common.opt (fshow-column): Don't mark as C ObjC C++ ObjC++.
[official-gcc.git] / gcc / reginfo.c
blob66e774a30c2d526a80839f618f0dfa00e890e30e
1 /* Compute different info about registers.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
3 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 /* This file contains regscan pass of the compiler and passes for
24 dealing with info about modes of pseudo-registers inside
25 subregisters. It also defines some tables of information about the
26 hardware registers, function init_reg_sets to initialize the
27 tables, and other auxiliary functions to deal with info about
28 registers and their classes. */
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "hard-reg-set.h"
35 #include "rtl.h"
36 #include "expr.h"
37 #include "tm_p.h"
38 #include "flags.h"
39 #include "basic-block.h"
40 #include "regs.h"
41 #include "addresses.h"
42 #include "function.h"
43 #include "insn-config.h"
44 #include "recog.h"
45 #include "reload.h"
46 #include "toplev.h"
47 #include "output.h"
48 #include "ggc.h"
49 #include "timevar.h"
50 #include "hashtab.h"
51 #include "target.h"
52 #include "tree-pass.h"
53 #include "df.h"
54 #include "ira.h"
56 /* Maximum register number used in this function, plus one. */
58 int max_regno;
61 /* Register tables used by many passes. */
63 /* Indexed by hard register number, contains 1 for registers
64 that are fixed use (stack pointer, pc, frame pointer, etc.).
65 These are the registers that cannot be used to allocate
66 a pseudo reg for general use. */
67 char fixed_regs[FIRST_PSEUDO_REGISTER];
69 /* Same info as a HARD_REG_SET. */
70 HARD_REG_SET fixed_reg_set;
72 /* Data for initializing the above. */
73 static const char initial_fixed_regs[] = FIXED_REGISTERS;
75 /* Indexed by hard register number, contains 1 for registers
76 that are fixed use or are clobbered by function calls.
77 These are the registers that cannot be used to allocate
78 a pseudo reg whose life crosses calls unless we are able
79 to save/restore them across the calls. */
80 char call_used_regs[FIRST_PSEUDO_REGISTER];
82 /* Same info as a HARD_REG_SET. */
83 HARD_REG_SET call_used_reg_set;
85 /* Data for initializing the above. */
86 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
88 /* This is much like call_used_regs, except it doesn't have to
89 be a superset of FIXED_REGISTERS. This vector indicates
90 what is really call clobbered, and is used when defining
91 regs_invalidated_by_call. */
92 #ifdef CALL_REALLY_USED_REGISTERS
93 char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
94 #endif
96 #ifdef CALL_REALLY_USED_REGISTERS
97 #define CALL_REALLY_USED_REGNO_P(X) call_really_used_regs[X]
98 #else
99 #define CALL_REALLY_USED_REGNO_P(X) call_used_regs[X]
100 #endif
103 /* Contains registers that are fixed use -- i.e. in fixed_reg_set -- or
104 a function value return register or TARGET_STRUCT_VALUE_RTX or
105 STATIC_CHAIN_REGNUM. These are the registers that cannot hold quantities
106 across calls even if we are willing to save and restore them. */
108 HARD_REG_SET call_fixed_reg_set;
110 /* Indexed by hard register number, contains 1 for registers
111 that are being used for global register decls.
112 These must be exempt from ordinary flow analysis
113 and are also considered fixed. */
114 char global_regs[FIRST_PSEUDO_REGISTER];
116 /* Contains 1 for registers that are set or clobbered by calls. */
117 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
118 for someone's bright idea to have call_used_regs strictly include
119 fixed_regs. Which leaves us guessing as to the set of fixed_regs
120 that are actually preserved. We know for sure that those associated
121 with the local stack frame are safe, but scant others. */
122 HARD_REG_SET regs_invalidated_by_call;
124 /* Same information as REGS_INVALIDATED_BY_CALL but in regset form to be used
125 in dataflow more conveniently. */
126 regset regs_invalidated_by_call_regset;
128 /* The bitmap_obstack is used to hold some static variables that
129 should not be reset after each function is compiled. */
130 static bitmap_obstack persistent_obstack;
132 /* Table of register numbers in the order in which to try to use them. */
133 #ifdef REG_ALLOC_ORDER
134 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
136 /* The inverse of reg_alloc_order. */
137 int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
138 #endif
140 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
141 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
143 /* The same information, but as an array of unsigned ints. We copy from
144 these unsigned ints to the table above. We do this so the tm.h files
145 do not have to be aware of the wordsize for machines with <= 64 regs.
146 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
147 #define N_REG_INTS \
148 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
150 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
151 = REG_CLASS_CONTENTS;
153 /* For each reg class, number of regs it contains. */
154 unsigned int reg_class_size[N_REG_CLASSES];
156 /* For each reg class, table listing all the classes contained in it. */
157 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
159 /* For each pair of reg classes,
160 a largest reg class contained in their union. */
161 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
163 /* For each pair of reg classes,
164 the smallest reg class containing their union. */
165 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
167 /* Array containing all of the register names. */
168 const char * reg_names[] = REGISTER_NAMES;
170 /* Array containing all of the register class names. */
171 const char * reg_class_names[] = REG_CLASS_NAMES;
173 /* For each hard register, the widest mode object that it can contain.
174 This will be a MODE_INT mode if the register can hold integers. Otherwise
175 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
176 register. */
177 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
179 /* 1 if there is a register of given mode. */
180 bool have_regs_of_mode [MAX_MACHINE_MODE];
182 /* 1 if class does contain register of given mode. */
183 char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
185 /* Maximum cost of moving from a register in one class to a register in
186 another class. Based on REGISTER_MOVE_COST. */
187 move_table *move_cost[MAX_MACHINE_MODE];
189 /* Similar, but here we don't have to move if the first index is a subset
190 of the second so in that case the cost is zero. */
191 move_table *may_move_in_cost[MAX_MACHINE_MODE];
193 /* Similar, but here we don't have to move if the first index is a superset
194 of the second so in that case the cost is zero. */
195 move_table *may_move_out_cost[MAX_MACHINE_MODE];
197 /* Keep track of the last mode we initialized move costs for. */
198 static int last_mode_for_init_move_cost;
200 /* Sample MEM values for use by memory_move_secondary_cost. */
201 static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
203 /* No more global register variables may be declared; true once
204 reginfo has been initialized. */
205 static int no_global_reg_vars = 0;
207 /* Specify number of hard registers given machine mode occupy. */
208 unsigned char hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
210 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
211 correspond to the hard registers, if any, set in that map. This
212 could be done far more efficiently by having all sorts of special-cases
213 with moving single words, but probably isn't worth the trouble. */
214 void
215 reg_set_to_hard_reg_set (HARD_REG_SET *to, const_bitmap from)
217 unsigned i;
218 bitmap_iterator bi;
220 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
222 if (i >= FIRST_PSEUDO_REGISTER)
223 return;
224 SET_HARD_REG_BIT (*to, i);
228 /* Function called only once to initialize the above data on reg usage.
229 Once this is done, various switches may override. */
230 void
231 init_reg_sets (void)
233 int i, j;
235 /* First copy the register information from the initial int form into
236 the regsets. */
238 for (i = 0; i < N_REG_CLASSES; i++)
240 CLEAR_HARD_REG_SET (reg_class_contents[i]);
242 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
243 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
244 if (int_reg_class_contents[i][j / 32]
245 & ((unsigned) 1 << (j % 32)))
246 SET_HARD_REG_BIT (reg_class_contents[i], j);
249 /* Sanity check: make sure the target macros FIXED_REGISTERS and
250 CALL_USED_REGISTERS had the right number of initializers. */
251 gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
252 gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
254 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
255 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
256 memset (global_regs, 0, sizeof global_regs);
259 /* Initialize may_move_cost and friends for mode M. */
260 void
261 init_move_cost (enum machine_mode m)
263 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
264 bool all_match = true;
265 unsigned int i, j;
267 gcc_assert (have_regs_of_mode[m]);
268 for (i = 0; i < N_REG_CLASSES; i++)
269 if (contains_reg_of_mode[i][m])
270 for (j = 0; j < N_REG_CLASSES; j++)
272 int cost;
273 if (!contains_reg_of_mode[j][m])
274 cost = 65535;
275 else
277 cost = REGISTER_MOVE_COST (m, (enum reg_class) i,
278 (enum reg_class) j);
279 gcc_assert (cost < 65535);
281 all_match &= (last_move_cost[i][j] == cost);
282 last_move_cost[i][j] = cost;
284 if (all_match && last_mode_for_init_move_cost != -1)
286 move_cost[m] = move_cost[last_mode_for_init_move_cost];
287 may_move_in_cost[m] = may_move_in_cost[last_mode_for_init_move_cost];
288 may_move_out_cost[m] = may_move_out_cost[last_mode_for_init_move_cost];
289 return;
291 last_mode_for_init_move_cost = m;
292 move_cost[m] = (move_table *)xmalloc (sizeof (move_table)
293 * N_REG_CLASSES);
294 may_move_in_cost[m] = (move_table *)xmalloc (sizeof (move_table)
295 * N_REG_CLASSES);
296 may_move_out_cost[m] = (move_table *)xmalloc (sizeof (move_table)
297 * N_REG_CLASSES);
298 for (i = 0; i < N_REG_CLASSES; i++)
299 if (contains_reg_of_mode[i][m])
300 for (j = 0; j < N_REG_CLASSES; j++)
302 int cost;
303 enum reg_class *p1, *p2;
305 if (last_move_cost[i][j] == 65535)
307 move_cost[m][i][j] = 65535;
308 may_move_in_cost[m][i][j] = 65535;
309 may_move_out_cost[m][i][j] = 65535;
311 else
313 cost = last_move_cost[i][j];
315 for (p2 = &reg_class_subclasses[j][0];
316 *p2 != LIM_REG_CLASSES; p2++)
317 if (*p2 != i && contains_reg_of_mode[*p2][m])
318 cost = MAX (cost, move_cost[m][i][*p2]);
320 for (p1 = &reg_class_subclasses[i][0];
321 *p1 != LIM_REG_CLASSES; p1++)
322 if (*p1 != j && contains_reg_of_mode[*p1][m])
323 cost = MAX (cost, move_cost[m][*p1][j]);
325 gcc_assert (cost <= 65535);
326 move_cost[m][i][j] = cost;
328 if (reg_class_subset_p ((enum reg_class) i, (enum reg_class) j))
329 may_move_in_cost[m][i][j] = 0;
330 else
331 may_move_in_cost[m][i][j] = cost;
333 if (reg_class_subset_p ((enum reg_class) j, (enum reg_class) i))
334 may_move_out_cost[m][i][j] = 0;
335 else
336 may_move_out_cost[m][i][j] = cost;
339 else
340 for (j = 0; j < N_REG_CLASSES; j++)
342 move_cost[m][i][j] = 65535;
343 may_move_in_cost[m][i][j] = 65535;
344 may_move_out_cost[m][i][j] = 65535;
348 /* We need to save copies of some of the register information which
349 can be munged by command-line switches so we can restore it during
350 subsequent back-end reinitialization. */
351 static char saved_fixed_regs[FIRST_PSEUDO_REGISTER];
352 static char saved_call_used_regs[FIRST_PSEUDO_REGISTER];
353 #ifdef CALL_REALLY_USED_REGISTERS
354 static char saved_call_really_used_regs[FIRST_PSEUDO_REGISTER];
355 #endif
356 static const char *saved_reg_names[FIRST_PSEUDO_REGISTER];
358 /* Save the register information. */
359 void
360 save_register_info (void)
362 /* Sanity check: make sure the target macros FIXED_REGISTERS and
363 CALL_USED_REGISTERS had the right number of initializers. */
364 gcc_assert (sizeof fixed_regs == sizeof saved_fixed_regs);
365 gcc_assert (sizeof call_used_regs == sizeof saved_call_used_regs);
366 memcpy (saved_fixed_regs, fixed_regs, sizeof fixed_regs);
367 memcpy (saved_call_used_regs, call_used_regs, sizeof call_used_regs);
369 /* Likewise for call_really_used_regs. */
370 #ifdef CALL_REALLY_USED_REGISTERS
371 gcc_assert (sizeof call_really_used_regs
372 == sizeof saved_call_really_used_regs);
373 memcpy (saved_call_really_used_regs, call_really_used_regs,
374 sizeof call_really_used_regs);
375 #endif
377 /* And similarly for reg_names. */
378 gcc_assert (sizeof reg_names == sizeof saved_reg_names);
379 memcpy (saved_reg_names, reg_names, sizeof reg_names);
382 /* Restore the register information. */
383 static void
384 restore_register_info (void)
386 memcpy (fixed_regs, saved_fixed_regs, sizeof fixed_regs);
387 memcpy (call_used_regs, saved_call_used_regs, sizeof call_used_regs);
389 #ifdef CALL_REALLY_USED_REGISTERS
390 memcpy (call_really_used_regs, saved_call_really_used_regs,
391 sizeof call_really_used_regs);
392 #endif
394 memcpy (reg_names, saved_reg_names, sizeof reg_names);
397 /* After switches have been processed, which perhaps alter
398 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
399 static void
400 init_reg_sets_1 (void)
402 unsigned int i, j;
403 unsigned int /* enum machine_mode */ m;
405 restore_register_info ();
407 #ifdef REG_ALLOC_ORDER
408 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
409 inv_reg_alloc_order[reg_alloc_order[i]] = i;
410 #endif
412 /* This macro allows the fixed or call-used registers
413 and the register classes to depend on target flags. */
415 #ifdef CONDITIONAL_REGISTER_USAGE
416 CONDITIONAL_REGISTER_USAGE;
417 #endif
419 /* Compute number of hard regs in each class. */
421 memset (reg_class_size, 0, sizeof reg_class_size);
422 for (i = 0; i < N_REG_CLASSES; i++)
423 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
424 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
425 reg_class_size[i]++;
427 /* Initialize the table of subunions.
428 reg_class_subunion[I][J] gets the largest-numbered reg-class
429 that is contained in the union of classes I and J. */
431 memset (reg_class_subunion, 0, sizeof reg_class_subunion);
432 for (i = 0; i < N_REG_CLASSES; i++)
434 for (j = 0; j < N_REG_CLASSES; j++)
436 HARD_REG_SET c;
437 int k;
439 COPY_HARD_REG_SET (c, reg_class_contents[i]);
440 IOR_HARD_REG_SET (c, reg_class_contents[j]);
441 for (k = 0; k < N_REG_CLASSES; k++)
442 if (hard_reg_set_subset_p (reg_class_contents[k], c)
443 && !hard_reg_set_subset_p (reg_class_contents[k],
444 reg_class_contents
445 [(int) reg_class_subunion[i][j]]))
446 reg_class_subunion[i][j] = (enum reg_class) k;
450 /* Initialize the table of superunions.
451 reg_class_superunion[I][J] gets the smallest-numbered reg-class
452 containing the union of classes I and J. */
454 memset (reg_class_superunion, 0, sizeof reg_class_superunion);
455 for (i = 0; i < N_REG_CLASSES; i++)
457 for (j = 0; j < N_REG_CLASSES; j++)
459 HARD_REG_SET c;
460 int k;
462 COPY_HARD_REG_SET (c, reg_class_contents[i]);
463 IOR_HARD_REG_SET (c, reg_class_contents[j]);
464 for (k = 0; k < N_REG_CLASSES; k++)
465 if (hard_reg_set_subset_p (c, reg_class_contents[k]))
466 break;
468 reg_class_superunion[i][j] = (enum reg_class) k;
472 /* Initialize the tables of subclasses and superclasses of each reg class.
473 First clear the whole table, then add the elements as they are found. */
475 for (i = 0; i < N_REG_CLASSES; i++)
477 for (j = 0; j < N_REG_CLASSES; j++)
478 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
481 for (i = 0; i < N_REG_CLASSES; i++)
483 if (i == (int) NO_REGS)
484 continue;
486 for (j = i + 1; j < N_REG_CLASSES; j++)
487 if (hard_reg_set_subset_p (reg_class_contents[i],
488 reg_class_contents[j]))
490 /* Reg class I is a subclass of J.
491 Add J to the table of superclasses of I. */
492 enum reg_class *p;
494 /* Add I to the table of superclasses of J. */
495 p = &reg_class_subclasses[j][0];
496 while (*p != LIM_REG_CLASSES) p++;
497 *p = (enum reg_class) i;
501 /* Initialize "constant" tables. */
503 CLEAR_HARD_REG_SET (fixed_reg_set);
504 CLEAR_HARD_REG_SET (call_used_reg_set);
505 CLEAR_HARD_REG_SET (call_fixed_reg_set);
506 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
507 if (!regs_invalidated_by_call_regset)
509 bitmap_obstack_initialize (&persistent_obstack);
510 regs_invalidated_by_call_regset = ALLOC_REG_SET (&persistent_obstack);
512 else
513 CLEAR_REG_SET (regs_invalidated_by_call_regset);
515 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
517 /* call_used_regs must include fixed_regs. */
518 gcc_assert (!fixed_regs[i] || call_used_regs[i]);
519 #ifdef CALL_REALLY_USED_REGISTERS
520 /* call_used_regs must include call_really_used_regs. */
521 gcc_assert (!call_really_used_regs[i] || call_used_regs[i]);
522 #endif
524 if (fixed_regs[i])
525 SET_HARD_REG_BIT (fixed_reg_set, i);
527 if (call_used_regs[i])
528 SET_HARD_REG_BIT (call_used_reg_set, i);
530 /* There are a couple of fixed registers that we know are safe to
531 exclude from being clobbered by calls:
533 The frame pointer is always preserved across calls. The arg pointer
534 is if it is fixed. The stack pointer usually is, unless
535 RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
536 If we are generating PIC code, the PIC offset table register is
537 preserved across calls, though the target can override that. */
539 if (i == STACK_POINTER_REGNUM)
541 else if (global_regs[i])
543 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
544 SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
546 else if (i == FRAME_POINTER_REGNUM)
548 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
549 else if (i == HARD_FRAME_POINTER_REGNUM)
551 #endif
552 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
553 else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
555 #endif
556 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
557 else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
559 #endif
560 else if (CALL_REALLY_USED_REGNO_P (i))
562 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
563 SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
567 COPY_HARD_REG_SET(call_fixed_reg_set, fixed_reg_set);
569 /* Preserve global registers if called more than once. */
570 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
572 if (global_regs[i])
574 fixed_regs[i] = call_used_regs[i] = 1;
575 SET_HARD_REG_BIT (fixed_reg_set, i);
576 SET_HARD_REG_BIT (call_used_reg_set, i);
577 SET_HARD_REG_BIT (call_fixed_reg_set, i);
581 memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
582 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
583 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
585 HARD_REG_SET ok_regs;
586 CLEAR_HARD_REG_SET (ok_regs);
587 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
588 if (!fixed_regs [j] && HARD_REGNO_MODE_OK (j, (enum machine_mode) m))
589 SET_HARD_REG_BIT (ok_regs, j);
591 for (i = 0; i < N_REG_CLASSES; i++)
592 if (((unsigned) CLASS_MAX_NREGS ((enum reg_class) i,
593 (enum machine_mode) m)
594 <= reg_class_size[i])
595 && hard_reg_set_intersect_p (ok_regs, reg_class_contents[i]))
597 contains_reg_of_mode [i][m] = 1;
598 have_regs_of_mode [m] = 1;
602 /* Reset move_cost and friends, making sure we only free shared
603 table entries once. */
604 for (i = 0; i < MAX_MACHINE_MODE; i++)
605 if (move_cost[i])
607 for (j = 0; j < i && move_cost[i] != move_cost[j]; j++)
609 if (i == j)
611 free (move_cost[i]);
612 free (may_move_in_cost[i]);
613 free (may_move_out_cost[i]);
616 memset (move_cost, 0, sizeof move_cost);
617 memset (may_move_in_cost, 0, sizeof may_move_in_cost);
618 memset (may_move_out_cost, 0, sizeof may_move_out_cost);
619 last_mode_for_init_move_cost = -1;
622 /* Compute the table of register modes.
623 These values are used to record death information for individual registers
624 (as opposed to a multi-register mode).
625 This function might be invoked more than once, if the target has support
626 for changing register usage conventions on a per-function basis.
628 void
629 init_reg_modes_target (void)
631 int i, j;
633 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
634 for (j = 0; j < MAX_MACHINE_MODE; j++)
635 hard_regno_nregs[i][j] = HARD_REGNO_NREGS(i, (enum machine_mode)j);
637 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
639 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
641 /* If we couldn't find a valid mode, just use the previous mode.
642 ??? One situation in which we need to do this is on the mips where
643 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
644 to use DF mode for the even registers and VOIDmode for the odd
645 (for the cpu models where the odd ones are inaccessible). */
646 if (reg_raw_mode[i] == VOIDmode)
647 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
651 /* Finish initializing the register sets and initialize the register modes.
652 This function might be invoked more than once, if the target has support
653 for changing register usage conventions on a per-function basis.
655 void
656 init_regs (void)
658 /* This finishes what was started by init_reg_sets, but couldn't be done
659 until after register usage was specified. */
660 init_reg_sets_1 ();
663 /* The same as previous function plus initializing IRA. */
664 void
665 reinit_regs (void)
667 init_regs ();
668 /* caller_save needs to be re-initialized. */
669 caller_save_initialized_p = false;
670 ira_init ();
673 /* Initialize some fake stack-frame MEM references for use in
674 memory_move_secondary_cost. */
675 void
676 init_fake_stack_mems (void)
678 int i;
680 for (i = 0; i < MAX_MACHINE_MODE; i++)
681 top_of_stack[i] = gen_rtx_MEM ((enum machine_mode) i, stack_pointer_rtx);
684 /* Compute cost of moving registers to/from memory. */
686 memory_move_cost (enum machine_mode mode, enum reg_class rclass, bool in)
688 return targetm.memory_move_cost (mode, rclass, in);
691 /* Compute extra cost of moving registers to/from memory due to reloads.
692 Only needed if secondary reloads are required for memory moves. */
694 memory_move_secondary_cost (enum machine_mode mode, enum reg_class rclass,
695 bool in)
697 enum reg_class altclass;
698 int partial_cost = 0;
699 /* We need a memory reference to feed to SECONDARY... macros. */
700 /* mem may be unused even if the SECONDARY_ macros are defined. */
701 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
703 altclass = secondary_reload_class (in ? 1 : 0, rclass, mode, mem);
705 if (altclass == NO_REGS)
706 return 0;
708 if (in)
709 partial_cost = REGISTER_MOVE_COST (mode, altclass, rclass);
710 else
711 partial_cost = REGISTER_MOVE_COST (mode, rclass, altclass);
713 if (rclass == altclass)
714 /* This isn't simply a copy-to-temporary situation. Can't guess
715 what it is, so TARGET_MEMORY_MOVE_COST really ought not to be
716 calling here in that case.
718 I'm tempted to put in an assert here, but returning this will
719 probably only give poor estimates, which is what we would've
720 had before this code anyways. */
721 return partial_cost;
723 /* Check if the secondary reload register will also need a
724 secondary reload. */
725 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
728 /* Return a machine mode that is legitimate for hard reg REGNO and large
729 enough to save nregs. If we can't find one, return VOIDmode.
730 If CALL_SAVED is true, only consider modes that are call saved. */
731 enum machine_mode
732 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
733 unsigned int nregs, bool call_saved)
735 unsigned int /* enum machine_mode */ m;
736 enum machine_mode found_mode = VOIDmode, mode;
738 /* We first look for the largest integer mode that can be validly
739 held in REGNO. If none, we look for the largest floating-point mode.
740 If we still didn't find a valid mode, try CCmode. */
742 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
743 mode != VOIDmode;
744 mode = GET_MODE_WIDER_MODE (mode))
745 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
746 && HARD_REGNO_MODE_OK (regno, mode)
747 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
748 found_mode = mode;
750 if (found_mode != VOIDmode)
751 return found_mode;
753 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
754 mode != VOIDmode;
755 mode = GET_MODE_WIDER_MODE (mode))
756 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
757 && HARD_REGNO_MODE_OK (regno, mode)
758 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
759 found_mode = mode;
761 if (found_mode != VOIDmode)
762 return found_mode;
764 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
765 mode != VOIDmode;
766 mode = GET_MODE_WIDER_MODE (mode))
767 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
768 && HARD_REGNO_MODE_OK (regno, mode)
769 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
770 found_mode = mode;
772 if (found_mode != VOIDmode)
773 return found_mode;
775 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
776 mode != VOIDmode;
777 mode = GET_MODE_WIDER_MODE (mode))
778 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
779 && HARD_REGNO_MODE_OK (regno, mode)
780 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
781 found_mode = mode;
783 if (found_mode != VOIDmode)
784 return found_mode;
786 /* Iterate over all of the CCmodes. */
787 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
789 mode = (enum machine_mode) m;
790 if ((unsigned) hard_regno_nregs[regno][mode] == nregs
791 && HARD_REGNO_MODE_OK (regno, mode)
792 && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
793 return mode;
796 /* We can't find a mode valid for this register. */
797 return VOIDmode;
800 /* Specify the usage characteristics of the register named NAME.
801 It should be a fixed register if FIXED and a
802 call-used register if CALL_USED. */
803 void
804 fix_register (const char *name, int fixed, int call_used)
806 int i;
808 /* Decode the name and update the primary form of
809 the register info. */
811 if ((i = decode_reg_name (name)) >= 0)
813 if ((i == STACK_POINTER_REGNUM
814 #ifdef HARD_FRAME_POINTER_REGNUM
815 || i == HARD_FRAME_POINTER_REGNUM
816 #else
817 || i == FRAME_POINTER_REGNUM
818 #endif
820 && (fixed == 0 || call_used == 0))
822 static const char * const what_option[2][2] = {
823 { "call-saved", "call-used" },
824 { "no-such-option", "fixed" }};
826 error ("can't use '%s' as a %s register", name,
827 what_option[fixed][call_used]);
829 else
831 fixed_regs[i] = fixed;
832 call_used_regs[i] = call_used;
833 #ifdef CALL_REALLY_USED_REGISTERS
834 if (fixed == 0)
835 call_really_used_regs[i] = call_used;
836 #endif
839 else
841 warning (0, "unknown register name: %s", name);
845 /* Mark register number I as global. */
846 void
847 globalize_reg (int i)
849 if (fixed_regs[i] == 0 && no_global_reg_vars)
850 error ("global register variable follows a function definition");
852 if (global_regs[i])
854 warning (0, "register used for two global register variables");
855 return;
858 if (call_used_regs[i] && ! fixed_regs[i])
859 warning (0, "call-clobbered register used for global register variable");
861 global_regs[i] = 1;
863 /* If we're globalizing the frame pointer, we need to set the
864 appropriate regs_invalidated_by_call bit, even if it's already
865 set in fixed_regs. */
866 if (i != STACK_POINTER_REGNUM)
868 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
869 SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
872 /* If already fixed, nothing else to do. */
873 if (fixed_regs[i])
874 return;
876 fixed_regs[i] = call_used_regs[i] = 1;
877 #ifdef CALL_REALLY_USED_REGISTERS
878 call_really_used_regs[i] = 1;
879 #endif
881 SET_HARD_REG_BIT (fixed_reg_set, i);
882 SET_HARD_REG_BIT (call_used_reg_set, i);
883 SET_HARD_REG_BIT (call_fixed_reg_set, i);
885 reinit_regs ();
889 /* Structure used to record preferences of given pseudo. */
890 struct reg_pref
892 /* (enum reg_class) prefclass is the preferred class. May be
893 NO_REGS if no class is better than memory. */
894 char prefclass;
896 /* altclass is a register class that we should use for allocating
897 pseudo if no register in the preferred class is available.
898 If no register in this class is available, memory is preferred.
900 It might appear to be more general to have a bitmask of classes here,
901 but since it is recommended that there be a class corresponding to the
902 union of most major pair of classes, that generality is not required. */
903 char altclass;
905 /* coverclass is a register class that IRA uses for allocating
906 the pseudo. */
907 char coverclass;
910 /* Record preferences of each pseudo. This is available after RA is
911 run. */
912 static struct reg_pref *reg_pref;
914 /* Current size of reg_info. */
915 static int reg_info_size;
917 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
918 This function is sometimes called before the info has been computed.
919 When that happens, just return GENERAL_REGS, which is innocuous. */
920 enum reg_class
921 reg_preferred_class (int regno)
923 if (reg_pref == 0)
924 return GENERAL_REGS;
926 return (enum reg_class) reg_pref[regno].prefclass;
929 enum reg_class
930 reg_alternate_class (int regno)
932 if (reg_pref == 0)
933 return ALL_REGS;
935 return (enum reg_class) reg_pref[regno].altclass;
938 /* Return the reg_class which is used by IRA for its allocation. */
939 enum reg_class
940 reg_cover_class (int regno)
942 if (reg_pref == 0)
943 return NO_REGS;
945 return (enum reg_class) reg_pref[regno].coverclass;
950 /* Allocate space for reg info. */
951 static void
952 allocate_reg_info (void)
954 reg_info_size = max_reg_num ();
955 gcc_assert (! reg_pref && ! reg_renumber);
956 reg_renumber = XNEWVEC (short, reg_info_size);
957 reg_pref = XCNEWVEC (struct reg_pref, reg_info_size);
958 memset (reg_renumber, -1, reg_info_size * sizeof (short));
962 /* Resize reg info. The new elements will be uninitialized. Return
963 TRUE if new elements (for new pseudos) were added. */
964 bool
965 resize_reg_info (void)
967 int old;
969 if (reg_pref == NULL)
971 allocate_reg_info ();
972 return true;
974 if (reg_info_size == max_reg_num ())
975 return false;
976 old = reg_info_size;
977 reg_info_size = max_reg_num ();
978 gcc_assert (reg_pref && reg_renumber);
979 reg_renumber = XRESIZEVEC (short, reg_renumber, reg_info_size);
980 reg_pref = XRESIZEVEC (struct reg_pref, reg_pref, reg_info_size);
981 memset (reg_pref + old, -1,
982 (reg_info_size - old) * sizeof (struct reg_pref));
983 memset (reg_renumber + old, -1, (reg_info_size - old) * sizeof (short));
984 return true;
988 /* Free up the space allocated by allocate_reg_info. */
989 void
990 free_reg_info (void)
992 if (reg_pref)
994 free (reg_pref);
995 reg_pref = NULL;
998 if (reg_renumber)
1000 free (reg_renumber);
1001 reg_renumber = NULL;
1005 /* Initialize some global data for this pass. */
1006 static unsigned int
1007 reginfo_init (void)
1009 if (df)
1010 df_compute_regs_ever_live (true);
1012 /* This prevents dump_flow_info from losing if called
1013 before reginfo is run. */
1014 reg_pref = NULL;
1015 /* No more global register variables may be declared. */
1016 no_global_reg_vars = 1;
1017 return 1;
1020 struct rtl_opt_pass pass_reginfo_init =
1023 RTL_PASS,
1024 "reginfo", /* name */
1025 NULL, /* gate */
1026 reginfo_init, /* execute */
1027 NULL, /* sub */
1028 NULL, /* next */
1029 0, /* static_pass_number */
1030 TV_NONE, /* tv_id */
1031 0, /* properties_required */
1032 0, /* properties_provided */
1033 0, /* properties_destroyed */
1034 0, /* todo_flags_start */
1035 0 /* todo_flags_finish */
1041 /* Set up preferred, alternate, and cover classes for REGNO as
1042 PREFCLASS, ALTCLASS, and COVERCLASS. */
1043 void
1044 setup_reg_classes (int regno,
1045 enum reg_class prefclass, enum reg_class altclass,
1046 enum reg_class coverclass)
1048 if (reg_pref == NULL)
1049 return;
1050 gcc_assert (reg_info_size == max_reg_num ());
1051 reg_pref[regno].prefclass = prefclass;
1052 reg_pref[regno].altclass = altclass;
1053 reg_pref[regno].coverclass = coverclass;
1057 /* This is the `regscan' pass of the compiler, run just before cse and
1058 again just before loop. It finds the first and last use of each
1059 pseudo-register. */
1061 static void reg_scan_mark_refs (rtx, rtx);
1063 void
1064 reg_scan (rtx f, unsigned int nregs ATTRIBUTE_UNUSED)
1066 rtx insn;
1068 timevar_push (TV_REG_SCAN);
1070 for (insn = f; insn; insn = NEXT_INSN (insn))
1071 if (INSN_P (insn))
1073 reg_scan_mark_refs (PATTERN (insn), insn);
1074 if (REG_NOTES (insn))
1075 reg_scan_mark_refs (REG_NOTES (insn), insn);
1078 timevar_pop (TV_REG_SCAN);
1082 /* X is the expression to scan. INSN is the insn it appears in.
1083 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
1084 We should only record information for REGs with numbers
1085 greater than or equal to MIN_REGNO. */
1086 static void
1087 reg_scan_mark_refs (rtx x, rtx insn)
1089 enum rtx_code code;
1090 rtx dest;
1091 rtx note;
1093 if (!x)
1094 return;
1095 code = GET_CODE (x);
1096 switch (code)
1098 case CONST:
1099 case CONST_INT:
1100 case CONST_DOUBLE:
1101 case CONST_FIXED:
1102 case CONST_VECTOR:
1103 case CC0:
1104 case PC:
1105 case SYMBOL_REF:
1106 case LABEL_REF:
1107 case ADDR_VEC:
1108 case ADDR_DIFF_VEC:
1109 case REG:
1110 return;
1112 case EXPR_LIST:
1113 if (XEXP (x, 0))
1114 reg_scan_mark_refs (XEXP (x, 0), insn);
1115 if (XEXP (x, 1))
1116 reg_scan_mark_refs (XEXP (x, 1), insn);
1117 break;
1119 case INSN_LIST:
1120 if (XEXP (x, 1))
1121 reg_scan_mark_refs (XEXP (x, 1), insn);
1122 break;
1124 case CLOBBER:
1125 if (MEM_P (XEXP (x, 0)))
1126 reg_scan_mark_refs (XEXP (XEXP (x, 0), 0), insn);
1127 break;
1129 case SET:
1130 /* Count a set of the destination if it is a register. */
1131 for (dest = SET_DEST (x);
1132 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
1133 || GET_CODE (dest) == ZERO_EXTEND;
1134 dest = XEXP (dest, 0))
1137 /* If this is setting a pseudo from another pseudo or the sum of a
1138 pseudo and a constant integer and the other pseudo is known to be
1139 a pointer, set the destination to be a pointer as well.
1141 Likewise if it is setting the destination from an address or from a
1142 value equivalent to an address or to the sum of an address and
1143 something else.
1145 But don't do any of this if the pseudo corresponds to a user
1146 variable since it should have already been set as a pointer based
1147 on the type. */
1149 if (REG_P (SET_DEST (x))
1150 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
1151 /* If the destination pseudo is set more than once, then other
1152 sets might not be to a pointer value (consider access to a
1153 union in two threads of control in the presence of global
1154 optimizations). So only set REG_POINTER on the destination
1155 pseudo if this is the only set of that pseudo. */
1156 && DF_REG_DEF_COUNT (REGNO (SET_DEST (x))) == 1
1157 && ! REG_USERVAR_P (SET_DEST (x))
1158 && ! REG_POINTER (SET_DEST (x))
1159 && ((REG_P (SET_SRC (x))
1160 && REG_POINTER (SET_SRC (x)))
1161 || ((GET_CODE (SET_SRC (x)) == PLUS
1162 || GET_CODE (SET_SRC (x)) == LO_SUM)
1163 && CONST_INT_P (XEXP (SET_SRC (x), 1))
1164 && REG_P (XEXP (SET_SRC (x), 0))
1165 && REG_POINTER (XEXP (SET_SRC (x), 0)))
1166 || GET_CODE (SET_SRC (x)) == CONST
1167 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
1168 || GET_CODE (SET_SRC (x)) == LABEL_REF
1169 || (GET_CODE (SET_SRC (x)) == HIGH
1170 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
1171 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
1172 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
1173 || ((GET_CODE (SET_SRC (x)) == PLUS
1174 || GET_CODE (SET_SRC (x)) == LO_SUM)
1175 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
1176 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
1177 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
1178 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
1179 && (GET_CODE (XEXP (note, 0)) == CONST
1180 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
1181 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
1182 REG_POINTER (SET_DEST (x)) = 1;
1184 /* If this is setting a register from a register or from a simple
1185 conversion of a register, propagate REG_EXPR. */
1186 if (REG_P (dest) && !REG_ATTRS (dest))
1188 rtx src = SET_SRC (x);
1190 while (GET_CODE (src) == SIGN_EXTEND
1191 || GET_CODE (src) == ZERO_EXTEND
1192 || GET_CODE (src) == TRUNCATE
1193 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
1194 src = XEXP (src, 0);
1196 set_reg_attrs_from_value (dest, src);
1199 /* ... fall through ... */
1201 default:
1203 const char *fmt = GET_RTX_FORMAT (code);
1204 int i;
1205 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1207 if (fmt[i] == 'e')
1208 reg_scan_mark_refs (XEXP (x, i), insn);
1209 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
1211 int j;
1212 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1213 reg_scan_mark_refs (XVECEXP (x, i, j), insn);
1221 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
1222 is also in C2. */
1224 reg_class_subset_p (enum reg_class c1, enum reg_class c2)
1226 return (c1 == c2
1227 || c2 == ALL_REGS
1228 || hard_reg_set_subset_p (reg_class_contents[(int) c1],
1229 reg_class_contents[(int) c2]));
1232 /* Return nonzero if there is a register that is in both C1 and C2. */
1234 reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
1236 return (c1 == c2
1237 || c1 == ALL_REGS
1238 || c2 == ALL_REGS
1239 || hard_reg_set_intersect_p (reg_class_contents[(int) c1],
1240 reg_class_contents[(int) c2]));
1245 /* Passes for keeping and updating info about modes of registers
1246 inside subregisters. */
1248 #ifdef CANNOT_CHANGE_MODE_CLASS
1250 struct subregs_of_mode_node
1252 unsigned int block;
1253 unsigned char modes[MAX_MACHINE_MODE];
1256 static htab_t subregs_of_mode;
1258 static hashval_t
1259 som_hash (const void *x)
1261 const struct subregs_of_mode_node *const a =
1262 (const struct subregs_of_mode_node *) x;
1263 return a->block;
1266 static int
1267 som_eq (const void *x, const void *y)
1269 const struct subregs_of_mode_node *const a =
1270 (const struct subregs_of_mode_node *) x;
1271 const struct subregs_of_mode_node *const b =
1272 (const struct subregs_of_mode_node *) y;
1273 return a->block == b->block;
1276 static void
1277 record_subregs_of_mode (rtx subreg)
1279 struct subregs_of_mode_node dummy, *node;
1280 enum machine_mode mode;
1281 unsigned int regno;
1282 void **slot;
1284 if (!REG_P (SUBREG_REG (subreg)))
1285 return;
1287 regno = REGNO (SUBREG_REG (subreg));
1288 mode = GET_MODE (subreg);
1290 if (regno < FIRST_PSEUDO_REGISTER)
1291 return;
1293 dummy.block = regno & -8;
1294 slot = htab_find_slot_with_hash (subregs_of_mode, &dummy,
1295 dummy.block, INSERT);
1296 node = (struct subregs_of_mode_node *) *slot;
1297 if (node == NULL)
1299 node = XCNEW (struct subregs_of_mode_node);
1300 node->block = regno & -8;
1301 *slot = node;
1304 node->modes[mode] |= 1 << (regno & 7);
1307 /* Call record_subregs_of_mode for all the subregs in X. */
1308 static void
1309 find_subregs_of_mode (rtx x)
1311 enum rtx_code code = GET_CODE (x);
1312 const char * const fmt = GET_RTX_FORMAT (code);
1313 int i;
1315 if (code == SUBREG)
1316 record_subregs_of_mode (x);
1318 /* Time for some deep diving. */
1319 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1321 if (fmt[i] == 'e')
1322 find_subregs_of_mode (XEXP (x, i));
1323 else if (fmt[i] == 'E')
1325 int j;
1326 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1327 find_subregs_of_mode (XVECEXP (x, i, j));
1332 void
1333 init_subregs_of_mode (void)
1335 basic_block bb;
1336 rtx insn;
1338 if (subregs_of_mode)
1339 htab_empty (subregs_of_mode);
1340 else
1341 subregs_of_mode = htab_create (100, som_hash, som_eq, free);
1343 FOR_EACH_BB (bb)
1344 FOR_BB_INSNS (bb, insn)
1345 if (INSN_P (insn))
1346 find_subregs_of_mode (PATTERN (insn));
1349 /* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
1350 mode. */
1351 bool
1352 invalid_mode_change_p (unsigned int regno,
1353 enum reg_class rclass ATTRIBUTE_UNUSED,
1354 enum machine_mode from)
1356 struct subregs_of_mode_node dummy, *node;
1357 unsigned int to;
1358 unsigned char mask;
1360 gcc_assert (subregs_of_mode);
1361 dummy.block = regno & -8;
1362 node = (struct subregs_of_mode_node *)
1363 htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
1364 if (node == NULL)
1365 return false;
1367 mask = 1 << (regno & 7);
1368 for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
1369 if (node->modes[to] & mask)
1370 if (CANNOT_CHANGE_MODE_CLASS (from, (enum machine_mode) to, rclass))
1371 return true;
1373 return false;
1376 void
1377 finish_subregs_of_mode (void)
1379 htab_delete (subregs_of_mode);
1380 subregs_of_mode = 0;
1382 #else
1383 void
1384 init_subregs_of_mode (void)
1387 void
1388 finish_subregs_of_mode (void)
1392 #endif /* CANNOT_CHANGE_MODE_CLASS */
1394 #include "gt-reginfo.h"