d: Fix testcase failure of gdc.dg/Wbuiltin_declaration_mismatch2.d.
[official-gcc.git] / libsanitizer / lsan / lsan_common.cpp
blobae29e4a21fd1942f8fb9a322b8a8754342d46fc3
1 //=-- lsan_common.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of LeakSanitizer.
10 // Implementation of common leak checking functionality.
12 //===----------------------------------------------------------------------===//
14 #include "lsan_common.h"
16 #include "sanitizer_common/sanitizer_common.h"
17 #include "sanitizer_common/sanitizer_flag_parser.h"
18 #include "sanitizer_common/sanitizer_flags.h"
19 #include "sanitizer_common/sanitizer_placement_new.h"
20 #include "sanitizer_common/sanitizer_procmaps.h"
21 #include "sanitizer_common/sanitizer_report_decorator.h"
22 #include "sanitizer_common/sanitizer_stackdepot.h"
23 #include "sanitizer_common/sanitizer_stacktrace.h"
24 #include "sanitizer_common/sanitizer_suppressions.h"
25 #include "sanitizer_common/sanitizer_thread_registry.h"
26 #include "sanitizer_common/sanitizer_tls_get_addr.h"
28 #if CAN_SANITIZE_LEAKS
30 # if SANITIZER_APPLE
31 // https://github.com/apple-oss-distributions/objc4/blob/8701d5672d3fd3cd817aeb84db1077aafe1a1604/runtime/objc-runtime-new.h#L127
32 # if SANITIZER_IOS && !SANITIZER_IOSSIM
33 # define OBJC_DATA_MASK 0x0000007ffffffff8UL
34 # else
35 # define OBJC_DATA_MASK 0x00007ffffffffff8UL
36 # endif
37 // https://github.com/apple-oss-distributions/objc4/blob/8701d5672d3fd3cd817aeb84db1077aafe1a1604/runtime/objc-runtime-new.h#L139
38 # define OBJC_FAST_IS_RW 0x8000000000000000UL
39 # endif
41 namespace __lsan {
43 // This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and
44 // also to protect the global list of root regions.
45 Mutex global_mutex;
47 Flags lsan_flags;
49 void DisableCounterUnderflow() {
50 if (common_flags()->detect_leaks) {
51 Report("Unmatched call to __lsan_enable().\n");
52 Die();
56 void Flags::SetDefaults() {
57 # define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
58 # include "lsan_flags.inc"
59 # undef LSAN_FLAG
62 void RegisterLsanFlags(FlagParser *parser, Flags *f) {
63 # define LSAN_FLAG(Type, Name, DefaultValue, Description) \
64 RegisterFlag(parser, #Name, Description, &f->Name);
65 # include "lsan_flags.inc"
66 # undef LSAN_FLAG
69 # define LOG_POINTERS(...) \
70 do { \
71 if (flags()->log_pointers) \
72 Report(__VA_ARGS__); \
73 } while (0)
75 # define LOG_THREADS(...) \
76 do { \
77 if (flags()->log_threads) \
78 Report(__VA_ARGS__); \
79 } while (0)
81 class LeakSuppressionContext {
82 bool parsed = false;
83 SuppressionContext context;
84 bool suppressed_stacks_sorted = true;
85 InternalMmapVector<u32> suppressed_stacks;
86 const LoadedModule *suppress_module = nullptr;
88 void LazyInit();
89 Suppression *GetSuppressionForAddr(uptr addr);
90 bool SuppressInvalid(const StackTrace &stack);
91 bool SuppressByRule(const StackTrace &stack, uptr hit_count, uptr total_size);
93 public:
94 LeakSuppressionContext(const char *supprression_types[],
95 int suppression_types_num)
96 : context(supprression_types, suppression_types_num) {}
98 bool Suppress(u32 stack_trace_id, uptr hit_count, uptr total_size);
100 const InternalMmapVector<u32> &GetSortedSuppressedStacks() {
101 if (!suppressed_stacks_sorted) {
102 suppressed_stacks_sorted = true;
103 SortAndDedup(suppressed_stacks);
105 return suppressed_stacks;
107 void PrintMatchedSuppressions();
110 ALIGNED(64) static char suppression_placeholder[sizeof(LeakSuppressionContext)];
111 static LeakSuppressionContext *suppression_ctx = nullptr;
112 static const char kSuppressionLeak[] = "leak";
113 static const char *kSuppressionTypes[] = {kSuppressionLeak};
114 static const char kStdSuppressions[] =
115 # if SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
116 // For more details refer to the SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
117 // definition.
118 "leak:*pthread_exit*\n"
119 # endif // SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
120 # if SANITIZER_APPLE
121 // For Darwin and os_log/os_trace: https://reviews.llvm.org/D35173
122 "leak:*_os_trace*\n"
123 # endif
124 // TLS leak in some glibc versions, described in
125 // https://sourceware.org/bugzilla/show_bug.cgi?id=12650.
126 "leak:*tls_get_addr*\n";
128 void InitializeSuppressions() {
129 CHECK_EQ(nullptr, suppression_ctx);
130 suppression_ctx = new (suppression_placeholder)
131 LeakSuppressionContext(kSuppressionTypes, ARRAY_SIZE(kSuppressionTypes));
134 void LeakSuppressionContext::LazyInit() {
135 if (!parsed) {
136 parsed = true;
137 context.ParseFromFile(flags()->suppressions);
138 if (&__lsan_default_suppressions)
139 context.Parse(__lsan_default_suppressions());
140 context.Parse(kStdSuppressions);
141 if (flags()->use_tls && flags()->use_ld_allocations)
142 suppress_module = GetLinker();
146 Suppression *LeakSuppressionContext::GetSuppressionForAddr(uptr addr) {
147 Suppression *s = nullptr;
149 // Suppress by module name.
150 const char *module_name = Symbolizer::GetOrInit()->GetModuleNameForPc(addr);
151 if (!module_name)
152 module_name = "<unknown module>";
153 if (context.Match(module_name, kSuppressionLeak, &s))
154 return s;
156 // Suppress by file or function name.
157 SymbolizedStack *frames = Symbolizer::GetOrInit()->SymbolizePC(addr);
158 for (SymbolizedStack *cur = frames; cur; cur = cur->next) {
159 if (context.Match(cur->info.function, kSuppressionLeak, &s) ||
160 context.Match(cur->info.file, kSuppressionLeak, &s)) {
161 break;
164 frames->ClearAll();
165 return s;
168 static uptr GetCallerPC(const StackTrace &stack) {
169 // The top frame is our malloc/calloc/etc. The next frame is the caller.
170 if (stack.size >= 2)
171 return stack.trace[1];
172 return 0;
175 # if SANITIZER_APPLE
176 // Objective-C class data pointers are stored with flags in the low bits, so
177 // they need to be transformed back into something that looks like a pointer.
178 static inline void *MaybeTransformPointer(void *p) {
179 uptr ptr = reinterpret_cast<uptr>(p);
180 if ((ptr & OBJC_FAST_IS_RW) == OBJC_FAST_IS_RW)
181 ptr &= OBJC_DATA_MASK;
182 return reinterpret_cast<void *>(ptr);
184 # endif
186 // On Linux, treats all chunks allocated from ld-linux.so as reachable, which
187 // covers dynamically allocated TLS blocks, internal dynamic loader's loaded
188 // modules accounting etc.
189 // Dynamic TLS blocks contain the TLS variables of dynamically loaded modules.
190 // They are allocated with a __libc_memalign() call in allocate_and_init()
191 // (elf/dl-tls.c). Glibc won't tell us the address ranges occupied by those
192 // blocks, but we can make sure they come from our own allocator by intercepting
193 // __libc_memalign(). On top of that, there is no easy way to reach them. Their
194 // addresses are stored in a dynamically allocated array (the DTV) which is
195 // referenced from the static TLS. Unfortunately, we can't just rely on the DTV
196 // being reachable from the static TLS, and the dynamic TLS being reachable from
197 // the DTV. This is because the initial DTV is allocated before our interception
198 // mechanism kicks in, and thus we don't recognize it as allocated memory. We
199 // can't special-case it either, since we don't know its size.
200 // Our solution is to include in the root set all allocations made from
201 // ld-linux.so (which is where allocate_and_init() is implemented). This is
202 // guaranteed to include all dynamic TLS blocks (and possibly other allocations
203 // which we don't care about).
204 // On all other platforms, this simply checks to ensure that the caller pc is
205 // valid before reporting chunks as leaked.
206 bool LeakSuppressionContext::SuppressInvalid(const StackTrace &stack) {
207 uptr caller_pc = GetCallerPC(stack);
208 // If caller_pc is unknown, this chunk may be allocated in a coroutine. Mark
209 // it as reachable, as we can't properly report its allocation stack anyway.
210 return !caller_pc ||
211 (suppress_module && suppress_module->containsAddress(caller_pc));
214 bool LeakSuppressionContext::SuppressByRule(const StackTrace &stack,
215 uptr hit_count, uptr total_size) {
216 for (uptr i = 0; i < stack.size; i++) {
217 Suppression *s = GetSuppressionForAddr(
218 StackTrace::GetPreviousInstructionPc(stack.trace[i]));
219 if (s) {
220 s->weight += total_size;
221 atomic_fetch_add(&s->hit_count, hit_count, memory_order_relaxed);
222 return true;
225 return false;
228 bool LeakSuppressionContext::Suppress(u32 stack_trace_id, uptr hit_count,
229 uptr total_size) {
230 LazyInit();
231 StackTrace stack = StackDepotGet(stack_trace_id);
232 if (!SuppressInvalid(stack) && !SuppressByRule(stack, hit_count, total_size))
233 return false;
234 suppressed_stacks_sorted = false;
235 suppressed_stacks.push_back(stack_trace_id);
236 return true;
239 static LeakSuppressionContext *GetSuppressionContext() {
240 CHECK(suppression_ctx);
241 return suppression_ctx;
244 static InternalMmapVectorNoCtor<RootRegion> root_regions;
246 InternalMmapVectorNoCtor<RootRegion> const *GetRootRegions() {
247 return &root_regions;
250 void InitCommonLsan() {
251 if (common_flags()->detect_leaks) {
252 // Initialization which can fail or print warnings should only be done if
253 // LSan is actually enabled.
254 InitializeSuppressions();
255 InitializePlatformSpecificModules();
259 class Decorator : public __sanitizer::SanitizerCommonDecorator {
260 public:
261 Decorator() : SanitizerCommonDecorator() {}
262 const char *Error() { return Red(); }
263 const char *Leak() { return Blue(); }
266 static inline bool MaybeUserPointer(uptr p) {
267 // Since our heap is located in mmap-ed memory, we can assume a sensible lower
268 // bound on heap addresses.
269 const uptr kMinAddress = 4 * 4096;
270 if (p < kMinAddress)
271 return false;
272 # if defined(__x86_64__)
273 // TODO: add logic similar to ARM when Intel LAM is available.
274 // Accept only canonical form user-space addresses.
275 return ((p >> 47) == 0);
276 # elif defined(__mips64)
277 return ((p >> 40) == 0);
278 # elif defined(__aarch64__)
279 // TBI (Top Byte Ignore) feature of AArch64: bits [63:56] are ignored in
280 // address translation and can be used to store a tag.
281 constexpr uptr kPointerMask = 255ULL << 48;
282 // Accept up to 48 bit VMA.
283 return ((p & kPointerMask) == 0);
284 # elif defined(__loongarch_lp64)
285 // Allow 47-bit user-space VMA at current.
286 return ((p >> 47) == 0);
287 # else
288 return true;
289 # endif
292 // Scans the memory range, looking for byte patterns that point into allocator
293 // chunks. Marks those chunks with |tag| and adds them to |frontier|.
294 // There are two usage modes for this function: finding reachable chunks
295 // (|tag| = kReachable) and finding indirectly leaked chunks
296 // (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
297 // so |frontier| = 0.
298 void ScanRangeForPointers(uptr begin, uptr end, Frontier *frontier,
299 const char *region_type, ChunkTag tag) {
300 CHECK(tag == kReachable || tag == kIndirectlyLeaked);
301 const uptr alignment = flags()->pointer_alignment();
302 LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, (void *)begin,
303 (void *)end);
304 uptr pp = begin;
305 if (pp % alignment)
306 pp = pp + alignment - pp % alignment;
307 for (; pp + sizeof(void *) <= end; pp += alignment) {
308 void *p = *reinterpret_cast<void **>(pp);
309 # if SANITIZER_APPLE
310 p = MaybeTransformPointer(p);
311 # endif
312 if (!MaybeUserPointer(reinterpret_cast<uptr>(p)))
313 continue;
314 uptr chunk = PointsIntoChunk(p);
315 if (!chunk)
316 continue;
317 // Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
318 if (chunk == begin)
319 continue;
320 LsanMetadata m(chunk);
321 if (m.tag() == kReachable || m.tag() == kIgnored)
322 continue;
324 // Do this check relatively late so we can log only the interesting cases.
325 if (!flags()->use_poisoned && WordIsPoisoned(pp)) {
326 LOG_POINTERS(
327 "%p is poisoned: ignoring %p pointing into chunk %p-%p of size "
328 "%zu.\n",
329 (void *)pp, p, (void *)chunk, (void *)(chunk + m.requested_size()),
330 m.requested_size());
331 continue;
334 m.set_tag(tag);
335 LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n",
336 (void *)pp, p, (void *)chunk,
337 (void *)(chunk + m.requested_size()), m.requested_size());
338 if (frontier)
339 frontier->push_back(chunk);
343 // Scans a global range for pointers
344 void ScanGlobalRange(uptr begin, uptr end, Frontier *frontier) {
345 uptr allocator_begin = 0, allocator_end = 0;
346 GetAllocatorGlobalRange(&allocator_begin, &allocator_end);
347 if (begin <= allocator_begin && allocator_begin < end) {
348 CHECK_LE(allocator_begin, allocator_end);
349 CHECK_LE(allocator_end, end);
350 if (begin < allocator_begin)
351 ScanRangeForPointers(begin, allocator_begin, frontier, "GLOBAL",
352 kReachable);
353 if (allocator_end < end)
354 ScanRangeForPointers(allocator_end, end, frontier, "GLOBAL", kReachable);
355 } else {
356 ScanRangeForPointers(begin, end, frontier, "GLOBAL", kReachable);
360 void ScanExtraStackRanges(const InternalMmapVector<Range> &ranges,
361 Frontier *frontier) {
362 for (uptr i = 0; i < ranges.size(); i++) {
363 ScanRangeForPointers(ranges[i].begin, ranges[i].end, frontier, "FAKE STACK",
364 kReachable);
368 # if SANITIZER_FUCHSIA
370 // Fuchsia handles all threads together with its own callback.
371 static void ProcessThreads(SuspendedThreadsList const &, Frontier *, tid_t,
372 uptr) {}
374 # else
376 # if SANITIZER_ANDROID
377 // FIXME: Move this out into *libcdep.cpp
378 extern "C" SANITIZER_WEAK_ATTRIBUTE void __libc_iterate_dynamic_tls(
379 pid_t, void (*cb)(void *, void *, uptr, void *), void *);
380 # endif
382 static void ProcessThreadRegistry(Frontier *frontier) {
383 InternalMmapVector<uptr> ptrs;
384 GetAdditionalThreadContextPtrsLocked(&ptrs);
386 for (uptr i = 0; i < ptrs.size(); ++i) {
387 void *ptr = reinterpret_cast<void *>(ptrs[i]);
388 uptr chunk = PointsIntoChunk(ptr);
389 if (!chunk)
390 continue;
391 LsanMetadata m(chunk);
392 if (!m.allocated())
393 continue;
395 // Mark as reachable and add to frontier.
396 LOG_POINTERS("Treating pointer %p from ThreadContext as reachable\n", ptr);
397 m.set_tag(kReachable);
398 frontier->push_back(chunk);
402 // Scans thread data (stacks and TLS) for heap pointers.
403 static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
404 Frontier *frontier, tid_t caller_tid,
405 uptr caller_sp) {
406 InternalMmapVector<uptr> registers;
407 InternalMmapVector<Range> extra_ranges;
408 for (uptr i = 0; i < suspended_threads.ThreadCount(); i++) {
409 tid_t os_id = static_cast<tid_t>(suspended_threads.GetThreadID(i));
410 LOG_THREADS("Processing thread %llu.\n", os_id);
411 uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
412 DTLS *dtls;
413 bool thread_found =
414 GetThreadRangesLocked(os_id, &stack_begin, &stack_end, &tls_begin,
415 &tls_end, &cache_begin, &cache_end, &dtls);
416 if (!thread_found) {
417 // If a thread can't be found in the thread registry, it's probably in the
418 // process of destruction. Log this event and move on.
419 LOG_THREADS("Thread %llu not found in registry.\n", os_id);
420 continue;
422 uptr sp;
423 PtraceRegistersStatus have_registers =
424 suspended_threads.GetRegistersAndSP(i, &registers, &sp);
425 if (have_registers != REGISTERS_AVAILABLE) {
426 Report("Unable to get registers from thread %llu.\n", os_id);
427 // If unable to get SP, consider the entire stack to be reachable unless
428 // GetRegistersAndSP failed with ESRCH.
429 if (have_registers == REGISTERS_UNAVAILABLE_FATAL)
430 continue;
431 sp = stack_begin;
433 if (suspended_threads.GetThreadID(i) == caller_tid) {
434 sp = caller_sp;
437 if (flags()->use_registers && have_registers) {
438 uptr registers_begin = reinterpret_cast<uptr>(registers.data());
439 uptr registers_end =
440 reinterpret_cast<uptr>(registers.data() + registers.size());
441 ScanRangeForPointers(registers_begin, registers_end, frontier,
442 "REGISTERS", kReachable);
445 if (flags()->use_stacks) {
446 LOG_THREADS("Stack at %p-%p (SP = %p).\n", (void *)stack_begin,
447 (void *)stack_end, (void *)sp);
448 if (sp < stack_begin || sp >= stack_end) {
449 // SP is outside the recorded stack range (e.g. the thread is running a
450 // signal handler on alternate stack, or swapcontext was used).
451 // Again, consider the entire stack range to be reachable.
452 LOG_THREADS("WARNING: stack pointer not in stack range.\n");
453 uptr page_size = GetPageSizeCached();
454 int skipped = 0;
455 while (stack_begin < stack_end &&
456 !IsAccessibleMemoryRange(stack_begin, 1)) {
457 skipped++;
458 stack_begin += page_size;
460 LOG_THREADS("Skipped %d guard page(s) to obtain stack %p-%p.\n",
461 skipped, (void *)stack_begin, (void *)stack_end);
462 } else {
463 // Shrink the stack range to ignore out-of-scope values.
464 stack_begin = sp;
466 ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
467 kReachable);
468 extra_ranges.clear();
469 GetThreadExtraStackRangesLocked(os_id, &extra_ranges);
470 ScanExtraStackRanges(extra_ranges, frontier);
473 if (flags()->use_tls) {
474 if (tls_begin) {
475 LOG_THREADS("TLS at %p-%p.\n", (void *)tls_begin, (void *)tls_end);
476 // If the tls and cache ranges don't overlap, scan full tls range,
477 // otherwise, only scan the non-overlapping portions
478 if (cache_begin == cache_end || tls_end < cache_begin ||
479 tls_begin > cache_end) {
480 ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
481 } else {
482 if (tls_begin < cache_begin)
483 ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
484 kReachable);
485 if (tls_end > cache_end)
486 ScanRangeForPointers(cache_end, tls_end, frontier, "TLS",
487 kReachable);
490 # if SANITIZER_ANDROID
491 auto *cb = +[](void *dtls_begin, void *dtls_end, uptr /*dso_idd*/,
492 void *arg) -> void {
493 ScanRangeForPointers(reinterpret_cast<uptr>(dtls_begin),
494 reinterpret_cast<uptr>(dtls_end),
495 reinterpret_cast<Frontier *>(arg), "DTLS",
496 kReachable);
499 // FIXME: There might be a race-condition here (and in Bionic) if the
500 // thread is suspended in the middle of updating its DTLS. IOWs, we
501 // could scan already freed memory. (probably fine for now)
502 __libc_iterate_dynamic_tls(os_id, cb, frontier);
503 # else
504 if (dtls && !DTLSInDestruction(dtls)) {
505 ForEachDVT(dtls, [&](const DTLS::DTV &dtv, int id) {
506 uptr dtls_beg = dtv.beg;
507 uptr dtls_end = dtls_beg + dtv.size;
508 if (dtls_beg < dtls_end) {
509 LOG_THREADS("DTLS %d at %p-%p.\n", id, (void *)dtls_beg,
510 (void *)dtls_end);
511 ScanRangeForPointers(dtls_beg, dtls_end, frontier, "DTLS",
512 kReachable);
515 } else {
516 // We are handling a thread with DTLS under destruction. Log about
517 // this and continue.
518 LOG_THREADS("Thread %llu has DTLS under destruction.\n", os_id);
520 # endif
524 // Add pointers reachable from ThreadContexts
525 ProcessThreadRegistry(frontier);
528 # endif // SANITIZER_FUCHSIA
530 void ScanRootRegion(Frontier *frontier, const RootRegion &root_region,
531 uptr region_begin, uptr region_end, bool is_readable) {
532 uptr intersection_begin = Max(root_region.begin, region_begin);
533 uptr intersection_end = Min(region_end, root_region.begin + root_region.size);
534 if (intersection_begin >= intersection_end)
535 return;
536 LOG_POINTERS("Root region %p-%p intersects with mapped region %p-%p (%s)\n",
537 (void *)root_region.begin,
538 (void *)(root_region.begin + root_region.size),
539 (void *)region_begin, (void *)region_end,
540 is_readable ? "readable" : "unreadable");
541 if (is_readable)
542 ScanRangeForPointers(intersection_begin, intersection_end, frontier, "ROOT",
543 kReachable);
546 static void ProcessRootRegion(Frontier *frontier,
547 const RootRegion &root_region) {
548 MemoryMappingLayout proc_maps(/*cache_enabled*/ true);
549 MemoryMappedSegment segment;
550 while (proc_maps.Next(&segment)) {
551 ScanRootRegion(frontier, root_region, segment.start, segment.end,
552 segment.IsReadable());
556 // Scans root regions for heap pointers.
557 static void ProcessRootRegions(Frontier *frontier) {
558 if (!flags()->use_root_regions)
559 return;
560 for (uptr i = 0; i < root_regions.size(); i++)
561 ProcessRootRegion(frontier, root_regions[i]);
564 static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
565 while (frontier->size()) {
566 uptr next_chunk = frontier->back();
567 frontier->pop_back();
568 LsanMetadata m(next_chunk);
569 ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
570 "HEAP", tag);
574 // ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
575 // which are reachable from it as indirectly leaked.
576 static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
577 chunk = GetUserBegin(chunk);
578 LsanMetadata m(chunk);
579 if (m.allocated() && m.tag() != kReachable) {
580 ScanRangeForPointers(chunk, chunk + m.requested_size(),
581 /* frontier */ nullptr, "HEAP", kIndirectlyLeaked);
585 static void IgnoredSuppressedCb(uptr chunk, void *arg) {
586 CHECK(arg);
587 chunk = GetUserBegin(chunk);
588 LsanMetadata m(chunk);
589 if (!m.allocated() || m.tag() == kIgnored)
590 return;
592 const InternalMmapVector<u32> &suppressed =
593 *static_cast<const InternalMmapVector<u32> *>(arg);
594 uptr idx = InternalLowerBound(suppressed, m.stack_trace_id());
595 if (idx >= suppressed.size() || m.stack_trace_id() != suppressed[idx])
596 return;
598 LOG_POINTERS("Suppressed: chunk %p-%p of size %zu.\n", (void *)chunk,
599 (void *)(chunk + m.requested_size()), m.requested_size());
600 m.set_tag(kIgnored);
603 // ForEachChunk callback. If chunk is marked as ignored, adds its address to
604 // frontier.
605 static void CollectIgnoredCb(uptr chunk, void *arg) {
606 CHECK(arg);
607 chunk = GetUserBegin(chunk);
608 LsanMetadata m(chunk);
609 if (m.allocated() && m.tag() == kIgnored) {
610 LOG_POINTERS("Ignored: chunk %p-%p of size %zu.\n", (void *)chunk,
611 (void *)(chunk + m.requested_size()), m.requested_size());
612 reinterpret_cast<Frontier *>(arg)->push_back(chunk);
616 // Sets the appropriate tag on each chunk.
617 static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads,
618 Frontier *frontier, tid_t caller_tid,
619 uptr caller_sp) {
620 const InternalMmapVector<u32> &suppressed_stacks =
621 GetSuppressionContext()->GetSortedSuppressedStacks();
622 if (!suppressed_stacks.empty()) {
623 ForEachChunk(IgnoredSuppressedCb,
624 const_cast<InternalMmapVector<u32> *>(&suppressed_stacks));
626 ForEachChunk(CollectIgnoredCb, frontier);
627 ProcessGlobalRegions(frontier);
628 ProcessThreads(suspended_threads, frontier, caller_tid, caller_sp);
629 ProcessRootRegions(frontier);
630 FloodFillTag(frontier, kReachable);
632 // The check here is relatively expensive, so we do this in a separate flood
633 // fill. That way we can skip the check for chunks that are reachable
634 // otherwise.
635 LOG_POINTERS("Processing platform-specific allocations.\n");
636 ProcessPlatformSpecificAllocations(frontier);
637 FloodFillTag(frontier, kReachable);
639 // Iterate over leaked chunks and mark those that are reachable from other
640 // leaked chunks.
641 LOG_POINTERS("Scanning leaked chunks.\n");
642 ForEachChunk(MarkIndirectlyLeakedCb, nullptr);
645 // ForEachChunk callback. Resets the tags to pre-leak-check state.
646 static void ResetTagsCb(uptr chunk, void *arg) {
647 (void)arg;
648 chunk = GetUserBegin(chunk);
649 LsanMetadata m(chunk);
650 if (m.allocated() && m.tag() != kIgnored)
651 m.set_tag(kDirectlyLeaked);
654 // ForEachChunk callback. Aggregates information about unreachable chunks into
655 // a LeakReport.
656 static void CollectLeaksCb(uptr chunk, void *arg) {
657 CHECK(arg);
658 LeakedChunks *leaks = reinterpret_cast<LeakedChunks *>(arg);
659 chunk = GetUserBegin(chunk);
660 LsanMetadata m(chunk);
661 if (!m.allocated())
662 return;
663 if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked)
664 leaks->push_back({chunk, m.stack_trace_id(), m.requested_size(), m.tag()});
667 void LeakSuppressionContext::PrintMatchedSuppressions() {
668 InternalMmapVector<Suppression *> matched;
669 context.GetMatched(&matched);
670 if (!matched.size())
671 return;
672 const char *line = "-----------------------------------------------------";
673 Printf("%s\n", line);
674 Printf("Suppressions used:\n");
675 Printf(" count bytes template\n");
676 for (uptr i = 0; i < matched.size(); i++) {
677 Printf("%7zu %10zu %s\n",
678 static_cast<uptr>(atomic_load_relaxed(&matched[i]->hit_count)),
679 matched[i]->weight, matched[i]->templ);
681 Printf("%s\n\n", line);
684 # if SANITIZER_FUCHSIA
686 // Fuchsia provides a libc interface that guarantees all threads are
687 // covered, and SuspendedThreadList is never really used.
688 static void ReportUnsuspendedThreads(const SuspendedThreadsList &) {}
690 # else // !SANITIZER_FUCHSIA
692 static void ReportUnsuspendedThreads(
693 const SuspendedThreadsList &suspended_threads) {
694 InternalMmapVector<tid_t> threads(suspended_threads.ThreadCount());
695 for (uptr i = 0; i < suspended_threads.ThreadCount(); ++i)
696 threads[i] = suspended_threads.GetThreadID(i);
698 Sort(threads.data(), threads.size());
700 InternalMmapVector<tid_t> unsuspended;
701 GetRunningThreadsLocked(&unsuspended);
703 for (auto os_id : unsuspended) {
704 uptr i = InternalLowerBound(threads, os_id);
705 if (i >= threads.size() || threads[i] != os_id)
706 Report(
707 "Running thread %zu was not suspended. False leaks are possible.\n",
708 os_id);
712 # endif // !SANITIZER_FUCHSIA
714 static void CheckForLeaksCallback(const SuspendedThreadsList &suspended_threads,
715 void *arg) {
716 CheckForLeaksParam *param = reinterpret_cast<CheckForLeaksParam *>(arg);
717 CHECK(param);
718 CHECK(!param->success);
719 ReportUnsuspendedThreads(suspended_threads);
720 ClassifyAllChunks(suspended_threads, &param->frontier, param->caller_tid,
721 param->caller_sp);
722 ForEachChunk(CollectLeaksCb, &param->leaks);
723 // Clean up for subsequent leak checks. This assumes we did not overwrite any
724 // kIgnored tags.
725 ForEachChunk(ResetTagsCb, nullptr);
726 param->success = true;
729 static bool PrintResults(LeakReport &report) {
730 uptr unsuppressed_count = report.UnsuppressedLeakCount();
731 if (unsuppressed_count) {
732 Decorator d;
733 Printf(
734 "\n"
735 "================================================================="
736 "\n");
737 Printf("%s", d.Error());
738 Report("ERROR: LeakSanitizer: detected memory leaks\n");
739 Printf("%s", d.Default());
740 report.ReportTopLeaks(flags()->max_leaks);
742 if (common_flags()->print_suppressions)
743 GetSuppressionContext()->PrintMatchedSuppressions();
744 if (unsuppressed_count > 0) {
745 report.PrintSummary();
746 return true;
748 return false;
751 static bool CheckForLeaks() {
752 if (&__lsan_is_turned_off && __lsan_is_turned_off()) {
753 VReport(1, "LeakSanitizer is disabled");
754 return false;
756 VReport(1, "LeakSanitizer: checking for leaks");
757 // Inside LockStuffAndStopTheWorld we can't run symbolizer, so we can't match
758 // suppressions. However if a stack id was previously suppressed, it should be
759 // suppressed in future checks as well.
760 for (int i = 0;; ++i) {
761 EnsureMainThreadIDIsCorrect();
762 CheckForLeaksParam param;
763 // Capture calling thread's stack pointer early, to avoid false negatives.
764 // Old frame with dead pointers might be overlapped by new frame inside
765 // CheckForLeaks which does not use bytes with pointers before the
766 // threads are suspended and stack pointers captured.
767 param.caller_tid = GetTid();
768 param.caller_sp = reinterpret_cast<uptr>(__builtin_frame_address(0));
769 LockStuffAndStopTheWorld(CheckForLeaksCallback, &param);
770 if (!param.success) {
771 Report("LeakSanitizer has encountered a fatal error.\n");
772 Report(
773 "HINT: For debugging, try setting environment variable "
774 "LSAN_OPTIONS=verbosity=1:log_threads=1\n");
775 Report(
776 "HINT: LeakSanitizer does not work under ptrace (strace, gdb, "
777 "etc)\n");
778 Die();
780 LeakReport leak_report;
781 leak_report.AddLeakedChunks(param.leaks);
783 // No new suppressions stacks, so rerun will not help and we can report.
784 if (!leak_report.ApplySuppressions())
785 return PrintResults(leak_report);
787 // No indirect leaks to report, so we are done here.
788 if (!leak_report.IndirectUnsuppressedLeakCount())
789 return PrintResults(leak_report);
791 if (i >= 8) {
792 Report("WARNING: LeakSanitizer gave up on indirect leaks suppression.\n");
793 return PrintResults(leak_report);
796 // We found a new previously unseen suppressed call stack. Rerun to make
797 // sure it does not hold indirect leaks.
798 VReport(1, "Rerun with %zu suppressed stacks.",
799 GetSuppressionContext()->GetSortedSuppressedStacks().size());
803 static bool has_reported_leaks = false;
804 bool HasReportedLeaks() { return has_reported_leaks; }
806 void DoLeakCheck() {
807 Lock l(&global_mutex);
808 static bool already_done;
809 if (already_done)
810 return;
811 already_done = true;
812 has_reported_leaks = CheckForLeaks();
813 if (has_reported_leaks)
814 HandleLeaks();
817 static int DoRecoverableLeakCheck() {
818 Lock l(&global_mutex);
819 bool have_leaks = CheckForLeaks();
820 return have_leaks ? 1 : 0;
823 void DoRecoverableLeakCheckVoid() { DoRecoverableLeakCheck(); }
825 ///// LeakReport implementation. /////
827 // A hard limit on the number of distinct leaks, to avoid quadratic complexity
828 // in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks
829 // in real-world applications.
830 // FIXME: Get rid of this limit by moving logic into DedupLeaks.
831 const uptr kMaxLeaksConsidered = 5000;
833 void LeakReport::AddLeakedChunks(const LeakedChunks &chunks) {
834 for (const LeakedChunk &leak : chunks) {
835 uptr chunk = leak.chunk;
836 u32 stack_trace_id = leak.stack_trace_id;
837 uptr leaked_size = leak.leaked_size;
838 ChunkTag tag = leak.tag;
839 CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
841 if (u32 resolution = flags()->resolution) {
842 StackTrace stack = StackDepotGet(stack_trace_id);
843 stack.size = Min(stack.size, resolution);
844 stack_trace_id = StackDepotPut(stack);
847 bool is_directly_leaked = (tag == kDirectlyLeaked);
848 uptr i;
849 for (i = 0; i < leaks_.size(); i++) {
850 if (leaks_[i].stack_trace_id == stack_trace_id &&
851 leaks_[i].is_directly_leaked == is_directly_leaked) {
852 leaks_[i].hit_count++;
853 leaks_[i].total_size += leaked_size;
854 break;
857 if (i == leaks_.size()) {
858 if (leaks_.size() == kMaxLeaksConsidered)
859 return;
860 Leak leak = {next_id_++, /* hit_count */ 1,
861 leaked_size, stack_trace_id,
862 is_directly_leaked, /* is_suppressed */ false};
863 leaks_.push_back(leak);
865 if (flags()->report_objects) {
866 LeakedObject obj = {leaks_[i].id, GetUserAddr(chunk), leaked_size};
867 leaked_objects_.push_back(obj);
872 static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
873 if (leak1.is_directly_leaked == leak2.is_directly_leaked)
874 return leak1.total_size > leak2.total_size;
875 else
876 return leak1.is_directly_leaked;
879 void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) {
880 CHECK(leaks_.size() <= kMaxLeaksConsidered);
881 Printf("\n");
882 if (leaks_.size() == kMaxLeaksConsidered)
883 Printf(
884 "Too many leaks! Only the first %zu leaks encountered will be "
885 "reported.\n",
886 kMaxLeaksConsidered);
888 uptr unsuppressed_count = UnsuppressedLeakCount();
889 if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count)
890 Printf("The %zu top leak(s):\n", num_leaks_to_report);
891 Sort(leaks_.data(), leaks_.size(), &LeakComparator);
892 uptr leaks_reported = 0;
893 for (uptr i = 0; i < leaks_.size(); i++) {
894 if (leaks_[i].is_suppressed)
895 continue;
896 PrintReportForLeak(i);
897 leaks_reported++;
898 if (leaks_reported == num_leaks_to_report)
899 break;
901 if (leaks_reported < unsuppressed_count) {
902 uptr remaining = unsuppressed_count - leaks_reported;
903 Printf("Omitting %zu more leak(s).\n", remaining);
907 void LeakReport::PrintReportForLeak(uptr index) {
908 Decorator d;
909 Printf("%s", d.Leak());
910 Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
911 leaks_[index].is_directly_leaked ? "Direct" : "Indirect",
912 leaks_[index].total_size, leaks_[index].hit_count);
913 Printf("%s", d.Default());
915 CHECK(leaks_[index].stack_trace_id);
916 StackDepotGet(leaks_[index].stack_trace_id).Print();
918 if (flags()->report_objects) {
919 Printf("Objects leaked above:\n");
920 PrintLeakedObjectsForLeak(index);
921 Printf("\n");
925 void LeakReport::PrintLeakedObjectsForLeak(uptr index) {
926 u32 leak_id = leaks_[index].id;
927 for (uptr j = 0; j < leaked_objects_.size(); j++) {
928 if (leaked_objects_[j].leak_id == leak_id)
929 Printf("%p (%zu bytes)\n", (void *)leaked_objects_[j].addr,
930 leaked_objects_[j].size);
934 void LeakReport::PrintSummary() {
935 CHECK(leaks_.size() <= kMaxLeaksConsidered);
936 uptr bytes = 0, allocations = 0;
937 for (uptr i = 0; i < leaks_.size(); i++) {
938 if (leaks_[i].is_suppressed)
939 continue;
940 bytes += leaks_[i].total_size;
941 allocations += leaks_[i].hit_count;
943 InternalScopedString summary;
944 summary.append("%zu byte(s) leaked in %zu allocation(s).", bytes,
945 allocations);
946 ReportErrorSummary(summary.data());
949 uptr LeakReport::ApplySuppressions() {
950 LeakSuppressionContext *suppressions = GetSuppressionContext();
951 uptr new_suppressions = 0;
952 for (uptr i = 0; i < leaks_.size(); i++) {
953 if (suppressions->Suppress(leaks_[i].stack_trace_id, leaks_[i].hit_count,
954 leaks_[i].total_size)) {
955 leaks_[i].is_suppressed = true;
956 ++new_suppressions;
959 return new_suppressions;
962 uptr LeakReport::UnsuppressedLeakCount() {
963 uptr result = 0;
964 for (uptr i = 0; i < leaks_.size(); i++)
965 if (!leaks_[i].is_suppressed)
966 result++;
967 return result;
970 uptr LeakReport::IndirectUnsuppressedLeakCount() {
971 uptr result = 0;
972 for (uptr i = 0; i < leaks_.size(); i++)
973 if (!leaks_[i].is_suppressed && !leaks_[i].is_directly_leaked)
974 result++;
975 return result;
978 } // namespace __lsan
979 #else // CAN_SANITIZE_LEAKS
980 namespace __lsan {
981 void InitCommonLsan() {}
982 void DoLeakCheck() {}
983 void DoRecoverableLeakCheckVoid() {}
984 void DisableInThisThread() {}
985 void EnableInThisThread() {}
986 } // namespace __lsan
987 #endif // CAN_SANITIZE_LEAKS
989 using namespace __lsan;
991 extern "C" {
992 SANITIZER_INTERFACE_ATTRIBUTE
993 void __lsan_ignore_object(const void *p) {
994 #if CAN_SANITIZE_LEAKS
995 if (!common_flags()->detect_leaks)
996 return;
997 // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
998 // locked.
999 Lock l(&global_mutex);
1000 IgnoreObjectResult res = IgnoreObject(p);
1001 if (res == kIgnoreObjectInvalid)
1002 VReport(1, "__lsan_ignore_object(): no heap object found at %p\n", p);
1003 if (res == kIgnoreObjectAlreadyIgnored)
1004 VReport(1,
1005 "__lsan_ignore_object(): "
1006 "heap object at %p is already being ignored\n",
1008 if (res == kIgnoreObjectSuccess)
1009 VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p);
1010 #endif // CAN_SANITIZE_LEAKS
1013 SANITIZER_INTERFACE_ATTRIBUTE
1014 void __lsan_register_root_region(const void *begin, uptr size) {
1015 #if CAN_SANITIZE_LEAKS
1016 Lock l(&global_mutex);
1017 RootRegion region = {reinterpret_cast<uptr>(begin), size};
1018 root_regions.push_back(region);
1019 VReport(1, "Registered root region at %p of size %zu\n", begin, size);
1020 #endif // CAN_SANITIZE_LEAKS
1023 SANITIZER_INTERFACE_ATTRIBUTE
1024 void __lsan_unregister_root_region(const void *begin, uptr size) {
1025 #if CAN_SANITIZE_LEAKS
1026 Lock l(&global_mutex);
1027 bool removed = false;
1028 for (uptr i = 0; i < root_regions.size(); i++) {
1029 RootRegion region = root_regions[i];
1030 if (region.begin == reinterpret_cast<uptr>(begin) && region.size == size) {
1031 removed = true;
1032 uptr last_index = root_regions.size() - 1;
1033 root_regions[i] = root_regions[last_index];
1034 root_regions.pop_back();
1035 VReport(1, "Unregistered root region at %p of size %zu\n", begin, size);
1036 break;
1039 if (!removed) {
1040 Report(
1041 "__lsan_unregister_root_region(): region at %p of size %zu has not "
1042 "been registered.\n",
1043 begin, size);
1044 Die();
1046 #endif // CAN_SANITIZE_LEAKS
1049 SANITIZER_INTERFACE_ATTRIBUTE
1050 void __lsan_disable() {
1051 #if CAN_SANITIZE_LEAKS
1052 __lsan::DisableInThisThread();
1053 #endif
1056 SANITIZER_INTERFACE_ATTRIBUTE
1057 void __lsan_enable() {
1058 #if CAN_SANITIZE_LEAKS
1059 __lsan::EnableInThisThread();
1060 #endif
1063 SANITIZER_INTERFACE_ATTRIBUTE
1064 void __lsan_do_leak_check() {
1065 #if CAN_SANITIZE_LEAKS
1066 if (common_flags()->detect_leaks)
1067 __lsan::DoLeakCheck();
1068 #endif // CAN_SANITIZE_LEAKS
1071 SANITIZER_INTERFACE_ATTRIBUTE
1072 int __lsan_do_recoverable_leak_check() {
1073 #if CAN_SANITIZE_LEAKS
1074 if (common_flags()->detect_leaks)
1075 return __lsan::DoRecoverableLeakCheck();
1076 #endif // CAN_SANITIZE_LEAKS
1077 return 0;
1080 SANITIZER_INTERFACE_WEAK_DEF(const char *, __lsan_default_options, void) {
1081 return "";
1084 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
1085 SANITIZER_INTERFACE_WEAK_DEF(int, __lsan_is_turned_off, void) {
1086 return 0;
1089 SANITIZER_INTERFACE_WEAK_DEF(const char *, __lsan_default_suppressions, void) {
1090 return "";
1092 #endif
1093 } // extern "C"