(PREFERRED_DEBUGGING_TYPE): Use DWARF2_DEBUG.
[official-gcc.git] / gcc / cselib.c
blobb57125bf9fa890b8aaac741392f77edb30f2755b
1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "flags.h"
32 #include "real.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "function.h"
36 #include "emit-rtl.h"
37 #include "toplev.h"
38 #include "output.h"
39 #include "ggc.h"
40 #include "hashtab.h"
41 #include "cselib.h"
42 #include "params.h"
43 #include "alloc-pool.h"
45 static bool cselib_record_memory;
46 static int entry_and_rtx_equal_p (const void *, const void *);
47 static hashval_t get_value_hash (const void *);
48 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
49 static struct elt_loc_list *new_elt_loc_list (struct elt_loc_list *, rtx);
50 static void unchain_one_value (cselib_val *);
51 static void unchain_one_elt_list (struct elt_list **);
52 static void unchain_one_elt_loc_list (struct elt_loc_list **);
53 static void clear_table (void);
54 static int discard_useless_locs (void **, void *);
55 static int discard_useless_values (void **, void *);
56 static void remove_useless_values (void);
57 static rtx wrap_constant (enum machine_mode, rtx);
58 static unsigned int cselib_hash_rtx (rtx, enum machine_mode, int);
59 static cselib_val *new_cselib_val (unsigned int, enum machine_mode);
60 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
61 static cselib_val *cselib_lookup_mem (rtx, int);
62 static void cselib_invalidate_regno (unsigned int, enum machine_mode);
63 static void cselib_invalidate_mem (rtx);
64 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
65 static void cselib_record_sets (rtx);
67 /* There are three ways in which cselib can look up an rtx:
68 - for a REG, the reg_values table (which is indexed by regno) is used
69 - for a MEM, we recursively look up its address and then follow the
70 addr_list of that value
71 - for everything else, we compute a hash value and go through the hash
72 table. Since different rtx's can still have the same hash value,
73 this involves walking the table entries for a given value and comparing
74 the locations of the entries with the rtx we are looking up. */
76 /* A table that enables us to look up elts by their value. */
77 static htab_t hash_table;
79 /* This is a global so we don't have to pass this through every function.
80 It is used in new_elt_loc_list to set SETTING_INSN. */
81 static rtx cselib_current_insn;
82 static bool cselib_current_insn_in_libcall;
84 /* Every new unknown value gets a unique number. */
85 static unsigned int next_unknown_value;
87 /* The number of registers we had when the varrays were last resized. */
88 static unsigned int cselib_nregs;
90 /* Count values without known locations. Whenever this grows too big, we
91 remove these useless values from the table. */
92 static int n_useless_values;
94 /* Number of useless values before we remove them from the hash table. */
95 #define MAX_USELESS_VALUES 32
97 /* This table maps from register number to values. It does not
98 contain pointers to cselib_val structures, but rather elt_lists.
99 The purpose is to be able to refer to the same register in
100 different modes. The first element of the list defines the mode in
101 which the register was set; if the mode is unknown or the value is
102 no longer valid in that mode, ELT will be NULL for the first
103 element. */
104 struct elt_list **reg_values;
105 unsigned int reg_values_size;
106 #define REG_VALUES(i) reg_values[i]
108 /* The largest number of hard regs used by any entry added to the
109 REG_VALUES table. Cleared on each clear_table() invocation. */
110 static unsigned int max_value_regs;
112 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
113 in clear_table() for fast emptying. */
114 static unsigned int *used_regs;
115 static unsigned int n_used_regs;
117 /* We pass this to cselib_invalidate_mem to invalidate all of
118 memory for a non-const call instruction. */
119 static GTY(()) rtx callmem;
121 /* Set by discard_useless_locs if it deleted the last location of any
122 value. */
123 static int values_became_useless;
125 /* Used as stop element of the containing_mem list so we can check
126 presence in the list by checking the next pointer. */
127 static cselib_val dummy_val;
129 /* Used to list all values that contain memory reference.
130 May or may not contain the useless values - the list is compacted
131 each time memory is invalidated. */
132 static cselib_val *first_containing_mem = &dummy_val;
133 static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
136 /* Allocate a struct elt_list and fill in its two elements with the
137 arguments. */
139 static inline struct elt_list *
140 new_elt_list (struct elt_list *next, cselib_val *elt)
142 struct elt_list *el;
143 el = pool_alloc (elt_list_pool);
144 el->next = next;
145 el->elt = elt;
146 return el;
149 /* Allocate a struct elt_loc_list and fill in its two elements with the
150 arguments. */
152 static inline struct elt_loc_list *
153 new_elt_loc_list (struct elt_loc_list *next, rtx loc)
155 struct elt_loc_list *el;
156 el = pool_alloc (elt_loc_list_pool);
157 el->next = next;
158 el->loc = loc;
159 el->setting_insn = cselib_current_insn;
160 el->in_libcall = cselib_current_insn_in_libcall;
161 return el;
164 /* The elt_list at *PL is no longer needed. Unchain it and free its
165 storage. */
167 static inline void
168 unchain_one_elt_list (struct elt_list **pl)
170 struct elt_list *l = *pl;
172 *pl = l->next;
173 pool_free (elt_list_pool, l);
176 /* Likewise for elt_loc_lists. */
178 static void
179 unchain_one_elt_loc_list (struct elt_loc_list **pl)
181 struct elt_loc_list *l = *pl;
183 *pl = l->next;
184 pool_free (elt_loc_list_pool, l);
187 /* Likewise for cselib_vals. This also frees the addr_list associated with
188 V. */
190 static void
191 unchain_one_value (cselib_val *v)
193 while (v->addr_list)
194 unchain_one_elt_list (&v->addr_list);
196 pool_free (cselib_val_pool, v);
199 /* Remove all entries from the hash table. Also used during
200 initialization. If CLEAR_ALL isn't set, then only clear the entries
201 which are known to have been used. */
203 static void
204 clear_table (void)
206 unsigned int i;
208 for (i = 0; i < n_used_regs; i++)
209 REG_VALUES (used_regs[i]) = 0;
211 max_value_regs = 0;
213 n_used_regs = 0;
215 htab_empty (hash_table);
217 n_useless_values = 0;
219 next_unknown_value = 0;
221 first_containing_mem = &dummy_val;
224 /* The equality test for our hash table. The first argument ENTRY is a table
225 element (i.e. a cselib_val), while the second arg X is an rtx. We know
226 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
227 CONST of an appropriate mode. */
229 static int
230 entry_and_rtx_equal_p (const void *entry, const void *x_arg)
232 struct elt_loc_list *l;
233 const cselib_val *v = (const cselib_val *) entry;
234 rtx x = (rtx) x_arg;
235 enum machine_mode mode = GET_MODE (x);
237 gcc_assert (GET_CODE (x) != CONST_INT
238 && (mode != VOIDmode || GET_CODE (x) != CONST_DOUBLE));
240 if (mode != GET_MODE (v->u.val_rtx))
241 return 0;
243 /* Unwrap X if necessary. */
244 if (GET_CODE (x) == CONST
245 && (GET_CODE (XEXP (x, 0)) == CONST_INT
246 || GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
247 x = XEXP (x, 0);
249 /* We don't guarantee that distinct rtx's have different hash values,
250 so we need to do a comparison. */
251 for (l = v->locs; l; l = l->next)
252 if (rtx_equal_for_cselib_p (l->loc, x))
253 return 1;
255 return 0;
258 /* The hash function for our hash table. The value is always computed with
259 cselib_hash_rtx when adding an element; this function just extracts the
260 hash value from a cselib_val structure. */
262 static hashval_t
263 get_value_hash (const void *entry)
265 const cselib_val *v = (const cselib_val *) entry;
266 return v->value;
269 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
270 only return true for values which point to a cselib_val whose value
271 element has been set to zero, which implies the cselib_val will be
272 removed. */
275 references_value_p (rtx x, int only_useless)
277 enum rtx_code code = GET_CODE (x);
278 const char *fmt = GET_RTX_FORMAT (code);
279 int i, j;
281 if (GET_CODE (x) == VALUE
282 && (! only_useless || CSELIB_VAL_PTR (x)->locs == 0))
283 return 1;
285 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
287 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
288 return 1;
289 else if (fmt[i] == 'E')
290 for (j = 0; j < XVECLEN (x, i); j++)
291 if (references_value_p (XVECEXP (x, i, j), only_useless))
292 return 1;
295 return 0;
298 /* For all locations found in X, delete locations that reference useless
299 values (i.e. values without any location). Called through
300 htab_traverse. */
302 static int
303 discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
305 cselib_val *v = (cselib_val *)*x;
306 struct elt_loc_list **p = &v->locs;
307 int had_locs = v->locs != 0;
309 while (*p)
311 if (references_value_p ((*p)->loc, 1))
312 unchain_one_elt_loc_list (p);
313 else
314 p = &(*p)->next;
317 if (had_locs && v->locs == 0)
319 n_useless_values++;
320 values_became_useless = 1;
322 return 1;
325 /* If X is a value with no locations, remove it from the hashtable. */
327 static int
328 discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
330 cselib_val *v = (cselib_val *)*x;
332 if (v->locs == 0)
334 CSELIB_VAL_PTR (v->u.val_rtx) = NULL;
335 htab_clear_slot (hash_table, x);
336 unchain_one_value (v);
337 n_useless_values--;
340 return 1;
343 /* Clean out useless values (i.e. those which no longer have locations
344 associated with them) from the hash table. */
346 static void
347 remove_useless_values (void)
349 cselib_val **p, *v;
350 /* First pass: eliminate locations that reference the value. That in
351 turn can make more values useless. */
354 values_became_useless = 0;
355 htab_traverse (hash_table, discard_useless_locs, 0);
357 while (values_became_useless);
359 /* Second pass: actually remove the values. */
361 p = &first_containing_mem;
362 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
363 if (v->locs)
365 *p = v;
366 p = &(*p)->next_containing_mem;
368 *p = &dummy_val;
370 htab_traverse (hash_table, discard_useless_values, 0);
372 gcc_assert (!n_useless_values);
375 /* Return the mode in which a register was last set. If X is not a
376 register, return its mode. If the mode in which the register was
377 set is not known, or the value was already clobbered, return
378 VOIDmode. */
380 enum machine_mode
381 cselib_reg_set_mode (rtx x)
383 if (!REG_P (x))
384 return GET_MODE (x);
386 if (REG_VALUES (REGNO (x)) == NULL
387 || REG_VALUES (REGNO (x))->elt == NULL)
388 return VOIDmode;
390 return GET_MODE (REG_VALUES (REGNO (x))->elt->u.val_rtx);
393 /* Return nonzero if we can prove that X and Y contain the same value, taking
394 our gathered information into account. */
397 rtx_equal_for_cselib_p (rtx x, rtx y)
399 enum rtx_code code;
400 const char *fmt;
401 int i;
403 if (REG_P (x) || MEM_P (x))
405 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0);
407 if (e)
408 x = e->u.val_rtx;
411 if (REG_P (y) || MEM_P (y))
413 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0);
415 if (e)
416 y = e->u.val_rtx;
419 if (x == y)
420 return 1;
422 if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE)
423 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
425 if (GET_CODE (x) == VALUE)
427 cselib_val *e = CSELIB_VAL_PTR (x);
428 struct elt_loc_list *l;
430 for (l = e->locs; l; l = l->next)
432 rtx t = l->loc;
434 /* Avoid infinite recursion. */
435 if (REG_P (t) || MEM_P (t))
436 continue;
437 else if (rtx_equal_for_cselib_p (t, y))
438 return 1;
441 return 0;
444 if (GET_CODE (y) == VALUE)
446 cselib_val *e = CSELIB_VAL_PTR (y);
447 struct elt_loc_list *l;
449 for (l = e->locs; l; l = l->next)
451 rtx t = l->loc;
453 if (REG_P (t) || MEM_P (t))
454 continue;
455 else if (rtx_equal_for_cselib_p (x, t))
456 return 1;
459 return 0;
462 if (GET_CODE (x) != GET_CODE (y) || GET_MODE (x) != GET_MODE (y))
463 return 0;
465 /* This won't be handled correctly by the code below. */
466 if (GET_CODE (x) == LABEL_REF)
467 return XEXP (x, 0) == XEXP (y, 0);
469 code = GET_CODE (x);
470 fmt = GET_RTX_FORMAT (code);
472 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
474 int j;
476 switch (fmt[i])
478 case 'w':
479 if (XWINT (x, i) != XWINT (y, i))
480 return 0;
481 break;
483 case 'n':
484 case 'i':
485 if (XINT (x, i) != XINT (y, i))
486 return 0;
487 break;
489 case 'V':
490 case 'E':
491 /* Two vectors must have the same length. */
492 if (XVECLEN (x, i) != XVECLEN (y, i))
493 return 0;
495 /* And the corresponding elements must match. */
496 for (j = 0; j < XVECLEN (x, i); j++)
497 if (! rtx_equal_for_cselib_p (XVECEXP (x, i, j),
498 XVECEXP (y, i, j)))
499 return 0;
500 break;
502 case 'e':
503 if (! rtx_equal_for_cselib_p (XEXP (x, i), XEXP (y, i)))
504 return 0;
505 break;
507 case 'S':
508 case 's':
509 if (strcmp (XSTR (x, i), XSTR (y, i)))
510 return 0;
511 break;
513 case 'u':
514 /* These are just backpointers, so they don't matter. */
515 break;
517 case '0':
518 case 't':
519 break;
521 /* It is believed that rtx's at this level will never
522 contain anything but integers and other rtx's,
523 except for within LABEL_REFs and SYMBOL_REFs. */
524 default:
525 gcc_unreachable ();
528 return 1;
531 /* We need to pass down the mode of constants through the hash table
532 functions. For that purpose, wrap them in a CONST of the appropriate
533 mode. */
534 static rtx
535 wrap_constant (enum machine_mode mode, rtx x)
537 if (GET_CODE (x) != CONST_INT
538 && (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
539 return x;
540 gcc_assert (mode != VOIDmode);
541 return gen_rtx_CONST (mode, x);
544 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
545 For registers and memory locations, we look up their cselib_val structure
546 and return its VALUE element.
547 Possible reasons for return 0 are: the object is volatile, or we couldn't
548 find a register or memory location in the table and CREATE is zero. If
549 CREATE is nonzero, table elts are created for regs and mem.
550 MODE is used in hashing for CONST_INTs only;
551 otherwise the mode of X is used. */
553 static unsigned int
554 cselib_hash_rtx (rtx x, enum machine_mode mode, int create)
556 cselib_val *e;
557 int i, j;
558 enum rtx_code code;
559 const char *fmt;
560 unsigned int hash = 0;
562 code = GET_CODE (x);
563 hash += (unsigned) code + (unsigned) GET_MODE (x);
565 switch (code)
567 case MEM:
568 case REG:
569 e = cselib_lookup (x, GET_MODE (x), create);
570 if (! e)
571 return 0;
573 return e->value;
575 case CONST_INT:
576 hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + INTVAL (x);
577 return hash ? hash : (unsigned int) CONST_INT;
579 case CONST_DOUBLE:
580 /* This is like the general case, except that it only counts
581 the integers representing the constant. */
582 hash += (unsigned) code + (unsigned) GET_MODE (x);
583 if (GET_MODE (x) != VOIDmode)
584 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
585 else
586 hash += ((unsigned) CONST_DOUBLE_LOW (x)
587 + (unsigned) CONST_DOUBLE_HIGH (x));
588 return hash ? hash : (unsigned int) CONST_DOUBLE;
590 case CONST_VECTOR:
592 int units;
593 rtx elt;
595 units = CONST_VECTOR_NUNITS (x);
597 for (i = 0; i < units; ++i)
599 elt = CONST_VECTOR_ELT (x, i);
600 hash += cselib_hash_rtx (elt, GET_MODE (elt), 0);
603 return hash;
606 /* Assume there is only one rtx object for any given label. */
607 case LABEL_REF:
608 hash
609 += ((unsigned) LABEL_REF << 7) + (unsigned long) XEXP (x, 0);
610 return hash ? hash : (unsigned int) LABEL_REF;
612 case SYMBOL_REF:
613 hash
614 += ((unsigned) SYMBOL_REF << 7) + (unsigned long) XSTR (x, 0);
615 return hash ? hash : (unsigned int) SYMBOL_REF;
617 case PRE_DEC:
618 case PRE_INC:
619 case POST_DEC:
620 case POST_INC:
621 case POST_MODIFY:
622 case PRE_MODIFY:
623 case PC:
624 case CC0:
625 case CALL:
626 case UNSPEC_VOLATILE:
627 return 0;
629 case ASM_OPERANDS:
630 if (MEM_VOLATILE_P (x))
631 return 0;
633 break;
635 default:
636 break;
639 i = GET_RTX_LENGTH (code) - 1;
640 fmt = GET_RTX_FORMAT (code);
641 for (; i >= 0; i--)
643 switch (fmt[i])
645 case 'e':
647 rtx tem = XEXP (x, i);
648 unsigned int tem_hash = cselib_hash_rtx (tem, 0, create);
650 if (tem_hash == 0)
651 return 0;
653 hash += tem_hash;
655 break;
656 case 'E':
657 for (j = 0; j < XVECLEN (x, i); j++)
659 unsigned int tem_hash
660 = cselib_hash_rtx (XVECEXP (x, i, j), 0, create);
662 if (tem_hash == 0)
663 return 0;
665 hash += tem_hash;
667 break;
669 case 's':
671 const unsigned char *p = (const unsigned char *) XSTR (x, i);
673 if (p)
674 while (*p)
675 hash += *p++;
676 break;
679 case 'i':
680 hash += XINT (x, i);
681 break;
683 case '0':
684 case 't':
685 /* unused */
686 break;
688 default:
689 gcc_unreachable ();
693 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
696 /* Create a new value structure for VALUE and initialize it. The mode of the
697 value is MODE. */
699 static inline cselib_val *
700 new_cselib_val (unsigned int value, enum machine_mode mode)
702 cselib_val *e = pool_alloc (cselib_val_pool);
704 gcc_assert (value);
706 e->value = value;
707 /* We use an alloc pool to allocate this RTL construct because it
708 accounts for about 8% of the overall memory usage. We know
709 precisely when we can have VALUE RTXen (when cselib is active)
710 so we don't need to put them in garbage collected memory.
711 ??? Why should a VALUE be an RTX in the first place? */
712 e->u.val_rtx = pool_alloc (value_pool);
713 memset (e->u.val_rtx, 0, RTX_HDR_SIZE);
714 PUT_CODE (e->u.val_rtx, VALUE);
715 PUT_MODE (e->u.val_rtx, mode);
716 CSELIB_VAL_PTR (e->u.val_rtx) = e;
717 e->addr_list = 0;
718 e->locs = 0;
719 e->next_containing_mem = 0;
720 return e;
723 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
724 contains the data at this address. X is a MEM that represents the
725 value. Update the two value structures to represent this situation. */
727 static void
728 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
730 struct elt_loc_list *l;
732 /* Avoid duplicates. */
733 for (l = mem_elt->locs; l; l = l->next)
734 if (MEM_P (l->loc)
735 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
736 return;
738 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
739 mem_elt->locs
740 = new_elt_loc_list (mem_elt->locs,
741 replace_equiv_address_nv (x, addr_elt->u.val_rtx));
742 if (mem_elt->next_containing_mem == NULL)
744 mem_elt->next_containing_mem = first_containing_mem;
745 first_containing_mem = mem_elt;
749 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
750 If CREATE, make a new one if we haven't seen it before. */
752 static cselib_val *
753 cselib_lookup_mem (rtx x, int create)
755 enum machine_mode mode = GET_MODE (x);
756 void **slot;
757 cselib_val *addr;
758 cselib_val *mem_elt;
759 struct elt_list *l;
761 if (MEM_VOLATILE_P (x) || mode == BLKmode
762 || !cselib_record_memory
763 || (FLOAT_MODE_P (mode) && flag_float_store))
764 return 0;
766 /* Look up the value for the address. */
767 addr = cselib_lookup (XEXP (x, 0), mode, create);
768 if (! addr)
769 return 0;
771 /* Find a value that describes a value of our mode at that address. */
772 for (l = addr->addr_list; l; l = l->next)
773 if (GET_MODE (l->elt->u.val_rtx) == mode)
774 return l->elt;
776 if (! create)
777 return 0;
779 mem_elt = new_cselib_val (++next_unknown_value, mode);
780 add_mem_for_addr (addr, mem_elt, x);
781 slot = htab_find_slot_with_hash (hash_table, wrap_constant (mode, x),
782 mem_elt->value, INSERT);
783 *slot = mem_elt;
784 return mem_elt;
787 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
788 with VALUE expressions. This way, it becomes independent of changes
789 to registers and memory.
790 X isn't actually modified; if modifications are needed, new rtl is
791 allocated. However, the return value can share rtl with X. */
794 cselib_subst_to_values (rtx x)
796 enum rtx_code code = GET_CODE (x);
797 const char *fmt = GET_RTX_FORMAT (code);
798 cselib_val *e;
799 struct elt_list *l;
800 rtx copy = x;
801 int i;
803 switch (code)
805 case REG:
806 l = REG_VALUES (REGNO (x));
807 if (l && l->elt == NULL)
808 l = l->next;
809 for (; l; l = l->next)
810 if (GET_MODE (l->elt->u.val_rtx) == GET_MODE (x))
811 return l->elt->u.val_rtx;
813 gcc_unreachable ();
815 case MEM:
816 e = cselib_lookup_mem (x, 0);
817 if (! e)
819 /* This happens for autoincrements. Assign a value that doesn't
820 match any other. */
821 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
823 return e->u.val_rtx;
825 case CONST_DOUBLE:
826 case CONST_VECTOR:
827 case CONST_INT:
828 return x;
830 case POST_INC:
831 case PRE_INC:
832 case POST_DEC:
833 case PRE_DEC:
834 case POST_MODIFY:
835 case PRE_MODIFY:
836 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
837 return e->u.val_rtx;
839 default:
840 break;
843 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
845 if (fmt[i] == 'e')
847 rtx t = cselib_subst_to_values (XEXP (x, i));
849 if (t != XEXP (x, i) && x == copy)
850 copy = shallow_copy_rtx (x);
852 XEXP (copy, i) = t;
854 else if (fmt[i] == 'E')
856 int j, k;
858 for (j = 0; j < XVECLEN (x, i); j++)
860 rtx t = cselib_subst_to_values (XVECEXP (x, i, j));
862 if (t != XVECEXP (x, i, j) && XVEC (x, i) == XVEC (copy, i))
864 if (x == copy)
865 copy = shallow_copy_rtx (x);
867 XVEC (copy, i) = rtvec_alloc (XVECLEN (x, i));
868 for (k = 0; k < j; k++)
869 XVECEXP (copy, i, k) = XVECEXP (x, i, k);
872 XVECEXP (copy, i, j) = t;
877 return copy;
880 /* Look up the rtl expression X in our tables and return the value it has.
881 If CREATE is zero, we return NULL if we don't know the value. Otherwise,
882 we create a new one if possible, using mode MODE if X doesn't have a mode
883 (i.e. because it's a constant). */
885 cselib_val *
886 cselib_lookup (rtx x, enum machine_mode mode, int create)
888 void **slot;
889 cselib_val *e;
890 unsigned int hashval;
892 if (GET_MODE (x) != VOIDmode)
893 mode = GET_MODE (x);
895 if (GET_CODE (x) == VALUE)
896 return CSELIB_VAL_PTR (x);
898 if (REG_P (x))
900 struct elt_list *l;
901 unsigned int i = REGNO (x);
903 l = REG_VALUES (i);
904 if (l && l->elt == NULL)
905 l = l->next;
906 for (; l; l = l->next)
907 if (mode == GET_MODE (l->elt->u.val_rtx))
908 return l->elt;
910 if (! create)
911 return 0;
913 if (i < FIRST_PSEUDO_REGISTER)
915 unsigned int n = hard_regno_nregs[i][mode];
917 if (n > max_value_regs)
918 max_value_regs = n;
921 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
922 e->locs = new_elt_loc_list (e->locs, x);
923 if (REG_VALUES (i) == 0)
925 /* Maintain the invariant that the first entry of
926 REG_VALUES, if present, must be the value used to set the
927 register, or NULL. */
928 used_regs[n_used_regs++] = i;
929 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
931 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
932 slot = htab_find_slot_with_hash (hash_table, x, e->value, INSERT);
933 *slot = e;
934 return e;
937 if (MEM_P (x))
938 return cselib_lookup_mem (x, create);
940 hashval = cselib_hash_rtx (x, mode, create);
941 /* Can't even create if hashing is not possible. */
942 if (! hashval)
943 return 0;
945 slot = htab_find_slot_with_hash (hash_table, wrap_constant (mode, x),
946 hashval, create ? INSERT : NO_INSERT);
947 if (slot == 0)
948 return 0;
950 e = (cselib_val *) *slot;
951 if (e)
952 return e;
954 e = new_cselib_val (hashval, mode);
956 /* We have to fill the slot before calling cselib_subst_to_values:
957 the hash table is inconsistent until we do so, and
958 cselib_subst_to_values will need to do lookups. */
959 *slot = (void *) e;
960 e->locs = new_elt_loc_list (e->locs, cselib_subst_to_values (x));
961 return e;
964 /* Invalidate any entries in reg_values that overlap REGNO. This is called
965 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
966 is used to determine how many hard registers are being changed. If MODE
967 is VOIDmode, then only REGNO is being changed; this is used when
968 invalidating call clobbered registers across a call. */
970 static void
971 cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
973 unsigned int endregno;
974 unsigned int i;
976 /* If we see pseudos after reload, something is _wrong_. */
977 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
978 || reg_renumber[regno] < 0);
980 /* Determine the range of registers that must be invalidated. For
981 pseudos, only REGNO is affected. For hard regs, we must take MODE
982 into account, and we must also invalidate lower register numbers
983 if they contain values that overlap REGNO. */
984 if (regno < FIRST_PSEUDO_REGISTER)
986 gcc_assert (mode != VOIDmode);
988 if (regno < max_value_regs)
989 i = 0;
990 else
991 i = regno - max_value_regs;
993 endregno = regno + hard_regno_nregs[regno][mode];
995 else
997 i = regno;
998 endregno = regno + 1;
1001 for (; i < endregno; i++)
1003 struct elt_list **l = &REG_VALUES (i);
1005 /* Go through all known values for this reg; if it overlaps the range
1006 we're invalidating, remove the value. */
1007 while (*l)
1009 cselib_val *v = (*l)->elt;
1010 struct elt_loc_list **p;
1011 unsigned int this_last = i;
1013 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
1014 this_last += hard_regno_nregs[i][GET_MODE (v->u.val_rtx)] - 1;
1016 if (this_last < regno || v == NULL)
1018 l = &(*l)->next;
1019 continue;
1022 /* We have an overlap. */
1023 if (*l == REG_VALUES (i))
1025 /* Maintain the invariant that the first entry of
1026 REG_VALUES, if present, must be the value used to set
1027 the register, or NULL. This is also nice because
1028 then we won't push the same regno onto user_regs
1029 multiple times. */
1030 (*l)->elt = NULL;
1031 l = &(*l)->next;
1033 else
1034 unchain_one_elt_list (l);
1036 /* Now, we clear the mapping from value to reg. It must exist, so
1037 this code will crash intentionally if it doesn't. */
1038 for (p = &v->locs; ; p = &(*p)->next)
1040 rtx x = (*p)->loc;
1042 if (REG_P (x) && REGNO (x) == i)
1044 unchain_one_elt_loc_list (p);
1045 break;
1048 if (v->locs == 0)
1049 n_useless_values++;
1054 /* Return 1 if X has a value that can vary even between two
1055 executions of the program. 0 means X can be compared reliably
1056 against certain constants or near-constants. */
1058 static int
1059 cselib_rtx_varies_p (rtx x ATTRIBUTE_UNUSED, int from_alias ATTRIBUTE_UNUSED)
1061 /* We actually don't need to verify very hard. This is because
1062 if X has actually changed, we invalidate the memory anyway,
1063 so assume that all common memory addresses are
1064 invariant. */
1065 return 0;
1068 /* Invalidate any locations in the table which are changed because of a
1069 store to MEM_RTX. If this is called because of a non-const call
1070 instruction, MEM_RTX is (mem:BLK const0_rtx). */
1072 static void
1073 cselib_invalidate_mem (rtx mem_rtx)
1075 cselib_val **vp, *v, *next;
1076 int num_mems = 0;
1077 rtx mem_addr;
1079 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
1080 mem_rtx = canon_rtx (mem_rtx);
1082 vp = &first_containing_mem;
1083 for (v = *vp; v != &dummy_val; v = next)
1085 bool has_mem = false;
1086 struct elt_loc_list **p = &v->locs;
1087 int had_locs = v->locs != 0;
1089 while (*p)
1091 rtx x = (*p)->loc;
1092 cselib_val *addr;
1093 struct elt_list **mem_chain;
1095 /* MEMs may occur in locations only at the top level; below
1096 that every MEM or REG is substituted by its VALUE. */
1097 if (!MEM_P (x))
1099 p = &(*p)->next;
1100 continue;
1102 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
1103 && ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx), mem_addr,
1104 x, cselib_rtx_varies_p))
1106 has_mem = true;
1107 num_mems++;
1108 p = &(*p)->next;
1109 continue;
1112 /* This one overlaps. */
1113 /* We must have a mapping from this MEM's address to the
1114 value (E). Remove that, too. */
1115 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0);
1116 mem_chain = &addr->addr_list;
1117 for (;;)
1119 if ((*mem_chain)->elt == v)
1121 unchain_one_elt_list (mem_chain);
1122 break;
1125 mem_chain = &(*mem_chain)->next;
1128 unchain_one_elt_loc_list (p);
1131 if (had_locs && v->locs == 0)
1132 n_useless_values++;
1134 next = v->next_containing_mem;
1135 if (has_mem)
1137 *vp = v;
1138 vp = &(*vp)->next_containing_mem;
1140 else
1141 v->next_containing_mem = NULL;
1143 *vp = &dummy_val;
1146 /* Invalidate DEST, which is being assigned to or clobbered. */
1148 void
1149 cselib_invalidate_rtx (rtx dest)
1151 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SIGN_EXTRACT
1152 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG)
1153 dest = XEXP (dest, 0);
1155 if (REG_P (dest))
1156 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
1157 else if (MEM_P (dest))
1158 cselib_invalidate_mem (dest);
1160 /* Some machines don't define AUTO_INC_DEC, but they still use push
1161 instructions. We need to catch that case here in order to
1162 invalidate the stack pointer correctly. Note that invalidating
1163 the stack pointer is different from invalidating DEST. */
1164 if (push_operand (dest, GET_MODE (dest)))
1165 cselib_invalidate_rtx (stack_pointer_rtx);
1168 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
1170 static void
1171 cselib_invalidate_rtx_note_stores (rtx dest, rtx ignore ATTRIBUTE_UNUSED,
1172 void *data ATTRIBUTE_UNUSED)
1174 cselib_invalidate_rtx (dest);
1177 /* Record the result of a SET instruction. DEST is being set; the source
1178 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
1179 describes its address. */
1181 static void
1182 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
1184 int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
1186 if (src_elt == 0 || side_effects_p (dest))
1187 return;
1189 if (dreg >= 0)
1191 if (dreg < FIRST_PSEUDO_REGISTER)
1193 unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
1195 if (n > max_value_regs)
1196 max_value_regs = n;
1199 if (REG_VALUES (dreg) == 0)
1201 used_regs[n_used_regs++] = dreg;
1202 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
1204 else
1206 /* The register should have been invalidated. */
1207 gcc_assert (REG_VALUES (dreg)->elt == 0);
1208 REG_VALUES (dreg)->elt = src_elt;
1211 if (src_elt->locs == 0)
1212 n_useless_values--;
1213 src_elt->locs = new_elt_loc_list (src_elt->locs, dest);
1215 else if (MEM_P (dest) && dest_addr_elt != 0
1216 && cselib_record_memory)
1218 if (src_elt->locs == 0)
1219 n_useless_values--;
1220 add_mem_for_addr (dest_addr_elt, src_elt, dest);
1224 /* Describe a single set that is part of an insn. */
1225 struct set
1227 rtx src;
1228 rtx dest;
1229 cselib_val *src_elt;
1230 cselib_val *dest_addr_elt;
1233 /* There is no good way to determine how many elements there can be
1234 in a PARALLEL. Since it's fairly cheap, use a really large number. */
1235 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
1237 /* Record the effects of any sets in INSN. */
1238 static void
1239 cselib_record_sets (rtx insn)
1241 int n_sets = 0;
1242 int i;
1243 struct set sets[MAX_SETS];
1244 rtx body = PATTERN (insn);
1245 rtx cond = 0;
1247 body = PATTERN (insn);
1248 if (GET_CODE (body) == COND_EXEC)
1250 cond = COND_EXEC_TEST (body);
1251 body = COND_EXEC_CODE (body);
1254 /* Find all sets. */
1255 if (GET_CODE (body) == SET)
1257 sets[0].src = SET_SRC (body);
1258 sets[0].dest = SET_DEST (body);
1259 n_sets = 1;
1261 else if (GET_CODE (body) == PARALLEL)
1263 /* Look through the PARALLEL and record the values being
1264 set, if possible. Also handle any CLOBBERs. */
1265 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
1267 rtx x = XVECEXP (body, 0, i);
1269 if (GET_CODE (x) == SET)
1271 sets[n_sets].src = SET_SRC (x);
1272 sets[n_sets].dest = SET_DEST (x);
1273 n_sets++;
1278 /* Look up the values that are read. Do this before invalidating the
1279 locations that are written. */
1280 for (i = 0; i < n_sets; i++)
1282 rtx dest = sets[i].dest;
1284 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
1285 the low part after invalidating any knowledge about larger modes. */
1286 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
1287 sets[i].dest = dest = XEXP (dest, 0);
1289 /* We don't know how to record anything but REG or MEM. */
1290 if (REG_P (dest)
1291 || (MEM_P (dest) && cselib_record_memory))
1293 rtx src = sets[i].src;
1294 if (cond)
1295 src = gen_rtx_IF_THEN_ELSE (GET_MODE (src), cond, src, dest);
1296 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1);
1297 if (MEM_P (dest))
1298 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0), Pmode, 1);
1299 else
1300 sets[i].dest_addr_elt = 0;
1304 /* Invalidate all locations written by this insn. Note that the elts we
1305 looked up in the previous loop aren't affected, just some of their
1306 locations may go away. */
1307 note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
1309 /* If this is an asm, look for duplicate sets. This can happen when the
1310 user uses the same value as an output multiple times. This is valid
1311 if the outputs are not actually used thereafter. Treat this case as
1312 if the value isn't actually set. We do this by smashing the destination
1313 to pc_rtx, so that we won't record the value later. */
1314 if (n_sets >= 2 && asm_noperands (body) >= 0)
1316 for (i = 0; i < n_sets; i++)
1318 rtx dest = sets[i].dest;
1319 if (REG_P (dest) || MEM_P (dest))
1321 int j;
1322 for (j = i + 1; j < n_sets; j++)
1323 if (rtx_equal_p (dest, sets[j].dest))
1325 sets[i].dest = pc_rtx;
1326 sets[j].dest = pc_rtx;
1332 /* Now enter the equivalences in our tables. */
1333 for (i = 0; i < n_sets; i++)
1335 rtx dest = sets[i].dest;
1336 if (REG_P (dest)
1337 || (MEM_P (dest) && cselib_record_memory))
1338 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
1342 /* Record the effects of INSN. */
1344 void
1345 cselib_process_insn (rtx insn)
1347 int i;
1348 rtx x;
1350 if (find_reg_note (insn, REG_LIBCALL, NULL))
1351 cselib_current_insn_in_libcall = true;
1352 cselib_current_insn = insn;
1354 /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
1355 if (LABEL_P (insn)
1356 || (CALL_P (insn)
1357 && find_reg_note (insn, REG_SETJMP, NULL))
1358 || (NONJUMP_INSN_P (insn)
1359 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
1360 && MEM_VOLATILE_P (PATTERN (insn))))
1362 if (find_reg_note (insn, REG_RETVAL, NULL))
1363 cselib_current_insn_in_libcall = false;
1364 clear_table ();
1365 return;
1368 if (! INSN_P (insn))
1370 if (find_reg_note (insn, REG_RETVAL, NULL))
1371 cselib_current_insn_in_libcall = false;
1372 cselib_current_insn = 0;
1373 return;
1376 /* If this is a call instruction, forget anything stored in a
1377 call clobbered register, or, if this is not a const call, in
1378 memory. */
1379 if (CALL_P (insn))
1381 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1382 if (call_used_regs[i])
1383 cselib_invalidate_regno (i, reg_raw_mode[i]);
1385 if (! CONST_OR_PURE_CALL_P (insn))
1386 cselib_invalidate_mem (callmem);
1389 cselib_record_sets (insn);
1391 #ifdef AUTO_INC_DEC
1392 /* Clobber any registers which appear in REG_INC notes. We
1393 could keep track of the changes to their values, but it is
1394 unlikely to help. */
1395 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1396 if (REG_NOTE_KIND (x) == REG_INC)
1397 cselib_invalidate_rtx (XEXP (x, 0));
1398 #endif
1400 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
1401 after we have processed the insn. */
1402 if (CALL_P (insn))
1403 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
1404 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
1405 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
1407 if (find_reg_note (insn, REG_RETVAL, NULL))
1408 cselib_current_insn_in_libcall = false;
1409 cselib_current_insn = 0;
1411 if (n_useless_values > MAX_USELESS_VALUES)
1412 remove_useless_values ();
1415 /* Initialize cselib for one pass. The caller must also call
1416 init_alias_analysis. */
1418 void
1419 cselib_init (bool record_memory)
1421 elt_list_pool = create_alloc_pool ("elt_list",
1422 sizeof (struct elt_list), 10);
1423 elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
1424 sizeof (struct elt_loc_list), 10);
1425 cselib_val_pool = create_alloc_pool ("cselib_val_list",
1426 sizeof (cselib_val), 10);
1427 value_pool = create_alloc_pool ("value",
1428 RTX_SIZE (VALUE), 100);
1429 cselib_record_memory = record_memory;
1430 /* This is only created once. */
1431 if (! callmem)
1432 callmem = gen_rtx_MEM (BLKmode, const0_rtx);
1434 cselib_nregs = max_reg_num ();
1436 /* We preserve reg_values to allow expensive clearing of the whole thing.
1437 Reallocate it however if it happens to be too large. */
1438 if (!reg_values || reg_values_size < cselib_nregs
1439 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
1441 if (reg_values)
1442 free (reg_values);
1443 /* Some space for newly emit instructions so we don't end up
1444 reallocating in between passes. */
1445 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
1446 reg_values = xcalloc (reg_values_size, sizeof (reg_values));
1448 used_regs = xmalloc (sizeof (*used_regs) * cselib_nregs);
1449 n_used_regs = 0;
1450 hash_table = htab_create (31, get_value_hash, entry_and_rtx_equal_p, NULL);
1451 cselib_current_insn_in_libcall = false;
1454 /* Called when the current user is done with cselib. */
1456 void
1457 cselib_finish (void)
1459 free_alloc_pool (elt_list_pool);
1460 free_alloc_pool (elt_loc_list_pool);
1461 free_alloc_pool (cselib_val_pool);
1462 free_alloc_pool (value_pool);
1463 clear_table ();
1464 htab_delete (hash_table);
1465 free (used_regs);
1466 used_regs = 0;
1467 hash_table = 0;
1468 n_useless_values = 0;
1469 next_unknown_value = 0;
1472 #include "gt-cselib.h"