1 /* Operations with very long integers.
2 Copyright (C) 2012-2020 Free Software Foundation, Inc.
3 Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
29 #define HOST_BITS_PER_HALF_WIDE_INT 32
30 #if HOST_BITS_PER_HALF_WIDE_INT == HOST_BITS_PER_LONG
31 # define HOST_HALF_WIDE_INT long
32 #elif HOST_BITS_PER_HALF_WIDE_INT == HOST_BITS_PER_INT
33 # define HOST_HALF_WIDE_INT int
35 #error Please add support for HOST_HALF_WIDE_INT
38 #define W_TYPE_SIZE HOST_BITS_PER_WIDE_INT
39 /* Do not include longlong.h when compiler is clang-based. See PR61146. */
40 #if GCC_VERSION >= 3000 && (W_TYPE_SIZE == 32 || defined (__SIZEOF_INT128__)) && !defined(__clang__)
41 typedef unsigned HOST_HALF_WIDE_INT UHWtype
;
42 typedef unsigned HOST_WIDE_INT UWtype
;
43 typedef unsigned int UQItype
__attribute__ ((mode (QI
)));
44 typedef unsigned int USItype
__attribute__ ((mode (SI
)));
45 typedef unsigned int UDItype
__attribute__ ((mode (DI
)));
47 typedef unsigned int UDWtype
__attribute__ ((mode (DI
)));
49 typedef unsigned int UDWtype
__attribute__ ((mode (TI
)));
54 static const HOST_WIDE_INT zeros
[WIDE_INT_MAX_ELTS
] = {};
60 /* Quantities to deal with values that hold half of a wide int. Used
61 in multiply and divide. */
62 #define HALF_INT_MASK ((HOST_WIDE_INT_1 << HOST_BITS_PER_HALF_WIDE_INT) - 1)
64 #define BLOCK_OF(TARGET) ((TARGET) / HOST_BITS_PER_WIDE_INT)
65 #define BLOCKS_NEEDED(PREC) \
66 (PREC ? (((PREC) + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT) : 1)
67 #define SIGN_MASK(X) ((HOST_WIDE_INT) (X) < 0 ? -1 : 0)
69 /* Return the value a VAL[I] if I < LEN, otherwise, return 0 or -1
70 based on the top existing bit of VAL. */
72 static unsigned HOST_WIDE_INT
73 safe_uhwi (const HOST_WIDE_INT
*val
, unsigned int len
, unsigned int i
)
75 return i
< len
? val
[i
] : val
[len
- 1] < 0 ? HOST_WIDE_INT_M1
: 0;
78 /* Convert the integer in VAL to canonical form, returning its new length.
79 LEN is the number of blocks currently in VAL and PRECISION is the number
80 of bits in the integer it represents.
82 This function only changes the representation, not the value. */
84 canonize (HOST_WIDE_INT
*val
, unsigned int len
, unsigned int precision
)
86 unsigned int blocks_needed
= BLOCKS_NEEDED (precision
);
90 if (len
> blocks_needed
)
97 if (len
* HOST_BITS_PER_WIDE_INT
> precision
)
98 val
[len
- 1] = top
= sext_hwi (top
, precision
% HOST_BITS_PER_WIDE_INT
);
99 if (top
!= 0 && top
!= (HOST_WIDE_INT
)-1)
102 /* At this point we know that the top is either 0 or -1. Find the
103 first block that is not a copy of this. */
104 for (i
= len
- 2; i
>= 0; i
--)
106 HOST_WIDE_INT x
= val
[i
];
109 if (SIGN_MASK (x
) == top
)
112 /* We need an extra block because the top bit block i does
113 not match the extension. */
118 /* The number is 0 or -1. */
122 /* VAL[0] is the unsigned result of an operation. Canonize it by adding
123 another 0 block if needed, and return number of blocks needed. */
125 static inline unsigned int
126 canonize_uhwi (HOST_WIDE_INT
*val
, unsigned int precision
)
128 if (val
[0] < 0 && precision
> HOST_BITS_PER_WIDE_INT
)
137 * Conversion routines in and out of wide_int.
140 /* Copy XLEN elements from XVAL to VAL. If NEED_CANON, canonize the
141 result for an integer with precision PRECISION. Return the length
142 of VAL (after any canonization. */
144 wi::from_array (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*xval
,
145 unsigned int xlen
, unsigned int precision
, bool need_canon
)
147 for (unsigned i
= 0; i
< xlen
; i
++)
149 return need_canon
? canonize (val
, xlen
, precision
) : xlen
;
152 /* Construct a wide int from a buffer of length LEN. BUFFER will be
153 read according to byte endianness and word endianness of the target.
154 Only the lower BUFFER_LEN bytes of the result are set; the remaining
155 high bytes are cleared. */
157 wi::from_buffer (const unsigned char *buffer
, unsigned int buffer_len
)
159 unsigned int precision
= buffer_len
* BITS_PER_UNIT
;
160 wide_int result
= wide_int::create (precision
);
161 unsigned int words
= buffer_len
/ UNITS_PER_WORD
;
163 /* We have to clear all the bits ourself, as we merely or in values
165 unsigned int len
= BLOCKS_NEEDED (precision
);
166 HOST_WIDE_INT
*val
= result
.write_val ();
167 for (unsigned int i
= 0; i
< len
; ++i
)
170 for (unsigned int byte
= 0; byte
< buffer_len
; byte
++)
174 unsigned int bitpos
= byte
* BITS_PER_UNIT
;
175 unsigned HOST_WIDE_INT value
;
177 if (buffer_len
> UNITS_PER_WORD
)
179 unsigned int word
= byte
/ UNITS_PER_WORD
;
181 if (WORDS_BIG_ENDIAN
)
182 word
= (words
- 1) - word
;
184 offset
= word
* UNITS_PER_WORD
;
186 if (BYTES_BIG_ENDIAN
)
187 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
189 offset
+= byte
% UNITS_PER_WORD
;
192 offset
= BYTES_BIG_ENDIAN
? (buffer_len
- 1) - byte
: byte
;
194 value
= (unsigned HOST_WIDE_INT
) buffer
[offset
];
196 index
= bitpos
/ HOST_BITS_PER_WIDE_INT
;
197 val
[index
] |= value
<< (bitpos
% HOST_BITS_PER_WIDE_INT
);
200 result
.set_len (canonize (val
, len
, precision
));
205 /* Sets RESULT from X, the sign is taken according to SGN. */
207 wi::to_mpz (const wide_int_ref
&x
, mpz_t result
, signop sgn
)
209 int len
= x
.get_len ();
210 const HOST_WIDE_INT
*v
= x
.get_val ();
211 int excess
= len
* HOST_BITS_PER_WIDE_INT
- x
.get_precision ();
213 if (wi::neg_p (x
, sgn
))
215 /* We use ones complement to avoid -x80..0 edge case that -
217 HOST_WIDE_INT
*t
= XALLOCAVEC (HOST_WIDE_INT
, len
);
218 for (int i
= 0; i
< len
; i
++)
221 t
[len
- 1] = (unsigned HOST_WIDE_INT
) t
[len
- 1] << excess
>> excess
;
222 mpz_import (result
, len
, -1, sizeof (HOST_WIDE_INT
), 0, 0, t
);
223 mpz_com (result
, result
);
227 HOST_WIDE_INT
*t
= XALLOCAVEC (HOST_WIDE_INT
, len
);
228 for (int i
= 0; i
< len
- 1; i
++)
230 t
[len
- 1] = (unsigned HOST_WIDE_INT
) v
[len
- 1] << excess
>> excess
;
231 mpz_import (result
, len
, -1, sizeof (HOST_WIDE_INT
), 0, 0, t
);
234 mpz_import (result
, len
, -1, sizeof (HOST_WIDE_INT
), 0, 0, v
);
237 /* Returns X converted to TYPE. If WRAP is true, then out-of-range
238 values of VAL will be wrapped; otherwise, they will be set to the
239 appropriate minimum or maximum TYPE bound. */
241 wi::from_mpz (const_tree type
, mpz_t x
, bool wrap
)
244 unsigned int prec
= TYPE_PRECISION (type
);
245 wide_int res
= wide_int::create (prec
);
253 get_type_static_bounds (type
, min
, max
);
255 if (mpz_cmp (x
, min
) < 0)
257 else if (mpz_cmp (x
, max
) > 0)
264 /* Determine the number of unsigned HOST_WIDE_INTs that are required
265 for representing the absolute value. The code to calculate count is
266 extracted from the GMP manual, section "Integer Import and Export":
267 http://gmplib.org/manual/Integer-Import-and-Export.html */
268 numb
= CHAR_BIT
* sizeof (HOST_WIDE_INT
);
269 count
= (mpz_sizeinbase (x
, 2) + numb
- 1) / numb
;
270 HOST_WIDE_INT
*val
= res
.write_val ();
271 /* Read the absolute value.
273 Write directly to the wide_int storage if possible, otherwise leave
274 GMP to allocate the memory for us. It might be slightly more efficient
275 to use mpz_tdiv_r_2exp for the latter case, but the situation is
276 pathological and it seems safer to operate on the original mpz value
278 void *valres
= mpz_export (count
<= WIDE_INT_MAX_ELTS
? val
: 0,
279 &count
, -1, sizeof (HOST_WIDE_INT
), 0, 0, x
);
285 count
= MIN (count
, BLOCKS_NEEDED (prec
));
288 memcpy (val
, valres
, count
* sizeof (HOST_WIDE_INT
));
291 /* Zero-extend the absolute value to PREC bits. */
292 if (count
< BLOCKS_NEEDED (prec
) && val
[count
- 1] < 0)
295 count
= canonize (val
, count
, prec
);
305 * Largest and smallest values in a mode.
308 /* Return the largest SGNed number that is representable in PRECISION bits.
310 TODO: There is still code from the double_int era that trys to
311 make up for the fact that double int's could not represent the
312 min and max values of all types. This code should be removed
313 because the min and max values can always be represented in
314 wide_ints and int-csts. */
316 wi::max_value (unsigned int precision
, signop sgn
)
318 gcc_checking_assert (precision
!= 0);
320 /* The unsigned max is just all ones. */
321 return shwi (-1, precision
);
323 /* The signed max is all ones except the top bit. This must be
324 explicitly represented. */
325 return mask (precision
- 1, false, precision
);
328 /* Return the largest SGNed number that is representable in PRECISION bits. */
330 wi::min_value (unsigned int precision
, signop sgn
)
332 gcc_checking_assert (precision
!= 0);
334 return uhwi (0, precision
);
336 /* The signed min is all zeros except the top bit. This must be
337 explicitly represented. */
338 return wi::set_bit_in_zero (precision
- 1, precision
);
345 /* Convert the number represented by XVAL, XLEN and XPRECISION, which has
346 signedness SGN, to an integer that has PRECISION bits. Store the blocks
347 in VAL and return the number of blocks used.
349 This function can handle both extension (PRECISION > XPRECISION)
350 and truncation (PRECISION < XPRECISION). */
352 wi::force_to_size (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*xval
,
353 unsigned int xlen
, unsigned int xprecision
,
354 unsigned int precision
, signop sgn
)
356 unsigned int blocks_needed
= BLOCKS_NEEDED (precision
);
357 unsigned int len
= blocks_needed
< xlen
? blocks_needed
: xlen
;
358 for (unsigned i
= 0; i
< len
; i
++)
361 if (precision
> xprecision
)
363 unsigned int small_xprecision
= xprecision
% HOST_BITS_PER_WIDE_INT
;
368 if (small_xprecision
&& len
== BLOCKS_NEEDED (xprecision
))
369 val
[len
- 1] = zext_hwi (val
[len
- 1], small_xprecision
);
370 else if (val
[len
- 1] < 0)
372 while (len
< BLOCKS_NEEDED (xprecision
))
374 if (small_xprecision
)
375 val
[len
- 1] = zext_hwi (val
[len
- 1], small_xprecision
);
382 if (small_xprecision
&& len
== BLOCKS_NEEDED (xprecision
))
383 val
[len
- 1] = sext_hwi (val
[len
- 1], small_xprecision
);
386 len
= canonize (val
, len
, precision
);
391 /* This function hides the fact that we cannot rely on the bits beyond
392 the precision. This issue comes up in the relational comparisions
393 where we do allow comparisons of values of different precisions. */
394 static inline HOST_WIDE_INT
395 selt (const HOST_WIDE_INT
*a
, unsigned int len
,
396 unsigned int blocks_needed
, unsigned int small_prec
,
397 unsigned int index
, signop sgn
)
402 else if (index
< blocks_needed
|| sgn
== SIGNED
)
403 /* Signed or within the precision. */
404 val
= SIGN_MASK (a
[len
- 1]);
406 /* Unsigned extension beyond the precision. */
409 if (small_prec
&& index
== blocks_needed
- 1)
410 return (sgn
== SIGNED
411 ? sext_hwi (val
, small_prec
)
412 : zext_hwi (val
, small_prec
));
417 /* Find the highest bit represented in a wide int. This will in
418 general have the same value as the sign bit. */
419 static inline HOST_WIDE_INT
420 top_bit_of (const HOST_WIDE_INT
*a
, unsigned int len
, unsigned int prec
)
422 int excess
= len
* HOST_BITS_PER_WIDE_INT
- prec
;
423 unsigned HOST_WIDE_INT val
= a
[len
- 1];
426 return val
>> (HOST_BITS_PER_WIDE_INT
- 1);
430 * Comparisons, note that only equality is an operator. The other
431 * comparisons cannot be operators since they are inherently signed or
432 * unsigned and C++ has no such operators.
435 /* Return true if OP0 == OP1. */
437 wi::eq_p_large (const HOST_WIDE_INT
*op0
, unsigned int op0len
,
438 const HOST_WIDE_INT
*op1
, unsigned int op1len
,
442 unsigned int small_prec
= prec
& (HOST_BITS_PER_WIDE_INT
- 1);
444 if (op0len
!= op1len
)
447 if (op0len
== BLOCKS_NEEDED (prec
) && small_prec
)
449 /* It does not matter if we zext or sext here, we just have to
450 do both the same way. */
451 if (zext_hwi (op0
[l0
], small_prec
) != zext_hwi (op1
[l0
], small_prec
))
457 if (op0
[l0
] != op1
[l0
])
465 /* Return true if OP0 < OP1 using signed comparisons. */
467 wi::lts_p_large (const HOST_WIDE_INT
*op0
, unsigned int op0len
,
468 unsigned int precision
,
469 const HOST_WIDE_INT
*op1
, unsigned int op1len
)
471 HOST_WIDE_INT s0
, s1
;
472 unsigned HOST_WIDE_INT u0
, u1
;
473 unsigned int blocks_needed
= BLOCKS_NEEDED (precision
);
474 unsigned int small_prec
= precision
& (HOST_BITS_PER_WIDE_INT
- 1);
475 int l
= MAX (op0len
- 1, op1len
- 1);
477 /* Only the top block is compared as signed. The rest are unsigned
479 s0
= selt (op0
, op0len
, blocks_needed
, small_prec
, l
, SIGNED
);
480 s1
= selt (op1
, op1len
, blocks_needed
, small_prec
, l
, SIGNED
);
489 u0
= selt (op0
, op0len
, blocks_needed
, small_prec
, l
, SIGNED
);
490 u1
= selt (op1
, op1len
, blocks_needed
, small_prec
, l
, SIGNED
);
502 /* Returns -1 if OP0 < OP1, 0 if OP0 == OP1 and 1 if OP0 > OP1 using
505 wi::cmps_large (const HOST_WIDE_INT
*op0
, unsigned int op0len
,
506 unsigned int precision
,
507 const HOST_WIDE_INT
*op1
, unsigned int op1len
)
509 HOST_WIDE_INT s0
, s1
;
510 unsigned HOST_WIDE_INT u0
, u1
;
511 unsigned int blocks_needed
= BLOCKS_NEEDED (precision
);
512 unsigned int small_prec
= precision
& (HOST_BITS_PER_WIDE_INT
- 1);
513 int l
= MAX (op0len
- 1, op1len
- 1);
515 /* Only the top block is compared as signed. The rest are unsigned
517 s0
= selt (op0
, op0len
, blocks_needed
, small_prec
, l
, SIGNED
);
518 s1
= selt (op1
, op1len
, blocks_needed
, small_prec
, l
, SIGNED
);
527 u0
= selt (op0
, op0len
, blocks_needed
, small_prec
, l
, SIGNED
);
528 u1
= selt (op1
, op1len
, blocks_needed
, small_prec
, l
, SIGNED
);
540 /* Return true if OP0 < OP1 using unsigned comparisons. */
542 wi::ltu_p_large (const HOST_WIDE_INT
*op0
, unsigned int op0len
,
543 unsigned int precision
,
544 const HOST_WIDE_INT
*op1
, unsigned int op1len
)
546 unsigned HOST_WIDE_INT x0
;
547 unsigned HOST_WIDE_INT x1
;
548 unsigned int blocks_needed
= BLOCKS_NEEDED (precision
);
549 unsigned int small_prec
= precision
& (HOST_BITS_PER_WIDE_INT
- 1);
550 int l
= MAX (op0len
- 1, op1len
- 1);
554 x0
= selt (op0
, op0len
, blocks_needed
, small_prec
, l
, UNSIGNED
);
555 x1
= selt (op1
, op1len
, blocks_needed
, small_prec
, l
, UNSIGNED
);
566 /* Returns -1 if OP0 < OP1, 0 if OP0 == OP1 and 1 if OP0 > OP1 using
567 unsigned compares. */
569 wi::cmpu_large (const HOST_WIDE_INT
*op0
, unsigned int op0len
,
570 unsigned int precision
,
571 const HOST_WIDE_INT
*op1
, unsigned int op1len
)
573 unsigned HOST_WIDE_INT x0
;
574 unsigned HOST_WIDE_INT x1
;
575 unsigned int blocks_needed
= BLOCKS_NEEDED (precision
);
576 unsigned int small_prec
= precision
& (HOST_BITS_PER_WIDE_INT
- 1);
577 int l
= MAX (op0len
- 1, op1len
- 1);
581 x0
= selt (op0
, op0len
, blocks_needed
, small_prec
, l
, UNSIGNED
);
582 x1
= selt (op1
, op1len
, blocks_needed
, small_prec
, l
, UNSIGNED
);
597 /* Sign-extend the number represented by XVAL and XLEN into VAL,
598 starting at OFFSET. Return the number of blocks in VAL. Both XVAL
599 and VAL have PRECISION bits. */
601 wi::sext_large (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*xval
,
602 unsigned int xlen
, unsigned int precision
, unsigned int offset
)
604 unsigned int len
= offset
/ HOST_BITS_PER_WIDE_INT
;
605 /* Extending beyond the precision is a no-op. If we have only stored
606 OFFSET bits or fewer, the rest are already signs. */
607 if (offset
>= precision
|| len
>= xlen
)
609 for (unsigned i
= 0; i
< xlen
; ++i
)
613 unsigned int suboffset
= offset
% HOST_BITS_PER_WIDE_INT
;
614 for (unsigned int i
= 0; i
< len
; i
++)
618 val
[len
] = sext_hwi (xval
[len
], suboffset
);
621 return canonize (val
, len
, precision
);
624 /* Zero-extend the number represented by XVAL and XLEN into VAL,
625 starting at OFFSET. Return the number of blocks in VAL. Both XVAL
626 and VAL have PRECISION bits. */
628 wi::zext_large (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*xval
,
629 unsigned int xlen
, unsigned int precision
, unsigned int offset
)
631 unsigned int len
= offset
/ HOST_BITS_PER_WIDE_INT
;
632 /* Extending beyond the precision is a no-op. If we have only stored
633 OFFSET bits or fewer, and the upper stored bit is zero, then there
635 if (offset
>= precision
|| (len
>= xlen
&& xval
[xlen
- 1] >= 0))
637 for (unsigned i
= 0; i
< xlen
; ++i
)
641 unsigned int suboffset
= offset
% HOST_BITS_PER_WIDE_INT
;
642 for (unsigned int i
= 0; i
< len
; i
++)
643 val
[i
] = i
< xlen
? xval
[i
] : -1;
645 val
[len
] = zext_hwi (len
< xlen
? xval
[len
] : -1, suboffset
);
648 return canonize (val
, len
+ 1, precision
);
652 * Masking, inserting, shifting, rotating.
655 /* Insert WIDTH bits from Y into X starting at START. */
657 wi::insert (const wide_int
&x
, const wide_int
&y
, unsigned int start
,
664 unsigned int precision
= x
.get_precision ();
665 if (start
>= precision
)
668 gcc_checking_assert (precision
>= width
);
670 if (start
+ width
>= precision
)
671 width
= precision
- start
;
673 mask
= wi::shifted_mask (start
, width
, false, precision
);
674 tmp
= wi::lshift (wide_int::from (y
, precision
, UNSIGNED
), start
);
677 tmp
= wi::bit_and_not (x
, mask
);
678 result
= result
| tmp
;
683 /* Copy the number represented by XVAL and XLEN into VAL, setting bit BIT.
684 Return the number of blocks in VAL. Both XVAL and VAL have PRECISION
687 wi::set_bit_large (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*xval
,
688 unsigned int xlen
, unsigned int precision
, unsigned int bit
)
690 unsigned int block
= bit
/ HOST_BITS_PER_WIDE_INT
;
691 unsigned int subbit
= bit
% HOST_BITS_PER_WIDE_INT
;
693 if (block
+ 1 >= xlen
)
695 /* The operation either affects the last current block or needs
697 unsigned int len
= block
+ 1;
698 for (unsigned int i
= 0; i
< len
; i
++)
699 val
[i
] = safe_uhwi (xval
, xlen
, i
);
700 val
[block
] |= HOST_WIDE_INT_1U
<< subbit
;
702 /* If the bit we just set is at the msb of the block, make sure
703 that any higher bits are zeros. */
704 if (bit
+ 1 < precision
&& subbit
== HOST_BITS_PER_WIDE_INT
- 1)
709 return canonize (val
, len
, precision
);
713 for (unsigned int i
= 0; i
< xlen
; i
++)
715 val
[block
] |= HOST_WIDE_INT_1U
<< subbit
;
716 return canonize (val
, xlen
, precision
);
722 wide_int_storage::bswap () const
724 wide_int result
= wide_int::create (precision
);
726 unsigned int len
= BLOCKS_NEEDED (precision
);
727 unsigned int xlen
= get_len ();
728 const HOST_WIDE_INT
*xval
= get_val ();
729 HOST_WIDE_INT
*val
= result
.write_val ();
731 /* This is not a well defined operation if the precision is not a
733 gcc_assert ((precision
& 0x7) == 0);
735 for (i
= 0; i
< len
; i
++)
738 /* Only swap the bytes that are not the padding. */
739 for (s
= 0; s
< precision
; s
+= 8)
741 unsigned int d
= precision
- s
- 8;
742 unsigned HOST_WIDE_INT byte
;
744 unsigned int block
= s
/ HOST_BITS_PER_WIDE_INT
;
745 unsigned int offset
= s
& (HOST_BITS_PER_WIDE_INT
- 1);
747 byte
= (safe_uhwi (xval
, xlen
, block
) >> offset
) & 0xff;
749 block
= d
/ HOST_BITS_PER_WIDE_INT
;
750 offset
= d
& (HOST_BITS_PER_WIDE_INT
- 1);
752 val
[block
] |= byte
<< offset
;
755 result
.set_len (canonize (val
, len
, precision
));
759 /* Fill VAL with a mask where the lower WIDTH bits are ones and the bits
760 above that up to PREC are zeros. The result is inverted if NEGATE
761 is true. Return the number of blocks in VAL. */
763 wi::mask (HOST_WIDE_INT
*val
, unsigned int width
, bool negate
,
768 val
[0] = negate
? 0 : -1;
773 val
[0] = negate
? -1 : 0;
778 while (i
< width
/ HOST_BITS_PER_WIDE_INT
)
779 val
[i
++] = negate
? 0 : -1;
781 unsigned int shift
= width
& (HOST_BITS_PER_WIDE_INT
- 1);
784 HOST_WIDE_INT last
= (HOST_WIDE_INT_1U
<< shift
) - 1;
785 val
[i
++] = negate
? ~last
: last
;
788 val
[i
++] = negate
? -1 : 0;
793 /* Fill VAL with a mask where the lower START bits are zeros, the next WIDTH
794 bits are ones, and the bits above that up to PREC are zeros. The result
795 is inverted if NEGATE is true. Return the number of blocks in VAL. */
797 wi::shifted_mask (HOST_WIDE_INT
*val
, unsigned int start
, unsigned int width
,
798 bool negate
, unsigned int prec
)
800 if (start
>= prec
|| width
== 0)
802 val
[0] = negate
? -1 : 0;
806 if (width
> prec
- start
)
807 width
= prec
- start
;
808 unsigned int end
= start
+ width
;
811 while (i
< start
/ HOST_BITS_PER_WIDE_INT
)
812 val
[i
++] = negate
? -1 : 0;
814 unsigned int shift
= start
& (HOST_BITS_PER_WIDE_INT
- 1);
817 HOST_WIDE_INT block
= (HOST_WIDE_INT_1U
<< shift
) - 1;
819 if (shift
< HOST_BITS_PER_WIDE_INT
)
822 block
= (HOST_WIDE_INT_1U
<< shift
) - block
- 1;
823 val
[i
++] = negate
? ~block
: block
;
828 val
[i
++] = negate
? block
: ~block
;
831 while (i
< end
/ HOST_BITS_PER_WIDE_INT
)
833 val
[i
++] = negate
? 0 : -1;
835 shift
= end
& (HOST_BITS_PER_WIDE_INT
- 1);
839 HOST_WIDE_INT block
= (HOST_WIDE_INT_1U
<< shift
) - 1;
840 val
[i
++] = negate
? ~block
: block
;
843 val
[i
++] = negate
? -1 : 0;
849 * logical operations.
852 /* Set VAL to OP0 & OP1. Return the number of blocks used. */
854 wi::and_large (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*op0
,
855 unsigned int op0len
, const HOST_WIDE_INT
*op1
,
856 unsigned int op1len
, unsigned int prec
)
860 bool need_canon
= true;
862 unsigned int len
= MAX (op0len
, op1len
);
865 HOST_WIDE_INT op1mask
= -top_bit_of (op1
, op1len
, prec
);
883 HOST_WIDE_INT op0mask
= -top_bit_of (op0
, op0len
, prec
);
899 val
[l0
] = op0
[l0
] & op1
[l0
];
904 len
= canonize (val
, len
, prec
);
909 /* Set VAL to OP0 & ~OP1. Return the number of blocks used. */
911 wi::and_not_large (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*op0
,
912 unsigned int op0len
, const HOST_WIDE_INT
*op1
,
913 unsigned int op1len
, unsigned int prec
)
918 bool need_canon
= true;
920 unsigned int len
= MAX (op0len
, op1len
);
923 HOST_WIDE_INT op1mask
= -top_bit_of (op1
, op1len
, prec
);
941 HOST_WIDE_INT op0mask
= -top_bit_of (op0
, op0len
, prec
);
957 val
[l0
] = op0
[l0
] & ~op1
[l0
];
962 len
= canonize (val
, len
, prec
);
967 /* Set VAL to OP0 | OP1. Return the number of blocks used. */
969 wi::or_large (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*op0
,
970 unsigned int op0len
, const HOST_WIDE_INT
*op1
,
971 unsigned int op1len
, unsigned int prec
)
976 bool need_canon
= true;
978 unsigned int len
= MAX (op0len
, op1len
);
981 HOST_WIDE_INT op1mask
= -top_bit_of (op1
, op1len
, prec
);
999 HOST_WIDE_INT op0mask
= -top_bit_of (op0
, op0len
, prec
);
1015 val
[l0
] = op0
[l0
] | op1
[l0
];
1020 len
= canonize (val
, len
, prec
);
1025 /* Set VAL to OP0 | ~OP1. Return the number of blocks used. */
1027 wi::or_not_large (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*op0
,
1028 unsigned int op0len
, const HOST_WIDE_INT
*op1
,
1029 unsigned int op1len
, unsigned int prec
)
1032 int l0
= op0len
- 1;
1033 int l1
= op1len
- 1;
1034 bool need_canon
= true;
1036 unsigned int len
= MAX (op0len
, op1len
);
1039 HOST_WIDE_INT op1mask
= -top_bit_of (op1
, op1len
, prec
);
1057 HOST_WIDE_INT op0mask
= -top_bit_of (op0
, op0len
, prec
);
1073 val
[l0
] = op0
[l0
] | ~op1
[l0
];
1078 len
= canonize (val
, len
, prec
);
1083 /* Set VAL to OP0 ^ OP1. Return the number of blocks used. */
1085 wi::xor_large (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*op0
,
1086 unsigned int op0len
, const HOST_WIDE_INT
*op1
,
1087 unsigned int op1len
, unsigned int prec
)
1090 int l0
= op0len
- 1;
1091 int l1
= op1len
- 1;
1093 unsigned int len
= MAX (op0len
, op1len
);
1096 HOST_WIDE_INT op1mask
= -top_bit_of (op1
, op1len
, prec
);
1099 val
[l0
] = op0
[l0
] ^ op1mask
;
1106 HOST_WIDE_INT op0mask
= -top_bit_of (op0
, op0len
, prec
);
1109 val
[l1
] = op0mask
^ op1
[l1
];
1116 val
[l0
] = op0
[l0
] ^ op1
[l0
];
1120 return canonize (val
, len
, prec
);
1127 /* Set VAL to OP0 + OP1. If OVERFLOW is nonnull, record in *OVERFLOW
1128 whether the result overflows when OP0 and OP1 are treated as having
1129 signedness SGN. Return the number of blocks in VAL. */
1131 wi::add_large (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*op0
,
1132 unsigned int op0len
, const HOST_WIDE_INT
*op1
,
1133 unsigned int op1len
, unsigned int prec
,
1134 signop sgn
, wi::overflow_type
*overflow
)
1136 unsigned HOST_WIDE_INT o0
= 0;
1137 unsigned HOST_WIDE_INT o1
= 0;
1138 unsigned HOST_WIDE_INT x
= 0;
1139 unsigned HOST_WIDE_INT carry
= 0;
1140 unsigned HOST_WIDE_INT old_carry
= 0;
1141 unsigned HOST_WIDE_INT mask0
, mask1
;
1144 unsigned int len
= MAX (op0len
, op1len
);
1145 mask0
= -top_bit_of (op0
, op0len
, prec
);
1146 mask1
= -top_bit_of (op1
, op1len
, prec
);
1147 /* Add all of the explicitly defined elements. */
1149 for (i
= 0; i
< len
; i
++)
1151 o0
= i
< op0len
? (unsigned HOST_WIDE_INT
) op0
[i
] : mask0
;
1152 o1
= i
< op1len
? (unsigned HOST_WIDE_INT
) op1
[i
] : mask1
;
1153 x
= o0
+ o1
+ carry
;
1156 carry
= carry
== 0 ? x
< o0
: x
<= o0
;
1159 if (len
* HOST_BITS_PER_WIDE_INT
< prec
)
1161 val
[len
] = mask0
+ mask1
+ carry
;
1165 = (sgn
== UNSIGNED
&& carry
) ? wi::OVF_OVERFLOW
: wi::OVF_NONE
;
1169 unsigned int shift
= -prec
% HOST_BITS_PER_WIDE_INT
;
1172 unsigned HOST_WIDE_INT x
= (val
[len
- 1] ^ o0
) & (val
[len
- 1] ^ o1
);
1173 if ((HOST_WIDE_INT
) (x
<< shift
) < 0)
1175 if (o0
> (unsigned HOST_WIDE_INT
) val
[len
- 1])
1176 *overflow
= wi::OVF_UNDERFLOW
;
1177 else if (o0
< (unsigned HOST_WIDE_INT
) val
[len
- 1])
1178 *overflow
= wi::OVF_OVERFLOW
;
1180 *overflow
= wi::OVF_NONE
;
1183 *overflow
= wi::OVF_NONE
;
1187 /* Put the MSB of X and O0 and in the top of the HWI. */
1191 *overflow
= (x
<= o0
) ? wi::OVF_OVERFLOW
: wi::OVF_NONE
;
1193 *overflow
= (x
< o0
) ? wi::OVF_OVERFLOW
: wi::OVF_NONE
;
1197 return canonize (val
, len
, prec
);
1200 /* Subroutines of the multiplication and division operations. Unpack
1201 the first IN_LEN HOST_WIDE_INTs in INPUT into 2 * IN_LEN
1202 HOST_HALF_WIDE_INTs of RESULT. The rest of RESULT is filled by
1203 uncompressing the top bit of INPUT[IN_LEN - 1]. */
1205 wi_unpack (unsigned HOST_HALF_WIDE_INT
*result
, const HOST_WIDE_INT
*input
,
1206 unsigned int in_len
, unsigned int out_len
,
1207 unsigned int prec
, signop sgn
)
1211 unsigned int small_prec
= prec
& (HOST_BITS_PER_WIDE_INT
- 1);
1212 unsigned int blocks_needed
= BLOCKS_NEEDED (prec
);
1217 mask
= -top_bit_of ((const HOST_WIDE_INT
*) input
, in_len
, prec
);
1218 mask
&= HALF_INT_MASK
;
1223 for (i
= 0; i
< blocks_needed
- 1; i
++)
1225 HOST_WIDE_INT x
= safe_uhwi (input
, in_len
, i
);
1227 result
[j
++] = x
>> HOST_BITS_PER_HALF_WIDE_INT
;
1230 HOST_WIDE_INT x
= safe_uhwi (input
, in_len
, i
);
1234 x
= sext_hwi (x
, small_prec
);
1236 x
= zext_hwi (x
, small_prec
);
1239 result
[j
++] = x
>> HOST_BITS_PER_HALF_WIDE_INT
;
1241 /* Smear the sign bit. */
1246 /* The inverse of wi_unpack. IN_LEN is the number of input
1247 blocks and PRECISION is the precision of the result. Return the
1248 number of blocks in the canonicalized result. */
1250 wi_pack (HOST_WIDE_INT
*result
,
1251 const unsigned HOST_HALF_WIDE_INT
*input
,
1252 unsigned int in_len
, unsigned int precision
)
1256 unsigned int blocks_needed
= BLOCKS_NEEDED (precision
);
1258 while (i
+ 1 < in_len
)
1260 result
[j
++] = ((unsigned HOST_WIDE_INT
) input
[i
]
1261 | ((unsigned HOST_WIDE_INT
) input
[i
+ 1]
1262 << HOST_BITS_PER_HALF_WIDE_INT
));
1266 /* Handle the case where in_len is odd. For this we zero extend. */
1268 result
[j
++] = (unsigned HOST_WIDE_INT
) input
[i
];
1269 else if (j
< blocks_needed
)
1271 return canonize (result
, j
, precision
);
1274 /* Multiply Op1 by Op2. If HIGH is set, only the upper half of the
1277 If HIGH is not set, throw away the upper half after the check is
1278 made to see if it overflows. Unfortunately there is no better way
1279 to check for overflow than to do this. If OVERFLOW is nonnull,
1280 record in *OVERFLOW whether the result overflowed. SGN controls
1281 the signedness and is used to check overflow or if HIGH is set.
1283 NOTE: Overflow type for signed overflow is not yet implemented. */
1285 wi::mul_internal (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*op1val
,
1286 unsigned int op1len
, const HOST_WIDE_INT
*op2val
,
1287 unsigned int op2len
, unsigned int prec
, signop sgn
,
1288 wi::overflow_type
*overflow
, bool high
)
1290 unsigned HOST_WIDE_INT o0
, o1
, k
, t
;
1293 unsigned int blocks_needed
= BLOCKS_NEEDED (prec
);
1294 unsigned int half_blocks_needed
= blocks_needed
* 2;
1295 /* The sizes here are scaled to support a 2x largest mode by 2x
1296 largest mode yielding a 4x largest mode result. This is what is
1299 unsigned HOST_HALF_WIDE_INT
1300 u
[4 * MAX_BITSIZE_MODE_ANY_INT
/ HOST_BITS_PER_HALF_WIDE_INT
];
1301 unsigned HOST_HALF_WIDE_INT
1302 v
[4 * MAX_BITSIZE_MODE_ANY_INT
/ HOST_BITS_PER_HALF_WIDE_INT
];
1303 /* The '2' in 'R' is because we are internally doing a full
1305 unsigned HOST_HALF_WIDE_INT
1306 r
[2 * 4 * MAX_BITSIZE_MODE_ANY_INT
/ HOST_BITS_PER_HALF_WIDE_INT
];
1307 HOST_WIDE_INT mask
= ((HOST_WIDE_INT
)1 << HOST_BITS_PER_HALF_WIDE_INT
) - 1;
1309 /* If the top level routine did not really pass in an overflow, then
1310 just make sure that we never attempt to set it. */
1311 bool needs_overflow
= (overflow
!= 0);
1313 *overflow
= wi::OVF_NONE
;
1315 wide_int_ref op1
= wi::storage_ref (op1val
, op1len
, prec
);
1316 wide_int_ref op2
= wi::storage_ref (op2val
, op2len
, prec
);
1318 /* This is a surprisingly common case, so do it first. */
1319 if (op1
== 0 || op2
== 0)
1326 if (sgn
== UNSIGNED
)
1328 /* If the inputs are single HWIs and the output has room for at
1329 least two HWIs, we can use umul_ppmm directly. */
1330 if (prec
>= HOST_BITS_PER_WIDE_INT
* 2
1331 && wi::fits_uhwi_p (op1
)
1332 && wi::fits_uhwi_p (op2
))
1334 /* This case never overflows. */
1340 umul_ppmm (val
[1], val
[0], op1
.ulow (), op2
.ulow ());
1341 if (val
[1] < 0 && prec
> HOST_BITS_PER_WIDE_INT
* 2)
1346 return 1 + (val
[1] != 0 || val
[0] < 0);
1348 /* Likewise if the output is a full single HWI, except that the
1349 upper HWI of the result is only used for determining overflow.
1350 (We handle this case inline when overflow isn't needed.) */
1351 else if (prec
== HOST_BITS_PER_WIDE_INT
)
1353 unsigned HOST_WIDE_INT upper
;
1354 umul_ppmm (upper
, val
[0], op1
.ulow (), op2
.ulow ());
1356 /* Unsigned overflow can only be +OVERFLOW. */
1357 *overflow
= (upper
!= 0) ? wi::OVF_OVERFLOW
: wi::OVF_NONE
;
1365 /* Handle multiplications by 1. */
1370 val
[0] = wi::neg_p (op2
, sgn
) ? -1 : 0;
1373 for (i
= 0; i
< op2len
; i
++)
1381 val
[0] = wi::neg_p (op1
, sgn
) ? -1 : 0;
1384 for (i
= 0; i
< op1len
; i
++)
1389 /* If we need to check for overflow, we can only do half wide
1390 multiplies quickly because we need to look at the top bits to
1391 check for the overflow. */
1392 if ((high
|| needs_overflow
)
1393 && (prec
<= HOST_BITS_PER_HALF_WIDE_INT
))
1395 unsigned HOST_WIDE_INT r
;
1399 o0
= op1
.to_shwi ();
1400 o1
= op2
.to_shwi ();
1404 o0
= op1
.to_uhwi ();
1405 o1
= op2
.to_uhwi ();
1413 if ((HOST_WIDE_INT
) r
!= sext_hwi (r
, prec
))
1414 /* FIXME: Signed overflow type is not implemented yet. */
1415 *overflow
= OVF_UNKNOWN
;
1419 if ((r
>> prec
) != 0)
1420 /* Unsigned overflow can only be +OVERFLOW. */
1421 *overflow
= OVF_OVERFLOW
;
1424 val
[0] = high
? r
>> prec
: r
;
1428 /* We do unsigned mul and then correct it. */
1429 wi_unpack (u
, op1val
, op1len
, half_blocks_needed
, prec
, SIGNED
);
1430 wi_unpack (v
, op2val
, op2len
, half_blocks_needed
, prec
, SIGNED
);
1432 /* The 2 is for a full mult. */
1433 memset (r
, 0, half_blocks_needed
* 2
1434 * HOST_BITS_PER_HALF_WIDE_INT
/ CHAR_BIT
);
1436 for (j
= 0; j
< half_blocks_needed
; j
++)
1439 for (i
= 0; i
< half_blocks_needed
; i
++)
1441 t
= ((unsigned HOST_WIDE_INT
)u
[i
] * (unsigned HOST_WIDE_INT
)v
[j
]
1443 r
[i
+ j
] = t
& HALF_INT_MASK
;
1444 k
= t
>> HOST_BITS_PER_HALF_WIDE_INT
;
1446 r
[j
+ half_blocks_needed
] = k
;
1449 /* We did unsigned math above. For signed we must adjust the
1450 product (assuming we need to see that). */
1451 if (sgn
== SIGNED
&& (high
|| needs_overflow
))
1453 unsigned HOST_WIDE_INT b
;
1454 if (wi::neg_p (op1
))
1457 for (i
= 0; i
< half_blocks_needed
; i
++)
1459 t
= (unsigned HOST_WIDE_INT
)r
[i
+ half_blocks_needed
]
1460 - (unsigned HOST_WIDE_INT
)v
[i
] - b
;
1461 r
[i
+ half_blocks_needed
] = t
& HALF_INT_MASK
;
1462 b
= t
>> (HOST_BITS_PER_WIDE_INT
- 1);
1465 if (wi::neg_p (op2
))
1468 for (i
= 0; i
< half_blocks_needed
; i
++)
1470 t
= (unsigned HOST_WIDE_INT
)r
[i
+ half_blocks_needed
]
1471 - (unsigned HOST_WIDE_INT
)u
[i
] - b
;
1472 r
[i
+ half_blocks_needed
] = t
& HALF_INT_MASK
;
1473 b
= t
>> (HOST_BITS_PER_WIDE_INT
- 1);
1482 /* For unsigned, overflow is true if any of the top bits are set.
1483 For signed, overflow is true if any of the top bits are not equal
1485 if (sgn
== UNSIGNED
)
1489 top
= r
[(half_blocks_needed
) - 1];
1490 top
= SIGN_MASK (top
<< (HOST_BITS_PER_WIDE_INT
/ 2));
1494 for (i
= half_blocks_needed
; i
< half_blocks_needed
* 2; i
++)
1495 if (((HOST_WIDE_INT
)(r
[i
] & mask
)) != top
)
1496 /* FIXME: Signed overflow type is not implemented yet. */
1497 *overflow
= (sgn
== UNSIGNED
) ? wi::OVF_OVERFLOW
: wi::OVF_UNKNOWN
;
1500 int r_offset
= high
? half_blocks_needed
: 0;
1501 return wi_pack (val
, &r
[r_offset
], half_blocks_needed
, prec
);
1504 /* Compute the population count of X. */
1506 wi::popcount (const wide_int_ref
&x
)
1511 /* The high order block is special if it is the last block and the
1512 precision is not an even multiple of HOST_BITS_PER_WIDE_INT. We
1513 have to clear out any ones above the precision before doing
1514 popcount on this block. */
1515 count
= x
.precision
- x
.len
* HOST_BITS_PER_WIDE_INT
;
1516 unsigned int stop
= x
.len
;
1519 count
= popcount_hwi (x
.uhigh () << -count
);
1524 if (x
.sign_mask () >= 0)
1528 for (i
= 0; i
< stop
; ++i
)
1529 count
+= popcount_hwi (x
.val
[i
]);
1534 /* Set VAL to OP0 - OP1. If OVERFLOW is nonnull, record in *OVERFLOW
1535 whether the result overflows when OP0 and OP1 are treated as having
1536 signedness SGN. Return the number of blocks in VAL. */
1538 wi::sub_large (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*op0
,
1539 unsigned int op0len
, const HOST_WIDE_INT
*op1
,
1540 unsigned int op1len
, unsigned int prec
,
1541 signop sgn
, wi::overflow_type
*overflow
)
1543 unsigned HOST_WIDE_INT o0
= 0;
1544 unsigned HOST_WIDE_INT o1
= 0;
1545 unsigned HOST_WIDE_INT x
= 0;
1546 /* We implement subtraction as an in place negate and add. Negation
1547 is just inversion and add 1, so we can do the add of 1 by just
1548 starting the borrow in of the first element at 1. */
1549 unsigned HOST_WIDE_INT borrow
= 0;
1550 unsigned HOST_WIDE_INT old_borrow
= 0;
1552 unsigned HOST_WIDE_INT mask0
, mask1
;
1555 unsigned int len
= MAX (op0len
, op1len
);
1556 mask0
= -top_bit_of (op0
, op0len
, prec
);
1557 mask1
= -top_bit_of (op1
, op1len
, prec
);
1559 /* Subtract all of the explicitly defined elements. */
1560 for (i
= 0; i
< len
; i
++)
1562 o0
= i
< op0len
? (unsigned HOST_WIDE_INT
)op0
[i
] : mask0
;
1563 o1
= i
< op1len
? (unsigned HOST_WIDE_INT
)op1
[i
] : mask1
;
1564 x
= o0
- o1
- borrow
;
1566 old_borrow
= borrow
;
1567 borrow
= borrow
== 0 ? o0
< o1
: o0
<= o1
;
1570 if (len
* HOST_BITS_PER_WIDE_INT
< prec
)
1572 val
[len
] = mask0
- mask1
- borrow
;
1575 *overflow
= (sgn
== UNSIGNED
&& borrow
) ? OVF_UNDERFLOW
: OVF_NONE
;
1579 unsigned int shift
= -prec
% HOST_BITS_PER_WIDE_INT
;
1582 unsigned HOST_WIDE_INT x
= (o0
^ o1
) & (val
[len
- 1] ^ o0
);
1583 if ((HOST_WIDE_INT
) (x
<< shift
) < 0)
1586 *overflow
= OVF_UNDERFLOW
;
1588 *overflow
= OVF_OVERFLOW
;
1590 *overflow
= OVF_NONE
;
1593 *overflow
= OVF_NONE
;
1597 /* Put the MSB of X and O0 and in the top of the HWI. */
1601 *overflow
= (x
>= o0
) ? OVF_UNDERFLOW
: OVF_NONE
;
1603 *overflow
= (x
> o0
) ? OVF_UNDERFLOW
: OVF_NONE
;
1607 return canonize (val
, len
, prec
);
1615 /* Compute B_QUOTIENT and B_REMAINDER from B_DIVIDEND/B_DIVISOR. The
1616 algorithm is a small modification of the algorithm in Hacker's
1617 Delight by Warren, which itself is a small modification of Knuth's
1618 algorithm. M is the number of significant elements of U however
1619 there needs to be at least one extra element of B_DIVIDEND
1620 allocated, N is the number of elements of B_DIVISOR. */
1622 divmod_internal_2 (unsigned HOST_HALF_WIDE_INT
*b_quotient
,
1623 unsigned HOST_HALF_WIDE_INT
*b_remainder
,
1624 unsigned HOST_HALF_WIDE_INT
*b_dividend
,
1625 unsigned HOST_HALF_WIDE_INT
*b_divisor
,
1628 /* The "digits" are a HOST_HALF_WIDE_INT which the size of half of a
1629 HOST_WIDE_INT and stored in the lower bits of each word. This
1630 algorithm should work properly on both 32 and 64 bit
1632 unsigned HOST_WIDE_INT b
1633 = (unsigned HOST_WIDE_INT
)1 << HOST_BITS_PER_HALF_WIDE_INT
;
1634 unsigned HOST_WIDE_INT qhat
; /* Estimate of quotient digit. */
1635 unsigned HOST_WIDE_INT rhat
; /* A remainder. */
1636 unsigned HOST_WIDE_INT p
; /* Product of two digits. */
1640 /* Single digit divisor. */
1644 for (j
= m
- 1; j
>= 0; j
--)
1646 b_quotient
[j
] = (k
* b
+ b_dividend
[j
])/b_divisor
[0];
1647 k
= ((k
* b
+ b_dividend
[j
])
1648 - ((unsigned HOST_WIDE_INT
)b_quotient
[j
]
1649 * (unsigned HOST_WIDE_INT
)b_divisor
[0]));
1655 s
= clz_hwi (b_divisor
[n
-1]) - HOST_BITS_PER_HALF_WIDE_INT
; /* CHECK clz */
1659 /* Normalize B_DIVIDEND and B_DIVISOR. Unlike the published
1660 algorithm, we can overwrite b_dividend and b_divisor, so we do
1662 for (i
= n
- 1; i
> 0; i
--)
1663 b_divisor
[i
] = (b_divisor
[i
] << s
)
1664 | (b_divisor
[i
-1] >> (HOST_BITS_PER_HALF_WIDE_INT
- s
));
1665 b_divisor
[0] = b_divisor
[0] << s
;
1667 b_dividend
[m
] = b_dividend
[m
-1] >> (HOST_BITS_PER_HALF_WIDE_INT
- s
);
1668 for (i
= m
- 1; i
> 0; i
--)
1669 b_dividend
[i
] = (b_dividend
[i
] << s
)
1670 | (b_dividend
[i
-1] >> (HOST_BITS_PER_HALF_WIDE_INT
- s
));
1671 b_dividend
[0] = b_dividend
[0] << s
;
1675 for (j
= m
- n
; j
>= 0; j
--)
1677 qhat
= (b_dividend
[j
+n
] * b
+ b_dividend
[j
+n
-1]) / b_divisor
[n
-1];
1678 rhat
= (b_dividend
[j
+n
] * b
+ b_dividend
[j
+n
-1]) - qhat
* b_divisor
[n
-1];
1680 if (qhat
>= b
|| qhat
* b_divisor
[n
-2] > b
* rhat
+ b_dividend
[j
+n
-2])
1683 rhat
+= b_divisor
[n
-1];
1688 /* Multiply and subtract. */
1690 for (i
= 0; i
< n
; i
++)
1692 p
= qhat
* b_divisor
[i
];
1693 t
= b_dividend
[i
+j
] - k
- (p
& HALF_INT_MASK
);
1694 b_dividend
[i
+ j
] = t
;
1695 k
= ((p
>> HOST_BITS_PER_HALF_WIDE_INT
)
1696 - (t
>> HOST_BITS_PER_HALF_WIDE_INT
));
1698 t
= b_dividend
[j
+n
] - k
;
1699 b_dividend
[j
+n
] = t
;
1701 b_quotient
[j
] = qhat
;
1706 for (i
= 0; i
< n
; i
++)
1708 t
= (HOST_WIDE_INT
)b_dividend
[i
+j
] + b_divisor
[i
] + k
;
1709 b_dividend
[i
+j
] = t
;
1710 k
= t
>> HOST_BITS_PER_HALF_WIDE_INT
;
1712 b_dividend
[j
+n
] += k
;
1716 for (i
= 0; i
< n
; i
++)
1717 b_remainder
[i
] = (b_dividend
[i
] >> s
)
1718 | (b_dividend
[i
+1] << (HOST_BITS_PER_HALF_WIDE_INT
- s
));
1720 for (i
= 0; i
< n
; i
++)
1721 b_remainder
[i
] = b_dividend
[i
];
1725 /* Divide DIVIDEND by DIVISOR, which have signedness SGN, and truncate
1726 the result. If QUOTIENT is nonnull, store the value of the quotient
1727 there and return the number of blocks in it. The return value is
1728 not defined otherwise. If REMAINDER is nonnull, store the value
1729 of the remainder there and store the number of blocks in
1730 *REMAINDER_LEN. If OFLOW is not null, store in *OFLOW whether
1731 the division overflowed. */
1733 wi::divmod_internal (HOST_WIDE_INT
*quotient
, unsigned int *remainder_len
,
1734 HOST_WIDE_INT
*remainder
,
1735 const HOST_WIDE_INT
*dividend_val
,
1736 unsigned int dividend_len
, unsigned int dividend_prec
,
1737 const HOST_WIDE_INT
*divisor_val
, unsigned int divisor_len
,
1738 unsigned int divisor_prec
, signop sgn
,
1739 wi::overflow_type
*oflow
)
1741 unsigned int dividend_blocks_needed
= 2 * BLOCKS_NEEDED (dividend_prec
);
1742 unsigned int divisor_blocks_needed
= 2 * BLOCKS_NEEDED (divisor_prec
);
1743 unsigned HOST_HALF_WIDE_INT
1744 b_quotient
[4 * MAX_BITSIZE_MODE_ANY_INT
/ HOST_BITS_PER_HALF_WIDE_INT
];
1745 unsigned HOST_HALF_WIDE_INT
1746 b_remainder
[4 * MAX_BITSIZE_MODE_ANY_INT
/ HOST_BITS_PER_HALF_WIDE_INT
];
1747 unsigned HOST_HALF_WIDE_INT
1748 b_dividend
[(4 * MAX_BITSIZE_MODE_ANY_INT
/ HOST_BITS_PER_HALF_WIDE_INT
) + 1];
1749 unsigned HOST_HALF_WIDE_INT
1750 b_divisor
[4 * MAX_BITSIZE_MODE_ANY_INT
/ HOST_BITS_PER_HALF_WIDE_INT
];
1752 bool dividend_neg
= false;
1753 bool divisor_neg
= false;
1754 bool overflow
= false;
1755 wide_int neg_dividend
, neg_divisor
;
1757 wide_int_ref dividend
= wi::storage_ref (dividend_val
, dividend_len
,
1759 wide_int_ref divisor
= wi::storage_ref (divisor_val
, divisor_len
,
1764 /* The smallest signed number / -1 causes overflow. The dividend_len
1765 check is for speed rather than correctness. */
1767 && dividend_len
== BLOCKS_NEEDED (dividend_prec
)
1769 && wi::only_sign_bit_p (dividend
))
1772 /* Handle the overflow cases. Viewed as unsigned value, the quotient of
1773 (signed min / -1) has the same representation as the orignal dividend.
1774 We have traditionally made division by zero act as division by one,
1775 so there too we use the original dividend. */
1784 *oflow
= OVF_OVERFLOW
;
1786 for (unsigned int i
= 0; i
< dividend_len
; ++i
)
1787 quotient
[i
] = dividend_val
[i
];
1788 return dividend_len
;
1794 /* Do it on the host if you can. */
1796 && wi::fits_shwi_p (dividend
)
1797 && wi::fits_shwi_p (divisor
))
1799 HOST_WIDE_INT o0
= dividend
.to_shwi ();
1800 HOST_WIDE_INT o1
= divisor
.to_shwi ();
1802 if (o0
== HOST_WIDE_INT_MIN
&& o1
== -1)
1804 gcc_checking_assert (dividend_prec
> HOST_BITS_PER_WIDE_INT
);
1807 quotient
[0] = HOST_WIDE_INT_MIN
;
1820 quotient
[0] = o0
/ o1
;
1823 remainder
[0] = o0
% o1
;
1831 && wi::fits_uhwi_p (dividend
)
1832 && wi::fits_uhwi_p (divisor
))
1834 unsigned HOST_WIDE_INT o0
= dividend
.to_uhwi ();
1835 unsigned HOST_WIDE_INT o1
= divisor
.to_uhwi ();
1836 unsigned int quotient_len
= 1;
1840 quotient
[0] = o0
/ o1
;
1841 quotient_len
= canonize_uhwi (quotient
, dividend_prec
);
1845 remainder
[0] = o0
% o1
;
1846 *remainder_len
= canonize_uhwi (remainder
, dividend_prec
);
1848 return quotient_len
;
1851 /* Make the divisor and dividend positive and remember what we
1855 if (wi::neg_p (dividend
))
1857 neg_dividend
= -dividend
;
1858 dividend
= neg_dividend
;
1859 dividend_neg
= true;
1861 if (wi::neg_p (divisor
))
1863 neg_divisor
= -divisor
;
1864 divisor
= neg_divisor
;
1869 wi_unpack (b_dividend
, dividend
.get_val (), dividend
.get_len (),
1870 dividend_blocks_needed
, dividend_prec
, sgn
);
1871 wi_unpack (b_divisor
, divisor
.get_val (), divisor
.get_len (),
1872 divisor_blocks_needed
, divisor_prec
, sgn
);
1874 m
= dividend_blocks_needed
;
1876 while (m
> 1 && b_dividend
[m
- 1] == 0)
1879 n
= divisor_blocks_needed
;
1880 while (n
> 1 && b_divisor
[n
- 1] == 0)
1883 memset (b_quotient
, 0, sizeof (b_quotient
));
1885 divmod_internal_2 (b_quotient
, b_remainder
, b_dividend
, b_divisor
, m
, n
);
1887 unsigned int quotient_len
= 0;
1890 quotient_len
= wi_pack (quotient
, b_quotient
, m
, dividend_prec
);
1891 /* The quotient is neg if exactly one of the divisor or dividend is
1893 if (dividend_neg
!= divisor_neg
)
1894 quotient_len
= wi::sub_large (quotient
, zeros
, 1, quotient
,
1895 quotient_len
, dividend_prec
,
1901 *remainder_len
= wi_pack (remainder
, b_remainder
, n
, dividend_prec
);
1902 /* The remainder is always the same sign as the dividend. */
1904 *remainder_len
= wi::sub_large (remainder
, zeros
, 1, remainder
,
1905 *remainder_len
, dividend_prec
,
1909 return quotient_len
;
1913 * Shifting, rotating and extraction.
1916 /* Left shift XVAL by SHIFT and store the result in VAL. Return the
1917 number of blocks in VAL. Both XVAL and VAL have PRECISION bits. */
1919 wi::lshift_large (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*xval
,
1920 unsigned int xlen
, unsigned int precision
,
1923 /* Split the shift into a whole-block shift and a subblock shift. */
1924 unsigned int skip
= shift
/ HOST_BITS_PER_WIDE_INT
;
1925 unsigned int small_shift
= shift
% HOST_BITS_PER_WIDE_INT
;
1927 /* The whole-block shift fills with zeros. */
1928 unsigned int len
= BLOCKS_NEEDED (precision
);
1929 for (unsigned int i
= 0; i
< skip
; ++i
)
1932 /* It's easier to handle the simple block case specially. */
1933 if (small_shift
== 0)
1934 for (unsigned int i
= skip
; i
< len
; ++i
)
1935 val
[i
] = safe_uhwi (xval
, xlen
, i
- skip
);
1938 /* The first unfilled output block is a left shift of the first
1939 block in XVAL. The other output blocks contain bits from two
1940 consecutive input blocks. */
1941 unsigned HOST_WIDE_INT carry
= 0;
1942 for (unsigned int i
= skip
; i
< len
; ++i
)
1944 unsigned HOST_WIDE_INT x
= safe_uhwi (xval
, xlen
, i
- skip
);
1945 val
[i
] = (x
<< small_shift
) | carry
;
1946 carry
= x
>> (-small_shift
% HOST_BITS_PER_WIDE_INT
);
1949 return canonize (val
, len
, precision
);
1952 /* Right shift XVAL by SHIFT and store the result in VAL. Return the
1953 number of blocks in VAL. The input has XPRECISION bits and the
1954 output has XPRECISION - SHIFT bits. */
1956 rshift_large_common (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*xval
,
1957 unsigned int xlen
, unsigned int xprecision
,
1960 /* Split the shift into a whole-block shift and a subblock shift. */
1961 unsigned int skip
= shift
/ HOST_BITS_PER_WIDE_INT
;
1962 unsigned int small_shift
= shift
% HOST_BITS_PER_WIDE_INT
;
1964 /* Work out how many blocks are needed to store the significant bits
1965 (excluding the upper zeros or signs). */
1966 unsigned int len
= BLOCKS_NEEDED (xprecision
- shift
);
1968 /* It's easier to handle the simple block case specially. */
1969 if (small_shift
== 0)
1970 for (unsigned int i
= 0; i
< len
; ++i
)
1971 val
[i
] = safe_uhwi (xval
, xlen
, i
+ skip
);
1974 /* Each output block but the last is a combination of two input blocks.
1975 The last block is a right shift of the last block in XVAL. */
1976 unsigned HOST_WIDE_INT curr
= safe_uhwi (xval
, xlen
, skip
);
1977 for (unsigned int i
= 0; i
< len
; ++i
)
1979 val
[i
] = curr
>> small_shift
;
1980 curr
= safe_uhwi (xval
, xlen
, i
+ skip
+ 1);
1981 val
[i
] |= curr
<< (-small_shift
% HOST_BITS_PER_WIDE_INT
);
1987 /* Logically right shift XVAL by SHIFT and store the result in VAL.
1988 Return the number of blocks in VAL. XVAL has XPRECISION bits and
1989 VAL has PRECISION bits. */
1991 wi::lrshift_large (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*xval
,
1992 unsigned int xlen
, unsigned int xprecision
,
1993 unsigned int precision
, unsigned int shift
)
1995 unsigned int len
= rshift_large_common (val
, xval
, xlen
, xprecision
, shift
);
1997 /* The value we just created has precision XPRECISION - SHIFT.
1998 Zero-extend it to wider precisions. */
1999 if (precision
> xprecision
- shift
)
2001 unsigned int small_prec
= (xprecision
- shift
) % HOST_BITS_PER_WIDE_INT
;
2003 val
[len
- 1] = zext_hwi (val
[len
- 1], small_prec
);
2004 else if (val
[len
- 1] < 0)
2006 /* Add a new block with a zero. */
2011 return canonize (val
, len
, precision
);
2014 /* Arithmetically right shift XVAL by SHIFT and store the result in VAL.
2015 Return the number of blocks in VAL. XVAL has XPRECISION bits and
2016 VAL has PRECISION bits. */
2018 wi::arshift_large (HOST_WIDE_INT
*val
, const HOST_WIDE_INT
*xval
,
2019 unsigned int xlen
, unsigned int xprecision
,
2020 unsigned int precision
, unsigned int shift
)
2022 unsigned int len
= rshift_large_common (val
, xval
, xlen
, xprecision
, shift
);
2024 /* The value we just created has precision XPRECISION - SHIFT.
2025 Sign-extend it to wider types. */
2026 if (precision
> xprecision
- shift
)
2028 unsigned int small_prec
= (xprecision
- shift
) % HOST_BITS_PER_WIDE_INT
;
2030 val
[len
- 1] = sext_hwi (val
[len
- 1], small_prec
);
2032 return canonize (val
, len
, precision
);
2035 /* Return the number of leading (upper) zeros in X. */
2037 wi::clz (const wide_int_ref
&x
)
2039 /* Calculate how many bits there above the highest represented block. */
2040 int count
= x
.precision
- x
.len
* HOST_BITS_PER_WIDE_INT
;
2042 unsigned HOST_WIDE_INT high
= x
.uhigh ();
2044 /* The upper -COUNT bits of HIGH are not part of the value.
2046 high
= (high
<< -count
) >> -count
;
2047 else if (x
.sign_mask () < 0)
2048 /* The upper bit is set, so there are no leading zeros. */
2051 /* We don't need to look below HIGH. Either HIGH is nonzero,
2052 or the top bit of the block below is nonzero; clz_hwi is
2053 HOST_BITS_PER_WIDE_INT in the latter case. */
2054 return count
+ clz_hwi (high
);
2057 /* Return the number of redundant sign bits in X. (That is, the number
2058 of bits immediately below the sign bit that have the same value as
2061 wi::clrsb (const wide_int_ref
&x
)
2063 /* Calculate how many bits there above the highest represented block. */
2064 int count
= x
.precision
- x
.len
* HOST_BITS_PER_WIDE_INT
;
2066 unsigned HOST_WIDE_INT high
= x
.uhigh ();
2067 unsigned HOST_WIDE_INT mask
= -1;
2070 /* The upper -COUNT bits of HIGH are not part of the value.
2071 Clear them from both MASK and HIGH. */
2076 /* If the top bit is 1, count the number of leading 1s. If the top
2077 bit is zero, count the number of leading zeros. */
2078 if (high
> mask
/ 2)
2081 /* There are no sign bits below the top block, so we don't need to look
2082 beyond HIGH. Note that clz_hwi is HOST_BITS_PER_WIDE_INT when
2084 return count
+ clz_hwi (high
) - 1;
2087 /* Return the number of trailing (lower) zeros in X. */
2089 wi::ctz (const wide_int_ref
&x
)
2091 if (x
.len
== 1 && x
.ulow () == 0)
2094 /* Having dealt with the zero case, there must be a block with a
2095 nonzero bit. We don't care about the bits above the first 1. */
2097 while (x
.val
[i
] == 0)
2099 return i
* HOST_BITS_PER_WIDE_INT
+ ctz_hwi (x
.val
[i
]);
2102 /* If X is an exact power of 2, return the base-2 logarithm, otherwise
2105 wi::exact_log2 (const wide_int_ref
&x
)
2107 /* Reject cases where there are implicit -1 blocks above HIGH. */
2108 if (x
.len
* HOST_BITS_PER_WIDE_INT
< x
.precision
&& x
.sign_mask () < 0)
2111 /* Set CRUX to the index of the entry that should be nonzero.
2112 If the top block is zero then the next lowest block (if any)
2113 must have the high bit set. */
2114 unsigned int crux
= x
.len
- 1;
2115 if (crux
> 0 && x
.val
[crux
] == 0)
2118 /* Check that all lower blocks are zero. */
2119 for (unsigned int i
= 0; i
< crux
; ++i
)
2123 /* Get a zero-extended form of block CRUX. */
2124 unsigned HOST_WIDE_INT hwi
= x
.val
[crux
];
2125 if ((crux
+ 1) * HOST_BITS_PER_WIDE_INT
> x
.precision
)
2126 hwi
= zext_hwi (hwi
, x
.precision
% HOST_BITS_PER_WIDE_INT
);
2128 /* Now it's down to whether HWI is a power of 2. */
2129 int res
= ::exact_log2 (hwi
);
2131 res
+= crux
* HOST_BITS_PER_WIDE_INT
;
2135 /* Return the base-2 logarithm of X, rounding down. Return -1 if X is 0. */
2137 wi::floor_log2 (const wide_int_ref
&x
)
2139 return x
.precision
- 1 - clz (x
);
2142 /* Return the index of the first (lowest) set bit in X, counting from 1.
2143 Return 0 if X is 0. */
2145 wi::ffs (const wide_int_ref
&x
)
2147 return eq_p (x
, 0) ? 0 : ctz (x
) + 1;
2150 /* Return true if sign-extending X to have precision PRECISION would give
2151 the minimum signed value at that precision. */
2153 wi::only_sign_bit_p (const wide_int_ref
&x
, unsigned int precision
)
2155 return ctz (x
) + 1 == int (precision
);
2158 /* Return true if X represents the minimum signed value. */
2160 wi::only_sign_bit_p (const wide_int_ref
&x
)
2162 return only_sign_bit_p (x
, x
.precision
);
2165 /* Return VAL if VAL has no bits set outside MASK. Otherwise round VAL
2166 down to the previous value that has no bits set outside MASK.
2167 This rounding wraps for signed values if VAL is negative and
2168 the top bit of MASK is clear.
2170 For example, round_down_for_mask (6, 0xf1) would give 1 and
2171 round_down_for_mask (24, 0xf1) would give 17. */
2174 wi::round_down_for_mask (const wide_int
&val
, const wide_int
&mask
)
2176 /* Get the bits in VAL that are outside the mask. */
2177 wide_int extra_bits
= wi::bit_and_not (val
, mask
);
2178 if (extra_bits
== 0)
2181 /* Get a mask that includes the top bit in EXTRA_BITS and is all 1s
2183 unsigned int precision
= val
.get_precision ();
2184 wide_int lower_mask
= wi::mask (precision
- wi::clz (extra_bits
),
2187 /* Clear the bits that aren't in MASK, but ensure that all bits
2188 in MASK below the top cleared bit are set. */
2189 return (val
& mask
) | (mask
& lower_mask
);
2192 /* Return VAL if VAL has no bits set outside MASK. Otherwise round VAL
2193 up to the next value that has no bits set outside MASK. The rounding
2194 wraps if there are no suitable values greater than VAL.
2196 For example, round_up_for_mask (6, 0xf1) would give 16 and
2197 round_up_for_mask (24, 0xf1) would give 32. */
2200 wi::round_up_for_mask (const wide_int
&val
, const wide_int
&mask
)
2202 /* Get the bits in VAL that are outside the mask. */
2203 wide_int extra_bits
= wi::bit_and_not (val
, mask
);
2204 if (extra_bits
== 0)
2207 /* Get a mask that is all 1s above the top bit in EXTRA_BITS. */
2208 unsigned int precision
= val
.get_precision ();
2209 wide_int upper_mask
= wi::mask (precision
- wi::clz (extra_bits
),
2212 /* Get the bits of the mask that are above the top bit in EXTRA_BITS. */
2215 /* Conceptually we need to:
2217 - clear bits of VAL outside UPPER_MASK
2218 - add the lowest bit in UPPER_MASK to VAL (or add 0 if UPPER_MASK is 0)
2219 - propagate the carry through the bits of VAL in UPPER_MASK
2221 If (~VAL & UPPER_MASK) is nonzero, the carry eventually
2222 reaches that bit and the process leaves all lower bits clear.
2223 If (~VAL & UPPER_MASK) is zero then the result is also zero. */
2224 wide_int tmp
= wi::bit_and_not (upper_mask
, val
);
2226 return (val
| tmp
) & -tmp
;
2229 /* Compute the modular multiplicative inverse of A modulo B
2230 using extended Euclid's algorithm. Assumes A and B are coprime,
2231 and that A and B have the same precision. */
2233 wi::mod_inv (const wide_int
&a
, const wide_int
&b
)
2235 /* Verify the assumption. */
2236 gcc_checking_assert (wi::eq_p (wi::gcd (a
, b
), 1));
2238 unsigned int p
= a
.get_precision () + 1;
2239 gcc_checking_assert (b
.get_precision () + 1 == p
);
2240 wide_int c
= wide_int::from (a
, p
, UNSIGNED
);
2241 wide_int d
= wide_int::from (b
, p
, UNSIGNED
);
2242 wide_int x0
= wide_int::from (0, p
, UNSIGNED
);
2243 wide_int x1
= wide_int::from (1, p
, UNSIGNED
);
2245 if (wi::eq_p (b
, 1))
2246 return wide_int::from (1, p
, UNSIGNED
);
2248 while (wi::gt_p (c
, 1, UNSIGNED
))
2251 wide_int q
= wi::divmod_trunc (c
, d
, UNSIGNED
, &d
);
2254 x0
= wi::sub (x1
, wi::mul (q
, x0
));
2257 if (wi::lt_p (x1
, 0, SIGNED
))
2263 * Private utilities.
2266 void gt_ggc_mx (widest_int
*) { }
2267 void gt_pch_nx (widest_int
*, void (*) (void *, void *), void *) { }
2268 void gt_pch_nx (widest_int
*) { }
2270 template void wide_int::dump () const;
2271 template void generic_wide_int
<wide_int_ref_storage
<false> >::dump () const;
2272 template void generic_wide_int
<wide_int_ref_storage
<true> >::dump () const;
2273 template void offset_int::dump () const;
2274 template void widest_int::dump () const;
2276 /* We could add all the above ::dump variants here, but wide_int and
2277 widest_int should handle the common cases. Besides, you can always
2278 call the dump method directly. */
2281 debug (const wide_int
&ref
)
2287 debug (const wide_int
*ptr
)
2292 fprintf (stderr
, "<nil>\n");
2296 debug (const widest_int
&ref
)
2302 debug (const widest_int
*ptr
)
2307 fprintf (stderr
, "<nil>\n");
2312 namespace selftest
{
2314 /* Selftests for wide ints. We run these multiple times, once per type. */
2316 /* Helper function for building a test value. */
2318 template <class VALUE_TYPE
>
2322 /* Specializations of the fixture for each wide-int type. */
2324 /* Specialization for VALUE_TYPE == wide_int. */
2330 return wi::shwi (i
, 32);
2333 /* Specialization for VALUE_TYPE == offset_int. */
2339 return offset_int (i
);
2342 /* Specialization for VALUE_TYPE == widest_int. */
2348 return widest_int (i
);
2351 /* Verify that print_dec (WI, ..., SGN) gives the expected string
2352 representation (using base 10). */
2355 assert_deceq (const char *expected
, const wide_int_ref
&wi
, signop sgn
)
2357 char buf
[WIDE_INT_PRINT_BUFFER_SIZE
];
2358 print_dec (wi
, buf
, sgn
);
2359 ASSERT_STREQ (expected
, buf
);
2362 /* Likewise for base 16. */
2365 assert_hexeq (const char *expected
, const wide_int_ref
&wi
)
2367 char buf
[WIDE_INT_PRINT_BUFFER_SIZE
];
2368 print_hex (wi
, buf
);
2369 ASSERT_STREQ (expected
, buf
);
2374 /* Verify that print_dec and print_hex work for VALUE_TYPE. */
2376 template <class VALUE_TYPE
>
2380 VALUE_TYPE a
= from_int
<VALUE_TYPE
> (42);
2381 assert_deceq ("42", a
, SIGNED
);
2382 assert_hexeq ("0x2a", a
);
2383 assert_hexeq ("0x1fffffffffffffffff", wi::shwi (-1, 69));
2384 assert_hexeq ("0xffffffffffffffff", wi::mask (64, false, 69));
2385 assert_hexeq ("0xffffffffffffffff", wi::mask
<widest_int
> (64, false));
2386 if (WIDE_INT_MAX_PRECISION
> 128)
2388 assert_hexeq ("0x20000000000000000fffffffffffffffe",
2389 wi::lshift (1, 129) + wi::lshift (1, 64) - 2);
2390 assert_hexeq ("0x200000000000004000123456789abcdef",
2391 wi::lshift (1, 129) + wi::lshift (1, 74)
2392 + wi::lshift (0x1234567, 32) + 0x89abcdef);
2396 /* Verify that various operations work correctly for VALUE_TYPE,
2397 unary and binary, using both function syntax, and
2398 overloaded-operators. */
2400 template <class VALUE_TYPE
>
2404 VALUE_TYPE a
= from_int
<VALUE_TYPE
> (7);
2405 VALUE_TYPE b
= from_int
<VALUE_TYPE
> (3);
2407 /* Using functions. */
2408 assert_deceq ("-7", wi::neg (a
), SIGNED
);
2409 assert_deceq ("10", wi::add (a
, b
), SIGNED
);
2410 assert_deceq ("4", wi::sub (a
, b
), SIGNED
);
2411 assert_deceq ("-4", wi::sub (b
, a
), SIGNED
);
2412 assert_deceq ("21", wi::mul (a
, b
), SIGNED
);
2414 /* Using operators. */
2415 assert_deceq ("-7", -a
, SIGNED
);
2416 assert_deceq ("10", a
+ b
, SIGNED
);
2417 assert_deceq ("4", a
- b
, SIGNED
);
2418 assert_deceq ("-4", b
- a
, SIGNED
);
2419 assert_deceq ("21", a
* b
, SIGNED
);
2422 /* Verify that various comparisons work correctly for VALUE_TYPE. */
2424 template <class VALUE_TYPE
>
2428 VALUE_TYPE a
= from_int
<VALUE_TYPE
> (7);
2429 VALUE_TYPE b
= from_int
<VALUE_TYPE
> (3);
2432 ASSERT_TRUE (wi::eq_p (a
, a
));
2433 ASSERT_FALSE (wi::eq_p (a
, b
));
2436 ASSERT_TRUE (wi::ne_p (a
, b
));
2437 ASSERT_FALSE (wi::ne_p (a
, a
));
2440 ASSERT_FALSE (wi::lts_p (a
, a
));
2441 ASSERT_FALSE (wi::lts_p (a
, b
));
2442 ASSERT_TRUE (wi::lts_p (b
, a
));
2445 ASSERT_TRUE (wi::les_p (a
, a
));
2446 ASSERT_FALSE (wi::les_p (a
, b
));
2447 ASSERT_TRUE (wi::les_p (b
, a
));
2450 ASSERT_FALSE (wi::gts_p (a
, a
));
2451 ASSERT_TRUE (wi::gts_p (a
, b
));
2452 ASSERT_FALSE (wi::gts_p (b
, a
));
2455 ASSERT_TRUE (wi::ges_p (a
, a
));
2456 ASSERT_TRUE (wi::ges_p (a
, b
));
2457 ASSERT_FALSE (wi::ges_p (b
, a
));
2460 ASSERT_EQ (-1, wi::cmps (b
, a
));
2461 ASSERT_EQ (0, wi::cmps (a
, a
));
2462 ASSERT_EQ (1, wi::cmps (a
, b
));
2465 /* Run all of the selftests, using the given VALUE_TYPE. */
2467 template <class VALUE_TYPE
>
2468 static void run_all_wide_int_tests ()
2470 test_printing
<VALUE_TYPE
> ();
2471 test_ops
<VALUE_TYPE
> ();
2472 test_comparisons
<VALUE_TYPE
> ();
2475 /* Test overflow conditions. */
2480 static int precs
[] = { 31, 32, 33, 63, 64, 65, 127, 128 };
2481 static int offsets
[] = { 16, 1, 0 };
2482 for (unsigned int i
= 0; i
< ARRAY_SIZE (precs
); ++i
)
2483 for (unsigned int j
= 0; j
< ARRAY_SIZE (offsets
); ++j
)
2485 int prec
= precs
[i
];
2486 int offset
= offsets
[j
];
2487 wi::overflow_type overflow
;
2490 sum
= wi::add (wi::max_value (prec
, UNSIGNED
) - offset
, 1,
2491 UNSIGNED
, &overflow
);
2492 ASSERT_EQ (sum
, -offset
);
2493 ASSERT_EQ (overflow
!= wi::OVF_NONE
, offset
== 0);
2495 sum
= wi::add (1, wi::max_value (prec
, UNSIGNED
) - offset
,
2496 UNSIGNED
, &overflow
);
2497 ASSERT_EQ (sum
, -offset
);
2498 ASSERT_EQ (overflow
!= wi::OVF_NONE
, offset
== 0);
2500 diff
= wi::sub (wi::max_value (prec
, UNSIGNED
) - offset
,
2501 wi::max_value (prec
, UNSIGNED
),
2502 UNSIGNED
, &overflow
);
2503 ASSERT_EQ (diff
, -offset
);
2504 ASSERT_EQ (overflow
!= wi::OVF_NONE
, offset
!= 0);
2506 diff
= wi::sub (wi::max_value (prec
, UNSIGNED
) - offset
,
2507 wi::max_value (prec
, UNSIGNED
) - 1,
2508 UNSIGNED
, &overflow
);
2509 ASSERT_EQ (diff
, 1 - offset
);
2510 ASSERT_EQ (overflow
!= wi::OVF_NONE
, offset
> 1);
2514 /* Test the round_{down,up}_for_mask functions. */
2517 test_round_for_mask ()
2519 unsigned int prec
= 18;
2520 ASSERT_EQ (17, wi::round_down_for_mask (wi::shwi (17, prec
),
2521 wi::shwi (0xf1, prec
)));
2522 ASSERT_EQ (17, wi::round_up_for_mask (wi::shwi (17, prec
),
2523 wi::shwi (0xf1, prec
)));
2525 ASSERT_EQ (1, wi::round_down_for_mask (wi::shwi (6, prec
),
2526 wi::shwi (0xf1, prec
)));
2527 ASSERT_EQ (16, wi::round_up_for_mask (wi::shwi (6, prec
),
2528 wi::shwi (0xf1, prec
)));
2530 ASSERT_EQ (17, wi::round_down_for_mask (wi::shwi (24, prec
),
2531 wi::shwi (0xf1, prec
)));
2532 ASSERT_EQ (32, wi::round_up_for_mask (wi::shwi (24, prec
),
2533 wi::shwi (0xf1, prec
)));
2535 ASSERT_EQ (0x011, wi::round_down_for_mask (wi::shwi (0x22, prec
),
2536 wi::shwi (0x111, prec
)));
2537 ASSERT_EQ (0x100, wi::round_up_for_mask (wi::shwi (0x22, prec
),
2538 wi::shwi (0x111, prec
)));
2540 ASSERT_EQ (100, wi::round_down_for_mask (wi::shwi (101, prec
),
2541 wi::shwi (0xfc, prec
)));
2542 ASSERT_EQ (104, wi::round_up_for_mask (wi::shwi (101, prec
),
2543 wi::shwi (0xfc, prec
)));
2545 ASSERT_EQ (0x2bc, wi::round_down_for_mask (wi::shwi (0x2c2, prec
),
2546 wi::shwi (0xabc, prec
)));
2547 ASSERT_EQ (0x800, wi::round_up_for_mask (wi::shwi (0x2c2, prec
),
2548 wi::shwi (0xabc, prec
)));
2550 ASSERT_EQ (0xabc, wi::round_down_for_mask (wi::shwi (0xabd, prec
),
2551 wi::shwi (0xabc, prec
)));
2552 ASSERT_EQ (0, wi::round_up_for_mask (wi::shwi (0xabd, prec
),
2553 wi::shwi (0xabc, prec
)));
2555 ASSERT_EQ (0xabc, wi::round_down_for_mask (wi::shwi (0x1000, prec
),
2556 wi::shwi (0xabc, prec
)));
2557 ASSERT_EQ (0, wi::round_up_for_mask (wi::shwi (0x1000, prec
),
2558 wi::shwi (0xabc, prec
)));
2561 /* Run all of the selftests within this file, for all value types. */
2564 wide_int_cc_tests ()
2566 run_all_wide_int_tests
<wide_int
> ();
2567 run_all_wide_int_tests
<offset_int
> ();
2568 run_all_wide_int_tests
<widest_int
> ();
2570 test_round_for_mask ();
2573 } // namespace selftest
2574 #endif /* CHECKING_P */