2015-08-04 Paolo Carlini <paolo.carlini@oracle.com>
[official-gcc.git] / gcc / jump.c
blob21324cd0741f6dae2ec0784941d2eca208970bef
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
22 operate with jumps.
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "backend.h"
40 #include "cfghooks.h"
41 #include "rtl.h"
42 #include "tm_p.h"
43 #include "flags.h"
44 #include "regs.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
47 #include "recog.h"
48 #include "cfgrtl.h"
49 #include "tree.h"
50 #include "alias.h"
51 #include "expmed.h"
52 #include "dojump.h"
53 #include "explow.h"
54 #include "calls.h"
55 #include "emit-rtl.h"
56 #include "varasm.h"
57 #include "stmt.h"
58 #include "expr.h"
59 #include "except.h"
60 #include "diagnostic-core.h"
61 #include "reload.h"
62 #include "tree-pass.h"
63 #include "target.h"
64 #include "rtl-iter.h"
66 /* Optimize jump y; x: ... y: jumpif... x?
67 Don't know if it is worth bothering with. */
68 /* Optimize two cases of conditional jump to conditional jump?
69 This can never delete any instruction or make anything dead,
70 or even change what is live at any point.
71 So perhaps let combiner do it. */
73 static void init_label_info (rtx_insn *);
74 static void mark_all_labels (rtx_insn *);
75 static void mark_jump_label_1 (rtx, rtx_insn *, bool, bool);
76 static void mark_jump_label_asm (rtx, rtx_insn *);
77 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
78 static int invert_exp_1 (rtx, rtx);
80 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
81 static void
82 rebuild_jump_labels_1 (rtx_insn *f, bool count_forced)
84 rtx_insn_list *insn;
86 timevar_push (TV_REBUILD_JUMP);
87 init_label_info (f);
88 mark_all_labels (f);
90 /* Keep track of labels used from static data; we don't track them
91 closely enough to delete them here, so make sure their reference
92 count doesn't drop to zero. */
94 if (count_forced)
95 for (insn = forced_labels; insn; insn = insn->next ())
96 if (LABEL_P (insn->insn ()))
97 LABEL_NUSES (insn->insn ())++;
98 timevar_pop (TV_REBUILD_JUMP);
101 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
102 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
103 instructions and jumping insns that have labels as operands
104 (e.g. cbranchsi4). */
105 void
106 rebuild_jump_labels (rtx_insn *f)
108 rebuild_jump_labels_1 (f, true);
111 /* This function is like rebuild_jump_labels, but doesn't run over
112 forced_labels. It can be used on insn chains that aren't the
113 main function chain. */
114 void
115 rebuild_jump_labels_chain (rtx_insn *chain)
117 rebuild_jump_labels_1 (chain, false);
120 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
121 non-fallthru insn. This is not generally true, as multiple barriers
122 may have crept in, or the BARRIER may be separated from the last
123 real insn by one or more NOTEs.
125 This simple pass moves barriers and removes duplicates so that the
126 old code is happy.
128 static unsigned int
129 cleanup_barriers (void)
131 rtx_insn *insn;
132 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
134 if (BARRIER_P (insn))
136 rtx_insn *prev = prev_nonnote_insn (insn);
137 if (!prev)
138 continue;
140 if (CALL_P (prev))
142 /* Make sure we do not split a call and its corresponding
143 CALL_ARG_LOCATION note. */
144 rtx_insn *next = NEXT_INSN (prev);
146 if (NOTE_P (next)
147 && NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
148 prev = next;
151 if (BARRIER_P (prev))
152 delete_insn (insn);
153 else if (prev != PREV_INSN (insn))
155 basic_block bb = BLOCK_FOR_INSN (prev);
156 rtx_insn *end = PREV_INSN (insn);
157 reorder_insns_nobb (insn, insn, prev);
158 if (bb)
160 /* If the backend called in machine reorg compute_bb_for_insn
161 and didn't free_bb_for_insn again, preserve basic block
162 boundaries. Move the end of basic block to PREV since
163 it is followed by a barrier now, and clear BLOCK_FOR_INSN
164 on the following notes.
165 ??? Maybe the proper solution for the targets that have
166 cfg around after machine reorg is not to run cleanup_barriers
167 pass at all. */
168 BB_END (bb) = prev;
171 prev = NEXT_INSN (prev);
172 if (prev != insn && BLOCK_FOR_INSN (prev) == bb)
173 BLOCK_FOR_INSN (prev) = NULL;
175 while (prev != end);
180 return 0;
183 namespace {
185 const pass_data pass_data_cleanup_barriers =
187 RTL_PASS, /* type */
188 "barriers", /* name */
189 OPTGROUP_NONE, /* optinfo_flags */
190 TV_NONE, /* tv_id */
191 0, /* properties_required */
192 0, /* properties_provided */
193 0, /* properties_destroyed */
194 0, /* todo_flags_start */
195 0, /* todo_flags_finish */
198 class pass_cleanup_barriers : public rtl_opt_pass
200 public:
201 pass_cleanup_barriers (gcc::context *ctxt)
202 : rtl_opt_pass (pass_data_cleanup_barriers, ctxt)
205 /* opt_pass methods: */
206 virtual unsigned int execute (function *) { return cleanup_barriers (); }
208 }; // class pass_cleanup_barriers
210 } // anon namespace
212 rtl_opt_pass *
213 make_pass_cleanup_barriers (gcc::context *ctxt)
215 return new pass_cleanup_barriers (ctxt);
219 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
220 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
221 notes whose labels don't occur in the insn any more. */
223 static void
224 init_label_info (rtx_insn *f)
226 rtx_insn *insn;
228 for (insn = f; insn; insn = NEXT_INSN (insn))
230 if (LABEL_P (insn))
231 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
233 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
234 sticky and not reset here; that way we won't lose association
235 with a label when e.g. the source for a target register
236 disappears out of reach for targets that may use jump-target
237 registers. Jump transformations are supposed to transform
238 any REG_LABEL_TARGET notes. The target label reference in a
239 branch may disappear from the branch (and from the
240 instruction before it) for other reasons, like register
241 allocation. */
243 if (INSN_P (insn))
245 rtx note, next;
247 for (note = REG_NOTES (insn); note; note = next)
249 next = XEXP (note, 1);
250 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
251 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
252 remove_note (insn, note);
258 /* A subroutine of mark_all_labels. Trivially propagate a simple label
259 load into a jump_insn that uses it. */
261 static void
262 maybe_propagate_label_ref (rtx_insn *jump_insn, rtx_insn *prev_nonjump_insn)
264 rtx label_note, pc, pc_src;
266 pc = pc_set (jump_insn);
267 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
268 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
270 /* If the previous non-jump insn sets something to a label,
271 something that this jump insn uses, make that label the primary
272 target of this insn if we don't yet have any. That previous
273 insn must be a single_set and not refer to more than one label.
274 The jump insn must not refer to other labels as jump targets
275 and must be a plain (set (pc) ...), maybe in a parallel, and
276 may refer to the item being set only directly or as one of the
277 arms in an IF_THEN_ELSE. */
279 if (label_note != NULL && pc_src != NULL)
281 rtx label_set = single_set (prev_nonjump_insn);
282 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
284 if (label_set != NULL
285 /* The source must be the direct LABEL_REF, not a
286 PLUS, UNSPEC, IF_THEN_ELSE etc. */
287 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
288 && (rtx_equal_p (label_dest, pc_src)
289 || (GET_CODE (pc_src) == IF_THEN_ELSE
290 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
291 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
293 /* The CODE_LABEL referred to in the note must be the
294 CODE_LABEL in the LABEL_REF of the "set". We can
295 conveniently use it for the marker function, which
296 requires a LABEL_REF wrapping. */
297 gcc_assert (XEXP (label_note, 0) == LABEL_REF_LABEL (SET_SRC (label_set)));
299 mark_jump_label_1 (label_set, jump_insn, false, true);
301 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
306 /* Mark the label each jump jumps to.
307 Combine consecutive labels, and count uses of labels. */
309 static void
310 mark_all_labels (rtx_insn *f)
312 rtx_insn *insn;
314 if (current_ir_type () == IR_RTL_CFGLAYOUT)
316 basic_block bb;
317 FOR_EACH_BB_FN (bb, cfun)
319 /* In cfglayout mode, we don't bother with trivial next-insn
320 propagation of LABEL_REFs into JUMP_LABEL. This will be
321 handled by other optimizers using better algorithms. */
322 FOR_BB_INSNS (bb, insn)
324 gcc_assert (! insn->deleted ());
325 if (NONDEBUG_INSN_P (insn))
326 mark_jump_label (PATTERN (insn), insn, 0);
329 /* In cfglayout mode, there may be non-insns between the
330 basic blocks. If those non-insns represent tablejump data,
331 they contain label references that we must record. */
332 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
333 if (JUMP_TABLE_DATA_P (insn))
334 mark_jump_label (PATTERN (insn), insn, 0);
335 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
336 if (JUMP_TABLE_DATA_P (insn))
337 mark_jump_label (PATTERN (insn), insn, 0);
340 else
342 rtx_insn *prev_nonjump_insn = NULL;
343 for (insn = f; insn; insn = NEXT_INSN (insn))
345 if (insn->deleted ())
347 else if (LABEL_P (insn))
348 prev_nonjump_insn = NULL;
349 else if (JUMP_TABLE_DATA_P (insn))
350 mark_jump_label (PATTERN (insn), insn, 0);
351 else if (NONDEBUG_INSN_P (insn))
353 mark_jump_label (PATTERN (insn), insn, 0);
354 if (JUMP_P (insn))
356 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
357 maybe_propagate_label_ref (insn, prev_nonjump_insn);
359 else
360 prev_nonjump_insn = insn;
366 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
367 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
368 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
369 know whether it's source is floating point or integer comparison. Machine
370 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
371 to help this function avoid overhead in these cases. */
372 enum rtx_code
373 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
374 const_rtx arg1, const_rtx insn)
376 machine_mode mode;
378 /* If this is not actually a comparison, we can't reverse it. */
379 if (GET_RTX_CLASS (code) != RTX_COMPARE
380 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
381 return UNKNOWN;
383 mode = GET_MODE (arg0);
384 if (mode == VOIDmode)
385 mode = GET_MODE (arg1);
387 /* First see if machine description supplies us way to reverse the
388 comparison. Give it priority over everything else to allow
389 machine description to do tricks. */
390 if (GET_MODE_CLASS (mode) == MODE_CC
391 && REVERSIBLE_CC_MODE (mode))
393 #ifdef REVERSE_CONDITION
394 return REVERSE_CONDITION (code, mode);
395 #else
396 return reverse_condition (code);
397 #endif
400 /* Try a few special cases based on the comparison code. */
401 switch (code)
403 case GEU:
404 case GTU:
405 case LEU:
406 case LTU:
407 case NE:
408 case EQ:
409 /* It is always safe to reverse EQ and NE, even for the floating
410 point. Similarly the unsigned comparisons are never used for
411 floating point so we can reverse them in the default way. */
412 return reverse_condition (code);
413 case ORDERED:
414 case UNORDERED:
415 case LTGT:
416 case UNEQ:
417 /* In case we already see unordered comparison, we can be sure to
418 be dealing with floating point so we don't need any more tests. */
419 return reverse_condition_maybe_unordered (code);
420 case UNLT:
421 case UNLE:
422 case UNGT:
423 case UNGE:
424 /* We don't have safe way to reverse these yet. */
425 return UNKNOWN;
426 default:
427 break;
430 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
432 /* Try to search for the comparison to determine the real mode.
433 This code is expensive, but with sane machine description it
434 will be never used, since REVERSIBLE_CC_MODE will return true
435 in all cases. */
436 if (! insn)
437 return UNKNOWN;
439 /* These CONST_CAST's are okay because prev_nonnote_insn just
440 returns its argument and we assign it to a const_rtx
441 variable. */
442 for (rtx_insn *prev = prev_nonnote_insn (CONST_CAST_RTX (insn));
443 prev != 0 && !LABEL_P (prev);
444 prev = prev_nonnote_insn (prev))
446 const_rtx set = set_of (arg0, prev);
447 if (set && GET_CODE (set) == SET
448 && rtx_equal_p (SET_DEST (set), arg0))
450 rtx src = SET_SRC (set);
452 if (GET_CODE (src) == COMPARE)
454 rtx comparison = src;
455 arg0 = XEXP (src, 0);
456 mode = GET_MODE (arg0);
457 if (mode == VOIDmode)
458 mode = GET_MODE (XEXP (comparison, 1));
459 break;
461 /* We can get past reg-reg moves. This may be useful for model
462 of i387 comparisons that first move flag registers around. */
463 if (REG_P (src))
465 arg0 = src;
466 continue;
469 /* If register is clobbered in some ununderstandable way,
470 give up. */
471 if (set)
472 return UNKNOWN;
476 /* Test for an integer condition, or a floating-point comparison
477 in which NaNs can be ignored. */
478 if (CONST_INT_P (arg0)
479 || (GET_MODE (arg0) != VOIDmode
480 && GET_MODE_CLASS (mode) != MODE_CC
481 && !HONOR_NANS (mode)))
482 return reverse_condition (code);
484 return UNKNOWN;
487 /* A wrapper around the previous function to take COMPARISON as rtx
488 expression. This simplifies many callers. */
489 enum rtx_code
490 reversed_comparison_code (const_rtx comparison, const_rtx insn)
492 if (!COMPARISON_P (comparison))
493 return UNKNOWN;
494 return reversed_comparison_code_parts (GET_CODE (comparison),
495 XEXP (comparison, 0),
496 XEXP (comparison, 1), insn);
499 /* Return comparison with reversed code of EXP.
500 Return NULL_RTX in case we fail to do the reversal. */
502 reversed_comparison (const_rtx exp, machine_mode mode)
504 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
505 if (reversed_code == UNKNOWN)
506 return NULL_RTX;
507 else
508 return simplify_gen_relational (reversed_code, mode, VOIDmode,
509 XEXP (exp, 0), XEXP (exp, 1));
513 /* Given an rtx-code for a comparison, return the code for the negated
514 comparison. If no such code exists, return UNKNOWN.
516 WATCH OUT! reverse_condition is not safe to use on a jump that might
517 be acting on the results of an IEEE floating point comparison, because
518 of the special treatment of non-signaling nans in comparisons.
519 Use reversed_comparison_code instead. */
521 enum rtx_code
522 reverse_condition (enum rtx_code code)
524 switch (code)
526 case EQ:
527 return NE;
528 case NE:
529 return EQ;
530 case GT:
531 return LE;
532 case GE:
533 return LT;
534 case LT:
535 return GE;
536 case LE:
537 return GT;
538 case GTU:
539 return LEU;
540 case GEU:
541 return LTU;
542 case LTU:
543 return GEU;
544 case LEU:
545 return GTU;
546 case UNORDERED:
547 return ORDERED;
548 case ORDERED:
549 return UNORDERED;
551 case UNLT:
552 case UNLE:
553 case UNGT:
554 case UNGE:
555 case UNEQ:
556 case LTGT:
557 return UNKNOWN;
559 default:
560 gcc_unreachable ();
564 /* Similar, but we're allowed to generate unordered comparisons, which
565 makes it safe for IEEE floating-point. Of course, we have to recognize
566 that the target will support them too... */
568 enum rtx_code
569 reverse_condition_maybe_unordered (enum rtx_code code)
571 switch (code)
573 case EQ:
574 return NE;
575 case NE:
576 return EQ;
577 case GT:
578 return UNLE;
579 case GE:
580 return UNLT;
581 case LT:
582 return UNGE;
583 case LE:
584 return UNGT;
585 case LTGT:
586 return UNEQ;
587 case UNORDERED:
588 return ORDERED;
589 case ORDERED:
590 return UNORDERED;
591 case UNLT:
592 return GE;
593 case UNLE:
594 return GT;
595 case UNGT:
596 return LE;
597 case UNGE:
598 return LT;
599 case UNEQ:
600 return LTGT;
602 default:
603 gcc_unreachable ();
607 /* Similar, but return the code when two operands of a comparison are swapped.
608 This IS safe for IEEE floating-point. */
610 enum rtx_code
611 swap_condition (enum rtx_code code)
613 switch (code)
615 case EQ:
616 case NE:
617 case UNORDERED:
618 case ORDERED:
619 case UNEQ:
620 case LTGT:
621 return code;
623 case GT:
624 return LT;
625 case GE:
626 return LE;
627 case LT:
628 return GT;
629 case LE:
630 return GE;
631 case GTU:
632 return LTU;
633 case GEU:
634 return LEU;
635 case LTU:
636 return GTU;
637 case LEU:
638 return GEU;
639 case UNLT:
640 return UNGT;
641 case UNLE:
642 return UNGE;
643 case UNGT:
644 return UNLT;
645 case UNGE:
646 return UNLE;
648 default:
649 gcc_unreachable ();
653 /* Given a comparison CODE, return the corresponding unsigned comparison.
654 If CODE is an equality comparison or already an unsigned comparison,
655 CODE is returned. */
657 enum rtx_code
658 unsigned_condition (enum rtx_code code)
660 switch (code)
662 case EQ:
663 case NE:
664 case GTU:
665 case GEU:
666 case LTU:
667 case LEU:
668 return code;
670 case GT:
671 return GTU;
672 case GE:
673 return GEU;
674 case LT:
675 return LTU;
676 case LE:
677 return LEU;
679 default:
680 gcc_unreachable ();
684 /* Similarly, return the signed version of a comparison. */
686 enum rtx_code
687 signed_condition (enum rtx_code code)
689 switch (code)
691 case EQ:
692 case NE:
693 case GT:
694 case GE:
695 case LT:
696 case LE:
697 return code;
699 case GTU:
700 return GT;
701 case GEU:
702 return GE;
703 case LTU:
704 return LT;
705 case LEU:
706 return LE;
708 default:
709 gcc_unreachable ();
713 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
714 truth of CODE1 implies the truth of CODE2. */
717 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
719 /* UNKNOWN comparison codes can happen as a result of trying to revert
720 comparison codes.
721 They can't match anything, so we have to reject them here. */
722 if (code1 == UNKNOWN || code2 == UNKNOWN)
723 return 0;
725 if (code1 == code2)
726 return 1;
728 switch (code1)
730 case UNEQ:
731 if (code2 == UNLE || code2 == UNGE)
732 return 1;
733 break;
735 case EQ:
736 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
737 || code2 == ORDERED)
738 return 1;
739 break;
741 case UNLT:
742 if (code2 == UNLE || code2 == NE)
743 return 1;
744 break;
746 case LT:
747 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
748 return 1;
749 break;
751 case UNGT:
752 if (code2 == UNGE || code2 == NE)
753 return 1;
754 break;
756 case GT:
757 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
758 return 1;
759 break;
761 case GE:
762 case LE:
763 if (code2 == ORDERED)
764 return 1;
765 break;
767 case LTGT:
768 if (code2 == NE || code2 == ORDERED)
769 return 1;
770 break;
772 case LTU:
773 if (code2 == LEU || code2 == NE)
774 return 1;
775 break;
777 case GTU:
778 if (code2 == GEU || code2 == NE)
779 return 1;
780 break;
782 case UNORDERED:
783 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
784 || code2 == UNGE || code2 == UNGT)
785 return 1;
786 break;
788 default:
789 break;
792 return 0;
795 /* Return 1 if INSN is an unconditional jump and nothing else. */
798 simplejump_p (const rtx_insn *insn)
800 return (JUMP_P (insn)
801 && GET_CODE (PATTERN (insn)) == SET
802 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
803 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
806 /* Return nonzero if INSN is a (possibly) conditional jump
807 and nothing more.
809 Use of this function is deprecated, since we need to support combined
810 branch and compare insns. Use any_condjump_p instead whenever possible. */
813 condjump_p (const rtx_insn *insn)
815 const_rtx x = PATTERN (insn);
817 if (GET_CODE (x) != SET
818 || GET_CODE (SET_DEST (x)) != PC)
819 return 0;
821 x = SET_SRC (x);
822 if (GET_CODE (x) == LABEL_REF)
823 return 1;
824 else
825 return (GET_CODE (x) == IF_THEN_ELSE
826 && ((GET_CODE (XEXP (x, 2)) == PC
827 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
828 || ANY_RETURN_P (XEXP (x, 1))))
829 || (GET_CODE (XEXP (x, 1)) == PC
830 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
831 || ANY_RETURN_P (XEXP (x, 2))))));
834 /* Return nonzero if INSN is a (possibly) conditional jump inside a
835 PARALLEL.
837 Use this function is deprecated, since we need to support combined
838 branch and compare insns. Use any_condjump_p instead whenever possible. */
841 condjump_in_parallel_p (const rtx_insn *insn)
843 const_rtx x = PATTERN (insn);
845 if (GET_CODE (x) != PARALLEL)
846 return 0;
847 else
848 x = XVECEXP (x, 0, 0);
850 if (GET_CODE (x) != SET)
851 return 0;
852 if (GET_CODE (SET_DEST (x)) != PC)
853 return 0;
854 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
855 return 1;
856 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
857 return 0;
858 if (XEXP (SET_SRC (x), 2) == pc_rtx
859 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
860 || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
861 return 1;
862 if (XEXP (SET_SRC (x), 1) == pc_rtx
863 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
864 || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
865 return 1;
866 return 0;
869 /* Return set of PC, otherwise NULL. */
872 pc_set (const rtx_insn *insn)
874 rtx pat;
875 if (!JUMP_P (insn))
876 return NULL_RTX;
877 pat = PATTERN (insn);
879 /* The set is allowed to appear either as the insn pattern or
880 the first set in a PARALLEL. */
881 if (GET_CODE (pat) == PARALLEL)
882 pat = XVECEXP (pat, 0, 0);
883 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
884 return pat;
886 return NULL_RTX;
889 /* Return true when insn is an unconditional direct jump,
890 possibly bundled inside a PARALLEL. */
893 any_uncondjump_p (const rtx_insn *insn)
895 const_rtx x = pc_set (insn);
896 if (!x)
897 return 0;
898 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
899 return 0;
900 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
901 return 0;
902 return 1;
905 /* Return true when insn is a conditional jump. This function works for
906 instructions containing PC sets in PARALLELs. The instruction may have
907 various other effects so before removing the jump you must verify
908 onlyjump_p.
910 Note that unlike condjump_p it returns false for unconditional jumps. */
913 any_condjump_p (const rtx_insn *insn)
915 const_rtx x = pc_set (insn);
916 enum rtx_code a, b;
918 if (!x)
919 return 0;
920 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
921 return 0;
923 a = GET_CODE (XEXP (SET_SRC (x), 1));
924 b = GET_CODE (XEXP (SET_SRC (x), 2));
926 return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
927 || (a == PC
928 && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
931 /* Return the label of a conditional jump. */
934 condjump_label (const rtx_insn *insn)
936 rtx x = pc_set (insn);
938 if (!x)
939 return NULL_RTX;
940 x = SET_SRC (x);
941 if (GET_CODE (x) == LABEL_REF)
942 return x;
943 if (GET_CODE (x) != IF_THEN_ELSE)
944 return NULL_RTX;
945 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
946 return XEXP (x, 1);
947 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
948 return XEXP (x, 2);
949 return NULL_RTX;
952 /* Return TRUE if INSN is a return jump. */
955 returnjump_p (const rtx_insn *insn)
957 if (JUMP_P (insn))
959 subrtx_iterator::array_type array;
960 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
962 const_rtx x = *iter;
963 switch (GET_CODE (x))
965 case RETURN:
966 case SIMPLE_RETURN:
967 case EH_RETURN:
968 return true;
970 case SET:
971 if (SET_IS_RETURN_P (x))
972 return true;
973 break;
975 default:
976 break;
980 return false;
983 /* Return true if INSN is a (possibly conditional) return insn. */
986 eh_returnjump_p (rtx_insn *insn)
988 if (JUMP_P (insn))
990 subrtx_iterator::array_type array;
991 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
992 if (GET_CODE (*iter) == EH_RETURN)
993 return true;
995 return false;
998 /* Return true if INSN is a jump that only transfers control and
999 nothing more. */
1002 onlyjump_p (const rtx_insn *insn)
1004 rtx set;
1006 if (!JUMP_P (insn))
1007 return 0;
1009 set = single_set (insn);
1010 if (set == NULL)
1011 return 0;
1012 if (GET_CODE (SET_DEST (set)) != PC)
1013 return 0;
1014 if (side_effects_p (SET_SRC (set)))
1015 return 0;
1017 return 1;
1020 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
1021 NULL or a return. */
1022 bool
1023 jump_to_label_p (const rtx_insn *insn)
1025 return (JUMP_P (insn)
1026 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
1029 /* Return nonzero if X is an RTX that only sets the condition codes
1030 and has no side effects. */
1033 only_sets_cc0_p (const_rtx x)
1035 if (! x)
1036 return 0;
1038 if (INSN_P (x))
1039 x = PATTERN (x);
1041 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1044 /* Return 1 if X is an RTX that does nothing but set the condition codes
1045 and CLOBBER or USE registers.
1046 Return -1 if X does explicitly set the condition codes,
1047 but also does other things. */
1050 sets_cc0_p (const_rtx x)
1052 if (! x)
1053 return 0;
1055 if (INSN_P (x))
1056 x = PATTERN (x);
1058 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1059 return 1;
1060 if (GET_CODE (x) == PARALLEL)
1062 int i;
1063 int sets_cc0 = 0;
1064 int other_things = 0;
1065 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1067 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1068 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1069 sets_cc0 = 1;
1070 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1071 other_things = 1;
1073 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1075 return 0;
1078 /* Find all CODE_LABELs referred to in X, and increment their use
1079 counts. If INSN is a JUMP_INSN and there is at least one
1080 CODE_LABEL referenced in INSN as a jump target, then store the last
1081 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1082 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1083 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1084 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1085 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1086 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1088 Note that two labels separated by a loop-beginning note
1089 must be kept distinct if we have not yet done loop-optimization,
1090 because the gap between them is where loop-optimize
1091 will want to move invariant code to. CROSS_JUMP tells us
1092 that loop-optimization is done with. */
1094 void
1095 mark_jump_label (rtx x, rtx_insn *insn, int in_mem)
1097 rtx asmop = extract_asm_operands (x);
1098 if (asmop)
1099 mark_jump_label_asm (asmop, insn);
1100 else
1101 mark_jump_label_1 (x, insn, in_mem != 0,
1102 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1105 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1106 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1107 jump-target; when the JUMP_LABEL field of INSN should be set or a
1108 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1109 note. */
1111 static void
1112 mark_jump_label_1 (rtx x, rtx_insn *insn, bool in_mem, bool is_target)
1114 RTX_CODE code = GET_CODE (x);
1115 int i;
1116 const char *fmt;
1118 switch (code)
1120 case PC:
1121 case CC0:
1122 case REG:
1123 case CLOBBER:
1124 case CALL:
1125 return;
1127 case RETURN:
1128 case SIMPLE_RETURN:
1129 if (is_target)
1131 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1132 JUMP_LABEL (insn) = x;
1134 return;
1136 case MEM:
1137 in_mem = true;
1138 break;
1140 case SEQUENCE:
1142 rtx_sequence *seq = as_a <rtx_sequence *> (x);
1143 for (i = 0; i < seq->len (); i++)
1144 mark_jump_label (PATTERN (seq->insn (i)),
1145 seq->insn (i), 0);
1147 return;
1149 case SYMBOL_REF:
1150 if (!in_mem)
1151 return;
1153 /* If this is a constant-pool reference, see if it is a label. */
1154 if (CONSTANT_POOL_ADDRESS_P (x))
1155 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1156 break;
1158 /* Handle operands in the condition of an if-then-else as for a
1159 non-jump insn. */
1160 case IF_THEN_ELSE:
1161 if (!is_target)
1162 break;
1163 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1164 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1165 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1166 return;
1168 case LABEL_REF:
1170 rtx label = LABEL_REF_LABEL (x);
1172 /* Ignore remaining references to unreachable labels that
1173 have been deleted. */
1174 if (NOTE_P (label)
1175 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1176 break;
1178 gcc_assert (LABEL_P (label));
1180 /* Ignore references to labels of containing functions. */
1181 if (LABEL_REF_NONLOCAL_P (x))
1182 break;
1184 LABEL_REF_LABEL (x) = label;
1185 if (! insn || ! insn->deleted ())
1186 ++LABEL_NUSES (label);
1188 if (insn)
1190 if (is_target
1191 /* Do not change a previous setting of JUMP_LABEL. If the
1192 JUMP_LABEL slot is occupied by a different label,
1193 create a note for this label. */
1194 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1195 JUMP_LABEL (insn) = label;
1196 else
1198 enum reg_note kind
1199 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1201 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1202 for LABEL unless there already is one. All uses of
1203 a label, except for the primary target of a jump,
1204 must have such a note. */
1205 if (! find_reg_note (insn, kind, label))
1206 add_reg_note (insn, kind, label);
1209 return;
1212 /* Do walk the labels in a vector, but not the first operand of an
1213 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1214 case ADDR_VEC:
1215 case ADDR_DIFF_VEC:
1216 if (! insn->deleted ())
1218 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1220 for (i = 0; i < XVECLEN (x, eltnum); i++)
1221 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL, in_mem,
1222 is_target);
1224 return;
1226 default:
1227 break;
1230 fmt = GET_RTX_FORMAT (code);
1232 /* The primary target of a tablejump is the label of the ADDR_VEC,
1233 which is canonically mentioned *last* in the insn. To get it
1234 marked as JUMP_LABEL, we iterate over items in reverse order. */
1235 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1237 if (fmt[i] == 'e')
1238 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1239 else if (fmt[i] == 'E')
1241 int j;
1243 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1244 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1245 is_target);
1250 /* Worker function for mark_jump_label. Handle asm insns specially.
1251 In particular, output operands need not be considered so we can
1252 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1253 need to be considered targets. */
1255 static void
1256 mark_jump_label_asm (rtx asmop, rtx_insn *insn)
1258 int i;
1260 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1261 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1263 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1264 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1267 /* Delete insn INSN from the chain of insns and update label ref counts
1268 and delete insns now unreachable.
1270 Returns the first insn after INSN that was not deleted.
1272 Usage of this instruction is deprecated. Use delete_insn instead and
1273 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1275 rtx_insn *
1276 delete_related_insns (rtx uncast_insn)
1278 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
1279 int was_code_label = (LABEL_P (insn));
1280 rtx note;
1281 rtx_insn *next = NEXT_INSN (insn), *prev = PREV_INSN (insn);
1283 while (next && next->deleted ())
1284 next = NEXT_INSN (next);
1286 /* This insn is already deleted => return first following nondeleted. */
1287 if (insn->deleted ())
1288 return next;
1290 delete_insn (insn);
1292 /* If instruction is followed by a barrier,
1293 delete the barrier too. */
1295 if (next != 0 && BARRIER_P (next))
1296 delete_insn (next);
1298 /* If this is a call, then we have to remove the var tracking note
1299 for the call arguments. */
1301 if (CALL_P (insn)
1302 || (NONJUMP_INSN_P (insn)
1303 && GET_CODE (PATTERN (insn)) == SEQUENCE
1304 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))))
1306 rtx_insn *p;
1308 for (p = next && next->deleted () ? NEXT_INSN (next) : next;
1309 p && NOTE_P (p);
1310 p = NEXT_INSN (p))
1311 if (NOTE_KIND (p) == NOTE_INSN_CALL_ARG_LOCATION)
1313 remove_insn (p);
1314 break;
1318 /* If deleting a jump, decrement the count of the label,
1319 and delete the label if it is now unused. */
1321 if (jump_to_label_p (insn))
1323 rtx lab = JUMP_LABEL (insn);
1324 rtx_jump_table_data *lab_next;
1326 if (LABEL_NUSES (lab) == 0)
1327 /* This can delete NEXT or PREV,
1328 either directly if NEXT is JUMP_LABEL (INSN),
1329 or indirectly through more levels of jumps. */
1330 delete_related_insns (lab);
1331 else if (tablejump_p (insn, NULL, &lab_next))
1333 /* If we're deleting the tablejump, delete the dispatch table.
1334 We may not be able to kill the label immediately preceding
1335 just yet, as it might be referenced in code leading up to
1336 the tablejump. */
1337 delete_related_insns (lab_next);
1341 /* Likewise if we're deleting a dispatch table. */
1343 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1345 rtvec labels = table->get_labels ();
1346 int i;
1347 int len = GET_NUM_ELEM (labels);
1349 for (i = 0; i < len; i++)
1350 if (LABEL_NUSES (XEXP (RTVEC_ELT (labels, i), 0)) == 0)
1351 delete_related_insns (XEXP (RTVEC_ELT (labels, i), 0));
1352 while (next && next->deleted ())
1353 next = NEXT_INSN (next);
1354 return next;
1357 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1358 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1359 if (INSN_P (insn))
1360 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1361 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1362 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1363 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1364 && LABEL_P (XEXP (note, 0)))
1365 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1366 delete_related_insns (XEXP (note, 0));
1368 while (prev && (prev->deleted () || NOTE_P (prev)))
1369 prev = PREV_INSN (prev);
1371 /* If INSN was a label and a dispatch table follows it,
1372 delete the dispatch table. The tablejump must have gone already.
1373 It isn't useful to fall through into a table. */
1375 if (was_code_label
1376 && NEXT_INSN (insn) != 0
1377 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1378 next = delete_related_insns (NEXT_INSN (insn));
1380 /* If INSN was a label, delete insns following it if now unreachable. */
1382 if (was_code_label && prev && BARRIER_P (prev))
1384 enum rtx_code code;
1385 while (next)
1387 code = GET_CODE (next);
1388 if (code == NOTE)
1389 next = NEXT_INSN (next);
1390 /* Keep going past other deleted labels to delete what follows. */
1391 else if (code == CODE_LABEL && next->deleted ())
1392 next = NEXT_INSN (next);
1393 /* Keep the (use (insn))s created by dbr_schedule, which needs
1394 them in order to track liveness relative to a previous
1395 barrier. */
1396 else if (INSN_P (next)
1397 && GET_CODE (PATTERN (next)) == USE
1398 && INSN_P (XEXP (PATTERN (next), 0)))
1399 next = NEXT_INSN (next);
1400 else if (code == BARRIER || INSN_P (next))
1401 /* Note: if this deletes a jump, it can cause more
1402 deletion of unreachable code, after a different label.
1403 As long as the value from this recursive call is correct,
1404 this invocation functions correctly. */
1405 next = delete_related_insns (next);
1406 else
1407 break;
1411 /* I feel a little doubtful about this loop,
1412 but I see no clean and sure alternative way
1413 to find the first insn after INSN that is not now deleted.
1414 I hope this works. */
1415 while (next && next->deleted ())
1416 next = NEXT_INSN (next);
1417 return next;
1420 /* Delete a range of insns from FROM to TO, inclusive.
1421 This is for the sake of peephole optimization, so assume
1422 that whatever these insns do will still be done by a new
1423 peephole insn that will replace them. */
1425 void
1426 delete_for_peephole (rtx_insn *from, rtx_insn *to)
1428 rtx_insn *insn = from;
1430 while (1)
1432 rtx_insn *next = NEXT_INSN (insn);
1433 rtx_insn *prev = PREV_INSN (insn);
1435 if (!NOTE_P (insn))
1437 insn->set_deleted();
1439 /* Patch this insn out of the chain. */
1440 /* We don't do this all at once, because we
1441 must preserve all NOTEs. */
1442 if (prev)
1443 SET_NEXT_INSN (prev) = next;
1445 if (next)
1446 SET_PREV_INSN (next) = prev;
1449 if (insn == to)
1450 break;
1451 insn = next;
1454 /* Note that if TO is an unconditional jump
1455 we *do not* delete the BARRIER that follows,
1456 since the peephole that replaces this sequence
1457 is also an unconditional jump in that case. */
1460 /* A helper function for redirect_exp_1; examines its input X and returns
1461 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1462 static rtx
1463 redirect_target (rtx x)
1465 if (x == NULL_RTX)
1466 return ret_rtx;
1467 if (!ANY_RETURN_P (x))
1468 return gen_rtx_LABEL_REF (Pmode, x);
1469 return x;
1472 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1473 NLABEL as a return. Accrue modifications into the change group. */
1475 static void
1476 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1478 rtx x = *loc;
1479 RTX_CODE code = GET_CODE (x);
1480 int i;
1481 const char *fmt;
1483 if ((code == LABEL_REF && LABEL_REF_LABEL (x) == olabel)
1484 || x == olabel)
1486 x = redirect_target (nlabel);
1487 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1488 x = gen_rtx_SET (pc_rtx, x);
1489 validate_change (insn, loc, x, 1);
1490 return;
1493 if (code == SET && SET_DEST (x) == pc_rtx
1494 && ANY_RETURN_P (nlabel)
1495 && GET_CODE (SET_SRC (x)) == LABEL_REF
1496 && LABEL_REF_LABEL (SET_SRC (x)) == olabel)
1498 validate_change (insn, loc, nlabel, 1);
1499 return;
1502 if (code == IF_THEN_ELSE)
1504 /* Skip the condition of an IF_THEN_ELSE. We only want to
1505 change jump destinations, not eventual label comparisons. */
1506 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1507 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1508 return;
1511 fmt = GET_RTX_FORMAT (code);
1512 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1514 if (fmt[i] == 'e')
1515 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1516 else if (fmt[i] == 'E')
1518 int j;
1519 for (j = 0; j < XVECLEN (x, i); j++)
1520 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1525 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1526 the modifications into the change group. Return false if we did
1527 not see how to do that. */
1530 redirect_jump_1 (rtx_insn *jump, rtx nlabel)
1532 int ochanges = num_validated_changes ();
1533 rtx *loc, asmop;
1535 gcc_assert (nlabel != NULL_RTX);
1536 asmop = extract_asm_operands (PATTERN (jump));
1537 if (asmop)
1539 if (nlabel == NULL)
1540 return 0;
1541 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1542 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1544 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1545 loc = &XVECEXP (PATTERN (jump), 0, 0);
1546 else
1547 loc = &PATTERN (jump);
1549 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1550 return num_validated_changes () > ochanges;
1553 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1554 jump target label is unused as a result, it and the code following
1555 it may be deleted.
1557 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1558 in that case we are to turn the jump into a (possibly conditional)
1559 return insn.
1561 The return value will be 1 if the change was made, 0 if it wasn't
1562 (this can only occur when trying to produce return insns). */
1565 redirect_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
1567 rtx olabel = jump->jump_label ();
1569 if (!nlabel)
1571 /* If there is no label, we are asked to redirect to the EXIT block.
1572 When before the epilogue is emitted, return/simple_return cannot be
1573 created so we return 0 immediately. After the epilogue is emitted,
1574 we always expect a label, either a non-null label, or a
1575 return/simple_return RTX. */
1577 if (!epilogue_completed)
1578 return 0;
1579 gcc_unreachable ();
1582 if (nlabel == olabel)
1583 return 1;
1585 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1586 return 0;
1588 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1589 return 1;
1592 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1593 NLABEL in JUMP.
1594 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1595 count has dropped to zero. */
1596 void
1597 redirect_jump_2 (rtx_jump_insn *jump, rtx olabel, rtx nlabel, int delete_unused,
1598 int invert)
1600 rtx note;
1602 gcc_assert (JUMP_LABEL (jump) == olabel);
1604 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1605 moving FUNCTION_END note. Just sanity check that no user still worry
1606 about this. */
1607 gcc_assert (delete_unused >= 0);
1608 JUMP_LABEL (jump) = nlabel;
1609 if (!ANY_RETURN_P (nlabel))
1610 ++LABEL_NUSES (nlabel);
1612 /* Update labels in any REG_EQUAL note. */
1613 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1615 if (ANY_RETURN_P (nlabel)
1616 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1617 remove_note (jump, note);
1618 else
1620 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1621 confirm_change_group ();
1625 /* Handle the case where we had a conditional crossing jump to a return
1626 label and are now changing it into a direct conditional return.
1627 The jump is no longer crossing in that case. */
1628 if (ANY_RETURN_P (nlabel))
1629 CROSSING_JUMP_P (jump) = 0;
1631 if (!ANY_RETURN_P (olabel)
1632 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1633 /* Undefined labels will remain outside the insn stream. */
1634 && INSN_UID (olabel))
1635 delete_related_insns (olabel);
1636 if (invert)
1637 invert_br_probabilities (jump);
1640 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1641 modifications into the change group. Return nonzero for success. */
1642 static int
1643 invert_exp_1 (rtx x, rtx insn)
1645 RTX_CODE code = GET_CODE (x);
1647 if (code == IF_THEN_ELSE)
1649 rtx comp = XEXP (x, 0);
1650 rtx tem;
1651 enum rtx_code reversed_code;
1653 /* We can do this in two ways: The preferable way, which can only
1654 be done if this is not an integer comparison, is to reverse
1655 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1656 of the IF_THEN_ELSE. If we can't do either, fail. */
1658 reversed_code = reversed_comparison_code (comp, insn);
1660 if (reversed_code != UNKNOWN)
1662 validate_change (insn, &XEXP (x, 0),
1663 gen_rtx_fmt_ee (reversed_code,
1664 GET_MODE (comp), XEXP (comp, 0),
1665 XEXP (comp, 1)),
1667 return 1;
1670 tem = XEXP (x, 1);
1671 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1672 validate_change (insn, &XEXP (x, 2), tem, 1);
1673 return 1;
1675 else
1676 return 0;
1679 /* Invert the condition of the jump JUMP, and make it jump to label
1680 NLABEL instead of where it jumps now. Accrue changes into the
1681 change group. Return false if we didn't see how to perform the
1682 inversion and redirection. */
1685 invert_jump_1 (rtx_jump_insn *jump, rtx nlabel)
1687 rtx x = pc_set (jump);
1688 int ochanges;
1689 int ok;
1691 ochanges = num_validated_changes ();
1692 if (x == NULL)
1693 return 0;
1694 ok = invert_exp_1 (SET_SRC (x), jump);
1695 gcc_assert (ok);
1697 if (num_validated_changes () == ochanges)
1698 return 0;
1700 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1701 in Pmode, so checking this is not merely an optimization. */
1702 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1705 /* Invert the condition of the jump JUMP, and make it jump to label
1706 NLABEL instead of where it jumps now. Return true if successful. */
1709 invert_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
1711 rtx olabel = JUMP_LABEL (jump);
1713 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1715 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1716 return 1;
1718 cancel_changes (0);
1719 return 0;
1723 /* Like rtx_equal_p except that it considers two REGs as equal
1724 if they renumber to the same value and considers two commutative
1725 operations to be the same if the order of the operands has been
1726 reversed. */
1729 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1731 int i;
1732 const enum rtx_code code = GET_CODE (x);
1733 const char *fmt;
1735 if (x == y)
1736 return 1;
1738 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1739 && (REG_P (y) || (GET_CODE (y) == SUBREG
1740 && REG_P (SUBREG_REG (y)))))
1742 int reg_x = -1, reg_y = -1;
1743 int byte_x = 0, byte_y = 0;
1744 struct subreg_info info;
1746 if (GET_MODE (x) != GET_MODE (y))
1747 return 0;
1749 /* If we haven't done any renumbering, don't
1750 make any assumptions. */
1751 if (reg_renumber == 0)
1752 return rtx_equal_p (x, y);
1754 if (code == SUBREG)
1756 reg_x = REGNO (SUBREG_REG (x));
1757 byte_x = SUBREG_BYTE (x);
1759 if (reg_renumber[reg_x] >= 0)
1761 subreg_get_info (reg_renumber[reg_x],
1762 GET_MODE (SUBREG_REG (x)), byte_x,
1763 GET_MODE (x), &info);
1764 if (!info.representable_p)
1765 return 0;
1766 reg_x = info.offset;
1767 byte_x = 0;
1770 else
1772 reg_x = REGNO (x);
1773 if (reg_renumber[reg_x] >= 0)
1774 reg_x = reg_renumber[reg_x];
1777 if (GET_CODE (y) == SUBREG)
1779 reg_y = REGNO (SUBREG_REG (y));
1780 byte_y = SUBREG_BYTE (y);
1782 if (reg_renumber[reg_y] >= 0)
1784 subreg_get_info (reg_renumber[reg_y],
1785 GET_MODE (SUBREG_REG (y)), byte_y,
1786 GET_MODE (y), &info);
1787 if (!info.representable_p)
1788 return 0;
1789 reg_y = info.offset;
1790 byte_y = 0;
1793 else
1795 reg_y = REGNO (y);
1796 if (reg_renumber[reg_y] >= 0)
1797 reg_y = reg_renumber[reg_y];
1800 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1803 /* Now we have disposed of all the cases
1804 in which different rtx codes can match. */
1805 if (code != GET_CODE (y))
1806 return 0;
1808 switch (code)
1810 case PC:
1811 case CC0:
1812 case ADDR_VEC:
1813 case ADDR_DIFF_VEC:
1814 CASE_CONST_UNIQUE:
1815 return 0;
1817 case LABEL_REF:
1818 /* We can't assume nonlocal labels have their following insns yet. */
1819 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1820 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
1822 /* Two label-refs are equivalent if they point at labels
1823 in the same position in the instruction stream. */
1824 return (next_real_insn (LABEL_REF_LABEL (x))
1825 == next_real_insn (LABEL_REF_LABEL (y)));
1827 case SYMBOL_REF:
1828 return XSTR (x, 0) == XSTR (y, 0);
1830 case CODE_LABEL:
1831 /* If we didn't match EQ equality above, they aren't the same. */
1832 return 0;
1834 default:
1835 break;
1838 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1840 if (GET_MODE (x) != GET_MODE (y))
1841 return 0;
1843 /* MEMs referring to different address space are not equivalent. */
1844 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1845 return 0;
1847 /* For commutative operations, the RTX match if the operand match in any
1848 order. Also handle the simple binary and unary cases without a loop. */
1849 if (targetm.commutative_p (x, UNKNOWN))
1850 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1851 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1852 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1853 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1854 else if (NON_COMMUTATIVE_P (x))
1855 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1856 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1857 else if (UNARY_P (x))
1858 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1860 /* Compare the elements. If any pair of corresponding elements
1861 fail to match, return 0 for the whole things. */
1863 fmt = GET_RTX_FORMAT (code);
1864 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1866 int j;
1867 switch (fmt[i])
1869 case 'w':
1870 if (XWINT (x, i) != XWINT (y, i))
1871 return 0;
1872 break;
1874 case 'i':
1875 if (XINT (x, i) != XINT (y, i))
1877 if (((code == ASM_OPERANDS && i == 6)
1878 || (code == ASM_INPUT && i == 1)))
1879 break;
1880 return 0;
1882 break;
1884 case 't':
1885 if (XTREE (x, i) != XTREE (y, i))
1886 return 0;
1887 break;
1889 case 's':
1890 if (strcmp (XSTR (x, i), XSTR (y, i)))
1891 return 0;
1892 break;
1894 case 'e':
1895 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1896 return 0;
1897 break;
1899 case 'u':
1900 if (XEXP (x, i) != XEXP (y, i))
1901 return 0;
1902 /* Fall through. */
1903 case '0':
1904 break;
1906 case 'E':
1907 if (XVECLEN (x, i) != XVECLEN (y, i))
1908 return 0;
1909 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1910 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1911 return 0;
1912 break;
1914 default:
1915 gcc_unreachable ();
1918 return 1;
1921 /* If X is a hard register or equivalent to one or a subregister of one,
1922 return the hard register number. If X is a pseudo register that was not
1923 assigned a hard register, return the pseudo register number. Otherwise,
1924 return -1. Any rtx is valid for X. */
1927 true_regnum (const_rtx x)
1929 if (REG_P (x))
1931 if (REGNO (x) >= FIRST_PSEUDO_REGISTER
1932 && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
1933 return reg_renumber[REGNO (x)];
1934 return REGNO (x);
1936 if (GET_CODE (x) == SUBREG)
1938 int base = true_regnum (SUBREG_REG (x));
1939 if (base >= 0
1940 && base < FIRST_PSEUDO_REGISTER)
1942 struct subreg_info info;
1944 subreg_get_info (lra_in_progress
1945 ? (unsigned) base : REGNO (SUBREG_REG (x)),
1946 GET_MODE (SUBREG_REG (x)),
1947 SUBREG_BYTE (x), GET_MODE (x), &info);
1949 if (info.representable_p)
1950 return base + info.offset;
1953 return -1;
1956 /* Return regno of the register REG and handle subregs too. */
1957 unsigned int
1958 reg_or_subregno (const_rtx reg)
1960 if (GET_CODE (reg) == SUBREG)
1961 reg = SUBREG_REG (reg);
1962 gcc_assert (REG_P (reg));
1963 return REGNO (reg);