* tree-ssa-ccp.c (ccp_fold): Remove code that produces
[official-gcc.git] / gcc / convert.c
blobfbd18dee23e204bc5129b3729096aebf0911c0a1
1 /* Utility routines for data type conversion for GCC.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 /* These routines are somewhat language-independent utility function
24 intended to be called by the language-specific convert () functions. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "flags.h"
32 #include "convert.h"
33 #include "toplev.h"
34 #include "langhooks.h"
35 #include "real.h"
36 /* Convert EXPR to some pointer or reference type TYPE.
38 EXPR must be pointer, reference, integer, enumeral, or literal zero;
39 in other cases error is called. */
41 tree
42 convert_to_pointer (tree type, tree expr)
44 if (integer_zerop (expr))
46 expr = build_int_cst (type, 0);
47 return expr;
50 switch (TREE_CODE (TREE_TYPE (expr)))
52 case POINTER_TYPE:
53 case REFERENCE_TYPE:
54 return build1 (NOP_EXPR, type, expr);
56 case INTEGER_TYPE:
57 case ENUMERAL_TYPE:
58 case BOOLEAN_TYPE:
59 case CHAR_TYPE:
60 if (TYPE_PRECISION (TREE_TYPE (expr)) == POINTER_SIZE)
61 return build1 (CONVERT_EXPR, type, expr);
63 return
64 convert_to_pointer (type,
65 convert (lang_hooks.types.type_for_size
66 (POINTER_SIZE, 0), expr));
68 default:
69 error ("cannot convert to a pointer type");
70 return convert_to_pointer (type, integer_zero_node);
74 /* Avoid any floating point extensions from EXP. */
75 tree
76 strip_float_extensions (tree exp)
78 tree sub, expt, subt;
80 /* For floating point constant look up the narrowest type that can hold
81 it properly and handle it like (type)(narrowest_type)constant.
82 This way we can optimize for instance a=a*2.0 where "a" is float
83 but 2.0 is double constant. */
84 if (TREE_CODE (exp) == REAL_CST)
86 REAL_VALUE_TYPE orig;
87 tree type = NULL;
89 orig = TREE_REAL_CST (exp);
90 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
91 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
92 type = float_type_node;
93 else if (TYPE_PRECISION (TREE_TYPE (exp))
94 > TYPE_PRECISION (double_type_node)
95 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
96 type = double_type_node;
97 if (type)
98 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
101 if (TREE_CODE (exp) != NOP_EXPR
102 && TREE_CODE (exp) != CONVERT_EXPR)
103 return exp;
105 sub = TREE_OPERAND (exp, 0);
106 subt = TREE_TYPE (sub);
107 expt = TREE_TYPE (exp);
109 if (!FLOAT_TYPE_P (subt))
110 return exp;
112 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
113 return exp;
115 return strip_float_extensions (sub);
119 /* Convert EXPR to some floating-point type TYPE.
121 EXPR must be float, integer, or enumeral;
122 in other cases error is called. */
124 tree
125 convert_to_real (tree type, tree expr)
127 enum built_in_function fcode = builtin_mathfn_code (expr);
128 tree itype = TREE_TYPE (expr);
130 /* Disable until we figure out how to decide whether the functions are
131 present in runtime. */
132 /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
133 if (optimize
134 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
135 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
137 switch (fcode)
139 #define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
140 CASE_MATHFN (ACOS)
141 CASE_MATHFN (ACOSH)
142 CASE_MATHFN (ASIN)
143 CASE_MATHFN (ASINH)
144 CASE_MATHFN (ATAN)
145 CASE_MATHFN (ATANH)
146 CASE_MATHFN (CBRT)
147 CASE_MATHFN (COS)
148 CASE_MATHFN (COSH)
149 CASE_MATHFN (ERF)
150 CASE_MATHFN (ERFC)
151 CASE_MATHFN (EXP)
152 CASE_MATHFN (EXP10)
153 CASE_MATHFN (EXP2)
154 CASE_MATHFN (EXPM1)
155 CASE_MATHFN (FABS)
156 CASE_MATHFN (GAMMA)
157 CASE_MATHFN (J0)
158 CASE_MATHFN (J1)
159 CASE_MATHFN (LGAMMA)
160 CASE_MATHFN (LOG)
161 CASE_MATHFN (LOG10)
162 CASE_MATHFN (LOG1P)
163 CASE_MATHFN (LOG2)
164 CASE_MATHFN (LOGB)
165 CASE_MATHFN (POW10)
166 CASE_MATHFN (SIN)
167 CASE_MATHFN (SINH)
168 CASE_MATHFN (SQRT)
169 CASE_MATHFN (TAN)
170 CASE_MATHFN (TANH)
171 CASE_MATHFN (TGAMMA)
172 CASE_MATHFN (Y0)
173 CASE_MATHFN (Y1)
174 #undef CASE_MATHFN
176 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
177 tree newtype = type;
179 /* We have (outertype)sqrt((innertype)x). Choose the wider mode from
180 the both as the safe type for operation. */
181 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
182 newtype = TREE_TYPE (arg0);
184 /* Be careful about integer to fp conversions.
185 These may overflow still. */
186 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
187 && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
188 && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
189 || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
191 tree arglist;
192 tree fn = mathfn_built_in (newtype, fcode);
194 if (fn)
196 arglist = build_tree_list (NULL_TREE, fold (convert_to_real (newtype, arg0)));
197 expr = build_function_call_expr (fn, arglist);
198 if (newtype == type)
199 return expr;
203 default:
204 break;
207 if (optimize
208 && (((fcode == BUILT_IN_FLOORL
209 || fcode == BUILT_IN_CEILL
210 || fcode == BUILT_IN_ROUNDL
211 || fcode == BUILT_IN_RINTL
212 || fcode == BUILT_IN_TRUNCL
213 || fcode == BUILT_IN_NEARBYINTL)
214 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
215 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
216 || ((fcode == BUILT_IN_FLOOR
217 || fcode == BUILT_IN_CEIL
218 || fcode == BUILT_IN_ROUND
219 || fcode == BUILT_IN_RINT
220 || fcode == BUILT_IN_TRUNC
221 || fcode == BUILT_IN_NEARBYINT)
222 && (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
224 tree fn = mathfn_built_in (type, fcode);
226 if (fn)
228 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr,
229 1)));
230 tree arglist = build_tree_list (NULL_TREE,
231 fold (convert_to_real (type, arg0)));
233 return build_function_call_expr (fn, arglist);
237 /* Propagate the cast into the operation. */
238 if (itype != type && FLOAT_TYPE_P (type))
239 switch (TREE_CODE (expr))
241 /* Convert (float)-x into -(float)x. This is always safe. */
242 case ABS_EXPR:
243 case NEGATE_EXPR:
244 if (TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr)))
245 return build1 (TREE_CODE (expr), type,
246 fold (convert_to_real (type,
247 TREE_OPERAND (expr, 0))));
248 break;
249 /* Convert (outertype)((innertype0)a+(innertype1)b)
250 into ((newtype)a+(newtype)b) where newtype
251 is the widest mode from all of these. */
252 case PLUS_EXPR:
253 case MINUS_EXPR:
254 case MULT_EXPR:
255 case RDIV_EXPR:
257 tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
258 tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
260 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
261 && FLOAT_TYPE_P (TREE_TYPE (arg1)))
263 tree newtype = type;
264 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
265 newtype = TREE_TYPE (arg0);
266 if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
267 newtype = TREE_TYPE (arg1);
268 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype))
270 expr = build2 (TREE_CODE (expr), newtype,
271 fold (convert_to_real (newtype, arg0)),
272 fold (convert_to_real (newtype, arg1)));
273 if (newtype == type)
274 return expr;
278 break;
279 default:
280 break;
283 switch (TREE_CODE (TREE_TYPE (expr)))
285 case REAL_TYPE:
286 return build1 (flag_float_store ? CONVERT_EXPR : NOP_EXPR,
287 type, expr);
289 case INTEGER_TYPE:
290 case ENUMERAL_TYPE:
291 case BOOLEAN_TYPE:
292 case CHAR_TYPE:
293 return build1 (FLOAT_EXPR, type, expr);
295 case COMPLEX_TYPE:
296 return convert (type,
297 fold (build1 (REALPART_EXPR,
298 TREE_TYPE (TREE_TYPE (expr)), expr)));
300 case POINTER_TYPE:
301 case REFERENCE_TYPE:
302 error ("pointer value used where a floating point value was expected");
303 return convert_to_real (type, integer_zero_node);
305 default:
306 error ("aggregate value used where a float was expected");
307 return convert_to_real (type, integer_zero_node);
311 /* Convert EXPR to some integer (or enum) type TYPE.
313 EXPR must be pointer, integer, discrete (enum, char, or bool), float, or
314 vector; in other cases error is called.
316 The result of this is always supposed to be a newly created tree node
317 not in use in any existing structure. */
319 tree
320 convert_to_integer (tree type, tree expr)
322 enum tree_code ex_form = TREE_CODE (expr);
323 tree intype = TREE_TYPE (expr);
324 unsigned int inprec = TYPE_PRECISION (intype);
325 unsigned int outprec = TYPE_PRECISION (type);
327 /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
328 be. Consider `enum E = { a, b = (enum E) 3 };'. */
329 if (!COMPLETE_TYPE_P (type))
331 error ("conversion to incomplete type");
332 return error_mark_node;
335 /* Convert e.g. (long)round(d) -> lround(d). */
336 /* If we're converting to char, we may encounter differing behavior
337 between converting from double->char vs double->long->char.
338 We're in "undefined" territory but we prefer to be conservative,
339 so only proceed in "unsafe" math mode. */
340 if (optimize
341 && (flag_unsafe_math_optimizations
342 || (long_integer_type_node
343 && outprec >= TYPE_PRECISION (long_integer_type_node))))
345 tree s_expr = strip_float_extensions (expr);
346 tree s_intype = TREE_TYPE (s_expr);
347 const enum built_in_function fcode = builtin_mathfn_code (s_expr);
348 tree fn = 0;
350 switch (fcode)
352 case BUILT_IN_CEIL: case BUILT_IN_CEILF: case BUILT_IN_CEILL:
353 /* Only convert in ISO C99 mode. */
354 if (!TARGET_C99_FUNCTIONS)
355 break;
356 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
357 fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL);
358 else
359 fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL);
360 break;
362 case BUILT_IN_FLOOR: case BUILT_IN_FLOORF: case BUILT_IN_FLOORL:
363 /* Only convert in ISO C99 mode. */
364 if (!TARGET_C99_FUNCTIONS)
365 break;
366 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
367 fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR);
368 else
369 fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR);
370 break;
372 case BUILT_IN_ROUND: case BUILT_IN_ROUNDF: case BUILT_IN_ROUNDL:
373 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
374 fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
375 else
376 fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
377 break;
379 case BUILT_IN_RINT: case BUILT_IN_RINTF: case BUILT_IN_RINTL:
380 /* Only convert rint* if we can ignore math exceptions. */
381 if (flag_trapping_math)
382 break;
383 /* ... Fall through ... */
384 case BUILT_IN_NEARBYINT: case BUILT_IN_NEARBYINTF: case BUILT_IN_NEARBYINTL:
385 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
386 fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
387 else
388 fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
389 break;
391 case BUILT_IN_TRUNC: case BUILT_IN_TRUNCF: case BUILT_IN_TRUNCL:
393 tree arglist = TREE_OPERAND (s_expr, 1);
394 return convert_to_integer (type, TREE_VALUE (arglist));
397 default:
398 break;
401 if (fn)
403 tree arglist = TREE_OPERAND (s_expr, 1);
404 tree newexpr = build_function_call_expr (fn, arglist);
405 return convert_to_integer (type, newexpr);
409 switch (TREE_CODE (intype))
411 case POINTER_TYPE:
412 case REFERENCE_TYPE:
413 if (integer_zerop (expr))
414 return build_int_cst (type, 0);
416 /* Convert to an unsigned integer of the correct width first,
417 and from there widen/truncate to the required type. */
418 expr = fold_build1 (CONVERT_EXPR,
419 lang_hooks.types.type_for_size (POINTER_SIZE, 0),
420 expr);
421 return fold_build1 (NOP_EXPR, type, expr);
423 case INTEGER_TYPE:
424 case ENUMERAL_TYPE:
425 case BOOLEAN_TYPE:
426 case CHAR_TYPE:
427 /* If this is a logical operation, which just returns 0 or 1, we can
428 change the type of the expression. */
430 if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
432 expr = copy_node (expr);
433 TREE_TYPE (expr) = type;
434 return expr;
437 /* If we are widening the type, put in an explicit conversion.
438 Similarly if we are not changing the width. After this, we know
439 we are truncating EXPR. */
441 else if (outprec >= inprec)
443 enum tree_code code;
445 /* If the precision of the EXPR's type is K bits and the
446 destination mode has more bits, and the sign is changing,
447 it is not safe to use a NOP_EXPR. For example, suppose
448 that EXPR's type is a 3-bit unsigned integer type, the
449 TYPE is a 3-bit signed integer type, and the machine mode
450 for the types is 8-bit QImode. In that case, the
451 conversion necessitates an explicit sign-extension. In
452 the signed-to-unsigned case the high-order bits have to
453 be cleared. */
454 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
455 && (TYPE_PRECISION (TREE_TYPE (expr))
456 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)))))
457 code = CONVERT_EXPR;
458 else
459 code = NOP_EXPR;
461 return build1 (code, type, expr);
464 /* If TYPE is an enumeral type or a type with a precision less
465 than the number of bits in its mode, do the conversion to the
466 type corresponding to its mode, then do a nop conversion
467 to TYPE. */
468 else if (TREE_CODE (type) == ENUMERAL_TYPE
469 || outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
470 return build1 (NOP_EXPR, type,
471 convert (lang_hooks.types.type_for_mode
472 (TYPE_MODE (type), TYPE_UNSIGNED (type)),
473 expr));
475 /* Here detect when we can distribute the truncation down past some
476 arithmetic. For example, if adding two longs and converting to an
477 int, we can equally well convert both to ints and then add.
478 For the operations handled here, such truncation distribution
479 is always safe.
480 It is desirable in these cases:
481 1) when truncating down to full-word from a larger size
482 2) when truncating takes no work.
483 3) when at least one operand of the arithmetic has been extended
484 (as by C's default conversions). In this case we need two conversions
485 if we do the arithmetic as already requested, so we might as well
486 truncate both and then combine. Perhaps that way we need only one.
488 Note that in general we cannot do the arithmetic in a type
489 shorter than the desired result of conversion, even if the operands
490 are both extended from a shorter type, because they might overflow
491 if combined in that type. The exceptions to this--the times when
492 two narrow values can be combined in their narrow type even to
493 make a wider result--are handled by "shorten" in build_binary_op. */
495 switch (ex_form)
497 case RSHIFT_EXPR:
498 /* We can pass truncation down through right shifting
499 when the shift count is a nonpositive constant. */
500 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
501 && tree_int_cst_lt (TREE_OPERAND (expr, 1),
502 convert (TREE_TYPE (TREE_OPERAND (expr, 1)),
503 integer_one_node)))
504 goto trunc1;
505 break;
507 case LSHIFT_EXPR:
508 /* We can pass truncation down through left shifting
509 when the shift count is a nonnegative constant and
510 the target type is unsigned. */
511 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
512 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
513 && TYPE_UNSIGNED (type)
514 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
516 /* If shift count is less than the width of the truncated type,
517 really shift. */
518 if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
519 /* In this case, shifting is like multiplication. */
520 goto trunc1;
521 else
523 /* If it is >= that width, result is zero.
524 Handling this with trunc1 would give the wrong result:
525 (int) ((long long) a << 32) is well defined (as 0)
526 but (int) a << 32 is undefined and would get a
527 warning. */
529 tree t = convert_to_integer (type, integer_zero_node);
531 /* If the original expression had side-effects, we must
532 preserve it. */
533 if (TREE_SIDE_EFFECTS (expr))
534 return build2 (COMPOUND_EXPR, type, expr, t);
535 else
536 return t;
539 break;
541 case MAX_EXPR:
542 case MIN_EXPR:
543 case MULT_EXPR:
545 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
546 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
548 /* Don't distribute unless the output precision is at least as big
549 as the actual inputs. Otherwise, the comparison of the
550 truncated values will be wrong. */
551 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
552 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
553 /* If signedness of arg0 and arg1 don't match,
554 we can't necessarily find a type to compare them in. */
555 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
556 == TYPE_UNSIGNED (TREE_TYPE (arg1))))
557 goto trunc1;
558 break;
561 case PLUS_EXPR:
562 case MINUS_EXPR:
563 case BIT_AND_EXPR:
564 case BIT_IOR_EXPR:
565 case BIT_XOR_EXPR:
566 trunc1:
568 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
569 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
571 if (outprec >= BITS_PER_WORD
572 || TRULY_NOOP_TRUNCATION (outprec, inprec)
573 || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
574 || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
576 /* Do the arithmetic in type TYPEX,
577 then convert result to TYPE. */
578 tree typex = type;
580 /* Can't do arithmetic in enumeral types
581 so use an integer type that will hold the values. */
582 if (TREE_CODE (typex) == ENUMERAL_TYPE)
583 typex = lang_hooks.types.type_for_size
584 (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
586 /* But now perhaps TYPEX is as wide as INPREC.
587 In that case, do nothing special here.
588 (Otherwise would recurse infinitely in convert. */
589 if (TYPE_PRECISION (typex) != inprec)
591 /* Don't do unsigned arithmetic where signed was wanted,
592 or vice versa.
593 Exception: if both of the original operands were
594 unsigned then we can safely do the work as unsigned.
595 Exception: shift operations take their type solely
596 from the first argument.
597 Exception: the LSHIFT_EXPR case above requires that
598 we perform this operation unsigned lest we produce
599 signed-overflow undefinedness.
600 And we may need to do it as unsigned
601 if we truncate to the original size. */
602 if (TYPE_UNSIGNED (TREE_TYPE (expr))
603 || (TYPE_UNSIGNED (TREE_TYPE (arg0))
604 && (TYPE_UNSIGNED (TREE_TYPE (arg1))
605 || ex_form == LSHIFT_EXPR
606 || ex_form == RSHIFT_EXPR
607 || ex_form == LROTATE_EXPR
608 || ex_form == RROTATE_EXPR))
609 || ex_form == LSHIFT_EXPR)
610 typex = lang_hooks.types.unsigned_type (typex);
611 else
612 typex = lang_hooks.types.signed_type (typex);
613 return convert (type,
614 fold (build2 (ex_form, typex,
615 convert (typex, arg0),
616 convert (typex, arg1))));
620 break;
622 case NEGATE_EXPR:
623 case BIT_NOT_EXPR:
624 /* This is not correct for ABS_EXPR,
625 since we must test the sign before truncation. */
627 tree typex = type;
629 /* Can't do arithmetic in enumeral types
630 so use an integer type that will hold the values. */
631 if (TREE_CODE (typex) == ENUMERAL_TYPE)
632 typex = lang_hooks.types.type_for_size
633 (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
635 /* But now perhaps TYPEX is as wide as INPREC.
636 In that case, do nothing special here.
637 (Otherwise would recurse infinitely in convert. */
638 if (TYPE_PRECISION (typex) != inprec)
640 /* Don't do unsigned arithmetic where signed was wanted,
641 or vice versa. */
642 if (TYPE_UNSIGNED (TREE_TYPE (expr)))
643 typex = lang_hooks.types.unsigned_type (typex);
644 else
645 typex = lang_hooks.types.signed_type (typex);
646 return convert (type,
647 fold (build1 (ex_form, typex,
648 convert (typex,
649 TREE_OPERAND (expr, 0)))));
653 case NOP_EXPR:
654 /* Don't introduce a
655 "can't convert between vector values of different size" error. */
656 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
657 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
658 != GET_MODE_SIZE (TYPE_MODE (type))))
659 break;
660 /* If truncating after truncating, might as well do all at once.
661 If truncating after extending, we may get rid of wasted work. */
662 return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
664 case COND_EXPR:
665 /* It is sometimes worthwhile to push the narrowing down through
666 the conditional and never loses. */
667 return fold (build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
668 convert (type, TREE_OPERAND (expr, 1)),
669 convert (type, TREE_OPERAND (expr, 2))));
671 default:
672 break;
675 return build1 (CONVERT_EXPR, type, expr);
677 case REAL_TYPE:
678 return build1 (FIX_TRUNC_EXPR, type, expr);
680 case COMPLEX_TYPE:
681 return convert (type,
682 fold (build1 (REALPART_EXPR,
683 TREE_TYPE (TREE_TYPE (expr)), expr)));
685 case VECTOR_TYPE:
686 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
688 error ("can't convert between vector values of different size");
689 return error_mark_node;
691 return build1 (NOP_EXPR, type, expr);
693 default:
694 error ("aggregate value used where an integer was expected");
695 return convert (type, integer_zero_node);
699 /* Convert EXPR to the complex type TYPE in the usual ways. */
701 tree
702 convert_to_complex (tree type, tree expr)
704 tree subtype = TREE_TYPE (type);
706 switch (TREE_CODE (TREE_TYPE (expr)))
708 case REAL_TYPE:
709 case INTEGER_TYPE:
710 case ENUMERAL_TYPE:
711 case BOOLEAN_TYPE:
712 case CHAR_TYPE:
713 return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
714 convert (subtype, integer_zero_node));
716 case COMPLEX_TYPE:
718 tree elt_type = TREE_TYPE (TREE_TYPE (expr));
720 if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
721 return expr;
722 else if (TREE_CODE (expr) == COMPLEX_EXPR)
723 return fold (build2 (COMPLEX_EXPR, type,
724 convert (subtype, TREE_OPERAND (expr, 0)),
725 convert (subtype, TREE_OPERAND (expr, 1))));
726 else
728 expr = save_expr (expr);
729 return
730 fold (build2 (COMPLEX_EXPR, type,
731 convert (subtype,
732 fold (build1 (REALPART_EXPR,
733 TREE_TYPE (TREE_TYPE (expr)),
734 expr))),
735 convert (subtype,
736 fold (build1 (IMAGPART_EXPR,
737 TREE_TYPE (TREE_TYPE (expr)),
738 expr)))));
742 case POINTER_TYPE:
743 case REFERENCE_TYPE:
744 error ("pointer value used where a complex was expected");
745 return convert_to_complex (type, integer_zero_node);
747 default:
748 error ("aggregate value used where a complex was expected");
749 return convert_to_complex (type, integer_zero_node);
753 /* Convert EXPR to the vector type TYPE in the usual ways. */
755 tree
756 convert_to_vector (tree type, tree expr)
758 switch (TREE_CODE (TREE_TYPE (expr)))
760 case INTEGER_TYPE:
761 case VECTOR_TYPE:
762 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
764 error ("can't convert between vector values of different size");
765 return error_mark_node;
767 return build1 (NOP_EXPR, type, expr);
769 default:
770 error ("can't convert value to a vector");
771 return error_mark_node;