1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
38 #include "coretypes.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
60 #include "diagnostic-core.h"
62 #include "tree-pass.h"
66 /* Optimize jump y; x: ... y: jumpif... x?
67 Don't know if it is worth bothering with. */
68 /* Optimize two cases of conditional jump to conditional jump?
69 This can never delete any instruction or make anything dead,
70 or even change what is live at any point.
71 So perhaps let combiner do it. */
73 static void init_label_info (rtx_insn
*);
74 static void mark_all_labels (rtx_insn
*);
75 static void mark_jump_label_1 (rtx
, rtx_insn
*, bool, bool);
76 static void mark_jump_label_asm (rtx
, rtx_insn
*);
77 static void redirect_exp_1 (rtx
*, rtx
, rtx
, rtx
);
78 static int invert_exp_1 (rtx
, rtx
);
80 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
82 rebuild_jump_labels_1 (rtx_insn
*f
, bool count_forced
)
86 timevar_push (TV_REBUILD_JUMP
);
90 /* Keep track of labels used from static data; we don't track them
91 closely enough to delete them here, so make sure their reference
92 count doesn't drop to zero. */
95 for (insn
= forced_labels
; insn
; insn
= insn
->next ())
96 if (LABEL_P (insn
->insn ()))
97 LABEL_NUSES (insn
->insn ())++;
98 timevar_pop (TV_REBUILD_JUMP
);
101 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
102 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
103 instructions and jumping insns that have labels as operands
104 (e.g. cbranchsi4). */
106 rebuild_jump_labels (rtx_insn
*f
)
108 rebuild_jump_labels_1 (f
, true);
111 /* This function is like rebuild_jump_labels, but doesn't run over
112 forced_labels. It can be used on insn chains that aren't the
113 main function chain. */
115 rebuild_jump_labels_chain (rtx_insn
*chain
)
117 rebuild_jump_labels_1 (chain
, false);
120 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
121 non-fallthru insn. This is not generally true, as multiple barriers
122 may have crept in, or the BARRIER may be separated from the last
123 real insn by one or more NOTEs.
125 This simple pass moves barriers and removes duplicates so that the
129 cleanup_barriers (void)
132 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
134 if (BARRIER_P (insn
))
136 rtx_insn
*prev
= prev_nonnote_insn (insn
);
142 /* Make sure we do not split a call and its corresponding
143 CALL_ARG_LOCATION note. */
144 rtx_insn
*next
= NEXT_INSN (prev
);
147 && NOTE_KIND (next
) == NOTE_INSN_CALL_ARG_LOCATION
)
151 if (BARRIER_P (prev
))
153 else if (prev
!= PREV_INSN (insn
))
155 basic_block bb
= BLOCK_FOR_INSN (prev
);
156 rtx_insn
*end
= PREV_INSN (insn
);
157 reorder_insns_nobb (insn
, insn
, prev
);
160 /* If the backend called in machine reorg compute_bb_for_insn
161 and didn't free_bb_for_insn again, preserve basic block
162 boundaries. Move the end of basic block to PREV since
163 it is followed by a barrier now, and clear BLOCK_FOR_INSN
164 on the following notes.
165 ??? Maybe the proper solution for the targets that have
166 cfg around after machine reorg is not to run cleanup_barriers
171 prev
= NEXT_INSN (prev
);
172 if (prev
!= insn
&& BLOCK_FOR_INSN (prev
) == bb
)
173 BLOCK_FOR_INSN (prev
) = NULL
;
185 const pass_data pass_data_cleanup_barriers
=
188 "barriers", /* name */
189 OPTGROUP_NONE
, /* optinfo_flags */
191 0, /* properties_required */
192 0, /* properties_provided */
193 0, /* properties_destroyed */
194 0, /* todo_flags_start */
195 0, /* todo_flags_finish */
198 class pass_cleanup_barriers
: public rtl_opt_pass
201 pass_cleanup_barriers (gcc::context
*ctxt
)
202 : rtl_opt_pass (pass_data_cleanup_barriers
, ctxt
)
205 /* opt_pass methods: */
206 virtual unsigned int execute (function
*) { return cleanup_barriers (); }
208 }; // class pass_cleanup_barriers
213 make_pass_cleanup_barriers (gcc::context
*ctxt
)
215 return new pass_cleanup_barriers (ctxt
);
219 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
220 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
221 notes whose labels don't occur in the insn any more. */
224 init_label_info (rtx_insn
*f
)
228 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
231 LABEL_NUSES (insn
) = (LABEL_PRESERVE_P (insn
) != 0);
233 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
234 sticky and not reset here; that way we won't lose association
235 with a label when e.g. the source for a target register
236 disappears out of reach for targets that may use jump-target
237 registers. Jump transformations are supposed to transform
238 any REG_LABEL_TARGET notes. The target label reference in a
239 branch may disappear from the branch (and from the
240 instruction before it) for other reasons, like register
247 for (note
= REG_NOTES (insn
); note
; note
= next
)
249 next
= XEXP (note
, 1);
250 if (REG_NOTE_KIND (note
) == REG_LABEL_OPERAND
251 && ! reg_mentioned_p (XEXP (note
, 0), PATTERN (insn
)))
252 remove_note (insn
, note
);
258 /* A subroutine of mark_all_labels. Trivially propagate a simple label
259 load into a jump_insn that uses it. */
262 maybe_propagate_label_ref (rtx_insn
*jump_insn
, rtx_insn
*prev_nonjump_insn
)
264 rtx label_note
, pc
, pc_src
;
266 pc
= pc_set (jump_insn
);
267 pc_src
= pc
!= NULL
? SET_SRC (pc
) : NULL
;
268 label_note
= find_reg_note (prev_nonjump_insn
, REG_LABEL_OPERAND
, NULL
);
270 /* If the previous non-jump insn sets something to a label,
271 something that this jump insn uses, make that label the primary
272 target of this insn if we don't yet have any. That previous
273 insn must be a single_set and not refer to more than one label.
274 The jump insn must not refer to other labels as jump targets
275 and must be a plain (set (pc) ...), maybe in a parallel, and
276 may refer to the item being set only directly or as one of the
277 arms in an IF_THEN_ELSE. */
279 if (label_note
!= NULL
&& pc_src
!= NULL
)
281 rtx label_set
= single_set (prev_nonjump_insn
);
282 rtx label_dest
= label_set
!= NULL
? SET_DEST (label_set
) : NULL
;
284 if (label_set
!= NULL
285 /* The source must be the direct LABEL_REF, not a
286 PLUS, UNSPEC, IF_THEN_ELSE etc. */
287 && GET_CODE (SET_SRC (label_set
)) == LABEL_REF
288 && (rtx_equal_p (label_dest
, pc_src
)
289 || (GET_CODE (pc_src
) == IF_THEN_ELSE
290 && (rtx_equal_p (label_dest
, XEXP (pc_src
, 1))
291 || rtx_equal_p (label_dest
, XEXP (pc_src
, 2))))))
293 /* The CODE_LABEL referred to in the note must be the
294 CODE_LABEL in the LABEL_REF of the "set". We can
295 conveniently use it for the marker function, which
296 requires a LABEL_REF wrapping. */
297 gcc_assert (XEXP (label_note
, 0) == LABEL_REF_LABEL (SET_SRC (label_set
)));
299 mark_jump_label_1 (label_set
, jump_insn
, false, true);
301 gcc_assert (JUMP_LABEL (jump_insn
) == XEXP (label_note
, 0));
306 /* Mark the label each jump jumps to.
307 Combine consecutive labels, and count uses of labels. */
310 mark_all_labels (rtx_insn
*f
)
314 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
317 FOR_EACH_BB_FN (bb
, cfun
)
319 /* In cfglayout mode, we don't bother with trivial next-insn
320 propagation of LABEL_REFs into JUMP_LABEL. This will be
321 handled by other optimizers using better algorithms. */
322 FOR_BB_INSNS (bb
, insn
)
324 gcc_assert (! insn
->deleted ());
325 if (NONDEBUG_INSN_P (insn
))
326 mark_jump_label (PATTERN (insn
), insn
, 0);
329 /* In cfglayout mode, there may be non-insns between the
330 basic blocks. If those non-insns represent tablejump data,
331 they contain label references that we must record. */
332 for (insn
= BB_HEADER (bb
); insn
; insn
= NEXT_INSN (insn
))
333 if (JUMP_TABLE_DATA_P (insn
))
334 mark_jump_label (PATTERN (insn
), insn
, 0);
335 for (insn
= BB_FOOTER (bb
); insn
; insn
= NEXT_INSN (insn
))
336 if (JUMP_TABLE_DATA_P (insn
))
337 mark_jump_label (PATTERN (insn
), insn
, 0);
342 rtx_insn
*prev_nonjump_insn
= NULL
;
343 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
345 if (insn
->deleted ())
347 else if (LABEL_P (insn
))
348 prev_nonjump_insn
= NULL
;
349 else if (JUMP_TABLE_DATA_P (insn
))
350 mark_jump_label (PATTERN (insn
), insn
, 0);
351 else if (NONDEBUG_INSN_P (insn
))
353 mark_jump_label (PATTERN (insn
), insn
, 0);
356 if (JUMP_LABEL (insn
) == NULL
&& prev_nonjump_insn
!= NULL
)
357 maybe_propagate_label_ref (insn
, prev_nonjump_insn
);
360 prev_nonjump_insn
= insn
;
366 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
367 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
368 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
369 know whether it's source is floating point or integer comparison. Machine
370 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
371 to help this function avoid overhead in these cases. */
373 reversed_comparison_code_parts (enum rtx_code code
, const_rtx arg0
,
374 const_rtx arg1
, const_rtx insn
)
378 /* If this is not actually a comparison, we can't reverse it. */
379 if (GET_RTX_CLASS (code
) != RTX_COMPARE
380 && GET_RTX_CLASS (code
) != RTX_COMM_COMPARE
)
383 mode
= GET_MODE (arg0
);
384 if (mode
== VOIDmode
)
385 mode
= GET_MODE (arg1
);
387 /* First see if machine description supplies us way to reverse the
388 comparison. Give it priority over everything else to allow
389 machine description to do tricks. */
390 if (GET_MODE_CLASS (mode
) == MODE_CC
391 && REVERSIBLE_CC_MODE (mode
))
393 #ifdef REVERSE_CONDITION
394 return REVERSE_CONDITION (code
, mode
);
396 return reverse_condition (code
);
400 /* Try a few special cases based on the comparison code. */
409 /* It is always safe to reverse EQ and NE, even for the floating
410 point. Similarly the unsigned comparisons are never used for
411 floating point so we can reverse them in the default way. */
412 return reverse_condition (code
);
417 /* In case we already see unordered comparison, we can be sure to
418 be dealing with floating point so we don't need any more tests. */
419 return reverse_condition_maybe_unordered (code
);
424 /* We don't have safe way to reverse these yet. */
430 if (GET_MODE_CLASS (mode
) == MODE_CC
|| CC0_P (arg0
))
432 /* Try to search for the comparison to determine the real mode.
433 This code is expensive, but with sane machine description it
434 will be never used, since REVERSIBLE_CC_MODE will return true
439 /* These CONST_CAST's are okay because prev_nonnote_insn just
440 returns its argument and we assign it to a const_rtx
442 for (rtx_insn
*prev
= prev_nonnote_insn (CONST_CAST_RTX (insn
));
443 prev
!= 0 && !LABEL_P (prev
);
444 prev
= prev_nonnote_insn (prev
))
446 const_rtx set
= set_of (arg0
, prev
);
447 if (set
&& GET_CODE (set
) == SET
448 && rtx_equal_p (SET_DEST (set
), arg0
))
450 rtx src
= SET_SRC (set
);
452 if (GET_CODE (src
) == COMPARE
)
454 rtx comparison
= src
;
455 arg0
= XEXP (src
, 0);
456 mode
= GET_MODE (arg0
);
457 if (mode
== VOIDmode
)
458 mode
= GET_MODE (XEXP (comparison
, 1));
461 /* We can get past reg-reg moves. This may be useful for model
462 of i387 comparisons that first move flag registers around. */
469 /* If register is clobbered in some ununderstandable way,
476 /* Test for an integer condition, or a floating-point comparison
477 in which NaNs can be ignored. */
478 if (CONST_INT_P (arg0
)
479 || (GET_MODE (arg0
) != VOIDmode
480 && GET_MODE_CLASS (mode
) != MODE_CC
481 && !HONOR_NANS (mode
)))
482 return reverse_condition (code
);
487 /* A wrapper around the previous function to take COMPARISON as rtx
488 expression. This simplifies many callers. */
490 reversed_comparison_code (const_rtx comparison
, const_rtx insn
)
492 if (!COMPARISON_P (comparison
))
494 return reversed_comparison_code_parts (GET_CODE (comparison
),
495 XEXP (comparison
, 0),
496 XEXP (comparison
, 1), insn
);
499 /* Return comparison with reversed code of EXP.
500 Return NULL_RTX in case we fail to do the reversal. */
502 reversed_comparison (const_rtx exp
, machine_mode mode
)
504 enum rtx_code reversed_code
= reversed_comparison_code (exp
, NULL_RTX
);
505 if (reversed_code
== UNKNOWN
)
508 return simplify_gen_relational (reversed_code
, mode
, VOIDmode
,
509 XEXP (exp
, 0), XEXP (exp
, 1));
513 /* Given an rtx-code for a comparison, return the code for the negated
514 comparison. If no such code exists, return UNKNOWN.
516 WATCH OUT! reverse_condition is not safe to use on a jump that might
517 be acting on the results of an IEEE floating point comparison, because
518 of the special treatment of non-signaling nans in comparisons.
519 Use reversed_comparison_code instead. */
522 reverse_condition (enum rtx_code code
)
564 /* Similar, but we're allowed to generate unordered comparisons, which
565 makes it safe for IEEE floating-point. Of course, we have to recognize
566 that the target will support them too... */
569 reverse_condition_maybe_unordered (enum rtx_code code
)
607 /* Similar, but return the code when two operands of a comparison are swapped.
608 This IS safe for IEEE floating-point. */
611 swap_condition (enum rtx_code code
)
653 /* Given a comparison CODE, return the corresponding unsigned comparison.
654 If CODE is an equality comparison or already an unsigned comparison,
658 unsigned_condition (enum rtx_code code
)
684 /* Similarly, return the signed version of a comparison. */
687 signed_condition (enum rtx_code code
)
713 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
714 truth of CODE1 implies the truth of CODE2. */
717 comparison_dominates_p (enum rtx_code code1
, enum rtx_code code2
)
719 /* UNKNOWN comparison codes can happen as a result of trying to revert
721 They can't match anything, so we have to reject them here. */
722 if (code1
== UNKNOWN
|| code2
== UNKNOWN
)
731 if (code2
== UNLE
|| code2
== UNGE
)
736 if (code2
== LE
|| code2
== LEU
|| code2
== GE
|| code2
== GEU
742 if (code2
== UNLE
|| code2
== NE
)
747 if (code2
== LE
|| code2
== NE
|| code2
== ORDERED
|| code2
== LTGT
)
752 if (code2
== UNGE
|| code2
== NE
)
757 if (code2
== GE
|| code2
== NE
|| code2
== ORDERED
|| code2
== LTGT
)
763 if (code2
== ORDERED
)
768 if (code2
== NE
|| code2
== ORDERED
)
773 if (code2
== LEU
|| code2
== NE
)
778 if (code2
== GEU
|| code2
== NE
)
783 if (code2
== NE
|| code2
== UNEQ
|| code2
== UNLE
|| code2
== UNLT
784 || code2
== UNGE
|| code2
== UNGT
)
795 /* Return 1 if INSN is an unconditional jump and nothing else. */
798 simplejump_p (const rtx_insn
*insn
)
800 return (JUMP_P (insn
)
801 && GET_CODE (PATTERN (insn
)) == SET
802 && GET_CODE (SET_DEST (PATTERN (insn
))) == PC
803 && GET_CODE (SET_SRC (PATTERN (insn
))) == LABEL_REF
);
806 /* Return nonzero if INSN is a (possibly) conditional jump
809 Use of this function is deprecated, since we need to support combined
810 branch and compare insns. Use any_condjump_p instead whenever possible. */
813 condjump_p (const rtx_insn
*insn
)
815 const_rtx x
= PATTERN (insn
);
817 if (GET_CODE (x
) != SET
818 || GET_CODE (SET_DEST (x
)) != PC
)
822 if (GET_CODE (x
) == LABEL_REF
)
825 return (GET_CODE (x
) == IF_THEN_ELSE
826 && ((GET_CODE (XEXP (x
, 2)) == PC
827 && (GET_CODE (XEXP (x
, 1)) == LABEL_REF
828 || ANY_RETURN_P (XEXP (x
, 1))))
829 || (GET_CODE (XEXP (x
, 1)) == PC
830 && (GET_CODE (XEXP (x
, 2)) == LABEL_REF
831 || ANY_RETURN_P (XEXP (x
, 2))))));
834 /* Return nonzero if INSN is a (possibly) conditional jump inside a
837 Use this function is deprecated, since we need to support combined
838 branch and compare insns. Use any_condjump_p instead whenever possible. */
841 condjump_in_parallel_p (const rtx_insn
*insn
)
843 const_rtx x
= PATTERN (insn
);
845 if (GET_CODE (x
) != PARALLEL
)
848 x
= XVECEXP (x
, 0, 0);
850 if (GET_CODE (x
) != SET
)
852 if (GET_CODE (SET_DEST (x
)) != PC
)
854 if (GET_CODE (SET_SRC (x
)) == LABEL_REF
)
856 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
858 if (XEXP (SET_SRC (x
), 2) == pc_rtx
859 && (GET_CODE (XEXP (SET_SRC (x
), 1)) == LABEL_REF
860 || ANY_RETURN_P (XEXP (SET_SRC (x
), 1))))
862 if (XEXP (SET_SRC (x
), 1) == pc_rtx
863 && (GET_CODE (XEXP (SET_SRC (x
), 2)) == LABEL_REF
864 || ANY_RETURN_P (XEXP (SET_SRC (x
), 2))))
869 /* Return set of PC, otherwise NULL. */
872 pc_set (const rtx_insn
*insn
)
877 pat
= PATTERN (insn
);
879 /* The set is allowed to appear either as the insn pattern or
880 the first set in a PARALLEL. */
881 if (GET_CODE (pat
) == PARALLEL
)
882 pat
= XVECEXP (pat
, 0, 0);
883 if (GET_CODE (pat
) == SET
&& GET_CODE (SET_DEST (pat
)) == PC
)
889 /* Return true when insn is an unconditional direct jump,
890 possibly bundled inside a PARALLEL. */
893 any_uncondjump_p (const rtx_insn
*insn
)
895 const_rtx x
= pc_set (insn
);
898 if (GET_CODE (SET_SRC (x
)) != LABEL_REF
)
900 if (find_reg_note (insn
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
905 /* Return true when insn is a conditional jump. This function works for
906 instructions containing PC sets in PARALLELs. The instruction may have
907 various other effects so before removing the jump you must verify
910 Note that unlike condjump_p it returns false for unconditional jumps. */
913 any_condjump_p (const rtx_insn
*insn
)
915 const_rtx x
= pc_set (insn
);
920 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
923 a
= GET_CODE (XEXP (SET_SRC (x
), 1));
924 b
= GET_CODE (XEXP (SET_SRC (x
), 2));
926 return ((b
== PC
&& (a
== LABEL_REF
|| a
== RETURN
|| a
== SIMPLE_RETURN
))
928 && (b
== LABEL_REF
|| b
== RETURN
|| b
== SIMPLE_RETURN
)));
931 /* Return the label of a conditional jump. */
934 condjump_label (const rtx_insn
*insn
)
936 rtx x
= pc_set (insn
);
941 if (GET_CODE (x
) == LABEL_REF
)
943 if (GET_CODE (x
) != IF_THEN_ELSE
)
945 if (XEXP (x
, 2) == pc_rtx
&& GET_CODE (XEXP (x
, 1)) == LABEL_REF
)
947 if (XEXP (x
, 1) == pc_rtx
&& GET_CODE (XEXP (x
, 2)) == LABEL_REF
)
952 /* Return TRUE if INSN is a return jump. */
955 returnjump_p (const rtx_insn
*insn
)
959 subrtx_iterator::array_type array
;
960 FOR_EACH_SUBRTX (iter
, array
, PATTERN (insn
), NONCONST
)
963 switch (GET_CODE (x
))
971 if (SET_IS_RETURN_P (x
))
983 /* Return true if INSN is a (possibly conditional) return insn. */
986 eh_returnjump_p (rtx_insn
*insn
)
990 subrtx_iterator::array_type array
;
991 FOR_EACH_SUBRTX (iter
, array
, PATTERN (insn
), NONCONST
)
992 if (GET_CODE (*iter
) == EH_RETURN
)
998 /* Return true if INSN is a jump that only transfers control and
1002 onlyjump_p (const rtx_insn
*insn
)
1009 set
= single_set (insn
);
1012 if (GET_CODE (SET_DEST (set
)) != PC
)
1014 if (side_effects_p (SET_SRC (set
)))
1020 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
1021 NULL or a return. */
1023 jump_to_label_p (const rtx_insn
*insn
)
1025 return (JUMP_P (insn
)
1026 && JUMP_LABEL (insn
) != NULL
&& !ANY_RETURN_P (JUMP_LABEL (insn
)));
1029 /* Return nonzero if X is an RTX that only sets the condition codes
1030 and has no side effects. */
1033 only_sets_cc0_p (const_rtx x
)
1041 return sets_cc0_p (x
) == 1 && ! side_effects_p (x
);
1044 /* Return 1 if X is an RTX that does nothing but set the condition codes
1045 and CLOBBER or USE registers.
1046 Return -1 if X does explicitly set the condition codes,
1047 but also does other things. */
1050 sets_cc0_p (const_rtx x
)
1058 if (GET_CODE (x
) == SET
&& SET_DEST (x
) == cc0_rtx
)
1060 if (GET_CODE (x
) == PARALLEL
)
1064 int other_things
= 0;
1065 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1067 if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
1068 && SET_DEST (XVECEXP (x
, 0, i
)) == cc0_rtx
)
1070 else if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
)
1073 return ! sets_cc0
? 0 : other_things
? -1 : 1;
1078 /* Find all CODE_LABELs referred to in X, and increment their use
1079 counts. If INSN is a JUMP_INSN and there is at least one
1080 CODE_LABEL referenced in INSN as a jump target, then store the last
1081 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1082 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1083 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1084 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1085 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1086 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1088 Note that two labels separated by a loop-beginning note
1089 must be kept distinct if we have not yet done loop-optimization,
1090 because the gap between them is where loop-optimize
1091 will want to move invariant code to. CROSS_JUMP tells us
1092 that loop-optimization is done with. */
1095 mark_jump_label (rtx x
, rtx_insn
*insn
, int in_mem
)
1097 rtx asmop
= extract_asm_operands (x
);
1099 mark_jump_label_asm (asmop
, insn
);
1101 mark_jump_label_1 (x
, insn
, in_mem
!= 0,
1102 (insn
!= NULL
&& x
== PATTERN (insn
) && JUMP_P (insn
)));
1105 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1106 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1107 jump-target; when the JUMP_LABEL field of INSN should be set or a
1108 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1112 mark_jump_label_1 (rtx x
, rtx_insn
*insn
, bool in_mem
, bool is_target
)
1114 RTX_CODE code
= GET_CODE (x
);
1131 gcc_assert (JUMP_LABEL (insn
) == NULL
|| JUMP_LABEL (insn
) == x
);
1132 JUMP_LABEL (insn
) = x
;
1142 rtx_sequence
*seq
= as_a
<rtx_sequence
*> (x
);
1143 for (i
= 0; i
< seq
->len (); i
++)
1144 mark_jump_label (PATTERN (seq
->insn (i
)),
1153 /* If this is a constant-pool reference, see if it is a label. */
1154 if (CONSTANT_POOL_ADDRESS_P (x
))
1155 mark_jump_label_1 (get_pool_constant (x
), insn
, in_mem
, is_target
);
1158 /* Handle operands in the condition of an if-then-else as for a
1163 mark_jump_label_1 (XEXP (x
, 0), insn
, in_mem
, false);
1164 mark_jump_label_1 (XEXP (x
, 1), insn
, in_mem
, true);
1165 mark_jump_label_1 (XEXP (x
, 2), insn
, in_mem
, true);
1170 rtx label
= LABEL_REF_LABEL (x
);
1172 /* Ignore remaining references to unreachable labels that
1173 have been deleted. */
1175 && NOTE_KIND (label
) == NOTE_INSN_DELETED_LABEL
)
1178 gcc_assert (LABEL_P (label
));
1180 /* Ignore references to labels of containing functions. */
1181 if (LABEL_REF_NONLOCAL_P (x
))
1184 LABEL_REF_LABEL (x
) = label
;
1185 if (! insn
|| ! insn
->deleted ())
1186 ++LABEL_NUSES (label
);
1191 /* Do not change a previous setting of JUMP_LABEL. If the
1192 JUMP_LABEL slot is occupied by a different label,
1193 create a note for this label. */
1194 && (JUMP_LABEL (insn
) == NULL
|| JUMP_LABEL (insn
) == label
))
1195 JUMP_LABEL (insn
) = label
;
1199 = is_target
? REG_LABEL_TARGET
: REG_LABEL_OPERAND
;
1201 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1202 for LABEL unless there already is one. All uses of
1203 a label, except for the primary target of a jump,
1204 must have such a note. */
1205 if (! find_reg_note (insn
, kind
, label
))
1206 add_reg_note (insn
, kind
, label
);
1212 /* Do walk the labels in a vector, but not the first operand of an
1213 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1216 if (! insn
->deleted ())
1218 int eltnum
= code
== ADDR_DIFF_VEC
? 1 : 0;
1220 for (i
= 0; i
< XVECLEN (x
, eltnum
); i
++)
1221 mark_jump_label_1 (XVECEXP (x
, eltnum
, i
), NULL
, in_mem
,
1230 fmt
= GET_RTX_FORMAT (code
);
1232 /* The primary target of a tablejump is the label of the ADDR_VEC,
1233 which is canonically mentioned *last* in the insn. To get it
1234 marked as JUMP_LABEL, we iterate over items in reverse order. */
1235 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1238 mark_jump_label_1 (XEXP (x
, i
), insn
, in_mem
, is_target
);
1239 else if (fmt
[i
] == 'E')
1243 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1244 mark_jump_label_1 (XVECEXP (x
, i
, j
), insn
, in_mem
,
1250 /* Worker function for mark_jump_label. Handle asm insns specially.
1251 In particular, output operands need not be considered so we can
1252 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1253 need to be considered targets. */
1256 mark_jump_label_asm (rtx asmop
, rtx_insn
*insn
)
1260 for (i
= ASM_OPERANDS_INPUT_LENGTH (asmop
) - 1; i
>= 0; --i
)
1261 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop
, i
), insn
, false, false);
1263 for (i
= ASM_OPERANDS_LABEL_LENGTH (asmop
) - 1; i
>= 0; --i
)
1264 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop
, i
), insn
, false, true);
1267 /* Delete insn INSN from the chain of insns and update label ref counts
1268 and delete insns now unreachable.
1270 Returns the first insn after INSN that was not deleted.
1272 Usage of this instruction is deprecated. Use delete_insn instead and
1273 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1276 delete_related_insns (rtx uncast_insn
)
1278 rtx_insn
*insn
= as_a
<rtx_insn
*> (uncast_insn
);
1279 int was_code_label
= (LABEL_P (insn
));
1281 rtx_insn
*next
= NEXT_INSN (insn
), *prev
= PREV_INSN (insn
);
1283 while (next
&& next
->deleted ())
1284 next
= NEXT_INSN (next
);
1286 /* This insn is already deleted => return first following nondeleted. */
1287 if (insn
->deleted ())
1292 /* If instruction is followed by a barrier,
1293 delete the barrier too. */
1295 if (next
!= 0 && BARRIER_P (next
))
1298 /* If this is a call, then we have to remove the var tracking note
1299 for the call arguments. */
1302 || (NONJUMP_INSN_P (insn
)
1303 && GET_CODE (PATTERN (insn
)) == SEQUENCE
1304 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))))
1308 for (p
= next
&& next
->deleted () ? NEXT_INSN (next
) : next
;
1311 if (NOTE_KIND (p
) == NOTE_INSN_CALL_ARG_LOCATION
)
1318 /* If deleting a jump, decrement the count of the label,
1319 and delete the label if it is now unused. */
1321 if (jump_to_label_p (insn
))
1323 rtx lab
= JUMP_LABEL (insn
);
1324 rtx_jump_table_data
*lab_next
;
1326 if (LABEL_NUSES (lab
) == 0)
1327 /* This can delete NEXT or PREV,
1328 either directly if NEXT is JUMP_LABEL (INSN),
1329 or indirectly through more levels of jumps. */
1330 delete_related_insns (lab
);
1331 else if (tablejump_p (insn
, NULL
, &lab_next
))
1333 /* If we're deleting the tablejump, delete the dispatch table.
1334 We may not be able to kill the label immediately preceding
1335 just yet, as it might be referenced in code leading up to
1337 delete_related_insns (lab_next
);
1341 /* Likewise if we're deleting a dispatch table. */
1343 if (rtx_jump_table_data
*table
= dyn_cast
<rtx_jump_table_data
*> (insn
))
1345 rtvec labels
= table
->get_labels ();
1347 int len
= GET_NUM_ELEM (labels
);
1349 for (i
= 0; i
< len
; i
++)
1350 if (LABEL_NUSES (XEXP (RTVEC_ELT (labels
, i
), 0)) == 0)
1351 delete_related_insns (XEXP (RTVEC_ELT (labels
, i
), 0));
1352 while (next
&& next
->deleted ())
1353 next
= NEXT_INSN (next
);
1357 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1358 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1360 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1361 if ((REG_NOTE_KIND (note
) == REG_LABEL_OPERAND
1362 || REG_NOTE_KIND (note
) == REG_LABEL_TARGET
)
1363 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1364 && LABEL_P (XEXP (note
, 0)))
1365 if (LABEL_NUSES (XEXP (note
, 0)) == 0)
1366 delete_related_insns (XEXP (note
, 0));
1368 while (prev
&& (prev
->deleted () || NOTE_P (prev
)))
1369 prev
= PREV_INSN (prev
);
1371 /* If INSN was a label and a dispatch table follows it,
1372 delete the dispatch table. The tablejump must have gone already.
1373 It isn't useful to fall through into a table. */
1376 && NEXT_INSN (insn
) != 0
1377 && JUMP_TABLE_DATA_P (NEXT_INSN (insn
)))
1378 next
= delete_related_insns (NEXT_INSN (insn
));
1380 /* If INSN was a label, delete insns following it if now unreachable. */
1382 if (was_code_label
&& prev
&& BARRIER_P (prev
))
1387 code
= GET_CODE (next
);
1389 next
= NEXT_INSN (next
);
1390 /* Keep going past other deleted labels to delete what follows. */
1391 else if (code
== CODE_LABEL
&& next
->deleted ())
1392 next
= NEXT_INSN (next
);
1393 /* Keep the (use (insn))s created by dbr_schedule, which needs
1394 them in order to track liveness relative to a previous
1396 else if (INSN_P (next
)
1397 && GET_CODE (PATTERN (next
)) == USE
1398 && INSN_P (XEXP (PATTERN (next
), 0)))
1399 next
= NEXT_INSN (next
);
1400 else if (code
== BARRIER
|| INSN_P (next
))
1401 /* Note: if this deletes a jump, it can cause more
1402 deletion of unreachable code, after a different label.
1403 As long as the value from this recursive call is correct,
1404 this invocation functions correctly. */
1405 next
= delete_related_insns (next
);
1411 /* I feel a little doubtful about this loop,
1412 but I see no clean and sure alternative way
1413 to find the first insn after INSN that is not now deleted.
1414 I hope this works. */
1415 while (next
&& next
->deleted ())
1416 next
= NEXT_INSN (next
);
1420 /* Delete a range of insns from FROM to TO, inclusive.
1421 This is for the sake of peephole optimization, so assume
1422 that whatever these insns do will still be done by a new
1423 peephole insn that will replace them. */
1426 delete_for_peephole (rtx_insn
*from
, rtx_insn
*to
)
1428 rtx_insn
*insn
= from
;
1432 rtx_insn
*next
= NEXT_INSN (insn
);
1433 rtx_insn
*prev
= PREV_INSN (insn
);
1437 insn
->set_deleted();
1439 /* Patch this insn out of the chain. */
1440 /* We don't do this all at once, because we
1441 must preserve all NOTEs. */
1443 SET_NEXT_INSN (prev
) = next
;
1446 SET_PREV_INSN (next
) = prev
;
1454 /* Note that if TO is an unconditional jump
1455 we *do not* delete the BARRIER that follows,
1456 since the peephole that replaces this sequence
1457 is also an unconditional jump in that case. */
1460 /* A helper function for redirect_exp_1; examines its input X and returns
1461 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1463 redirect_target (rtx x
)
1467 if (!ANY_RETURN_P (x
))
1468 return gen_rtx_LABEL_REF (Pmode
, x
);
1472 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1473 NLABEL as a return. Accrue modifications into the change group. */
1476 redirect_exp_1 (rtx
*loc
, rtx olabel
, rtx nlabel
, rtx insn
)
1479 RTX_CODE code
= GET_CODE (x
);
1483 if ((code
== LABEL_REF
&& LABEL_REF_LABEL (x
) == olabel
)
1486 x
= redirect_target (nlabel
);
1487 if (GET_CODE (x
) == LABEL_REF
&& loc
== &PATTERN (insn
))
1488 x
= gen_rtx_SET (pc_rtx
, x
);
1489 validate_change (insn
, loc
, x
, 1);
1493 if (code
== SET
&& SET_DEST (x
) == pc_rtx
1494 && ANY_RETURN_P (nlabel
)
1495 && GET_CODE (SET_SRC (x
)) == LABEL_REF
1496 && LABEL_REF_LABEL (SET_SRC (x
)) == olabel
)
1498 validate_change (insn
, loc
, nlabel
, 1);
1502 if (code
== IF_THEN_ELSE
)
1504 /* Skip the condition of an IF_THEN_ELSE. We only want to
1505 change jump destinations, not eventual label comparisons. */
1506 redirect_exp_1 (&XEXP (x
, 1), olabel
, nlabel
, insn
);
1507 redirect_exp_1 (&XEXP (x
, 2), olabel
, nlabel
, insn
);
1511 fmt
= GET_RTX_FORMAT (code
);
1512 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1515 redirect_exp_1 (&XEXP (x
, i
), olabel
, nlabel
, insn
);
1516 else if (fmt
[i
] == 'E')
1519 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1520 redirect_exp_1 (&XVECEXP (x
, i
, j
), olabel
, nlabel
, insn
);
1525 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1526 the modifications into the change group. Return false if we did
1527 not see how to do that. */
1530 redirect_jump_1 (rtx_insn
*jump
, rtx nlabel
)
1532 int ochanges
= num_validated_changes ();
1535 gcc_assert (nlabel
!= NULL_RTX
);
1536 asmop
= extract_asm_operands (PATTERN (jump
));
1541 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop
) == 1);
1542 loc
= &ASM_OPERANDS_LABEL (asmop
, 0);
1544 else if (GET_CODE (PATTERN (jump
)) == PARALLEL
)
1545 loc
= &XVECEXP (PATTERN (jump
), 0, 0);
1547 loc
= &PATTERN (jump
);
1549 redirect_exp_1 (loc
, JUMP_LABEL (jump
), nlabel
, jump
);
1550 return num_validated_changes () > ochanges
;
1553 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1554 jump target label is unused as a result, it and the code following
1557 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1558 in that case we are to turn the jump into a (possibly conditional)
1561 The return value will be 1 if the change was made, 0 if it wasn't
1562 (this can only occur when trying to produce return insns). */
1565 redirect_jump (rtx_jump_insn
*jump
, rtx nlabel
, int delete_unused
)
1567 rtx olabel
= jump
->jump_label ();
1571 /* If there is no label, we are asked to redirect to the EXIT block.
1572 When before the epilogue is emitted, return/simple_return cannot be
1573 created so we return 0 immediately. After the epilogue is emitted,
1574 we always expect a label, either a non-null label, or a
1575 return/simple_return RTX. */
1577 if (!epilogue_completed
)
1582 if (nlabel
== olabel
)
1585 if (! redirect_jump_1 (jump
, nlabel
) || ! apply_change_group ())
1588 redirect_jump_2 (jump
, olabel
, nlabel
, delete_unused
, 0);
1592 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1594 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1595 count has dropped to zero. */
1597 redirect_jump_2 (rtx_jump_insn
*jump
, rtx olabel
, rtx nlabel
, int delete_unused
,
1602 gcc_assert (JUMP_LABEL (jump
) == olabel
);
1604 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1605 moving FUNCTION_END note. Just sanity check that no user still worry
1607 gcc_assert (delete_unused
>= 0);
1608 JUMP_LABEL (jump
) = nlabel
;
1609 if (!ANY_RETURN_P (nlabel
))
1610 ++LABEL_NUSES (nlabel
);
1612 /* Update labels in any REG_EQUAL note. */
1613 if ((note
= find_reg_note (jump
, REG_EQUAL
, NULL_RTX
)) != NULL_RTX
)
1615 if (ANY_RETURN_P (nlabel
)
1616 || (invert
&& !invert_exp_1 (XEXP (note
, 0), jump
)))
1617 remove_note (jump
, note
);
1620 redirect_exp_1 (&XEXP (note
, 0), olabel
, nlabel
, jump
);
1621 confirm_change_group ();
1625 /* Handle the case where we had a conditional crossing jump to a return
1626 label and are now changing it into a direct conditional return.
1627 The jump is no longer crossing in that case. */
1628 if (ANY_RETURN_P (nlabel
))
1629 CROSSING_JUMP_P (jump
) = 0;
1631 if (!ANY_RETURN_P (olabel
)
1632 && --LABEL_NUSES (olabel
) == 0 && delete_unused
> 0
1633 /* Undefined labels will remain outside the insn stream. */
1634 && INSN_UID (olabel
))
1635 delete_related_insns (olabel
);
1637 invert_br_probabilities (jump
);
1640 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1641 modifications into the change group. Return nonzero for success. */
1643 invert_exp_1 (rtx x
, rtx insn
)
1645 RTX_CODE code
= GET_CODE (x
);
1647 if (code
== IF_THEN_ELSE
)
1649 rtx comp
= XEXP (x
, 0);
1651 enum rtx_code reversed_code
;
1653 /* We can do this in two ways: The preferable way, which can only
1654 be done if this is not an integer comparison, is to reverse
1655 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1656 of the IF_THEN_ELSE. If we can't do either, fail. */
1658 reversed_code
= reversed_comparison_code (comp
, insn
);
1660 if (reversed_code
!= UNKNOWN
)
1662 validate_change (insn
, &XEXP (x
, 0),
1663 gen_rtx_fmt_ee (reversed_code
,
1664 GET_MODE (comp
), XEXP (comp
, 0),
1671 validate_change (insn
, &XEXP (x
, 1), XEXP (x
, 2), 1);
1672 validate_change (insn
, &XEXP (x
, 2), tem
, 1);
1679 /* Invert the condition of the jump JUMP, and make it jump to label
1680 NLABEL instead of where it jumps now. Accrue changes into the
1681 change group. Return false if we didn't see how to perform the
1682 inversion and redirection. */
1685 invert_jump_1 (rtx_jump_insn
*jump
, rtx nlabel
)
1687 rtx x
= pc_set (jump
);
1691 ochanges
= num_validated_changes ();
1694 ok
= invert_exp_1 (SET_SRC (x
), jump
);
1697 if (num_validated_changes () == ochanges
)
1700 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1701 in Pmode, so checking this is not merely an optimization. */
1702 return nlabel
== JUMP_LABEL (jump
) || redirect_jump_1 (jump
, nlabel
);
1705 /* Invert the condition of the jump JUMP, and make it jump to label
1706 NLABEL instead of where it jumps now. Return true if successful. */
1709 invert_jump (rtx_jump_insn
*jump
, rtx nlabel
, int delete_unused
)
1711 rtx olabel
= JUMP_LABEL (jump
);
1713 if (invert_jump_1 (jump
, nlabel
) && apply_change_group ())
1715 redirect_jump_2 (jump
, olabel
, nlabel
, delete_unused
, 1);
1723 /* Like rtx_equal_p except that it considers two REGs as equal
1724 if they renumber to the same value and considers two commutative
1725 operations to be the same if the order of the operands has been
1729 rtx_renumbered_equal_p (const_rtx x
, const_rtx y
)
1732 const enum rtx_code code
= GET_CODE (x
);
1738 if ((code
== REG
|| (code
== SUBREG
&& REG_P (SUBREG_REG (x
))))
1739 && (REG_P (y
) || (GET_CODE (y
) == SUBREG
1740 && REG_P (SUBREG_REG (y
)))))
1742 int reg_x
= -1, reg_y
= -1;
1743 int byte_x
= 0, byte_y
= 0;
1744 struct subreg_info info
;
1746 if (GET_MODE (x
) != GET_MODE (y
))
1749 /* If we haven't done any renumbering, don't
1750 make any assumptions. */
1751 if (reg_renumber
== 0)
1752 return rtx_equal_p (x
, y
);
1756 reg_x
= REGNO (SUBREG_REG (x
));
1757 byte_x
= SUBREG_BYTE (x
);
1759 if (reg_renumber
[reg_x
] >= 0)
1761 subreg_get_info (reg_renumber
[reg_x
],
1762 GET_MODE (SUBREG_REG (x
)), byte_x
,
1763 GET_MODE (x
), &info
);
1764 if (!info
.representable_p
)
1766 reg_x
= info
.offset
;
1773 if (reg_renumber
[reg_x
] >= 0)
1774 reg_x
= reg_renumber
[reg_x
];
1777 if (GET_CODE (y
) == SUBREG
)
1779 reg_y
= REGNO (SUBREG_REG (y
));
1780 byte_y
= SUBREG_BYTE (y
);
1782 if (reg_renumber
[reg_y
] >= 0)
1784 subreg_get_info (reg_renumber
[reg_y
],
1785 GET_MODE (SUBREG_REG (y
)), byte_y
,
1786 GET_MODE (y
), &info
);
1787 if (!info
.representable_p
)
1789 reg_y
= info
.offset
;
1796 if (reg_renumber
[reg_y
] >= 0)
1797 reg_y
= reg_renumber
[reg_y
];
1800 return reg_x
>= 0 && reg_x
== reg_y
&& byte_x
== byte_y
;
1803 /* Now we have disposed of all the cases
1804 in which different rtx codes can match. */
1805 if (code
!= GET_CODE (y
))
1818 /* We can't assume nonlocal labels have their following insns yet. */
1819 if (LABEL_REF_NONLOCAL_P (x
) || LABEL_REF_NONLOCAL_P (y
))
1820 return LABEL_REF_LABEL (x
) == LABEL_REF_LABEL (y
);
1822 /* Two label-refs are equivalent if they point at labels
1823 in the same position in the instruction stream. */
1824 return (next_real_insn (LABEL_REF_LABEL (x
))
1825 == next_real_insn (LABEL_REF_LABEL (y
)));
1828 return XSTR (x
, 0) == XSTR (y
, 0);
1831 /* If we didn't match EQ equality above, they aren't the same. */
1838 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1840 if (GET_MODE (x
) != GET_MODE (y
))
1843 /* MEMs referring to different address space are not equivalent. */
1844 if (code
== MEM
&& MEM_ADDR_SPACE (x
) != MEM_ADDR_SPACE (y
))
1847 /* For commutative operations, the RTX match if the operand match in any
1848 order. Also handle the simple binary and unary cases without a loop. */
1849 if (targetm
.commutative_p (x
, UNKNOWN
))
1850 return ((rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0))
1851 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 1)))
1852 || (rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 1))
1853 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 0))));
1854 else if (NON_COMMUTATIVE_P (x
))
1855 return (rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0))
1856 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 1)));
1857 else if (UNARY_P (x
))
1858 return rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0));
1860 /* Compare the elements. If any pair of corresponding elements
1861 fail to match, return 0 for the whole things. */
1863 fmt
= GET_RTX_FORMAT (code
);
1864 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1870 if (XWINT (x
, i
) != XWINT (y
, i
))
1875 if (XINT (x
, i
) != XINT (y
, i
))
1877 if (((code
== ASM_OPERANDS
&& i
== 6)
1878 || (code
== ASM_INPUT
&& i
== 1)))
1885 if (XTREE (x
, i
) != XTREE (y
, i
))
1890 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1895 if (! rtx_renumbered_equal_p (XEXP (x
, i
), XEXP (y
, i
)))
1900 if (XEXP (x
, i
) != XEXP (y
, i
))
1907 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1909 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1910 if (!rtx_renumbered_equal_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
)))
1921 /* If X is a hard register or equivalent to one or a subregister of one,
1922 return the hard register number. If X is a pseudo register that was not
1923 assigned a hard register, return the pseudo register number. Otherwise,
1924 return -1. Any rtx is valid for X. */
1927 true_regnum (const_rtx x
)
1931 if (REGNO (x
) >= FIRST_PSEUDO_REGISTER
1932 && (lra_in_progress
|| reg_renumber
[REGNO (x
)] >= 0))
1933 return reg_renumber
[REGNO (x
)];
1936 if (GET_CODE (x
) == SUBREG
)
1938 int base
= true_regnum (SUBREG_REG (x
));
1940 && base
< FIRST_PSEUDO_REGISTER
)
1942 struct subreg_info info
;
1944 subreg_get_info (lra_in_progress
1945 ? (unsigned) base
: REGNO (SUBREG_REG (x
)),
1946 GET_MODE (SUBREG_REG (x
)),
1947 SUBREG_BYTE (x
), GET_MODE (x
), &info
);
1949 if (info
.representable_p
)
1950 return base
+ info
.offset
;
1956 /* Return regno of the register REG and handle subregs too. */
1958 reg_or_subregno (const_rtx reg
)
1960 if (GET_CODE (reg
) == SUBREG
)
1961 reg
= SUBREG_REG (reg
);
1962 gcc_assert (REG_P (reg
));