Daily bump.
[official-gcc.git] / gcc / ipa-fnsummary.c
blob2cfa9a6d0e9c45873ddc6bd602a9cdae43375a42
1 /* Function summary pass.
2 Copyright (C) 2003-2021 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Analysis of function bodies used by inter-procedural passes
23 We estimate for each function
24 - function body size and size after specializing into given context
25 - average function execution time in a given context
26 - function frame size
27 For each call
28 - call statement size, time and how often the parameters change
30 ipa_fn_summary data structures store above information locally (i.e.
31 parameters of the function itself) and globally (i.e. parameters of
32 the function created by applying all the inline decisions already
33 present in the callgraph).
35 We provide access to the ipa_fn_summary data structure and
36 basic logic updating the parameters when inlining is performed.
38 The summaries are context sensitive. Context means
39 1) partial assignment of known constant values of operands
40 2) whether function is inlined into the call or not.
41 It is easy to add more variants. To represent function size and time
42 that depends on context (i.e. it is known to be optimized away when
43 context is known either by inlining or from IP-CP and cloning),
44 we use predicates.
46 estimate_edge_size_and_time can be used to query
47 function size/time in the given context. ipa_merge_fn_summary_after_inlining merges
48 properties of caller and callee after inlining.
50 Finally pass_inline_parameters is exported. This is used to drive
51 computation of function parameters used by the early inliner. IPA
52 inlined performs analysis via its analyze_function method. */
54 #include "config.h"
55 #define INCLUDE_VECTOR
56 #include "system.h"
57 #include "coretypes.h"
58 #include "backend.h"
59 #include "tree.h"
60 #include "gimple.h"
61 #include "alloc-pool.h"
62 #include "tree-pass.h"
63 #include "ssa.h"
64 #include "tree-streamer.h"
65 #include "cgraph.h"
66 #include "diagnostic.h"
67 #include "fold-const.h"
68 #include "print-tree.h"
69 #include "tree-inline.h"
70 #include "gimple-pretty-print.h"
71 #include "cfganal.h"
72 #include "gimple-iterator.h"
73 #include "tree-cfg.h"
74 #include "tree-ssa-loop-niter.h"
75 #include "tree-ssa-loop.h"
76 #include "symbol-summary.h"
77 #include "ipa-prop.h"
78 #include "ipa-fnsummary.h"
79 #include "cfgloop.h"
80 #include "tree-scalar-evolution.h"
81 #include "ipa-utils.h"
82 #include "cfgexpand.h"
83 #include "gimplify.h"
84 #include "stringpool.h"
85 #include "attribs.h"
86 #include "tree-into-ssa.h"
87 #include "symtab-clones.h"
88 #include "gimple-range.h"
89 #include "tree-dfa.h"
91 /* Summaries. */
92 fast_function_summary <ipa_fn_summary *, va_gc> *ipa_fn_summaries;
93 fast_function_summary <ipa_size_summary *, va_heap> *ipa_size_summaries;
94 fast_call_summary <ipa_call_summary *, va_heap> *ipa_call_summaries;
96 /* Edge predicates goes here. */
97 static object_allocator<ipa_predicate> edge_predicate_pool ("edge predicates");
100 /* Dump IPA hints. */
101 void
102 ipa_dump_hints (FILE *f, ipa_hints hints)
104 if (!hints)
105 return;
106 fprintf (f, "IPA hints:");
107 if (hints & INLINE_HINT_indirect_call)
109 hints &= ~INLINE_HINT_indirect_call;
110 fprintf (f, " indirect_call");
112 if (hints & INLINE_HINT_loop_iterations)
114 hints &= ~INLINE_HINT_loop_iterations;
115 fprintf (f, " loop_iterations");
117 if (hints & INLINE_HINT_loop_stride)
119 hints &= ~INLINE_HINT_loop_stride;
120 fprintf (f, " loop_stride");
122 if (hints & INLINE_HINT_same_scc)
124 hints &= ~INLINE_HINT_same_scc;
125 fprintf (f, " same_scc");
127 if (hints & INLINE_HINT_in_scc)
129 hints &= ~INLINE_HINT_in_scc;
130 fprintf (f, " in_scc");
132 if (hints & INLINE_HINT_cross_module)
134 hints &= ~INLINE_HINT_cross_module;
135 fprintf (f, " cross_module");
137 if (hints & INLINE_HINT_declared_inline)
139 hints &= ~INLINE_HINT_declared_inline;
140 fprintf (f, " declared_inline");
142 if (hints & INLINE_HINT_known_hot)
144 hints &= ~INLINE_HINT_known_hot;
145 fprintf (f, " known_hot");
147 if (hints & INLINE_HINT_builtin_constant_p)
149 hints &= ~INLINE_HINT_builtin_constant_p;
150 fprintf (f, " builtin_constant_p");
152 gcc_assert (!hints);
156 /* Record SIZE and TIME to SUMMARY.
157 The accounted code will be executed when EXEC_PRED is true.
158 When NONCONST_PRED is false the code will evaluate to constant and
159 will get optimized out in specialized clones of the function.
160 If CALL is true account to call_size_time_table rather than
161 size_time_table. */
163 void
164 ipa_fn_summary::account_size_time (int size, sreal time,
165 const ipa_predicate &exec_pred,
166 const ipa_predicate &nonconst_pred_in,
167 bool call)
169 size_time_entry *e;
170 bool found = false;
171 int i;
172 ipa_predicate nonconst_pred;
173 vec<size_time_entry> *table = call ? &call_size_time_table : &size_time_table;
175 if (exec_pred == false)
176 return;
178 nonconst_pred = nonconst_pred_in & exec_pred;
180 if (nonconst_pred == false)
181 return;
183 /* We need to create initial empty unconditional clause, but otherwise
184 we don't need to account empty times and sizes. */
185 if (!size && time == 0 && table->length ())
186 return;
188 /* Only for calls we are unaccounting what we previously recorded. */
189 gcc_checking_assert (time >= 0 || call);
191 for (i = 0; table->iterate (i, &e); i++)
192 if (e->exec_predicate == exec_pred
193 && e->nonconst_predicate == nonconst_pred)
195 found = true;
196 break;
198 if (i == max_size_time_table_size)
200 i = 0;
201 found = true;
202 e = &(*table)[0];
203 if (dump_file && (dump_flags & TDF_DETAILS))
204 fprintf (dump_file,
205 "\t\tReached limit on number of entries, "
206 "ignoring the predicate.");
208 if (dump_file && (dump_flags & TDF_DETAILS) && (time != 0 || size))
210 fprintf (dump_file,
211 "\t\tAccounting size:%3.2f, time:%3.2f on %spredicate exec:",
212 ((double) size) / ipa_fn_summary::size_scale,
213 (time.to_double ()), found ? "" : "new ");
214 exec_pred.dump (dump_file, conds, 0);
215 if (exec_pred != nonconst_pred)
217 fprintf (dump_file, " nonconst:");
218 nonconst_pred.dump (dump_file, conds);
220 else
221 fprintf (dump_file, "\n");
223 if (!found)
225 class size_time_entry new_entry;
226 new_entry.size = size;
227 new_entry.time = time;
228 new_entry.exec_predicate = exec_pred;
229 new_entry.nonconst_predicate = nonconst_pred;
230 if (call)
231 call_size_time_table.safe_push (new_entry);
232 else
233 size_time_table.safe_push (new_entry);
235 else
237 e->size += size;
238 e->time += time;
239 /* FIXME: PR bootstrap/92653 gcc_checking_assert (e->time >= -1); */
240 /* Tolerate small roundoff issues. */
241 if (e->time < 0)
242 e->time = 0;
246 /* We proved E to be unreachable, redirect it to __builtin_unreachable. */
248 static struct cgraph_edge *
249 redirect_to_unreachable (struct cgraph_edge *e)
251 struct cgraph_node *callee = !e->inline_failed ? e->callee : NULL;
252 struct cgraph_node *target = cgraph_node::get_create
253 (builtin_decl_implicit (BUILT_IN_UNREACHABLE));
255 if (e->speculative)
256 e = cgraph_edge::resolve_speculation (e, target->decl);
257 else if (!e->callee)
258 e = cgraph_edge::make_direct (e, target);
259 else
260 e->redirect_callee (target);
261 class ipa_call_summary *es = ipa_call_summaries->get (e);
262 e->inline_failed = CIF_UNREACHABLE;
263 e->count = profile_count::zero ();
264 es->call_stmt_size = 0;
265 es->call_stmt_time = 0;
266 if (callee)
267 callee->remove_symbol_and_inline_clones ();
268 return e;
271 /* Set predicate for edge E. */
273 static void
274 edge_set_predicate (struct cgraph_edge *e, ipa_predicate *predicate)
276 /* If the edge is determined to be never executed, redirect it
277 to BUILTIN_UNREACHABLE to make it clear to IPA passes the call will
278 be optimized out. */
279 if (predicate && *predicate == false
280 /* When handling speculative edges, we need to do the redirection
281 just once. Do it always on the direct edge, so we do not
282 attempt to resolve speculation while duplicating the edge. */
283 && (!e->speculative || e->callee))
284 e = redirect_to_unreachable (e);
286 class ipa_call_summary *es = ipa_call_summaries->get (e);
287 if (predicate && *predicate != true)
289 if (!es->predicate)
290 es->predicate = edge_predicate_pool.allocate ();
291 *es->predicate = *predicate;
293 else
295 if (es->predicate)
296 edge_predicate_pool.remove (es->predicate);
297 es->predicate = NULL;
301 /* Set predicate for hint *P. */
303 static void
304 set_hint_predicate (ipa_predicate **p, ipa_predicate new_predicate)
306 if (new_predicate == false || new_predicate == true)
308 if (*p)
309 edge_predicate_pool.remove (*p);
310 *p = NULL;
312 else
314 if (!*p)
315 *p = edge_predicate_pool.allocate ();
316 **p = new_predicate;
320 /* Find if NEW_PREDICATE is already in V and if so, increment its freq.
321 Otherwise add a new item to the vector with this predicate and frerq equal
322 to add_freq, unless the number of predicates would exceed MAX_NUM_PREDICATES
323 in which case the function does nothing. */
325 static void
326 add_freqcounting_predicate (vec<ipa_freqcounting_predicate, va_gc> **v,
327 const ipa_predicate &new_predicate, sreal add_freq,
328 unsigned max_num_predicates)
330 if (new_predicate == false || new_predicate == true)
331 return;
332 ipa_freqcounting_predicate *f;
333 for (int i = 0; vec_safe_iterate (*v, i, &f); i++)
334 if (new_predicate == f->predicate)
336 f->freq += add_freq;
337 return;
339 if (vec_safe_length (*v) >= max_num_predicates)
340 /* Too many different predicates to account for. */
341 return;
343 ipa_freqcounting_predicate fcp;
344 fcp.predicate = NULL;
345 set_hint_predicate (&fcp.predicate, new_predicate);
346 fcp.freq = add_freq;
347 vec_safe_push (*v, fcp);
348 return;
351 /* Compute what conditions may or may not hold given information about
352 parameters. RET_CLAUSE returns truths that may hold in a specialized copy,
353 while RET_NONSPEC_CLAUSE returns truths that may hold in an nonspecialized
354 copy when called in a given context. It is a bitmask of conditions. Bit
355 0 means that condition is known to be false, while bit 1 means that condition
356 may or may not be true. These differs - for example NOT_INLINED condition
357 is always false in the second and also builtin_constant_p tests cannot use
358 the fact that parameter is indeed a constant.
360 When INLINE_P is true, assume that we are inlining. AVAL contains known
361 information about argument values. The function does not modify its content
362 and so AVALs could also be of type ipa_call_arg_values but so far all
363 callers work with the auto version and so we avoid the conversion for
364 convenience.
366 ERROR_MARK value of an argument means compile time invariant. */
368 static void
369 evaluate_conditions_for_known_args (struct cgraph_node *node,
370 bool inline_p,
371 ipa_auto_call_arg_values *avals,
372 clause_t *ret_clause,
373 clause_t *ret_nonspec_clause)
375 clause_t clause = inline_p ? 0 : 1 << ipa_predicate::not_inlined_condition;
376 clause_t nonspec_clause = 1 << ipa_predicate::not_inlined_condition;
377 class ipa_fn_summary *info = ipa_fn_summaries->get (node);
378 int i;
379 struct condition *c;
381 for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
383 tree val = NULL;
384 tree res;
385 int j;
386 struct expr_eval_op *op;
388 /* We allow call stmt to have fewer arguments than the callee function
389 (especially for K&R style programs). So bound check here (we assume
390 m_known_aggs vector is either empty or has the same length as
391 m_known_vals). */
392 gcc_checking_assert (!avals->m_known_aggs.length ()
393 || !avals->m_known_vals.length ()
394 || (avals->m_known_vals.length ()
395 == avals->m_known_aggs.length ()));
397 if (c->agg_contents)
399 if (c->code == ipa_predicate::changed
400 && !c->by_ref
401 && (avals->safe_sval_at(c->operand_num) == error_mark_node))
402 continue;
404 if (ipa_agg_value_set *agg = avals->safe_aggval_at (c->operand_num))
406 tree sval = avals->safe_sval_at (c->operand_num);
407 val = ipa_find_agg_cst_for_param (agg, sval, c->offset,
408 c->by_ref);
410 else
411 val = NULL_TREE;
413 else
415 val = avals->safe_sval_at (c->operand_num);
416 if (val && val == error_mark_node
417 && c->code != ipa_predicate::changed)
418 val = NULL_TREE;
421 if (!val
422 && (c->code == ipa_predicate::changed
423 || c->code == ipa_predicate::is_not_constant))
425 clause |= 1 << (i + ipa_predicate::first_dynamic_condition);
426 nonspec_clause |= 1 << (i + ipa_predicate::first_dynamic_condition);
427 continue;
429 if (c->code == ipa_predicate::changed)
431 nonspec_clause |= 1 << (i + ipa_predicate::first_dynamic_condition);
432 continue;
435 if (c->code == ipa_predicate::is_not_constant)
437 nonspec_clause |= 1 << (i + ipa_predicate::first_dynamic_condition);
438 continue;
441 if (val && TYPE_SIZE (c->type) == TYPE_SIZE (TREE_TYPE (val)))
443 if (c->type != TREE_TYPE (val))
444 val = fold_unary (VIEW_CONVERT_EXPR, c->type, val);
445 for (j = 0; vec_safe_iterate (c->param_ops, j, &op); j++)
447 if (!val)
448 break;
449 if (!op->val[0])
450 val = fold_unary (op->code, op->type, val);
451 else if (!op->val[1])
452 val = fold_binary (op->code, op->type,
453 op->index ? op->val[0] : val,
454 op->index ? val : op->val[0]);
455 else if (op->index == 0)
456 val = fold_ternary (op->code, op->type,
457 val, op->val[0], op->val[1]);
458 else if (op->index == 1)
459 val = fold_ternary (op->code, op->type,
460 op->val[0], val, op->val[1]);
461 else if (op->index == 2)
462 val = fold_ternary (op->code, op->type,
463 op->val[0], op->val[1], val);
464 else
465 val = NULL_TREE;
468 res = val
469 ? fold_binary_to_constant (c->code, boolean_type_node, val, c->val)
470 : NULL;
472 if (res && integer_zerop (res))
473 continue;
474 if (res && integer_onep (res))
476 clause |= 1 << (i + ipa_predicate::first_dynamic_condition);
477 nonspec_clause
478 |= 1 << (i + ipa_predicate::first_dynamic_condition);
479 continue;
482 if (c->operand_num < (int) avals->m_known_value_ranges.length ()
483 && !c->agg_contents
484 && (!val || TREE_CODE (val) != INTEGER_CST))
486 value_range vr = avals->m_known_value_ranges[c->operand_num];
487 if (!vr.undefined_p ()
488 && !vr.varying_p ()
489 && (TYPE_SIZE (c->type) == TYPE_SIZE (vr.type ())))
491 if (!useless_type_conversion_p (c->type, vr.type ()))
493 value_range res;
494 range_fold_unary_expr (&res, NOP_EXPR,
495 c->type, &vr, vr.type ());
496 vr = res;
498 tree type = c->type;
500 for (j = 0; vec_safe_iterate (c->param_ops, j, &op); j++)
502 if (vr.varying_p () || vr.undefined_p ())
503 break;
505 value_range res;
506 if (!op->val[0])
507 range_fold_unary_expr (&res, op->code, op->type, &vr, type);
508 else if (!op->val[1])
510 value_range op0 (op->val[0], op->val[0]);
511 range_fold_binary_expr (&res, op->code, op->type,
512 op->index ? &op0 : &vr,
513 op->index ? &vr : &op0);
515 else
516 gcc_unreachable ();
517 type = op->type;
518 vr = res;
520 if (!vr.varying_p () && !vr.undefined_p ())
522 value_range res;
523 value_range val_vr (c->val, c->val);
524 range_fold_binary_expr (&res, c->code, boolean_type_node,
525 &vr,
526 &val_vr);
527 if (res.zero_p ())
528 continue;
533 clause |= 1 << (i + ipa_predicate::first_dynamic_condition);
534 nonspec_clause |= 1 << (i + ipa_predicate::first_dynamic_condition);
536 *ret_clause = clause;
537 if (ret_nonspec_clause)
538 *ret_nonspec_clause = nonspec_clause;
541 /* Return true if VRP will be exectued on the function.
542 We do not want to anticipate optimizations that will not happen.
544 FIXME: This can be confused with -fdisable and debug counters and thus
545 it should not be used for correctness (only to make heuristics work).
546 This means that inliner should do its own optimizations of expressions
547 that it predicts to be constant so wrong code can not be triggered by
548 builtin_constant_p. */
550 static bool
551 vrp_will_run_p (struct cgraph_node *node)
553 return (opt_for_fn (node->decl, optimize)
554 && !opt_for_fn (node->decl, optimize_debug)
555 && opt_for_fn (node->decl, flag_tree_vrp));
558 /* Similarly about FRE. */
560 static bool
561 fre_will_run_p (struct cgraph_node *node)
563 return (opt_for_fn (node->decl, optimize)
564 && !opt_for_fn (node->decl, optimize_debug)
565 && opt_for_fn (node->decl, flag_tree_fre));
568 /* Work out what conditions might be true at invocation of E.
569 Compute costs for inlined edge if INLINE_P is true.
571 Return in CLAUSE_PTR the evaluated conditions and in NONSPEC_CLAUSE_PTR
572 (if non-NULL) conditions evaluated for nonspecialized clone called
573 in a given context.
575 Vectors in AVALS will be populated with useful known information about
576 argument values - information not known to have any uses will be omitted -
577 except for m_known_contexts which will only be calculated if
578 COMPUTE_CONTEXTS is true. */
580 void
581 evaluate_properties_for_edge (struct cgraph_edge *e, bool inline_p,
582 clause_t *clause_ptr,
583 clause_t *nonspec_clause_ptr,
584 ipa_auto_call_arg_values *avals,
585 bool compute_contexts)
587 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
588 class ipa_fn_summary *info = ipa_fn_summaries->get (callee);
589 class ipa_edge_args *args;
591 if (clause_ptr)
592 *clause_ptr = inline_p ? 0 : 1 << ipa_predicate::not_inlined_condition;
594 if (ipa_node_params_sum
595 && !e->call_stmt_cannot_inline_p
596 && (info->conds || compute_contexts)
597 && (args = ipa_edge_args_sum->get (e)) != NULL)
599 struct cgraph_node *caller;
600 class ipa_node_params *caller_parms_info, *callee_pi = NULL;
601 class ipa_call_summary *es = ipa_call_summaries->get (e);
602 int i, count = ipa_get_cs_argument_count (args);
604 if (count)
606 if (e->caller->inlined_to)
607 caller = e->caller->inlined_to;
608 else
609 caller = e->caller;
610 caller_parms_info = ipa_node_params_sum->get (caller);
611 callee_pi = ipa_node_params_sum->get (callee);
613 /* Watch for thunks. */
614 if (callee_pi)
615 /* Watch for variadic functions. */
616 count = MIN (count, ipa_get_param_count (callee_pi));
619 if (callee_pi)
620 for (i = 0; i < count; i++)
622 struct ipa_jump_func *jf = ipa_get_ith_jump_func (args, i);
624 if (ipa_is_param_used_by_indirect_call (callee_pi, i)
625 || ipa_is_param_used_by_ipa_predicates (callee_pi, i))
627 /* Determine if we know constant value of the parameter. */
628 tree cst = ipa_value_from_jfunc (caller_parms_info, jf,
629 ipa_get_type (callee_pi, i));
631 if (!cst && e->call_stmt
632 && i < (int)gimple_call_num_args (e->call_stmt))
634 cst = gimple_call_arg (e->call_stmt, i);
635 if (!is_gimple_min_invariant (cst))
636 cst = NULL;
638 if (cst)
640 gcc_checking_assert (TREE_CODE (cst) != TREE_BINFO);
641 if (!avals->m_known_vals.length ())
642 avals->m_known_vals.safe_grow_cleared (count, true);
643 avals->m_known_vals[i] = cst;
645 else if (inline_p && !es->param[i].change_prob)
647 if (!avals->m_known_vals.length ())
648 avals->m_known_vals.safe_grow_cleared (count, true);
649 avals->m_known_vals[i] = error_mark_node;
652 /* If we failed to get simple constant, try value range. */
653 if ((!cst || TREE_CODE (cst) != INTEGER_CST)
654 && vrp_will_run_p (caller)
655 && ipa_is_param_used_by_ipa_predicates (callee_pi, i))
657 value_range vr
658 = ipa_value_range_from_jfunc (caller_parms_info, e, jf,
659 ipa_get_type (callee_pi,
660 i));
661 if (!vr.undefined_p () && !vr.varying_p ())
663 if (!avals->m_known_value_ranges.length ())
665 avals->m_known_value_ranges.safe_grow (count, true);
666 for (int i = 0; i < count; ++i)
667 new (&avals->m_known_value_ranges[i])
668 value_range ();
670 avals->m_known_value_ranges[i] = vr;
674 /* Determine known aggregate values. */
675 if (fre_will_run_p (caller))
677 ipa_agg_value_set agg
678 = ipa_agg_value_set_from_jfunc (caller_parms_info,
679 caller, &jf->agg);
680 if (agg.items.length ())
682 if (!avals->m_known_aggs.length ())
683 avals->m_known_aggs.safe_grow_cleared (count, true);
684 avals->m_known_aggs[i] = agg;
689 /* For calls used in polymorphic calls we further determine
690 polymorphic call context. */
691 if (compute_contexts
692 && ipa_is_param_used_by_polymorphic_call (callee_pi, i))
694 ipa_polymorphic_call_context
695 ctx = ipa_context_from_jfunc (caller_parms_info, e, i, jf);
696 if (!ctx.useless_p ())
698 if (!avals->m_known_contexts.length ())
699 avals->m_known_contexts.safe_grow_cleared (count, true);
700 avals->m_known_contexts[i]
701 = ipa_context_from_jfunc (caller_parms_info, e, i, jf);
705 else
706 gcc_assert (!count || callee->thunk);
708 else if (e->call_stmt && !e->call_stmt_cannot_inline_p && info->conds)
710 int i, count = (int)gimple_call_num_args (e->call_stmt);
712 for (i = 0; i < count; i++)
714 tree cst = gimple_call_arg (e->call_stmt, i);
715 if (!is_gimple_min_invariant (cst))
716 cst = NULL;
717 if (cst)
719 if (!avals->m_known_vals.length ())
720 avals->m_known_vals.safe_grow_cleared (count, true);
721 avals->m_known_vals[i] = cst;
726 evaluate_conditions_for_known_args (callee, inline_p, avals, clause_ptr,
727 nonspec_clause_ptr);
731 /* Allocate the function summary. */
733 static void
734 ipa_fn_summary_alloc (void)
736 gcc_checking_assert (!ipa_fn_summaries);
737 ipa_size_summaries = new ipa_size_summary_t (symtab);
738 ipa_fn_summaries = ipa_fn_summary_t::create_ggc (symtab);
739 ipa_call_summaries = new ipa_call_summary_t (symtab);
742 ipa_call_summary::~ipa_call_summary ()
744 if (predicate)
745 edge_predicate_pool.remove (predicate);
747 param.release ();
750 ipa_fn_summary::~ipa_fn_summary ()
752 unsigned len = vec_safe_length (loop_iterations);
753 for (unsigned i = 0; i < len; i++)
754 edge_predicate_pool.remove ((*loop_iterations)[i].predicate);
755 len = vec_safe_length (loop_strides);
756 for (unsigned i = 0; i < len; i++)
757 edge_predicate_pool.remove ((*loop_strides)[i].predicate);
758 vec_free (conds);
759 call_size_time_table.release ();
760 vec_free (loop_iterations);
761 vec_free (loop_strides);
762 builtin_constant_p_parms.release ();
765 void
766 ipa_fn_summary_t::remove_callees (cgraph_node *node)
768 cgraph_edge *e;
769 for (e = node->callees; e; e = e->next_callee)
770 ipa_call_summaries->remove (e);
771 for (e = node->indirect_calls; e; e = e->next_callee)
772 ipa_call_summaries->remove (e);
775 /* Duplicate predicates in loop hint vector, allocating memory for them and
776 remove and deallocate any uninteresting (true or false) ones. Return the
777 result. */
779 static vec<ipa_freqcounting_predicate, va_gc> *
780 remap_freqcounting_preds_after_dup (vec<ipa_freqcounting_predicate, va_gc> *v,
781 clause_t possible_truths)
783 if (vec_safe_length (v) == 0)
784 return NULL;
786 vec<ipa_freqcounting_predicate, va_gc> *res = v->copy ();
787 int len = res->length();
788 for (int i = len - 1; i >= 0; i--)
790 ipa_predicate new_predicate
791 = (*res)[i].predicate->remap_after_duplication (possible_truths);
792 /* We do not want to free previous predicate; it is used by node
793 origin. */
794 (*res)[i].predicate = NULL;
795 set_hint_predicate (&(*res)[i].predicate, new_predicate);
797 if (!(*res)[i].predicate)
798 res->unordered_remove (i);
801 return res;
805 /* Hook that is called by cgraph.c when a node is duplicated. */
806 void
807 ipa_fn_summary_t::duplicate (cgraph_node *src,
808 cgraph_node *dst,
809 ipa_fn_summary *src_info,
810 ipa_fn_summary *info)
812 new (info) ipa_fn_summary (*src_info);
813 /* TODO: as an optimization, we may avoid copying conditions
814 that are known to be false or true. */
815 info->conds = vec_safe_copy (info->conds);
817 clone_info *cinfo = clone_info::get (dst);
818 /* When there are any replacements in the function body, see if we can figure
819 out that something was optimized out. */
820 if (ipa_node_params_sum && cinfo && cinfo->tree_map)
822 /* Use SRC parm info since it may not be copied yet. */
823 ipa_node_params *parms_info = ipa_node_params_sum->get (src);
824 ipa_auto_call_arg_values avals;
825 int count = ipa_get_param_count (parms_info);
826 int i, j;
827 clause_t possible_truths;
828 ipa_predicate true_pred = true;
829 size_time_entry *e;
830 int optimized_out_size = 0;
831 bool inlined_to_p = false;
832 struct cgraph_edge *edge, *next;
834 info->size_time_table.release ();
835 avals.m_known_vals.safe_grow_cleared (count, true);
836 for (i = 0; i < count; i++)
838 struct ipa_replace_map *r;
840 for (j = 0; vec_safe_iterate (cinfo->tree_map, j, &r); j++)
842 if (r->parm_num == i)
844 avals.m_known_vals[i] = r->new_tree;
845 break;
849 evaluate_conditions_for_known_args (dst, false,
850 &avals,
851 &possible_truths,
852 /* We are going to specialize,
853 so ignore nonspec truths. */
854 NULL);
856 info->account_size_time (0, 0, true_pred, true_pred);
858 /* Remap size_time vectors.
859 Simplify the predicate by pruning out alternatives that are known
860 to be false.
861 TODO: as on optimization, we can also eliminate conditions known
862 to be true. */
863 for (i = 0; src_info->size_time_table.iterate (i, &e); i++)
865 ipa_predicate new_exec_pred;
866 ipa_predicate new_nonconst_pred;
867 new_exec_pred = e->exec_predicate.remap_after_duplication
868 (possible_truths);
869 new_nonconst_pred = e->nonconst_predicate.remap_after_duplication
870 (possible_truths);
871 if (new_exec_pred == false || new_nonconst_pred == false)
872 optimized_out_size += e->size;
873 else
874 info->account_size_time (e->size, e->time, new_exec_pred,
875 new_nonconst_pred);
878 /* Remap edge predicates with the same simplification as above.
879 Also copy constantness arrays. */
880 for (edge = dst->callees; edge; edge = next)
882 ipa_predicate new_predicate;
883 class ipa_call_summary *es = ipa_call_summaries->get (edge);
884 next = edge->next_callee;
886 if (!edge->inline_failed)
887 inlined_to_p = true;
888 if (!es->predicate)
889 continue;
890 new_predicate = es->predicate->remap_after_duplication
891 (possible_truths);
892 if (new_predicate == false && *es->predicate != false)
893 optimized_out_size += es->call_stmt_size * ipa_fn_summary::size_scale;
894 edge_set_predicate (edge, &new_predicate);
897 /* Remap indirect edge predicates with the same simplification as above.
898 Also copy constantness arrays. */
899 for (edge = dst->indirect_calls; edge; edge = next)
901 ipa_predicate new_predicate;
902 class ipa_call_summary *es = ipa_call_summaries->get (edge);
903 next = edge->next_callee;
905 gcc_checking_assert (edge->inline_failed);
906 if (!es->predicate)
907 continue;
908 new_predicate = es->predicate->remap_after_duplication
909 (possible_truths);
910 if (new_predicate == false && *es->predicate != false)
911 optimized_out_size
912 += es->call_stmt_size * ipa_fn_summary::size_scale;
913 edge_set_predicate (edge, &new_predicate);
915 info->loop_iterations
916 = remap_freqcounting_preds_after_dup (info->loop_iterations,
917 possible_truths);
918 info->loop_strides
919 = remap_freqcounting_preds_after_dup (info->loop_strides,
920 possible_truths);
921 if (info->builtin_constant_p_parms.length())
923 vec <int, va_heap, vl_ptr> parms = info->builtin_constant_p_parms;
924 int ip;
925 info->builtin_constant_p_parms = vNULL;
926 for (i = 0; parms.iterate (i, &ip); i++)
927 if (!avals.m_known_vals[ip])
928 info->builtin_constant_p_parms.safe_push (ip);
931 /* If inliner or someone after inliner will ever start producing
932 non-trivial clones, we will get trouble with lack of information
933 about updating self sizes, because size vectors already contains
934 sizes of the callees. */
935 gcc_assert (!inlined_to_p || !optimized_out_size);
937 else
939 info->size_time_table = src_info->size_time_table.copy ();
940 info->loop_iterations = vec_safe_copy (src_info->loop_iterations);
941 info->loop_strides = vec_safe_copy (info->loop_strides);
943 info->builtin_constant_p_parms
944 = info->builtin_constant_p_parms.copy ();
946 ipa_freqcounting_predicate *f;
947 for (int i = 0; vec_safe_iterate (info->loop_iterations, i, &f); i++)
949 ipa_predicate p = *f->predicate;
950 f->predicate = NULL;
951 set_hint_predicate (&f->predicate, p);
953 for (int i = 0; vec_safe_iterate (info->loop_strides, i, &f); i++)
955 ipa_predicate p = *f->predicate;
956 f->predicate = NULL;
957 set_hint_predicate (&f->predicate, p);
960 if (!dst->inlined_to)
961 ipa_update_overall_fn_summary (dst);
965 /* Hook that is called by cgraph.c when a node is duplicated. */
967 void
968 ipa_call_summary_t::duplicate (struct cgraph_edge *src,
969 struct cgraph_edge *dst,
970 class ipa_call_summary *srcinfo,
971 class ipa_call_summary *info)
973 new (info) ipa_call_summary (*srcinfo);
974 info->predicate = NULL;
975 edge_set_predicate (dst, srcinfo->predicate);
976 info->param = srcinfo->param.copy ();
977 if (!dst->indirect_unknown_callee && src->indirect_unknown_callee)
979 info->call_stmt_size -= (eni_size_weights.indirect_call_cost
980 - eni_size_weights.call_cost);
981 info->call_stmt_time -= (eni_time_weights.indirect_call_cost
982 - eni_time_weights.call_cost);
986 /* Dump edge summaries associated to NODE and recursively to all clones.
987 Indent by INDENT. */
989 static void
990 dump_ipa_call_summary (FILE *f, int indent, struct cgraph_node *node,
991 class ipa_fn_summary *info)
993 struct cgraph_edge *edge;
994 for (edge = node->callees; edge; edge = edge->next_callee)
996 class ipa_call_summary *es = ipa_call_summaries->get (edge);
997 struct cgraph_node *callee = edge->callee->ultimate_alias_target ();
998 int i;
1000 fprintf (f,
1001 "%*s%s %s\n%*s freq:%4.2f",
1002 indent, "", callee->dump_name (),
1003 !edge->inline_failed
1004 ? "inlined" : cgraph_inline_failed_string (edge-> inline_failed),
1005 indent, "", edge->sreal_frequency ().to_double ());
1007 if (cross_module_call_p (edge))
1008 fprintf (f, " cross module");
1010 if (es)
1011 fprintf (f, " loop depth:%2i size:%2i time: %2i",
1012 es->loop_depth, es->call_stmt_size, es->call_stmt_time);
1014 ipa_fn_summary *s = ipa_fn_summaries->get (callee);
1015 ipa_size_summary *ss = ipa_size_summaries->get (callee);
1016 if (s != NULL)
1017 fprintf (f, " callee size:%2i stack:%2i",
1018 (int) (ss->size / ipa_fn_summary::size_scale),
1019 (int) s->estimated_stack_size);
1021 if (es && es->predicate)
1023 fprintf (f, " predicate: ");
1024 es->predicate->dump (f, info->conds);
1026 else
1027 fprintf (f, "\n");
1028 if (es && es->param.exists ())
1029 for (i = 0; i < (int) es->param.length (); i++)
1031 int prob = es->param[i].change_prob;
1033 if (!prob)
1034 fprintf (f, "%*s op%i is compile time invariant\n",
1035 indent + 2, "", i);
1036 else if (prob != REG_BR_PROB_BASE)
1037 fprintf (f, "%*s op%i change %f%% of time\n", indent + 2, "", i,
1038 prob * 100.0 / REG_BR_PROB_BASE);
1039 if (es->param[i].points_to_local_or_readonly_memory)
1040 fprintf (f, "%*s op%i points to local or readonly memory\n",
1041 indent + 2, "", i);
1043 if (!edge->inline_failed)
1045 ipa_size_summary *ss = ipa_size_summaries->get (callee);
1046 fprintf (f, "%*sStack frame offset %i, callee self size %i\n",
1047 indent + 2, "",
1048 (int) ipa_get_stack_frame_offset (callee),
1049 (int) ss->estimated_self_stack_size);
1050 dump_ipa_call_summary (f, indent + 2, callee, info);
1053 for (edge = node->indirect_calls; edge; edge = edge->next_callee)
1055 class ipa_call_summary *es = ipa_call_summaries->get (edge);
1056 fprintf (f, "%*sindirect call loop depth:%2i freq:%4.2f size:%2i"
1057 " time: %2i",
1058 indent, "",
1059 es->loop_depth,
1060 edge->sreal_frequency ().to_double (), es->call_stmt_size,
1061 es->call_stmt_time);
1062 if (es->predicate)
1064 fprintf (f, "predicate: ");
1065 es->predicate->dump (f, info->conds);
1067 else
1068 fprintf (f, "\n");
1073 void
1074 ipa_dump_fn_summary (FILE *f, struct cgraph_node *node)
1076 if (node->definition)
1078 class ipa_fn_summary *s = ipa_fn_summaries->get (node);
1079 class ipa_size_summary *ss = ipa_size_summaries->get (node);
1080 if (s != NULL)
1082 size_time_entry *e;
1083 int i;
1084 fprintf (f, "IPA function summary for %s", node->dump_name ());
1085 if (DECL_DISREGARD_INLINE_LIMITS (node->decl))
1086 fprintf (f, " always_inline");
1087 if (s->inlinable)
1088 fprintf (f, " inlinable");
1089 if (s->fp_expressions)
1090 fprintf (f, " fp_expression");
1091 if (s->builtin_constant_p_parms.length ())
1093 fprintf (f, " builtin_constant_p_parms");
1094 for (unsigned int i = 0;
1095 i < s->builtin_constant_p_parms.length (); i++)
1096 fprintf (f, " %i", s->builtin_constant_p_parms[i]);
1098 fprintf (f, "\n global time: %f\n", s->time.to_double ());
1099 fprintf (f, " self size: %i\n", ss->self_size);
1100 fprintf (f, " global size: %i\n", ss->size);
1101 fprintf (f, " min size: %i\n", s->min_size);
1102 fprintf (f, " self stack: %i\n",
1103 (int) ss->estimated_self_stack_size);
1104 fprintf (f, " global stack: %i\n", (int) s->estimated_stack_size);
1105 if (s->growth)
1106 fprintf (f, " estimated growth:%i\n", (int) s->growth);
1107 if (s->scc_no)
1108 fprintf (f, " In SCC: %i\n", (int) s->scc_no);
1109 for (i = 0; s->size_time_table.iterate (i, &e); i++)
1111 fprintf (f, " size:%f, time:%f",
1112 (double) e->size / ipa_fn_summary::size_scale,
1113 e->time.to_double ());
1114 if (e->exec_predicate != true)
1116 fprintf (f, ", executed if:");
1117 e->exec_predicate.dump (f, s->conds, 0);
1119 if (e->exec_predicate != e->nonconst_predicate)
1121 fprintf (f, ", nonconst if:");
1122 e->nonconst_predicate.dump (f, s->conds, 0);
1124 fprintf (f, "\n");
1126 ipa_freqcounting_predicate *fcp;
1127 bool first_fcp = true;
1128 for (int i = 0; vec_safe_iterate (s->loop_iterations, i, &fcp); i++)
1130 if (first_fcp)
1132 fprintf (f, " loop iterations:");
1133 first_fcp = false;
1135 fprintf (f, " %3.2f for ", fcp->freq.to_double ());
1136 fcp->predicate->dump (f, s->conds);
1138 first_fcp = true;
1139 for (int i = 0; vec_safe_iterate (s->loop_strides, i, &fcp); i++)
1141 if (first_fcp)
1143 fprintf (f, " loop strides:");
1144 first_fcp = false;
1146 fprintf (f, " %3.2f for :", fcp->freq.to_double ());
1147 fcp->predicate->dump (f, s->conds);
1149 fprintf (f, " calls:\n");
1150 dump_ipa_call_summary (f, 4, node, s);
1151 fprintf (f, "\n");
1153 else
1154 fprintf (f, "IPA summary for %s is missing.\n", node->dump_name ());
1158 DEBUG_FUNCTION void
1159 ipa_debug_fn_summary (struct cgraph_node *node)
1161 ipa_dump_fn_summary (stderr, node);
1164 void
1165 ipa_dump_fn_summaries (FILE *f)
1167 struct cgraph_node *node;
1169 FOR_EACH_DEFINED_FUNCTION (node)
1170 if (!node->inlined_to)
1171 ipa_dump_fn_summary (f, node);
1174 /* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
1175 boolean variable pointed to by DATA. */
1177 static bool
1178 mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
1179 void *data)
1181 bool *b = (bool *) data;
1182 *b = true;
1183 return true;
1186 /* If OP refers to value of function parameter, return the corresponding
1187 parameter. If non-NULL, the size of the memory load (or the SSA_NAME of the
1188 PARM_DECL) will be stored to *SIZE_P in that case too. */
1190 static tree
1191 unmodified_parm_1 (ipa_func_body_info *fbi, gimple *stmt, tree op,
1192 poly_int64 *size_p)
1194 /* SSA_NAME referring to parm default def? */
1195 if (TREE_CODE (op) == SSA_NAME
1196 && SSA_NAME_IS_DEFAULT_DEF (op)
1197 && TREE_CODE (SSA_NAME_VAR (op)) == PARM_DECL)
1199 if (size_p)
1200 *size_p = tree_to_poly_int64 (TYPE_SIZE (TREE_TYPE (op)));
1201 return SSA_NAME_VAR (op);
1203 /* Non-SSA parm reference? */
1204 if (TREE_CODE (op) == PARM_DECL
1205 && fbi->aa_walk_budget > 0)
1207 bool modified = false;
1209 ao_ref refd;
1210 ao_ref_init (&refd, op);
1211 int walked = walk_aliased_vdefs (&refd, gimple_vuse (stmt),
1212 mark_modified, &modified, NULL, NULL,
1213 fbi->aa_walk_budget);
1214 if (walked < 0)
1216 fbi->aa_walk_budget = 0;
1217 return NULL_TREE;
1219 fbi->aa_walk_budget -= walked;
1220 if (!modified)
1222 if (size_p)
1223 *size_p = tree_to_poly_int64 (TYPE_SIZE (TREE_TYPE (op)));
1224 return op;
1227 return NULL_TREE;
1230 /* If OP refers to value of function parameter, return the corresponding
1231 parameter. Also traverse chains of SSA register assignments. If non-NULL,
1232 the size of the memory load (or the SSA_NAME of the PARM_DECL) will be
1233 stored to *SIZE_P in that case too. */
1235 static tree
1236 unmodified_parm (ipa_func_body_info *fbi, gimple *stmt, tree op,
1237 poly_int64 *size_p)
1239 tree res = unmodified_parm_1 (fbi, stmt, op, size_p);
1240 if (res)
1241 return res;
1243 if (TREE_CODE (op) == SSA_NAME
1244 && !SSA_NAME_IS_DEFAULT_DEF (op)
1245 && gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
1246 return unmodified_parm (fbi, SSA_NAME_DEF_STMT (op),
1247 gimple_assign_rhs1 (SSA_NAME_DEF_STMT (op)),
1248 size_p);
1249 return NULL_TREE;
1252 /* If OP refers to a value of a function parameter or value loaded from an
1253 aggregate passed to a parameter (either by value or reference), return TRUE
1254 and store the number of the parameter to *INDEX_P, the access size into
1255 *SIZE_P, and information whether and how it has been loaded from an
1256 aggregate into *AGGPOS. INFO describes the function parameters, STMT is the
1257 statement in which OP is used or loaded. */
1259 static bool
1260 unmodified_parm_or_parm_agg_item (struct ipa_func_body_info *fbi,
1261 gimple *stmt, tree op, int *index_p,
1262 poly_int64 *size_p,
1263 struct agg_position_info *aggpos)
1265 tree res = unmodified_parm_1 (fbi, stmt, op, size_p);
1267 gcc_checking_assert (aggpos);
1268 if (res)
1270 *index_p = ipa_get_param_decl_index (fbi->info, res);
1271 if (*index_p < 0)
1272 return false;
1273 aggpos->agg_contents = false;
1274 aggpos->by_ref = false;
1275 return true;
1278 if (TREE_CODE (op) == SSA_NAME)
1280 if (SSA_NAME_IS_DEFAULT_DEF (op)
1281 || !gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
1282 return false;
1283 stmt = SSA_NAME_DEF_STMT (op);
1284 op = gimple_assign_rhs1 (stmt);
1285 if (!REFERENCE_CLASS_P (op))
1286 return unmodified_parm_or_parm_agg_item (fbi, stmt, op, index_p, size_p,
1287 aggpos);
1290 aggpos->agg_contents = true;
1291 return ipa_load_from_parm_agg (fbi, fbi->info->descriptors,
1292 stmt, op, index_p, &aggpos->offset,
1293 size_p, &aggpos->by_ref);
1296 /* See if statement might disappear after inlining.
1297 0 - means not eliminated
1298 1 - half of statements goes away
1299 2 - for sure it is eliminated.
1300 We are not terribly sophisticated, basically looking for simple abstraction
1301 penalty wrappers. */
1303 static int
1304 eliminated_by_inlining_prob (ipa_func_body_info *fbi, gimple *stmt)
1306 enum gimple_code code = gimple_code (stmt);
1307 enum tree_code rhs_code;
1309 if (!optimize)
1310 return 0;
1312 switch (code)
1314 case GIMPLE_RETURN:
1315 return 2;
1316 case GIMPLE_ASSIGN:
1317 if (gimple_num_ops (stmt) != 2)
1318 return 0;
1320 rhs_code = gimple_assign_rhs_code (stmt);
1322 /* Casts of parameters, loads from parameters passed by reference
1323 and stores to return value or parameters are often free after
1324 inlining due to SRA and further combining.
1325 Assume that half of statements goes away. */
1326 if (CONVERT_EXPR_CODE_P (rhs_code)
1327 || rhs_code == VIEW_CONVERT_EXPR
1328 || rhs_code == ADDR_EXPR
1329 || gimple_assign_rhs_class (stmt) == GIMPLE_SINGLE_RHS)
1331 tree rhs = gimple_assign_rhs1 (stmt);
1332 tree lhs = gimple_assign_lhs (stmt);
1333 tree inner_rhs = get_base_address (rhs);
1334 tree inner_lhs = get_base_address (lhs);
1335 bool rhs_free = false;
1336 bool lhs_free = false;
1338 if (!inner_rhs)
1339 inner_rhs = rhs;
1340 if (!inner_lhs)
1341 inner_lhs = lhs;
1343 /* Reads of parameter are expected to be free. */
1344 if (unmodified_parm (fbi, stmt, inner_rhs, NULL))
1345 rhs_free = true;
1346 /* Match expressions of form &this->field. Those will most likely
1347 combine with something upstream after inlining. */
1348 else if (TREE_CODE (inner_rhs) == ADDR_EXPR)
1350 tree op = get_base_address (TREE_OPERAND (inner_rhs, 0));
1351 if (TREE_CODE (op) == PARM_DECL)
1352 rhs_free = true;
1353 else if (TREE_CODE (op) == MEM_REF
1354 && unmodified_parm (fbi, stmt, TREE_OPERAND (op, 0),
1355 NULL))
1356 rhs_free = true;
1359 /* When parameter is not SSA register because its address is taken
1360 and it is just copied into one, the statement will be completely
1361 free after inlining (we will copy propagate backward). */
1362 if (rhs_free && is_gimple_reg (lhs))
1363 return 2;
1365 /* Reads of parameters passed by reference
1366 expected to be free (i.e. optimized out after inlining). */
1367 if (TREE_CODE (inner_rhs) == MEM_REF
1368 && unmodified_parm (fbi, stmt, TREE_OPERAND (inner_rhs, 0), NULL))
1369 rhs_free = true;
1371 /* Copying parameter passed by reference into gimple register is
1372 probably also going to copy propagate, but we can't be quite
1373 sure. */
1374 if (rhs_free && is_gimple_reg (lhs))
1375 lhs_free = true;
1377 /* Writes to parameters, parameters passed by value and return value
1378 (either directly or passed via invisible reference) are free.
1380 TODO: We ought to handle testcase like
1381 struct a {int a,b;};
1382 struct a
1383 returnstruct (void)
1385 struct a a ={1,2};
1386 return a;
1389 This translate into:
1391 returnstruct ()
1393 int a$b;
1394 int a$a;
1395 struct a a;
1396 struct a D.2739;
1398 <bb 2>:
1399 D.2739.a = 1;
1400 D.2739.b = 2;
1401 return D.2739;
1404 For that we either need to copy ipa-split logic detecting writes
1405 to return value. */
1406 if (TREE_CODE (inner_lhs) == PARM_DECL
1407 || TREE_CODE (inner_lhs) == RESULT_DECL
1408 || (TREE_CODE (inner_lhs) == MEM_REF
1409 && (unmodified_parm (fbi, stmt, TREE_OPERAND (inner_lhs, 0),
1410 NULL)
1411 || (TREE_CODE (TREE_OPERAND (inner_lhs, 0)) == SSA_NAME
1412 && SSA_NAME_VAR (TREE_OPERAND (inner_lhs, 0))
1413 && TREE_CODE (SSA_NAME_VAR (TREE_OPERAND
1414 (inner_lhs,
1415 0))) == RESULT_DECL))))
1416 lhs_free = true;
1417 if (lhs_free
1418 && (is_gimple_reg (rhs) || is_gimple_min_invariant (rhs)))
1419 rhs_free = true;
1420 if (lhs_free && rhs_free)
1421 return 1;
1423 return 0;
1424 default:
1425 return 0;
1429 /* Analyze EXPR if it represents a series of simple operations performed on
1430 a function parameter and return true if so. FBI, STMT, EXPR, INDEX_P and
1431 AGGPOS have the same meaning like in unmodified_parm_or_parm_agg_item.
1432 Type of the parameter or load from an aggregate via the parameter is
1433 stored in *TYPE_P. Operations on the parameter are recorded to
1434 PARAM_OPS_P if it is not NULL. */
1436 static bool
1437 decompose_param_expr (struct ipa_func_body_info *fbi,
1438 gimple *stmt, tree expr,
1439 int *index_p, tree *type_p,
1440 struct agg_position_info *aggpos,
1441 expr_eval_ops *param_ops_p = NULL)
1443 int op_limit = opt_for_fn (fbi->node->decl, param_ipa_max_param_expr_ops);
1444 int op_count = 0;
1446 if (param_ops_p)
1447 *param_ops_p = NULL;
1449 while (true)
1451 expr_eval_op eval_op;
1452 unsigned rhs_count;
1453 unsigned cst_count = 0;
1455 if (unmodified_parm_or_parm_agg_item (fbi, stmt, expr, index_p, NULL,
1456 aggpos))
1458 tree type = TREE_TYPE (expr);
1460 if (aggpos->agg_contents)
1462 /* Stop if containing bit-field. */
1463 if (TREE_CODE (expr) == BIT_FIELD_REF
1464 || contains_bitfld_component_ref_p (expr))
1465 break;
1468 *type_p = type;
1469 return true;
1472 if (TREE_CODE (expr) != SSA_NAME || SSA_NAME_IS_DEFAULT_DEF (expr))
1473 break;
1475 if (!is_gimple_assign (stmt = SSA_NAME_DEF_STMT (expr)))
1476 break;
1478 switch (gimple_assign_rhs_class (stmt))
1480 case GIMPLE_SINGLE_RHS:
1481 expr = gimple_assign_rhs1 (stmt);
1482 continue;
1484 case GIMPLE_UNARY_RHS:
1485 rhs_count = 1;
1486 break;
1488 case GIMPLE_BINARY_RHS:
1489 rhs_count = 2;
1490 break;
1492 case GIMPLE_TERNARY_RHS:
1493 rhs_count = 3;
1494 break;
1496 default:
1497 goto fail;
1500 /* Stop if expression is too complex. */
1501 if (op_count++ == op_limit)
1502 break;
1504 if (param_ops_p)
1506 eval_op.code = gimple_assign_rhs_code (stmt);
1507 eval_op.type = TREE_TYPE (gimple_assign_lhs (stmt));
1508 eval_op.val[0] = NULL_TREE;
1509 eval_op.val[1] = NULL_TREE;
1512 expr = NULL_TREE;
1513 for (unsigned i = 0; i < rhs_count; i++)
1515 tree op = gimple_op (stmt, i + 1);
1517 gcc_assert (op && !TYPE_P (op));
1518 if (is_gimple_ip_invariant (op))
1520 if (++cst_count == rhs_count)
1521 goto fail;
1523 eval_op.val[cst_count - 1] = op;
1525 else if (!expr)
1527 /* Found a non-constant operand, and record its index in rhs
1528 operands. */
1529 eval_op.index = i;
1530 expr = op;
1532 else
1534 /* Found more than one non-constant operands. */
1535 goto fail;
1539 if (param_ops_p)
1540 vec_safe_insert (*param_ops_p, 0, eval_op);
1543 /* Failed to decompose, free resource and return. */
1544 fail:
1545 if (param_ops_p)
1546 vec_free (*param_ops_p);
1548 return false;
1551 /* Record to SUMMARY that PARM is used by builtin_constant_p. */
1553 static void
1554 add_builtin_constant_p_parm (class ipa_fn_summary *summary, int parm)
1556 int ip;
1558 /* Avoid duplicates. */
1559 for (unsigned int i = 0;
1560 summary->builtin_constant_p_parms.iterate (i, &ip); i++)
1561 if (ip == parm)
1562 return;
1563 summary->builtin_constant_p_parms.safe_push (parm);
1566 /* If BB ends by a conditional we can turn into predicates, attach corresponding
1567 predicates to the CFG edges. */
1569 static void
1570 set_cond_stmt_execution_predicate (struct ipa_func_body_info *fbi,
1571 class ipa_fn_summary *summary,
1572 class ipa_node_params *params_summary,
1573 basic_block bb)
1575 gimple *last;
1576 tree op, op2;
1577 int index;
1578 struct agg_position_info aggpos;
1579 enum tree_code code, inverted_code;
1580 edge e;
1581 edge_iterator ei;
1582 gimple *set_stmt;
1583 tree param_type;
1584 expr_eval_ops param_ops;
1586 last = last_stmt (bb);
1587 if (!last || gimple_code (last) != GIMPLE_COND)
1588 return;
1589 if (!is_gimple_ip_invariant (gimple_cond_rhs (last)))
1590 return;
1591 op = gimple_cond_lhs (last);
1593 if (decompose_param_expr (fbi, last, op, &index, &param_type, &aggpos,
1594 &param_ops))
1596 code = gimple_cond_code (last);
1597 inverted_code = invert_tree_comparison (code, HONOR_NANS (op));
1599 FOR_EACH_EDGE (e, ei, bb->succs)
1601 enum tree_code this_code = (e->flags & EDGE_TRUE_VALUE
1602 ? code : inverted_code);
1603 /* invert_tree_comparison will return ERROR_MARK on FP
1604 comparisons that are not EQ/NE instead of returning proper
1605 unordered one. Be sure it is not confused with NON_CONSTANT.
1607 And if the edge's target is the final block of diamond CFG graph
1608 of this conditional statement, we do not need to compute
1609 predicate for the edge because the final block's predicate must
1610 be at least as that of the first block of the statement. */
1611 if (this_code != ERROR_MARK
1612 && !dominated_by_p (CDI_POST_DOMINATORS, bb, e->dest))
1614 ipa_predicate p
1615 = add_condition (summary, params_summary, index,
1616 param_type, &aggpos,
1617 this_code, gimple_cond_rhs (last), param_ops);
1618 e->aux = edge_predicate_pool.allocate ();
1619 *(ipa_predicate *) e->aux = p;
1622 vec_free (param_ops);
1625 if (TREE_CODE (op) != SSA_NAME)
1626 return;
1627 /* Special case
1628 if (builtin_constant_p (op))
1629 constant_code
1630 else
1631 nonconstant_code.
1632 Here we can predicate nonconstant_code. We can't
1633 really handle constant_code since we have no predicate
1634 for this and also the constant code is not known to be
1635 optimized away when inliner doesn't see operand is constant.
1636 Other optimizers might think otherwise. */
1637 if (gimple_cond_code (last) != NE_EXPR
1638 || !integer_zerop (gimple_cond_rhs (last)))
1639 return;
1640 set_stmt = SSA_NAME_DEF_STMT (op);
1641 if (!gimple_call_builtin_p (set_stmt, BUILT_IN_CONSTANT_P)
1642 || gimple_call_num_args (set_stmt) != 1)
1643 return;
1644 op2 = gimple_call_arg (set_stmt, 0);
1645 if (!decompose_param_expr (fbi, set_stmt, op2, &index, &param_type, &aggpos))
1646 return;
1647 if (!aggpos.by_ref)
1648 add_builtin_constant_p_parm (summary, index);
1649 FOR_EACH_EDGE (e, ei, bb->succs) if (e->flags & EDGE_FALSE_VALUE)
1651 ipa_predicate p = add_condition (summary, params_summary, index,
1652 param_type, &aggpos,
1653 ipa_predicate::is_not_constant, NULL_TREE);
1654 e->aux = edge_predicate_pool.allocate ();
1655 *(ipa_predicate *) e->aux = p;
1660 /* If BB ends by a switch we can turn into predicates, attach corresponding
1661 predicates to the CFG edges. */
1663 static void
1664 set_switch_stmt_execution_predicate (struct ipa_func_body_info *fbi,
1665 class ipa_fn_summary *summary,
1666 class ipa_node_params *params_summary,
1667 basic_block bb)
1669 gimple *lastg;
1670 tree op;
1671 int index;
1672 struct agg_position_info aggpos;
1673 edge e;
1674 edge_iterator ei;
1675 size_t n;
1676 size_t case_idx;
1677 tree param_type;
1678 expr_eval_ops param_ops;
1680 lastg = last_stmt (bb);
1681 if (!lastg || gimple_code (lastg) != GIMPLE_SWITCH)
1682 return;
1683 gswitch *last = as_a <gswitch *> (lastg);
1684 op = gimple_switch_index (last);
1685 if (!decompose_param_expr (fbi, last, op, &index, &param_type, &aggpos,
1686 &param_ops))
1687 return;
1689 auto_vec<std::pair<tree, tree> > ranges;
1690 tree type = TREE_TYPE (op);
1691 int bound_limit = opt_for_fn (fbi->node->decl,
1692 param_ipa_max_switch_predicate_bounds);
1693 int bound_count = 0;
1694 value_range vr;
1696 get_range_query (cfun)->range_of_expr (vr, op);
1697 if (vr.undefined_p ())
1698 vr.set_varying (TREE_TYPE (op));
1699 value_range_kind vr_type = vr.kind ();
1700 wide_int vr_wmin = wi::to_wide (vr.min ());
1701 wide_int vr_wmax = wi::to_wide (vr.max ());
1703 FOR_EACH_EDGE (e, ei, bb->succs)
1705 e->aux = edge_predicate_pool.allocate ();
1706 *(ipa_predicate *) e->aux = false;
1709 e = gimple_switch_edge (cfun, last, 0);
1710 /* Set BOUND_COUNT to maximum count to bypass computing predicate for
1711 default case if its target basic block is in convergence point of all
1712 switch cases, which can be determined by checking whether it
1713 post-dominates the switch statement. */
1714 if (dominated_by_p (CDI_POST_DOMINATORS, bb, e->dest))
1715 bound_count = INT_MAX;
1717 n = gimple_switch_num_labels (last);
1718 for (case_idx = 1; case_idx < n; ++case_idx)
1720 tree cl = gimple_switch_label (last, case_idx);
1721 tree min = CASE_LOW (cl);
1722 tree max = CASE_HIGH (cl);
1723 ipa_predicate p;
1725 e = gimple_switch_edge (cfun, last, case_idx);
1727 /* The case value might not have same type as switch expression,
1728 extend the value based on the expression type. */
1729 if (TREE_TYPE (min) != type)
1730 min = wide_int_to_tree (type, wi::to_wide (min));
1732 if (!max)
1733 max = min;
1734 else if (TREE_TYPE (max) != type)
1735 max = wide_int_to_tree (type, wi::to_wide (max));
1737 /* The case's target basic block is in convergence point of all switch
1738 cases, its predicate should be at least as that of the switch
1739 statement. */
1740 if (dominated_by_p (CDI_POST_DOMINATORS, bb, e->dest))
1741 p = true;
1742 else if (min == max)
1743 p = add_condition (summary, params_summary, index, param_type,
1744 &aggpos, EQ_EXPR, min, param_ops);
1745 else
1747 ipa_predicate p1, p2;
1748 p1 = add_condition (summary, params_summary, index, param_type,
1749 &aggpos, GE_EXPR, min, param_ops);
1750 p2 = add_condition (summary, params_summary,index, param_type,
1751 &aggpos, LE_EXPR, max, param_ops);
1752 p = p1 & p2;
1754 *(ipa_predicate *) e->aux
1755 = p.or_with (summary->conds, *(ipa_predicate *) e->aux);
1757 /* If there are too many disjoint case ranges, predicate for default
1758 case might become too complicated. So add a limit here. */
1759 if (bound_count > bound_limit)
1760 continue;
1762 bool new_range = true;
1764 if (!ranges.is_empty ())
1766 wide_int curr_wmin = wi::to_wide (min);
1767 wide_int last_wmax = wi::to_wide (ranges.last ().second);
1769 /* Merge case ranges if they are continuous. */
1770 if (curr_wmin == last_wmax + 1)
1771 new_range = false;
1772 else if (vr_type == VR_ANTI_RANGE)
1774 /* If two disjoint case ranges can be connected by anti-range
1775 of switch index, combine them to one range. */
1776 if (wi::lt_p (vr_wmax, curr_wmin - 1, TYPE_SIGN (type)))
1777 vr_type = VR_UNDEFINED;
1778 else if (wi::le_p (vr_wmin, last_wmax + 1, TYPE_SIGN (type)))
1779 new_range = false;
1783 /* Create/extend a case range. And we count endpoints of range set,
1784 this number nearly equals to number of conditions that we will create
1785 for predicate of default case. */
1786 if (new_range)
1788 bound_count += (min == max) ? 1 : 2;
1789 ranges.safe_push (std::make_pair (min, max));
1791 else
1793 bound_count += (ranges.last ().first == ranges.last ().second);
1794 ranges.last ().second = max;
1798 e = gimple_switch_edge (cfun, last, 0);
1799 if (bound_count > bound_limit)
1801 *(ipa_predicate *) e->aux = true;
1802 vec_free (param_ops);
1803 return;
1806 ipa_predicate p_seg = true;
1807 ipa_predicate p_all = false;
1809 if (vr_type != VR_RANGE)
1811 vr_wmin = wi::to_wide (TYPE_MIN_VALUE (type));
1812 vr_wmax = wi::to_wide (TYPE_MAX_VALUE (type));
1815 /* Construct predicate to represent default range set that is negation of
1816 all case ranges. Case range is classified as containing single/non-single
1817 values. Suppose a piece of case ranges in the following.
1819 [D1...D2] [S1] ... [Sn] [D3...D4]
1821 To represent default case's range sets between two non-single value
1822 case ranges (From D2 to D3), we construct predicate as:
1824 D2 < x < D3 && x != S1 && ... && x != Sn
1826 for (size_t i = 0; i < ranges.length (); i++)
1828 tree min = ranges[i].first;
1829 tree max = ranges[i].second;
1831 if (min == max)
1832 p_seg &= add_condition (summary, params_summary, index,
1833 param_type, &aggpos, NE_EXPR,
1834 min, param_ops);
1835 else
1837 /* Do not create sub-predicate for range that is beyond low bound
1838 of switch index. */
1839 if (wi::lt_p (vr_wmin, wi::to_wide (min), TYPE_SIGN (type)))
1841 p_seg &= add_condition (summary, params_summary, index,
1842 param_type, &aggpos,
1843 LT_EXPR, min, param_ops);
1844 p_all = p_all.or_with (summary->conds, p_seg);
1847 /* Do not create sub-predicate for range that is beyond up bound
1848 of switch index. */
1849 if (wi::le_p (vr_wmax, wi::to_wide (max), TYPE_SIGN (type)))
1851 p_seg = false;
1852 break;
1855 p_seg = add_condition (summary, params_summary, index,
1856 param_type, &aggpos, GT_EXPR,
1857 max, param_ops);
1861 p_all = p_all.or_with (summary->conds, p_seg);
1862 *(ipa_predicate *) e->aux
1863 = p_all.or_with (summary->conds, *(ipa_predicate *) e->aux);
1865 vec_free (param_ops);
1869 /* For each BB in NODE attach to its AUX pointer predicate under
1870 which it is executable. */
1872 static void
1873 compute_bb_predicates (struct ipa_func_body_info *fbi,
1874 struct cgraph_node *node,
1875 class ipa_fn_summary *summary,
1876 class ipa_node_params *params_summary)
1878 struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
1879 bool done = false;
1880 basic_block bb;
1882 FOR_EACH_BB_FN (bb, my_function)
1884 set_cond_stmt_execution_predicate (fbi, summary, params_summary, bb);
1885 set_switch_stmt_execution_predicate (fbi, summary, params_summary, bb);
1888 /* Entry block is always executable. */
1889 ENTRY_BLOCK_PTR_FOR_FN (my_function)->aux
1890 = edge_predicate_pool.allocate ();
1891 *(ipa_predicate *) ENTRY_BLOCK_PTR_FOR_FN (my_function)->aux = true;
1893 /* A simple dataflow propagation of predicates forward in the CFG.
1894 TODO: work in reverse postorder. */
1895 while (!done)
1897 done = true;
1898 FOR_EACH_BB_FN (bb, my_function)
1900 ipa_predicate p = false;
1901 edge e;
1902 edge_iterator ei;
1903 FOR_EACH_EDGE (e, ei, bb->preds)
1905 if (e->src->aux)
1907 ipa_predicate this_bb_predicate
1908 = *(ipa_predicate *) e->src->aux;
1909 if (e->aux)
1910 this_bb_predicate &= (*(ipa_predicate *) e->aux);
1911 p = p.or_with (summary->conds, this_bb_predicate);
1912 if (p == true)
1913 break;
1916 if (p != false)
1918 basic_block pdom_bb;
1920 if (!bb->aux)
1922 done = false;
1923 bb->aux = edge_predicate_pool.allocate ();
1924 *((ipa_predicate *) bb->aux) = p;
1926 else if (p != *(ipa_predicate *) bb->aux)
1928 /* This OR operation is needed to ensure monotonous data flow
1929 in the case we hit the limit on number of clauses and the
1930 and/or operations above give approximate answers. */
1931 p = p.or_with (summary->conds, *(ipa_predicate *)bb->aux);
1932 if (p != *(ipa_predicate *)bb->aux)
1934 done = false;
1935 *((ipa_predicate *)bb->aux) = p;
1939 /* For switch/if statement, we can OR-combine predicates of all
1940 its cases/branches to get predicate for basic block in their
1941 convergence point, but sometimes this will generate very
1942 complicated predicate. Actually, we can get simplified
1943 predicate in another way by using the fact that predicate
1944 for a basic block must also hold true for its post dominators.
1945 To be specific, basic block in convergence point of
1946 conditional statement should include predicate of the
1947 statement. */
1948 pdom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
1949 if (pdom_bb == EXIT_BLOCK_PTR_FOR_FN (my_function) || !pdom_bb)
1951 else if (!pdom_bb->aux)
1953 done = false;
1954 pdom_bb->aux = edge_predicate_pool.allocate ();
1955 *((ipa_predicate *)pdom_bb->aux) = p;
1957 else if (p != *(ipa_predicate *)pdom_bb->aux)
1959 p = p.or_with (summary->conds,
1960 *(ipa_predicate *)pdom_bb->aux);
1961 if (p != *(ipa_predicate *)pdom_bb->aux)
1963 done = false;
1964 *((ipa_predicate *)pdom_bb->aux) = p;
1973 /* Return predicate specifying when the STMT might have result that is not
1974 a compile time constant. */
1976 static ipa_predicate
1977 will_be_nonconstant_expr_predicate (ipa_func_body_info *fbi,
1978 class ipa_fn_summary *summary,
1979 class ipa_node_params *params_summary,
1980 tree expr,
1981 vec<ipa_predicate> nonconstant_names)
1983 tree parm;
1984 int index;
1986 while (UNARY_CLASS_P (expr))
1987 expr = TREE_OPERAND (expr, 0);
1989 parm = unmodified_parm (fbi, NULL, expr, NULL);
1990 if (parm && (index = ipa_get_param_decl_index (fbi->info, parm)) >= 0)
1991 return add_condition (summary, params_summary, index, TREE_TYPE (parm), NULL,
1992 ipa_predicate::changed, NULL_TREE);
1993 if (is_gimple_min_invariant (expr))
1994 return false;
1995 if (TREE_CODE (expr) == SSA_NAME)
1996 return nonconstant_names[SSA_NAME_VERSION (expr)];
1997 if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
1999 ipa_predicate p1
2000 = will_be_nonconstant_expr_predicate (fbi, summary,
2001 params_summary,
2002 TREE_OPERAND (expr, 0),
2003 nonconstant_names);
2004 if (p1 == true)
2005 return p1;
2007 ipa_predicate p2
2008 = will_be_nonconstant_expr_predicate (fbi, summary,
2009 params_summary,
2010 TREE_OPERAND (expr, 1),
2011 nonconstant_names);
2012 return p1.or_with (summary->conds, p2);
2014 else if (TREE_CODE (expr) == COND_EXPR)
2016 ipa_predicate p1
2017 = will_be_nonconstant_expr_predicate (fbi, summary,
2018 params_summary,
2019 TREE_OPERAND (expr, 0),
2020 nonconstant_names);
2021 if (p1 == true)
2022 return p1;
2024 ipa_predicate p2
2025 = will_be_nonconstant_expr_predicate (fbi, summary,
2026 params_summary,
2027 TREE_OPERAND (expr, 1),
2028 nonconstant_names);
2029 if (p2 == true)
2030 return p2;
2031 p1 = p1.or_with (summary->conds, p2);
2032 p2 = will_be_nonconstant_expr_predicate (fbi, summary,
2033 params_summary,
2034 TREE_OPERAND (expr, 2),
2035 nonconstant_names);
2036 return p2.or_with (summary->conds, p1);
2038 else if (TREE_CODE (expr) == CALL_EXPR)
2039 return true;
2040 else
2042 debug_tree (expr);
2043 gcc_unreachable ();
2045 return false;
2049 /* Return predicate specifying when the STMT might have result that is not
2050 a compile time constant. */
2052 static ipa_predicate
2053 will_be_nonconstant_predicate (struct ipa_func_body_info *fbi,
2054 class ipa_fn_summary *summary,
2055 class ipa_node_params *params_summary,
2056 gimple *stmt,
2057 vec<ipa_predicate> nonconstant_names)
2059 ipa_predicate p = true;
2060 ssa_op_iter iter;
2061 tree use;
2062 tree param_type = NULL_TREE;
2063 ipa_predicate op_non_const;
2064 bool is_load;
2065 int base_index;
2066 struct agg_position_info aggpos;
2068 /* What statements might be optimized away
2069 when their arguments are constant. */
2070 if (gimple_code (stmt) != GIMPLE_ASSIGN
2071 && gimple_code (stmt) != GIMPLE_COND
2072 && gimple_code (stmt) != GIMPLE_SWITCH
2073 && (gimple_code (stmt) != GIMPLE_CALL
2074 || !(gimple_call_flags (stmt) & ECF_CONST)))
2075 return p;
2077 /* Stores will stay anyway. */
2078 if (gimple_store_p (stmt))
2079 return p;
2081 is_load = gimple_assign_load_p (stmt);
2083 /* Loads can be optimized when the value is known. */
2084 if (is_load)
2086 tree op = gimple_assign_rhs1 (stmt);
2087 if (!decompose_param_expr (fbi, stmt, op, &base_index, &param_type,
2088 &aggpos))
2089 return p;
2091 else
2092 base_index = -1;
2094 /* See if we understand all operands before we start
2095 adding conditionals. */
2096 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2098 tree parm = unmodified_parm (fbi, stmt, use, NULL);
2099 /* For arguments we can build a condition. */
2100 if (parm && ipa_get_param_decl_index (fbi->info, parm) >= 0)
2101 continue;
2102 if (TREE_CODE (use) != SSA_NAME)
2103 return p;
2104 /* If we know when operand is constant,
2105 we still can say something useful. */
2106 if (nonconstant_names[SSA_NAME_VERSION (use)] != true)
2107 continue;
2108 return p;
2111 if (is_load)
2112 op_non_const =
2113 add_condition (summary, params_summary,
2114 base_index, param_type, &aggpos,
2115 ipa_predicate::changed, NULL_TREE);
2116 else
2117 op_non_const = false;
2118 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2120 tree parm = unmodified_parm (fbi, stmt, use, NULL);
2121 int index;
2123 if (parm && (index = ipa_get_param_decl_index (fbi->info, parm)) >= 0)
2125 if (index != base_index)
2126 p = add_condition (summary, params_summary, index,
2127 TREE_TYPE (parm), NULL,
2128 ipa_predicate::changed, NULL_TREE);
2129 else
2130 continue;
2132 else
2133 p = nonconstant_names[SSA_NAME_VERSION (use)];
2134 op_non_const = p.or_with (summary->conds, op_non_const);
2136 if ((gimple_code (stmt) == GIMPLE_ASSIGN || gimple_code (stmt) == GIMPLE_CALL)
2137 && gimple_op (stmt, 0)
2138 && TREE_CODE (gimple_op (stmt, 0)) == SSA_NAME)
2139 nonconstant_names[SSA_NAME_VERSION (gimple_op (stmt, 0))]
2140 = op_non_const;
2141 return op_non_const;
2144 struct record_modified_bb_info
2146 tree op;
2147 bitmap bb_set;
2148 gimple *stmt;
2151 /* Value is initialized in INIT_BB and used in USE_BB. We want to compute
2152 probability how often it changes between USE_BB.
2153 INIT_BB->count/USE_BB->count is an estimate, but if INIT_BB
2154 is in different loop nest, we can do better.
2155 This is all just estimate. In theory we look for minimal cut separating
2156 INIT_BB and USE_BB, but we only want to anticipate loop invariant motion
2157 anyway. */
2159 static basic_block
2160 get_minimal_bb (basic_block init_bb, basic_block use_bb)
2162 class loop *l = find_common_loop (init_bb->loop_father, use_bb->loop_father);
2163 if (l && l->header->count < init_bb->count)
2164 return l->header;
2165 return init_bb;
2168 /* Callback of walk_aliased_vdefs. Records basic blocks where the value may be
2169 set except for info->stmt. */
2171 static bool
2172 record_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef, void *data)
2174 struct record_modified_bb_info *info =
2175 (struct record_modified_bb_info *) data;
2176 if (SSA_NAME_DEF_STMT (vdef) == info->stmt)
2177 return false;
2178 if (gimple_clobber_p (SSA_NAME_DEF_STMT (vdef)))
2179 return false;
2180 bitmap_set_bit (info->bb_set,
2181 SSA_NAME_IS_DEFAULT_DEF (vdef)
2182 ? ENTRY_BLOCK_PTR_FOR_FN (cfun)->index
2183 : get_minimal_bb
2184 (gimple_bb (SSA_NAME_DEF_STMT (vdef)),
2185 gimple_bb (info->stmt))->index);
2186 if (dump_file)
2188 fprintf (dump_file, " Param ");
2189 print_generic_expr (dump_file, info->op, TDF_SLIM);
2190 fprintf (dump_file, " changed at bb %i, minimal: %i stmt: ",
2191 gimple_bb (SSA_NAME_DEF_STMT (vdef))->index,
2192 get_minimal_bb
2193 (gimple_bb (SSA_NAME_DEF_STMT (vdef)),
2194 gimple_bb (info->stmt))->index);
2195 print_gimple_stmt (dump_file, SSA_NAME_DEF_STMT (vdef), 0);
2197 return false;
2200 /* Return probability (based on REG_BR_PROB_BASE) that I-th parameter of STMT
2201 will change since last invocation of STMT.
2203 Value 0 is reserved for compile time invariants.
2204 For common parameters it is REG_BR_PROB_BASE. For loop invariants it
2205 ought to be REG_BR_PROB_BASE / estimated_iters. */
2207 static int
2208 param_change_prob (ipa_func_body_info *fbi, gimple *stmt, int i)
2210 tree op = gimple_call_arg (stmt, i);
2211 basic_block bb = gimple_bb (stmt);
2213 if (TREE_CODE (op) == WITH_SIZE_EXPR)
2214 op = TREE_OPERAND (op, 0);
2216 tree base = get_base_address (op);
2218 /* Global invariants never change. */
2219 if (is_gimple_min_invariant (base))
2220 return 0;
2222 /* We would have to do non-trivial analysis to really work out what
2223 is the probability of value to change (i.e. when init statement
2224 is in a sibling loop of the call).
2226 We do an conservative estimate: when call is executed N times more often
2227 than the statement defining value, we take the frequency 1/N. */
2228 if (TREE_CODE (base) == SSA_NAME)
2230 profile_count init_count;
2232 if (!bb->count.nonzero_p ())
2233 return REG_BR_PROB_BASE;
2235 if (SSA_NAME_IS_DEFAULT_DEF (base))
2236 init_count = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
2237 else
2238 init_count = get_minimal_bb
2239 (gimple_bb (SSA_NAME_DEF_STMT (base)),
2240 gimple_bb (stmt))->count;
2242 if (init_count < bb->count)
2243 return MAX ((init_count.to_sreal_scale (bb->count)
2244 * REG_BR_PROB_BASE).to_int (), 1);
2245 return REG_BR_PROB_BASE;
2247 else
2249 ao_ref refd;
2250 profile_count max = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
2251 struct record_modified_bb_info info;
2252 tree init = ctor_for_folding (base);
2254 if (init != error_mark_node)
2255 return 0;
2256 if (!bb->count.nonzero_p () || fbi->aa_walk_budget == 0)
2257 return REG_BR_PROB_BASE;
2258 if (dump_file)
2260 fprintf (dump_file, " Analyzing param change probability of ");
2261 print_generic_expr (dump_file, op, TDF_SLIM);
2262 fprintf (dump_file, "\n");
2264 ao_ref_init (&refd, op);
2265 info.op = op;
2266 info.stmt = stmt;
2267 info.bb_set = BITMAP_ALLOC (NULL);
2268 int walked
2269 = walk_aliased_vdefs (&refd, gimple_vuse (stmt), record_modified, &info,
2270 NULL, NULL, fbi->aa_walk_budget);
2271 if (walked > 0)
2272 fbi->aa_walk_budget -= walked;
2273 if (walked < 0 || bitmap_bit_p (info.bb_set, bb->index))
2275 if (walked < 0)
2276 fbi->aa_walk_budget = 0;
2277 if (dump_file)
2279 if (walked < 0)
2280 fprintf (dump_file, " Ran out of AA walking budget.\n");
2281 else
2282 fprintf (dump_file, " Set in same BB as used.\n");
2284 BITMAP_FREE (info.bb_set);
2285 return REG_BR_PROB_BASE;
2288 bitmap_iterator bi;
2289 unsigned index;
2290 /* Lookup the most frequent update of the value and believe that
2291 it dominates all the other; precise analysis here is difficult. */
2292 EXECUTE_IF_SET_IN_BITMAP (info.bb_set, 0, index, bi)
2293 max = max.max (BASIC_BLOCK_FOR_FN (cfun, index)->count);
2294 if (dump_file)
2296 fprintf (dump_file, " Set with count ");
2297 max.dump (dump_file);
2298 fprintf (dump_file, " and used with count ");
2299 bb->count.dump (dump_file);
2300 fprintf (dump_file, " freq %f\n",
2301 max.to_sreal_scale (bb->count).to_double ());
2304 BITMAP_FREE (info.bb_set);
2305 if (max < bb->count)
2306 return MAX ((max.to_sreal_scale (bb->count)
2307 * REG_BR_PROB_BASE).to_int (), 1);
2308 return REG_BR_PROB_BASE;
2312 /* Find whether a basic block BB is the final block of a (half) diamond CFG
2313 sub-graph and if the predicate the condition depends on is known. If so,
2314 return true and store the pointer the predicate in *P. */
2316 static bool
2317 phi_result_unknown_predicate (ipa_func_body_info *fbi,
2318 ipa_fn_summary *summary,
2319 class ipa_node_params *params_summary,
2320 basic_block bb,
2321 ipa_predicate *p,
2322 vec<ipa_predicate> nonconstant_names)
2324 edge e;
2325 edge_iterator ei;
2326 basic_block first_bb = NULL;
2327 gimple *stmt;
2329 if (single_pred_p (bb))
2331 *p = false;
2332 return true;
2335 FOR_EACH_EDGE (e, ei, bb->preds)
2337 if (single_succ_p (e->src))
2339 if (!single_pred_p (e->src))
2340 return false;
2341 if (!first_bb)
2342 first_bb = single_pred (e->src);
2343 else if (single_pred (e->src) != first_bb)
2344 return false;
2346 else
2348 if (!first_bb)
2349 first_bb = e->src;
2350 else if (e->src != first_bb)
2351 return false;
2355 if (!first_bb)
2356 return false;
2358 stmt = last_stmt (first_bb);
2359 if (!stmt
2360 || gimple_code (stmt) != GIMPLE_COND
2361 || !is_gimple_ip_invariant (gimple_cond_rhs (stmt)))
2362 return false;
2364 *p = will_be_nonconstant_expr_predicate (fbi, summary, params_summary,
2365 gimple_cond_lhs (stmt),
2366 nonconstant_names);
2367 if (*p == true)
2368 return false;
2369 else
2370 return true;
2373 /* Given a PHI statement in a function described by inline properties SUMMARY
2374 and *P being the predicate describing whether the selected PHI argument is
2375 known, store a predicate for the result of the PHI statement into
2376 NONCONSTANT_NAMES, if possible. */
2378 static void
2379 predicate_for_phi_result (class ipa_fn_summary *summary, gphi *phi,
2380 ipa_predicate *p,
2381 vec<ipa_predicate> nonconstant_names)
2383 unsigned i;
2385 for (i = 0; i < gimple_phi_num_args (phi); i++)
2387 tree arg = gimple_phi_arg (phi, i)->def;
2388 if (!is_gimple_min_invariant (arg))
2390 gcc_assert (TREE_CODE (arg) == SSA_NAME);
2391 *p = p->or_with (summary->conds,
2392 nonconstant_names[SSA_NAME_VERSION (arg)]);
2393 if (*p == true)
2394 return;
2398 if (dump_file && (dump_flags & TDF_DETAILS))
2400 fprintf (dump_file, "\t\tphi predicate: ");
2401 p->dump (dump_file, summary->conds);
2403 nonconstant_names[SSA_NAME_VERSION (gimple_phi_result (phi))] = *p;
2406 /* For a typical usage of __builtin_expect (a<b, 1), we
2407 may introduce an extra relation stmt:
2408 With the builtin, we have
2409 t1 = a <= b;
2410 t2 = (long int) t1;
2411 t3 = __builtin_expect (t2, 1);
2412 if (t3 != 0)
2413 goto ...
2414 Without the builtin, we have
2415 if (a<=b)
2416 goto...
2417 This affects the size/time estimation and may have
2418 an impact on the earlier inlining.
2419 Here find this pattern and fix it up later. */
2421 static gimple *
2422 find_foldable_builtin_expect (basic_block bb)
2424 gimple_stmt_iterator bsi;
2426 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2428 gimple *stmt = gsi_stmt (bsi);
2429 if (gimple_call_builtin_p (stmt, BUILT_IN_EXPECT)
2430 || gimple_call_builtin_p (stmt, BUILT_IN_EXPECT_WITH_PROBABILITY)
2431 || gimple_call_internal_p (stmt, IFN_BUILTIN_EXPECT))
2433 tree var = gimple_call_lhs (stmt);
2434 tree arg = gimple_call_arg (stmt, 0);
2435 use_operand_p use_p;
2436 gimple *use_stmt;
2437 bool match = false;
2438 bool done = false;
2440 if (!var || !arg)
2441 continue;
2442 gcc_assert (TREE_CODE (var) == SSA_NAME);
2444 while (TREE_CODE (arg) == SSA_NAME)
2446 gimple *stmt_tmp = SSA_NAME_DEF_STMT (arg);
2447 if (!is_gimple_assign (stmt_tmp))
2448 break;
2449 switch (gimple_assign_rhs_code (stmt_tmp))
2451 case LT_EXPR:
2452 case LE_EXPR:
2453 case GT_EXPR:
2454 case GE_EXPR:
2455 case EQ_EXPR:
2456 case NE_EXPR:
2457 match = true;
2458 done = true;
2459 break;
2460 CASE_CONVERT:
2461 break;
2462 default:
2463 done = true;
2464 break;
2466 if (done)
2467 break;
2468 arg = gimple_assign_rhs1 (stmt_tmp);
2471 if (match && single_imm_use (var, &use_p, &use_stmt)
2472 && gimple_code (use_stmt) == GIMPLE_COND)
2473 return use_stmt;
2476 return NULL;
2479 /* Return true when the basic blocks contains only clobbers followed by RESX.
2480 Such BBs are kept around to make removal of dead stores possible with
2481 presence of EH and will be optimized out by optimize_clobbers later in the
2482 game.
2484 NEED_EH is used to recurse in case the clobber has non-EH predecessors
2485 that can be clobber only, too.. When it is false, the RESX is not necessary
2486 on the end of basic block. */
2488 static bool
2489 clobber_only_eh_bb_p (basic_block bb, bool need_eh = true)
2491 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2492 edge_iterator ei;
2493 edge e;
2495 if (need_eh)
2497 if (gsi_end_p (gsi))
2498 return false;
2499 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_RESX)
2500 return false;
2501 gsi_prev (&gsi);
2503 else if (!single_succ_p (bb))
2504 return false;
2506 for (; !gsi_end_p (gsi); gsi_prev (&gsi))
2508 gimple *stmt = gsi_stmt (gsi);
2509 if (is_gimple_debug (stmt))
2510 continue;
2511 if (gimple_clobber_p (stmt))
2512 continue;
2513 if (gimple_code (stmt) == GIMPLE_LABEL)
2514 break;
2515 return false;
2518 /* See if all predecessors are either throws or clobber only BBs. */
2519 FOR_EACH_EDGE (e, ei, bb->preds)
2520 if (!(e->flags & EDGE_EH)
2521 && !clobber_only_eh_bb_p (e->src, false))
2522 return false;
2524 return true;
2527 /* Return true if STMT compute a floating point expression that may be affected
2528 by -ffast-math and similar flags. */
2530 static bool
2531 fp_expression_p (gimple *stmt)
2533 ssa_op_iter i;
2534 tree op;
2536 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF|SSA_OP_USE)
2537 if (FLOAT_TYPE_P (TREE_TYPE (op)))
2538 return true;
2539 return false;
2542 /* Return true if T references memory location that is local
2543 for the function (that means, dead after return) or read-only. */
2545 bool
2546 refs_local_or_readonly_memory_p (tree t)
2548 /* Non-escaping memory is fine. */
2549 t = get_base_address (t);
2550 if ((TREE_CODE (t) == MEM_REF
2551 || TREE_CODE (t) == TARGET_MEM_REF))
2552 return points_to_local_or_readonly_memory_p (TREE_OPERAND (t, 0));
2554 /* Automatic variables are fine. */
2555 if (DECL_P (t)
2556 && auto_var_in_fn_p (t, current_function_decl))
2557 return true;
2559 /* Read-only variables are fine. */
2560 if (DECL_P (t) && TREE_READONLY (t))
2561 return true;
2563 return false;
2566 /* Return true if T is a pointer pointing to memory location that is local
2567 for the function (that means, dead after return) or read-only. */
2569 bool
2570 points_to_local_or_readonly_memory_p (tree t)
2572 /* See if memory location is clearly invalid. */
2573 if (integer_zerop (t))
2574 return flag_delete_null_pointer_checks;
2575 if (TREE_CODE (t) == SSA_NAME)
2577 /* For IPA passes we can consinder accesses to return slot local
2578 even if it is not local in the sense that memory is dead by
2579 the end of founction.
2580 The outer function will see a store in the call assignment
2581 and thus this will do right thing for all uses of this
2582 function in the current IPA passes (modref, pure/const discovery
2583 and inlining heuristics). */
2584 if (DECL_RESULT (current_function_decl)
2585 && DECL_BY_REFERENCE (DECL_RESULT (current_function_decl))
2586 && t == ssa_default_def (cfun, DECL_RESULT (current_function_decl)))
2587 return true;
2588 return !ptr_deref_may_alias_global_p (t);
2590 if (TREE_CODE (t) == ADDR_EXPR)
2591 return refs_local_or_readonly_memory_p (TREE_OPERAND (t, 0));
2592 return false;
2596 /* Analyze function body for NODE.
2597 EARLY indicates run from early optimization pipeline. */
2599 static void
2600 analyze_function_body (struct cgraph_node *node, bool early)
2602 sreal time = opt_for_fn (node->decl, param_uninlined_function_time);
2603 /* Estimate static overhead for function prologue/epilogue and alignment. */
2604 int size = opt_for_fn (node->decl, param_uninlined_function_insns);
2605 /* Benefits are scaled by probability of elimination that is in range
2606 <0,2>. */
2607 basic_block bb;
2608 struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
2609 sreal freq;
2610 class ipa_fn_summary *info = ipa_fn_summaries->get_create (node);
2611 ipa_node_params *params_summary
2612 = early ? NULL : ipa_node_params_sum->get (node);
2613 ipa_predicate bb_predicate;
2614 struct ipa_func_body_info fbi;
2615 vec<ipa_predicate> nonconstant_names = vNULL;
2616 int nblocks, n;
2617 int *order;
2618 gimple *fix_builtin_expect_stmt;
2620 gcc_assert (my_function && my_function->cfg);
2621 gcc_assert (cfun == my_function);
2623 memset(&fbi, 0, sizeof(fbi));
2624 vec_free (info->conds);
2625 info->conds = NULL;
2626 info->size_time_table.release ();
2627 info->call_size_time_table.release ();
2629 /* When optimizing and analyzing for IPA inliner, initialize loop optimizer
2630 so we can produce proper inline hints.
2632 When optimizing and analyzing for early inliner, initialize node params
2633 so we can produce correct BB predicates. */
2635 if (opt_for_fn (node->decl, optimize))
2637 calculate_dominance_info (CDI_DOMINATORS);
2638 calculate_dominance_info (CDI_POST_DOMINATORS);
2639 if (!early)
2640 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
2641 else
2643 ipa_check_create_node_params ();
2644 ipa_initialize_node_params (node);
2647 if (ipa_node_params_sum)
2649 fbi.node = node;
2650 fbi.info = ipa_node_params_sum->get (node);
2651 fbi.bb_infos = vNULL;
2652 fbi.bb_infos.safe_grow_cleared (last_basic_block_for_fn (cfun), true);
2653 fbi.param_count = count_formal_params (node->decl);
2654 fbi.aa_walk_budget = opt_for_fn (node->decl, param_ipa_max_aa_steps);
2656 nonconstant_names.safe_grow_cleared
2657 (SSANAMES (my_function)->length (), true);
2661 if (dump_file)
2662 fprintf (dump_file, "\nAnalyzing function body size: %s\n",
2663 node->dump_name ());
2665 /* When we run into maximal number of entries, we assign everything to the
2666 constant truth case. Be sure to have it in list. */
2667 bb_predicate = true;
2668 info->account_size_time (0, 0, bb_predicate, bb_predicate);
2670 bb_predicate = ipa_predicate::not_inlined ();
2671 info->account_size_time (opt_for_fn (node->decl,
2672 param_uninlined_function_insns)
2673 * ipa_fn_summary::size_scale,
2674 opt_for_fn (node->decl,
2675 param_uninlined_function_time),
2676 bb_predicate,
2677 bb_predicate);
2679 if (fbi.info)
2680 compute_bb_predicates (&fbi, node, info, params_summary);
2681 const profile_count entry_count = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
2682 order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
2683 nblocks = pre_and_rev_post_order_compute (NULL, order, false);
2684 for (n = 0; n < nblocks; n++)
2686 bb = BASIC_BLOCK_FOR_FN (cfun, order[n]);
2687 freq = bb->count.to_sreal_scale (entry_count);
2688 if (clobber_only_eh_bb_p (bb))
2690 if (dump_file && (dump_flags & TDF_DETAILS))
2691 fprintf (dump_file, "\n Ignoring BB %i;"
2692 " it will be optimized away by cleanup_clobbers\n",
2693 bb->index);
2694 continue;
2697 /* TODO: Obviously predicates can be propagated down across CFG. */
2698 if (fbi.info)
2700 if (bb->aux)
2701 bb_predicate = *(ipa_predicate *)bb->aux;
2702 else
2703 bb_predicate = false;
2705 else
2706 bb_predicate = true;
2708 if (dump_file && (dump_flags & TDF_DETAILS))
2710 fprintf (dump_file, "\n BB %i predicate:", bb->index);
2711 bb_predicate.dump (dump_file, info->conds);
2714 if (fbi.info && nonconstant_names.exists ())
2716 ipa_predicate phi_predicate;
2717 bool first_phi = true;
2719 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
2720 gsi_next (&bsi))
2722 if (first_phi
2723 && !phi_result_unknown_predicate (&fbi, info,
2724 params_summary,
2726 &phi_predicate,
2727 nonconstant_names))
2728 break;
2729 first_phi = false;
2730 if (dump_file && (dump_flags & TDF_DETAILS))
2732 fprintf (dump_file, " ");
2733 print_gimple_stmt (dump_file, gsi_stmt (bsi), 0);
2735 predicate_for_phi_result (info, bsi.phi (), &phi_predicate,
2736 nonconstant_names);
2740 fix_builtin_expect_stmt = find_foldable_builtin_expect (bb);
2742 for (gimple_stmt_iterator bsi = gsi_start_nondebug_bb (bb);
2743 !gsi_end_p (bsi); gsi_next_nondebug (&bsi))
2745 gimple *stmt = gsi_stmt (bsi);
2746 int this_size = estimate_num_insns (stmt, &eni_size_weights);
2747 int this_time = estimate_num_insns (stmt, &eni_time_weights);
2748 int prob;
2749 ipa_predicate will_be_nonconstant;
2751 /* This relation stmt should be folded after we remove
2752 __builtin_expect call. Adjust the cost here. */
2753 if (stmt == fix_builtin_expect_stmt)
2755 this_size--;
2756 this_time--;
2759 if (dump_file && (dump_flags & TDF_DETAILS))
2761 fprintf (dump_file, " ");
2762 print_gimple_stmt (dump_file, stmt, 0);
2763 fprintf (dump_file, "\t\tfreq:%3.2f size:%3i time:%3i\n",
2764 freq.to_double (), this_size,
2765 this_time);
2768 if (is_gimple_call (stmt)
2769 && !gimple_call_internal_p (stmt))
2771 struct cgraph_edge *edge = node->get_edge (stmt);
2772 ipa_call_summary *es = ipa_call_summaries->get_create (edge);
2774 /* Special case: results of BUILT_IN_CONSTANT_P will be always
2775 resolved as constant. We however don't want to optimize
2776 out the cgraph edges. */
2777 if (nonconstant_names.exists ()
2778 && gimple_call_builtin_p (stmt, BUILT_IN_CONSTANT_P)
2779 && gimple_call_lhs (stmt)
2780 && TREE_CODE (gimple_call_lhs (stmt)) == SSA_NAME)
2782 ipa_predicate false_p = false;
2783 nonconstant_names[SSA_NAME_VERSION (gimple_call_lhs (stmt))]
2784 = false_p;
2786 if (ipa_node_params_sum)
2788 int count = gimple_call_num_args (stmt);
2789 int i;
2791 if (count)
2792 es->param.safe_grow_cleared (count, true);
2793 for (i = 0; i < count; i++)
2795 int prob = param_change_prob (&fbi, stmt, i);
2796 gcc_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
2797 es->param[i].change_prob = prob;
2798 es->param[i].points_to_local_or_readonly_memory
2799 = points_to_local_or_readonly_memory_p
2800 (gimple_call_arg (stmt, i));
2803 /* We cannot setup VLA parameters during inlining. */
2804 for (unsigned int i = 0; i < gimple_call_num_args (stmt); ++i)
2805 if (TREE_CODE (gimple_call_arg (stmt, i)) == WITH_SIZE_EXPR)
2807 edge->inline_failed = CIF_FUNCTION_NOT_INLINABLE;
2808 break;
2810 es->call_stmt_size = this_size;
2811 es->call_stmt_time = this_time;
2812 es->loop_depth = bb_loop_depth (bb);
2813 edge_set_predicate (edge, &bb_predicate);
2814 if (edge->speculative)
2816 cgraph_edge *indirect
2817 = edge->speculative_call_indirect_edge ();
2818 ipa_call_summary *es2
2819 = ipa_call_summaries->get_create (indirect);
2820 ipa_call_summaries->duplicate (edge, indirect,
2821 es, es2);
2823 /* Edge is the first direct call.
2824 create and duplicate call summaries for multiple
2825 speculative call targets. */
2826 for (cgraph_edge *direct
2827 = edge->next_speculative_call_target ();
2828 direct;
2829 direct = direct->next_speculative_call_target ())
2831 ipa_call_summary *es3
2832 = ipa_call_summaries->get_create (direct);
2833 ipa_call_summaries->duplicate (edge, direct,
2834 es, es3);
2839 /* TODO: When conditional jump or switch is known to be constant, but
2840 we did not translate it into the predicates, we really can account
2841 just maximum of the possible paths. */
2842 if (fbi.info)
2843 will_be_nonconstant
2844 = will_be_nonconstant_predicate (&fbi, info, params_summary,
2845 stmt, nonconstant_names);
2846 else
2847 will_be_nonconstant = true;
2848 if (this_time || this_size)
2850 sreal final_time = (sreal)this_time * freq;
2852 prob = eliminated_by_inlining_prob (&fbi, stmt);
2853 if (prob == 1 && dump_file && (dump_flags & TDF_DETAILS))
2854 fprintf (dump_file,
2855 "\t\t50%% will be eliminated by inlining\n");
2856 if (prob == 2 && dump_file && (dump_flags & TDF_DETAILS))
2857 fprintf (dump_file, "\t\tWill be eliminated by inlining\n");
2859 ipa_predicate p = bb_predicate & will_be_nonconstant;
2861 /* We can ignore statement when we proved it is never going
2862 to happen, but we cannot do that for call statements
2863 because edges are accounted specially. */
2865 if (*(is_gimple_call (stmt) ? &bb_predicate : &p) != false)
2867 time += final_time;
2868 size += this_size;
2871 /* We account everything but the calls. Calls have their own
2872 size/time info attached to cgraph edges. This is necessary
2873 in order to make the cost disappear after inlining. */
2874 if (!is_gimple_call (stmt))
2876 if (prob)
2878 ipa_predicate ip
2879 = bb_predicate & ipa_predicate::not_inlined ();
2880 info->account_size_time (this_size * prob,
2881 (final_time * prob) / 2, ip,
2884 if (prob != 2)
2885 info->account_size_time (this_size * (2 - prob),
2886 (final_time * (2 - prob) / 2),
2887 bb_predicate,
2891 if (!info->fp_expressions && fp_expression_p (stmt))
2893 info->fp_expressions = true;
2894 if (dump_file)
2895 fprintf (dump_file, " fp_expression set\n");
2899 /* Account cost of address calculations in the statements. */
2900 for (unsigned int i = 0; i < gimple_num_ops (stmt); i++)
2902 for (tree op = gimple_op (stmt, i);
2903 op && handled_component_p (op);
2904 op = TREE_OPERAND (op, 0))
2905 if ((TREE_CODE (op) == ARRAY_REF
2906 || TREE_CODE (op) == ARRAY_RANGE_REF)
2907 && TREE_CODE (TREE_OPERAND (op, 1)) == SSA_NAME)
2909 ipa_predicate p = bb_predicate;
2910 if (fbi.info)
2911 p = p & will_be_nonconstant_expr_predicate
2912 (&fbi, info, params_summary,
2913 TREE_OPERAND (op, 1),
2914 nonconstant_names);
2915 if (p != false)
2917 time += freq;
2918 size += 1;
2919 if (dump_file)
2920 fprintf (dump_file,
2921 "\t\tAccounting address calculation.\n");
2922 info->account_size_time (ipa_fn_summary::size_scale,
2923 freq,
2924 bb_predicate,
2932 free (order);
2934 if (nonconstant_names.exists () && !early)
2936 ipa_fn_summary *s = ipa_fn_summaries->get (node);
2937 class loop *loop;
2938 unsigned max_loop_predicates = opt_for_fn (node->decl,
2939 param_ipa_max_loop_predicates);
2941 if (dump_file && (dump_flags & TDF_DETAILS))
2942 flow_loops_dump (dump_file, NULL, 0);
2943 scev_initialize ();
2944 for (auto loop : loops_list (cfun, 0))
2946 ipa_predicate loop_iterations = true;
2947 sreal header_freq;
2948 edge ex;
2949 unsigned int j;
2950 class tree_niter_desc niter_desc;
2951 if (!loop->header->aux)
2952 continue;
2954 profile_count phdr_count = loop_preheader_edge (loop)->count ();
2955 sreal phdr_freq = phdr_count.to_sreal_scale (entry_count);
2957 bb_predicate = *(ipa_predicate *)loop->header->aux;
2958 auto_vec<edge> exits = get_loop_exit_edges (loop);
2959 FOR_EACH_VEC_ELT (exits, j, ex)
2960 if (number_of_iterations_exit (loop, ex, &niter_desc, false)
2961 && !is_gimple_min_invariant (niter_desc.niter))
2963 ipa_predicate will_be_nonconstant
2964 = will_be_nonconstant_expr_predicate (&fbi, info,
2965 params_summary,
2966 niter_desc.niter,
2967 nonconstant_names);
2968 if (will_be_nonconstant != true)
2969 will_be_nonconstant = bb_predicate & will_be_nonconstant;
2970 if (will_be_nonconstant != true
2971 && will_be_nonconstant != false)
2972 loop_iterations &= will_be_nonconstant;
2974 add_freqcounting_predicate (&s->loop_iterations, loop_iterations,
2975 phdr_freq, max_loop_predicates);
2978 /* To avoid quadratic behavior we analyze stride predicates only
2979 with respect to the containing loop. Thus we simply iterate
2980 over all defs in the outermost loop body. */
2981 for (loop = loops_for_fn (cfun)->tree_root->inner;
2982 loop != NULL; loop = loop->next)
2984 ipa_predicate loop_stride = true;
2985 basic_block *body = get_loop_body (loop);
2986 profile_count phdr_count = loop_preheader_edge (loop)->count ();
2987 sreal phdr_freq = phdr_count.to_sreal_scale (entry_count);
2988 for (unsigned i = 0; i < loop->num_nodes; i++)
2990 gimple_stmt_iterator gsi;
2991 if (!body[i]->aux)
2992 continue;
2994 bb_predicate = *(ipa_predicate *)body[i]->aux;
2995 for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi);
2996 gsi_next (&gsi))
2998 gimple *stmt = gsi_stmt (gsi);
3000 if (!is_gimple_assign (stmt))
3001 continue;
3003 tree def = gimple_assign_lhs (stmt);
3004 if (TREE_CODE (def) != SSA_NAME)
3005 continue;
3007 affine_iv iv;
3008 if (!simple_iv (loop_containing_stmt (stmt),
3009 loop_containing_stmt (stmt),
3010 def, &iv, true)
3011 || is_gimple_min_invariant (iv.step))
3012 continue;
3014 ipa_predicate will_be_nonconstant
3015 = will_be_nonconstant_expr_predicate (&fbi, info,
3016 params_summary,
3017 iv.step,
3018 nonconstant_names);
3019 if (will_be_nonconstant != true)
3020 will_be_nonconstant = bb_predicate & will_be_nonconstant;
3021 if (will_be_nonconstant != true
3022 && will_be_nonconstant != false)
3023 loop_stride = loop_stride & will_be_nonconstant;
3026 add_freqcounting_predicate (&s->loop_strides, loop_stride,
3027 phdr_freq, max_loop_predicates);
3028 free (body);
3030 scev_finalize ();
3032 FOR_ALL_BB_FN (bb, my_function)
3034 edge e;
3035 edge_iterator ei;
3037 if (bb->aux)
3038 edge_predicate_pool.remove ((ipa_predicate *)bb->aux);
3039 bb->aux = NULL;
3040 FOR_EACH_EDGE (e, ei, bb->succs)
3042 if (e->aux)
3043 edge_predicate_pool.remove ((ipa_predicate *)e->aux);
3044 e->aux = NULL;
3047 ipa_fn_summary *s = ipa_fn_summaries->get (node);
3048 ipa_size_summary *ss = ipa_size_summaries->get (node);
3049 s->time = time;
3050 ss->self_size = size;
3051 nonconstant_names.release ();
3052 ipa_release_body_info (&fbi);
3053 if (opt_for_fn (node->decl, optimize))
3055 if (!early)
3056 loop_optimizer_finalize ();
3057 else if (!ipa_edge_args_sum)
3058 ipa_free_all_node_params ();
3059 free_dominance_info (CDI_DOMINATORS);
3060 free_dominance_info (CDI_POST_DOMINATORS);
3062 if (dump_file)
3064 fprintf (dump_file, "\n");
3065 ipa_dump_fn_summary (dump_file, node);
3070 /* Compute function summary.
3071 EARLY is true when we compute parameters during early opts. */
3073 void
3074 compute_fn_summary (struct cgraph_node *node, bool early)
3076 HOST_WIDE_INT self_stack_size;
3077 struct cgraph_edge *e;
3079 gcc_assert (!node->inlined_to);
3081 if (!ipa_fn_summaries)
3082 ipa_fn_summary_alloc ();
3084 /* Create a new ipa_fn_summary. */
3085 ((ipa_fn_summary_t *)ipa_fn_summaries)->remove_callees (node);
3086 ipa_fn_summaries->remove (node);
3087 class ipa_fn_summary *info = ipa_fn_summaries->get_create (node);
3088 class ipa_size_summary *size_info = ipa_size_summaries->get_create (node);
3090 /* Estimate the stack size for the function if we're optimizing. */
3091 self_stack_size = optimize && !node->thunk
3092 ? estimated_stack_frame_size (node) : 0;
3093 size_info->estimated_self_stack_size = self_stack_size;
3094 info->estimated_stack_size = self_stack_size;
3096 if (node->thunk)
3098 ipa_call_summary *es = ipa_call_summaries->get_create (node->callees);
3099 ipa_predicate t = true;
3101 node->can_change_signature = false;
3102 es->call_stmt_size = eni_size_weights.call_cost;
3103 es->call_stmt_time = eni_time_weights.call_cost;
3104 info->account_size_time (ipa_fn_summary::size_scale
3105 * opt_for_fn (node->decl,
3106 param_uninlined_function_thunk_insns),
3107 opt_for_fn (node->decl,
3108 param_uninlined_function_thunk_time), t, t);
3109 t = ipa_predicate::not_inlined ();
3110 info->account_size_time (2 * ipa_fn_summary::size_scale, 0, t, t);
3111 ipa_update_overall_fn_summary (node);
3112 size_info->self_size = size_info->size;
3113 if (stdarg_p (TREE_TYPE (node->decl)))
3115 info->inlinable = false;
3116 node->callees->inline_failed = CIF_VARIADIC_THUNK;
3118 else
3119 info->inlinable = true;
3121 else
3123 /* Even is_gimple_min_invariant rely on current_function_decl. */
3124 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
3126 /* During IPA profile merging we may be called w/o virtual SSA form
3127 built. */
3128 update_ssa (TODO_update_ssa_only_virtuals);
3130 /* Can this function be inlined at all? */
3131 if (!opt_for_fn (node->decl, optimize)
3132 && !lookup_attribute ("always_inline",
3133 DECL_ATTRIBUTES (node->decl)))
3134 info->inlinable = false;
3135 else
3136 info->inlinable = tree_inlinable_function_p (node->decl);
3138 /* Type attributes can use parameter indices to describe them. */
3139 if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl))
3140 /* Likewise for #pragma omp declare simd functions or functions
3141 with simd attribute. */
3142 || lookup_attribute ("omp declare simd",
3143 DECL_ATTRIBUTES (node->decl)))
3144 node->can_change_signature = false;
3145 else
3147 /* Otherwise, inlinable functions always can change signature. */
3148 if (info->inlinable)
3149 node->can_change_signature = true;
3150 else
3152 /* Functions calling builtin_apply cannot change signature. */
3153 for (e = node->callees; e; e = e->next_callee)
3155 tree cdecl = e->callee->decl;
3156 if (fndecl_built_in_p (cdecl, BUILT_IN_APPLY_ARGS)
3157 || fndecl_built_in_p (cdecl, BUILT_IN_VA_START))
3158 break;
3160 node->can_change_signature = !e;
3163 analyze_function_body (node, early);
3164 pop_cfun ();
3167 /* Inlining characteristics are maintained by the cgraph_mark_inline. */
3168 size_info->size = size_info->self_size;
3169 info->estimated_stack_size = size_info->estimated_self_stack_size;
3171 /* Code above should compute exactly the same result as
3172 ipa_update_overall_fn_summary except for case when speculative
3173 edges are present since these are accounted to size but not
3174 self_size. Do not compare time since different order the roundoff
3175 errors result in slight changes. */
3176 ipa_update_overall_fn_summary (node);
3177 if (flag_checking)
3179 for (e = node->indirect_calls; e; e = e->next_callee)
3180 if (e->speculative)
3181 break;
3182 gcc_assert (e || size_info->size == size_info->self_size);
3187 /* Compute parameters of functions used by inliner using
3188 current_function_decl. */
3190 static unsigned int
3191 compute_fn_summary_for_current (void)
3193 compute_fn_summary (cgraph_node::get (current_function_decl), true);
3194 return 0;
3197 /* Estimate benefit devirtualizing indirect edge IE and return true if it can
3198 be devirtualized and inlined, provided m_known_vals, m_known_contexts and
3199 m_known_aggs in AVALS. Return false straight away if AVALS is NULL. */
3201 static bool
3202 estimate_edge_devirt_benefit (struct cgraph_edge *ie,
3203 int *size, int *time,
3204 ipa_call_arg_values *avals)
3206 tree target;
3207 struct cgraph_node *callee;
3208 class ipa_fn_summary *isummary;
3209 enum availability avail;
3210 bool speculative;
3212 if (!avals
3213 || (!avals->m_known_vals.length() && !avals->m_known_contexts.length ()))
3214 return false;
3215 if (!opt_for_fn (ie->caller->decl, flag_indirect_inlining))
3216 return false;
3218 target = ipa_get_indirect_edge_target (ie, avals, &speculative);
3219 if (!target || speculative)
3220 return false;
3222 /* Account for difference in cost between indirect and direct calls. */
3223 *size -= (eni_size_weights.indirect_call_cost - eni_size_weights.call_cost);
3224 *time -= (eni_time_weights.indirect_call_cost - eni_time_weights.call_cost);
3225 gcc_checking_assert (*time >= 0);
3226 gcc_checking_assert (*size >= 0);
3228 callee = cgraph_node::get (target);
3229 if (!callee || !callee->definition)
3230 return false;
3231 callee = callee->function_symbol (&avail);
3232 if (avail < AVAIL_AVAILABLE)
3233 return false;
3234 isummary = ipa_fn_summaries->get (callee);
3235 if (isummary == NULL)
3236 return false;
3238 return isummary->inlinable;
3241 /* Increase SIZE, MIN_SIZE (if non-NULL) and TIME for size and time needed to
3242 handle edge E with probability PROB. Set HINTS accordingly if edge may be
3243 devirtualized. AVALS, if non-NULL, describes the context of the call site
3244 as far as values of parameters are concerened. */
3246 static inline void
3247 estimate_edge_size_and_time (struct cgraph_edge *e, int *size, int *min_size,
3248 sreal *time, ipa_call_arg_values *avals,
3249 ipa_hints *hints)
3251 class ipa_call_summary *es = ipa_call_summaries->get (e);
3252 int call_size = es->call_stmt_size;
3253 int call_time = es->call_stmt_time;
3254 int cur_size;
3256 if (!e->callee && hints && e->maybe_hot_p ()
3257 && estimate_edge_devirt_benefit (e, &call_size, &call_time, avals))
3258 *hints |= INLINE_HINT_indirect_call;
3259 cur_size = call_size * ipa_fn_summary::size_scale;
3260 *size += cur_size;
3261 if (min_size)
3262 *min_size += cur_size;
3263 if (time)
3264 *time += ((sreal)call_time) * e->sreal_frequency ();
3268 /* Increase SIZE, MIN_SIZE and TIME for size and time needed to handle all
3269 calls in NODE. POSSIBLE_TRUTHS and AVALS describe the context of the call
3270 site.
3272 Helper for estimate_calls_size_and_time which does the same but
3273 (in most cases) faster. */
3275 static void
3276 estimate_calls_size_and_time_1 (struct cgraph_node *node, int *size,
3277 int *min_size, sreal *time,
3278 ipa_hints *hints,
3279 clause_t possible_truths,
3280 ipa_call_arg_values *avals)
3282 struct cgraph_edge *e;
3283 for (e = node->callees; e; e = e->next_callee)
3285 if (!e->inline_failed)
3287 gcc_checking_assert (!ipa_call_summaries->get (e));
3288 estimate_calls_size_and_time_1 (e->callee, size, min_size, time,
3289 hints, possible_truths, avals);
3291 continue;
3293 class ipa_call_summary *es = ipa_call_summaries->get (e);
3295 /* Do not care about zero sized builtins. */
3296 if (!es->call_stmt_size)
3298 gcc_checking_assert (!es->call_stmt_time);
3299 continue;
3301 if (!es->predicate
3302 || es->predicate->evaluate (possible_truths))
3304 /* Predicates of calls shall not use NOT_CHANGED codes,
3305 so we do not need to compute probabilities. */
3306 estimate_edge_size_and_time (e, size,
3307 es->predicate ? NULL : min_size,
3308 time, avals, hints);
3311 for (e = node->indirect_calls; e; e = e->next_callee)
3313 class ipa_call_summary *es = ipa_call_summaries->get (e);
3314 if (!es->predicate
3315 || es->predicate->evaluate (possible_truths))
3316 estimate_edge_size_and_time (e, size,
3317 es->predicate ? NULL : min_size,
3318 time, avals, hints);
3322 /* Populate sum->call_size_time_table for edges from NODE. */
3324 static void
3325 summarize_calls_size_and_time (struct cgraph_node *node,
3326 ipa_fn_summary *sum)
3328 struct cgraph_edge *e;
3329 for (e = node->callees; e; e = e->next_callee)
3331 if (!e->inline_failed)
3333 gcc_checking_assert (!ipa_call_summaries->get (e));
3334 summarize_calls_size_and_time (e->callee, sum);
3335 continue;
3337 int size = 0;
3338 sreal time = 0;
3340 estimate_edge_size_and_time (e, &size, NULL, &time, NULL, NULL);
3342 ipa_predicate pred = true;
3343 class ipa_call_summary *es = ipa_call_summaries->get (e);
3345 if (es->predicate)
3346 pred = *es->predicate;
3347 sum->account_size_time (size, time, pred, pred, true);
3349 for (e = node->indirect_calls; e; e = e->next_callee)
3351 int size = 0;
3352 sreal time = 0;
3354 estimate_edge_size_and_time (e, &size, NULL, &time, NULL, NULL);
3355 ipa_predicate pred = true;
3356 class ipa_call_summary *es = ipa_call_summaries->get (e);
3358 if (es->predicate)
3359 pred = *es->predicate;
3360 sum->account_size_time (size, time, pred, pred, true);
3364 /* Increase SIZE, MIN_SIZE and TIME for size and time needed to handle all
3365 calls in NODE. POSSIBLE_TRUTHS and AVALS (the latter if non-NULL) describe
3366 context of the call site. */
3368 static void
3369 estimate_calls_size_and_time (struct cgraph_node *node, int *size,
3370 int *min_size, sreal *time,
3371 ipa_hints *hints,
3372 clause_t possible_truths,
3373 ipa_call_arg_values *avals)
3375 class ipa_fn_summary *sum = ipa_fn_summaries->get (node);
3376 bool use_table = true;
3378 gcc_assert (node->callees || node->indirect_calls);
3380 /* During early inlining we do not calculate info for very
3381 large functions and thus there is no need for producing
3382 summaries. */
3383 if (!ipa_node_params_sum)
3384 use_table = false;
3385 /* Do not calculate summaries for simple wrappers; it is waste
3386 of memory. */
3387 else if (node->callees && node->indirect_calls
3388 && node->callees->inline_failed && !node->callees->next_callee)
3389 use_table = false;
3390 /* If there is an indirect edge that may be optimized, we need
3391 to go the slow way. */
3392 else if (avals && hints
3393 && (avals->m_known_vals.length ()
3394 || avals->m_known_contexts.length ()
3395 || avals->m_known_aggs.length ()))
3397 ipa_node_params *params_summary = ipa_node_params_sum->get (node);
3398 unsigned int nargs = params_summary
3399 ? ipa_get_param_count (params_summary) : 0;
3401 for (unsigned int i = 0; i < nargs && use_table; i++)
3403 if (ipa_is_param_used_by_indirect_call (params_summary, i)
3404 && (avals->safe_sval_at (i)
3405 || (avals->m_known_aggs.length () > i
3406 && avals->m_known_aggs[i].items.length ())))
3407 use_table = false;
3408 else if (ipa_is_param_used_by_polymorphic_call (params_summary, i)
3409 && (avals->m_known_contexts.length () > i
3410 && !avals->m_known_contexts[i].useless_p ()))
3411 use_table = false;
3415 /* Fast path is via the call size time table. */
3416 if (use_table)
3418 /* Build summary if it is absent. */
3419 if (!sum->call_size_time_table.length ())
3421 ipa_predicate true_pred = true;
3422 sum->account_size_time (0, 0, true_pred, true_pred, true);
3423 summarize_calls_size_and_time (node, sum);
3426 int old_size = *size;
3427 sreal old_time = time ? *time : 0;
3429 if (min_size)
3430 *min_size += sum->call_size_time_table[0].size;
3432 unsigned int i;
3433 size_time_entry *e;
3435 /* Walk the table and account sizes and times. */
3436 for (i = 0; sum->call_size_time_table.iterate (i, &e);
3437 i++)
3438 if (e->exec_predicate.evaluate (possible_truths))
3440 *size += e->size;
3441 if (time)
3442 *time += e->time;
3445 /* Be careful and see if both methods agree. */
3446 if ((flag_checking || dump_file)
3447 /* Do not try to sanity check when we know we lost some
3448 precision. */
3449 && sum->call_size_time_table.length ()
3450 < ipa_fn_summary::max_size_time_table_size)
3452 estimate_calls_size_and_time_1 (node, &old_size, NULL, &old_time, NULL,
3453 possible_truths, avals);
3454 gcc_assert (*size == old_size);
3455 if (time && (*time - old_time > 1 || *time - old_time < -1)
3456 && dump_file)
3457 fprintf (dump_file, "Time mismatch in call summary %f!=%f\n",
3458 old_time.to_double (),
3459 time->to_double ());
3462 /* Slow path by walking all edges. */
3463 else
3464 estimate_calls_size_and_time_1 (node, size, min_size, time, hints,
3465 possible_truths, avals);
3468 /* Main constructor for ipa call context. Memory allocation of ARG_VALUES
3469 is owned by the caller. INLINE_PARAM_SUMMARY is also owned by the
3470 caller. */
3472 ipa_call_context::ipa_call_context (cgraph_node *node, clause_t possible_truths,
3473 clause_t nonspec_possible_truths,
3474 vec<inline_param_summary>
3475 inline_param_summary,
3476 ipa_auto_call_arg_values *arg_values)
3477 : m_node (node), m_possible_truths (possible_truths),
3478 m_nonspec_possible_truths (nonspec_possible_truths),
3479 m_inline_param_summary (inline_param_summary),
3480 m_avals (arg_values)
3484 /* Set THIS to be a duplicate of CTX. Copy all relevant info. */
3486 void
3487 ipa_cached_call_context::duplicate_from (const ipa_call_context &ctx)
3489 m_node = ctx.m_node;
3490 m_possible_truths = ctx.m_possible_truths;
3491 m_nonspec_possible_truths = ctx.m_nonspec_possible_truths;
3492 ipa_node_params *params_summary = ipa_node_params_sum->get (m_node);
3493 unsigned int nargs = params_summary
3494 ? ipa_get_param_count (params_summary) : 0;
3496 m_inline_param_summary = vNULL;
3497 /* Copy the info only if there is at least one useful entry. */
3498 if (ctx.m_inline_param_summary.exists ())
3500 unsigned int n = MIN (ctx.m_inline_param_summary.length (), nargs);
3502 for (unsigned int i = 0; i < n; i++)
3503 if (ipa_is_param_used_by_ipa_predicates (params_summary, i)
3504 && !ctx.m_inline_param_summary[i].useless_p ())
3506 m_inline_param_summary
3507 = ctx.m_inline_param_summary.copy ();
3508 break;
3511 m_avals.m_known_vals = vNULL;
3512 if (ctx.m_avals.m_known_vals.exists ())
3514 unsigned int n = MIN (ctx.m_avals.m_known_vals.length (), nargs);
3516 for (unsigned int i = 0; i < n; i++)
3517 if (ipa_is_param_used_by_indirect_call (params_summary, i)
3518 && ctx.m_avals.m_known_vals[i])
3520 m_avals.m_known_vals = ctx.m_avals.m_known_vals.copy ();
3521 break;
3525 m_avals.m_known_contexts = vNULL;
3526 if (ctx.m_avals.m_known_contexts.exists ())
3528 unsigned int n = MIN (ctx.m_avals.m_known_contexts.length (), nargs);
3530 for (unsigned int i = 0; i < n; i++)
3531 if (ipa_is_param_used_by_polymorphic_call (params_summary, i)
3532 && !ctx.m_avals.m_known_contexts[i].useless_p ())
3534 m_avals.m_known_contexts = ctx.m_avals.m_known_contexts.copy ();
3535 break;
3539 m_avals.m_known_aggs = vNULL;
3540 if (ctx.m_avals.m_known_aggs.exists ())
3542 unsigned int n = MIN (ctx.m_avals.m_known_aggs.length (), nargs);
3544 for (unsigned int i = 0; i < n; i++)
3545 if (ipa_is_param_used_by_indirect_call (params_summary, i)
3546 && !ctx.m_avals.m_known_aggs[i].is_empty ())
3548 m_avals.m_known_aggs
3549 = ipa_copy_agg_values (ctx.m_avals.m_known_aggs);
3550 break;
3554 m_avals.m_known_value_ranges = vNULL;
3557 /* Release memory used by known_vals/contexts/aggs vectors. and
3558 inline_param_summary. */
3560 void
3561 ipa_cached_call_context::release ()
3563 /* See if context is initialized at first place. */
3564 if (!m_node)
3565 return;
3566 ipa_release_agg_values (m_avals.m_known_aggs, true);
3567 m_avals.m_known_vals.release ();
3568 m_avals.m_known_contexts.release ();
3569 m_inline_param_summary.release ();
3572 /* Return true if CTX describes the same call context as THIS. */
3574 bool
3575 ipa_call_context::equal_to (const ipa_call_context &ctx)
3577 if (m_node != ctx.m_node
3578 || m_possible_truths != ctx.m_possible_truths
3579 || m_nonspec_possible_truths != ctx.m_nonspec_possible_truths)
3580 return false;
3582 ipa_node_params *params_summary = ipa_node_params_sum->get (m_node);
3583 unsigned int nargs = params_summary
3584 ? ipa_get_param_count (params_summary) : 0;
3586 if (m_inline_param_summary.exists () || ctx.m_inline_param_summary.exists ())
3588 for (unsigned int i = 0; i < nargs; i++)
3590 if (!ipa_is_param_used_by_ipa_predicates (params_summary, i))
3591 continue;
3592 if (i >= m_inline_param_summary.length ()
3593 || m_inline_param_summary[i].useless_p ())
3595 if (i < ctx.m_inline_param_summary.length ()
3596 && !ctx.m_inline_param_summary[i].useless_p ())
3597 return false;
3598 continue;
3600 if (i >= ctx.m_inline_param_summary.length ()
3601 || ctx.m_inline_param_summary[i].useless_p ())
3603 if (i < m_inline_param_summary.length ()
3604 && !m_inline_param_summary[i].useless_p ())
3605 return false;
3606 continue;
3608 if (!m_inline_param_summary[i].equal_to
3609 (ctx.m_inline_param_summary[i]))
3610 return false;
3613 if (m_avals.m_known_vals.exists () || ctx.m_avals.m_known_vals.exists ())
3615 for (unsigned int i = 0; i < nargs; i++)
3617 if (!ipa_is_param_used_by_indirect_call (params_summary, i))
3618 continue;
3619 if (i >= m_avals.m_known_vals.length () || !m_avals.m_known_vals[i])
3621 if (i < ctx.m_avals.m_known_vals.length ()
3622 && ctx.m_avals.m_known_vals[i])
3623 return false;
3624 continue;
3626 if (i >= ctx.m_avals.m_known_vals.length ()
3627 || !ctx.m_avals.m_known_vals[i])
3629 if (i < m_avals.m_known_vals.length () && m_avals.m_known_vals[i])
3630 return false;
3631 continue;
3633 if (m_avals.m_known_vals[i] != ctx.m_avals.m_known_vals[i])
3634 return false;
3637 if (m_avals.m_known_contexts.exists ()
3638 || ctx.m_avals.m_known_contexts.exists ())
3640 for (unsigned int i = 0; i < nargs; i++)
3642 if (!ipa_is_param_used_by_polymorphic_call (params_summary, i))
3643 continue;
3644 if (i >= m_avals.m_known_contexts.length ()
3645 || m_avals.m_known_contexts[i].useless_p ())
3647 if (i < ctx.m_avals.m_known_contexts.length ()
3648 && !ctx.m_avals.m_known_contexts[i].useless_p ())
3649 return false;
3650 continue;
3652 if (i >= ctx.m_avals.m_known_contexts.length ()
3653 || ctx.m_avals.m_known_contexts[i].useless_p ())
3655 if (i < m_avals.m_known_contexts.length ()
3656 && !m_avals.m_known_contexts[i].useless_p ())
3657 return false;
3658 continue;
3660 if (!m_avals.m_known_contexts[i].equal_to
3661 (ctx.m_avals.m_known_contexts[i]))
3662 return false;
3665 if (m_avals.m_known_aggs.exists () || ctx.m_avals.m_known_aggs.exists ())
3667 for (unsigned int i = 0; i < nargs; i++)
3669 if (!ipa_is_param_used_by_indirect_call (params_summary, i))
3670 continue;
3671 if (i >= m_avals.m_known_aggs.length ()
3672 || m_avals.m_known_aggs[i].is_empty ())
3674 if (i < ctx.m_avals.m_known_aggs.length ()
3675 && !ctx.m_avals.m_known_aggs[i].is_empty ())
3676 return false;
3677 continue;
3679 if (i >= ctx.m_avals.m_known_aggs.length ()
3680 || ctx.m_avals.m_known_aggs[i].is_empty ())
3682 if (i < m_avals.m_known_aggs.length ()
3683 && !m_avals.m_known_aggs[i].is_empty ())
3684 return false;
3685 continue;
3687 if (!m_avals.m_known_aggs[i].equal_to (ctx.m_avals.m_known_aggs[i]))
3688 return false;
3691 return true;
3694 /* Fill in the selected fields in ESTIMATES with value estimated for call in
3695 this context. Always compute size and min_size. Only compute time and
3696 nonspecialized_time if EST_TIMES is true. Only compute hints if EST_HINTS
3697 is true. */
3699 void
3700 ipa_call_context::estimate_size_and_time (ipa_call_estimates *estimates,
3701 bool est_times, bool est_hints)
3703 class ipa_fn_summary *info = ipa_fn_summaries->get (m_node);
3704 size_time_entry *e;
3705 int size = 0;
3706 sreal time = 0;
3707 int min_size = 0;
3708 ipa_hints hints = 0;
3709 sreal loops_with_known_iterations = 0;
3710 sreal loops_with_known_strides = 0;
3711 int i;
3713 if (dump_file && (dump_flags & TDF_DETAILS))
3715 bool found = false;
3716 fprintf (dump_file, " Estimating body: %s\n"
3717 " Known to be false: ", m_node->dump_name ());
3719 for (i = ipa_predicate::not_inlined_condition;
3720 i < (ipa_predicate::first_dynamic_condition
3721 + (int) vec_safe_length (info->conds)); i++)
3722 if (!(m_possible_truths & (1 << i)))
3724 if (found)
3725 fprintf (dump_file, ", ");
3726 found = true;
3727 dump_condition (dump_file, info->conds, i);
3731 if (m_node->callees || m_node->indirect_calls)
3732 estimate_calls_size_and_time (m_node, &size, &min_size,
3733 est_times ? &time : NULL,
3734 est_hints ? &hints : NULL, m_possible_truths,
3735 &m_avals);
3737 sreal nonspecialized_time = time;
3739 min_size += info->size_time_table[0].size;
3740 for (i = 0; info->size_time_table.iterate (i, &e); i++)
3742 bool exec = e->exec_predicate.evaluate (m_nonspec_possible_truths);
3744 /* Because predicates are conservative, it can happen that nonconst is 1
3745 but exec is 0. */
3746 if (exec)
3748 bool nonconst = e->nonconst_predicate.evaluate (m_possible_truths);
3750 gcc_checking_assert (e->time >= 0);
3751 gcc_checking_assert (time >= 0);
3753 /* We compute specialized size only because size of nonspecialized
3754 copy is context independent.
3756 The difference between nonspecialized execution and specialized is
3757 that nonspecialized is not going to have optimized out computations
3758 known to be constant in a specialized setting. */
3759 if (nonconst)
3760 size += e->size;
3761 if (!est_times)
3762 continue;
3763 nonspecialized_time += e->time;
3764 if (!nonconst)
3766 else if (!m_inline_param_summary.exists ())
3768 if (nonconst)
3769 time += e->time;
3771 else
3773 int prob = e->nonconst_predicate.probability
3774 (info->conds, m_possible_truths,
3775 m_inline_param_summary);
3776 gcc_checking_assert (prob >= 0);
3777 gcc_checking_assert (prob <= REG_BR_PROB_BASE);
3778 if (prob == REG_BR_PROB_BASE)
3779 time += e->time;
3780 else
3781 time += e->time * prob / REG_BR_PROB_BASE;
3783 gcc_checking_assert (time >= 0);
3786 gcc_checking_assert (info->size_time_table[0].exec_predicate == true);
3787 gcc_checking_assert (info->size_time_table[0].nonconst_predicate == true);
3788 gcc_checking_assert (min_size >= 0);
3789 gcc_checking_assert (size >= 0);
3790 gcc_checking_assert (time >= 0);
3791 /* nonspecialized_time should be always bigger than specialized time.
3792 Roundoff issues however may get into the way. */
3793 gcc_checking_assert ((nonspecialized_time - time * 99 / 100) >= -1);
3795 /* Roundoff issues may make specialized time bigger than nonspecialized
3796 time. We do not really want that to happen because some heuristics
3797 may get confused by seeing negative speedups. */
3798 if (time > nonspecialized_time)
3799 time = nonspecialized_time;
3801 if (est_hints)
3803 if (info->scc_no)
3804 hints |= INLINE_HINT_in_scc;
3805 if (DECL_DECLARED_INLINE_P (m_node->decl))
3806 hints |= INLINE_HINT_declared_inline;
3807 if (info->builtin_constant_p_parms.length ()
3808 && DECL_DECLARED_INLINE_P (m_node->decl))
3809 hints |= INLINE_HINT_builtin_constant_p;
3811 ipa_freqcounting_predicate *fcp;
3812 for (i = 0; vec_safe_iterate (info->loop_iterations, i, &fcp); i++)
3813 if (!fcp->predicate->evaluate (m_possible_truths))
3815 hints |= INLINE_HINT_loop_iterations;
3816 loops_with_known_iterations += fcp->freq;
3818 estimates->loops_with_known_iterations = loops_with_known_iterations;
3820 for (i = 0; vec_safe_iterate (info->loop_strides, i, &fcp); i++)
3821 if (!fcp->predicate->evaluate (m_possible_truths))
3823 hints |= INLINE_HINT_loop_stride;
3824 loops_with_known_strides += fcp->freq;
3826 estimates->loops_with_known_strides = loops_with_known_strides;
3829 size = RDIV (size, ipa_fn_summary::size_scale);
3830 min_size = RDIV (min_size, ipa_fn_summary::size_scale);
3832 if (dump_file && (dump_flags & TDF_DETAILS))
3834 fprintf (dump_file, "\n size:%i", (int) size);
3835 if (est_times)
3836 fprintf (dump_file, " time:%f nonspec time:%f",
3837 time.to_double (), nonspecialized_time.to_double ());
3838 if (est_hints)
3839 fprintf (dump_file, " loops with known iterations:%f "
3840 "known strides:%f", loops_with_known_iterations.to_double (),
3841 loops_with_known_strides.to_double ());
3842 fprintf (dump_file, "\n");
3844 if (est_times)
3846 estimates->time = time;
3847 estimates->nonspecialized_time = nonspecialized_time;
3849 estimates->size = size;
3850 estimates->min_size = min_size;
3851 if (est_hints)
3852 estimates->hints = hints;
3853 return;
3857 /* Estimate size and time needed to execute callee of EDGE assuming that
3858 parameters known to be constant at caller of EDGE are propagated.
3859 KNOWN_VALS and KNOWN_CONTEXTS are vectors of assumed known constant values
3860 and types for parameters. */
3862 void
3863 estimate_ipcp_clone_size_and_time (struct cgraph_node *node,
3864 ipa_auto_call_arg_values *avals,
3865 ipa_call_estimates *estimates)
3867 clause_t clause, nonspec_clause;
3869 evaluate_conditions_for_known_args (node, false, avals, &clause,
3870 &nonspec_clause);
3871 ipa_call_context ctx (node, clause, nonspec_clause, vNULL, avals);
3872 ctx.estimate_size_and_time (estimates);
3875 /* Return stack frame offset where frame of NODE is supposed to start inside
3876 of the function it is inlined to.
3877 Return 0 for functions that are not inlined. */
3879 HOST_WIDE_INT
3880 ipa_get_stack_frame_offset (struct cgraph_node *node)
3882 HOST_WIDE_INT offset = 0;
3883 if (!node->inlined_to)
3884 return 0;
3885 node = node->callers->caller;
3886 while (true)
3888 offset += ipa_size_summaries->get (node)->estimated_self_stack_size;
3889 if (!node->inlined_to)
3890 return offset;
3891 node = node->callers->caller;
3896 /* Update summary information of inline clones after inlining.
3897 Compute peak stack usage. */
3899 static void
3900 inline_update_callee_summaries (struct cgraph_node *node, int depth)
3902 struct cgraph_edge *e;
3904 ipa_propagate_frequency (node);
3905 for (e = node->callees; e; e = e->next_callee)
3907 if (!e->inline_failed)
3908 inline_update_callee_summaries (e->callee, depth);
3909 else
3910 ipa_call_summaries->get (e)->loop_depth += depth;
3912 for (e = node->indirect_calls; e; e = e->next_callee)
3913 ipa_call_summaries->get (e)->loop_depth += depth;
3916 /* Update change_prob and points_to_local_or_readonly_memory of EDGE after
3917 INLINED_EDGE has been inlined.
3919 When function A is inlined in B and A calls C with parameter that
3920 changes with probability PROB1 and C is known to be passthrough
3921 of argument if B that change with probability PROB2, the probability
3922 of change is now PROB1*PROB2. */
3924 static void
3925 remap_edge_params (struct cgraph_edge *inlined_edge,
3926 struct cgraph_edge *edge)
3928 if (ipa_node_params_sum)
3930 int i;
3931 ipa_edge_args *args = ipa_edge_args_sum->get (edge);
3932 if (!args)
3933 return;
3934 class ipa_call_summary *es = ipa_call_summaries->get (edge);
3935 class ipa_call_summary *inlined_es
3936 = ipa_call_summaries->get (inlined_edge);
3938 if (es->param.length () == 0)
3939 return;
3941 for (i = 0; i < ipa_get_cs_argument_count (args); i++)
3943 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
3944 if (jfunc->type == IPA_JF_PASS_THROUGH
3945 || jfunc->type == IPA_JF_ANCESTOR)
3947 int id = jfunc->type == IPA_JF_PASS_THROUGH
3948 ? ipa_get_jf_pass_through_formal_id (jfunc)
3949 : ipa_get_jf_ancestor_formal_id (jfunc);
3950 if (id < (int) inlined_es->param.length ())
3952 int prob1 = es->param[i].change_prob;
3953 int prob2 = inlined_es->param[id].change_prob;
3954 int prob = combine_probabilities (prob1, prob2);
3956 if (prob1 && prob2 && !prob)
3957 prob = 1;
3959 es->param[i].change_prob = prob;
3961 if (inlined_es
3962 ->param[id].points_to_local_or_readonly_memory)
3963 es->param[i].points_to_local_or_readonly_memory = true;
3965 if (!es->param[i].points_to_local_or_readonly_memory
3966 && jfunc->type == IPA_JF_CONST
3967 && points_to_local_or_readonly_memory_p
3968 (ipa_get_jf_constant (jfunc)))
3969 es->param[i].points_to_local_or_readonly_memory = true;
3975 /* Update edge summaries of NODE after INLINED_EDGE has been inlined.
3977 Remap predicates of callees of NODE. Rest of arguments match
3978 remap_predicate.
3980 Also update change probabilities. */
3982 static void
3983 remap_edge_summaries (struct cgraph_edge *inlined_edge,
3984 struct cgraph_node *node,
3985 class ipa_fn_summary *info,
3986 class ipa_node_params *params_summary,
3987 class ipa_fn_summary *callee_info,
3988 const vec<int> &operand_map,
3989 const vec<HOST_WIDE_INT> &offset_map,
3990 clause_t possible_truths,
3991 ipa_predicate *toplev_predicate)
3993 struct cgraph_edge *e, *next;
3994 for (e = node->callees; e; e = next)
3996 ipa_predicate p;
3997 next = e->next_callee;
3999 if (e->inline_failed)
4001 class ipa_call_summary *es = ipa_call_summaries->get (e);
4002 remap_edge_params (inlined_edge, e);
4004 if (es->predicate)
4006 p = es->predicate->remap_after_inlining
4007 (info, params_summary,
4008 callee_info, operand_map,
4009 offset_map, possible_truths,
4010 *toplev_predicate);
4011 edge_set_predicate (e, &p);
4013 else
4014 edge_set_predicate (e, toplev_predicate);
4016 else
4017 remap_edge_summaries (inlined_edge, e->callee, info,
4018 params_summary, callee_info,
4019 operand_map, offset_map, possible_truths,
4020 toplev_predicate);
4022 for (e = node->indirect_calls; e; e = next)
4024 class ipa_call_summary *es = ipa_call_summaries->get (e);
4025 ipa_predicate p;
4026 next = e->next_callee;
4028 remap_edge_params (inlined_edge, e);
4029 if (es->predicate)
4031 p = es->predicate->remap_after_inlining
4032 (info, params_summary,
4033 callee_info, operand_map, offset_map,
4034 possible_truths, *toplev_predicate);
4035 edge_set_predicate (e, &p);
4037 else
4038 edge_set_predicate (e, toplev_predicate);
4042 /* Run remap_after_inlining on each predicate in V. */
4044 static void
4045 remap_freqcounting_predicate (class ipa_fn_summary *info,
4046 class ipa_node_params *params_summary,
4047 class ipa_fn_summary *callee_info,
4048 vec<ipa_freqcounting_predicate, va_gc> *v,
4049 const vec<int> &operand_map,
4050 const vec<HOST_WIDE_INT> &offset_map,
4051 clause_t possible_truths,
4052 ipa_predicate *toplev_predicate)
4055 ipa_freqcounting_predicate *fcp;
4056 for (int i = 0; vec_safe_iterate (v, i, &fcp); i++)
4058 ipa_predicate p
4059 = fcp->predicate->remap_after_inlining (info, params_summary,
4060 callee_info, operand_map,
4061 offset_map, possible_truths,
4062 *toplev_predicate);
4063 if (p != false && p != true)
4064 *fcp->predicate &= p;
4068 /* We inlined EDGE. Update summary of the function we inlined into. */
4070 void
4071 ipa_merge_fn_summary_after_inlining (struct cgraph_edge *edge)
4073 ipa_fn_summary *callee_info = ipa_fn_summaries->get (edge->callee);
4074 struct cgraph_node *to = (edge->caller->inlined_to
4075 ? edge->caller->inlined_to : edge->caller);
4076 class ipa_fn_summary *info = ipa_fn_summaries->get (to);
4077 clause_t clause = 0; /* not_inline is known to be false. */
4078 size_time_entry *e;
4079 auto_vec<int, 8> operand_map;
4080 auto_vec<HOST_WIDE_INT, 8> offset_map;
4081 int i;
4082 ipa_predicate toplev_predicate;
4083 class ipa_call_summary *es = ipa_call_summaries->get (edge);
4084 ipa_node_params *params_summary = (ipa_node_params_sum
4085 ? ipa_node_params_sum->get (to) : NULL);
4087 if (es->predicate)
4088 toplev_predicate = *es->predicate;
4089 else
4090 toplev_predicate = true;
4092 info->fp_expressions |= callee_info->fp_expressions;
4094 if (callee_info->conds)
4096 ipa_auto_call_arg_values avals;
4097 evaluate_properties_for_edge (edge, true, &clause, NULL, &avals, false);
4099 if (ipa_node_params_sum && callee_info->conds)
4101 ipa_edge_args *args = ipa_edge_args_sum->get (edge);
4102 int count = args ? ipa_get_cs_argument_count (args) : 0;
4103 int i;
4105 if (count)
4107 operand_map.safe_grow_cleared (count, true);
4108 offset_map.safe_grow_cleared (count, true);
4110 for (i = 0; i < count; i++)
4112 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
4113 int map = -1;
4115 /* TODO: handle non-NOPs when merging. */
4116 if (jfunc->type == IPA_JF_PASS_THROUGH)
4118 if (ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
4119 map = ipa_get_jf_pass_through_formal_id (jfunc);
4120 if (!ipa_get_jf_pass_through_agg_preserved (jfunc))
4121 offset_map[i] = -1;
4123 else if (jfunc->type == IPA_JF_ANCESTOR)
4125 HOST_WIDE_INT offset = ipa_get_jf_ancestor_offset (jfunc);
4126 if (offset >= 0 && offset < INT_MAX)
4128 map = ipa_get_jf_ancestor_formal_id (jfunc);
4129 if (!ipa_get_jf_ancestor_agg_preserved (jfunc))
4130 offset = -1;
4131 offset_map[i] = offset;
4134 operand_map[i] = map;
4135 gcc_assert (map < ipa_get_param_count (params_summary));
4138 int ip;
4139 for (i = 0; callee_info->builtin_constant_p_parms.iterate (i, &ip); i++)
4140 if (ip < count && operand_map[ip] >= 0)
4141 add_builtin_constant_p_parm (info, operand_map[ip]);
4143 sreal freq = edge->sreal_frequency ();
4144 for (i = 0; callee_info->size_time_table.iterate (i, &e); i++)
4146 ipa_predicate p;
4147 p = e->exec_predicate.remap_after_inlining
4148 (info, params_summary,
4149 callee_info, operand_map,
4150 offset_map, clause,
4151 toplev_predicate);
4152 ipa_predicate nonconstp;
4153 nonconstp = e->nonconst_predicate.remap_after_inlining
4154 (info, params_summary,
4155 callee_info, operand_map,
4156 offset_map, clause,
4157 toplev_predicate);
4158 if (p != false && nonconstp != false)
4160 sreal add_time = ((sreal)e->time * freq);
4161 int prob = e->nonconst_predicate.probability (callee_info->conds,
4162 clause, es->param);
4163 if (prob != REG_BR_PROB_BASE)
4164 add_time = add_time * prob / REG_BR_PROB_BASE;
4165 if (prob != REG_BR_PROB_BASE
4166 && dump_file && (dump_flags & TDF_DETAILS))
4168 fprintf (dump_file, "\t\tScaling time by probability:%f\n",
4169 (double) prob / REG_BR_PROB_BASE);
4171 info->account_size_time (e->size, add_time, p, nonconstp);
4174 remap_edge_summaries (edge, edge->callee, info, params_summary,
4175 callee_info, operand_map,
4176 offset_map, clause, &toplev_predicate);
4177 remap_freqcounting_predicate (info, params_summary, callee_info,
4178 info->loop_iterations, operand_map,
4179 offset_map, clause, &toplev_predicate);
4180 remap_freqcounting_predicate (info, params_summary, callee_info,
4181 info->loop_strides, operand_map,
4182 offset_map, clause, &toplev_predicate);
4184 HOST_WIDE_INT stack_frame_offset = ipa_get_stack_frame_offset (edge->callee);
4185 HOST_WIDE_INT peak = stack_frame_offset + callee_info->estimated_stack_size;
4187 if (info->estimated_stack_size < peak)
4188 info->estimated_stack_size = peak;
4190 inline_update_callee_summaries (edge->callee, es->loop_depth);
4191 if (info->call_size_time_table.length ())
4193 int edge_size = 0;
4194 sreal edge_time = 0;
4196 estimate_edge_size_and_time (edge, &edge_size, NULL, &edge_time, NULL, 0);
4197 /* Unaccount size and time of the optimized out call. */
4198 info->account_size_time (-edge_size, -edge_time,
4199 es->predicate ? *es->predicate : true,
4200 es->predicate ? *es->predicate : true,
4201 true);
4202 /* Account new calls. */
4203 summarize_calls_size_and_time (edge->callee, info);
4206 /* Free summaries that are not maintained for inline clones/edges. */
4207 ipa_call_summaries->remove (edge);
4208 ipa_fn_summaries->remove (edge->callee);
4209 ipa_remove_from_growth_caches (edge);
4212 /* For performance reasons ipa_merge_fn_summary_after_inlining is not updating
4213 overall size and time. Recompute it.
4214 If RESET is true also recompute call_time_size_table. */
4216 void
4217 ipa_update_overall_fn_summary (struct cgraph_node *node, bool reset)
4219 class ipa_fn_summary *info = ipa_fn_summaries->get (node);
4220 class ipa_size_summary *size_info = ipa_size_summaries->get (node);
4221 size_time_entry *e;
4222 int i;
4224 size_info->size = 0;
4225 info->time = 0;
4226 for (i = 0; info->size_time_table.iterate (i, &e); i++)
4228 size_info->size += e->size;
4229 info->time += e->time;
4231 info->min_size = info->size_time_table[0].size;
4232 if (reset)
4233 info->call_size_time_table.release ();
4234 if (node->callees || node->indirect_calls)
4235 estimate_calls_size_and_time (node, &size_info->size, &info->min_size,
4236 &info->time, NULL,
4237 ~(clause_t) (1 << ipa_predicate::false_condition),
4238 NULL);
4239 size_info->size = RDIV (size_info->size, ipa_fn_summary::size_scale);
4240 info->min_size = RDIV (info->min_size, ipa_fn_summary::size_scale);
4244 /* This function performs intraprocedural analysis in NODE that is required to
4245 inline indirect calls. */
4247 static void
4248 inline_indirect_intraprocedural_analysis (struct cgraph_node *node)
4250 ipa_analyze_node (node);
4251 if (dump_file && (dump_flags & TDF_DETAILS))
4253 ipa_print_node_params (dump_file, node);
4254 ipa_print_node_jump_functions (dump_file, node);
4259 /* Note function body size. */
4261 void
4262 inline_analyze_function (struct cgraph_node *node)
4264 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
4266 if (dump_file)
4267 fprintf (dump_file, "\nAnalyzing function: %s\n", node->dump_name ());
4268 if (opt_for_fn (node->decl, optimize) && !node->thunk)
4269 inline_indirect_intraprocedural_analysis (node);
4270 compute_fn_summary (node, false);
4271 if (!optimize)
4273 struct cgraph_edge *e;
4274 for (e = node->callees; e; e = e->next_callee)
4275 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
4276 for (e = node->indirect_calls; e; e = e->next_callee)
4277 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
4280 pop_cfun ();
4284 /* Called when new function is inserted to callgraph late. */
4286 void
4287 ipa_fn_summary_t::insert (struct cgraph_node *node, ipa_fn_summary *)
4289 inline_analyze_function (node);
4292 /* Note function body size. */
4294 static void
4295 ipa_fn_summary_generate (void)
4297 struct cgraph_node *node;
4299 FOR_EACH_DEFINED_FUNCTION (node)
4300 if (DECL_STRUCT_FUNCTION (node->decl))
4301 node->versionable = tree_versionable_function_p (node->decl);
4303 ipa_fn_summary_alloc ();
4305 ipa_fn_summaries->enable_insertion_hook ();
4307 ipa_register_cgraph_hooks ();
4309 FOR_EACH_DEFINED_FUNCTION (node)
4310 if (!node->alias
4311 && (flag_generate_lto || flag_generate_offload|| flag_wpa
4312 || opt_for_fn (node->decl, optimize)))
4313 inline_analyze_function (node);
4317 /* Write inline summary for edge E to OB. */
4319 static void
4320 read_ipa_call_summary (class lto_input_block *ib, struct cgraph_edge *e,
4321 bool prevails)
4323 class ipa_call_summary *es = prevails
4324 ? ipa_call_summaries->get_create (e) : NULL;
4325 ipa_predicate p;
4326 int length, i;
4328 int size = streamer_read_uhwi (ib);
4329 int time = streamer_read_uhwi (ib);
4330 int depth = streamer_read_uhwi (ib);
4332 if (es)
4334 es->call_stmt_size = size;
4335 es->call_stmt_time = time;
4336 es->loop_depth = depth;
4339 bitpack_d bp = streamer_read_bitpack (ib);
4340 if (es)
4341 es->is_return_callee_uncaptured = bp_unpack_value (&bp, 1);
4342 else
4343 bp_unpack_value (&bp, 1);
4345 p.stream_in (ib);
4346 if (es)
4347 edge_set_predicate (e, &p);
4348 length = streamer_read_uhwi (ib);
4349 if (length && es
4350 && (e->possibly_call_in_translation_unit_p ()
4351 /* Also stream in jump functions to builtins in hope that they
4352 will get fnspecs. */
4353 || fndecl_built_in_p (e->callee->decl, BUILT_IN_NORMAL)))
4355 es->param.safe_grow_cleared (length, true);
4356 for (i = 0; i < length; i++)
4358 es->param[i].change_prob = streamer_read_uhwi (ib);
4359 es->param[i].points_to_local_or_readonly_memory
4360 = streamer_read_uhwi (ib);
4363 else
4365 for (i = 0; i < length; i++)
4367 streamer_read_uhwi (ib);
4368 streamer_read_uhwi (ib);
4374 /* Stream in inline summaries from the section. */
4376 static void
4377 inline_read_section (struct lto_file_decl_data *file_data, const char *data,
4378 size_t len)
4380 const struct lto_function_header *header =
4381 (const struct lto_function_header *) data;
4382 const int cfg_offset = sizeof (struct lto_function_header);
4383 const int main_offset = cfg_offset + header->cfg_size;
4384 const int string_offset = main_offset + header->main_size;
4385 class data_in *data_in;
4386 unsigned int i, count2, j;
4387 unsigned int f_count;
4389 lto_input_block ib ((const char *) data + main_offset, header->main_size,
4390 file_data->mode_table);
4392 data_in =
4393 lto_data_in_create (file_data, (const char *) data + string_offset,
4394 header->string_size, vNULL);
4395 f_count = streamer_read_uhwi (&ib);
4396 for (i = 0; i < f_count; i++)
4398 unsigned int index;
4399 struct cgraph_node *node;
4400 class ipa_fn_summary *info;
4401 class ipa_node_params *params_summary;
4402 class ipa_size_summary *size_info;
4403 lto_symtab_encoder_t encoder;
4404 struct bitpack_d bp;
4405 struct cgraph_edge *e;
4406 ipa_predicate p;
4408 index = streamer_read_uhwi (&ib);
4409 encoder = file_data->symtab_node_encoder;
4410 node = dyn_cast<cgraph_node *> (lto_symtab_encoder_deref (encoder,
4411 index));
4412 info = node->prevailing_p () ? ipa_fn_summaries->get_create (node) : NULL;
4413 params_summary = node->prevailing_p ()
4414 ? ipa_node_params_sum->get (node) : NULL;
4415 size_info = node->prevailing_p ()
4416 ? ipa_size_summaries->get_create (node) : NULL;
4418 int stack_size = streamer_read_uhwi (&ib);
4419 int size = streamer_read_uhwi (&ib);
4420 sreal time = sreal::stream_in (&ib);
4422 if (info)
4424 info->estimated_stack_size
4425 = size_info->estimated_self_stack_size = stack_size;
4426 size_info->size = size_info->self_size = size;
4427 info->time = time;
4430 bp = streamer_read_bitpack (&ib);
4431 if (info)
4433 info->inlinable = bp_unpack_value (&bp, 1);
4434 info->fp_expressions = bp_unpack_value (&bp, 1);
4436 else
4438 bp_unpack_value (&bp, 1);
4439 bp_unpack_value (&bp, 1);
4442 count2 = streamer_read_uhwi (&ib);
4443 gcc_assert (!info || !info->conds);
4444 if (info)
4445 vec_safe_reserve_exact (info->conds, count2);
4446 for (j = 0; j < count2; j++)
4448 struct condition c;
4449 unsigned int k, count3;
4450 c.operand_num = streamer_read_uhwi (&ib);
4451 c.code = (enum tree_code) streamer_read_uhwi (&ib);
4452 c.type = stream_read_tree (&ib, data_in);
4453 c.val = stream_read_tree (&ib, data_in);
4454 bp = streamer_read_bitpack (&ib);
4455 c.agg_contents = bp_unpack_value (&bp, 1);
4456 c.by_ref = bp_unpack_value (&bp, 1);
4457 if (c.agg_contents)
4458 c.offset = streamer_read_uhwi (&ib);
4459 count3 = streamer_read_uhwi (&ib);
4460 c.param_ops = NULL;
4461 if (info)
4462 vec_safe_reserve_exact (c.param_ops, count3);
4463 if (params_summary)
4464 ipa_set_param_used_by_ipa_predicates
4465 (params_summary, c.operand_num, true);
4466 for (k = 0; k < count3; k++)
4468 struct expr_eval_op op;
4469 enum gimple_rhs_class rhs_class;
4470 op.code = (enum tree_code) streamer_read_uhwi (&ib);
4471 op.type = stream_read_tree (&ib, data_in);
4472 switch (rhs_class = get_gimple_rhs_class (op.code))
4474 case GIMPLE_UNARY_RHS:
4475 op.index = 0;
4476 op.val[0] = NULL_TREE;
4477 op.val[1] = NULL_TREE;
4478 break;
4480 case GIMPLE_BINARY_RHS:
4481 case GIMPLE_TERNARY_RHS:
4482 bp = streamer_read_bitpack (&ib);
4483 op.index = bp_unpack_value (&bp, 2);
4484 op.val[0] = stream_read_tree (&ib, data_in);
4485 if (rhs_class == GIMPLE_BINARY_RHS)
4486 op.val[1] = NULL_TREE;
4487 else
4488 op.val[1] = stream_read_tree (&ib, data_in);
4489 break;
4491 default:
4492 fatal_error (UNKNOWN_LOCATION,
4493 "invalid fnsummary in LTO stream");
4495 if (info)
4496 c.param_ops->quick_push (op);
4498 if (info)
4499 info->conds->quick_push (c);
4501 count2 = streamer_read_uhwi (&ib);
4502 gcc_assert (!info || !info->size_time_table.length ());
4503 if (info && count2)
4504 info->size_time_table.reserve_exact (count2);
4505 for (j = 0; j < count2; j++)
4507 class size_time_entry e;
4509 e.size = streamer_read_uhwi (&ib);
4510 e.time = sreal::stream_in (&ib);
4511 e.exec_predicate.stream_in (&ib);
4512 e.nonconst_predicate.stream_in (&ib);
4514 if (info)
4515 info->size_time_table.quick_push (e);
4518 count2 = streamer_read_uhwi (&ib);
4519 for (j = 0; j < count2; j++)
4521 p.stream_in (&ib);
4522 sreal fcp_freq = sreal::stream_in (&ib);
4523 if (info)
4525 ipa_freqcounting_predicate fcp;
4526 fcp.predicate = NULL;
4527 set_hint_predicate (&fcp.predicate, p);
4528 fcp.freq = fcp_freq;
4529 vec_safe_push (info->loop_iterations, fcp);
4532 count2 = streamer_read_uhwi (&ib);
4533 for (j = 0; j < count2; j++)
4535 p.stream_in (&ib);
4536 sreal fcp_freq = sreal::stream_in (&ib);
4537 if (info)
4539 ipa_freqcounting_predicate fcp;
4540 fcp.predicate = NULL;
4541 set_hint_predicate (&fcp.predicate, p);
4542 fcp.freq = fcp_freq;
4543 vec_safe_push (info->loop_strides, fcp);
4546 count2 = streamer_read_uhwi (&ib);
4547 if (info && count2)
4548 info->builtin_constant_p_parms.reserve_exact (count2);
4549 for (j = 0; j < count2; j++)
4551 int parm = streamer_read_uhwi (&ib);
4552 if (info)
4553 info->builtin_constant_p_parms.quick_push (parm);
4555 for (e = node->callees; e; e = e->next_callee)
4556 read_ipa_call_summary (&ib, e, info != NULL);
4557 for (e = node->indirect_calls; e; e = e->next_callee)
4558 read_ipa_call_summary (&ib, e, info != NULL);
4561 lto_free_section_data (file_data, LTO_section_ipa_fn_summary, NULL, data,
4562 len);
4563 lto_data_in_delete (data_in);
4567 /* Read inline summary. Jump functions are shared among ipa-cp
4568 and inliner, so when ipa-cp is active, we don't need to write them
4569 twice. */
4571 static void
4572 ipa_fn_summary_read (void)
4574 struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
4575 struct lto_file_decl_data *file_data;
4576 unsigned int j = 0;
4578 ipa_prop_read_jump_functions ();
4579 ipa_fn_summary_alloc ();
4581 while ((file_data = file_data_vec[j++]))
4583 size_t len;
4584 const char *data
4585 = lto_get_summary_section_data (file_data, LTO_section_ipa_fn_summary,
4586 &len);
4587 if (data)
4588 inline_read_section (file_data, data, len);
4589 else
4590 /* Fatal error here. We do not want to support compiling ltrans units
4591 with different version of compiler or different flags than the WPA
4592 unit, so this should never happen. */
4593 fatal_error (input_location,
4594 "ipa inline summary is missing in input file");
4596 ipa_register_cgraph_hooks ();
4598 gcc_assert (ipa_fn_summaries);
4599 ipa_fn_summaries->enable_insertion_hook ();
4603 /* Write inline summary for edge E to OB. */
4605 static void
4606 write_ipa_call_summary (struct output_block *ob, struct cgraph_edge *e)
4608 class ipa_call_summary *es = ipa_call_summaries->get (e);
4609 int i;
4611 streamer_write_uhwi (ob, es->call_stmt_size);
4612 streamer_write_uhwi (ob, es->call_stmt_time);
4613 streamer_write_uhwi (ob, es->loop_depth);
4615 bitpack_d bp = bitpack_create (ob->main_stream);
4616 bp_pack_value (&bp, es->is_return_callee_uncaptured, 1);
4617 streamer_write_bitpack (&bp);
4619 if (es->predicate)
4620 es->predicate->stream_out (ob);
4621 else
4622 streamer_write_uhwi (ob, 0);
4623 streamer_write_uhwi (ob, es->param.length ());
4624 for (i = 0; i < (int) es->param.length (); i++)
4626 streamer_write_uhwi (ob, es->param[i].change_prob);
4627 streamer_write_uhwi (ob, es->param[i].points_to_local_or_readonly_memory);
4632 /* Write inline summary for node in SET.
4633 Jump functions are shared among ipa-cp and inliner, so when ipa-cp is
4634 active, we don't need to write them twice. */
4636 static void
4637 ipa_fn_summary_write (void)
4639 struct output_block *ob = create_output_block (LTO_section_ipa_fn_summary);
4640 lto_symtab_encoder_iterator lsei;
4641 lto_symtab_encoder_t encoder = ob->decl_state->symtab_node_encoder;
4642 unsigned int count = 0;
4644 for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
4645 lsei_next_function_in_partition (&lsei))
4647 cgraph_node *cnode = lsei_cgraph_node (lsei);
4648 if (cnode->definition && !cnode->alias)
4649 count++;
4651 streamer_write_uhwi (ob, count);
4653 for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
4654 lsei_next_function_in_partition (&lsei))
4656 cgraph_node *cnode = lsei_cgraph_node (lsei);
4657 if (cnode->definition && !cnode->alias)
4659 class ipa_fn_summary *info = ipa_fn_summaries->get (cnode);
4660 class ipa_size_summary *size_info = ipa_size_summaries->get (cnode);
4661 struct bitpack_d bp;
4662 struct cgraph_edge *edge;
4663 int i;
4664 size_time_entry *e;
4665 struct condition *c;
4667 streamer_write_uhwi (ob, lto_symtab_encoder_encode (encoder, cnode));
4668 streamer_write_hwi (ob, size_info->estimated_self_stack_size);
4669 streamer_write_hwi (ob, size_info->self_size);
4670 info->time.stream_out (ob);
4671 bp = bitpack_create (ob->main_stream);
4672 bp_pack_value (&bp, info->inlinable, 1);
4673 bp_pack_value (&bp, info->fp_expressions, 1);
4674 streamer_write_bitpack (&bp);
4675 streamer_write_uhwi (ob, vec_safe_length (info->conds));
4676 for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
4678 int j;
4679 struct expr_eval_op *op;
4681 streamer_write_uhwi (ob, c->operand_num);
4682 streamer_write_uhwi (ob, c->code);
4683 stream_write_tree (ob, c->type, true);
4684 stream_write_tree (ob, c->val, true);
4685 bp = bitpack_create (ob->main_stream);
4686 bp_pack_value (&bp, c->agg_contents, 1);
4687 bp_pack_value (&bp, c->by_ref, 1);
4688 streamer_write_bitpack (&bp);
4689 if (c->agg_contents)
4690 streamer_write_uhwi (ob, c->offset);
4691 streamer_write_uhwi (ob, vec_safe_length (c->param_ops));
4692 for (j = 0; vec_safe_iterate (c->param_ops, j, &op); j++)
4694 streamer_write_uhwi (ob, op->code);
4695 stream_write_tree (ob, op->type, true);
4696 if (op->val[0])
4698 bp = bitpack_create (ob->main_stream);
4699 bp_pack_value (&bp, op->index, 2);
4700 streamer_write_bitpack (&bp);
4701 stream_write_tree (ob, op->val[0], true);
4702 if (op->val[1])
4703 stream_write_tree (ob, op->val[1], true);
4707 streamer_write_uhwi (ob, info->size_time_table.length ());
4708 for (i = 0; info->size_time_table.iterate (i, &e); i++)
4710 streamer_write_uhwi (ob, e->size);
4711 e->time.stream_out (ob);
4712 e->exec_predicate.stream_out (ob);
4713 e->nonconst_predicate.stream_out (ob);
4715 ipa_freqcounting_predicate *fcp;
4716 streamer_write_uhwi (ob, vec_safe_length (info->loop_iterations));
4717 for (i = 0; vec_safe_iterate (info->loop_iterations, i, &fcp); i++)
4719 fcp->predicate->stream_out (ob);
4720 fcp->freq.stream_out (ob);
4722 streamer_write_uhwi (ob, vec_safe_length (info->loop_strides));
4723 for (i = 0; vec_safe_iterate (info->loop_strides, i, &fcp); i++)
4725 fcp->predicate->stream_out (ob);
4726 fcp->freq.stream_out (ob);
4728 streamer_write_uhwi (ob, info->builtin_constant_p_parms.length ());
4729 int ip;
4730 for (i = 0; info->builtin_constant_p_parms.iterate (i, &ip);
4731 i++)
4732 streamer_write_uhwi (ob, ip);
4733 for (edge = cnode->callees; edge; edge = edge->next_callee)
4734 write_ipa_call_summary (ob, edge);
4735 for (edge = cnode->indirect_calls; edge; edge = edge->next_callee)
4736 write_ipa_call_summary (ob, edge);
4739 streamer_write_char_stream (ob->main_stream, 0);
4740 produce_asm (ob, NULL);
4741 destroy_output_block (ob);
4743 ipa_prop_write_jump_functions ();
4747 /* Release function summary. */
4749 void
4750 ipa_free_fn_summary (void)
4752 if (!ipa_call_summaries)
4753 return;
4754 ggc_delete (ipa_fn_summaries);
4755 ipa_fn_summaries = NULL;
4756 delete ipa_call_summaries;
4757 ipa_call_summaries = NULL;
4758 edge_predicate_pool.release ();
4759 /* During IPA this is one of largest datastructures to release. */
4760 if (flag_wpa)
4761 ggc_trim ();
4764 /* Release function summary. */
4766 void
4767 ipa_free_size_summary (void)
4769 if (!ipa_size_summaries)
4770 return;
4771 delete ipa_size_summaries;
4772 ipa_size_summaries = NULL;
4775 namespace {
4777 const pass_data pass_data_local_fn_summary =
4779 GIMPLE_PASS, /* type */
4780 "local-fnsummary", /* name */
4781 OPTGROUP_INLINE, /* optinfo_flags */
4782 TV_INLINE_PARAMETERS, /* tv_id */
4783 0, /* properties_required */
4784 0, /* properties_provided */
4785 0, /* properties_destroyed */
4786 0, /* todo_flags_start */
4787 0, /* todo_flags_finish */
4790 class pass_local_fn_summary : public gimple_opt_pass
4792 public:
4793 pass_local_fn_summary (gcc::context *ctxt)
4794 : gimple_opt_pass (pass_data_local_fn_summary, ctxt)
4797 /* opt_pass methods: */
4798 opt_pass * clone () { return new pass_local_fn_summary (m_ctxt); }
4799 virtual unsigned int execute (function *)
4801 return compute_fn_summary_for_current ();
4804 }; // class pass_local_fn_summary
4806 } // anon namespace
4808 gimple_opt_pass *
4809 make_pass_local_fn_summary (gcc::context *ctxt)
4811 return new pass_local_fn_summary (ctxt);
4815 /* Free inline summary. */
4817 namespace {
4819 const pass_data pass_data_ipa_free_fn_summary =
4821 SIMPLE_IPA_PASS, /* type */
4822 "free-fnsummary", /* name */
4823 OPTGROUP_NONE, /* optinfo_flags */
4824 TV_IPA_FREE_INLINE_SUMMARY, /* tv_id */
4825 0, /* properties_required */
4826 0, /* properties_provided */
4827 0, /* properties_destroyed */
4828 0, /* todo_flags_start */
4829 0, /* todo_flags_finish */
4832 class pass_ipa_free_fn_summary : public simple_ipa_opt_pass
4834 public:
4835 pass_ipa_free_fn_summary (gcc::context *ctxt)
4836 : simple_ipa_opt_pass (pass_data_ipa_free_fn_summary, ctxt),
4837 small_p (false)
4840 /* opt_pass methods: */
4841 opt_pass *clone () { return new pass_ipa_free_fn_summary (m_ctxt); }
4842 void set_pass_param (unsigned int n, bool param)
4844 gcc_assert (n == 0);
4845 small_p = param;
4847 virtual bool gate (function *) { return true; }
4848 virtual unsigned int execute (function *)
4850 ipa_free_fn_summary ();
4851 /* Free ipa-prop structures if they are no longer needed. */
4852 ipa_free_all_structures_after_iinln ();
4853 if (!flag_wpa)
4854 ipa_free_size_summary ();
4855 return 0;
4858 private:
4859 bool small_p;
4860 }; // class pass_ipa_free_fn_summary
4862 } // anon namespace
4864 simple_ipa_opt_pass *
4865 make_pass_ipa_free_fn_summary (gcc::context *ctxt)
4867 return new pass_ipa_free_fn_summary (ctxt);
4870 namespace {
4872 const pass_data pass_data_ipa_fn_summary =
4874 IPA_PASS, /* type */
4875 "fnsummary", /* name */
4876 OPTGROUP_INLINE, /* optinfo_flags */
4877 TV_IPA_FNSUMMARY, /* tv_id */
4878 0, /* properties_required */
4879 0, /* properties_provided */
4880 0, /* properties_destroyed */
4881 0, /* todo_flags_start */
4882 ( TODO_dump_symtab ), /* todo_flags_finish */
4885 class pass_ipa_fn_summary : public ipa_opt_pass_d
4887 public:
4888 pass_ipa_fn_summary (gcc::context *ctxt)
4889 : ipa_opt_pass_d (pass_data_ipa_fn_summary, ctxt,
4890 ipa_fn_summary_generate, /* generate_summary */
4891 ipa_fn_summary_write, /* write_summary */
4892 ipa_fn_summary_read, /* read_summary */
4893 NULL, /* write_optimization_summary */
4894 NULL, /* read_optimization_summary */
4895 NULL, /* stmt_fixup */
4896 0, /* function_transform_todo_flags_start */
4897 NULL, /* function_transform */
4898 NULL) /* variable_transform */
4901 /* opt_pass methods: */
4902 virtual unsigned int execute (function *) { return 0; }
4904 }; // class pass_ipa_fn_summary
4906 } // anon namespace
4908 ipa_opt_pass_d *
4909 make_pass_ipa_fn_summary (gcc::context *ctxt)
4911 return new pass_ipa_fn_summary (ctxt);
4914 /* Reset all state within ipa-fnsummary.c so that we can rerun the compiler
4915 within the same process. For use by toplev::finalize. */
4917 void
4918 ipa_fnsummary_c_finalize (void)
4920 ipa_free_fn_summary ();