1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2004, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
25 ------------------------------------------------------------------------------
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Einfo
; use Einfo
;
30 with Errout
; use Errout
;
31 with Exp_Tss
; use Exp_Tss
;
32 with Exp_Util
; use Exp_Util
;
34 with Nlists
; use Nlists
;
35 with Nmake
; use Nmake
;
37 with Rtsfind
; use Rtsfind
;
39 with Sem_Ch8
; use Sem_Ch8
;
40 with Sem_Eval
; use Sem_Eval
;
41 with Sem_Res
; use Sem_Res
;
42 with Sem_Type
; use Sem_Type
;
43 with Sem_Util
; use Sem_Util
;
44 with Snames
; use Snames
;
45 with Stand
; use Stand
;
46 with Sinfo
; use Sinfo
;
48 with Targparm
; use Targparm
;
49 with Ttypes
; use Ttypes
;
50 with Tbuild
; use Tbuild
;
51 with Urealp
; use Urealp
;
53 with GNAT
.Heap_Sort_A
; use GNAT
.Heap_Sort_A
;
55 package body Sem_Ch13
is
57 SSU
: constant Pos
:= System_Storage_Unit
;
58 -- Convenient short hand for commonly used constant
60 -----------------------
61 -- Local Subprograms --
62 -----------------------
64 procedure Alignment_Check_For_Esize_Change
(Typ
: Entity_Id
);
65 -- This routine is called after setting the Esize of type entity Typ.
66 -- The purpose is to deal with the situation where an aligment has been
67 -- inherited from a derived type that is no longer appropriate for the
68 -- new Esize value. In this case, we reset the Alignment to unknown.
70 procedure Check_Component_Overlap
(C1_Ent
, C2_Ent
: Entity_Id
);
71 -- Given two entities for record components or discriminants, checks
72 -- if they hav overlapping component clauses and issues errors if so.
74 function Get_Alignment_Value
(Expr
: Node_Id
) return Uint
;
75 -- Given the expression for an alignment value, returns the corresponding
76 -- Uint value. If the value is inappropriate, then error messages are
77 -- posted as required, and a value of No_Uint is returned.
79 function Is_Operational_Item
(N
: Node_Id
) return Boolean;
80 -- A specification for a stream attribute is allowed before the full
81 -- type is declared, as explained in AI-00137 and the corrigendum.
82 -- Attributes that do not specify a representation characteristic are
83 -- operational attributes.
85 function Address_Aliased_Entity
(N
: Node_Id
) return Entity_Id
;
86 -- If expression N is of the form E'Address, return E
88 procedure Mark_Aliased_Address_As_Volatile
(N
: Node_Id
);
89 -- This is used for processing of an address representation clause. If
90 -- the expression N is of the form of K'Address, then the entity that
91 -- is associated with K is marked as volatile.
93 procedure New_Stream_Function
98 -- Create a function renaming of a given stream attribute to the
99 -- designated subprogram and then in the tagged case, provide this as
100 -- a primitive operation, or in the non-tagged case make an appropriate
101 -- TSS entry. Used for Input. This is more properly an expansion activity
102 -- than just semantics, but the presence of user-defined stream functions
103 -- for limited types is a legality check, which is why this takes place
104 -- here rather than in exp_ch13, where it was previously. Nam indicates
105 -- the name of the TSS function to be generated.
107 -- To avoid elaboration anomalies with freeze nodes, for untagged types
108 -- we generate both a subprogram declaration and a subprogram renaming
109 -- declaration, so that the attribute specification is handled as a
110 -- renaming_as_body. For tagged types, the specification is one of the
113 procedure New_Stream_Procedure
118 Out_P
: Boolean := False);
119 -- Create a procedure renaming of a given stream attribute to the
120 -- designated subprogram and then in the tagged case, provide this as
121 -- a primitive operation, or in the non-tagged case make an appropriate
122 -- TSS entry. Used for Read, Output, Write. Nam indicates the name of
123 -- the TSS procedure to be generated.
125 ----------------------------------------------
126 -- Table for Validate_Unchecked_Conversions --
127 ----------------------------------------------
129 -- The following table collects unchecked conversions for validation.
130 -- Entries are made by Validate_Unchecked_Conversion and then the
131 -- call to Validate_Unchecked_Conversions does the actual error
132 -- checking and posting of warnings. The reason for this delayed
133 -- processing is to take advantage of back-annotations of size and
134 -- alignment values peformed by the back end.
136 type UC_Entry
is record
137 Enode
: Node_Id
; -- node used for posting warnings
138 Source
: Entity_Id
; -- source type for unchecked conversion
139 Target
: Entity_Id
; -- target type for unchecked conversion
142 package Unchecked_Conversions
is new Table
.Table
(
143 Table_Component_Type
=> UC_Entry
,
144 Table_Index_Type
=> Int
,
145 Table_Low_Bound
=> 1,
147 Table_Increment
=> 200,
148 Table_Name
=> "Unchecked_Conversions");
150 ----------------------------
151 -- Address_Aliased_Entity --
152 ----------------------------
154 function Address_Aliased_Entity
(N
: Node_Id
) return Entity_Id
is
156 if Nkind
(N
) = N_Attribute_Reference
157 and then Attribute_Name
(N
) = Name_Address
160 Nam
: Node_Id
:= Prefix
(N
);
163 or else Nkind
(Nam
) = N_Selected_Component
164 or else Nkind
(Nam
) = N_Indexed_Component
169 if Is_Entity_Name
(Nam
) then
176 end Address_Aliased_Entity
;
178 --------------------------------------
179 -- Alignment_Check_For_Esize_Change --
180 --------------------------------------
182 procedure Alignment_Check_For_Esize_Change
(Typ
: Entity_Id
) is
184 -- If the alignment is known, and not set by a rep clause, and is
185 -- inconsistent with the size being set, then reset it to unknown,
186 -- we assume in this case that the size overrides the inherited
187 -- alignment, and that the alignment must be recomputed.
189 if Known_Alignment
(Typ
)
190 and then not Has_Alignment_Clause
(Typ
)
191 and then Esize
(Typ
) mod (Alignment
(Typ
) * SSU
) /= 0
193 Init_Alignment
(Typ
);
195 end Alignment_Check_For_Esize_Change
;
197 -----------------------
198 -- Analyze_At_Clause --
199 -----------------------
201 -- An at clause is replaced by the corresponding Address attribute
202 -- definition clause that is the preferred approach in Ada 95.
204 procedure Analyze_At_Clause
(N
: Node_Id
) is
206 if Warn_On_Obsolescent_Feature
then
208 ("at clause is an obsolescent feature ('R'M 'J.7(2))?", N
);
210 ("\use address attribute definition clause instead?", N
);
214 Make_Attribute_Definition_Clause
(Sloc
(N
),
215 Name
=> Identifier
(N
),
216 Chars
=> Name_Address
,
217 Expression
=> Expression
(N
)));
218 Analyze_Attribute_Definition_Clause
(N
);
219 end Analyze_At_Clause
;
221 -----------------------------------------
222 -- Analyze_Attribute_Definition_Clause --
223 -----------------------------------------
225 procedure Analyze_Attribute_Definition_Clause
(N
: Node_Id
) is
226 Loc
: constant Source_Ptr
:= Sloc
(N
);
227 Nam
: constant Node_Id
:= Name
(N
);
228 Attr
: constant Name_Id
:= Chars
(N
);
229 Expr
: constant Node_Id
:= Expression
(N
);
230 Id
: constant Attribute_Id
:= Get_Attribute_Id
(Attr
);
234 FOnly
: Boolean := False;
235 -- Reset to True for subtype specific attribute (Alignment, Size)
236 -- and for stream attributes, i.e. those cases where in the call
237 -- to Rep_Item_Too_Late, FOnly is set True so that only the freezing
238 -- rules are checked. Note that the case of stream attributes is not
239 -- clear from the RM, but see AI95-00137. Also, the RM seems to
240 -- disallow Storage_Size for derived task types, but that is also
241 -- clearly unintentional.
247 if Rep_Item_Too_Early
(Ent
, N
) then
251 -- Rep clause applies to full view of incomplete type or private type
252 -- if we have one (if not, this is a premature use of the type).
253 -- However, certain semantic checks need to be done on the specified
254 -- entity (i.e. the private view), so we save it in Ent.
256 if Is_Private_Type
(Ent
)
257 and then Is_Derived_Type
(Ent
)
258 and then not Is_Tagged_Type
(Ent
)
259 and then No
(Full_View
(Ent
))
261 -- If this is a private type whose completion is a derivation
262 -- from another private type, there is no full view, and the
263 -- attribute belongs to the type itself, not its underlying parent.
267 elsif Ekind
(Ent
) = E_Incomplete_Type
then
269 -- The attribute applies to the full view, set the entity
270 -- of the attribute definition accordingly.
272 Ent
:= Underlying_Type
(Ent
);
274 Set_Entity
(Nam
, Ent
);
277 U_Ent
:= Underlying_Type
(Ent
);
280 -- Complete other routine error checks
282 if Etype
(Nam
) = Any_Type
then
285 elsif Scope
(Ent
) /= Current_Scope
then
286 Error_Msg_N
("entity must be declared in this scope", Nam
);
289 elsif No
(U_Ent
) then
292 elsif Is_Type
(U_Ent
)
293 and then not Is_First_Subtype
(U_Ent
)
294 and then Id
/= Attribute_Object_Size
295 and then Id
/= Attribute_Value_Size
296 and then not From_At_Mod
(N
)
298 Error_Msg_N
("cannot specify attribute for subtype", Nam
);
303 -- Switch on particular attribute
311 -- Address attribute definition clause
313 when Attribute_Address
=> Address
: begin
314 Analyze_And_Resolve
(Expr
, RTE
(RE_Address
));
316 if Present
(Address_Clause
(U_Ent
)) then
317 Error_Msg_N
("address already given for &", Nam
);
319 -- Case of address clause for subprogram
321 elsif Is_Subprogram
(U_Ent
) then
322 if Has_Homonym
(U_Ent
) then
324 ("address clause cannot be given " &
325 "for overloaded subprogram",
329 -- For subprograms, all address clauses are permitted,
330 -- and we mark the subprogram as having a deferred freeze
331 -- so that Gigi will not elaborate it too soon.
333 -- Above needs more comments, what is too soon about???
335 Set_Has_Delayed_Freeze
(U_Ent
);
337 -- Case of address clause for entry
339 elsif Ekind
(U_Ent
) = E_Entry
then
340 if Nkind
(Parent
(N
)) = N_Task_Body
then
342 ("entry address must be specified in task spec", Nam
);
345 -- For entries, we require a constant address
347 Check_Constant_Address_Clause
(Expr
, U_Ent
);
349 if Is_Task_Type
(Scope
(U_Ent
))
350 and then Comes_From_Source
(Scope
(U_Ent
))
353 ("?entry address declared for entry in task type", N
);
355 ("\?only one task can be declared of this type", N
);
358 if Warn_On_Obsolescent_Feature
then
360 ("attaching interrupt to task entry is an " &
361 "obsolescent feature ('R'M 'J.7.1)?", N
);
363 ("\use interrupt procedure instead?", N
);
366 -- Case of an address clause for a controlled object:
367 -- erroneous execution.
369 elsif Is_Controlled
(Etype
(U_Ent
)) then
371 ("?controlled object& must not be overlaid", Nam
, U_Ent
);
373 ("\?Program_Error will be raised at run time", Nam
);
374 Insert_Action
(Declaration_Node
(U_Ent
),
375 Make_Raise_Program_Error
(Loc
,
376 Reason
=> PE_Overlaid_Controlled_Object
));
378 -- Case of address clause for a (non-controlled) object
381 Ekind
(U_Ent
) = E_Variable
383 Ekind
(U_Ent
) = E_Constant
386 Expr
: constant Node_Id
:= Expression
(N
);
387 Aent
: constant Entity_Id
:= Address_Aliased_Entity
(Expr
);
390 -- Exported variables cannot have an address clause,
391 -- because this cancels the effect of the pragma Export
393 if Is_Exported
(U_Ent
) then
395 ("cannot export object with address clause", Nam
);
397 -- Overlaying controlled objects is erroneous
400 and then Is_Controlled
(Etype
(Aent
))
403 ("?controlled object must not be overlaid", Expr
);
405 ("\?Program_Error will be raised at run time", Expr
);
406 Insert_Action
(Declaration_Node
(U_Ent
),
407 Make_Raise_Program_Error
(Loc
,
408 Reason
=> PE_Overlaid_Controlled_Object
));
411 and then Ekind
(U_Ent
) = E_Constant
412 and then Ekind
(Aent
) /= E_Constant
414 Error_Msg_N
("constant overlays a variable?", Expr
);
416 elsif Present
(Renamed_Object
(U_Ent
)) then
418 ("address clause not allowed"
419 & " for a renaming declaration ('R'M 13.1(6))", Nam
);
421 -- Imported variables can have an address clause, but then
422 -- the import is pretty meaningless except to suppress
423 -- initializations, so we do not need such variables to
424 -- be statically allocated (and in fact it causes trouble
425 -- if the address clause is a local value).
427 elsif Is_Imported
(U_Ent
) then
428 Set_Is_Statically_Allocated
(U_Ent
, False);
431 -- We mark a possible modification of a variable with an
432 -- address clause, since it is likely aliasing is occurring.
434 Note_Possible_Modification
(Nam
);
436 -- Here we are checking for explicit overlap of one
437 -- variable by another, and if we find this, then we
438 -- mark the overlapped variable as also being aliased.
440 -- First case is where we have an explicit
442 -- for J'Address use K'Address;
444 -- In this case, we mark K as volatile
446 Mark_Aliased_Address_As_Volatile
(Expr
);
448 -- Second case is where we have a constant whose
449 -- definition is of the form of an adress as in:
451 -- A : constant Address := K'Address;
453 -- for B'Address use A;
455 -- In this case we also mark K as volatile
457 if Is_Entity_Name
(Expr
) then
459 Ent
: constant Entity_Id
:= Entity
(Expr
);
460 Decl
: constant Node_Id
:= Declaration_Node
(Ent
);
463 if Ekind
(Ent
) = E_Constant
464 and then Nkind
(Decl
) = N_Object_Declaration
465 and then Present
(Expression
(Decl
))
467 Mark_Aliased_Address_As_Volatile
473 -- Legality checks on the address clause for initialized
474 -- objects is deferred until the freeze point, because
475 -- a subsequent pragma might indicate that the object is
476 -- imported and thus not initialized.
478 Set_Has_Delayed_Freeze
(U_Ent
);
480 if Is_Exported
(U_Ent
) then
482 ("& cannot be exported if an address clause is given",
485 ("\define and export a variable " &
486 "that holds its address instead",
490 -- Entity has delayed freeze, so we will generate
491 -- an alignment check at the freeze point.
493 Set_Check_Address_Alignment
494 (N
, not Range_Checks_Suppressed
(U_Ent
));
496 -- Kill the size check code, since we are not allocating
497 -- the variable, it is somewhere else.
499 Kill_Size_Check_Code
(U_Ent
);
502 -- Not a valid entity for an address clause
505 Error_Msg_N
("address cannot be given for &", Nam
);
513 -- Alignment attribute definition clause
515 when Attribute_Alignment
=> Alignment_Block
: declare
516 Align
: constant Uint
:= Get_Alignment_Value
(Expr
);
521 if not Is_Type
(U_Ent
)
522 and then Ekind
(U_Ent
) /= E_Variable
523 and then Ekind
(U_Ent
) /= E_Constant
525 Error_Msg_N
("alignment cannot be given for &", Nam
);
527 elsif Has_Alignment_Clause
(U_Ent
) then
528 Error_Msg_Sloc
:= Sloc
(Alignment_Clause
(U_Ent
));
529 Error_Msg_N
("alignment clause previously given#", N
);
531 elsif Align
/= No_Uint
then
532 Set_Has_Alignment_Clause
(U_Ent
);
533 Set_Alignment
(U_Ent
, Align
);
541 -- Bit_Order attribute definition clause
543 when Attribute_Bit_Order
=> Bit_Order
: declare
545 if not Is_Record_Type
(U_Ent
) then
547 ("Bit_Order can only be defined for record type", Nam
);
550 Analyze_And_Resolve
(Expr
, RTE
(RE_Bit_Order
));
552 if Etype
(Expr
) = Any_Type
then
555 elsif not Is_Static_Expression
(Expr
) then
557 ("Bit_Order requires static expression!", Expr
);
560 if (Expr_Value
(Expr
) = 0) /= Bytes_Big_Endian
then
561 Set_Reverse_Bit_Order
(U_Ent
, True);
571 -- Component_Size attribute definition clause
573 when Attribute_Component_Size
=> Component_Size_Case
: declare
574 Csize
: constant Uint
:= Static_Integer
(Expr
);
577 New_Ctyp
: Entity_Id
;
581 if not Is_Array_Type
(U_Ent
) then
582 Error_Msg_N
("component size requires array type", Nam
);
586 Btype
:= Base_Type
(U_Ent
);
588 if Has_Component_Size_Clause
(Btype
) then
590 ("component size clase for& previously given", Nam
);
592 elsif Csize
/= No_Uint
then
593 Check_Size
(Expr
, Component_Type
(Btype
), Csize
, Biased
);
595 if Has_Aliased_Components
(Btype
)
601 ("component size incorrect for aliased components", N
);
605 -- For the biased case, build a declaration for a subtype
606 -- that will be used to represent the biased subtype that
607 -- reflects the biased representation of components. We need
608 -- this subtype to get proper conversions on referencing
609 -- elements of the array.
613 Make_Defining_Identifier
(Loc
,
614 Chars
=> New_External_Name
(Chars
(U_Ent
), 'C', 0, 'T'));
617 Make_Subtype_Declaration
(Loc
,
618 Defining_Identifier
=> New_Ctyp
,
619 Subtype_Indication
=>
620 New_Occurrence_Of
(Component_Type
(Btype
), Loc
));
622 Set_Parent
(Decl
, N
);
623 Analyze
(Decl
, Suppress
=> All_Checks
);
625 Set_Has_Delayed_Freeze
(New_Ctyp
, False);
626 Set_Esize
(New_Ctyp
, Csize
);
627 Set_RM_Size
(New_Ctyp
, Csize
);
628 Init_Alignment
(New_Ctyp
);
629 Set_Has_Biased_Representation
(New_Ctyp
, True);
630 Set_Is_Itype
(New_Ctyp
, True);
631 Set_Associated_Node_For_Itype
(New_Ctyp
, U_Ent
);
633 Set_Component_Type
(Btype
, New_Ctyp
);
636 Set_Component_Size
(Btype
, Csize
);
637 Set_Has_Component_Size_Clause
(Btype
, True);
638 Set_Has_Non_Standard_Rep
(Btype
, True);
640 end Component_Size_Case
;
646 when Attribute_External_Tag
=> External_Tag
:
648 if not Is_Tagged_Type
(U_Ent
) then
649 Error_Msg_N
("should be a tagged type", Nam
);
652 Analyze_And_Resolve
(Expr
, Standard_String
);
654 if not Is_Static_Expression
(Expr
) then
656 ("static string required for tag name!", Nam
);
659 Set_Has_External_Tag_Rep_Clause
(U_Ent
);
666 when Attribute_Input
=> Input
: declare
667 Subp
: Entity_Id
:= Empty
;
672 function Has_Good_Profile
(Subp
: Entity_Id
) return Boolean;
673 -- Return true if the entity is a function with an appropriate
674 -- profile for the Input attribute.
676 ----------------------
677 -- Has_Good_Profile --
678 ----------------------
680 function Has_Good_Profile
(Subp
: Entity_Id
) return Boolean is
682 Ok
: Boolean := False;
685 if Ekind
(Subp
) = E_Function
then
686 F
:= First_Formal
(Subp
);
688 if Present
(F
) and then No
(Next_Formal
(F
)) then
689 if Ekind
(Etype
(F
)) = E_Anonymous_Access_Type
691 Designated_Type
(Etype
(F
)) =
692 Class_Wide_Type
(RTE
(RE_Root_Stream_Type
))
694 Ok
:= Base_Type
(Etype
(Subp
)) = Base_Type
(Ent
);
700 end Has_Good_Profile
;
702 -- Start of processing for Input attribute definition
707 if not Is_Type
(U_Ent
) then
708 Error_Msg_N
("local name must be a subtype", Nam
);
712 Pnam
:= TSS
(Base_Type
(U_Ent
), TSS_Stream_Input
);
715 and then Base_Type
(Etype
(Pnam
)) = Base_Type
(U_Ent
)
717 Error_Msg_Sloc
:= Sloc
(Pnam
);
718 Error_Msg_N
("input attribute already defined #", Nam
);
725 if Is_Entity_Name
(Expr
) then
726 if not Is_Overloaded
(Expr
) then
727 if Has_Good_Profile
(Entity
(Expr
)) then
728 Subp
:= Entity
(Expr
);
732 Get_First_Interp
(Expr
, I
, It
);
734 while Present
(It
.Nam
) loop
735 if Has_Good_Profile
(It
.Nam
) then
740 Get_Next_Interp
(I
, It
);
745 if Present
(Subp
) then
746 Set_Entity
(Expr
, Subp
);
747 Set_Etype
(Expr
, Etype
(Subp
));
748 New_Stream_Function
(N
, U_Ent
, Subp
, TSS_Stream_Input
);
750 Error_Msg_N
("incorrect expression for input attribute", Expr
);
759 -- Machine radix attribute definition clause
761 when Attribute_Machine_Radix
=> Machine_Radix
: declare
762 Radix
: constant Uint
:= Static_Integer
(Expr
);
765 if not Is_Decimal_Fixed_Point_Type
(U_Ent
) then
766 Error_Msg_N
("decimal fixed-point type expected for &", Nam
);
768 elsif Has_Machine_Radix_Clause
(U_Ent
) then
769 Error_Msg_Sloc
:= Sloc
(Alignment_Clause
(U_Ent
));
770 Error_Msg_N
("machine radix clause previously given#", N
);
772 elsif Radix
/= No_Uint
then
773 Set_Has_Machine_Radix_Clause
(U_Ent
);
774 Set_Has_Non_Standard_Rep
(Base_Type
(U_Ent
));
778 elsif Radix
= 10 then
779 Set_Machine_Radix_10
(U_Ent
);
781 Error_Msg_N
("machine radix value must be 2 or 10", Expr
);
790 -- Object_Size attribute definition clause
792 when Attribute_Object_Size
=> Object_Size
: declare
793 Size
: constant Uint
:= Static_Integer
(Expr
);
797 if not Is_Type
(U_Ent
) then
798 Error_Msg_N
("Object_Size cannot be given for &", Nam
);
800 elsif Has_Object_Size_Clause
(U_Ent
) then
801 Error_Msg_N
("Object_Size already given for &", Nam
);
804 Check_Size
(Expr
, U_Ent
, Size
, Biased
);
812 UI_Mod
(Size
, 64) /= 0
815 ("Object_Size must be 8, 16, 32, or multiple of 64",
819 Set_Esize
(U_Ent
, Size
);
820 Set_Has_Object_Size_Clause
(U_Ent
);
821 Alignment_Check_For_Esize_Change
(U_Ent
);
829 when Attribute_Output
=> Output
: declare
830 Subp
: Entity_Id
:= Empty
;
835 function Has_Good_Profile
(Subp
: Entity_Id
) return Boolean;
836 -- Return true if the entity is a procedure with an
837 -- appropriate profile for the output attribute.
839 ----------------------
840 -- Has_Good_Profile --
841 ----------------------
843 function Has_Good_Profile
(Subp
: Entity_Id
) return Boolean is
845 Ok
: Boolean := False;
848 if Ekind
(Subp
) = E_Procedure
then
849 F
:= First_Formal
(Subp
);
852 if Ekind
(Etype
(F
)) = E_Anonymous_Access_Type
854 Designated_Type
(Etype
(F
)) =
855 Class_Wide_Type
(RTE
(RE_Root_Stream_Type
))
859 and then Parameter_Mode
(F
) = E_In_Parameter
860 and then Base_Type
(Etype
(F
)) = Base_Type
(Ent
)
861 and then No
(Next_Formal
(F
));
867 end Has_Good_Profile
;
869 -- Start of processing for Output attribute definition
874 if not Is_Type
(U_Ent
) then
875 Error_Msg_N
("local name must be a subtype", Nam
);
879 Pnam
:= TSS
(Base_Type
(U_Ent
), TSS_Stream_Output
);
883 Base_Type
(Etype
(Next_Formal
(First_Formal
(Pnam
))))
886 Error_Msg_Sloc
:= Sloc
(Pnam
);
887 Error_Msg_N
("output attribute already defined #", Nam
);
894 if Is_Entity_Name
(Expr
) then
895 if not Is_Overloaded
(Expr
) then
896 if Has_Good_Profile
(Entity
(Expr
)) then
897 Subp
:= Entity
(Expr
);
901 Get_First_Interp
(Expr
, I
, It
);
903 while Present
(It
.Nam
) loop
904 if Has_Good_Profile
(It
.Nam
) then
909 Get_Next_Interp
(I
, It
);
914 if Present
(Subp
) then
915 Set_Entity
(Expr
, Subp
);
916 Set_Etype
(Expr
, Etype
(Subp
));
917 New_Stream_Procedure
(N
, U_Ent
, Subp
, TSS_Stream_Output
);
919 Error_Msg_N
("incorrect expression for output attribute", Expr
);
928 when Attribute_Read
=> Read
: declare
929 Subp
: Entity_Id
:= Empty
;
934 function Has_Good_Profile
(Subp
: Entity_Id
) return Boolean;
935 -- Return true if the entity is a procedure with an appropriate
936 -- profile for the Read attribute.
938 ----------------------
939 -- Has_Good_Profile --
940 ----------------------
942 function Has_Good_Profile
(Subp
: Entity_Id
) return Boolean is
944 Ok
: Boolean := False;
947 if Ekind
(Subp
) = E_Procedure
then
948 F
:= First_Formal
(Subp
);
951 if Ekind
(Etype
(F
)) = E_Anonymous_Access_Type
953 Designated_Type
(Etype
(F
)) =
954 Class_Wide_Type
(RTE
(RE_Root_Stream_Type
))
958 and then Parameter_Mode
(F
) = E_Out_Parameter
959 and then Base_Type
(Etype
(F
)) = Base_Type
(Ent
)
960 and then No
(Next_Formal
(F
));
966 end Has_Good_Profile
;
968 -- Start of processing for Read attribute definition
973 if not Is_Type
(U_Ent
) then
974 Error_Msg_N
("local name must be a subtype", Nam
);
978 Pnam
:= TSS
(Base_Type
(U_Ent
), TSS_Stream_Read
);
981 and then Base_Type
(Etype
(Next_Formal
(First_Formal
(Pnam
))))
984 Error_Msg_Sloc
:= Sloc
(Pnam
);
985 Error_Msg_N
("read attribute already defined #", Nam
);
992 if Is_Entity_Name
(Expr
) then
993 if not Is_Overloaded
(Expr
) then
994 if Has_Good_Profile
(Entity
(Expr
)) then
995 Subp
:= Entity
(Expr
);
999 Get_First_Interp
(Expr
, I
, It
);
1001 while Present
(It
.Nam
) loop
1002 if Has_Good_Profile
(It
.Nam
) then
1007 Get_Next_Interp
(I
, It
);
1012 if Present
(Subp
) then
1013 Set_Entity
(Expr
, Subp
);
1014 Set_Etype
(Expr
, Etype
(Subp
));
1015 New_Stream_Procedure
(N
, U_Ent
, Subp
, TSS_Stream_Read
, True);
1017 Error_Msg_N
("incorrect expression for read attribute", Expr
);
1026 -- Size attribute definition clause
1028 when Attribute_Size
=> Size
: declare
1029 Size
: constant Uint
:= Static_Integer
(Expr
);
1036 if Has_Size_Clause
(U_Ent
) then
1037 Error_Msg_N
("size already given for &", Nam
);
1039 elsif not Is_Type
(U_Ent
)
1040 and then Ekind
(U_Ent
) /= E_Variable
1041 and then Ekind
(U_Ent
) /= E_Constant
1043 Error_Msg_N
("size cannot be given for &", Nam
);
1045 elsif Is_Array_Type
(U_Ent
)
1046 and then not Is_Constrained
(U_Ent
)
1049 ("size cannot be given for unconstrained array", Nam
);
1051 elsif Size
/= No_Uint
then
1052 if Is_Type
(U_Ent
) then
1055 Etyp
:= Etype
(U_Ent
);
1058 -- Check size, note that Gigi is in charge of checking
1059 -- that the size of an array or record type is OK. Also
1060 -- we do not check the size in the ordinary fixed-point
1061 -- case, since it is too early to do so (there may be a
1062 -- subsequent small clause that affects the size). We can
1063 -- check the size if a small clause has already been given.
1065 if not Is_Ordinary_Fixed_Point_Type
(U_Ent
)
1066 or else Has_Small_Clause
(U_Ent
)
1068 Check_Size
(Expr
, Etyp
, Size
, Biased
);
1069 Set_Has_Biased_Representation
(U_Ent
, Biased
);
1072 -- For types set RM_Size and Esize if possible
1074 if Is_Type
(U_Ent
) then
1075 Set_RM_Size
(U_Ent
, Size
);
1077 -- For scalar types, increase Object_Size to power of 2,
1078 -- but not less than a storage unit in any case (i.e.,
1079 -- normally this means it will be byte addressable).
1081 if Is_Scalar_Type
(U_Ent
) then
1082 if Size
<= System_Storage_Unit
then
1083 Init_Esize
(U_Ent
, System_Storage_Unit
);
1084 elsif Size
<= 16 then
1085 Init_Esize
(U_Ent
, 16);
1086 elsif Size
<= 32 then
1087 Init_Esize
(U_Ent
, 32);
1089 Set_Esize
(U_Ent
, (Size
+ 63) / 64 * 64);
1092 -- For all other types, object size = value size. The
1093 -- backend will adjust as needed.
1096 Set_Esize
(U_Ent
, Size
);
1099 Alignment_Check_For_Esize_Change
(U_Ent
);
1101 -- For objects, set Esize only
1104 if Is_Elementary_Type
(Etyp
) then
1105 if Size
/= System_Storage_Unit
1107 Size
/= System_Storage_Unit
* 2
1109 Size
/= System_Storage_Unit
* 4
1111 Size
/= System_Storage_Unit
* 8
1113 Error_Msg_Uint_1
:= UI_From_Int
(System_Storage_Unit
);
1115 ("size for primitive object must be a power of 2"
1116 & " and at least ^", N
);
1120 Set_Esize
(U_Ent
, Size
);
1123 Set_Has_Size_Clause
(U_Ent
);
1131 -- Small attribute definition clause
1133 when Attribute_Small
=> Small
: declare
1134 Implicit_Base
: constant Entity_Id
:= Base_Type
(U_Ent
);
1138 Analyze_And_Resolve
(Expr
, Any_Real
);
1140 if Etype
(Expr
) = Any_Type
then
1143 elsif not Is_Static_Expression
(Expr
) then
1144 Flag_Non_Static_Expr
1145 ("small requires static expression!", Expr
);
1149 Small
:= Expr_Value_R
(Expr
);
1151 if Small
<= Ureal_0
then
1152 Error_Msg_N
("small value must be greater than zero", Expr
);
1158 if not Is_Ordinary_Fixed_Point_Type
(U_Ent
) then
1160 ("small requires an ordinary fixed point type", Nam
);
1162 elsif Has_Small_Clause
(U_Ent
) then
1163 Error_Msg_N
("small already given for &", Nam
);
1165 elsif Small
> Delta_Value
(U_Ent
) then
1167 ("small value must not be greater then delta value", Nam
);
1170 Set_Small_Value
(U_Ent
, Small
);
1171 Set_Small_Value
(Implicit_Base
, Small
);
1172 Set_Has_Small_Clause
(U_Ent
);
1173 Set_Has_Small_Clause
(Implicit_Base
);
1174 Set_Has_Non_Standard_Rep
(Implicit_Base
);
1182 -- Storage_Size attribute definition clause
1184 when Attribute_Storage_Size
=> Storage_Size
: declare
1185 Btype
: constant Entity_Id
:= Base_Type
(U_Ent
);
1189 if Is_Task_Type
(U_Ent
) then
1190 if Warn_On_Obsolescent_Feature
then
1192 ("storage size clause for task is an " &
1193 "obsolescent feature ('R'M 'J.9)?", N
);
1195 ("\use Storage_Size pragma instead?", N
);
1201 if not Is_Access_Type
(U_Ent
)
1202 and then Ekind
(U_Ent
) /= E_Task_Type
1204 Error_Msg_N
("storage size cannot be given for &", Nam
);
1206 elsif Is_Access_Type
(U_Ent
) and Is_Derived_Type
(U_Ent
) then
1208 ("storage size cannot be given for a derived access type",
1211 elsif Has_Storage_Size_Clause
(Btype
) then
1212 Error_Msg_N
("storage size already given for &", Nam
);
1215 Analyze_And_Resolve
(Expr
, Any_Integer
);
1217 if Is_Access_Type
(U_Ent
) then
1219 if Present
(Associated_Storage_Pool
(U_Ent
)) then
1220 Error_Msg_N
("storage pool already given for &", Nam
);
1224 if Compile_Time_Known_Value
(Expr
)
1225 and then Expr_Value
(Expr
) = 0
1227 Set_No_Pool_Assigned
(Btype
);
1230 else -- Is_Task_Type (U_Ent)
1231 Sprag
:= Get_Rep_Pragma
(Btype
, Name_Storage_Size
);
1233 if Present
(Sprag
) then
1234 Error_Msg_Sloc
:= Sloc
(Sprag
);
1236 ("Storage_Size already specified#", Nam
);
1241 Set_Has_Storage_Size_Clause
(Btype
);
1249 -- Storage_Pool attribute definition clause
1251 when Attribute_Storage_Pool
=> Storage_Pool
: declare
1256 if Ekind
(U_Ent
) /= E_Access_Type
1257 and then Ekind
(U_Ent
) /= E_General_Access_Type
1260 "storage pool can only be given for access types", Nam
);
1263 elsif Is_Derived_Type
(U_Ent
) then
1265 ("storage pool cannot be given for a derived access type",
1268 elsif Has_Storage_Size_Clause
(U_Ent
) then
1269 Error_Msg_N
("storage size already given for &", Nam
);
1272 elsif Present
(Associated_Storage_Pool
(U_Ent
)) then
1273 Error_Msg_N
("storage pool already given for &", Nam
);
1278 (Expr
, Class_Wide_Type
(RTE
(RE_Root_Storage_Pool
)));
1280 if Nkind
(Expr
) = N_Type_Conversion
then
1281 T
:= Etype
(Expression
(Expr
));
1286 -- The Stack_Bounded_Pool is used internally for implementing
1287 -- access types with a Storage_Size. Since it only work
1288 -- properly when used on one specific type, we need to check
1289 -- that it is not highjacked improperly:
1290 -- type T is access Integer;
1291 -- for T'Storage_Size use n;
1292 -- type Q is access Float;
1293 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
1295 if Base_Type
(T
) = RTE
(RE_Stack_Bounded_Pool
) then
1296 Error_Msg_N
("non-sharable internal Pool", Expr
);
1300 -- If the argument is a name that is not an entity name, then
1301 -- we construct a renaming operation to define an entity of
1302 -- type storage pool.
1304 if not Is_Entity_Name
(Expr
)
1305 and then Is_Object_Reference
(Expr
)
1308 Make_Defining_Identifier
(Loc
,
1309 Chars
=> New_Internal_Name
('P'));
1312 Rnode
: constant Node_Id
:=
1313 Make_Object_Renaming_Declaration
(Loc
,
1314 Defining_Identifier
=> Pool
,
1316 New_Occurrence_Of
(Etype
(Expr
), Loc
),
1320 Insert_Before
(N
, Rnode
);
1322 Set_Associated_Storage_Pool
(U_Ent
, Pool
);
1325 elsif Is_Entity_Name
(Expr
) then
1326 Pool
:= Entity
(Expr
);
1328 -- If pool is a renamed object, get original one. This can
1329 -- happen with an explicit renaming, and within instances.
1331 while Present
(Renamed_Object
(Pool
))
1332 and then Is_Entity_Name
(Renamed_Object
(Pool
))
1334 Pool
:= Entity
(Renamed_Object
(Pool
));
1337 if Present
(Renamed_Object
(Pool
))
1338 and then Nkind
(Renamed_Object
(Pool
)) = N_Type_Conversion
1339 and then Is_Entity_Name
(Expression
(Renamed_Object
(Pool
)))
1341 Pool
:= Entity
(Expression
(Renamed_Object
(Pool
)));
1344 Set_Associated_Storage_Pool
(U_Ent
, Pool
);
1346 elsif Nkind
(Expr
) = N_Type_Conversion
1347 and then Is_Entity_Name
(Expression
(Expr
))
1348 and then Nkind
(Original_Node
(Expr
)) = N_Attribute_Reference
1350 Pool
:= Entity
(Expression
(Expr
));
1351 Set_Associated_Storage_Pool
(U_Ent
, Pool
);
1354 Error_Msg_N
("incorrect reference to a Storage Pool", Expr
);
1363 -- Value_Size attribute definition clause
1365 when Attribute_Value_Size
=> Value_Size
: declare
1366 Size
: constant Uint
:= Static_Integer
(Expr
);
1370 if not Is_Type
(U_Ent
) then
1371 Error_Msg_N
("Value_Size cannot be given for &", Nam
);
1374 (Get_Attribute_Definition_Clause
1375 (U_Ent
, Attribute_Value_Size
))
1377 Error_Msg_N
("Value_Size already given for &", Nam
);
1380 if Is_Elementary_Type
(U_Ent
) then
1381 Check_Size
(Expr
, U_Ent
, Size
, Biased
);
1382 Set_Has_Biased_Representation
(U_Ent
, Biased
);
1385 Set_RM_Size
(U_Ent
, Size
);
1393 -- Write attribute definition clause
1394 -- check for class-wide case will be performed later
1396 when Attribute_Write
=> Write
: declare
1397 Subp
: Entity_Id
:= Empty
;
1402 function Has_Good_Profile
(Subp
: Entity_Id
) return Boolean;
1403 -- Return true if the entity is a procedure with an
1404 -- appropriate profile for the write attribute.
1406 ----------------------
1407 -- Has_Good_Profile --
1408 ----------------------
1410 function Has_Good_Profile
(Subp
: Entity_Id
) return Boolean is
1412 Ok
: Boolean := False;
1415 if Ekind
(Subp
) = E_Procedure
then
1416 F
:= First_Formal
(Subp
);
1419 if Ekind
(Etype
(F
)) = E_Anonymous_Access_Type
1421 Designated_Type
(Etype
(F
)) =
1422 Class_Wide_Type
(RTE
(RE_Root_Stream_Type
))
1426 and then Parameter_Mode
(F
) = E_In_Parameter
1427 and then Base_Type
(Etype
(F
)) = Base_Type
(Ent
)
1428 and then No
(Next_Formal
(F
));
1434 end Has_Good_Profile
;
1436 -- Start of processing for Write attribute definition
1441 if not Is_Type
(U_Ent
) then
1442 Error_Msg_N
("local name must be a subtype", Nam
);
1446 Pnam
:= TSS
(Base_Type
(U_Ent
), TSS_Stream_Write
);
1449 and then Base_Type
(Etype
(Next_Formal
(First_Formal
(Pnam
))))
1452 Error_Msg_Sloc
:= Sloc
(Pnam
);
1453 Error_Msg_N
("write attribute already defined #", Nam
);
1459 if Is_Entity_Name
(Expr
) then
1460 if not Is_Overloaded
(Expr
) then
1461 if Has_Good_Profile
(Entity
(Expr
)) then
1462 Subp
:= Entity
(Expr
);
1466 Get_First_Interp
(Expr
, I
, It
);
1468 while Present
(It
.Nam
) loop
1469 if Has_Good_Profile
(It
.Nam
) then
1474 Get_Next_Interp
(I
, It
);
1479 if Present
(Subp
) then
1480 Set_Entity
(Expr
, Subp
);
1481 Set_Etype
(Expr
, Etype
(Subp
));
1482 New_Stream_Procedure
(N
, U_Ent
, Subp
, TSS_Stream_Write
);
1484 Error_Msg_N
("incorrect expression for write attribute", Expr
);
1489 -- All other attributes cannot be set
1493 ("attribute& cannot be set with definition clause", N
);
1497 -- The test for the type being frozen must be performed after
1498 -- any expression the clause has been analyzed since the expression
1499 -- itself might cause freezing that makes the clause illegal.
1501 if Rep_Item_Too_Late
(U_Ent
, N
, FOnly
) then
1504 end Analyze_Attribute_Definition_Clause
;
1506 ----------------------------
1507 -- Analyze_Code_Statement --
1508 ----------------------------
1510 procedure Analyze_Code_Statement
(N
: Node_Id
) is
1511 HSS
: constant Node_Id
:= Parent
(N
);
1512 SBody
: constant Node_Id
:= Parent
(HSS
);
1513 Subp
: constant Entity_Id
:= Current_Scope
;
1520 -- Analyze and check we get right type, note that this implements the
1521 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that
1522 -- is the only way that Asm_Insn could possibly be visible.
1524 Analyze_And_Resolve
(Expression
(N
));
1526 if Etype
(Expression
(N
)) = Any_Type
then
1528 elsif Etype
(Expression
(N
)) /= RTE
(RE_Asm_Insn
) then
1529 Error_Msg_N
("incorrect type for code statement", N
);
1533 -- Make sure we appear in the handled statement sequence of a
1534 -- subprogram (RM 13.8(3)).
1536 if Nkind
(HSS
) /= N_Handled_Sequence_Of_Statements
1537 or else Nkind
(SBody
) /= N_Subprogram_Body
1540 ("code statement can only appear in body of subprogram", N
);
1544 -- Do remaining checks (RM 13.8(3)) if not already done
1546 if not Is_Machine_Code_Subprogram
(Subp
) then
1547 Set_Is_Machine_Code_Subprogram
(Subp
);
1549 -- No exception handlers allowed
1551 if Present
(Exception_Handlers
(HSS
)) then
1553 ("exception handlers not permitted in machine code subprogram",
1554 First
(Exception_Handlers
(HSS
)));
1557 -- No declarations other than use clauses and pragmas (we allow
1558 -- certain internally generated declarations as well).
1560 Decl
:= First
(Declarations
(SBody
));
1561 while Present
(Decl
) loop
1562 DeclO
:= Original_Node
(Decl
);
1563 if Comes_From_Source
(DeclO
)
1564 and then Nkind
(DeclO
) /= N_Pragma
1565 and then Nkind
(DeclO
) /= N_Use_Package_Clause
1566 and then Nkind
(DeclO
) /= N_Use_Type_Clause
1567 and then Nkind
(DeclO
) /= N_Implicit_Label_Declaration
1570 ("this declaration not allowed in machine code subprogram",
1577 -- No statements other than code statements, pragmas, and labels.
1578 -- Again we allow certain internally generated statements.
1580 Stmt
:= First
(Statements
(HSS
));
1581 while Present
(Stmt
) loop
1582 StmtO
:= Original_Node
(Stmt
);
1583 if Comes_From_Source
(StmtO
)
1584 and then Nkind
(StmtO
) /= N_Pragma
1585 and then Nkind
(StmtO
) /= N_Label
1586 and then Nkind
(StmtO
) /= N_Code_Statement
1589 ("this statement is not allowed in machine code subprogram",
1596 end Analyze_Code_Statement
;
1598 -----------------------------------------------
1599 -- Analyze_Enumeration_Representation_Clause --
1600 -----------------------------------------------
1602 procedure Analyze_Enumeration_Representation_Clause
(N
: Node_Id
) is
1603 Ident
: constant Node_Id
:= Identifier
(N
);
1604 Aggr
: constant Node_Id
:= Array_Aggregate
(N
);
1605 Enumtype
: Entity_Id
;
1611 Err
: Boolean := False;
1613 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(Universal_Integer
));
1614 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(Universal_Integer
));
1619 -- First some basic error checks
1622 Enumtype
:= Entity
(Ident
);
1624 if Enumtype
= Any_Type
1625 or else Rep_Item_Too_Early
(Enumtype
, N
)
1629 Enumtype
:= Underlying_Type
(Enumtype
);
1632 if not Is_Enumeration_Type
(Enumtype
) then
1634 ("enumeration type required, found}",
1635 Ident
, First_Subtype
(Enumtype
));
1639 -- Ignore rep clause on generic actual type. This will already have
1640 -- been flagged on the template as an error, and this is the safest
1641 -- way to ensure we don't get a junk cascaded message in the instance.
1643 if Is_Generic_Actual_Type
(Enumtype
) then
1646 -- Type must be in current scope
1648 elsif Scope
(Enumtype
) /= Current_Scope
then
1649 Error_Msg_N
("type must be declared in this scope", Ident
);
1652 -- Type must be a first subtype
1654 elsif not Is_First_Subtype
(Enumtype
) then
1655 Error_Msg_N
("cannot give enumeration rep clause for subtype", N
);
1658 -- Ignore duplicate rep clause
1660 elsif Has_Enumeration_Rep_Clause
(Enumtype
) then
1661 Error_Msg_N
("duplicate enumeration rep clause ignored", N
);
1664 -- Don't allow rep clause if root type is standard [wide_]character
1666 elsif Root_Type
(Enumtype
) = Standard_Character
1667 or else Root_Type
(Enumtype
) = Standard_Wide_Character
1669 Error_Msg_N
("enumeration rep clause not allowed for this type", N
);
1672 -- All tests passed, so set rep clause in place
1675 Set_Has_Enumeration_Rep_Clause
(Enumtype
);
1676 Set_Has_Enumeration_Rep_Clause
(Base_Type
(Enumtype
));
1679 -- Now we process the aggregate. Note that we don't use the normal
1680 -- aggregate code for this purpose, because we don't want any of the
1681 -- normal expansion activities, and a number of special semantic
1682 -- rules apply (including the component type being any integer type)
1684 -- Badent signals that we found some incorrect entries processing
1685 -- the list. The final checks for completeness and ordering are
1686 -- skipped in this case.
1688 Elit
:= First_Literal
(Enumtype
);
1690 -- First the positional entries if any
1692 if Present
(Expressions
(Aggr
)) then
1693 Expr
:= First
(Expressions
(Aggr
));
1694 while Present
(Expr
) loop
1696 Error_Msg_N
("too many entries in aggregate", Expr
);
1700 Val
:= Static_Integer
(Expr
);
1702 if Val
= No_Uint
then
1705 elsif Val
< Lo
or else Hi
< Val
then
1706 Error_Msg_N
("value outside permitted range", Expr
);
1710 Set_Enumeration_Rep
(Elit
, Val
);
1711 Set_Enumeration_Rep_Expr
(Elit
, Expr
);
1717 -- Now process the named entries if present
1719 if Present
(Component_Associations
(Aggr
)) then
1720 Assoc
:= First
(Component_Associations
(Aggr
));
1721 while Present
(Assoc
) loop
1722 Choice
:= First
(Choices
(Assoc
));
1724 if Present
(Next
(Choice
)) then
1726 ("multiple choice not allowed here", Next
(Choice
));
1730 if Nkind
(Choice
) = N_Others_Choice
then
1731 Error_Msg_N
("others choice not allowed here", Choice
);
1734 elsif Nkind
(Choice
) = N_Range
then
1735 -- ??? should allow zero/one element range here
1736 Error_Msg_N
("range not allowed here", Choice
);
1740 Analyze_And_Resolve
(Choice
, Enumtype
);
1742 if Is_Entity_Name
(Choice
)
1743 and then Is_Type
(Entity
(Choice
))
1745 Error_Msg_N
("subtype name not allowed here", Choice
);
1747 -- ??? should allow static subtype with zero/one entry
1749 elsif Etype
(Choice
) = Base_Type
(Enumtype
) then
1750 if not Is_Static_Expression
(Choice
) then
1751 Flag_Non_Static_Expr
1752 ("non-static expression used for choice!", Choice
);
1756 Elit
:= Expr_Value_E
(Choice
);
1758 if Present
(Enumeration_Rep_Expr
(Elit
)) then
1759 Error_Msg_Sloc
:= Sloc
(Enumeration_Rep_Expr
(Elit
));
1761 ("representation for& previously given#",
1766 Set_Enumeration_Rep_Expr
(Elit
, Choice
);
1768 Expr
:= Expression
(Assoc
);
1769 Val
:= Static_Integer
(Expr
);
1771 if Val
= No_Uint
then
1774 elsif Val
< Lo
or else Hi
< Val
then
1775 Error_Msg_N
("value outside permitted range", Expr
);
1779 Set_Enumeration_Rep
(Elit
, Val
);
1788 -- Aggregate is fully processed. Now we check that a full set of
1789 -- representations was given, and that they are in range and in order.
1790 -- These checks are only done if no other errors occurred.
1796 Elit
:= First_Literal
(Enumtype
);
1797 while Present
(Elit
) loop
1798 if No
(Enumeration_Rep_Expr
(Elit
)) then
1799 Error_Msg_NE
("missing representation for&!", N
, Elit
);
1802 Val
:= Enumeration_Rep
(Elit
);
1804 if Min
= No_Uint
then
1808 if Val
/= No_Uint
then
1809 if Max
/= No_Uint
and then Val
<= Max
then
1811 ("enumeration value for& not ordered!",
1812 Enumeration_Rep_Expr
(Elit
), Elit
);
1818 -- If there is at least one literal whose representation
1819 -- is not equal to the Pos value, then note that this
1820 -- enumeration type has a non-standard representation.
1822 if Val
/= Enumeration_Pos
(Elit
) then
1823 Set_Has_Non_Standard_Rep
(Base_Type
(Enumtype
));
1830 -- Now set proper size information
1833 Minsize
: Uint
:= UI_From_Int
(Minimum_Size
(Enumtype
));
1836 if Has_Size_Clause
(Enumtype
) then
1837 if Esize
(Enumtype
) >= Minsize
then
1842 UI_From_Int
(Minimum_Size
(Enumtype
, Biased
=> True));
1844 if Esize
(Enumtype
) < Minsize
then
1845 Error_Msg_N
("previously given size is too small", N
);
1848 Set_Has_Biased_Representation
(Enumtype
);
1853 Set_RM_Size
(Enumtype
, Minsize
);
1854 Set_Enum_Esize
(Enumtype
);
1857 Set_RM_Size
(Base_Type
(Enumtype
), RM_Size
(Enumtype
));
1858 Set_Esize
(Base_Type
(Enumtype
), Esize
(Enumtype
));
1859 Set_Alignment
(Base_Type
(Enumtype
), Alignment
(Enumtype
));
1863 -- We repeat the too late test in case it froze itself!
1865 if Rep_Item_Too_Late
(Enumtype
, N
) then
1868 end Analyze_Enumeration_Representation_Clause
;
1870 ----------------------------
1871 -- Analyze_Free_Statement --
1872 ----------------------------
1874 procedure Analyze_Free_Statement
(N
: Node_Id
) is
1876 Analyze
(Expression
(N
));
1877 end Analyze_Free_Statement
;
1879 ------------------------------------------
1880 -- Analyze_Record_Representation_Clause --
1881 ------------------------------------------
1883 procedure Analyze_Record_Representation_Clause
(N
: Node_Id
) is
1884 Loc
: constant Source_Ptr
:= Sloc
(N
);
1885 Ident
: constant Node_Id
:= Identifier
(N
);
1886 Rectype
: Entity_Id
;
1892 Hbit
: Uint
:= Uint_0
;
1897 Max_Bit_So_Far
: Uint
;
1898 -- Records the maximum bit position so far. If all field positions
1899 -- are monotonically increasing, then we can skip the circuit for
1900 -- checking for overlap, since no overlap is possible.
1902 Overlap_Check_Required
: Boolean;
1903 -- Used to keep track of whether or not an overlap check is required
1905 Ccount
: Natural := 0;
1906 -- Number of component clauses in record rep clause
1910 Rectype
:= Entity
(Ident
);
1912 if Rectype
= Any_Type
1913 or else Rep_Item_Too_Early
(Rectype
, N
)
1917 Rectype
:= Underlying_Type
(Rectype
);
1920 -- First some basic error checks
1922 if not Is_Record_Type
(Rectype
) then
1924 ("record type required, found}", Ident
, First_Subtype
(Rectype
));
1927 elsif Is_Unchecked_Union
(Rectype
) then
1929 ("record rep clause not allowed for Unchecked_Union", N
);
1931 elsif Scope
(Rectype
) /= Current_Scope
then
1932 Error_Msg_N
("type must be declared in this scope", N
);
1935 elsif not Is_First_Subtype
(Rectype
) then
1936 Error_Msg_N
("cannot give record rep clause for subtype", N
);
1939 elsif Has_Record_Rep_Clause
(Rectype
) then
1940 Error_Msg_N
("duplicate record rep clause ignored", N
);
1943 elsif Rep_Item_Too_Late
(Rectype
, N
) then
1947 if Present
(Mod_Clause
(N
)) then
1949 Loc
: constant Source_Ptr
:= Sloc
(N
);
1950 M
: constant Node_Id
:= Mod_Clause
(N
);
1951 P
: constant List_Id
:= Pragmas_Before
(M
);
1955 pragma Warnings
(Off
, Mod_Val
);
1958 if Warn_On_Obsolescent_Feature
then
1960 ("mod clause is an obsolescent feature ('R'M 'J.8)?", N
);
1962 ("\use alignment attribute definition clause instead?", N
);
1969 -- In ASIS_Mode mode, expansion is disabled, but we must
1970 -- convert the Mod clause into an alignment clause anyway, so
1971 -- that the back-end can compute and back-annotate properly the
1972 -- size and alignment of types that may include this record.
1974 if Operating_Mode
= Check_Semantics
1978 Make_Attribute_Definition_Clause
(Loc
,
1979 Name
=> New_Reference_To
(Base_Type
(Rectype
), Loc
),
1980 Chars
=> Name_Alignment
,
1981 Expression
=> Relocate_Node
(Expression
(M
)));
1983 Set_From_At_Mod
(AtM_Nod
);
1984 Insert_After
(N
, AtM_Nod
);
1985 Mod_Val
:= Get_Alignment_Value
(Expression
(AtM_Nod
));
1986 Set_Mod_Clause
(N
, Empty
);
1989 -- Get the alignment value to perform error checking
1991 Mod_Val
:= Get_Alignment_Value
(Expression
(M
));
1997 -- Clear any existing component clauses for the type (this happens
1998 -- with derived types, where we are now overriding the original)
2000 Fent
:= First_Entity
(Rectype
);
2003 while Present
(Comp
) loop
2004 if Ekind
(Comp
) = E_Component
2005 or else Ekind
(Comp
) = E_Discriminant
2007 Set_Component_Clause
(Comp
, Empty
);
2013 -- All done if no component clauses
2015 CC
:= First
(Component_Clauses
(N
));
2021 -- If a tag is present, then create a component clause that places
2022 -- it at the start of the record (otherwise gigi may place it after
2023 -- other fields that have rep clauses).
2025 if Nkind
(Fent
) = N_Defining_Identifier
2026 and then Chars
(Fent
) = Name_uTag
2028 Set_Component_Bit_Offset
(Fent
, Uint_0
);
2029 Set_Normalized_Position
(Fent
, Uint_0
);
2030 Set_Normalized_First_Bit
(Fent
, Uint_0
);
2031 Set_Normalized_Position_Max
(Fent
, Uint_0
);
2032 Init_Esize
(Fent
, System_Address_Size
);
2034 Set_Component_Clause
(Fent
,
2035 Make_Component_Clause
(Loc
,
2037 Make_Identifier
(Loc
,
2038 Chars
=> Name_uTag
),
2041 Make_Integer_Literal
(Loc
,
2045 Make_Integer_Literal
(Loc
,
2049 Make_Integer_Literal
(Loc
,
2050 UI_From_Int
(System_Address_Size
))));
2052 Ccount
:= Ccount
+ 1;
2055 -- A representation like this applies to the base type
2057 Set_Has_Record_Rep_Clause
(Base_Type
(Rectype
));
2058 Set_Has_Non_Standard_Rep
(Base_Type
(Rectype
));
2059 Set_Has_Specified_Layout
(Base_Type
(Rectype
));
2061 Max_Bit_So_Far
:= Uint_Minus_1
;
2062 Overlap_Check_Required
:= False;
2064 -- Process the component clauses
2066 while Present
(CC
) loop
2068 -- If pragma, just analyze it
2070 if Nkind
(CC
) = N_Pragma
then
2073 -- Processing for real component clause
2076 Ccount
:= Ccount
+ 1;
2077 Posit
:= Static_Integer
(Position
(CC
));
2078 Fbit
:= Static_Integer
(First_Bit
(CC
));
2079 Lbit
:= Static_Integer
(Last_Bit
(CC
));
2082 and then Fbit
/= No_Uint
2083 and then Lbit
/= No_Uint
2087 ("position cannot be negative", Position
(CC
));
2091 ("first bit cannot be negative", First_Bit
(CC
));
2093 -- Values look OK, so find the corresponding record component
2094 -- Even though the syntax allows an attribute reference for
2095 -- implementation-defined components, GNAT does not allow the
2096 -- tag to get an explicit position.
2098 elsif Nkind
(Component_Name
(CC
)) = N_Attribute_Reference
then
2099 if Attribute_Name
(Component_Name
(CC
)) = Name_Tag
then
2100 Error_Msg_N
("position of tag cannot be specified", CC
);
2102 Error_Msg_N
("illegal component name", CC
);
2106 Comp
:= First_Entity
(Rectype
);
2107 while Present
(Comp
) loop
2108 exit when Chars
(Comp
) = Chars
(Component_Name
(CC
));
2114 -- Maybe component of base type that is absent from
2115 -- statically constrained first subtype.
2117 Comp
:= First_Entity
(Base_Type
(Rectype
));
2118 while Present
(Comp
) loop
2119 exit when Chars
(Comp
) = Chars
(Component_Name
(CC
));
2126 ("component clause is for non-existent field", CC
);
2128 elsif Present
(Component_Clause
(Comp
)) then
2129 Error_Msg_Sloc
:= Sloc
(Component_Clause
(Comp
));
2131 ("component clause previously given#", CC
);
2134 -- Update Fbit and Lbit to the actual bit number
2136 Fbit
:= Fbit
+ UI_From_Int
(SSU
) * Posit
;
2137 Lbit
:= Lbit
+ UI_From_Int
(SSU
) * Posit
;
2139 if Fbit
<= Max_Bit_So_Far
then
2140 Overlap_Check_Required
:= True;
2142 Max_Bit_So_Far
:= Lbit
;
2145 if Has_Size_Clause
(Rectype
)
2146 and then Esize
(Rectype
) <= Lbit
2149 ("bit number out of range of specified size",
2152 Set_Component_Clause
(Comp
, CC
);
2153 Set_Component_Bit_Offset
(Comp
, Fbit
);
2154 Set_Esize
(Comp
, 1 + (Lbit
- Fbit
));
2155 Set_Normalized_First_Bit
(Comp
, Fbit
mod SSU
);
2156 Set_Normalized_Position
(Comp
, Fbit
/ SSU
);
2158 Set_Normalized_Position_Max
2159 (Fent
, Normalized_Position
(Fent
));
2161 if Is_Tagged_Type
(Rectype
)
2162 and then Fbit
< System_Address_Size
2165 ("component overlaps tag field of&",
2169 -- This information is also set in the corresponding
2170 -- component of the base type, found by accessing the
2171 -- Original_Record_Component link if it is present.
2173 Ocomp
:= Original_Record_Component
(Comp
);
2180 (Component_Name
(CC
),
2185 Set_Has_Biased_Representation
(Comp
, Biased
);
2187 if Present
(Ocomp
) then
2188 Set_Component_Clause
(Ocomp
, CC
);
2189 Set_Component_Bit_Offset
(Ocomp
, Fbit
);
2190 Set_Normalized_First_Bit
(Ocomp
, Fbit
mod SSU
);
2191 Set_Normalized_Position
(Ocomp
, Fbit
/ SSU
);
2192 Set_Esize
(Ocomp
, 1 + (Lbit
- Fbit
));
2194 Set_Normalized_Position_Max
2195 (Ocomp
, Normalized_Position
(Ocomp
));
2197 Set_Has_Biased_Representation
2198 (Ocomp
, Has_Biased_Representation
(Comp
));
2201 if Esize
(Comp
) < 0 then
2202 Error_Msg_N
("component size is negative", CC
);
2213 -- Now that we have processed all the component clauses, check for
2214 -- overlap. We have to leave this till last, since the components
2215 -- can appear in any arbitrary order in the representation clause.
2217 -- We do not need this check if all specified ranges were monotonic,
2218 -- as recorded by Overlap_Check_Required being False at this stage.
2220 -- This first section checks if there are any overlapping entries
2221 -- at all. It does this by sorting all entries and then seeing if
2222 -- there are any overlaps. If there are none, then that is decisive,
2223 -- but if there are overlaps, they may still be OK (they may result
2224 -- from fields in different variants).
2226 if Overlap_Check_Required
then
2227 Overlap_Check1
: declare
2229 OC_Fbit
: array (0 .. Ccount
) of Uint
;
2230 -- First-bit values for component clauses, the value is the
2231 -- offset of the first bit of the field from start of record.
2232 -- The zero entry is for use in sorting.
2234 OC_Lbit
: array (0 .. Ccount
) of Uint
;
2235 -- Last-bit values for component clauses, the value is the
2236 -- offset of the last bit of the field from start of record.
2237 -- The zero entry is for use in sorting.
2239 OC_Count
: Natural := 0;
2240 -- Count of entries in OC_Fbit and OC_Lbit
2242 function OC_Lt
(Op1
, Op2
: Natural) return Boolean;
2243 -- Compare routine for Sort (See GNAT.Heap_Sort_A)
2245 procedure OC_Move
(From
: Natural; To
: Natural);
2246 -- Move routine for Sort (see GNAT.Heap_Sort_A)
2248 function OC_Lt
(Op1
, Op2
: Natural) return Boolean is
2250 return OC_Fbit
(Op1
) < OC_Fbit
(Op2
);
2253 procedure OC_Move
(From
: Natural; To
: Natural) is
2255 OC_Fbit
(To
) := OC_Fbit
(From
);
2256 OC_Lbit
(To
) := OC_Lbit
(From
);
2260 CC
:= First
(Component_Clauses
(N
));
2261 while Present
(CC
) loop
2262 if Nkind
(CC
) /= N_Pragma
then
2263 Posit
:= Static_Integer
(Position
(CC
));
2264 Fbit
:= Static_Integer
(First_Bit
(CC
));
2265 Lbit
:= Static_Integer
(Last_Bit
(CC
));
2268 and then Fbit
/= No_Uint
2269 and then Lbit
/= No_Uint
2271 OC_Count
:= OC_Count
+ 1;
2272 Posit
:= Posit
* SSU
;
2273 OC_Fbit
(OC_Count
) := Fbit
+ Posit
;
2274 OC_Lbit
(OC_Count
) := Lbit
+ Posit
;
2283 OC_Move
'Unrestricted_Access,
2284 OC_Lt
'Unrestricted_Access);
2286 Overlap_Check_Required
:= False;
2287 for J
in 1 .. OC_Count
- 1 loop
2288 if OC_Lbit
(J
) >= OC_Fbit
(J
+ 1) then
2289 Overlap_Check_Required
:= True;
2296 -- If Overlap_Check_Required is still True, then we have to do
2297 -- the full scale overlap check, since we have at least two fields
2298 -- that do overlap, and we need to know if that is OK since they
2299 -- are in the same variant, or whether we have a definite problem
2301 if Overlap_Check_Required
then
2302 Overlap_Check2
: declare
2303 C1_Ent
, C2_Ent
: Entity_Id
;
2304 -- Entities of components being checked for overlap
2307 -- Component_List node whose Component_Items are being checked
2310 -- Component declaration for component being checked
2313 C1_Ent
:= First_Entity
(Base_Type
(Rectype
));
2315 -- Loop through all components in record. For each component check
2316 -- for overlap with any of the preceding elements on the component
2317 -- list containing the component, and also, if the component is in
2318 -- a variant, check against components outside the case structure.
2319 -- This latter test is repeated recursively up the variant tree.
2321 Main_Component_Loop
: while Present
(C1_Ent
) loop
2322 if Ekind
(C1_Ent
) /= E_Component
2323 and then Ekind
(C1_Ent
) /= E_Discriminant
2325 goto Continue_Main_Component_Loop
;
2328 -- Skip overlap check if entity has no declaration node. This
2329 -- happens with discriminants in constrained derived types.
2330 -- Probably we are missing some checks as a result, but that
2331 -- does not seem terribly serious ???
2333 if No
(Declaration_Node
(C1_Ent
)) then
2334 goto Continue_Main_Component_Loop
;
2337 Clist
:= Parent
(List_Containing
(Declaration_Node
(C1_Ent
)));
2339 -- Loop through component lists that need checking. Check the
2340 -- current component list and all lists in variants above us.
2342 Component_List_Loop
: loop
2344 -- If derived type definition, go to full declaration
2345 -- If at outer level, check discriminants if there are any
2347 if Nkind
(Clist
) = N_Derived_Type_Definition
then
2348 Clist
:= Parent
(Clist
);
2351 -- Outer level of record definition, check discriminants
2353 if Nkind
(Clist
) = N_Full_Type_Declaration
2354 or else Nkind
(Clist
) = N_Private_Type_Declaration
2356 if Has_Discriminants
(Defining_Identifier
(Clist
)) then
2358 First_Discriminant
(Defining_Identifier
(Clist
));
2360 while Present
(C2_Ent
) loop
2361 exit when C1_Ent
= C2_Ent
;
2362 Check_Component_Overlap
(C1_Ent
, C2_Ent
);
2363 Next_Discriminant
(C2_Ent
);
2367 -- Record extension case
2369 elsif Nkind
(Clist
) = N_Derived_Type_Definition
then
2372 -- Otherwise check one component list
2375 Citem
:= First
(Component_Items
(Clist
));
2377 while Present
(Citem
) loop
2378 if Nkind
(Citem
) = N_Component_Declaration
then
2379 C2_Ent
:= Defining_Identifier
(Citem
);
2380 exit when C1_Ent
= C2_Ent
;
2381 Check_Component_Overlap
(C1_Ent
, C2_Ent
);
2388 -- Check for variants above us (the parent of the Clist can
2389 -- be a variant, in which case its parent is a variant part,
2390 -- and the parent of the variant part is a component list
2391 -- whose components must all be checked against the current
2392 -- component for overlap.
2394 if Nkind
(Parent
(Clist
)) = N_Variant
then
2395 Clist
:= Parent
(Parent
(Parent
(Clist
)));
2397 -- Check for possible discriminant part in record, this is
2398 -- treated essentially as another level in the recursion.
2399 -- For this case we have the parent of the component list
2400 -- is the record definition, and its parent is the full
2401 -- type declaration which contains the discriminant
2404 elsif Nkind
(Parent
(Clist
)) = N_Record_Definition
then
2405 Clist
:= Parent
(Parent
((Clist
)));
2407 -- If neither of these two cases, we are at the top of
2411 exit Component_List_Loop
;
2413 end loop Component_List_Loop
;
2415 <<Continue_Main_Component_Loop
>>
2416 Next_Entity
(C1_Ent
);
2418 end loop Main_Component_Loop
;
2422 -- For records that have component clauses for all components, and
2423 -- whose size is less than or equal to 32, we need to know the size
2424 -- in the front end to activate possible packed array processing
2425 -- where the component type is a record.
2427 -- At this stage Hbit + 1 represents the first unused bit from all
2428 -- the component clauses processed, so if the component clauses are
2429 -- complete, then this is the length of the record.
2431 -- For records longer than System.Storage_Unit, and for those where
2432 -- not all components have component clauses, the back end determines
2433 -- the length (it may for example be appopriate to round up the size
2434 -- to some convenient boundary, based on alignment considerations etc).
2436 if Unknown_RM_Size
(Rectype
)
2437 and then Hbit
+ 1 <= 32
2439 -- Nothing to do if at least one component with no component clause
2441 Comp
:= First_Entity
(Rectype
);
2442 while Present
(Comp
) loop
2443 if Ekind
(Comp
) = E_Component
2444 or else Ekind
(Comp
) = E_Discriminant
2446 if No
(Component_Clause
(Comp
)) then
2454 -- If we fall out of loop, all components have component clauses
2455 -- and so we can set the size to the maximum value.
2457 Set_RM_Size
(Rectype
, Hbit
+ 1);
2459 end Analyze_Record_Representation_Clause
;
2461 -----------------------------
2462 -- Check_Component_Overlap --
2463 -----------------------------
2465 procedure Check_Component_Overlap
(C1_Ent
, C2_Ent
: Entity_Id
) is
2467 if Present
(Component_Clause
(C1_Ent
))
2468 and then Present
(Component_Clause
(C2_Ent
))
2470 -- Exclude odd case where we have two tag fields in the same
2471 -- record, both at location zero. This seems a bit strange,
2472 -- but it seems to happen in some circumstances ???
2474 if Chars
(C1_Ent
) = Name_uTag
2475 and then Chars
(C2_Ent
) = Name_uTag
2480 -- Here we check if the two fields overlap
2483 S1
: constant Uint
:= Component_Bit_Offset
(C1_Ent
);
2484 S2
: constant Uint
:= Component_Bit_Offset
(C2_Ent
);
2485 E1
: constant Uint
:= S1
+ Esize
(C1_Ent
);
2486 E2
: constant Uint
:= S2
+ Esize
(C2_Ent
);
2489 if E2
<= S1
or else E1
<= S2
then
2493 Component_Name
(Component_Clause
(C2_Ent
));
2494 Error_Msg_Sloc
:= Sloc
(Error_Msg_Node_2
);
2496 Component_Name
(Component_Clause
(C1_Ent
));
2498 ("component& overlaps & #",
2499 Component_Name
(Component_Clause
(C1_Ent
)));
2503 end Check_Component_Overlap
;
2505 -----------------------------------
2506 -- Check_Constant_Address_Clause --
2507 -----------------------------------
2509 procedure Check_Constant_Address_Clause
2513 procedure Check_At_Constant_Address
(Nod
: Node_Id
);
2514 -- Checks that the given node N represents a name whose 'Address
2515 -- is constant (in the same sense as OK_Constant_Address_Clause,
2516 -- i.e. the address value is the same at the point of declaration
2517 -- of U_Ent and at the time of elaboration of the address clause.
2519 procedure Check_Expr_Constants
(Nod
: Node_Id
);
2520 -- Checks that Nod meets the requirements for a constant address
2521 -- clause in the sense of the enclosing procedure.
2523 procedure Check_List_Constants
(Lst
: List_Id
);
2524 -- Check that all elements of list Lst meet the requirements for a
2525 -- constant address clause in the sense of the enclosing procedure.
2527 -------------------------------
2528 -- Check_At_Constant_Address --
2529 -------------------------------
2531 procedure Check_At_Constant_Address
(Nod
: Node_Id
) is
2533 if Is_Entity_Name
(Nod
) then
2534 if Present
(Address_Clause
(Entity
((Nod
)))) then
2536 ("invalid address clause for initialized object &!",
2539 ("address for& cannot" &
2540 " depend on another address clause! ('R'M 13.1(22))!",
2543 elsif In_Same_Source_Unit
(Entity
(Nod
), U_Ent
)
2544 and then Sloc
(U_Ent
) < Sloc
(Entity
(Nod
))
2547 ("invalid address clause for initialized object &!",
2549 Error_Msg_Name_1
:= Chars
(Entity
(Nod
));
2550 Error_Msg_Name_2
:= Chars
(U_Ent
);
2552 ("\% must be defined before % ('R'M 13.1(22))!",
2556 elsif Nkind
(Nod
) = N_Selected_Component
then
2558 T
: constant Entity_Id
:= Etype
(Prefix
(Nod
));
2561 if (Is_Record_Type
(T
)
2562 and then Has_Discriminants
(T
))
2565 and then Is_Record_Type
(Designated_Type
(T
))
2566 and then Has_Discriminants
(Designated_Type
(T
)))
2569 ("invalid address clause for initialized object &!",
2572 ("\address cannot depend on component" &
2573 " of discriminated record ('R'M 13.1(22))!",
2576 Check_At_Constant_Address
(Prefix
(Nod
));
2580 elsif Nkind
(Nod
) = N_Indexed_Component
then
2581 Check_At_Constant_Address
(Prefix
(Nod
));
2582 Check_List_Constants
(Expressions
(Nod
));
2585 Check_Expr_Constants
(Nod
);
2587 end Check_At_Constant_Address
;
2589 --------------------------
2590 -- Check_Expr_Constants --
2591 --------------------------
2593 procedure Check_Expr_Constants
(Nod
: Node_Id
) is
2594 Loc_U_Ent
: constant Source_Ptr
:= Sloc
(U_Ent
);
2595 Ent
: Entity_Id
:= Empty
;
2598 if Nkind
(Nod
) in N_Has_Etype
2599 and then Etype
(Nod
) = Any_Type
2605 when N_Empty | N_Error
=>
2608 when N_Identifier | N_Expanded_Name
=>
2609 Ent
:= Entity
(Nod
);
2611 -- We need to look at the original node if it is different
2612 -- from the node, since we may have rewritten things and
2613 -- substituted an identifier representing the rewrite.
2615 if Original_Node
(Nod
) /= Nod
then
2616 Check_Expr_Constants
(Original_Node
(Nod
));
2618 -- If the node is an object declaration without initial
2619 -- value, some code has been expanded, and the expression
2620 -- is not constant, even if the constituents might be
2621 -- acceptable, as in A'Address + offset.
2623 if Ekind
(Ent
) = E_Variable
2624 and then Nkind
(Declaration_Node
(Ent
))
2625 = N_Object_Declaration
2627 No
(Expression
(Declaration_Node
(Ent
)))
2630 ("invalid address clause for initialized object &!",
2633 -- If entity is constant, it may be the result of expanding
2634 -- a check. We must verify that its declaration appears
2635 -- before the object in question, else we also reject the
2638 elsif Ekind
(Ent
) = E_Constant
2639 and then In_Same_Source_Unit
(Ent
, U_Ent
)
2640 and then Sloc
(Ent
) > Loc_U_Ent
2643 ("invalid address clause for initialized object &!",
2650 -- Otherwise look at the identifier and see if it is OK
2652 if Ekind
(Ent
) = E_Named_Integer
2654 Ekind
(Ent
) = E_Named_Real
2661 Ekind
(Ent
) = E_Constant
2663 Ekind
(Ent
) = E_In_Parameter
2665 -- This is the case where we must have Ent defined
2666 -- before U_Ent. Clearly if they are in different
2667 -- units this requirement is met since the unit
2668 -- containing Ent is already processed.
2670 if not In_Same_Source_Unit
(Ent
, U_Ent
) then
2673 -- Otherwise location of Ent must be before the
2674 -- location of U_Ent, that's what prior defined means.
2676 elsif Sloc
(Ent
) < Loc_U_Ent
then
2681 ("invalid address clause for initialized object &!",
2683 Error_Msg_Name_1
:= Chars
(Ent
);
2684 Error_Msg_Name_2
:= Chars
(U_Ent
);
2686 ("\% must be defined before % ('R'M 13.1(22))!",
2690 elsif Nkind
(Original_Node
(Nod
)) = N_Function_Call
then
2691 Check_Expr_Constants
(Original_Node
(Nod
));
2695 ("invalid address clause for initialized object &!",
2698 if Comes_From_Source
(Ent
) then
2699 Error_Msg_Name_1
:= Chars
(Ent
);
2701 ("\reference to variable% not allowed"
2702 & " ('R'M 13.1(22))!", Nod
);
2705 ("non-static expression not allowed"
2706 & " ('R'M 13.1(22))!", Nod
);
2710 when N_Integer_Literal
=>
2712 -- If this is a rewritten unchecked conversion, in a system
2713 -- where Address is an integer type, always use the base type
2714 -- for a literal value. This is user-friendly and prevents
2715 -- order-of-elaboration issues with instances of unchecked
2718 if Nkind
(Original_Node
(Nod
)) = N_Function_Call
then
2719 Set_Etype
(Nod
, Base_Type
(Etype
(Nod
)));
2722 when N_Real_Literal |
2724 N_Character_Literal
=>
2728 Check_Expr_Constants
(Low_Bound
(Nod
));
2729 Check_Expr_Constants
(High_Bound
(Nod
));
2731 when N_Explicit_Dereference
=>
2732 Check_Expr_Constants
(Prefix
(Nod
));
2734 when N_Indexed_Component
=>
2735 Check_Expr_Constants
(Prefix
(Nod
));
2736 Check_List_Constants
(Expressions
(Nod
));
2739 Check_Expr_Constants
(Prefix
(Nod
));
2740 Check_Expr_Constants
(Discrete_Range
(Nod
));
2742 when N_Selected_Component
=>
2743 Check_Expr_Constants
(Prefix
(Nod
));
2745 when N_Attribute_Reference
=>
2747 if Attribute_Name
(Nod
) = Name_Address
2749 Attribute_Name
(Nod
) = Name_Access
2751 Attribute_Name
(Nod
) = Name_Unchecked_Access
2753 Attribute_Name
(Nod
) = Name_Unrestricted_Access
2755 Check_At_Constant_Address
(Prefix
(Nod
));
2758 Check_Expr_Constants
(Prefix
(Nod
));
2759 Check_List_Constants
(Expressions
(Nod
));
2763 Check_List_Constants
(Component_Associations
(Nod
));
2764 Check_List_Constants
(Expressions
(Nod
));
2766 when N_Component_Association
=>
2767 Check_Expr_Constants
(Expression
(Nod
));
2769 when N_Extension_Aggregate
=>
2770 Check_Expr_Constants
(Ancestor_Part
(Nod
));
2771 Check_List_Constants
(Component_Associations
(Nod
));
2772 Check_List_Constants
(Expressions
(Nod
));
2777 when N_Binary_Op | N_And_Then | N_Or_Else | N_In | N_Not_In
=>
2778 Check_Expr_Constants
(Left_Opnd
(Nod
));
2779 Check_Expr_Constants
(Right_Opnd
(Nod
));
2782 Check_Expr_Constants
(Right_Opnd
(Nod
));
2784 when N_Type_Conversion |
2785 N_Qualified_Expression |
2787 Check_Expr_Constants
(Expression
(Nod
));
2789 when N_Unchecked_Type_Conversion
=>
2790 Check_Expr_Constants
(Expression
(Nod
));
2792 -- If this is a rewritten unchecked conversion, subtypes
2793 -- in this node are those created within the instance.
2794 -- To avoid order of elaboration issues, replace them
2795 -- with their base types. Note that address clauses can
2796 -- cause order of elaboration problems because they are
2797 -- elaborated by the back-end at the point of definition,
2798 -- and may mention entities declared in between (as long
2799 -- as everything is static). It is user-friendly to allow
2800 -- unchecked conversions in this context.
2802 if Nkind
(Original_Node
(Nod
)) = N_Function_Call
then
2803 Set_Etype
(Expression
(Nod
),
2804 Base_Type
(Etype
(Expression
(Nod
))));
2805 Set_Etype
(Nod
, Base_Type
(Etype
(Nod
)));
2808 when N_Function_Call
=>
2809 if not Is_Pure
(Entity
(Name
(Nod
))) then
2811 ("invalid address clause for initialized object &!",
2815 ("\function & is not pure ('R'M 13.1(22))!",
2816 Nod
, Entity
(Name
(Nod
)));
2819 Check_List_Constants
(Parameter_Associations
(Nod
));
2822 when N_Parameter_Association
=>
2823 Check_Expr_Constants
(Explicit_Actual_Parameter
(Nod
));
2827 ("invalid address clause for initialized object &!",
2830 ("\must be constant defined before& ('R'M 13.1(22))!",
2833 end Check_Expr_Constants
;
2835 --------------------------
2836 -- Check_List_Constants --
2837 --------------------------
2839 procedure Check_List_Constants
(Lst
: List_Id
) is
2843 if Present
(Lst
) then
2844 Nod1
:= First
(Lst
);
2845 while Present
(Nod1
) loop
2846 Check_Expr_Constants
(Nod1
);
2850 end Check_List_Constants
;
2852 -- Start of processing for Check_Constant_Address_Clause
2855 Check_Expr_Constants
(Expr
);
2856 end Check_Constant_Address_Clause
;
2862 procedure Check_Size
2866 Biased
: out Boolean)
2868 UT
: constant Entity_Id
:= Underlying_Type
(T
);
2874 -- Dismiss cases for generic types or types with previous errors
2877 or else UT
= Any_Type
2878 or else Is_Generic_Type
(UT
)
2879 or else Is_Generic_Type
(Root_Type
(UT
))
2883 -- Check case of bit packed array
2885 elsif Is_Array_Type
(UT
)
2886 and then Known_Static_Component_Size
(UT
)
2887 and then Is_Bit_Packed_Array
(UT
)
2895 Asiz
:= Component_Size
(UT
);
2896 Indx
:= First_Index
(UT
);
2898 Ityp
:= Etype
(Indx
);
2900 -- If non-static bound, then we are not in the business of
2901 -- trying to check the length, and indeed an error will be
2902 -- issued elsewhere, since sizes of non-static array types
2903 -- cannot be set implicitly or explicitly.
2905 if not Is_Static_Subtype
(Ityp
) then
2909 -- Otherwise accumulate next dimension
2911 Asiz
:= Asiz
* (Expr_Value
(Type_High_Bound
(Ityp
)) -
2912 Expr_Value
(Type_Low_Bound
(Ityp
)) +
2916 exit when No
(Indx
);
2922 Error_Msg_Uint_1
:= Asiz
;
2924 ("size for& too small, minimum allowed is ^", N
, T
);
2925 Set_Esize
(T
, Asiz
);
2926 Set_RM_Size
(T
, Asiz
);
2930 -- All other composite types are ignored
2932 elsif Is_Composite_Type
(UT
) then
2935 -- For fixed-point types, don't check minimum if type is not frozen,
2936 -- since we don't know all the characteristics of the type that can
2937 -- affect the size (e.g. a specified small) till freeze time.
2939 elsif Is_Fixed_Point_Type
(UT
)
2940 and then not Is_Frozen
(UT
)
2944 -- Cases for which a minimum check is required
2947 -- Ignore if specified size is correct for the type
2949 if Known_Esize
(UT
) and then Siz
= Esize
(UT
) then
2953 -- Otherwise get minimum size
2955 M
:= UI_From_Int
(Minimum_Size
(UT
));
2959 -- Size is less than minimum size, but one possibility remains
2960 -- that we can manage with the new size if we bias the type
2962 M
:= UI_From_Int
(Minimum_Size
(UT
, Biased
=> True));
2965 Error_Msg_Uint_1
:= M
;
2967 ("size for& too small, minimum allowed is ^", N
, T
);
2977 -------------------------
2978 -- Get_Alignment_Value --
2979 -------------------------
2981 function Get_Alignment_Value
(Expr
: Node_Id
) return Uint
is
2982 Align
: constant Uint
:= Static_Integer
(Expr
);
2985 if Align
= No_Uint
then
2988 elsif Align
<= 0 then
2989 Error_Msg_N
("alignment value must be positive", Expr
);
2993 for J
in Int
range 0 .. 64 loop
2995 M
: constant Uint
:= Uint_2
** J
;
2998 exit when M
= Align
;
3002 ("alignment value must be power of 2", Expr
);
3010 end Get_Alignment_Value
;
3016 procedure Initialize
is
3018 Unchecked_Conversions
.Init
;
3021 -------------------------
3022 -- Is_Operational_Item --
3023 -------------------------
3025 function Is_Operational_Item
(N
: Node_Id
) return Boolean is
3027 if Nkind
(N
) /= N_Attribute_Definition_Clause
then
3031 Id
: constant Attribute_Id
:= Get_Attribute_Id
(Chars
(N
));
3034 return Id
= Attribute_Input
3035 or else Id
= Attribute_Output
3036 or else Id
= Attribute_Read
3037 or else Id
= Attribute_Write
3038 or else Id
= Attribute_External_Tag
;
3041 end Is_Operational_Item
;
3043 --------------------------------------
3044 -- Mark_Aliased_Address_As_Volatile --
3045 --------------------------------------
3047 procedure Mark_Aliased_Address_As_Volatile
(N
: Node_Id
) is
3048 Ent
: constant Entity_Id
:= Address_Aliased_Entity
(N
);
3051 if Present
(Ent
) then
3052 Set_Treat_As_Volatile
(Ent
);
3054 end Mark_Aliased_Address_As_Volatile
;
3060 function Minimum_Size
3062 Biased
: Boolean := False) return Nat
3064 Lo
: Uint
:= No_Uint
;
3065 Hi
: Uint
:= No_Uint
;
3066 LoR
: Ureal
:= No_Ureal
;
3067 HiR
: Ureal
:= No_Ureal
;
3068 LoSet
: Boolean := False;
3069 HiSet
: Boolean := False;
3073 R_Typ
: constant Entity_Id
:= Root_Type
(T
);
3076 -- If bad type, return 0
3078 if T
= Any_Type
then
3081 -- For generic types, just return zero. There cannot be any legitimate
3082 -- need to know such a size, but this routine may be called with a
3083 -- generic type as part of normal processing.
3085 elsif Is_Generic_Type
(R_Typ
)
3086 or else R_Typ
= Any_Type
3090 -- Access types. Normally an access type cannot have a size smaller
3091 -- than the size of System.Address. The exception is on VMS, where
3092 -- we have short and long addresses, and it is possible for an access
3093 -- type to have a short address size (and thus be less than the size
3094 -- of System.Address itself). We simply skip the check for VMS, and
3095 -- leave the back end to do the check.
3097 elsif Is_Access_Type
(T
) then
3098 if OpenVMS_On_Target
then
3101 return System_Address_Size
;
3104 -- Floating-point types
3106 elsif Is_Floating_Point_Type
(T
) then
3107 return UI_To_Int
(Esize
(R_Typ
));
3111 elsif Is_Discrete_Type
(T
) then
3113 -- The following loop is looking for the nearest compile time
3114 -- known bounds following the ancestor subtype chain. The idea
3115 -- is to find the most restrictive known bounds information.
3119 if Ancest
= Any_Type
or else Etype
(Ancest
) = Any_Type
then
3124 if Compile_Time_Known_Value
(Type_Low_Bound
(Ancest
)) then
3125 Lo
:= Expr_Rep_Value
(Type_Low_Bound
(Ancest
));
3132 if Compile_Time_Known_Value
(Type_High_Bound
(Ancest
)) then
3133 Hi
:= Expr_Rep_Value
(Type_High_Bound
(Ancest
));
3139 Ancest
:= Ancestor_Subtype
(Ancest
);
3142 Ancest
:= Base_Type
(T
);
3144 if Is_Generic_Type
(Ancest
) then
3150 -- Fixed-point types. We can't simply use Expr_Value to get the
3151 -- Corresponding_Integer_Value values of the bounds, since these
3152 -- do not get set till the type is frozen, and this routine can
3153 -- be called before the type is frozen. Similarly the test for
3154 -- bounds being static needs to include the case where we have
3155 -- unanalyzed real literals for the same reason.
3157 elsif Is_Fixed_Point_Type
(T
) then
3159 -- The following loop is looking for the nearest compile time
3160 -- known bounds following the ancestor subtype chain. The idea
3161 -- is to find the most restrictive known bounds information.
3165 if Ancest
= Any_Type
or else Etype
(Ancest
) = Any_Type
then
3170 if Nkind
(Type_Low_Bound
(Ancest
)) = N_Real_Literal
3171 or else Compile_Time_Known_Value
(Type_Low_Bound
(Ancest
))
3173 LoR
:= Expr_Value_R
(Type_Low_Bound
(Ancest
));
3180 if Nkind
(Type_High_Bound
(Ancest
)) = N_Real_Literal
3181 or else Compile_Time_Known_Value
(Type_High_Bound
(Ancest
))
3183 HiR
:= Expr_Value_R
(Type_High_Bound
(Ancest
));
3189 Ancest
:= Ancestor_Subtype
(Ancest
);
3192 Ancest
:= Base_Type
(T
);
3194 if Is_Generic_Type
(Ancest
) then
3200 Lo
:= UR_To_Uint
(LoR
/ Small_Value
(T
));
3201 Hi
:= UR_To_Uint
(HiR
/ Small_Value
(T
));
3203 -- No other types allowed
3206 raise Program_Error
;
3209 -- Fall through with Hi and Lo set. Deal with biased case
3211 if (Biased
and then not Is_Fixed_Point_Type
(T
))
3212 or else Has_Biased_Representation
(T
)
3218 -- Signed case. Note that we consider types like range 1 .. -1 to be
3219 -- signed for the purpose of computing the size, since the bounds
3220 -- have to be accomodated in the base type.
3222 if Lo
< 0 or else Hi
< 0 then
3226 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
3227 -- Note that we accommodate the case where the bounds cross. This
3228 -- can happen either because of the way the bounds are declared
3229 -- or because of the algorithm in Freeze_Fixed_Point_Type.
3243 -- If both bounds are positive, make sure that both are represen-
3244 -- table in the case where the bounds are crossed. This can happen
3245 -- either because of the way the bounds are declared, or because of
3246 -- the algorithm in Freeze_Fixed_Point_Type.
3252 -- S = size, (can accommodate 0 .. (2**size - 1))
3255 while Hi
>= Uint_2
** S
loop
3263 -------------------------
3264 -- New_Stream_Function --
3265 -------------------------
3267 procedure New_Stream_Function
3271 Nam
: TSS_Name_Type
)
3273 Loc
: constant Source_Ptr
:= Sloc
(N
);
3274 Sname
: constant Name_Id
:= Make_TSS_Name
(Base_Type
(Ent
), Nam
);
3275 Subp_Id
: Entity_Id
;
3276 Subp_Decl
: Node_Id
;
3280 function Build_Spec
return Node_Id
;
3281 -- Used for declaration and renaming declaration, so that this is
3282 -- treated as a renaming_as_body.
3288 function Build_Spec
return Node_Id
is
3290 Subp_Id
:= Make_Defining_Identifier
(Loc
, Sname
);
3293 Make_Function_Specification
(Loc
,
3294 Defining_Unit_Name
=> Subp_Id
,
3295 Parameter_Specifications
=>
3297 Make_Parameter_Specification
(Loc
,
3298 Defining_Identifier
=>
3299 Make_Defining_Identifier
(Loc
, Name_S
),
3301 Make_Access_Definition
(Loc
,
3304 Designated_Type
(Etype
(F
)), Loc
)))),
3307 New_Reference_To
(Etyp
, Loc
));
3310 -- Start of processing for New_Stream_Function
3313 F
:= First_Formal
(Subp
);
3314 Etyp
:= Etype
(Subp
);
3316 if not Is_Tagged_Type
(Ent
) then
3318 Make_Subprogram_Declaration
(Loc
,
3319 Specification
=> Build_Spec
);
3320 Insert_Action
(N
, Subp_Decl
);
3324 Make_Subprogram_Renaming_Declaration
(Loc
,
3325 Specification
=> Build_Spec
,
3326 Name
=> New_Reference_To
(Subp
, Loc
));
3328 if Is_Tagged_Type
(Ent
) and then not Is_Limited_Type
(Ent
) then
3329 Set_TSS
(Base_Type
(Ent
), Subp_Id
);
3331 Insert_Action
(N
, Subp_Decl
);
3332 Copy_TSS
(Subp_Id
, Base_Type
(Ent
));
3334 end New_Stream_Function
;
3336 --------------------------
3337 -- New_Stream_Procedure --
3338 --------------------------
3340 procedure New_Stream_Procedure
3344 Nam
: TSS_Name_Type
;
3345 Out_P
: Boolean := False)
3347 Loc
: constant Source_Ptr
:= Sloc
(N
);
3348 Sname
: constant Name_Id
:= Make_TSS_Name
(Base_Type
(Ent
), Nam
);
3349 Subp_Id
: Entity_Id
;
3350 Subp_Decl
: Node_Id
;
3354 function Build_Spec
return Node_Id
;
3355 -- Used for declaration and renaming declaration, so that this is
3356 -- treated as a renaming_as_body.
3362 function Build_Spec
return Node_Id
is
3364 Subp_Id
:= Make_Defining_Identifier
(Loc
, Sname
);
3367 Make_Procedure_Specification
(Loc
,
3368 Defining_Unit_Name
=> Subp_Id
,
3369 Parameter_Specifications
=>
3371 Make_Parameter_Specification
(Loc
,
3372 Defining_Identifier
=>
3373 Make_Defining_Identifier
(Loc
, Name_S
),
3375 Make_Access_Definition
(Loc
,
3378 Designated_Type
(Etype
(F
)), Loc
))),
3380 Make_Parameter_Specification
(Loc
,
3381 Defining_Identifier
=>
3382 Make_Defining_Identifier
(Loc
, Name_V
),
3383 Out_Present
=> Out_P
,
3385 New_Reference_To
(Etyp
, Loc
))));
3388 -- Start of processing for New_Stream_Procedure
3391 F
:= First_Formal
(Subp
);
3392 Etyp
:= Etype
(Next_Formal
(F
));
3394 if not Is_Tagged_Type
(Ent
) then
3396 Make_Subprogram_Declaration
(Loc
,
3397 Specification
=> Build_Spec
);
3398 Insert_Action
(N
, Subp_Decl
);
3402 Make_Subprogram_Renaming_Declaration
(Loc
,
3403 Specification
=> Build_Spec
,
3404 Name
=> New_Reference_To
(Subp
, Loc
));
3406 if Is_Tagged_Type
(Ent
) and then not Is_Limited_Type
(Ent
) then
3407 Set_TSS
(Base_Type
(Ent
), Subp_Id
);
3409 Insert_Action
(N
, Subp_Decl
);
3410 Copy_TSS
(Subp_Id
, Base_Type
(Ent
));
3412 end New_Stream_Procedure
;
3414 ------------------------
3415 -- Rep_Item_Too_Early --
3416 ------------------------
3418 function Rep_Item_Too_Early
(T
: Entity_Id
; N
: Node_Id
) return Boolean is
3420 -- Cannot apply rep items that are not operational items
3423 if Is_Operational_Item
(N
) then
3427 and then Is_Generic_Type
(Root_Type
(T
))
3430 ("representation item not allowed for generic type", N
);
3434 -- Otherwise check for incompleted type
3436 if Is_Incomplete_Or_Private_Type
(T
)
3437 and then No
(Underlying_Type
(T
))
3440 ("representation item must be after full type declaration", N
);
3443 -- If the type has incompleted components, a representation clause is
3444 -- illegal but stream attributes and Convention pragmas are correct.
3446 elsif Has_Private_Component
(T
) then
3447 if Nkind
(N
) = N_Pragma
then
3451 ("representation item must appear after type is fully defined",
3458 end Rep_Item_Too_Early
;
3460 -----------------------
3461 -- Rep_Item_Too_Late --
3462 -----------------------
3464 function Rep_Item_Too_Late
3467 FOnly
: Boolean := False) return Boolean
3470 Parent_Type
: Entity_Id
;
3473 -- Output the too late message. Note that this is not considered a
3474 -- serious error, since the effect is simply that we ignore the
3475 -- representation clause in this case.
3481 procedure Too_Late
is
3483 Error_Msg_N
("|representation item appears too late!", N
);
3486 -- Start of processing for Rep_Item_Too_Late
3489 -- First make sure entity is not frozen (RM 13.1(9)). Exclude imported
3490 -- types, which may be frozen if they appear in a representation clause
3491 -- for a local type.
3494 and then not From_With_Type
(T
)
3497 S
:= First_Subtype
(T
);
3499 if Present
(Freeze_Node
(S
)) then
3501 ("?no more representation items for }!", Freeze_Node
(S
), S
);
3506 -- Check for case of non-tagged derived type whose parent either has
3507 -- primitive operations, or is a by reference type (RM 13.1(10)).
3511 and then Is_Derived_Type
(T
)
3512 and then not Is_Tagged_Type
(T
)
3514 Parent_Type
:= Etype
(Base_Type
(T
));
3516 if Has_Primitive_Operations
(Parent_Type
) then
3519 ("primitive operations already defined for&!", N
, Parent_Type
);
3522 elsif Is_By_Reference_Type
(Parent_Type
) then
3525 ("parent type & is a by reference type!", N
, Parent_Type
);
3530 -- No error, link item into head of chain of rep items for the entity
3532 Record_Rep_Item
(T
, N
);
3534 end Rep_Item_Too_Late
;
3536 -------------------------
3537 -- Same_Representation --
3538 -------------------------
3540 function Same_Representation
(Typ1
, Typ2
: Entity_Id
) return Boolean is
3541 T1
: constant Entity_Id
:= Underlying_Type
(Typ1
);
3542 T2
: constant Entity_Id
:= Underlying_Type
(Typ2
);
3545 -- A quick check, if base types are the same, then we definitely have
3546 -- the same representation, because the subtype specific representation
3547 -- attributes (Size and Alignment) do not affect representation from
3548 -- the point of view of this test.
3550 if Base_Type
(T1
) = Base_Type
(T2
) then
3553 elsif Is_Private_Type
(Base_Type
(T2
))
3554 and then Base_Type
(T1
) = Full_View
(Base_Type
(T2
))
3559 -- Tagged types never have differing representations
3561 if Is_Tagged_Type
(T1
) then
3565 -- Representations are definitely different if conventions differ
3567 if Convention
(T1
) /= Convention
(T2
) then
3571 -- Representations are different if component alignments differ
3573 if (Is_Record_Type
(T1
) or else Is_Array_Type
(T1
))
3575 (Is_Record_Type
(T2
) or else Is_Array_Type
(T2
))
3576 and then Component_Alignment
(T1
) /= Component_Alignment
(T2
)
3581 -- For arrays, the only real issue is component size. If we know the
3582 -- component size for both arrays, and it is the same, then that's
3583 -- good enough to know we don't have a change of representation.
3585 if Is_Array_Type
(T1
) then
3586 if Known_Component_Size
(T1
)
3587 and then Known_Component_Size
(T2
)
3588 and then Component_Size
(T1
) = Component_Size
(T2
)
3594 -- Types definitely have same representation if neither has non-standard
3595 -- representation since default representations are always consistent.
3596 -- If only one has non-standard representation, and the other does not,
3597 -- then we consider that they do not have the same representation. They
3598 -- might, but there is no way of telling early enough.
3600 if Has_Non_Standard_Rep
(T1
) then
3601 if not Has_Non_Standard_Rep
(T2
) then
3605 return not Has_Non_Standard_Rep
(T2
);
3608 -- Here the two types both have non-standard representation, and we
3609 -- need to determine if they have the same non-standard representation
3611 -- For arrays, we simply need to test if the component sizes are the
3612 -- same. Pragma Pack is reflected in modified component sizes, so this
3613 -- check also deals with pragma Pack.
3615 if Is_Array_Type
(T1
) then
3616 return Component_Size
(T1
) = Component_Size
(T2
);
3618 -- Tagged types always have the same representation, because it is not
3619 -- possible to specify different representations for common fields.
3621 elsif Is_Tagged_Type
(T1
) then
3624 -- Case of record types
3626 elsif Is_Record_Type
(T1
) then
3628 -- Packed status must conform
3630 if Is_Packed
(T1
) /= Is_Packed
(T2
) then
3633 -- Otherwise we must check components. Typ2 maybe a constrained
3634 -- subtype with fewer components, so we compare the components
3635 -- of the base types.
3638 Record_Case
: declare
3639 CD1
, CD2
: Entity_Id
;
3641 function Same_Rep
return Boolean;
3642 -- CD1 and CD2 are either components or discriminants. This
3643 -- function tests whether the two have the same representation
3649 function Same_Rep
return Boolean is
3651 if No
(Component_Clause
(CD1
)) then
3652 return No
(Component_Clause
(CD2
));
3656 Present
(Component_Clause
(CD2
))
3658 Component_Bit_Offset
(CD1
) = Component_Bit_Offset
(CD2
)
3660 Esize
(CD1
) = Esize
(CD2
);
3664 -- Start processing for Record_Case
3667 if Has_Discriminants
(T1
) then
3668 CD1
:= First_Discriminant
(T1
);
3669 CD2
:= First_Discriminant
(T2
);
3671 -- The number of discriminants may be different if the
3672 -- derived type has fewer (constrained by values). The
3673 -- invisible discriminants retain the representation of
3674 -- the original, so the discrepancy does not per se
3675 -- indicate a different representation.
3678 and then Present
(CD2
)
3680 if not Same_Rep
then
3683 Next_Discriminant
(CD1
);
3684 Next_Discriminant
(CD2
);
3689 CD1
:= First_Component
(Underlying_Type
(Base_Type
(T1
)));
3690 CD2
:= First_Component
(Underlying_Type
(Base_Type
(T2
)));
3692 while Present
(CD1
) loop
3693 if not Same_Rep
then
3696 Next_Component
(CD1
);
3697 Next_Component
(CD2
);
3705 -- For enumeration types, we must check each literal to see if the
3706 -- representation is the same. Note that we do not permit enumeration
3707 -- reprsentation clauses for Character and Wide_Character, so these
3708 -- cases were already dealt with.
3710 elsif Is_Enumeration_Type
(T1
) then
3712 Enumeration_Case
: declare
3716 L1
:= First_Literal
(T1
);
3717 L2
:= First_Literal
(T2
);
3719 while Present
(L1
) loop
3720 if Enumeration_Rep
(L1
) /= Enumeration_Rep
(L2
) then
3730 end Enumeration_Case
;
3732 -- Any other types have the same representation for these purposes
3737 end Same_Representation
;
3739 --------------------
3740 -- Set_Enum_Esize --
3741 --------------------
3743 procedure Set_Enum_Esize
(T
: Entity_Id
) is
3751 -- Find the minimum standard size (8,16,32,64) that fits
3753 Lo
:= Enumeration_Rep
(Entity
(Type_Low_Bound
(T
)));
3754 Hi
:= Enumeration_Rep
(Entity
(Type_High_Bound
(T
)));
3757 if Lo
>= -Uint_2
**07 and then Hi
< Uint_2
**07 then
3758 Sz
:= Standard_Character_Size
; -- May be > 8 on some targets
3760 elsif Lo
>= -Uint_2
**15 and then Hi
< Uint_2
**15 then
3763 elsif Lo
>= -Uint_2
**31 and then Hi
< Uint_2
**31 then
3766 else pragma Assert
(Lo
>= -Uint_2
**63 and then Hi
< Uint_2
**63);
3771 if Hi
< Uint_2
**08 then
3772 Sz
:= Standard_Character_Size
; -- May be > 8 on some targets
3774 elsif Hi
< Uint_2
**16 then
3777 elsif Hi
< Uint_2
**32 then
3780 else pragma Assert
(Hi
< Uint_2
**63);
3785 -- That minimum is the proper size unless we have a foreign convention
3786 -- and the size required is 32 or less, in which case we bump the size
3787 -- up to 32. This is required for C and C++ and seems reasonable for
3788 -- all other foreign conventions.
3790 if Has_Foreign_Convention
(T
)
3791 and then Esize
(T
) < Standard_Integer_Size
3793 Init_Esize
(T
, Standard_Integer_Size
);
3800 -----------------------------------
3801 -- Validate_Unchecked_Conversion --
3802 -----------------------------------
3804 procedure Validate_Unchecked_Conversion
3806 Act_Unit
: Entity_Id
)
3813 -- Obtain source and target types. Note that we call Ancestor_Subtype
3814 -- here because the processing for generic instantiation always makes
3815 -- subtypes, and we want the original frozen actual types.
3817 -- If we are dealing with private types, then do the check on their
3818 -- fully declared counterparts if the full declarations have been
3819 -- encountered (they don't have to be visible, but they must exist!)
3821 Source
:= Ancestor_Subtype
(Etype
(First_Formal
(Act_Unit
)));
3823 if Is_Private_Type
(Source
)
3824 and then Present
(Underlying_Type
(Source
))
3826 Source
:= Underlying_Type
(Source
);
3829 Target
:= Ancestor_Subtype
(Etype
(Act_Unit
));
3831 -- If either type is generic, the instantiation happens within a
3832 -- generic unit, and there is nothing to check. The proper check
3833 -- will happen when the enclosing generic is instantiated.
3835 if Is_Generic_Type
(Source
) or else Is_Generic_Type
(Target
) then
3839 if Is_Private_Type
(Target
)
3840 and then Present
(Underlying_Type
(Target
))
3842 Target
:= Underlying_Type
(Target
);
3845 -- Source may be unconstrained array, but not target
3847 if Is_Array_Type
(Target
)
3848 and then not Is_Constrained
(Target
)
3851 ("unchecked conversion to unconstrained array not allowed", N
);
3855 -- Make entry in unchecked conversion table for later processing
3856 -- by Validate_Unchecked_Conversions, which will check sizes and
3857 -- alignments (using values set by the back-end where possible).
3858 -- This is only done if the appropriate warning is active
3860 if Warn_On_Unchecked_Conversion
then
3861 Unchecked_Conversions
.Append
3862 (New_Val
=> UC_Entry
'
3867 -- If both sizes are known statically now, then back end annotation
3868 -- is not required to do a proper check but if either size is not
3869 -- known statically, then we need the annotation.
3871 if Known_Static_RM_Size (Source)
3872 and then Known_Static_RM_Size (Target)
3876 Back_Annotate_Rep_Info := True;
3880 -- If unchecked conversion to access type, and access type is
3881 -- declared in the same unit as the unchecked conversion, then
3882 -- set the No_Strict_Aliasing flag (no strict aliasing is
3883 -- implicit in this situation).
3885 if Is_Access_Type (Target) and then
3886 In_Same_Source_Unit (Target, N)
3888 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
3891 -- Generate N_Validate_Unchecked_Conversion node for back end in
3892 -- case the back end needs to perform special validation checks.
3894 -- Shouldn't this be in exp_ch13, since the check only gets done
3895 -- if we have full expansion and the back end is called ???
3898 Make_Validate_Unchecked_Conversion (Sloc (N));
3899 Set_Source_Type (Vnode, Source);
3900 Set_Target_Type (Vnode, Target);
3902 -- If the unchecked conversion node is in a list, just insert before
3903 -- it. If not we have some strange case, not worth bothering about.
3905 if Is_List_Member (N) then
3906 Insert_After (N, Vnode);
3908 end Validate_Unchecked_Conversion;
3910 ------------------------------------
3911 -- Validate_Unchecked_Conversions --
3912 ------------------------------------
3914 procedure Validate_Unchecked_Conversions is
3916 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
3918 T : UC_Entry renames Unchecked_Conversions.Table (N);
3920 Enode : constant Node_Id := T.Enode;
3921 Source : constant Entity_Id := T.Source;
3922 Target : constant Entity_Id := T.Target;
3928 -- This validation check, which warns if we have unequal sizes
3929 -- for unchecked conversion, and thus potentially implementation
3930 -- dependent semantics, is one of the few occasions on which we
3931 -- use the official RM size instead of Esize. See description
3932 -- in Einfo "Handling of Type'Size Values" for details.
3934 if Serious_Errors_Detected = 0
3935 and then Known_Static_RM_Size (Source)
3936 and then Known_Static_RM_Size (Target)
3938 Source_Siz := RM_Size (Source);
3939 Target_Siz := RM_Size (Target);
3941 if Source_Siz /= Target_Siz then
3943 ("types for unchecked conversion have different sizes?",
3946 if All_Errors_Mode then
3947 Error_Msg_Name_1 := Chars (Source);
3948 Error_Msg_Uint_1 := Source_Siz;
3949 Error_Msg_Name_2 := Chars (Target);
3950 Error_Msg_Uint_2 := Target_Siz;
3952 ("\size of % is ^, size of % is ^?", Enode);
3954 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
3956 if Is_Discrete_Type (Source)
3957 and then Is_Discrete_Type (Target)
3959 if Source_Siz > Target_Siz then
3961 ("\^ high order bits of source will be ignored?",
3964 elsif Is_Unsigned_Type (Source) then
3966 ("\source will be extended with ^ high order " &
3967 "zero bits?", Enode);
3971 ("\source will be extended with ^ high order " &
3976 elsif Source_Siz < Target_Siz then
3977 if Is_Discrete_Type (Target) then
3978 if Bytes_Big_Endian then
3980 ("\target value will include ^ undefined " &
3985 ("\target value will include ^ undefined " &
3992 ("\^ trailing bits of target value will be " &
3993 "undefined?", Enode);
3996 else pragma Assert (Source_Siz > Target_Siz);
3998 ("\^ trailing bits of source will be ignored?",
4005 -- If both types are access types, we need to check the alignment.
4006 -- If the alignment of both is specified, we can do it here.
4008 if Serious_Errors_Detected = 0
4009 and then Ekind (Source) in Access_Kind
4010 and then Ekind (Target) in Access_Kind
4011 and then Target_Strict_Alignment
4012 and then Present (Designated_Type (Source))
4013 and then Present (Designated_Type (Target))
4016 D_Source : constant Entity_Id := Designated_Type (Source);
4017 D_Target : constant Entity_Id := Designated_Type (Target);
4020 if Known_Alignment (D_Source)
4021 and then Known_Alignment (D_Target)
4024 Source_Align : constant Uint := Alignment (D_Source);
4025 Target_Align : constant Uint := Alignment (D_Target);
4028 if Source_Align < Target_Align
4029 and then not Is_Tagged_Type (D_Source)
4031 Error_Msg_Uint_1 := Target_Align;
4032 Error_Msg_Uint_2 := Source_Align;
4033 Error_Msg_Node_2 := D_Source;
4035 ("alignment of & (^) is stricter than " &
4036 "alignment of & (^)?", Enode, D_Target);
4038 if All_Errors_Mode then
4040 ("\resulting access value may have invalid " &
4041 "alignment?", Enode);
4050 end Validate_Unchecked_Conversions;