1 /* Inline functions for tree-flow.h
2 Copyright (C) 2001, 2003, 2005, 2006, 2007, 2008, 2010
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #ifndef _TREE_FLOW_INLINE_H
23 #define _TREE_FLOW_INLINE_H 1
25 /* Inline functions for manipulating various data structures defined in
26 tree-flow.h. See tree-flow.h for documentation. */
28 /* Return true when gimple SSA form was built.
29 gimple_in_ssa_p is queried by gimplifier in various early stages before SSA
30 infrastructure is initialized. Check for presence of the datastructures
33 gimple_in_ssa_p (const struct function
*fun
)
35 return fun
&& fun
->gimple_df
&& fun
->gimple_df
->in_ssa_p
;
38 /* Array of all variables referenced in the function. */
40 gimple_referenced_vars (const struct function
*fun
)
44 return fun
->gimple_df
->referenced_vars
;
47 /* Artificial variable used for the virtual operand FUD chain. */
49 gimple_vop (const struct function
*fun
)
51 gcc_checking_assert (fun
&& fun
->gimple_df
);
52 return fun
->gimple_df
->vop
;
55 /* Initialize the hashtable iterator HTI to point to hashtable TABLE */
58 first_htab_element (htab_iterator
*hti
, htab_t table
)
61 hti
->slot
= table
->entries
;
62 hti
->limit
= hti
->slot
+ htab_size (table
);
66 if (x
!= HTAB_EMPTY_ENTRY
&& x
!= HTAB_DELETED_ENTRY
)
68 } while (++(hti
->slot
) < hti
->limit
);
70 if (hti
->slot
< hti
->limit
)
75 /* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
76 or NULL if we have reached the end. */
79 end_htab_p (const htab_iterator
*hti
)
81 if (hti
->slot
>= hti
->limit
)
86 /* Advance the hashtable iterator pointed to by HTI to the next element of the
90 next_htab_element (htab_iterator
*hti
)
92 while (++(hti
->slot
) < hti
->limit
)
95 if (x
!= HTAB_EMPTY_ENTRY
&& x
!= HTAB_DELETED_ENTRY
)
101 /* Get the variable with uid UID from the list of referenced vars. */
104 referenced_var (unsigned int uid
)
106 tree var
= referenced_var_lookup (cfun
, uid
);
107 gcc_assert (var
|| uid
== 0);
111 /* Initialize ITER to point to the first referenced variable in the
112 referenced_vars hashtable, and return that variable. */
115 first_referenced_var (struct function
*fn
, referenced_var_iterator
*iter
)
117 return (tree
) first_htab_element (&iter
->hti
,
118 gimple_referenced_vars (fn
));
121 /* Return true if we have hit the end of the referenced variables ITER is
122 iterating through. */
125 end_referenced_vars_p (const referenced_var_iterator
*iter
)
127 return end_htab_p (&iter
->hti
);
130 /* Make ITER point to the next referenced_var in the referenced_var hashtable,
131 and return that variable. */
134 next_referenced_var (referenced_var_iterator
*iter
)
136 return (tree
) next_htab_element (&iter
->hti
);
139 /* Return the variable annotation for T, which must be a _DECL node.
140 Return NULL if the variable annotation doesn't already exist. */
141 static inline var_ann_t
142 var_ann (const_tree t
)
144 const var_ann_t
*p
= DECL_VAR_ANN_PTR (t
);
145 return p
? *p
: NULL
;
148 /* Get the number of the next statement uid to be allocated. */
149 static inline unsigned int
150 gimple_stmt_max_uid (struct function
*fn
)
152 return fn
->last_stmt_uid
;
155 /* Set the number of the next statement uid to be allocated. */
157 set_gimple_stmt_max_uid (struct function
*fn
, unsigned int maxid
)
159 fn
->last_stmt_uid
= maxid
;
162 /* Set the number of the next statement uid to be allocated. */
163 static inline unsigned int
164 inc_gimple_stmt_max_uid (struct function
*fn
)
166 return fn
->last_stmt_uid
++;
169 /* Return the line number for EXPR, or return -1 if we have no line
170 number information for it. */
172 get_lineno (const_gimple stmt
)
179 loc
= gimple_location (stmt
);
180 if (loc
== UNKNOWN_LOCATION
)
183 return LOCATION_LINE (loc
);
186 /* Delink an immediate_uses node from its chain. */
188 delink_imm_use (ssa_use_operand_t
*linknode
)
190 /* Return if this node is not in a list. */
191 if (linknode
->prev
== NULL
)
194 linknode
->prev
->next
= linknode
->next
;
195 linknode
->next
->prev
= linknode
->prev
;
196 linknode
->prev
= NULL
;
197 linknode
->next
= NULL
;
200 /* Link ssa_imm_use node LINKNODE into the chain for LIST. */
202 link_imm_use_to_list (ssa_use_operand_t
*linknode
, ssa_use_operand_t
*list
)
204 /* Link the new node at the head of the list. If we are in the process of
205 traversing the list, we won't visit any new nodes added to it. */
206 linknode
->prev
= list
;
207 linknode
->next
= list
->next
;
208 list
->next
->prev
= linknode
;
209 list
->next
= linknode
;
212 /* Link ssa_imm_use node LINKNODE into the chain for DEF. */
214 link_imm_use (ssa_use_operand_t
*linknode
, tree def
)
216 ssa_use_operand_t
*root
;
218 if (!def
|| TREE_CODE (def
) != SSA_NAME
)
219 linknode
->prev
= NULL
;
222 root
= &(SSA_NAME_IMM_USE_NODE (def
));
224 gcc_checking_assert (*(linknode
->use
) == def
);
225 link_imm_use_to_list (linknode
, root
);
229 /* Set the value of a use pointed to by USE to VAL. */
231 set_ssa_use_from_ptr (use_operand_p use
, tree val
)
233 delink_imm_use (use
);
235 link_imm_use (use
, val
);
238 /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
241 link_imm_use_stmt (ssa_use_operand_t
*linknode
, tree def
, gimple stmt
)
244 link_imm_use (linknode
, def
);
246 link_imm_use (linknode
, NULL
);
247 linknode
->loc
.stmt
= stmt
;
250 /* Relink a new node in place of an old node in the list. */
252 relink_imm_use (ssa_use_operand_t
*node
, ssa_use_operand_t
*old
)
254 /* The node one had better be in the same list. */
255 gcc_checking_assert (*(old
->use
) == *(node
->use
));
256 node
->prev
= old
->prev
;
257 node
->next
= old
->next
;
260 old
->prev
->next
= node
;
261 old
->next
->prev
= node
;
262 /* Remove the old node from the list. */
267 /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
270 relink_imm_use_stmt (ssa_use_operand_t
*linknode
, ssa_use_operand_t
*old
,
274 relink_imm_use (linknode
, old
);
276 link_imm_use (linknode
, NULL
);
277 linknode
->loc
.stmt
= stmt
;
281 /* Return true is IMM has reached the end of the immediate use list. */
283 end_readonly_imm_use_p (const imm_use_iterator
*imm
)
285 return (imm
->imm_use
== imm
->end_p
);
288 /* Initialize iterator IMM to process the list for VAR. */
289 static inline use_operand_p
290 first_readonly_imm_use (imm_use_iterator
*imm
, tree var
)
292 imm
->end_p
= &(SSA_NAME_IMM_USE_NODE (var
));
293 imm
->imm_use
= imm
->end_p
->next
;
294 #ifdef ENABLE_CHECKING
295 imm
->iter_node
.next
= imm
->imm_use
->next
;
297 if (end_readonly_imm_use_p (imm
))
298 return NULL_USE_OPERAND_P
;
302 /* Bump IMM to the next use in the list. */
303 static inline use_operand_p
304 next_readonly_imm_use (imm_use_iterator
*imm
)
306 use_operand_p old
= imm
->imm_use
;
308 #ifdef ENABLE_CHECKING
309 /* If this assertion fails, it indicates the 'next' pointer has changed
310 since the last bump. This indicates that the list is being modified
311 via stmt changes, or SET_USE, or somesuch thing, and you need to be
312 using the SAFE version of the iterator. */
313 gcc_assert (imm
->iter_node
.next
== old
->next
);
314 imm
->iter_node
.next
= old
->next
->next
;
317 imm
->imm_use
= old
->next
;
318 if (end_readonly_imm_use_p (imm
))
319 return NULL_USE_OPERAND_P
;
324 extern bool has_zero_uses_1 (const ssa_use_operand_t
*head
);
325 extern bool single_imm_use_1 (const ssa_use_operand_t
*head
,
326 use_operand_p
*use_p
, gimple
*stmt
);
328 /* Return true if VAR has no nondebug uses. */
330 has_zero_uses (const_tree var
)
332 const ssa_use_operand_t
*const ptr
= &(SSA_NAME_IMM_USE_NODE (var
));
334 /* A single use_operand means there is no items in the list. */
335 if (ptr
== ptr
->next
)
338 /* If there are debug stmts, we have to look at each use and see
339 whether there are any nondebug uses. */
340 if (!MAY_HAVE_DEBUG_STMTS
)
343 return has_zero_uses_1 (ptr
);
346 /* Return true if VAR has a single nondebug use. */
348 has_single_use (const_tree var
)
350 const ssa_use_operand_t
*const ptr
= &(SSA_NAME_IMM_USE_NODE (var
));
352 /* If there aren't any uses whatsoever, we're done. */
353 if (ptr
== ptr
->next
)
356 /* If there's a single use, check that it's not a debug stmt. */
357 if (ptr
== ptr
->next
->next
)
358 return !is_gimple_debug (USE_STMT (ptr
->next
));
360 /* If there are debug stmts, we have to look at each of them. */
361 if (!MAY_HAVE_DEBUG_STMTS
)
364 return single_imm_use_1 (ptr
, NULL
, NULL
);
368 /* If VAR has only a single immediate nondebug use, return true, and
369 set USE_P and STMT to the use pointer and stmt of occurrence. */
371 single_imm_use (const_tree var
, use_operand_p
*use_p
, gimple
*stmt
)
373 const ssa_use_operand_t
*const ptr
= &(SSA_NAME_IMM_USE_NODE (var
));
375 /* If there aren't any uses whatsoever, we're done. */
376 if (ptr
== ptr
->next
)
379 *use_p
= NULL_USE_OPERAND_P
;
384 /* If there's a single use, check that it's not a debug stmt. */
385 if (ptr
== ptr
->next
->next
)
387 if (!is_gimple_debug (USE_STMT (ptr
->next
)))
390 *stmt
= ptr
->next
->loc
.stmt
;
397 /* If there are debug stmts, we have to look at each of them. */
398 if (!MAY_HAVE_DEBUG_STMTS
)
401 return single_imm_use_1 (ptr
, use_p
, stmt
);
404 /* Return the number of nondebug immediate uses of VAR. */
405 static inline unsigned int
406 num_imm_uses (const_tree var
)
408 const ssa_use_operand_t
*const start
= &(SSA_NAME_IMM_USE_NODE (var
));
409 const ssa_use_operand_t
*ptr
;
410 unsigned int num
= 0;
412 if (!MAY_HAVE_DEBUG_STMTS
)
413 for (ptr
= start
->next
; ptr
!= start
; ptr
= ptr
->next
)
416 for (ptr
= start
->next
; ptr
!= start
; ptr
= ptr
->next
)
417 if (!is_gimple_debug (USE_STMT (ptr
)))
423 /* Return the tree pointed-to by USE. */
425 get_use_from_ptr (use_operand_p use
)
430 /* Return the tree pointed-to by DEF. */
432 get_def_from_ptr (def_operand_p def
)
437 /* Return a use_operand_p pointer for argument I of PHI node GS. */
439 static inline use_operand_p
440 gimple_phi_arg_imm_use_ptr (gimple gs
, int i
)
442 return &gimple_phi_arg (gs
, i
)->imm_use
;
445 /* Return the tree operand for argument I of PHI node GS. */
448 gimple_phi_arg_def (gimple gs
, size_t index
)
450 struct phi_arg_d
*pd
= gimple_phi_arg (gs
, index
);
451 return get_use_from_ptr (&pd
->imm_use
);
454 /* Return a pointer to the tree operand for argument I of PHI node GS. */
457 gimple_phi_arg_def_ptr (gimple gs
, size_t index
)
459 return &gimple_phi_arg (gs
, index
)->def
;
462 /* Return the edge associated with argument I of phi node GS. */
465 gimple_phi_arg_edge (gimple gs
, size_t i
)
467 return EDGE_PRED (gimple_bb (gs
), i
);
470 /* Return the source location of gimple argument I of phi node GS. */
472 static inline source_location
473 gimple_phi_arg_location (gimple gs
, size_t i
)
475 return gimple_phi_arg (gs
, i
)->locus
;
478 /* Return the source location of the argument on edge E of phi node GS. */
480 static inline source_location
481 gimple_phi_arg_location_from_edge (gimple gs
, edge e
)
483 return gimple_phi_arg (gs
, e
->dest_idx
)->locus
;
486 /* Set the source location of gimple argument I of phi node GS to LOC. */
489 gimple_phi_arg_set_location (gimple gs
, size_t i
, source_location loc
)
491 gimple_phi_arg (gs
, i
)->locus
= loc
;
494 /* Return TRUE if argument I of phi node GS has a location record. */
497 gimple_phi_arg_has_location (gimple gs
, size_t i
)
499 return gimple_phi_arg_location (gs
, i
) != UNKNOWN_LOCATION
;
503 /* Return the PHI nodes for basic block BB, or NULL if there are no
505 static inline gimple_seq
506 phi_nodes (const_basic_block bb
)
508 gcc_checking_assert (!(bb
->flags
& BB_RTL
));
511 return bb
->il
.gimple
->phi_nodes
;
514 /* Set PHI nodes of a basic block BB to SEQ. */
517 set_phi_nodes (basic_block bb
, gimple_seq seq
)
519 gimple_stmt_iterator i
;
521 gcc_checking_assert (!(bb
->flags
& BB_RTL
));
522 bb
->il
.gimple
->phi_nodes
= seq
;
524 for (i
= gsi_start (seq
); !gsi_end_p (i
); gsi_next (&i
))
525 gimple_set_bb (gsi_stmt (i
), bb
);
528 /* Return the phi argument which contains the specified use. */
531 phi_arg_index_from_use (use_operand_p use
)
533 struct phi_arg_d
*element
, *root
;
537 /* Since the use is the first thing in a PHI argument element, we can
538 calculate its index based on casting it to an argument, and performing
539 pointer arithmetic. */
541 phi
= USE_STMT (use
);
543 element
= (struct phi_arg_d
*)use
;
544 root
= gimple_phi_arg (phi
, 0);
545 index
= element
- root
;
547 /* Make sure the calculation doesn't have any leftover bytes. If it does,
548 then imm_use is likely not the first element in phi_arg_d. */
549 gcc_checking_assert ((((char *)element
- (char *)root
)
550 % sizeof (struct phi_arg_d
)) == 0
551 && index
< gimple_phi_capacity (phi
));
556 /* Mark VAR as used, so that it'll be preserved during rtl expansion. */
559 set_is_used (tree var
)
561 var_ann_t ann
= var_ann (var
);
565 /* Clear VAR's used flag. */
568 clear_is_used (tree var
)
570 var_ann_t ann
= var_ann (var
);
574 /* Return true if VAR is marked as used. */
579 var_ann_t ann
= var_ann (var
);
583 /* Return true if T (assumed to be a DECL) is a global variable.
584 A variable is considered global if its storage is not automatic. */
587 is_global_var (const_tree t
)
589 return (TREE_STATIC (t
) || DECL_EXTERNAL (t
));
593 /* Return true if VAR may be aliased. A variable is considered as
594 maybe aliased if it has its address taken by the local TU
595 or possibly by another TU and might be modified through a pointer. */
598 may_be_aliased (const_tree var
)
600 return (TREE_CODE (var
) != CONST_DECL
601 && !((TREE_STATIC (var
) || TREE_PUBLIC (var
) || DECL_EXTERNAL (var
))
602 && TREE_READONLY (var
)
603 && !TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (var
)))
604 && (TREE_PUBLIC (var
)
605 || DECL_EXTERNAL (var
)
606 || TREE_ADDRESSABLE (var
)));
610 /* PHI nodes should contain only ssa_names and invariants. A test
611 for ssa_name is definitely simpler; don't let invalid contents
612 slip in in the meantime. */
615 phi_ssa_name_p (const_tree t
)
617 if (TREE_CODE (t
) == SSA_NAME
)
619 gcc_checking_assert (is_gimple_min_invariant (t
));
624 /* Returns the loop of the statement STMT. */
626 static inline struct loop
*
627 loop_containing_stmt (gimple stmt
)
629 basic_block bb
= gimple_bb (stmt
);
633 return bb
->loop_father
;
637 /* ----------------------------------------------------------------------- */
639 /* The following set of routines are used to iterator over various type of
642 /* Return true if PTR is finished iterating. */
644 op_iter_done (const ssa_op_iter
*ptr
)
649 /* Get the next iterator use value for PTR. */
650 static inline use_operand_p
651 op_iter_next_use (ssa_op_iter
*ptr
)
654 gcc_checking_assert (ptr
->iter_type
== ssa_op_iter_use
);
657 use_p
= USE_OP_PTR (ptr
->uses
);
658 ptr
->uses
= ptr
->uses
->next
;
661 if (ptr
->phi_i
< ptr
->num_phi
)
663 return PHI_ARG_DEF_PTR (ptr
->phi_stmt
, (ptr
->phi_i
)++);
666 return NULL_USE_OPERAND_P
;
669 /* Get the next iterator def value for PTR. */
670 static inline def_operand_p
671 op_iter_next_def (ssa_op_iter
*ptr
)
674 gcc_checking_assert (ptr
->iter_type
== ssa_op_iter_def
);
677 def_p
= DEF_OP_PTR (ptr
->defs
);
678 ptr
->defs
= ptr
->defs
->next
;
682 return NULL_DEF_OPERAND_P
;
685 /* Get the next iterator tree value for PTR. */
687 op_iter_next_tree (ssa_op_iter
*ptr
)
690 gcc_checking_assert (ptr
->iter_type
== ssa_op_iter_tree
);
693 val
= USE_OP (ptr
->uses
);
694 ptr
->uses
= ptr
->uses
->next
;
699 val
= DEF_OP (ptr
->defs
);
700 ptr
->defs
= ptr
->defs
->next
;
710 /* This functions clears the iterator PTR, and marks it done. This is normally
711 used to prevent warnings in the compile about might be uninitialized
715 clear_and_done_ssa_iter (ssa_op_iter
*ptr
)
719 ptr
->iter_type
= ssa_op_iter_none
;
722 ptr
->phi_stmt
= NULL
;
726 /* Initialize the iterator PTR to the virtual defs in STMT. */
728 op_iter_init (ssa_op_iter
*ptr
, gimple stmt
, int flags
)
730 /* PHI nodes require a different iterator initialization path. We
731 do not support iterating over virtual defs or uses without
732 iterating over defs or uses at the same time. */
733 gcc_checking_assert (gimple_code (stmt
) != GIMPLE_PHI
734 && (!(flags
& SSA_OP_VDEF
) || (flags
& SSA_OP_DEF
))
735 && (!(flags
& SSA_OP_VUSE
) || (flags
& SSA_OP_USE
)));
736 ptr
->defs
= (flags
& (SSA_OP_DEF
|SSA_OP_VDEF
)) ? gimple_def_ops (stmt
) : NULL
;
737 if (!(flags
& SSA_OP_VDEF
)
739 && gimple_vdef (stmt
) != NULL_TREE
)
740 ptr
->defs
= ptr
->defs
->next
;
741 ptr
->uses
= (flags
& (SSA_OP_USE
|SSA_OP_VUSE
)) ? gimple_use_ops (stmt
) : NULL
;
742 if (!(flags
& SSA_OP_VUSE
)
744 && gimple_vuse (stmt
) != NULL_TREE
)
745 ptr
->uses
= ptr
->uses
->next
;
750 ptr
->phi_stmt
= NULL
;
753 /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
755 static inline use_operand_p
756 op_iter_init_use (ssa_op_iter
*ptr
, gimple stmt
, int flags
)
758 gcc_checking_assert ((flags
& SSA_OP_ALL_DEFS
) == 0
759 && (flags
& SSA_OP_USE
));
760 op_iter_init (ptr
, stmt
, flags
);
761 ptr
->iter_type
= ssa_op_iter_use
;
762 return op_iter_next_use (ptr
);
765 /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
767 static inline def_operand_p
768 op_iter_init_def (ssa_op_iter
*ptr
, gimple stmt
, int flags
)
770 gcc_checking_assert ((flags
& SSA_OP_ALL_USES
) == 0
771 && (flags
& SSA_OP_DEF
));
772 op_iter_init (ptr
, stmt
, flags
);
773 ptr
->iter_type
= ssa_op_iter_def
;
774 return op_iter_next_def (ptr
);
777 /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
778 the first operand as a tree. */
780 op_iter_init_tree (ssa_op_iter
*ptr
, gimple stmt
, int flags
)
782 op_iter_init (ptr
, stmt
, flags
);
783 ptr
->iter_type
= ssa_op_iter_tree
;
784 return op_iter_next_tree (ptr
);
788 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
791 single_ssa_tree_operand (gimple stmt
, int flags
)
796 var
= op_iter_init_tree (&iter
, stmt
, flags
);
797 if (op_iter_done (&iter
))
799 op_iter_next_tree (&iter
);
800 if (op_iter_done (&iter
))
806 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
808 static inline use_operand_p
809 single_ssa_use_operand (gimple stmt
, int flags
)
814 var
= op_iter_init_use (&iter
, stmt
, flags
);
815 if (op_iter_done (&iter
))
816 return NULL_USE_OPERAND_P
;
817 op_iter_next_use (&iter
);
818 if (op_iter_done (&iter
))
820 return NULL_USE_OPERAND_P
;
825 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
827 static inline def_operand_p
828 single_ssa_def_operand (gimple stmt
, int flags
)
833 var
= op_iter_init_def (&iter
, stmt
, flags
);
834 if (op_iter_done (&iter
))
835 return NULL_DEF_OPERAND_P
;
836 op_iter_next_def (&iter
);
837 if (op_iter_done (&iter
))
839 return NULL_DEF_OPERAND_P
;
843 /* Return true if there are zero operands in STMT matching the type
846 zero_ssa_operands (gimple stmt
, int flags
)
850 op_iter_init_tree (&iter
, stmt
, flags
);
851 return op_iter_done (&iter
);
855 /* Return the number of operands matching FLAGS in STMT. */
857 num_ssa_operands (gimple stmt
, int flags
)
863 gcc_checking_assert (gimple_code (stmt
) != GIMPLE_PHI
);
864 FOR_EACH_SSA_TREE_OPERAND (t
, stmt
, iter
, flags
)
869 static inline use_operand_p
870 op_iter_init_phiuse (ssa_op_iter
*ptr
, gimple phi
, int flags
);
872 /* Delink all immediate_use information for STMT. */
874 delink_stmt_imm_use (gimple stmt
)
879 if (ssa_operands_active ())
880 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, iter
, SSA_OP_ALL_USES
)
881 delink_imm_use (use_p
);
885 /* If there is a single DEF in the PHI node which matches FLAG, return it.
886 Otherwise return NULL_DEF_OPERAND_P. */
888 single_phi_def (gimple stmt
, int flags
)
890 tree def
= PHI_RESULT (stmt
);
891 if ((flags
& SSA_OP_DEF
) && is_gimple_reg (def
))
893 if ((flags
& SSA_OP_VIRTUAL_DEFS
) && !is_gimple_reg (def
))
898 /* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should
899 be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */
900 static inline use_operand_p
901 op_iter_init_phiuse (ssa_op_iter
*ptr
, gimple phi
, int flags
)
903 tree phi_def
= gimple_phi_result (phi
);
906 clear_and_done_ssa_iter (ptr
);
909 gcc_checking_assert ((flags
& (SSA_OP_USE
| SSA_OP_VIRTUAL_USES
)) != 0);
911 comp
= (is_gimple_reg (phi_def
) ? SSA_OP_USE
: SSA_OP_VIRTUAL_USES
);
913 /* If the PHI node doesn't the operand type we care about, we're done. */
914 if ((flags
& comp
) == 0)
917 return NULL_USE_OPERAND_P
;
921 ptr
->num_phi
= gimple_phi_num_args (phi
);
922 ptr
->iter_type
= ssa_op_iter_use
;
923 return op_iter_next_use (ptr
);
927 /* Start an iterator for a PHI definition. */
929 static inline def_operand_p
930 op_iter_init_phidef (ssa_op_iter
*ptr
, gimple phi
, int flags
)
932 tree phi_def
= PHI_RESULT (phi
);
935 clear_and_done_ssa_iter (ptr
);
938 gcc_checking_assert ((flags
& (SSA_OP_DEF
| SSA_OP_VIRTUAL_DEFS
)) != 0);
940 comp
= (is_gimple_reg (phi_def
) ? SSA_OP_DEF
: SSA_OP_VIRTUAL_DEFS
);
942 /* If the PHI node doesn't have the operand type we care about,
944 if ((flags
& comp
) == 0)
947 return NULL_DEF_OPERAND_P
;
950 ptr
->iter_type
= ssa_op_iter_def
;
951 /* The first call to op_iter_next_def will terminate the iterator since
952 all the fields are NULL. Simply return the result here as the first and
953 therefore only result. */
954 return PHI_RESULT_PTR (phi
);
957 /* Return true is IMM has reached the end of the immediate use stmt list. */
960 end_imm_use_stmt_p (const imm_use_iterator
*imm
)
962 return (imm
->imm_use
== imm
->end_p
);
965 /* Finished the traverse of an immediate use stmt list IMM by removing the
966 placeholder node from the list. */
969 end_imm_use_stmt_traverse (imm_use_iterator
*imm
)
971 delink_imm_use (&(imm
->iter_node
));
974 /* Immediate use traversal of uses within a stmt require that all the
975 uses on a stmt be sequentially listed. This routine is used to build up
976 this sequential list by adding USE_P to the end of the current list
977 currently delimited by HEAD and LAST_P. The new LAST_P value is
980 static inline use_operand_p
981 move_use_after_head (use_operand_p use_p
, use_operand_p head
,
982 use_operand_p last_p
)
984 gcc_checking_assert (USE_FROM_PTR (use_p
) == USE_FROM_PTR (head
));
985 /* Skip head when we find it. */
988 /* If use_p is already linked in after last_p, continue. */
989 if (last_p
->next
== use_p
)
993 /* Delink from current location, and link in at last_p. */
994 delink_imm_use (use_p
);
995 link_imm_use_to_list (use_p
, last_p
);
1003 /* This routine will relink all uses with the same stmt as HEAD into the list
1004 immediately following HEAD for iterator IMM. */
1007 link_use_stmts_after (use_operand_p head
, imm_use_iterator
*imm
)
1009 use_operand_p use_p
;
1010 use_operand_p last_p
= head
;
1011 gimple head_stmt
= USE_STMT (head
);
1012 tree use
= USE_FROM_PTR (head
);
1013 ssa_op_iter op_iter
;
1016 /* Only look at virtual or real uses, depending on the type of HEAD. */
1017 flag
= (is_gimple_reg (use
) ? SSA_OP_USE
: SSA_OP_VIRTUAL_USES
);
1019 if (gimple_code (head_stmt
) == GIMPLE_PHI
)
1021 FOR_EACH_PHI_ARG (use_p
, head_stmt
, op_iter
, flag
)
1022 if (USE_FROM_PTR (use_p
) == use
)
1023 last_p
= move_use_after_head (use_p
, head
, last_p
);
1027 if (flag
== SSA_OP_USE
)
1029 FOR_EACH_SSA_USE_OPERAND (use_p
, head_stmt
, op_iter
, flag
)
1030 if (USE_FROM_PTR (use_p
) == use
)
1031 last_p
= move_use_after_head (use_p
, head
, last_p
);
1033 else if ((use_p
= gimple_vuse_op (head_stmt
)) != NULL_USE_OPERAND_P
)
1035 if (USE_FROM_PTR (use_p
) == use
)
1036 last_p
= move_use_after_head (use_p
, head
, last_p
);
1039 /* Link iter node in after last_p. */
1040 if (imm
->iter_node
.prev
!= NULL
)
1041 delink_imm_use (&imm
->iter_node
);
1042 link_imm_use_to_list (&(imm
->iter_node
), last_p
);
1045 /* Initialize IMM to traverse over uses of VAR. Return the first statement. */
1046 static inline gimple
1047 first_imm_use_stmt (imm_use_iterator
*imm
, tree var
)
1049 imm
->end_p
= &(SSA_NAME_IMM_USE_NODE (var
));
1050 imm
->imm_use
= imm
->end_p
->next
;
1051 imm
->next_imm_name
= NULL_USE_OPERAND_P
;
1053 /* iter_node is used as a marker within the immediate use list to indicate
1054 where the end of the current stmt's uses are. Initialize it to NULL
1055 stmt and use, which indicates a marker node. */
1056 imm
->iter_node
.prev
= NULL_USE_OPERAND_P
;
1057 imm
->iter_node
.next
= NULL_USE_OPERAND_P
;
1058 imm
->iter_node
.loc
.stmt
= NULL
;
1059 imm
->iter_node
.use
= NULL
;
1061 if (end_imm_use_stmt_p (imm
))
1064 link_use_stmts_after (imm
->imm_use
, imm
);
1066 return USE_STMT (imm
->imm_use
);
1069 /* Bump IMM to the next stmt which has a use of var. */
1071 static inline gimple
1072 next_imm_use_stmt (imm_use_iterator
*imm
)
1074 imm
->imm_use
= imm
->iter_node
.next
;
1075 if (end_imm_use_stmt_p (imm
))
1077 if (imm
->iter_node
.prev
!= NULL
)
1078 delink_imm_use (&imm
->iter_node
);
1082 link_use_stmts_after (imm
->imm_use
, imm
);
1083 return USE_STMT (imm
->imm_use
);
1086 /* This routine will return the first use on the stmt IMM currently refers
1089 static inline use_operand_p
1090 first_imm_use_on_stmt (imm_use_iterator
*imm
)
1092 imm
->next_imm_name
= imm
->imm_use
->next
;
1093 return imm
->imm_use
;
1096 /* Return TRUE if the last use on the stmt IMM refers to has been visited. */
1099 end_imm_use_on_stmt_p (const imm_use_iterator
*imm
)
1101 return (imm
->imm_use
== &(imm
->iter_node
));
1104 /* Bump to the next use on the stmt IMM refers to, return NULL if done. */
1106 static inline use_operand_p
1107 next_imm_use_on_stmt (imm_use_iterator
*imm
)
1109 imm
->imm_use
= imm
->next_imm_name
;
1110 if (end_imm_use_on_stmt_p (imm
))
1111 return NULL_USE_OPERAND_P
;
1114 imm
->next_imm_name
= imm
->imm_use
->next
;
1115 return imm
->imm_use
;
1119 /* Return true if VAR cannot be modified by the program. */
1122 unmodifiable_var_p (const_tree var
)
1124 if (TREE_CODE (var
) == SSA_NAME
)
1125 var
= SSA_NAME_VAR (var
);
1127 return TREE_READONLY (var
) && (TREE_STATIC (var
) || DECL_EXTERNAL (var
));
1130 /* Return true if REF, a handled component reference, has an ARRAY_REF
1134 ref_contains_array_ref (const_tree ref
)
1136 gcc_checking_assert (handled_component_p (ref
));
1139 if (TREE_CODE (ref
) == ARRAY_REF
)
1141 ref
= TREE_OPERAND (ref
, 0);
1142 } while (handled_component_p (ref
));
1147 /* Return true if REF has an VIEW_CONVERT_EXPR somewhere in it. */
1150 contains_view_convert_expr_p (const_tree ref
)
1152 while (handled_component_p (ref
))
1154 if (TREE_CODE (ref
) == VIEW_CONVERT_EXPR
)
1156 ref
= TREE_OPERAND (ref
, 0);
1162 /* Return true, if the two ranges [POS1, SIZE1] and [POS2, SIZE2]
1163 overlap. SIZE1 and/or SIZE2 can be (unsigned)-1 in which case the
1164 range is open-ended. Otherwise return false. */
1167 ranges_overlap_p (unsigned HOST_WIDE_INT pos1
,
1168 unsigned HOST_WIDE_INT size1
,
1169 unsigned HOST_WIDE_INT pos2
,
1170 unsigned HOST_WIDE_INT size2
)
1173 && (size2
== (unsigned HOST_WIDE_INT
)-1
1174 || pos1
< (pos2
+ size2
)))
1177 && (size1
== (unsigned HOST_WIDE_INT
)-1
1178 || pos2
< (pos1
+ size1
)))
1184 /* Accessor to tree-ssa-operands.c caches. */
1185 static inline struct ssa_operands
*
1186 gimple_ssa_operands (const struct function
*fun
)
1188 return &fun
->gimple_df
->ssa_operands
;
1191 /* Given an edge_var_map V, return the PHI arg definition. */
1194 redirect_edge_var_map_def (edge_var_map
*v
)
1199 /* Given an edge_var_map V, return the PHI result. */
1202 redirect_edge_var_map_result (edge_var_map
*v
)
1207 /* Given an edge_var_map V, return the PHI arg location. */
1209 static inline source_location
1210 redirect_edge_var_map_location (edge_var_map
*v
)
1216 /* Return an SSA_NAME node for variable VAR defined in statement STMT
1217 in function cfun. */
1220 make_ssa_name (tree var
, gimple stmt
)
1222 return make_ssa_name_fn (cfun
, var
, stmt
);
1225 /* Returns the base object and a constant BITS_PER_UNIT offset in *POFFSET that
1226 denotes the starting address of the memory access EXP.
1227 Returns NULL_TREE if the offset is not constant or any component
1228 is not BITS_PER_UNIT-aligned.
1229 VALUEIZE if non-NULL is used to valueize SSA names. It should return
1230 its argument or a constant if the argument is known to be constant. */
1233 get_addr_base_and_unit_offset_1 (tree exp
, HOST_WIDE_INT
*poffset
,
1234 tree (*valueize
) (tree
))
1236 HOST_WIDE_INT byte_offset
= 0;
1238 /* Compute cumulative byte-offset for nested component-refs and array-refs,
1239 and find the ultimate containing object. */
1242 switch (TREE_CODE (exp
))
1249 tree field
= TREE_OPERAND (exp
, 1);
1250 tree this_offset
= component_ref_field_offset (exp
);
1251 HOST_WIDE_INT hthis_offset
;
1254 || TREE_CODE (this_offset
) != INTEGER_CST
1255 || (TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field
))
1259 hthis_offset
= TREE_INT_CST_LOW (this_offset
);
1260 hthis_offset
+= (TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field
))
1262 byte_offset
+= hthis_offset
;
1267 case ARRAY_RANGE_REF
:
1269 tree index
= TREE_OPERAND (exp
, 1);
1270 tree low_bound
, unit_size
;
1273 && TREE_CODE (index
) == SSA_NAME
)
1274 index
= (*valueize
) (index
);
1276 /* If the resulting bit-offset is constant, track it. */
1277 if (TREE_CODE (index
) == INTEGER_CST
1278 && (low_bound
= array_ref_low_bound (exp
),
1279 TREE_CODE (low_bound
) == INTEGER_CST
)
1280 && (unit_size
= array_ref_element_size (exp
),
1281 TREE_CODE (unit_size
) == INTEGER_CST
))
1283 HOST_WIDE_INT hindex
= TREE_INT_CST_LOW (index
);
1285 hindex
-= TREE_INT_CST_LOW (low_bound
);
1286 hindex
*= TREE_INT_CST_LOW (unit_size
);
1287 byte_offset
+= hindex
;
1298 byte_offset
+= TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (exp
)));
1301 case VIEW_CONVERT_EXPR
:
1306 tree base
= TREE_OPERAND (exp
, 0);
1308 && TREE_CODE (base
) == SSA_NAME
)
1309 base
= (*valueize
) (base
);
1311 /* Hand back the decl for MEM[&decl, off]. */
1312 if (TREE_CODE (base
) == ADDR_EXPR
)
1314 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
1316 double_int off
= mem_ref_offset (exp
);
1317 gcc_assert (off
.high
== -1 || off
.high
== 0);
1318 byte_offset
+= double_int_to_shwi (off
);
1320 exp
= TREE_OPERAND (base
, 0);
1325 case TARGET_MEM_REF
:
1327 tree base
= TREE_OPERAND (exp
, 0);
1329 && TREE_CODE (base
) == SSA_NAME
)
1330 base
= (*valueize
) (base
);
1332 /* Hand back the decl for MEM[&decl, off]. */
1333 if (TREE_CODE (base
) == ADDR_EXPR
)
1335 if (TMR_INDEX (exp
) || TMR_INDEX2 (exp
))
1337 if (!integer_zerop (TMR_OFFSET (exp
)))
1339 double_int off
= mem_ref_offset (exp
);
1340 gcc_assert (off
.high
== -1 || off
.high
== 0);
1341 byte_offset
+= double_int_to_shwi (off
);
1343 exp
= TREE_OPERAND (base
, 0);
1352 exp
= TREE_OPERAND (exp
, 0);
1356 *poffset
= byte_offset
;
1360 #endif /* _TREE_FLOW_INLINE_H */