* arm.h (REVERSE_CONDITION): Define.
[official-gcc.git] / gcc / cfgcleanup.c
blob91412cf84d5810d5734768f88d88e62324fc614f
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains optimizer of the control flow. The main entry point is
23 cleanup_cfg. Following optimizations are performed:
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to its
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
29 eliminated).
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
41 #include "timevar.h"
42 #include "output.h"
43 #include "insn-config.h"
44 #include "flags.h"
45 #include "recog.h"
46 #include "toplev.h"
47 #include "cselib.h"
48 #include "params.h"
49 #include "tm_p.h"
50 #include "target.h"
51 #include "regs.h"
52 #include "cfglayout.h"
53 #include "emit-rtl.h"
55 /* cleanup_cfg maintains following flags for each basic block. */
57 enum bb_flags
59 /* Set if BB is the forwarder block to avoid too many
60 forwarder_block_p calls. */
61 BB_FORWARDER_BLOCK = 1,
62 BB_NONTHREADABLE_BLOCK = 2
65 #define BB_FLAGS(BB) (enum bb_flags) (BB)->aux
66 #define BB_SET_FLAG(BB, FLAG) \
67 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux | (FLAG))
68 #define BB_CLEAR_FLAG(BB, FLAG) \
69 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux & ~(FLAG))
71 #define FORWARDER_BLOCK_P(BB) (BB_FLAGS (BB) & BB_FORWARDER_BLOCK)
73 /* Set to true when we are running first pass of try_optimize_cfg loop. */
74 static bool first_pass;
75 static bool try_crossjump_to_edge (int, edge, edge);
76 static bool try_crossjump_bb (int, basic_block);
77 static bool outgoing_edges_match (int, basic_block, basic_block);
78 static int flow_find_cross_jump (int, basic_block, basic_block, rtx *, rtx *);
79 static bool insns_match_p (int, rtx, rtx);
81 static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
82 static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
83 static bool try_optimize_cfg (int);
84 static bool try_simplify_condjump (basic_block);
85 static bool try_forward_edges (int, basic_block);
86 static edge thread_jump (int, edge, basic_block);
87 static bool mark_effect (rtx, bitmap);
88 static void notice_new_block (basic_block);
89 static void update_forwarder_flag (basic_block);
90 static int mentions_nonequal_regs (rtx *, void *);
91 static void merge_memattrs (rtx, rtx);
93 /* Set flags for newly created block. */
95 static void
96 notice_new_block (basic_block bb)
98 if (!bb)
99 return;
101 if (forwarder_block_p (bb))
102 BB_SET_FLAG (bb, BB_FORWARDER_BLOCK);
105 /* Recompute forwarder flag after block has been modified. */
107 static void
108 update_forwarder_flag (basic_block bb)
110 if (forwarder_block_p (bb))
111 BB_SET_FLAG (bb, BB_FORWARDER_BLOCK);
112 else
113 BB_CLEAR_FLAG (bb, BB_FORWARDER_BLOCK);
116 /* Simplify a conditional jump around an unconditional jump.
117 Return true if something changed. */
119 static bool
120 try_simplify_condjump (basic_block cbranch_block)
122 basic_block jump_block, jump_dest_block, cbranch_dest_block;
123 edge cbranch_jump_edge, cbranch_fallthru_edge;
124 rtx cbranch_insn;
126 /* Verify that there are exactly two successors. */
127 if (!cbranch_block->succ
128 || !cbranch_block->succ->succ_next
129 || cbranch_block->succ->succ_next->succ_next)
130 return false;
132 /* Verify that we've got a normal conditional branch at the end
133 of the block. */
134 cbranch_insn = BB_END (cbranch_block);
135 if (!any_condjump_p (cbranch_insn))
136 return false;
138 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
139 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
141 /* The next block must not have multiple predecessors, must not
142 be the last block in the function, and must contain just the
143 unconditional jump. */
144 jump_block = cbranch_fallthru_edge->dest;
145 if (jump_block->pred->pred_next
146 || jump_block->next_bb == EXIT_BLOCK_PTR
147 || !FORWARDER_BLOCK_P (jump_block))
148 return false;
149 jump_dest_block = jump_block->succ->dest;
151 /* If we are partitioning hot/cold basic blocks, we don't want to
152 mess up unconditional or indirect jumps that cross between hot
153 and cold sections.
155 Basic block partitioning may result in some jumps that appear to
156 be optimizable (or blocks that appear to be mergeable), but which really
157 must be left untouched (they are required to make it safely across
158 partition boundaries). See the comments at the top of
159 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
161 if (flag_reorder_blocks_and_partition
162 && (BB_PARTITION (jump_block) != BB_PARTITION (jump_dest_block)
163 || (cbranch_jump_edge->flags & EDGE_CROSSING)))
164 return false;
166 /* The conditional branch must target the block after the
167 unconditional branch. */
168 cbranch_dest_block = cbranch_jump_edge->dest;
170 if (cbranch_dest_block == EXIT_BLOCK_PTR
171 || !can_fallthru (jump_block, cbranch_dest_block))
172 return false;
174 /* Invert the conditional branch. */
175 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
176 return false;
178 if (dump_file)
179 fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
180 INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
182 /* Success. Update the CFG to match. Note that after this point
183 the edge variable names appear backwards; the redirection is done
184 this way to preserve edge profile data. */
185 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
186 cbranch_dest_block);
187 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
188 jump_dest_block);
189 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
190 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
191 update_br_prob_note (cbranch_block);
193 /* Delete the block with the unconditional jump, and clean up the mess. */
194 delete_basic_block (jump_block);
195 tidy_fallthru_edge (cbranch_jump_edge);
196 update_forwarder_flag (cbranch_block);
198 return true;
201 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
202 on register. Used by jump threading. */
204 static bool
205 mark_effect (rtx exp, regset nonequal)
207 int regno;
208 rtx dest;
209 switch (GET_CODE (exp))
211 /* In case we do clobber the register, mark it as equal, as we know the
212 value is dead so it don't have to match. */
213 case CLOBBER:
214 if (REG_P (XEXP (exp, 0)))
216 dest = XEXP (exp, 0);
217 regno = REGNO (dest);
218 CLEAR_REGNO_REG_SET (nonequal, regno);
219 if (regno < FIRST_PSEUDO_REGISTER)
221 int n = hard_regno_nregs[regno][GET_MODE (dest)];
222 while (--n > 0)
223 CLEAR_REGNO_REG_SET (nonequal, regno + n);
226 return false;
228 case SET:
229 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
230 return false;
231 dest = SET_DEST (exp);
232 if (dest == pc_rtx)
233 return false;
234 if (!REG_P (dest))
235 return true;
236 regno = REGNO (dest);
237 SET_REGNO_REG_SET (nonequal, regno);
238 if (regno < FIRST_PSEUDO_REGISTER)
240 int n = hard_regno_nregs[regno][GET_MODE (dest)];
241 while (--n > 0)
242 SET_REGNO_REG_SET (nonequal, regno + n);
244 return false;
246 default:
247 return false;
251 /* Return nonzero if X is a register set in regset DATA.
252 Called via for_each_rtx. */
253 static int
254 mentions_nonequal_regs (rtx *x, void *data)
256 regset nonequal = (regset) data;
257 if (REG_P (*x))
259 int regno;
261 regno = REGNO (*x);
262 if (REGNO_REG_SET_P (nonequal, regno))
263 return 1;
264 if (regno < FIRST_PSEUDO_REGISTER)
266 int n = hard_regno_nregs[regno][GET_MODE (*x)];
267 while (--n > 0)
268 if (REGNO_REG_SET_P (nonequal, regno + n))
269 return 1;
272 return 0;
274 /* Attempt to prove that the basic block B will have no side effects and
275 always continues in the same edge if reached via E. Return the edge
276 if exist, NULL otherwise. */
278 static edge
279 thread_jump (int mode, edge e, basic_block b)
281 rtx set1, set2, cond1, cond2, insn;
282 enum rtx_code code1, code2, reversed_code2;
283 bool reverse1 = false;
284 int i;
285 regset nonequal;
286 bool failed = false;
288 if (BB_FLAGS (b) & BB_NONTHREADABLE_BLOCK)
289 return NULL;
291 /* At the moment, we do handle only conditional jumps, but later we may
292 want to extend this code to tablejumps and others. */
293 if (!e->src->succ->succ_next || e->src->succ->succ_next->succ_next)
294 return NULL;
295 if (!b->succ || !b->succ->succ_next || b->succ->succ_next->succ_next)
297 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
298 return NULL;
301 /* Second branch must end with onlyjump, as we will eliminate the jump. */
302 if (!any_condjump_p (BB_END (e->src)))
303 return NULL;
305 if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
307 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
308 return NULL;
311 set1 = pc_set (BB_END (e->src));
312 set2 = pc_set (BB_END (b));
313 if (((e->flags & EDGE_FALLTHRU) != 0)
314 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
315 reverse1 = true;
317 cond1 = XEXP (SET_SRC (set1), 0);
318 cond2 = XEXP (SET_SRC (set2), 0);
319 if (reverse1)
320 code1 = reversed_comparison_code (cond1, BB_END (e->src));
321 else
322 code1 = GET_CODE (cond1);
324 code2 = GET_CODE (cond2);
325 reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
327 if (!comparison_dominates_p (code1, code2)
328 && !comparison_dominates_p (code1, reversed_code2))
329 return NULL;
331 /* Ensure that the comparison operators are equivalent.
332 ??? This is far too pessimistic. We should allow swapped operands,
333 different CCmodes, or for example comparisons for interval, that
334 dominate even when operands are not equivalent. */
335 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
336 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
337 return NULL;
339 /* Short circuit cases where block B contains some side effects, as we can't
340 safely bypass it. */
341 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
342 insn = NEXT_INSN (insn))
343 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
345 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
346 return NULL;
349 cselib_init (false);
351 /* First process all values computed in the source basic block. */
352 for (insn = NEXT_INSN (BB_HEAD (e->src)); insn != NEXT_INSN (BB_END (e->src));
353 insn = NEXT_INSN (insn))
354 if (INSN_P (insn))
355 cselib_process_insn (insn);
357 nonequal = BITMAP_XMALLOC();
358 CLEAR_REG_SET (nonequal);
360 /* Now assume that we've continued by the edge E to B and continue
361 processing as if it were same basic block.
362 Our goal is to prove that whole block is an NOOP. */
364 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b)) && !failed;
365 insn = NEXT_INSN (insn))
367 if (INSN_P (insn))
369 rtx pat = PATTERN (insn);
371 if (GET_CODE (pat) == PARALLEL)
373 for (i = 0; i < XVECLEN (pat, 0); i++)
374 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
376 else
377 failed |= mark_effect (pat, nonequal);
380 cselib_process_insn (insn);
383 /* Later we should clear nonequal of dead registers. So far we don't
384 have life information in cfg_cleanup. */
385 if (failed)
387 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
388 goto failed_exit;
391 /* cond2 must not mention any register that is not equal to the
392 former block. */
393 if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
394 goto failed_exit;
396 /* In case liveness information is available, we need to prove equivalence
397 only of the live values. */
398 if (mode & CLEANUP_UPDATE_LIFE)
399 AND_REG_SET (nonequal, b->global_live_at_end);
401 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, goto failed_exit;);
403 BITMAP_XFREE (nonequal);
404 cselib_finish ();
405 if ((comparison_dominates_p (code1, code2) != 0)
406 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
407 return BRANCH_EDGE (b);
408 else
409 return FALLTHRU_EDGE (b);
411 failed_exit:
412 BITMAP_XFREE (nonequal);
413 cselib_finish ();
414 return NULL;
417 /* Attempt to forward edges leaving basic block B.
418 Return true if successful. */
420 static bool
421 try_forward_edges (int mode, basic_block b)
423 bool changed = false;
424 edge e, next, *threaded_edges = NULL;
426 /* If we are partitioning hot/cold basic blocks, we don't want to
427 mess up unconditional or indirect jumps that cross between hot
428 and cold sections.
430 Basic block partitioning may result in some jumps that appear to
431 be optimizable (or blocks that appear to be mergeable), but which really m
432 ust be left untouched (they are required to make it safely across
433 partition boundaries). See the comments at the top of
434 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
436 if (flag_reorder_blocks_and_partition
437 && find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX))
438 return false;
440 for (e = b->succ; e; e = next)
442 basic_block target, first;
443 int counter;
444 bool threaded = false;
445 int nthreaded_edges = 0;
446 bool may_thread = first_pass | (b->flags & BB_DIRTY);
448 next = e->succ_next;
450 /* Skip complex edges because we don't know how to update them.
452 Still handle fallthru edges, as we can succeed to forward fallthru
453 edge to the same place as the branch edge of conditional branch
454 and turn conditional branch to an unconditional branch. */
455 if (e->flags & EDGE_COMPLEX)
456 continue;
458 target = first = e->dest;
459 counter = 0;
461 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
462 up jumps that cross between hot/cold sections.
464 Basic block partitioning may result in some jumps that appear
465 to be optimizable (or blocks that appear to be mergeable), but which
466 really must be left untouched (they are required to make it safely
467 across partition boundaries). See the comments at the top of
468 bb-reorder.c:partition_hot_cold_basic_blocks for complete
469 details. */
471 if (flag_reorder_blocks_and_partition
472 && first != EXIT_BLOCK_PTR
473 && find_reg_note (BB_END (first), REG_CROSSING_JUMP, NULL_RTX))
474 return false;
476 while (counter < n_basic_blocks)
478 basic_block new_target = NULL;
479 bool new_target_threaded = false;
480 may_thread |= target->flags & BB_DIRTY;
482 if (FORWARDER_BLOCK_P (target)
483 && !(target->succ->flags & EDGE_CROSSING)
484 && target->succ->dest != EXIT_BLOCK_PTR)
486 /* Bypass trivial infinite loops. */
487 if (target == target->succ->dest)
488 counter = n_basic_blocks;
489 new_target = target->succ->dest;
492 /* Allow to thread only over one edge at time to simplify updating
493 of probabilities. */
494 else if ((mode & CLEANUP_THREADING) && may_thread)
496 edge t = thread_jump (mode, e, target);
497 if (t)
499 if (!threaded_edges)
500 threaded_edges = xmalloc (sizeof (*threaded_edges)
501 * n_basic_blocks);
502 else
504 int i;
506 /* Detect an infinite loop across blocks not
507 including the start block. */
508 for (i = 0; i < nthreaded_edges; ++i)
509 if (threaded_edges[i] == t)
510 break;
511 if (i < nthreaded_edges)
513 counter = n_basic_blocks;
514 break;
518 /* Detect an infinite loop across the start block. */
519 if (t->dest == b)
520 break;
522 if (nthreaded_edges >= n_basic_blocks)
523 abort ();
524 threaded_edges[nthreaded_edges++] = t;
526 new_target = t->dest;
527 new_target_threaded = true;
531 if (!new_target)
532 break;
534 /* Avoid killing of loop pre-headers, as it is the place loop
535 optimizer wants to hoist code to.
537 For fallthru forwarders, the LOOP_BEG note must appear between
538 the header of block and CODE_LABEL of the loop, for non forwarders
539 it must appear before the JUMP_INSN. */
540 if ((mode & CLEANUP_PRE_LOOP) && optimize)
542 rtx insn = (target->succ->flags & EDGE_FALLTHRU
543 ? BB_HEAD (target) : prev_nonnote_insn (BB_END (target)));
545 if (!NOTE_P (insn))
546 insn = NEXT_INSN (insn);
548 for (; insn && !LABEL_P (insn) && !INSN_P (insn);
549 insn = NEXT_INSN (insn))
550 if (NOTE_P (insn)
551 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
552 break;
554 if (NOTE_P (insn))
555 break;
557 /* Do not clean up branches to just past the end of a loop
558 at this time; it can mess up the loop optimizer's
559 recognition of some patterns. */
561 insn = PREV_INSN (BB_HEAD (target));
562 if (insn && NOTE_P (insn)
563 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
564 break;
567 counter++;
568 target = new_target;
569 threaded |= new_target_threaded;
572 if (counter >= n_basic_blocks)
574 if (dump_file)
575 fprintf (dump_file, "Infinite loop in BB %i.\n",
576 target->index);
578 else if (target == first)
579 ; /* We didn't do anything. */
580 else
582 /* Save the values now, as the edge may get removed. */
583 gcov_type edge_count = e->count;
584 int edge_probability = e->probability;
585 int edge_frequency;
586 int n = 0;
588 /* Don't force if target is exit block. */
589 if (threaded && target != EXIT_BLOCK_PTR)
591 notice_new_block (redirect_edge_and_branch_force (e, target));
592 if (dump_file)
593 fprintf (dump_file, "Conditionals threaded.\n");
595 else if (!redirect_edge_and_branch (e, target))
597 if (dump_file)
598 fprintf (dump_file,
599 "Forwarding edge %i->%i to %i failed.\n",
600 b->index, e->dest->index, target->index);
601 continue;
604 /* We successfully forwarded the edge. Now update profile
605 data: for each edge we traversed in the chain, remove
606 the original edge's execution count. */
607 edge_frequency = ((edge_probability * b->frequency
608 + REG_BR_PROB_BASE / 2)
609 / REG_BR_PROB_BASE);
611 if (!FORWARDER_BLOCK_P (b) && forwarder_block_p (b))
612 BB_SET_FLAG (b, BB_FORWARDER_BLOCK);
616 edge t;
618 first->count -= edge_count;
619 if (first->count < 0)
620 first->count = 0;
621 first->frequency -= edge_frequency;
622 if (first->frequency < 0)
623 first->frequency = 0;
624 if (first->succ->succ_next)
626 edge e;
627 int prob;
628 if (n >= nthreaded_edges)
629 abort ();
630 t = threaded_edges [n++];
631 if (t->src != first)
632 abort ();
633 if (first->frequency)
634 prob = edge_frequency * REG_BR_PROB_BASE / first->frequency;
635 else
636 prob = 0;
637 if (prob > t->probability)
638 prob = t->probability;
639 t->probability -= prob;
640 prob = REG_BR_PROB_BASE - prob;
641 if (prob <= 0)
643 first->succ->probability = REG_BR_PROB_BASE;
644 first->succ->succ_next->probability = 0;
646 else
647 for (e = first->succ; e; e = e->succ_next)
648 e->probability = ((e->probability * REG_BR_PROB_BASE)
649 / (double) prob);
650 update_br_prob_note (first);
652 else
654 /* It is possible that as the result of
655 threading we've removed edge as it is
656 threaded to the fallthru edge. Avoid
657 getting out of sync. */
658 if (n < nthreaded_edges
659 && first == threaded_edges [n]->src)
660 n++;
661 t = first->succ;
664 t->count -= edge_count;
665 if (t->count < 0)
666 t->count = 0;
667 first = t->dest;
669 while (first != target);
671 changed = true;
675 if (threaded_edges)
676 free (threaded_edges);
677 return changed;
681 /* Blocks A and B are to be merged into a single block. A has no incoming
682 fallthru edge, so it can be moved before B without adding or modifying
683 any jumps (aside from the jump from A to B). */
685 static void
686 merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
688 rtx barrier;
690 /* If we are partitioning hot/cold basic blocks, we don't want to
691 mess up unconditional or indirect jumps that cross between hot
692 and cold sections.
694 Basic block partitioning may result in some jumps that appear to
695 be optimizable (or blocks that appear to be mergeable), but which really
696 must be left untouched (they are required to make it safely across
697 partition boundaries). See the comments at the top of
698 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
700 if (flag_reorder_blocks_and_partition
701 && (BB_PARTITION (a) != BB_PARTITION (b)
702 || find_reg_note (BB_END (a), REG_CROSSING_JUMP, NULL_RTX)))
703 return;
705 barrier = next_nonnote_insn (BB_END (a));
706 if (!BARRIER_P (barrier))
707 abort ();
708 delete_insn (barrier);
710 /* Move block and loop notes out of the chain so that we do not
711 disturb their order.
713 ??? A better solution would be to squeeze out all the non-nested notes
714 and adjust the block trees appropriately. Even better would be to have
715 a tighter connection between block trees and rtl so that this is not
716 necessary. */
717 if (squeeze_notes (&BB_HEAD (a), &BB_END (a)))
718 abort ();
720 /* Scramble the insn chain. */
721 if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
722 reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
723 a->flags |= BB_DIRTY;
725 if (dump_file)
726 fprintf (dump_file, "Moved block %d before %d and merged.\n",
727 a->index, b->index);
729 /* Swap the records for the two blocks around. */
731 unlink_block (a);
732 link_block (a, b->prev_bb);
734 /* Now blocks A and B are contiguous. Merge them. */
735 merge_blocks (a, b);
738 /* Blocks A and B are to be merged into a single block. B has no outgoing
739 fallthru edge, so it can be moved after A without adding or modifying
740 any jumps (aside from the jump from A to B). */
742 static void
743 merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
745 rtx barrier, real_b_end;
746 rtx label, table;
748 /* If we are partitioning hot/cold basic blocks, we don't want to
749 mess up unconditional or indirect jumps that cross between hot
750 and cold sections.
752 Basic block partitioning may result in some jumps that appear to
753 be optimizable (or blocks that appear to be mergeable), but which really
754 must be left untouched (they are required to make it safely across
755 partition boundaries). See the comments at the top of
756 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
758 if (flag_reorder_blocks_and_partition
759 && (find_reg_note (BB_END (a), REG_CROSSING_JUMP, NULL_RTX)
760 || BB_PARTITION (a) != BB_PARTITION (b)))
761 return;
763 real_b_end = BB_END (b);
765 /* If there is a jump table following block B temporarily add the jump table
766 to block B so that it will also be moved to the correct location. */
767 if (tablejump_p (BB_END (b), &label, &table)
768 && prev_active_insn (label) == BB_END (b))
770 BB_END (b) = table;
773 /* There had better have been a barrier there. Delete it. */
774 barrier = NEXT_INSN (BB_END (b));
775 if (barrier && BARRIER_P (barrier))
776 delete_insn (barrier);
778 /* Move block and loop notes out of the chain so that we do not
779 disturb their order.
781 ??? A better solution would be to squeeze out all the non-nested notes
782 and adjust the block trees appropriately. Even better would be to have
783 a tighter connection between block trees and rtl so that this is not
784 necessary. */
785 if (squeeze_notes (&BB_HEAD (b), &BB_END (b)))
786 abort ();
788 /* Scramble the insn chain. */
789 reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
791 /* Restore the real end of b. */
792 BB_END (b) = real_b_end;
794 if (dump_file)
795 fprintf (dump_file, "Moved block %d after %d and merged.\n",
796 b->index, a->index);
798 /* Now blocks A and B are contiguous. Merge them. */
799 merge_blocks (a, b);
802 /* Attempt to merge basic blocks that are potentially non-adjacent.
803 Return NULL iff the attempt failed, otherwise return basic block
804 where cleanup_cfg should continue. Because the merging commonly
805 moves basic block away or introduces another optimization
806 possibility, return basic block just before B so cleanup_cfg don't
807 need to iterate.
809 It may be good idea to return basic block before C in the case
810 C has been moved after B and originally appeared earlier in the
811 insn sequence, but we have no information available about the
812 relative ordering of these two. Hopefully it is not too common. */
814 static basic_block
815 merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
817 basic_block next;
819 /* If we are partitioning hot/cold basic blocks, we don't want to
820 mess up unconditional or indirect jumps that cross between hot
821 and cold sections.
823 Basic block partitioning may result in some jumps that appear to
824 be optimizable (or blocks that appear to be mergeable), but which really
825 must be left untouched (they are required to make it safely across
826 partition boundaries). See the comments at the top of
827 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
829 if (flag_reorder_blocks_and_partition
830 && (find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
831 || find_reg_note (BB_END (c), REG_CROSSING_JUMP, NULL_RTX)
832 || BB_PARTITION (b) != BB_PARTITION (c)))
833 return NULL;
837 /* If B has a fallthru edge to C, no need to move anything. */
838 if (e->flags & EDGE_FALLTHRU)
840 int b_index = b->index, c_index = c->index;
841 merge_blocks (b, c);
842 update_forwarder_flag (b);
844 if (dump_file)
845 fprintf (dump_file, "Merged %d and %d without moving.\n",
846 b_index, c_index);
848 return b->prev_bb == ENTRY_BLOCK_PTR ? b : b->prev_bb;
851 /* Otherwise we will need to move code around. Do that only if expensive
852 transformations are allowed. */
853 else if (mode & CLEANUP_EXPENSIVE)
855 edge tmp_edge, b_fallthru_edge;
856 bool c_has_outgoing_fallthru;
857 bool b_has_incoming_fallthru;
859 /* Avoid overactive code motion, as the forwarder blocks should be
860 eliminated by edge redirection instead. One exception might have
861 been if B is a forwarder block and C has no fallthru edge, but
862 that should be cleaned up by bb-reorder instead. */
863 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
864 return NULL;
866 /* We must make sure to not munge nesting of lexical blocks,
867 and loop notes. This is done by squeezing out all the notes
868 and leaving them there to lie. Not ideal, but functional. */
870 for (tmp_edge = c->succ; tmp_edge; tmp_edge = tmp_edge->succ_next)
871 if (tmp_edge->flags & EDGE_FALLTHRU)
872 break;
874 c_has_outgoing_fallthru = (tmp_edge != NULL);
876 for (tmp_edge = b->pred; tmp_edge; tmp_edge = tmp_edge->pred_next)
877 if (tmp_edge->flags & EDGE_FALLTHRU)
878 break;
880 b_has_incoming_fallthru = (tmp_edge != NULL);
881 b_fallthru_edge = tmp_edge;
882 next = b->prev_bb;
883 if (next == c)
884 next = next->prev_bb;
886 /* Otherwise, we're going to try to move C after B. If C does
887 not have an outgoing fallthru, then it can be moved
888 immediately after B without introducing or modifying jumps. */
889 if (! c_has_outgoing_fallthru)
891 merge_blocks_move_successor_nojumps (b, c);
892 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
895 /* If B does not have an incoming fallthru, then it can be moved
896 immediately before C without introducing or modifying jumps.
897 C cannot be the first block, so we do not have to worry about
898 accessing a non-existent block. */
900 if (b_has_incoming_fallthru)
902 basic_block bb;
904 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR)
905 return NULL;
906 bb = force_nonfallthru (b_fallthru_edge);
907 if (bb)
908 notice_new_block (bb);
911 merge_blocks_move_predecessor_nojumps (b, c);
912 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
915 return NULL;
919 /* Removes the memory attributes of MEM expression
920 if they are not equal. */
922 void
923 merge_memattrs (rtx x, rtx y)
925 int i;
926 int j;
927 enum rtx_code code;
928 const char *fmt;
930 if (x == y)
931 return;
932 if (x == 0 || y == 0)
933 return;
935 code = GET_CODE (x);
937 if (code != GET_CODE (y))
938 return;
940 if (GET_MODE (x) != GET_MODE (y))
941 return;
943 if (code == MEM && MEM_ATTRS (x) != MEM_ATTRS (y))
945 if (! MEM_ATTRS (x))
946 MEM_ATTRS (y) = 0;
947 else if (! MEM_ATTRS (y))
948 MEM_ATTRS (x) = 0;
949 else
951 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
953 set_mem_alias_set (x, 0);
954 set_mem_alias_set (y, 0);
957 if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
959 set_mem_expr (x, 0);
960 set_mem_expr (y, 0);
961 set_mem_offset (x, 0);
962 set_mem_offset (y, 0);
964 else if (MEM_OFFSET (x) != MEM_OFFSET (y))
966 set_mem_offset (x, 0);
967 set_mem_offset (y, 0);
970 set_mem_size (x, MAX (MEM_SIZE (x), MEM_SIZE (y)));
971 set_mem_size (y, MEM_SIZE (x));
973 set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
974 set_mem_align (y, MEM_ALIGN (x));
978 fmt = GET_RTX_FORMAT (code);
979 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
981 switch (fmt[i])
983 case 'E':
984 /* Two vectors must have the same length. */
985 if (XVECLEN (x, i) != XVECLEN (y, i))
986 return;
988 for (j = 0; j < XVECLEN (x, i); j++)
989 merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
991 break;
993 case 'e':
994 merge_memattrs (XEXP (x, i), XEXP (y, i));
997 return;
1001 /* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
1003 static bool
1004 insns_match_p (int mode ATTRIBUTE_UNUSED, rtx i1, rtx i2)
1006 rtx p1, p2;
1008 /* Verify that I1 and I2 are equivalent. */
1009 if (GET_CODE (i1) != GET_CODE (i2))
1010 return false;
1012 p1 = PATTERN (i1);
1013 p2 = PATTERN (i2);
1015 if (GET_CODE (p1) != GET_CODE (p2))
1016 return false;
1018 /* If this is a CALL_INSN, compare register usage information.
1019 If we don't check this on stack register machines, the two
1020 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1021 numbers of stack registers in the same basic block.
1022 If we don't check this on machines with delay slots, a delay slot may
1023 be filled that clobbers a parameter expected by the subroutine.
1025 ??? We take the simple route for now and assume that if they're
1026 equal, they were constructed identically. */
1028 if (CALL_P (i1)
1029 && (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
1030 CALL_INSN_FUNCTION_USAGE (i2))
1031 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2)))
1032 return false;
1034 #ifdef STACK_REGS
1035 /* If cross_jump_death_matters is not 0, the insn's mode
1036 indicates whether or not the insn contains any stack-like
1037 regs. */
1039 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
1041 /* If register stack conversion has already been done, then
1042 death notes must also be compared before it is certain that
1043 the two instruction streams match. */
1045 rtx note;
1046 HARD_REG_SET i1_regset, i2_regset;
1048 CLEAR_HARD_REG_SET (i1_regset);
1049 CLEAR_HARD_REG_SET (i2_regset);
1051 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1052 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1053 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1055 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1056 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1057 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1059 GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
1061 return false;
1063 done:
1066 #endif
1068 if (reload_completed
1069 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
1070 return true;
1072 /* Do not do EQUIV substitution after reload. First, we're undoing the
1073 work of reload_cse. Second, we may be undoing the work of the post-
1074 reload splitting pass. */
1075 /* ??? Possibly add a new phase switch variable that can be used by
1076 targets to disallow the troublesome insns after splitting. */
1077 if (!reload_completed)
1079 /* The following code helps take care of G++ cleanups. */
1080 rtx equiv1 = find_reg_equal_equiv_note (i1);
1081 rtx equiv2 = find_reg_equal_equiv_note (i2);
1083 if (equiv1 && equiv2
1084 /* If the equivalences are not to a constant, they may
1085 reference pseudos that no longer exist, so we can't
1086 use them. */
1087 && (! reload_completed
1088 || (CONSTANT_P (XEXP (equiv1, 0))
1089 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))))
1091 rtx s1 = single_set (i1);
1092 rtx s2 = single_set (i2);
1093 if (s1 != 0 && s2 != 0
1094 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
1096 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
1097 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
1098 if (! rtx_renumbered_equal_p (p1, p2))
1099 cancel_changes (0);
1100 else if (apply_change_group ())
1101 return true;
1106 return false;
1109 /* Look through the insns at the end of BB1 and BB2 and find the longest
1110 sequence that are equivalent. Store the first insns for that sequence
1111 in *F1 and *F2 and return the sequence length.
1113 To simplify callers of this function, if the blocks match exactly,
1114 store the head of the blocks in *F1 and *F2. */
1116 static int
1117 flow_find_cross_jump (int mode ATTRIBUTE_UNUSED, basic_block bb1,
1118 basic_block bb2, rtx *f1, rtx *f2)
1120 rtx i1, i2, last1, last2, afterlast1, afterlast2;
1121 int ninsns = 0;
1123 /* Skip simple jumps at the end of the blocks. Complex jumps still
1124 need to be compared for equivalence, which we'll do below. */
1126 i1 = BB_END (bb1);
1127 last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
1128 if (onlyjump_p (i1)
1129 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1131 last1 = i1;
1132 i1 = PREV_INSN (i1);
1135 i2 = BB_END (bb2);
1136 if (onlyjump_p (i2)
1137 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1139 last2 = i2;
1140 /* Count everything except for unconditional jump as insn. */
1141 if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
1142 ninsns++;
1143 i2 = PREV_INSN (i2);
1146 while (true)
1148 /* Ignore notes. */
1149 while (!INSN_P (i1) && i1 != BB_HEAD (bb1))
1150 i1 = PREV_INSN (i1);
1152 while (!INSN_P (i2) && i2 != BB_HEAD (bb2))
1153 i2 = PREV_INSN (i2);
1155 if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
1156 break;
1158 if (!insns_match_p (mode, i1, i2))
1159 break;
1161 merge_memattrs (i1, i2);
1163 /* Don't begin a cross-jump with a NOTE insn. */
1164 if (INSN_P (i1))
1166 /* If the merged insns have different REG_EQUAL notes, then
1167 remove them. */
1168 rtx equiv1 = find_reg_equal_equiv_note (i1);
1169 rtx equiv2 = find_reg_equal_equiv_note (i2);
1171 if (equiv1 && !equiv2)
1172 remove_note (i1, equiv1);
1173 else if (!equiv1 && equiv2)
1174 remove_note (i2, equiv2);
1175 else if (equiv1 && equiv2
1176 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1178 remove_note (i1, equiv1);
1179 remove_note (i2, equiv2);
1182 afterlast1 = last1, afterlast2 = last2;
1183 last1 = i1, last2 = i2;
1184 ninsns++;
1187 i1 = PREV_INSN (i1);
1188 i2 = PREV_INSN (i2);
1191 #ifdef HAVE_cc0
1192 /* Don't allow the insn after a compare to be shared by
1193 cross-jumping unless the compare is also shared. */
1194 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
1195 last1 = afterlast1, last2 = afterlast2, ninsns--;
1196 #endif
1198 /* Include preceding notes and labels in the cross-jump. One,
1199 this may bring us to the head of the blocks as requested above.
1200 Two, it keeps line number notes as matched as may be. */
1201 if (ninsns)
1203 while (last1 != BB_HEAD (bb1) && !INSN_P (PREV_INSN (last1)))
1204 last1 = PREV_INSN (last1);
1206 if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
1207 last1 = PREV_INSN (last1);
1209 while (last2 != BB_HEAD (bb2) && !INSN_P (PREV_INSN (last2)))
1210 last2 = PREV_INSN (last2);
1212 if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
1213 last2 = PREV_INSN (last2);
1215 *f1 = last1;
1216 *f2 = last2;
1219 return ninsns;
1222 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1223 the branch instruction. This means that if we commonize the control
1224 flow before end of the basic block, the semantic remains unchanged.
1226 We may assume that there exists one edge with a common destination. */
1228 static bool
1229 outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
1231 int nehedges1 = 0, nehedges2 = 0;
1232 edge fallthru1 = 0, fallthru2 = 0;
1233 edge e1, e2;
1235 /* If BB1 has only one successor, we may be looking at either an
1236 unconditional jump, or a fake edge to exit. */
1237 if (bb1->succ && !bb1->succ->succ_next
1238 && (bb1->succ->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1239 && (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
1240 return (bb2->succ && !bb2->succ->succ_next
1241 && (bb2->succ->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1242 && (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
1244 /* Match conditional jumps - this may get tricky when fallthru and branch
1245 edges are crossed. */
1246 if (bb1->succ
1247 && bb1->succ->succ_next
1248 && !bb1->succ->succ_next->succ_next
1249 && any_condjump_p (BB_END (bb1))
1250 && onlyjump_p (BB_END (bb1)))
1252 edge b1, f1, b2, f2;
1253 bool reverse, match;
1254 rtx set1, set2, cond1, cond2;
1255 enum rtx_code code1, code2;
1257 if (!bb2->succ
1258 || !bb2->succ->succ_next
1259 || bb2->succ->succ_next->succ_next
1260 || !any_condjump_p (BB_END (bb2))
1261 || !onlyjump_p (BB_END (bb2)))
1262 return false;
1264 b1 = BRANCH_EDGE (bb1);
1265 b2 = BRANCH_EDGE (bb2);
1266 f1 = FALLTHRU_EDGE (bb1);
1267 f2 = FALLTHRU_EDGE (bb2);
1269 /* Get around possible forwarders on fallthru edges. Other cases
1270 should be optimized out already. */
1271 if (FORWARDER_BLOCK_P (f1->dest))
1272 f1 = f1->dest->succ;
1274 if (FORWARDER_BLOCK_P (f2->dest))
1275 f2 = f2->dest->succ;
1277 /* To simplify use of this function, return false if there are
1278 unneeded forwarder blocks. These will get eliminated later
1279 during cleanup_cfg. */
1280 if (FORWARDER_BLOCK_P (f1->dest)
1281 || FORWARDER_BLOCK_P (f2->dest)
1282 || FORWARDER_BLOCK_P (b1->dest)
1283 || FORWARDER_BLOCK_P (b2->dest))
1284 return false;
1286 if (f1->dest == f2->dest && b1->dest == b2->dest)
1287 reverse = false;
1288 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1289 reverse = true;
1290 else
1291 return false;
1293 set1 = pc_set (BB_END (bb1));
1294 set2 = pc_set (BB_END (bb2));
1295 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1296 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1297 reverse = !reverse;
1299 cond1 = XEXP (SET_SRC (set1), 0);
1300 cond2 = XEXP (SET_SRC (set2), 0);
1301 code1 = GET_CODE (cond1);
1302 if (reverse)
1303 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1304 else
1305 code2 = GET_CODE (cond2);
1307 if (code2 == UNKNOWN)
1308 return false;
1310 /* Verify codes and operands match. */
1311 match = ((code1 == code2
1312 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1313 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1314 || (code1 == swap_condition (code2)
1315 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1316 XEXP (cond2, 0))
1317 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1318 XEXP (cond2, 1))));
1320 /* If we return true, we will join the blocks. Which means that
1321 we will only have one branch prediction bit to work with. Thus
1322 we require the existing branches to have probabilities that are
1323 roughly similar. */
1324 if (match
1325 && !optimize_size
1326 && maybe_hot_bb_p (bb1)
1327 && maybe_hot_bb_p (bb2))
1329 int prob2;
1331 if (b1->dest == b2->dest)
1332 prob2 = b2->probability;
1333 else
1334 /* Do not use f2 probability as f2 may be forwarded. */
1335 prob2 = REG_BR_PROB_BASE - b2->probability;
1337 /* Fail if the difference in probabilities is greater than 50%.
1338 This rules out two well-predicted branches with opposite
1339 outcomes. */
1340 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1342 if (dump_file)
1343 fprintf (dump_file,
1344 "Outcomes of branch in bb %i and %i differs to much (%i %i)\n",
1345 bb1->index, bb2->index, b1->probability, prob2);
1347 return false;
1351 if (dump_file && match)
1352 fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
1353 bb1->index, bb2->index);
1355 return match;
1358 /* Generic case - we are seeing a computed jump, table jump or trapping
1359 instruction. */
1361 #ifndef CASE_DROPS_THROUGH
1362 /* Check whether there are tablejumps in the end of BB1 and BB2.
1363 Return true if they are identical. */
1365 rtx label1, label2;
1366 rtx table1, table2;
1368 if (tablejump_p (BB_END (bb1), &label1, &table1)
1369 && tablejump_p (BB_END (bb2), &label2, &table2)
1370 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1372 /* The labels should never be the same rtx. If they really are same
1373 the jump tables are same too. So disable crossjumping of blocks BB1
1374 and BB2 because when deleting the common insns in the end of BB1
1375 by delete_basic_block () the jump table would be deleted too. */
1376 /* If LABEL2 is referenced in BB1->END do not do anything
1377 because we would loose information when replacing
1378 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1379 if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
1381 /* Set IDENTICAL to true when the tables are identical. */
1382 bool identical = false;
1383 rtx p1, p2;
1385 p1 = PATTERN (table1);
1386 p2 = PATTERN (table2);
1387 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1389 identical = true;
1391 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1392 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1393 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1394 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1396 int i;
1398 identical = true;
1399 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1400 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1401 identical = false;
1404 if (identical)
1406 replace_label_data rr;
1407 bool match;
1409 /* Temporarily replace references to LABEL1 with LABEL2
1410 in BB1->END so that we could compare the instructions. */
1411 rr.r1 = label1;
1412 rr.r2 = label2;
1413 rr.update_label_nuses = false;
1414 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1416 match = insns_match_p (mode, BB_END (bb1), BB_END (bb2));
1417 if (dump_file && match)
1418 fprintf (dump_file,
1419 "Tablejumps in bb %i and %i match.\n",
1420 bb1->index, bb2->index);
1422 /* Set the original label in BB1->END because when deleting
1423 a block whose end is a tablejump, the tablejump referenced
1424 from the instruction is deleted too. */
1425 rr.r1 = label2;
1426 rr.r2 = label1;
1427 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1429 return match;
1432 return false;
1435 #endif
1437 /* First ensure that the instructions match. There may be many outgoing
1438 edges so this test is generally cheaper. */
1439 if (!insns_match_p (mode, BB_END (bb1), BB_END (bb2)))
1440 return false;
1442 /* Search the outgoing edges, ensure that the counts do match, find possible
1443 fallthru and exception handling edges since these needs more
1444 validation. */
1445 for (e1 = bb1->succ, e2 = bb2->succ; e1 && e2;
1446 e1 = e1->succ_next, e2 = e2->succ_next)
1448 if (e1->flags & EDGE_EH)
1449 nehedges1++;
1451 if (e2->flags & EDGE_EH)
1452 nehedges2++;
1454 if (e1->flags & EDGE_FALLTHRU)
1455 fallthru1 = e1;
1456 if (e2->flags & EDGE_FALLTHRU)
1457 fallthru2 = e2;
1460 /* If number of edges of various types does not match, fail. */
1461 if (e1 || e2
1462 || nehedges1 != nehedges2
1463 || (fallthru1 != 0) != (fallthru2 != 0))
1464 return false;
1466 /* fallthru edges must be forwarded to the same destination. */
1467 if (fallthru1)
1469 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1470 ? fallthru1->dest->succ->dest: fallthru1->dest);
1471 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1472 ? fallthru2->dest->succ->dest: fallthru2->dest);
1474 if (d1 != d2)
1475 return false;
1478 /* Ensure the same EH region. */
1480 rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
1481 rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
1483 if (!n1 && n2)
1484 return false;
1486 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1487 return false;
1490 /* We don't need to match the rest of edges as above checks should be enough
1491 to ensure that they are equivalent. */
1492 return true;
1495 /* E1 and E2 are edges with the same destination block. Search their
1496 predecessors for common code. If found, redirect control flow from
1497 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
1499 static bool
1500 try_crossjump_to_edge (int mode, edge e1, edge e2)
1502 int nmatch;
1503 basic_block src1 = e1->src, src2 = e2->src;
1504 basic_block redirect_to, redirect_from, to_remove;
1505 rtx newpos1, newpos2;
1506 edge s;
1508 newpos1 = newpos2 = NULL_RTX;
1510 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1511 to try this optimization.
1513 Basic block partitioning may result in some jumps that appear to
1514 be optimizable (or blocks that appear to be mergeable), but which really
1515 must be left untouched (they are required to make it safely across
1516 partition boundaries). See the comments at the top of
1517 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1519 if (flag_reorder_blocks_and_partition && no_new_pseudos)
1520 return false;
1522 /* Search backward through forwarder blocks. We don't need to worry
1523 about multiple entry or chained forwarders, as they will be optimized
1524 away. We do this to look past the unconditional jump following a
1525 conditional jump that is required due to the current CFG shape. */
1526 if (src1->pred
1527 && !src1->pred->pred_next
1528 && FORWARDER_BLOCK_P (src1))
1529 e1 = src1->pred, src1 = e1->src;
1531 if (src2->pred
1532 && !src2->pred->pred_next
1533 && FORWARDER_BLOCK_P (src2))
1534 e2 = src2->pred, src2 = e2->src;
1536 /* Nothing to do if we reach ENTRY, or a common source block. */
1537 if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
1538 return false;
1539 if (src1 == src2)
1540 return false;
1542 /* Seeing more than 1 forwarder blocks would confuse us later... */
1543 if (FORWARDER_BLOCK_P (e1->dest)
1544 && FORWARDER_BLOCK_P (e1->dest->succ->dest))
1545 return false;
1547 if (FORWARDER_BLOCK_P (e2->dest)
1548 && FORWARDER_BLOCK_P (e2->dest->succ->dest))
1549 return false;
1551 /* Likewise with dead code (possibly newly created by the other optimizations
1552 of cfg_cleanup). */
1553 if (!src1->pred || !src2->pred)
1554 return false;
1556 /* Look for the common insn sequence, part the first ... */
1557 if (!outgoing_edges_match (mode, src1, src2))
1558 return false;
1560 /* ... and part the second. */
1561 nmatch = flow_find_cross_jump (mode, src1, src2, &newpos1, &newpos2);
1563 /* Don't proceed with the crossjump unless we found a sufficient number
1564 of matching instructions or the 'from' block was totally matched
1565 (such that its predecessors will hopefully be redirected and the
1566 block removed). */
1567 if ((nmatch < PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS))
1568 && (newpos1 != BB_HEAD (src1)))
1569 return false;
1571 #ifndef CASE_DROPS_THROUGH
1572 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1573 will be deleted.
1574 If we have tablejumps in the end of SRC1 and SRC2
1575 they have been already compared for equivalence in outgoing_edges_match ()
1576 so replace the references to TABLE1 by references to TABLE2. */
1578 rtx label1, label2;
1579 rtx table1, table2;
1581 if (tablejump_p (BB_END (src1), &label1, &table1)
1582 && tablejump_p (BB_END (src2), &label2, &table2)
1583 && label1 != label2)
1585 replace_label_data rr;
1586 rtx insn;
1588 /* Replace references to LABEL1 with LABEL2. */
1589 rr.r1 = label1;
1590 rr.r2 = label2;
1591 rr.update_label_nuses = true;
1592 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1594 /* Do not replace the label in SRC1->END because when deleting
1595 a block whose end is a tablejump, the tablejump referenced
1596 from the instruction is deleted too. */
1597 if (insn != BB_END (src1))
1598 for_each_rtx (&insn, replace_label, &rr);
1602 #endif
1604 /* Avoid splitting if possible. */
1605 if (newpos2 == BB_HEAD (src2))
1606 redirect_to = src2;
1607 else
1609 if (dump_file)
1610 fprintf (dump_file, "Splitting bb %i before %i insns\n",
1611 src2->index, nmatch);
1612 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
1615 if (dump_file)
1616 fprintf (dump_file,
1617 "Cross jumping from bb %i to bb %i; %i common insns\n",
1618 src1->index, src2->index, nmatch);
1620 redirect_to->count += src1->count;
1621 redirect_to->frequency += src1->frequency;
1622 /* We may have some registers visible trought the block. */
1623 redirect_to->flags |= BB_DIRTY;
1625 /* Recompute the frequencies and counts of outgoing edges. */
1626 for (s = redirect_to->succ; s; s = s->succ_next)
1628 edge s2;
1629 basic_block d = s->dest;
1631 if (FORWARDER_BLOCK_P (d))
1632 d = d->succ->dest;
1634 for (s2 = src1->succ; ; s2 = s2->succ_next)
1636 basic_block d2 = s2->dest;
1637 if (FORWARDER_BLOCK_P (d2))
1638 d2 = d2->succ->dest;
1639 if (d == d2)
1640 break;
1643 s->count += s2->count;
1645 /* Take care to update possible forwarder blocks. We verified
1646 that there is no more than one in the chain, so we can't run
1647 into infinite loop. */
1648 if (FORWARDER_BLOCK_P (s->dest))
1650 s->dest->succ->count += s2->count;
1651 s->dest->count += s2->count;
1652 s->dest->frequency += EDGE_FREQUENCY (s);
1655 if (FORWARDER_BLOCK_P (s2->dest))
1657 s2->dest->succ->count -= s2->count;
1658 if (s2->dest->succ->count < 0)
1659 s2->dest->succ->count = 0;
1660 s2->dest->count -= s2->count;
1661 s2->dest->frequency -= EDGE_FREQUENCY (s);
1662 if (s2->dest->frequency < 0)
1663 s2->dest->frequency = 0;
1664 if (s2->dest->count < 0)
1665 s2->dest->count = 0;
1668 if (!redirect_to->frequency && !src1->frequency)
1669 s->probability = (s->probability + s2->probability) / 2;
1670 else
1671 s->probability
1672 = ((s->probability * redirect_to->frequency +
1673 s2->probability * src1->frequency)
1674 / (redirect_to->frequency + src1->frequency));
1677 update_br_prob_note (redirect_to);
1679 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
1681 /* Skip possible basic block header. */
1682 if (LABEL_P (newpos1))
1683 newpos1 = NEXT_INSN (newpos1);
1685 if (NOTE_P (newpos1))
1686 newpos1 = NEXT_INSN (newpos1);
1688 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
1689 to_remove = redirect_from->succ->dest;
1691 redirect_edge_and_branch_force (redirect_from->succ, redirect_to);
1692 delete_basic_block (to_remove);
1694 update_forwarder_flag (redirect_from);
1696 return true;
1699 /* Search the predecessors of BB for common insn sequences. When found,
1700 share code between them by redirecting control flow. Return true if
1701 any changes made. */
1703 static bool
1704 try_crossjump_bb (int mode, basic_block bb)
1706 edge e, e2, nexte2, nexte, fallthru;
1707 bool changed;
1708 int n = 0, max;
1710 /* Nothing to do if there is not at least two incoming edges. */
1711 if (!bb->pred || !bb->pred->pred_next)
1712 return false;
1714 /* If we are partitioning hot/cold basic blocks, we don't want to
1715 mess up unconditional or indirect jumps that cross between hot
1716 and cold sections.
1718 Basic block partitioning may result in some jumps that appear to
1719 be optimizable (or blocks that appear to be mergeable), but which really
1720 must be left untouched (they are required to make it safely across
1721 partition boundaries). See the comments at the top of
1722 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1724 if (flag_reorder_blocks_and_partition
1725 && (BB_PARTITION (bb->pred->src) != BB_PARTITION (bb->pred->pred_next->src)
1726 || (bb->pred->flags & EDGE_CROSSING)))
1727 return false;
1729 /* It is always cheapest to redirect a block that ends in a branch to
1730 a block that falls through into BB, as that adds no branches to the
1731 program. We'll try that combination first. */
1732 fallthru = NULL;
1733 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
1734 for (e = bb->pred; e ; e = e->pred_next, n++)
1736 if (e->flags & EDGE_FALLTHRU)
1737 fallthru = e;
1738 if (n > max)
1739 return false;
1742 changed = false;
1743 for (e = bb->pred; e; e = nexte)
1745 nexte = e->pred_next;
1747 /* As noted above, first try with the fallthru predecessor. */
1748 if (fallthru)
1750 /* Don't combine the fallthru edge into anything else.
1751 If there is a match, we'll do it the other way around. */
1752 if (e == fallthru)
1753 continue;
1754 /* If nothing changed since the last attempt, there is nothing
1755 we can do. */
1756 if (!first_pass
1757 && (!(e->src->flags & BB_DIRTY)
1758 && !(fallthru->src->flags & BB_DIRTY)))
1759 continue;
1761 if (try_crossjump_to_edge (mode, e, fallthru))
1763 changed = true;
1764 nexte = bb->pred;
1765 continue;
1769 /* Non-obvious work limiting check: Recognize that we're going
1770 to call try_crossjump_bb on every basic block. So if we have
1771 two blocks with lots of outgoing edges (a switch) and they
1772 share lots of common destinations, then we would do the
1773 cross-jump check once for each common destination.
1775 Now, if the blocks actually are cross-jump candidates, then
1776 all of their destinations will be shared. Which means that
1777 we only need check them for cross-jump candidacy once. We
1778 can eliminate redundant checks of crossjump(A,B) by arbitrarily
1779 choosing to do the check from the block for which the edge
1780 in question is the first successor of A. */
1781 if (e->src->succ != e)
1782 continue;
1784 for (e2 = bb->pred; e2; e2 = nexte2)
1786 nexte2 = e2->pred_next;
1788 if (e2 == e)
1789 continue;
1791 /* We've already checked the fallthru edge above. */
1792 if (e2 == fallthru)
1793 continue;
1795 /* The "first successor" check above only prevents multiple
1796 checks of crossjump(A,B). In order to prevent redundant
1797 checks of crossjump(B,A), require that A be the block
1798 with the lowest index. */
1799 if (e->src->index > e2->src->index)
1800 continue;
1802 /* If nothing changed since the last attempt, there is nothing
1803 we can do. */
1804 if (!first_pass
1805 && (!(e->src->flags & BB_DIRTY)
1806 && !(e2->src->flags & BB_DIRTY)))
1807 continue;
1809 if (try_crossjump_to_edge (mode, e, e2))
1811 changed = true;
1812 nexte = bb->pred;
1813 break;
1818 return changed;
1821 /* Do simple CFG optimizations - basic block merging, simplifying of jump
1822 instructions etc. Return nonzero if changes were made. */
1824 static bool
1825 try_optimize_cfg (int mode)
1827 bool changed_overall = false;
1828 bool changed;
1829 int iterations = 0;
1830 basic_block bb, b, next;
1832 if (mode & CLEANUP_CROSSJUMP)
1833 add_noreturn_fake_exit_edges ();
1835 FOR_EACH_BB (bb)
1836 update_forwarder_flag (bb);
1838 if (mode & (CLEANUP_UPDATE_LIFE | CLEANUP_CROSSJUMP | CLEANUP_THREADING))
1839 clear_bb_flags ();
1841 if (! targetm.cannot_modify_jumps_p ())
1843 first_pass = true;
1844 /* Attempt to merge blocks as made possible by edge removal. If
1845 a block has only one successor, and the successor has only
1846 one predecessor, they may be combined. */
1849 changed = false;
1850 iterations++;
1852 if (dump_file)
1853 fprintf (dump_file,
1854 "\n\ntry_optimize_cfg iteration %i\n\n",
1855 iterations);
1857 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR;)
1859 basic_block c;
1860 edge s;
1861 bool changed_here = false;
1863 /* Delete trivially dead basic blocks. */
1864 while (b->pred == NULL)
1866 c = b->prev_bb;
1867 if (dump_file)
1868 fprintf (dump_file, "Deleting block %i.\n",
1869 b->index);
1871 delete_basic_block (b);
1872 if (!(mode & CLEANUP_CFGLAYOUT))
1873 changed = true;
1874 b = c;
1877 /* Remove code labels no longer used. */
1878 if (b->pred->pred_next == NULL
1879 && (b->pred->flags & EDGE_FALLTHRU)
1880 && !(b->pred->flags & EDGE_COMPLEX)
1881 && LABEL_P (BB_HEAD (b))
1882 /* If the previous block ends with a branch to this
1883 block, we can't delete the label. Normally this
1884 is a condjump that is yet to be simplified, but
1885 if CASE_DROPS_THRU, this can be a tablejump with
1886 some element going to the same place as the
1887 default (fallthru). */
1888 && (b->pred->src == ENTRY_BLOCK_PTR
1889 || !JUMP_P (BB_END (b->pred->src))
1890 || ! label_is_jump_target_p (BB_HEAD (b),
1891 BB_END (b->pred->src))))
1893 rtx label = BB_HEAD (b);
1895 delete_insn_chain (label, label);
1896 /* In the case label is undeletable, move it after the
1897 BASIC_BLOCK note. */
1898 if (NOTE_LINE_NUMBER (BB_HEAD (b)) == NOTE_INSN_DELETED_LABEL)
1900 rtx bb_note = NEXT_INSN (BB_HEAD (b));
1902 reorder_insns_nobb (label, label, bb_note);
1903 BB_HEAD (b) = bb_note;
1905 if (dump_file)
1906 fprintf (dump_file, "Deleted label in block %i.\n",
1907 b->index);
1910 /* If we fall through an empty block, we can remove it. */
1911 if (!(mode & CLEANUP_CFGLAYOUT)
1912 && b->pred->pred_next == NULL
1913 && (b->pred->flags & EDGE_FALLTHRU)
1914 && !LABEL_P (BB_HEAD (b))
1915 && FORWARDER_BLOCK_P (b)
1916 /* Note that forwarder_block_p true ensures that
1917 there is a successor for this block. */
1918 && (b->succ->flags & EDGE_FALLTHRU)
1919 && n_basic_blocks > 1)
1921 if (dump_file)
1922 fprintf (dump_file,
1923 "Deleting fallthru block %i.\n",
1924 b->index);
1926 c = b->prev_bb == ENTRY_BLOCK_PTR ? b->next_bb : b->prev_bb;
1927 redirect_edge_succ_nodup (b->pred, b->succ->dest);
1928 delete_basic_block (b);
1929 changed = true;
1930 b = c;
1933 if ((s = b->succ) != NULL
1934 && s->succ_next == NULL
1935 && !(s->flags & EDGE_COMPLEX)
1936 && (c = s->dest) != EXIT_BLOCK_PTR
1937 && c->pred->pred_next == NULL
1938 && b != c)
1940 /* When not in cfg_layout mode use code aware of reordering
1941 INSN. This code possibly creates new basic blocks so it
1942 does not fit merge_blocks interface and is kept here in
1943 hope that it will become useless once more of compiler
1944 is transformed to use cfg_layout mode. */
1946 if ((mode & CLEANUP_CFGLAYOUT)
1947 && can_merge_blocks_p (b, c))
1949 merge_blocks (b, c);
1950 update_forwarder_flag (b);
1951 changed_here = true;
1953 else if (!(mode & CLEANUP_CFGLAYOUT)
1954 /* If the jump insn has side effects,
1955 we can't kill the edge. */
1956 && (!JUMP_P (BB_END (b))
1957 || (reload_completed
1958 ? simplejump_p (BB_END (b))
1959 : (onlyjump_p (BB_END (b))
1960 && !tablejump_p (BB_END (b),
1961 NULL, NULL))))
1962 && (next = merge_blocks_move (s, b, c, mode)))
1964 b = next;
1965 changed_here = true;
1969 /* Simplify branch over branch. */
1970 if ((mode & CLEANUP_EXPENSIVE)
1971 && !(mode & CLEANUP_CFGLAYOUT)
1972 && try_simplify_condjump (b))
1973 changed_here = true;
1975 /* If B has a single outgoing edge, but uses a
1976 non-trivial jump instruction without side-effects, we
1977 can either delete the jump entirely, or replace it
1978 with a simple unconditional jump. */
1979 if (b->succ
1980 && ! b->succ->succ_next
1981 && b->succ->dest != EXIT_BLOCK_PTR
1982 && onlyjump_p (BB_END (b))
1983 && !find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
1984 && try_redirect_by_replacing_jump (b->succ, b->succ->dest,
1985 (mode & CLEANUP_CFGLAYOUT) != 0))
1987 update_forwarder_flag (b);
1988 changed_here = true;
1991 /* Simplify branch to branch. */
1992 if (try_forward_edges (mode, b))
1993 changed_here = true;
1995 /* Look for shared code between blocks. */
1996 if ((mode & CLEANUP_CROSSJUMP)
1997 && try_crossjump_bb (mode, b))
1998 changed_here = true;
2000 /* Don't get confused by the index shift caused by
2001 deleting blocks. */
2002 if (!changed_here)
2003 b = b->next_bb;
2004 else
2005 changed = true;
2008 if ((mode & CLEANUP_CROSSJUMP)
2009 && try_crossjump_bb (mode, EXIT_BLOCK_PTR))
2010 changed = true;
2012 #ifdef ENABLE_CHECKING
2013 if (changed)
2014 verify_flow_info ();
2015 #endif
2017 changed_overall |= changed;
2018 first_pass = false;
2020 while (changed);
2023 if (mode & CLEANUP_CROSSJUMP)
2024 remove_fake_exit_edges ();
2026 clear_aux_for_blocks ();
2028 return changed_overall;
2031 /* Delete all unreachable basic blocks. */
2033 bool
2034 delete_unreachable_blocks (void)
2036 bool changed = false;
2037 basic_block b, next_bb;
2039 find_unreachable_blocks ();
2041 /* Delete all unreachable basic blocks. */
2043 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
2045 next_bb = b->next_bb;
2047 if (!(b->flags & BB_REACHABLE))
2049 delete_basic_block (b);
2050 changed = true;
2054 if (changed)
2055 tidy_fallthru_edges ();
2056 return changed;
2059 /* Merges sequential blocks if possible. */
2061 bool
2062 merge_seq_blocks (void)
2064 basic_block bb;
2065 bool changed = false;
2067 for (bb = ENTRY_BLOCK_PTR->next_bb; bb != EXIT_BLOCK_PTR; )
2069 if (bb->succ
2070 && !bb->succ->succ_next
2071 && can_merge_blocks_p (bb, bb->succ->dest))
2073 /* Merge the blocks and retry. */
2074 merge_blocks (bb, bb->succ->dest);
2075 changed = true;
2076 continue;
2079 bb = bb->next_bb;
2082 return changed;
2085 /* Tidy the CFG by deleting unreachable code and whatnot. */
2087 bool
2088 cleanup_cfg (int mode)
2090 bool changed = false;
2092 timevar_push (TV_CLEANUP_CFG);
2093 if (delete_unreachable_blocks ())
2095 changed = true;
2096 /* We've possibly created trivially dead code. Cleanup it right
2097 now to introduce more opportunities for try_optimize_cfg. */
2098 if (!(mode & (CLEANUP_NO_INSN_DEL | CLEANUP_UPDATE_LIFE))
2099 && !reload_completed)
2100 delete_trivially_dead_insns (get_insns(), max_reg_num ());
2103 compact_blocks ();
2105 while (try_optimize_cfg (mode))
2107 delete_unreachable_blocks (), changed = true;
2108 if (mode & CLEANUP_UPDATE_LIFE)
2110 /* Cleaning up CFG introduces more opportunities for dead code
2111 removal that in turn may introduce more opportunities for
2112 cleaning up the CFG. */
2113 if (!update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
2114 PROP_DEATH_NOTES
2115 | PROP_SCAN_DEAD_CODE
2116 | PROP_KILL_DEAD_CODE
2117 | ((mode & CLEANUP_LOG_LINKS)
2118 ? PROP_LOG_LINKS : 0)))
2119 break;
2121 else if (!(mode & CLEANUP_NO_INSN_DEL)
2122 && (mode & CLEANUP_EXPENSIVE)
2123 && !reload_completed)
2125 if (!delete_trivially_dead_insns (get_insns(), max_reg_num ()))
2126 break;
2128 else
2129 break;
2130 delete_dead_jumptables ();
2133 /* Kill the data we won't maintain. */
2134 free_EXPR_LIST_list (&label_value_list);
2135 timevar_pop (TV_CLEANUP_CFG);
2137 return changed;