2005-08-26 Uros Bizjak <uros@kss-loka.si>
[official-gcc.git] / gcc / function.c
blob2df1eff5b44995569225fe1dacd800858ef2f9d1
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* This file handles the generation of rtl code from tree structure
24 at the level of the function as a whole.
25 It creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
28 `expand_function_start' is called at the beginning of a function,
29 before the function body is parsed, and `expand_function_end' is
30 called after parsing the body.
32 Call `assign_stack_local' to allocate a stack slot for a local variable.
33 This is usually done during the RTL generation for the function body,
34 but it can also be done in the reload pass when a pseudo-register does
35 not get a hard register. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "basic-block.h"
55 #include "toplev.h"
56 #include "hashtab.h"
57 #include "ggc.h"
58 #include "tm_p.h"
59 #include "integrate.h"
60 #include "langhooks.h"
61 #include "target.h"
62 #include "cfglayout.h"
63 #include "tree-gimple.h"
64 #include "tree-pass.h"
65 #include "predict.h"
67 #ifndef LOCAL_ALIGNMENT
68 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
69 #endif
71 #ifndef STACK_ALIGNMENT_NEEDED
72 #define STACK_ALIGNMENT_NEEDED 1
73 #endif
75 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77 /* Some systems use __main in a way incompatible with its use in gcc, in these
78 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
79 give the same symbol without quotes for an alternative entry point. You
80 must define both, or neither. */
81 #ifndef NAME__MAIN
82 #define NAME__MAIN "__main"
83 #endif
85 /* Round a value to the lowest integer less than it that is a multiple of
86 the required alignment. Avoid using division in case the value is
87 negative. Assume the alignment is a power of two. */
88 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90 /* Similar, but round to the next highest integer that meets the
91 alignment. */
92 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94 /* Nonzero if function being compiled doesn't contain any calls
95 (ignoring the prologue and epilogue). This is set prior to
96 local register allocation and is valid for the remaining
97 compiler passes. */
98 int current_function_is_leaf;
100 /* Nonzero if function being compiled doesn't modify the stack pointer
101 (ignoring the prologue and epilogue). This is only valid after
102 life_analysis has run. */
103 int current_function_sp_is_unchanging;
105 /* Nonzero if the function being compiled is a leaf function which only
106 uses leaf registers. This is valid after reload (specifically after
107 sched2) and is useful only if the port defines LEAF_REGISTERS. */
108 int current_function_uses_only_leaf_regs;
110 /* Nonzero once virtual register instantiation has been done.
111 assign_stack_local uses frame_pointer_rtx when this is nonzero.
112 calls.c:emit_library_call_value_1 uses it to set up
113 post-instantiation libcalls. */
114 int virtuals_instantiated;
116 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
117 static GTY(()) int funcdef_no;
119 /* These variables hold pointers to functions to create and destroy
120 target specific, per-function data structures. */
121 struct machine_function * (*init_machine_status) (void);
123 /* The currently compiled function. */
124 struct function *cfun = 0;
126 DEF_VEC_I(int);
127 DEF_VEC_ALLOC_I(int,heap);
129 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
130 static VEC(int,heap) *prologue;
131 static VEC(int,heap) *epilogue;
133 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
134 in this function. */
135 static VEC(int,heap) *sibcall_epilogue;
137 /* In order to evaluate some expressions, such as function calls returning
138 structures in memory, we need to temporarily allocate stack locations.
139 We record each allocated temporary in the following structure.
141 Associated with each temporary slot is a nesting level. When we pop up
142 one level, all temporaries associated with the previous level are freed.
143 Normally, all temporaries are freed after the execution of the statement
144 in which they were created. However, if we are inside a ({...}) grouping,
145 the result may be in a temporary and hence must be preserved. If the
146 result could be in a temporary, we preserve it if we can determine which
147 one it is in. If we cannot determine which temporary may contain the
148 result, all temporaries are preserved. A temporary is preserved by
149 pretending it was allocated at the previous nesting level.
151 Automatic variables are also assigned temporary slots, at the nesting
152 level where they are defined. They are marked a "kept" so that
153 free_temp_slots will not free them. */
155 struct temp_slot GTY(())
157 /* Points to next temporary slot. */
158 struct temp_slot *next;
159 /* Points to previous temporary slot. */
160 struct temp_slot *prev;
162 /* The rtx to used to reference the slot. */
163 rtx slot;
164 /* The rtx used to represent the address if not the address of the
165 slot above. May be an EXPR_LIST if multiple addresses exist. */
166 rtx address;
167 /* The alignment (in bits) of the slot. */
168 unsigned int align;
169 /* The size, in units, of the slot. */
170 HOST_WIDE_INT size;
171 /* The type of the object in the slot, or zero if it doesn't correspond
172 to a type. We use this to determine whether a slot can be reused.
173 It can be reused if objects of the type of the new slot will always
174 conflict with objects of the type of the old slot. */
175 tree type;
176 /* Nonzero if this temporary is currently in use. */
177 char in_use;
178 /* Nonzero if this temporary has its address taken. */
179 char addr_taken;
180 /* Nesting level at which this slot is being used. */
181 int level;
182 /* Nonzero if this should survive a call to free_temp_slots. */
183 int keep;
184 /* The offset of the slot from the frame_pointer, including extra space
185 for alignment. This info is for combine_temp_slots. */
186 HOST_WIDE_INT base_offset;
187 /* The size of the slot, including extra space for alignment. This
188 info is for combine_temp_slots. */
189 HOST_WIDE_INT full_size;
192 /* Forward declarations. */
194 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
195 struct function *);
196 static struct temp_slot *find_temp_slot_from_address (rtx);
197 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
198 static void pad_below (struct args_size *, enum machine_mode, tree);
199 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
200 static void reorder_fix_fragments (tree);
201 static int all_blocks (tree, tree *);
202 static tree *get_block_vector (tree, int *);
203 extern tree debug_find_var_in_block_tree (tree, tree);
204 /* We always define `record_insns' even if it's not used so that we
205 can always export `prologue_epilogue_contains'. */
206 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
207 static int contains (rtx, VEC(int,heap) **);
208 #ifdef HAVE_return
209 static void emit_return_into_block (basic_block, rtx);
210 #endif
211 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
212 static rtx keep_stack_depressed (rtx);
213 #endif
214 static void prepare_function_start (tree);
215 static void do_clobber_return_reg (rtx, void *);
216 static void do_use_return_reg (rtx, void *);
217 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
219 /* Pointer to chain of `struct function' for containing functions. */
220 struct function *outer_function_chain;
222 /* Given a function decl for a containing function,
223 return the `struct function' for it. */
225 struct function *
226 find_function_data (tree decl)
228 struct function *p;
230 for (p = outer_function_chain; p; p = p->outer)
231 if (p->decl == decl)
232 return p;
234 gcc_unreachable ();
237 /* Save the current context for compilation of a nested function.
238 This is called from language-specific code. The caller should use
239 the enter_nested langhook to save any language-specific state,
240 since this function knows only about language-independent
241 variables. */
243 void
244 push_function_context_to (tree context ATTRIBUTE_UNUSED)
246 struct function *p;
248 if (cfun == 0)
249 init_dummy_function_start ();
250 p = cfun;
252 p->outer = outer_function_chain;
253 outer_function_chain = p;
255 lang_hooks.function.enter_nested (p);
257 cfun = 0;
260 void
261 push_function_context (void)
263 push_function_context_to (current_function_decl);
266 /* Restore the last saved context, at the end of a nested function.
267 This function is called from language-specific code. */
269 void
270 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
272 struct function *p = outer_function_chain;
274 cfun = p;
275 outer_function_chain = p->outer;
277 current_function_decl = p->decl;
279 lang_hooks.function.leave_nested (p);
281 /* Reset variables that have known state during rtx generation. */
282 virtuals_instantiated = 0;
283 generating_concat_p = 1;
286 void
287 pop_function_context (void)
289 pop_function_context_from (current_function_decl);
292 /* Clear out all parts of the state in F that can safely be discarded
293 after the function has been parsed, but not compiled, to let
294 garbage collection reclaim the memory. */
296 void
297 free_after_parsing (struct function *f)
299 /* f->expr->forced_labels is used by code generation. */
300 /* f->emit->regno_reg_rtx is used by code generation. */
301 /* f->varasm is used by code generation. */
302 /* f->eh->eh_return_stub_label is used by code generation. */
304 lang_hooks.function.final (f);
307 /* Clear out all parts of the state in F that can safely be discarded
308 after the function has been compiled, to let garbage collection
309 reclaim the memory. */
311 void
312 free_after_compilation (struct function *f)
314 VEC_free (int, heap, prologue);
315 VEC_free (int, heap, epilogue);
316 VEC_free (int, heap, sibcall_epilogue);
318 f->eh = NULL;
319 f->expr = NULL;
320 f->emit = NULL;
321 f->varasm = NULL;
322 f->machine = NULL;
323 f->cfg = NULL;
325 f->x_avail_temp_slots = NULL;
326 f->x_used_temp_slots = NULL;
327 f->arg_offset_rtx = NULL;
328 f->return_rtx = NULL;
329 f->internal_arg_pointer = NULL;
330 f->x_nonlocal_goto_handler_labels = NULL;
331 f->x_return_label = NULL;
332 f->x_naked_return_label = NULL;
333 f->x_stack_slot_list = NULL;
334 f->x_tail_recursion_reentry = NULL;
335 f->x_arg_pointer_save_area = NULL;
336 f->x_parm_birth_insn = NULL;
337 f->original_arg_vector = NULL;
338 f->original_decl_initial = NULL;
339 f->epilogue_delay_list = NULL;
342 /* Allocate fixed slots in the stack frame of the current function. */
344 /* Return size needed for stack frame based on slots so far allocated in
345 function F.
346 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
347 the caller may have to do that. */
349 static HOST_WIDE_INT
350 get_func_frame_size (struct function *f)
352 if (FRAME_GROWS_DOWNWARD)
353 return -f->x_frame_offset;
354 else
355 return f->x_frame_offset;
358 /* Return size needed for stack frame based on slots so far allocated.
359 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
360 the caller may have to do that. */
361 HOST_WIDE_INT
362 get_frame_size (void)
364 return get_func_frame_size (cfun);
367 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
368 with machine mode MODE.
370 ALIGN controls the amount of alignment for the address of the slot:
371 0 means according to MODE,
372 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
373 -2 means use BITS_PER_UNIT,
374 positive specifies alignment boundary in bits.
376 We do not round to stack_boundary here.
378 FUNCTION specifies the function to allocate in. */
380 static rtx
381 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
382 struct function *function)
384 rtx x, addr;
385 int bigend_correction = 0;
386 unsigned int alignment;
387 int frame_off, frame_alignment, frame_phase;
389 if (align == 0)
391 tree type;
393 if (mode == BLKmode)
394 alignment = BIGGEST_ALIGNMENT;
395 else
396 alignment = GET_MODE_ALIGNMENT (mode);
398 /* Allow the target to (possibly) increase the alignment of this
399 stack slot. */
400 type = lang_hooks.types.type_for_mode (mode, 0);
401 if (type)
402 alignment = LOCAL_ALIGNMENT (type, alignment);
404 alignment /= BITS_PER_UNIT;
406 else if (align == -1)
408 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
409 size = CEIL_ROUND (size, alignment);
411 else if (align == -2)
412 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
413 else
414 alignment = align / BITS_PER_UNIT;
416 if (FRAME_GROWS_DOWNWARD)
417 function->x_frame_offset -= size;
419 /* Ignore alignment we can't do with expected alignment of the boundary. */
420 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
421 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
423 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
424 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
426 /* Calculate how many bytes the start of local variables is off from
427 stack alignment. */
428 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
429 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
430 frame_phase = frame_off ? frame_alignment - frame_off : 0;
432 /* Round the frame offset to the specified alignment. The default is
433 to always honor requests to align the stack but a port may choose to
434 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
435 if (STACK_ALIGNMENT_NEEDED
436 || mode != BLKmode
437 || size != 0)
439 /* We must be careful here, since FRAME_OFFSET might be negative and
440 division with a negative dividend isn't as well defined as we might
441 like. So we instead assume that ALIGNMENT is a power of two and
442 use logical operations which are unambiguous. */
443 if (FRAME_GROWS_DOWNWARD)
444 function->x_frame_offset
445 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
446 (unsigned HOST_WIDE_INT) alignment)
447 + frame_phase);
448 else
449 function->x_frame_offset
450 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
451 (unsigned HOST_WIDE_INT) alignment)
452 + frame_phase);
455 /* On a big-endian machine, if we are allocating more space than we will use,
456 use the least significant bytes of those that are allocated. */
457 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
458 bigend_correction = size - GET_MODE_SIZE (mode);
460 /* If we have already instantiated virtual registers, return the actual
461 address relative to the frame pointer. */
462 if (function == cfun && virtuals_instantiated)
463 addr = plus_constant (frame_pointer_rtx,
464 trunc_int_for_mode
465 (frame_offset + bigend_correction
466 + STARTING_FRAME_OFFSET, Pmode));
467 else
468 addr = plus_constant (virtual_stack_vars_rtx,
469 trunc_int_for_mode
470 (function->x_frame_offset + bigend_correction,
471 Pmode));
473 if (!FRAME_GROWS_DOWNWARD)
474 function->x_frame_offset += size;
476 x = gen_rtx_MEM (mode, addr);
477 MEM_NOTRAP_P (x) = 1;
479 function->x_stack_slot_list
480 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
482 return x;
485 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
486 current function. */
489 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
491 return assign_stack_local_1 (mode, size, align, cfun);
495 /* Removes temporary slot TEMP from LIST. */
497 static void
498 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
500 if (temp->next)
501 temp->next->prev = temp->prev;
502 if (temp->prev)
503 temp->prev->next = temp->next;
504 else
505 *list = temp->next;
507 temp->prev = temp->next = NULL;
510 /* Inserts temporary slot TEMP to LIST. */
512 static void
513 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
515 temp->next = *list;
516 if (*list)
517 (*list)->prev = temp;
518 temp->prev = NULL;
519 *list = temp;
522 /* Returns the list of used temp slots at LEVEL. */
524 static struct temp_slot **
525 temp_slots_at_level (int level)
528 if (!used_temp_slots)
529 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
531 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
532 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
534 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
537 /* Returns the maximal temporary slot level. */
539 static int
540 max_slot_level (void)
542 if (!used_temp_slots)
543 return -1;
545 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
548 /* Moves temporary slot TEMP to LEVEL. */
550 static void
551 move_slot_to_level (struct temp_slot *temp, int level)
553 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
554 insert_slot_to_list (temp, temp_slots_at_level (level));
555 temp->level = level;
558 /* Make temporary slot TEMP available. */
560 static void
561 make_slot_available (struct temp_slot *temp)
563 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
564 insert_slot_to_list (temp, &avail_temp_slots);
565 temp->in_use = 0;
566 temp->level = -1;
569 /* Allocate a temporary stack slot and record it for possible later
570 reuse.
572 MODE is the machine mode to be given to the returned rtx.
574 SIZE is the size in units of the space required. We do no rounding here
575 since assign_stack_local will do any required rounding.
577 KEEP is 1 if this slot is to be retained after a call to
578 free_temp_slots. Automatic variables for a block are allocated
579 with this flag. KEEP values of 2 or 3 were needed respectively
580 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
581 or for SAVE_EXPRs, but they are now unused.
583 TYPE is the type that will be used for the stack slot. */
586 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
587 int keep, tree type)
589 unsigned int align;
590 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
591 rtx slot;
593 /* If SIZE is -1 it means that somebody tried to allocate a temporary
594 of a variable size. */
595 gcc_assert (size != -1);
597 /* These are now unused. */
598 gcc_assert (keep <= 1);
600 if (mode == BLKmode)
601 align = BIGGEST_ALIGNMENT;
602 else
603 align = GET_MODE_ALIGNMENT (mode);
605 if (! type)
606 type = lang_hooks.types.type_for_mode (mode, 0);
608 if (type)
609 align = LOCAL_ALIGNMENT (type, align);
611 /* Try to find an available, already-allocated temporary of the proper
612 mode which meets the size and alignment requirements. Choose the
613 smallest one with the closest alignment. */
614 for (p = avail_temp_slots; p; p = p->next)
616 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
617 && objects_must_conflict_p (p->type, type)
618 && (best_p == 0 || best_p->size > p->size
619 || (best_p->size == p->size && best_p->align > p->align)))
621 if (p->align == align && p->size == size)
623 selected = p;
624 cut_slot_from_list (selected, &avail_temp_slots);
625 best_p = 0;
626 break;
628 best_p = p;
632 /* Make our best, if any, the one to use. */
633 if (best_p)
635 selected = best_p;
636 cut_slot_from_list (selected, &avail_temp_slots);
638 /* If there are enough aligned bytes left over, make them into a new
639 temp_slot so that the extra bytes don't get wasted. Do this only
640 for BLKmode slots, so that we can be sure of the alignment. */
641 if (GET_MODE (best_p->slot) == BLKmode)
643 int alignment = best_p->align / BITS_PER_UNIT;
644 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
646 if (best_p->size - rounded_size >= alignment)
648 p = ggc_alloc (sizeof (struct temp_slot));
649 p->in_use = p->addr_taken = 0;
650 p->size = best_p->size - rounded_size;
651 p->base_offset = best_p->base_offset + rounded_size;
652 p->full_size = best_p->full_size - rounded_size;
653 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
654 p->align = best_p->align;
655 p->address = 0;
656 p->type = best_p->type;
657 insert_slot_to_list (p, &avail_temp_slots);
659 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
660 stack_slot_list);
662 best_p->size = rounded_size;
663 best_p->full_size = rounded_size;
668 /* If we still didn't find one, make a new temporary. */
669 if (selected == 0)
671 HOST_WIDE_INT frame_offset_old = frame_offset;
673 p = ggc_alloc (sizeof (struct temp_slot));
675 /* We are passing an explicit alignment request to assign_stack_local.
676 One side effect of that is assign_stack_local will not round SIZE
677 to ensure the frame offset remains suitably aligned.
679 So for requests which depended on the rounding of SIZE, we go ahead
680 and round it now. We also make sure ALIGNMENT is at least
681 BIGGEST_ALIGNMENT. */
682 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
683 p->slot = assign_stack_local (mode,
684 (mode == BLKmode
685 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
686 : size),
687 align);
689 p->align = align;
691 /* The following slot size computation is necessary because we don't
692 know the actual size of the temporary slot until assign_stack_local
693 has performed all the frame alignment and size rounding for the
694 requested temporary. Note that extra space added for alignment
695 can be either above or below this stack slot depending on which
696 way the frame grows. We include the extra space if and only if it
697 is above this slot. */
698 if (FRAME_GROWS_DOWNWARD)
699 p->size = frame_offset_old - frame_offset;
700 else
701 p->size = size;
703 /* Now define the fields used by combine_temp_slots. */
704 if (FRAME_GROWS_DOWNWARD)
706 p->base_offset = frame_offset;
707 p->full_size = frame_offset_old - frame_offset;
709 else
711 p->base_offset = frame_offset_old;
712 p->full_size = frame_offset - frame_offset_old;
714 p->address = 0;
716 selected = p;
719 p = selected;
720 p->in_use = 1;
721 p->addr_taken = 0;
722 p->type = type;
723 p->level = temp_slot_level;
724 p->keep = keep;
726 pp = temp_slots_at_level (p->level);
727 insert_slot_to_list (p, pp);
729 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
730 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
731 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
733 /* If we know the alias set for the memory that will be used, use
734 it. If there's no TYPE, then we don't know anything about the
735 alias set for the memory. */
736 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
737 set_mem_align (slot, align);
739 /* If a type is specified, set the relevant flags. */
740 if (type != 0)
742 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
743 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
745 MEM_NOTRAP_P (slot) = 1;
747 return slot;
750 /* Allocate a temporary stack slot and record it for possible later
751 reuse. First three arguments are same as in preceding function. */
754 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
756 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
759 /* Assign a temporary.
760 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
761 and so that should be used in error messages. In either case, we
762 allocate of the given type.
763 KEEP is as for assign_stack_temp.
764 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
765 it is 0 if a register is OK.
766 DONT_PROMOTE is 1 if we should not promote values in register
767 to wider modes. */
770 assign_temp (tree type_or_decl, int keep, int memory_required,
771 int dont_promote ATTRIBUTE_UNUSED)
773 tree type, decl;
774 enum machine_mode mode;
775 #ifdef PROMOTE_MODE
776 int unsignedp;
777 #endif
779 if (DECL_P (type_or_decl))
780 decl = type_or_decl, type = TREE_TYPE (decl);
781 else
782 decl = NULL, type = type_or_decl;
784 mode = TYPE_MODE (type);
785 #ifdef PROMOTE_MODE
786 unsignedp = TYPE_UNSIGNED (type);
787 #endif
789 if (mode == BLKmode || memory_required)
791 HOST_WIDE_INT size = int_size_in_bytes (type);
792 tree size_tree;
793 rtx tmp;
795 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
796 problems with allocating the stack space. */
797 if (size == 0)
798 size = 1;
800 /* Unfortunately, we don't yet know how to allocate variable-sized
801 temporaries. However, sometimes we have a fixed upper limit on
802 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
803 instead. This is the case for Chill variable-sized strings. */
804 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
805 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
806 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
807 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
809 /* If we still haven't been able to get a size, see if the language
810 can compute a maximum size. */
811 if (size == -1
812 && (size_tree = lang_hooks.types.max_size (type)) != 0
813 && host_integerp (size_tree, 1))
814 size = tree_low_cst (size_tree, 1);
816 /* The size of the temporary may be too large to fit into an integer. */
817 /* ??? Not sure this should happen except for user silliness, so limit
818 this to things that aren't compiler-generated temporaries. The
819 rest of the time we'll die in assign_stack_temp_for_type. */
820 if (decl && size == -1
821 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
823 error ("size of variable %q+D is too large", decl);
824 size = 1;
827 tmp = assign_stack_temp_for_type (mode, size, keep, type);
828 return tmp;
831 #ifdef PROMOTE_MODE
832 if (! dont_promote)
833 mode = promote_mode (type, mode, &unsignedp, 0);
834 #endif
836 return gen_reg_rtx (mode);
839 /* Combine temporary stack slots which are adjacent on the stack.
841 This allows for better use of already allocated stack space. This is only
842 done for BLKmode slots because we can be sure that we won't have alignment
843 problems in this case. */
845 static void
846 combine_temp_slots (void)
848 struct temp_slot *p, *q, *next, *next_q;
849 int num_slots;
851 /* We can't combine slots, because the information about which slot
852 is in which alias set will be lost. */
853 if (flag_strict_aliasing)
854 return;
856 /* If there are a lot of temp slots, don't do anything unless
857 high levels of optimization. */
858 if (! flag_expensive_optimizations)
859 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
860 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
861 return;
863 for (p = avail_temp_slots; p; p = next)
865 int delete_p = 0;
867 next = p->next;
869 if (GET_MODE (p->slot) != BLKmode)
870 continue;
872 for (q = p->next; q; q = next_q)
874 int delete_q = 0;
876 next_q = q->next;
878 if (GET_MODE (q->slot) != BLKmode)
879 continue;
881 if (p->base_offset + p->full_size == q->base_offset)
883 /* Q comes after P; combine Q into P. */
884 p->size += q->size;
885 p->full_size += q->full_size;
886 delete_q = 1;
888 else if (q->base_offset + q->full_size == p->base_offset)
890 /* P comes after Q; combine P into Q. */
891 q->size += p->size;
892 q->full_size += p->full_size;
893 delete_p = 1;
894 break;
896 if (delete_q)
897 cut_slot_from_list (q, &avail_temp_slots);
900 /* Either delete P or advance past it. */
901 if (delete_p)
902 cut_slot_from_list (p, &avail_temp_slots);
906 /* Find the temp slot corresponding to the object at address X. */
908 static struct temp_slot *
909 find_temp_slot_from_address (rtx x)
911 struct temp_slot *p;
912 rtx next;
913 int i;
915 for (i = max_slot_level (); i >= 0; i--)
916 for (p = *temp_slots_at_level (i); p; p = p->next)
918 if (XEXP (p->slot, 0) == x
919 || p->address == x
920 || (GET_CODE (x) == PLUS
921 && XEXP (x, 0) == virtual_stack_vars_rtx
922 && GET_CODE (XEXP (x, 1)) == CONST_INT
923 && INTVAL (XEXP (x, 1)) >= p->base_offset
924 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
925 return p;
927 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
928 for (next = p->address; next; next = XEXP (next, 1))
929 if (XEXP (next, 0) == x)
930 return p;
933 /* If we have a sum involving a register, see if it points to a temp
934 slot. */
935 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
936 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
937 return p;
938 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
939 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
940 return p;
942 return 0;
945 /* Indicate that NEW is an alternate way of referring to the temp slot
946 that previously was known by OLD. */
948 void
949 update_temp_slot_address (rtx old, rtx new)
951 struct temp_slot *p;
953 if (rtx_equal_p (old, new))
954 return;
956 p = find_temp_slot_from_address (old);
958 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
959 is a register, see if one operand of the PLUS is a temporary
960 location. If so, NEW points into it. Otherwise, if both OLD and
961 NEW are a PLUS and if there is a register in common between them.
962 If so, try a recursive call on those values. */
963 if (p == 0)
965 if (GET_CODE (old) != PLUS)
966 return;
968 if (REG_P (new))
970 update_temp_slot_address (XEXP (old, 0), new);
971 update_temp_slot_address (XEXP (old, 1), new);
972 return;
974 else if (GET_CODE (new) != PLUS)
975 return;
977 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
978 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
979 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
980 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
981 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
982 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
983 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
984 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
986 return;
989 /* Otherwise add an alias for the temp's address. */
990 else if (p->address == 0)
991 p->address = new;
992 else
994 if (GET_CODE (p->address) != EXPR_LIST)
995 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
997 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1001 /* If X could be a reference to a temporary slot, mark the fact that its
1002 address was taken. */
1004 void
1005 mark_temp_addr_taken (rtx x)
1007 struct temp_slot *p;
1009 if (x == 0)
1010 return;
1012 /* If X is not in memory or is at a constant address, it cannot be in
1013 a temporary slot. */
1014 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1015 return;
1017 p = find_temp_slot_from_address (XEXP (x, 0));
1018 if (p != 0)
1019 p->addr_taken = 1;
1022 /* If X could be a reference to a temporary slot, mark that slot as
1023 belonging to the to one level higher than the current level. If X
1024 matched one of our slots, just mark that one. Otherwise, we can't
1025 easily predict which it is, so upgrade all of them. Kept slots
1026 need not be touched.
1028 This is called when an ({...}) construct occurs and a statement
1029 returns a value in memory. */
1031 void
1032 preserve_temp_slots (rtx x)
1034 struct temp_slot *p = 0, *next;
1036 /* If there is no result, we still might have some objects whose address
1037 were taken, so we need to make sure they stay around. */
1038 if (x == 0)
1040 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1042 next = p->next;
1044 if (p->addr_taken)
1045 move_slot_to_level (p, temp_slot_level - 1);
1048 return;
1051 /* If X is a register that is being used as a pointer, see if we have
1052 a temporary slot we know it points to. To be consistent with
1053 the code below, we really should preserve all non-kept slots
1054 if we can't find a match, but that seems to be much too costly. */
1055 if (REG_P (x) && REG_POINTER (x))
1056 p = find_temp_slot_from_address (x);
1058 /* If X is not in memory or is at a constant address, it cannot be in
1059 a temporary slot, but it can contain something whose address was
1060 taken. */
1061 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1063 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1065 next = p->next;
1067 if (p->addr_taken)
1068 move_slot_to_level (p, temp_slot_level - 1);
1071 return;
1074 /* First see if we can find a match. */
1075 if (p == 0)
1076 p = find_temp_slot_from_address (XEXP (x, 0));
1078 if (p != 0)
1080 /* Move everything at our level whose address was taken to our new
1081 level in case we used its address. */
1082 struct temp_slot *q;
1084 if (p->level == temp_slot_level)
1086 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1088 next = q->next;
1090 if (p != q && q->addr_taken)
1091 move_slot_to_level (q, temp_slot_level - 1);
1094 move_slot_to_level (p, temp_slot_level - 1);
1095 p->addr_taken = 0;
1097 return;
1100 /* Otherwise, preserve all non-kept slots at this level. */
1101 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1103 next = p->next;
1105 if (!p->keep)
1106 move_slot_to_level (p, temp_slot_level - 1);
1110 /* Free all temporaries used so far. This is normally called at the
1111 end of generating code for a statement. */
1113 void
1114 free_temp_slots (void)
1116 struct temp_slot *p, *next;
1118 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1120 next = p->next;
1122 if (!p->keep)
1123 make_slot_available (p);
1126 combine_temp_slots ();
1129 /* Push deeper into the nesting level for stack temporaries. */
1131 void
1132 push_temp_slots (void)
1134 temp_slot_level++;
1137 /* Pop a temporary nesting level. All slots in use in the current level
1138 are freed. */
1140 void
1141 pop_temp_slots (void)
1143 struct temp_slot *p, *next;
1145 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1147 next = p->next;
1148 make_slot_available (p);
1151 combine_temp_slots ();
1153 temp_slot_level--;
1156 /* Initialize temporary slots. */
1158 void
1159 init_temp_slots (void)
1161 /* We have not allocated any temporaries yet. */
1162 avail_temp_slots = 0;
1163 used_temp_slots = 0;
1164 temp_slot_level = 0;
1167 /* These routines are responsible for converting virtual register references
1168 to the actual hard register references once RTL generation is complete.
1170 The following four variables are used for communication between the
1171 routines. They contain the offsets of the virtual registers from their
1172 respective hard registers. */
1174 static int in_arg_offset;
1175 static int var_offset;
1176 static int dynamic_offset;
1177 static int out_arg_offset;
1178 static int cfa_offset;
1180 /* In most machines, the stack pointer register is equivalent to the bottom
1181 of the stack. */
1183 #ifndef STACK_POINTER_OFFSET
1184 #define STACK_POINTER_OFFSET 0
1185 #endif
1187 /* If not defined, pick an appropriate default for the offset of dynamically
1188 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1189 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1191 #ifndef STACK_DYNAMIC_OFFSET
1193 /* The bottom of the stack points to the actual arguments. If
1194 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1195 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1196 stack space for register parameters is not pushed by the caller, but
1197 rather part of the fixed stack areas and hence not included in
1198 `current_function_outgoing_args_size'. Nevertheless, we must allow
1199 for it when allocating stack dynamic objects. */
1201 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1202 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1203 ((ACCUMULATE_OUTGOING_ARGS \
1204 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1205 + (STACK_POINTER_OFFSET)) \
1207 #else
1208 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1209 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1210 + (STACK_POINTER_OFFSET))
1211 #endif
1212 #endif
1215 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1216 is a virtual register, return the equivalent hard register and set the
1217 offset indirectly through the pointer. Otherwise, return 0. */
1219 static rtx
1220 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1222 rtx new;
1223 HOST_WIDE_INT offset;
1225 if (x == virtual_incoming_args_rtx)
1226 new = arg_pointer_rtx, offset = in_arg_offset;
1227 else if (x == virtual_stack_vars_rtx)
1228 new = frame_pointer_rtx, offset = var_offset;
1229 else if (x == virtual_stack_dynamic_rtx)
1230 new = stack_pointer_rtx, offset = dynamic_offset;
1231 else if (x == virtual_outgoing_args_rtx)
1232 new = stack_pointer_rtx, offset = out_arg_offset;
1233 else if (x == virtual_cfa_rtx)
1234 new = arg_pointer_rtx, offset = cfa_offset;
1235 else
1236 return NULL_RTX;
1238 *poffset = offset;
1239 return new;
1242 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1243 Instantiate any virtual registers present inside of *LOC. The expression
1244 is simplified, as much as possible, but is not to be considered "valid"
1245 in any sense implied by the target. If any change is made, set CHANGED
1246 to true. */
1248 static int
1249 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1251 HOST_WIDE_INT offset;
1252 bool *changed = (bool *) data;
1253 rtx x, new;
1255 x = *loc;
1256 if (x == 0)
1257 return 0;
1259 switch (GET_CODE (x))
1261 case REG:
1262 new = instantiate_new_reg (x, &offset);
1263 if (new)
1265 *loc = plus_constant (new, offset);
1266 if (changed)
1267 *changed = true;
1269 return -1;
1271 case PLUS:
1272 new = instantiate_new_reg (XEXP (x, 0), &offset);
1273 if (new)
1275 new = plus_constant (new, offset);
1276 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
1277 if (changed)
1278 *changed = true;
1279 return -1;
1282 /* FIXME -- from old code */
1283 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1284 we can commute the PLUS and SUBREG because pointers into the
1285 frame are well-behaved. */
1286 break;
1288 default:
1289 break;
1292 return 0;
1295 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1296 matches the predicate for insn CODE operand OPERAND. */
1298 static int
1299 safe_insn_predicate (int code, int operand, rtx x)
1301 const struct insn_operand_data *op_data;
1303 if (code < 0)
1304 return true;
1306 op_data = &insn_data[code].operand[operand];
1307 if (op_data->predicate == NULL)
1308 return true;
1310 return op_data->predicate (x, op_data->mode);
1313 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1314 registers present inside of insn. The result will be a valid insn. */
1316 static void
1317 instantiate_virtual_regs_in_insn (rtx insn)
1319 HOST_WIDE_INT offset;
1320 int insn_code, i;
1321 bool any_change = false;
1322 rtx set, new, x, seq;
1324 /* There are some special cases to be handled first. */
1325 set = single_set (insn);
1326 if (set)
1328 /* We're allowed to assign to a virtual register. This is interpreted
1329 to mean that the underlying register gets assigned the inverse
1330 transformation. This is used, for example, in the handling of
1331 non-local gotos. */
1332 new = instantiate_new_reg (SET_DEST (set), &offset);
1333 if (new)
1335 start_sequence ();
1337 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1338 x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
1339 GEN_INT (-offset));
1340 x = force_operand (x, new);
1341 if (x != new)
1342 emit_move_insn (new, x);
1344 seq = get_insns ();
1345 end_sequence ();
1347 emit_insn_before (seq, insn);
1348 delete_insn (insn);
1349 return;
1352 /* Handle a straight copy from a virtual register by generating a
1353 new add insn. The difference between this and falling through
1354 to the generic case is avoiding a new pseudo and eliminating a
1355 move insn in the initial rtl stream. */
1356 new = instantiate_new_reg (SET_SRC (set), &offset);
1357 if (new && offset != 0
1358 && REG_P (SET_DEST (set))
1359 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1361 start_sequence ();
1363 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1364 new, GEN_INT (offset), SET_DEST (set),
1365 1, OPTAB_LIB_WIDEN);
1366 if (x != SET_DEST (set))
1367 emit_move_insn (SET_DEST (set), x);
1369 seq = get_insns ();
1370 end_sequence ();
1372 emit_insn_before (seq, insn);
1373 delete_insn (insn);
1374 return;
1377 extract_insn (insn);
1378 insn_code = INSN_CODE (insn);
1380 /* Handle a plus involving a virtual register by determining if the
1381 operands remain valid if they're modified in place. */
1382 if (GET_CODE (SET_SRC (set)) == PLUS
1383 && recog_data.n_operands >= 3
1384 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1385 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1386 && GET_CODE (recog_data.operand[2]) == CONST_INT
1387 && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
1389 offset += INTVAL (recog_data.operand[2]);
1391 /* If the sum is zero, then replace with a plain move. */
1392 if (offset == 0
1393 && REG_P (SET_DEST (set))
1394 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1396 start_sequence ();
1397 emit_move_insn (SET_DEST (set), new);
1398 seq = get_insns ();
1399 end_sequence ();
1401 emit_insn_before (seq, insn);
1402 delete_insn (insn);
1403 return;
1406 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1408 /* Using validate_change and apply_change_group here leaves
1409 recog_data in an invalid state. Since we know exactly what
1410 we want to check, do those two by hand. */
1411 if (safe_insn_predicate (insn_code, 1, new)
1412 && safe_insn_predicate (insn_code, 2, x))
1414 *recog_data.operand_loc[1] = recog_data.operand[1] = new;
1415 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1416 any_change = true;
1418 /* Fall through into the regular operand fixup loop in
1419 order to take care of operands other than 1 and 2. */
1423 else
1425 extract_insn (insn);
1426 insn_code = INSN_CODE (insn);
1429 /* In the general case, we expect virtual registers to appear only in
1430 operands, and then only as either bare registers or inside memories. */
1431 for (i = 0; i < recog_data.n_operands; ++i)
1433 x = recog_data.operand[i];
1434 switch (GET_CODE (x))
1436 case MEM:
1438 rtx addr = XEXP (x, 0);
1439 bool changed = false;
1441 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1442 if (!changed)
1443 continue;
1445 start_sequence ();
1446 x = replace_equiv_address (x, addr);
1447 seq = get_insns ();
1448 end_sequence ();
1449 if (seq)
1450 emit_insn_before (seq, insn);
1452 break;
1454 case REG:
1455 new = instantiate_new_reg (x, &offset);
1456 if (new == NULL)
1457 continue;
1458 if (offset == 0)
1459 x = new;
1460 else
1462 start_sequence ();
1464 /* Careful, special mode predicates may have stuff in
1465 insn_data[insn_code].operand[i].mode that isn't useful
1466 to us for computing a new value. */
1467 /* ??? Recognize address_operand and/or "p" constraints
1468 to see if (plus new offset) is a valid before we put
1469 this through expand_simple_binop. */
1470 x = expand_simple_binop (GET_MODE (x), PLUS, new,
1471 GEN_INT (offset), NULL_RTX,
1472 1, OPTAB_LIB_WIDEN);
1473 seq = get_insns ();
1474 end_sequence ();
1475 emit_insn_before (seq, insn);
1477 break;
1479 case SUBREG:
1480 new = instantiate_new_reg (SUBREG_REG (x), &offset);
1481 if (new == NULL)
1482 continue;
1483 if (offset != 0)
1485 start_sequence ();
1486 new = expand_simple_binop (GET_MODE (new), PLUS, new,
1487 GEN_INT (offset), NULL_RTX,
1488 1, OPTAB_LIB_WIDEN);
1489 seq = get_insns ();
1490 end_sequence ();
1491 emit_insn_before (seq, insn);
1493 x = simplify_gen_subreg (recog_data.operand_mode[i], new,
1494 GET_MODE (new), SUBREG_BYTE (x));
1495 break;
1497 default:
1498 continue;
1501 /* At this point, X contains the new value for the operand.
1502 Validate the new value vs the insn predicate. Note that
1503 asm insns will have insn_code -1 here. */
1504 if (!safe_insn_predicate (insn_code, i, x))
1505 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1507 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1508 any_change = true;
1511 if (any_change)
1513 /* Propagate operand changes into the duplicates. */
1514 for (i = 0; i < recog_data.n_dups; ++i)
1515 *recog_data.dup_loc[i]
1516 = recog_data.operand[(unsigned)recog_data.dup_num[i]];
1518 /* Force re-recognition of the instruction for validation. */
1519 INSN_CODE (insn) = -1;
1522 if (asm_noperands (PATTERN (insn)) >= 0)
1524 if (!check_asm_operands (PATTERN (insn)))
1526 error_for_asm (insn, "impossible constraint in %<asm%>");
1527 delete_insn (insn);
1530 else
1532 if (recog_memoized (insn) < 0)
1533 fatal_insn_not_found (insn);
1537 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1538 do any instantiation required. */
1540 static void
1541 instantiate_decl (rtx x)
1543 rtx addr;
1545 if (x == 0)
1546 return;
1548 /* If this is a CONCAT, recurse for the pieces. */
1549 if (GET_CODE (x) == CONCAT)
1551 instantiate_decl (XEXP (x, 0));
1552 instantiate_decl (XEXP (x, 1));
1553 return;
1556 /* If this is not a MEM, no need to do anything. Similarly if the
1557 address is a constant or a register that is not a virtual register. */
1558 if (!MEM_P (x))
1559 return;
1561 addr = XEXP (x, 0);
1562 if (CONSTANT_P (addr)
1563 || (REG_P (addr)
1564 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1565 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1566 return;
1568 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1571 /* Subroutine of instantiate_decls: Process all decls in the given
1572 BLOCK node and all its subblocks. */
1574 static void
1575 instantiate_decls_1 (tree let)
1577 tree t;
1579 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1580 if (DECL_RTL_SET_P (t))
1581 instantiate_decl (DECL_RTL (t));
1583 /* Process all subblocks. */
1584 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1585 instantiate_decls_1 (t);
1588 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1589 all virtual registers in their DECL_RTL's. */
1591 static void
1592 instantiate_decls (tree fndecl)
1594 tree decl;
1596 /* Process all parameters of the function. */
1597 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1599 instantiate_decl (DECL_RTL (decl));
1600 instantiate_decl (DECL_INCOMING_RTL (decl));
1603 /* Now process all variables defined in the function or its subblocks. */
1604 instantiate_decls_1 (DECL_INITIAL (fndecl));
1607 /* Pass through the INSNS of function FNDECL and convert virtual register
1608 references to hard register references. */
1610 void
1611 instantiate_virtual_regs (void)
1613 rtx insn;
1615 /* Compute the offsets to use for this function. */
1616 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1617 var_offset = STARTING_FRAME_OFFSET;
1618 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1619 out_arg_offset = STACK_POINTER_OFFSET;
1620 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1622 /* Initialize recognition, indicating that volatile is OK. */
1623 init_recog ();
1625 /* Scan through all the insns, instantiating every virtual register still
1626 present. */
1627 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1628 if (INSN_P (insn))
1630 /* These patterns in the instruction stream can never be recognized.
1631 Fortunately, they shouldn't contain virtual registers either. */
1632 if (GET_CODE (PATTERN (insn)) == USE
1633 || GET_CODE (PATTERN (insn)) == CLOBBER
1634 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1635 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1636 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1637 continue;
1639 instantiate_virtual_regs_in_insn (insn);
1641 if (INSN_DELETED_P (insn))
1642 continue;
1644 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1646 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1647 if (GET_CODE (insn) == CALL_INSN)
1648 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1649 instantiate_virtual_regs_in_rtx, NULL);
1652 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1653 instantiate_decls (current_function_decl);
1655 /* Indicate that, from now on, assign_stack_local should use
1656 frame_pointer_rtx. */
1657 virtuals_instantiated = 1;
1660 struct tree_opt_pass pass_instantiate_virtual_regs =
1662 "vregs", /* name */
1663 NULL, /* gate */
1664 instantiate_virtual_regs, /* execute */
1665 NULL, /* sub */
1666 NULL, /* next */
1667 0, /* static_pass_number */
1668 0, /* tv_id */
1669 0, /* properties_required */
1670 0, /* properties_provided */
1671 0, /* properties_destroyed */
1672 0, /* todo_flags_start */
1673 TODO_dump_func, /* todo_flags_finish */
1674 0 /* letter */
1678 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1679 This means a type for which function calls must pass an address to the
1680 function or get an address back from the function.
1681 EXP may be a type node or an expression (whose type is tested). */
1684 aggregate_value_p (tree exp, tree fntype)
1686 int i, regno, nregs;
1687 rtx reg;
1689 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1691 if (fntype)
1692 switch (TREE_CODE (fntype))
1694 case CALL_EXPR:
1695 fntype = get_callee_fndecl (fntype);
1696 fntype = fntype ? TREE_TYPE (fntype) : 0;
1697 break;
1698 case FUNCTION_DECL:
1699 fntype = TREE_TYPE (fntype);
1700 break;
1701 case FUNCTION_TYPE:
1702 case METHOD_TYPE:
1703 break;
1704 case IDENTIFIER_NODE:
1705 fntype = 0;
1706 break;
1707 default:
1708 /* We don't expect other rtl types here. */
1709 gcc_unreachable ();
1712 if (TREE_CODE (type) == VOID_TYPE)
1713 return 0;
1714 /* If the front end has decided that this needs to be passed by
1715 reference, do so. */
1716 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1717 && DECL_BY_REFERENCE (exp))
1718 return 1;
1719 if (targetm.calls.return_in_memory (type, fntype))
1720 return 1;
1721 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1722 and thus can't be returned in registers. */
1723 if (TREE_ADDRESSABLE (type))
1724 return 1;
1725 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1726 return 1;
1727 /* Make sure we have suitable call-clobbered regs to return
1728 the value in; if not, we must return it in memory. */
1729 reg = hard_function_value (type, 0, fntype, 0);
1731 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1732 it is OK. */
1733 if (!REG_P (reg))
1734 return 0;
1736 regno = REGNO (reg);
1737 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1738 for (i = 0; i < nregs; i++)
1739 if (! call_used_regs[regno + i])
1740 return 1;
1741 return 0;
1744 /* Return true if we should assign DECL a pseudo register; false if it
1745 should live on the local stack. */
1747 bool
1748 use_register_for_decl (tree decl)
1750 /* Honor volatile. */
1751 if (TREE_SIDE_EFFECTS (decl))
1752 return false;
1754 /* Honor addressability. */
1755 if (TREE_ADDRESSABLE (decl))
1756 return false;
1758 /* Only register-like things go in registers. */
1759 if (DECL_MODE (decl) == BLKmode)
1760 return false;
1762 /* If -ffloat-store specified, don't put explicit float variables
1763 into registers. */
1764 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1765 propagates values across these stores, and it probably shouldn't. */
1766 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1767 return false;
1769 /* If we're not interested in tracking debugging information for
1770 this decl, then we can certainly put it in a register. */
1771 if (DECL_IGNORED_P (decl))
1772 return true;
1774 return (optimize || DECL_REGISTER (decl));
1777 /* Return true if TYPE should be passed by invisible reference. */
1779 bool
1780 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1781 tree type, bool named_arg)
1783 if (type)
1785 /* If this type contains non-trivial constructors, then it is
1786 forbidden for the middle-end to create any new copies. */
1787 if (TREE_ADDRESSABLE (type))
1788 return true;
1790 /* GCC post 3.4 passes *all* variable sized types by reference. */
1791 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1792 return true;
1795 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1798 /* Return true if TYPE, which is passed by reference, should be callee
1799 copied instead of caller copied. */
1801 bool
1802 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1803 tree type, bool named_arg)
1805 if (type && TREE_ADDRESSABLE (type))
1806 return false;
1807 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1810 /* Structures to communicate between the subroutines of assign_parms.
1811 The first holds data persistent across all parameters, the second
1812 is cleared out for each parameter. */
1814 struct assign_parm_data_all
1816 CUMULATIVE_ARGS args_so_far;
1817 struct args_size stack_args_size;
1818 tree function_result_decl;
1819 tree orig_fnargs;
1820 rtx conversion_insns;
1821 HOST_WIDE_INT pretend_args_size;
1822 HOST_WIDE_INT extra_pretend_bytes;
1823 int reg_parm_stack_space;
1826 struct assign_parm_data_one
1828 tree nominal_type;
1829 tree passed_type;
1830 rtx entry_parm;
1831 rtx stack_parm;
1832 enum machine_mode nominal_mode;
1833 enum machine_mode passed_mode;
1834 enum machine_mode promoted_mode;
1835 struct locate_and_pad_arg_data locate;
1836 int partial;
1837 BOOL_BITFIELD named_arg : 1;
1838 BOOL_BITFIELD passed_pointer : 1;
1839 BOOL_BITFIELD on_stack : 1;
1840 BOOL_BITFIELD loaded_in_reg : 1;
1843 /* A subroutine of assign_parms. Initialize ALL. */
1845 static void
1846 assign_parms_initialize_all (struct assign_parm_data_all *all)
1848 tree fntype;
1850 memset (all, 0, sizeof (*all));
1852 fntype = TREE_TYPE (current_function_decl);
1854 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
1855 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1856 #else
1857 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1858 current_function_decl, -1);
1859 #endif
1861 #ifdef REG_PARM_STACK_SPACE
1862 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1863 #endif
1866 /* If ARGS contains entries with complex types, split the entry into two
1867 entries of the component type. Return a new list of substitutions are
1868 needed, else the old list. */
1870 static tree
1871 split_complex_args (tree args)
1873 tree p;
1875 /* Before allocating memory, check for the common case of no complex. */
1876 for (p = args; p; p = TREE_CHAIN (p))
1878 tree type = TREE_TYPE (p);
1879 if (TREE_CODE (type) == COMPLEX_TYPE
1880 && targetm.calls.split_complex_arg (type))
1881 goto found;
1883 return args;
1885 found:
1886 args = copy_list (args);
1888 for (p = args; p; p = TREE_CHAIN (p))
1890 tree type = TREE_TYPE (p);
1891 if (TREE_CODE (type) == COMPLEX_TYPE
1892 && targetm.calls.split_complex_arg (type))
1894 tree decl;
1895 tree subtype = TREE_TYPE (type);
1896 bool addressable = TREE_ADDRESSABLE (p);
1898 /* Rewrite the PARM_DECL's type with its component. */
1899 TREE_TYPE (p) = subtype;
1900 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
1901 DECL_MODE (p) = VOIDmode;
1902 DECL_SIZE (p) = NULL;
1903 DECL_SIZE_UNIT (p) = NULL;
1904 /* If this arg must go in memory, put it in a pseudo here.
1905 We can't allow it to go in memory as per normal parms,
1906 because the usual place might not have the imag part
1907 adjacent to the real part. */
1908 DECL_ARTIFICIAL (p) = addressable;
1909 DECL_IGNORED_P (p) = addressable;
1910 TREE_ADDRESSABLE (p) = 0;
1911 layout_decl (p, 0);
1913 /* Build a second synthetic decl. */
1914 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
1915 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
1916 DECL_ARTIFICIAL (decl) = addressable;
1917 DECL_IGNORED_P (decl) = addressable;
1918 layout_decl (decl, 0);
1920 /* Splice it in; skip the new decl. */
1921 TREE_CHAIN (decl) = TREE_CHAIN (p);
1922 TREE_CHAIN (p) = decl;
1923 p = decl;
1927 return args;
1930 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
1931 the hidden struct return argument, and (abi willing) complex args.
1932 Return the new parameter list. */
1934 static tree
1935 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
1937 tree fndecl = current_function_decl;
1938 tree fntype = TREE_TYPE (fndecl);
1939 tree fnargs = DECL_ARGUMENTS (fndecl);
1941 /* If struct value address is treated as the first argument, make it so. */
1942 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
1943 && ! current_function_returns_pcc_struct
1944 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
1946 tree type = build_pointer_type (TREE_TYPE (fntype));
1947 tree decl;
1949 decl = build_decl (PARM_DECL, NULL_TREE, type);
1950 DECL_ARG_TYPE (decl) = type;
1951 DECL_ARTIFICIAL (decl) = 1;
1952 DECL_IGNORED_P (decl) = 1;
1954 TREE_CHAIN (decl) = fnargs;
1955 fnargs = decl;
1956 all->function_result_decl = decl;
1959 all->orig_fnargs = fnargs;
1961 /* If the target wants to split complex arguments into scalars, do so. */
1962 if (targetm.calls.split_complex_arg)
1963 fnargs = split_complex_args (fnargs);
1965 return fnargs;
1968 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
1969 data for the parameter. Incorporate ABI specifics such as pass-by-
1970 reference and type promotion. */
1972 static void
1973 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
1974 struct assign_parm_data_one *data)
1976 tree nominal_type, passed_type;
1977 enum machine_mode nominal_mode, passed_mode, promoted_mode;
1979 memset (data, 0, sizeof (*data));
1981 /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
1982 if (!current_function_stdarg)
1983 data->named_arg = 1; /* No varadic parms. */
1984 else if (TREE_CHAIN (parm))
1985 data->named_arg = 1; /* Not the last non-varadic parm. */
1986 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
1987 data->named_arg = 1; /* Only varadic ones are unnamed. */
1988 else
1989 data->named_arg = 0; /* Treat as varadic. */
1991 nominal_type = TREE_TYPE (parm);
1992 passed_type = DECL_ARG_TYPE (parm);
1994 /* Look out for errors propagating this far. Also, if the parameter's
1995 type is void then its value doesn't matter. */
1996 if (TREE_TYPE (parm) == error_mark_node
1997 /* This can happen after weird syntax errors
1998 or if an enum type is defined among the parms. */
1999 || TREE_CODE (parm) != PARM_DECL
2000 || passed_type == NULL
2001 || VOID_TYPE_P (nominal_type))
2003 nominal_type = passed_type = void_type_node;
2004 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2005 goto egress;
2008 /* Find mode of arg as it is passed, and mode of arg as it should be
2009 during execution of this function. */
2010 passed_mode = TYPE_MODE (passed_type);
2011 nominal_mode = TYPE_MODE (nominal_type);
2013 /* If the parm is to be passed as a transparent union, use the type of
2014 the first field for the tests below. We have already verified that
2015 the modes are the same. */
2016 if (DECL_TRANSPARENT_UNION (parm)
2017 || (TREE_CODE (passed_type) == UNION_TYPE
2018 && TYPE_TRANSPARENT_UNION (passed_type)))
2019 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2021 /* See if this arg was passed by invisible reference. */
2022 if (pass_by_reference (&all->args_so_far, passed_mode,
2023 passed_type, data->named_arg))
2025 passed_type = nominal_type = build_pointer_type (passed_type);
2026 data->passed_pointer = true;
2027 passed_mode = nominal_mode = Pmode;
2030 /* Find mode as it is passed by the ABI. */
2031 promoted_mode = passed_mode;
2032 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2034 int unsignedp = TYPE_UNSIGNED (passed_type);
2035 promoted_mode = promote_mode (passed_type, promoted_mode,
2036 &unsignedp, 1);
2039 egress:
2040 data->nominal_type = nominal_type;
2041 data->passed_type = passed_type;
2042 data->nominal_mode = nominal_mode;
2043 data->passed_mode = passed_mode;
2044 data->promoted_mode = promoted_mode;
2047 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2049 static void
2050 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2051 struct assign_parm_data_one *data, bool no_rtl)
2053 int varargs_pretend_bytes = 0;
2055 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2056 data->promoted_mode,
2057 data->passed_type,
2058 &varargs_pretend_bytes, no_rtl);
2060 /* If the back-end has requested extra stack space, record how much is
2061 needed. Do not change pretend_args_size otherwise since it may be
2062 nonzero from an earlier partial argument. */
2063 if (varargs_pretend_bytes > 0)
2064 all->pretend_args_size = varargs_pretend_bytes;
2067 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2068 the incoming location of the current parameter. */
2070 static void
2071 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2072 struct assign_parm_data_one *data)
2074 HOST_WIDE_INT pretend_bytes = 0;
2075 rtx entry_parm;
2076 bool in_regs;
2078 if (data->promoted_mode == VOIDmode)
2080 data->entry_parm = data->stack_parm = const0_rtx;
2081 return;
2084 #ifdef FUNCTION_INCOMING_ARG
2085 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2086 data->passed_type, data->named_arg);
2087 #else
2088 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2089 data->passed_type, data->named_arg);
2090 #endif
2092 if (entry_parm == 0)
2093 data->promoted_mode = data->passed_mode;
2095 /* Determine parm's home in the stack, in case it arrives in the stack
2096 or we should pretend it did. Compute the stack position and rtx where
2097 the argument arrives and its size.
2099 There is one complexity here: If this was a parameter that would
2100 have been passed in registers, but wasn't only because it is
2101 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2102 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2103 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2104 as it was the previous time. */
2105 in_regs = entry_parm != 0;
2106 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2107 in_regs = true;
2108 #endif
2109 if (!in_regs && !data->named_arg)
2111 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2113 rtx tem;
2114 #ifdef FUNCTION_INCOMING_ARG
2115 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2116 data->passed_type, true);
2117 #else
2118 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2119 data->passed_type, true);
2120 #endif
2121 in_regs = tem != NULL;
2125 /* If this parameter was passed both in registers and in the stack, use
2126 the copy on the stack. */
2127 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2128 data->passed_type))
2129 entry_parm = 0;
2131 if (entry_parm)
2133 int partial;
2135 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2136 data->promoted_mode,
2137 data->passed_type,
2138 data->named_arg);
2139 data->partial = partial;
2141 /* The caller might already have allocated stack space for the
2142 register parameters. */
2143 if (partial != 0 && all->reg_parm_stack_space == 0)
2145 /* Part of this argument is passed in registers and part
2146 is passed on the stack. Ask the prologue code to extend
2147 the stack part so that we can recreate the full value.
2149 PRETEND_BYTES is the size of the registers we need to store.
2150 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2151 stack space that the prologue should allocate.
2153 Internally, gcc assumes that the argument pointer is aligned
2154 to STACK_BOUNDARY bits. This is used both for alignment
2155 optimizations (see init_emit) and to locate arguments that are
2156 aligned to more than PARM_BOUNDARY bits. We must preserve this
2157 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2158 a stack boundary. */
2160 /* We assume at most one partial arg, and it must be the first
2161 argument on the stack. */
2162 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2164 pretend_bytes = partial;
2165 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2167 /* We want to align relative to the actual stack pointer, so
2168 don't include this in the stack size until later. */
2169 all->extra_pretend_bytes = all->pretend_args_size;
2173 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2174 entry_parm ? data->partial : 0, current_function_decl,
2175 &all->stack_args_size, &data->locate);
2177 /* Adjust offsets to include the pretend args. */
2178 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2179 data->locate.slot_offset.constant += pretend_bytes;
2180 data->locate.offset.constant += pretend_bytes;
2182 data->entry_parm = entry_parm;
2185 /* A subroutine of assign_parms. If there is actually space on the stack
2186 for this parm, count it in stack_args_size and return true. */
2188 static bool
2189 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2190 struct assign_parm_data_one *data)
2192 /* Trivially true if we've no incoming register. */
2193 if (data->entry_parm == NULL)
2195 /* Also true if we're partially in registers and partially not,
2196 since we've arranged to drop the entire argument on the stack. */
2197 else if (data->partial != 0)
2199 /* Also true if the target says that it's passed in both registers
2200 and on the stack. */
2201 else if (GET_CODE (data->entry_parm) == PARALLEL
2202 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2204 /* Also true if the target says that there's stack allocated for
2205 all register parameters. */
2206 else if (all->reg_parm_stack_space > 0)
2208 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2209 else
2210 return false;
2212 all->stack_args_size.constant += data->locate.size.constant;
2213 if (data->locate.size.var)
2214 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2216 return true;
2219 /* A subroutine of assign_parms. Given that this parameter is allocated
2220 stack space by the ABI, find it. */
2222 static void
2223 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2225 rtx offset_rtx, stack_parm;
2226 unsigned int align, boundary;
2228 /* If we're passing this arg using a reg, make its stack home the
2229 aligned stack slot. */
2230 if (data->entry_parm)
2231 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2232 else
2233 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2235 stack_parm = current_function_internal_arg_pointer;
2236 if (offset_rtx != const0_rtx)
2237 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2238 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2240 set_mem_attributes (stack_parm, parm, 1);
2242 boundary = data->locate.boundary;
2243 align = BITS_PER_UNIT;
2245 /* If we're padding upward, we know that the alignment of the slot
2246 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2247 intentionally forcing upward padding. Otherwise we have to come
2248 up with a guess at the alignment based on OFFSET_RTX. */
2249 if (data->locate.where_pad != downward || data->entry_parm)
2250 align = boundary;
2251 else if (GET_CODE (offset_rtx) == CONST_INT)
2253 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2254 align = align & -align;
2256 set_mem_align (stack_parm, align);
2258 if (data->entry_parm)
2259 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2261 data->stack_parm = stack_parm;
2264 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2265 always valid and contiguous. */
2267 static void
2268 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2270 rtx entry_parm = data->entry_parm;
2271 rtx stack_parm = data->stack_parm;
2273 /* If this parm was passed part in regs and part in memory, pretend it
2274 arrived entirely in memory by pushing the register-part onto the stack.
2275 In the special case of a DImode or DFmode that is split, we could put
2276 it together in a pseudoreg directly, but for now that's not worth
2277 bothering with. */
2278 if (data->partial != 0)
2280 /* Handle calls that pass values in multiple non-contiguous
2281 locations. The Irix 6 ABI has examples of this. */
2282 if (GET_CODE (entry_parm) == PARALLEL)
2283 emit_group_store (validize_mem (stack_parm), entry_parm,
2284 data->passed_type,
2285 int_size_in_bytes (data->passed_type));
2286 else
2288 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2289 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2290 data->partial / UNITS_PER_WORD);
2293 entry_parm = stack_parm;
2296 /* If we didn't decide this parm came in a register, by default it came
2297 on the stack. */
2298 else if (entry_parm == NULL)
2299 entry_parm = stack_parm;
2301 /* When an argument is passed in multiple locations, we can't make use
2302 of this information, but we can save some copying if the whole argument
2303 is passed in a single register. */
2304 else if (GET_CODE (entry_parm) == PARALLEL
2305 && data->nominal_mode != BLKmode
2306 && data->passed_mode != BLKmode)
2308 size_t i, len = XVECLEN (entry_parm, 0);
2310 for (i = 0; i < len; i++)
2311 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2312 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2313 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2314 == data->passed_mode)
2315 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2317 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2318 break;
2322 data->entry_parm = entry_parm;
2325 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2326 always valid and properly aligned. */
2328 static void
2329 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2331 rtx stack_parm = data->stack_parm;
2333 /* If we can't trust the parm stack slot to be aligned enough for its
2334 ultimate type, don't use that slot after entry. We'll make another
2335 stack slot, if we need one. */
2336 if (stack_parm
2337 && ((STRICT_ALIGNMENT
2338 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2339 || (data->nominal_type
2340 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2341 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2342 stack_parm = NULL;
2344 /* If parm was passed in memory, and we need to convert it on entry,
2345 don't store it back in that same slot. */
2346 else if (data->entry_parm == stack_parm
2347 && data->nominal_mode != BLKmode
2348 && data->nominal_mode != data->passed_mode)
2349 stack_parm = NULL;
2351 /* If stack protection is in effect for this function, don't leave any
2352 pointers in their passed stack slots. */
2353 else if (cfun->stack_protect_guard
2354 && (flag_stack_protect == 2
2355 || data->passed_pointer
2356 || POINTER_TYPE_P (data->nominal_type)))
2357 stack_parm = NULL;
2359 data->stack_parm = stack_parm;
2362 /* A subroutine of assign_parms. Return true if the current parameter
2363 should be stored as a BLKmode in the current frame. */
2365 static bool
2366 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2368 if (data->nominal_mode == BLKmode)
2369 return true;
2370 if (GET_CODE (data->entry_parm) == PARALLEL)
2371 return true;
2373 #ifdef BLOCK_REG_PADDING
2374 /* Only assign_parm_setup_block knows how to deal with register arguments
2375 that are padded at the least significant end. */
2376 if (REG_P (data->entry_parm)
2377 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2378 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2379 == (BYTES_BIG_ENDIAN ? upward : downward)))
2380 return true;
2381 #endif
2383 return false;
2386 /* A subroutine of assign_parms. Arrange for the parameter to be
2387 present and valid in DATA->STACK_RTL. */
2389 static void
2390 assign_parm_setup_block (struct assign_parm_data_all *all,
2391 tree parm, struct assign_parm_data_one *data)
2393 rtx entry_parm = data->entry_parm;
2394 rtx stack_parm = data->stack_parm;
2395 HOST_WIDE_INT size;
2396 HOST_WIDE_INT size_stored;
2397 rtx orig_entry_parm = entry_parm;
2399 if (GET_CODE (entry_parm) == PARALLEL)
2400 entry_parm = emit_group_move_into_temps (entry_parm);
2402 /* If we've a non-block object that's nevertheless passed in parts,
2403 reconstitute it in register operations rather than on the stack. */
2404 if (GET_CODE (entry_parm) == PARALLEL
2405 && data->nominal_mode != BLKmode)
2407 rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
2409 if ((XVECLEN (entry_parm, 0) > 1
2410 || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
2411 && use_register_for_decl (parm))
2413 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2415 push_to_sequence (all->conversion_insns);
2417 /* For values returned in multiple registers, handle possible
2418 incompatible calls to emit_group_store.
2420 For example, the following would be invalid, and would have to
2421 be fixed by the conditional below:
2423 emit_group_store ((reg:SF), (parallel:DF))
2424 emit_group_store ((reg:SI), (parallel:DI))
2426 An example of this are doubles in e500 v2:
2427 (parallel:DF (expr_list (reg:SI) (const_int 0))
2428 (expr_list (reg:SI) (const_int 4))). */
2429 if (data->nominal_mode != data->passed_mode)
2431 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2432 emit_group_store (t, entry_parm, NULL_TREE,
2433 GET_MODE_SIZE (GET_MODE (entry_parm)));
2434 convert_move (parmreg, t, 0);
2436 else
2437 emit_group_store (parmreg, entry_parm, data->nominal_type,
2438 int_size_in_bytes (data->nominal_type));
2440 all->conversion_insns = get_insns ();
2441 end_sequence ();
2443 SET_DECL_RTL (parm, parmreg);
2444 return;
2448 size = int_size_in_bytes (data->passed_type);
2449 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2450 if (stack_parm == 0)
2452 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2453 stack_parm = assign_stack_local (BLKmode, size_stored,
2454 DECL_ALIGN (parm));
2455 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2456 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2457 set_mem_attributes (stack_parm, parm, 1);
2460 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2461 calls that pass values in multiple non-contiguous locations. */
2462 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2464 rtx mem;
2466 /* Note that we will be storing an integral number of words.
2467 So we have to be careful to ensure that we allocate an
2468 integral number of words. We do this above when we call
2469 assign_stack_local if space was not allocated in the argument
2470 list. If it was, this will not work if PARM_BOUNDARY is not
2471 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2472 if it becomes a problem. Exception is when BLKmode arrives
2473 with arguments not conforming to word_mode. */
2475 if (data->stack_parm == 0)
2477 else if (GET_CODE (entry_parm) == PARALLEL)
2479 else
2480 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2482 mem = validize_mem (stack_parm);
2484 /* Handle values in multiple non-contiguous locations. */
2485 if (GET_CODE (entry_parm) == PARALLEL)
2487 push_to_sequence (all->conversion_insns);
2488 emit_group_store (mem, entry_parm, data->passed_type, size);
2489 all->conversion_insns = get_insns ();
2490 end_sequence ();
2493 else if (size == 0)
2496 /* If SIZE is that of a mode no bigger than a word, just use
2497 that mode's store operation. */
2498 else if (size <= UNITS_PER_WORD)
2500 enum machine_mode mode
2501 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2503 if (mode != BLKmode
2504 #ifdef BLOCK_REG_PADDING
2505 && (size == UNITS_PER_WORD
2506 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2507 != (BYTES_BIG_ENDIAN ? upward : downward)))
2508 #endif
2511 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2512 emit_move_insn (change_address (mem, mode, 0), reg);
2515 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2516 machine must be aligned to the left before storing
2517 to memory. Note that the previous test doesn't
2518 handle all cases (e.g. SIZE == 3). */
2519 else if (size != UNITS_PER_WORD
2520 #ifdef BLOCK_REG_PADDING
2521 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2522 == downward)
2523 #else
2524 && BYTES_BIG_ENDIAN
2525 #endif
2528 rtx tem, x;
2529 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2530 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2532 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2533 build_int_cst (NULL_TREE, by),
2534 NULL_RTX, 1);
2535 tem = change_address (mem, word_mode, 0);
2536 emit_move_insn (tem, x);
2538 else
2539 move_block_from_reg (REGNO (entry_parm), mem,
2540 size_stored / UNITS_PER_WORD);
2542 else
2543 move_block_from_reg (REGNO (entry_parm), mem,
2544 size_stored / UNITS_PER_WORD);
2546 else if (data->stack_parm == 0)
2548 push_to_sequence (all->conversion_insns);
2549 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2550 BLOCK_OP_NORMAL);
2551 all->conversion_insns = get_insns ();
2552 end_sequence ();
2555 data->stack_parm = stack_parm;
2556 SET_DECL_RTL (parm, stack_parm);
2559 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2560 parameter. Get it there. Perform all ABI specified conversions. */
2562 static void
2563 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2564 struct assign_parm_data_one *data)
2566 rtx parmreg;
2567 enum machine_mode promoted_nominal_mode;
2568 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2569 bool did_conversion = false;
2571 /* Store the parm in a pseudoregister during the function, but we may
2572 need to do it in a wider mode. */
2574 promoted_nominal_mode
2575 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 0);
2577 parmreg = gen_reg_rtx (promoted_nominal_mode);
2579 if (!DECL_ARTIFICIAL (parm))
2580 mark_user_reg (parmreg);
2582 /* If this was an item that we received a pointer to,
2583 set DECL_RTL appropriately. */
2584 if (data->passed_pointer)
2586 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2587 set_mem_attributes (x, parm, 1);
2588 SET_DECL_RTL (parm, x);
2590 else
2591 SET_DECL_RTL (parm, parmreg);
2593 /* Copy the value into the register. */
2594 if (data->nominal_mode != data->passed_mode
2595 || promoted_nominal_mode != data->promoted_mode)
2597 int save_tree_used;
2599 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2600 mode, by the caller. We now have to convert it to
2601 NOMINAL_MODE, if different. However, PARMREG may be in
2602 a different mode than NOMINAL_MODE if it is being stored
2603 promoted.
2605 If ENTRY_PARM is a hard register, it might be in a register
2606 not valid for operating in its mode (e.g., an odd-numbered
2607 register for a DFmode). In that case, moves are the only
2608 thing valid, so we can't do a convert from there. This
2609 occurs when the calling sequence allow such misaligned
2610 usages.
2612 In addition, the conversion may involve a call, which could
2613 clobber parameters which haven't been copied to pseudo
2614 registers yet. Therefore, we must first copy the parm to
2615 a pseudo reg here, and save the conversion until after all
2616 parameters have been moved. */
2618 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2620 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2622 push_to_sequence (all->conversion_insns);
2623 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2625 if (GET_CODE (tempreg) == SUBREG
2626 && GET_MODE (tempreg) == data->nominal_mode
2627 && REG_P (SUBREG_REG (tempreg))
2628 && data->nominal_mode == data->passed_mode
2629 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2630 && GET_MODE_SIZE (GET_MODE (tempreg))
2631 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2633 /* The argument is already sign/zero extended, so note it
2634 into the subreg. */
2635 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2636 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2639 /* TREE_USED gets set erroneously during expand_assignment. */
2640 save_tree_used = TREE_USED (parm);
2641 expand_assignment (parm, make_tree (data->nominal_type, tempreg));
2642 TREE_USED (parm) = save_tree_used;
2643 all->conversion_insns = get_insns ();
2644 end_sequence ();
2646 did_conversion = true;
2648 else
2649 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2651 /* If we were passed a pointer but the actual value can safely live
2652 in a register, put it in one. */
2653 if (data->passed_pointer
2654 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2655 /* If by-reference argument was promoted, demote it. */
2656 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2657 || use_register_for_decl (parm)))
2659 /* We can't use nominal_mode, because it will have been set to
2660 Pmode above. We must use the actual mode of the parm. */
2661 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2662 mark_user_reg (parmreg);
2664 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2666 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2667 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2669 push_to_sequence (all->conversion_insns);
2670 emit_move_insn (tempreg, DECL_RTL (parm));
2671 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2672 emit_move_insn (parmreg, tempreg);
2673 all->conversion_insns = get_insns ();
2674 end_sequence ();
2676 did_conversion = true;
2678 else
2679 emit_move_insn (parmreg, DECL_RTL (parm));
2681 SET_DECL_RTL (parm, parmreg);
2683 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2684 now the parm. */
2685 data->stack_parm = NULL;
2688 /* Mark the register as eliminable if we did no conversion and it was
2689 copied from memory at a fixed offset, and the arg pointer was not
2690 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2691 offset formed an invalid address, such memory-equivalences as we
2692 make here would screw up life analysis for it. */
2693 if (data->nominal_mode == data->passed_mode
2694 && !did_conversion
2695 && data->stack_parm != 0
2696 && MEM_P (data->stack_parm)
2697 && data->locate.offset.var == 0
2698 && reg_mentioned_p (virtual_incoming_args_rtx,
2699 XEXP (data->stack_parm, 0)))
2701 rtx linsn = get_last_insn ();
2702 rtx sinsn, set;
2704 /* Mark complex types separately. */
2705 if (GET_CODE (parmreg) == CONCAT)
2707 enum machine_mode submode
2708 = GET_MODE_INNER (GET_MODE (parmreg));
2709 int regnor = REGNO (XEXP (parmreg, 0));
2710 int regnoi = REGNO (XEXP (parmreg, 1));
2711 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2712 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2713 GET_MODE_SIZE (submode));
2715 /* Scan backwards for the set of the real and
2716 imaginary parts. */
2717 for (sinsn = linsn; sinsn != 0;
2718 sinsn = prev_nonnote_insn (sinsn))
2720 set = single_set (sinsn);
2721 if (set == 0)
2722 continue;
2724 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2725 REG_NOTES (sinsn)
2726 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2727 REG_NOTES (sinsn));
2728 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2729 REG_NOTES (sinsn)
2730 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2731 REG_NOTES (sinsn));
2734 else if ((set = single_set (linsn)) != 0
2735 && SET_DEST (set) == parmreg)
2736 REG_NOTES (linsn)
2737 = gen_rtx_EXPR_LIST (REG_EQUIV,
2738 data->stack_parm, REG_NOTES (linsn));
2741 /* For pointer data type, suggest pointer register. */
2742 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2743 mark_reg_pointer (parmreg,
2744 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2747 /* A subroutine of assign_parms. Allocate stack space to hold the current
2748 parameter. Get it there. Perform all ABI specified conversions. */
2750 static void
2751 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2752 struct assign_parm_data_one *data)
2754 /* Value must be stored in the stack slot STACK_PARM during function
2755 execution. */
2756 bool to_conversion = false;
2758 if (data->promoted_mode != data->nominal_mode)
2760 /* Conversion is required. */
2761 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2763 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2765 push_to_sequence (all->conversion_insns);
2766 to_conversion = true;
2768 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2769 TYPE_UNSIGNED (TREE_TYPE (parm)));
2771 if (data->stack_parm)
2772 /* ??? This may need a big-endian conversion on sparc64. */
2773 data->stack_parm
2774 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2777 if (data->entry_parm != data->stack_parm)
2779 rtx src, dest;
2781 if (data->stack_parm == 0)
2783 data->stack_parm
2784 = assign_stack_local (GET_MODE (data->entry_parm),
2785 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2786 TYPE_ALIGN (data->passed_type));
2787 set_mem_attributes (data->stack_parm, parm, 1);
2790 dest = validize_mem (data->stack_parm);
2791 src = validize_mem (data->entry_parm);
2793 if (MEM_P (src))
2795 /* Use a block move to handle potentially misaligned entry_parm. */
2796 if (!to_conversion)
2797 push_to_sequence (all->conversion_insns);
2798 to_conversion = true;
2800 emit_block_move (dest, src,
2801 GEN_INT (int_size_in_bytes (data->passed_type)),
2802 BLOCK_OP_NORMAL);
2804 else
2805 emit_move_insn (dest, src);
2808 if (to_conversion)
2810 all->conversion_insns = get_insns ();
2811 end_sequence ();
2814 SET_DECL_RTL (parm, data->stack_parm);
2817 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2818 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2820 static void
2821 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2823 tree parm;
2824 tree orig_fnargs = all->orig_fnargs;
2826 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2828 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2829 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2831 rtx tmp, real, imag;
2832 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2834 real = DECL_RTL (fnargs);
2835 imag = DECL_RTL (TREE_CHAIN (fnargs));
2836 if (inner != GET_MODE (real))
2838 real = gen_lowpart_SUBREG (inner, real);
2839 imag = gen_lowpart_SUBREG (inner, imag);
2842 if (TREE_ADDRESSABLE (parm))
2844 rtx rmem, imem;
2845 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2847 /* split_complex_arg put the real and imag parts in
2848 pseudos. Move them to memory. */
2849 tmp = assign_stack_local (DECL_MODE (parm), size,
2850 TYPE_ALIGN (TREE_TYPE (parm)));
2851 set_mem_attributes (tmp, parm, 1);
2852 rmem = adjust_address_nv (tmp, inner, 0);
2853 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2854 push_to_sequence (all->conversion_insns);
2855 emit_move_insn (rmem, real);
2856 emit_move_insn (imem, imag);
2857 all->conversion_insns = get_insns ();
2858 end_sequence ();
2860 else
2861 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2862 SET_DECL_RTL (parm, tmp);
2864 real = DECL_INCOMING_RTL (fnargs);
2865 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2866 if (inner != GET_MODE (real))
2868 real = gen_lowpart_SUBREG (inner, real);
2869 imag = gen_lowpart_SUBREG (inner, imag);
2871 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2872 set_decl_incoming_rtl (parm, tmp);
2873 fnargs = TREE_CHAIN (fnargs);
2875 else
2877 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2878 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
2880 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2881 instead of the copy of decl, i.e. FNARGS. */
2882 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2883 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2886 fnargs = TREE_CHAIN (fnargs);
2890 /* Assign RTL expressions to the function's parameters. This may involve
2891 copying them into registers and using those registers as the DECL_RTL. */
2893 static void
2894 assign_parms (tree fndecl)
2896 struct assign_parm_data_all all;
2897 tree fnargs, parm;
2898 rtx internal_arg_pointer;
2900 /* If the reg that the virtual arg pointer will be translated into is
2901 not a fixed reg or is the stack pointer, make a copy of the virtual
2902 arg pointer, and address parms via the copy. The frame pointer is
2903 considered fixed even though it is not marked as such.
2905 The second time through, simply use ap to avoid generating rtx. */
2907 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
2908 || ! (fixed_regs[ARG_POINTER_REGNUM]
2909 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
2910 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
2911 else
2912 internal_arg_pointer = virtual_incoming_args_rtx;
2913 current_function_internal_arg_pointer = internal_arg_pointer;
2915 assign_parms_initialize_all (&all);
2916 fnargs = assign_parms_augmented_arg_list (&all);
2918 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
2920 struct assign_parm_data_one data;
2922 /* Extract the type of PARM; adjust it according to ABI. */
2923 assign_parm_find_data_types (&all, parm, &data);
2925 /* Early out for errors and void parameters. */
2926 if (data.passed_mode == VOIDmode)
2928 SET_DECL_RTL (parm, const0_rtx);
2929 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
2930 continue;
2933 if (current_function_stdarg && !TREE_CHAIN (parm))
2934 assign_parms_setup_varargs (&all, &data, false);
2936 /* Find out where the parameter arrives in this function. */
2937 assign_parm_find_entry_rtl (&all, &data);
2939 /* Find out where stack space for this parameter might be. */
2940 if (assign_parm_is_stack_parm (&all, &data))
2942 assign_parm_find_stack_rtl (parm, &data);
2943 assign_parm_adjust_entry_rtl (&data);
2946 /* Record permanently how this parm was passed. */
2947 set_decl_incoming_rtl (parm, data.entry_parm);
2949 /* Update info on where next arg arrives in registers. */
2950 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
2951 data.passed_type, data.named_arg);
2953 assign_parm_adjust_stack_rtl (&data);
2955 if (assign_parm_setup_block_p (&data))
2956 assign_parm_setup_block (&all, parm, &data);
2957 else if (data.passed_pointer || use_register_for_decl (parm))
2958 assign_parm_setup_reg (&all, parm, &data);
2959 else
2960 assign_parm_setup_stack (&all, parm, &data);
2963 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
2964 assign_parms_unsplit_complex (&all, fnargs);
2966 /* Output all parameter conversion instructions (possibly including calls)
2967 now that all parameters have been copied out of hard registers. */
2968 emit_insn (all.conversion_insns);
2970 /* If we are receiving a struct value address as the first argument, set up
2971 the RTL for the function result. As this might require code to convert
2972 the transmitted address to Pmode, we do this here to ensure that possible
2973 preliminary conversions of the address have been emitted already. */
2974 if (all.function_result_decl)
2976 tree result = DECL_RESULT (current_function_decl);
2977 rtx addr = DECL_RTL (all.function_result_decl);
2978 rtx x;
2980 if (DECL_BY_REFERENCE (result))
2981 x = addr;
2982 else
2984 addr = convert_memory_address (Pmode, addr);
2985 x = gen_rtx_MEM (DECL_MODE (result), addr);
2986 set_mem_attributes (x, result, 1);
2988 SET_DECL_RTL (result, x);
2991 /* We have aligned all the args, so add space for the pretend args. */
2992 current_function_pretend_args_size = all.pretend_args_size;
2993 all.stack_args_size.constant += all.extra_pretend_bytes;
2994 current_function_args_size = all.stack_args_size.constant;
2996 /* Adjust function incoming argument size for alignment and
2997 minimum length. */
2999 #ifdef REG_PARM_STACK_SPACE
3000 current_function_args_size = MAX (current_function_args_size,
3001 REG_PARM_STACK_SPACE (fndecl));
3002 #endif
3004 current_function_args_size = CEIL_ROUND (current_function_args_size,
3005 PARM_BOUNDARY / BITS_PER_UNIT);
3007 #ifdef ARGS_GROW_DOWNWARD
3008 current_function_arg_offset_rtx
3009 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3010 : expand_expr (size_diffop (all.stack_args_size.var,
3011 size_int (-all.stack_args_size.constant)),
3012 NULL_RTX, VOIDmode, 0));
3013 #else
3014 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3015 #endif
3017 /* See how many bytes, if any, of its args a function should try to pop
3018 on return. */
3020 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3021 current_function_args_size);
3023 /* For stdarg.h function, save info about
3024 regs and stack space used by the named args. */
3026 current_function_args_info = all.args_so_far;
3028 /* Set the rtx used for the function return value. Put this in its
3029 own variable so any optimizers that need this information don't have
3030 to include tree.h. Do this here so it gets done when an inlined
3031 function gets output. */
3033 current_function_return_rtx
3034 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3035 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3037 /* If scalar return value was computed in a pseudo-reg, or was a named
3038 return value that got dumped to the stack, copy that to the hard
3039 return register. */
3040 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3042 tree decl_result = DECL_RESULT (fndecl);
3043 rtx decl_rtl = DECL_RTL (decl_result);
3045 if (REG_P (decl_rtl)
3046 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3047 : DECL_REGISTER (decl_result))
3049 rtx real_decl_rtl;
3051 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3052 fndecl, true);
3053 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3054 /* The delay slot scheduler assumes that current_function_return_rtx
3055 holds the hard register containing the return value, not a
3056 temporary pseudo. */
3057 current_function_return_rtx = real_decl_rtl;
3062 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3063 For all seen types, gimplify their sizes. */
3065 static tree
3066 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3068 tree t = *tp;
3070 *walk_subtrees = 0;
3071 if (TYPE_P (t))
3073 if (POINTER_TYPE_P (t))
3074 *walk_subtrees = 1;
3075 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3076 && !TYPE_SIZES_GIMPLIFIED (t))
3078 gimplify_type_sizes (t, (tree *) data);
3079 *walk_subtrees = 1;
3083 return NULL;
3086 /* Gimplify the parameter list for current_function_decl. This involves
3087 evaluating SAVE_EXPRs of variable sized parameters and generating code
3088 to implement callee-copies reference parameters. Returns a list of
3089 statements to add to the beginning of the function, or NULL if nothing
3090 to do. */
3092 tree
3093 gimplify_parameters (void)
3095 struct assign_parm_data_all all;
3096 tree fnargs, parm, stmts = NULL;
3098 assign_parms_initialize_all (&all);
3099 fnargs = assign_parms_augmented_arg_list (&all);
3101 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3103 struct assign_parm_data_one data;
3105 /* Extract the type of PARM; adjust it according to ABI. */
3106 assign_parm_find_data_types (&all, parm, &data);
3108 /* Early out for errors and void parameters. */
3109 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3110 continue;
3112 /* Update info on where next arg arrives in registers. */
3113 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3114 data.passed_type, data.named_arg);
3116 /* ??? Once upon a time variable_size stuffed parameter list
3117 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3118 turned out to be less than manageable in the gimple world.
3119 Now we have to hunt them down ourselves. */
3120 walk_tree_without_duplicates (&data.passed_type,
3121 gimplify_parm_type, &stmts);
3123 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3125 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3126 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3129 if (data.passed_pointer)
3131 tree type = TREE_TYPE (data.passed_type);
3132 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3133 type, data.named_arg))
3135 tree local, t;
3137 /* For constant sized objects, this is trivial; for
3138 variable-sized objects, we have to play games. */
3139 if (TREE_CONSTANT (DECL_SIZE (parm)))
3141 local = create_tmp_var (type, get_name (parm));
3142 DECL_IGNORED_P (local) = 0;
3144 else
3146 tree ptr_type, addr, args;
3148 ptr_type = build_pointer_type (type);
3149 addr = create_tmp_var (ptr_type, get_name (parm));
3150 DECL_IGNORED_P (addr) = 0;
3151 local = build_fold_indirect_ref (addr);
3153 args = tree_cons (NULL, DECL_SIZE_UNIT (parm), NULL);
3154 t = built_in_decls[BUILT_IN_ALLOCA];
3155 t = build_function_call_expr (t, args);
3156 t = fold_convert (ptr_type, t);
3157 t = build2 (MODIFY_EXPR, void_type_node, addr, t);
3158 gimplify_and_add (t, &stmts);
3161 t = build2 (MODIFY_EXPR, void_type_node, local, parm);
3162 gimplify_and_add (t, &stmts);
3164 SET_DECL_VALUE_EXPR (parm, local);
3165 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3170 return stmts;
3173 /* Indicate whether REGNO is an incoming argument to the current function
3174 that was promoted to a wider mode. If so, return the RTX for the
3175 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3176 that REGNO is promoted from and whether the promotion was signed or
3177 unsigned. */
3180 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3182 tree arg;
3184 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3185 arg = TREE_CHAIN (arg))
3186 if (REG_P (DECL_INCOMING_RTL (arg))
3187 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3188 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3190 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3191 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3193 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3194 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3195 && mode != DECL_MODE (arg))
3197 *pmode = DECL_MODE (arg);
3198 *punsignedp = unsignedp;
3199 return DECL_INCOMING_RTL (arg);
3203 return 0;
3207 /* Compute the size and offset from the start of the stacked arguments for a
3208 parm passed in mode PASSED_MODE and with type TYPE.
3210 INITIAL_OFFSET_PTR points to the current offset into the stacked
3211 arguments.
3213 The starting offset and size for this parm are returned in
3214 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3215 nonzero, the offset is that of stack slot, which is returned in
3216 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3217 padding required from the initial offset ptr to the stack slot.
3219 IN_REGS is nonzero if the argument will be passed in registers. It will
3220 never be set if REG_PARM_STACK_SPACE is not defined.
3222 FNDECL is the function in which the argument was defined.
3224 There are two types of rounding that are done. The first, controlled by
3225 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3226 list to be aligned to the specific boundary (in bits). This rounding
3227 affects the initial and starting offsets, but not the argument size.
3229 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3230 optionally rounds the size of the parm to PARM_BOUNDARY. The
3231 initial offset is not affected by this rounding, while the size always
3232 is and the starting offset may be. */
3234 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3235 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3236 callers pass in the total size of args so far as
3237 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3239 void
3240 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3241 int partial, tree fndecl ATTRIBUTE_UNUSED,
3242 struct args_size *initial_offset_ptr,
3243 struct locate_and_pad_arg_data *locate)
3245 tree sizetree;
3246 enum direction where_pad;
3247 unsigned int boundary;
3248 int reg_parm_stack_space = 0;
3249 int part_size_in_regs;
3251 #ifdef REG_PARM_STACK_SPACE
3252 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3254 /* If we have found a stack parm before we reach the end of the
3255 area reserved for registers, skip that area. */
3256 if (! in_regs)
3258 if (reg_parm_stack_space > 0)
3260 if (initial_offset_ptr->var)
3262 initial_offset_ptr->var
3263 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3264 ssize_int (reg_parm_stack_space));
3265 initial_offset_ptr->constant = 0;
3267 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3268 initial_offset_ptr->constant = reg_parm_stack_space;
3271 #endif /* REG_PARM_STACK_SPACE */
3273 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3275 sizetree
3276 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3277 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3278 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3279 locate->where_pad = where_pad;
3280 locate->boundary = boundary;
3282 /* Remember if the outgoing parameter requires extra alignment on the
3283 calling function side. */
3284 if (boundary > PREFERRED_STACK_BOUNDARY)
3285 boundary = PREFERRED_STACK_BOUNDARY;
3286 if (cfun->stack_alignment_needed < boundary)
3287 cfun->stack_alignment_needed = boundary;
3289 #ifdef ARGS_GROW_DOWNWARD
3290 locate->slot_offset.constant = -initial_offset_ptr->constant;
3291 if (initial_offset_ptr->var)
3292 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3293 initial_offset_ptr->var);
3296 tree s2 = sizetree;
3297 if (where_pad != none
3298 && (!host_integerp (sizetree, 1)
3299 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3300 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3301 SUB_PARM_SIZE (locate->slot_offset, s2);
3304 locate->slot_offset.constant += part_size_in_regs;
3306 if (!in_regs
3307 #ifdef REG_PARM_STACK_SPACE
3308 || REG_PARM_STACK_SPACE (fndecl) > 0
3309 #endif
3311 pad_to_arg_alignment (&locate->slot_offset, boundary,
3312 &locate->alignment_pad);
3314 locate->size.constant = (-initial_offset_ptr->constant
3315 - locate->slot_offset.constant);
3316 if (initial_offset_ptr->var)
3317 locate->size.var = size_binop (MINUS_EXPR,
3318 size_binop (MINUS_EXPR,
3319 ssize_int (0),
3320 initial_offset_ptr->var),
3321 locate->slot_offset.var);
3323 /* Pad_below needs the pre-rounded size to know how much to pad
3324 below. */
3325 locate->offset = locate->slot_offset;
3326 if (where_pad == downward)
3327 pad_below (&locate->offset, passed_mode, sizetree);
3329 #else /* !ARGS_GROW_DOWNWARD */
3330 if (!in_regs
3331 #ifdef REG_PARM_STACK_SPACE
3332 || REG_PARM_STACK_SPACE (fndecl) > 0
3333 #endif
3335 pad_to_arg_alignment (initial_offset_ptr, boundary,
3336 &locate->alignment_pad);
3337 locate->slot_offset = *initial_offset_ptr;
3339 #ifdef PUSH_ROUNDING
3340 if (passed_mode != BLKmode)
3341 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3342 #endif
3344 /* Pad_below needs the pre-rounded size to know how much to pad below
3345 so this must be done before rounding up. */
3346 locate->offset = locate->slot_offset;
3347 if (where_pad == downward)
3348 pad_below (&locate->offset, passed_mode, sizetree);
3350 if (where_pad != none
3351 && (!host_integerp (sizetree, 1)
3352 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3353 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3355 ADD_PARM_SIZE (locate->size, sizetree);
3357 locate->size.constant -= part_size_in_regs;
3358 #endif /* ARGS_GROW_DOWNWARD */
3361 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3362 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3364 static void
3365 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3366 struct args_size *alignment_pad)
3368 tree save_var = NULL_TREE;
3369 HOST_WIDE_INT save_constant = 0;
3370 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3371 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3373 #ifdef SPARC_STACK_BOUNDARY_HACK
3374 /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
3375 higher than the real alignment of %sp. However, when it does this,
3376 the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
3377 This is a temporary hack while the sparc port is fixed. */
3378 if (SPARC_STACK_BOUNDARY_HACK)
3379 sp_offset = 0;
3380 #endif
3382 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3384 save_var = offset_ptr->var;
3385 save_constant = offset_ptr->constant;
3388 alignment_pad->var = NULL_TREE;
3389 alignment_pad->constant = 0;
3391 if (boundary > BITS_PER_UNIT)
3393 if (offset_ptr->var)
3395 tree sp_offset_tree = ssize_int (sp_offset);
3396 tree offset = size_binop (PLUS_EXPR,
3397 ARGS_SIZE_TREE (*offset_ptr),
3398 sp_offset_tree);
3399 #ifdef ARGS_GROW_DOWNWARD
3400 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3401 #else
3402 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3403 #endif
3405 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3406 /* ARGS_SIZE_TREE includes constant term. */
3407 offset_ptr->constant = 0;
3408 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3409 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3410 save_var);
3412 else
3414 offset_ptr->constant = -sp_offset +
3415 #ifdef ARGS_GROW_DOWNWARD
3416 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3417 #else
3418 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3419 #endif
3420 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3421 alignment_pad->constant = offset_ptr->constant - save_constant;
3426 static void
3427 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3429 if (passed_mode != BLKmode)
3431 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3432 offset_ptr->constant
3433 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3434 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3435 - GET_MODE_SIZE (passed_mode));
3437 else
3439 if (TREE_CODE (sizetree) != INTEGER_CST
3440 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3442 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3443 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3444 /* Add it in. */
3445 ADD_PARM_SIZE (*offset_ptr, s2);
3446 SUB_PARM_SIZE (*offset_ptr, sizetree);
3451 /* Walk the tree of blocks describing the binding levels within a function
3452 and warn about variables the might be killed by setjmp or vfork.
3453 This is done after calling flow_analysis and before global_alloc
3454 clobbers the pseudo-regs to hard regs. */
3456 void
3457 setjmp_vars_warning (tree block)
3459 tree decl, sub;
3461 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3463 if (TREE_CODE (decl) == VAR_DECL
3464 && DECL_RTL_SET_P (decl)
3465 && REG_P (DECL_RTL (decl))
3466 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3467 warning (0, "variable %q+D might be clobbered by %<longjmp%>"
3468 " or %<vfork%>",
3469 decl);
3472 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3473 setjmp_vars_warning (sub);
3476 /* Do the appropriate part of setjmp_vars_warning
3477 but for arguments instead of local variables. */
3479 void
3480 setjmp_args_warning (void)
3482 tree decl;
3483 for (decl = DECL_ARGUMENTS (current_function_decl);
3484 decl; decl = TREE_CHAIN (decl))
3485 if (DECL_RTL (decl) != 0
3486 && REG_P (DECL_RTL (decl))
3487 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3488 warning (0, "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3489 decl);
3493 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3494 and create duplicate blocks. */
3495 /* ??? Need an option to either create block fragments or to create
3496 abstract origin duplicates of a source block. It really depends
3497 on what optimization has been performed. */
3499 void
3500 reorder_blocks (void)
3502 tree block = DECL_INITIAL (current_function_decl);
3503 VEC(tree,heap) *block_stack;
3505 if (block == NULL_TREE)
3506 return;
3508 block_stack = VEC_alloc (tree, heap, 10);
3510 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3511 clear_block_marks (block);
3513 /* Prune the old trees away, so that they don't get in the way. */
3514 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3515 BLOCK_CHAIN (block) = NULL_TREE;
3517 /* Recreate the block tree from the note nesting. */
3518 reorder_blocks_1 (get_insns (), block, &block_stack);
3519 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3521 /* Remove deleted blocks from the block fragment chains. */
3522 reorder_fix_fragments (block);
3524 VEC_free (tree, heap, block_stack);
3527 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3529 void
3530 clear_block_marks (tree block)
3532 while (block)
3534 TREE_ASM_WRITTEN (block) = 0;
3535 clear_block_marks (BLOCK_SUBBLOCKS (block));
3536 block = BLOCK_CHAIN (block);
3540 static void
3541 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3543 rtx insn;
3545 for (insn = insns; insn; insn = NEXT_INSN (insn))
3547 if (NOTE_P (insn))
3549 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3551 tree block = NOTE_BLOCK (insn);
3553 /* If we have seen this block before, that means it now
3554 spans multiple address regions. Create a new fragment. */
3555 if (TREE_ASM_WRITTEN (block))
3557 tree new_block = copy_node (block);
3558 tree origin;
3560 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3561 ? BLOCK_FRAGMENT_ORIGIN (block)
3562 : block);
3563 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3564 BLOCK_FRAGMENT_CHAIN (new_block)
3565 = BLOCK_FRAGMENT_CHAIN (origin);
3566 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3568 NOTE_BLOCK (insn) = new_block;
3569 block = new_block;
3572 BLOCK_SUBBLOCKS (block) = 0;
3573 TREE_ASM_WRITTEN (block) = 1;
3574 /* When there's only one block for the entire function,
3575 current_block == block and we mustn't do this, it
3576 will cause infinite recursion. */
3577 if (block != current_block)
3579 BLOCK_SUPERCONTEXT (block) = current_block;
3580 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3581 BLOCK_SUBBLOCKS (current_block) = block;
3582 current_block = block;
3584 VEC_safe_push (tree, heap, *p_block_stack, block);
3586 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3588 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3589 BLOCK_SUBBLOCKS (current_block)
3590 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3591 current_block = BLOCK_SUPERCONTEXT (current_block);
3597 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3598 appears in the block tree, select one of the fragments to become
3599 the new origin block. */
3601 static void
3602 reorder_fix_fragments (tree block)
3604 while (block)
3606 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
3607 tree new_origin = NULL_TREE;
3609 if (dup_origin)
3611 if (! TREE_ASM_WRITTEN (dup_origin))
3613 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
3615 /* Find the first of the remaining fragments. There must
3616 be at least one -- the current block. */
3617 while (! TREE_ASM_WRITTEN (new_origin))
3618 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
3619 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
3622 else if (! dup_origin)
3623 new_origin = block;
3625 /* Re-root the rest of the fragments to the new origin. In the
3626 case that DUP_ORIGIN was null, that means BLOCK was the origin
3627 of a chain of fragments and we want to remove those fragments
3628 that didn't make it to the output. */
3629 if (new_origin)
3631 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
3632 tree chain = *pp;
3634 while (chain)
3636 if (TREE_ASM_WRITTEN (chain))
3638 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
3639 *pp = chain;
3640 pp = &BLOCK_FRAGMENT_CHAIN (chain);
3642 chain = BLOCK_FRAGMENT_CHAIN (chain);
3644 *pp = NULL_TREE;
3647 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
3648 block = BLOCK_CHAIN (block);
3652 /* Reverse the order of elements in the chain T of blocks,
3653 and return the new head of the chain (old last element). */
3655 tree
3656 blocks_nreverse (tree t)
3658 tree prev = 0, decl, next;
3659 for (decl = t; decl; decl = next)
3661 next = BLOCK_CHAIN (decl);
3662 BLOCK_CHAIN (decl) = prev;
3663 prev = decl;
3665 return prev;
3668 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3669 non-NULL, list them all into VECTOR, in a depth-first preorder
3670 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3671 blocks. */
3673 static int
3674 all_blocks (tree block, tree *vector)
3676 int n_blocks = 0;
3678 while (block)
3680 TREE_ASM_WRITTEN (block) = 0;
3682 /* Record this block. */
3683 if (vector)
3684 vector[n_blocks] = block;
3686 ++n_blocks;
3688 /* Record the subblocks, and their subblocks... */
3689 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3690 vector ? vector + n_blocks : 0);
3691 block = BLOCK_CHAIN (block);
3694 return n_blocks;
3697 /* Return a vector containing all the blocks rooted at BLOCK. The
3698 number of elements in the vector is stored in N_BLOCKS_P. The
3699 vector is dynamically allocated; it is the caller's responsibility
3700 to call `free' on the pointer returned. */
3702 static tree *
3703 get_block_vector (tree block, int *n_blocks_p)
3705 tree *block_vector;
3707 *n_blocks_p = all_blocks (block, NULL);
3708 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
3709 all_blocks (block, block_vector);
3711 return block_vector;
3714 static GTY(()) int next_block_index = 2;
3716 /* Set BLOCK_NUMBER for all the blocks in FN. */
3718 void
3719 number_blocks (tree fn)
3721 int i;
3722 int n_blocks;
3723 tree *block_vector;
3725 /* For SDB and XCOFF debugging output, we start numbering the blocks
3726 from 1 within each function, rather than keeping a running
3727 count. */
3728 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3729 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3730 next_block_index = 1;
3731 #endif
3733 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3735 /* The top-level BLOCK isn't numbered at all. */
3736 for (i = 1; i < n_blocks; ++i)
3737 /* We number the blocks from two. */
3738 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3740 free (block_vector);
3742 return;
3745 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3747 tree
3748 debug_find_var_in_block_tree (tree var, tree block)
3750 tree t;
3752 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3753 if (t == var)
3754 return block;
3756 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3758 tree ret = debug_find_var_in_block_tree (var, t);
3759 if (ret)
3760 return ret;
3763 return NULL_TREE;
3766 /* Allocate a function structure for FNDECL and set its contents
3767 to the defaults. */
3769 void
3770 allocate_struct_function (tree fndecl)
3772 tree result;
3773 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3775 cfun = ggc_alloc_cleared (sizeof (struct function));
3777 cfun->stack_alignment_needed = STACK_BOUNDARY;
3778 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3780 current_function_funcdef_no = funcdef_no++;
3782 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3784 init_eh_for_function ();
3786 lang_hooks.function.init (cfun);
3787 if (init_machine_status)
3788 cfun->machine = (*init_machine_status) ();
3790 if (fndecl == NULL)
3791 return;
3793 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3794 cfun->decl = fndecl;
3796 result = DECL_RESULT (fndecl);
3797 if (aggregate_value_p (result, fndecl))
3799 #ifdef PCC_STATIC_STRUCT_RETURN
3800 current_function_returns_pcc_struct = 1;
3801 #endif
3802 current_function_returns_struct = 1;
3805 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3807 current_function_stdarg
3808 = (fntype
3809 && TYPE_ARG_TYPES (fntype) != 0
3810 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3811 != void_type_node));
3813 /* Assume all registers in stdarg functions need to be saved. */
3814 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3815 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3818 /* Reset cfun, and other non-struct-function variables to defaults as
3819 appropriate for emitting rtl at the start of a function. */
3821 static void
3822 prepare_function_start (tree fndecl)
3824 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3825 cfun = DECL_STRUCT_FUNCTION (fndecl);
3826 else
3827 allocate_struct_function (fndecl);
3828 init_emit ();
3829 init_varasm_status (cfun);
3830 init_expr ();
3832 cse_not_expected = ! optimize;
3834 /* Caller save not needed yet. */
3835 caller_save_needed = 0;
3837 /* We haven't done register allocation yet. */
3838 reg_renumber = 0;
3840 /* Indicate that we have not instantiated virtual registers yet. */
3841 virtuals_instantiated = 0;
3843 /* Indicate that we want CONCATs now. */
3844 generating_concat_p = 1;
3846 /* Indicate we have no need of a frame pointer yet. */
3847 frame_pointer_needed = 0;
3850 /* Initialize the rtl expansion mechanism so that we can do simple things
3851 like generate sequences. This is used to provide a context during global
3852 initialization of some passes. */
3853 void
3854 init_dummy_function_start (void)
3856 prepare_function_start (NULL);
3859 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3860 and initialize static variables for generating RTL for the statements
3861 of the function. */
3863 void
3864 init_function_start (tree subr)
3866 prepare_function_start (subr);
3868 /* Prevent ever trying to delete the first instruction of a
3869 function. Also tell final how to output a linenum before the
3870 function prologue. Note linenums could be missing, e.g. when
3871 compiling a Java .class file. */
3872 if (! DECL_IS_BUILTIN (subr))
3873 emit_line_note (DECL_SOURCE_LOCATION (subr));
3875 /* Make sure first insn is a note even if we don't want linenums.
3876 This makes sure the first insn will never be deleted.
3877 Also, final expects a note to appear there. */
3878 emit_note (NOTE_INSN_DELETED);
3880 /* Warn if this value is an aggregate type,
3881 regardless of which calling convention we are using for it. */
3882 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3883 warning (OPT_Waggregate_return, "function returns an aggregate");
3886 /* Make sure all values used by the optimization passes have sane
3887 defaults. */
3888 void
3889 init_function_for_compilation (void)
3891 reg_renumber = 0;
3893 /* No prologue/epilogue insns yet. Make sure that these vectors are
3894 empty. */
3895 gcc_assert (VEC_length (int, prologue) == 0);
3896 gcc_assert (VEC_length (int, epilogue) == 0);
3897 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
3900 struct tree_opt_pass pass_init_function =
3902 NULL, /* name */
3903 NULL, /* gate */
3904 init_function_for_compilation, /* execute */
3905 NULL, /* sub */
3906 NULL, /* next */
3907 0, /* static_pass_number */
3908 0, /* tv_id */
3909 0, /* properties_required */
3910 0, /* properties_provided */
3911 0, /* properties_destroyed */
3912 0, /* todo_flags_start */
3913 0, /* todo_flags_finish */
3914 0 /* letter */
3918 void
3919 expand_main_function (void)
3921 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
3922 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
3924 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
3925 rtx tmp, seq;
3927 start_sequence ();
3928 /* Forcibly align the stack. */
3929 #ifdef STACK_GROWS_DOWNWARD
3930 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
3931 stack_pointer_rtx, 1, OPTAB_WIDEN);
3932 #else
3933 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3934 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
3935 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
3936 stack_pointer_rtx, 1, OPTAB_WIDEN);
3937 #endif
3938 if (tmp != stack_pointer_rtx)
3939 emit_move_insn (stack_pointer_rtx, tmp);
3941 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
3942 tmp = force_reg (Pmode, const0_rtx);
3943 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
3944 seq = get_insns ();
3945 end_sequence ();
3947 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
3948 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
3949 break;
3950 if (tmp)
3951 emit_insn_before (seq, tmp);
3952 else
3953 emit_insn (seq);
3955 #endif
3957 #if (defined(INVOKE__main) \
3958 || (!defined(HAS_INIT_SECTION) \
3959 && !defined(INIT_SECTION_ASM_OP) \
3960 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
3961 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3962 #endif
3965 /* Expand code to initialize the stack_protect_guard. This is invoked at
3966 the beginning of a function to be protected. */
3968 #ifndef HAVE_stack_protect_set
3969 # define HAVE_stack_protect_set 0
3970 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
3971 #endif
3973 void
3974 stack_protect_prologue (void)
3976 tree guard_decl = targetm.stack_protect_guard ();
3977 rtx x, y;
3979 /* Avoid expand_expr here, because we don't want guard_decl pulled
3980 into registers unless absolutely necessary. And we know that
3981 cfun->stack_protect_guard is a local stack slot, so this skips
3982 all the fluff. */
3983 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
3984 y = validize_mem (DECL_RTL (guard_decl));
3986 /* Allow the target to copy from Y to X without leaking Y into a
3987 register. */
3988 if (HAVE_stack_protect_set)
3990 rtx insn = gen_stack_protect_set (x, y);
3991 if (insn)
3993 emit_insn (insn);
3994 return;
3998 /* Otherwise do a straight move. */
3999 emit_move_insn (x, y);
4002 /* Expand code to verify the stack_protect_guard. This is invoked at
4003 the end of a function to be protected. */
4005 #ifndef HAVE_stack_protect_test
4006 # define HAVE_stack_protect_test 0
4007 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4008 #endif
4010 void
4011 stack_protect_epilogue (void)
4013 tree guard_decl = targetm.stack_protect_guard ();
4014 rtx label = gen_label_rtx ();
4015 rtx x, y, tmp;
4017 /* Avoid expand_expr here, because we don't want guard_decl pulled
4018 into registers unless absolutely necessary. And we know that
4019 cfun->stack_protect_guard is a local stack slot, so this skips
4020 all the fluff. */
4021 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
4022 y = validize_mem (DECL_RTL (guard_decl));
4024 /* Allow the target to compare Y with X without leaking either into
4025 a register. */
4026 switch (HAVE_stack_protect_test != 0)
4028 case 1:
4029 tmp = gen_stack_protect_test (x, y, label);
4030 if (tmp)
4032 emit_insn (tmp);
4033 break;
4035 /* FALLTHRU */
4037 default:
4038 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4039 break;
4042 /* The noreturn predictor has been moved to the tree level. The rtl-level
4043 predictors estimate this branch about 20%, which isn't enough to get
4044 things moved out of line. Since this is the only extant case of adding
4045 a noreturn function at the rtl level, it doesn't seem worth doing ought
4046 except adding the prediction by hand. */
4047 tmp = get_last_insn ();
4048 if (JUMP_P (tmp))
4049 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4051 expand_expr_stmt (targetm.stack_protect_fail ());
4052 emit_label (label);
4055 /* Start the RTL for a new function, and set variables used for
4056 emitting RTL.
4057 SUBR is the FUNCTION_DECL node.
4058 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4059 the function's parameters, which must be run at any return statement. */
4061 void
4062 expand_function_start (tree subr)
4064 /* Make sure volatile mem refs aren't considered
4065 valid operands of arithmetic insns. */
4066 init_recog_no_volatile ();
4068 current_function_profile
4069 = (profile_flag
4070 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4072 current_function_limit_stack
4073 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4075 /* Make the label for return statements to jump to. Do not special
4076 case machines with special return instructions -- they will be
4077 handled later during jump, ifcvt, or epilogue creation. */
4078 return_label = gen_label_rtx ();
4080 /* Initialize rtx used to return the value. */
4081 /* Do this before assign_parms so that we copy the struct value address
4082 before any library calls that assign parms might generate. */
4084 /* Decide whether to return the value in memory or in a register. */
4085 if (aggregate_value_p (DECL_RESULT (subr), subr))
4087 /* Returning something that won't go in a register. */
4088 rtx value_address = 0;
4090 #ifdef PCC_STATIC_STRUCT_RETURN
4091 if (current_function_returns_pcc_struct)
4093 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4094 value_address = assemble_static_space (size);
4096 else
4097 #endif
4099 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
4100 /* Expect to be passed the address of a place to store the value.
4101 If it is passed as an argument, assign_parms will take care of
4102 it. */
4103 if (sv)
4105 value_address = gen_reg_rtx (Pmode);
4106 emit_move_insn (value_address, sv);
4109 if (value_address)
4111 rtx x = value_address;
4112 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4114 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4115 set_mem_attributes (x, DECL_RESULT (subr), 1);
4117 SET_DECL_RTL (DECL_RESULT (subr), x);
4120 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4121 /* If return mode is void, this decl rtl should not be used. */
4122 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4123 else
4125 /* Compute the return values into a pseudo reg, which we will copy
4126 into the true return register after the cleanups are done. */
4127 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4128 if (TYPE_MODE (return_type) != BLKmode
4129 && targetm.calls.return_in_msb (return_type))
4130 /* expand_function_end will insert the appropriate padding in
4131 this case. Use the return value's natural (unpadded) mode
4132 within the function proper. */
4133 SET_DECL_RTL (DECL_RESULT (subr),
4134 gen_reg_rtx (TYPE_MODE (return_type)));
4135 else
4137 /* In order to figure out what mode to use for the pseudo, we
4138 figure out what the mode of the eventual return register will
4139 actually be, and use that. */
4140 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4142 /* Structures that are returned in registers are not
4143 aggregate_value_p, so we may see a PARALLEL or a REG. */
4144 if (REG_P (hard_reg))
4145 SET_DECL_RTL (DECL_RESULT (subr),
4146 gen_reg_rtx (GET_MODE (hard_reg)));
4147 else
4149 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4150 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4154 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4155 result to the real return register(s). */
4156 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4159 /* Initialize rtx for parameters and local variables.
4160 In some cases this requires emitting insns. */
4161 assign_parms (subr);
4163 /* If function gets a static chain arg, store it. */
4164 if (cfun->static_chain_decl)
4166 tree parm = cfun->static_chain_decl;
4167 rtx local = gen_reg_rtx (Pmode);
4169 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4170 SET_DECL_RTL (parm, local);
4171 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4173 emit_move_insn (local, static_chain_incoming_rtx);
4176 /* If the function receives a non-local goto, then store the
4177 bits we need to restore the frame pointer. */
4178 if (cfun->nonlocal_goto_save_area)
4180 tree t_save;
4181 rtx r_save;
4183 /* ??? We need to do this save early. Unfortunately here is
4184 before the frame variable gets declared. Help out... */
4185 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4187 t_save = build4 (ARRAY_REF, ptr_type_node,
4188 cfun->nonlocal_goto_save_area,
4189 integer_zero_node, NULL_TREE, NULL_TREE);
4190 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4191 r_save = convert_memory_address (Pmode, r_save);
4193 emit_move_insn (r_save, virtual_stack_vars_rtx);
4194 update_nonlocal_goto_save_area ();
4197 /* The following was moved from init_function_start.
4198 The move is supposed to make sdb output more accurate. */
4199 /* Indicate the beginning of the function body,
4200 as opposed to parm setup. */
4201 emit_note (NOTE_INSN_FUNCTION_BEG);
4203 if (!NOTE_P (get_last_insn ()))
4204 emit_note (NOTE_INSN_DELETED);
4205 parm_birth_insn = get_last_insn ();
4207 if (current_function_profile)
4209 #ifdef PROFILE_HOOK
4210 PROFILE_HOOK (current_function_funcdef_no);
4211 #endif
4214 /* After the display initializations is where the tail-recursion label
4215 should go, if we end up needing one. Ensure we have a NOTE here
4216 since some things (like trampolines) get placed before this. */
4217 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
4219 /* Make sure there is a line number after the function entry setup code. */
4220 force_next_line_note ();
4223 /* Undo the effects of init_dummy_function_start. */
4224 void
4225 expand_dummy_function_end (void)
4227 /* End any sequences that failed to be closed due to syntax errors. */
4228 while (in_sequence_p ())
4229 end_sequence ();
4231 /* Outside function body, can't compute type's actual size
4232 until next function's body starts. */
4234 free_after_parsing (cfun);
4235 free_after_compilation (cfun);
4236 cfun = 0;
4239 /* Call DOIT for each hard register used as a return value from
4240 the current function. */
4242 void
4243 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4245 rtx outgoing = current_function_return_rtx;
4247 if (! outgoing)
4248 return;
4250 if (REG_P (outgoing))
4251 (*doit) (outgoing, arg);
4252 else if (GET_CODE (outgoing) == PARALLEL)
4254 int i;
4256 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4258 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4260 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4261 (*doit) (x, arg);
4266 static void
4267 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4269 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4272 void
4273 clobber_return_register (void)
4275 diddle_return_value (do_clobber_return_reg, NULL);
4277 /* In case we do use pseudo to return value, clobber it too. */
4278 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4280 tree decl_result = DECL_RESULT (current_function_decl);
4281 rtx decl_rtl = DECL_RTL (decl_result);
4282 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4284 do_clobber_return_reg (decl_rtl, NULL);
4289 static void
4290 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4292 emit_insn (gen_rtx_USE (VOIDmode, reg));
4295 void
4296 use_return_register (void)
4298 diddle_return_value (do_use_return_reg, NULL);
4301 /* Possibly warn about unused parameters. */
4302 void
4303 do_warn_unused_parameter (tree fn)
4305 tree decl;
4307 for (decl = DECL_ARGUMENTS (fn);
4308 decl; decl = TREE_CHAIN (decl))
4309 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4310 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4311 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4314 static GTY(()) rtx initial_trampoline;
4316 /* Generate RTL for the end of the current function. */
4318 void
4319 expand_function_end (void)
4321 rtx clobber_after;
4323 /* If arg_pointer_save_area was referenced only from a nested
4324 function, we will not have initialized it yet. Do that now. */
4325 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4326 get_arg_pointer_save_area (cfun);
4328 /* If we are doing stack checking and this function makes calls,
4329 do a stack probe at the start of the function to ensure we have enough
4330 space for another stack frame. */
4331 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4333 rtx insn, seq;
4335 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4336 if (CALL_P (insn))
4338 start_sequence ();
4339 probe_stack_range (STACK_CHECK_PROTECT,
4340 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4341 seq = get_insns ();
4342 end_sequence ();
4343 emit_insn_before (seq, tail_recursion_reentry);
4344 break;
4348 /* Possibly warn about unused parameters.
4349 When frontend does unit-at-a-time, the warning is already
4350 issued at finalization time. */
4351 if (warn_unused_parameter
4352 && !lang_hooks.callgraph.expand_function)
4353 do_warn_unused_parameter (current_function_decl);
4355 /* End any sequences that failed to be closed due to syntax errors. */
4356 while (in_sequence_p ())
4357 end_sequence ();
4359 clear_pending_stack_adjust ();
4360 do_pending_stack_adjust ();
4362 /* @@@ This is a kludge. We want to ensure that instructions that
4363 may trap are not moved into the epilogue by scheduling, because
4364 we don't always emit unwind information for the epilogue.
4365 However, not all machine descriptions define a blockage insn, so
4366 emit an ASM_INPUT to act as one. */
4367 if (flag_non_call_exceptions)
4368 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4370 /* Mark the end of the function body.
4371 If control reaches this insn, the function can drop through
4372 without returning a value. */
4373 emit_note (NOTE_INSN_FUNCTION_END);
4375 /* Must mark the last line number note in the function, so that the test
4376 coverage code can avoid counting the last line twice. This just tells
4377 the code to ignore the immediately following line note, since there
4378 already exists a copy of this note somewhere above. This line number
4379 note is still needed for debugging though, so we can't delete it. */
4380 if (flag_test_coverage)
4381 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4383 /* Output a linenumber for the end of the function.
4384 SDB depends on this. */
4385 force_next_line_note ();
4386 emit_line_note (input_location);
4388 /* Before the return label (if any), clobber the return
4389 registers so that they are not propagated live to the rest of
4390 the function. This can only happen with functions that drop
4391 through; if there had been a return statement, there would
4392 have either been a return rtx, or a jump to the return label.
4394 We delay actual code generation after the current_function_value_rtx
4395 is computed. */
4396 clobber_after = get_last_insn ();
4398 /* Output the label for the actual return from the function. */
4399 emit_label (return_label);
4401 /* Let except.c know where it should emit the call to unregister
4402 the function context for sjlj exceptions. */
4403 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
4404 sjlj_emit_function_exit_after (get_last_insn ());
4406 /* If this is an implementation of throw, do what's necessary to
4407 communicate between __builtin_eh_return and the epilogue. */
4408 expand_eh_return ();
4410 /* If scalar return value was computed in a pseudo-reg, or was a named
4411 return value that got dumped to the stack, copy that to the hard
4412 return register. */
4413 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4415 tree decl_result = DECL_RESULT (current_function_decl);
4416 rtx decl_rtl = DECL_RTL (decl_result);
4418 if (REG_P (decl_rtl)
4419 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4420 : DECL_REGISTER (decl_result))
4422 rtx real_decl_rtl = current_function_return_rtx;
4424 /* This should be set in assign_parms. */
4425 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4427 /* If this is a BLKmode structure being returned in registers,
4428 then use the mode computed in expand_return. Note that if
4429 decl_rtl is memory, then its mode may have been changed,
4430 but that current_function_return_rtx has not. */
4431 if (GET_MODE (real_decl_rtl) == BLKmode)
4432 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4434 /* If a non-BLKmode return value should be padded at the least
4435 significant end of the register, shift it left by the appropriate
4436 amount. BLKmode results are handled using the group load/store
4437 machinery. */
4438 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4439 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4441 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4442 REGNO (real_decl_rtl)),
4443 decl_rtl);
4444 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4446 /* If a named return value dumped decl_return to memory, then
4447 we may need to re-do the PROMOTE_MODE signed/unsigned
4448 extension. */
4449 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4451 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4453 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4454 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4455 &unsignedp, 1);
4457 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4459 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4461 /* If expand_function_start has created a PARALLEL for decl_rtl,
4462 move the result to the real return registers. Otherwise, do
4463 a group load from decl_rtl for a named return. */
4464 if (GET_CODE (decl_rtl) == PARALLEL)
4465 emit_group_move (real_decl_rtl, decl_rtl);
4466 else
4467 emit_group_load (real_decl_rtl, decl_rtl,
4468 TREE_TYPE (decl_result),
4469 int_size_in_bytes (TREE_TYPE (decl_result)));
4471 /* In the case of complex integer modes smaller than a word, we'll
4472 need to generate some non-trivial bitfield insertions. Do that
4473 on a pseudo and not the hard register. */
4474 else if (GET_CODE (decl_rtl) == CONCAT
4475 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4476 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4478 int old_generating_concat_p;
4479 rtx tmp;
4481 old_generating_concat_p = generating_concat_p;
4482 generating_concat_p = 0;
4483 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4484 generating_concat_p = old_generating_concat_p;
4486 emit_move_insn (tmp, decl_rtl);
4487 emit_move_insn (real_decl_rtl, tmp);
4489 else
4490 emit_move_insn (real_decl_rtl, decl_rtl);
4494 /* If returning a structure, arrange to return the address of the value
4495 in a place where debuggers expect to find it.
4497 If returning a structure PCC style,
4498 the caller also depends on this value.
4499 And current_function_returns_pcc_struct is not necessarily set. */
4500 if (current_function_returns_struct
4501 || current_function_returns_pcc_struct)
4503 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4504 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4505 rtx outgoing;
4507 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4508 type = TREE_TYPE (type);
4509 else
4510 value_address = XEXP (value_address, 0);
4512 outgoing = targetm.calls.function_value (build_pointer_type (type),
4513 current_function_decl, true);
4515 /* Mark this as a function return value so integrate will delete the
4516 assignment and USE below when inlining this function. */
4517 REG_FUNCTION_VALUE_P (outgoing) = 1;
4519 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4520 value_address = convert_memory_address (GET_MODE (outgoing),
4521 value_address);
4523 emit_move_insn (outgoing, value_address);
4525 /* Show return register used to hold result (in this case the address
4526 of the result. */
4527 current_function_return_rtx = outgoing;
4530 /* Emit the actual code to clobber return register. */
4532 rtx seq;
4534 start_sequence ();
4535 clobber_return_register ();
4536 expand_naked_return ();
4537 seq = get_insns ();
4538 end_sequence ();
4540 emit_insn_after (seq, clobber_after);
4543 /* Output the label for the naked return from the function. */
4544 emit_label (naked_return_label);
4546 /* If stack protection is enabled for this function, check the guard. */
4547 if (cfun->stack_protect_guard)
4548 stack_protect_epilogue ();
4550 /* If we had calls to alloca, and this machine needs
4551 an accurate stack pointer to exit the function,
4552 insert some code to save and restore the stack pointer. */
4553 if (! EXIT_IGNORE_STACK
4554 && current_function_calls_alloca)
4556 rtx tem = 0;
4558 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4559 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4562 /* ??? This should no longer be necessary since stupid is no longer with
4563 us, but there are some parts of the compiler (eg reload_combine, and
4564 sh mach_dep_reorg) that still try and compute their own lifetime info
4565 instead of using the general framework. */
4566 use_return_register ();
4570 get_arg_pointer_save_area (struct function *f)
4572 rtx ret = f->x_arg_pointer_save_area;
4574 if (! ret)
4576 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4577 f->x_arg_pointer_save_area = ret;
4580 if (f == cfun && ! f->arg_pointer_save_area_init)
4582 rtx seq;
4584 /* Save the arg pointer at the beginning of the function. The
4585 generated stack slot may not be a valid memory address, so we
4586 have to check it and fix it if necessary. */
4587 start_sequence ();
4588 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4589 seq = get_insns ();
4590 end_sequence ();
4592 push_topmost_sequence ();
4593 emit_insn_after (seq, entry_of_function ());
4594 pop_topmost_sequence ();
4597 return ret;
4600 /* Extend a vector that records the INSN_UIDs of INSNS
4601 (a list of one or more insns). */
4603 static void
4604 record_insns (rtx insns, VEC(int,heap) **vecp)
4606 rtx tmp;
4608 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4609 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4612 /* Set the locator of the insn chain starting at INSN to LOC. */
4613 static void
4614 set_insn_locators (rtx insn, int loc)
4616 while (insn != NULL_RTX)
4618 if (INSN_P (insn))
4619 INSN_LOCATOR (insn) = loc;
4620 insn = NEXT_INSN (insn);
4624 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4625 be running after reorg, SEQUENCE rtl is possible. */
4627 static int
4628 contains (rtx insn, VEC(int,heap) **vec)
4630 int i, j;
4632 if (NONJUMP_INSN_P (insn)
4633 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4635 int count = 0;
4636 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4637 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4638 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4639 == VEC_index (int, *vec, j))
4640 count++;
4641 return count;
4643 else
4645 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4646 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4647 return 1;
4649 return 0;
4653 prologue_epilogue_contains (rtx insn)
4655 if (contains (insn, &prologue))
4656 return 1;
4657 if (contains (insn, &epilogue))
4658 return 1;
4659 return 0;
4663 sibcall_epilogue_contains (rtx insn)
4665 if (sibcall_epilogue)
4666 return contains (insn, &sibcall_epilogue);
4667 return 0;
4670 #ifdef HAVE_return
4671 /* Insert gen_return at the end of block BB. This also means updating
4672 block_for_insn appropriately. */
4674 static void
4675 emit_return_into_block (basic_block bb, rtx line_note)
4677 emit_jump_insn_after (gen_return (), BB_END (bb));
4678 if (line_note)
4679 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4681 #endif /* HAVE_return */
4683 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4685 /* These functions convert the epilogue into a variant that does not
4686 modify the stack pointer. This is used in cases where a function
4687 returns an object whose size is not known until it is computed.
4688 The called function leaves the object on the stack, leaves the
4689 stack depressed, and returns a pointer to the object.
4691 What we need to do is track all modifications and references to the
4692 stack pointer, deleting the modifications and changing the
4693 references to point to the location the stack pointer would have
4694 pointed to had the modifications taken place.
4696 These functions need to be portable so we need to make as few
4697 assumptions about the epilogue as we can. However, the epilogue
4698 basically contains three things: instructions to reset the stack
4699 pointer, instructions to reload registers, possibly including the
4700 frame pointer, and an instruction to return to the caller.
4702 We must be sure of what a relevant epilogue insn is doing. We also
4703 make no attempt to validate the insns we make since if they are
4704 invalid, we probably can't do anything valid. The intent is that
4705 these routines get "smarter" as more and more machines start to use
4706 them and they try operating on different epilogues.
4708 We use the following structure to track what the part of the
4709 epilogue that we've already processed has done. We keep two copies
4710 of the SP equivalence, one for use during the insn we are
4711 processing and one for use in the next insn. The difference is
4712 because one part of a PARALLEL may adjust SP and the other may use
4713 it. */
4715 struct epi_info
4717 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4718 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4719 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4720 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4721 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4722 should be set to once we no longer need
4723 its value. */
4724 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4725 for registers. */
4728 static void handle_epilogue_set (rtx, struct epi_info *);
4729 static void update_epilogue_consts (rtx, rtx, void *);
4730 static void emit_equiv_load (struct epi_info *);
4732 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4733 no modifications to the stack pointer. Return the new list of insns. */
4735 static rtx
4736 keep_stack_depressed (rtx insns)
4738 int j;
4739 struct epi_info info;
4740 rtx insn, next;
4742 /* If the epilogue is just a single instruction, it must be OK as is. */
4743 if (NEXT_INSN (insns) == NULL_RTX)
4744 return insns;
4746 /* Otherwise, start a sequence, initialize the information we have, and
4747 process all the insns we were given. */
4748 start_sequence ();
4750 info.sp_equiv_reg = stack_pointer_rtx;
4751 info.sp_offset = 0;
4752 info.equiv_reg_src = 0;
4754 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4755 info.const_equiv[j] = 0;
4757 insn = insns;
4758 next = NULL_RTX;
4759 while (insn != NULL_RTX)
4761 next = NEXT_INSN (insn);
4763 if (!INSN_P (insn))
4765 add_insn (insn);
4766 insn = next;
4767 continue;
4770 /* If this insn references the register that SP is equivalent to and
4771 we have a pending load to that register, we must force out the load
4772 first and then indicate we no longer know what SP's equivalent is. */
4773 if (info.equiv_reg_src != 0
4774 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4776 emit_equiv_load (&info);
4777 info.sp_equiv_reg = 0;
4780 info.new_sp_equiv_reg = info.sp_equiv_reg;
4781 info.new_sp_offset = info.sp_offset;
4783 /* If this is a (RETURN) and the return address is on the stack,
4784 update the address and change to an indirect jump. */
4785 if (GET_CODE (PATTERN (insn)) == RETURN
4786 || (GET_CODE (PATTERN (insn)) == PARALLEL
4787 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4789 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4790 rtx base = 0;
4791 HOST_WIDE_INT offset = 0;
4792 rtx jump_insn, jump_set;
4794 /* If the return address is in a register, we can emit the insn
4795 unchanged. Otherwise, it must be a MEM and we see what the
4796 base register and offset are. In any case, we have to emit any
4797 pending load to the equivalent reg of SP, if any. */
4798 if (REG_P (retaddr))
4800 emit_equiv_load (&info);
4801 add_insn (insn);
4802 insn = next;
4803 continue;
4805 else
4807 rtx ret_ptr;
4808 gcc_assert (MEM_P (retaddr));
4810 ret_ptr = XEXP (retaddr, 0);
4812 if (REG_P (ret_ptr))
4814 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4815 offset = 0;
4817 else
4819 gcc_assert (GET_CODE (ret_ptr) == PLUS
4820 && REG_P (XEXP (ret_ptr, 0))
4821 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4822 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4823 offset = INTVAL (XEXP (ret_ptr, 1));
4827 /* If the base of the location containing the return pointer
4828 is SP, we must update it with the replacement address. Otherwise,
4829 just build the necessary MEM. */
4830 retaddr = plus_constant (base, offset);
4831 if (base == stack_pointer_rtx)
4832 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4833 plus_constant (info.sp_equiv_reg,
4834 info.sp_offset));
4836 retaddr = gen_rtx_MEM (Pmode, retaddr);
4837 MEM_NOTRAP_P (retaddr) = 1;
4839 /* If there is a pending load to the equivalent register for SP
4840 and we reference that register, we must load our address into
4841 a scratch register and then do that load. */
4842 if (info.equiv_reg_src
4843 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4845 unsigned int regno;
4846 rtx reg;
4848 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4849 if (HARD_REGNO_MODE_OK (regno, Pmode)
4850 && !fixed_regs[regno]
4851 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4852 && !REGNO_REG_SET_P
4853 (EXIT_BLOCK_PTR->il.rtl->global_live_at_start, regno)
4854 && !refers_to_regno_p (regno,
4855 regno + hard_regno_nregs[regno]
4856 [Pmode],
4857 info.equiv_reg_src, NULL)
4858 && info.const_equiv[regno] == 0)
4859 break;
4861 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4863 reg = gen_rtx_REG (Pmode, regno);
4864 emit_move_insn (reg, retaddr);
4865 retaddr = reg;
4868 emit_equiv_load (&info);
4869 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4871 /* Show the SET in the above insn is a RETURN. */
4872 jump_set = single_set (jump_insn);
4873 gcc_assert (jump_set);
4874 SET_IS_RETURN_P (jump_set) = 1;
4877 /* If SP is not mentioned in the pattern and its equivalent register, if
4878 any, is not modified, just emit it. Otherwise, if neither is set,
4879 replace the reference to SP and emit the insn. If none of those are
4880 true, handle each SET individually. */
4881 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4882 && (info.sp_equiv_reg == stack_pointer_rtx
4883 || !reg_set_p (info.sp_equiv_reg, insn)))
4884 add_insn (insn);
4885 else if (! reg_set_p (stack_pointer_rtx, insn)
4886 && (info.sp_equiv_reg == stack_pointer_rtx
4887 || !reg_set_p (info.sp_equiv_reg, insn)))
4889 int changed;
4891 changed = validate_replace_rtx (stack_pointer_rtx,
4892 plus_constant (info.sp_equiv_reg,
4893 info.sp_offset),
4894 insn);
4895 gcc_assert (changed);
4897 add_insn (insn);
4899 else if (GET_CODE (PATTERN (insn)) == SET)
4900 handle_epilogue_set (PATTERN (insn), &info);
4901 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4903 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4904 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4905 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4907 else
4908 add_insn (insn);
4910 info.sp_equiv_reg = info.new_sp_equiv_reg;
4911 info.sp_offset = info.new_sp_offset;
4913 /* Now update any constants this insn sets. */
4914 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4915 insn = next;
4918 insns = get_insns ();
4919 end_sequence ();
4920 return insns;
4923 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4924 structure that contains information about what we've seen so far. We
4925 process this SET by either updating that data or by emitting one or
4926 more insns. */
4928 static void
4929 handle_epilogue_set (rtx set, struct epi_info *p)
4931 /* First handle the case where we are setting SP. Record what it is being
4932 set from, which we must be able to determine */
4933 if (reg_set_p (stack_pointer_rtx, set))
4935 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
4937 if (GET_CODE (SET_SRC (set)) == PLUS)
4939 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4940 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4941 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4942 else
4944 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
4945 && (REGNO (XEXP (SET_SRC (set), 1))
4946 < FIRST_PSEUDO_REGISTER)
4947 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4948 p->new_sp_offset
4949 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4952 else
4953 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4955 /* If we are adjusting SP, we adjust from the old data. */
4956 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4958 p->new_sp_equiv_reg = p->sp_equiv_reg;
4959 p->new_sp_offset += p->sp_offset;
4962 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
4964 return;
4967 /* Next handle the case where we are setting SP's equivalent
4968 register. We must not already have a value to set it to. We
4969 could update, but there seems little point in handling that case.
4970 Note that we have to allow for the case where we are setting the
4971 register set in the previous part of a PARALLEL inside a single
4972 insn. But use the old offset for any updates within this insn.
4973 We must allow for the case where the register is being set in a
4974 different (usually wider) mode than Pmode). */
4975 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
4977 gcc_assert (!p->equiv_reg_src
4978 && REG_P (p->new_sp_equiv_reg)
4979 && REG_P (SET_DEST (set))
4980 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
4981 <= BITS_PER_WORD)
4982 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
4983 p->equiv_reg_src
4984 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4985 plus_constant (p->sp_equiv_reg,
4986 p->sp_offset));
4989 /* Otherwise, replace any references to SP in the insn to its new value
4990 and emit the insn. */
4991 else
4993 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4994 plus_constant (p->sp_equiv_reg,
4995 p->sp_offset));
4996 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
4997 plus_constant (p->sp_equiv_reg,
4998 p->sp_offset));
4999 emit_insn (set);
5003 /* Update the tracking information for registers set to constants. */
5005 static void
5006 update_epilogue_consts (rtx dest, rtx x, void *data)
5008 struct epi_info *p = (struct epi_info *) data;
5009 rtx new;
5011 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5012 return;
5014 /* If we are either clobbering a register or doing a partial set,
5015 show we don't know the value. */
5016 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
5017 p->const_equiv[REGNO (dest)] = 0;
5019 /* If we are setting it to a constant, record that constant. */
5020 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
5021 p->const_equiv[REGNO (dest)] = SET_SRC (x);
5023 /* If this is a binary operation between a register we have been tracking
5024 and a constant, see if we can compute a new constant value. */
5025 else if (ARITHMETIC_P (SET_SRC (x))
5026 && REG_P (XEXP (SET_SRC (x), 0))
5027 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
5028 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
5029 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
5030 && 0 != (new = simplify_binary_operation
5031 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
5032 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
5033 XEXP (SET_SRC (x), 1)))
5034 && GET_CODE (new) == CONST_INT)
5035 p->const_equiv[REGNO (dest)] = new;
5037 /* Otherwise, we can't do anything with this value. */
5038 else
5039 p->const_equiv[REGNO (dest)] = 0;
5042 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
5044 static void
5045 emit_equiv_load (struct epi_info *p)
5047 if (p->equiv_reg_src != 0)
5049 rtx dest = p->sp_equiv_reg;
5051 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
5052 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
5053 REGNO (p->sp_equiv_reg));
5055 emit_move_insn (dest, p->equiv_reg_src);
5056 p->equiv_reg_src = 0;
5059 #endif
5061 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5062 this into place with notes indicating where the prologue ends and where
5063 the epilogue begins. Update the basic block information when possible. */
5065 void
5066 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
5068 int inserted = 0;
5069 edge e;
5070 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5071 rtx seq;
5072 #endif
5073 #ifdef HAVE_prologue
5074 rtx prologue_end = NULL_RTX;
5075 #endif
5076 #if defined (HAVE_epilogue) || defined(HAVE_return)
5077 rtx epilogue_end = NULL_RTX;
5078 #endif
5079 edge_iterator ei;
5081 #ifdef HAVE_prologue
5082 if (HAVE_prologue)
5084 start_sequence ();
5085 seq = gen_prologue ();
5086 emit_insn (seq);
5088 /* Retain a map of the prologue insns. */
5089 record_insns (seq, &prologue);
5090 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
5092 seq = get_insns ();
5093 end_sequence ();
5094 set_insn_locators (seq, prologue_locator);
5096 /* Can't deal with multiple successors of the entry block
5097 at the moment. Function should always have at least one
5098 entry point. */
5099 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5101 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5102 inserted = 1;
5104 #endif
5106 /* If the exit block has no non-fake predecessors, we don't need
5107 an epilogue. */
5108 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5109 if ((e->flags & EDGE_FAKE) == 0)
5110 break;
5111 if (e == NULL)
5112 goto epilogue_done;
5114 #ifdef HAVE_return
5115 if (optimize && HAVE_return)
5117 /* If we're allowed to generate a simple return instruction,
5118 then by definition we don't need a full epilogue. Examine
5119 the block that falls through to EXIT. If it does not
5120 contain any code, examine its predecessors and try to
5121 emit (conditional) return instructions. */
5123 basic_block last;
5124 rtx label;
5126 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5127 if (e->flags & EDGE_FALLTHRU)
5128 break;
5129 if (e == NULL)
5130 goto epilogue_done;
5131 last = e->src;
5133 /* Verify that there are no active instructions in the last block. */
5134 label = BB_END (last);
5135 while (label && !LABEL_P (label))
5137 if (active_insn_p (label))
5138 break;
5139 label = PREV_INSN (label);
5142 if (BB_HEAD (last) == label && LABEL_P (label))
5144 edge_iterator ei2;
5145 rtx epilogue_line_note = NULL_RTX;
5147 /* Locate the line number associated with the closing brace,
5148 if we can find one. */
5149 for (seq = get_last_insn ();
5150 seq && ! active_insn_p (seq);
5151 seq = PREV_INSN (seq))
5152 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5154 epilogue_line_note = seq;
5155 break;
5158 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5160 basic_block bb = e->src;
5161 rtx jump;
5163 if (bb == ENTRY_BLOCK_PTR)
5165 ei_next (&ei2);
5166 continue;
5169 jump = BB_END (bb);
5170 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5172 ei_next (&ei2);
5173 continue;
5176 /* If we have an unconditional jump, we can replace that
5177 with a simple return instruction. */
5178 if (simplejump_p (jump))
5180 emit_return_into_block (bb, epilogue_line_note);
5181 delete_insn (jump);
5184 /* If we have a conditional jump, we can try to replace
5185 that with a conditional return instruction. */
5186 else if (condjump_p (jump))
5188 if (! redirect_jump (jump, 0, 0))
5190 ei_next (&ei2);
5191 continue;
5194 /* If this block has only one successor, it both jumps
5195 and falls through to the fallthru block, so we can't
5196 delete the edge. */
5197 if (single_succ_p (bb))
5199 ei_next (&ei2);
5200 continue;
5203 else
5205 ei_next (&ei2);
5206 continue;
5209 /* Fix up the CFG for the successful change we just made. */
5210 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5213 /* Emit a return insn for the exit fallthru block. Whether
5214 this is still reachable will be determined later. */
5216 emit_barrier_after (BB_END (last));
5217 emit_return_into_block (last, epilogue_line_note);
5218 epilogue_end = BB_END (last);
5219 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5220 goto epilogue_done;
5223 #endif
5224 /* Find the edge that falls through to EXIT. Other edges may exist
5225 due to RETURN instructions, but those don't need epilogues.
5226 There really shouldn't be a mixture -- either all should have
5227 been converted or none, however... */
5229 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5230 if (e->flags & EDGE_FALLTHRU)
5231 break;
5232 if (e == NULL)
5233 goto epilogue_done;
5235 #ifdef HAVE_epilogue
5236 if (HAVE_epilogue)
5238 start_sequence ();
5239 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5241 seq = gen_epilogue ();
5243 #ifdef INCOMING_RETURN_ADDR_RTX
5244 /* If this function returns with the stack depressed and we can support
5245 it, massage the epilogue to actually do that. */
5246 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5247 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5248 seq = keep_stack_depressed (seq);
5249 #endif
5251 emit_jump_insn (seq);
5253 /* Retain a map of the epilogue insns. */
5254 record_insns (seq, &epilogue);
5255 set_insn_locators (seq, epilogue_locator);
5257 seq = get_insns ();
5258 end_sequence ();
5260 insert_insn_on_edge (seq, e);
5261 inserted = 1;
5263 else
5264 #endif
5266 basic_block cur_bb;
5268 if (! next_active_insn (BB_END (e->src)))
5269 goto epilogue_done;
5270 /* We have a fall-through edge to the exit block, the source is not
5271 at the end of the function, and there will be an assembler epilogue
5272 at the end of the function.
5273 We can't use force_nonfallthru here, because that would try to
5274 use return. Inserting a jump 'by hand' is extremely messy, so
5275 we take advantage of cfg_layout_finalize using
5276 fixup_fallthru_exit_predecessor. */
5277 cfg_layout_initialize (0);
5278 FOR_EACH_BB (cur_bb)
5279 if (cur_bb->index >= 0 && cur_bb->next_bb->index >= 0)
5280 cur_bb->aux = cur_bb->next_bb;
5281 cfg_layout_finalize ();
5283 epilogue_done:
5285 if (inserted)
5286 commit_edge_insertions ();
5288 #ifdef HAVE_sibcall_epilogue
5289 /* Emit sibling epilogues before any sibling call sites. */
5290 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5292 basic_block bb = e->src;
5293 rtx insn = BB_END (bb);
5295 if (!CALL_P (insn)
5296 || ! SIBLING_CALL_P (insn))
5298 ei_next (&ei);
5299 continue;
5302 start_sequence ();
5303 emit_insn (gen_sibcall_epilogue ());
5304 seq = get_insns ();
5305 end_sequence ();
5307 /* Retain a map of the epilogue insns. Used in life analysis to
5308 avoid getting rid of sibcall epilogue insns. Do this before we
5309 actually emit the sequence. */
5310 record_insns (seq, &sibcall_epilogue);
5311 set_insn_locators (seq, epilogue_locator);
5313 emit_insn_before (seq, insn);
5314 ei_next (&ei);
5316 #endif
5318 #ifdef HAVE_prologue
5319 /* This is probably all useless now that we use locators. */
5320 if (prologue_end)
5322 rtx insn, prev;
5324 /* GDB handles `break f' by setting a breakpoint on the first
5325 line note after the prologue. Which means (1) that if
5326 there are line number notes before where we inserted the
5327 prologue we should move them, and (2) we should generate a
5328 note before the end of the first basic block, if there isn't
5329 one already there.
5331 ??? This behavior is completely broken when dealing with
5332 multiple entry functions. We simply place the note always
5333 into first basic block and let alternate entry points
5334 to be missed.
5337 for (insn = prologue_end; insn; insn = prev)
5339 prev = PREV_INSN (insn);
5340 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5342 /* Note that we cannot reorder the first insn in the
5343 chain, since rest_of_compilation relies on that
5344 remaining constant. */
5345 if (prev == NULL)
5346 break;
5347 reorder_insns (insn, insn, prologue_end);
5351 /* Find the last line number note in the first block. */
5352 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5353 insn != prologue_end && insn;
5354 insn = PREV_INSN (insn))
5355 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5356 break;
5358 /* If we didn't find one, make a copy of the first line number
5359 we run across. */
5360 if (! insn)
5362 for (insn = next_active_insn (prologue_end);
5363 insn;
5364 insn = PREV_INSN (insn))
5365 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5367 emit_note_copy_after (insn, prologue_end);
5368 break;
5372 #endif
5373 #ifdef HAVE_epilogue
5374 if (epilogue_end)
5376 rtx insn, next;
5378 /* Similarly, move any line notes that appear after the epilogue.
5379 There is no need, however, to be quite so anal about the existence
5380 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5381 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5382 info generation. */
5383 for (insn = epilogue_end; insn; insn = next)
5385 next = NEXT_INSN (insn);
5386 if (NOTE_P (insn)
5387 && (NOTE_LINE_NUMBER (insn) > 0
5388 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5389 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5390 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5393 #endif
5396 /* Reposition the prologue-end and epilogue-begin notes after instruction
5397 scheduling and delayed branch scheduling. */
5399 void
5400 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5402 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5403 rtx insn, last, note;
5404 int len;
5406 if ((len = VEC_length (int, prologue)) > 0)
5408 last = 0, note = 0;
5410 /* Scan from the beginning until we reach the last prologue insn.
5411 We apparently can't depend on basic_block_{head,end} after
5412 reorg has run. */
5413 for (insn = f; insn; insn = NEXT_INSN (insn))
5415 if (NOTE_P (insn))
5417 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5418 note = insn;
5420 else if (contains (insn, &prologue))
5422 last = insn;
5423 if (--len == 0)
5424 break;
5428 if (last)
5430 /* Find the prologue-end note if we haven't already, and
5431 move it to just after the last prologue insn. */
5432 if (note == 0)
5434 for (note = last; (note = NEXT_INSN (note));)
5435 if (NOTE_P (note)
5436 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5437 break;
5440 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5441 if (LABEL_P (last))
5442 last = NEXT_INSN (last);
5443 reorder_insns (note, note, last);
5447 if ((len = VEC_length (int, epilogue)) > 0)
5449 last = 0, note = 0;
5451 /* Scan from the end until we reach the first epilogue insn.
5452 We apparently can't depend on basic_block_{head,end} after
5453 reorg has run. */
5454 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5456 if (NOTE_P (insn))
5458 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5459 note = insn;
5461 else if (contains (insn, &epilogue))
5463 last = insn;
5464 if (--len == 0)
5465 break;
5469 if (last)
5471 /* Find the epilogue-begin note if we haven't already, and
5472 move it to just before the first epilogue insn. */
5473 if (note == 0)
5475 for (note = insn; (note = PREV_INSN (note));)
5476 if (NOTE_P (note)
5477 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5478 break;
5481 if (PREV_INSN (last) != note)
5482 reorder_insns (note, note, PREV_INSN (last));
5485 #endif /* HAVE_prologue or HAVE_epilogue */
5488 /* Resets insn_block_boundaries array. */
5490 void
5491 reset_block_changes (void)
5493 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
5494 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
5497 /* Record the boundary for BLOCK. */
5498 void
5499 record_block_change (tree block)
5501 int i, n;
5502 tree last_block;
5504 if (!block)
5505 return;
5507 if(!cfun->ib_boundaries_block)
5508 return;
5510 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
5511 VARRAY_POP (cfun->ib_boundaries_block);
5512 n = get_max_uid ();
5513 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
5514 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
5516 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
5519 /* Finishes record of boundaries. */
5520 void finalize_block_changes (void)
5522 record_block_change (DECL_INITIAL (current_function_decl));
5525 /* For INSN return the BLOCK it belongs to. */
5526 void
5527 check_block_change (rtx insn, tree *block)
5529 unsigned uid = INSN_UID (insn);
5531 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
5532 return;
5534 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
5537 /* Releases the ib_boundaries_block records. */
5538 void
5539 free_block_changes (void)
5541 cfun->ib_boundaries_block = NULL;
5544 /* Returns the name of the current function. */
5545 const char *
5546 current_function_name (void)
5548 return lang_hooks.decl_printable_name (cfun->decl, 2);
5552 static void
5553 rest_of_handle_check_leaf_regs (void)
5555 #ifdef LEAF_REGISTERS
5556 current_function_uses_only_leaf_regs
5557 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5558 #endif
5561 struct tree_opt_pass pass_leaf_regs =
5563 NULL, /* name */
5564 NULL, /* gate */
5565 rest_of_handle_check_leaf_regs, /* execute */
5566 NULL, /* sub */
5567 NULL, /* next */
5568 0, /* static_pass_number */
5569 0, /* tv_id */
5570 0, /* properties_required */
5571 0, /* properties_provided */
5572 0, /* properties_destroyed */
5573 0, /* todo_flags_start */
5574 0, /* todo_flags_finish */
5575 0 /* letter */
5579 #include "gt-function.h"