If we are only masking insignificant bits, return VAROP. */
8112 if (constop == nonzero)
8113 x = varop;
8114 else
8116 /* Otherwise, return an AND. */
8117 constop = trunc_int_for_mode (constop, mode);
8118 /* See how much, if any, of X we can use. */
8119 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8120 x = gen_binary (AND, mode, varop, GEN_INT (constop));
8122 else
8124 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8125 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8126 SUBST (XEXP (x, 1), GEN_INT (constop));
8128 SUBST (XEXP (x, 0), varop);
8132 return x;
8135 /* Given a REG, X, compute which bits in X can be nonzero.
8136 We don't care about bits outside of those defined in MODE.
8138 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8139 a shift, AND, or zero_extract, we can do better. */
8141 static rtx
8142 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8143 rtx known_x ATTRIBUTE_UNUSED,
8144 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8145 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8146 unsigned HOST_WIDE_INT *nonzero)
8148 rtx tem;
8150 /* If X is a register whose nonzero bits value is current, use it.
8151 Otherwise, if X is a register whose value we can find, use that
8152 value. Otherwise, use the previously-computed global nonzero bits
8153 for this register. */
8155 if (reg_stat[REGNO (x)].last_set_value != 0
8156 && (reg_stat[REGNO (x)].last_set_mode == mode
8157 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8158 && GET_MODE_CLASS (mode) == MODE_INT))
8159 && (reg_stat[REGNO (x)].last_set_label == label_tick
8160 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8161 && REG_N_SETS (REGNO (x)) == 1
8162 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8163 REGNO (x))))
8164 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8166 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8167 return NULL;
8170 tem = get_last_value (x);
8172 if (tem)
8174 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8175 /* If X is narrower than MODE and TEM is a non-negative
8176 constant that would appear negative in the mode of X,
8177 sign-extend it for use in reg_nonzero_bits because some
8178 machines (maybe most) will actually do the sign-extension
8179 and this is the conservative approach.
8181 ??? For 2.5, try to tighten up the MD files in this regard
8182 instead of this kludge. */
8184 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8185 && GET_CODE (tem) == CONST_INT
8186 && INTVAL (tem) > 0
8187 && 0 != (INTVAL (tem)
8188 & ((HOST_WIDE_INT) 1
8189 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8190 tem = GEN_INT (INTVAL (tem)
8191 | ((HOST_WIDE_INT) (-1)
8192 << GET_MODE_BITSIZE (GET_MODE (x))));
8193 #endif
8194 return tem;
8196 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8198 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8200 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8201 /* We don't know anything about the upper bits. */
8202 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8203 *nonzero &= mask;
8206 return NULL;
8209 /* Return the number of bits at the high-order end of X that are known to
8210 be equal to the sign bit. X will be used in mode MODE; if MODE is
8211 VOIDmode, X will be used in its own mode. The returned value will always
8212 be between 1 and the number of bits in MODE. */
8214 static rtx
8215 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8216 rtx known_x ATTRIBUTE_UNUSED,
8217 enum machine_mode known_mode
8218 ATTRIBUTE_UNUSED,
8219 unsigned int known_ret ATTRIBUTE_UNUSED,
8220 unsigned int *result)
8222 rtx tem;
8224 if (reg_stat[REGNO (x)].last_set_value != 0
8225 && reg_stat[REGNO (x)].last_set_mode == mode
8226 && (reg_stat[REGNO (x)].last_set_label == label_tick
8227 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8228 && REG_N_SETS (REGNO (x)) == 1
8229 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8230 REGNO (x))))
8231 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8233 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8234 return NULL;
8237 tem = get_last_value (x);
8238 if (tem != 0)
8239 return tem;
8241 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8242 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8243 *result = reg_stat[REGNO (x)].sign_bit_copies;
8245 return NULL;
8248 /* Return the number of "extended" bits there are in X, when interpreted
8249 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8250 unsigned quantities, this is the number of high-order zero bits.
8251 For signed quantities, this is the number of copies of the sign bit
8252 minus 1. In both case, this function returns the number of "spare"
8253 bits. For example, if two quantities for which this function returns
8254 at least 1 are added, the addition is known not to overflow.
8256 This function will always return 0 unless called during combine, which
8257 implies that it must be called from a define_split. */
8259 unsigned int
8260 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8262 if (nonzero_sign_valid == 0)
8263 return 0;
8265 return (unsignedp
8266 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8267 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8268 - floor_log2 (nonzero_bits (x, mode)))
8269 : 0)
8270 : num_sign_bit_copies (x, mode) - 1);
8273 /* This function is called from `simplify_shift_const' to merge two
8274 outer operations. Specifically, we have already found that we need
8275 to perform operation *POP0 with constant *PCONST0 at the outermost
8276 position. We would now like to also perform OP1 with constant CONST1
8277 (with *POP0 being done last).
8279 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8280 the resulting operation. *PCOMP_P is set to 1 if we would need to
8281 complement the innermost operand, otherwise it is unchanged.
8283 MODE is the mode in which the operation will be done. No bits outside
8284 the width of this mode matter. It is assumed that the width of this mode
8285 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8287 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8288 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8289 result is simply *PCONST0.
8291 If the resulting operation cannot be expressed as one operation, we
8292 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8294 static int
8295 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8297 enum rtx_code op0 = *pop0;
8298 HOST_WIDE_INT const0 = *pconst0;
8300 const0 &= GET_MODE_MASK (mode);
8301 const1 &= GET_MODE_MASK (mode);
8303 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8304 if (op0 == AND)
8305 const1 &= const0;
8307 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8308 if OP0 is SET. */
8310 if (op1 == UNKNOWN || op0 == SET)
8311 return 1;
8313 else if (op0 == UNKNOWN)
8314 op0 = op1, const0 = const1;
8316 else if (op0 == op1)
8318 switch (op0)
8320 case AND:
8321 const0 &= const1;
8322 break;
8323 case IOR:
8324 const0 |= const1;
8325 break;
8326 case XOR:
8327 const0 ^= const1;
8328 break;
8329 case PLUS:
8330 const0 += const1;
8331 break;
8332 case NEG:
8333 op0 = UNKNOWN;
8334 break;
8335 default:
8336 break;
8340 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8341 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8342 return 0;
8344 /* If the two constants aren't the same, we can't do anything. The
8345 remaining six cases can all be done. */
8346 else if (const0 != const1)
8347 return 0;
8349 else
8350 switch (op0)
8352 case IOR:
8353 if (op1 == AND)
8354 /* (a & b) | b == b */
8355 op0 = SET;
8356 else /* op1 == XOR */
8357 /* (a ^ b) | b == a | b */
8359 break;
8361 case XOR:
8362 if (op1 == AND)
8363 /* (a & b) ^ b == (~a) & b */
8364 op0 = AND, *pcomp_p = 1;
8365 else /* op1 == IOR */
8366 /* (a | b) ^ b == a & ~b */
8367 op0 = AND, const0 = ~const0;
8368 break;
8370 case AND:
8371 if (op1 == IOR)
8372 /* (a | b) & b == b */
8373 op0 = SET;
8374 else /* op1 == XOR */
8375 /* (a ^ b) & b) == (~a) & b */
8376 *pcomp_p = 1;
8377 break;
8378 default:
8379 break;
8382 /* Check for NO-OP cases. */
8383 const0 &= GET_MODE_MASK (mode);
8384 if (const0 == 0
8385 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8386 op0 = UNKNOWN;
8387 else if (const0 == 0 && op0 == AND)
8388 op0 = SET;
8389 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8390 && op0 == AND)
8391 op0 = UNKNOWN;
8393 /* ??? Slightly redundant with the above mask, but not entirely.
8394 Moving this above means we'd have to sign-extend the mode mask
8395 for the final test. */
8396 const0 = trunc_int_for_mode (const0, mode);
8398 *pop0 = op0;
8399 *pconst0 = const0;
8401 return 1;
8404 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8405 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
8406 that we started with.
8408 The shift is normally computed in the widest mode we find in VAROP, as
8409 long as it isn't a different number of words than RESULT_MODE. Exceptions
8410 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8412 static rtx
8413 simplify_shift_const (rtx x, enum rtx_code code,
8414 enum machine_mode result_mode, rtx varop,
8415 int orig_count)
8417 enum rtx_code orig_code = code;
8418 unsigned int count;
8419 int signed_count;
8420 enum machine_mode mode = result_mode;
8421 enum machine_mode shift_mode, tmode;
8422 unsigned int mode_words
8423 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8424 /* We form (outer_op (code varop count) (outer_const)). */
8425 enum rtx_code outer_op = UNKNOWN;
8426 HOST_WIDE_INT outer_const = 0;
8427 rtx const_rtx;
8428 int complement_p = 0;
8429 rtx new;
8431 /* Make sure and truncate the "natural" shift on the way in. We don't
8432 want to do this inside the loop as it makes it more difficult to
8433 combine shifts. */
8434 if (SHIFT_COUNT_TRUNCATED)
8435 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8437 /* If we were given an invalid count, don't do anything except exactly
8438 what was requested. */
8440 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8442 if (x)
8443 return x;
8445 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8448 count = orig_count;
8450 /* Unless one of the branches of the `if' in this loop does a `continue',
8451 we will `break' the loop after the `if'. */
8453 while (count != 0)
8455 /* If we have an operand of (clobber (const_int 0)), just return that
8456 value. */
8457 if (GET_CODE (varop) == CLOBBER)
8458 return varop;
8460 /* If we discovered we had to complement VAROP, leave. Making a NOT
8461 here would cause an infinite loop. */
8462 if (complement_p)
8463 break;
8465 /* Convert ROTATERT to ROTATE. */
8466 if (code == ROTATERT)
8468 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8469 code = ROTATE;
8470 if (VECTOR_MODE_P (result_mode))
8471 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8472 else
8473 count = bitsize - count;
8476 /* We need to determine what mode we will do the shift in. If the
8477 shift is a right shift or a ROTATE, we must always do it in the mode
8478 it was originally done in. Otherwise, we can do it in MODE, the
8479 widest mode encountered. */
8480 shift_mode
8481 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8482 ? result_mode : mode);
8484 /* Handle cases where the count is greater than the size of the mode
8485 minus 1. For ASHIFT, use the size minus one as the count (this can
8486 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8487 take the count modulo the size. For other shifts, the result is
8488 zero.
8490 Since these shifts are being produced by the compiler by combining
8491 multiple operations, each of which are defined, we know what the
8492 result is supposed to be. */
8494 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
8496 if (code == ASHIFTRT)
8497 count = GET_MODE_BITSIZE (shift_mode) - 1;
8498 else if (code == ROTATE || code == ROTATERT)
8499 count %= GET_MODE_BITSIZE (shift_mode);
8500 else
8502 /* We can't simply return zero because there may be an
8503 outer op. */
8504 varop = const0_rtx;
8505 count = 0;
8506 break;
8510 /* An arithmetic right shift of a quantity known to be -1 or 0
8511 is a no-op. */
8512 if (code == ASHIFTRT
8513 && (num_sign_bit_copies (varop, shift_mode)
8514 == GET_MODE_BITSIZE (shift_mode)))
8516 count = 0;
8517 break;
8520 /* If we are doing an arithmetic right shift and discarding all but
8521 the sign bit copies, this is equivalent to doing a shift by the
8522 bitsize minus one. Convert it into that shift because it will often
8523 allow other simplifications. */
8525 if (code == ASHIFTRT
8526 && (count + num_sign_bit_copies (varop, shift_mode)
8527 >= GET_MODE_BITSIZE (shift_mode)))
8528 count = GET_MODE_BITSIZE (shift_mode) - 1;
8530 /* We simplify the tests below and elsewhere by converting
8531 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8532 `make_compound_operation' will convert it to an ASHIFTRT for
8533 those machines (such as VAX) that don't have an LSHIFTRT. */
8534 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8535 && code == ASHIFTRT
8536 && ((nonzero_bits (varop, shift_mode)
8537 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8538 == 0))
8539 code = LSHIFTRT;
8541 if (code == LSHIFTRT
8542 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8543 && !(nonzero_bits (varop, shift_mode) >> count))
8544 varop = const0_rtx;
8545 if (code == ASHIFT
8546 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8547 && !((nonzero_bits (varop, shift_mode) << count)
8548 & GET_MODE_MASK (shift_mode)))
8549 varop = const0_rtx;
8551 switch (GET_CODE (varop))
8553 case SIGN_EXTEND:
8554 case ZERO_EXTEND:
8555 case SIGN_EXTRACT:
8556 case ZERO_EXTRACT:
8557 new = expand_compound_operation (varop);
8558 if (new != varop)
8560 varop = new;
8561 continue;
8563 break;
8565 case MEM:
8566 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8567 minus the width of a smaller mode, we can do this with a
8568 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8569 if ((code == ASHIFTRT || code == LSHIFTRT)
8570 && ! mode_dependent_address_p (XEXP (varop, 0))
8571 && ! MEM_VOLATILE_P (varop)
8572 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8573 MODE_INT, 1)) != BLKmode)
8575 new = adjust_address_nv (varop, tmode,
8576 BYTES_BIG_ENDIAN ? 0
8577 : count / BITS_PER_UNIT);
8579 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8580 : ZERO_EXTEND, mode, new);
8581 count = 0;
8582 continue;
8584 break;
8586 case USE:
8587 /* Similar to the case above, except that we can only do this if
8588 the resulting mode is the same as that of the underlying
8589 MEM and adjust the address depending on the *bits* endianness
8590 because of the way that bit-field extract insns are defined. */
8591 if ((code == ASHIFTRT || code == LSHIFTRT)
8592 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8593 MODE_INT, 1)) != BLKmode
8594 && tmode == GET_MODE (XEXP (varop, 0)))
8596 if (BITS_BIG_ENDIAN)
8597 new = XEXP (varop, 0);
8598 else
8600 new = copy_rtx (XEXP (varop, 0));
8601 SUBST (XEXP (new, 0),
8602 plus_constant (XEXP (new, 0),
8603 count / BITS_PER_UNIT));
8606 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8607 : ZERO_EXTEND, mode, new);
8608 count = 0;
8609 continue;
8611 break;
8613 case SUBREG:
8614 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8615 the same number of words as what we've seen so far. Then store
8616 the widest mode in MODE. */
8617 if (subreg_lowpart_p (varop)
8618 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8619 > GET_MODE_SIZE (GET_MODE (varop)))
8620 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8621 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8622 == mode_words)
8624 varop = SUBREG_REG (varop);
8625 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8626 mode = GET_MODE (varop);
8627 continue;
8629 break;
8631 case MULT:
8632 /* Some machines use MULT instead of ASHIFT because MULT
8633 is cheaper. But it is still better on those machines to
8634 merge two shifts into one. */
8635 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8636 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8638 varop
8639 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
8640 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
8641 continue;
8643 break;
8645 case UDIV:
8646 /* Similar, for when divides are cheaper. */
8647 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8648 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8650 varop
8651 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
8652 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
8653 continue;
8655 break;
8657 case ASHIFTRT:
8658 /* If we are extracting just the sign bit of an arithmetic
8659 right shift, that shift is not needed. However, the sign
8660 bit of a wider mode may be different from what would be
8661 interpreted as the sign bit in a narrower mode, so, if
8662 the result is narrower, don't discard the shift. */
8663 if (code == LSHIFTRT
8664 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8665 && (GET_MODE_BITSIZE (result_mode)
8666 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8668 varop = XEXP (varop, 0);
8669 continue;
8672 /* ... fall through ... */
8674 case LSHIFTRT:
8675 case ASHIFT:
8676 case ROTATE:
8677 /* Here we have two nested shifts. The result is usually the
8678 AND of a new shift with a mask. We compute the result below. */
8679 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8680 && INTVAL (XEXP (varop, 1)) >= 0
8681 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8682 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8683 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8685 enum rtx_code first_code = GET_CODE (varop);
8686 unsigned int first_count = INTVAL (XEXP (varop, 1));
8687 unsigned HOST_WIDE_INT mask;
8688 rtx mask_rtx;
8690 /* We have one common special case. We can't do any merging if
8691 the inner code is an ASHIFTRT of a smaller mode. However, if
8692 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8693 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8694 we can convert it to
8695 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8696 This simplifies certain SIGN_EXTEND operations. */
8697 if (code == ASHIFT && first_code == ASHIFTRT
8698 && count == (unsigned int)
8699 (GET_MODE_BITSIZE (result_mode)
8700 - GET_MODE_BITSIZE (GET_MODE (varop))))
8702 /* C3 has the low-order C1 bits zero. */
8704 mask = (GET_MODE_MASK (mode)
8705 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8707 varop = simplify_and_const_int (NULL_RTX, result_mode,
8708 XEXP (varop, 0), mask);
8709 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8710 varop, count);
8711 count = first_count;
8712 code = ASHIFTRT;
8713 continue;
8716 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8717 than C1 high-order bits equal to the sign bit, we can convert
8718 this to either an ASHIFT or an ASHIFTRT depending on the
8719 two counts.
8721 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8723 if (code == ASHIFTRT && first_code == ASHIFT
8724 && GET_MODE (varop) == shift_mode
8725 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8726 > first_count))
8728 varop = XEXP (varop, 0);
8730 signed_count = count - first_count;
8731 if (signed_count < 0)
8732 count = -signed_count, code = ASHIFT;
8733 else
8734 count = signed_count;
8736 continue;
8739 /* There are some cases we can't do. If CODE is ASHIFTRT,
8740 we can only do this if FIRST_CODE is also ASHIFTRT.
8742 We can't do the case when CODE is ROTATE and FIRST_CODE is
8743 ASHIFTRT.
8745 If the mode of this shift is not the mode of the outer shift,
8746 we can't do this if either shift is a right shift or ROTATE.
8748 Finally, we can't do any of these if the mode is too wide
8749 unless the codes are the same.
8751 Handle the case where the shift codes are the same
8752 first. */
8754 if (code == first_code)
8756 if (GET_MODE (varop) != result_mode
8757 && (code == ASHIFTRT || code == LSHIFTRT
8758 || code == ROTATE))
8759 break;
8761 count += first_count;
8762 varop = XEXP (varop, 0);
8763 continue;
8766 if (code == ASHIFTRT
8767 || (code == ROTATE && first_code == ASHIFTRT)
8768 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8769 || (GET_MODE (varop) != result_mode
8770 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8771 || first_code == ROTATE
8772 || code == ROTATE)))
8773 break;
8775 /* To compute the mask to apply after the shift, shift the
8776 nonzero bits of the inner shift the same way the
8777 outer shift will. */
8779 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8781 mask_rtx
8782 = simplify_binary_operation (code, result_mode, mask_rtx,
8783 GEN_INT (count));
8785 /* Give up if we can't compute an outer operation to use. */
8786 if (mask_rtx == 0
8787 || GET_CODE (mask_rtx) != CONST_INT
8788 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8789 INTVAL (mask_rtx),
8790 result_mode, &complement_p))
8791 break;
8793 /* If the shifts are in the same direction, we add the
8794 counts. Otherwise, we subtract them. */
8795 signed_count = count;
8796 if ((code == ASHIFTRT || code == LSHIFTRT)
8797 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8798 signed_count += first_count;
8799 else
8800 signed_count -= first_count;
8802 /* If COUNT is positive, the new shift is usually CODE,
8803 except for the two exceptions below, in which case it is
8804 FIRST_CODE. If the count is negative, FIRST_CODE should
8805 always be used */
8806 if (signed_count > 0
8807 && ((first_code == ROTATE && code == ASHIFT)
8808 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8809 code = first_code, count = signed_count;
8810 else if (signed_count < 0)
8811 code = first_code, count = -signed_count;
8812 else
8813 count = signed_count;
8815 varop = XEXP (varop, 0);
8816 continue;
8819 /* If we have (A << B << C) for any shift, we can convert this to
8820 (A << C << B). This wins if A is a constant. Only try this if
8821 B is not a constant. */
8823 else if (GET_CODE (varop) == code
8824 && GET_CODE (XEXP (varop, 1)) != CONST_INT
8825 && 0 != (new
8826 = simplify_binary_operation (code, mode,
8827 XEXP (varop, 0),
8828 GEN_INT (count))))
8830 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
8831 count = 0;
8832 continue;
8834 break;
8836 case NOT:
8837 /* Make this fit the case below. */
8838 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
8839 GEN_INT (GET_MODE_MASK (mode)));
8840 continue;
8842 case IOR:
8843 case AND:
8844 case XOR:
8845 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8846 with C the size of VAROP - 1 and the shift is logical if
8847 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8848 we have an (le X 0) operation. If we have an arithmetic shift
8849 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8850 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8852 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8853 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8854 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8855 && (code == LSHIFTRT || code == ASHIFTRT)
8856 && count == (unsigned int)
8857 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
8858 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8860 count = 0;
8861 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
8862 const0_rtx);
8864 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8865 varop = gen_rtx_NEG (GET_MODE (varop), varop);
8867 continue;
8870 /* If we have (shift (logical)), move the logical to the outside
8871 to allow it to possibly combine with another logical and the
8872 shift to combine with another shift. This also canonicalizes to
8873 what a ZERO_EXTRACT looks like. Also, some machines have
8874 (and (shift)) insns. */
8876 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8877 /* We can't do this if we have (ashiftrt (xor)) and the
8878 constant has its sign bit set in shift_mode. */
8879 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8880 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8881 shift_mode))
8882 && (new = simplify_binary_operation (code, result_mode,
8883 XEXP (varop, 1),
8884 GEN_INT (count))) != 0
8885 && GET_CODE (new) == CONST_INT
8886 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
8887 INTVAL (new), result_mode, &complement_p))
8889 varop = XEXP (varop, 0);
8890 continue;
8893 /* If we can't do that, try to simplify the shift in each arm of the
8894 logical expression, make a new logical expression, and apply
8895 the inverse distributive law. This also can't be done
8896 for some (ashiftrt (xor)). */
8897 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8898 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8899 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8900 shift_mode)))
8902 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8903 XEXP (varop, 0), count);
8904 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8905 XEXP (varop, 1), count);
8907 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
8908 varop = apply_distributive_law (varop);
8910 count = 0;
8911 continue;
8913 break;
8915 case EQ:
8916 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
8917 says that the sign bit can be tested, FOO has mode MODE, C is
8918 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
8919 that may be nonzero. */
8920 if (code == LSHIFTRT
8921 && XEXP (varop, 1) == const0_rtx
8922 && GET_MODE (XEXP (varop, 0)) == result_mode
8923 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8924 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8925 && ((STORE_FLAG_VALUE
8926 & ((HOST_WIDE_INT) 1
8927 < (GET_MODE_BITSIZE (result_mode) - 1))))
8928 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8929 && merge_outer_ops (&outer_op, &outer_const, XOR,
8930 (HOST_WIDE_INT) 1, result_mode,
8931 &complement_p))
8933 varop = XEXP (varop, 0);
8934 count = 0;
8935 continue;
8937 break;
8939 case NEG:
8940 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
8941 than the number of bits in the mode is equivalent to A. */
8942 if (code == LSHIFTRT
8943 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8944 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
8946 varop = XEXP (varop, 0);
8947 count = 0;
8948 continue;
8951 /* NEG commutes with ASHIFT since it is multiplication. Move the
8952 NEG outside to allow shifts to combine. */
8953 if (code == ASHIFT
8954 && merge_outer_ops (&outer_op, &outer_const, NEG,
8955 (HOST_WIDE_INT) 0, result_mode,
8956 &complement_p))
8958 varop = XEXP (varop, 0);
8959 continue;
8961 break;
8963 case PLUS:
8964 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
8965 is one less than the number of bits in the mode is
8966 equivalent to (xor A 1). */
8967 if (code == LSHIFTRT
8968 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8969 && XEXP (varop, 1) == constm1_rtx
8970 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8971 && merge_outer_ops (&outer_op, &outer_const, XOR,
8972 (HOST_WIDE_INT) 1, result_mode,
8973 &complement_p))
8975 count = 0;
8976 varop = XEXP (varop, 0);
8977 continue;
8980 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
8981 that might be nonzero in BAR are those being shifted out and those
8982 bits are known zero in FOO, we can replace the PLUS with FOO.
8983 Similarly in the other operand order. This code occurs when
8984 we are computing the size of a variable-size array. */
8986 if ((code == ASHIFTRT || code == LSHIFTRT)
8987 && count < HOST_BITS_PER_WIDE_INT
8988 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
8989 && (nonzero_bits (XEXP (varop, 1), result_mode)
8990 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
8992 varop = XEXP (varop, 0);
8993 continue;
8995 else if ((code == ASHIFTRT || code == LSHIFTRT)
8996 && count < HOST_BITS_PER_WIDE_INT
8997 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8998 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
8999 >> count)
9000 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9001 & nonzero_bits (XEXP (varop, 1),
9002 result_mode)))
9004 varop = XEXP (varop, 1);
9005 continue;
9008 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9009 if (code == ASHIFT
9010 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9011 && (new = simplify_binary_operation (ASHIFT, result_mode,
9012 XEXP (varop, 1),
9013 GEN_INT (count))) != 0
9014 && GET_CODE (new) == CONST_INT
9015 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9016 INTVAL (new), result_mode, &complement_p))
9018 varop = XEXP (varop, 0);
9019 continue;
9021 break;
9023 case MINUS:
9024 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9025 with C the size of VAROP - 1 and the shift is logical if
9026 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9027 we have a (gt X 0) operation. If the shift is arithmetic with
9028 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9029 we have a (neg (gt X 0)) operation. */
9031 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9032 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9033 && count == (unsigned int)
9034 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9035 && (code == LSHIFTRT || code == ASHIFTRT)
9036 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9037 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9038 == count
9039 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9041 count = 0;
9042 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9043 const0_rtx);
9045 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9046 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9048 continue;
9050 break;
9052 case TRUNCATE:
9053 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9054 if the truncate does not affect the value. */
9055 if (code == LSHIFTRT
9056 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9057 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9058 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9059 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9060 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9062 rtx varop_inner = XEXP (varop, 0);
9064 varop_inner
9065 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9066 XEXP (varop_inner, 0),
9067 GEN_INT
9068 (count + INTVAL (XEXP (varop_inner, 1))));
9069 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9070 count = 0;
9071 continue;
9073 break;
9075 default:
9076 break;
9079 break;
9082 /* We need to determine what mode to do the shift in. If the shift is
9083 a right shift or ROTATE, we must always do it in the mode it was
9084 originally done in. Otherwise, we can do it in MODE, the widest mode
9085 encountered. The code we care about is that of the shift that will
9086 actually be done, not the shift that was originally requested. */
9087 shift_mode
9088 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9089 ? result_mode : mode);
9091 /* We have now finished analyzing the shift. The result should be
9092 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9093 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9094 to the result of the shift. OUTER_CONST is the relevant constant,
9095 but we must turn off all bits turned off in the shift.
9097 If we were passed a value for X, see if we can use any pieces of
9098 it. If not, make new rtx. */
9100 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
9101 && GET_CODE (XEXP (x, 1)) == CONST_INT
9102 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9103 const_rtx = XEXP (x, 1);
9104 else
9105 const_rtx = GEN_INT (count);
9107 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9108 && GET_MODE (XEXP (x, 0)) == shift_mode
9109 && SUBREG_REG (XEXP (x, 0)) == varop)
9110 varop = XEXP (x, 0);
9111 else if (GET_MODE (varop) != shift_mode)
9112 varop = gen_lowpart (shift_mode, varop);
9114 /* If we can't make the SUBREG, try to return what we were given. */
9115 if (GET_CODE (varop) == CLOBBER)
9116 return x ? x : varop;
9118 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9119 if (new != 0)
9120 x = new;
9121 else
9122 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9124 /* If we have an outer operation and we just made a shift, it is
9125 possible that we could have simplified the shift were it not
9126 for the outer operation. So try to do the simplification
9127 recursively. */
9129 if (outer_op != UNKNOWN && GET_CODE (x) == code
9130 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9131 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9132 INTVAL (XEXP (x, 1)));
9134 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9135 turn off all the bits that the shift would have turned off. */
9136 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9137 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9138 GET_MODE_MASK (result_mode) >> orig_count);
9140 /* Do the remainder of the processing in RESULT_MODE. */
9141 x = gen_lowpart (result_mode, x);
9143 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9144 operation. */
9145 if (complement_p)
9146 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9148 if (outer_op != UNKNOWN)
9150 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9151 outer_const = trunc_int_for_mode (outer_const, result_mode);
9153 if (outer_op == AND)
9154 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9155 else if (outer_op == SET)
9156 /* This means that we have determined that the result is
9157 equivalent to a constant. This should be rare. */
9158 x = GEN_INT (outer_const);
9159 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9160 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9161 else
9162 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9165 return x;
9168 /* Like recog, but we receive the address of a pointer to a new pattern.
9169 We try to match the rtx that the pointer points to.
9170 If that fails, we may try to modify or replace the pattern,
9171 storing the replacement into the same pointer object.
9173 Modifications include deletion or addition of CLOBBERs.
9175 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9176 the CLOBBERs are placed.
9178 The value is the final insn code from the pattern ultimately matched,
9179 or -1. */
9181 static int
9182 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9184 rtx pat = *pnewpat;
9185 int insn_code_number;
9186 int num_clobbers_to_add = 0;
9187 int i;
9188 rtx notes = 0;
9189 rtx old_notes, old_pat;
9191 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9192 we use to indicate that something didn't match. If we find such a
9193 thing, force rejection. */
9194 if (GET_CODE (pat) == PARALLEL)
9195 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9196 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9197 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9198 return -1;
9200 old_pat = PATTERN (insn);
9201 old_notes = REG_NOTES (insn);
9202 PATTERN (insn) = pat;
9203 REG_NOTES (insn) = 0;
9205 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9207 /* If it isn't, there is the possibility that we previously had an insn
9208 that clobbered some register as a side effect, but the combined
9209 insn doesn't need to do that. So try once more without the clobbers
9210 unless this represents an ASM insn. */
9212 if (insn_code_number < 0 && ! check_asm_operands (pat)
9213 && GET_CODE (pat) == PARALLEL)
9215 int pos;
9217 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9218 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9220 if (i != pos)
9221 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9222 pos++;
9225 SUBST_INT (XVECLEN (pat, 0), pos);
9227 if (pos == 1)
9228 pat = XVECEXP (pat, 0, 0);
9230 PATTERN (insn) = pat;
9231 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9233 PATTERN (insn) = old_pat;
9234 REG_NOTES (insn) = old_notes;
9236 /* Recognize all noop sets, these will be killed by followup pass. */
9237 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9238 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9240 /* If we had any clobbers to add, make a new pattern than contains
9241 them. Then check to make sure that all of them are dead. */
9242 if (num_clobbers_to_add)
9244 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9245 rtvec_alloc (GET_CODE (pat) == PARALLEL
9246 ? (XVECLEN (pat, 0)
9247 + num_clobbers_to_add)
9248 : num_clobbers_to_add + 1));
9250 if (GET_CODE (pat) == PARALLEL)
9251 for (i = 0; i < XVECLEN (pat, 0); i++)
9252 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9253 else
9254 XVECEXP (newpat, 0, 0) = pat;
9256 add_clobbers (newpat, insn_code_number);
9258 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9259 i < XVECLEN (newpat, 0); i++)
9261 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9262 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9263 return -1;
9264 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9265 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9267 pat = newpat;
9270 *pnewpat = pat;
9271 *pnotes = notes;
9273 return insn_code_number;
9276 /* Like gen_lowpart_general but for use by combine. In combine it
9277 is not possible to create any new pseudoregs. However, it is
9278 safe to create invalid memory addresses, because combine will
9279 try to recognize them and all they will do is make the combine
9280 attempt fail.
9282 If for some reason this cannot do its job, an rtx
9283 (clobber (const_int 0)) is returned.
9284 An insn containing that will not be recognized. */
9286 static rtx
9287 gen_lowpart_for_combine (enum machine_mode mode, rtx x)
9289 rtx result;
9291 if (GET_MODE (x) == mode)
9292 return x;
9294 /* Return identity if this is a CONST or symbolic
9295 reference. */
9296 if (mode == Pmode
9297 && (GET_CODE (x) == CONST
9298 || GET_CODE (x) == SYMBOL_REF
9299 || GET_CODE (x) == LABEL_REF))
9300 return x;
9302 /* We can only support MODE being wider than a word if X is a
9303 constant integer or has a mode the same size. */
9305 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9306 && ! ((GET_MODE (x) == VOIDmode
9307 && (GET_CODE (x) == CONST_INT
9308 || GET_CODE (x) == CONST_DOUBLE))
9309 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9310 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9312 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9313 won't know what to do. So we will strip off the SUBREG here and
9314 process normally. */
9315 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9317 x = SUBREG_REG (x);
9318 if (GET_MODE (x) == mode)
9319 return x;
9322 result = gen_lowpart_common (mode, x);
9323 #ifdef CANNOT_CHANGE_MODE_CLASS
9324 if (result != 0
9325 && GET_CODE (result) == SUBREG
9326 && REG_P (SUBREG_REG (result))
9327 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER)
9328 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (result))
9329 * MAX_MACHINE_MODE
9330 + GET_MODE (result));
9331 #endif
9333 if (result)
9334 return result;
9336 if (MEM_P (x))
9338 int offset = 0;
9340 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9341 address. */
9342 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9343 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9345 /* If we want to refer to something bigger than the original memref,
9346 generate a paradoxical subreg instead. That will force a reload
9347 of the original memref X. */
9348 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
9349 return gen_rtx_SUBREG (mode, x, 0);
9351 if (WORDS_BIG_ENDIAN)
9352 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
9353 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
9355 if (BYTES_BIG_ENDIAN)
9357 /* Adjust the address so that the address-after-the-data is
9358 unchanged. */
9359 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
9360 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
9363 return adjust_address_nv (x, mode, offset);
9366 /* If X is a comparison operator, rewrite it in a new mode. This
9367 probably won't match, but may allow further simplifications. */
9368 else if (COMPARISON_P (x))
9369 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
9371 /* If we couldn't simplify X any other way, just enclose it in a
9372 SUBREG. Normally, this SUBREG won't match, but some patterns may
9373 include an explicit SUBREG or we may simplify it further in combine. */
9374 else
9376 int offset = 0;
9377 rtx res;
9378 enum machine_mode sub_mode = GET_MODE (x);
9380 offset = subreg_lowpart_offset (mode, sub_mode);
9381 if (sub_mode == VOIDmode)
9383 sub_mode = int_mode_for_mode (mode);
9384 x = gen_lowpart_common (sub_mode, x);
9385 if (x == 0)
9386 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
9388 res = simplify_gen_subreg (mode, x, sub_mode, offset);
9389 if (res)
9390 return res;
9391 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9395 /* These routines make binary and unary operations by first seeing if they
9396 fold; if not, a new expression is allocated. */
9398 static rtx
9399 gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0, rtx op1)
9401 rtx result;
9402 rtx tem;
9404 if (GET_CODE (op0) == CLOBBER)
9405 return op0;
9406 else if (GET_CODE (op1) == CLOBBER)
9407 return op1;
9409 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
9410 && swap_commutative_operands_p (op0, op1))
9411 tem = op0, op0 = op1, op1 = tem;
9413 if (GET_RTX_CLASS (code) == RTX_COMPARE
9414 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
9416 enum machine_mode op_mode = GET_MODE (op0);
9418 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9419 just (REL_OP X Y). */
9420 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9422 op1 = XEXP (op0, 1);
9423 op0 = XEXP (op0, 0);
9424 op_mode = GET_MODE (op0);
9427 if (op_mode == VOIDmode)
9428 op_mode = GET_MODE (op1);
9429 result = simplify_relational_operation (code, mode, op_mode, op0, op1);
9431 else
9432 result = simplify_binary_operation (code, mode, op0, op1);
9434 if (result)
9435 return result;
9437 /* Put complex operands first and constants second. */
9438 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
9439 && swap_commutative_operands_p (op0, op1))
9440 return gen_rtx_fmt_ee (code, mode, op1, op0);
9442 /* If we are turning off bits already known off in OP0, we need not do
9443 an AND. */
9444 else if (code == AND && GET_CODE (op1) == CONST_INT
9445 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9446 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
9447 return op0;
9449 return gen_rtx_fmt_ee (code, mode, op0, op1);
9452 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9453 comparison code that will be tested.
9455 The result is a possibly different comparison code to use. *POP0 and
9456 *POP1 may be updated.
9458 It is possible that we might detect that a comparison is either always
9459 true or always false. However, we do not perform general constant
9460 folding in combine, so this knowledge isn't useful. Such tautologies
9461 should have been detected earlier. Hence we ignore all such cases. */
9463 static enum rtx_code
9464 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9466 rtx op0 = *pop0;
9467 rtx op1 = *pop1;
9468 rtx tem, tem1;
9469 int i;
9470 enum machine_mode mode, tmode;
9472 /* Try a few ways of applying the same transformation to both operands. */
9473 while (1)
9475 #ifndef WORD_REGISTER_OPERATIONS
9476 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9477 so check specially. */
9478 if (code != GTU && code != GEU && code != LTU && code != LEU
9479 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9480 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9481 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9482 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9483 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9484 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9485 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9486 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9487 && XEXP (op0, 1) == XEXP (op1, 1)
9488 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9489 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9490 && (INTVAL (XEXP (op0, 1))
9491 == (GET_MODE_BITSIZE (GET_MODE (op0))
9492 - (GET_MODE_BITSIZE
9493 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9495 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9496 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9498 #endif
9500 /* If both operands are the same constant shift, see if we can ignore the
9501 shift. We can if the shift is a rotate or if the bits shifted out of
9502 this shift are known to be zero for both inputs and if the type of
9503 comparison is compatible with the shift. */
9504 if (GET_CODE (op0) == GET_CODE (op1)
9505 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9506 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9507 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9508 && (code != GT && code != LT && code != GE && code != LE))
9509 || (GET_CODE (op0) == ASHIFTRT
9510 && (code != GTU && code != LTU
9511 && code != GEU && code != LEU)))
9512 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9513 && INTVAL (XEXP (op0, 1)) >= 0
9514 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9515 && XEXP (op0, 1) == XEXP (op1, 1))
9517 enum machine_mode mode = GET_MODE (op0);
9518 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9519 int shift_count = INTVAL (XEXP (op0, 1));
9521 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9522 mask &= (mask >> shift_count) << shift_count;
9523 else if (GET_CODE (op0) == ASHIFT)
9524 mask = (mask & (mask << shift_count)) >> shift_count;
9526 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9527 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9528 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9529 else
9530 break;
9533 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9534 SUBREGs are of the same mode, and, in both cases, the AND would
9535 be redundant if the comparison was done in the narrower mode,
9536 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9537 and the operand's possibly nonzero bits are 0xffffff01; in that case
9538 if we only care about QImode, we don't need the AND). This case
9539 occurs if the output mode of an scc insn is not SImode and
9540 STORE_FLAG_VALUE == 1 (e.g., the 386).
9542 Similarly, check for a case where the AND's are ZERO_EXTEND
9543 operations from some narrower mode even though a SUBREG is not
9544 present. */
9546 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9547 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9548 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9550 rtx inner_op0 = XEXP (op0, 0);
9551 rtx inner_op1 = XEXP (op1, 0);
9552 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9553 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9554 int changed = 0;
9556 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9557 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9558 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9559 && (GET_MODE (SUBREG_REG (inner_op0))
9560 == GET_MODE (SUBREG_REG (inner_op1)))
9561 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9562 <= HOST_BITS_PER_WIDE_INT)
9563 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9564 GET_MODE (SUBREG_REG (inner_op0)))))
9565 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9566 GET_MODE (SUBREG_REG (inner_op1))))))
9568 op0 = SUBREG_REG (inner_op0);
9569 op1 = SUBREG_REG (inner_op1);
9571 /* The resulting comparison is always unsigned since we masked
9572 off the original sign bit. */
9573 code = unsigned_condition (code);
9575 changed = 1;
9578 else if (c0 == c1)
9579 for (tmode = GET_CLASS_NARROWEST_MODE
9580 (GET_MODE_CLASS (GET_MODE (op0)));
9581 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9582 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9584 op0 = gen_lowpart (tmode, inner_op0);
9585 op1 = gen_lowpart (tmode, inner_op1);
9586 code = unsigned_condition (code);
9587 changed = 1;
9588 break;
9591 if (! changed)
9592 break;
9595 /* If both operands are NOT, we can strip off the outer operation
9596 and adjust the comparison code for swapped operands; similarly for
9597 NEG, except that this must be an equality comparison. */
9598 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9599 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9600 && (code == EQ || code == NE)))
9601 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9603 else
9604 break;
9607 /* If the first operand is a constant, swap the operands and adjust the
9608 comparison code appropriately, but don't do this if the second operand
9609 is already a constant integer. */
9610 if (swap_commutative_operands_p (op0, op1))
9612 tem = op0, op0 = op1, op1 = tem;
9613 code = swap_condition (code);
9616 /* We now enter a loop during which we will try to simplify the comparison.
9617 For the most part, we only are concerned with comparisons with zero,
9618 but some things may really be comparisons with zero but not start
9619 out looking that way. */
9621 while (GET_CODE (op1) == CONST_INT)
9623 enum machine_mode mode = GET_MODE (op0);
9624 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9625 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9626 int equality_comparison_p;
9627 int sign_bit_comparison_p;
9628 int unsigned_comparison_p;
9629 HOST_WIDE_INT const_op;
9631 /* We only want to handle integral modes. This catches VOIDmode,
9632 CCmode, and the floating-point modes. An exception is that we
9633 can handle VOIDmode if OP0 is a COMPARE or a comparison
9634 operation. */
9636 if (GET_MODE_CLASS (mode) != MODE_INT
9637 && ! (mode == VOIDmode
9638 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9639 break;
9641 /* Get the constant we are comparing against and turn off all bits
9642 not on in our mode. */
9643 const_op = INTVAL (op1);
9644 if (mode != VOIDmode)
9645 const_op = trunc_int_for_mode (const_op, mode);
9646 op1 = GEN_INT (const_op);
9648 /* If we are comparing against a constant power of two and the value
9649 being compared can only have that single bit nonzero (e.g., it was
9650 `and'ed with that bit), we can replace this with a comparison
9651 with zero. */
9652 if (const_op
9653 && (code == EQ || code == NE || code == GE || code == GEU
9654 || code == LT || code == LTU)
9655 && mode_width <= HOST_BITS_PER_WIDE_INT
9656 && exact_log2 (const_op) >= 0
9657 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9659 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9660 op1 = const0_rtx, const_op = 0;
9663 /* Similarly, if we are comparing a value known to be either -1 or
9664 0 with -1, change it to the opposite comparison against zero. */
9666 if (const_op == -1
9667 && (code == EQ || code == NE || code == GT || code == LE
9668 || code == GEU || code == LTU)
9669 && num_sign_bit_copies (op0, mode) == mode_width)
9671 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9672 op1 = const0_rtx, const_op = 0;
9675 /* Do some canonicalizations based on the comparison code. We prefer
9676 comparisons against zero and then prefer equality comparisons.
9677 If we can reduce the size of a constant, we will do that too. */
9679 switch (code)
9681 case LT:
9682 /* < C is equivalent to <= (C - 1) */
9683 if (const_op > 0)
9685 const_op -= 1;
9686 op1 = GEN_INT (const_op);
9687 code = LE;
9688 /* ... fall through to LE case below. */
9690 else
9691 break;
9693 case LE:
9694 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9695 if (const_op < 0)
9697 const_op += 1;
9698 op1 = GEN_INT (const_op);
9699 code = LT;
9702 /* If we are doing a <= 0 comparison on a value known to have
9703 a zero sign bit, we can replace this with == 0. */
9704 else if (const_op == 0
9705 && mode_width <= HOST_BITS_PER_WIDE_INT
9706 && (nonzero_bits (op0, mode)
9707 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9708 code = EQ;
9709 break;
9711 case GE:
9712 /* >= C is equivalent to > (C - 1). */
9713 if (const_op > 0)
9715 const_op -= 1;
9716 op1 = GEN_INT (const_op);
9717 code = GT;
9718 /* ... fall through to GT below. */
9720 else
9721 break;
9723 case GT:
9724 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9725 if (const_op < 0)
9727 const_op += 1;
9728 op1 = GEN_INT (const_op);
9729 code = GE;
9732 /* If we are doing a > 0 comparison on a value known to have
9733 a zero sign bit, we can replace this with != 0. */
9734 else if (const_op == 0
9735 && mode_width <= HOST_BITS_PER_WIDE_INT
9736 && (nonzero_bits (op0, mode)
9737 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9738 code = NE;
9739 break;
9741 case LTU:
9742 /* < C is equivalent to <= (C - 1). */
9743 if (const_op > 0)
9745 const_op -= 1;
9746 op1 = GEN_INT (const_op);
9747 code = LEU;
9748 /* ... fall through ... */
9751 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9752 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9753 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9755 const_op = 0, op1 = const0_rtx;
9756 code = GE;
9757 break;
9759 else
9760 break;
9762 case LEU:
9763 /* unsigned <= 0 is equivalent to == 0 */
9764 if (const_op == 0)
9765 code = EQ;
9767 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9768 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9769 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9771 const_op = 0, op1 = const0_rtx;
9772 code = GE;
9774 break;
9776 case GEU:
9777 /* >= C is equivalent to > (C - 1). */
9778 if (const_op > 1)
9780 const_op -= 1;
9781 op1 = GEN_INT (const_op);
9782 code = GTU;
9783 /* ... fall through ... */
9786 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9787 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9788 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9790 const_op = 0, op1 = const0_rtx;
9791 code = LT;
9792 break;
9794 else
9795 break;
9797 case GTU:
9798 /* unsigned > 0 is equivalent to != 0 */
9799 if (const_op == 0)
9800 code = NE;
9802 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9803 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9804 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9806 const_op = 0, op1 = const0_rtx;
9807 code = LT;
9809 break;
9811 default:
9812 break;
9815 /* Compute some predicates to simplify code below. */
9817 equality_comparison_p = (code == EQ || code == NE);
9818 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9819 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9820 || code == GEU);
9822 /* If this is a sign bit comparison and we can do arithmetic in
9823 MODE, say that we will only be needing the sign bit of OP0. */
9824 if (sign_bit_comparison_p
9825 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9826 op0 = force_to_mode (op0, mode,
9827 ((HOST_WIDE_INT) 1
9828 << (GET_MODE_BITSIZE (mode) - 1)),
9829 NULL_RTX, 0);
9831 /* Now try cases based on the opcode of OP0. If none of the cases
9832 does a "continue", we exit this loop immediately after the
9833 switch. */
9835 switch (GET_CODE (op0))
9837 case ZERO_EXTRACT:
9838 /* If we are extracting a single bit from a variable position in
9839 a constant that has only a single bit set and are comparing it
9840 with zero, we can convert this into an equality comparison
9841 between the position and the location of the single bit. */
9842 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9843 have already reduced the shift count modulo the word size. */
9844 if (!SHIFT_COUNT_TRUNCATED
9845 && GET_CODE (XEXP (op0, 0)) == CONST_INT
9846 && XEXP (op0, 1) == const1_rtx
9847 && equality_comparison_p && const_op == 0
9848 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9850 if (BITS_BIG_ENDIAN)
9852 enum machine_mode new_mode
9853 = mode_for_extraction (EP_extzv, 1);
9854 if (new_mode == MAX_MACHINE_MODE)
9855 i = BITS_PER_WORD - 1 - i;
9856 else
9858 mode = new_mode;
9859 i = (GET_MODE_BITSIZE (mode) - 1 - i);
9863 op0 = XEXP (op0, 2);
9864 op1 = GEN_INT (i);
9865 const_op = i;
9867 /* Result is nonzero iff shift count is equal to I. */
9868 code = reverse_condition (code);
9869 continue;
9872 /* ... fall through ... */
9874 case SIGN_EXTRACT:
9875 tem = expand_compound_operation (op0);
9876 if (tem != op0)
9878 op0 = tem;
9879 continue;
9881 break;
9883 case NOT:
9884 /* If testing for equality, we can take the NOT of the constant. */
9885 if (equality_comparison_p
9886 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9888 op0 = XEXP (op0, 0);
9889 op1 = tem;
9890 continue;
9893 /* If just looking at the sign bit, reverse the sense of the
9894 comparison. */
9895 if (sign_bit_comparison_p)
9897 op0 = XEXP (op0, 0);
9898 code = (code == GE ? LT : GE);
9899 continue;
9901 break;
9903 case NEG:
9904 /* If testing for equality, we can take the NEG of the constant. */
9905 if (equality_comparison_p
9906 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9908 op0 = XEXP (op0, 0);
9909 op1 = tem;
9910 continue;
9913 /* The remaining cases only apply to comparisons with zero. */
9914 if (const_op != 0)
9915 break;
9917 /* When X is ABS or is known positive,
9918 (neg X) is < 0 if and only if X != 0. */
9920 if (sign_bit_comparison_p
9921 && (GET_CODE (XEXP (op0, 0)) == ABS
9922 || (mode_width <= HOST_BITS_PER_WIDE_INT
9923 && (nonzero_bits (XEXP (op0, 0), mode)
9924 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
9926 op0 = XEXP (op0, 0);
9927 code = (code == LT ? NE : EQ);
9928 continue;
9931 /* If we have NEG of something whose two high-order bits are the
9932 same, we know that "(-a) < 0" is equivalent to "a > 0". */
9933 if (num_sign_bit_copies (op0, mode) >= 2)
9935 op0 = XEXP (op0, 0);
9936 code = swap_condition (code);
9937 continue;
9939 break;
9941 case ROTATE:
9942 /* If we are testing equality and our count is a constant, we
9943 can perform the inverse operation on our RHS. */
9944 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
9945 && (tem = simplify_binary_operation (ROTATERT, mode,
9946 op1, XEXP (op0, 1))) != 0)
9948 op0 = XEXP (op0, 0);
9949 op1 = tem;
9950 continue;
9953 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
9954 a particular bit. Convert it to an AND of a constant of that
9955 bit. This will be converted into a ZERO_EXTRACT. */
9956 if (const_op == 0 && sign_bit_comparison_p
9957 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9958 && mode_width <= HOST_BITS_PER_WIDE_INT)
9960 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
9961 ((HOST_WIDE_INT) 1
9962 << (mode_width - 1
9963 - INTVAL (XEXP (op0, 1)))));
9964 code = (code == LT ? NE : EQ);
9965 continue;
9968 /* Fall through. */
9970 case ABS:
9971 /* ABS is ignorable inside an equality comparison with zero. */
9972 if (const_op == 0 && equality_comparison_p)
9974 op0 = XEXP (op0, 0);
9975 continue;
9977 break;
9979 case SIGN_EXTEND:
9980 /* Can simplify (compare (zero/sign_extend FOO) CONST)
9981 to (compare FOO CONST) if CONST fits in FOO's mode and we
9982 are either testing inequality or have an unsigned comparison
9983 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
9984 if (! unsigned_comparison_p
9985 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9986 <= HOST_BITS_PER_WIDE_INT)
9987 && ((unsigned HOST_WIDE_INT) const_op
9988 < (((unsigned HOST_WIDE_INT) 1
9989 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
9991 op0 = XEXP (op0, 0);
9992 continue;
9994 break;
9996 case SUBREG:
9997 /* Check for the case where we are comparing A - C1 with C2,
9998 both constants are smaller than 1/2 the maximum positive
9999 value in MODE, and the comparison is equality or unsigned.
10000 In that case, if A is either zero-extended to MODE or has
10001 sufficient sign bits so that the high-order bit in MODE
10002 is a copy of the sign in the inner mode, we can prove that it is
10003 safe to do the operation in the wider mode. This simplifies
10004 many range checks. */
10006 if (mode_width <= HOST_BITS_PER_WIDE_INT
10007 && subreg_lowpart_p (op0)
10008 && GET_CODE (SUBREG_REG (op0)) == PLUS
10009 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10010 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10011 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10012 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10013 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10014 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10015 GET_MODE (SUBREG_REG (op0)))
10016 & ~GET_MODE_MASK (mode))
10017 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10018 GET_MODE (SUBREG_REG (op0)))
10019 > (unsigned int)
10020 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10021 - GET_MODE_BITSIZE (mode)))))
10023 op0 = SUBREG_REG (op0);
10024 continue;
10027 /* If the inner mode is narrower and we are extracting the low part,
10028 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10029 if (subreg_lowpart_p (op0)
10030 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10031 /* Fall through */ ;
10032 else
10033 break;
10035 /* ... fall through ... */
10037 case ZERO_EXTEND:
10038 if ((unsigned_comparison_p || equality_comparison_p)
10039 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10040 <= HOST_BITS_PER_WIDE_INT)
10041 && ((unsigned HOST_WIDE_INT) const_op
10042 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10044 op0 = XEXP (op0, 0);
10045 continue;
10047 break;
10049 case PLUS:
10050 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10051 this for equality comparisons due to pathological cases involving
10052 overflows. */
10053 if (equality_comparison_p
10054 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10055 op1, XEXP (op0, 1))))
10057 op0 = XEXP (op0, 0);
10058 op1 = tem;
10059 continue;
10062 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10063 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10064 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10066 op0 = XEXP (XEXP (op0, 0), 0);
10067 code = (code == LT ? EQ : NE);
10068 continue;
10070 break;
10072 case MINUS:
10073 /* We used to optimize signed comparisons against zero, but that
10074 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10075 arrive here as equality comparisons, or (GEU, LTU) are
10076 optimized away. No need to special-case them. */
10078 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10079 (eq B (minus A C)), whichever simplifies. We can only do
10080 this for equality comparisons due to pathological cases involving
10081 overflows. */
10082 if (equality_comparison_p
10083 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10084 XEXP (op0, 1), op1)))
10086 op0 = XEXP (op0, 0);
10087 op1 = tem;
10088 continue;
10091 if (equality_comparison_p
10092 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10093 XEXP (op0, 0), op1)))
10095 op0 = XEXP (op0, 1);
10096 op1 = tem;
10097 continue;
10100 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10101 of bits in X minus 1, is one iff X > 0. */
10102 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10103 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10104 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10105 == mode_width - 1
10106 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10108 op0 = XEXP (op0, 1);
10109 code = (code == GE ? LE : GT);
10110 continue;
10112 break;
10114 case XOR:
10115 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10116 if C is zero or B is a constant. */
10117 if (equality_comparison_p
10118 && 0 != (tem = simplify_binary_operation (XOR, mode,
10119 XEXP (op0, 1), op1)))
10121 op0 = XEXP (op0, 0);
10122 op1 = tem;
10123 continue;
10125 break;
10127 case EQ: case NE:
10128 case UNEQ: case LTGT:
10129 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10130 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10131 case UNORDERED: case ORDERED:
10132 /* We can't do anything if OP0 is a condition code value, rather
10133 than an actual data value. */
10134 if (const_op != 0
10135 || CC0_P (XEXP (op0, 0))
10136 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10137 break;
10139 /* Get the two operands being compared. */
10140 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10141 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10142 else
10143 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10145 /* Check for the cases where we simply want the result of the
10146 earlier test or the opposite of that result. */
10147 if (code == NE || code == EQ
10148 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10149 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10150 && (STORE_FLAG_VALUE
10151 & (((HOST_WIDE_INT) 1
10152 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10153 && (code == LT || code == GE)))
10155 enum rtx_code new_code;
10156 if (code == LT || code == NE)
10157 new_code = GET_CODE (op0);
10158 else
10159 new_code = combine_reversed_comparison_code (op0);
10161 if (new_code != UNKNOWN)
10163 code = new_code;
10164 op0 = tem;
10165 op1 = tem1;
10166 continue;
10169 break;
10171 case IOR:
10172 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10173 iff X <= 0. */
10174 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10175 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10176 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10178 op0 = XEXP (op0, 1);
10179 code = (code == GE ? GT : LE);
10180 continue;
10182 break;
10184 case AND:
10185 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10186 will be converted to a ZERO_EXTRACT later. */
10187 if (const_op == 0 && equality_comparison_p
10188 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10189 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10191 op0 = simplify_and_const_int
10192 (op0, mode, gen_rtx_LSHIFTRT (mode,
10193 XEXP (op0, 1),
10194 XEXP (XEXP (op0, 0), 1)),
10195 (HOST_WIDE_INT) 1);
10196 continue;
10199 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10200 zero and X is a comparison and C1 and C2 describe only bits set
10201 in STORE_FLAG_VALUE, we can compare with X. */
10202 if (const_op == 0 && equality_comparison_p
10203 && mode_width <= HOST_BITS_PER_WIDE_INT
10204 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10205 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10206 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10207 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10208 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10210 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10211 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10212 if ((~STORE_FLAG_VALUE & mask) == 0
10213 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10214 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10215 && COMPARISON_P (tem))))
10217 op0 = XEXP (XEXP (op0, 0), 0);
10218 continue;
10222 /* If we are doing an equality comparison of an AND of a bit equal
10223 to the sign bit, replace this with a LT or GE comparison of
10224 the underlying value. */
10225 if (equality_comparison_p
10226 && const_op == 0
10227 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10228 && mode_width <= HOST_BITS_PER_WIDE_INT
10229 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10230 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10232 op0 = XEXP (op0, 0);
10233 code = (code == EQ ? GE : LT);
10234 continue;
10237 /* If this AND operation is really a ZERO_EXTEND from a narrower
10238 mode, the constant fits within that mode, and this is either an
10239 equality or unsigned comparison, try to do this comparison in
10240 the narrower mode. */
10241 if ((equality_comparison_p || unsigned_comparison_p)
10242 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10243 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10244 & GET_MODE_MASK (mode))
10245 + 1)) >= 0
10246 && const_op >> i == 0
10247 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10249 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10250 continue;
10253 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10254 fits in both M1 and M2 and the SUBREG is either paradoxical
10255 or represents the low part, permute the SUBREG and the AND
10256 and try again. */
10257 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10259 unsigned HOST_WIDE_INT c1;
10260 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10261 /* Require an integral mode, to avoid creating something like
10262 (AND:SF ...). */
10263 if (SCALAR_INT_MODE_P (tmode)
10264 /* It is unsafe to commute the AND into the SUBREG if the
10265 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10266 not defined. As originally written the upper bits
10267 have a defined value due to the AND operation.
10268 However, if we commute the AND inside the SUBREG then
10269 they no longer have defined values and the meaning of
10270 the code has been changed. */
10271 && (0
10272 #ifdef WORD_REGISTER_OPERATIONS
10273 || (mode_width > GET_MODE_BITSIZE (tmode)
10274 && mode_width <= BITS_PER_WORD)
10275 #endif
10276 || (mode_width <= GET_MODE_BITSIZE (tmode)
10277 && subreg_lowpart_p (XEXP (op0, 0))))
10278 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10279 && mode_width <= HOST_BITS_PER_WIDE_INT
10280 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10281 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10282 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10283 && c1 != mask
10284 && c1 != GET_MODE_MASK (tmode))
10286 op0 = gen_binary (AND, tmode,
10287 SUBREG_REG (XEXP (op0, 0)),
10288 gen_int_mode (c1, tmode));
10289 op0 = gen_lowpart (mode, op0);
10290 continue;
10294 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10295 if (const_op == 0 && equality_comparison_p
10296 && XEXP (op0, 1) == const1_rtx
10297 && GET_CODE (XEXP (op0, 0)) == NOT)
10299 op0 = simplify_and_const_int
10300 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10301 code = (code == NE ? EQ : NE);
10302 continue;
10305 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10306 (eq (and (lshiftrt X) 1) 0).
10307 Also handle the case where (not X) is expressed using xor. */
10308 if (const_op == 0 && equality_comparison_p
10309 && XEXP (op0, 1) == const1_rtx
10310 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10312 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10313 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10315 if (GET_CODE (shift_op) == NOT
10316 || (GET_CODE (shift_op) == XOR
10317 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10318 && GET_CODE (shift_count) == CONST_INT
10319 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10320 && (INTVAL (XEXP (shift_op, 1))
10321 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10323 op0 = simplify_and_const_int
10324 (NULL_RTX, mode,
10325 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10326 (HOST_WIDE_INT) 1);
10327 code = (code == NE ? EQ : NE);
10328 continue;
10331 break;
10333 case ASHIFT:
10334 /* If we have (compare (ashift FOO N) (const_int C)) and
10335 the high order N bits of FOO (N+1 if an inequality comparison)
10336 are known to be zero, we can do this by comparing FOO with C
10337 shifted right N bits so long as the low-order N bits of C are
10338 zero. */
10339 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10340 && INTVAL (XEXP (op0, 1)) >= 0
10341 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10342 < HOST_BITS_PER_WIDE_INT)
10343 && ((const_op
10344 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10345 && mode_width <= HOST_BITS_PER_WIDE_INT
10346 && (nonzero_bits (XEXP (op0, 0), mode)
10347 & ~(mask >> (INTVAL (XEXP (op0, 1))
10348 + ! equality_comparison_p))) == 0)
10350 /* We must perform a logical shift, not an arithmetic one,
10351 as we want the top N bits of C to be zero. */
10352 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10354 temp >>= INTVAL (XEXP (op0, 1));
10355 op1 = gen_int_mode (temp, mode);
10356 op0 = XEXP (op0, 0);
10357 continue;
10360 /* If we are doing a sign bit comparison, it means we are testing
10361 a particular bit. Convert it to the appropriate AND. */
10362 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10363 && mode_width <= HOST_BITS_PER_WIDE_INT)
10365 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10366 ((HOST_WIDE_INT) 1
10367 << (mode_width - 1
10368 - INTVAL (XEXP (op0, 1)))));
10369 code = (code == LT ? NE : EQ);
10370 continue;
10373 /* If this an equality comparison with zero and we are shifting
10374 the low bit to the sign bit, we can convert this to an AND of the
10375 low-order bit. */
10376 if (const_op == 0 && equality_comparison_p
10377 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10378 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10379 == mode_width - 1)
10381 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10382 (HOST_WIDE_INT) 1);
10383 continue;
10385 break;
10387 case ASHIFTRT:
10388 /* If this is an equality comparison with zero, we can do this
10389 as a logical shift, which might be much simpler. */
10390 if (equality_comparison_p && const_op == 0
10391 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10393 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10394 XEXP (op0, 0),
10395 INTVAL (XEXP (op0, 1)));
10396 continue;
10399 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10400 do the comparison in a narrower mode. */
10401 if (! unsigned_comparison_p
10402 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10403 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10404 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10405 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10406 MODE_INT, 1)) != BLKmode
10407 && (((unsigned HOST_WIDE_INT) const_op
10408 + (GET_MODE_MASK (tmode) >> 1) + 1)
10409 <= GET_MODE_MASK (tmode)))
10411 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10412 continue;
10415 /* Likewise if OP0 is a PLUS of a sign extension with a
10416 constant, which is usually represented with the PLUS
10417 between the shifts. */
10418 if (! unsigned_comparison_p
10419 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10420 && GET_CODE (XEXP (op0, 0)) == PLUS
10421 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10422 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10423 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10424 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10425 MODE_INT, 1)) != BLKmode
10426 && (((unsigned HOST_WIDE_INT) const_op
10427 + (GET_MODE_MASK (tmode) >> 1) + 1)
10428 <= GET_MODE_MASK (tmode)))
10430 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10431 rtx add_const = XEXP (XEXP (op0, 0), 1);
10432 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
10433 XEXP (op0, 1));
10435 op0 = gen_binary (PLUS, tmode,
10436 gen_lowpart (tmode, inner),
10437 new_const);
10438 continue;
10441 /* ... fall through ... */
10442 case LSHIFTRT:
10443 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10444 the low order N bits of FOO are known to be zero, we can do this
10445 by comparing FOO with C shifted left N bits so long as no
10446 overflow occurs. */
10447 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10448 && INTVAL (XEXP (op0, 1)) >= 0
10449 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10450 && mode_width <= HOST_BITS_PER_WIDE_INT
10451 && (nonzero_bits (XEXP (op0, 0), mode)
10452 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10453 && (((unsigned HOST_WIDE_INT) const_op
10454 + (GET_CODE (op0) != LSHIFTRT
10455 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10456 + 1)
10457 : 0))
10458 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10460 /* If the shift was logical, then we must make the condition
10461 unsigned. */
10462 if (GET_CODE (op0) == LSHIFTRT)
10463 code = unsigned_condition (code);
10465 const_op <<= INTVAL (XEXP (op0, 1));
10466 op1 = GEN_INT (const_op);
10467 op0 = XEXP (op0, 0);
10468 continue;
10471 /* If we are using this shift to extract just the sign bit, we
10472 can replace this with an LT or GE comparison. */
10473 if (const_op == 0
10474 && (equality_comparison_p || sign_bit_comparison_p)
10475 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10476 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10477 == mode_width - 1)
10479 op0 = XEXP (op0, 0);
10480 code = (code == NE || code == GT ? LT : GE);
10481 continue;
10483 break;
10485 default:
10486 break;
10489 break;
10492 /* Now make any compound operations involved in this comparison. Then,
10493 check for an outmost SUBREG on OP0 that is not doing anything or is
10494 paradoxical. The latter transformation must only be performed when
10495 it is known that the "extra" bits will be the same in op0 and op1 or
10496 that they don't matter. There are three cases to consider:
10498 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10499 care bits and we can assume they have any convenient value. So
10500 making the transformation is safe.
10502 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10503 In this case the upper bits of op0 are undefined. We should not make
10504 the simplification in that case as we do not know the contents of
10505 those bits.
10507 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10508 UNKNOWN. In that case we know those bits are zeros or ones. We must
10509 also be sure that they are the same as the upper bits of op1.
10511 We can never remove a SUBREG for a non-equality comparison because
10512 the sign bit is in a different place in the underlying object. */
10514 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10515 op1 = make_compound_operation (op1, SET);
10517 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10518 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10519 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10520 && (code == NE || code == EQ))
10522 if (GET_MODE_SIZE (GET_MODE (op0))
10523 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10525 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10526 implemented. */
10527 if (REG_P (SUBREG_REG (op0)))
10529 op0 = SUBREG_REG (op0);
10530 op1 = gen_lowpart (GET_MODE (op0), op1);
10533 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10534 <= HOST_BITS_PER_WIDE_INT)
10535 && (nonzero_bits (SUBREG_REG (op0),
10536 GET_MODE (SUBREG_REG (op0)))
10537 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10539 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10541 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10542 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10543 op0 = SUBREG_REG (op0), op1 = tem;
10547 /* We now do the opposite procedure: Some machines don't have compare
10548 insns in all modes. If OP0's mode is an integer mode smaller than a
10549 word and we can't do a compare in that mode, see if there is a larger
10550 mode for which we can do the compare. There are a number of cases in
10551 which we can use the wider mode. */
10553 mode = GET_MODE (op0);
10554 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10555 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10556 && ! have_insn_for (COMPARE, mode))
10557 for (tmode = GET_MODE_WIDER_MODE (mode);
10558 (tmode != VOIDmode
10559 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10560 tmode = GET_MODE_WIDER_MODE (tmode))
10561 if (have_insn_for (COMPARE, tmode))
10563 int zero_extended;
10565 /* If the only nonzero bits in OP0 and OP1 are those in the
10566 narrower mode and this is an equality or unsigned comparison,
10567 we can use the wider mode. Similarly for sign-extended
10568 values, in which case it is true for all comparisons. */
10569 zero_extended = ((code == EQ || code == NE
10570 || code == GEU || code == GTU
10571 || code == LEU || code == LTU)
10572 && (nonzero_bits (op0, tmode)
10573 & ~GET_MODE_MASK (mode)) == 0
10574 && ((GET_CODE (op1) == CONST_INT
10575 || (nonzero_bits (op1, tmode)
10576 & ~GET_MODE_MASK (mode)) == 0)));
10578 if (zero_extended
10579 || ((num_sign_bit_copies (op0, tmode)
10580 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10581 - GET_MODE_BITSIZE (mode)))
10582 && (num_sign_bit_copies (op1, tmode)
10583 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10584 - GET_MODE_BITSIZE (mode)))))
10586 /* If OP0 is an AND and we don't have an AND in MODE either,
10587 make a new AND in the proper mode. */
10588 if (GET_CODE (op0) == AND
10589 && !have_insn_for (AND, mode))
10590 op0 = gen_binary (AND, tmode,
10591 gen_lowpart (tmode,
10592 XEXP (op0, 0)),
10593 gen_lowpart (tmode,
10594 XEXP (op0, 1)));
10596 op0 = gen_lowpart (tmode, op0);
10597 if (zero_extended && GET_CODE (op1) == CONST_INT)
10598 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10599 op1 = gen_lowpart (tmode, op1);
10600 break;
10603 /* If this is a test for negative, we can make an explicit
10604 test of the sign bit. */
10606 if (op1 == const0_rtx && (code == LT || code == GE)
10607 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10609 op0 = gen_binary (AND, tmode,
10610 gen_lowpart (tmode, op0),
10611 GEN_INT ((HOST_WIDE_INT) 1
10612 << (GET_MODE_BITSIZE (mode) - 1)));
10613 code = (code == LT) ? NE : EQ;
10614 break;
10618 #ifdef CANONICALIZE_COMPARISON
10619 /* If this machine only supports a subset of valid comparisons, see if we
10620 can convert an unsupported one into a supported one. */
10621 CANONICALIZE_COMPARISON (code, op0, op1);
10622 #endif
10624 *pop0 = op0;
10625 *pop1 = op1;
10627 return code;
10630 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
10631 searching backward. */
10632 static enum rtx_code
10633 combine_reversed_comparison_code (rtx exp)
10635 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
10636 rtx x;
10638 if (code1 != UNKNOWN
10639 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
10640 return code1;
10641 /* Otherwise try and find where the condition codes were last set and
10642 use that. */
10643 x = get_last_value (XEXP (exp, 0));
10644 if (!x || GET_CODE (x) != COMPARE)
10645 return UNKNOWN;
10646 return reversed_comparison_code_parts (GET_CODE (exp),
10647 XEXP (x, 0), XEXP (x, 1), NULL);
10650 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
10651 Return NULL_RTX in case we fail to do the reversal. */
10652 static rtx
10653 reversed_comparison (rtx exp, enum machine_mode mode, rtx op0, rtx op1)
10655 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
10656 if (reversed_code == UNKNOWN)
10657 return NULL_RTX;
10658 else
10659 return gen_binary (reversed_code, mode, op0, op1);
10662 /* Utility function for following routine. Called when X is part of a value
10663 being stored into last_set_value. Sets last_set_table_tick
10664 for each register mentioned. Similar to mention_regs in cse.c */
10666 static void
10667 update_table_tick (rtx x)
10669 enum rtx_code code = GET_CODE (x);
10670 const char *fmt = GET_RTX_FORMAT (code);
10671 int i;
10673 if (code == REG)
10675 unsigned int regno = REGNO (x);
10676 unsigned int endregno
10677 = regno + (regno < FIRST_PSEUDO_REGISTER
10678 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10679 unsigned int r;
10681 for (r = regno; r < endregno; r++)
10682 reg_stat[r].last_set_table_tick = label_tick;
10684 return;
10687 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10688 /* Note that we can't have an "E" in values stored; see
10689 get_last_value_validate. */
10690 if (fmt[i] == 'e')
10692 /* Check for identical subexpressions. If x contains
10693 identical subexpression we only have to traverse one of
10694 them. */
10695 if (i == 0 && ARITHMETIC_P (x))
10697 /* Note that at this point x1 has already been
10698 processed. */
10699 rtx x0 = XEXP (x, 0);
10700 rtx x1 = XEXP (x, 1);
10702 /* If x0 and x1 are identical then there is no need to
10703 process x0. */
10704 if (x0 == x1)
10705 break;
10707 /* If x0 is identical to a subexpression of x1 then while
10708 processing x1, x0 has already been processed. Thus we
10709 are done with x. */
10710 if (ARITHMETIC_P (x1)
10711 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10712 break;
10714 /* If x1 is identical to a subexpression of x0 then we
10715 still have to process the rest of x0. */
10716 if (ARITHMETIC_P (x0)
10717 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10719 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10720 break;
10724 update_table_tick (XEXP (x, i));
10728 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10729 are saying that the register is clobbered and we no longer know its
10730 value. If INSN is zero, don't update reg_stat[].last_set; this is
10731 only permitted with VALUE also zero and is used to invalidate the
10732 register. */
10734 static void
10735 record_value_for_reg (rtx reg, rtx insn, rtx value)
10737 unsigned int regno = REGNO (reg);
10738 unsigned int endregno
10739 = regno + (regno < FIRST_PSEUDO_REGISTER
10740 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10741 unsigned int i;
10743 /* If VALUE contains REG and we have a previous value for REG, substitute
10744 the previous value. */
10745 if (value && insn && reg_overlap_mentioned_p (reg, value))
10747 rtx tem;
10749 /* Set things up so get_last_value is allowed to see anything set up to
10750 our insn. */
10751 subst_low_cuid = INSN_CUID (insn);
10752 tem = get_last_value (reg);
10754 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10755 it isn't going to be useful and will take a lot of time to process,
10756 so just use the CLOBBER. */
10758 if (tem)
10760 if (ARITHMETIC_P (tem)
10761 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10762 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10763 tem = XEXP (tem, 0);
10765 value = replace_rtx (copy_rtx (value), reg, tem);
10769 /* For each register modified, show we don't know its value, that
10770 we don't know about its bitwise content, that its value has been
10771 updated, and that we don't know the location of the death of the
10772 register. */
10773 for (i = regno; i < endregno; i++)
10775 if (insn)
10776 reg_stat[i].last_set = insn;
10778 reg_stat[i].last_set_value = 0;
10779 reg_stat[i].last_set_mode = 0;
10780 reg_stat[i].last_set_nonzero_bits = 0;
10781 reg_stat[i].last_set_sign_bit_copies = 0;
10782 reg_stat[i].last_death = 0;
10785 /* Mark registers that are being referenced in this value. */
10786 if (value)
10787 update_table_tick (value);
10789 /* Now update the status of each register being set.
10790 If someone is using this register in this block, set this register
10791 to invalid since we will get confused between the two lives in this
10792 basic block. This makes using this register always invalid. In cse, we
10793 scan the table to invalidate all entries using this register, but this
10794 is too much work for us. */
10796 for (i = regno; i < endregno; i++)
10798 reg_stat[i].last_set_label = label_tick;
10799 if (value && reg_stat[i].last_set_table_tick == label_tick)
10800 reg_stat[i].last_set_invalid = 1;
10801 else
10802 reg_stat[i].last_set_invalid = 0;
10805 /* The value being assigned might refer to X (like in "x++;"). In that
10806 case, we must replace it with (clobber (const_int 0)) to prevent
10807 infinite loops. */
10808 if (value && ! get_last_value_validate (&value, insn,
10809 reg_stat[regno].last_set_label, 0))
10811 value = copy_rtx (value);
10812 if (! get_last_value_validate (&value, insn,
10813 reg_stat[regno].last_set_label, 1))
10814 value = 0;
10817 /* For the main register being modified, update the value, the mode, the
10818 nonzero bits, and the number of sign bit copies. */
10820 reg_stat[regno].last_set_value = value;
10822 if (value)
10824 enum machine_mode mode = GET_MODE (reg);
10825 subst_low_cuid = INSN_CUID (insn);
10826 reg_stat[regno].last_set_mode = mode;
10827 if (GET_MODE_CLASS (mode) == MODE_INT
10828 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10829 mode = nonzero_bits_mode;
10830 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
10831 reg_stat[regno].last_set_sign_bit_copies
10832 = num_sign_bit_copies (value, GET_MODE (reg));
10836 /* Called via note_stores from record_dead_and_set_regs to handle one
10837 SET or CLOBBER in an insn. DATA is the instruction in which the
10838 set is occurring. */
10840 static void
10841 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
10843 rtx record_dead_insn = (rtx) data;
10845 if (GET_CODE (dest) == SUBREG)
10846 dest = SUBREG_REG (dest);
10848 if (REG_P (dest))
10850 /* If we are setting the whole register, we know its value. Otherwise
10851 show that we don't know the value. We can handle SUBREG in
10852 some cases. */
10853 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10854 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10855 else if (GET_CODE (setter) == SET
10856 && GET_CODE (SET_DEST (setter)) == SUBREG
10857 && SUBREG_REG (SET_DEST (setter)) == dest
10858 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
10859 && subreg_lowpart_p (SET_DEST (setter)))
10860 record_value_for_reg (dest, record_dead_insn,
10861 gen_lowpart (GET_MODE (dest),
10862 SET_SRC (setter)));
10863 else
10864 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
10866 else if (MEM_P (dest)
10867 /* Ignore pushes, they clobber nothing. */
10868 && ! push_operand (dest, GET_MODE (dest)))
10869 mem_last_set = INSN_CUID (record_dead_insn);
10872 /* Update the records of when each REG was most recently set or killed
10873 for the things done by INSN. This is the last thing done in processing
10874 INSN in the combiner loop.
10876 We update reg_stat[], in particular fields last_set, last_set_value,
10877 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
10878 last_death, and also the similar information mem_last_set (which insn
10879 most recently modified memory) and last_call_cuid (which insn was the
10880 most recent subroutine call). */
10882 static void
10883 record_dead_and_set_regs (rtx insn)
10885 rtx link;
10886 unsigned int i;
10888 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
10890 if (REG_NOTE_KIND (link) == REG_DEAD
10891 && REG_P (XEXP (link, 0)))
10893 unsigned int regno = REGNO (XEXP (link, 0));
10894 unsigned int endregno
10895 = regno + (regno < FIRST_PSEUDO_REGISTER
10896 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
10897 : 1);
10899 for (i = regno; i < endregno; i++)
10900 reg_stat[i].last_death = insn;
10902 else if (REG_NOTE_KIND (link) == REG_INC)
10903 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
10906 if (CALL_P (insn))
10908 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
10909 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
10911 reg_stat[i].last_set_value = 0;
10912 reg_stat[i].last_set_mode = 0;
10913 reg_stat[i].last_set_nonzero_bits = 0;
10914 reg_stat[i].last_set_sign_bit_copies = 0;
10915 reg_stat[i].last_death = 0;
10918 last_call_cuid = mem_last_set = INSN_CUID (insn);
10920 /* Don't bother recording what this insn does. It might set the
10921 return value register, but we can't combine into a call
10922 pattern anyway, so there's no point trying (and it may cause
10923 a crash, if e.g. we wind up asking for last_set_value of a
10924 SUBREG of the return value register). */
10925 return;
10928 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
10931 /* If a SUBREG has the promoted bit set, it is in fact a property of the
10932 register present in the SUBREG, so for each such SUBREG go back and
10933 adjust nonzero and sign bit information of the registers that are
10934 known to have some zero/sign bits set.
10936 This is needed because when combine blows the SUBREGs away, the
10937 information on zero/sign bits is lost and further combines can be
10938 missed because of that. */
10940 static void
10941 record_promoted_value (rtx insn, rtx subreg)
10943 rtx links, set;
10944 unsigned int regno = REGNO (SUBREG_REG (subreg));
10945 enum machine_mode mode = GET_MODE (subreg);
10947 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
10948 return;
10950 for (links = LOG_LINKS (insn); links;)
10952 insn = XEXP (links, 0);
10953 set = single_set (insn);
10955 if (! set || !REG_P (SET_DEST (set))
10956 || REGNO (SET_DEST (set)) != regno
10957 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
10959 links = XEXP (links, 1);
10960 continue;
10963 if (reg_stat[regno].last_set == insn)
10965 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
10966 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
10969 if (REG_P (SET_SRC (set)))
10971 regno = REGNO (SET_SRC (set));
10972 links = LOG_LINKS (insn);
10974 else
10975 break;
10979 /* Scan X for promoted SUBREGs. For each one found,
10980 note what it implies to the registers used in it. */
10982 static void
10983 check_promoted_subreg (rtx insn, rtx x)
10985 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
10986 && REG_P (SUBREG_REG (x)))
10987 record_promoted_value (insn, x);
10988 else
10990 const char *format = GET_RTX_FORMAT (GET_CODE (x));
10991 int i, j;
10993 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
10994 switch (format[i])
10996 case 'e':
10997 check_promoted_subreg (insn, XEXP (x, i));
10998 break;
10999 case 'V':
11000 case 'E':
11001 if (XVEC (x, i) != 0)
11002 for (j = 0; j < XVECLEN (x, i); j++)
11003 check_promoted_subreg (insn, XVECEXP (x, i, j));
11004 break;
11009 /* Utility routine for the following function. Verify that all the registers
11010 mentioned in *LOC are valid when *LOC was part of a value set when
11011 label_tick == TICK. Return 0 if some are not.
11013 If REPLACE is nonzero, replace the invalid reference with
11014 (clobber (const_int 0)) and return 1. This replacement is useful because
11015 we often can get useful information about the form of a value (e.g., if
11016 it was produced by a shift that always produces -1 or 0) even though
11017 we don't know exactly what registers it was produced from. */
11019 static int
11020 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11022 rtx x = *loc;
11023 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11024 int len = GET_RTX_LENGTH (GET_CODE (x));
11025 int i;
11027 if (REG_P (x))
11029 unsigned int regno = REGNO (x);
11030 unsigned int endregno
11031 = regno + (regno < FIRST_PSEUDO_REGISTER
11032 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11033 unsigned int j;
11035 for (j = regno; j < endregno; j++)
11036 if (reg_stat[j].last_set_invalid
11037 /* If this is a pseudo-register that was only set once and not
11038 live at the beginning of the function, it is always valid. */
11039 || (! (regno >= FIRST_PSEUDO_REGISTER
11040 && REG_N_SETS (regno) == 1
11041 && (! REGNO_REG_SET_P
11042 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11043 && reg_stat[j].last_set_label > tick))
11045 if (replace)
11046 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11047 return replace;
11050 return 1;
11052 /* If this is a memory reference, make sure that there were
11053 no stores after it that might have clobbered the value. We don't
11054 have alias info, so we assume any store invalidates it. */
11055 else if (MEM_P (x) && !MEM_READONLY_P (x)
11056 && INSN_CUID (insn) <= mem_last_set)
11058 if (replace)
11059 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11060 return replace;
11063 for (i = 0; i < len; i++)
11065 if (fmt[i] == 'e')
11067 /* Check for identical subexpressions. If x contains
11068 identical subexpression we only have to traverse one of
11069 them. */
11070 if (i == 1 && ARITHMETIC_P (x))
11072 /* Note that at this point x0 has already been checked
11073 and found valid. */
11074 rtx x0 = XEXP (x, 0);
11075 rtx x1 = XEXP (x, 1);
11077 /* If x0 and x1 are identical then x is also valid. */
11078 if (x0 == x1)
11079 return 1;
11081 /* If x1 is identical to a subexpression of x0 then
11082 while checking x0, x1 has already been checked. Thus
11083 it is valid and so as x. */
11084 if (ARITHMETIC_P (x0)
11085 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11086 return 1;
11088 /* If x0 is identical to a subexpression of x1 then x is
11089 valid iff the rest of x1 is valid. */
11090 if (ARITHMETIC_P (x1)
11091 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11092 return
11093 get_last_value_validate (&XEXP (x1,
11094 x0 == XEXP (x1, 0) ? 1 : 0),
11095 insn, tick, replace);
11098 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11099 replace) == 0)
11100 return 0;
11102 /* Don't bother with these. They shouldn't occur anyway. */
11103 else if (fmt[i] == 'E')
11104 return 0;
11107 /* If we haven't found a reason for it to be invalid, it is valid. */
11108 return 1;
11111 /* Get the last value assigned to X, if known. Some registers
11112 in the value may be replaced with (clobber (const_int 0)) if their value
11113 is known longer known reliably. */
11115 static rtx
11116 get_last_value (rtx x)
11118 unsigned int regno;
11119 rtx value;
11121 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11122 then convert it to the desired mode. If this is a paradoxical SUBREG,
11123 we cannot predict what values the "extra" bits might have. */
11124 if (GET_CODE (x) == SUBREG
11125 && subreg_lowpart_p (x)
11126 && (GET_MODE_SIZE (GET_MODE (x))
11127 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11128 && (value = get_last_value (SUBREG_REG (x))) != 0)
11129 return gen_lowpart (GET_MODE (x), value);
11131 if (!REG_P (x))
11132 return 0;
11134 regno = REGNO (x);
11135 value = reg_stat[regno].last_set_value;
11137 /* If we don't have a value, or if it isn't for this basic block and
11138 it's either a hard register, set more than once, or it's a live
11139 at the beginning of the function, return 0.
11141 Because if it's not live at the beginning of the function then the reg
11142 is always set before being used (is never used without being set).
11143 And, if it's set only once, and it's always set before use, then all
11144 uses must have the same last value, even if it's not from this basic
11145 block. */
11147 if (value == 0
11148 || (reg_stat[regno].last_set_label != label_tick
11149 && (regno < FIRST_PSEUDO_REGISTER
11150 || REG_N_SETS (regno) != 1
11151 || (REGNO_REG_SET_P
11152 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11153 return 0;
11155 /* If the value was set in a later insn than the ones we are processing,
11156 we can't use it even if the register was only set once. */
11157 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11158 return 0;
11160 /* If the value has all its registers valid, return it. */
11161 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11162 reg_stat[regno].last_set_label, 0))
11163 return value;
11165 /* Otherwise, make a copy and replace any invalid register with
11166 (clobber (const_int 0)). If that fails for some reason, return 0. */
11168 value = copy_rtx (value);
11169 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11170 reg_stat[regno].last_set_label, 1))
11171 return value;
11173 return 0;
11176 /* Return nonzero if expression X refers to a REG or to memory
11177 that is set in an instruction more recent than FROM_CUID. */
11179 static int
11180 use_crosses_set_p (rtx x, int from_cuid)
11182 const char *fmt;
11183 int i;
11184 enum rtx_code code = GET_CODE (x);
11186 if (code == REG)
11188 unsigned int regno = REGNO (x);
11189 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11190 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11192 #ifdef PUSH_ROUNDING
11193 /* Don't allow uses of the stack pointer to be moved,
11194 because we don't know whether the move crosses a push insn. */
11195 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11196 return 1;
11197 #endif
11198 for (; regno < endreg; regno++)
11199 if (reg_stat[regno].last_set
11200 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11201 return 1;
11202 return 0;
11205 if (code == MEM && mem_last_set > from_cuid)
11206 return 1;
11208 fmt = GET_RTX_FORMAT (code);
11210 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11212 if (fmt[i] == 'E')
11214 int j;
11215 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11216 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11217 return 1;
11219 else if (fmt[i] == 'e'
11220 && use_crosses_set_p (XEXP (x, i), from_cuid))
11221 return 1;
11223 return 0;
11226 /* Define three variables used for communication between the following
11227 routines. */
11229 static unsigned int reg_dead_regno, reg_dead_endregno;
11230 static int reg_dead_flag;
11232 /* Function called via note_stores from reg_dead_at_p.
11234 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11235 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11237 static void
11238 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11240 unsigned int regno, endregno;
11242 if (!REG_P (dest))
11243 return;
11245 regno = REGNO (dest);
11246 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11247 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11249 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11250 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11253 /* Return nonzero if REG is known to be dead at INSN.
11255 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11256 referencing REG, it is dead. If we hit a SET referencing REG, it is
11257 live. Otherwise, see if it is live or dead at the start of the basic
11258 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11259 must be assumed to be always live. */
11261 static int
11262 reg_dead_at_p (rtx reg, rtx insn)
11264 basic_block block;
11265 unsigned int i;
11267 /* Set variables for reg_dead_at_p_1. */
11268 reg_dead_regno = REGNO (reg);
11269 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11270 ? hard_regno_nregs[reg_dead_regno]
11271 [GET_MODE (reg)]
11272 : 1);
11274 reg_dead_flag = 0;
11276 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11277 we allow the machine description to decide whether use-and-clobber
11278 patterns are OK. */
11279 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11281 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11282 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11283 return 0;
11286 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11287 beginning of function. */
11288 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11289 insn = prev_nonnote_insn (insn))
11291 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11292 if (reg_dead_flag)
11293 return reg_dead_flag == 1 ? 1 : 0;
11295 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11296 return 1;
11299 /* Get the basic block that we were in. */
11300 if (insn == 0)
11301 block = ENTRY_BLOCK_PTR->next_bb;
11302 else
11304 FOR_EACH_BB (block)
11305 if (insn == BB_HEAD (block))
11306 break;
11308 if (block == EXIT_BLOCK_PTR)
11309 return 0;
11312 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11313 if (REGNO_REG_SET_P (block->global_live_at_start, i))
11314 return 0;
11316 return 1;
11319 /* Note hard registers in X that are used. This code is similar to
11320 that in flow.c, but much simpler since we don't care about pseudos. */
11322 static void
11323 mark_used_regs_combine (rtx x)
11325 RTX_CODE code = GET_CODE (x);
11326 unsigned int regno;
11327 int i;
11329 switch (code)
11331 case LABEL_REF:
11332 case SYMBOL_REF:
11333 case CONST_INT:
11334 case CONST:
11335 case CONST_DOUBLE:
11336 case CONST_VECTOR:
11337 case PC:
11338 case ADDR_VEC:
11339 case ADDR_DIFF_VEC:
11340 case ASM_INPUT:
11341 #ifdef HAVE_cc0
11342 /* CC0 must die in the insn after it is set, so we don't need to take
11343 special note of it here. */
11344 case CC0:
11345 #endif
11346 return;
11348 case CLOBBER:
11349 /* If we are clobbering a MEM, mark any hard registers inside the
11350 address as used. */
11351 if (MEM_P (XEXP (x, 0)))
11352 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11353 return;
11355 case REG:
11356 regno = REGNO (x);
11357 /* A hard reg in a wide mode may really be multiple registers.
11358 If so, mark all of them just like the first. */
11359 if (regno < FIRST_PSEUDO_REGISTER)
11361 unsigned int endregno, r;
11363 /* None of this applies to the stack, frame or arg pointers. */
11364 if (regno == STACK_POINTER_REGNUM
11365 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11366 || regno == HARD_FRAME_POINTER_REGNUM
11367 #endif
11368 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11369 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11370 #endif
11371 || regno == FRAME_POINTER_REGNUM)
11372 return;
11374 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11375 for (r = regno; r < endregno; r++)
11376 SET_HARD_REG_BIT (newpat_used_regs, r);
11378 return;
11380 case SET:
11382 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11383 the address. */
11384 rtx testreg = SET_DEST (x);
11386 while (GET_CODE (testreg) == SUBREG
11387 || GET_CODE (testreg) == ZERO_EXTRACT
11388 || GET_CODE (testreg) == SIGN_EXTRACT
11389 || GET_CODE (testreg) == STRICT_LOW_PART)
11390 testreg = XEXP (testreg, 0);
11392 if (MEM_P (testreg))
11393 mark_used_regs_combine (XEXP (testreg, 0));
11395 mark_used_regs_combine (SET_SRC (x));
11397 return;
11399 default:
11400 break;
11403 /* Recursively scan the operands of this expression. */
11406 const char *fmt = GET_RTX_FORMAT (code);
11408 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11410 if (fmt[i] == 'e')
11411 mark_used_regs_combine (XEXP (x, i));
11412 else if (fmt[i] == 'E')
11414 int j;
11416 for (j = 0; j < XVECLEN (x, i); j++)
11417 mark_used_regs_combine (XVECEXP (x, i, j));
11423 /* Remove register number REGNO from the dead registers list of INSN.
11425 Return the note used to record the death, if there was one. */
11428 remove_death (unsigned int regno, rtx insn)
11430 rtx note = find_regno_note (insn, REG_DEAD, regno);
11432 if (note)
11434 REG_N_DEATHS (regno)--;
11435 remove_note (insn, note);
11438 return note;
11441 /* For each register (hardware or pseudo) used within expression X, if its
11442 death is in an instruction with cuid between FROM_CUID (inclusive) and
11443 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11444 list headed by PNOTES.
11446 That said, don't move registers killed by maybe_kill_insn.
11448 This is done when X is being merged by combination into TO_INSN. These
11449 notes will then be distributed as needed. */
11451 static void
11452 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11453 rtx *pnotes)
11455 const char *fmt;
11456 int len, i;
11457 enum rtx_code code = GET_CODE (x);
11459 if (code == REG)
11461 unsigned int regno = REGNO (x);
11462 rtx where_dead = reg_stat[regno].last_death;
11463 rtx before_dead, after_dead;
11465 /* Don't move the register if it gets killed in between from and to. */
11466 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11467 && ! reg_referenced_p (x, maybe_kill_insn))
11468 return;
11470 /* WHERE_DEAD could be a USE insn made by combine, so first we
11471 make sure that we have insns with valid INSN_CUID values. */
11472 before_dead = where_dead;
11473 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11474 before_dead = PREV_INSN (before_dead);
11476 after_dead = where_dead;
11477 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11478 after_dead = NEXT_INSN (after_dead);
11480 if (before_dead && after_dead
11481 && INSN_CUID (before_dead) >= from_cuid
11482 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11483 || (where_dead != after_dead
11484 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11486 rtx note = remove_death (regno, where_dead);
11488 /* It is possible for the call above to return 0. This can occur
11489 when last_death points to I2 or I1 that we combined with.
11490 In that case make a new note.
11492 We must also check for the case where X is a hard register
11493 and NOTE is a death note for a range of hard registers
11494 including X. In that case, we must put REG_DEAD notes for
11495 the remaining registers in place of NOTE. */
11497 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11498 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11499 > GET_MODE_SIZE (GET_MODE (x))))
11501 unsigned int deadregno = REGNO (XEXP (note, 0));
11502 unsigned int deadend
11503 = (deadregno + hard_regno_nregs[deadregno]
11504 [GET_MODE (XEXP (note, 0))]);
11505 unsigned int ourend
11506 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11507 unsigned int i;
11509 for (i = deadregno; i < deadend; i++)
11510 if (i < regno || i >= ourend)
11511 REG_NOTES (where_dead)
11512 = gen_rtx_EXPR_LIST (REG_DEAD,
11513 regno_reg_rtx[i],
11514 REG_NOTES (where_dead));
11517 /* If we didn't find any note, or if we found a REG_DEAD note that
11518 covers only part of the given reg, and we have a multi-reg hard
11519 register, then to be safe we must check for REG_DEAD notes
11520 for each register other than the first. They could have
11521 their own REG_DEAD notes lying around. */
11522 else if ((note == 0
11523 || (note != 0
11524 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11525 < GET_MODE_SIZE (GET_MODE (x)))))
11526 && regno < FIRST_PSEUDO_REGISTER
11527 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11529 unsigned int ourend
11530 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11531 unsigned int i, offset;
11532 rtx oldnotes = 0;
11534 if (note)
11535 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11536 else
11537 offset = 1;
11539 for (i = regno + offset; i < ourend; i++)
11540 move_deaths (regno_reg_rtx[i],
11541 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11544 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11546 XEXP (note, 1) = *pnotes;
11547 *pnotes = note;
11549 else
11550 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11552 REG_N_DEATHS (regno)++;
11555 return;
11558 else if (GET_CODE (x) == SET)
11560 rtx dest = SET_DEST (x);
11562 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11564 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11565 that accesses one word of a multi-word item, some
11566 piece of everything register in the expression is used by
11567 this insn, so remove any old death. */
11568 /* ??? So why do we test for equality of the sizes? */
11570 if (GET_CODE (dest) == ZERO_EXTRACT
11571 || GET_CODE (dest) == STRICT_LOW_PART
11572 || (GET_CODE (dest) == SUBREG
11573 && (((GET_MODE_SIZE (GET_MODE (dest))
11574 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11575 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11576 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11578 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11579 return;
11582 /* If this is some other SUBREG, we know it replaces the entire
11583 value, so use that as the destination. */
11584 if (GET_CODE (dest) == SUBREG)
11585 dest = SUBREG_REG (dest);
11587 /* If this is a MEM, adjust deaths of anything used in the address.
11588 For a REG (the only other possibility), the entire value is
11589 being replaced so the old value is not used in this insn. */
11591 if (MEM_P (dest))
11592 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11593 to_insn, pnotes);
11594 return;
11597 else if (GET_CODE (x) == CLOBBER)
11598 return;
11600 len = GET_RTX_LENGTH (code);
11601 fmt = GET_RTX_FORMAT (code);
11603 for (i = 0; i < len; i++)
11605 if (fmt[i] == 'E')
11607 int j;
11608 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11609 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11610 to_insn, pnotes);
11612 else if (fmt[i] == 'e')
11613 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11617 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11618 pattern of an insn. X must be a REG. */
11620 static int
11621 reg_bitfield_target_p (rtx x, rtx body)
11623 int i;
11625 if (GET_CODE (body) == SET)
11627 rtx dest = SET_DEST (body);
11628 rtx target;
11629 unsigned int regno, tregno, endregno, endtregno;
11631 if (GET_CODE (dest) == ZERO_EXTRACT)
11632 target = XEXP (dest, 0);
11633 else if (GET_CODE (dest) == STRICT_LOW_PART)
11634 target = SUBREG_REG (XEXP (dest, 0));
11635 else
11636 return 0;
11638 if (GET_CODE (target) == SUBREG)
11639 target = SUBREG_REG (target);
11641 if (!REG_P (target))
11642 return 0;
11644 tregno = REGNO (target), regno = REGNO (x);
11645 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11646 return target == x;
11648 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11649 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11651 return endregno > tregno && regno < endtregno;
11654 else if (GET_CODE (body) == PARALLEL)
11655 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11656 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11657 return 1;
11659 return 0;
11662 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11663 as appropriate. I3 and I2 are the insns resulting from the combination
11664 insns including FROM (I2 may be zero).
11666 Each note in the list is either ignored or placed on some insns, depending
11667 on the type of note. */
11669 static void
11670 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
11672 rtx note, next_note;
11673 rtx tem;
11675 for (note = notes; note; note = next_note)
11677 rtx place = 0, place2 = 0;
11679 /* If this NOTE references a pseudo register, ensure it references
11680 the latest copy of that register. */
11681 if (XEXP (note, 0) && REG_P (XEXP (note, 0))
11682 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11683 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11685 next_note = XEXP (note, 1);
11686 switch (REG_NOTE_KIND (note))
11688 case REG_BR_PROB:
11689 case REG_BR_PRED:
11690 /* Doesn't matter much where we put this, as long as it's somewhere.
11691 It is preferable to keep these notes on branches, which is most
11692 likely to be i3. */
11693 place = i3;
11694 break;
11696 case REG_VALUE_PROFILE:
11697 /* Just get rid of this note, as it is unused later anyway. */
11698 break;
11700 case REG_NON_LOCAL_GOTO:
11701 if (JUMP_P (i3))
11702 place = i3;
11703 else if (i2 && JUMP_P (i2))
11704 place = i2;
11705 else
11706 abort ();
11707 break;
11709 case REG_EH_REGION:
11710 /* These notes must remain with the call or trapping instruction. */
11711 if (CALL_P (i3))
11712 place = i3;
11713 else if (i2 && CALL_P (i2))
11714 place = i2;
11715 else if (flag_non_call_exceptions)
11717 if (may_trap_p (i3))
11718 place = i3;
11719 else if (i2 && may_trap_p (i2))
11720 place = i2;
11721 /* ??? Otherwise assume we've combined things such that we
11722 can now prove that the instructions can't trap. Drop the
11723 note in this case. */
11725 else
11726 abort ();
11727 break;
11729 case REG_ALWAYS_RETURN:
11730 case REG_NORETURN:
11731 case REG_SETJMP:
11732 /* These notes must remain with the call. It should not be
11733 possible for both I2 and I3 to be a call. */
11734 if (CALL_P (i3))
11735 place = i3;
11736 else if (i2 && CALL_P (i2))
11737 place = i2;
11738 else
11739 abort ();
11740 break;
11742 case REG_UNUSED:
11743 /* Any clobbers for i3 may still exist, and so we must process
11744 REG_UNUSED notes from that insn.
11746 Any clobbers from i2 or i1 can only exist if they were added by
11747 recog_for_combine. In that case, recog_for_combine created the
11748 necessary REG_UNUSED notes. Trying to keep any original
11749 REG_UNUSED notes from these insns can cause incorrect output
11750 if it is for the same register as the original i3 dest.
11751 In that case, we will notice that the register is set in i3,
11752 and then add a REG_UNUSED note for the destination of i3, which
11753 is wrong. However, it is possible to have REG_UNUSED notes from
11754 i2 or i1 for register which were both used and clobbered, so
11755 we keep notes from i2 or i1 if they will turn into REG_DEAD
11756 notes. */
11758 /* If this register is set or clobbered in I3, put the note there
11759 unless there is one already. */
11760 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11762 if (from_insn != i3)
11763 break;
11765 if (! (REG_P (XEXP (note, 0))
11766 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11767 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11768 place = i3;
11770 /* Otherwise, if this register is used by I3, then this register
11771 now dies here, so we must put a REG_DEAD note here unless there
11772 is one already. */
11773 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11774 && ! (REG_P (XEXP (note, 0))
11775 ? find_regno_note (i3, REG_DEAD,
11776 REGNO (XEXP (note, 0)))
11777 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11779 PUT_REG_NOTE_KIND (note, REG_DEAD);
11780 place = i3;
11782 break;
11784 case REG_EQUAL:
11785 case REG_EQUIV:
11786 case REG_NOALIAS:
11787 /* These notes say something about results of an insn. We can
11788 only support them if they used to be on I3 in which case they
11789 remain on I3. Otherwise they are ignored.
11791 If the note refers to an expression that is not a constant, we
11792 must also ignore the note since we cannot tell whether the
11793 equivalence is still true. It might be possible to do
11794 slightly better than this (we only have a problem if I2DEST
11795 or I1DEST is present in the expression), but it doesn't
11796 seem worth the trouble. */
11798 if (from_insn == i3
11799 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
11800 place = i3;
11801 break;
11803 case REG_INC:
11804 case REG_NO_CONFLICT:
11805 /* These notes say something about how a register is used. They must
11806 be present on any use of the register in I2 or I3. */
11807 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
11808 place = i3;
11810 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
11812 if (place)
11813 place2 = i2;
11814 else
11815 place = i2;
11817 break;
11819 case REG_LABEL:
11820 /* This can show up in several ways -- either directly in the
11821 pattern, or hidden off in the constant pool with (or without?)
11822 a REG_EQUAL note. */
11823 /* ??? Ignore the without-reg_equal-note problem for now. */
11824 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
11825 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
11826 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11827 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
11828 place = i3;
11830 if (i2
11831 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
11832 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
11833 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11834 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
11836 if (place)
11837 place2 = i2;
11838 else
11839 place = i2;
11842 /* Don't attach REG_LABEL note to a JUMP_INSN which has
11843 JUMP_LABEL already. Instead, decrement LABEL_NUSES. */
11844 if (place && JUMP_P (place) && JUMP_LABEL (place))
11846 if (JUMP_LABEL (place) != XEXP (note, 0))
11847 abort ();
11848 if (LABEL_P (JUMP_LABEL (place)))
11849 LABEL_NUSES (JUMP_LABEL (place))--;
11850 place = 0;
11852 if (place2 && JUMP_P (place2) && JUMP_LABEL (place2))
11854 if (JUMP_LABEL (place2) != XEXP (note, 0))
11855 abort ();
11856 if (LABEL_P (JUMP_LABEL (place2)))
11857 LABEL_NUSES (JUMP_LABEL (place2))--;
11858 place2 = 0;
11860 break;
11862 case REG_NONNEG:
11863 /* This note says something about the value of a register prior
11864 to the execution of an insn. It is too much trouble to see
11865 if the note is still correct in all situations. It is better
11866 to simply delete it. */
11867 break;
11869 case REG_RETVAL:
11870 /* If the insn previously containing this note still exists,
11871 put it back where it was. Otherwise move it to the previous
11872 insn. Adjust the corresponding REG_LIBCALL note. */
11873 if (!NOTE_P (from_insn))
11874 place = from_insn;
11875 else
11877 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
11878 place = prev_real_insn (from_insn);
11879 if (tem && place)
11880 XEXP (tem, 0) = place;
11881 /* If we're deleting the last remaining instruction of a
11882 libcall sequence, don't add the notes. */
11883 else if (XEXP (note, 0) == from_insn)
11884 tem = place = 0;
11885 /* Don't add the dangling REG_RETVAL note. */
11886 else if (! tem)
11887 place = 0;
11889 break;
11891 case REG_LIBCALL:
11892 /* This is handled similarly to REG_RETVAL. */
11893 if (!NOTE_P (from_insn))
11894 place = from_insn;
11895 else
11897 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
11898 place = next_real_insn (from_insn);
11899 if (tem && place)
11900 XEXP (tem, 0) = place;
11901 /* If we're deleting the last remaining instruction of a
11902 libcall sequence, don't add the notes. */
11903 else if (XEXP (note, 0) == from_insn)
11904 tem = place = 0;
11905 /* Don't add the dangling REG_LIBCALL note. */
11906 else if (! tem)
11907 place = 0;
11909 break;
11911 case REG_DEAD:
11912 /* If the register is used as an input in I3, it dies there.
11913 Similarly for I2, if it is nonzero and adjacent to I3.
11915 If the register is not used as an input in either I3 or I2
11916 and it is not one of the registers we were supposed to eliminate,
11917 there are two possibilities. We might have a non-adjacent I2
11918 or we might have somehow eliminated an additional register
11919 from a computation. For example, we might have had A & B where
11920 we discover that B will always be zero. In this case we will
11921 eliminate the reference to A.
11923 In both cases, we must search to see if we can find a previous
11924 use of A and put the death note there. */
11926 if (from_insn
11927 && CALL_P (from_insn)
11928 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
11929 place = from_insn;
11930 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
11931 place = i3;
11932 else if (i2 != 0 && next_nonnote_insn (i2) == i3
11933 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
11934 place = i2;
11936 if (place == 0)
11938 basic_block bb = this_basic_block;
11940 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
11942 if (! INSN_P (tem))
11944 if (tem == BB_HEAD (bb))
11945 break;
11946 continue;
11949 /* If the register is being set at TEM, see if that is all
11950 TEM is doing. If so, delete TEM. Otherwise, make this
11951 into a REG_UNUSED note instead. Don't delete sets to
11952 global register vars. */
11953 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
11954 || !global_regs[REGNO (XEXP (note, 0))])
11955 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
11957 rtx set = single_set (tem);
11958 rtx inner_dest = 0;
11959 #ifdef HAVE_cc0
11960 rtx cc0_setter = NULL_RTX;
11961 #endif
11963 if (set != 0)
11964 for (inner_dest = SET_DEST (set);
11965 (GET_CODE (inner_dest) == STRICT_LOW_PART
11966 || GET_CODE (inner_dest) == SUBREG
11967 || GET_CODE (inner_dest) == ZERO_EXTRACT);
11968 inner_dest = XEXP (inner_dest, 0))
11971 /* Verify that it was the set, and not a clobber that
11972 modified the register.
11974 CC0 targets must be careful to maintain setter/user
11975 pairs. If we cannot delete the setter due to side
11976 effects, mark the user with an UNUSED note instead
11977 of deleting it. */
11979 if (set != 0 && ! side_effects_p (SET_SRC (set))
11980 && rtx_equal_p (XEXP (note, 0), inner_dest)
11981 #ifdef HAVE_cc0
11982 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
11983 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
11984 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
11985 #endif
11988 /* Move the notes and links of TEM elsewhere.
11989 This might delete other dead insns recursively.
11990 First set the pattern to something that won't use
11991 any register. */
11992 rtx old_notes = REG_NOTES (tem);
11994 PATTERN (tem) = pc_rtx;
11995 REG_NOTES (tem) = NULL;
11997 distribute_notes (old_notes, tem, tem, NULL_RTX);
11998 distribute_links (LOG_LINKS (tem));
12000 SET_INSN_DELETED (tem);
12002 #ifdef HAVE_cc0
12003 /* Delete the setter too. */
12004 if (cc0_setter)
12006 PATTERN (cc0_setter) = pc_rtx;
12007 old_notes = REG_NOTES (cc0_setter);
12008 REG_NOTES (cc0_setter) = NULL;
12010 distribute_notes (old_notes, cc0_setter,
12011 cc0_setter, NULL_RTX);
12012 distribute_links (LOG_LINKS (cc0_setter));
12014 SET_INSN_DELETED (cc0_setter);
12016 #endif
12018 else
12020 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12022 /* If there isn't already a REG_UNUSED note, put one
12023 here. Do not place a REG_DEAD note, even if
12024 the register is also used here; that would not
12025 match the algorithm used in lifetime analysis
12026 and can cause the consistency check in the
12027 scheduler to fail. */
12028 if (! find_regno_note (tem, REG_UNUSED,
12029 REGNO (XEXP (note, 0))))
12030 place = tem;
12031 break;
12034 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12035 || (CALL_P (tem)
12036 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12038 place = tem;
12040 /* If we are doing a 3->2 combination, and we have a
12041 register which formerly died in i3 and was not used
12042 by i2, which now no longer dies in i3 and is used in
12043 i2 but does not die in i2, and place is between i2
12044 and i3, then we may need to move a link from place to
12045 i2. */
12046 if (i2 && INSN_UID (place) <= max_uid_cuid
12047 && INSN_CUID (place) > INSN_CUID (i2)
12048 && from_insn
12049 && INSN_CUID (from_insn) > INSN_CUID (i2)
12050 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12052 rtx links = LOG_LINKS (place);
12053 LOG_LINKS (place) = 0;
12054 distribute_links (links);
12056 break;
12059 if (tem == BB_HEAD (bb))
12060 break;
12063 /* We haven't found an insn for the death note and it
12064 is still a REG_DEAD note, but we have hit the beginning
12065 of the block. If the existing life info says the reg
12066 was dead, there's nothing left to do. Otherwise, we'll
12067 need to do a global life update after combine. */
12068 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12069 && REGNO_REG_SET_P (bb->global_live_at_start,
12070 REGNO (XEXP (note, 0))))
12071 SET_BIT (refresh_blocks, this_basic_block->index);
12074 /* If the register is set or already dead at PLACE, we needn't do
12075 anything with this note if it is still a REG_DEAD note.
12076 We check here if it is set at all, not if is it totally replaced,
12077 which is what `dead_or_set_p' checks, so also check for it being
12078 set partially. */
12080 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12082 unsigned int regno = REGNO (XEXP (note, 0));
12084 /* Similarly, if the instruction on which we want to place
12085 the note is a noop, we'll need do a global live update
12086 after we remove them in delete_noop_moves. */
12087 if (noop_move_p (place))
12088 SET_BIT (refresh_blocks, this_basic_block->index);
12090 if (dead_or_set_p (place, XEXP (note, 0))
12091 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12093 /* Unless the register previously died in PLACE, clear
12094 last_death. [I no longer understand why this is
12095 being done.] */
12096 if (reg_stat[regno].last_death != place)
12097 reg_stat[regno].last_death = 0;
12098 place = 0;
12100 else
12101 reg_stat[regno].last_death = place;
12103 /* If this is a death note for a hard reg that is occupying
12104 multiple registers, ensure that we are still using all
12105 parts of the object. If we find a piece of the object
12106 that is unused, we must arrange for an appropriate REG_DEAD
12107 note to be added for it. However, we can't just emit a USE
12108 and tag the note to it, since the register might actually
12109 be dead; so we recourse, and the recursive call then finds
12110 the previous insn that used this register. */
12112 if (place && regno < FIRST_PSEUDO_REGISTER
12113 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12115 unsigned int endregno
12116 = regno + hard_regno_nregs[regno]
12117 [GET_MODE (XEXP (note, 0))];
12118 int all_used = 1;
12119 unsigned int i;
12121 for (i = regno; i < endregno; i++)
12122 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12123 && ! find_regno_fusage (place, USE, i))
12124 || dead_or_set_regno_p (place, i))
12125 all_used = 0;
12127 if (! all_used)
12129 /* Put only REG_DEAD notes for pieces that are
12130 not already dead or set. */
12132 for (i = regno; i < endregno;
12133 i += hard_regno_nregs[i][reg_raw_mode[i]])
12135 rtx piece = regno_reg_rtx[i];
12136 basic_block bb = this_basic_block;
12138 if (! dead_or_set_p (place, piece)
12139 && ! reg_bitfield_target_p (piece,
12140 PATTERN (place)))
12142 rtx new_note
12143 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12145 distribute_notes (new_note, place, place,
12146 NULL_RTX);
12148 else if (! refers_to_regno_p (i, i + 1,
12149 PATTERN (place), 0)
12150 && ! find_regno_fusage (place, USE, i))
12151 for (tem = PREV_INSN (place); ;
12152 tem = PREV_INSN (tem))
12154 if (! INSN_P (tem))
12156 if (tem == BB_HEAD (bb))
12158 SET_BIT (refresh_blocks,
12159 this_basic_block->index);
12160 break;
12162 continue;
12164 if (dead_or_set_p (tem, piece)
12165 || reg_bitfield_target_p (piece,
12166 PATTERN (tem)))
12168 REG_NOTES (tem)
12169 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12170 REG_NOTES (tem));
12171 break;
12177 place = 0;
12181 break;
12183 default:
12184 /* Any other notes should not be present at this point in the
12185 compilation. */
12186 abort ();
12189 if (place)
12191 XEXP (note, 1) = REG_NOTES (place);
12192 REG_NOTES (place) = note;
12194 else if ((REG_NOTE_KIND (note) == REG_DEAD
12195 || REG_NOTE_KIND (note) == REG_UNUSED)
12196 && REG_P (XEXP (note, 0)))
12197 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12199 if (place2)
12201 if ((REG_NOTE_KIND (note) == REG_DEAD
12202 || REG_NOTE_KIND (note) == REG_UNUSED)
12203 && REG_P (XEXP (note, 0)))
12204 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12206 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12207 REG_NOTE_KIND (note),
12208 XEXP (note, 0),
12209 REG_NOTES (place2));
12214 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12215 I3, I2, and I1 to new locations. This is also called to add a link
12216 pointing at I3 when I3's destination is changed. */
12218 static void
12219 distribute_links (rtx links)
12221 rtx link, next_link;
12223 for (link = links; link; link = next_link)
12225 rtx place = 0;
12226 rtx insn;
12227 rtx set, reg;
12229 next_link = XEXP (link, 1);
12231 /* If the insn that this link points to is a NOTE or isn't a single
12232 set, ignore it. In the latter case, it isn't clear what we
12233 can do other than ignore the link, since we can't tell which
12234 register it was for. Such links wouldn't be used by combine
12235 anyway.
12237 It is not possible for the destination of the target of the link to
12238 have been changed by combine. The only potential of this is if we
12239 replace I3, I2, and I1 by I3 and I2. But in that case the
12240 destination of I2 also remains unchanged. */
12242 if (NOTE_P (XEXP (link, 0))
12243 || (set = single_set (XEXP (link, 0))) == 0)
12244 continue;
12246 reg = SET_DEST (set);
12247 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12248 || GET_CODE (reg) == SIGN_EXTRACT
12249 || GET_CODE (reg) == STRICT_LOW_PART)
12250 reg = XEXP (reg, 0);
12252 /* A LOG_LINK is defined as being placed on the first insn that uses
12253 a register and points to the insn that sets the register. Start
12254 searching at the next insn after the target of the link and stop
12255 when we reach a set of the register or the end of the basic block.
12257 Note that this correctly handles the link that used to point from
12258 I3 to I2. Also note that not much searching is typically done here
12259 since most links don't point very far away. */
12261 for (insn = NEXT_INSN (XEXP (link, 0));
12262 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12263 || BB_HEAD (this_basic_block->next_bb) != insn));
12264 insn = NEXT_INSN (insn))
12265 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12267 if (reg_referenced_p (reg, PATTERN (insn)))
12268 place = insn;
12269 break;
12271 else if (CALL_P (insn)
12272 && find_reg_fusage (insn, USE, reg))
12274 place = insn;
12275 break;
12277 else if (INSN_P (insn) && reg_set_p (reg, insn))
12278 break;
12280 /* If we found a place to put the link, place it there unless there
12281 is already a link to the same insn as LINK at that point. */
12283 if (place)
12285 rtx link2;
12287 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12288 if (XEXP (link2, 0) == XEXP (link, 0))
12289 break;
12291 if (link2 == 0)
12293 XEXP (link, 1) = LOG_LINKS (place);
12294 LOG_LINKS (place) = link;
12296 /* Set added_links_insn to the earliest insn we added a
12297 link to. */
12298 if (added_links_insn == 0
12299 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12300 added_links_insn = place;
12306 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12307 Check whether the expression pointer to by LOC is a register or
12308 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12309 Otherwise return zero. */
12311 static int
12312 unmentioned_reg_p_1 (rtx *loc, void *expr)
12314 rtx x = *loc;
12316 if (x != NULL_RTX
12317 && (REG_P (x) || MEM_P (x))
12318 && ! reg_mentioned_p (x, (rtx) expr))
12319 return 1;
12320 return 0;
12323 /* Check for any register or memory mentioned in EQUIV that is not
12324 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12325 of EXPR where some registers may have been replaced by constants. */
12327 static bool
12328 unmentioned_reg_p (rtx equiv, rtx expr)
12330 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12333 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12335 static int
12336 insn_cuid (rtx insn)
12338 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12339 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12340 insn = NEXT_INSN (insn);
12342 if (INSN_UID (insn) > max_uid_cuid)
12343 abort ();
12345 return INSN_CUID (insn);
12348 void
12349 dump_combine_stats (FILE *file)
12351 fnotice
12352 (file,
12353 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12354 combine_attempts, combine_merges, combine_extras, combine_successes);
12357 void
12358 dump_combine_total_stats (FILE *file)
12360 fnotice
12361 (file,
12362 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12363 total_attempts, total_merges, total_extras, total_successes);