1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2021 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
36 We check (with modified_between_p) to avoid combining in such a way
37 as to move a computation to a place where its value would be different.
39 Combination is done by mathematically substituting the previous
40 insn(s) values for the regs they set into the expressions in
41 the later insns that refer to these regs. If the result is a valid insn
42 for our target machine, according to the machine description,
43 we install it, delete the earlier insns, and update the data flow
44 information (LOG_LINKS and REG_NOTES) for what we did.
46 There are a few exceptions where the dataflow information isn't
47 completely updated (however this is only a local issue since it is
48 regenerated before the next pass that uses it):
50 - reg_live_length is not updated
51 - reg_n_refs is not adjusted in the rare case when a register is
52 no longer required in a computation
53 - there are extremely rare cases (see distribute_notes) when a
55 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
56 removed because there is no way to know which register it was
59 To simplify substitution, we combine only when the earlier insn(s)
60 consist of only a single assignment. To simplify updating afterward,
61 we never combine when a subroutine call appears in the middle. */
65 #include "coretypes.h"
80 #include "stor-layout.h"
82 #include "cfgcleanup.h"
83 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
85 #include "insn-attr.h"
86 #include "rtlhooks-def.h"
88 #include "tree-pass.h"
91 #include "print-rtl.h"
92 #include "function-abi.h"
95 /* Number of attempts to combine instructions in this function. */
97 static int combine_attempts
;
99 /* Number of attempts that got as far as substitution in this function. */
101 static int combine_merges
;
103 /* Number of instructions combined with added SETs in this function. */
105 static int combine_extras
;
107 /* Number of instructions combined in this function. */
109 static int combine_successes
;
111 /* Totals over entire compilation. */
113 static int total_attempts
, total_merges
, total_extras
, total_successes
;
115 /* combine_instructions may try to replace the right hand side of the
116 second instruction with the value of an associated REG_EQUAL note
117 before throwing it at try_combine. That is problematic when there
118 is a REG_DEAD note for a register used in the old right hand side
119 and can cause distribute_notes to do wrong things. This is the
120 second instruction if it has been so modified, null otherwise. */
122 static rtx_insn
*i2mod
;
124 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
126 static rtx i2mod_old_rhs
;
128 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
130 static rtx i2mod_new_rhs
;
132 struct reg_stat_type
{
133 /* Record last point of death of (hard or pseudo) register n. */
134 rtx_insn
*last_death
;
136 /* Record last point of modification of (hard or pseudo) register n. */
139 /* The next group of fields allows the recording of the last value assigned
140 to (hard or pseudo) register n. We use this information to see if an
141 operation being processed is redundant given a prior operation performed
142 on the register. For example, an `and' with a constant is redundant if
143 all the zero bits are already known to be turned off.
145 We use an approach similar to that used by cse, but change it in the
148 (1) We do not want to reinitialize at each label.
149 (2) It is useful, but not critical, to know the actual value assigned
150 to a register. Often just its form is helpful.
152 Therefore, we maintain the following fields:
154 last_set_value the last value assigned
155 last_set_label records the value of label_tick when the
156 register was assigned
157 last_set_table_tick records the value of label_tick when a
158 value using the register is assigned
159 last_set_invalid set to nonzero when it is not valid
160 to use the value of this register in some
163 To understand the usage of these tables, it is important to understand
164 the distinction between the value in last_set_value being valid and
165 the register being validly contained in some other expression in the
168 (The next two parameters are out of date).
170 reg_stat[i].last_set_value is valid if it is nonzero, and either
171 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
173 Register I may validly appear in any expression returned for the value
174 of another register if reg_n_sets[i] is 1. It may also appear in the
175 value for register J if reg_stat[j].last_set_invalid is zero, or
176 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
178 If an expression is found in the table containing a register which may
179 not validly appear in an expression, the register is replaced by
180 something that won't match, (clobber (const_int 0)). */
182 /* Record last value assigned to (hard or pseudo) register n. */
186 /* Record the value of label_tick when an expression involving register n
187 is placed in last_set_value. */
189 int last_set_table_tick
;
191 /* Record the value of label_tick when the value for register n is placed in
196 /* These fields are maintained in parallel with last_set_value and are
197 used to store the mode in which the register was last set, the bits
198 that were known to be zero when it was last set, and the number of
199 sign bits copies it was known to have when it was last set. */
201 unsigned HOST_WIDE_INT last_set_nonzero_bits
;
202 char last_set_sign_bit_copies
;
203 ENUM_BITFIELD(machine_mode
) last_set_mode
: 8;
205 /* Set nonzero if references to register n in expressions should not be
206 used. last_set_invalid is set nonzero when this register is being
207 assigned to and last_set_table_tick == label_tick. */
209 char last_set_invalid
;
211 /* Some registers that are set more than once and used in more than one
212 basic block are nevertheless always set in similar ways. For example,
213 a QImode register may be loaded from memory in two places on a machine
214 where byte loads zero extend.
216 We record in the following fields if a register has some leading bits
217 that are always equal to the sign bit, and what we know about the
218 nonzero bits of a register, specifically which bits are known to be
221 If an entry is zero, it means that we don't know anything special. */
223 unsigned char sign_bit_copies
;
225 unsigned HOST_WIDE_INT nonzero_bits
;
227 /* Record the value of the label_tick when the last truncation
228 happened. The field truncated_to_mode is only valid if
229 truncation_label == label_tick. */
231 int truncation_label
;
233 /* Record the last truncation seen for this register. If truncation
234 is not a nop to this mode we might be able to save an explicit
235 truncation if we know that value already contains a truncated
238 ENUM_BITFIELD(machine_mode
) truncated_to_mode
: 8;
242 static vec
<reg_stat_type
> reg_stat
;
244 /* One plus the highest pseudo for which we track REG_N_SETS.
245 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
246 but during combine_split_insns new pseudos can be created. As we don't have
247 updated DF information in that case, it is hard to initialize the array
248 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
249 so instead of growing the arrays, just assume all newly created pseudos
250 during combine might be set multiple times. */
252 static unsigned int reg_n_sets_max
;
254 /* Record the luid of the last insn that invalidated memory
255 (anything that writes memory, and subroutine calls, but not pushes). */
257 static int mem_last_set
;
259 /* Record the luid of the last CALL_INSN
260 so we can tell whether a potential combination crosses any calls. */
262 static int last_call_luid
;
264 /* When `subst' is called, this is the insn that is being modified
265 (by combining in a previous insn). The PATTERN of this insn
266 is still the old pattern partially modified and it should not be
267 looked at, but this may be used to examine the successors of the insn
268 to judge whether a simplification is valid. */
270 static rtx_insn
*subst_insn
;
272 /* This is the lowest LUID that `subst' is currently dealing with.
273 get_last_value will not return a value if the register was set at or
274 after this LUID. If not for this mechanism, we could get confused if
275 I2 or I1 in try_combine were an insn that used the old value of a register
276 to obtain a new value. In that case, we might erroneously get the
277 new value of the register when we wanted the old one. */
279 static int subst_low_luid
;
281 /* This contains any hard registers that are used in newpat; reg_dead_at_p
282 must consider all these registers to be always live. */
284 static HARD_REG_SET newpat_used_regs
;
286 /* This is an insn to which a LOG_LINKS entry has been added. If this
287 insn is the earlier than I2 or I3, combine should rescan starting at
290 static rtx_insn
*added_links_insn
;
292 /* And similarly, for notes. */
294 static rtx_insn
*added_notes_insn
;
296 /* Basic block in which we are performing combines. */
297 static basic_block this_basic_block
;
298 static bool optimize_this_for_speed_p
;
301 /* Length of the currently allocated uid_insn_cost array. */
303 static int max_uid_known
;
305 /* The following array records the insn_cost for every insn
306 in the instruction stream. */
308 static int *uid_insn_cost
;
310 /* The following array records the LOG_LINKS for every insn in the
311 instruction stream as struct insn_link pointers. */
316 struct insn_link
*next
;
319 static struct insn_link
**uid_log_links
;
322 insn_uid_check (const_rtx insn
)
324 int uid
= INSN_UID (insn
);
325 gcc_checking_assert (uid
<= max_uid_known
);
329 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
330 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
332 #define FOR_EACH_LOG_LINK(L, INSN) \
333 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
335 /* Links for LOG_LINKS are allocated from this obstack. */
337 static struct obstack insn_link_obstack
;
339 /* Allocate a link. */
341 static inline struct insn_link
*
342 alloc_insn_link (rtx_insn
*insn
, unsigned int regno
, struct insn_link
*next
)
345 = (struct insn_link
*) obstack_alloc (&insn_link_obstack
,
346 sizeof (struct insn_link
));
353 /* Incremented for each basic block. */
355 static int label_tick
;
357 /* Reset to label_tick for each extended basic block in scanning order. */
359 static int label_tick_ebb_start
;
361 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
362 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
364 static scalar_int_mode nonzero_bits_mode
;
366 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
367 be safely used. It is zero while computing them and after combine has
368 completed. This former test prevents propagating values based on
369 previously set values, which can be incorrect if a variable is modified
372 static int nonzero_sign_valid
;
375 /* Record one modification to rtl structure
376 to be undone by storing old_contents into *where. */
378 enum undo_kind
{ UNDO_RTX
, UNDO_INT
, UNDO_MODE
, UNDO_LINKS
};
384 union { rtx r
; int i
; machine_mode m
; struct insn_link
*l
; } old_contents
;
385 union { rtx
*r
; int *i
; struct insn_link
**l
; } where
;
388 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
389 num_undo says how many are currently recorded.
391 other_insn is nonzero if we have modified some other insn in the process
392 of working on subst_insn. It must be verified too. */
398 rtx_insn
*other_insn
;
401 static struct undobuf undobuf
;
403 /* Number of times the pseudo being substituted for
404 was found and replaced. */
406 static int n_occurrences
;
408 static rtx
reg_nonzero_bits_for_combine (const_rtx
, scalar_int_mode
,
410 unsigned HOST_WIDE_INT
*);
411 static rtx
reg_num_sign_bit_copies_for_combine (const_rtx
, scalar_int_mode
,
414 static void do_SUBST (rtx
*, rtx
);
415 static void do_SUBST_INT (int *, int);
416 static void init_reg_last (void);
417 static void setup_incoming_promotions (rtx_insn
*);
418 static void set_nonzero_bits_and_sign_copies (rtx
, const_rtx
, void *);
419 static int cant_combine_insn_p (rtx_insn
*);
420 static int can_combine_p (rtx_insn
*, rtx_insn
*, rtx_insn
*, rtx_insn
*,
421 rtx_insn
*, rtx_insn
*, rtx
*, rtx
*);
422 static int combinable_i3pat (rtx_insn
*, rtx
*, rtx
, rtx
, rtx
, int, int, rtx
*);
423 static int contains_muldiv (rtx
);
424 static rtx_insn
*try_combine (rtx_insn
*, rtx_insn
*, rtx_insn
*, rtx_insn
*,
426 static void undo_all (void);
427 static void undo_commit (void);
428 static rtx
*find_split_point (rtx
*, rtx_insn
*, bool);
429 static rtx
subst (rtx
, rtx
, rtx
, int, int, int);
430 static rtx
combine_simplify_rtx (rtx
, machine_mode
, int, int);
431 static rtx
simplify_if_then_else (rtx
);
432 static rtx
simplify_set (rtx
);
433 static rtx
simplify_logical (rtx
);
434 static rtx
expand_compound_operation (rtx
);
435 static const_rtx
expand_field_assignment (const_rtx
);
436 static rtx
make_extraction (machine_mode
, rtx
, HOST_WIDE_INT
,
437 rtx
, unsigned HOST_WIDE_INT
, int, int, int);
438 static int get_pos_from_mask (unsigned HOST_WIDE_INT
,
439 unsigned HOST_WIDE_INT
*);
440 static rtx
canon_reg_for_combine (rtx
, rtx
);
441 static rtx
force_int_to_mode (rtx
, scalar_int_mode
, scalar_int_mode
,
442 scalar_int_mode
, unsigned HOST_WIDE_INT
, int);
443 static rtx
force_to_mode (rtx
, machine_mode
,
444 unsigned HOST_WIDE_INT
, int);
445 static rtx
if_then_else_cond (rtx
, rtx
*, rtx
*);
446 static rtx
known_cond (rtx
, enum rtx_code
, rtx
, rtx
);
447 static int rtx_equal_for_field_assignment_p (rtx
, rtx
, bool = false);
448 static rtx
make_field_assignment (rtx
);
449 static rtx
apply_distributive_law (rtx
);
450 static rtx
distribute_and_simplify_rtx (rtx
, int);
451 static rtx
simplify_and_const_int_1 (scalar_int_mode
, rtx
,
452 unsigned HOST_WIDE_INT
);
453 static rtx
simplify_and_const_int (rtx
, scalar_int_mode
, rtx
,
454 unsigned HOST_WIDE_INT
);
455 static int merge_outer_ops (enum rtx_code
*, HOST_WIDE_INT
*, enum rtx_code
,
456 HOST_WIDE_INT
, machine_mode
, int *);
457 static rtx
simplify_shift_const_1 (enum rtx_code
, machine_mode
, rtx
, int);
458 static rtx
simplify_shift_const (rtx
, enum rtx_code
, machine_mode
, rtx
,
460 static int recog_for_combine (rtx
*, rtx_insn
*, rtx
*);
461 static rtx
gen_lowpart_for_combine (machine_mode
, rtx
);
462 static enum rtx_code
simplify_compare_const (enum rtx_code
, machine_mode
,
464 static enum rtx_code
simplify_comparison (enum rtx_code
, rtx
*, rtx
*);
465 static void update_table_tick (rtx
);
466 static void record_value_for_reg (rtx
, rtx_insn
*, rtx
);
467 static void check_promoted_subreg (rtx_insn
*, rtx
);
468 static void record_dead_and_set_regs_1 (rtx
, const_rtx
, void *);
469 static void record_dead_and_set_regs (rtx_insn
*);
470 static int get_last_value_validate (rtx
*, rtx_insn
*, int, int);
471 static rtx
get_last_value (const_rtx
);
472 static void reg_dead_at_p_1 (rtx
, const_rtx
, void *);
473 static int reg_dead_at_p (rtx
, rtx_insn
*);
474 static void move_deaths (rtx
, rtx
, int, rtx_insn
*, rtx
*);
475 static int reg_bitfield_target_p (rtx
, rtx
);
476 static void distribute_notes (rtx
, rtx_insn
*, rtx_insn
*, rtx_insn
*, rtx
, rtx
, rtx
);
477 static void distribute_links (struct insn_link
*);
478 static void mark_used_regs_combine (rtx
);
479 static void record_promoted_value (rtx_insn
*, rtx
);
480 static bool unmentioned_reg_p (rtx
, rtx
);
481 static void record_truncated_values (rtx
*, void *);
482 static bool reg_truncated_to_mode (machine_mode
, const_rtx
);
483 static rtx
gen_lowpart_or_truncate (machine_mode
, rtx
);
486 /* It is not safe to use ordinary gen_lowpart in combine.
487 See comments in gen_lowpart_for_combine. */
488 #undef RTL_HOOKS_GEN_LOWPART
489 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
491 /* Our implementation of gen_lowpart never emits a new pseudo. */
492 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
493 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
495 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
496 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
498 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
499 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
501 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
502 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
504 static const struct rtl_hooks combine_rtl_hooks
= RTL_HOOKS_INITIALIZER
;
507 /* Convenience wrapper for the canonicalize_comparison target hook.
508 Target hooks cannot use enum rtx_code. */
510 target_canonicalize_comparison (enum rtx_code
*code
, rtx
*op0
, rtx
*op1
,
511 bool op0_preserve_value
)
513 int code_int
= (int)*code
;
514 targetm
.canonicalize_comparison (&code_int
, op0
, op1
, op0_preserve_value
);
515 *code
= (enum rtx_code
)code_int
;
518 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
519 PATTERN cannot be split. Otherwise, it returns an insn sequence.
520 This is a wrapper around split_insns which ensures that the
521 reg_stat vector is made larger if the splitter creates a new
525 combine_split_insns (rtx pattern
, rtx_insn
*insn
)
530 ret
= split_insns (pattern
, insn
);
531 nregs
= max_reg_num ();
532 if (nregs
> reg_stat
.length ())
533 reg_stat
.safe_grow_cleared (nregs
, true);
537 /* This is used by find_single_use to locate an rtx in LOC that
538 contains exactly one use of DEST, which is typically a REG.
539 It returns a pointer to the innermost rtx expression
540 containing DEST. Appearances of DEST that are being used to
541 totally replace it are not counted. */
544 find_single_use_1 (rtx dest
, rtx
*loc
)
547 enum rtx_code code
= GET_CODE (x
);
563 /* If the destination is anything other than PC, a REG or a SUBREG
564 of a REG that occupies all of the REG, the insn uses DEST if
565 it is mentioned in the destination or the source. Otherwise, we
566 need just check the source. */
567 if (GET_CODE (SET_DEST (x
)) != PC
568 && !REG_P (SET_DEST (x
))
569 && ! (GET_CODE (SET_DEST (x
)) == SUBREG
570 && REG_P (SUBREG_REG (SET_DEST (x
)))
571 && !read_modify_subreg_p (SET_DEST (x
))))
574 return find_single_use_1 (dest
, &SET_SRC (x
));
578 return find_single_use_1 (dest
, &XEXP (x
, 0));
584 /* If it wasn't one of the common cases above, check each expression and
585 vector of this code. Look for a unique usage of DEST. */
587 fmt
= GET_RTX_FORMAT (code
);
588 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
592 if (dest
== XEXP (x
, i
)
593 || (REG_P (dest
) && REG_P (XEXP (x
, i
))
594 && REGNO (dest
) == REGNO (XEXP (x
, i
))))
597 this_result
= find_single_use_1 (dest
, &XEXP (x
, i
));
600 result
= this_result
;
601 else if (this_result
)
602 /* Duplicate usage. */
605 else if (fmt
[i
] == 'E')
609 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
611 if (XVECEXP (x
, i
, j
) == dest
613 && REG_P (XVECEXP (x
, i
, j
))
614 && REGNO (XVECEXP (x
, i
, j
)) == REGNO (dest
)))
617 this_result
= find_single_use_1 (dest
, &XVECEXP (x
, i
, j
));
620 result
= this_result
;
621 else if (this_result
)
631 /* See if DEST, produced in INSN, is used only a single time in the
632 sequel. If so, return a pointer to the innermost rtx expression in which
635 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
637 Otherwise, we find the single use by finding an insn that has a
638 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
639 only referenced once in that insn, we know that it must be the first
640 and last insn referencing DEST. */
643 find_single_use (rtx dest
, rtx_insn
*insn
, rtx_insn
**ploc
)
648 struct insn_link
*link
;
653 bb
= BLOCK_FOR_INSN (insn
);
654 for (next
= NEXT_INSN (insn
);
655 next
&& BLOCK_FOR_INSN (next
) == bb
;
656 next
= NEXT_INSN (next
))
657 if (NONDEBUG_INSN_P (next
) && dead_or_set_p (next
, dest
))
659 FOR_EACH_LOG_LINK (link
, next
)
660 if (link
->insn
== insn
&& link
->regno
== REGNO (dest
))
665 result
= find_single_use_1 (dest
, &PATTERN (next
));
675 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
676 insn. The substitution can be undone by undo_all. If INTO is already
677 set to NEWVAL, do not record this change. Because computing NEWVAL might
678 also call SUBST, we have to compute it before we put anything into
682 do_SUBST (rtx
*into
, rtx newval
)
687 if (oldval
== newval
)
690 /* We'd like to catch as many invalid transformations here as
691 possible. Unfortunately, there are way too many mode changes
692 that are perfectly valid, so we'd waste too much effort for
693 little gain doing the checks here. Focus on catching invalid
694 transformations involving integer constants. */
695 if (GET_MODE_CLASS (GET_MODE (oldval
)) == MODE_INT
696 && CONST_INT_P (newval
))
698 /* Sanity check that we're replacing oldval with a CONST_INT
699 that is a valid sign-extension for the original mode. */
700 gcc_assert (INTVAL (newval
)
701 == trunc_int_for_mode (INTVAL (newval
), GET_MODE (oldval
)));
703 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
704 CONST_INT is not valid, because after the replacement, the
705 original mode would be gone. Unfortunately, we can't tell
706 when do_SUBST is called to replace the operand thereof, so we
707 perform this test on oldval instead, checking whether an
708 invalid replacement took place before we got here. */
709 gcc_assert (!(GET_CODE (oldval
) == SUBREG
710 && CONST_INT_P (SUBREG_REG (oldval
))));
711 gcc_assert (!(GET_CODE (oldval
) == ZERO_EXTEND
712 && CONST_INT_P (XEXP (oldval
, 0))));
716 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
718 buf
= XNEW (struct undo
);
720 buf
->kind
= UNDO_RTX
;
722 buf
->old_contents
.r
= oldval
;
725 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
728 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
730 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
731 for the value of a HOST_WIDE_INT value (including CONST_INT) is
735 do_SUBST_INT (int *into
, int newval
)
740 if (oldval
== newval
)
744 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
746 buf
= XNEW (struct undo
);
748 buf
->kind
= UNDO_INT
;
750 buf
->old_contents
.i
= oldval
;
753 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
756 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
758 /* Similar to SUBST, but just substitute the mode. This is used when
759 changing the mode of a pseudo-register, so that any other
760 references to the entry in the regno_reg_rtx array will change as
764 do_SUBST_MODE (rtx
*into
, machine_mode newval
)
767 machine_mode oldval
= GET_MODE (*into
);
769 if (oldval
== newval
)
773 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
775 buf
= XNEW (struct undo
);
777 buf
->kind
= UNDO_MODE
;
779 buf
->old_contents
.m
= oldval
;
780 adjust_reg_mode (*into
, newval
);
782 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
785 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
787 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
790 do_SUBST_LINK (struct insn_link
**into
, struct insn_link
*newval
)
793 struct insn_link
* oldval
= *into
;
795 if (oldval
== newval
)
799 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
801 buf
= XNEW (struct undo
);
803 buf
->kind
= UNDO_LINKS
;
805 buf
->old_contents
.l
= oldval
;
808 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
811 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
813 /* Subroutine of try_combine. Determine whether the replacement patterns
814 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
815 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
816 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
817 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
818 of all the instructions can be estimated and the replacements are more
819 expensive than the original sequence. */
822 combine_validate_cost (rtx_insn
*i0
, rtx_insn
*i1
, rtx_insn
*i2
, rtx_insn
*i3
,
823 rtx newpat
, rtx newi2pat
, rtx newotherpat
)
825 int i0_cost
, i1_cost
, i2_cost
, i3_cost
;
826 int new_i2_cost
, new_i3_cost
;
827 int old_cost
, new_cost
;
829 /* Lookup the original insn_costs. */
830 i2_cost
= INSN_COST (i2
);
831 i3_cost
= INSN_COST (i3
);
835 i1_cost
= INSN_COST (i1
);
838 i0_cost
= INSN_COST (i0
);
839 old_cost
= (i0_cost
> 0 && i1_cost
> 0 && i2_cost
> 0 && i3_cost
> 0
840 ? i0_cost
+ i1_cost
+ i2_cost
+ i3_cost
: 0);
844 old_cost
= (i1_cost
> 0 && i2_cost
> 0 && i3_cost
> 0
845 ? i1_cost
+ i2_cost
+ i3_cost
: 0);
851 old_cost
= (i2_cost
> 0 && i3_cost
> 0) ? i2_cost
+ i3_cost
: 0;
852 i1_cost
= i0_cost
= 0;
855 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
857 if (old_cost
&& i1
&& INSN_UID (i1
) == INSN_UID (i2
))
861 /* Calculate the replacement insn_costs. */
862 rtx tmp
= PATTERN (i3
);
863 PATTERN (i3
) = newpat
;
864 int tmpi
= INSN_CODE (i3
);
866 new_i3_cost
= insn_cost (i3
, optimize_this_for_speed_p
);
868 INSN_CODE (i3
) = tmpi
;
872 PATTERN (i2
) = newi2pat
;
873 tmpi
= INSN_CODE (i2
);
875 new_i2_cost
= insn_cost (i2
, optimize_this_for_speed_p
);
877 INSN_CODE (i2
) = tmpi
;
878 new_cost
= (new_i2_cost
> 0 && new_i3_cost
> 0)
879 ? new_i2_cost
+ new_i3_cost
: 0;
883 new_cost
= new_i3_cost
;
887 if (undobuf
.other_insn
)
889 int old_other_cost
, new_other_cost
;
891 old_other_cost
= INSN_COST (undobuf
.other_insn
);
892 tmp
= PATTERN (undobuf
.other_insn
);
893 PATTERN (undobuf
.other_insn
) = newotherpat
;
894 tmpi
= INSN_CODE (undobuf
.other_insn
);
895 INSN_CODE (undobuf
.other_insn
) = -1;
896 new_other_cost
= insn_cost (undobuf
.other_insn
,
897 optimize_this_for_speed_p
);
898 PATTERN (undobuf
.other_insn
) = tmp
;
899 INSN_CODE (undobuf
.other_insn
) = tmpi
;
900 if (old_other_cost
> 0 && new_other_cost
> 0)
902 old_cost
+= old_other_cost
;
903 new_cost
+= new_other_cost
;
909 /* Disallow this combination if both new_cost and old_cost are greater than
910 zero, and new_cost is greater than old cost. */
911 int reject
= old_cost
> 0 && new_cost
> old_cost
;
915 fprintf (dump_file
, "%s combination of insns ",
916 reject
? "rejecting" : "allowing");
918 fprintf (dump_file
, "%d, ", INSN_UID (i0
));
919 if (i1
&& INSN_UID (i1
) != INSN_UID (i2
))
920 fprintf (dump_file
, "%d, ", INSN_UID (i1
));
921 fprintf (dump_file
, "%d and %d\n", INSN_UID (i2
), INSN_UID (i3
));
923 fprintf (dump_file
, "original costs ");
925 fprintf (dump_file
, "%d + ", i0_cost
);
926 if (i1
&& INSN_UID (i1
) != INSN_UID (i2
))
927 fprintf (dump_file
, "%d + ", i1_cost
);
928 fprintf (dump_file
, "%d + %d = %d\n", i2_cost
, i3_cost
, old_cost
);
931 fprintf (dump_file
, "replacement costs %d + %d = %d\n",
932 new_i2_cost
, new_i3_cost
, new_cost
);
934 fprintf (dump_file
, "replacement cost %d\n", new_cost
);
940 /* Update the uid_insn_cost array with the replacement costs. */
941 INSN_COST (i2
) = new_i2_cost
;
942 INSN_COST (i3
) = new_i3_cost
;
954 /* Delete any insns that copy a register to itself.
955 Return true if the CFG was changed. */
958 delete_noop_moves (void)
960 rtx_insn
*insn
, *next
;
963 bool edges_deleted
= false;
965 FOR_EACH_BB_FN (bb
, cfun
)
967 for (insn
= BB_HEAD (bb
); insn
!= NEXT_INSN (BB_END (bb
)); insn
= next
)
969 next
= NEXT_INSN (insn
);
970 if (INSN_P (insn
) && noop_move_p (insn
))
973 fprintf (dump_file
, "deleting noop move %d\n", INSN_UID (insn
));
975 edges_deleted
|= delete_insn_and_edges (insn
);
980 return edges_deleted
;
984 /* Return false if we do not want to (or cannot) combine DEF. */
986 can_combine_def_p (df_ref def
)
988 /* Do not consider if it is pre/post modification in MEM. */
989 if (DF_REF_FLAGS (def
) & DF_REF_PRE_POST_MODIFY
)
992 unsigned int regno
= DF_REF_REGNO (def
);
994 /* Do not combine frame pointer adjustments. */
995 if ((regno
== FRAME_POINTER_REGNUM
996 && (!reload_completed
|| frame_pointer_needed
))
997 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
998 && regno
== HARD_FRAME_POINTER_REGNUM
999 && (!reload_completed
|| frame_pointer_needed
))
1000 || (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
1001 && regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
]))
1007 /* Return false if we do not want to (or cannot) combine USE. */
1009 can_combine_use_p (df_ref use
)
1011 /* Do not consider the usage of the stack pointer by function call. */
1012 if (DF_REF_FLAGS (use
) & DF_REF_CALL_STACK_USAGE
)
1018 /* Fill in log links field for all insns. */
1021 create_log_links (void)
1024 rtx_insn
**next_use
;
1028 next_use
= XCNEWVEC (rtx_insn
*, max_reg_num ());
1030 /* Pass through each block from the end, recording the uses of each
1031 register and establishing log links when def is encountered.
1032 Note that we do not clear next_use array in order to save time,
1033 so we have to test whether the use is in the same basic block as def.
1035 There are a few cases below when we do not consider the definition or
1036 usage -- these are taken from original flow.c did. Don't ask me why it is
1037 done this way; I don't know and if it works, I don't want to know. */
1039 FOR_EACH_BB_FN (bb
, cfun
)
1041 FOR_BB_INSNS_REVERSE (bb
, insn
)
1043 if (!NONDEBUG_INSN_P (insn
))
1046 /* Log links are created only once. */
1047 gcc_assert (!LOG_LINKS (insn
));
1049 FOR_EACH_INSN_DEF (def
, insn
)
1051 unsigned int regno
= DF_REF_REGNO (def
);
1054 if (!next_use
[regno
])
1057 if (!can_combine_def_p (def
))
1060 use_insn
= next_use
[regno
];
1061 next_use
[regno
] = NULL
;
1063 if (BLOCK_FOR_INSN (use_insn
) != bb
)
1068 We don't build a LOG_LINK for hard registers contained
1069 in ASM_OPERANDs. If these registers get replaced,
1070 we might wind up changing the semantics of the insn,
1071 even if reload can make what appear to be valid
1072 assignments later. */
1073 if (regno
< FIRST_PSEUDO_REGISTER
1074 && asm_noperands (PATTERN (use_insn
)) >= 0)
1077 /* Don't add duplicate links between instructions. */
1078 struct insn_link
*links
;
1079 FOR_EACH_LOG_LINK (links
, use_insn
)
1080 if (insn
== links
->insn
&& regno
== links
->regno
)
1084 LOG_LINKS (use_insn
)
1085 = alloc_insn_link (insn
, regno
, LOG_LINKS (use_insn
));
1088 FOR_EACH_INSN_USE (use
, insn
)
1089 if (can_combine_use_p (use
))
1090 next_use
[DF_REF_REGNO (use
)] = insn
;
1097 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1098 true if we found a LOG_LINK that proves that A feeds B. This only works
1099 if there are no instructions between A and B which could have a link
1100 depending on A, since in that case we would not record a link for B. */
1103 insn_a_feeds_b (rtx_insn
*a
, rtx_insn
*b
)
1105 struct insn_link
*links
;
1106 FOR_EACH_LOG_LINK (links
, b
)
1107 if (links
->insn
== a
)
1112 /* Main entry point for combiner. F is the first insn of the function.
1113 NREGS is the first unused pseudo-reg number.
1115 Return nonzero if the CFG was changed (e.g. if the combiner has
1116 turned an indirect jump instruction into a direct jump). */
1118 combine_instructions (rtx_insn
*f
, unsigned int nregs
)
1120 rtx_insn
*insn
, *next
;
1121 struct insn_link
*links
, *nextlinks
;
1123 basic_block last_bb
;
1125 int new_direct_jump_p
= 0;
1127 for (first
= f
; first
&& !NONDEBUG_INSN_P (first
); )
1128 first
= NEXT_INSN (first
);
1132 combine_attempts
= 0;
1135 combine_successes
= 0;
1137 rtl_hooks
= combine_rtl_hooks
;
1139 reg_stat
.safe_grow_cleared (nregs
, true);
1141 init_recog_no_volatile ();
1143 /* Allocate array for insn info. */
1144 max_uid_known
= get_max_uid ();
1145 uid_log_links
= XCNEWVEC (struct insn_link
*, max_uid_known
+ 1);
1146 uid_insn_cost
= XCNEWVEC (int, max_uid_known
+ 1);
1147 gcc_obstack_init (&insn_link_obstack
);
1149 nonzero_bits_mode
= int_mode_for_size (HOST_BITS_PER_WIDE_INT
, 0).require ();
1151 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1152 problems when, for example, we have j <<= 1 in a loop. */
1154 nonzero_sign_valid
= 0;
1155 label_tick
= label_tick_ebb_start
= 1;
1157 /* Scan all SETs and see if we can deduce anything about what
1158 bits are known to be zero for some registers and how many copies
1159 of the sign bit are known to exist for those registers.
1161 Also set any known values so that we can use it while searching
1162 for what bits are known to be set. */
1164 setup_incoming_promotions (first
);
1165 /* Allow the entry block and the first block to fall into the same EBB.
1166 Conceptually the incoming promotions are assigned to the entry block. */
1167 last_bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
1169 create_log_links ();
1170 FOR_EACH_BB_FN (this_basic_block
, cfun
)
1172 optimize_this_for_speed_p
= optimize_bb_for_speed_p (this_basic_block
);
1177 if (!single_pred_p (this_basic_block
)
1178 || single_pred (this_basic_block
) != last_bb
)
1179 label_tick_ebb_start
= label_tick
;
1180 last_bb
= this_basic_block
;
1182 FOR_BB_INSNS (this_basic_block
, insn
)
1183 if (INSN_P (insn
) && BLOCK_FOR_INSN (insn
))
1187 subst_low_luid
= DF_INSN_LUID (insn
);
1190 note_stores (insn
, set_nonzero_bits_and_sign_copies
, insn
);
1191 record_dead_and_set_regs (insn
);
1194 for (links
= REG_NOTES (insn
); links
; links
= XEXP (links
, 1))
1195 if (REG_NOTE_KIND (links
) == REG_INC
)
1196 set_nonzero_bits_and_sign_copies (XEXP (links
, 0), NULL_RTX
,
1199 /* Record the current insn_cost of this instruction. */
1200 INSN_COST (insn
) = insn_cost (insn
, optimize_this_for_speed_p
);
1203 fprintf (dump_file
, "insn_cost %d for ", INSN_COST (insn
));
1204 dump_insn_slim (dump_file
, insn
);
1209 nonzero_sign_valid
= 1;
1211 /* Now scan all the insns in forward order. */
1212 label_tick
= label_tick_ebb_start
= 1;
1214 setup_incoming_promotions (first
);
1215 last_bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
1216 int max_combine
= param_max_combine_insns
;
1218 FOR_EACH_BB_FN (this_basic_block
, cfun
)
1220 rtx_insn
*last_combined_insn
= NULL
;
1222 /* Ignore instruction combination in basic blocks that are going to
1223 be removed as unreachable anyway. See PR82386. */
1224 if (EDGE_COUNT (this_basic_block
->preds
) == 0)
1227 optimize_this_for_speed_p
= optimize_bb_for_speed_p (this_basic_block
);
1232 if (!single_pred_p (this_basic_block
)
1233 || single_pred (this_basic_block
) != last_bb
)
1234 label_tick_ebb_start
= label_tick
;
1235 last_bb
= this_basic_block
;
1237 rtl_profile_for_bb (this_basic_block
);
1238 for (insn
= BB_HEAD (this_basic_block
);
1239 insn
!= NEXT_INSN (BB_END (this_basic_block
));
1240 insn
= next
? next
: NEXT_INSN (insn
))
1243 if (!NONDEBUG_INSN_P (insn
))
1246 while (last_combined_insn
1247 && (!NONDEBUG_INSN_P (last_combined_insn
)
1248 || last_combined_insn
->deleted ()))
1249 last_combined_insn
= PREV_INSN (last_combined_insn
);
1250 if (last_combined_insn
== NULL_RTX
1251 || BLOCK_FOR_INSN (last_combined_insn
) != this_basic_block
1252 || DF_INSN_LUID (last_combined_insn
) <= DF_INSN_LUID (insn
))
1253 last_combined_insn
= insn
;
1255 /* See if we know about function return values before this
1256 insn based upon SUBREG flags. */
1257 check_promoted_subreg (insn
, PATTERN (insn
));
1259 /* See if we can find hardregs and subreg of pseudos in
1260 narrower modes. This could help turning TRUNCATEs
1262 note_uses (&PATTERN (insn
), record_truncated_values
, NULL
);
1264 /* Try this insn with each insn it links back to. */
1266 FOR_EACH_LOG_LINK (links
, insn
)
1267 if ((next
= try_combine (insn
, links
->insn
, NULL
,
1268 NULL
, &new_direct_jump_p
,
1269 last_combined_insn
)) != 0)
1271 statistics_counter_event (cfun
, "two-insn combine", 1);
1275 /* Try each sequence of three linked insns ending with this one. */
1277 if (max_combine
>= 3)
1278 FOR_EACH_LOG_LINK (links
, insn
)
1280 rtx_insn
*link
= links
->insn
;
1282 /* If the linked insn has been replaced by a note, then there
1283 is no point in pursuing this chain any further. */
1287 FOR_EACH_LOG_LINK (nextlinks
, link
)
1288 if ((next
= try_combine (insn
, link
, nextlinks
->insn
,
1289 NULL
, &new_direct_jump_p
,
1290 last_combined_insn
)) != 0)
1292 statistics_counter_event (cfun
, "three-insn combine", 1);
1297 /* Try combining an insn with two different insns whose results it
1299 if (max_combine
>= 3)
1300 FOR_EACH_LOG_LINK (links
, insn
)
1301 for (nextlinks
= links
->next
; nextlinks
;
1302 nextlinks
= nextlinks
->next
)
1303 if ((next
= try_combine (insn
, links
->insn
,
1304 nextlinks
->insn
, NULL
,
1306 last_combined_insn
)) != 0)
1309 statistics_counter_event (cfun
, "three-insn combine", 1);
1313 /* Try four-instruction combinations. */
1314 if (max_combine
>= 4)
1315 FOR_EACH_LOG_LINK (links
, insn
)
1317 struct insn_link
*next1
;
1318 rtx_insn
*link
= links
->insn
;
1320 /* If the linked insn has been replaced by a note, then there
1321 is no point in pursuing this chain any further. */
1325 FOR_EACH_LOG_LINK (next1
, link
)
1327 rtx_insn
*link1
= next1
->insn
;
1330 /* I0 -> I1 -> I2 -> I3. */
1331 FOR_EACH_LOG_LINK (nextlinks
, link1
)
1332 if ((next
= try_combine (insn
, link
, link1
,
1335 last_combined_insn
)) != 0)
1337 statistics_counter_event (cfun
, "four-insn combine", 1);
1340 /* I0, I1 -> I2, I2 -> I3. */
1341 for (nextlinks
= next1
->next
; nextlinks
;
1342 nextlinks
= nextlinks
->next
)
1343 if ((next
= try_combine (insn
, link
, link1
,
1346 last_combined_insn
)) != 0)
1348 statistics_counter_event (cfun
, "four-insn combine", 1);
1353 for (next1
= links
->next
; next1
; next1
= next1
->next
)
1355 rtx_insn
*link1
= next1
->insn
;
1358 /* I0 -> I2; I1, I2 -> I3. */
1359 FOR_EACH_LOG_LINK (nextlinks
, link
)
1360 if ((next
= try_combine (insn
, link
, link1
,
1363 last_combined_insn
)) != 0)
1365 statistics_counter_event (cfun
, "four-insn combine", 1);
1368 /* I0 -> I1; I1, I2 -> I3. */
1369 FOR_EACH_LOG_LINK (nextlinks
, link1
)
1370 if ((next
= try_combine (insn
, link
, link1
,
1373 last_combined_insn
)) != 0)
1375 statistics_counter_event (cfun
, "four-insn combine", 1);
1381 /* Try this insn with each REG_EQUAL note it links back to. */
1382 FOR_EACH_LOG_LINK (links
, insn
)
1385 rtx_insn
*temp
= links
->insn
;
1386 if ((set
= single_set (temp
)) != 0
1387 && (note
= find_reg_equal_equiv_note (temp
)) != 0
1388 && (note
= XEXP (note
, 0), GET_CODE (note
)) != EXPR_LIST
1389 && ! side_effects_p (SET_SRC (set
))
1390 /* Avoid using a register that may already been marked
1391 dead by an earlier instruction. */
1392 && ! unmentioned_reg_p (note
, SET_SRC (set
))
1393 && (GET_MODE (note
) == VOIDmode
1394 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set
)))
1395 : (GET_MODE (SET_DEST (set
)) == GET_MODE (note
)
1396 && (GET_CODE (SET_DEST (set
)) != ZERO_EXTRACT
1397 || (GET_MODE (XEXP (SET_DEST (set
), 0))
1398 == GET_MODE (note
))))))
1400 /* Temporarily replace the set's source with the
1401 contents of the REG_EQUAL note. The insn will
1402 be deleted or recognized by try_combine. */
1403 rtx orig_src
= SET_SRC (set
);
1404 rtx orig_dest
= SET_DEST (set
);
1405 if (GET_CODE (SET_DEST (set
)) == ZERO_EXTRACT
)
1406 SET_DEST (set
) = XEXP (SET_DEST (set
), 0);
1407 SET_SRC (set
) = note
;
1409 i2mod_old_rhs
= copy_rtx (orig_src
);
1410 i2mod_new_rhs
= copy_rtx (note
);
1411 next
= try_combine (insn
, i2mod
, NULL
, NULL
,
1413 last_combined_insn
);
1417 statistics_counter_event (cfun
, "insn-with-note combine", 1);
1420 SET_SRC (set
) = orig_src
;
1421 SET_DEST (set
) = orig_dest
;
1426 record_dead_and_set_regs (insn
);
1433 default_rtl_profile ();
1435 new_direct_jump_p
|= purge_all_dead_edges ();
1436 new_direct_jump_p
|= delete_noop_moves ();
1439 obstack_free (&insn_link_obstack
, NULL
);
1440 free (uid_log_links
);
1441 free (uid_insn_cost
);
1442 reg_stat
.release ();
1445 struct undo
*undo
, *next
;
1446 for (undo
= undobuf
.frees
; undo
; undo
= next
)
1454 total_attempts
+= combine_attempts
;
1455 total_merges
+= combine_merges
;
1456 total_extras
+= combine_extras
;
1457 total_successes
+= combine_successes
;
1459 nonzero_sign_valid
= 0;
1460 rtl_hooks
= general_rtl_hooks
;
1462 /* Make recognizer allow volatile MEMs again. */
1465 return new_direct_jump_p
;
1468 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1471 init_reg_last (void)
1476 FOR_EACH_VEC_ELT (reg_stat
, i
, p
)
1477 memset (p
, 0, offsetof (reg_stat_type
, sign_bit_copies
));
1480 /* Set up any promoted values for incoming argument registers. */
1483 setup_incoming_promotions (rtx_insn
*first
)
1486 bool strictly_local
= false;
1488 for (arg
= DECL_ARGUMENTS (current_function_decl
); arg
;
1489 arg
= DECL_CHAIN (arg
))
1491 rtx x
, reg
= DECL_INCOMING_RTL (arg
);
1493 machine_mode mode1
, mode2
, mode3
, mode4
;
1495 /* Only continue if the incoming argument is in a register. */
1499 /* Determine, if possible, whether all call sites of the current
1500 function lie within the current compilation unit. (This does
1501 take into account the exporting of a function via taking its
1502 address, and so forth.) */
1504 = cgraph_node::local_info_node (current_function_decl
)->local
;
1506 /* The mode and signedness of the argument before any promotions happen
1507 (equal to the mode of the pseudo holding it at that stage). */
1508 mode1
= TYPE_MODE (TREE_TYPE (arg
));
1509 uns1
= TYPE_UNSIGNED (TREE_TYPE (arg
));
1511 /* The mode and signedness of the argument after any source language and
1512 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1513 mode2
= TYPE_MODE (DECL_ARG_TYPE (arg
));
1514 uns3
= TYPE_UNSIGNED (DECL_ARG_TYPE (arg
));
1516 /* The mode and signedness of the argument as it is actually passed,
1517 see assign_parm_setup_reg in function.c. */
1518 mode3
= promote_function_mode (TREE_TYPE (arg
), mode1
, &uns3
,
1519 TREE_TYPE (cfun
->decl
), 0);
1521 /* The mode of the register in which the argument is being passed. */
1522 mode4
= GET_MODE (reg
);
1524 /* Eliminate sign extensions in the callee when:
1525 (a) A mode promotion has occurred; */
1528 /* (b) The mode of the register is the same as the mode of
1529 the argument as it is passed; */
1532 /* (c) There's no language level extension; */
1535 /* (c.1) All callers are from the current compilation unit. If that's
1536 the case we don't have to rely on an ABI, we only have to know
1537 what we're generating right now, and we know that we will do the
1538 mode1 to mode2 promotion with the given sign. */
1539 else if (!strictly_local
)
1541 /* (c.2) The combination of the two promotions is useful. This is
1542 true when the signs match, or if the first promotion is unsigned.
1543 In the later case, (sign_extend (zero_extend x)) is the same as
1544 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1550 /* Record that the value was promoted from mode1 to mode3,
1551 so that any sign extension at the head of the current
1552 function may be eliminated. */
1553 x
= gen_rtx_CLOBBER (mode1
, const0_rtx
);
1554 x
= gen_rtx_fmt_e ((uns3
? ZERO_EXTEND
: SIGN_EXTEND
), mode3
, x
);
1555 record_value_for_reg (reg
, first
, x
);
1559 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1560 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1561 because some machines (maybe most) will actually do the sign-extension and
1562 this is the conservative approach.
1564 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1568 sign_extend_short_imm (rtx src
, machine_mode mode
, unsigned int prec
)
1570 scalar_int_mode int_mode
;
1571 if (CONST_INT_P (src
)
1572 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
1573 && GET_MODE_PRECISION (int_mode
) < prec
1575 && val_signbit_known_set_p (int_mode
, INTVAL (src
)))
1576 src
= GEN_INT (INTVAL (src
) | ~GET_MODE_MASK (int_mode
));
1581 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1585 update_rsp_from_reg_equal (reg_stat_type
*rsp
, rtx_insn
*insn
, const_rtx set
,
1588 rtx reg_equal_note
= insn
? find_reg_equal_equiv_note (insn
) : NULL_RTX
;
1589 unsigned HOST_WIDE_INT bits
= 0;
1590 rtx reg_equal
= NULL
, src
= SET_SRC (set
);
1591 unsigned int num
= 0;
1594 reg_equal
= XEXP (reg_equal_note
, 0);
1596 if (SHORT_IMMEDIATES_SIGN_EXTEND
)
1598 src
= sign_extend_short_imm (src
, GET_MODE (x
), BITS_PER_WORD
);
1600 reg_equal
= sign_extend_short_imm (reg_equal
, GET_MODE (x
), BITS_PER_WORD
);
1603 /* Don't call nonzero_bits if it cannot change anything. */
1604 if (rsp
->nonzero_bits
!= HOST_WIDE_INT_M1U
)
1606 machine_mode mode
= GET_MODE (x
);
1607 if (GET_MODE_CLASS (mode
) == MODE_INT
1608 && HWI_COMPUTABLE_MODE_P (mode
))
1609 mode
= nonzero_bits_mode
;
1610 bits
= nonzero_bits (src
, mode
);
1611 if (reg_equal
&& bits
)
1612 bits
&= nonzero_bits (reg_equal
, mode
);
1613 rsp
->nonzero_bits
|= bits
;
1616 /* Don't call num_sign_bit_copies if it cannot change anything. */
1617 if (rsp
->sign_bit_copies
!= 1)
1619 num
= num_sign_bit_copies (SET_SRC (set
), GET_MODE (x
));
1620 if (reg_equal
&& maybe_ne (num
, GET_MODE_PRECISION (GET_MODE (x
))))
1622 unsigned int numeq
= num_sign_bit_copies (reg_equal
, GET_MODE (x
));
1623 if (num
== 0 || numeq
> num
)
1626 if (rsp
->sign_bit_copies
== 0 || num
< rsp
->sign_bit_copies
)
1627 rsp
->sign_bit_copies
= num
;
1631 /* Called via note_stores. If X is a pseudo that is narrower than
1632 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1634 If we are setting only a portion of X and we can't figure out what
1635 portion, assume all bits will be used since we don't know what will
1638 Similarly, set how many bits of X are known to be copies of the sign bit
1639 at all locations in the function. This is the smallest number implied
1643 set_nonzero_bits_and_sign_copies (rtx x
, const_rtx set
, void *data
)
1645 rtx_insn
*insn
= (rtx_insn
*) data
;
1646 scalar_int_mode mode
;
1649 && REGNO (x
) >= FIRST_PSEUDO_REGISTER
1650 /* If this register is undefined at the start of the file, we can't
1651 say what its contents were. */
1652 && ! REGNO_REG_SET_P
1653 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
), REGNO (x
))
1654 && is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
)
1655 && HWI_COMPUTABLE_MODE_P (mode
))
1657 reg_stat_type
*rsp
= ®_stat
[REGNO (x
)];
1659 if (set
== 0 || GET_CODE (set
) == CLOBBER
)
1661 rsp
->nonzero_bits
= GET_MODE_MASK (mode
);
1662 rsp
->sign_bit_copies
= 1;
1666 /* If this register is being initialized using itself, and the
1667 register is uninitialized in this basic block, and there are
1668 no LOG_LINKS which set the register, then part of the
1669 register is uninitialized. In that case we can't assume
1670 anything about the number of nonzero bits.
1672 ??? We could do better if we checked this in
1673 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1674 could avoid making assumptions about the insn which initially
1675 sets the register, while still using the information in other
1676 insns. We would have to be careful to check every insn
1677 involved in the combination. */
1680 && reg_referenced_p (x
, PATTERN (insn
))
1681 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn
)),
1684 struct insn_link
*link
;
1686 FOR_EACH_LOG_LINK (link
, insn
)
1687 if (dead_or_set_p (link
->insn
, x
))
1691 rsp
->nonzero_bits
= GET_MODE_MASK (mode
);
1692 rsp
->sign_bit_copies
= 1;
1697 /* If this is a complex assignment, see if we can convert it into a
1698 simple assignment. */
1699 set
= expand_field_assignment (set
);
1701 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1702 set what we know about X. */
1704 if (SET_DEST (set
) == x
1705 || (paradoxical_subreg_p (SET_DEST (set
))
1706 && SUBREG_REG (SET_DEST (set
)) == x
))
1707 update_rsp_from_reg_equal (rsp
, insn
, set
, x
);
1710 rsp
->nonzero_bits
= GET_MODE_MASK (mode
);
1711 rsp
->sign_bit_copies
= 1;
1716 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1717 optionally insns that were previously combined into I3 or that will be
1718 combined into the merger of INSN and I3. The order is PRED, PRED2,
1719 INSN, SUCC, SUCC2, I3.
1721 Return 0 if the combination is not allowed for any reason.
1723 If the combination is allowed, *PDEST will be set to the single
1724 destination of INSN and *PSRC to the single source, and this function
1728 can_combine_p (rtx_insn
*insn
, rtx_insn
*i3
, rtx_insn
*pred ATTRIBUTE_UNUSED
,
1729 rtx_insn
*pred2 ATTRIBUTE_UNUSED
, rtx_insn
*succ
, rtx_insn
*succ2
,
1730 rtx
*pdest
, rtx
*psrc
)
1737 bool all_adjacent
= true;
1738 int (*is_volatile_p
) (const_rtx
);
1744 if (next_active_insn (succ2
) != i3
)
1745 all_adjacent
= false;
1746 if (next_active_insn (succ
) != succ2
)
1747 all_adjacent
= false;
1749 else if (next_active_insn (succ
) != i3
)
1750 all_adjacent
= false;
1751 if (next_active_insn (insn
) != succ
)
1752 all_adjacent
= false;
1754 else if (next_active_insn (insn
) != i3
)
1755 all_adjacent
= false;
1757 /* Can combine only if previous insn is a SET of a REG or a SUBREG,
1758 or a PARALLEL consisting of such a SET and CLOBBERs.
1760 If INSN has CLOBBER parallel parts, ignore them for our processing.
1761 By definition, these happen during the execution of the insn. When it
1762 is merged with another insn, all bets are off. If they are, in fact,
1763 needed and aren't also supplied in I3, they may be added by
1764 recog_for_combine. Otherwise, it won't match.
1766 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1769 Get the source and destination of INSN. If more than one, can't
1772 if (GET_CODE (PATTERN (insn
)) == SET
)
1773 set
= PATTERN (insn
);
1774 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
1775 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
1777 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1779 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
1781 switch (GET_CODE (elt
))
1783 /* This is important to combine floating point insns
1784 for the SH4 port. */
1786 /* Combining an isolated USE doesn't make sense.
1787 We depend here on combinable_i3pat to reject them. */
1788 /* The code below this loop only verifies that the inputs of
1789 the SET in INSN do not change. We call reg_set_between_p
1790 to verify that the REG in the USE does not change between
1792 If the USE in INSN was for a pseudo register, the matching
1793 insn pattern will likely match any register; combining this
1794 with any other USE would only be safe if we knew that the
1795 used registers have identical values, or if there was
1796 something to tell them apart, e.g. different modes. For
1797 now, we forgo such complicated tests and simply disallow
1798 combining of USES of pseudo registers with any other USE. */
1799 if (REG_P (XEXP (elt
, 0))
1800 && GET_CODE (PATTERN (i3
)) == PARALLEL
)
1802 rtx i3pat
= PATTERN (i3
);
1803 int i
= XVECLEN (i3pat
, 0) - 1;
1804 unsigned int regno
= REGNO (XEXP (elt
, 0));
1808 rtx i3elt
= XVECEXP (i3pat
, 0, i
);
1810 if (GET_CODE (i3elt
) == USE
1811 && REG_P (XEXP (i3elt
, 0))
1812 && (REGNO (XEXP (i3elt
, 0)) == regno
1813 ? reg_set_between_p (XEXP (elt
, 0),
1814 PREV_INSN (insn
), i3
)
1815 : regno
>= FIRST_PSEUDO_REGISTER
))
1822 /* We can ignore CLOBBERs. */
1827 /* Ignore SETs whose result isn't used but not those that
1828 have side-effects. */
1829 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (elt
))
1830 && insn_nothrow_p (insn
)
1831 && !side_effects_p (elt
))
1834 /* If we have already found a SET, this is a second one and
1835 so we cannot combine with this insn. */
1843 /* Anything else means we can't combine. */
1849 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1850 so don't do anything with it. */
1851 || GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
)
1860 /* The simplification in expand_field_assignment may call back to
1861 get_last_value, so set safe guard here. */
1862 subst_low_luid
= DF_INSN_LUID (insn
);
1864 set
= expand_field_assignment (set
);
1865 src
= SET_SRC (set
), dest
= SET_DEST (set
);
1867 /* Do not eliminate user-specified register if it is in an
1868 asm input because we may break the register asm usage defined
1869 in GCC manual if allow to do so.
1870 Be aware that this may cover more cases than we expect but this
1871 should be harmless. */
1872 if (REG_P (dest
) && REG_USERVAR_P (dest
) && HARD_REGISTER_P (dest
)
1873 && extract_asm_operands (PATTERN (i3
)))
1876 /* Don't eliminate a store in the stack pointer. */
1877 if (dest
== stack_pointer_rtx
1878 /* Don't combine with an insn that sets a register to itself if it has
1879 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1880 || (rtx_equal_p (src
, dest
) && find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1881 /* Can't merge an ASM_OPERANDS. */
1882 || GET_CODE (src
) == ASM_OPERANDS
1883 /* Can't merge a function call. */
1884 || GET_CODE (src
) == CALL
1885 /* Don't eliminate a function call argument. */
1887 && (find_reg_fusage (i3
, USE
, dest
)
1889 && REGNO (dest
) < FIRST_PSEUDO_REGISTER
1890 && global_regs
[REGNO (dest
)])))
1891 /* Don't substitute into an incremented register. */
1892 || FIND_REG_INC_NOTE (i3
, dest
)
1893 || (succ
&& FIND_REG_INC_NOTE (succ
, dest
))
1894 || (succ2
&& FIND_REG_INC_NOTE (succ2
, dest
))
1895 /* Don't substitute into a non-local goto, this confuses CFG. */
1896 || (JUMP_P (i3
) && find_reg_note (i3
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
1897 /* Make sure that DEST is not used after INSN but before SUCC, or
1898 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1901 && (reg_used_between_p (dest
, succ2
, i3
)
1902 || reg_used_between_p (dest
, succ
, succ2
)))
1903 || (!succ2
&& succ
&& reg_used_between_p (dest
, succ
, i3
))
1904 || (!succ2
&& !succ
&& reg_used_between_p (dest
, insn
, i3
))
1906 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
1907 that case SUCC is not in the insn stream, so use SUCC2
1908 instead for this test. */
1909 && reg_used_between_p (dest
, insn
,
1911 && INSN_UID (succ
) == INSN_UID (succ2
)
1913 /* Make sure that the value that is to be substituted for the register
1914 does not use any registers whose values alter in between. However,
1915 If the insns are adjacent, a use can't cross a set even though we
1916 think it might (this can happen for a sequence of insns each setting
1917 the same destination; last_set of that register might point to
1918 a NOTE). If INSN has a REG_EQUIV note, the register is always
1919 equivalent to the memory so the substitution is valid even if there
1920 are intervening stores. Also, don't move a volatile asm or
1921 UNSPEC_VOLATILE across any other insns. */
1924 || ! find_reg_note (insn
, REG_EQUIV
, src
))
1925 && modified_between_p (src
, insn
, i3
))
1926 || (GET_CODE (src
) == ASM_OPERANDS
&& MEM_VOLATILE_P (src
))
1927 || GET_CODE (src
) == UNSPEC_VOLATILE
))
1928 /* Don't combine across a CALL_INSN, because that would possibly
1929 change whether the life span of some REGs crosses calls or not,
1930 and it is a pain to update that information.
1931 Exception: if source is a constant, moving it later can't hurt.
1932 Accept that as a special case. */
1933 || (DF_INSN_LUID (insn
) < last_call_luid
&& ! CONSTANT_P (src
)))
1936 /* DEST must be a REG. */
1939 /* If register alignment is being enforced for multi-word items in all
1940 cases except for parameters, it is possible to have a register copy
1941 insn referencing a hard register that is not allowed to contain the
1942 mode being copied and which would not be valid as an operand of most
1943 insns. Eliminate this problem by not combining with such an insn.
1945 Also, on some machines we don't want to extend the life of a hard
1949 && ((REGNO (dest
) < FIRST_PSEUDO_REGISTER
1950 && !targetm
.hard_regno_mode_ok (REGNO (dest
), GET_MODE (dest
)))
1951 /* Don't extend the life of a hard register unless it is
1952 user variable (if we have few registers) or it can't
1953 fit into the desired register (meaning something special
1955 Also avoid substituting a return register into I3, because
1956 reload can't handle a conflict with constraints of other
1958 || (REGNO (src
) < FIRST_PSEUDO_REGISTER
1959 && !targetm
.hard_regno_mode_ok (REGNO (src
),
1967 if (GET_CODE (PATTERN (i3
)) == PARALLEL
)
1968 for (i
= XVECLEN (PATTERN (i3
), 0) - 1; i
>= 0; i
--)
1969 if (GET_CODE (XVECEXP (PATTERN (i3
), 0, i
)) == CLOBBER
)
1971 rtx reg
= XEXP (XVECEXP (PATTERN (i3
), 0, i
), 0);
1973 /* If the clobber represents an earlyclobber operand, we must not
1974 substitute an expression containing the clobbered register.
1975 As we do not analyze the constraint strings here, we have to
1976 make the conservative assumption. However, if the register is
1977 a fixed hard reg, the clobber cannot represent any operand;
1978 we leave it up to the machine description to either accept or
1979 reject use-and-clobber patterns. */
1981 || REGNO (reg
) >= FIRST_PSEUDO_REGISTER
1982 || !fixed_regs
[REGNO (reg
)])
1983 if (reg_overlap_mentioned_p (reg
, src
))
1987 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1988 or not), reject, unless nothing volatile comes between it and I3 */
1990 if (GET_CODE (src
) == ASM_OPERANDS
|| volatile_refs_p (src
))
1992 /* Make sure neither succ nor succ2 contains a volatile reference. */
1993 if (succ2
!= 0 && volatile_refs_p (PATTERN (succ2
)))
1995 if (succ
!= 0 && volatile_refs_p (PATTERN (succ
)))
1997 /* We'll check insns between INSN and I3 below. */
2000 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2001 to be an explicit register variable, and was chosen for a reason. */
2003 if (GET_CODE (src
) == ASM_OPERANDS
2004 && REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
2007 /* If INSN contains volatile references (specifically volatile MEMs),
2008 we cannot combine across any other volatile references.
2009 Even if INSN doesn't contain volatile references, any intervening
2010 volatile insn might affect machine state. */
2012 is_volatile_p
= volatile_refs_p (PATTERN (insn
))
2016 for (p
= NEXT_INSN (insn
); p
!= i3
; p
= NEXT_INSN (p
))
2017 if (INSN_P (p
) && p
!= succ
&& p
!= succ2
&& is_volatile_p (PATTERN (p
)))
2020 /* If INSN contains an autoincrement or autodecrement, make sure that
2021 register is not used between there and I3, and not already used in
2022 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2023 Also insist that I3 not be a jump if using LRA; if it were one
2024 and the incremented register were spilled, we would lose.
2025 Reload handles this correctly. */
2028 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2029 if (REG_NOTE_KIND (link
) == REG_INC
2030 && ((JUMP_P (i3
) && targetm
.lra_p ())
2031 || reg_used_between_p (XEXP (link
, 0), insn
, i3
)
2032 || (pred
!= NULL_RTX
2033 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (pred
)))
2034 || (pred2
!= NULL_RTX
2035 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (pred2
)))
2036 || (succ
!= NULL_RTX
2037 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (succ
)))
2038 || (succ2
!= NULL_RTX
2039 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (succ2
)))
2040 || reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i3
))))
2043 /* If we get here, we have passed all the tests and the combination is
2052 /* LOC is the location within I3 that contains its pattern or the component
2053 of a PARALLEL of the pattern. We validate that it is valid for combining.
2055 One problem is if I3 modifies its output, as opposed to replacing it
2056 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2057 doing so would produce an insn that is not equivalent to the original insns.
2061 (set (reg:DI 101) (reg:DI 100))
2062 (set (subreg:SI (reg:DI 101) 0) <foo>)
2064 This is NOT equivalent to:
2066 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2067 (set (reg:DI 101) (reg:DI 100))])
2069 Not only does this modify 100 (in which case it might still be valid
2070 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2072 We can also run into a problem if I2 sets a register that I1
2073 uses and I1 gets directly substituted into I3 (not via I2). In that
2074 case, we would be getting the wrong value of I2DEST into I3, so we
2075 must reject the combination. This case occurs when I2 and I1 both
2076 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2077 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2078 of a SET must prevent combination from occurring. The same situation
2079 can occur for I0, in which case I0_NOT_IN_SRC is set.
2081 Before doing the above check, we first try to expand a field assignment
2082 into a set of logical operations.
2084 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2085 we place a register that is both set and used within I3. If more than one
2086 such register is detected, we fail.
2088 Return 1 if the combination is valid, zero otherwise. */
2091 combinable_i3pat (rtx_insn
*i3
, rtx
*loc
, rtx i2dest
, rtx i1dest
, rtx i0dest
,
2092 int i1_not_in_src
, int i0_not_in_src
, rtx
*pi3dest_killed
)
2096 if (GET_CODE (x
) == SET
)
2099 rtx dest
= SET_DEST (set
);
2100 rtx src
= SET_SRC (set
);
2101 rtx inner_dest
= dest
;
2104 while (GET_CODE (inner_dest
) == STRICT_LOW_PART
2105 || GET_CODE (inner_dest
) == SUBREG
2106 || GET_CODE (inner_dest
) == ZERO_EXTRACT
)
2107 inner_dest
= XEXP (inner_dest
, 0);
2109 /* Check for the case where I3 modifies its output, as discussed
2110 above. We don't want to prevent pseudos from being combined
2111 into the address of a MEM, so only prevent the combination if
2112 i1 or i2 set the same MEM. */
2113 if ((inner_dest
!= dest
&&
2114 (!MEM_P (inner_dest
)
2115 || rtx_equal_p (i2dest
, inner_dest
)
2116 || (i1dest
&& rtx_equal_p (i1dest
, inner_dest
))
2117 || (i0dest
&& rtx_equal_p (i0dest
, inner_dest
)))
2118 && (reg_overlap_mentioned_p (i2dest
, inner_dest
)
2119 || (i1dest
&& reg_overlap_mentioned_p (i1dest
, inner_dest
))
2120 || (i0dest
&& reg_overlap_mentioned_p (i0dest
, inner_dest
))))
2122 /* This is the same test done in can_combine_p except we can't test
2123 all_adjacent; we don't have to, since this instruction will stay
2124 in place, thus we are not considering increasing the lifetime of
2127 Also, if this insn sets a function argument, combining it with
2128 something that might need a spill could clobber a previous
2129 function argument; the all_adjacent test in can_combine_p also
2130 checks this; here, we do a more specific test for this case. */
2132 || (REG_P (inner_dest
)
2133 && REGNO (inner_dest
) < FIRST_PSEUDO_REGISTER
2134 && !targetm
.hard_regno_mode_ok (REGNO (inner_dest
),
2135 GET_MODE (inner_dest
)))
2136 || (i1_not_in_src
&& reg_overlap_mentioned_p (i1dest
, src
))
2137 || (i0_not_in_src
&& reg_overlap_mentioned_p (i0dest
, src
)))
2140 /* If DEST is used in I3, it is being killed in this insn, so
2141 record that for later. We have to consider paradoxical
2142 subregs here, since they kill the whole register, but we
2143 ignore partial subregs, STRICT_LOW_PART, etc.
2144 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2145 STACK_POINTER_REGNUM, since these are always considered to be
2146 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2148 if (GET_CODE (subdest
) == SUBREG
&& !partial_subreg_p (subdest
))
2149 subdest
= SUBREG_REG (subdest
);
2152 && reg_referenced_p (subdest
, PATTERN (i3
))
2153 && REGNO (subdest
) != FRAME_POINTER_REGNUM
2154 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2155 || REGNO (subdest
) != HARD_FRAME_POINTER_REGNUM
)
2156 && (FRAME_POINTER_REGNUM
== ARG_POINTER_REGNUM
2157 || (REGNO (subdest
) != ARG_POINTER_REGNUM
2158 || ! fixed_regs
[REGNO (subdest
)]))
2159 && REGNO (subdest
) != STACK_POINTER_REGNUM
)
2161 if (*pi3dest_killed
)
2164 *pi3dest_killed
= subdest
;
2168 else if (GET_CODE (x
) == PARALLEL
)
2172 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
2173 if (! combinable_i3pat (i3
, &XVECEXP (x
, 0, i
), i2dest
, i1dest
, i0dest
,
2174 i1_not_in_src
, i0_not_in_src
, pi3dest_killed
))
2181 /* Return 1 if X is an arithmetic expression that contains a multiplication
2182 and division. We don't count multiplications by powers of two here. */
2185 contains_muldiv (rtx x
)
2187 switch (GET_CODE (x
))
2189 case MOD
: case DIV
: case UMOD
: case UDIV
:
2193 return ! (CONST_INT_P (XEXP (x
, 1))
2194 && pow2p_hwi (UINTVAL (XEXP (x
, 1))));
2197 return contains_muldiv (XEXP (x
, 0))
2198 || contains_muldiv (XEXP (x
, 1));
2201 return contains_muldiv (XEXP (x
, 0));
2207 /* Determine whether INSN can be used in a combination. Return nonzero if
2208 not. This is used in try_combine to detect early some cases where we
2209 can't perform combinations. */
2212 cant_combine_insn_p (rtx_insn
*insn
)
2217 /* If this isn't really an insn, we can't do anything.
2218 This can occur when flow deletes an insn that it has merged into an
2219 auto-increment address. */
2220 if (!NONDEBUG_INSN_P (insn
))
2223 /* Never combine loads and stores involving hard regs that are likely
2224 to be spilled. The register allocator can usually handle such
2225 reg-reg moves by tying. If we allow the combiner to make
2226 substitutions of likely-spilled regs, reload might die.
2227 As an exception, we allow combinations involving fixed regs; these are
2228 not available to the register allocator so there's no risk involved. */
2230 set
= single_set (insn
);
2233 src
= SET_SRC (set
);
2234 dest
= SET_DEST (set
);
2235 if (GET_CODE (src
) == SUBREG
)
2236 src
= SUBREG_REG (src
);
2237 if (GET_CODE (dest
) == SUBREG
)
2238 dest
= SUBREG_REG (dest
);
2239 if (REG_P (src
) && REG_P (dest
)
2240 && ((HARD_REGISTER_P (src
)
2241 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (src
))
2242 #ifdef LEAF_REGISTERS
2243 && ! LEAF_REGISTERS
[REGNO (src
)])
2247 || (HARD_REGISTER_P (dest
)
2248 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (dest
))
2249 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest
))))))
2255 struct likely_spilled_retval_info
2257 unsigned regno
, nregs
;
2261 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2262 hard registers that are known to be written to / clobbered in full. */
2264 likely_spilled_retval_1 (rtx x
, const_rtx set
, void *data
)
2266 struct likely_spilled_retval_info
*const info
=
2267 (struct likely_spilled_retval_info
*) data
;
2268 unsigned regno
, nregs
;
2271 if (!REG_P (XEXP (set
, 0)))
2274 if (regno
>= info
->regno
+ info
->nregs
)
2276 nregs
= REG_NREGS (x
);
2277 if (regno
+ nregs
<= info
->regno
)
2279 new_mask
= (2U << (nregs
- 1)) - 1;
2280 if (regno
< info
->regno
)
2281 new_mask
>>= info
->regno
- regno
;
2283 new_mask
<<= regno
- info
->regno
;
2284 info
->mask
&= ~new_mask
;
2287 /* Return nonzero iff part of the return value is live during INSN, and
2288 it is likely spilled. This can happen when more than one insn is needed
2289 to copy the return value, e.g. when we consider to combine into the
2290 second copy insn for a complex value. */
2293 likely_spilled_retval_p (rtx_insn
*insn
)
2295 rtx_insn
*use
= BB_END (this_basic_block
);
2298 unsigned regno
, nregs
;
2299 /* We assume here that no machine mode needs more than
2300 32 hard registers when the value overlaps with a register
2301 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2303 struct likely_spilled_retval_info info
;
2305 if (!NONJUMP_INSN_P (use
) || GET_CODE (PATTERN (use
)) != USE
|| insn
== use
)
2307 reg
= XEXP (PATTERN (use
), 0);
2308 if (!REG_P (reg
) || !targetm
.calls
.function_value_regno_p (REGNO (reg
)))
2310 regno
= REGNO (reg
);
2311 nregs
= REG_NREGS (reg
);
2314 mask
= (2U << (nregs
- 1)) - 1;
2316 /* Disregard parts of the return value that are set later. */
2320 for (p
= PREV_INSN (use
); info
.mask
&& p
!= insn
; p
= PREV_INSN (p
))
2322 note_stores (p
, likely_spilled_retval_1
, &info
);
2325 /* Check if any of the (probably) live return value registers is
2330 if ((mask
& 1 << nregs
)
2331 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (regno
+ nregs
)))
2337 /* Adjust INSN after we made a change to its destination.
2339 Changing the destination can invalidate notes that say something about
2340 the results of the insn and a LOG_LINK pointing to the insn. */
2343 adjust_for_new_dest (rtx_insn
*insn
)
2345 /* For notes, be conservative and simply remove them. */
2346 remove_reg_equal_equiv_notes (insn
, true);
2348 /* The new insn will have a destination that was previously the destination
2349 of an insn just above it. Call distribute_links to make a LOG_LINK from
2350 the next use of that destination. */
2352 rtx set
= single_set (insn
);
2355 rtx reg
= SET_DEST (set
);
2357 while (GET_CODE (reg
) == ZERO_EXTRACT
2358 || GET_CODE (reg
) == STRICT_LOW_PART
2359 || GET_CODE (reg
) == SUBREG
)
2360 reg
= XEXP (reg
, 0);
2361 gcc_assert (REG_P (reg
));
2363 distribute_links (alloc_insn_link (insn
, REGNO (reg
), NULL
));
2365 df_insn_rescan (insn
);
2368 /* Return TRUE if combine can reuse reg X in mode MODE.
2369 ADDED_SETS is nonzero if the original set is still required. */
2371 can_change_dest_mode (rtx x
, int added_sets
, machine_mode mode
)
2378 /* Don't change between modes with different underlying register sizes,
2379 since this could lead to invalid subregs. */
2380 if (maybe_ne (REGMODE_NATURAL_SIZE (mode
),
2381 REGMODE_NATURAL_SIZE (GET_MODE (x
))))
2385 /* Allow hard registers if the new mode is legal, and occupies no more
2386 registers than the old mode. */
2387 if (regno
< FIRST_PSEUDO_REGISTER
)
2388 return (targetm
.hard_regno_mode_ok (regno
, mode
)
2389 && REG_NREGS (x
) >= hard_regno_nregs (regno
, mode
));
2391 /* Or a pseudo that is only used once. */
2392 return (regno
< reg_n_sets_max
2393 && REG_N_SETS (regno
) == 1
2395 && !REG_USERVAR_P (x
));
2399 /* Check whether X, the destination of a set, refers to part of
2400 the register specified by REG. */
2403 reg_subword_p (rtx x
, rtx reg
)
2405 /* Check that reg is an integer mode register. */
2406 if (!REG_P (reg
) || GET_MODE_CLASS (GET_MODE (reg
)) != MODE_INT
)
2409 if (GET_CODE (x
) == STRICT_LOW_PART
2410 || GET_CODE (x
) == ZERO_EXTRACT
)
2413 return GET_CODE (x
) == SUBREG
2414 && SUBREG_REG (x
) == reg
2415 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
;
2418 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2419 by an arbitrary number of CLOBBERs. */
2421 is_parallel_of_n_reg_sets (rtx pat
, int n
)
2423 if (GET_CODE (pat
) != PARALLEL
)
2426 int len
= XVECLEN (pat
, 0);
2431 for (i
= 0; i
< n
; i
++)
2432 if (GET_CODE (XVECEXP (pat
, 0, i
)) != SET
2433 || !REG_P (SET_DEST (XVECEXP (pat
, 0, i
))))
2435 for ( ; i
< len
; i
++)
2436 switch (GET_CODE (XVECEXP (pat
, 0, i
)))
2439 if (XEXP (XVECEXP (pat
, 0, i
), 0) == const0_rtx
)
2448 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2449 CLOBBERs), can be split into individual SETs in that order, without
2450 changing semantics. */
2452 can_split_parallel_of_n_reg_sets (rtx_insn
*insn
, int n
)
2454 if (!insn_nothrow_p (insn
))
2457 rtx pat
= PATTERN (insn
);
2460 for (i
= 0; i
< n
; i
++)
2462 if (side_effects_p (SET_SRC (XVECEXP (pat
, 0, i
))))
2465 rtx reg
= SET_DEST (XVECEXP (pat
, 0, i
));
2467 for (j
= i
+ 1; j
< n
; j
++)
2468 if (reg_referenced_p (reg
, XVECEXP (pat
, 0, j
)))
2475 /* Return whether X is just a single_set, with the source
2476 a general_operand. */
2478 is_just_move (rtx_insn
*x
)
2480 rtx set
= single_set (x
);
2484 return general_operand (SET_SRC (set
), VOIDmode
);
2487 /* Callback function to count autoincs. */
2490 count_auto_inc (rtx
, rtx
, rtx
, rtx
, rtx
, void *arg
)
2497 /* Try to combine the insns I0, I1 and I2 into I3.
2498 Here I0, I1 and I2 appear earlier than I3.
2499 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2502 If we are combining more than two insns and the resulting insn is not
2503 recognized, try splitting it into two insns. If that happens, I2 and I3
2504 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2505 Otherwise, I0, I1 and I2 are pseudo-deleted.
2507 Return 0 if the combination does not work. Then nothing is changed.
2508 If we did the combination, return the insn at which combine should
2511 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2512 new direct jump instruction.
2514 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2515 been I3 passed to an earlier try_combine within the same basic
2519 try_combine (rtx_insn
*i3
, rtx_insn
*i2
, rtx_insn
*i1
, rtx_insn
*i0
,
2520 int *new_direct_jump_p
, rtx_insn
*last_combined_insn
)
2522 /* New patterns for I3 and I2, respectively. */
2523 rtx newpat
, newi2pat
= 0;
2524 rtvec newpat_vec_with_clobbers
= 0;
2525 int substed_i2
= 0, substed_i1
= 0, substed_i0
= 0;
2526 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2528 int added_sets_0
, added_sets_1
, added_sets_2
;
2529 /* Total number of SETs to put into I3. */
2531 /* Nonzero if I2's or I1's body now appears in I3. */
2532 int i2_is_used
= 0, i1_is_used
= 0;
2533 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2534 int insn_code_number
, i2_code_number
= 0, other_code_number
= 0;
2535 /* Contains I3 if the destination of I3 is used in its source, which means
2536 that the old life of I3 is being killed. If that usage is placed into
2537 I2 and not in I3, a REG_DEAD note must be made. */
2538 rtx i3dest_killed
= 0;
2539 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2540 rtx i2dest
= 0, i2src
= 0, i1dest
= 0, i1src
= 0, i0dest
= 0, i0src
= 0;
2541 /* Copy of SET_SRC of I1 and I0, if needed. */
2542 rtx i1src_copy
= 0, i0src_copy
= 0, i0src_copy2
= 0;
2543 /* Set if I2DEST was reused as a scratch register. */
2544 bool i2scratch
= false;
2545 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2546 rtx i0pat
= 0, i1pat
= 0, i2pat
= 0;
2547 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2548 int i2dest_in_i2src
= 0, i1dest_in_i1src
= 0, i2dest_in_i1src
= 0;
2549 int i0dest_in_i0src
= 0, i1dest_in_i0src
= 0, i2dest_in_i0src
= 0;
2550 int i2dest_killed
= 0, i1dest_killed
= 0, i0dest_killed
= 0;
2551 int i1_feeds_i2_n
= 0, i0_feeds_i2_n
= 0, i0_feeds_i1_n
= 0;
2552 /* Notes that must be added to REG_NOTES in I3 and I2. */
2553 rtx new_i3_notes
, new_i2_notes
;
2554 /* Notes that we substituted I3 into I2 instead of the normal case. */
2555 int i3_subst_into_i2
= 0;
2556 /* Notes that I1, I2 or I3 is a MULT operation. */
2560 int changed_i3_dest
= 0;
2561 bool i2_was_move
= false, i3_was_move
= false;
2565 rtx_insn
*temp_insn
;
2567 struct insn_link
*link
;
2569 rtx new_other_notes
;
2571 scalar_int_mode dest_mode
, temp_mode
;
2573 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2575 if (i1
== i2
|| i0
== i2
|| (i0
&& i0
== i1
))
2578 /* Only try four-insn combinations when there's high likelihood of
2579 success. Look for simple insns, such as loads of constants or
2580 binary operations involving a constant. */
2588 if (!flag_expensive_optimizations
)
2591 for (i
= 0; i
< 4; i
++)
2593 rtx_insn
*insn
= i
== 0 ? i0
: i
== 1 ? i1
: i
== 2 ? i2
: i3
;
2594 rtx set
= single_set (insn
);
2598 src
= SET_SRC (set
);
2599 if (CONSTANT_P (src
))
2604 else if (BINARY_P (src
) && CONSTANT_P (XEXP (src
, 1)))
2606 else if (GET_CODE (src
) == ASHIFT
|| GET_CODE (src
) == ASHIFTRT
2607 || GET_CODE (src
) == LSHIFTRT
)
2611 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2612 are likely manipulating its value. Ideally we'll be able to combine
2613 all four insns into a bitfield insertion of some kind.
2615 Note the source in I0 might be inside a sign/zero extension and the
2616 memory modes in I0 and I3 might be different. So extract the address
2617 from the destination of I3 and search for it in the source of I0.
2619 In the event that there's a match but the source/dest do not actually
2620 refer to the same memory, the worst that happens is we try some
2621 combinations that we wouldn't have otherwise. */
2622 if ((set0
= single_set (i0
))
2623 /* Ensure the source of SET0 is a MEM, possibly buried inside
2625 && (GET_CODE (SET_SRC (set0
)) == MEM
2626 || ((GET_CODE (SET_SRC (set0
)) == ZERO_EXTEND
2627 || GET_CODE (SET_SRC (set0
)) == SIGN_EXTEND
)
2628 && GET_CODE (XEXP (SET_SRC (set0
), 0)) == MEM
))
2629 && (set3
= single_set (i3
))
2630 /* Ensure the destination of SET3 is a MEM. */
2631 && GET_CODE (SET_DEST (set3
)) == MEM
2632 /* Would it be better to extract the base address for the MEM
2633 in SET3 and look for that? I don't have cases where it matters
2634 but I could envision such cases. */
2635 && rtx_referenced_p (XEXP (SET_DEST (set3
), 0), SET_SRC (set0
)))
2638 if (ngood
< 2 && nshift
< 2)
2642 /* Exit early if one of the insns involved can't be used for
2645 || (i1
&& CALL_P (i1
))
2646 || (i0
&& CALL_P (i0
))
2647 || cant_combine_insn_p (i3
)
2648 || cant_combine_insn_p (i2
)
2649 || (i1
&& cant_combine_insn_p (i1
))
2650 || (i0
&& cant_combine_insn_p (i0
))
2651 || likely_spilled_retval_p (i3
))
2655 undobuf
.other_insn
= 0;
2657 /* Reset the hard register usage information. */
2658 CLEAR_HARD_REG_SET (newpat_used_regs
);
2660 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2663 fprintf (dump_file
, "\nTrying %d, %d, %d -> %d:\n",
2664 INSN_UID (i0
), INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
2666 fprintf (dump_file
, "\nTrying %d, %d -> %d:\n",
2667 INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
2669 fprintf (dump_file
, "\nTrying %d -> %d:\n",
2670 INSN_UID (i2
), INSN_UID (i3
));
2673 dump_insn_slim (dump_file
, i0
);
2675 dump_insn_slim (dump_file
, i1
);
2676 dump_insn_slim (dump_file
, i2
);
2677 dump_insn_slim (dump_file
, i3
);
2680 /* If multiple insns feed into one of I2 or I3, they can be in any
2681 order. To simplify the code below, reorder them in sequence. */
2682 if (i0
&& DF_INSN_LUID (i0
) > DF_INSN_LUID (i2
))
2684 if (i0
&& DF_INSN_LUID (i0
) > DF_INSN_LUID (i1
))
2686 if (i1
&& DF_INSN_LUID (i1
) > DF_INSN_LUID (i2
))
2689 added_links_insn
= 0;
2690 added_notes_insn
= 0;
2692 /* First check for one important special case that the code below will
2693 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2694 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2695 we may be able to replace that destination with the destination of I3.
2696 This occurs in the common code where we compute both a quotient and
2697 remainder into a structure, in which case we want to do the computation
2698 directly into the structure to avoid register-register copies.
2700 Note that this case handles both multiple sets in I2 and also cases
2701 where I2 has a number of CLOBBERs inside the PARALLEL.
2703 We make very conservative checks below and only try to handle the
2704 most common cases of this. For example, we only handle the case
2705 where I2 and I3 are adjacent to avoid making difficult register
2708 if (i1
== 0 && NONJUMP_INSN_P (i3
) && GET_CODE (PATTERN (i3
)) == SET
2709 && REG_P (SET_SRC (PATTERN (i3
)))
2710 && REGNO (SET_SRC (PATTERN (i3
))) >= FIRST_PSEUDO_REGISTER
2711 && find_reg_note (i3
, REG_DEAD
, SET_SRC (PATTERN (i3
)))
2712 && GET_CODE (PATTERN (i2
)) == PARALLEL
2713 && ! side_effects_p (SET_DEST (PATTERN (i3
)))
2714 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2715 below would need to check what is inside (and reg_overlap_mentioned_p
2716 doesn't support those codes anyway). Don't allow those destinations;
2717 the resulting insn isn't likely to be recognized anyway. */
2718 && GET_CODE (SET_DEST (PATTERN (i3
))) != ZERO_EXTRACT
2719 && GET_CODE (SET_DEST (PATTERN (i3
))) != STRICT_LOW_PART
2720 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3
)),
2721 SET_DEST (PATTERN (i3
)))
2722 && next_active_insn (i2
) == i3
)
2724 rtx p2
= PATTERN (i2
);
2726 /* Make sure that the destination of I3,
2727 which we are going to substitute into one output of I2,
2728 is not used within another output of I2. We must avoid making this:
2729 (parallel [(set (mem (reg 69)) ...)
2730 (set (reg 69) ...)])
2731 which is not well-defined as to order of actions.
2732 (Besides, reload can't handle output reloads for this.)
2734 The problem can also happen if the dest of I3 is a memory ref,
2735 if another dest in I2 is an indirect memory ref.
2737 Neither can this PARALLEL be an asm. We do not allow combining
2738 that usually (see can_combine_p), so do not here either. */
2740 for (i
= 0; ok
&& i
< XVECLEN (p2
, 0); i
++)
2742 if ((GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2743 || GET_CODE (XVECEXP (p2
, 0, i
)) == CLOBBER
)
2744 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3
)),
2745 SET_DEST (XVECEXP (p2
, 0, i
))))
2747 else if (GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2748 && GET_CODE (SET_SRC (XVECEXP (p2
, 0, i
))) == ASM_OPERANDS
)
2753 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
2754 if (GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2755 && SET_DEST (XVECEXP (p2
, 0, i
)) == SET_SRC (PATTERN (i3
)))
2760 subst_low_luid
= DF_INSN_LUID (i2
);
2762 added_sets_2
= added_sets_1
= added_sets_0
= 0;
2763 i2src
= SET_SRC (XVECEXP (p2
, 0, i
));
2764 i2dest
= SET_DEST (XVECEXP (p2
, 0, i
));
2765 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2767 /* Replace the dest in I2 with our dest and make the resulting
2768 insn the new pattern for I3. Then skip to where we validate
2769 the pattern. Everything was set up above. */
2770 SUBST (SET_DEST (XVECEXP (p2
, 0, i
)), SET_DEST (PATTERN (i3
)));
2772 i3_subst_into_i2
= 1;
2773 goto validate_replacement
;
2777 /* If I2 is setting a pseudo to a constant and I3 is setting some
2778 sub-part of it to another constant, merge them by making a new
2781 && (temp_expr
= single_set (i2
)) != 0
2782 && is_a
<scalar_int_mode
> (GET_MODE (SET_DEST (temp_expr
)), &temp_mode
)
2783 && CONST_SCALAR_INT_P (SET_SRC (temp_expr
))
2784 && GET_CODE (PATTERN (i3
)) == SET
2785 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3
)))
2786 && reg_subword_p (SET_DEST (PATTERN (i3
)), SET_DEST (temp_expr
)))
2788 rtx dest
= SET_DEST (PATTERN (i3
));
2789 rtx temp_dest
= SET_DEST (temp_expr
);
2793 if (GET_CODE (dest
) == ZERO_EXTRACT
)
2795 if (CONST_INT_P (XEXP (dest
, 1))
2796 && CONST_INT_P (XEXP (dest
, 2))
2797 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (dest
, 0)),
2800 width
= INTVAL (XEXP (dest
, 1));
2801 offset
= INTVAL (XEXP (dest
, 2));
2802 dest
= XEXP (dest
, 0);
2803 if (BITS_BIG_ENDIAN
)
2804 offset
= GET_MODE_PRECISION (dest_mode
) - width
- offset
;
2809 if (GET_CODE (dest
) == STRICT_LOW_PART
)
2810 dest
= XEXP (dest
, 0);
2811 if (is_a
<scalar_int_mode
> (GET_MODE (dest
), &dest_mode
))
2813 width
= GET_MODE_PRECISION (dest_mode
);
2820 /* If this is the low part, we're done. */
2821 if (subreg_lowpart_p (dest
))
2823 /* Handle the case where inner is twice the size of outer. */
2824 else if (GET_MODE_PRECISION (temp_mode
)
2825 == 2 * GET_MODE_PRECISION (dest_mode
))
2826 offset
+= GET_MODE_PRECISION (dest_mode
);
2827 /* Otherwise give up for now. */
2834 rtx inner
= SET_SRC (PATTERN (i3
));
2835 rtx outer
= SET_SRC (temp_expr
);
2837 wide_int o
= wi::insert (rtx_mode_t (outer
, temp_mode
),
2838 rtx_mode_t (inner
, dest_mode
),
2843 subst_low_luid
= DF_INSN_LUID (i2
);
2844 added_sets_2
= added_sets_1
= added_sets_0
= 0;
2846 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2848 /* Replace the source in I2 with the new constant and make the
2849 resulting insn the new pattern for I3. Then skip to where we
2850 validate the pattern. Everything was set up above. */
2851 SUBST (SET_SRC (temp_expr
),
2852 immed_wide_int_const (o
, temp_mode
));
2854 newpat
= PATTERN (i2
);
2856 /* The dest of I3 has been replaced with the dest of I2. */
2857 changed_i3_dest
= 1;
2858 goto validate_replacement
;
2862 /* If we have no I1 and I2 looks like:
2863 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2865 make up a dummy I1 that is
2868 (set (reg:CC X) (compare:CC Y (const_int 0)))
2870 (We can ignore any trailing CLOBBERs.)
2872 This undoes a previous combination and allows us to match a branch-and-
2876 && is_parallel_of_n_reg_sets (PATTERN (i2
), 2)
2877 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0))))
2879 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0))) == COMPARE
2880 && XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 1) == const0_rtx
2881 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 0),
2882 SET_SRC (XVECEXP (PATTERN (i2
), 0, 1)))
2883 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0)), i2
, i3
)
2884 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1)), i2
, i3
))
2886 /* We make I1 with the same INSN_UID as I2. This gives it
2887 the same DF_INSN_LUID for value tracking. Our fake I1 will
2888 never appear in the insn stream so giving it the same INSN_UID
2889 as I2 will not cause a problem. */
2891 i1
= gen_rtx_INSN (VOIDmode
, NULL
, i2
, BLOCK_FOR_INSN (i2
),
2892 XVECEXP (PATTERN (i2
), 0, 1), INSN_LOCATION (i2
),
2894 INSN_UID (i1
) = INSN_UID (i2
);
2896 SUBST (PATTERN (i2
), XVECEXP (PATTERN (i2
), 0, 0));
2897 SUBST (XEXP (SET_SRC (PATTERN (i2
)), 0),
2898 SET_DEST (PATTERN (i1
)));
2899 unsigned int regno
= REGNO (SET_DEST (PATTERN (i1
)));
2900 SUBST_LINK (LOG_LINKS (i2
),
2901 alloc_insn_link (i1
, regno
, LOG_LINKS (i2
)));
2904 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2905 make those two SETs separate I1 and I2 insns, and make an I0 that is
2908 && is_parallel_of_n_reg_sets (PATTERN (i2
), 2)
2909 && can_split_parallel_of_n_reg_sets (i2
, 2)
2910 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0)), i2
, i3
)
2911 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1)), i2
, i3
)
2912 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0)), i2
, i3
)
2913 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1)), i2
, i3
))
2915 /* If there is no I1, there is no I0 either. */
2918 /* We make I1 with the same INSN_UID as I2. This gives it
2919 the same DF_INSN_LUID for value tracking. Our fake I1 will
2920 never appear in the insn stream so giving it the same INSN_UID
2921 as I2 will not cause a problem. */
2923 i1
= gen_rtx_INSN (VOIDmode
, NULL
, i2
, BLOCK_FOR_INSN (i2
),
2924 XVECEXP (PATTERN (i2
), 0, 0), INSN_LOCATION (i2
),
2926 INSN_UID (i1
) = INSN_UID (i2
);
2928 SUBST (PATTERN (i2
), XVECEXP (PATTERN (i2
), 0, 1));
2931 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
2932 if (!can_combine_p (i2
, i3
, i0
, i1
, NULL
, NULL
, &i2dest
, &i2src
))
2934 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2935 fprintf (dump_file
, "Can't combine i2 into i3\n");
2939 if (i1
&& !can_combine_p (i1
, i3
, i0
, NULL
, i2
, NULL
, &i1dest
, &i1src
))
2941 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2942 fprintf (dump_file
, "Can't combine i1 into i3\n");
2946 if (i0
&& !can_combine_p (i0
, i3
, NULL
, NULL
, i1
, i2
, &i0dest
, &i0src
))
2948 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2949 fprintf (dump_file
, "Can't combine i0 into i3\n");
2954 /* Record whether i2 and i3 are trivial moves. */
2955 i2_was_move
= is_just_move (i2
);
2956 i3_was_move
= is_just_move (i3
);
2958 /* Record whether I2DEST is used in I2SRC and similarly for the other
2959 cases. Knowing this will help in register status updating below. */
2960 i2dest_in_i2src
= reg_overlap_mentioned_p (i2dest
, i2src
);
2961 i1dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i1dest
, i1src
);
2962 i2dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i2dest
, i1src
);
2963 i0dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i0dest
, i0src
);
2964 i1dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i1dest
, i0src
);
2965 i2dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i2dest
, i0src
);
2966 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2967 i1dest_killed
= i1
&& dead_or_set_p (i1
, i1dest
);
2968 i0dest_killed
= i0
&& dead_or_set_p (i0
, i0dest
);
2970 /* For the earlier insns, determine which of the subsequent ones they
2972 i1_feeds_i2_n
= i1
&& insn_a_feeds_b (i1
, i2
);
2973 i0_feeds_i1_n
= i0
&& insn_a_feeds_b (i0
, i1
);
2974 i0_feeds_i2_n
= (i0
&& (!i0_feeds_i1_n
? insn_a_feeds_b (i0
, i2
)
2975 : (!reg_overlap_mentioned_p (i1dest
, i0dest
)
2976 && reg_overlap_mentioned_p (i0dest
, i2src
))));
2978 /* Ensure that I3's pattern can be the destination of combines. */
2979 if (! combinable_i3pat (i3
, &PATTERN (i3
), i2dest
, i1dest
, i0dest
,
2980 i1
&& i2dest_in_i1src
&& !i1_feeds_i2_n
,
2981 i0
&& ((i2dest_in_i0src
&& !i0_feeds_i2_n
)
2982 || (i1dest_in_i0src
&& !i0_feeds_i1_n
)),
2989 /* See if any of the insns is a MULT operation. Unless one is, we will
2990 reject a combination that is, since it must be slower. Be conservative
2992 if (GET_CODE (i2src
) == MULT
2993 || (i1
!= 0 && GET_CODE (i1src
) == MULT
)
2994 || (i0
!= 0 && GET_CODE (i0src
) == MULT
)
2995 || (GET_CODE (PATTERN (i3
)) == SET
2996 && GET_CODE (SET_SRC (PATTERN (i3
))) == MULT
))
2999 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3000 We used to do this EXCEPT in one case: I3 has a post-inc in an
3001 output operand. However, that exception can give rise to insns like
3003 which is a famous insn on the PDP-11 where the value of r3 used as the
3004 source was model-dependent. Avoid this sort of thing. */
3007 if (!(GET_CODE (PATTERN (i3
)) == SET
3008 && REG_P (SET_SRC (PATTERN (i3
)))
3009 && MEM_P (SET_DEST (PATTERN (i3
)))
3010 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_INC
3011 || GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_DEC
)))
3012 /* It's not the exception. */
3017 for (link
= REG_NOTES (i3
); link
; link
= XEXP (link
, 1))
3018 if (REG_NOTE_KIND (link
) == REG_INC
3019 && (reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i2
))
3021 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i1
)))))
3028 /* See if the SETs in I1 or I2 need to be kept around in the merged
3029 instruction: whenever the value set there is still needed past I3.
3030 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3032 For the SET in I1, we have two cases: if I1 and I2 independently feed
3033 into I3, the set in I1 needs to be kept around unless I1DEST dies
3034 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3035 in I1 needs to be kept around unless I1DEST dies or is set in either
3036 I2 or I3. The same considerations apply to I0. */
3038 added_sets_2
= !dead_or_set_p (i3
, i2dest
);
3041 added_sets_1
= !(dead_or_set_p (i3
, i1dest
)
3042 || (i1_feeds_i2_n
&& dead_or_set_p (i2
, i1dest
)));
3047 added_sets_0
= !(dead_or_set_p (i3
, i0dest
)
3048 || (i0_feeds_i1_n
&& dead_or_set_p (i1
, i0dest
))
3049 || ((i0_feeds_i2_n
|| (i0_feeds_i1_n
&& i1_feeds_i2_n
))
3050 && dead_or_set_p (i2
, i0dest
)));
3054 /* We are about to copy insns for the case where they need to be kept
3055 around. Check that they can be copied in the merged instruction. */
3057 if (targetm
.cannot_copy_insn_p
3058 && ((added_sets_2
&& targetm
.cannot_copy_insn_p (i2
))
3059 || (i1
&& added_sets_1
&& targetm
.cannot_copy_insn_p (i1
))
3060 || (i0
&& added_sets_0
&& targetm
.cannot_copy_insn_p (i0
))))
3066 /* We cannot safely duplicate volatile references in any case. */
3068 if ((added_sets_2
&& volatile_refs_p (PATTERN (i2
)))
3069 || (added_sets_1
&& volatile_refs_p (PATTERN (i1
)))
3070 || (added_sets_0
&& volatile_refs_p (PATTERN (i0
))))
3076 /* Count how many auto_inc expressions there were in the original insns;
3077 we need to have the same number in the resulting patterns. */
3080 for_each_inc_dec (PATTERN (i0
), count_auto_inc
, &n_auto_inc
);
3082 for_each_inc_dec (PATTERN (i1
), count_auto_inc
, &n_auto_inc
);
3083 for_each_inc_dec (PATTERN (i2
), count_auto_inc
, &n_auto_inc
);
3084 for_each_inc_dec (PATTERN (i3
), count_auto_inc
, &n_auto_inc
);
3086 /* If the set in I2 needs to be kept around, we must make a copy of
3087 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3088 PATTERN (I2), we are only substituting for the original I1DEST, not into
3089 an already-substituted copy. This also prevents making self-referential
3090 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3095 if (GET_CODE (PATTERN (i2
)) == PARALLEL
)
3096 i2pat
= gen_rtx_SET (i2dest
, copy_rtx (i2src
));
3098 i2pat
= copy_rtx (PATTERN (i2
));
3103 if (GET_CODE (PATTERN (i1
)) == PARALLEL
)
3104 i1pat
= gen_rtx_SET (i1dest
, copy_rtx (i1src
));
3106 i1pat
= copy_rtx (PATTERN (i1
));
3111 if (GET_CODE (PATTERN (i0
)) == PARALLEL
)
3112 i0pat
= gen_rtx_SET (i0dest
, copy_rtx (i0src
));
3114 i0pat
= copy_rtx (PATTERN (i0
));
3119 /* Substitute in the latest insn for the regs set by the earlier ones. */
3121 maxreg
= max_reg_num ();
3125 /* Many machines have insns that can both perform an
3126 arithmetic operation and set the condition code. These operations will
3127 be represented as a PARALLEL with the first element of the vector
3128 being a COMPARE of an arithmetic operation with the constant zero.
3129 The second element of the vector will set some pseudo to the result
3130 of the same arithmetic operation. If we simplify the COMPARE, we won't
3131 match such a pattern and so will generate an extra insn. Here we test
3132 for this case, where both the comparison and the operation result are
3133 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3134 I2SRC. Later we will make the PARALLEL that contains I2. */
3136 if (i1
== 0 && added_sets_2
&& GET_CODE (PATTERN (i3
)) == SET
3137 && GET_CODE (SET_SRC (PATTERN (i3
))) == COMPARE
3138 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3
)), 1))
3139 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3
)), 0), i2dest
))
3142 rtx
*cc_use_loc
= NULL
;
3143 rtx_insn
*cc_use_insn
= NULL
;
3144 rtx op0
= i2src
, op1
= XEXP (SET_SRC (PATTERN (i3
)), 1);
3145 machine_mode compare_mode
, orig_compare_mode
;
3146 enum rtx_code compare_code
= UNKNOWN
, orig_compare_code
= UNKNOWN
;
3147 scalar_int_mode mode
;
3149 newpat
= PATTERN (i3
);
3150 newpat_dest
= SET_DEST (newpat
);
3151 compare_mode
= orig_compare_mode
= GET_MODE (newpat_dest
);
3153 if (undobuf
.other_insn
== 0
3154 && (cc_use_loc
= find_single_use (SET_DEST (newpat
), i3
,
3157 compare_code
= orig_compare_code
= GET_CODE (*cc_use_loc
);
3158 if (is_a
<scalar_int_mode
> (GET_MODE (i2dest
), &mode
))
3159 compare_code
= simplify_compare_const (compare_code
, mode
,
3161 target_canonicalize_comparison (&compare_code
, &op0
, &op1
, 1);
3164 /* Do the rest only if op1 is const0_rtx, which may be the
3165 result of simplification. */
3166 if (op1
== const0_rtx
)
3168 /* If a single use of the CC is found, prepare to modify it
3169 when SELECT_CC_MODE returns a new CC-class mode, or when
3170 the above simplify_compare_const() returned a new comparison
3171 operator. undobuf.other_insn is assigned the CC use insn
3172 when modifying it. */
3175 #ifdef SELECT_CC_MODE
3176 machine_mode new_mode
3177 = SELECT_CC_MODE (compare_code
, op0
, op1
);
3178 if (new_mode
!= orig_compare_mode
3179 && can_change_dest_mode (SET_DEST (newpat
),
3180 added_sets_2
, new_mode
))
3182 unsigned int regno
= REGNO (newpat_dest
);
3183 compare_mode
= new_mode
;
3184 if (regno
< FIRST_PSEUDO_REGISTER
)
3185 newpat_dest
= gen_rtx_REG (compare_mode
, regno
);
3188 SUBST_MODE (regno_reg_rtx
[regno
], compare_mode
);
3189 newpat_dest
= regno_reg_rtx
[regno
];
3193 /* Cases for modifying the CC-using comparison. */
3194 if (compare_code
!= orig_compare_code
3195 /* ??? Do we need to verify the zero rtx? */
3196 && XEXP (*cc_use_loc
, 1) == const0_rtx
)
3198 /* Replace cc_use_loc with entire new RTX. */
3200 gen_rtx_fmt_ee (compare_code
, GET_MODE (*cc_use_loc
),
3201 newpat_dest
, const0_rtx
));
3202 undobuf
.other_insn
= cc_use_insn
;
3204 else if (compare_mode
!= orig_compare_mode
)
3206 /* Just replace the CC reg with a new mode. */
3207 SUBST (XEXP (*cc_use_loc
, 0), newpat_dest
);
3208 undobuf
.other_insn
= cc_use_insn
;
3212 /* Now we modify the current newpat:
3213 First, SET_DEST(newpat) is updated if the CC mode has been
3214 altered. For targets without SELECT_CC_MODE, this should be
3216 if (compare_mode
!= orig_compare_mode
)
3217 SUBST (SET_DEST (newpat
), newpat_dest
);
3218 /* This is always done to propagate i2src into newpat. */
3219 SUBST (SET_SRC (newpat
),
3220 gen_rtx_COMPARE (compare_mode
, op0
, op1
));
3221 /* Create new version of i2pat if needed; the below PARALLEL
3222 creation needs this to work correctly. */
3223 if (! rtx_equal_p (i2src
, op0
))
3224 i2pat
= gen_rtx_SET (i2dest
, op0
);
3229 if (i2_is_used
== 0)
3231 /* It is possible that the source of I2 or I1 may be performing
3232 an unneeded operation, such as a ZERO_EXTEND of something
3233 that is known to have the high part zero. Handle that case
3234 by letting subst look at the inner insns.
3236 Another way to do this would be to have a function that tries
3237 to simplify a single insn instead of merging two or more
3238 insns. We don't do this because of the potential of infinite
3239 loops and because of the potential extra memory required.
3240 However, doing it the way we are is a bit of a kludge and
3241 doesn't catch all cases.
3243 But only do this if -fexpensive-optimizations since it slows
3244 things down and doesn't usually win.
3246 This is not done in the COMPARE case above because the
3247 unmodified I2PAT is used in the PARALLEL and so a pattern
3248 with a modified I2SRC would not match. */
3250 if (flag_expensive_optimizations
)
3252 /* Pass pc_rtx so no substitutions are done, just
3256 subst_low_luid
= DF_INSN_LUID (i1
);
3257 i1src
= subst (i1src
, pc_rtx
, pc_rtx
, 0, 0, 0);
3260 subst_low_luid
= DF_INSN_LUID (i2
);
3261 i2src
= subst (i2src
, pc_rtx
, pc_rtx
, 0, 0, 0);
3264 n_occurrences
= 0; /* `subst' counts here */
3265 subst_low_luid
= DF_INSN_LUID (i2
);
3267 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3268 copy of I2SRC each time we substitute it, in order to avoid creating
3269 self-referential RTL when we will be substituting I1SRC for I1DEST
3270 later. Likewise if I0 feeds into I2, either directly or indirectly
3271 through I1, and I0DEST is in I0SRC. */
3272 newpat
= subst (PATTERN (i3
), i2dest
, i2src
, 0, 0,
3273 (i1_feeds_i2_n
&& i1dest_in_i1src
)
3274 || ((i0_feeds_i2_n
|| (i0_feeds_i1_n
&& i1_feeds_i2_n
))
3275 && i0dest_in_i0src
));
3278 /* Record whether I2's body now appears within I3's body. */
3279 i2_is_used
= n_occurrences
;
3282 /* If we already got a failure, don't try to do more. Otherwise, try to
3283 substitute I1 if we have it. */
3285 if (i1
&& GET_CODE (newpat
) != CLOBBER
)
3287 /* Before we can do this substitution, we must redo the test done
3288 above (see detailed comments there) that ensures I1DEST isn't
3289 mentioned in any SETs in NEWPAT that are field assignments. */
3290 if (!combinable_i3pat (NULL
, &newpat
, i1dest
, NULL_RTX
, NULL_RTX
,
3298 subst_low_luid
= DF_INSN_LUID (i1
);
3300 /* If the following substitution will modify I1SRC, make a copy of it
3301 for the case where it is substituted for I1DEST in I2PAT later. */
3302 if (added_sets_2
&& i1_feeds_i2_n
)
3303 i1src_copy
= copy_rtx (i1src
);
3305 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3306 copy of I1SRC each time we substitute it, in order to avoid creating
3307 self-referential RTL when we will be substituting I0SRC for I0DEST
3309 newpat
= subst (newpat
, i1dest
, i1src
, 0, 0,
3310 i0_feeds_i1_n
&& i0dest_in_i0src
);
3313 /* Record whether I1's body now appears within I3's body. */
3314 i1_is_used
= n_occurrences
;
3317 /* Likewise for I0 if we have it. */
3319 if (i0
&& GET_CODE (newpat
) != CLOBBER
)
3321 if (!combinable_i3pat (NULL
, &newpat
, i0dest
, NULL_RTX
, NULL_RTX
,
3328 /* If the following substitution will modify I0SRC, make a copy of it
3329 for the case where it is substituted for I0DEST in I1PAT later. */
3330 if (added_sets_1
&& i0_feeds_i1_n
)
3331 i0src_copy
= copy_rtx (i0src
);
3332 /* And a copy for I0DEST in I2PAT substitution. */
3333 if (added_sets_2
&& ((i0_feeds_i1_n
&& i1_feeds_i2_n
)
3334 || (i0_feeds_i2_n
)))
3335 i0src_copy2
= copy_rtx (i0src
);
3338 subst_low_luid
= DF_INSN_LUID (i0
);
3339 newpat
= subst (newpat
, i0dest
, i0src
, 0, 0, 0);
3345 int new_n_auto_inc
= 0;
3346 for_each_inc_dec (newpat
, count_auto_inc
, &new_n_auto_inc
);
3348 if (n_auto_inc
!= new_n_auto_inc
)
3350 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3351 fprintf (dump_file
, "Number of auto_inc expressions changed\n");
3357 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3358 to count all the ways that I2SRC and I1SRC can be used. */
3359 if ((FIND_REG_INC_NOTE (i2
, NULL_RTX
) != 0
3360 && i2_is_used
+ added_sets_2
> 1)
3361 || (i1
!= 0 && FIND_REG_INC_NOTE (i1
, NULL_RTX
) != 0
3362 && (i1_is_used
+ added_sets_1
+ (added_sets_2
&& i1_feeds_i2_n
)
3364 || (i0
!= 0 && FIND_REG_INC_NOTE (i0
, NULL_RTX
) != 0
3365 && (n_occurrences
+ added_sets_0
3366 + (added_sets_1
&& i0_feeds_i1_n
)
3367 + (added_sets_2
&& i0_feeds_i2_n
)
3369 /* Fail if we tried to make a new register. */
3370 || max_reg_num () != maxreg
3371 /* Fail if we couldn't do something and have a CLOBBER. */
3372 || GET_CODE (newpat
) == CLOBBER
3373 /* Fail if this new pattern is a MULT and we didn't have one before
3374 at the outer level. */
3375 || (GET_CODE (newpat
) == SET
&& GET_CODE (SET_SRC (newpat
)) == MULT
3382 /* If the actions of the earlier insns must be kept
3383 in addition to substituting them into the latest one,
3384 we must make a new PARALLEL for the latest insn
3385 to hold additional the SETs. */
3387 if (added_sets_0
|| added_sets_1
|| added_sets_2
)
3389 int extra_sets
= added_sets_0
+ added_sets_1
+ added_sets_2
;
3392 if (GET_CODE (newpat
) == PARALLEL
)
3394 rtvec old
= XVEC (newpat
, 0);
3395 total_sets
= XVECLEN (newpat
, 0) + extra_sets
;
3396 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
3397 memcpy (XVEC (newpat
, 0)->elem
, &old
->elem
[0],
3398 sizeof (old
->elem
[0]) * old
->num_elem
);
3403 total_sets
= 1 + extra_sets
;
3404 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
3405 XVECEXP (newpat
, 0, 0) = old
;
3409 XVECEXP (newpat
, 0, --total_sets
) = i0pat
;
3415 t
= subst (t
, i0dest
, i0src_copy
? i0src_copy
: i0src
, 0, 0, 0);
3417 XVECEXP (newpat
, 0, --total_sets
) = t
;
3423 t
= subst (t
, i1dest
, i1src_copy
? i1src_copy
: i1src
, 0, 0,
3424 i0_feeds_i1_n
&& i0dest_in_i0src
);
3425 if ((i0_feeds_i1_n
&& i1_feeds_i2_n
) || i0_feeds_i2_n
)
3426 t
= subst (t
, i0dest
, i0src_copy2
? i0src_copy2
: i0src
, 0, 0, 0);
3428 XVECEXP (newpat
, 0, --total_sets
) = t
;
3432 validate_replacement
:
3434 /* Note which hard regs this insn has as inputs. */
3435 mark_used_regs_combine (newpat
);
3437 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3438 consider splitting this pattern, we might need these clobbers. */
3439 if (i1
&& GET_CODE (newpat
) == PARALLEL
3440 && GET_CODE (XVECEXP (newpat
, 0, XVECLEN (newpat
, 0) - 1)) == CLOBBER
)
3442 int len
= XVECLEN (newpat
, 0);
3444 newpat_vec_with_clobbers
= rtvec_alloc (len
);
3445 for (i
= 0; i
< len
; i
++)
3446 RTVEC_ELT (newpat_vec_with_clobbers
, i
) = XVECEXP (newpat
, 0, i
);
3449 /* We have recognized nothing yet. */
3450 insn_code_number
= -1;
3452 /* See if this is a PARALLEL of two SETs where one SET's destination is
3453 a register that is unused and this isn't marked as an instruction that
3454 might trap in an EH region. In that case, we just need the other SET.
3455 We prefer this over the PARALLEL.
3457 This can occur when simplifying a divmod insn. We *must* test for this
3458 case here because the code below that splits two independent SETs doesn't
3459 handle this case correctly when it updates the register status.
3461 It's pointless doing this if we originally had two sets, one from
3462 i3, and one from i2. Combining then splitting the parallel results
3463 in the original i2 again plus an invalid insn (which we delete).
3464 The net effect is only to move instructions around, which makes
3465 debug info less accurate.
3467 If the remaining SET came from I2 its destination should not be used
3468 between I2 and I3. See PR82024. */
3470 if (!(added_sets_2
&& i1
== 0)
3471 && is_parallel_of_n_reg_sets (newpat
, 2)
3472 && asm_noperands (newpat
) < 0)
3474 rtx set0
= XVECEXP (newpat
, 0, 0);
3475 rtx set1
= XVECEXP (newpat
, 0, 1);
3476 rtx oldpat
= newpat
;
3478 if (((REG_P (SET_DEST (set1
))
3479 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set1
)))
3480 || (GET_CODE (SET_DEST (set1
)) == SUBREG
3481 && find_reg_note (i3
, REG_UNUSED
, SUBREG_REG (SET_DEST (set1
)))))
3482 && insn_nothrow_p (i3
)
3483 && !side_effects_p (SET_SRC (set1
)))
3486 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3489 else if (((REG_P (SET_DEST (set0
))
3490 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set0
)))
3491 || (GET_CODE (SET_DEST (set0
)) == SUBREG
3492 && find_reg_note (i3
, REG_UNUSED
,
3493 SUBREG_REG (SET_DEST (set0
)))))
3494 && insn_nothrow_p (i3
)
3495 && !side_effects_p (SET_SRC (set0
)))
3497 rtx dest
= SET_DEST (set1
);
3498 if (GET_CODE (dest
) == SUBREG
)
3499 dest
= SUBREG_REG (dest
);
3500 if (!reg_used_between_p (dest
, i2
, i3
))
3503 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3505 if (insn_code_number
>= 0)
3506 changed_i3_dest
= 1;
3510 if (insn_code_number
< 0)
3514 /* Is the result of combination a valid instruction? */
3515 if (insn_code_number
< 0)
3516 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3518 /* If we were combining three insns and the result is a simple SET
3519 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3520 insns. There are two ways to do this. It can be split using a
3521 machine-specific method (like when you have an addition of a large
3522 constant) or by combine in the function find_split_point. */
3524 if (i1
&& insn_code_number
< 0 && GET_CODE (newpat
) == SET
3525 && asm_noperands (newpat
) < 0)
3527 rtx parallel
, *split
;
3528 rtx_insn
*m_split_insn
;
3530 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3531 use I2DEST as a scratch register will help. In the latter case,
3532 convert I2DEST to the mode of the source of NEWPAT if we can. */
3534 m_split_insn
= combine_split_insns (newpat
, i3
);
3536 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3537 inputs of NEWPAT. */
3539 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3540 possible to try that as a scratch reg. This would require adding
3541 more code to make it work though. */
3543 if (m_split_insn
== 0 && ! reg_overlap_mentioned_p (i2dest
, newpat
))
3545 machine_mode new_mode
= GET_MODE (SET_DEST (newpat
));
3547 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3548 (temporarily, until we are committed to this instruction
3549 combination) does not work: for example, any call to nonzero_bits
3550 on the register (from a splitter in the MD file, for example)
3551 will get the old information, which is invalid.
3553 Since nowadays we can create registers during combine just fine,
3554 we should just create a new one here, not reuse i2dest. */
3556 /* First try to split using the original register as a
3557 scratch register. */
3558 parallel
= gen_rtx_PARALLEL (VOIDmode
,
3559 gen_rtvec (2, newpat
,
3560 gen_rtx_CLOBBER (VOIDmode
,
3562 m_split_insn
= combine_split_insns (parallel
, i3
);
3564 /* If that didn't work, try changing the mode of I2DEST if
3566 if (m_split_insn
== 0
3567 && new_mode
!= GET_MODE (i2dest
)
3568 && new_mode
!= VOIDmode
3569 && can_change_dest_mode (i2dest
, added_sets_2
, new_mode
))
3571 machine_mode old_mode
= GET_MODE (i2dest
);
3574 if (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
)
3575 ni2dest
= gen_rtx_REG (new_mode
, REGNO (i2dest
));
3578 SUBST_MODE (regno_reg_rtx
[REGNO (i2dest
)], new_mode
);
3579 ni2dest
= regno_reg_rtx
[REGNO (i2dest
)];
3582 parallel
= (gen_rtx_PARALLEL
3584 gen_rtvec (2, newpat
,
3585 gen_rtx_CLOBBER (VOIDmode
,
3587 m_split_insn
= combine_split_insns (parallel
, i3
);
3589 if (m_split_insn
== 0
3590 && REGNO (i2dest
) >= FIRST_PSEUDO_REGISTER
)
3594 adjust_reg_mode (regno_reg_rtx
[REGNO (i2dest
)], old_mode
);
3595 buf
= undobuf
.undos
;
3596 undobuf
.undos
= buf
->next
;
3597 buf
->next
= undobuf
.frees
;
3598 undobuf
.frees
= buf
;
3602 i2scratch
= m_split_insn
!= 0;
3605 /* If recog_for_combine has discarded clobbers, try to use them
3606 again for the split. */
3607 if (m_split_insn
== 0 && newpat_vec_with_clobbers
)
3609 parallel
= gen_rtx_PARALLEL (VOIDmode
, newpat_vec_with_clobbers
);
3610 m_split_insn
= combine_split_insns (parallel
, i3
);
3613 if (m_split_insn
&& NEXT_INSN (m_split_insn
) == NULL_RTX
)
3615 rtx m_split_pat
= PATTERN (m_split_insn
);
3616 insn_code_number
= recog_for_combine (&m_split_pat
, i3
, &new_i3_notes
);
3617 if (insn_code_number
>= 0)
3618 newpat
= m_split_pat
;
3620 else if (m_split_insn
&& NEXT_INSN (NEXT_INSN (m_split_insn
)) == NULL_RTX
3621 && (next_nonnote_nondebug_insn (i2
) == i3
3622 || !modified_between_p (PATTERN (m_split_insn
), i2
, i3
)))
3625 rtx newi3pat
= PATTERN (NEXT_INSN (m_split_insn
));
3626 newi2pat
= PATTERN (m_split_insn
);
3628 i3set
= single_set (NEXT_INSN (m_split_insn
));
3629 i2set
= single_set (m_split_insn
);
3631 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3633 /* If I2 or I3 has multiple SETs, we won't know how to track
3634 register status, so don't use these insns. If I2's destination
3635 is used between I2 and I3, we also can't use these insns. */
3637 if (i2_code_number
>= 0 && i2set
&& i3set
3638 && (next_nonnote_nondebug_insn (i2
) == i3
3639 || ! reg_used_between_p (SET_DEST (i2set
), i2
, i3
)))
3640 insn_code_number
= recog_for_combine (&newi3pat
, i3
,
3642 if (insn_code_number
>= 0)
3645 /* It is possible that both insns now set the destination of I3.
3646 If so, we must show an extra use of it. */
3648 if (insn_code_number
>= 0)
3650 rtx new_i3_dest
= SET_DEST (i3set
);
3651 rtx new_i2_dest
= SET_DEST (i2set
);
3653 while (GET_CODE (new_i3_dest
) == ZERO_EXTRACT
3654 || GET_CODE (new_i3_dest
) == STRICT_LOW_PART
3655 || GET_CODE (new_i3_dest
) == SUBREG
)
3656 new_i3_dest
= XEXP (new_i3_dest
, 0);
3658 while (GET_CODE (new_i2_dest
) == ZERO_EXTRACT
3659 || GET_CODE (new_i2_dest
) == STRICT_LOW_PART
3660 || GET_CODE (new_i2_dest
) == SUBREG
)
3661 new_i2_dest
= XEXP (new_i2_dest
, 0);
3663 if (REG_P (new_i3_dest
)
3664 && REG_P (new_i2_dest
)
3665 && REGNO (new_i3_dest
) == REGNO (new_i2_dest
)
3666 && REGNO (new_i2_dest
) < reg_n_sets_max
)
3667 INC_REG_N_SETS (REGNO (new_i2_dest
), 1);
3671 /* If we can split it and use I2DEST, go ahead and see if that
3672 helps things be recognized. Verify that none of the registers
3673 are set between I2 and I3. */
3674 if (insn_code_number
< 0
3675 && (split
= find_split_point (&newpat
, i3
, false)) != 0
3676 /* We need I2DEST in the proper mode. If it is a hard register
3677 or the only use of a pseudo, we can change its mode.
3678 Make sure we don't change a hard register to have a mode that
3679 isn't valid for it, or change the number of registers. */
3680 && (GET_MODE (*split
) == GET_MODE (i2dest
)
3681 || GET_MODE (*split
) == VOIDmode
3682 || can_change_dest_mode (i2dest
, added_sets_2
,
3684 && (next_nonnote_nondebug_insn (i2
) == i3
3685 || !modified_between_p (*split
, i2
, i3
))
3686 /* We can't overwrite I2DEST if its value is still used by
3688 && ! reg_referenced_p (i2dest
, newpat
))
3690 rtx newdest
= i2dest
;
3691 enum rtx_code split_code
= GET_CODE (*split
);
3692 machine_mode split_mode
= GET_MODE (*split
);
3693 bool subst_done
= false;
3694 newi2pat
= NULL_RTX
;
3698 /* *SPLIT may be part of I2SRC, so make sure we have the
3699 original expression around for later debug processing.
3700 We should not need I2SRC any more in other cases. */
3701 if (MAY_HAVE_DEBUG_BIND_INSNS
)
3702 i2src
= copy_rtx (i2src
);
3706 /* Get NEWDEST as a register in the proper mode. We have already
3707 validated that we can do this. */
3708 if (GET_MODE (i2dest
) != split_mode
&& split_mode
!= VOIDmode
)
3710 if (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
)
3711 newdest
= gen_rtx_REG (split_mode
, REGNO (i2dest
));
3714 SUBST_MODE (regno_reg_rtx
[REGNO (i2dest
)], split_mode
);
3715 newdest
= regno_reg_rtx
[REGNO (i2dest
)];
3719 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3720 an ASHIFT. This can occur if it was inside a PLUS and hence
3721 appeared to be a memory address. This is a kludge. */
3722 if (split_code
== MULT
3723 && CONST_INT_P (XEXP (*split
, 1))
3724 && INTVAL (XEXP (*split
, 1)) > 0
3725 && (i
= exact_log2 (UINTVAL (XEXP (*split
, 1)))) >= 0)
3727 rtx i_rtx
= gen_int_shift_amount (split_mode
, i
);
3728 SUBST (*split
, gen_rtx_ASHIFT (split_mode
,
3729 XEXP (*split
, 0), i_rtx
));
3730 /* Update split_code because we may not have a multiply
3732 split_code
= GET_CODE (*split
);
3735 /* Similarly for (plus (mult FOO (const_int pow2))). */
3736 if (split_code
== PLUS
3737 && GET_CODE (XEXP (*split
, 0)) == MULT
3738 && CONST_INT_P (XEXP (XEXP (*split
, 0), 1))
3739 && INTVAL (XEXP (XEXP (*split
, 0), 1)) > 0
3740 && (i
= exact_log2 (UINTVAL (XEXP (XEXP (*split
, 0), 1)))) >= 0)
3742 rtx nsplit
= XEXP (*split
, 0);
3743 rtx i_rtx
= gen_int_shift_amount (GET_MODE (nsplit
), i
);
3744 SUBST (XEXP (*split
, 0), gen_rtx_ASHIFT (GET_MODE (nsplit
),
3747 /* Update split_code because we may not have a multiply
3749 split_code
= GET_CODE (*split
);
3752 #ifdef INSN_SCHEDULING
3753 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3754 be written as a ZERO_EXTEND. */
3755 if (split_code
== SUBREG
&& MEM_P (SUBREG_REG (*split
)))
3757 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3758 what it really is. */
3759 if (load_extend_op (GET_MODE (SUBREG_REG (*split
)))
3761 SUBST (*split
, gen_rtx_SIGN_EXTEND (split_mode
,
3762 SUBREG_REG (*split
)));
3764 SUBST (*split
, gen_rtx_ZERO_EXTEND (split_mode
,
3765 SUBREG_REG (*split
)));
3769 /* Attempt to split binary operators using arithmetic identities. */
3770 if (BINARY_P (SET_SRC (newpat
))
3771 && split_mode
== GET_MODE (SET_SRC (newpat
))
3772 && ! side_effects_p (SET_SRC (newpat
)))
3774 rtx setsrc
= SET_SRC (newpat
);
3775 machine_mode mode
= GET_MODE (setsrc
);
3776 enum rtx_code code
= GET_CODE (setsrc
);
3777 rtx src_op0
= XEXP (setsrc
, 0);
3778 rtx src_op1
= XEXP (setsrc
, 1);
3780 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3781 if (rtx_equal_p (src_op0
, src_op1
))
3783 newi2pat
= gen_rtx_SET (newdest
, src_op0
);
3784 SUBST (XEXP (setsrc
, 0), newdest
);
3785 SUBST (XEXP (setsrc
, 1), newdest
);
3788 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3789 else if ((code
== PLUS
|| code
== MULT
)
3790 && GET_CODE (src_op0
) == code
3791 && GET_CODE (XEXP (src_op0
, 0)) == code
3792 && (INTEGRAL_MODE_P (mode
)
3793 || (FLOAT_MODE_P (mode
)
3794 && flag_unsafe_math_optimizations
)))
3796 rtx p
= XEXP (XEXP (src_op0
, 0), 0);
3797 rtx q
= XEXP (XEXP (src_op0
, 0), 1);
3798 rtx r
= XEXP (src_op0
, 1);
3801 /* Split both "((X op Y) op X) op Y" and
3802 "((X op Y) op Y) op X" as "T op T" where T is
3804 if ((rtx_equal_p (p
,r
) && rtx_equal_p (q
,s
))
3805 || (rtx_equal_p (p
,s
) && rtx_equal_p (q
,r
)))
3807 newi2pat
= gen_rtx_SET (newdest
, XEXP (src_op0
, 0));
3808 SUBST (XEXP (setsrc
, 0), newdest
);
3809 SUBST (XEXP (setsrc
, 1), newdest
);
3812 /* Split "((X op X) op Y) op Y)" as "T op T" where
3814 else if (rtx_equal_p (p
,q
) && rtx_equal_p (r
,s
))
3816 rtx tmp
= simplify_gen_binary (code
, mode
, p
, r
);
3817 newi2pat
= gen_rtx_SET (newdest
, tmp
);
3818 SUBST (XEXP (setsrc
, 0), newdest
);
3819 SUBST (XEXP (setsrc
, 1), newdest
);
3827 newi2pat
= gen_rtx_SET (newdest
, *split
);
3828 SUBST (*split
, newdest
);
3831 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3833 /* recog_for_combine might have added CLOBBERs to newi2pat.
3834 Make sure NEWPAT does not depend on the clobbered regs. */
3835 if (GET_CODE (newi2pat
) == PARALLEL
)
3836 for (i
= XVECLEN (newi2pat
, 0) - 1; i
>= 0; i
--)
3837 if (GET_CODE (XVECEXP (newi2pat
, 0, i
)) == CLOBBER
)
3839 rtx reg
= XEXP (XVECEXP (newi2pat
, 0, i
), 0);
3840 if (reg_overlap_mentioned_p (reg
, newpat
))
3847 /* If the split point was a MULT and we didn't have one before,
3848 don't use one now. */
3849 if (i2_code_number
>= 0 && ! (split_code
== MULT
&& ! have_mult
))
3850 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3854 /* Check for a case where we loaded from memory in a narrow mode and
3855 then sign extended it, but we need both registers. In that case,
3856 we have a PARALLEL with both loads from the same memory location.
3857 We can split this into a load from memory followed by a register-register
3858 copy. This saves at least one insn, more if register allocation can
3861 We cannot do this if the destination of the first assignment is a
3862 condition code register. We eliminate this case by making sure
3863 the SET_DEST and SET_SRC have the same mode.
3865 We cannot do this if the destination of the second assignment is
3866 a register that we have already assumed is zero-extended. Similarly
3867 for a SUBREG of such a register. */
3869 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
3870 && GET_CODE (newpat
) == PARALLEL
3871 && XVECLEN (newpat
, 0) == 2
3872 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
3873 && GET_CODE (SET_SRC (XVECEXP (newpat
, 0, 0))) == SIGN_EXTEND
3874 && (GET_MODE (SET_DEST (XVECEXP (newpat
, 0, 0)))
3875 == GET_MODE (SET_SRC (XVECEXP (newpat
, 0, 0))))
3876 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
3877 && rtx_equal_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
3878 XEXP (SET_SRC (XVECEXP (newpat
, 0, 0)), 0))
3879 && !modified_between_p (SET_SRC (XVECEXP (newpat
, 0, 1)), i2
, i3
)
3880 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
3881 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
3882 && ! (temp_expr
= SET_DEST (XVECEXP (newpat
, 0, 1)),
3884 && reg_stat
[REGNO (temp_expr
)].nonzero_bits
!= 0
3885 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr
)),
3887 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr
)),
3889 && (reg_stat
[REGNO (temp_expr
)].nonzero_bits
3890 != GET_MODE_MASK (word_mode
))))
3891 && ! (GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) == SUBREG
3892 && (temp_expr
= SUBREG_REG (SET_DEST (XVECEXP (newpat
, 0, 1))),
3894 && reg_stat
[REGNO (temp_expr
)].nonzero_bits
!= 0
3895 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr
)),
3897 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr
)),
3899 && (reg_stat
[REGNO (temp_expr
)].nonzero_bits
3900 != GET_MODE_MASK (word_mode
)))))
3901 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
3902 SET_SRC (XVECEXP (newpat
, 0, 1)))
3903 && ! find_reg_note (i3
, REG_UNUSED
,
3904 SET_DEST (XVECEXP (newpat
, 0, 0))))
3908 newi2pat
= XVECEXP (newpat
, 0, 0);
3909 ni2dest
= SET_DEST (XVECEXP (newpat
, 0, 0));
3910 newpat
= XVECEXP (newpat
, 0, 1);
3911 SUBST (SET_SRC (newpat
),
3912 gen_lowpart (GET_MODE (SET_SRC (newpat
)), ni2dest
));
3913 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3915 if (i2_code_number
>= 0)
3916 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3918 if (insn_code_number
>= 0)
3922 /* Similarly, check for a case where we have a PARALLEL of two independent
3923 SETs but we started with three insns. In this case, we can do the sets
3924 as two separate insns. This case occurs when some SET allows two
3925 other insns to combine, but the destination of that SET is still live.
3927 Also do this if we started with two insns and (at least) one of the
3928 resulting sets is a noop; this noop will be deleted later.
3930 Also do this if we started with two insns neither of which was a simple
3933 else if (insn_code_number
< 0 && asm_noperands (newpat
) < 0
3934 && GET_CODE (newpat
) == PARALLEL
3935 && XVECLEN (newpat
, 0) == 2
3936 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
3937 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
3939 || set_noop_p (XVECEXP (newpat
, 0, 0))
3940 || set_noop_p (XVECEXP (newpat
, 0, 1))
3941 || (!i2_was_move
&& !i3_was_move
))
3942 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != ZERO_EXTRACT
3943 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != STRICT_LOW_PART
3944 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
3945 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
3946 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
3947 XVECEXP (newpat
, 0, 0))
3948 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 0)),
3949 XVECEXP (newpat
, 0, 1))
3950 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 0)))
3951 && contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 1)))))
3953 rtx set0
= XVECEXP (newpat
, 0, 0);
3954 rtx set1
= XVECEXP (newpat
, 0, 1);
3956 /* Normally, it doesn't matter which of the two is done first, but
3957 one which uses any regs/memory set in between i2 and i3 can't
3958 be first. The PARALLEL might also have been pre-existing in i3,
3959 so we need to make sure that we won't wrongly hoist a SET to i2
3960 that would conflict with a death note present in there, or would
3961 have its dest modified between i2 and i3. */
3962 if (!modified_between_p (SET_SRC (set1
), i2
, i3
)
3963 && !(REG_P (SET_DEST (set1
))
3964 && find_reg_note (i2
, REG_DEAD
, SET_DEST (set1
)))
3965 && !(GET_CODE (SET_DEST (set1
)) == SUBREG
3966 && find_reg_note (i2
, REG_DEAD
,
3967 SUBREG_REG (SET_DEST (set1
))))
3968 && !modified_between_p (SET_DEST (set1
), i2
, i3
)
3969 /* If I3 is a jump, ensure that set0 is a jump so that
3970 we do not create invalid RTL. */
3971 && (!JUMP_P (i3
) || SET_DEST (set0
) == pc_rtx
)
3977 else if (!modified_between_p (SET_SRC (set0
), i2
, i3
)
3978 && !(REG_P (SET_DEST (set0
))
3979 && find_reg_note (i2
, REG_DEAD
, SET_DEST (set0
)))
3980 && !(GET_CODE (SET_DEST (set0
)) == SUBREG
3981 && find_reg_note (i2
, REG_DEAD
,
3982 SUBREG_REG (SET_DEST (set0
))))
3983 && !modified_between_p (SET_DEST (set0
), i2
, i3
)
3984 /* If I3 is a jump, ensure that set1 is a jump so that
3985 we do not create invalid RTL. */
3986 && (!JUMP_P (i3
) || SET_DEST (set1
) == pc_rtx
)
3998 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
4000 if (i2_code_number
>= 0)
4002 /* recog_for_combine might have added CLOBBERs to newi2pat.
4003 Make sure NEWPAT does not depend on the clobbered regs. */
4004 if (GET_CODE (newi2pat
) == PARALLEL
)
4006 for (i
= XVECLEN (newi2pat
, 0) - 1; i
>= 0; i
--)
4007 if (GET_CODE (XVECEXP (newi2pat
, 0, i
)) == CLOBBER
)
4009 rtx reg
= XEXP (XVECEXP (newi2pat
, 0, i
), 0);
4010 if (reg_overlap_mentioned_p (reg
, newpat
))
4018 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
4020 if (insn_code_number
>= 0)
4025 /* If it still isn't recognized, fail and change things back the way they
4027 if ((insn_code_number
< 0
4028 /* Is the result a reasonable ASM_OPERANDS? */
4029 && (! check_asm_operands (newpat
) || added_sets_1
|| added_sets_2
)))
4035 /* If we had to change another insn, make sure it is valid also. */
4036 if (undobuf
.other_insn
)
4038 CLEAR_HARD_REG_SET (newpat_used_regs
);
4040 other_pat
= PATTERN (undobuf
.other_insn
);
4041 other_code_number
= recog_for_combine (&other_pat
, undobuf
.other_insn
,
4044 if (other_code_number
< 0 && ! check_asm_operands (other_pat
))
4051 /* Only allow this combination if insn_cost reports that the
4052 replacement instructions are cheaper than the originals. */
4053 if (!combine_validate_cost (i0
, i1
, i2
, i3
, newpat
, newi2pat
, other_pat
))
4059 if (MAY_HAVE_DEBUG_BIND_INSNS
)
4063 for (undo
= undobuf
.undos
; undo
; undo
= undo
->next
)
4064 if (undo
->kind
== UNDO_MODE
)
4066 rtx reg
= *undo
->where
.r
;
4067 machine_mode new_mode
= GET_MODE (reg
);
4068 machine_mode old_mode
= undo
->old_contents
.m
;
4070 /* Temporarily revert mode back. */
4071 adjust_reg_mode (reg
, old_mode
);
4073 if (reg
== i2dest
&& i2scratch
)
4075 /* If we used i2dest as a scratch register with a
4076 different mode, substitute it for the original
4077 i2src while its original mode is temporarily
4078 restored, and then clear i2scratch so that we don't
4079 do it again later. */
4080 propagate_for_debug (i2
, last_combined_insn
, reg
, i2src
,
4083 /* Put back the new mode. */
4084 adjust_reg_mode (reg
, new_mode
);
4088 rtx tempreg
= gen_raw_REG (old_mode
, REGNO (reg
));
4089 rtx_insn
*first
, *last
;
4094 last
= last_combined_insn
;
4099 last
= undobuf
.other_insn
;
4101 if (DF_INSN_LUID (last
)
4102 < DF_INSN_LUID (last_combined_insn
))
4103 last
= last_combined_insn
;
4106 /* We're dealing with a reg that changed mode but not
4107 meaning, so we want to turn it into a subreg for
4108 the new mode. However, because of REG sharing and
4109 because its mode had already changed, we have to do
4110 it in two steps. First, replace any debug uses of
4111 reg, with its original mode temporarily restored,
4112 with this copy we have created; then, replace the
4113 copy with the SUBREG of the original shared reg,
4114 once again changed to the new mode. */
4115 propagate_for_debug (first
, last
, reg
, tempreg
,
4117 adjust_reg_mode (reg
, new_mode
);
4118 propagate_for_debug (first
, last
, tempreg
,
4119 lowpart_subreg (old_mode
, reg
, new_mode
),
4125 /* If we will be able to accept this, we have made a
4126 change to the destination of I3. This requires us to
4127 do a few adjustments. */
4129 if (changed_i3_dest
)
4131 PATTERN (i3
) = newpat
;
4132 adjust_for_new_dest (i3
);
4135 /* We now know that we can do this combination. Merge the insns and
4136 update the status of registers and LOG_LINKS. */
4138 if (undobuf
.other_insn
)
4142 PATTERN (undobuf
.other_insn
) = other_pat
;
4144 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4145 ensure that they are still valid. Then add any non-duplicate
4146 notes added by recog_for_combine. */
4147 for (note
= REG_NOTES (undobuf
.other_insn
); note
; note
= next
)
4149 next
= XEXP (note
, 1);
4151 if ((REG_NOTE_KIND (note
) == REG_DEAD
4152 && !reg_referenced_p (XEXP (note
, 0),
4153 PATTERN (undobuf
.other_insn
)))
4154 ||(REG_NOTE_KIND (note
) == REG_UNUSED
4155 && !reg_set_p (XEXP (note
, 0),
4156 PATTERN (undobuf
.other_insn
)))
4157 /* Simply drop equal note since it may be no longer valid
4158 for other_insn. It may be possible to record that CC
4159 register is changed and only discard those notes, but
4160 in practice it's unnecessary complication and doesn't
4161 give any meaningful improvement.
4164 || REG_NOTE_KIND (note
) == REG_EQUAL
4165 || REG_NOTE_KIND (note
) == REG_EQUIV
)
4166 remove_note (undobuf
.other_insn
, note
);
4169 distribute_notes (new_other_notes
, undobuf
.other_insn
,
4170 undobuf
.other_insn
, NULL
, NULL_RTX
, NULL_RTX
,
4176 /* I3 now uses what used to be its destination and which is now
4177 I2's destination. This requires us to do a few adjustments. */
4178 PATTERN (i3
) = newpat
;
4179 adjust_for_new_dest (i3
);
4182 if (swap_i2i3
|| split_i2i3
)
4184 /* We might need a LOG_LINK from I3 to I2. But then we used to
4185 have one, so we still will.
4187 However, some later insn might be using I2's dest and have
4188 a LOG_LINK pointing at I3. We should change it to point at
4191 /* newi2pat is usually a SET here; however, recog_for_combine might
4192 have added some clobbers. */
4194 if (GET_CODE (x
) == PARALLEL
)
4195 x
= XVECEXP (newi2pat
, 0, 0);
4197 if (REG_P (SET_DEST (x
))
4198 || (GET_CODE (SET_DEST (x
)) == SUBREG
4199 && REG_P (SUBREG_REG (SET_DEST (x
)))))
4201 unsigned int regno
= reg_or_subregno (SET_DEST (x
));
4204 for (rtx_insn
*insn
= NEXT_INSN (i3
);
4207 && NONDEBUG_INSN_P (insn
)
4208 && BLOCK_FOR_INSN (insn
) == this_basic_block
;
4209 insn
= NEXT_INSN (insn
))
4211 struct insn_link
*link
;
4212 FOR_EACH_LOG_LINK (link
, insn
)
4213 if (link
->insn
== i3
&& link
->regno
== regno
)
4224 rtx i3notes
, i2notes
, i1notes
= 0, i0notes
= 0;
4225 struct insn_link
*i3links
, *i2links
, *i1links
= 0, *i0links
= 0;
4228 /* Compute which registers we expect to eliminate. newi2pat may be setting
4229 either i3dest or i2dest, so we must check it. */
4230 rtx elim_i2
= ((newi2pat
&& reg_set_p (i2dest
, newi2pat
))
4231 || i2dest_in_i2src
|| i2dest_in_i1src
|| i2dest_in_i0src
4234 /* For i1, we need to compute both local elimination and global
4235 elimination information with respect to newi2pat because i1dest
4236 may be the same as i3dest, in which case newi2pat may be setting
4237 i1dest. Global information is used when distributing REG_DEAD
4238 note for i2 and i3, in which case it does matter if newi2pat sets
4241 Local information is used when distributing REG_DEAD note for i1,
4242 in which case it doesn't matter if newi2pat sets i1dest or not.
4243 See PR62151, if we have four insns combination:
4245 i1: r1 <- i1src (using r0)
4247 i2: r0 <- i2src (using r1)
4248 i3: r3 <- i3src (using r0)
4250 From i1's point of view, r0 is eliminated, no matter if it is set
4251 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4252 should be discarded.
4254 Note local information only affects cases in forms like "I1->I2->I3",
4255 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4256 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4258 rtx local_elim_i1
= (i1
== 0 || i1dest_in_i1src
|| i1dest_in_i0src
4261 rtx elim_i1
= (local_elim_i1
== 0
4262 || (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
4264 /* Same case as i1. */
4265 rtx local_elim_i0
= (i0
== 0 || i0dest_in_i0src
|| !i0dest_killed
4267 rtx elim_i0
= (local_elim_i0
== 0
4268 || (newi2pat
&& reg_set_p (i0dest
, newi2pat
))
4271 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4273 i3notes
= REG_NOTES (i3
), i3links
= LOG_LINKS (i3
);
4274 i2notes
= REG_NOTES (i2
), i2links
= LOG_LINKS (i2
);
4276 i1notes
= REG_NOTES (i1
), i1links
= LOG_LINKS (i1
);
4278 i0notes
= REG_NOTES (i0
), i0links
= LOG_LINKS (i0
);
4280 /* Ensure that we do not have something that should not be shared but
4281 occurs multiple times in the new insns. Check this by first
4282 resetting all the `used' flags and then copying anything is shared. */
4284 reset_used_flags (i3notes
);
4285 reset_used_flags (i2notes
);
4286 reset_used_flags (i1notes
);
4287 reset_used_flags (i0notes
);
4288 reset_used_flags (newpat
);
4289 reset_used_flags (newi2pat
);
4290 if (undobuf
.other_insn
)
4291 reset_used_flags (PATTERN (undobuf
.other_insn
));
4293 i3notes
= copy_rtx_if_shared (i3notes
);
4294 i2notes
= copy_rtx_if_shared (i2notes
);
4295 i1notes
= copy_rtx_if_shared (i1notes
);
4296 i0notes
= copy_rtx_if_shared (i0notes
);
4297 newpat
= copy_rtx_if_shared (newpat
);
4298 newi2pat
= copy_rtx_if_shared (newi2pat
);
4299 if (undobuf
.other_insn
)
4300 reset_used_flags (PATTERN (undobuf
.other_insn
));
4302 INSN_CODE (i3
) = insn_code_number
;
4303 PATTERN (i3
) = newpat
;
4305 if (CALL_P (i3
) && CALL_INSN_FUNCTION_USAGE (i3
))
4307 for (rtx link
= CALL_INSN_FUNCTION_USAGE (i3
); link
;
4308 link
= XEXP (link
, 1))
4312 /* I2SRC must still be meaningful at this point. Some
4313 splitting operations can invalidate I2SRC, but those
4314 operations do not apply to calls. */
4316 XEXP (link
, 0) = simplify_replace_rtx (XEXP (link
, 0),
4320 XEXP (link
, 0) = simplify_replace_rtx (XEXP (link
, 0),
4323 XEXP (link
, 0) = simplify_replace_rtx (XEXP (link
, 0),
4328 if (undobuf
.other_insn
)
4329 INSN_CODE (undobuf
.other_insn
) = other_code_number
;
4331 /* We had one special case above where I2 had more than one set and
4332 we replaced a destination of one of those sets with the destination
4333 of I3. In that case, we have to update LOG_LINKS of insns later
4334 in this basic block. Note that this (expensive) case is rare.
4336 Also, in this case, we must pretend that all REG_NOTEs for I2
4337 actually came from I3, so that REG_UNUSED notes from I2 will be
4338 properly handled. */
4340 if (i3_subst_into_i2
)
4342 for (i
= 0; i
< XVECLEN (PATTERN (i2
), 0); i
++)
4343 if ((GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) == SET
4344 || GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) == CLOBBER
)
4345 && REG_P (SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)))
4346 && SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)) != i2dest
4347 && ! find_reg_note (i2
, REG_UNUSED
,
4348 SET_DEST (XVECEXP (PATTERN (i2
), 0, i
))))
4349 for (temp_insn
= NEXT_INSN (i2
);
4351 && (this_basic_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
4352 || BB_HEAD (this_basic_block
) != temp_insn
);
4353 temp_insn
= NEXT_INSN (temp_insn
))
4354 if (temp_insn
!= i3
&& NONDEBUG_INSN_P (temp_insn
))
4355 FOR_EACH_LOG_LINK (link
, temp_insn
)
4356 if (link
->insn
== i2
)
4362 while (XEXP (link
, 1))
4363 link
= XEXP (link
, 1);
4364 XEXP (link
, 1) = i2notes
;
4371 LOG_LINKS (i3
) = NULL
;
4373 LOG_LINKS (i2
) = NULL
;
4378 if (MAY_HAVE_DEBUG_BIND_INSNS
&& i2scratch
)
4379 propagate_for_debug (i2
, last_combined_insn
, i2dest
, i2src
,
4381 INSN_CODE (i2
) = i2_code_number
;
4382 PATTERN (i2
) = newi2pat
;
4386 if (MAY_HAVE_DEBUG_BIND_INSNS
&& i2src
)
4387 propagate_for_debug (i2
, last_combined_insn
, i2dest
, i2src
,
4389 SET_INSN_DELETED (i2
);
4394 LOG_LINKS (i1
) = NULL
;
4396 if (MAY_HAVE_DEBUG_BIND_INSNS
)
4397 propagate_for_debug (i1
, last_combined_insn
, i1dest
, i1src
,
4399 SET_INSN_DELETED (i1
);
4404 LOG_LINKS (i0
) = NULL
;
4406 if (MAY_HAVE_DEBUG_BIND_INSNS
)
4407 propagate_for_debug (i0
, last_combined_insn
, i0dest
, i0src
,
4409 SET_INSN_DELETED (i0
);
4412 /* Get death notes for everything that is now used in either I3 or
4413 I2 and used to die in a previous insn. If we built two new
4414 patterns, move from I1 to I2 then I2 to I3 so that we get the
4415 proper movement on registers that I2 modifies. */
4418 from_luid
= DF_INSN_LUID (i0
);
4420 from_luid
= DF_INSN_LUID (i1
);
4422 from_luid
= DF_INSN_LUID (i2
);
4424 move_deaths (newi2pat
, NULL_RTX
, from_luid
, i2
, &midnotes
);
4425 move_deaths (newpat
, newi2pat
, from_luid
, i3
, &midnotes
);
4427 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4429 distribute_notes (i3notes
, i3
, i3
, newi2pat
? i2
: NULL
,
4430 elim_i2
, elim_i1
, elim_i0
);
4432 distribute_notes (i2notes
, i2
, i3
, newi2pat
? i2
: NULL
,
4433 elim_i2
, elim_i1
, elim_i0
);
4435 distribute_notes (i1notes
, i1
, i3
, newi2pat
? i2
: NULL
,
4436 elim_i2
, local_elim_i1
, local_elim_i0
);
4438 distribute_notes (i0notes
, i0
, i3
, newi2pat
? i2
: NULL
,
4439 elim_i2
, elim_i1
, local_elim_i0
);
4441 distribute_notes (midnotes
, NULL
, i3
, newi2pat
? i2
: NULL
,
4442 elim_i2
, elim_i1
, elim_i0
);
4444 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4445 know these are REG_UNUSED and want them to go to the desired insn,
4446 so we always pass it as i3. */
4448 if (newi2pat
&& new_i2_notes
)
4449 distribute_notes (new_i2_notes
, i2
, i2
, NULL
, NULL_RTX
, NULL_RTX
,
4453 distribute_notes (new_i3_notes
, i3
, i3
, NULL
, NULL_RTX
, NULL_RTX
,
4456 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4457 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4458 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4459 in that case, it might delete I2. Similarly for I2 and I1.
4460 Show an additional death due to the REG_DEAD note we make here. If
4461 we discard it in distribute_notes, we will decrement it again. */
4465 rtx new_note
= alloc_reg_note (REG_DEAD
, i3dest_killed
, NULL_RTX
);
4466 if (newi2pat
&& reg_set_p (i3dest_killed
, newi2pat
))
4467 distribute_notes (new_note
, NULL
, i2
, NULL
, elim_i2
,
4470 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4471 elim_i2
, elim_i1
, elim_i0
);
4474 if (i2dest_in_i2src
)
4476 rtx new_note
= alloc_reg_note (REG_DEAD
, i2dest
, NULL_RTX
);
4477 if (newi2pat
&& reg_set_p (i2dest
, newi2pat
))
4478 distribute_notes (new_note
, NULL
, i2
, NULL
, NULL_RTX
,
4479 NULL_RTX
, NULL_RTX
);
4481 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4482 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4485 if (i1dest_in_i1src
)
4487 rtx new_note
= alloc_reg_note (REG_DEAD
, i1dest
, NULL_RTX
);
4488 if (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
4489 distribute_notes (new_note
, NULL
, i2
, NULL
, NULL_RTX
,
4490 NULL_RTX
, NULL_RTX
);
4492 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4493 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4496 if (i0dest_in_i0src
)
4498 rtx new_note
= alloc_reg_note (REG_DEAD
, i0dest
, NULL_RTX
);
4499 if (newi2pat
&& reg_set_p (i0dest
, newi2pat
))
4500 distribute_notes (new_note
, NULL
, i2
, NULL
, NULL_RTX
,
4501 NULL_RTX
, NULL_RTX
);
4503 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4504 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4507 distribute_links (i3links
);
4508 distribute_links (i2links
);
4509 distribute_links (i1links
);
4510 distribute_links (i0links
);
4514 struct insn_link
*link
;
4515 rtx_insn
*i2_insn
= 0;
4516 rtx i2_val
= 0, set
;
4518 /* The insn that used to set this register doesn't exist, and
4519 this life of the register may not exist either. See if one of
4520 I3's links points to an insn that sets I2DEST. If it does,
4521 that is now the last known value for I2DEST. If we don't update
4522 this and I2 set the register to a value that depended on its old
4523 contents, we will get confused. If this insn is used, thing
4524 will be set correctly in combine_instructions. */
4525 FOR_EACH_LOG_LINK (link
, i3
)
4526 if ((set
= single_set (link
->insn
)) != 0
4527 && rtx_equal_p (i2dest
, SET_DEST (set
)))
4528 i2_insn
= link
->insn
, i2_val
= SET_SRC (set
);
4530 record_value_for_reg (i2dest
, i2_insn
, i2_val
);
4532 /* If the reg formerly set in I2 died only once and that was in I3,
4533 zero its use count so it won't make `reload' do any work. */
4535 && (newi2pat
== 0 || ! reg_mentioned_p (i2dest
, newi2pat
))
4536 && ! i2dest_in_i2src
4537 && REGNO (i2dest
) < reg_n_sets_max
)
4538 INC_REG_N_SETS (REGNO (i2dest
), -1);
4541 if (i1
&& REG_P (i1dest
))
4543 struct insn_link
*link
;
4544 rtx_insn
*i1_insn
= 0;
4545 rtx i1_val
= 0, set
;
4547 FOR_EACH_LOG_LINK (link
, i3
)
4548 if ((set
= single_set (link
->insn
)) != 0
4549 && rtx_equal_p (i1dest
, SET_DEST (set
)))
4550 i1_insn
= link
->insn
, i1_val
= SET_SRC (set
);
4552 record_value_for_reg (i1dest
, i1_insn
, i1_val
);
4555 && ! i1dest_in_i1src
4556 && REGNO (i1dest
) < reg_n_sets_max
)
4557 INC_REG_N_SETS (REGNO (i1dest
), -1);
4560 if (i0
&& REG_P (i0dest
))
4562 struct insn_link
*link
;
4563 rtx_insn
*i0_insn
= 0;
4564 rtx i0_val
= 0, set
;
4566 FOR_EACH_LOG_LINK (link
, i3
)
4567 if ((set
= single_set (link
->insn
)) != 0
4568 && rtx_equal_p (i0dest
, SET_DEST (set
)))
4569 i0_insn
= link
->insn
, i0_val
= SET_SRC (set
);
4571 record_value_for_reg (i0dest
, i0_insn
, i0_val
);
4574 && ! i0dest_in_i0src
4575 && REGNO (i0dest
) < reg_n_sets_max
)
4576 INC_REG_N_SETS (REGNO (i0dest
), -1);
4579 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4580 been made to this insn. The order is important, because newi2pat
4581 can affect nonzero_bits of newpat. */
4583 note_pattern_stores (newi2pat
, set_nonzero_bits_and_sign_copies
, NULL
);
4584 note_pattern_stores (newpat
, set_nonzero_bits_and_sign_copies
, NULL
);
4587 if (undobuf
.other_insn
!= NULL_RTX
)
4591 fprintf (dump_file
, "modifying other_insn ");
4592 dump_insn_slim (dump_file
, undobuf
.other_insn
);
4594 df_insn_rescan (undobuf
.other_insn
);
4597 if (i0
&& !(NOTE_P (i0
) && (NOTE_KIND (i0
) == NOTE_INSN_DELETED
)))
4601 fprintf (dump_file
, "modifying insn i0 ");
4602 dump_insn_slim (dump_file
, i0
);
4604 df_insn_rescan (i0
);
4607 if (i1
&& !(NOTE_P (i1
) && (NOTE_KIND (i1
) == NOTE_INSN_DELETED
)))
4611 fprintf (dump_file
, "modifying insn i1 ");
4612 dump_insn_slim (dump_file
, i1
);
4614 df_insn_rescan (i1
);
4617 if (i2
&& !(NOTE_P (i2
) && (NOTE_KIND (i2
) == NOTE_INSN_DELETED
)))
4621 fprintf (dump_file
, "modifying insn i2 ");
4622 dump_insn_slim (dump_file
, i2
);
4624 df_insn_rescan (i2
);
4627 if (i3
&& !(NOTE_P (i3
) && (NOTE_KIND (i3
) == NOTE_INSN_DELETED
)))
4631 fprintf (dump_file
, "modifying insn i3 ");
4632 dump_insn_slim (dump_file
, i3
);
4634 df_insn_rescan (i3
);
4637 /* Set new_direct_jump_p if a new return or simple jump instruction
4638 has been created. Adjust the CFG accordingly. */
4639 if (returnjump_p (i3
) || any_uncondjump_p (i3
))
4641 *new_direct_jump_p
= 1;
4642 mark_jump_label (PATTERN (i3
), i3
, 0);
4643 update_cfg_for_uncondjump (i3
);
4646 if (undobuf
.other_insn
!= NULL_RTX
4647 && (returnjump_p (undobuf
.other_insn
)
4648 || any_uncondjump_p (undobuf
.other_insn
)))
4650 *new_direct_jump_p
= 1;
4651 update_cfg_for_uncondjump (undobuf
.other_insn
);
4654 if (GET_CODE (PATTERN (i3
)) == TRAP_IF
4655 && XEXP (PATTERN (i3
), 0) == const1_rtx
)
4657 basic_block bb
= BLOCK_FOR_INSN (i3
);
4659 remove_edge (split_block (bb
, i3
));
4660 emit_barrier_after_bb (bb
);
4661 *new_direct_jump_p
= 1;
4664 if (undobuf
.other_insn
4665 && GET_CODE (PATTERN (undobuf
.other_insn
)) == TRAP_IF
4666 && XEXP (PATTERN (undobuf
.other_insn
), 0) == const1_rtx
)
4668 basic_block bb
= BLOCK_FOR_INSN (undobuf
.other_insn
);
4670 remove_edge (split_block (bb
, undobuf
.other_insn
));
4671 emit_barrier_after_bb (bb
);
4672 *new_direct_jump_p
= 1;
4675 /* A noop might also need cleaning up of CFG, if it comes from the
4676 simplification of a jump. */
4678 && GET_CODE (newpat
) == SET
4679 && SET_SRC (newpat
) == pc_rtx
4680 && SET_DEST (newpat
) == pc_rtx
)
4682 *new_direct_jump_p
= 1;
4683 update_cfg_for_uncondjump (i3
);
4686 if (undobuf
.other_insn
!= NULL_RTX
4687 && JUMP_P (undobuf
.other_insn
)
4688 && GET_CODE (PATTERN (undobuf
.other_insn
)) == SET
4689 && SET_SRC (PATTERN (undobuf
.other_insn
)) == pc_rtx
4690 && SET_DEST (PATTERN (undobuf
.other_insn
)) == pc_rtx
)
4692 *new_direct_jump_p
= 1;
4693 update_cfg_for_uncondjump (undobuf
.other_insn
);
4696 combine_successes
++;
4699 rtx_insn
*ret
= newi2pat
? i2
: i3
;
4700 if (added_links_insn
&& DF_INSN_LUID (added_links_insn
) < DF_INSN_LUID (ret
))
4701 ret
= added_links_insn
;
4702 if (added_notes_insn
&& DF_INSN_LUID (added_notes_insn
) < DF_INSN_LUID (ret
))
4703 ret
= added_notes_insn
;
4708 /* Get a marker for undoing to the current state. */
4711 get_undo_marker (void)
4713 return undobuf
.undos
;
4716 /* Undo the modifications up to the marker. */
4719 undo_to_marker (void *marker
)
4721 struct undo
*undo
, *next
;
4723 for (undo
= undobuf
.undos
; undo
!= marker
; undo
= next
)
4731 *undo
->where
.r
= undo
->old_contents
.r
;
4734 *undo
->where
.i
= undo
->old_contents
.i
;
4737 adjust_reg_mode (*undo
->where
.r
, undo
->old_contents
.m
);
4740 *undo
->where
.l
= undo
->old_contents
.l
;
4746 undo
->next
= undobuf
.frees
;
4747 undobuf
.frees
= undo
;
4750 undobuf
.undos
= (struct undo
*) marker
;
4753 /* Undo all the modifications recorded in undobuf. */
4761 /* We've committed to accepting the changes we made. Move all
4762 of the undos to the free list. */
4767 struct undo
*undo
, *next
;
4769 for (undo
= undobuf
.undos
; undo
; undo
= next
)
4772 undo
->next
= undobuf
.frees
;
4773 undobuf
.frees
= undo
;
4778 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4779 where we have an arithmetic expression and return that point. LOC will
4782 try_combine will call this function to see if an insn can be split into
4786 find_split_point (rtx
*loc
, rtx_insn
*insn
, bool set_src
)
4789 enum rtx_code code
= GET_CODE (x
);
4791 unsigned HOST_WIDE_INT len
= 0;
4792 HOST_WIDE_INT pos
= 0;
4794 rtx inner
= NULL_RTX
;
4795 scalar_int_mode mode
, inner_mode
;
4797 /* First special-case some codes. */
4801 #ifdef INSN_SCHEDULING
4802 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4804 if (MEM_P (SUBREG_REG (x
)))
4807 return find_split_point (&SUBREG_REG (x
), insn
, false);
4810 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4811 using LO_SUM and HIGH. */
4812 if (HAVE_lo_sum
&& (GET_CODE (XEXP (x
, 0)) == CONST
4813 || GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
))
4815 machine_mode address_mode
= get_address_mode (x
);
4818 gen_rtx_LO_SUM (address_mode
,
4819 gen_rtx_HIGH (address_mode
, XEXP (x
, 0)),
4821 return &XEXP (XEXP (x
, 0), 0);
4824 /* If we have a PLUS whose second operand is a constant and the
4825 address is not valid, perhaps we can split it up using
4826 the machine-specific way to split large constants. We use
4827 the first pseudo-reg (one of the virtual regs) as a placeholder;
4828 it will not remain in the result. */
4829 if (GET_CODE (XEXP (x
, 0)) == PLUS
4830 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
4831 && ! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4832 MEM_ADDR_SPACE (x
)))
4834 rtx reg
= regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
4835 rtx_insn
*seq
= combine_split_insns (gen_rtx_SET (reg
, XEXP (x
, 0)),
4838 /* This should have produced two insns, each of which sets our
4839 placeholder. If the source of the second is a valid address,
4840 we can put both sources together and make a split point
4844 && NEXT_INSN (seq
) != NULL_RTX
4845 && NEXT_INSN (NEXT_INSN (seq
)) == NULL_RTX
4846 && NONJUMP_INSN_P (seq
)
4847 && GET_CODE (PATTERN (seq
)) == SET
4848 && SET_DEST (PATTERN (seq
)) == reg
4849 && ! reg_mentioned_p (reg
,
4850 SET_SRC (PATTERN (seq
)))
4851 && NONJUMP_INSN_P (NEXT_INSN (seq
))
4852 && GET_CODE (PATTERN (NEXT_INSN (seq
))) == SET
4853 && SET_DEST (PATTERN (NEXT_INSN (seq
))) == reg
4854 && memory_address_addr_space_p
4855 (GET_MODE (x
), SET_SRC (PATTERN (NEXT_INSN (seq
))),
4856 MEM_ADDR_SPACE (x
)))
4858 rtx src1
= SET_SRC (PATTERN (seq
));
4859 rtx src2
= SET_SRC (PATTERN (NEXT_INSN (seq
)));
4861 /* Replace the placeholder in SRC2 with SRC1. If we can
4862 find where in SRC2 it was placed, that can become our
4863 split point and we can replace this address with SRC2.
4864 Just try two obvious places. */
4866 src2
= replace_rtx (src2
, reg
, src1
);
4868 if (XEXP (src2
, 0) == src1
)
4869 split
= &XEXP (src2
, 0);
4870 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2
, 0)))[0] == 'e'
4871 && XEXP (XEXP (src2
, 0), 0) == src1
)
4872 split
= &XEXP (XEXP (src2
, 0), 0);
4876 SUBST (XEXP (x
, 0), src2
);
4881 /* If that didn't work and we have a nested plus, like:
4882 ((REG1 * CONST1) + REG2) + CONST2 and (REG1 + REG2) + CONST2
4883 is valid address, try to split (REG1 * CONST1). */
4884 if (GET_CODE (XEXP (XEXP (x
, 0), 0)) == PLUS
4885 && !OBJECT_P (XEXP (XEXP (XEXP (x
, 0), 0), 0))
4886 && OBJECT_P (XEXP (XEXP (XEXP (x
, 0), 0), 1))
4887 && ! (GET_CODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)) == SUBREG
4888 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x
, 0),
4891 rtx tem
= XEXP (XEXP (XEXP (x
, 0), 0), 0);
4892 XEXP (XEXP (XEXP (x
, 0), 0), 0) = reg
;
4893 if (memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4894 MEM_ADDR_SPACE (x
)))
4896 XEXP (XEXP (XEXP (x
, 0), 0), 0) = tem
;
4897 return &XEXP (XEXP (XEXP (x
, 0), 0), 0);
4899 XEXP (XEXP (XEXP (x
, 0), 0), 0) = tem
;
4901 else if (GET_CODE (XEXP (XEXP (x
, 0), 0)) == PLUS
4902 && OBJECT_P (XEXP (XEXP (XEXP (x
, 0), 0), 0))
4903 && !OBJECT_P (XEXP (XEXP (XEXP (x
, 0), 0), 1))
4904 && ! (GET_CODE (XEXP (XEXP (XEXP (x
, 0), 0), 1)) == SUBREG
4905 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x
, 0),
4908 rtx tem
= XEXP (XEXP (XEXP (x
, 0), 0), 1);
4909 XEXP (XEXP (XEXP (x
, 0), 0), 1) = reg
;
4910 if (memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4911 MEM_ADDR_SPACE (x
)))
4913 XEXP (XEXP (XEXP (x
, 0), 0), 1) = tem
;
4914 return &XEXP (XEXP (XEXP (x
, 0), 0), 1);
4916 XEXP (XEXP (XEXP (x
, 0), 0), 1) = tem
;
4919 /* If that didn't work, perhaps the first operand is complex and
4920 needs to be computed separately, so make a split point there.
4921 This will occur on machines that just support REG + CONST
4922 and have a constant moved through some previous computation. */
4923 if (!OBJECT_P (XEXP (XEXP (x
, 0), 0))
4924 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
4925 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x
, 0), 0)))))
4926 return &XEXP (XEXP (x
, 0), 0);
4929 /* If we have a PLUS whose first operand is complex, try computing it
4930 separately by making a split there. */
4931 if (GET_CODE (XEXP (x
, 0)) == PLUS
4932 && ! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4934 && ! OBJECT_P (XEXP (XEXP (x
, 0), 0))
4935 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
4936 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x
, 0), 0)))))
4937 return &XEXP (XEXP (x
, 0), 0);
4941 /* See if we can split SET_SRC as it stands. */
4942 split
= find_split_point (&SET_SRC (x
), insn
, true);
4943 if (split
&& split
!= &SET_SRC (x
))
4946 /* See if we can split SET_DEST as it stands. */
4947 split
= find_split_point (&SET_DEST (x
), insn
, false);
4948 if (split
&& split
!= &SET_DEST (x
))
4951 /* See if this is a bitfield assignment with everything constant. If
4952 so, this is an IOR of an AND, so split it into that. */
4953 if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
4954 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (SET_DEST (x
), 0)),
4956 && HWI_COMPUTABLE_MODE_P (inner_mode
)
4957 && CONST_INT_P (XEXP (SET_DEST (x
), 1))
4958 && CONST_INT_P (XEXP (SET_DEST (x
), 2))
4959 && CONST_INT_P (SET_SRC (x
))
4960 && ((INTVAL (XEXP (SET_DEST (x
), 1))
4961 + INTVAL (XEXP (SET_DEST (x
), 2)))
4962 <= GET_MODE_PRECISION (inner_mode
))
4963 && ! side_effects_p (XEXP (SET_DEST (x
), 0)))
4965 HOST_WIDE_INT pos
= INTVAL (XEXP (SET_DEST (x
), 2));
4966 unsigned HOST_WIDE_INT len
= INTVAL (XEXP (SET_DEST (x
), 1));
4967 rtx dest
= XEXP (SET_DEST (x
), 0);
4968 unsigned HOST_WIDE_INT mask
= (HOST_WIDE_INT_1U
<< len
) - 1;
4969 unsigned HOST_WIDE_INT src
= INTVAL (SET_SRC (x
)) & mask
;
4972 if (BITS_BIG_ENDIAN
)
4973 pos
= GET_MODE_PRECISION (inner_mode
) - len
- pos
;
4975 or_mask
= gen_int_mode (src
<< pos
, inner_mode
);
4978 simplify_gen_binary (IOR
, inner_mode
, dest
, or_mask
));
4981 rtx negmask
= gen_int_mode (~(mask
<< pos
), inner_mode
);
4983 simplify_gen_binary (IOR
, inner_mode
,
4984 simplify_gen_binary (AND
, inner_mode
,
4989 SUBST (SET_DEST (x
), dest
);
4991 split
= find_split_point (&SET_SRC (x
), insn
, true);
4992 if (split
&& split
!= &SET_SRC (x
))
4996 /* Otherwise, see if this is an operation that we can split into two.
4997 If so, try to split that. */
4998 code
= GET_CODE (SET_SRC (x
));
5003 /* If we are AND'ing with a large constant that is only a single
5004 bit and the result is only being used in a context where we
5005 need to know if it is zero or nonzero, replace it with a bit
5006 extraction. This will avoid the large constant, which might
5007 have taken more than one insn to make. If the constant were
5008 not a valid argument to the AND but took only one insn to make,
5009 this is no worse, but if it took more than one insn, it will
5012 if (CONST_INT_P (XEXP (SET_SRC (x
), 1))
5013 && REG_P (XEXP (SET_SRC (x
), 0))
5014 && (pos
= exact_log2 (UINTVAL (XEXP (SET_SRC (x
), 1)))) >= 7
5015 && REG_P (SET_DEST (x
))
5016 && (split
= find_single_use (SET_DEST (x
), insn
, NULL
)) != 0
5017 && (GET_CODE (*split
) == EQ
|| GET_CODE (*split
) == NE
)
5018 && XEXP (*split
, 0) == SET_DEST (x
)
5019 && XEXP (*split
, 1) == const0_rtx
)
5021 rtx extraction
= make_extraction (GET_MODE (SET_DEST (x
)),
5022 XEXP (SET_SRC (x
), 0),
5023 pos
, NULL_RTX
, 1, 1, 0, 0);
5024 if (extraction
!= 0)
5026 SUBST (SET_SRC (x
), extraction
);
5027 return find_split_point (loc
, insn
, false);
5033 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5034 is known to be on, this can be converted into a NEG of a shift. */
5035 if (STORE_FLAG_VALUE
== -1 && XEXP (SET_SRC (x
), 1) == const0_rtx
5036 && GET_MODE (SET_SRC (x
)) == GET_MODE (XEXP (SET_SRC (x
), 0))
5037 && ((pos
= exact_log2 (nonzero_bits (XEXP (SET_SRC (x
), 0),
5038 GET_MODE (XEXP (SET_SRC (x
),
5041 machine_mode mode
= GET_MODE (XEXP (SET_SRC (x
), 0));
5042 rtx pos_rtx
= gen_int_shift_amount (mode
, pos
);
5045 gen_rtx_LSHIFTRT (mode
,
5046 XEXP (SET_SRC (x
), 0),
5049 split
= find_split_point (&SET_SRC (x
), insn
, true);
5050 if (split
&& split
!= &SET_SRC (x
))
5056 inner
= XEXP (SET_SRC (x
), 0);
5058 /* We can't optimize if either mode is a partial integer
5059 mode as we don't know how many bits are significant
5061 if (!is_int_mode (GET_MODE (inner
), &inner_mode
)
5062 || GET_MODE_CLASS (GET_MODE (SET_SRC (x
))) == MODE_PARTIAL_INT
)
5066 len
= GET_MODE_PRECISION (inner_mode
);
5072 if (is_a
<scalar_int_mode
> (GET_MODE (XEXP (SET_SRC (x
), 0)),
5074 && CONST_INT_P (XEXP (SET_SRC (x
), 1))
5075 && CONST_INT_P (XEXP (SET_SRC (x
), 2)))
5077 inner
= XEXP (SET_SRC (x
), 0);
5078 len
= INTVAL (XEXP (SET_SRC (x
), 1));
5079 pos
= INTVAL (XEXP (SET_SRC (x
), 2));
5081 if (BITS_BIG_ENDIAN
)
5082 pos
= GET_MODE_PRECISION (inner_mode
) - len
- pos
;
5083 unsignedp
= (code
== ZERO_EXTRACT
);
5092 && known_subrange_p (pos
, len
,
5093 0, GET_MODE_PRECISION (GET_MODE (inner
)))
5094 && is_a
<scalar_int_mode
> (GET_MODE (SET_SRC (x
)), &mode
))
5096 /* For unsigned, we have a choice of a shift followed by an
5097 AND or two shifts. Use two shifts for field sizes where the
5098 constant might be too large. We assume here that we can
5099 always at least get 8-bit constants in an AND insn, which is
5100 true for every current RISC. */
5102 if (unsignedp
&& len
<= 8)
5104 unsigned HOST_WIDE_INT mask
5105 = (HOST_WIDE_INT_1U
<< len
) - 1;
5106 rtx pos_rtx
= gen_int_shift_amount (mode
, pos
);
5110 (mode
, gen_lowpart (mode
, inner
), pos_rtx
),
5111 gen_int_mode (mask
, mode
)));
5113 split
= find_split_point (&SET_SRC (x
), insn
, true);
5114 if (split
&& split
!= &SET_SRC (x
))
5119 int left_bits
= GET_MODE_PRECISION (mode
) - len
- pos
;
5120 int right_bits
= GET_MODE_PRECISION (mode
) - len
;
5123 (unsignedp
? LSHIFTRT
: ASHIFTRT
, mode
,
5124 gen_rtx_ASHIFT (mode
,
5125 gen_lowpart (mode
, inner
),
5126 gen_int_shift_amount (mode
, left_bits
)),
5127 gen_int_shift_amount (mode
, right_bits
)));
5129 split
= find_split_point (&SET_SRC (x
), insn
, true);
5130 if (split
&& split
!= &SET_SRC (x
))
5135 /* See if this is a simple operation with a constant as the second
5136 operand. It might be that this constant is out of range and hence
5137 could be used as a split point. */
5138 if (BINARY_P (SET_SRC (x
))
5139 && CONSTANT_P (XEXP (SET_SRC (x
), 1))
5140 && (OBJECT_P (XEXP (SET_SRC (x
), 0))
5141 || (GET_CODE (XEXP (SET_SRC (x
), 0)) == SUBREG
5142 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x
), 0))))))
5143 return &XEXP (SET_SRC (x
), 1);
5145 /* Finally, see if this is a simple operation with its first operand
5146 not in a register. The operation might require this operand in a
5147 register, so return it as a split point. We can always do this
5148 because if the first operand were another operation, we would have
5149 already found it as a split point. */
5150 if ((BINARY_P (SET_SRC (x
)) || UNARY_P (SET_SRC (x
)))
5151 && ! register_operand (XEXP (SET_SRC (x
), 0), VOIDmode
))
5152 return &XEXP (SET_SRC (x
), 0);
5158 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5159 it is better to write this as (not (ior A B)) so we can split it.
5160 Similarly for IOR. */
5161 if (GET_CODE (XEXP (x
, 0)) == NOT
&& GET_CODE (XEXP (x
, 1)) == NOT
)
5164 gen_rtx_NOT (GET_MODE (x
),
5165 gen_rtx_fmt_ee (code
== IOR
? AND
: IOR
,
5167 XEXP (XEXP (x
, 0), 0),
5168 XEXP (XEXP (x
, 1), 0))));
5169 return find_split_point (loc
, insn
, set_src
);
5172 /* Many RISC machines have a large set of logical insns. If the
5173 second operand is a NOT, put it first so we will try to split the
5174 other operand first. */
5175 if (GET_CODE (XEXP (x
, 1)) == NOT
)
5177 rtx tem
= XEXP (x
, 0);
5178 SUBST (XEXP (x
, 0), XEXP (x
, 1));
5179 SUBST (XEXP (x
, 1), tem
);
5185 /* Canonicalization can produce (minus A (mult B C)), where C is a
5186 constant. It may be better to try splitting (plus (mult B -C) A)
5187 instead if this isn't a multiply by a power of two. */
5188 if (set_src
&& code
== MINUS
&& GET_CODE (XEXP (x
, 1)) == MULT
5189 && GET_CODE (XEXP (XEXP (x
, 1), 1)) == CONST_INT
5190 && !pow2p_hwi (INTVAL (XEXP (XEXP (x
, 1), 1))))
5192 machine_mode mode
= GET_MODE (x
);
5193 unsigned HOST_WIDE_INT this_int
= INTVAL (XEXP (XEXP (x
, 1), 1));
5194 HOST_WIDE_INT other_int
= trunc_int_for_mode (-this_int
, mode
);
5195 SUBST (*loc
, gen_rtx_PLUS (mode
,
5197 XEXP (XEXP (x
, 1), 0),
5198 gen_int_mode (other_int
,
5201 return find_split_point (loc
, insn
, set_src
);
5204 /* Split at a multiply-accumulate instruction. However if this is
5205 the SET_SRC, we likely do not have such an instruction and it's
5206 worthless to try this split. */
5208 && (GET_CODE (XEXP (x
, 0)) == MULT
5209 || (GET_CODE (XEXP (x
, 0)) == ASHIFT
5210 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)))
5217 /* Otherwise, select our actions depending on our rtx class. */
5218 switch (GET_RTX_CLASS (code
))
5220 case RTX_BITFIELD_OPS
: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5222 split
= find_split_point (&XEXP (x
, 2), insn
, false);
5227 case RTX_COMM_ARITH
:
5229 case RTX_COMM_COMPARE
:
5230 split
= find_split_point (&XEXP (x
, 1), insn
, false);
5235 /* Some machines have (and (shift ...) ...) insns. If X is not
5236 an AND, but XEXP (X, 0) is, use it as our split point. */
5237 if (GET_CODE (x
) != AND
&& GET_CODE (XEXP (x
, 0)) == AND
)
5238 return &XEXP (x
, 0);
5240 split
= find_split_point (&XEXP (x
, 0), insn
, false);
5246 /* Otherwise, we don't have a split point. */
5251 /* Throughout X, replace FROM with TO, and return the result.
5252 The result is TO if X is FROM;
5253 otherwise the result is X, but its contents may have been modified.
5254 If they were modified, a record was made in undobuf so that
5255 undo_all will (among other things) return X to its original state.
5257 If the number of changes necessary is too much to record to undo,
5258 the excess changes are not made, so the result is invalid.
5259 The changes already made can still be undone.
5260 undobuf.num_undo is incremented for such changes, so by testing that
5261 the caller can tell whether the result is valid.
5263 `n_occurrences' is incremented each time FROM is replaced.
5265 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5267 IN_COND is nonzero if we are at the top level of a condition.
5269 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5270 by copying if `n_occurrences' is nonzero. */
5273 subst (rtx x
, rtx from
, rtx to
, int in_dest
, int in_cond
, int unique_copy
)
5275 enum rtx_code code
= GET_CODE (x
);
5276 machine_mode op0_mode
= VOIDmode
;
5281 /* Two expressions are equal if they are identical copies of a shared
5282 RTX or if they are both registers with the same register number
5285 #define COMBINE_RTX_EQUAL_P(X,Y) \
5287 || (REG_P (X) && REG_P (Y) \
5288 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5290 /* Do not substitute into clobbers of regs -- this will never result in
5292 if (GET_CODE (x
) == CLOBBER
&& REG_P (XEXP (x
, 0)))
5295 if (! in_dest
&& COMBINE_RTX_EQUAL_P (x
, from
))
5298 return (unique_copy
&& n_occurrences
> 1 ? copy_rtx (to
) : to
);
5301 /* If X and FROM are the same register but different modes, they
5302 will not have been seen as equal above. However, the log links code
5303 will make a LOG_LINKS entry for that case. If we do nothing, we
5304 will try to rerecognize our original insn and, when it succeeds,
5305 we will delete the feeding insn, which is incorrect.
5307 So force this insn not to match in this (rare) case. */
5308 if (! in_dest
&& code
== REG
&& REG_P (from
)
5309 && reg_overlap_mentioned_p (x
, from
))
5310 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
5312 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5313 of which may contain things that can be combined. */
5314 if (code
!= MEM
&& code
!= LO_SUM
&& OBJECT_P (x
))
5317 /* It is possible to have a subexpression appear twice in the insn.
5318 Suppose that FROM is a register that appears within TO.
5319 Then, after that subexpression has been scanned once by `subst',
5320 the second time it is scanned, TO may be found. If we were
5321 to scan TO here, we would find FROM within it and create a
5322 self-referent rtl structure which is completely wrong. */
5323 if (COMBINE_RTX_EQUAL_P (x
, to
))
5326 /* Parallel asm_operands need special attention because all of the
5327 inputs are shared across the arms. Furthermore, unsharing the
5328 rtl results in recognition failures. Failure to handle this case
5329 specially can result in circular rtl.
5331 Solve this by doing a normal pass across the first entry of the
5332 parallel, and only processing the SET_DESTs of the subsequent
5335 if (code
== PARALLEL
5336 && GET_CODE (XVECEXP (x
, 0, 0)) == SET
5337 && GET_CODE (SET_SRC (XVECEXP (x
, 0, 0))) == ASM_OPERANDS
)
5339 new_rtx
= subst (XVECEXP (x
, 0, 0), from
, to
, 0, 0, unique_copy
);
5341 /* If this substitution failed, this whole thing fails. */
5342 if (GET_CODE (new_rtx
) == CLOBBER
5343 && XEXP (new_rtx
, 0) == const0_rtx
)
5346 SUBST (XVECEXP (x
, 0, 0), new_rtx
);
5348 for (i
= XVECLEN (x
, 0) - 1; i
>= 1; i
--)
5350 rtx dest
= SET_DEST (XVECEXP (x
, 0, i
));
5352 if (!REG_P (dest
) && GET_CODE (dest
) != PC
)
5354 new_rtx
= subst (dest
, from
, to
, 0, 0, unique_copy
);
5356 /* If this substitution failed, this whole thing fails. */
5357 if (GET_CODE (new_rtx
) == CLOBBER
5358 && XEXP (new_rtx
, 0) == const0_rtx
)
5361 SUBST (SET_DEST (XVECEXP (x
, 0, i
)), new_rtx
);
5367 len
= GET_RTX_LENGTH (code
);
5368 fmt
= GET_RTX_FORMAT (code
);
5370 /* We don't need to process a SET_DEST that is a register or PC, so
5371 set up to skip this common case. All other cases where we want
5372 to suppress replacing something inside a SET_SRC are handled via
5373 the IN_DEST operand. */
5375 && (REG_P (SET_DEST (x
))
5376 || GET_CODE (SET_DEST (x
)) == PC
))
5379 /* Trying to simplify the operands of a widening MULT is not likely
5380 to create RTL matching a machine insn. */
5382 && (GET_CODE (XEXP (x
, 0)) == ZERO_EXTEND
5383 || GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
)
5384 && (GET_CODE (XEXP (x
, 1)) == ZERO_EXTEND
5385 || GET_CODE (XEXP (x
, 1)) == SIGN_EXTEND
)
5386 && REG_P (XEXP (XEXP (x
, 0), 0))
5387 && REG_P (XEXP (XEXP (x
, 1), 0))
5392 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5395 op0_mode
= GET_MODE (XEXP (x
, 0));
5397 for (i
= 0; i
< len
; i
++)
5402 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5404 if (COMBINE_RTX_EQUAL_P (XVECEXP (x
, i
, j
), from
))
5406 new_rtx
= (unique_copy
&& n_occurrences
5407 ? copy_rtx (to
) : to
);
5412 new_rtx
= subst (XVECEXP (x
, i
, j
), from
, to
, 0, 0,
5415 /* If this substitution failed, this whole thing
5417 if (GET_CODE (new_rtx
) == CLOBBER
5418 && XEXP (new_rtx
, 0) == const0_rtx
)
5422 SUBST (XVECEXP (x
, i
, j
), new_rtx
);
5425 else if (fmt
[i
] == 'e')
5427 /* If this is a register being set, ignore it. */
5428 new_rtx
= XEXP (x
, i
);
5431 && (((code
== SUBREG
|| code
== ZERO_EXTRACT
)
5433 || code
== STRICT_LOW_PART
))
5436 else if (COMBINE_RTX_EQUAL_P (XEXP (x
, i
), from
))
5438 /* In general, don't install a subreg involving two
5439 modes not tieable. It can worsen register
5440 allocation, and can even make invalid reload
5441 insns, since the reg inside may need to be copied
5442 from in the outside mode, and that may be invalid
5443 if it is an fp reg copied in integer mode.
5445 We allow an exception to this: It is valid if
5446 it is inside another SUBREG and the mode of that
5447 SUBREG and the mode of the inside of TO is
5450 if (GET_CODE (to
) == SUBREG
5451 && !targetm
.modes_tieable_p (GET_MODE (to
),
5452 GET_MODE (SUBREG_REG (to
)))
5453 && ! (code
== SUBREG
5454 && (targetm
.modes_tieable_p
5455 (GET_MODE (x
), GET_MODE (SUBREG_REG (to
))))))
5456 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5460 && REGNO (to
) < FIRST_PSEUDO_REGISTER
5461 && simplify_subreg_regno (REGNO (to
), GET_MODE (to
),
5464 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5466 new_rtx
= (unique_copy
&& n_occurrences
? copy_rtx (to
) : to
);
5470 /* If we are in a SET_DEST, suppress most cases unless we
5471 have gone inside a MEM, in which case we want to
5472 simplify the address. We assume here that things that
5473 are actually part of the destination have their inner
5474 parts in the first expression. This is true for SUBREG,
5475 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5476 things aside from REG and MEM that should appear in a
5478 new_rtx
= subst (XEXP (x
, i
), from
, to
,
5480 && (code
== SUBREG
|| code
== STRICT_LOW_PART
5481 || code
== ZERO_EXTRACT
))
5484 code
== IF_THEN_ELSE
&& i
== 0,
5487 /* If we found that we will have to reject this combination,
5488 indicate that by returning the CLOBBER ourselves, rather than
5489 an expression containing it. This will speed things up as
5490 well as prevent accidents where two CLOBBERs are considered
5491 to be equal, thus producing an incorrect simplification. */
5493 if (GET_CODE (new_rtx
) == CLOBBER
&& XEXP (new_rtx
, 0) == const0_rtx
)
5496 if (GET_CODE (x
) == SUBREG
&& CONST_SCALAR_INT_P (new_rtx
))
5498 machine_mode mode
= GET_MODE (x
);
5500 x
= simplify_subreg (GET_MODE (x
), new_rtx
,
5501 GET_MODE (SUBREG_REG (x
)),
5504 x
= gen_rtx_CLOBBER (mode
, const0_rtx
);
5506 else if (CONST_SCALAR_INT_P (new_rtx
)
5507 && (GET_CODE (x
) == ZERO_EXTEND
5508 || GET_CODE (x
) == SIGN_EXTEND
5509 || GET_CODE (x
) == FLOAT
5510 || GET_CODE (x
) == UNSIGNED_FLOAT
))
5512 x
= simplify_unary_operation (GET_CODE (x
), GET_MODE (x
),
5514 GET_MODE (XEXP (x
, 0)));
5516 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5519 SUBST (XEXP (x
, i
), new_rtx
);
5524 /* Check if we are loading something from the constant pool via float
5525 extension; in this case we would undo compress_float_constant
5526 optimization and degenerate constant load to an immediate value. */
5527 if (GET_CODE (x
) == FLOAT_EXTEND
5528 && MEM_P (XEXP (x
, 0))
5529 && MEM_READONLY_P (XEXP (x
, 0)))
5531 rtx tmp
= avoid_constant_pool_reference (x
);
5536 /* Try to simplify X. If the simplification changed the code, it is likely
5537 that further simplification will help, so loop, but limit the number
5538 of repetitions that will be performed. */
5540 for (i
= 0; i
< 4; i
++)
5542 /* If X is sufficiently simple, don't bother trying to do anything
5544 if (code
!= CONST_INT
&& code
!= REG
&& code
!= CLOBBER
)
5545 x
= combine_simplify_rtx (x
, op0_mode
, in_dest
, in_cond
);
5547 if (GET_CODE (x
) == code
)
5550 code
= GET_CODE (x
);
5552 /* We no longer know the original mode of operand 0 since we
5553 have changed the form of X) */
5554 op0_mode
= VOIDmode
;
5560 /* If X is a commutative operation whose operands are not in the canonical
5561 order, use substitutions to swap them. */
5564 maybe_swap_commutative_operands (rtx x
)
5566 if (COMMUTATIVE_ARITH_P (x
)
5567 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
5569 rtx temp
= XEXP (x
, 0);
5570 SUBST (XEXP (x
, 0), XEXP (x
, 1));
5571 SUBST (XEXP (x
, 1), temp
);
5575 /* Simplify X, a piece of RTL. We just operate on the expression at the
5576 outer level; call `subst' to simplify recursively. Return the new
5579 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5580 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5584 combine_simplify_rtx (rtx x
, machine_mode op0_mode
, int in_dest
,
5587 enum rtx_code code
= GET_CODE (x
);
5588 machine_mode mode
= GET_MODE (x
);
5589 scalar_int_mode int_mode
;
5593 /* If this is a commutative operation, put a constant last and a complex
5594 expression first. We don't need to do this for comparisons here. */
5595 maybe_swap_commutative_operands (x
);
5597 /* Try to fold this expression in case we have constants that weren't
5600 switch (GET_RTX_CLASS (code
))
5603 if (op0_mode
== VOIDmode
)
5604 op0_mode
= GET_MODE (XEXP (x
, 0));
5605 temp
= simplify_unary_operation (code
, mode
, XEXP (x
, 0), op0_mode
);
5608 case RTX_COMM_COMPARE
:
5610 machine_mode cmp_mode
= GET_MODE (XEXP (x
, 0));
5611 if (cmp_mode
== VOIDmode
)
5613 cmp_mode
= GET_MODE (XEXP (x
, 1));
5614 if (cmp_mode
== VOIDmode
)
5615 cmp_mode
= op0_mode
;
5617 temp
= simplify_relational_operation (code
, mode
, cmp_mode
,
5618 XEXP (x
, 0), XEXP (x
, 1));
5621 case RTX_COMM_ARITH
:
5623 temp
= simplify_binary_operation (code
, mode
, XEXP (x
, 0), XEXP (x
, 1));
5625 case RTX_BITFIELD_OPS
:
5627 temp
= simplify_ternary_operation (code
, mode
, op0_mode
, XEXP (x
, 0),
5628 XEXP (x
, 1), XEXP (x
, 2));
5637 code
= GET_CODE (temp
);
5638 op0_mode
= VOIDmode
;
5639 mode
= GET_MODE (temp
);
5642 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5643 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5644 things. Check for cases where both arms are testing the same
5647 Don't do anything if all operands are very simple. */
5650 && ((!OBJECT_P (XEXP (x
, 0))
5651 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5652 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))
5653 || (!OBJECT_P (XEXP (x
, 1))
5654 && ! (GET_CODE (XEXP (x
, 1)) == SUBREG
5655 && OBJECT_P (SUBREG_REG (XEXP (x
, 1)))))))
5657 && (!OBJECT_P (XEXP (x
, 0))
5658 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5659 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))))
5661 rtx cond
, true_rtx
, false_rtx
;
5663 cond
= if_then_else_cond (x
, &true_rtx
, &false_rtx
);
5665 /* If everything is a comparison, what we have is highly unlikely
5666 to be simpler, so don't use it. */
5667 && ! (COMPARISON_P (x
)
5668 && (COMPARISON_P (true_rtx
) || COMPARISON_P (false_rtx
)))
5669 /* Similarly, if we end up with one of the expressions the same
5670 as the original, it is certainly not simpler. */
5671 && ! rtx_equal_p (x
, true_rtx
)
5672 && ! rtx_equal_p (x
, false_rtx
))
5674 rtx cop1
= const0_rtx
;
5675 enum rtx_code cond_code
= simplify_comparison (NE
, &cond
, &cop1
);
5677 if (cond_code
== NE
&& COMPARISON_P (cond
))
5680 /* Simplify the alternative arms; this may collapse the true and
5681 false arms to store-flag values. Be careful to use copy_rtx
5682 here since true_rtx or false_rtx might share RTL with x as a
5683 result of the if_then_else_cond call above. */
5684 true_rtx
= subst (copy_rtx (true_rtx
), pc_rtx
, pc_rtx
, 0, 0, 0);
5685 false_rtx
= subst (copy_rtx (false_rtx
), pc_rtx
, pc_rtx
, 0, 0, 0);
5687 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5688 is unlikely to be simpler. */
5689 if (general_operand (true_rtx
, VOIDmode
)
5690 && general_operand (false_rtx
, VOIDmode
))
5692 enum rtx_code reversed
;
5694 /* Restarting if we generate a store-flag expression will cause
5695 us to loop. Just drop through in this case. */
5697 /* If the result values are STORE_FLAG_VALUE and zero, we can
5698 just make the comparison operation. */
5699 if (true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
5700 x
= simplify_gen_relational (cond_code
, mode
, VOIDmode
,
5702 else if (true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
5703 && ((reversed
= reversed_comparison_code_parts
5704 (cond_code
, cond
, cop1
, NULL
))
5706 x
= simplify_gen_relational (reversed
, mode
, VOIDmode
,
5709 /* Likewise, we can make the negate of a comparison operation
5710 if the result values are - STORE_FLAG_VALUE and zero. */
5711 else if (CONST_INT_P (true_rtx
)
5712 && INTVAL (true_rtx
) == - STORE_FLAG_VALUE
5713 && false_rtx
== const0_rtx
)
5714 x
= simplify_gen_unary (NEG
, mode
,
5715 simplify_gen_relational (cond_code
,
5719 else if (CONST_INT_P (false_rtx
)
5720 && INTVAL (false_rtx
) == - STORE_FLAG_VALUE
5721 && true_rtx
== const0_rtx
5722 && ((reversed
= reversed_comparison_code_parts
5723 (cond_code
, cond
, cop1
, NULL
))
5725 x
= simplify_gen_unary (NEG
, mode
,
5726 simplify_gen_relational (reversed
,
5731 code
= GET_CODE (x
);
5732 op0_mode
= VOIDmode
;
5737 /* First see if we can apply the inverse distributive law. */
5738 if (code
== PLUS
|| code
== MINUS
5739 || code
== AND
|| code
== IOR
|| code
== XOR
)
5741 x
= apply_distributive_law (x
);
5742 code
= GET_CODE (x
);
5743 op0_mode
= VOIDmode
;
5746 /* If CODE is an associative operation not otherwise handled, see if we
5747 can associate some operands. This can win if they are constants or
5748 if they are logically related (i.e. (a & b) & a). */
5749 if ((code
== PLUS
|| code
== MINUS
|| code
== MULT
|| code
== DIV
5750 || code
== AND
|| code
== IOR
|| code
== XOR
5751 || code
== SMAX
|| code
== SMIN
|| code
== UMAX
|| code
== UMIN
)
5752 && ((INTEGRAL_MODE_P (mode
) && code
!= DIV
)
5753 || (flag_associative_math
&& FLOAT_MODE_P (mode
))))
5755 if (GET_CODE (XEXP (x
, 0)) == code
)
5757 rtx other
= XEXP (XEXP (x
, 0), 0);
5758 rtx inner_op0
= XEXP (XEXP (x
, 0), 1);
5759 rtx inner_op1
= XEXP (x
, 1);
5762 /* Make sure we pass the constant operand if any as the second
5763 one if this is a commutative operation. */
5764 if (CONSTANT_P (inner_op0
) && COMMUTATIVE_ARITH_P (x
))
5765 std::swap (inner_op0
, inner_op1
);
5766 inner
= simplify_binary_operation (code
== MINUS
? PLUS
5767 : code
== DIV
? MULT
5769 mode
, inner_op0
, inner_op1
);
5771 /* For commutative operations, try the other pair if that one
5773 if (inner
== 0 && COMMUTATIVE_ARITH_P (x
))
5775 other
= XEXP (XEXP (x
, 0), 1);
5776 inner
= simplify_binary_operation (code
, mode
,
5777 XEXP (XEXP (x
, 0), 0),
5782 return simplify_gen_binary (code
, mode
, other
, inner
);
5786 /* A little bit of algebraic simplification here. */
5790 /* Ensure that our address has any ASHIFTs converted to MULT in case
5791 address-recognizing predicates are called later. */
5792 temp
= make_compound_operation (XEXP (x
, 0), MEM
);
5793 SUBST (XEXP (x
, 0), temp
);
5797 if (op0_mode
== VOIDmode
)
5798 op0_mode
= GET_MODE (SUBREG_REG (x
));
5800 /* See if this can be moved to simplify_subreg. */
5801 if (CONSTANT_P (SUBREG_REG (x
))
5802 && known_eq (subreg_lowpart_offset (mode
, op0_mode
), SUBREG_BYTE (x
))
5803 /* Don't call gen_lowpart if the inner mode
5804 is VOIDmode and we cannot simplify it, as SUBREG without
5805 inner mode is invalid. */
5806 && (GET_MODE (SUBREG_REG (x
)) != VOIDmode
5807 || gen_lowpart_common (mode
, SUBREG_REG (x
))))
5808 return gen_lowpart (mode
, SUBREG_REG (x
));
5810 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x
))) == MODE_CC
)
5814 temp
= simplify_subreg (mode
, SUBREG_REG (x
), op0_mode
,
5819 /* If op is known to have all lower bits zero, the result is zero. */
5820 scalar_int_mode int_mode
, int_op0_mode
;
5822 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
5823 && is_a
<scalar_int_mode
> (op0_mode
, &int_op0_mode
)
5824 && (GET_MODE_PRECISION (int_mode
)
5825 < GET_MODE_PRECISION (int_op0_mode
))
5826 && known_eq (subreg_lowpart_offset (int_mode
, int_op0_mode
),
5828 && HWI_COMPUTABLE_MODE_P (int_op0_mode
)
5829 && ((nonzero_bits (SUBREG_REG (x
), int_op0_mode
)
5830 & GET_MODE_MASK (int_mode
)) == 0)
5831 && !side_effects_p (SUBREG_REG (x
)))
5832 return CONST0_RTX (int_mode
);
5835 /* Don't change the mode of the MEM if that would change the meaning
5837 if (MEM_P (SUBREG_REG (x
))
5838 && (MEM_VOLATILE_P (SUBREG_REG (x
))
5839 || mode_dependent_address_p (XEXP (SUBREG_REG (x
), 0),
5840 MEM_ADDR_SPACE (SUBREG_REG (x
)))))
5841 return gen_rtx_CLOBBER (mode
, const0_rtx
);
5843 /* Note that we cannot do any narrowing for non-constants since
5844 we might have been counting on using the fact that some bits were
5845 zero. We now do this in the SET. */
5850 temp
= expand_compound_operation (XEXP (x
, 0));
5852 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5853 replaced by (lshiftrt X C). This will convert
5854 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5856 if (GET_CODE (temp
) == ASHIFTRT
5857 && CONST_INT_P (XEXP (temp
, 1))
5858 && INTVAL (XEXP (temp
, 1)) == GET_MODE_UNIT_PRECISION (mode
) - 1)
5859 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
, XEXP (temp
, 0),
5860 INTVAL (XEXP (temp
, 1)));
5862 /* If X has only a single bit that might be nonzero, say, bit I, convert
5863 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5864 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5865 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5866 or a SUBREG of one since we'd be making the expression more
5867 complex if it was just a register. */
5870 && ! (GET_CODE (temp
) == SUBREG
5871 && REG_P (SUBREG_REG (temp
)))
5872 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
5873 && (i
= exact_log2 (nonzero_bits (temp
, int_mode
))) >= 0)
5875 rtx temp1
= simplify_shift_const
5876 (NULL_RTX
, ASHIFTRT
, int_mode
,
5877 simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
, temp
,
5878 GET_MODE_PRECISION (int_mode
) - 1 - i
),
5879 GET_MODE_PRECISION (int_mode
) - 1 - i
);
5881 /* If all we did was surround TEMP with the two shifts, we
5882 haven't improved anything, so don't use it. Otherwise,
5883 we are better off with TEMP1. */
5884 if (GET_CODE (temp1
) != ASHIFTRT
5885 || GET_CODE (XEXP (temp1
, 0)) != ASHIFT
5886 || XEXP (XEXP (temp1
, 0), 0) != temp
)
5892 /* We can't handle truncation to a partial integer mode here
5893 because we don't know the real bitsize of the partial
5895 if (GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
5898 if (HWI_COMPUTABLE_MODE_P (mode
))
5900 force_to_mode (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)),
5901 GET_MODE_MASK (mode
), 0));
5903 /* We can truncate a constant value and return it. */
5906 if (poly_int_rtx_p (XEXP (x
, 0), &c
))
5907 return gen_int_mode (c
, mode
);
5910 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5911 whose value is a comparison can be replaced with a subreg if
5912 STORE_FLAG_VALUE permits. */
5913 if (HWI_COMPUTABLE_MODE_P (mode
)
5914 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (mode
)) == 0
5915 && (temp
= get_last_value (XEXP (x
, 0)))
5916 && COMPARISON_P (temp
)
5917 && TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (XEXP (x
, 0))))
5918 return gen_lowpart (mode
, XEXP (x
, 0));
5922 /* (const (const X)) can become (const X). Do it this way rather than
5923 returning the inner CONST since CONST can be shared with a
5925 if (GET_CODE (XEXP (x
, 0)) == CONST
)
5926 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
5930 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5931 can add in an offset. find_split_point will split this address up
5932 again if it doesn't match. */
5933 if (HAVE_lo_sum
&& GET_CODE (XEXP (x
, 0)) == HIGH
5934 && rtx_equal_p (XEXP (XEXP (x
, 0), 0), XEXP (x
, 1)))
5939 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5940 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5941 bit-field and can be replaced by either a sign_extend or a
5942 sign_extract. The `and' may be a zero_extend and the two
5943 <c>, -<c> constants may be reversed. */
5944 if (GET_CODE (XEXP (x
, 0)) == XOR
5945 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
5946 && CONST_INT_P (XEXP (x
, 1))
5947 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
5948 && INTVAL (XEXP (x
, 1)) == -INTVAL (XEXP (XEXP (x
, 0), 1))
5949 && ((i
= exact_log2 (UINTVAL (XEXP (XEXP (x
, 0), 1)))) >= 0
5950 || (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0)
5951 && HWI_COMPUTABLE_MODE_P (int_mode
)
5952 && ((GET_CODE (XEXP (XEXP (x
, 0), 0)) == AND
5953 && CONST_INT_P (XEXP (XEXP (XEXP (x
, 0), 0), 1))
5954 && (UINTVAL (XEXP (XEXP (XEXP (x
, 0), 0), 1))
5955 == (HOST_WIDE_INT_1U
<< (i
+ 1)) - 1))
5956 || (GET_CODE (XEXP (XEXP (x
, 0), 0)) == ZERO_EXTEND
5957 && known_eq ((GET_MODE_PRECISION
5958 (GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)))),
5959 (unsigned int) i
+ 1))))
5960 return simplify_shift_const
5961 (NULL_RTX
, ASHIFTRT
, int_mode
,
5962 simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
,
5963 XEXP (XEXP (XEXP (x
, 0), 0), 0),
5964 GET_MODE_PRECISION (int_mode
) - (i
+ 1)),
5965 GET_MODE_PRECISION (int_mode
) - (i
+ 1));
5967 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5968 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5969 the bitsize of the mode - 1. This allows simplification of
5970 "a = (b & 8) == 0;" */
5971 if (XEXP (x
, 1) == constm1_rtx
5972 && !REG_P (XEXP (x
, 0))
5973 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5974 && REG_P (SUBREG_REG (XEXP (x
, 0))))
5975 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
5976 && nonzero_bits (XEXP (x
, 0), int_mode
) == 1)
5977 return simplify_shift_const
5978 (NULL_RTX
, ASHIFTRT
, int_mode
,
5979 simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
,
5980 gen_rtx_XOR (int_mode
, XEXP (x
, 0),
5982 GET_MODE_PRECISION (int_mode
) - 1),
5983 GET_MODE_PRECISION (int_mode
) - 1);
5985 /* If we are adding two things that have no bits in common, convert
5986 the addition into an IOR. This will often be further simplified,
5987 for example in cases like ((a & 1) + (a & 2)), which can
5990 if (HWI_COMPUTABLE_MODE_P (mode
)
5991 && (nonzero_bits (XEXP (x
, 0), mode
)
5992 & nonzero_bits (XEXP (x
, 1), mode
)) == 0)
5994 /* Try to simplify the expression further. */
5995 rtx tor
= simplify_gen_binary (IOR
, mode
, XEXP (x
, 0), XEXP (x
, 1));
5996 temp
= combine_simplify_rtx (tor
, VOIDmode
, in_dest
, 0);
5998 /* If we could, great. If not, do not go ahead with the IOR
5999 replacement, since PLUS appears in many special purpose
6000 address arithmetic instructions. */
6001 if (GET_CODE (temp
) != CLOBBER
6002 && (GET_CODE (temp
) != IOR
6003 || ((XEXP (temp
, 0) != XEXP (x
, 0)
6004 || XEXP (temp
, 1) != XEXP (x
, 1))
6005 && (XEXP (temp
, 0) != XEXP (x
, 1)
6006 || XEXP (temp
, 1) != XEXP (x
, 0)))))
6010 /* Canonicalize x + x into x << 1. */
6011 if (GET_MODE_CLASS (mode
) == MODE_INT
6012 && rtx_equal_p (XEXP (x
, 0), XEXP (x
, 1))
6013 && !side_effects_p (XEXP (x
, 0)))
6014 return simplify_gen_binary (ASHIFT
, mode
, XEXP (x
, 0), const1_rtx
);
6019 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6020 (and <foo> (const_int pow2-1)) */
6021 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
6022 && GET_CODE (XEXP (x
, 1)) == AND
6023 && CONST_INT_P (XEXP (XEXP (x
, 1), 1))
6024 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x
, 1), 1)))
6025 && rtx_equal_p (XEXP (XEXP (x
, 1), 0), XEXP (x
, 0)))
6026 return simplify_and_const_int (NULL_RTX
, int_mode
, XEXP (x
, 0),
6027 -INTVAL (XEXP (XEXP (x
, 1), 1)) - 1);
6031 /* If we have (mult (plus A B) C), apply the distributive law and then
6032 the inverse distributive law to see if things simplify. This
6033 occurs mostly in addresses, often when unrolling loops. */
6035 if (GET_CODE (XEXP (x
, 0)) == PLUS
)
6037 rtx result
= distribute_and_simplify_rtx (x
, 0);
6042 /* Try simplify a*(b/c) as (a*b)/c. */
6043 if (FLOAT_MODE_P (mode
) && flag_associative_math
6044 && GET_CODE (XEXP (x
, 0)) == DIV
)
6046 rtx tem
= simplify_binary_operation (MULT
, mode
,
6047 XEXP (XEXP (x
, 0), 0),
6050 return simplify_gen_binary (DIV
, mode
, tem
, XEXP (XEXP (x
, 0), 1));
6055 /* If this is a divide by a power of two, treat it as a shift if
6056 its first operand is a shift. */
6057 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
6058 && CONST_INT_P (XEXP (x
, 1))
6059 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0
6060 && (GET_CODE (XEXP (x
, 0)) == ASHIFT
6061 || GET_CODE (XEXP (x
, 0)) == LSHIFTRT
6062 || GET_CODE (XEXP (x
, 0)) == ASHIFTRT
6063 || GET_CODE (XEXP (x
, 0)) == ROTATE
6064 || GET_CODE (XEXP (x
, 0)) == ROTATERT
))
6065 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, int_mode
,
6070 case GT
: case GTU
: case GE
: case GEU
:
6071 case LT
: case LTU
: case LE
: case LEU
:
6072 case UNEQ
: case LTGT
:
6073 case UNGT
: case UNGE
:
6074 case UNLT
: case UNLE
:
6075 case UNORDERED
: case ORDERED
:
6076 /* If the first operand is a condition code, we can't do anything
6078 if (GET_CODE (XEXP (x
, 0)) == COMPARE
6079 || GET_MODE_CLASS (GET_MODE (XEXP (x
, 0))) != MODE_CC
)
6081 rtx op0
= XEXP (x
, 0);
6082 rtx op1
= XEXP (x
, 1);
6083 enum rtx_code new_code
;
6085 if (GET_CODE (op0
) == COMPARE
)
6086 op1
= XEXP (op0
, 1), op0
= XEXP (op0
, 0);
6088 /* Simplify our comparison, if possible. */
6089 new_code
= simplify_comparison (code
, &op0
, &op1
);
6091 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6092 if only the low-order bit is possibly nonzero in X (such as when
6093 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6094 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6095 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6098 Remove any ZERO_EXTRACT we made when thinking this was a
6099 comparison. It may now be simpler to use, e.g., an AND. If a
6100 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6101 the call to make_compound_operation in the SET case.
6103 Don't apply these optimizations if the caller would
6104 prefer a comparison rather than a value.
6105 E.g., for the condition in an IF_THEN_ELSE most targets need
6106 an explicit comparison. */
6111 else if (STORE_FLAG_VALUE
== 1
6113 && is_int_mode (mode
, &int_mode
)
6114 && op1
== const0_rtx
6115 && int_mode
== GET_MODE (op0
)
6116 && nonzero_bits (op0
, int_mode
) == 1)
6117 return gen_lowpart (int_mode
,
6118 expand_compound_operation (op0
));
6120 else if (STORE_FLAG_VALUE
== 1
6122 && is_int_mode (mode
, &int_mode
)
6123 && op1
== const0_rtx
6124 && int_mode
== GET_MODE (op0
)
6125 && (num_sign_bit_copies (op0
, int_mode
)
6126 == GET_MODE_PRECISION (int_mode
)))
6128 op0
= expand_compound_operation (op0
);
6129 return simplify_gen_unary (NEG
, int_mode
,
6130 gen_lowpart (int_mode
, op0
),
6134 else if (STORE_FLAG_VALUE
== 1
6136 && is_int_mode (mode
, &int_mode
)
6137 && op1
== const0_rtx
6138 && int_mode
== GET_MODE (op0
)
6139 && nonzero_bits (op0
, int_mode
) == 1)
6141 op0
= expand_compound_operation (op0
);
6142 return simplify_gen_binary (XOR
, int_mode
,
6143 gen_lowpart (int_mode
, op0
),
6147 else if (STORE_FLAG_VALUE
== 1
6149 && is_int_mode (mode
, &int_mode
)
6150 && op1
== const0_rtx
6151 && int_mode
== GET_MODE (op0
)
6152 && (num_sign_bit_copies (op0
, int_mode
)
6153 == GET_MODE_PRECISION (int_mode
)))
6155 op0
= expand_compound_operation (op0
);
6156 return plus_constant (int_mode
, gen_lowpart (int_mode
, op0
), 1);
6159 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6164 else if (STORE_FLAG_VALUE
== -1
6166 && is_int_mode (mode
, &int_mode
)
6167 && op1
== const0_rtx
6168 && int_mode
== GET_MODE (op0
)
6169 && (num_sign_bit_copies (op0
, int_mode
)
6170 == GET_MODE_PRECISION (int_mode
)))
6171 return gen_lowpart (int_mode
, expand_compound_operation (op0
));
6173 else if (STORE_FLAG_VALUE
== -1
6175 && is_int_mode (mode
, &int_mode
)
6176 && op1
== const0_rtx
6177 && int_mode
== GET_MODE (op0
)
6178 && nonzero_bits (op0
, int_mode
) == 1)
6180 op0
= expand_compound_operation (op0
);
6181 return simplify_gen_unary (NEG
, int_mode
,
6182 gen_lowpart (int_mode
, op0
),
6186 else if (STORE_FLAG_VALUE
== -1
6188 && is_int_mode (mode
, &int_mode
)
6189 && op1
== const0_rtx
6190 && int_mode
== GET_MODE (op0
)
6191 && (num_sign_bit_copies (op0
, int_mode
)
6192 == GET_MODE_PRECISION (int_mode
)))
6194 op0
= expand_compound_operation (op0
);
6195 return simplify_gen_unary (NOT
, int_mode
,
6196 gen_lowpart (int_mode
, op0
),
6200 /* If X is 0/1, (eq X 0) is X-1. */
6201 else if (STORE_FLAG_VALUE
== -1
6203 && is_int_mode (mode
, &int_mode
)
6204 && op1
== const0_rtx
6205 && int_mode
== GET_MODE (op0
)
6206 && nonzero_bits (op0
, int_mode
) == 1)
6208 op0
= expand_compound_operation (op0
);
6209 return plus_constant (int_mode
, gen_lowpart (int_mode
, op0
), -1);
6212 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6213 one bit that might be nonzero, we can convert (ne x 0) to
6214 (ashift x c) where C puts the bit in the sign bit. Remove any
6215 AND with STORE_FLAG_VALUE when we are done, since we are only
6216 going to test the sign bit. */
6218 && is_int_mode (mode
, &int_mode
)
6219 && HWI_COMPUTABLE_MODE_P (int_mode
)
6220 && val_signbit_p (int_mode
, STORE_FLAG_VALUE
)
6221 && op1
== const0_rtx
6222 && int_mode
== GET_MODE (op0
)
6223 && (i
= exact_log2 (nonzero_bits (op0
, int_mode
))) >= 0)
6225 x
= simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
,
6226 expand_compound_operation (op0
),
6227 GET_MODE_PRECISION (int_mode
) - 1 - i
);
6228 if (GET_CODE (x
) == AND
&& XEXP (x
, 1) == const_true_rtx
)
6234 /* If the code changed, return a whole new comparison.
6235 We also need to avoid using SUBST in cases where
6236 simplify_comparison has widened a comparison with a CONST_INT,
6237 since in that case the wider CONST_INT may fail the sanity
6238 checks in do_SUBST. */
6239 if (new_code
!= code
6240 || (CONST_INT_P (op1
)
6241 && GET_MODE (op0
) != GET_MODE (XEXP (x
, 0))
6242 && GET_MODE (op0
) != GET_MODE (XEXP (x
, 1))))
6243 return gen_rtx_fmt_ee (new_code
, mode
, op0
, op1
);
6245 /* Otherwise, keep this operation, but maybe change its operands.
6246 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6247 SUBST (XEXP (x
, 0), op0
);
6248 SUBST (XEXP (x
, 1), op1
);
6253 return simplify_if_then_else (x
);
6259 /* If we are processing SET_DEST, we are done. */
6263 return expand_compound_operation (x
);
6266 return simplify_set (x
);
6270 return simplify_logical (x
);
6277 /* If this is a shift by a constant amount, simplify it. */
6278 if (CONST_INT_P (XEXP (x
, 1)))
6279 return simplify_shift_const (x
, code
, mode
, XEXP (x
, 0),
6280 INTVAL (XEXP (x
, 1)));
6282 else if (SHIFT_COUNT_TRUNCATED
&& !REG_P (XEXP (x
, 1)))
6284 force_to_mode (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)),
6286 << exact_log2 (GET_MODE_UNIT_BITSIZE
6293 rtx trueop0
= XEXP (x
, 0);
6294 mode
= GET_MODE (trueop0
);
6295 rtx trueop1
= XEXP (x
, 1);
6296 /* If we select a low-part subreg, return that. */
6297 if (vec_series_lowpart_p (GET_MODE (x
), mode
, trueop1
))
6299 rtx new_rtx
= lowpart_subreg (GET_MODE (x
), trueop0
, mode
);
6300 if (new_rtx
!= NULL_RTX
)
6312 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6315 simplify_if_then_else (rtx x
)
6317 machine_mode mode
= GET_MODE (x
);
6318 rtx cond
= XEXP (x
, 0);
6319 rtx true_rtx
= XEXP (x
, 1);
6320 rtx false_rtx
= XEXP (x
, 2);
6321 enum rtx_code true_code
= GET_CODE (cond
);
6322 int comparison_p
= COMPARISON_P (cond
);
6325 enum rtx_code false_code
;
6327 scalar_int_mode int_mode
, inner_mode
;
6329 /* Simplify storing of the truth value. */
6330 if (comparison_p
&& true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
6331 return simplify_gen_relational (true_code
, mode
, VOIDmode
,
6332 XEXP (cond
, 0), XEXP (cond
, 1));
6334 /* Also when the truth value has to be reversed. */
6336 && true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
6337 && (reversed
= reversed_comparison (cond
, mode
)))
6340 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6341 in it is being compared against certain values. Get the true and false
6342 comparisons and see if that says anything about the value of each arm. */
6345 && ((false_code
= reversed_comparison_code (cond
, NULL
))
6347 && REG_P (XEXP (cond
, 0)))
6350 rtx from
= XEXP (cond
, 0);
6351 rtx true_val
= XEXP (cond
, 1);
6352 rtx false_val
= true_val
;
6355 /* If FALSE_CODE is EQ, swap the codes and arms. */
6357 if (false_code
== EQ
)
6359 swapped
= 1, true_code
= EQ
, false_code
= NE
;
6360 std::swap (true_rtx
, false_rtx
);
6363 scalar_int_mode from_mode
;
6364 if (is_a
<scalar_int_mode
> (GET_MODE (from
), &from_mode
))
6366 /* If we are comparing against zero and the expression being
6367 tested has only a single bit that might be nonzero, that is
6368 its value when it is not equal to zero. Similarly if it is
6369 known to be -1 or 0. */
6371 && true_val
== const0_rtx
6372 && pow2p_hwi (nzb
= nonzero_bits (from
, from_mode
)))
6375 false_val
= gen_int_mode (nzb
, from_mode
);
6377 else if (true_code
== EQ
6378 && true_val
== const0_rtx
6379 && (num_sign_bit_copies (from
, from_mode
)
6380 == GET_MODE_PRECISION (from_mode
)))
6383 false_val
= constm1_rtx
;
6387 /* Now simplify an arm if we know the value of the register in the
6388 branch and it is used in the arm. Be careful due to the potential
6389 of locally-shared RTL. */
6391 if (reg_mentioned_p (from
, true_rtx
))
6392 true_rtx
= subst (known_cond (copy_rtx (true_rtx
), true_code
,
6394 pc_rtx
, pc_rtx
, 0, 0, 0);
6395 if (reg_mentioned_p (from
, false_rtx
))
6396 false_rtx
= subst (known_cond (copy_rtx (false_rtx
), false_code
,
6398 pc_rtx
, pc_rtx
, 0, 0, 0);
6400 SUBST (XEXP (x
, 1), swapped
? false_rtx
: true_rtx
);
6401 SUBST (XEXP (x
, 2), swapped
? true_rtx
: false_rtx
);
6403 true_rtx
= XEXP (x
, 1);
6404 false_rtx
= XEXP (x
, 2);
6405 true_code
= GET_CODE (cond
);
6408 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6409 reversed, do so to avoid needing two sets of patterns for
6410 subtract-and-branch insns. Similarly if we have a constant in the true
6411 arm, the false arm is the same as the first operand of the comparison, or
6412 the false arm is more complicated than the true arm. */
6415 && reversed_comparison_code (cond
, NULL
) != UNKNOWN
6416 && (true_rtx
== pc_rtx
6417 || (CONSTANT_P (true_rtx
)
6418 && !CONST_INT_P (false_rtx
) && false_rtx
!= pc_rtx
)
6419 || true_rtx
== const0_rtx
6420 || (OBJECT_P (true_rtx
) && !OBJECT_P (false_rtx
))
6421 || (GET_CODE (true_rtx
) == SUBREG
&& OBJECT_P (SUBREG_REG (true_rtx
))
6422 && !OBJECT_P (false_rtx
))
6423 || reg_mentioned_p (true_rtx
, false_rtx
)
6424 || rtx_equal_p (false_rtx
, XEXP (cond
, 0))))
6426 SUBST (XEXP (x
, 0), reversed_comparison (cond
, GET_MODE (cond
)));
6427 SUBST (XEXP (x
, 1), false_rtx
);
6428 SUBST (XEXP (x
, 2), true_rtx
);
6430 std::swap (true_rtx
, false_rtx
);
6433 /* It is possible that the conditional has been simplified out. */
6434 true_code
= GET_CODE (cond
);
6435 comparison_p
= COMPARISON_P (cond
);
6438 /* If the two arms are identical, we don't need the comparison. */
6440 if (rtx_equal_p (true_rtx
, false_rtx
) && ! side_effects_p (cond
))
6443 /* Convert a == b ? b : a to "a". */
6444 if (true_code
== EQ
&& ! side_effects_p (cond
)
6445 && !HONOR_NANS (mode
)
6446 && rtx_equal_p (XEXP (cond
, 0), false_rtx
)
6447 && rtx_equal_p (XEXP (cond
, 1), true_rtx
))
6449 else if (true_code
== NE
&& ! side_effects_p (cond
)
6450 && !HONOR_NANS (mode
)
6451 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
6452 && rtx_equal_p (XEXP (cond
, 1), false_rtx
))
6455 /* Look for cases where we have (abs x) or (neg (abs X)). */
6457 if (GET_MODE_CLASS (mode
) == MODE_INT
6459 && XEXP (cond
, 1) == const0_rtx
6460 && GET_CODE (false_rtx
) == NEG
6461 && rtx_equal_p (true_rtx
, XEXP (false_rtx
, 0))
6462 && rtx_equal_p (true_rtx
, XEXP (cond
, 0))
6463 && ! side_effects_p (true_rtx
))
6468 return simplify_gen_unary (ABS
, mode
, true_rtx
, mode
);
6472 simplify_gen_unary (NEG
, mode
,
6473 simplify_gen_unary (ABS
, mode
, true_rtx
, mode
),
6479 /* Look for MIN or MAX. */
6481 if ((! FLOAT_MODE_P (mode
)
6482 || (flag_unsafe_math_optimizations
6483 && !HONOR_NANS (mode
)
6484 && !HONOR_SIGNED_ZEROS (mode
)))
6486 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
6487 && rtx_equal_p (XEXP (cond
, 1), false_rtx
)
6488 && ! side_effects_p (cond
))
6493 return simplify_gen_binary (SMAX
, mode
, true_rtx
, false_rtx
);
6496 return simplify_gen_binary (SMIN
, mode
, true_rtx
, false_rtx
);
6499 return simplify_gen_binary (UMAX
, mode
, true_rtx
, false_rtx
);
6502 return simplify_gen_binary (UMIN
, mode
, true_rtx
, false_rtx
);
6507 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6508 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6509 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6510 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6511 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6512 neither 1 or -1, but it isn't worth checking for. */
6514 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
6516 && is_int_mode (mode
, &int_mode
)
6517 && ! side_effects_p (x
))
6519 rtx t
= make_compound_operation (true_rtx
, SET
);
6520 rtx f
= make_compound_operation (false_rtx
, SET
);
6521 rtx cond_op0
= XEXP (cond
, 0);
6522 rtx cond_op1
= XEXP (cond
, 1);
6523 enum rtx_code op
= UNKNOWN
, extend_op
= UNKNOWN
;
6524 scalar_int_mode m
= int_mode
;
6525 rtx z
= 0, c1
= NULL_RTX
;
6527 if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == MINUS
6528 || GET_CODE (t
) == IOR
|| GET_CODE (t
) == XOR
6529 || GET_CODE (t
) == ASHIFT
6530 || GET_CODE (t
) == LSHIFTRT
|| GET_CODE (t
) == ASHIFTRT
)
6531 && rtx_equal_p (XEXP (t
, 0), f
))
6532 c1
= XEXP (t
, 1), op
= GET_CODE (t
), z
= f
;
6534 /* If an identity-zero op is commutative, check whether there
6535 would be a match if we swapped the operands. */
6536 else if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == IOR
6537 || GET_CODE (t
) == XOR
)
6538 && rtx_equal_p (XEXP (t
, 1), f
))
6539 c1
= XEXP (t
, 0), op
= GET_CODE (t
), z
= f
;
6540 else if (GET_CODE (t
) == SIGN_EXTEND
6541 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (t
, 0)), &inner_mode
)
6542 && (GET_CODE (XEXP (t
, 0)) == PLUS
6543 || GET_CODE (XEXP (t
, 0)) == MINUS
6544 || GET_CODE (XEXP (t
, 0)) == IOR
6545 || GET_CODE (XEXP (t
, 0)) == XOR
6546 || GET_CODE (XEXP (t
, 0)) == ASHIFT
6547 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
6548 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
6549 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
6550 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
6551 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
6552 && (num_sign_bit_copies (f
, GET_MODE (f
))
6554 (GET_MODE_PRECISION (int_mode
)
6555 - GET_MODE_PRECISION (inner_mode
))))
6557 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6558 extend_op
= SIGN_EXTEND
;
6561 else if (GET_CODE (t
) == SIGN_EXTEND
6562 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (t
, 0)), &inner_mode
)
6563 && (GET_CODE (XEXP (t
, 0)) == PLUS
6564 || GET_CODE (XEXP (t
, 0)) == IOR
6565 || GET_CODE (XEXP (t
, 0)) == XOR
)
6566 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
6567 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
6568 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
6569 && (num_sign_bit_copies (f
, GET_MODE (f
))
6571 (GET_MODE_PRECISION (int_mode
)
6572 - GET_MODE_PRECISION (inner_mode
))))
6574 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6575 extend_op
= SIGN_EXTEND
;
6578 else if (GET_CODE (t
) == ZERO_EXTEND
6579 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (t
, 0)), &inner_mode
)
6580 && (GET_CODE (XEXP (t
, 0)) == PLUS
6581 || GET_CODE (XEXP (t
, 0)) == MINUS
6582 || GET_CODE (XEXP (t
, 0)) == IOR
6583 || GET_CODE (XEXP (t
, 0)) == XOR
6584 || GET_CODE (XEXP (t
, 0)) == ASHIFT
6585 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
6586 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
6587 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
6588 && HWI_COMPUTABLE_MODE_P (int_mode
)
6589 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
6590 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
6591 && ((nonzero_bits (f
, GET_MODE (f
))
6592 & ~GET_MODE_MASK (inner_mode
))
6595 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6596 extend_op
= ZERO_EXTEND
;
6599 else if (GET_CODE (t
) == ZERO_EXTEND
6600 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (t
, 0)), &inner_mode
)
6601 && (GET_CODE (XEXP (t
, 0)) == PLUS
6602 || GET_CODE (XEXP (t
, 0)) == IOR
6603 || GET_CODE (XEXP (t
, 0)) == XOR
)
6604 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
6605 && HWI_COMPUTABLE_MODE_P (int_mode
)
6606 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
6607 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
6608 && ((nonzero_bits (f
, GET_MODE (f
))
6609 & ~GET_MODE_MASK (inner_mode
))
6612 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6613 extend_op
= ZERO_EXTEND
;
6619 machine_mode cm
= m
;
6620 if ((op
== ASHIFT
|| op
== LSHIFTRT
|| op
== ASHIFTRT
)
6621 && GET_MODE (c1
) != VOIDmode
)
6623 temp
= subst (simplify_gen_relational (true_code
, cm
, VOIDmode
,
6624 cond_op0
, cond_op1
),
6625 pc_rtx
, pc_rtx
, 0, 0, 0);
6626 temp
= simplify_gen_binary (MULT
, cm
, temp
,
6627 simplify_gen_binary (MULT
, cm
, c1
,
6629 temp
= subst (temp
, pc_rtx
, pc_rtx
, 0, 0, 0);
6630 temp
= simplify_gen_binary (op
, m
, gen_lowpart (m
, z
), temp
);
6632 if (extend_op
!= UNKNOWN
)
6633 temp
= simplify_gen_unary (extend_op
, int_mode
, temp
, m
);
6639 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6640 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6641 negation of a single bit, we can convert this operation to a shift. We
6642 can actually do this more generally, but it doesn't seem worth it. */
6645 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
6646 && XEXP (cond
, 1) == const0_rtx
6647 && false_rtx
== const0_rtx
6648 && CONST_INT_P (true_rtx
)
6649 && ((nonzero_bits (XEXP (cond
, 0), int_mode
) == 1
6650 && (i
= exact_log2 (UINTVAL (true_rtx
))) >= 0)
6651 || ((num_sign_bit_copies (XEXP (cond
, 0), int_mode
)
6652 == GET_MODE_PRECISION (int_mode
))
6653 && (i
= exact_log2 (-UINTVAL (true_rtx
))) >= 0)))
6655 simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
,
6656 gen_lowpart (int_mode
, XEXP (cond
, 0)), i
);
6658 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6659 non-zero bit in A is C1. */
6660 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
6661 && false_rtx
== const0_rtx
&& CONST_INT_P (true_rtx
)
6662 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
6663 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (cond
, 0)), &inner_mode
)
6664 && (UINTVAL (true_rtx
) & GET_MODE_MASK (int_mode
))
6665 == nonzero_bits (XEXP (cond
, 0), inner_mode
)
6666 && (i
= exact_log2 (UINTVAL (true_rtx
) & GET_MODE_MASK (int_mode
))) >= 0)
6668 rtx val
= XEXP (cond
, 0);
6669 if (inner_mode
== int_mode
)
6671 else if (GET_MODE_PRECISION (inner_mode
) < GET_MODE_PRECISION (int_mode
))
6672 return simplify_gen_unary (ZERO_EXTEND
, int_mode
, val
, inner_mode
);
6678 /* Simplify X, a SET expression. Return the new expression. */
6681 simplify_set (rtx x
)
6683 rtx src
= SET_SRC (x
);
6684 rtx dest
= SET_DEST (x
);
6686 = GET_MODE (src
) != VOIDmode
? GET_MODE (src
) : GET_MODE (dest
);
6687 rtx_insn
*other_insn
;
6689 scalar_int_mode int_mode
;
6691 /* (set (pc) (return)) gets written as (return). */
6692 if (GET_CODE (dest
) == PC
&& ANY_RETURN_P (src
))
6695 /* Now that we know for sure which bits of SRC we are using, see if we can
6696 simplify the expression for the object knowing that we only need the
6699 if (GET_MODE_CLASS (mode
) == MODE_INT
&& HWI_COMPUTABLE_MODE_P (mode
))
6701 src
= force_to_mode (src
, mode
, HOST_WIDE_INT_M1U
, 0);
6702 SUBST (SET_SRC (x
), src
);
6705 /* If the source is a COMPARE, look for the use of the comparison result
6706 and try to simplify it unless we already have used undobuf.other_insn. */
6707 if ((GET_MODE_CLASS (mode
) == MODE_CC
|| GET_CODE (src
) == COMPARE
)
6708 && (cc_use
= find_single_use (dest
, subst_insn
, &other_insn
)) != 0
6709 && (undobuf
.other_insn
== 0 || other_insn
== undobuf
.other_insn
)
6710 && COMPARISON_P (*cc_use
)
6711 && rtx_equal_p (XEXP (*cc_use
, 0), dest
))
6713 enum rtx_code old_code
= GET_CODE (*cc_use
);
6714 enum rtx_code new_code
;
6716 int other_changed
= 0;
6717 rtx inner_compare
= NULL_RTX
;
6718 machine_mode compare_mode
= GET_MODE (dest
);
6720 if (GET_CODE (src
) == COMPARE
)
6722 op0
= XEXP (src
, 0), op1
= XEXP (src
, 1);
6723 if (GET_CODE (op0
) == COMPARE
&& op1
== const0_rtx
)
6725 inner_compare
= op0
;
6726 op0
= XEXP (inner_compare
, 0), op1
= XEXP (inner_compare
, 1);
6730 op0
= src
, op1
= CONST0_RTX (GET_MODE (src
));
6732 tmp
= simplify_relational_operation (old_code
, compare_mode
, VOIDmode
,
6735 new_code
= old_code
;
6736 else if (!CONSTANT_P (tmp
))
6738 new_code
= GET_CODE (tmp
);
6739 op0
= XEXP (tmp
, 0);
6740 op1
= XEXP (tmp
, 1);
6744 rtx pat
= PATTERN (other_insn
);
6745 undobuf
.other_insn
= other_insn
;
6746 SUBST (*cc_use
, tmp
);
6748 /* Attempt to simplify CC user. */
6749 if (GET_CODE (pat
) == SET
)
6751 rtx new_rtx
= simplify_rtx (SET_SRC (pat
));
6752 if (new_rtx
!= NULL_RTX
)
6753 SUBST (SET_SRC (pat
), new_rtx
);
6756 /* Convert X into a no-op move. */
6757 SUBST (SET_DEST (x
), pc_rtx
);
6758 SUBST (SET_SRC (x
), pc_rtx
);
6762 /* Simplify our comparison, if possible. */
6763 new_code
= simplify_comparison (new_code
, &op0
, &op1
);
6765 #ifdef SELECT_CC_MODE
6766 /* If this machine has CC modes other than CCmode, check to see if we
6767 need to use a different CC mode here. */
6768 if (GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
6769 compare_mode
= GET_MODE (op0
);
6770 else if (inner_compare
6771 && GET_MODE_CLASS (GET_MODE (inner_compare
)) == MODE_CC
6772 && new_code
== old_code
6773 && op0
== XEXP (inner_compare
, 0)
6774 && op1
== XEXP (inner_compare
, 1))
6775 compare_mode
= GET_MODE (inner_compare
);
6777 compare_mode
= SELECT_CC_MODE (new_code
, op0
, op1
);
6779 /* If the mode changed, we have to change SET_DEST, the mode in the
6780 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6781 a hard register, just build new versions with the proper mode. If it
6782 is a pseudo, we lose unless it is only time we set the pseudo, in
6783 which case we can safely change its mode. */
6784 if (compare_mode
!= GET_MODE (dest
))
6786 if (can_change_dest_mode (dest
, 0, compare_mode
))
6788 unsigned int regno
= REGNO (dest
);
6791 if (regno
< FIRST_PSEUDO_REGISTER
)
6792 new_dest
= gen_rtx_REG (compare_mode
, regno
);
6795 SUBST_MODE (regno_reg_rtx
[regno
], compare_mode
);
6796 new_dest
= regno_reg_rtx
[regno
];
6799 SUBST (SET_DEST (x
), new_dest
);
6800 SUBST (XEXP (*cc_use
, 0), new_dest
);
6806 #endif /* SELECT_CC_MODE */
6808 /* If the code changed, we have to build a new comparison in
6809 undobuf.other_insn. */
6810 if (new_code
!= old_code
)
6812 int other_changed_previously
= other_changed
;
6813 unsigned HOST_WIDE_INT mask
;
6814 rtx old_cc_use
= *cc_use
;
6816 SUBST (*cc_use
, gen_rtx_fmt_ee (new_code
, GET_MODE (*cc_use
),
6820 /* If the only change we made was to change an EQ into an NE or
6821 vice versa, OP0 has only one bit that might be nonzero, and OP1
6822 is zero, check if changing the user of the condition code will
6823 produce a valid insn. If it won't, we can keep the original code
6824 in that insn by surrounding our operation with an XOR. */
6826 if (((old_code
== NE
&& new_code
== EQ
)
6827 || (old_code
== EQ
&& new_code
== NE
))
6828 && ! other_changed_previously
&& op1
== const0_rtx
6829 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0
))
6830 && pow2p_hwi (mask
= nonzero_bits (op0
, GET_MODE (op0
))))
6832 rtx pat
= PATTERN (other_insn
), note
= 0;
6834 if ((recog_for_combine (&pat
, other_insn
, ¬e
) < 0
6835 && ! check_asm_operands (pat
)))
6837 *cc_use
= old_cc_use
;
6840 op0
= simplify_gen_binary (XOR
, GET_MODE (op0
), op0
,
6848 undobuf
.other_insn
= other_insn
;
6850 /* Don't generate a compare of a CC with 0, just use that CC. */
6851 if (GET_MODE (op0
) == compare_mode
&& op1
== const0_rtx
)
6853 SUBST (SET_SRC (x
), op0
);
6856 /* Otherwise, if we didn't previously have the same COMPARE we
6857 want, create it from scratch. */
6858 else if (GET_CODE (src
) != COMPARE
|| GET_MODE (src
) != compare_mode
6859 || XEXP (src
, 0) != op0
|| XEXP (src
, 1) != op1
)
6861 SUBST (SET_SRC (x
), gen_rtx_COMPARE (compare_mode
, op0
, op1
));
6867 /* Get SET_SRC in a form where we have placed back any
6868 compound expressions. Then do the checks below. */
6869 src
= make_compound_operation (src
, SET
);
6870 SUBST (SET_SRC (x
), src
);
6873 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6874 and X being a REG or (subreg (reg)), we may be able to convert this to
6875 (set (subreg:m2 x) (op)).
6877 We can always do this if M1 is narrower than M2 because that means that
6878 we only care about the low bits of the result.
6880 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6881 perform a narrower operation than requested since the high-order bits will
6882 be undefined. On machine where it is defined, this transformation is safe
6883 as long as M1 and M2 have the same number of words. */
6885 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
6886 && !OBJECT_P (SUBREG_REG (src
))
6887 && (known_equal_after_align_up
6888 (GET_MODE_SIZE (GET_MODE (src
)),
6889 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
))),
6891 && (WORD_REGISTER_OPERATIONS
|| !paradoxical_subreg_p (src
))
6892 && ! (REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
6893 && !REG_CAN_CHANGE_MODE_P (REGNO (dest
),
6894 GET_MODE (SUBREG_REG (src
)),
6897 || (GET_CODE (dest
) == SUBREG
6898 && REG_P (SUBREG_REG (dest
)))))
6900 SUBST (SET_DEST (x
),
6901 gen_lowpart (GET_MODE (SUBREG_REG (src
)),
6903 SUBST (SET_SRC (x
), SUBREG_REG (src
));
6905 src
= SET_SRC (x
), dest
= SET_DEST (x
);
6908 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6909 would require a paradoxical subreg. Replace the subreg with a
6910 zero_extend to avoid the reload that would otherwise be required.
6911 Don't do this unless we have a scalar integer mode, otherwise the
6912 transformation is incorrect. */
6914 enum rtx_code extend_op
;
6915 if (paradoxical_subreg_p (src
)
6916 && MEM_P (SUBREG_REG (src
))
6917 && SCALAR_INT_MODE_P (GET_MODE (src
))
6918 && (extend_op
= load_extend_op (GET_MODE (SUBREG_REG (src
)))) != UNKNOWN
)
6921 gen_rtx_fmt_e (extend_op
, GET_MODE (src
), SUBREG_REG (src
)));
6926 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6927 are comparing an item known to be 0 or -1 against 0, use a logical
6928 operation instead. Check for one of the arms being an IOR of the other
6929 arm with some value. We compute three terms to be IOR'ed together. In
6930 practice, at most two will be nonzero. Then we do the IOR's. */
6932 if (GET_CODE (dest
) != PC
6933 && GET_CODE (src
) == IF_THEN_ELSE
6934 && is_int_mode (GET_MODE (src
), &int_mode
)
6935 && (GET_CODE (XEXP (src
, 0)) == EQ
|| GET_CODE (XEXP (src
, 0)) == NE
)
6936 && XEXP (XEXP (src
, 0), 1) == const0_rtx
6937 && int_mode
== GET_MODE (XEXP (XEXP (src
, 0), 0))
6938 && (!HAVE_conditional_move
6939 || ! can_conditionally_move_p (int_mode
))
6940 && (num_sign_bit_copies (XEXP (XEXP (src
, 0), 0), int_mode
)
6941 == GET_MODE_PRECISION (int_mode
))
6942 && ! side_effects_p (src
))
6944 rtx true_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
6945 ? XEXP (src
, 1) : XEXP (src
, 2));
6946 rtx false_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
6947 ? XEXP (src
, 2) : XEXP (src
, 1));
6948 rtx term1
= const0_rtx
, term2
, term3
;
6950 if (GET_CODE (true_rtx
) == IOR
6951 && rtx_equal_p (XEXP (true_rtx
, 0), false_rtx
))
6952 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 1), false_rtx
= const0_rtx
;
6953 else if (GET_CODE (true_rtx
) == IOR
6954 && rtx_equal_p (XEXP (true_rtx
, 1), false_rtx
))
6955 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 0), false_rtx
= const0_rtx
;
6956 else if (GET_CODE (false_rtx
) == IOR
6957 && rtx_equal_p (XEXP (false_rtx
, 0), true_rtx
))
6958 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 1), true_rtx
= const0_rtx
;
6959 else if (GET_CODE (false_rtx
) == IOR
6960 && rtx_equal_p (XEXP (false_rtx
, 1), true_rtx
))
6961 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 0), true_rtx
= const0_rtx
;
6963 term2
= simplify_gen_binary (AND
, int_mode
,
6964 XEXP (XEXP (src
, 0), 0), true_rtx
);
6965 term3
= simplify_gen_binary (AND
, int_mode
,
6966 simplify_gen_unary (NOT
, int_mode
,
6967 XEXP (XEXP (src
, 0), 0),
6972 simplify_gen_binary (IOR
, int_mode
,
6973 simplify_gen_binary (IOR
, int_mode
,
6980 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6981 whole thing fail. */
6982 if (GET_CODE (src
) == CLOBBER
&& XEXP (src
, 0) == const0_rtx
)
6984 else if (GET_CODE (dest
) == CLOBBER
&& XEXP (dest
, 0) == const0_rtx
)
6987 /* Convert this into a field assignment operation, if possible. */
6988 return make_field_assignment (x
);
6991 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6995 simplify_logical (rtx x
)
6997 rtx op0
= XEXP (x
, 0);
6998 rtx op1
= XEXP (x
, 1);
6999 scalar_int_mode mode
;
7001 switch (GET_CODE (x
))
7004 /* We can call simplify_and_const_int only if we don't lose
7005 any (sign) bits when converting INTVAL (op1) to
7006 "unsigned HOST_WIDE_INT". */
7007 if (is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
)
7008 && CONST_INT_P (op1
)
7009 && (HWI_COMPUTABLE_MODE_P (mode
)
7010 || INTVAL (op1
) > 0))
7012 x
= simplify_and_const_int (x
, mode
, op0
, INTVAL (op1
));
7013 if (GET_CODE (x
) != AND
)
7020 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7021 apply the distributive law and then the inverse distributive
7022 law to see if things simplify. */
7023 if (GET_CODE (op0
) == IOR
|| GET_CODE (op0
) == XOR
)
7025 rtx result
= distribute_and_simplify_rtx (x
, 0);
7029 if (GET_CODE (op1
) == IOR
|| GET_CODE (op1
) == XOR
)
7031 rtx result
= distribute_and_simplify_rtx (x
, 1);
7038 /* If we have (ior (and A B) C), apply the distributive law and then
7039 the inverse distributive law to see if things simplify. */
7041 if (GET_CODE (op0
) == AND
)
7043 rtx result
= distribute_and_simplify_rtx (x
, 0);
7048 if (GET_CODE (op1
) == AND
)
7050 rtx result
= distribute_and_simplify_rtx (x
, 1);
7063 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7064 operations" because they can be replaced with two more basic operations.
7065 ZERO_EXTEND is also considered "compound" because it can be replaced with
7066 an AND operation, which is simpler, though only one operation.
7068 The function expand_compound_operation is called with an rtx expression
7069 and will convert it to the appropriate shifts and AND operations,
7070 simplifying at each stage.
7072 The function make_compound_operation is called to convert an expression
7073 consisting of shifts and ANDs into the equivalent compound expression.
7074 It is the inverse of this function, loosely speaking. */
7077 expand_compound_operation (rtx x
)
7079 unsigned HOST_WIDE_INT pos
= 0, len
;
7081 unsigned int modewidth
;
7083 scalar_int_mode inner_mode
;
7085 switch (GET_CODE (x
))
7091 /* We can't necessarily use a const_int for a multiword mode;
7092 it depends on implicitly extending the value.
7093 Since we don't know the right way to extend it,
7094 we can't tell whether the implicit way is right.
7096 Even for a mode that is no wider than a const_int,
7097 we can't win, because we need to sign extend one of its bits through
7098 the rest of it, and we don't know which bit. */
7099 if (CONST_INT_P (XEXP (x
, 0)))
7102 /* Reject modes that aren't scalar integers because turning vector
7103 or complex modes into shifts causes problems. */
7104 if (!is_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)), &inner_mode
))
7107 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7108 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7109 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7110 reloaded. If not for that, MEM's would very rarely be safe.
7112 Reject modes bigger than a word, because we might not be able
7113 to reference a two-register group starting with an arbitrary register
7114 (and currently gen_lowpart might crash for a SUBREG). */
7116 if (GET_MODE_SIZE (inner_mode
) > UNITS_PER_WORD
)
7119 len
= GET_MODE_PRECISION (inner_mode
);
7120 /* If the inner object has VOIDmode (the only way this can happen
7121 is if it is an ASM_OPERANDS), we can't do anything since we don't
7122 know how much masking to do. */
7134 /* If the operand is a CLOBBER, just return it. */
7135 if (GET_CODE (XEXP (x
, 0)) == CLOBBER
)
7138 if (!CONST_INT_P (XEXP (x
, 1))
7139 || !CONST_INT_P (XEXP (x
, 2)))
7142 /* Reject modes that aren't scalar integers because turning vector
7143 or complex modes into shifts causes problems. */
7144 if (!is_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)), &inner_mode
))
7147 len
= INTVAL (XEXP (x
, 1));
7148 pos
= INTVAL (XEXP (x
, 2));
7150 /* This should stay within the object being extracted, fail otherwise. */
7151 if (len
+ pos
> GET_MODE_PRECISION (inner_mode
))
7154 if (BITS_BIG_ENDIAN
)
7155 pos
= GET_MODE_PRECISION (inner_mode
) - len
- pos
;
7163 /* We've rejected non-scalar operations by now. */
7164 scalar_int_mode mode
= as_a
<scalar_int_mode
> (GET_MODE (x
));
7166 /* Convert sign extension to zero extension, if we know that the high
7167 bit is not set, as this is easier to optimize. It will be converted
7168 back to cheaper alternative in make_extraction. */
7169 if (GET_CODE (x
) == SIGN_EXTEND
7170 && HWI_COMPUTABLE_MODE_P (mode
)
7171 && ((nonzero_bits (XEXP (x
, 0), inner_mode
)
7172 & ~(((unsigned HOST_WIDE_INT
) GET_MODE_MASK (inner_mode
)) >> 1))
7175 rtx temp
= gen_rtx_ZERO_EXTEND (mode
, XEXP (x
, 0));
7176 rtx temp2
= expand_compound_operation (temp
);
7178 /* Make sure this is a profitable operation. */
7179 if (set_src_cost (x
, mode
, optimize_this_for_speed_p
)
7180 > set_src_cost (temp2
, mode
, optimize_this_for_speed_p
))
7182 else if (set_src_cost (x
, mode
, optimize_this_for_speed_p
)
7183 > set_src_cost (temp
, mode
, optimize_this_for_speed_p
))
7189 /* We can optimize some special cases of ZERO_EXTEND. */
7190 if (GET_CODE (x
) == ZERO_EXTEND
)
7192 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7193 know that the last value didn't have any inappropriate bits
7195 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
7196 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == mode
7197 && HWI_COMPUTABLE_MODE_P (mode
)
7198 && (nonzero_bits (XEXP (XEXP (x
, 0), 0), mode
)
7199 & ~GET_MODE_MASK (inner_mode
)) == 0)
7200 return XEXP (XEXP (x
, 0), 0);
7202 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7203 if (GET_CODE (XEXP (x
, 0)) == SUBREG
7204 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == mode
7205 && subreg_lowpart_p (XEXP (x
, 0))
7206 && HWI_COMPUTABLE_MODE_P (mode
)
7207 && (nonzero_bits (SUBREG_REG (XEXP (x
, 0)), mode
)
7208 & ~GET_MODE_MASK (inner_mode
)) == 0)
7209 return SUBREG_REG (XEXP (x
, 0));
7211 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7212 is a comparison and STORE_FLAG_VALUE permits. This is like
7213 the first case, but it works even when MODE is larger
7214 than HOST_WIDE_INT. */
7215 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
7216 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == mode
7217 && COMPARISON_P (XEXP (XEXP (x
, 0), 0))
7218 && GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
7219 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (inner_mode
)) == 0)
7220 return XEXP (XEXP (x
, 0), 0);
7222 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7223 if (GET_CODE (XEXP (x
, 0)) == SUBREG
7224 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == mode
7225 && subreg_lowpart_p (XEXP (x
, 0))
7226 && COMPARISON_P (SUBREG_REG (XEXP (x
, 0)))
7227 && GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
7228 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (inner_mode
)) == 0)
7229 return SUBREG_REG (XEXP (x
, 0));
7233 /* If we reach here, we want to return a pair of shifts. The inner
7234 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7235 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7236 logical depending on the value of UNSIGNEDP.
7238 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7239 converted into an AND of a shift.
7241 We must check for the case where the left shift would have a negative
7242 count. This can happen in a case like (x >> 31) & 255 on machines
7243 that can't shift by a constant. On those machines, we would first
7244 combine the shift with the AND to produce a variable-position
7245 extraction. Then the constant of 31 would be substituted in
7246 to produce such a position. */
7248 modewidth
= GET_MODE_PRECISION (mode
);
7249 if (modewidth
>= pos
+ len
)
7251 tem
= gen_lowpart (mode
, XEXP (x
, 0));
7252 if (!tem
|| GET_CODE (tem
) == CLOBBER
)
7254 tem
= simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
7255 tem
, modewidth
- pos
- len
);
7256 tem
= simplify_shift_const (NULL_RTX
, unsignedp
? LSHIFTRT
: ASHIFTRT
,
7257 mode
, tem
, modewidth
- len
);
7259 else if (unsignedp
&& len
< HOST_BITS_PER_WIDE_INT
)
7261 tem
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, inner_mode
,
7263 tem
= gen_lowpart (mode
, tem
);
7264 if (!tem
|| GET_CODE (tem
) == CLOBBER
)
7266 tem
= simplify_and_const_int (NULL_RTX
, mode
, tem
,
7267 (HOST_WIDE_INT_1U
<< len
) - 1);
7270 /* Any other cases we can't handle. */
7273 /* If we couldn't do this for some reason, return the original
7275 if (GET_CODE (tem
) == CLOBBER
)
7281 /* X is a SET which contains an assignment of one object into
7282 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7283 or certain SUBREGS). If possible, convert it into a series of
7286 We half-heartedly support variable positions, but do not at all
7287 support variable lengths. */
7290 expand_field_assignment (const_rtx x
)
7293 rtx pos
; /* Always counts from low bit. */
7295 rtx mask
, cleared
, masked
;
7296 scalar_int_mode compute_mode
;
7298 /* Loop until we find something we can't simplify. */
7301 if (GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
7302 && GET_CODE (XEXP (SET_DEST (x
), 0)) == SUBREG
)
7304 rtx x0
= XEXP (SET_DEST (x
), 0);
7305 if (!GET_MODE_PRECISION (GET_MODE (x0
)).is_constant (&len
))
7307 inner
= SUBREG_REG (XEXP (SET_DEST (x
), 0));
7308 pos
= gen_int_mode (subreg_lsb (XEXP (SET_DEST (x
), 0)),
7311 else if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
7312 && CONST_INT_P (XEXP (SET_DEST (x
), 1)))
7314 inner
= XEXP (SET_DEST (x
), 0);
7315 if (!GET_MODE_PRECISION (GET_MODE (inner
)).is_constant (&inner_len
))
7318 len
= INTVAL (XEXP (SET_DEST (x
), 1));
7319 pos
= XEXP (SET_DEST (x
), 2);
7321 /* A constant position should stay within the width of INNER. */
7322 if (CONST_INT_P (pos
) && INTVAL (pos
) + len
> inner_len
)
7325 if (BITS_BIG_ENDIAN
)
7327 if (CONST_INT_P (pos
))
7328 pos
= GEN_INT (inner_len
- len
- INTVAL (pos
));
7329 else if (GET_CODE (pos
) == MINUS
7330 && CONST_INT_P (XEXP (pos
, 1))
7331 && INTVAL (XEXP (pos
, 1)) == inner_len
- len
)
7332 /* If position is ADJUST - X, new position is X. */
7333 pos
= XEXP (pos
, 0);
7335 pos
= simplify_gen_binary (MINUS
, GET_MODE (pos
),
7336 gen_int_mode (inner_len
- len
,
7342 /* If the destination is a subreg that overwrites the whole of the inner
7343 register, we can move the subreg to the source. */
7344 else if (GET_CODE (SET_DEST (x
)) == SUBREG
7345 /* We need SUBREGs to compute nonzero_bits properly. */
7346 && nonzero_sign_valid
7347 && !read_modify_subreg_p (SET_DEST (x
)))
7349 x
= gen_rtx_SET (SUBREG_REG (SET_DEST (x
)),
7351 (GET_MODE (SUBREG_REG (SET_DEST (x
))),
7358 while (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
7359 inner
= SUBREG_REG (inner
);
7361 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7362 if (!is_a
<scalar_int_mode
> (GET_MODE (inner
), &compute_mode
))
7364 /* Don't do anything for vector or complex integral types. */
7365 if (! FLOAT_MODE_P (GET_MODE (inner
)))
7368 /* Try to find an integral mode to pun with. */
7369 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner
)), 0)
7370 .exists (&compute_mode
))
7373 inner
= gen_lowpart (compute_mode
, inner
);
7376 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7377 if (len
>= HOST_BITS_PER_WIDE_INT
)
7380 /* Don't try to compute in too wide unsupported modes. */
7381 if (!targetm
.scalar_mode_supported_p (compute_mode
))
7384 /* Now compute the equivalent expression. Make a copy of INNER
7385 for the SET_DEST in case it is a MEM into which we will substitute;
7386 we don't want shared RTL in that case. */
7387 mask
= gen_int_mode ((HOST_WIDE_INT_1U
<< len
) - 1,
7389 cleared
= simplify_gen_binary (AND
, compute_mode
,
7390 simplify_gen_unary (NOT
, compute_mode
,
7391 simplify_gen_binary (ASHIFT
,
7396 masked
= simplify_gen_binary (ASHIFT
, compute_mode
,
7397 simplify_gen_binary (
7399 gen_lowpart (compute_mode
, SET_SRC (x
)),
7403 x
= gen_rtx_SET (copy_rtx (inner
),
7404 simplify_gen_binary (IOR
, compute_mode
,
7411 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7412 it is an RTX that represents the (variable) starting position; otherwise,
7413 POS is the (constant) starting bit position. Both are counted from the LSB.
7415 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7417 IN_DEST is nonzero if this is a reference in the destination of a SET.
7418 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7419 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7422 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7423 ZERO_EXTRACT should be built even for bits starting at bit 0.
7425 MODE is the desired mode of the result (if IN_DEST == 0).
7427 The result is an RTX for the extraction or NULL_RTX if the target
7431 make_extraction (machine_mode mode
, rtx inner
, HOST_WIDE_INT pos
,
7432 rtx pos_rtx
, unsigned HOST_WIDE_INT len
, int unsignedp
,
7433 int in_dest
, int in_compare
)
7435 /* This mode describes the size of the storage area
7436 to fetch the overall value from. Within that, we
7437 ignore the POS lowest bits, etc. */
7438 machine_mode is_mode
= GET_MODE (inner
);
7439 machine_mode inner_mode
;
7440 scalar_int_mode wanted_inner_mode
;
7441 scalar_int_mode wanted_inner_reg_mode
= word_mode
;
7442 scalar_int_mode pos_mode
= word_mode
;
7443 machine_mode extraction_mode
= word_mode
;
7445 rtx orig_pos_rtx
= pos_rtx
;
7446 HOST_WIDE_INT orig_pos
;
7448 if (pos_rtx
&& CONST_INT_P (pos_rtx
))
7449 pos
= INTVAL (pos_rtx
), pos_rtx
= 0;
7451 if (GET_CODE (inner
) == SUBREG
7452 && subreg_lowpart_p (inner
)
7453 && (paradoxical_subreg_p (inner
)
7454 /* If trying or potentionally trying to extract
7455 bits outside of is_mode, don't look through
7456 non-paradoxical SUBREGs. See PR82192. */
7457 || (pos_rtx
== NULL_RTX
7458 && known_le (pos
+ len
, GET_MODE_PRECISION (is_mode
)))))
7460 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7461 consider just the QI as the memory to extract from.
7462 The subreg adds or removes high bits; its mode is
7463 irrelevant to the meaning of this extraction,
7464 since POS and LEN count from the lsb. */
7465 if (MEM_P (SUBREG_REG (inner
)))
7466 is_mode
= GET_MODE (SUBREG_REG (inner
));
7467 inner
= SUBREG_REG (inner
);
7469 else if (GET_CODE (inner
) == ASHIFT
7470 && CONST_INT_P (XEXP (inner
, 1))
7471 && pos_rtx
== 0 && pos
== 0
7472 && len
> UINTVAL (XEXP (inner
, 1)))
7474 /* We're extracting the least significant bits of an rtx
7475 (ashift X (const_int C)), where LEN > C. Extract the
7476 least significant (LEN - C) bits of X, giving an rtx
7477 whose mode is MODE, then shift it left C times. */
7478 new_rtx
= make_extraction (mode
, XEXP (inner
, 0),
7479 0, 0, len
- INTVAL (XEXP (inner
, 1)),
7480 unsignedp
, in_dest
, in_compare
);
7482 return gen_rtx_ASHIFT (mode
, new_rtx
, XEXP (inner
, 1));
7484 else if (GET_CODE (inner
) == MULT
7485 && CONST_INT_P (XEXP (inner
, 1))
7486 && pos_rtx
== 0 && pos
== 0)
7488 /* We're extracting the least significant bits of an rtx
7489 (mult X (const_int 2^C)), where LEN > C. Extract the
7490 least significant (LEN - C) bits of X, giving an rtx
7491 whose mode is MODE, then multiply it by 2^C. */
7492 const HOST_WIDE_INT shift_amt
= exact_log2 (INTVAL (XEXP (inner
, 1)));
7493 if (IN_RANGE (shift_amt
, 1, len
- 1))
7495 new_rtx
= make_extraction (mode
, XEXP (inner
, 0),
7496 0, 0, len
- shift_amt
,
7497 unsignedp
, in_dest
, in_compare
);
7499 return gen_rtx_MULT (mode
, new_rtx
, XEXP (inner
, 1));
7502 else if (GET_CODE (inner
) == TRUNCATE
7503 /* If trying or potentionally trying to extract
7504 bits outside of is_mode, don't look through
7505 TRUNCATE. See PR82192. */
7506 && pos_rtx
== NULL_RTX
7507 && known_le (pos
+ len
, GET_MODE_PRECISION (is_mode
)))
7508 inner
= XEXP (inner
, 0);
7510 inner_mode
= GET_MODE (inner
);
7512 /* See if this can be done without an extraction. We never can if the
7513 width of the field is not the same as that of some integer mode. For
7514 registers, we can only avoid the extraction if the position is at the
7515 low-order bit and this is either not in the destination or we have the
7516 appropriate STRICT_LOW_PART operation available.
7518 For MEM, we can avoid an extract if the field starts on an appropriate
7519 boundary and we can change the mode of the memory reference. */
7521 scalar_int_mode tmode
;
7522 if (int_mode_for_size (len
, 1).exists (&tmode
)
7523 && ((pos_rtx
== 0 && (pos
% BITS_PER_WORD
) == 0
7525 && (pos
== 0 || REG_P (inner
))
7526 && (inner_mode
== tmode
7528 || TRULY_NOOP_TRUNCATION_MODES_P (tmode
, inner_mode
)
7529 || reg_truncated_to_mode (tmode
, inner
))
7532 && have_insn_for (STRICT_LOW_PART
, tmode
))))
7533 || (MEM_P (inner
) && pos_rtx
== 0
7535 % (STRICT_ALIGNMENT
? GET_MODE_ALIGNMENT (tmode
)
7536 : BITS_PER_UNIT
)) == 0
7537 /* We can't do this if we are widening INNER_MODE (it
7538 may not be aligned, for one thing). */
7539 && !paradoxical_subreg_p (tmode
, inner_mode
)
7540 && known_le (pos
+ len
, GET_MODE_PRECISION (is_mode
))
7541 && (inner_mode
== tmode
7542 || (! mode_dependent_address_p (XEXP (inner
, 0),
7543 MEM_ADDR_SPACE (inner
))
7544 && ! MEM_VOLATILE_P (inner
))))))
7546 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7547 field. If the original and current mode are the same, we need not
7548 adjust the offset. Otherwise, we do if bytes big endian.
7550 If INNER is not a MEM, get a piece consisting of just the field
7551 of interest (in this case POS % BITS_PER_WORD must be 0). */
7557 /* POS counts from lsb, but make OFFSET count in memory order. */
7558 if (BYTES_BIG_ENDIAN
)
7559 offset
= bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode
)
7562 offset
= pos
/ BITS_PER_UNIT
;
7564 new_rtx
= adjust_address_nv (inner
, tmode
, offset
);
7566 else if (REG_P (inner
))
7568 if (tmode
!= inner_mode
)
7570 /* We can't call gen_lowpart in a DEST since we
7571 always want a SUBREG (see below) and it would sometimes
7572 return a new hard register. */
7576 = subreg_offset_from_lsb (tmode
, inner_mode
, pos
);
7578 /* Avoid creating invalid subregs, for example when
7579 simplifying (x>>32)&255. */
7580 if (!validate_subreg (tmode
, inner_mode
, inner
, offset
))
7583 new_rtx
= gen_rtx_SUBREG (tmode
, inner
, offset
);
7586 new_rtx
= gen_lowpart (tmode
, inner
);
7592 new_rtx
= force_to_mode (inner
, tmode
,
7593 len
>= HOST_BITS_PER_WIDE_INT
7595 : (HOST_WIDE_INT_1U
<< len
) - 1, 0);
7597 /* If this extraction is going into the destination of a SET,
7598 make a STRICT_LOW_PART unless we made a MEM. */
7601 return (MEM_P (new_rtx
) ? new_rtx
7602 : (GET_CODE (new_rtx
) != SUBREG
7603 ? gen_rtx_CLOBBER (tmode
, const0_rtx
)
7604 : gen_rtx_STRICT_LOW_PART (VOIDmode
, new_rtx
)));
7609 if (CONST_SCALAR_INT_P (new_rtx
))
7610 return simplify_unary_operation (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
7611 mode
, new_rtx
, tmode
);
7613 /* If we know that no extraneous bits are set, and that the high
7614 bit is not set, convert the extraction to the cheaper of
7615 sign and zero extension, that are equivalent in these cases. */
7616 if (flag_expensive_optimizations
7617 && (HWI_COMPUTABLE_MODE_P (tmode
)
7618 && ((nonzero_bits (new_rtx
, tmode
)
7619 & ~(((unsigned HOST_WIDE_INT
)GET_MODE_MASK (tmode
)) >> 1))
7622 rtx temp
= gen_rtx_ZERO_EXTEND (mode
, new_rtx
);
7623 rtx temp1
= gen_rtx_SIGN_EXTEND (mode
, new_rtx
);
7625 /* Prefer ZERO_EXTENSION, since it gives more information to
7627 if (set_src_cost (temp
, mode
, optimize_this_for_speed_p
)
7628 <= set_src_cost (temp1
, mode
, optimize_this_for_speed_p
))
7633 /* Otherwise, sign- or zero-extend unless we already are in the
7636 return (gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
7640 /* Unless this is a COMPARE or we have a funny memory reference,
7641 don't do anything with zero-extending field extracts starting at
7642 the low-order bit since they are simple AND operations. */
7643 if (pos_rtx
== 0 && pos
== 0 && ! in_dest
7644 && ! in_compare
&& unsignedp
)
7647 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7648 if the position is not a constant and the length is not 1. In all
7649 other cases, we would only be going outside our object in cases when
7650 an original shift would have been undefined. */
7652 && ((pos_rtx
== 0 && maybe_gt (pos
+ len
, GET_MODE_PRECISION (is_mode
)))
7653 || (pos_rtx
!= 0 && len
!= 1)))
7656 enum extraction_pattern pattern
= (in_dest
? EP_insv
7657 : unsignedp
? EP_extzv
: EP_extv
);
7659 /* If INNER is not from memory, we want it to have the mode of a register
7660 extraction pattern's structure operand, or word_mode if there is no
7661 such pattern. The same applies to extraction_mode and pos_mode
7662 and their respective operands.
7664 For memory, assume that the desired extraction_mode and pos_mode
7665 are the same as for a register operation, since at present we don't
7666 have named patterns for aligned memory structures. */
7667 class extraction_insn insn
;
7668 unsigned int inner_size
;
7669 if (GET_MODE_BITSIZE (inner_mode
).is_constant (&inner_size
)
7670 && get_best_reg_extraction_insn (&insn
, pattern
, inner_size
, mode
))
7672 wanted_inner_reg_mode
= insn
.struct_mode
.require ();
7673 pos_mode
= insn
.pos_mode
;
7674 extraction_mode
= insn
.field_mode
;
7677 /* Never narrow an object, since that might not be safe. */
7679 if (mode
!= VOIDmode
7680 && partial_subreg_p (extraction_mode
, mode
))
7681 extraction_mode
= mode
;
7683 /* Punt if len is too large for extraction_mode. */
7684 if (maybe_gt (len
, GET_MODE_PRECISION (extraction_mode
)))
7688 wanted_inner_mode
= wanted_inner_reg_mode
;
7691 /* Be careful not to go beyond the extracted object and maintain the
7692 natural alignment of the memory. */
7693 wanted_inner_mode
= smallest_int_mode_for_size (len
);
7694 while (pos
% GET_MODE_BITSIZE (wanted_inner_mode
) + len
7695 > GET_MODE_BITSIZE (wanted_inner_mode
))
7696 wanted_inner_mode
= GET_MODE_WIDER_MODE (wanted_inner_mode
).require ();
7701 if (BITS_BIG_ENDIAN
)
7703 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7704 BITS_BIG_ENDIAN style. If position is constant, compute new
7705 position. Otherwise, build subtraction.
7706 Note that POS is relative to the mode of the original argument.
7707 If it's a MEM we need to recompute POS relative to that.
7708 However, if we're extracting from (or inserting into) a register,
7709 we want to recompute POS relative to wanted_inner_mode. */
7712 width
= GET_MODE_BITSIZE (wanted_inner_mode
);
7713 else if (!GET_MODE_BITSIZE (is_mode
).is_constant (&width
))
7717 pos
= width
- len
- pos
;
7720 = gen_rtx_MINUS (GET_MODE (pos_rtx
),
7721 gen_int_mode (width
- len
, GET_MODE (pos_rtx
)),
7723 /* POS may be less than 0 now, but we check for that below.
7724 Note that it can only be less than 0 if !MEM_P (inner). */
7727 /* If INNER has a wider mode, and this is a constant extraction, try to
7728 make it smaller and adjust the byte to point to the byte containing
7730 if (wanted_inner_mode
!= VOIDmode
7731 && inner_mode
!= wanted_inner_mode
7733 && partial_subreg_p (wanted_inner_mode
, is_mode
)
7735 && ! mode_dependent_address_p (XEXP (inner
, 0), MEM_ADDR_SPACE (inner
))
7736 && ! MEM_VOLATILE_P (inner
))
7738 poly_int64 offset
= 0;
7740 /* The computations below will be correct if the machine is big
7741 endian in both bits and bytes or little endian in bits and bytes.
7742 If it is mixed, we must adjust. */
7744 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7745 adjust OFFSET to compensate. */
7746 if (BYTES_BIG_ENDIAN
7747 && paradoxical_subreg_p (is_mode
, inner_mode
))
7748 offset
-= GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (inner_mode
);
7750 /* We can now move to the desired byte. */
7751 offset
+= (pos
/ GET_MODE_BITSIZE (wanted_inner_mode
))
7752 * GET_MODE_SIZE (wanted_inner_mode
);
7753 pos
%= GET_MODE_BITSIZE (wanted_inner_mode
);
7755 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
7756 && is_mode
!= wanted_inner_mode
)
7757 offset
= (GET_MODE_SIZE (is_mode
)
7758 - GET_MODE_SIZE (wanted_inner_mode
) - offset
);
7760 inner
= adjust_address_nv (inner
, wanted_inner_mode
, offset
);
7763 /* If INNER is not memory, get it into the proper mode. If we are changing
7764 its mode, POS must be a constant and smaller than the size of the new
7766 else if (!MEM_P (inner
))
7768 /* On the LHS, don't create paradoxical subregs implicitely truncating
7769 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7771 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner
),
7775 if (GET_MODE (inner
) != wanted_inner_mode
7777 || orig_pos
+ len
> GET_MODE_BITSIZE (wanted_inner_mode
)))
7783 inner
= force_to_mode (inner
, wanted_inner_mode
,
7785 || len
+ orig_pos
>= HOST_BITS_PER_WIDE_INT
7787 : (((HOST_WIDE_INT_1U
<< len
) - 1)
7792 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7793 have to zero extend. Otherwise, we can just use a SUBREG.
7795 We dealt with constant rtxes earlier, so pos_rtx cannot
7796 have VOIDmode at this point. */
7798 && (GET_MODE_SIZE (pos_mode
)
7799 > GET_MODE_SIZE (as_a
<scalar_int_mode
> (GET_MODE (pos_rtx
)))))
7801 rtx temp
= simplify_gen_unary (ZERO_EXTEND
, pos_mode
, pos_rtx
,
7802 GET_MODE (pos_rtx
));
7804 /* If we know that no extraneous bits are set, and that the high
7805 bit is not set, convert extraction to cheaper one - either
7806 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7808 if (flag_expensive_optimizations
7809 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx
))
7810 && ((nonzero_bits (pos_rtx
, GET_MODE (pos_rtx
))
7811 & ~(((unsigned HOST_WIDE_INT
)
7812 GET_MODE_MASK (GET_MODE (pos_rtx
)))
7816 rtx temp1
= simplify_gen_unary (SIGN_EXTEND
, pos_mode
, pos_rtx
,
7817 GET_MODE (pos_rtx
));
7819 /* Prefer ZERO_EXTENSION, since it gives more information to
7821 if (set_src_cost (temp1
, pos_mode
, optimize_this_for_speed_p
)
7822 < set_src_cost (temp
, pos_mode
, optimize_this_for_speed_p
))
7828 /* Make POS_RTX unless we already have it and it is correct. If we don't
7829 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7831 if (pos_rtx
== 0 && orig_pos_rtx
!= 0 && INTVAL (orig_pos_rtx
) == pos
)
7832 pos_rtx
= orig_pos_rtx
;
7834 else if (pos_rtx
== 0)
7835 pos_rtx
= GEN_INT (pos
);
7837 /* Make the required operation. See if we can use existing rtx. */
7838 new_rtx
= gen_rtx_fmt_eee (unsignedp
? ZERO_EXTRACT
: SIGN_EXTRACT
,
7839 extraction_mode
, inner
, GEN_INT (len
), pos_rtx
);
7841 new_rtx
= gen_lowpart (mode
, new_rtx
);
7846 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
7847 can be commuted with any other operations in X. Return X without
7848 that shift if so. */
7851 extract_left_shift (scalar_int_mode mode
, rtx x
, int count
)
7853 enum rtx_code code
= GET_CODE (x
);
7859 /* This is the shift itself. If it is wide enough, we will return
7860 either the value being shifted if the shift count is equal to
7861 COUNT or a shift for the difference. */
7862 if (CONST_INT_P (XEXP (x
, 1))
7863 && INTVAL (XEXP (x
, 1)) >= count
)
7864 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (x
, 0),
7865 INTVAL (XEXP (x
, 1)) - count
);
7869 if ((tem
= extract_left_shift (mode
, XEXP (x
, 0), count
)) != 0)
7870 return simplify_gen_unary (code
, mode
, tem
, mode
);
7874 case PLUS
: case IOR
: case XOR
: case AND
:
7875 /* If we can safely shift this constant and we find the inner shift,
7876 make a new operation. */
7877 if (CONST_INT_P (XEXP (x
, 1))
7878 && (UINTVAL (XEXP (x
, 1))
7879 & (((HOST_WIDE_INT_1U
<< count
)) - 1)) == 0
7880 && (tem
= extract_left_shift (mode
, XEXP (x
, 0), count
)) != 0)
7882 HOST_WIDE_INT val
= INTVAL (XEXP (x
, 1)) >> count
;
7883 return simplify_gen_binary (code
, mode
, tem
,
7884 gen_int_mode (val
, mode
));
7895 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7896 level of the expression and MODE is its mode. IN_CODE is as for
7897 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7898 that should be used when recursing on operands of *X_PTR.
7900 There are two possible actions:
7902 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7903 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7905 - Return a new rtx, which the caller returns directly. */
7908 make_compound_operation_int (scalar_int_mode mode
, rtx
*x_ptr
,
7909 enum rtx_code in_code
,
7910 enum rtx_code
*next_code_ptr
)
7913 enum rtx_code next_code
= *next_code_ptr
;
7914 enum rtx_code code
= GET_CODE (x
);
7915 int mode_width
= GET_MODE_PRECISION (mode
);
7920 scalar_int_mode inner_mode
;
7921 bool equality_comparison
= false;
7925 equality_comparison
= true;
7929 /* Process depending on the code of this operation. If NEW is set
7930 nonzero, it will be returned. */
7935 /* Convert shifts by constants into multiplications if inside
7937 if (in_code
== MEM
&& CONST_INT_P (XEXP (x
, 1))
7938 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
7939 && INTVAL (XEXP (x
, 1)) >= 0)
7941 HOST_WIDE_INT count
= INTVAL (XEXP (x
, 1));
7942 HOST_WIDE_INT multval
= HOST_WIDE_INT_1
<< count
;
7944 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
7945 if (GET_CODE (new_rtx
) == NEG
)
7947 new_rtx
= XEXP (new_rtx
, 0);
7950 multval
= trunc_int_for_mode (multval
, mode
);
7951 new_rtx
= gen_rtx_MULT (mode
, new_rtx
, gen_int_mode (multval
, mode
));
7958 lhs
= make_compound_operation (lhs
, next_code
);
7959 rhs
= make_compound_operation (rhs
, next_code
);
7960 if (GET_CODE (lhs
) == MULT
&& GET_CODE (XEXP (lhs
, 0)) == NEG
)
7962 tem
= simplify_gen_binary (MULT
, mode
, XEXP (XEXP (lhs
, 0), 0),
7964 new_rtx
= simplify_gen_binary (MINUS
, mode
, rhs
, tem
);
7966 else if (GET_CODE (lhs
) == MULT
7967 && (CONST_INT_P (XEXP (lhs
, 1)) && INTVAL (XEXP (lhs
, 1)) < 0))
7969 tem
= simplify_gen_binary (MULT
, mode
, XEXP (lhs
, 0),
7970 simplify_gen_unary (NEG
, mode
,
7973 new_rtx
= simplify_gen_binary (MINUS
, mode
, rhs
, tem
);
7977 SUBST (XEXP (x
, 0), lhs
);
7978 SUBST (XEXP (x
, 1), rhs
);
7980 maybe_swap_commutative_operands (x
);
7986 lhs
= make_compound_operation (lhs
, next_code
);
7987 rhs
= make_compound_operation (rhs
, next_code
);
7988 if (GET_CODE (rhs
) == MULT
&& GET_CODE (XEXP (rhs
, 0)) == NEG
)
7990 tem
= simplify_gen_binary (MULT
, mode
, XEXP (XEXP (rhs
, 0), 0),
7992 return simplify_gen_binary (PLUS
, mode
, tem
, lhs
);
7994 else if (GET_CODE (rhs
) == MULT
7995 && (CONST_INT_P (XEXP (rhs
, 1)) && INTVAL (XEXP (rhs
, 1)) < 0))
7997 tem
= simplify_gen_binary (MULT
, mode
, XEXP (rhs
, 0),
7998 simplify_gen_unary (NEG
, mode
,
8001 return simplify_gen_binary (PLUS
, mode
, tem
, lhs
);
8005 SUBST (XEXP (x
, 0), lhs
);
8006 SUBST (XEXP (x
, 1), rhs
);
8011 /* If the second operand is not a constant, we can't do anything
8013 if (!CONST_INT_P (XEXP (x
, 1)))
8016 /* If the constant is a power of two minus one and the first operand
8017 is a logical right shift, make an extraction. */
8018 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8019 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
8021 new_rtx
= make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
8022 new_rtx
= make_extraction (mode
, new_rtx
, 0, XEXP (XEXP (x
, 0), 1),
8023 i
, 1, 0, in_code
== COMPARE
);
8026 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8027 else if (GET_CODE (XEXP (x
, 0)) == SUBREG
8028 && subreg_lowpart_p (XEXP (x
, 0))
8029 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (XEXP (x
, 0))),
8031 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == LSHIFTRT
8032 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
8034 rtx inner_x0
= SUBREG_REG (XEXP (x
, 0));
8035 new_rtx
= make_compound_operation (XEXP (inner_x0
, 0), next_code
);
8036 new_rtx
= make_extraction (inner_mode
, new_rtx
, 0,
8038 i
, 1, 0, in_code
== COMPARE
);
8040 /* If we narrowed the mode when dropping the subreg, then we lose. */
8041 if (GET_MODE_SIZE (inner_mode
) < GET_MODE_SIZE (mode
))
8044 /* If that didn't give anything, see if the AND simplifies on
8046 if (!new_rtx
&& i
>= 0)
8048 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
8049 new_rtx
= make_extraction (mode
, new_rtx
, 0, NULL_RTX
, i
, 1,
8050 0, in_code
== COMPARE
);
8053 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8054 else if ((GET_CODE (XEXP (x
, 0)) == XOR
8055 || GET_CODE (XEXP (x
, 0)) == IOR
)
8056 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == LSHIFTRT
8057 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == LSHIFTRT
8058 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
8060 /* Apply the distributive law, and then try to make extractions. */
8061 new_rtx
= gen_rtx_fmt_ee (GET_CODE (XEXP (x
, 0)), mode
,
8062 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 0),
8064 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 1),
8066 new_rtx
= make_compound_operation (new_rtx
, in_code
);
8069 /* If we are have (and (rotate X C) M) and C is larger than the number
8070 of bits in M, this is an extraction. */
8072 else if (GET_CODE (XEXP (x
, 0)) == ROTATE
8073 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8074 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0
8075 && i
<= INTVAL (XEXP (XEXP (x
, 0), 1)))
8077 new_rtx
= make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
8078 new_rtx
= make_extraction (mode
, new_rtx
,
8079 (GET_MODE_PRECISION (mode
)
8080 - INTVAL (XEXP (XEXP (x
, 0), 1))),
8081 NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
8084 /* On machines without logical shifts, if the operand of the AND is
8085 a logical shift and our mask turns off all the propagated sign
8086 bits, we can replace the logical shift with an arithmetic shift. */
8087 else if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8088 && !have_insn_for (LSHIFTRT
, mode
)
8089 && have_insn_for (ASHIFTRT
, mode
)
8090 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8091 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
8092 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
8093 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
8095 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
8097 mask
>>= INTVAL (XEXP (XEXP (x
, 0), 1));
8098 if ((INTVAL (XEXP (x
, 1)) & ~mask
) == 0)
8100 gen_rtx_ASHIFTRT (mode
,
8101 make_compound_operation (XEXP (XEXP (x
,
8105 XEXP (XEXP (x
, 0), 1)));
8108 /* If the constant is one less than a power of two, this might be
8109 representable by an extraction even if no shift is present.
8110 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8111 we are in a COMPARE. */
8112 else if ((i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
8113 new_rtx
= make_extraction (mode
,
8114 make_compound_operation (XEXP (x
, 0),
8116 0, NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
8118 /* If we are in a comparison and this is an AND with a power of two,
8119 convert this into the appropriate bit extract. */
8120 else if (in_code
== COMPARE
8121 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0
8122 && (equality_comparison
|| i
< GET_MODE_PRECISION (mode
) - 1))
8123 new_rtx
= make_extraction (mode
,
8124 make_compound_operation (XEXP (x
, 0),
8126 i
, NULL_RTX
, 1, 1, 0, 1);
8128 /* If the one operand is a paradoxical subreg of a register or memory and
8129 the constant (limited to the smaller mode) has only zero bits where
8130 the sub expression has known zero bits, this can be expressed as
8132 else if (GET_CODE (XEXP (x
, 0)) == SUBREG
)
8136 sub
= XEXP (XEXP (x
, 0), 0);
8137 machine_mode sub_mode
= GET_MODE (sub
);
8139 if ((REG_P (sub
) || MEM_P (sub
))
8140 && GET_MODE_PRECISION (sub_mode
).is_constant (&sub_width
)
8141 && sub_width
< mode_width
)
8143 unsigned HOST_WIDE_INT mode_mask
= GET_MODE_MASK (sub_mode
);
8144 unsigned HOST_WIDE_INT mask
;
8146 /* original AND constant with all the known zero bits set */
8147 mask
= UINTVAL (XEXP (x
, 1)) | (~nonzero_bits (sub
, sub_mode
));
8148 if ((mask
& mode_mask
) == mode_mask
)
8150 new_rtx
= make_compound_operation (sub
, next_code
);
8151 new_rtx
= make_extraction (mode
, new_rtx
, 0, 0, sub_width
,
8152 1, 0, in_code
== COMPARE
);
8160 /* If the sign bit is known to be zero, replace this with an
8161 arithmetic shift. */
8162 if (have_insn_for (ASHIFTRT
, mode
)
8163 && ! have_insn_for (LSHIFTRT
, mode
)
8164 && mode_width
<= HOST_BITS_PER_WIDE_INT
8165 && (nonzero_bits (XEXP (x
, 0), mode
) & (1 << (mode_width
- 1))) == 0)
8167 new_rtx
= gen_rtx_ASHIFTRT (mode
,
8168 make_compound_operation (XEXP (x
, 0),
8180 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8181 this is a SIGN_EXTRACT. */
8182 if (CONST_INT_P (rhs
)
8183 && GET_CODE (lhs
) == ASHIFT
8184 && CONST_INT_P (XEXP (lhs
, 1))
8185 && INTVAL (rhs
) >= INTVAL (XEXP (lhs
, 1))
8186 && INTVAL (XEXP (lhs
, 1)) >= 0
8187 && INTVAL (rhs
) < mode_width
)
8189 new_rtx
= make_compound_operation (XEXP (lhs
, 0), next_code
);
8190 new_rtx
= make_extraction (mode
, new_rtx
,
8191 INTVAL (rhs
) - INTVAL (XEXP (lhs
, 1)),
8192 NULL_RTX
, mode_width
- INTVAL (rhs
),
8193 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
8197 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8198 If so, try to merge the shifts into a SIGN_EXTEND. We could
8199 also do this for some cases of SIGN_EXTRACT, but it doesn't
8200 seem worth the effort; the case checked for occurs on Alpha. */
8203 && ! (GET_CODE (lhs
) == SUBREG
8204 && (OBJECT_P (SUBREG_REG (lhs
))))
8205 && CONST_INT_P (rhs
)
8206 && INTVAL (rhs
) >= 0
8207 && INTVAL (rhs
) < HOST_BITS_PER_WIDE_INT
8208 && INTVAL (rhs
) < mode_width
8209 && (new_rtx
= extract_left_shift (mode
, lhs
, INTVAL (rhs
))) != 0)
8210 new_rtx
= make_extraction (mode
, make_compound_operation (new_rtx
,
8212 0, NULL_RTX
, mode_width
- INTVAL (rhs
),
8213 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
8218 /* Call ourselves recursively on the inner expression. If we are
8219 narrowing the object and it has a different RTL code from
8220 what it originally did, do this SUBREG as a force_to_mode. */
8222 rtx inner
= SUBREG_REG (x
), simplified
;
8223 enum rtx_code subreg_code
= in_code
;
8225 /* If the SUBREG is masking of a logical right shift,
8226 make an extraction. */
8227 if (GET_CODE (inner
) == LSHIFTRT
8228 && is_a
<scalar_int_mode
> (GET_MODE (inner
), &inner_mode
)
8229 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (inner_mode
)
8230 && CONST_INT_P (XEXP (inner
, 1))
8231 && UINTVAL (XEXP (inner
, 1)) < GET_MODE_PRECISION (inner_mode
)
8232 && subreg_lowpart_p (x
))
8234 new_rtx
= make_compound_operation (XEXP (inner
, 0), next_code
);
8235 int width
= GET_MODE_PRECISION (inner_mode
)
8236 - INTVAL (XEXP (inner
, 1));
8237 if (width
> mode_width
)
8239 new_rtx
= make_extraction (mode
, new_rtx
, 0, XEXP (inner
, 1),
8240 width
, 1, 0, in_code
== COMPARE
);
8244 /* If in_code is COMPARE, it isn't always safe to pass it through
8245 to the recursive make_compound_operation call. */
8246 if (subreg_code
== COMPARE
8247 && (!subreg_lowpart_p (x
)
8248 || GET_CODE (inner
) == SUBREG
8249 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8250 is (const_int 0), rather than
8251 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8252 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8253 for non-equality comparisons against 0 is not equivalent
8254 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8255 || (GET_CODE (inner
) == AND
8256 && CONST_INT_P (XEXP (inner
, 1))
8257 && partial_subreg_p (x
)
8258 && exact_log2 (UINTVAL (XEXP (inner
, 1)))
8259 >= GET_MODE_BITSIZE (mode
) - 1)))
8262 tem
= make_compound_operation (inner
, subreg_code
);
8265 = simplify_subreg (mode
, tem
, GET_MODE (inner
), SUBREG_BYTE (x
));
8269 if (GET_CODE (tem
) != GET_CODE (inner
)
8270 && partial_subreg_p (x
)
8271 && subreg_lowpart_p (x
))
8274 = force_to_mode (tem
, mode
, HOST_WIDE_INT_M1U
, 0);
8276 /* If we have something other than a SUBREG, we might have
8277 done an expansion, so rerun ourselves. */
8278 if (GET_CODE (newer
) != SUBREG
)
8279 newer
= make_compound_operation (newer
, in_code
);
8281 /* force_to_mode can expand compounds. If it just re-expanded
8282 the compound, use gen_lowpart to convert to the desired
8284 if (rtx_equal_p (newer
, x
)
8285 /* Likewise if it re-expanded the compound only partially.
8286 This happens for SUBREG of ZERO_EXTRACT if they extract
8287 the same number of bits. */
8288 || (GET_CODE (newer
) == SUBREG
8289 && (GET_CODE (SUBREG_REG (newer
)) == LSHIFTRT
8290 || GET_CODE (SUBREG_REG (newer
)) == ASHIFTRT
)
8291 && GET_CODE (inner
) == AND
8292 && rtx_equal_p (SUBREG_REG (newer
), XEXP (inner
, 0))))
8293 return gen_lowpart (GET_MODE (x
), tem
);
8308 *x_ptr
= gen_lowpart (mode
, new_rtx
);
8309 *next_code_ptr
= next_code
;
8313 /* Look at the expression rooted at X. Look for expressions
8314 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8315 Form these expressions.
8317 Return the new rtx, usually just X.
8319 Also, for machines like the VAX that don't have logical shift insns,
8320 try to convert logical to arithmetic shift operations in cases where
8321 they are equivalent. This undoes the canonicalizations to logical
8322 shifts done elsewhere.
8324 We try, as much as possible, to re-use rtl expressions to save memory.
8326 IN_CODE says what kind of expression we are processing. Normally, it is
8327 SET. In a memory address it is MEM. When processing the arguments of
8328 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8329 precisely it is an equality comparison against zero. */
8332 make_compound_operation (rtx x
, enum rtx_code in_code
)
8334 enum rtx_code code
= GET_CODE (x
);
8337 enum rtx_code next_code
;
8340 /* Select the code to be used in recursive calls. Once we are inside an
8341 address, we stay there. If we have a comparison, set to COMPARE,
8342 but once inside, go back to our default of SET. */
8344 next_code
= (code
== MEM
? MEM
8345 : ((code
== COMPARE
|| COMPARISON_P (x
))
8346 && XEXP (x
, 1) == const0_rtx
) ? COMPARE
8347 : in_code
== COMPARE
|| in_code
== EQ
? SET
: in_code
);
8349 scalar_int_mode mode
;
8350 if (is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
))
8352 rtx new_rtx
= make_compound_operation_int (mode
, &x
, in_code
,
8356 code
= GET_CODE (x
);
8359 /* Now recursively process each operand of this operation. We need to
8360 handle ZERO_EXTEND specially so that we don't lose track of the
8362 if (code
== ZERO_EXTEND
)
8364 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
8365 tem
= simplify_const_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
8366 new_rtx
, GET_MODE (XEXP (x
, 0)));
8369 SUBST (XEXP (x
, 0), new_rtx
);
8373 fmt
= GET_RTX_FORMAT (code
);
8374 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
8377 new_rtx
= make_compound_operation (XEXP (x
, i
), next_code
);
8378 SUBST (XEXP (x
, i
), new_rtx
);
8380 else if (fmt
[i
] == 'E')
8381 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
8383 new_rtx
= make_compound_operation (XVECEXP (x
, i
, j
), next_code
);
8384 SUBST (XVECEXP (x
, i
, j
), new_rtx
);
8387 maybe_swap_commutative_operands (x
);
8391 /* Given M see if it is a value that would select a field of bits
8392 within an item, but not the entire word. Return -1 if not.
8393 Otherwise, return the starting position of the field, where 0 is the
8396 *PLEN is set to the length of the field. */
8399 get_pos_from_mask (unsigned HOST_WIDE_INT m
, unsigned HOST_WIDE_INT
*plen
)
8401 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8402 int pos
= m
? ctz_hwi (m
) : -1;
8406 /* Now shift off the low-order zero bits and see if we have a
8407 power of two minus 1. */
8408 len
= exact_log2 ((m
>> pos
) + 1);
8417 /* If X refers to a register that equals REG in value, replace these
8418 references with REG. */
8420 canon_reg_for_combine (rtx x
, rtx reg
)
8427 enum rtx_code code
= GET_CODE (x
);
8428 switch (GET_RTX_CLASS (code
))
8431 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
8432 if (op0
!= XEXP (x
, 0))
8433 return simplify_gen_unary (GET_CODE (x
), GET_MODE (x
), op0
,
8438 case RTX_COMM_ARITH
:
8439 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
8440 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
8441 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
8442 return simplify_gen_binary (GET_CODE (x
), GET_MODE (x
), op0
, op1
);
8446 case RTX_COMM_COMPARE
:
8447 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
8448 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
8449 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
8450 return simplify_gen_relational (GET_CODE (x
), GET_MODE (x
),
8451 GET_MODE (op0
), op0
, op1
);
8455 case RTX_BITFIELD_OPS
:
8456 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
8457 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
8458 op2
= canon_reg_for_combine (XEXP (x
, 2), reg
);
8459 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1) || op2
!= XEXP (x
, 2))
8460 return simplify_gen_ternary (GET_CODE (x
), GET_MODE (x
),
8461 GET_MODE (op0
), op0
, op1
, op2
);
8467 if (rtx_equal_p (get_last_value (reg
), x
)
8468 || rtx_equal_p (reg
, get_last_value (x
)))
8477 fmt
= GET_RTX_FORMAT (code
);
8479 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
8482 rtx op
= canon_reg_for_combine (XEXP (x
, i
), reg
);
8483 if (op
!= XEXP (x
, i
))
8493 else if (fmt
[i
] == 'E')
8496 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
8498 rtx op
= canon_reg_for_combine (XVECEXP (x
, i
, j
), reg
);
8499 if (op
!= XVECEXP (x
, i
, j
))
8506 XVECEXP (x
, i
, j
) = op
;
8517 /* Return X converted to MODE. If the value is already truncated to
8518 MODE we can just return a subreg even though in the general case we
8519 would need an explicit truncation. */
8522 gen_lowpart_or_truncate (machine_mode mode
, rtx x
)
8524 if (!CONST_INT_P (x
)
8525 && partial_subreg_p (mode
, GET_MODE (x
))
8526 && !TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (x
))
8527 && !(REG_P (x
) && reg_truncated_to_mode (mode
, x
)))
8529 /* Bit-cast X into an integer mode. */
8530 if (!SCALAR_INT_MODE_P (GET_MODE (x
)))
8531 x
= gen_lowpart (int_mode_for_mode (GET_MODE (x
)).require (), x
);
8532 x
= simplify_gen_unary (TRUNCATE
, int_mode_for_mode (mode
).require (),
8536 return gen_lowpart (mode
, x
);
8539 /* See if X can be simplified knowing that we will only refer to it in
8540 MODE and will only refer to those bits that are nonzero in MASK.
8541 If other bits are being computed or if masking operations are done
8542 that select a superset of the bits in MASK, they can sometimes be
8545 Return a possibly simplified expression, but always convert X to
8546 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8548 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8549 are all off in X. This is used when X will be complemented, by either
8550 NOT, NEG, or XOR. */
8553 force_to_mode (rtx x
, machine_mode mode
, unsigned HOST_WIDE_INT mask
,
8556 enum rtx_code code
= GET_CODE (x
);
8557 int next_select
= just_select
|| code
== XOR
|| code
== NOT
|| code
== NEG
;
8558 machine_mode op_mode
;
8559 unsigned HOST_WIDE_INT nonzero
;
8561 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8562 code below will do the wrong thing since the mode of such an
8563 expression is VOIDmode.
8565 Also do nothing if X is a CLOBBER; this can happen if X was
8566 the return value from a call to gen_lowpart. */
8567 if (code
== CALL
|| code
== ASM_OPERANDS
|| code
== CLOBBER
)
8570 /* We want to perform the operation in its present mode unless we know
8571 that the operation is valid in MODE, in which case we do the operation
8573 op_mode
= ((GET_MODE_CLASS (mode
) == GET_MODE_CLASS (GET_MODE (x
))
8574 && have_insn_for (code
, mode
))
8575 ? mode
: GET_MODE (x
));
8577 /* It is not valid to do a right-shift in a narrower mode
8578 than the one it came in with. */
8579 if ((code
== LSHIFTRT
|| code
== ASHIFTRT
)
8580 && partial_subreg_p (mode
, GET_MODE (x
)))
8581 op_mode
= GET_MODE (x
);
8583 /* Truncate MASK to fit OP_MODE. */
8585 mask
&= GET_MODE_MASK (op_mode
);
8587 /* Determine what bits of X are guaranteed to be (non)zero. */
8588 nonzero
= nonzero_bits (x
, mode
);
8590 /* If none of the bits in X are needed, return a zero. */
8591 if (!just_select
&& (nonzero
& mask
) == 0 && !side_effects_p (x
))
8594 /* If X is a CONST_INT, return a new one. Do this here since the
8595 test below will fail. */
8596 if (CONST_INT_P (x
))
8598 if (SCALAR_INT_MODE_P (mode
))
8599 return gen_int_mode (INTVAL (x
) & mask
, mode
);
8602 x
= GEN_INT (INTVAL (x
) & mask
);
8603 return gen_lowpart_common (mode
, x
);
8607 /* If X is narrower than MODE and we want all the bits in X's mode, just
8608 get X in the proper mode. */
8609 if (paradoxical_subreg_p (mode
, GET_MODE (x
))
8610 && (GET_MODE_MASK (GET_MODE (x
)) & ~mask
) == 0)
8611 return gen_lowpart (mode
, x
);
8613 /* We can ignore the effect of a SUBREG if it narrows the mode or
8614 if the constant masks to zero all the bits the mode doesn't have. */
8615 if (GET_CODE (x
) == SUBREG
8616 && subreg_lowpart_p (x
)
8617 && (partial_subreg_p (x
)
8619 & GET_MODE_MASK (GET_MODE (x
))
8620 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x
)))) == 0))
8621 return force_to_mode (SUBREG_REG (x
), mode
, mask
, next_select
);
8623 scalar_int_mode int_mode
, xmode
;
8624 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
8625 && is_a
<scalar_int_mode
> (GET_MODE (x
), &xmode
))
8626 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8628 return force_int_to_mode (x
, int_mode
, xmode
,
8629 as_a
<scalar_int_mode
> (op_mode
),
8632 return gen_lowpart_or_truncate (mode
, x
);
8635 /* Subroutine of force_to_mode that handles cases in which both X and
8636 the result are scalar integers. MODE is the mode of the result,
8637 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8638 is preferred for simplified versions of X. The other arguments
8639 are as for force_to_mode. */
8642 force_int_to_mode (rtx x
, scalar_int_mode mode
, scalar_int_mode xmode
,
8643 scalar_int_mode op_mode
, unsigned HOST_WIDE_INT mask
,
8646 enum rtx_code code
= GET_CODE (x
);
8647 int next_select
= just_select
|| code
== XOR
|| code
== NOT
|| code
== NEG
;
8648 unsigned HOST_WIDE_INT fuller_mask
;
8650 poly_int64 const_op0
;
8652 /* When we have an arithmetic operation, or a shift whose count we
8653 do not know, we need to assume that all bits up to the highest-order
8654 bit in MASK will be needed. This is how we form such a mask. */
8655 if (mask
& (HOST_WIDE_INT_1U
<< (HOST_BITS_PER_WIDE_INT
- 1)))
8656 fuller_mask
= HOST_WIDE_INT_M1U
;
8658 fuller_mask
= ((HOST_WIDE_INT_1U
<< (floor_log2 (mask
) + 1))
8664 /* If X is a (clobber (const_int)), return it since we know we are
8665 generating something that won't match. */
8672 x
= expand_compound_operation (x
);
8673 if (GET_CODE (x
) != code
)
8674 return force_to_mode (x
, mode
, mask
, next_select
);
8678 /* Similarly for a truncate. */
8679 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8682 /* If this is an AND with a constant, convert it into an AND
8683 whose constant is the AND of that constant with MASK. If it
8684 remains an AND of MASK, delete it since it is redundant. */
8686 if (CONST_INT_P (XEXP (x
, 1)))
8688 x
= simplify_and_const_int (x
, op_mode
, XEXP (x
, 0),
8689 mask
& INTVAL (XEXP (x
, 1)));
8692 /* If X is still an AND, see if it is an AND with a mask that
8693 is just some low-order bits. If so, and it is MASK, we don't
8696 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1))
8697 && (INTVAL (XEXP (x
, 1)) & GET_MODE_MASK (xmode
)) == mask
)
8700 /* If it remains an AND, try making another AND with the bits
8701 in the mode mask that aren't in MASK turned on. If the
8702 constant in the AND is wide enough, this might make a
8703 cheaper constant. */
8705 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1))
8706 && GET_MODE_MASK (xmode
) != mask
8707 && HWI_COMPUTABLE_MODE_P (xmode
))
8709 unsigned HOST_WIDE_INT cval
8710 = UINTVAL (XEXP (x
, 1)) | (GET_MODE_MASK (xmode
) & ~mask
);
8713 y
= simplify_gen_binary (AND
, xmode
, XEXP (x
, 0),
8714 gen_int_mode (cval
, xmode
));
8715 if (set_src_cost (y
, xmode
, optimize_this_for_speed_p
)
8716 < set_src_cost (x
, xmode
, optimize_this_for_speed_p
))
8726 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8727 low-order bits (as in an alignment operation) and FOO is already
8728 aligned to that boundary, mask C1 to that boundary as well.
8729 This may eliminate that PLUS and, later, the AND. */
8732 unsigned int width
= GET_MODE_PRECISION (mode
);
8733 unsigned HOST_WIDE_INT smask
= mask
;
8735 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8736 number, sign extend it. */
8738 if (width
< HOST_BITS_PER_WIDE_INT
8739 && (smask
& (HOST_WIDE_INT_1U
<< (width
- 1))) != 0)
8740 smask
|= HOST_WIDE_INT_M1U
<< width
;
8742 if (CONST_INT_P (XEXP (x
, 1))
8743 && pow2p_hwi (- smask
)
8744 && (nonzero_bits (XEXP (x
, 0), mode
) & ~smask
) == 0
8745 && (INTVAL (XEXP (x
, 1)) & ~smask
) != 0)
8746 return force_to_mode (plus_constant (xmode
, XEXP (x
, 0),
8747 (INTVAL (XEXP (x
, 1)) & smask
)),
8748 mode
, smask
, next_select
);
8754 /* Substituting into the operands of a widening MULT is not likely to
8755 create RTL matching a machine insn. */
8757 && (GET_CODE (XEXP (x
, 0)) == ZERO_EXTEND
8758 || GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
)
8759 && (GET_CODE (XEXP (x
, 1)) == ZERO_EXTEND
8760 || GET_CODE (XEXP (x
, 1)) == SIGN_EXTEND
)
8761 && REG_P (XEXP (XEXP (x
, 0), 0))
8762 && REG_P (XEXP (XEXP (x
, 1), 0)))
8763 return gen_lowpart_or_truncate (mode
, x
);
8765 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8766 most significant bit in MASK since carries from those bits will
8767 affect the bits we are interested in. */
8772 /* If X is (minus C Y) where C's least set bit is larger than any bit
8773 in the mask, then we may replace with (neg Y). */
8774 if (poly_int_rtx_p (XEXP (x
, 0), &const_op0
)
8775 && known_alignment (poly_uint64 (const_op0
)) > mask
)
8777 x
= simplify_gen_unary (NEG
, xmode
, XEXP (x
, 1), xmode
);
8778 return force_to_mode (x
, mode
, mask
, next_select
);
8781 /* Similarly, if C contains every bit in the fuller_mask, then we may
8782 replace with (not Y). */
8783 if (CONST_INT_P (XEXP (x
, 0))
8784 && ((UINTVAL (XEXP (x
, 0)) | fuller_mask
) == UINTVAL (XEXP (x
, 0))))
8786 x
= simplify_gen_unary (NOT
, xmode
, XEXP (x
, 1), xmode
);
8787 return force_to_mode (x
, mode
, mask
, next_select
);
8795 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8796 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8797 operation which may be a bitfield extraction. Ensure that the
8798 constant we form is not wider than the mode of X. */
8800 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8801 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8802 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
8803 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
8804 && CONST_INT_P (XEXP (x
, 1))
8805 && ((INTVAL (XEXP (XEXP (x
, 0), 1))
8806 + floor_log2 (INTVAL (XEXP (x
, 1))))
8807 < GET_MODE_PRECISION (xmode
))
8808 && (UINTVAL (XEXP (x
, 1))
8809 & ~nonzero_bits (XEXP (x
, 0), xmode
)) == 0)
8811 temp
= gen_int_mode ((INTVAL (XEXP (x
, 1)) & mask
)
8812 << INTVAL (XEXP (XEXP (x
, 0), 1)),
8814 temp
= simplify_gen_binary (GET_CODE (x
), xmode
,
8815 XEXP (XEXP (x
, 0), 0), temp
);
8816 x
= simplify_gen_binary (LSHIFTRT
, xmode
, temp
,
8817 XEXP (XEXP (x
, 0), 1));
8818 return force_to_mode (x
, mode
, mask
, next_select
);
8822 /* For most binary operations, just propagate into the operation and
8823 change the mode if we have an operation of that mode. */
8825 op0
= force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8826 op1
= force_to_mode (XEXP (x
, 1), mode
, mask
, next_select
);
8828 /* If we ended up truncating both operands, truncate the result of the
8829 operation instead. */
8830 if (GET_CODE (op0
) == TRUNCATE
8831 && GET_CODE (op1
) == TRUNCATE
)
8833 op0
= XEXP (op0
, 0);
8834 op1
= XEXP (op1
, 0);
8837 op0
= gen_lowpart_or_truncate (op_mode
, op0
);
8838 op1
= gen_lowpart_or_truncate (op_mode
, op1
);
8840 if (op_mode
!= xmode
|| op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
8842 x
= simplify_gen_binary (code
, op_mode
, op0
, op1
);
8848 /* For left shifts, do the same, but just for the first operand.
8849 However, we cannot do anything with shifts where we cannot
8850 guarantee that the counts are smaller than the size of the mode
8851 because such a count will have a different meaning in a
8854 if (! (CONST_INT_P (XEXP (x
, 1))
8855 && INTVAL (XEXP (x
, 1)) >= 0
8856 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (mode
))
8857 && ! (GET_MODE (XEXP (x
, 1)) != VOIDmode
8858 && (nonzero_bits (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)))
8859 < (unsigned HOST_WIDE_INT
) GET_MODE_PRECISION (mode
))))
8862 /* If the shift count is a constant and we can do arithmetic in
8863 the mode of the shift, refine which bits we need. Otherwise, use the
8864 conservative form of the mask. */
8865 if (CONST_INT_P (XEXP (x
, 1))
8866 && INTVAL (XEXP (x
, 1)) >= 0
8867 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (op_mode
)
8868 && HWI_COMPUTABLE_MODE_P (op_mode
))
8869 mask
>>= INTVAL (XEXP (x
, 1));
8873 op0
= gen_lowpart_or_truncate (op_mode
,
8874 force_to_mode (XEXP (x
, 0), mode
,
8875 mask
, next_select
));
8877 if (op_mode
!= xmode
|| op0
!= XEXP (x
, 0))
8879 x
= simplify_gen_binary (code
, op_mode
, op0
, XEXP (x
, 1));
8885 /* Here we can only do something if the shift count is a constant,
8886 this shift constant is valid for the host, and we can do arithmetic
8889 if (CONST_INT_P (XEXP (x
, 1))
8890 && INTVAL (XEXP (x
, 1)) >= 0
8891 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
8892 && HWI_COMPUTABLE_MODE_P (op_mode
))
8894 rtx inner
= XEXP (x
, 0);
8895 unsigned HOST_WIDE_INT inner_mask
;
8897 /* Select the mask of the bits we need for the shift operand. */
8898 inner_mask
= mask
<< INTVAL (XEXP (x
, 1));
8900 /* We can only change the mode of the shift if we can do arithmetic
8901 in the mode of the shift and INNER_MASK is no wider than the
8902 width of X's mode. */
8903 if ((inner_mask
& ~GET_MODE_MASK (xmode
)) != 0)
8906 inner
= force_to_mode (inner
, op_mode
, inner_mask
, next_select
);
8908 if (xmode
!= op_mode
|| inner
!= XEXP (x
, 0))
8910 x
= simplify_gen_binary (LSHIFTRT
, op_mode
, inner
, XEXP (x
, 1));
8915 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8916 shift and AND produces only copies of the sign bit (C2 is one less
8917 than a power of two), we can do this with just a shift. */
8919 if (GET_CODE (x
) == LSHIFTRT
8920 && CONST_INT_P (XEXP (x
, 1))
8921 /* The shift puts one of the sign bit copies in the least significant
8923 && ((INTVAL (XEXP (x
, 1))
8924 + num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0))))
8925 >= GET_MODE_PRECISION (xmode
))
8926 && pow2p_hwi (mask
+ 1)
8927 /* Number of bits left after the shift must be more than the mask
8929 && ((INTVAL (XEXP (x
, 1)) + exact_log2 (mask
+ 1))
8930 <= GET_MODE_PRECISION (xmode
))
8931 /* Must be more sign bit copies than the mask needs. */
8932 && ((int) num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
8933 >= exact_log2 (mask
+ 1)))
8935 int nbits
= GET_MODE_PRECISION (xmode
) - exact_log2 (mask
+ 1);
8936 x
= simplify_gen_binary (LSHIFTRT
, xmode
, XEXP (x
, 0),
8937 gen_int_shift_amount (xmode
, nbits
));
8942 /* If we are just looking for the sign bit, we don't need this shift at
8943 all, even if it has a variable count. */
8944 if (val_signbit_p (xmode
, mask
))
8945 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8947 /* If this is a shift by a constant, get a mask that contains those bits
8948 that are not copies of the sign bit. We then have two cases: If
8949 MASK only includes those bits, this can be a logical shift, which may
8950 allow simplifications. If MASK is a single-bit field not within
8951 those bits, we are requesting a copy of the sign bit and hence can
8952 shift the sign bit to the appropriate location. */
8954 if (CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0
8955 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
8957 unsigned HOST_WIDE_INT nonzero
;
8960 /* If the considered data is wider than HOST_WIDE_INT, we can't
8961 represent a mask for all its bits in a single scalar.
8962 But we only care about the lower bits, so calculate these. */
8964 if (GET_MODE_PRECISION (xmode
) > HOST_BITS_PER_WIDE_INT
)
8966 nonzero
= HOST_WIDE_INT_M1U
;
8968 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8969 is the number of bits a full-width mask would have set.
8970 We need only shift if these are fewer than nonzero can
8971 hold. If not, we must keep all bits set in nonzero. */
8973 if (GET_MODE_PRECISION (xmode
) - INTVAL (XEXP (x
, 1))
8974 < HOST_BITS_PER_WIDE_INT
)
8975 nonzero
>>= INTVAL (XEXP (x
, 1))
8976 + HOST_BITS_PER_WIDE_INT
8977 - GET_MODE_PRECISION (xmode
);
8981 nonzero
= GET_MODE_MASK (xmode
);
8982 nonzero
>>= INTVAL (XEXP (x
, 1));
8985 if ((mask
& ~nonzero
) == 0)
8987 x
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, xmode
,
8988 XEXP (x
, 0), INTVAL (XEXP (x
, 1)));
8989 if (GET_CODE (x
) != ASHIFTRT
)
8990 return force_to_mode (x
, mode
, mask
, next_select
);
8993 else if ((i
= exact_log2 (mask
)) >= 0)
8995 x
= simplify_shift_const
8996 (NULL_RTX
, LSHIFTRT
, xmode
, XEXP (x
, 0),
8997 GET_MODE_PRECISION (xmode
) - 1 - i
);
8999 if (GET_CODE (x
) != ASHIFTRT
)
9000 return force_to_mode (x
, mode
, mask
, next_select
);
9004 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9005 even if the shift count isn't a constant. */
9007 x
= simplify_gen_binary (LSHIFTRT
, xmode
, XEXP (x
, 0), XEXP (x
, 1));
9011 /* If this is a zero- or sign-extension operation that just affects bits
9012 we don't care about, remove it. Be sure the call above returned
9013 something that is still a shift. */
9015 if ((GET_CODE (x
) == LSHIFTRT
|| GET_CODE (x
) == ASHIFTRT
)
9016 && CONST_INT_P (XEXP (x
, 1))
9017 && INTVAL (XEXP (x
, 1)) >= 0
9018 && (INTVAL (XEXP (x
, 1))
9019 <= GET_MODE_PRECISION (xmode
) - (floor_log2 (mask
) + 1))
9020 && GET_CODE (XEXP (x
, 0)) == ASHIFT
9021 && XEXP (XEXP (x
, 0), 1) == XEXP (x
, 1))
9022 return force_to_mode (XEXP (XEXP (x
, 0), 0), mode
, mask
,
9029 /* If the shift count is constant and we can do computations
9030 in the mode of X, compute where the bits we care about are.
9031 Otherwise, we can't do anything. Don't change the mode of
9032 the shift or propagate MODE into the shift, though. */
9033 if (CONST_INT_P (XEXP (x
, 1))
9034 && INTVAL (XEXP (x
, 1)) >= 0)
9036 temp
= simplify_binary_operation (code
== ROTATE
? ROTATERT
: ROTATE
,
9037 xmode
, gen_int_mode (mask
, xmode
),
9039 if (temp
&& CONST_INT_P (temp
))
9040 x
= simplify_gen_binary (code
, xmode
,
9041 force_to_mode (XEXP (x
, 0), xmode
,
9042 INTVAL (temp
), next_select
),
9048 /* If we just want the low-order bit, the NEG isn't needed since it
9049 won't change the low-order bit. */
9051 return force_to_mode (XEXP (x
, 0), mode
, mask
, just_select
);
9053 /* We need any bits less significant than the most significant bit in
9054 MASK since carries from those bits will affect the bits we are
9060 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9061 same as the XOR case above. Ensure that the constant we form is not
9062 wider than the mode of X. */
9064 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
9065 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
9066 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
9067 && (INTVAL (XEXP (XEXP (x
, 0), 1)) + floor_log2 (mask
)
9068 < GET_MODE_PRECISION (xmode
))
9069 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
9071 temp
= gen_int_mode (mask
<< INTVAL (XEXP (XEXP (x
, 0), 1)), xmode
);
9072 temp
= simplify_gen_binary (XOR
, xmode
, XEXP (XEXP (x
, 0), 0), temp
);
9073 x
= simplify_gen_binary (LSHIFTRT
, xmode
,
9074 temp
, XEXP (XEXP (x
, 0), 1));
9076 return force_to_mode (x
, mode
, mask
, next_select
);
9079 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9080 use the full mask inside the NOT. */
9084 op0
= gen_lowpart_or_truncate (op_mode
,
9085 force_to_mode (XEXP (x
, 0), mode
, mask
,
9087 if (op_mode
!= xmode
|| op0
!= XEXP (x
, 0))
9089 x
= simplify_gen_unary (code
, op_mode
, op0
, op_mode
);
9095 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9096 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9097 which is equal to STORE_FLAG_VALUE. */
9098 if ((mask
& ~STORE_FLAG_VALUE
) == 0
9099 && XEXP (x
, 1) == const0_rtx
9100 && GET_MODE (XEXP (x
, 0)) == mode
9101 && pow2p_hwi (nonzero_bits (XEXP (x
, 0), mode
))
9102 && (nonzero_bits (XEXP (x
, 0), mode
)
9103 == (unsigned HOST_WIDE_INT
) STORE_FLAG_VALUE
))
9104 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
9109 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9110 written in a narrower mode. We play it safe and do not do so. */
9112 op0
= gen_lowpart_or_truncate (xmode
,
9113 force_to_mode (XEXP (x
, 1), mode
,
9114 mask
, next_select
));
9115 op1
= gen_lowpart_or_truncate (xmode
,
9116 force_to_mode (XEXP (x
, 2), mode
,
9117 mask
, next_select
));
9118 if (op0
!= XEXP (x
, 1) || op1
!= XEXP (x
, 2))
9119 x
= simplify_gen_ternary (IF_THEN_ELSE
, xmode
,
9120 GET_MODE (XEXP (x
, 0)), XEXP (x
, 0),
9128 /* Ensure we return a value of the proper mode. */
9129 return gen_lowpart_or_truncate (mode
, x
);
9132 /* Return nonzero if X is an expression that has one of two values depending on
9133 whether some other value is zero or nonzero. In that case, we return the
9134 value that is being tested, *PTRUE is set to the value if the rtx being
9135 returned has a nonzero value, and *PFALSE is set to the other alternative.
9137 If we return zero, we set *PTRUE and *PFALSE to X. */
9140 if_then_else_cond (rtx x
, rtx
*ptrue
, rtx
*pfalse
)
9142 machine_mode mode
= GET_MODE (x
);
9143 enum rtx_code code
= GET_CODE (x
);
9144 rtx cond0
, cond1
, true0
, true1
, false0
, false1
;
9145 unsigned HOST_WIDE_INT nz
;
9146 scalar_int_mode int_mode
;
9148 /* If we are comparing a value against zero, we are done. */
9149 if ((code
== NE
|| code
== EQ
)
9150 && XEXP (x
, 1) == const0_rtx
)
9152 *ptrue
= (code
== NE
) ? const_true_rtx
: const0_rtx
;
9153 *pfalse
= (code
== NE
) ? const0_rtx
: const_true_rtx
;
9157 /* If this is a unary operation whose operand has one of two values, apply
9158 our opcode to compute those values. */
9159 else if (UNARY_P (x
)
9160 && (cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
)) != 0)
9162 *ptrue
= simplify_gen_unary (code
, mode
, true0
, GET_MODE (XEXP (x
, 0)));
9163 *pfalse
= simplify_gen_unary (code
, mode
, false0
,
9164 GET_MODE (XEXP (x
, 0)));
9168 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9169 make can't possibly match and would suppress other optimizations. */
9170 else if (code
== COMPARE
)
9173 /* If this is a binary operation, see if either side has only one of two
9174 values. If either one does or if both do and they are conditional on
9175 the same value, compute the new true and false values. */
9176 else if (BINARY_P (x
))
9178 rtx op0
= XEXP (x
, 0);
9179 rtx op1
= XEXP (x
, 1);
9180 cond0
= if_then_else_cond (op0
, &true0
, &false0
);
9181 cond1
= if_then_else_cond (op1
, &true1
, &false1
);
9183 if ((cond0
!= 0 && cond1
!= 0 && !rtx_equal_p (cond0
, cond1
))
9184 && (REG_P (op0
) || REG_P (op1
)))
9186 /* Try to enable a simplification by undoing work done by
9187 if_then_else_cond if it converted a REG into something more
9192 true0
= false0
= op0
;
9197 true1
= false1
= op1
;
9201 if ((cond0
!= 0 || cond1
!= 0)
9202 && ! (cond0
!= 0 && cond1
!= 0 && !rtx_equal_p (cond0
, cond1
)))
9204 /* If if_then_else_cond returned zero, then true/false are the
9205 same rtl. We must copy one of them to prevent invalid rtl
9208 true0
= copy_rtx (true0
);
9209 else if (cond1
== 0)
9210 true1
= copy_rtx (true1
);
9212 if (COMPARISON_P (x
))
9214 *ptrue
= simplify_gen_relational (code
, mode
, VOIDmode
,
9216 *pfalse
= simplify_gen_relational (code
, mode
, VOIDmode
,
9221 *ptrue
= simplify_gen_binary (code
, mode
, true0
, true1
);
9222 *pfalse
= simplify_gen_binary (code
, mode
, false0
, false1
);
9225 return cond0
? cond0
: cond1
;
9228 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9229 operands is zero when the other is nonzero, and vice-versa,
9230 and STORE_FLAG_VALUE is 1 or -1. */
9232 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
9233 && (code
== PLUS
|| code
== IOR
|| code
== XOR
|| code
== MINUS
9235 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
9237 rtx op0
= XEXP (XEXP (x
, 0), 1);
9238 rtx op1
= XEXP (XEXP (x
, 1), 1);
9240 cond0
= XEXP (XEXP (x
, 0), 0);
9241 cond1
= XEXP (XEXP (x
, 1), 0);
9243 if (COMPARISON_P (cond0
)
9244 && COMPARISON_P (cond1
)
9245 && SCALAR_INT_MODE_P (mode
)
9246 && ((GET_CODE (cond0
) == reversed_comparison_code (cond1
, NULL
)
9247 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
9248 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
9249 || ((swap_condition (GET_CODE (cond0
))
9250 == reversed_comparison_code (cond1
, NULL
))
9251 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
9252 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
9253 && ! side_effects_p (x
))
9255 *ptrue
= simplify_gen_binary (MULT
, mode
, op0
, const_true_rtx
);
9256 *pfalse
= simplify_gen_binary (MULT
, mode
,
9258 ? simplify_gen_unary (NEG
, mode
,
9266 /* Similarly for MULT, AND and UMIN, except that for these the result
9268 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
9269 && (code
== MULT
|| code
== AND
|| code
== UMIN
)
9270 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
9272 cond0
= XEXP (XEXP (x
, 0), 0);
9273 cond1
= XEXP (XEXP (x
, 1), 0);
9275 if (COMPARISON_P (cond0
)
9276 && COMPARISON_P (cond1
)
9277 && ((GET_CODE (cond0
) == reversed_comparison_code (cond1
, NULL
)
9278 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
9279 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
9280 || ((swap_condition (GET_CODE (cond0
))
9281 == reversed_comparison_code (cond1
, NULL
))
9282 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
9283 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
9284 && ! side_effects_p (x
))
9286 *ptrue
= *pfalse
= const0_rtx
;
9292 else if (code
== IF_THEN_ELSE
)
9294 /* If we have IF_THEN_ELSE already, extract the condition and
9295 canonicalize it if it is NE or EQ. */
9296 cond0
= XEXP (x
, 0);
9297 *ptrue
= XEXP (x
, 1), *pfalse
= XEXP (x
, 2);
9298 if (GET_CODE (cond0
) == NE
&& XEXP (cond0
, 1) == const0_rtx
)
9299 return XEXP (cond0
, 0);
9300 else if (GET_CODE (cond0
) == EQ
&& XEXP (cond0
, 1) == const0_rtx
)
9302 *ptrue
= XEXP (x
, 2), *pfalse
= XEXP (x
, 1);
9303 return XEXP (cond0
, 0);
9309 /* If X is a SUBREG, we can narrow both the true and false values
9310 if the inner expression, if there is a condition. */
9311 else if (code
== SUBREG
9312 && (cond0
= if_then_else_cond (SUBREG_REG (x
), &true0
,
9315 true0
= simplify_gen_subreg (mode
, true0
,
9316 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
9317 false0
= simplify_gen_subreg (mode
, false0
,
9318 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
9319 if (true0
&& false0
)
9327 /* If X is a constant, this isn't special and will cause confusions
9328 if we treat it as such. Likewise if it is equivalent to a constant. */
9329 else if (CONSTANT_P (x
)
9330 || ((cond0
= get_last_value (x
)) != 0 && CONSTANT_P (cond0
)))
9333 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9334 will be least confusing to the rest of the compiler. */
9335 else if (mode
== BImode
)
9337 *ptrue
= GEN_INT (STORE_FLAG_VALUE
), *pfalse
= const0_rtx
;
9341 /* If X is known to be either 0 or -1, those are the true and
9342 false values when testing X. */
9343 else if (x
== constm1_rtx
|| x
== const0_rtx
9344 || (is_a
<scalar_int_mode
> (mode
, &int_mode
)
9345 && (num_sign_bit_copies (x
, int_mode
)
9346 == GET_MODE_PRECISION (int_mode
))))
9348 *ptrue
= constm1_rtx
, *pfalse
= const0_rtx
;
9352 /* Likewise for 0 or a single bit. */
9353 else if (HWI_COMPUTABLE_MODE_P (mode
)
9354 && pow2p_hwi (nz
= nonzero_bits (x
, mode
)))
9356 *ptrue
= gen_int_mode (nz
, mode
), *pfalse
= const0_rtx
;
9360 /* Otherwise fail; show no condition with true and false values the same. */
9361 *ptrue
= *pfalse
= x
;
9365 /* Return the value of expression X given the fact that condition COND
9366 is known to be true when applied to REG as its first operand and VAL
9367 as its second. X is known to not be shared and so can be modified in
9370 We only handle the simplest cases, and specifically those cases that
9371 arise with IF_THEN_ELSE expressions. */
9374 known_cond (rtx x
, enum rtx_code cond
, rtx reg
, rtx val
)
9376 enum rtx_code code
= GET_CODE (x
);
9380 if (side_effects_p (x
))
9383 /* If either operand of the condition is a floating point value,
9384 then we have to avoid collapsing an EQ comparison. */
9386 && rtx_equal_p (x
, reg
)
9387 && ! FLOAT_MODE_P (GET_MODE (x
))
9388 && ! FLOAT_MODE_P (GET_MODE (val
)))
9391 if (cond
== UNEQ
&& rtx_equal_p (x
, reg
))
9394 /* If X is (abs REG) and we know something about REG's relationship
9395 with zero, we may be able to simplify this. */
9397 if (code
== ABS
&& rtx_equal_p (XEXP (x
, 0), reg
) && val
== const0_rtx
)
9400 case GE
: case GT
: case EQ
:
9403 return simplify_gen_unary (NEG
, GET_MODE (XEXP (x
, 0)),
9405 GET_MODE (XEXP (x
, 0)));
9410 /* The only other cases we handle are MIN, MAX, and comparisons if the
9411 operands are the same as REG and VAL. */
9413 else if (COMPARISON_P (x
) || COMMUTATIVE_ARITH_P (x
))
9415 if (rtx_equal_p (XEXP (x
, 0), val
))
9417 std::swap (val
, reg
);
9418 cond
= swap_condition (cond
);
9421 if (rtx_equal_p (XEXP (x
, 0), reg
) && rtx_equal_p (XEXP (x
, 1), val
))
9423 if (COMPARISON_P (x
))
9425 if (comparison_dominates_p (cond
, code
))
9426 return VECTOR_MODE_P (GET_MODE (x
)) ? x
: const_true_rtx
;
9428 code
= reversed_comparison_code (x
, NULL
);
9430 && comparison_dominates_p (cond
, code
))
9431 return CONST0_RTX (GET_MODE (x
));
9435 else if (code
== SMAX
|| code
== SMIN
9436 || code
== UMIN
|| code
== UMAX
)
9438 int unsignedp
= (code
== UMIN
|| code
== UMAX
);
9440 /* Do not reverse the condition when it is NE or EQ.
9441 This is because we cannot conclude anything about
9442 the value of 'SMAX (x, y)' when x is not equal to y,
9443 but we can when x equals y. */
9444 if ((code
== SMAX
|| code
== UMAX
)
9445 && ! (cond
== EQ
|| cond
== NE
))
9446 cond
= reverse_condition (cond
);
9451 return unsignedp
? x
: XEXP (x
, 1);
9453 return unsignedp
? x
: XEXP (x
, 0);
9455 return unsignedp
? XEXP (x
, 1) : x
;
9457 return unsignedp
? XEXP (x
, 0) : x
;
9464 else if (code
== SUBREG
)
9466 machine_mode inner_mode
= GET_MODE (SUBREG_REG (x
));
9467 rtx new_rtx
, r
= known_cond (SUBREG_REG (x
), cond
, reg
, val
);
9469 if (SUBREG_REG (x
) != r
)
9471 /* We must simplify subreg here, before we lose track of the
9472 original inner_mode. */
9473 new_rtx
= simplify_subreg (GET_MODE (x
), r
,
9474 inner_mode
, SUBREG_BYTE (x
));
9478 SUBST (SUBREG_REG (x
), r
);
9483 /* We don't have to handle SIGN_EXTEND here, because even in the
9484 case of replacing something with a modeless CONST_INT, a
9485 CONST_INT is already (supposed to be) a valid sign extension for
9486 its narrower mode, which implies it's already properly
9487 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9488 story is different. */
9489 else if (code
== ZERO_EXTEND
)
9491 machine_mode inner_mode
= GET_MODE (XEXP (x
, 0));
9492 rtx new_rtx
, r
= known_cond (XEXP (x
, 0), cond
, reg
, val
);
9494 if (XEXP (x
, 0) != r
)
9496 /* We must simplify the zero_extend here, before we lose
9497 track of the original inner_mode. */
9498 new_rtx
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
9503 SUBST (XEXP (x
, 0), r
);
9509 fmt
= GET_RTX_FORMAT (code
);
9510 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
9513 SUBST (XEXP (x
, i
), known_cond (XEXP (x
, i
), cond
, reg
, val
));
9514 else if (fmt
[i
] == 'E')
9515 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
9516 SUBST (XVECEXP (x
, i
, j
), known_cond (XVECEXP (x
, i
, j
),
9523 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9524 assignment as a field assignment. */
9527 rtx_equal_for_field_assignment_p (rtx x
, rtx y
, bool widen_x
)
9529 if (widen_x
&& GET_MODE (x
) != GET_MODE (y
))
9531 if (paradoxical_subreg_p (GET_MODE (x
), GET_MODE (y
)))
9533 if (BYTES_BIG_ENDIAN
!= WORDS_BIG_ENDIAN
)
9535 x
= adjust_address_nv (x
, GET_MODE (y
),
9536 byte_lowpart_offset (GET_MODE (y
),
9540 if (x
== y
|| rtx_equal_p (x
, y
))
9543 if (x
== 0 || y
== 0 || GET_MODE (x
) != GET_MODE (y
))
9546 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9547 Note that all SUBREGs of MEM are paradoxical; otherwise they
9548 would have been rewritten. */
9549 if (MEM_P (x
) && GET_CODE (y
) == SUBREG
9550 && MEM_P (SUBREG_REG (y
))
9551 && rtx_equal_p (SUBREG_REG (y
),
9552 gen_lowpart (GET_MODE (SUBREG_REG (y
)), x
)))
9555 if (MEM_P (y
) && GET_CODE (x
) == SUBREG
9556 && MEM_P (SUBREG_REG (x
))
9557 && rtx_equal_p (SUBREG_REG (x
),
9558 gen_lowpart (GET_MODE (SUBREG_REG (x
)), y
)))
9561 /* We used to see if get_last_value of X and Y were the same but that's
9562 not correct. In one direction, we'll cause the assignment to have
9563 the wrong destination and in the case, we'll import a register into this
9564 insn that might have already have been dead. So fail if none of the
9565 above cases are true. */
9569 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9570 Return that assignment if so.
9572 We only handle the most common cases. */
9575 make_field_assignment (rtx x
)
9577 rtx dest
= SET_DEST (x
);
9578 rtx src
= SET_SRC (x
);
9583 unsigned HOST_WIDE_INT len
;
9586 /* All the rules in this function are specific to scalar integers. */
9587 scalar_int_mode mode
;
9588 if (!is_a
<scalar_int_mode
> (GET_MODE (dest
), &mode
))
9591 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9592 a clear of a one-bit field. We will have changed it to
9593 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9596 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == ROTATE
9597 && CONST_INT_P (XEXP (XEXP (src
, 0), 0))
9598 && INTVAL (XEXP (XEXP (src
, 0), 0)) == -2
9599 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9601 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
9604 return gen_rtx_SET (assign
, const0_rtx
);
9608 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == SUBREG
9609 && subreg_lowpart_p (XEXP (src
, 0))
9610 && partial_subreg_p (XEXP (src
, 0))
9611 && GET_CODE (SUBREG_REG (XEXP (src
, 0))) == ROTATE
9612 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src
, 0)), 0))
9613 && INTVAL (XEXP (SUBREG_REG (XEXP (src
, 0)), 0)) == -2
9614 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9616 assign
= make_extraction (VOIDmode
, dest
, 0,
9617 XEXP (SUBREG_REG (XEXP (src
, 0)), 1),
9620 return gen_rtx_SET (assign
, const0_rtx
);
9624 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9626 if (GET_CODE (src
) == IOR
&& GET_CODE (XEXP (src
, 0)) == ASHIFT
9627 && XEXP (XEXP (src
, 0), 0) == const1_rtx
9628 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9630 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
9633 return gen_rtx_SET (assign
, const1_rtx
);
9637 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9638 SRC is an AND with all bits of that field set, then we can discard
9640 if (GET_CODE (dest
) == ZERO_EXTRACT
9641 && CONST_INT_P (XEXP (dest
, 1))
9642 && GET_CODE (src
) == AND
9643 && CONST_INT_P (XEXP (src
, 1)))
9645 HOST_WIDE_INT width
= INTVAL (XEXP (dest
, 1));
9646 unsigned HOST_WIDE_INT and_mask
= INTVAL (XEXP (src
, 1));
9647 unsigned HOST_WIDE_INT ze_mask
;
9649 if (width
>= HOST_BITS_PER_WIDE_INT
)
9652 ze_mask
= ((unsigned HOST_WIDE_INT
)1 << width
) - 1;
9654 /* Complete overlap. We can remove the source AND. */
9655 if ((and_mask
& ze_mask
) == ze_mask
)
9656 return gen_rtx_SET (dest
, XEXP (src
, 0));
9658 /* Partial overlap. We can reduce the source AND. */
9659 if ((and_mask
& ze_mask
) != and_mask
)
9661 src
= gen_rtx_AND (mode
, XEXP (src
, 0),
9662 gen_int_mode (and_mask
& ze_mask
, mode
));
9663 return gen_rtx_SET (dest
, src
);
9667 /* The other case we handle is assignments into a constant-position
9668 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9669 a mask that has all one bits except for a group of zero bits and
9670 OTHER is known to have zeros where C1 has ones, this is such an
9671 assignment. Compute the position and length from C1. Shift OTHER
9672 to the appropriate position, force it to the required mode, and
9673 make the extraction. Check for the AND in both operands. */
9675 /* One or more SUBREGs might obscure the constant-position field
9676 assignment. The first one we are likely to encounter is an outer
9677 narrowing SUBREG, which we can just strip for the purposes of
9678 identifying the constant-field assignment. */
9679 scalar_int_mode src_mode
= mode
;
9680 if (GET_CODE (src
) == SUBREG
9681 && subreg_lowpart_p (src
)
9682 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (src
)), &src_mode
))
9683 src
= SUBREG_REG (src
);
9685 if (GET_CODE (src
) != IOR
&& GET_CODE (src
) != XOR
)
9688 rhs
= expand_compound_operation (XEXP (src
, 0));
9689 lhs
= expand_compound_operation (XEXP (src
, 1));
9691 if (GET_CODE (rhs
) == AND
9692 && CONST_INT_P (XEXP (rhs
, 1))
9693 && rtx_equal_for_field_assignment_p (XEXP (rhs
, 0), dest
))
9694 c1
= INTVAL (XEXP (rhs
, 1)), other
= lhs
;
9695 /* The second SUBREG that might get in the way is a paradoxical
9696 SUBREG around the first operand of the AND. We want to
9697 pretend the operand is as wide as the destination here. We
9698 do this by adjusting the MEM to wider mode for the sole
9699 purpose of the call to rtx_equal_for_field_assignment_p. Also
9700 note this trick only works for MEMs. */
9701 else if (GET_CODE (rhs
) == AND
9702 && paradoxical_subreg_p (XEXP (rhs
, 0))
9703 && MEM_P (SUBREG_REG (XEXP (rhs
, 0)))
9704 && CONST_INT_P (XEXP (rhs
, 1))
9705 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs
, 0)),
9707 c1
= INTVAL (XEXP (rhs
, 1)), other
= lhs
;
9708 else if (GET_CODE (lhs
) == AND
9709 && CONST_INT_P (XEXP (lhs
, 1))
9710 && rtx_equal_for_field_assignment_p (XEXP (lhs
, 0), dest
))
9711 c1
= INTVAL (XEXP (lhs
, 1)), other
= rhs
;
9712 /* The second SUBREG that might get in the way is a paradoxical
9713 SUBREG around the first operand of the AND. We want to
9714 pretend the operand is as wide as the destination here. We
9715 do this by adjusting the MEM to wider mode for the sole
9716 purpose of the call to rtx_equal_for_field_assignment_p. Also
9717 note this trick only works for MEMs. */
9718 else if (GET_CODE (lhs
) == AND
9719 && paradoxical_subreg_p (XEXP (lhs
, 0))
9720 && MEM_P (SUBREG_REG (XEXP (lhs
, 0)))
9721 && CONST_INT_P (XEXP (lhs
, 1))
9722 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs
, 0)),
9724 c1
= INTVAL (XEXP (lhs
, 1)), other
= rhs
;
9728 pos
= get_pos_from_mask ((~c1
) & GET_MODE_MASK (mode
), &len
);
9730 || pos
+ len
> GET_MODE_PRECISION (mode
)
9731 || GET_MODE_PRECISION (mode
) > HOST_BITS_PER_WIDE_INT
9732 || (c1
& nonzero_bits (other
, mode
)) != 0)
9735 assign
= make_extraction (VOIDmode
, dest
, pos
, NULL_RTX
, len
, 1, 1, 0);
9739 /* The mode to use for the source is the mode of the assignment, or of
9740 what is inside a possible STRICT_LOW_PART. */
9741 machine_mode new_mode
= (GET_CODE (assign
) == STRICT_LOW_PART
9742 ? GET_MODE (XEXP (assign
, 0)) : GET_MODE (assign
));
9744 /* Shift OTHER right POS places and make it the source, restricting it
9745 to the proper length and mode. */
9747 src
= canon_reg_for_combine (simplify_shift_const (NULL_RTX
, LSHIFTRT
,
9748 src_mode
, other
, pos
),
9750 src
= force_to_mode (src
, new_mode
,
9751 len
>= HOST_BITS_PER_WIDE_INT
9753 : (HOST_WIDE_INT_1U
<< len
) - 1,
9756 /* If SRC is masked by an AND that does not make a difference in
9757 the value being stored, strip it. */
9758 if (GET_CODE (assign
) == ZERO_EXTRACT
9759 && CONST_INT_P (XEXP (assign
, 1))
9760 && INTVAL (XEXP (assign
, 1)) < HOST_BITS_PER_WIDE_INT
9761 && GET_CODE (src
) == AND
9762 && CONST_INT_P (XEXP (src
, 1))
9763 && UINTVAL (XEXP (src
, 1))
9764 == (HOST_WIDE_INT_1U
<< INTVAL (XEXP (assign
, 1))) - 1)
9765 src
= XEXP (src
, 0);
9767 return gen_rtx_SET (assign
, src
);
9770 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9774 apply_distributive_law (rtx x
)
9776 enum rtx_code code
= GET_CODE (x
);
9777 enum rtx_code inner_code
;
9778 rtx lhs
, rhs
, other
;
9781 /* Distributivity is not true for floating point as it can change the
9782 value. So we don't do it unless -funsafe-math-optimizations. */
9783 if (FLOAT_MODE_P (GET_MODE (x
))
9784 && ! flag_unsafe_math_optimizations
)
9787 /* The outer operation can only be one of the following: */
9788 if (code
!= IOR
&& code
!= AND
&& code
!= XOR
9789 && code
!= PLUS
&& code
!= MINUS
)
9795 /* If either operand is a primitive we can't do anything, so get out
9797 if (OBJECT_P (lhs
) || OBJECT_P (rhs
))
9800 lhs
= expand_compound_operation (lhs
);
9801 rhs
= expand_compound_operation (rhs
);
9802 inner_code
= GET_CODE (lhs
);
9803 if (inner_code
!= GET_CODE (rhs
))
9806 /* See if the inner and outer operations distribute. */
9813 /* These all distribute except over PLUS. */
9814 if (code
== PLUS
|| code
== MINUS
)
9819 if (code
!= PLUS
&& code
!= MINUS
)
9824 /* This is also a multiply, so it distributes over everything. */
9827 /* This used to handle SUBREG, but this turned out to be counter-
9828 productive, since (subreg (op ...)) usually is not handled by
9829 insn patterns, and this "optimization" therefore transformed
9830 recognizable patterns into unrecognizable ones. Therefore the
9831 SUBREG case was removed from here.
9833 It is possible that distributing SUBREG over arithmetic operations
9834 leads to an intermediate result than can then be optimized further,
9835 e.g. by moving the outer SUBREG to the other side of a SET as done
9836 in simplify_set. This seems to have been the original intent of
9837 handling SUBREGs here.
9839 However, with current GCC this does not appear to actually happen,
9840 at least on major platforms. If some case is found where removing
9841 the SUBREG case here prevents follow-on optimizations, distributing
9842 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9848 /* Set LHS and RHS to the inner operands (A and B in the example
9849 above) and set OTHER to the common operand (C in the example).
9850 There is only one way to do this unless the inner operation is
9852 if (COMMUTATIVE_ARITH_P (lhs
)
9853 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 0)))
9854 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 1);
9855 else if (COMMUTATIVE_ARITH_P (lhs
)
9856 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 1)))
9857 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 0);
9858 else if (COMMUTATIVE_ARITH_P (lhs
)
9859 && rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 0)))
9860 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 1);
9861 else if (rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 1)))
9862 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 0);
9866 /* Form the new inner operation, seeing if it simplifies first. */
9867 tem
= simplify_gen_binary (code
, GET_MODE (x
), lhs
, rhs
);
9869 /* There is one exception to the general way of distributing:
9870 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9871 if (code
== XOR
&& inner_code
== IOR
)
9874 other
= simplify_gen_unary (NOT
, GET_MODE (x
), other
, GET_MODE (x
));
9877 /* We may be able to continuing distributing the result, so call
9878 ourselves recursively on the inner operation before forming the
9879 outer operation, which we return. */
9880 return simplify_gen_binary (inner_code
, GET_MODE (x
),
9881 apply_distributive_law (tem
), other
);
9884 /* See if X is of the form (* (+ A B) C), and if so convert to
9885 (+ (* A C) (* B C)) and try to simplify.
9887 Most of the time, this results in no change. However, if some of
9888 the operands are the same or inverses of each other, simplifications
9891 For example, (and (ior A B) (not B)) can occur as the result of
9892 expanding a bit field assignment. When we apply the distributive
9893 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9894 which then simplifies to (and (A (not B))).
9896 Note that no checks happen on the validity of applying the inverse
9897 distributive law. This is pointless since we can do it in the
9898 few places where this routine is called.
9900 N is the index of the term that is decomposed (the arithmetic operation,
9901 i.e. (+ A B) in the first example above). !N is the index of the term that
9902 is distributed, i.e. of C in the first example above. */
9904 distribute_and_simplify_rtx (rtx x
, int n
)
9907 enum rtx_code outer_code
, inner_code
;
9908 rtx decomposed
, distributed
, inner_op0
, inner_op1
, new_op0
, new_op1
, tmp
;
9910 /* Distributivity is not true for floating point as it can change the
9911 value. So we don't do it unless -funsafe-math-optimizations. */
9912 if (FLOAT_MODE_P (GET_MODE (x
))
9913 && ! flag_unsafe_math_optimizations
)
9916 decomposed
= XEXP (x
, n
);
9917 if (!ARITHMETIC_P (decomposed
))
9920 mode
= GET_MODE (x
);
9921 outer_code
= GET_CODE (x
);
9922 distributed
= XEXP (x
, !n
);
9924 inner_code
= GET_CODE (decomposed
);
9925 inner_op0
= XEXP (decomposed
, 0);
9926 inner_op1
= XEXP (decomposed
, 1);
9928 /* Special case (and (xor B C) (not A)), which is equivalent to
9929 (xor (ior A B) (ior A C)) */
9930 if (outer_code
== AND
&& inner_code
== XOR
&& GET_CODE (distributed
) == NOT
)
9932 distributed
= XEXP (distributed
, 0);
9938 /* Distribute the second term. */
9939 new_op0
= simplify_gen_binary (outer_code
, mode
, inner_op0
, distributed
);
9940 new_op1
= simplify_gen_binary (outer_code
, mode
, inner_op1
, distributed
);
9944 /* Distribute the first term. */
9945 new_op0
= simplify_gen_binary (outer_code
, mode
, distributed
, inner_op0
);
9946 new_op1
= simplify_gen_binary (outer_code
, mode
, distributed
, inner_op1
);
9949 tmp
= apply_distributive_law (simplify_gen_binary (inner_code
, mode
,
9951 if (GET_CODE (tmp
) != outer_code
9952 && (set_src_cost (tmp
, mode
, optimize_this_for_speed_p
)
9953 < set_src_cost (x
, mode
, optimize_this_for_speed_p
)))
9959 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9960 in MODE. Return an equivalent form, if different from (and VAROP
9961 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9964 simplify_and_const_int_1 (scalar_int_mode mode
, rtx varop
,
9965 unsigned HOST_WIDE_INT constop
)
9967 unsigned HOST_WIDE_INT nonzero
;
9968 unsigned HOST_WIDE_INT orig_constop
;
9973 orig_constop
= constop
;
9974 if (GET_CODE (varop
) == CLOBBER
)
9977 /* Simplify VAROP knowing that we will be only looking at some of the
9980 Note by passing in CONSTOP, we guarantee that the bits not set in
9981 CONSTOP are not significant and will never be examined. We must
9982 ensure that is the case by explicitly masking out those bits
9983 before returning. */
9984 varop
= force_to_mode (varop
, mode
, constop
, 0);
9986 /* If VAROP is a CLOBBER, we will fail so return it. */
9987 if (GET_CODE (varop
) == CLOBBER
)
9990 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9991 to VAROP and return the new constant. */
9992 if (CONST_INT_P (varop
))
9993 return gen_int_mode (INTVAL (varop
) & constop
, mode
);
9995 /* See what bits may be nonzero in VAROP. Unlike the general case of
9996 a call to nonzero_bits, here we don't care about bits outside
9999 nonzero
= nonzero_bits (varop
, mode
) & GET_MODE_MASK (mode
);
10001 /* Turn off all bits in the constant that are known to already be zero.
10002 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10003 which is tested below. */
10005 constop
&= nonzero
;
10007 /* If we don't have any bits left, return zero. */
10008 if (constop
== 0 && !side_effects_p (varop
))
10011 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10012 a power of two, we can replace this with an ASHIFT. */
10013 if (GET_CODE (varop
) == NEG
&& nonzero_bits (XEXP (varop
, 0), mode
) == 1
10014 && (i
= exact_log2 (constop
)) >= 0)
10015 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (varop
, 0), i
);
10017 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10018 or XOR, then try to apply the distributive law. This may eliminate
10019 operations if either branch can be simplified because of the AND.
10020 It may also make some cases more complex, but those cases probably
10021 won't match a pattern either with or without this. */
10023 if (GET_CODE (varop
) == IOR
|| GET_CODE (varop
) == XOR
)
10025 scalar_int_mode varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
10029 apply_distributive_law
10030 (simplify_gen_binary (GET_CODE (varop
), varop_mode
,
10031 simplify_and_const_int (NULL_RTX
, varop_mode
,
10034 simplify_and_const_int (NULL_RTX
, varop_mode
,
10039 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10040 the AND and see if one of the operands simplifies to zero. If so, we
10041 may eliminate it. */
10043 if (GET_CODE (varop
) == PLUS
10044 && pow2p_hwi (constop
+ 1))
10048 o0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 0), constop
);
10049 o1
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 1), constop
);
10050 if (o0
== const0_rtx
)
10052 if (o1
== const0_rtx
)
10056 /* Make a SUBREG if necessary. If we can't make it, fail. */
10057 varop
= gen_lowpart (mode
, varop
);
10058 if (varop
== NULL_RTX
|| GET_CODE (varop
) == CLOBBER
)
10061 /* If we are only masking insignificant bits, return VAROP. */
10062 if (constop
== nonzero
)
10065 if (varop
== orig_varop
&& constop
== orig_constop
)
10068 /* Otherwise, return an AND. */
10069 return simplify_gen_binary (AND
, mode
, varop
, gen_int_mode (constop
, mode
));
10073 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10076 Return an equivalent form, if different from X. Otherwise, return X. If
10077 X is zero, we are to always construct the equivalent form. */
10080 simplify_and_const_int (rtx x
, scalar_int_mode mode
, rtx varop
,
10081 unsigned HOST_WIDE_INT constop
)
10083 rtx tem
= simplify_and_const_int_1 (mode
, varop
, constop
);
10088 x
= simplify_gen_binary (AND
, GET_MODE (varop
), varop
,
10089 gen_int_mode (constop
, mode
));
10090 if (GET_MODE (x
) != mode
)
10091 x
= gen_lowpart (mode
, x
);
10095 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10096 We don't care about bits outside of those defined in MODE.
10097 We DO care about all the bits in MODE, even if XMODE is smaller than MODE.
10099 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10100 a shift, AND, or zero_extract, we can do better. */
10103 reg_nonzero_bits_for_combine (const_rtx x
, scalar_int_mode xmode
,
10104 scalar_int_mode mode
,
10105 unsigned HOST_WIDE_INT
*nonzero
)
10108 reg_stat_type
*rsp
;
10110 /* If X is a register whose nonzero bits value is current, use it.
10111 Otherwise, if X is a register whose value we can find, use that
10112 value. Otherwise, use the previously-computed global nonzero bits
10113 for this register. */
10115 rsp
= ®_stat
[REGNO (x
)];
10116 if (rsp
->last_set_value
!= 0
10117 && (rsp
->last_set_mode
== mode
10118 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
10119 && GET_MODE_CLASS (rsp
->last_set_mode
) == MODE_INT
10120 && GET_MODE_CLASS (mode
) == MODE_INT
))
10121 && ((rsp
->last_set_label
>= label_tick_ebb_start
10122 && rsp
->last_set_label
< label_tick
)
10123 || (rsp
->last_set_label
== label_tick
10124 && DF_INSN_LUID (rsp
->last_set
) < subst_low_luid
)
10125 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
10126 && REGNO (x
) < reg_n_sets_max
10127 && REG_N_SETS (REGNO (x
)) == 1
10128 && !REGNO_REG_SET_P
10129 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
10132 /* Note that, even if the precision of last_set_mode is lower than that
10133 of mode, record_value_for_reg invoked nonzero_bits on the register
10134 with nonzero_bits_mode (because last_set_mode is necessarily integral
10135 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10136 are all valid, hence in mode too since nonzero_bits_mode is defined
10137 to the largest HWI_COMPUTABLE_MODE_P mode. */
10138 *nonzero
&= rsp
->last_set_nonzero_bits
;
10142 tem
= get_last_value (x
);
10145 if (SHORT_IMMEDIATES_SIGN_EXTEND
)
10146 tem
= sign_extend_short_imm (tem
, xmode
, GET_MODE_PRECISION (mode
));
10151 if (nonzero_sign_valid
&& rsp
->nonzero_bits
)
10153 unsigned HOST_WIDE_INT mask
= rsp
->nonzero_bits
;
10155 if (GET_MODE_PRECISION (xmode
) < GET_MODE_PRECISION (mode
))
10156 /* We don't know anything about the upper bits. */
10157 mask
|= GET_MODE_MASK (mode
) ^ GET_MODE_MASK (xmode
);
10165 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10166 end of X that are known to be equal to the sign bit. X will be used
10167 in mode MODE; the returned value will always be between 1 and the
10168 number of bits in MODE. */
10171 reg_num_sign_bit_copies_for_combine (const_rtx x
, scalar_int_mode xmode
,
10172 scalar_int_mode mode
,
10173 unsigned int *result
)
10176 reg_stat_type
*rsp
;
10178 rsp
= ®_stat
[REGNO (x
)];
10179 if (rsp
->last_set_value
!= 0
10180 && rsp
->last_set_mode
== mode
10181 && ((rsp
->last_set_label
>= label_tick_ebb_start
10182 && rsp
->last_set_label
< label_tick
)
10183 || (rsp
->last_set_label
== label_tick
10184 && DF_INSN_LUID (rsp
->last_set
) < subst_low_luid
)
10185 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
10186 && REGNO (x
) < reg_n_sets_max
10187 && REG_N_SETS (REGNO (x
)) == 1
10188 && !REGNO_REG_SET_P
10189 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
10192 *result
= rsp
->last_set_sign_bit_copies
;
10196 tem
= get_last_value (x
);
10200 if (nonzero_sign_valid
&& rsp
->sign_bit_copies
!= 0
10201 && GET_MODE_PRECISION (xmode
) == GET_MODE_PRECISION (mode
))
10202 *result
= rsp
->sign_bit_copies
;
10207 /* Return the number of "extended" bits there are in X, when interpreted
10208 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10209 unsigned quantities, this is the number of high-order zero bits.
10210 For signed quantities, this is the number of copies of the sign bit
10211 minus 1. In both case, this function returns the number of "spare"
10212 bits. For example, if two quantities for which this function returns
10213 at least 1 are added, the addition is known not to overflow.
10215 This function will always return 0 unless called during combine, which
10216 implies that it must be called from a define_split. */
10219 extended_count (const_rtx x
, machine_mode mode
, int unsignedp
)
10221 if (nonzero_sign_valid
== 0)
10224 scalar_int_mode int_mode
;
10226 ? (is_a
<scalar_int_mode
> (mode
, &int_mode
)
10227 && HWI_COMPUTABLE_MODE_P (int_mode
)
10228 ? (unsigned int) (GET_MODE_PRECISION (int_mode
) - 1
10229 - floor_log2 (nonzero_bits (x
, int_mode
)))
10231 : num_sign_bit_copies (x
, mode
) - 1);
10234 /* This function is called from `simplify_shift_const' to merge two
10235 outer operations. Specifically, we have already found that we need
10236 to perform operation *POP0 with constant *PCONST0 at the outermost
10237 position. We would now like to also perform OP1 with constant CONST1
10238 (with *POP0 being done last).
10240 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10241 the resulting operation. *PCOMP_P is set to 1 if we would need to
10242 complement the innermost operand, otherwise it is unchanged.
10244 MODE is the mode in which the operation will be done. No bits outside
10245 the width of this mode matter. It is assumed that the width of this mode
10246 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10248 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10249 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10250 result is simply *PCONST0.
10252 If the resulting operation cannot be expressed as one operation, we
10253 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10256 merge_outer_ops (enum rtx_code
*pop0
, HOST_WIDE_INT
*pconst0
, enum rtx_code op1
, HOST_WIDE_INT const1
, machine_mode mode
, int *pcomp_p
)
10258 enum rtx_code op0
= *pop0
;
10259 HOST_WIDE_INT const0
= *pconst0
;
10261 const0
&= GET_MODE_MASK (mode
);
10262 const1
&= GET_MODE_MASK (mode
);
10264 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10268 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10271 if (op1
== UNKNOWN
|| op0
== SET
)
10274 else if (op0
== UNKNOWN
)
10275 op0
= op1
, const0
= const1
;
10277 else if (op0
== op1
)
10301 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10302 else if (op0
== PLUS
|| op1
== PLUS
|| op0
== NEG
|| op1
== NEG
)
10305 /* If the two constants aren't the same, we can't do anything. The
10306 remaining six cases can all be done. */
10307 else if (const0
!= const1
)
10315 /* (a & b) | b == b */
10317 else /* op1 == XOR */
10318 /* (a ^ b) | b == a | b */
10324 /* (a & b) ^ b == (~a) & b */
10325 op0
= AND
, *pcomp_p
= 1;
10326 else /* op1 == IOR */
10327 /* (a | b) ^ b == a & ~b */
10328 op0
= AND
, const0
= ~const0
;
10333 /* (a | b) & b == b */
10335 else /* op1 == XOR */
10336 /* (a ^ b) & b) == (~a) & b */
10343 /* Check for NO-OP cases. */
10344 const0
&= GET_MODE_MASK (mode
);
10346 && (op0
== IOR
|| op0
== XOR
|| op0
== PLUS
))
10348 else if (const0
== 0 && op0
== AND
)
10350 else if ((unsigned HOST_WIDE_INT
) const0
== GET_MODE_MASK (mode
)
10356 /* ??? Slightly redundant with the above mask, but not entirely.
10357 Moving this above means we'd have to sign-extend the mode mask
10358 for the final test. */
10359 if (op0
!= UNKNOWN
&& op0
!= NEG
)
10360 *pconst0
= trunc_int_for_mode (const0
, mode
);
10365 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10366 the shift in. The original shift operation CODE is performed on OP in
10367 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10368 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10369 result of the shift is subject to operation OUTER_CODE with operand
10372 static scalar_int_mode
10373 try_widen_shift_mode (enum rtx_code code
, rtx op
, int count
,
10374 scalar_int_mode orig_mode
, scalar_int_mode mode
,
10375 enum rtx_code outer_code
, HOST_WIDE_INT outer_const
)
10377 gcc_assert (GET_MODE_PRECISION (mode
) > GET_MODE_PRECISION (orig_mode
));
10379 /* In general we can't perform in wider mode for right shift and rotate. */
10383 /* We can still widen if the bits brought in from the left are identical
10384 to the sign bit of ORIG_MODE. */
10385 if (num_sign_bit_copies (op
, mode
)
10386 > (unsigned) (GET_MODE_PRECISION (mode
)
10387 - GET_MODE_PRECISION (orig_mode
)))
10392 /* Similarly here but with zero bits. */
10393 if (HWI_COMPUTABLE_MODE_P (mode
)
10394 && (nonzero_bits (op
, mode
) & ~GET_MODE_MASK (orig_mode
)) == 0)
10397 /* We can also widen if the bits brought in will be masked off. This
10398 operation is performed in ORIG_MODE. */
10399 if (outer_code
== AND
)
10401 int care_bits
= low_bitmask_len (orig_mode
, outer_const
);
10404 && GET_MODE_PRECISION (orig_mode
) - care_bits
>= count
)
10413 gcc_unreachable ();
10420 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10421 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10422 if we cannot simplify it. Otherwise, return a simplified value.
10424 The shift is normally computed in the widest mode we find in VAROP, as
10425 long as it isn't a different number of words than RESULT_MODE. Exceptions
10426 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10429 simplify_shift_const_1 (enum rtx_code code
, machine_mode result_mode
,
10430 rtx varop
, int orig_count
)
10432 enum rtx_code orig_code
= code
;
10433 rtx orig_varop
= varop
;
10435 machine_mode mode
= result_mode
;
10436 machine_mode shift_mode
;
10437 scalar_int_mode tmode
, inner_mode
, int_mode
, int_varop_mode
, int_result_mode
;
10438 /* We form (outer_op (code varop count) (outer_const)). */
10439 enum rtx_code outer_op
= UNKNOWN
;
10440 HOST_WIDE_INT outer_const
= 0;
10441 int complement_p
= 0;
10444 /* Make sure and truncate the "natural" shift on the way in. We don't
10445 want to do this inside the loop as it makes it more difficult to
10447 if (SHIFT_COUNT_TRUNCATED
)
10448 orig_count
&= GET_MODE_UNIT_BITSIZE (mode
) - 1;
10450 /* If we were given an invalid count, don't do anything except exactly
10451 what was requested. */
10453 if (orig_count
< 0 || orig_count
>= (int) GET_MODE_UNIT_PRECISION (mode
))
10456 count
= orig_count
;
10458 /* Unless one of the branches of the `if' in this loop does a `continue',
10459 we will `break' the loop after the `if'. */
10463 /* If we have an operand of (clobber (const_int 0)), fail. */
10464 if (GET_CODE (varop
) == CLOBBER
)
10467 /* Convert ROTATERT to ROTATE. */
10468 if (code
== ROTATERT
)
10470 unsigned int bitsize
= GET_MODE_UNIT_PRECISION (result_mode
);
10472 count
= bitsize
- count
;
10475 shift_mode
= result_mode
;
10476 if (shift_mode
!= mode
)
10478 /* We only change the modes of scalar shifts. */
10479 int_mode
= as_a
<scalar_int_mode
> (mode
);
10480 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
10481 shift_mode
= try_widen_shift_mode (code
, varop
, count
,
10482 int_result_mode
, int_mode
,
10483 outer_op
, outer_const
);
10486 scalar_int_mode shift_unit_mode
10487 = as_a
<scalar_int_mode
> (GET_MODE_INNER (shift_mode
));
10489 /* Handle cases where the count is greater than the size of the mode
10490 minus 1. For ASHIFT, use the size minus one as the count (this can
10491 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10492 take the count modulo the size. For other shifts, the result is
10495 Since these shifts are being produced by the compiler by combining
10496 multiple operations, each of which are defined, we know what the
10497 result is supposed to be. */
10499 if (count
> (GET_MODE_PRECISION (shift_unit_mode
) - 1))
10501 if (code
== ASHIFTRT
)
10502 count
= GET_MODE_PRECISION (shift_unit_mode
) - 1;
10503 else if (code
== ROTATE
|| code
== ROTATERT
)
10504 count
%= GET_MODE_PRECISION (shift_unit_mode
);
10507 /* We can't simply return zero because there may be an
10509 varop
= const0_rtx
;
10515 /* If we discovered we had to complement VAROP, leave. Making a NOT
10516 here would cause an infinite loop. */
10520 if (shift_mode
== shift_unit_mode
)
10522 /* An arithmetic right shift of a quantity known to be -1 or 0
10524 if (code
== ASHIFTRT
10525 && (num_sign_bit_copies (varop
, shift_unit_mode
)
10526 == GET_MODE_PRECISION (shift_unit_mode
)))
10532 /* If we are doing an arithmetic right shift and discarding all but
10533 the sign bit copies, this is equivalent to doing a shift by the
10534 bitsize minus one. Convert it into that shift because it will
10535 often allow other simplifications. */
10537 if (code
== ASHIFTRT
10538 && (count
+ num_sign_bit_copies (varop
, shift_unit_mode
)
10539 >= GET_MODE_PRECISION (shift_unit_mode
)))
10540 count
= GET_MODE_PRECISION (shift_unit_mode
) - 1;
10542 /* We simplify the tests below and elsewhere by converting
10543 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10544 `make_compound_operation' will convert it to an ASHIFTRT for
10545 those machines (such as VAX) that don't have an LSHIFTRT. */
10546 if (code
== ASHIFTRT
10547 && HWI_COMPUTABLE_MODE_P (shift_unit_mode
)
10548 && val_signbit_known_clear_p (shift_unit_mode
,
10549 nonzero_bits (varop
,
10553 if (((code
== LSHIFTRT
10554 && HWI_COMPUTABLE_MODE_P (shift_unit_mode
)
10555 && !(nonzero_bits (varop
, shift_unit_mode
) >> count
))
10557 && HWI_COMPUTABLE_MODE_P (shift_unit_mode
)
10558 && !((nonzero_bits (varop
, shift_unit_mode
) << count
)
10559 & GET_MODE_MASK (shift_unit_mode
))))
10560 && !side_effects_p (varop
))
10561 varop
= const0_rtx
;
10564 switch (GET_CODE (varop
))
10570 new_rtx
= expand_compound_operation (varop
);
10571 if (new_rtx
!= varop
)
10579 /* The following rules apply only to scalars. */
10580 if (shift_mode
!= shift_unit_mode
)
10582 int_mode
= as_a
<scalar_int_mode
> (mode
);
10584 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10585 minus the width of a smaller mode, we can do this with a
10586 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10587 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10588 && ! mode_dependent_address_p (XEXP (varop
, 0),
10589 MEM_ADDR_SPACE (varop
))
10590 && ! MEM_VOLATILE_P (varop
)
10591 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode
) - count
, 1)
10594 new_rtx
= adjust_address_nv (varop
, tmode
,
10595 BYTES_BIG_ENDIAN
? 0
10596 : count
/ BITS_PER_UNIT
);
10598 varop
= gen_rtx_fmt_e (code
== ASHIFTRT
? SIGN_EXTEND
10599 : ZERO_EXTEND
, int_mode
, new_rtx
);
10606 /* The following rules apply only to scalars. */
10607 if (shift_mode
!= shift_unit_mode
)
10609 int_mode
= as_a
<scalar_int_mode
> (mode
);
10610 int_varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
10612 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10613 the same number of words as what we've seen so far. Then store
10614 the widest mode in MODE. */
10615 if (subreg_lowpart_p (varop
)
10616 && is_int_mode (GET_MODE (SUBREG_REG (varop
)), &inner_mode
)
10617 && GET_MODE_SIZE (inner_mode
) > GET_MODE_SIZE (int_varop_mode
)
10618 && (CEIL (GET_MODE_SIZE (inner_mode
), UNITS_PER_WORD
)
10619 == CEIL (GET_MODE_SIZE (int_mode
), UNITS_PER_WORD
))
10620 && GET_MODE_CLASS (int_varop_mode
) == MODE_INT
)
10622 varop
= SUBREG_REG (varop
);
10623 if (GET_MODE_SIZE (inner_mode
) > GET_MODE_SIZE (int_mode
))
10630 /* Some machines use MULT instead of ASHIFT because MULT
10631 is cheaper. But it is still better on those machines to
10632 merge two shifts into one. */
10633 if (CONST_INT_P (XEXP (varop
, 1))
10634 && (log2
= exact_log2 (UINTVAL (XEXP (varop
, 1)))) >= 0)
10636 rtx log2_rtx
= gen_int_shift_amount (GET_MODE (varop
), log2
);
10637 varop
= simplify_gen_binary (ASHIFT
, GET_MODE (varop
),
10638 XEXP (varop
, 0), log2_rtx
);
10644 /* Similar, for when divides are cheaper. */
10645 if (CONST_INT_P (XEXP (varop
, 1))
10646 && (log2
= exact_log2 (UINTVAL (XEXP (varop
, 1)))) >= 0)
10648 rtx log2_rtx
= gen_int_shift_amount (GET_MODE (varop
), log2
);
10649 varop
= simplify_gen_binary (LSHIFTRT
, GET_MODE (varop
),
10650 XEXP (varop
, 0), log2_rtx
);
10656 /* If we are extracting just the sign bit of an arithmetic
10657 right shift, that shift is not needed. However, the sign
10658 bit of a wider mode may be different from what would be
10659 interpreted as the sign bit in a narrower mode, so, if
10660 the result is narrower, don't discard the shift. */
10661 if (code
== LSHIFTRT
10662 && count
== (GET_MODE_UNIT_BITSIZE (result_mode
) - 1)
10663 && (GET_MODE_UNIT_BITSIZE (result_mode
)
10664 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop
))))
10666 varop
= XEXP (varop
, 0);
10675 /* The following rules apply only to scalars. */
10676 if (shift_mode
!= shift_unit_mode
)
10678 int_mode
= as_a
<scalar_int_mode
> (mode
);
10679 int_varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
10680 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
10682 /* Here we have two nested shifts. The result is usually the
10683 AND of a new shift with a mask. We compute the result below. */
10684 if (CONST_INT_P (XEXP (varop
, 1))
10685 && INTVAL (XEXP (varop
, 1)) >= 0
10686 && INTVAL (XEXP (varop
, 1)) < GET_MODE_PRECISION (int_varop_mode
)
10687 && HWI_COMPUTABLE_MODE_P (int_result_mode
)
10688 && HWI_COMPUTABLE_MODE_P (int_mode
))
10690 enum rtx_code first_code
= GET_CODE (varop
);
10691 unsigned int first_count
= INTVAL (XEXP (varop
, 1));
10692 unsigned HOST_WIDE_INT mask
;
10695 /* We have one common special case. We can't do any merging if
10696 the inner code is an ASHIFTRT of a smaller mode. However, if
10697 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10698 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10699 we can convert it to
10700 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10701 This simplifies certain SIGN_EXTEND operations. */
10702 if (code
== ASHIFT
&& first_code
== ASHIFTRT
10703 && count
== (GET_MODE_PRECISION (int_result_mode
)
10704 - GET_MODE_PRECISION (int_varop_mode
)))
10706 /* C3 has the low-order C1 bits zero. */
10708 mask
= GET_MODE_MASK (int_mode
)
10709 & ~((HOST_WIDE_INT_1U
<< first_count
) - 1);
10711 varop
= simplify_and_const_int (NULL_RTX
, int_result_mode
,
10712 XEXP (varop
, 0), mask
);
10713 varop
= simplify_shift_const (NULL_RTX
, ASHIFT
,
10714 int_result_mode
, varop
, count
);
10715 count
= first_count
;
10720 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10721 than C1 high-order bits equal to the sign bit, we can convert
10722 this to either an ASHIFT or an ASHIFTRT depending on the
10725 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10727 if (code
== ASHIFTRT
&& first_code
== ASHIFT
10728 && int_varop_mode
== shift_unit_mode
10729 && (num_sign_bit_copies (XEXP (varop
, 0), shift_unit_mode
)
10732 varop
= XEXP (varop
, 0);
10733 count
-= first_count
;
10743 /* There are some cases we can't do. If CODE is ASHIFTRT,
10744 we can only do this if FIRST_CODE is also ASHIFTRT.
10746 We can't do the case when CODE is ROTATE and FIRST_CODE is
10749 If the mode of this shift is not the mode of the outer shift,
10750 we can't do this if either shift is a right shift or ROTATE.
10752 Finally, we can't do any of these if the mode is too wide
10753 unless the codes are the same.
10755 Handle the case where the shift codes are the same
10758 if (code
== first_code
)
10760 if (int_varop_mode
!= int_result_mode
10761 && (code
== ASHIFTRT
|| code
== LSHIFTRT
10762 || code
== ROTATE
))
10765 count
+= first_count
;
10766 varop
= XEXP (varop
, 0);
10770 if (code
== ASHIFTRT
10771 || (code
== ROTATE
&& first_code
== ASHIFTRT
)
10772 || GET_MODE_PRECISION (int_mode
) > HOST_BITS_PER_WIDE_INT
10773 || (int_varop_mode
!= int_result_mode
10774 && (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
10775 || first_code
== ROTATE
10776 || code
== ROTATE
)))
10779 /* To compute the mask to apply after the shift, shift the
10780 nonzero bits of the inner shift the same way the
10781 outer shift will. */
10783 mask_rtx
= gen_int_mode (nonzero_bits (varop
, int_varop_mode
),
10785 rtx count_rtx
= gen_int_shift_amount (int_result_mode
, count
);
10787 = simplify_const_binary_operation (code
, int_result_mode
,
10788 mask_rtx
, count_rtx
);
10790 /* Give up if we can't compute an outer operation to use. */
10792 || !CONST_INT_P (mask_rtx
)
10793 || ! merge_outer_ops (&outer_op
, &outer_const
, AND
,
10795 int_result_mode
, &complement_p
))
10798 /* If the shifts are in the same direction, we add the
10799 counts. Otherwise, we subtract them. */
10800 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10801 == (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
))
10802 count
+= first_count
;
10804 count
-= first_count
;
10806 /* If COUNT is positive, the new shift is usually CODE,
10807 except for the two exceptions below, in which case it is
10808 FIRST_CODE. If the count is negative, FIRST_CODE should
10811 && ((first_code
== ROTATE
&& code
== ASHIFT
)
10812 || (first_code
== ASHIFTRT
&& code
== LSHIFTRT
)))
10814 else if (count
< 0)
10815 code
= first_code
, count
= -count
;
10817 varop
= XEXP (varop
, 0);
10821 /* If we have (A << B << C) for any shift, we can convert this to
10822 (A << C << B). This wins if A is a constant. Only try this if
10823 B is not a constant. */
10825 else if (GET_CODE (varop
) == code
10826 && CONST_INT_P (XEXP (varop
, 0))
10827 && !CONST_INT_P (XEXP (varop
, 1)))
10829 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10830 sure the result will be masked. See PR70222. */
10831 if (code
== LSHIFTRT
10832 && int_mode
!= int_result_mode
10833 && !merge_outer_ops (&outer_op
, &outer_const
, AND
,
10834 GET_MODE_MASK (int_result_mode
)
10835 >> orig_count
, int_result_mode
,
10838 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10839 up outer sign extension (often left and right shift) is
10840 hardly more efficient than the original. See PR70429.
10841 Similarly punt for rotates with different modes.
10843 if ((code
== ASHIFTRT
|| code
== ROTATE
)
10844 && int_mode
!= int_result_mode
)
10847 rtx count_rtx
= gen_int_shift_amount (int_result_mode
, count
);
10848 rtx new_rtx
= simplify_const_binary_operation (code
, int_mode
,
10851 varop
= gen_rtx_fmt_ee (code
, int_mode
, new_rtx
, XEXP (varop
, 1));
10858 /* The following rules apply only to scalars. */
10859 if (shift_mode
!= shift_unit_mode
)
10862 /* Make this fit the case below. */
10863 varop
= gen_rtx_XOR (mode
, XEXP (varop
, 0), constm1_rtx
);
10869 /* The following rules apply only to scalars. */
10870 if (shift_mode
!= shift_unit_mode
)
10872 int_varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
10873 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
10875 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10876 with C the size of VAROP - 1 and the shift is logical if
10877 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10878 we have an (le X 0) operation. If we have an arithmetic shift
10879 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10880 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10882 if (GET_CODE (varop
) == IOR
&& GET_CODE (XEXP (varop
, 0)) == PLUS
10883 && XEXP (XEXP (varop
, 0), 1) == constm1_rtx
10884 && (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
10885 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
10886 && count
== (GET_MODE_PRECISION (int_varop_mode
) - 1)
10887 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
10890 varop
= gen_rtx_LE (int_varop_mode
, XEXP (varop
, 1),
10893 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
10894 varop
= gen_rtx_NEG (int_varop_mode
, varop
);
10899 /* If we have (shift (logical)), move the logical to the outside
10900 to allow it to possibly combine with another logical and the
10901 shift to combine with another shift. This also canonicalizes to
10902 what a ZERO_EXTRACT looks like. Also, some machines have
10903 (and (shift)) insns. */
10905 if (CONST_INT_P (XEXP (varop
, 1))
10906 /* We can't do this if we have (ashiftrt (xor)) and the
10907 constant has its sign bit set in shift_unit_mode with
10908 shift_unit_mode wider than result_mode. */
10909 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
10910 && int_result_mode
!= shift_unit_mode
10911 && trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
10912 shift_unit_mode
) < 0)
10913 && (new_rtx
= simplify_const_binary_operation
10914 (code
, int_result_mode
,
10915 gen_int_mode (INTVAL (XEXP (varop
, 1)), int_result_mode
),
10916 gen_int_shift_amount (int_result_mode
, count
))) != 0
10917 && CONST_INT_P (new_rtx
)
10918 && merge_outer_ops (&outer_op
, &outer_const
, GET_CODE (varop
),
10919 INTVAL (new_rtx
), int_result_mode
,
10922 varop
= XEXP (varop
, 0);
10926 /* If we can't do that, try to simplify the shift in each arm of the
10927 logical expression, make a new logical expression, and apply
10928 the inverse distributive law. This also can't be done for
10929 (ashiftrt (xor)) where we've widened the shift and the constant
10930 changes the sign bit. */
10931 if (CONST_INT_P (XEXP (varop
, 1))
10932 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
10933 && int_result_mode
!= shift_unit_mode
10934 && trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
10935 shift_unit_mode
) < 0))
10937 rtx lhs
= simplify_shift_const (NULL_RTX
, code
, shift_unit_mode
,
10938 XEXP (varop
, 0), count
);
10939 rtx rhs
= simplify_shift_const (NULL_RTX
, code
, shift_unit_mode
,
10940 XEXP (varop
, 1), count
);
10942 varop
= simplify_gen_binary (GET_CODE (varop
), shift_unit_mode
,
10944 varop
= apply_distributive_law (varop
);
10952 /* The following rules apply only to scalars. */
10953 if (shift_mode
!= shift_unit_mode
)
10955 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
10957 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10958 says that the sign bit can be tested, FOO has mode MODE, C is
10959 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10960 that may be nonzero. */
10961 if (code
== LSHIFTRT
10962 && XEXP (varop
, 1) == const0_rtx
10963 && GET_MODE (XEXP (varop
, 0)) == int_result_mode
10964 && count
== (GET_MODE_PRECISION (int_result_mode
) - 1)
10965 && HWI_COMPUTABLE_MODE_P (int_result_mode
)
10966 && STORE_FLAG_VALUE
== -1
10967 && nonzero_bits (XEXP (varop
, 0), int_result_mode
) == 1
10968 && merge_outer_ops (&outer_op
, &outer_const
, XOR
, 1,
10969 int_result_mode
, &complement_p
))
10971 varop
= XEXP (varop
, 0);
10978 /* The following rules apply only to scalars. */
10979 if (shift_mode
!= shift_unit_mode
)
10981 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
10983 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10984 than the number of bits in the mode is equivalent to A. */
10985 if (code
== LSHIFTRT
10986 && count
== (GET_MODE_PRECISION (int_result_mode
) - 1)
10987 && nonzero_bits (XEXP (varop
, 0), int_result_mode
) == 1)
10989 varop
= XEXP (varop
, 0);
10994 /* NEG commutes with ASHIFT since it is multiplication. Move the
10995 NEG outside to allow shifts to combine. */
10997 && merge_outer_ops (&outer_op
, &outer_const
, NEG
, 0,
10998 int_result_mode
, &complement_p
))
11000 varop
= XEXP (varop
, 0);
11006 /* The following rules apply only to scalars. */
11007 if (shift_mode
!= shift_unit_mode
)
11009 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
11011 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11012 is one less than the number of bits in the mode is
11013 equivalent to (xor A 1). */
11014 if (code
== LSHIFTRT
11015 && count
== (GET_MODE_PRECISION (int_result_mode
) - 1)
11016 && XEXP (varop
, 1) == constm1_rtx
11017 && nonzero_bits (XEXP (varop
, 0), int_result_mode
) == 1
11018 && merge_outer_ops (&outer_op
, &outer_const
, XOR
, 1,
11019 int_result_mode
, &complement_p
))
11022 varop
= XEXP (varop
, 0);
11026 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11027 that might be nonzero in BAR are those being shifted out and those
11028 bits are known zero in FOO, we can replace the PLUS with FOO.
11029 Similarly in the other operand order. This code occurs when
11030 we are computing the size of a variable-size array. */
11032 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
11033 && count
< HOST_BITS_PER_WIDE_INT
11034 && nonzero_bits (XEXP (varop
, 1), int_result_mode
) >> count
== 0
11035 && (nonzero_bits (XEXP (varop
, 1), int_result_mode
)
11036 & nonzero_bits (XEXP (varop
, 0), int_result_mode
)) == 0)
11038 varop
= XEXP (varop
, 0);
11041 else if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
11042 && count
< HOST_BITS_PER_WIDE_INT
11043 && HWI_COMPUTABLE_MODE_P (int_result_mode
)
11044 && (nonzero_bits (XEXP (varop
, 0), int_result_mode
)
11046 && (nonzero_bits (XEXP (varop
, 0), int_result_mode
)
11047 & nonzero_bits (XEXP (varop
, 1), int_result_mode
)) == 0)
11049 varop
= XEXP (varop
, 1);
11053 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11055 && CONST_INT_P (XEXP (varop
, 1))
11056 && (new_rtx
= simplify_const_binary_operation
11057 (ASHIFT
, int_result_mode
,
11058 gen_int_mode (INTVAL (XEXP (varop
, 1)), int_result_mode
),
11059 gen_int_shift_amount (int_result_mode
, count
))) != 0
11060 && CONST_INT_P (new_rtx
)
11061 && merge_outer_ops (&outer_op
, &outer_const
, PLUS
,
11062 INTVAL (new_rtx
), int_result_mode
,
11065 varop
= XEXP (varop
, 0);
11069 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11070 signbit', and attempt to change the PLUS to an XOR and move it to
11071 the outer operation as is done above in the AND/IOR/XOR case
11072 leg for shift(logical). See details in logical handling above
11073 for reasoning in doing so. */
11074 if (code
== LSHIFTRT
11075 && CONST_INT_P (XEXP (varop
, 1))
11076 && mode_signbit_p (int_result_mode
, XEXP (varop
, 1))
11077 && (new_rtx
= simplify_const_binary_operation
11078 (code
, int_result_mode
,
11079 gen_int_mode (INTVAL (XEXP (varop
, 1)), int_result_mode
),
11080 gen_int_shift_amount (int_result_mode
, count
))) != 0
11081 && CONST_INT_P (new_rtx
)
11082 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
11083 INTVAL (new_rtx
), int_result_mode
,
11086 varop
= XEXP (varop
, 0);
11093 /* The following rules apply only to scalars. */
11094 if (shift_mode
!= shift_unit_mode
)
11096 int_varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
11098 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11099 with C the size of VAROP - 1 and the shift is logical if
11100 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11101 we have a (gt X 0) operation. If the shift is arithmetic with
11102 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11103 we have a (neg (gt X 0)) operation. */
11105 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
11106 && GET_CODE (XEXP (varop
, 0)) == ASHIFTRT
11107 && count
== (GET_MODE_PRECISION (int_varop_mode
) - 1)
11108 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
11109 && CONST_INT_P (XEXP (XEXP (varop
, 0), 1))
11110 && INTVAL (XEXP (XEXP (varop
, 0), 1)) == count
11111 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
11114 varop
= gen_rtx_GT (int_varop_mode
, XEXP (varop
, 1),
11117 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
11118 varop
= gen_rtx_NEG (int_varop_mode
, varop
);
11125 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11126 if the truncate does not affect the value. */
11127 if (code
== LSHIFTRT
11128 && GET_CODE (XEXP (varop
, 0)) == LSHIFTRT
11129 && CONST_INT_P (XEXP (XEXP (varop
, 0), 1))
11130 && (INTVAL (XEXP (XEXP (varop
, 0), 1))
11131 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop
, 0)))
11132 - GET_MODE_UNIT_PRECISION (GET_MODE (varop
)))))
11134 rtx varop_inner
= XEXP (varop
, 0);
11135 int new_count
= count
+ INTVAL (XEXP (varop_inner
, 1));
11136 rtx new_count_rtx
= gen_int_shift_amount (GET_MODE (varop_inner
),
11138 varop_inner
= gen_rtx_LSHIFTRT (GET_MODE (varop_inner
),
11139 XEXP (varop_inner
, 0),
11141 varop
= gen_rtx_TRUNCATE (GET_MODE (varop
), varop_inner
);
11154 shift_mode
= result_mode
;
11155 if (shift_mode
!= mode
)
11157 /* We only change the modes of scalar shifts. */
11158 int_mode
= as_a
<scalar_int_mode
> (mode
);
11159 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
11160 shift_mode
= try_widen_shift_mode (code
, varop
, count
, int_result_mode
,
11161 int_mode
, outer_op
, outer_const
);
11164 /* We have now finished analyzing the shift. The result should be
11165 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11166 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11167 to the result of the shift. OUTER_CONST is the relevant constant,
11168 but we must turn off all bits turned off in the shift. */
11170 if (outer_op
== UNKNOWN
11171 && orig_code
== code
&& orig_count
== count
11172 && varop
== orig_varop
11173 && shift_mode
== GET_MODE (varop
))
11176 /* Make a SUBREG if necessary. If we can't make it, fail. */
11177 varop
= gen_lowpart (shift_mode
, varop
);
11178 if (varop
== NULL_RTX
|| GET_CODE (varop
) == CLOBBER
)
11181 /* If we have an outer operation and we just made a shift, it is
11182 possible that we could have simplified the shift were it not
11183 for the outer operation. So try to do the simplification
11186 if (outer_op
!= UNKNOWN
)
11187 x
= simplify_shift_const_1 (code
, shift_mode
, varop
, count
);
11192 x
= simplify_gen_binary (code
, shift_mode
, varop
,
11193 gen_int_shift_amount (shift_mode
, count
));
11195 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11196 turn off all the bits that the shift would have turned off. */
11197 if (orig_code
== LSHIFTRT
&& result_mode
!= shift_mode
)
11198 /* We only change the modes of scalar shifts. */
11199 x
= simplify_and_const_int (NULL_RTX
, as_a
<scalar_int_mode
> (shift_mode
),
11200 x
, GET_MODE_MASK (result_mode
) >> orig_count
);
11202 /* Do the remainder of the processing in RESULT_MODE. */
11203 x
= gen_lowpart_or_truncate (result_mode
, x
);
11205 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11208 x
= simplify_gen_unary (NOT
, result_mode
, x
, result_mode
);
11210 if (outer_op
!= UNKNOWN
)
11212 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
11214 if (GET_RTX_CLASS (outer_op
) != RTX_UNARY
11215 && GET_MODE_PRECISION (int_result_mode
) < HOST_BITS_PER_WIDE_INT
)
11216 outer_const
= trunc_int_for_mode (outer_const
, int_result_mode
);
11218 if (outer_op
== AND
)
11219 x
= simplify_and_const_int (NULL_RTX
, int_result_mode
, x
, outer_const
);
11220 else if (outer_op
== SET
)
11222 /* This means that we have determined that the result is
11223 equivalent to a constant. This should be rare. */
11224 if (!side_effects_p (x
))
11225 x
= GEN_INT (outer_const
);
11227 else if (GET_RTX_CLASS (outer_op
) == RTX_UNARY
)
11228 x
= simplify_gen_unary (outer_op
, int_result_mode
, x
, int_result_mode
);
11230 x
= simplify_gen_binary (outer_op
, int_result_mode
, x
,
11231 GEN_INT (outer_const
));
11237 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11238 The result of the shift is RESULT_MODE. If we cannot simplify it,
11239 return X or, if it is NULL, synthesize the expression with
11240 simplify_gen_binary. Otherwise, return a simplified value.
11242 The shift is normally computed in the widest mode we find in VAROP, as
11243 long as it isn't a different number of words than RESULT_MODE. Exceptions
11244 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11247 simplify_shift_const (rtx x
, enum rtx_code code
, machine_mode result_mode
,
11248 rtx varop
, int count
)
11250 rtx tem
= simplify_shift_const_1 (code
, result_mode
, varop
, count
);
11255 x
= simplify_gen_binary (code
, GET_MODE (varop
), varop
,
11256 gen_int_shift_amount (GET_MODE (varop
), count
));
11257 if (GET_MODE (x
) != result_mode
)
11258 x
= gen_lowpart (result_mode
, x
);
11263 /* A subroutine of recog_for_combine. See there for arguments and
11267 recog_for_combine_1 (rtx
*pnewpat
, rtx_insn
*insn
, rtx
*pnotes
)
11269 rtx pat
= *pnewpat
;
11270 rtx pat_without_clobbers
;
11271 int insn_code_number
;
11272 int num_clobbers_to_add
= 0;
11274 rtx notes
= NULL_RTX
;
11275 rtx old_notes
, old_pat
;
11278 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11279 we use to indicate that something didn't match. If we find such a
11280 thing, force rejection. */
11281 if (GET_CODE (pat
) == PARALLEL
)
11282 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
11283 if (GET_CODE (XVECEXP (pat
, 0, i
)) == CLOBBER
11284 && XEXP (XVECEXP (pat
, 0, i
), 0) == const0_rtx
)
11287 old_pat
= PATTERN (insn
);
11288 old_notes
= REG_NOTES (insn
);
11289 PATTERN (insn
) = pat
;
11290 REG_NOTES (insn
) = NULL_RTX
;
11292 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
11293 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
11295 if (insn_code_number
< 0)
11296 fputs ("Failed to match this instruction:\n", dump_file
);
11298 fputs ("Successfully matched this instruction:\n", dump_file
);
11299 print_rtl_single (dump_file
, pat
);
11302 /* If it isn't, there is the possibility that we previously had an insn
11303 that clobbered some register as a side effect, but the combined
11304 insn doesn't need to do that. So try once more without the clobbers
11305 unless this represents an ASM insn. */
11307 if (insn_code_number
< 0 && ! check_asm_operands (pat
)
11308 && GET_CODE (pat
) == PARALLEL
)
11312 for (pos
= 0, i
= 0; i
< XVECLEN (pat
, 0); i
++)
11313 if (GET_CODE (XVECEXP (pat
, 0, i
)) != CLOBBER
)
11316 SUBST (XVECEXP (pat
, 0, pos
), XVECEXP (pat
, 0, i
));
11320 SUBST_INT (XVECLEN (pat
, 0), pos
);
11323 pat
= XVECEXP (pat
, 0, 0);
11325 PATTERN (insn
) = pat
;
11326 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
11327 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
11329 if (insn_code_number
< 0)
11330 fputs ("Failed to match this instruction:\n", dump_file
);
11332 fputs ("Successfully matched this instruction:\n", dump_file
);
11333 print_rtl_single (dump_file
, pat
);
11337 pat_without_clobbers
= pat
;
11339 PATTERN (insn
) = old_pat
;
11340 REG_NOTES (insn
) = old_notes
;
11342 /* Recognize all noop sets, these will be killed by followup pass. */
11343 if (insn_code_number
< 0 && GET_CODE (pat
) == SET
&& set_noop_p (pat
))
11344 insn_code_number
= NOOP_MOVE_INSN_CODE
, num_clobbers_to_add
= 0;
11346 /* If we had any clobbers to add, make a new pattern than contains
11347 them. Then check to make sure that all of them are dead. */
11348 if (num_clobbers_to_add
)
11350 rtx newpat
= gen_rtx_PARALLEL (VOIDmode
,
11351 rtvec_alloc (GET_CODE (pat
) == PARALLEL
11352 ? (XVECLEN (pat
, 0)
11353 + num_clobbers_to_add
)
11354 : num_clobbers_to_add
+ 1));
11356 if (GET_CODE (pat
) == PARALLEL
)
11357 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
11358 XVECEXP (newpat
, 0, i
) = XVECEXP (pat
, 0, i
);
11360 XVECEXP (newpat
, 0, 0) = pat
;
11362 add_clobbers (newpat
, insn_code_number
);
11364 for (i
= XVECLEN (newpat
, 0) - num_clobbers_to_add
;
11365 i
< XVECLEN (newpat
, 0); i
++)
11367 if (REG_P (XEXP (XVECEXP (newpat
, 0, i
), 0))
11368 && ! reg_dead_at_p (XEXP (XVECEXP (newpat
, 0, i
), 0), insn
))
11370 if (GET_CODE (XEXP (XVECEXP (newpat
, 0, i
), 0)) != SCRATCH
)
11372 gcc_assert (REG_P (XEXP (XVECEXP (newpat
, 0, i
), 0)));
11373 notes
= alloc_reg_note (REG_UNUSED
,
11374 XEXP (XVECEXP (newpat
, 0, i
), 0), notes
);
11380 if (insn_code_number
>= 0
11381 && insn_code_number
!= NOOP_MOVE_INSN_CODE
)
11383 old_pat
= PATTERN (insn
);
11384 old_notes
= REG_NOTES (insn
);
11385 old_icode
= INSN_CODE (insn
);
11386 PATTERN (insn
) = pat
;
11387 REG_NOTES (insn
) = notes
;
11388 INSN_CODE (insn
) = insn_code_number
;
11390 /* Allow targets to reject combined insn. */
11391 if (!targetm
.legitimate_combined_insn (insn
))
11393 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
11394 fputs ("Instruction not appropriate for target.",
11397 /* Callers expect recog_for_combine to strip
11398 clobbers from the pattern on failure. */
11399 pat
= pat_without_clobbers
;
11402 insn_code_number
= -1;
11405 PATTERN (insn
) = old_pat
;
11406 REG_NOTES (insn
) = old_notes
;
11407 INSN_CODE (insn
) = old_icode
;
11413 return insn_code_number
;
11416 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11417 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11418 Return whether anything was so changed. */
11421 change_zero_ext (rtx pat
)
11423 bool changed
= false;
11424 rtx
*src
= &SET_SRC (pat
);
11426 subrtx_ptr_iterator::array_type array
;
11427 FOR_EACH_SUBRTX_PTR (iter
, array
, src
, NONCONST
)
11430 scalar_int_mode mode
, inner_mode
;
11431 if (!is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
))
11435 if (GET_CODE (x
) == ZERO_EXTRACT
11436 && CONST_INT_P (XEXP (x
, 1))
11437 && CONST_INT_P (XEXP (x
, 2))
11438 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)), &inner_mode
)
11439 && GET_MODE_PRECISION (inner_mode
) <= GET_MODE_PRECISION (mode
))
11441 size
= INTVAL (XEXP (x
, 1));
11443 int start
= INTVAL (XEXP (x
, 2));
11444 if (BITS_BIG_ENDIAN
)
11445 start
= GET_MODE_PRECISION (inner_mode
) - size
- start
;
11448 x
= gen_rtx_LSHIFTRT (inner_mode
, XEXP (x
, 0),
11449 gen_int_shift_amount (inner_mode
, start
));
11453 if (mode
!= inner_mode
)
11455 if (REG_P (x
) && HARD_REGISTER_P (x
)
11456 && !can_change_dest_mode (x
, 0, mode
))
11459 x
= gen_lowpart_SUBREG (mode
, x
);
11462 else if (GET_CODE (x
) == ZERO_EXTEND
11463 && GET_CODE (XEXP (x
, 0)) == SUBREG
11464 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x
, 0))))
11465 && !paradoxical_subreg_p (XEXP (x
, 0))
11466 && subreg_lowpart_p (XEXP (x
, 0)))
11468 inner_mode
= as_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)));
11469 size
= GET_MODE_PRECISION (inner_mode
);
11470 x
= SUBREG_REG (XEXP (x
, 0));
11471 if (GET_MODE (x
) != mode
)
11473 if (REG_P (x
) && HARD_REGISTER_P (x
)
11474 && !can_change_dest_mode (x
, 0, mode
))
11477 x
= gen_lowpart_SUBREG (mode
, x
);
11480 else if (GET_CODE (x
) == ZERO_EXTEND
11481 && REG_P (XEXP (x
, 0))
11482 && HARD_REGISTER_P (XEXP (x
, 0))
11483 && can_change_dest_mode (XEXP (x
, 0), 0, mode
))
11485 inner_mode
= as_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)));
11486 size
= GET_MODE_PRECISION (inner_mode
);
11487 x
= gen_rtx_REG (mode
, REGNO (XEXP (x
, 0)));
11492 if (!(GET_CODE (x
) == LSHIFTRT
11493 && CONST_INT_P (XEXP (x
, 1))
11494 && size
+ INTVAL (XEXP (x
, 1)) == GET_MODE_PRECISION (mode
)))
11496 wide_int mask
= wi::mask (size
, false, GET_MODE_PRECISION (mode
));
11497 x
= gen_rtx_AND (mode
, x
, immed_wide_int_const (mask
, mode
));
11505 FOR_EACH_SUBRTX_PTR (iter
, array
, src
, NONCONST
)
11506 maybe_swap_commutative_operands (**iter
);
11508 rtx
*dst
= &SET_DEST (pat
);
11509 scalar_int_mode mode
;
11510 if (GET_CODE (*dst
) == ZERO_EXTRACT
11511 && REG_P (XEXP (*dst
, 0))
11512 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (*dst
, 0)), &mode
)
11513 && CONST_INT_P (XEXP (*dst
, 1))
11514 && CONST_INT_P (XEXP (*dst
, 2)))
11516 rtx reg
= XEXP (*dst
, 0);
11517 int width
= INTVAL (XEXP (*dst
, 1));
11518 int offset
= INTVAL (XEXP (*dst
, 2));
11519 int reg_width
= GET_MODE_PRECISION (mode
);
11520 if (BITS_BIG_ENDIAN
)
11521 offset
= reg_width
- width
- offset
;
11524 wide_int mask
= wi::shifted_mask (offset
, width
, true, reg_width
);
11525 wide_int mask2
= wi::shifted_mask (offset
, width
, false, reg_width
);
11526 x
= gen_rtx_AND (mode
, reg
, immed_wide_int_const (mask
, mode
));
11528 y
= gen_rtx_ASHIFT (mode
, SET_SRC (pat
), GEN_INT (offset
));
11531 z
= gen_rtx_AND (mode
, y
, immed_wide_int_const (mask2
, mode
));
11532 w
= gen_rtx_IOR (mode
, x
, z
);
11533 SUBST (SET_DEST (pat
), reg
);
11534 SUBST (SET_SRC (pat
), w
);
11542 /* Like recog, but we receive the address of a pointer to a new pattern.
11543 We try to match the rtx that the pointer points to.
11544 If that fails, we may try to modify or replace the pattern,
11545 storing the replacement into the same pointer object.
11547 Modifications include deletion or addition of CLOBBERs. If the
11548 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11549 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11550 (and undo if that fails).
11552 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11553 the CLOBBERs are placed.
11555 The value is the final insn code from the pattern ultimately matched,
11559 recog_for_combine (rtx
*pnewpat
, rtx_insn
*insn
, rtx
*pnotes
)
11561 rtx pat
= *pnewpat
;
11562 int insn_code_number
= recog_for_combine_1 (pnewpat
, insn
, pnotes
);
11563 if (insn_code_number
>= 0 || check_asm_operands (pat
))
11564 return insn_code_number
;
11566 void *marker
= get_undo_marker ();
11567 bool changed
= false;
11569 if (GET_CODE (pat
) == SET
)
11571 /* For an unrecognized single set of a constant, try placing it in
11572 the constant pool, if this function already uses one. */
11573 rtx src
= SET_SRC (pat
);
11574 if (CONSTANT_P (src
)
11575 && !CONST_INT_P (src
)
11576 && crtl
->uses_const_pool
)
11578 machine_mode mode
= GET_MODE (src
);
11579 if (mode
== VOIDmode
)
11580 mode
= GET_MODE (SET_DEST (pat
));
11581 src
= force_const_mem (mode
, src
);
11584 SUBST (SET_SRC (pat
), src
);
11589 changed
= change_zero_ext (pat
);
11591 else if (GET_CODE (pat
) == PARALLEL
)
11594 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
11596 rtx set
= XVECEXP (pat
, 0, i
);
11597 if (GET_CODE (set
) == SET
)
11598 changed
|= change_zero_ext (set
);
11604 insn_code_number
= recog_for_combine_1 (pnewpat
, insn
, pnotes
);
11606 if (insn_code_number
< 0)
11607 undo_to_marker (marker
);
11610 return insn_code_number
;
11613 /* Like gen_lowpart_general but for use by combine. In combine it
11614 is not possible to create any new pseudoregs. However, it is
11615 safe to create invalid memory addresses, because combine will
11616 try to recognize them and all they will do is make the combine
11619 If for some reason this cannot do its job, an rtx
11620 (clobber (const_int 0)) is returned.
11621 An insn containing that will not be recognized. */
11624 gen_lowpart_for_combine (machine_mode omode
, rtx x
)
11626 machine_mode imode
= GET_MODE (x
);
11629 if (omode
== imode
)
11632 /* We can only support MODE being wider than a word if X is a
11633 constant integer or has a mode the same size. */
11634 if (maybe_gt (GET_MODE_SIZE (omode
), UNITS_PER_WORD
)
11635 && ! (CONST_SCALAR_INT_P (x
)
11636 || known_eq (GET_MODE_SIZE (imode
), GET_MODE_SIZE (omode
))))
11639 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11640 won't know what to do. So we will strip off the SUBREG here and
11641 process normally. */
11642 if (GET_CODE (x
) == SUBREG
&& MEM_P (SUBREG_REG (x
)))
11644 x
= SUBREG_REG (x
);
11646 /* For use in case we fall down into the address adjustments
11647 further below, we need to adjust the known mode and size of
11648 x; imode and isize, since we just adjusted x. */
11649 imode
= GET_MODE (x
);
11651 if (imode
== omode
)
11655 result
= gen_lowpart_common (omode
, x
);
11662 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11664 if (MEM_VOLATILE_P (x
)
11665 || mode_dependent_address_p (XEXP (x
, 0), MEM_ADDR_SPACE (x
)))
11668 /* If we want to refer to something bigger than the original memref,
11669 generate a paradoxical subreg instead. That will force a reload
11670 of the original memref X. */
11671 if (paradoxical_subreg_p (omode
, imode
))
11672 return gen_rtx_SUBREG (omode
, x
, 0);
11674 poly_int64 offset
= byte_lowpart_offset (omode
, imode
);
11675 return adjust_address_nv (x
, omode
, offset
);
11678 /* If X is a comparison operator, rewrite it in a new mode. This
11679 probably won't match, but may allow further simplifications. */
11680 else if (COMPARISON_P (x
)
11681 && SCALAR_INT_MODE_P (imode
)
11682 && SCALAR_INT_MODE_P (omode
))
11683 return gen_rtx_fmt_ee (GET_CODE (x
), omode
, XEXP (x
, 0), XEXP (x
, 1));
11685 /* If we couldn't simplify X any other way, just enclose it in a
11686 SUBREG. Normally, this SUBREG won't match, but some patterns may
11687 include an explicit SUBREG or we may simplify it further in combine. */
11692 if (imode
== VOIDmode
)
11694 imode
= int_mode_for_mode (omode
).require ();
11695 x
= gen_lowpart_common (imode
, x
);
11699 res
= lowpart_subreg (omode
, x
, imode
);
11705 return gen_rtx_CLOBBER (omode
, const0_rtx
);
11708 /* Try to simplify a comparison between OP0 and a constant OP1,
11709 where CODE is the comparison code that will be tested, into a
11710 (CODE OP0 const0_rtx) form.
11712 The result is a possibly different comparison code to use.
11713 *POP1 may be updated. */
11715 static enum rtx_code
11716 simplify_compare_const (enum rtx_code code
, machine_mode mode
,
11717 rtx op0
, rtx
*pop1
)
11719 scalar_int_mode int_mode
;
11720 HOST_WIDE_INT const_op
= INTVAL (*pop1
);
11722 /* Get the constant we are comparing against and turn off all bits
11723 not on in our mode. */
11724 if (mode
!= VOIDmode
)
11725 const_op
= trunc_int_for_mode (const_op
, mode
);
11727 /* If we are comparing against a constant power of two and the value
11728 being compared can only have that single bit nonzero (e.g., it was
11729 `and'ed with that bit), we can replace this with a comparison
11732 && (code
== EQ
|| code
== NE
|| code
== GE
|| code
== GEU
11733 || code
== LT
|| code
== LTU
)
11734 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
11735 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11736 && pow2p_hwi (const_op
& GET_MODE_MASK (int_mode
))
11737 && (nonzero_bits (op0
, int_mode
)
11738 == (unsigned HOST_WIDE_INT
) (const_op
& GET_MODE_MASK (int_mode
))))
11740 code
= (code
== EQ
|| code
== GE
|| code
== GEU
? NE
: EQ
);
11744 /* Similarly, if we are comparing a value known to be either -1 or
11745 0 with -1, change it to the opposite comparison against zero. */
11747 && (code
== EQ
|| code
== NE
|| code
== GT
|| code
== LE
11748 || code
== GEU
|| code
== LTU
)
11749 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
11750 && num_sign_bit_copies (op0
, int_mode
) == GET_MODE_PRECISION (int_mode
))
11752 code
= (code
== EQ
|| code
== LE
|| code
== GEU
? NE
: EQ
);
11756 /* Do some canonicalizations based on the comparison code. We prefer
11757 comparisons against zero and then prefer equality comparisons.
11758 If we can reduce the size of a constant, we will do that too. */
11762 /* < C is equivalent to <= (C - 1) */
11767 /* ... fall through to LE case below. */
11768 gcc_fallthrough ();
11774 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11781 /* If we are doing a <= 0 comparison on a value known to have
11782 a zero sign bit, we can replace this with == 0. */
11783 else if (const_op
== 0
11784 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
11785 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11786 && (nonzero_bits (op0
, int_mode
)
11787 & (HOST_WIDE_INT_1U
<< (GET_MODE_PRECISION (int_mode
) - 1)))
11793 /* >= C is equivalent to > (C - 1). */
11798 /* ... fall through to GT below. */
11799 gcc_fallthrough ();
11805 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11812 /* If we are doing a > 0 comparison on a value known to have
11813 a zero sign bit, we can replace this with != 0. */
11814 else if (const_op
== 0
11815 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
11816 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11817 && (nonzero_bits (op0
, int_mode
)
11818 & (HOST_WIDE_INT_1U
<< (GET_MODE_PRECISION (int_mode
) - 1)))
11824 /* < C is equivalent to <= (C - 1). */
11829 /* ... fall through ... */
11830 gcc_fallthrough ();
11832 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11833 else if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
11834 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11835 && ((unsigned HOST_WIDE_INT
) const_op
11836 == HOST_WIDE_INT_1U
<< (GET_MODE_PRECISION (int_mode
) - 1)))
11846 /* unsigned <= 0 is equivalent to == 0 */
11849 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11850 else if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
11851 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11852 && ((unsigned HOST_WIDE_INT
) const_op
11853 == ((HOST_WIDE_INT_1U
11854 << (GET_MODE_PRECISION (int_mode
) - 1)) - 1)))
11862 /* >= C is equivalent to > (C - 1). */
11867 /* ... fall through ... */
11868 gcc_fallthrough ();
11871 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11872 else if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
11873 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11874 && ((unsigned HOST_WIDE_INT
) const_op
11875 == HOST_WIDE_INT_1U
<< (GET_MODE_PRECISION (int_mode
) - 1)))
11885 /* unsigned > 0 is equivalent to != 0 */
11888 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11889 else if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
11890 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11891 && ((unsigned HOST_WIDE_INT
) const_op
11892 == (HOST_WIDE_INT_1U
11893 << (GET_MODE_PRECISION (int_mode
) - 1)) - 1))
11904 *pop1
= GEN_INT (const_op
);
11908 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11909 comparison code that will be tested.
11911 The result is a possibly different comparison code to use. *POP0 and
11912 *POP1 may be updated.
11914 It is possible that we might detect that a comparison is either always
11915 true or always false. However, we do not perform general constant
11916 folding in combine, so this knowledge isn't useful. Such tautologies
11917 should have been detected earlier. Hence we ignore all such cases. */
11919 static enum rtx_code
11920 simplify_comparison (enum rtx_code code
, rtx
*pop0
, rtx
*pop1
)
11926 scalar_int_mode mode
, inner_mode
, tmode
;
11927 opt_scalar_int_mode tmode_iter
;
11929 /* Try a few ways of applying the same transformation to both operands. */
11932 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11933 so check specially. */
11934 if (!WORD_REGISTER_OPERATIONS
11935 && code
!= GTU
&& code
!= GEU
&& code
!= LTU
&& code
!= LEU
11936 && GET_CODE (op0
) == ASHIFTRT
&& GET_CODE (op1
) == ASHIFTRT
11937 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
11938 && GET_CODE (XEXP (op1
, 0)) == ASHIFT
11939 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == SUBREG
11940 && GET_CODE (XEXP (XEXP (op1
, 0), 0)) == SUBREG
11941 && is_a
<scalar_int_mode
> (GET_MODE (op0
), &mode
)
11942 && (is_a
<scalar_int_mode
>
11943 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0))), &inner_mode
))
11944 && inner_mode
== GET_MODE (SUBREG_REG (XEXP (XEXP (op1
, 0), 0)))
11945 && CONST_INT_P (XEXP (op0
, 1))
11946 && XEXP (op0
, 1) == XEXP (op1
, 1)
11947 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
11948 && XEXP (op0
, 1) == XEXP (XEXP (op1
, 0), 1)
11949 && (INTVAL (XEXP (op0
, 1))
11950 == (GET_MODE_PRECISION (mode
)
11951 - GET_MODE_PRECISION (inner_mode
))))
11953 op0
= SUBREG_REG (XEXP (XEXP (op0
, 0), 0));
11954 op1
= SUBREG_REG (XEXP (XEXP (op1
, 0), 0));
11957 /* If both operands are the same constant shift, see if we can ignore the
11958 shift. We can if the shift is a rotate or if the bits shifted out of
11959 this shift are known to be zero for both inputs and if the type of
11960 comparison is compatible with the shift. */
11961 if (GET_CODE (op0
) == GET_CODE (op1
)
11962 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0
))
11963 && ((GET_CODE (op0
) == ROTATE
&& (code
== NE
|| code
== EQ
))
11964 || ((GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFT
)
11965 && (code
!= GT
&& code
!= LT
&& code
!= GE
&& code
!= LE
))
11966 || (GET_CODE (op0
) == ASHIFTRT
11967 && (code
!= GTU
&& code
!= LTU
11968 && code
!= GEU
&& code
!= LEU
)))
11969 && CONST_INT_P (XEXP (op0
, 1))
11970 && INTVAL (XEXP (op0
, 1)) >= 0
11971 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
11972 && XEXP (op0
, 1) == XEXP (op1
, 1))
11974 machine_mode mode
= GET_MODE (op0
);
11975 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
11976 int shift_count
= INTVAL (XEXP (op0
, 1));
11978 if (GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFTRT
)
11979 mask
&= (mask
>> shift_count
) << shift_count
;
11980 else if (GET_CODE (op0
) == ASHIFT
)
11981 mask
= (mask
& (mask
<< shift_count
)) >> shift_count
;
11983 if ((nonzero_bits (XEXP (op0
, 0), mode
) & ~mask
) == 0
11984 && (nonzero_bits (XEXP (op1
, 0), mode
) & ~mask
) == 0)
11985 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0);
11990 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11991 SUBREGs are of the same mode, and, in both cases, the AND would
11992 be redundant if the comparison was done in the narrower mode,
11993 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11994 and the operand's possibly nonzero bits are 0xffffff01; in that case
11995 if we only care about QImode, we don't need the AND). This case
11996 occurs if the output mode of an scc insn is not SImode and
11997 STORE_FLAG_VALUE == 1 (e.g., the 386).
11999 Similarly, check for a case where the AND's are ZERO_EXTEND
12000 operations from some narrower mode even though a SUBREG is not
12003 else if (GET_CODE (op0
) == AND
&& GET_CODE (op1
) == AND
12004 && CONST_INT_P (XEXP (op0
, 1))
12005 && CONST_INT_P (XEXP (op1
, 1)))
12007 rtx inner_op0
= XEXP (op0
, 0);
12008 rtx inner_op1
= XEXP (op1
, 0);
12009 HOST_WIDE_INT c0
= INTVAL (XEXP (op0
, 1));
12010 HOST_WIDE_INT c1
= INTVAL (XEXP (op1
, 1));
12013 if (paradoxical_subreg_p (inner_op0
)
12014 && GET_CODE (inner_op1
) == SUBREG
12015 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0
)))
12016 && (GET_MODE (SUBREG_REG (inner_op0
))
12017 == GET_MODE (SUBREG_REG (inner_op1
)))
12018 && ((~c0
) & nonzero_bits (SUBREG_REG (inner_op0
),
12019 GET_MODE (SUBREG_REG (inner_op0
)))) == 0
12020 && ((~c1
) & nonzero_bits (SUBREG_REG (inner_op1
),
12021 GET_MODE (SUBREG_REG (inner_op1
)))) == 0)
12023 op0
= SUBREG_REG (inner_op0
);
12024 op1
= SUBREG_REG (inner_op1
);
12026 /* The resulting comparison is always unsigned since we masked
12027 off the original sign bit. */
12028 code
= unsigned_condition (code
);
12034 FOR_EACH_MODE_UNTIL (tmode
,
12035 as_a
<scalar_int_mode
> (GET_MODE (op0
)))
12036 if ((unsigned HOST_WIDE_INT
) c0
== GET_MODE_MASK (tmode
))
12038 op0
= gen_lowpart_or_truncate (tmode
, inner_op0
);
12039 op1
= gen_lowpart_or_truncate (tmode
, inner_op1
);
12040 code
= unsigned_condition (code
);
12049 /* If both operands are NOT, we can strip off the outer operation
12050 and adjust the comparison code for swapped operands; similarly for
12051 NEG, except that this must be an equality comparison. */
12052 else if ((GET_CODE (op0
) == NOT
&& GET_CODE (op1
) == NOT
)
12053 || (GET_CODE (op0
) == NEG
&& GET_CODE (op1
) == NEG
12054 && (code
== EQ
|| code
== NE
)))
12055 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0), code
= swap_condition (code
);
12061 /* If the first operand is a constant, swap the operands and adjust the
12062 comparison code appropriately, but don't do this if the second operand
12063 is already a constant integer. */
12064 if (swap_commutative_operands_p (op0
, op1
))
12066 std::swap (op0
, op1
);
12067 code
= swap_condition (code
);
12070 /* We now enter a loop during which we will try to simplify the comparison.
12071 For the most part, we only are concerned with comparisons with zero,
12072 but some things may really be comparisons with zero but not start
12073 out looking that way. */
12075 while (CONST_INT_P (op1
))
12077 machine_mode raw_mode
= GET_MODE (op0
);
12078 scalar_int_mode int_mode
;
12079 int equality_comparison_p
;
12080 int sign_bit_comparison_p
;
12081 int unsigned_comparison_p
;
12082 HOST_WIDE_INT const_op
;
12084 /* We only want to handle integral modes. This catches VOIDmode,
12085 CCmode, and the floating-point modes. An exception is that we
12086 can handle VOIDmode if OP0 is a COMPARE or a comparison
12089 if (GET_MODE_CLASS (raw_mode
) != MODE_INT
12090 && ! (raw_mode
== VOIDmode
12091 && (GET_CODE (op0
) == COMPARE
|| COMPARISON_P (op0
))))
12094 /* Try to simplify the compare to constant, possibly changing the
12095 comparison op, and/or changing op1 to zero. */
12096 code
= simplify_compare_const (code
, raw_mode
, op0
, &op1
);
12097 const_op
= INTVAL (op1
);
12099 /* Compute some predicates to simplify code below. */
12101 equality_comparison_p
= (code
== EQ
|| code
== NE
);
12102 sign_bit_comparison_p
= ((code
== LT
|| code
== GE
) && const_op
== 0);
12103 unsigned_comparison_p
= (code
== LTU
|| code
== LEU
|| code
== GTU
12106 /* If this is a sign bit comparison and we can do arithmetic in
12107 MODE, say that we will only be needing the sign bit of OP0. */
12108 if (sign_bit_comparison_p
12109 && is_a
<scalar_int_mode
> (raw_mode
, &int_mode
)
12110 && HWI_COMPUTABLE_MODE_P (int_mode
))
12111 op0
= force_to_mode (op0
, int_mode
,
12113 << (GET_MODE_PRECISION (int_mode
) - 1),
12116 if (COMPARISON_P (op0
))
12118 /* We can't do anything if OP0 is a condition code value, rather
12119 than an actual data value. */
12121 || GET_MODE_CLASS (GET_MODE (XEXP (op0
, 0))) == MODE_CC
)
12124 /* Get the two operands being compared. */
12125 if (GET_CODE (XEXP (op0
, 0)) == COMPARE
)
12126 tem
= XEXP (XEXP (op0
, 0), 0), tem1
= XEXP (XEXP (op0
, 0), 1);
12128 tem
= XEXP (op0
, 0), tem1
= XEXP (op0
, 1);
12130 /* Check for the cases where we simply want the result of the
12131 earlier test or the opposite of that result. */
12132 if (code
== NE
|| code
== EQ
12133 || (val_signbit_known_set_p (raw_mode
, STORE_FLAG_VALUE
)
12134 && (code
== LT
|| code
== GE
)))
12136 enum rtx_code new_code
;
12137 if (code
== LT
|| code
== NE
)
12138 new_code
= GET_CODE (op0
);
12140 new_code
= reversed_comparison_code (op0
, NULL
);
12142 if (new_code
!= UNKNOWN
)
12153 if (raw_mode
== VOIDmode
)
12155 scalar_int_mode mode
= as_a
<scalar_int_mode
> (raw_mode
);
12157 /* Now try cases based on the opcode of OP0. If none of the cases
12158 does a "continue", we exit this loop immediately after the
12161 unsigned int mode_width
= GET_MODE_PRECISION (mode
);
12162 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
12163 switch (GET_CODE (op0
))
12166 /* If we are extracting a single bit from a variable position in
12167 a constant that has only a single bit set and are comparing it
12168 with zero, we can convert this into an equality comparison
12169 between the position and the location of the single bit. */
12170 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12171 have already reduced the shift count modulo the word size. */
12172 if (!SHIFT_COUNT_TRUNCATED
12173 && CONST_INT_P (XEXP (op0
, 0))
12174 && XEXP (op0
, 1) == const1_rtx
12175 && equality_comparison_p
&& const_op
== 0
12176 && (i
= exact_log2 (UINTVAL (XEXP (op0
, 0)))) >= 0)
12178 if (BITS_BIG_ENDIAN
)
12179 i
= BITS_PER_WORD
- 1 - i
;
12181 op0
= XEXP (op0
, 2);
12185 /* Result is nonzero iff shift count is equal to I. */
12186 code
= reverse_condition (code
);
12193 tem
= expand_compound_operation (op0
);
12202 /* If testing for equality, we can take the NOT of the constant. */
12203 if (equality_comparison_p
12204 && (tem
= simplify_unary_operation (NOT
, mode
, op1
, mode
)) != 0)
12206 op0
= XEXP (op0
, 0);
12211 /* If just looking at the sign bit, reverse the sense of the
12213 if (sign_bit_comparison_p
)
12215 op0
= XEXP (op0
, 0);
12216 code
= (code
== GE
? LT
: GE
);
12222 /* If testing for equality, we can take the NEG of the constant. */
12223 if (equality_comparison_p
12224 && (tem
= simplify_unary_operation (NEG
, mode
, op1
, mode
)) != 0)
12226 op0
= XEXP (op0
, 0);
12231 /* The remaining cases only apply to comparisons with zero. */
12235 /* When X is ABS or is known positive,
12236 (neg X) is < 0 if and only if X != 0. */
12238 if (sign_bit_comparison_p
12239 && (GET_CODE (XEXP (op0
, 0)) == ABS
12240 || (mode_width
<= HOST_BITS_PER_WIDE_INT
12241 && (nonzero_bits (XEXP (op0
, 0), mode
)
12242 & (HOST_WIDE_INT_1U
<< (mode_width
- 1)))
12245 op0
= XEXP (op0
, 0);
12246 code
= (code
== LT
? NE
: EQ
);
12250 /* If we have NEG of something whose two high-order bits are the
12251 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12252 if (num_sign_bit_copies (op0
, mode
) >= 2)
12254 op0
= XEXP (op0
, 0);
12255 code
= swap_condition (code
);
12261 /* If we are testing equality and our count is a constant, we
12262 can perform the inverse operation on our RHS. */
12263 if (equality_comparison_p
&& CONST_INT_P (XEXP (op0
, 1))
12264 && (tem
= simplify_binary_operation (ROTATERT
, mode
,
12265 op1
, XEXP (op0
, 1))) != 0)
12267 op0
= XEXP (op0
, 0);
12272 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12273 a particular bit. Convert it to an AND of a constant of that
12274 bit. This will be converted into a ZERO_EXTRACT. */
12275 if (const_op
== 0 && sign_bit_comparison_p
12276 && CONST_INT_P (XEXP (op0
, 1))
12277 && mode_width
<= HOST_BITS_PER_WIDE_INT
12278 && UINTVAL (XEXP (op0
, 1)) < mode_width
)
12280 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
12283 - INTVAL (XEXP (op0
, 1)))));
12284 code
= (code
== LT
? NE
: EQ
);
12288 /* Fall through. */
12291 /* ABS is ignorable inside an equality comparison with zero. */
12292 if (const_op
== 0 && equality_comparison_p
)
12294 op0
= XEXP (op0
, 0);
12300 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12301 (compare FOO CONST) if CONST fits in FOO's mode and we
12302 are either testing inequality or have an unsigned
12303 comparison with ZERO_EXTEND or a signed comparison with
12304 SIGN_EXTEND. But don't do it if we don't have a compare
12305 insn of the given mode, since we'd have to revert it
12306 later on, and then we wouldn't know whether to sign- or
12308 if (is_int_mode (GET_MODE (XEXP (op0
, 0)), &mode
)
12309 && ! unsigned_comparison_p
12310 && HWI_COMPUTABLE_MODE_P (mode
)
12311 && trunc_int_for_mode (const_op
, mode
) == const_op
12312 && have_insn_for (COMPARE
, mode
))
12314 op0
= XEXP (op0
, 0);
12320 /* Check for the case where we are comparing A - C1 with C2, that is
12322 (subreg:MODE (plus (A) (-C1))) op (C2)
12324 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12325 comparison in the wider mode. One of the following two conditions
12326 must be true in order for this to be valid:
12328 1. The mode extension results in the same bit pattern being added
12329 on both sides and the comparison is equality or unsigned. As
12330 C2 has been truncated to fit in MODE, the pattern can only be
12333 2. The mode extension results in the sign bit being copied on
12336 The difficulty here is that we have predicates for A but not for
12337 (A - C1) so we need to check that C1 is within proper bounds so
12338 as to perturbate A as little as possible. */
12340 if (mode_width
<= HOST_BITS_PER_WIDE_INT
12341 && subreg_lowpart_p (op0
)
12342 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (op0
)),
12344 && GET_MODE_PRECISION (inner_mode
) > mode_width
12345 && GET_CODE (SUBREG_REG (op0
)) == PLUS
12346 && CONST_INT_P (XEXP (SUBREG_REG (op0
), 1)))
12348 rtx a
= XEXP (SUBREG_REG (op0
), 0);
12349 HOST_WIDE_INT c1
= -INTVAL (XEXP (SUBREG_REG (op0
), 1));
12352 && (unsigned HOST_WIDE_INT
) c1
12353 < HOST_WIDE_INT_1U
<< (mode_width
- 1)
12354 && (equality_comparison_p
|| unsigned_comparison_p
)
12355 /* (A - C1) zero-extends if it is positive and sign-extends
12356 if it is negative, C2 both zero- and sign-extends. */
12357 && (((nonzero_bits (a
, inner_mode
)
12358 & ~GET_MODE_MASK (mode
)) == 0
12360 /* (A - C1) sign-extends if it is positive and 1-extends
12361 if it is negative, C2 both sign- and 1-extends. */
12362 || (num_sign_bit_copies (a
, inner_mode
)
12363 > (unsigned int) (GET_MODE_PRECISION (inner_mode
)
12366 || ((unsigned HOST_WIDE_INT
) c1
12367 < HOST_WIDE_INT_1U
<< (mode_width
- 2)
12368 /* (A - C1) always sign-extends, like C2. */
12369 && num_sign_bit_copies (a
, inner_mode
)
12370 > (unsigned int) (GET_MODE_PRECISION (inner_mode
)
12371 - (mode_width
- 1))))
12373 op0
= SUBREG_REG (op0
);
12378 /* If the inner mode is narrower and we are extracting the low part,
12379 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12380 if (paradoxical_subreg_p (op0
))
12382 else if (subreg_lowpart_p (op0
)
12383 && GET_MODE_CLASS (mode
) == MODE_INT
12384 && is_int_mode (GET_MODE (SUBREG_REG (op0
)), &inner_mode
)
12385 && (code
== NE
|| code
== EQ
)
12386 && GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
12387 && !paradoxical_subreg_p (op0
)
12388 && (nonzero_bits (SUBREG_REG (op0
), inner_mode
)
12389 & ~GET_MODE_MASK (mode
)) == 0)
12391 /* Remove outer subregs that don't do anything. */
12392 tem
= gen_lowpart (inner_mode
, op1
);
12394 if ((nonzero_bits (tem
, inner_mode
)
12395 & ~GET_MODE_MASK (mode
)) == 0)
12397 op0
= SUBREG_REG (op0
);
12409 if (is_int_mode (GET_MODE (XEXP (op0
, 0)), &mode
)
12410 && (unsigned_comparison_p
|| equality_comparison_p
)
12411 && HWI_COMPUTABLE_MODE_P (mode
)
12412 && (unsigned HOST_WIDE_INT
) const_op
<= GET_MODE_MASK (mode
)
12414 && have_insn_for (COMPARE
, mode
))
12416 op0
= XEXP (op0
, 0);
12422 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12423 this for equality comparisons due to pathological cases involving
12425 if (equality_comparison_p
12426 && (tem
= simplify_binary_operation (MINUS
, mode
,
12427 op1
, XEXP (op0
, 1))) != 0)
12429 op0
= XEXP (op0
, 0);
12434 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12435 if (const_op
== 0 && XEXP (op0
, 1) == constm1_rtx
12436 && GET_CODE (XEXP (op0
, 0)) == ABS
&& sign_bit_comparison_p
)
12438 op0
= XEXP (XEXP (op0
, 0), 0);
12439 code
= (code
== LT
? EQ
: NE
);
12445 /* We used to optimize signed comparisons against zero, but that
12446 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12447 arrive here as equality comparisons, or (GEU, LTU) are
12448 optimized away. No need to special-case them. */
12450 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12451 (eq B (minus A C)), whichever simplifies. We can only do
12452 this for equality comparisons due to pathological cases involving
12454 if (equality_comparison_p
12455 && (tem
= simplify_binary_operation (PLUS
, mode
,
12456 XEXP (op0
, 1), op1
)) != 0)
12458 op0
= XEXP (op0
, 0);
12463 if (equality_comparison_p
12464 && (tem
= simplify_binary_operation (MINUS
, mode
,
12465 XEXP (op0
, 0), op1
)) != 0)
12467 op0
= XEXP (op0
, 1);
12472 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12473 of bits in X minus 1, is one iff X > 0. */
12474 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == ASHIFTRT
12475 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
12476 && UINTVAL (XEXP (XEXP (op0
, 0), 1)) == mode_width
- 1
12477 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
12479 op0
= XEXP (op0
, 1);
12480 code
= (code
== GE
? LE
: GT
);
12486 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12487 if C is zero or B is a constant. */
12488 if (equality_comparison_p
12489 && (tem
= simplify_binary_operation (XOR
, mode
,
12490 XEXP (op0
, 1), op1
)) != 0)
12492 op0
= XEXP (op0
, 0);
12500 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12502 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == PLUS
12503 && XEXP (XEXP (op0
, 0), 1) == constm1_rtx
12504 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
12506 op0
= XEXP (op0
, 1);
12507 code
= (code
== GE
? GT
: LE
);
12513 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12514 will be converted to a ZERO_EXTRACT later. */
12515 if (const_op
== 0 && equality_comparison_p
12516 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
12517 && XEXP (XEXP (op0
, 0), 0) == const1_rtx
)
12519 op0
= gen_rtx_LSHIFTRT (mode
, XEXP (op0
, 1),
12520 XEXP (XEXP (op0
, 0), 1));
12521 op0
= simplify_and_const_int (NULL_RTX
, mode
, op0
, 1);
12525 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12526 zero and X is a comparison and C1 and C2 describe only bits set
12527 in STORE_FLAG_VALUE, we can compare with X. */
12528 if (const_op
== 0 && equality_comparison_p
12529 && mode_width
<= HOST_BITS_PER_WIDE_INT
12530 && CONST_INT_P (XEXP (op0
, 1))
12531 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
12532 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
12533 && INTVAL (XEXP (XEXP (op0
, 0), 1)) >= 0
12534 && INTVAL (XEXP (XEXP (op0
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
12536 mask
= ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
12537 << INTVAL (XEXP (XEXP (op0
, 0), 1)));
12538 if ((~STORE_FLAG_VALUE
& mask
) == 0
12539 && (COMPARISON_P (XEXP (XEXP (op0
, 0), 0))
12540 || ((tem
= get_last_value (XEXP (XEXP (op0
, 0), 0))) != 0
12541 && COMPARISON_P (tem
))))
12543 op0
= XEXP (XEXP (op0
, 0), 0);
12548 /* If we are doing an equality comparison of an AND of a bit equal
12549 to the sign bit, replace this with a LT or GE comparison of
12550 the underlying value. */
12551 if (equality_comparison_p
12553 && CONST_INT_P (XEXP (op0
, 1))
12554 && mode_width
<= HOST_BITS_PER_WIDE_INT
12555 && ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
12556 == HOST_WIDE_INT_1U
<< (mode_width
- 1)))
12558 op0
= XEXP (op0
, 0);
12559 code
= (code
== EQ
? GE
: LT
);
12563 /* If this AND operation is really a ZERO_EXTEND from a narrower
12564 mode, the constant fits within that mode, and this is either an
12565 equality or unsigned comparison, try to do this comparison in
12570 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12571 -> (ne:DI (reg:SI 4) (const_int 0))
12573 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12574 known to hold a value of the required mode the
12575 transformation is invalid. */
12576 if ((equality_comparison_p
|| unsigned_comparison_p
)
12577 && CONST_INT_P (XEXP (op0
, 1))
12578 && (i
= exact_log2 ((UINTVAL (XEXP (op0
, 1))
12579 & GET_MODE_MASK (mode
))
12581 && const_op
>> i
== 0
12582 && int_mode_for_size (i
, 1).exists (&tmode
))
12584 op0
= gen_lowpart_or_truncate (tmode
, XEXP (op0
, 0));
12588 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12589 fits in both M1 and M2 and the SUBREG is either paradoxical
12590 or represents the low part, permute the SUBREG and the AND
12592 if (GET_CODE (XEXP (op0
, 0)) == SUBREG
12593 && CONST_INT_P (XEXP (op0
, 1)))
12595 unsigned HOST_WIDE_INT c1
= INTVAL (XEXP (op0
, 1));
12596 /* Require an integral mode, to avoid creating something like
12598 if ((is_a
<scalar_int_mode
>
12599 (GET_MODE (SUBREG_REG (XEXP (op0
, 0))), &tmode
))
12600 /* It is unsafe to commute the AND into the SUBREG if the
12601 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12602 not defined. As originally written the upper bits
12603 have a defined value due to the AND operation.
12604 However, if we commute the AND inside the SUBREG then
12605 they no longer have defined values and the meaning of
12606 the code has been changed.
12607 Also C1 should not change value in the smaller mode,
12608 see PR67028 (a positive C1 can become negative in the
12609 smaller mode, so that the AND does no longer mask the
12611 && ((WORD_REGISTER_OPERATIONS
12612 && mode_width
> GET_MODE_PRECISION (tmode
)
12613 && mode_width
<= BITS_PER_WORD
12614 && trunc_int_for_mode (c1
, tmode
) == (HOST_WIDE_INT
) c1
)
12615 || (mode_width
<= GET_MODE_PRECISION (tmode
)
12616 && subreg_lowpart_p (XEXP (op0
, 0))))
12617 && mode_width
<= HOST_BITS_PER_WIDE_INT
12618 && HWI_COMPUTABLE_MODE_P (tmode
)
12619 && (c1
& ~mask
) == 0
12620 && (c1
& ~GET_MODE_MASK (tmode
)) == 0
12622 && c1
!= GET_MODE_MASK (tmode
))
12624 op0
= simplify_gen_binary (AND
, tmode
,
12625 SUBREG_REG (XEXP (op0
, 0)),
12626 gen_int_mode (c1
, tmode
));
12627 op0
= gen_lowpart (mode
, op0
);
12632 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12633 if (const_op
== 0 && equality_comparison_p
12634 && XEXP (op0
, 1) == const1_rtx
12635 && GET_CODE (XEXP (op0
, 0)) == NOT
)
12637 op0
= simplify_and_const_int (NULL_RTX
, mode
,
12638 XEXP (XEXP (op0
, 0), 0), 1);
12639 code
= (code
== NE
? EQ
: NE
);
12643 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12644 (eq (and (lshiftrt X) 1) 0).
12645 Also handle the case where (not X) is expressed using xor. */
12646 if (const_op
== 0 && equality_comparison_p
12647 && XEXP (op0
, 1) == const1_rtx
12648 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
)
12650 rtx shift_op
= XEXP (XEXP (op0
, 0), 0);
12651 rtx shift_count
= XEXP (XEXP (op0
, 0), 1);
12653 if (GET_CODE (shift_op
) == NOT
12654 || (GET_CODE (shift_op
) == XOR
12655 && CONST_INT_P (XEXP (shift_op
, 1))
12656 && CONST_INT_P (shift_count
)
12657 && HWI_COMPUTABLE_MODE_P (mode
)
12658 && (UINTVAL (XEXP (shift_op
, 1))
12659 == HOST_WIDE_INT_1U
12660 << INTVAL (shift_count
))))
12663 = gen_rtx_LSHIFTRT (mode
, XEXP (shift_op
, 0), shift_count
);
12664 op0
= simplify_and_const_int (NULL_RTX
, mode
, op0
, 1);
12665 code
= (code
== NE
? EQ
: NE
);
12672 /* If we have (compare (ashift FOO N) (const_int C)) and
12673 the high order N bits of FOO (N+1 if an inequality comparison)
12674 are known to be zero, we can do this by comparing FOO with C
12675 shifted right N bits so long as the low-order N bits of C are
12677 if (CONST_INT_P (XEXP (op0
, 1))
12678 && INTVAL (XEXP (op0
, 1)) >= 0
12679 && ((INTVAL (XEXP (op0
, 1)) + ! equality_comparison_p
)
12680 < HOST_BITS_PER_WIDE_INT
)
12681 && (((unsigned HOST_WIDE_INT
) const_op
12682 & ((HOST_WIDE_INT_1U
<< INTVAL (XEXP (op0
, 1)))
12684 && mode_width
<= HOST_BITS_PER_WIDE_INT
12685 && (nonzero_bits (XEXP (op0
, 0), mode
)
12686 & ~(mask
>> (INTVAL (XEXP (op0
, 1))
12687 + ! equality_comparison_p
))) == 0)
12689 /* We must perform a logical shift, not an arithmetic one,
12690 as we want the top N bits of C to be zero. */
12691 unsigned HOST_WIDE_INT temp
= const_op
& GET_MODE_MASK (mode
);
12693 temp
>>= INTVAL (XEXP (op0
, 1));
12694 op1
= gen_int_mode (temp
, mode
);
12695 op0
= XEXP (op0
, 0);
12699 /* If we are doing a sign bit comparison, it means we are testing
12700 a particular bit. Convert it to the appropriate AND. */
12701 if (sign_bit_comparison_p
&& CONST_INT_P (XEXP (op0
, 1))
12702 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
12704 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
12707 - INTVAL (XEXP (op0
, 1)))));
12708 code
= (code
== LT
? NE
: EQ
);
12712 /* If this an equality comparison with zero and we are shifting
12713 the low bit to the sign bit, we can convert this to an AND of the
12715 if (const_op
== 0 && equality_comparison_p
12716 && CONST_INT_P (XEXP (op0
, 1))
12717 && UINTVAL (XEXP (op0
, 1)) == mode_width
- 1)
12719 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0), 1);
12725 /* If this is an equality comparison with zero, we can do this
12726 as a logical shift, which might be much simpler. */
12727 if (equality_comparison_p
&& const_op
== 0
12728 && CONST_INT_P (XEXP (op0
, 1)))
12730 op0
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
,
12732 INTVAL (XEXP (op0
, 1)));
12736 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12737 do the comparison in a narrower mode. */
12738 if (! unsigned_comparison_p
12739 && CONST_INT_P (XEXP (op0
, 1))
12740 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
12741 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
12742 && (int_mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)), 1)
12744 && (((unsigned HOST_WIDE_INT
) const_op
12745 + (GET_MODE_MASK (tmode
) >> 1) + 1)
12746 <= GET_MODE_MASK (tmode
)))
12748 op0
= gen_lowpart (tmode
, XEXP (XEXP (op0
, 0), 0));
12752 /* Likewise if OP0 is a PLUS of a sign extension with a
12753 constant, which is usually represented with the PLUS
12754 between the shifts. */
12755 if (! unsigned_comparison_p
12756 && CONST_INT_P (XEXP (op0
, 1))
12757 && GET_CODE (XEXP (op0
, 0)) == PLUS
12758 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
12759 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == ASHIFT
12760 && XEXP (op0
, 1) == XEXP (XEXP (XEXP (op0
, 0), 0), 1)
12761 && (int_mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)), 1)
12763 && (((unsigned HOST_WIDE_INT
) const_op
12764 + (GET_MODE_MASK (tmode
) >> 1) + 1)
12765 <= GET_MODE_MASK (tmode
)))
12767 rtx inner
= XEXP (XEXP (XEXP (op0
, 0), 0), 0);
12768 rtx add_const
= XEXP (XEXP (op0
, 0), 1);
12769 rtx new_const
= simplify_gen_binary (ASHIFTRT
, mode
,
12770 add_const
, XEXP (op0
, 1));
12772 op0
= simplify_gen_binary (PLUS
, tmode
,
12773 gen_lowpart (tmode
, inner
),
12780 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12781 the low order N bits of FOO are known to be zero, we can do this
12782 by comparing FOO with C shifted left N bits so long as no
12783 overflow occurs. Even if the low order N bits of FOO aren't known
12784 to be zero, if the comparison is >= or < we can use the same
12785 optimization and for > or <= by setting all the low
12786 order N bits in the comparison constant. */
12787 if (CONST_INT_P (XEXP (op0
, 1))
12788 && INTVAL (XEXP (op0
, 1)) > 0
12789 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
12790 && mode_width
<= HOST_BITS_PER_WIDE_INT
12791 && (((unsigned HOST_WIDE_INT
) const_op
12792 + (GET_CODE (op0
) != LSHIFTRT
12793 ? ((GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1)) >> 1)
12796 <= GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1))))
12798 unsigned HOST_WIDE_INT low_bits
12799 = (nonzero_bits (XEXP (op0
, 0), mode
)
12800 & ((HOST_WIDE_INT_1U
12801 << INTVAL (XEXP (op0
, 1))) - 1));
12802 if (low_bits
== 0 || !equality_comparison_p
)
12804 /* If the shift was logical, then we must make the condition
12806 if (GET_CODE (op0
) == LSHIFTRT
)
12807 code
= unsigned_condition (code
);
12809 const_op
= (unsigned HOST_WIDE_INT
) const_op
12810 << INTVAL (XEXP (op0
, 1));
12812 && (code
== GT
|| code
== GTU
12813 || code
== LE
|| code
== LEU
))
12815 |= ((HOST_WIDE_INT_1
<< INTVAL (XEXP (op0
, 1))) - 1);
12816 op1
= GEN_INT (const_op
);
12817 op0
= XEXP (op0
, 0);
12822 /* If we are using this shift to extract just the sign bit, we
12823 can replace this with an LT or GE comparison. */
12825 && (equality_comparison_p
|| sign_bit_comparison_p
)
12826 && CONST_INT_P (XEXP (op0
, 1))
12827 && UINTVAL (XEXP (op0
, 1)) == mode_width
- 1)
12829 op0
= XEXP (op0
, 0);
12830 code
= (code
== NE
|| code
== GT
? LT
: GE
);
12842 /* Now make any compound operations involved in this comparison. Then,
12843 check for an outmost SUBREG on OP0 that is not doing anything or is
12844 paradoxical. The latter transformation must only be performed when
12845 it is known that the "extra" bits will be the same in op0 and op1 or
12846 that they don't matter. There are three cases to consider:
12848 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12849 care bits and we can assume they have any convenient value. So
12850 making the transformation is safe.
12852 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12853 In this case the upper bits of op0 are undefined. We should not make
12854 the simplification in that case as we do not know the contents of
12857 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12858 In that case we know those bits are zeros or ones. We must also be
12859 sure that they are the same as the upper bits of op1.
12861 We can never remove a SUBREG for a non-equality comparison because
12862 the sign bit is in a different place in the underlying object. */
12864 rtx_code op0_mco_code
= SET
;
12865 if (op1
== const0_rtx
)
12866 op0_mco_code
= code
== NE
|| code
== EQ
? EQ
: COMPARE
;
12868 op0
= make_compound_operation (op0
, op0_mco_code
);
12869 op1
= make_compound_operation (op1
, SET
);
12871 if (GET_CODE (op0
) == SUBREG
&& subreg_lowpart_p (op0
)
12872 && is_int_mode (GET_MODE (op0
), &mode
)
12873 && is_int_mode (GET_MODE (SUBREG_REG (op0
)), &inner_mode
)
12874 && (code
== NE
|| code
== EQ
))
12876 if (paradoxical_subreg_p (op0
))
12878 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12880 if (REG_P (SUBREG_REG (op0
)))
12882 op0
= SUBREG_REG (op0
);
12883 op1
= gen_lowpart (inner_mode
, op1
);
12886 else if (GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
12887 && (nonzero_bits (SUBREG_REG (op0
), inner_mode
)
12888 & ~GET_MODE_MASK (mode
)) == 0)
12890 tem
= gen_lowpart (inner_mode
, op1
);
12892 if ((nonzero_bits (tem
, inner_mode
) & ~GET_MODE_MASK (mode
)) == 0)
12893 op0
= SUBREG_REG (op0
), op1
= tem
;
12897 /* We now do the opposite procedure: Some machines don't have compare
12898 insns in all modes. If OP0's mode is an integer mode smaller than a
12899 word and we can't do a compare in that mode, see if there is a larger
12900 mode for which we can do the compare. There are a number of cases in
12901 which we can use the wider mode. */
12903 if (is_int_mode (GET_MODE (op0
), &mode
)
12904 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
12905 && ! have_insn_for (COMPARE
, mode
))
12906 FOR_EACH_WIDER_MODE (tmode_iter
, mode
)
12908 tmode
= tmode_iter
.require ();
12909 if (!HWI_COMPUTABLE_MODE_P (tmode
))
12911 if (have_insn_for (COMPARE
, tmode
))
12915 /* If this is a test for negative, we can make an explicit
12916 test of the sign bit. Test this first so we can use
12917 a paradoxical subreg to extend OP0. */
12919 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
12920 && HWI_COMPUTABLE_MODE_P (mode
))
12922 unsigned HOST_WIDE_INT sign
12923 = HOST_WIDE_INT_1U
<< (GET_MODE_BITSIZE (mode
) - 1);
12924 op0
= simplify_gen_binary (AND
, tmode
,
12925 gen_lowpart (tmode
, op0
),
12926 gen_int_mode (sign
, tmode
));
12927 code
= (code
== LT
) ? NE
: EQ
;
12931 /* If the only nonzero bits in OP0 and OP1 are those in the
12932 narrower mode and this is an equality or unsigned comparison,
12933 we can use the wider mode. Similarly for sign-extended
12934 values, in which case it is true for all comparisons. */
12935 zero_extended
= ((code
== EQ
|| code
== NE
12936 || code
== GEU
|| code
== GTU
12937 || code
== LEU
|| code
== LTU
)
12938 && (nonzero_bits (op0
, tmode
)
12939 & ~GET_MODE_MASK (mode
)) == 0
12940 && ((CONST_INT_P (op1
)
12941 || (nonzero_bits (op1
, tmode
)
12942 & ~GET_MODE_MASK (mode
)) == 0)));
12945 || ((num_sign_bit_copies (op0
, tmode
)
12946 > (unsigned int) (GET_MODE_PRECISION (tmode
)
12947 - GET_MODE_PRECISION (mode
)))
12948 && (num_sign_bit_copies (op1
, tmode
)
12949 > (unsigned int) (GET_MODE_PRECISION (tmode
)
12950 - GET_MODE_PRECISION (mode
)))))
12952 /* If OP0 is an AND and we don't have an AND in MODE either,
12953 make a new AND in the proper mode. */
12954 if (GET_CODE (op0
) == AND
12955 && !have_insn_for (AND
, mode
))
12956 op0
= simplify_gen_binary (AND
, tmode
,
12957 gen_lowpart (tmode
,
12959 gen_lowpart (tmode
,
12965 op0
= simplify_gen_unary (ZERO_EXTEND
, tmode
,
12967 op1
= simplify_gen_unary (ZERO_EXTEND
, tmode
,
12972 op0
= simplify_gen_unary (SIGN_EXTEND
, tmode
,
12974 op1
= simplify_gen_unary (SIGN_EXTEND
, tmode
,
12983 /* We may have changed the comparison operands. Re-canonicalize. */
12984 if (swap_commutative_operands_p (op0
, op1
))
12986 std::swap (op0
, op1
);
12987 code
= swap_condition (code
);
12990 /* If this machine only supports a subset of valid comparisons, see if we
12991 can convert an unsupported one into a supported one. */
12992 target_canonicalize_comparison (&code
, &op0
, &op1
, 0);
13000 /* Utility function for record_value_for_reg. Count number of
13005 enum rtx_code code
= GET_CODE (x
);
13009 if (GET_RTX_CLASS (code
) == RTX_BIN_ARITH
13010 || GET_RTX_CLASS (code
) == RTX_COMM_ARITH
)
13012 rtx x0
= XEXP (x
, 0);
13013 rtx x1
= XEXP (x
, 1);
13016 return 1 + 2 * count_rtxs (x0
);
13018 if ((GET_RTX_CLASS (GET_CODE (x1
)) == RTX_BIN_ARITH
13019 || GET_RTX_CLASS (GET_CODE (x1
)) == RTX_COMM_ARITH
)
13020 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
13021 return 2 + 2 * count_rtxs (x0
)
13022 + count_rtxs (x
== XEXP (x1
, 0)
13023 ? XEXP (x1
, 1) : XEXP (x1
, 0));
13025 if ((GET_RTX_CLASS (GET_CODE (x0
)) == RTX_BIN_ARITH
13026 || GET_RTX_CLASS (GET_CODE (x0
)) == RTX_COMM_ARITH
)
13027 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
13028 return 2 + 2 * count_rtxs (x1
)
13029 + count_rtxs (x
== XEXP (x0
, 0)
13030 ? XEXP (x0
, 1) : XEXP (x0
, 0));
13033 fmt
= GET_RTX_FORMAT (code
);
13034 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
13036 ret
+= count_rtxs (XEXP (x
, i
));
13037 else if (fmt
[i
] == 'E')
13038 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13039 ret
+= count_rtxs (XVECEXP (x
, i
, j
));
13044 /* Utility function for following routine. Called when X is part of a value
13045 being stored into last_set_value. Sets last_set_table_tick
13046 for each register mentioned. Similar to mention_regs in cse.c */
13049 update_table_tick (rtx x
)
13051 enum rtx_code code
= GET_CODE (x
);
13052 const char *fmt
= GET_RTX_FORMAT (code
);
13057 unsigned int regno
= REGNO (x
);
13058 unsigned int endregno
= END_REGNO (x
);
13061 for (r
= regno
; r
< endregno
; r
++)
13063 reg_stat_type
*rsp
= ®_stat
[r
];
13064 rsp
->last_set_table_tick
= label_tick
;
13070 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
13073 /* Check for identical subexpressions. If x contains
13074 identical subexpression we only have to traverse one of
13076 if (i
== 0 && ARITHMETIC_P (x
))
13078 /* Note that at this point x1 has already been
13080 rtx x0
= XEXP (x
, 0);
13081 rtx x1
= XEXP (x
, 1);
13083 /* If x0 and x1 are identical then there is no need to
13088 /* If x0 is identical to a subexpression of x1 then while
13089 processing x1, x0 has already been processed. Thus we
13090 are done with x. */
13091 if (ARITHMETIC_P (x1
)
13092 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
13095 /* If x1 is identical to a subexpression of x0 then we
13096 still have to process the rest of x0. */
13097 if (ARITHMETIC_P (x0
)
13098 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
13100 update_table_tick (XEXP (x0
, x1
== XEXP (x0
, 0) ? 1 : 0));
13105 update_table_tick (XEXP (x
, i
));
13107 else if (fmt
[i
] == 'E')
13108 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13109 update_table_tick (XVECEXP (x
, i
, j
));
13112 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13113 are saying that the register is clobbered and we no longer know its
13114 value. If INSN is zero, don't update reg_stat[].last_set; this is
13115 only permitted with VALUE also zero and is used to invalidate the
13119 record_value_for_reg (rtx reg
, rtx_insn
*insn
, rtx value
)
13121 unsigned int regno
= REGNO (reg
);
13122 unsigned int endregno
= END_REGNO (reg
);
13124 reg_stat_type
*rsp
;
13126 /* If VALUE contains REG and we have a previous value for REG, substitute
13127 the previous value. */
13128 if (value
&& insn
&& reg_overlap_mentioned_p (reg
, value
))
13132 /* Set things up so get_last_value is allowed to see anything set up to
13134 subst_low_luid
= DF_INSN_LUID (insn
);
13135 tem
= get_last_value (reg
);
13137 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13138 it isn't going to be useful and will take a lot of time to process,
13139 so just use the CLOBBER. */
13143 if (ARITHMETIC_P (tem
)
13144 && GET_CODE (XEXP (tem
, 0)) == CLOBBER
13145 && GET_CODE (XEXP (tem
, 1)) == CLOBBER
)
13146 tem
= XEXP (tem
, 0);
13147 else if (count_occurrences (value
, reg
, 1) >= 2)
13149 /* If there are two or more occurrences of REG in VALUE,
13150 prevent the value from growing too much. */
13151 if (count_rtxs (tem
) > param_max_last_value_rtl
)
13152 tem
= gen_rtx_CLOBBER (GET_MODE (tem
), const0_rtx
);
13155 value
= replace_rtx (copy_rtx (value
), reg
, tem
);
13159 /* For each register modified, show we don't know its value, that
13160 we don't know about its bitwise content, that its value has been
13161 updated, and that we don't know the location of the death of the
13163 for (i
= regno
; i
< endregno
; i
++)
13165 rsp
= ®_stat
[i
];
13168 rsp
->last_set
= insn
;
13170 rsp
->last_set_value
= 0;
13171 rsp
->last_set_mode
= VOIDmode
;
13172 rsp
->last_set_nonzero_bits
= 0;
13173 rsp
->last_set_sign_bit_copies
= 0;
13174 rsp
->last_death
= 0;
13175 rsp
->truncated_to_mode
= VOIDmode
;
13178 /* Mark registers that are being referenced in this value. */
13180 update_table_tick (value
);
13182 /* Now update the status of each register being set.
13183 If someone is using this register in this block, set this register
13184 to invalid since we will get confused between the two lives in this
13185 basic block. This makes using this register always invalid. In cse, we
13186 scan the table to invalidate all entries using this register, but this
13187 is too much work for us. */
13189 for (i
= regno
; i
< endregno
; i
++)
13191 rsp
= ®_stat
[i
];
13192 rsp
->last_set_label
= label_tick
;
13194 || (value
&& rsp
->last_set_table_tick
>= label_tick_ebb_start
))
13195 rsp
->last_set_invalid
= 1;
13197 rsp
->last_set_invalid
= 0;
13200 /* The value being assigned might refer to X (like in "x++;"). In that
13201 case, we must replace it with (clobber (const_int 0)) to prevent
13203 rsp
= ®_stat
[regno
];
13204 if (value
&& !get_last_value_validate (&value
, insn
, label_tick
, 0))
13206 value
= copy_rtx (value
);
13207 if (!get_last_value_validate (&value
, insn
, label_tick
, 1))
13211 /* For the main register being modified, update the value, the mode, the
13212 nonzero bits, and the number of sign bit copies. */
13214 rsp
->last_set_value
= value
;
13218 machine_mode mode
= GET_MODE (reg
);
13219 subst_low_luid
= DF_INSN_LUID (insn
);
13220 rsp
->last_set_mode
= mode
;
13221 if (GET_MODE_CLASS (mode
) == MODE_INT
13222 && HWI_COMPUTABLE_MODE_P (mode
))
13223 mode
= nonzero_bits_mode
;
13224 rsp
->last_set_nonzero_bits
= nonzero_bits (value
, mode
);
13225 rsp
->last_set_sign_bit_copies
13226 = num_sign_bit_copies (value
, GET_MODE (reg
));
13230 /* Called via note_stores from record_dead_and_set_regs to handle one
13231 SET or CLOBBER in an insn. DATA is the instruction in which the
13232 set is occurring. */
13235 record_dead_and_set_regs_1 (rtx dest
, const_rtx setter
, void *data
)
13237 rtx_insn
*record_dead_insn
= (rtx_insn
*) data
;
13239 if (GET_CODE (dest
) == SUBREG
)
13240 dest
= SUBREG_REG (dest
);
13242 if (!record_dead_insn
)
13245 record_value_for_reg (dest
, NULL
, NULL_RTX
);
13251 /* If we are setting the whole register, we know its value. Otherwise
13252 show that we don't know the value. We can handle a SUBREG if it's
13253 the low part, but we must be careful with paradoxical SUBREGs on
13254 RISC architectures because we cannot strip e.g. an extension around
13255 a load and record the naked load since the RTL middle-end considers
13256 that the upper bits are defined according to LOAD_EXTEND_OP. */
13257 if (GET_CODE (setter
) == SET
&& dest
== SET_DEST (setter
))
13258 record_value_for_reg (dest
, record_dead_insn
, SET_SRC (setter
));
13259 else if (GET_CODE (setter
) == SET
13260 && GET_CODE (SET_DEST (setter
)) == SUBREG
13261 && SUBREG_REG (SET_DEST (setter
)) == dest
13262 && known_le (GET_MODE_PRECISION (GET_MODE (dest
)),
13264 && subreg_lowpart_p (SET_DEST (setter
)))
13265 record_value_for_reg (dest
, record_dead_insn
,
13266 WORD_REGISTER_OPERATIONS
13267 && word_register_operation_p (SET_SRC (setter
))
13268 && paradoxical_subreg_p (SET_DEST (setter
))
13270 : gen_lowpart (GET_MODE (dest
),
13271 SET_SRC (setter
)));
13273 record_value_for_reg (dest
, record_dead_insn
, NULL_RTX
);
13275 else if (MEM_P (dest
)
13276 /* Ignore pushes, they clobber nothing. */
13277 && ! push_operand (dest
, GET_MODE (dest
)))
13278 mem_last_set
= DF_INSN_LUID (record_dead_insn
);
13281 /* Update the records of when each REG was most recently set or killed
13282 for the things done by INSN. This is the last thing done in processing
13283 INSN in the combiner loop.
13285 We update reg_stat[], in particular fields last_set, last_set_value,
13286 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13287 last_death, and also the similar information mem_last_set (which insn
13288 most recently modified memory) and last_call_luid (which insn was the
13289 most recent subroutine call). */
13292 record_dead_and_set_regs (rtx_insn
*insn
)
13297 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
13299 if (REG_NOTE_KIND (link
) == REG_DEAD
13300 && REG_P (XEXP (link
, 0)))
13302 unsigned int regno
= REGNO (XEXP (link
, 0));
13303 unsigned int endregno
= END_REGNO (XEXP (link
, 0));
13305 for (i
= regno
; i
< endregno
; i
++)
13307 reg_stat_type
*rsp
;
13309 rsp
= ®_stat
[i
];
13310 rsp
->last_death
= insn
;
13313 else if (REG_NOTE_KIND (link
) == REG_INC
)
13314 record_value_for_reg (XEXP (link
, 0), insn
, NULL_RTX
);
13319 HARD_REG_SET callee_clobbers
13320 = insn_callee_abi (insn
).full_and_partial_reg_clobbers ();
13321 hard_reg_set_iterator hrsi
;
13322 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers
, 0, i
, hrsi
)
13324 reg_stat_type
*rsp
;
13326 /* ??? We could try to preserve some information from the last
13327 set of register I if the call doesn't actually clobber
13328 (reg:last_set_mode I), which might be true for ABIs with
13329 partial clobbers. However, it would be difficult to
13330 update last_set_nonzero_bits and last_sign_bit_copies
13331 to account for the part of I that actually was clobbered.
13332 It wouldn't help much anyway, since we rarely see this
13333 situation before RA. */
13334 rsp
= ®_stat
[i
];
13335 rsp
->last_set_invalid
= 1;
13336 rsp
->last_set
= insn
;
13337 rsp
->last_set_value
= 0;
13338 rsp
->last_set_mode
= VOIDmode
;
13339 rsp
->last_set_nonzero_bits
= 0;
13340 rsp
->last_set_sign_bit_copies
= 0;
13341 rsp
->last_death
= 0;
13342 rsp
->truncated_to_mode
= VOIDmode
;
13345 last_call_luid
= mem_last_set
= DF_INSN_LUID (insn
);
13347 /* We can't combine into a call pattern. Remember, though, that
13348 the return value register is set at this LUID. We could
13349 still replace a register with the return value from the
13350 wrong subroutine call! */
13351 note_stores (insn
, record_dead_and_set_regs_1
, NULL_RTX
);
13354 note_stores (insn
, record_dead_and_set_regs_1
, insn
);
13357 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13358 register present in the SUBREG, so for each such SUBREG go back and
13359 adjust nonzero and sign bit information of the registers that are
13360 known to have some zero/sign bits set.
13362 This is needed because when combine blows the SUBREGs away, the
13363 information on zero/sign bits is lost and further combines can be
13364 missed because of that. */
13367 record_promoted_value (rtx_insn
*insn
, rtx subreg
)
13369 struct insn_link
*links
;
13371 unsigned int regno
= REGNO (SUBREG_REG (subreg
));
13372 machine_mode mode
= GET_MODE (subreg
);
13374 if (!HWI_COMPUTABLE_MODE_P (mode
))
13377 for (links
= LOG_LINKS (insn
); links
;)
13379 reg_stat_type
*rsp
;
13381 insn
= links
->insn
;
13382 set
= single_set (insn
);
13384 if (! set
|| !REG_P (SET_DEST (set
))
13385 || REGNO (SET_DEST (set
)) != regno
13386 || GET_MODE (SET_DEST (set
)) != GET_MODE (SUBREG_REG (subreg
)))
13388 links
= links
->next
;
13392 rsp
= ®_stat
[regno
];
13393 if (rsp
->last_set
== insn
)
13395 if (SUBREG_PROMOTED_UNSIGNED_P (subreg
))
13396 rsp
->last_set_nonzero_bits
&= GET_MODE_MASK (mode
);
13399 if (REG_P (SET_SRC (set
)))
13401 regno
= REGNO (SET_SRC (set
));
13402 links
= LOG_LINKS (insn
);
13409 /* Check if X, a register, is known to contain a value already
13410 truncated to MODE. In this case we can use a subreg to refer to
13411 the truncated value even though in the generic case we would need
13412 an explicit truncation. */
13415 reg_truncated_to_mode (machine_mode mode
, const_rtx x
)
13417 reg_stat_type
*rsp
= ®_stat
[REGNO (x
)];
13418 machine_mode truncated
= rsp
->truncated_to_mode
;
13421 || rsp
->truncation_label
< label_tick_ebb_start
)
13423 if (!partial_subreg_p (mode
, truncated
))
13425 if (TRULY_NOOP_TRUNCATION_MODES_P (mode
, truncated
))
13430 /* If X is a hard reg or a subreg record the mode that the register is
13431 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13432 able to turn a truncate into a subreg using this information. Return true
13433 if traversing X is complete. */
13436 record_truncated_value (rtx x
)
13438 machine_mode truncated_mode
;
13439 reg_stat_type
*rsp
;
13441 if (GET_CODE (x
) == SUBREG
&& REG_P (SUBREG_REG (x
)))
13443 machine_mode original_mode
= GET_MODE (SUBREG_REG (x
));
13444 truncated_mode
= GET_MODE (x
);
13446 if (!partial_subreg_p (truncated_mode
, original_mode
))
13449 truncated_mode
= GET_MODE (x
);
13450 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode
, original_mode
))
13453 x
= SUBREG_REG (x
);
13455 /* ??? For hard-regs we now record everything. We might be able to
13456 optimize this using last_set_mode. */
13457 else if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
13458 truncated_mode
= GET_MODE (x
);
13462 rsp
= ®_stat
[REGNO (x
)];
13463 if (rsp
->truncated_to_mode
== 0
13464 || rsp
->truncation_label
< label_tick_ebb_start
13465 || partial_subreg_p (truncated_mode
, rsp
->truncated_to_mode
))
13467 rsp
->truncated_to_mode
= truncated_mode
;
13468 rsp
->truncation_label
= label_tick
;
13474 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13475 the modes they are used in. This can help truning TRUNCATEs into
13479 record_truncated_values (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
13481 subrtx_var_iterator::array_type array
;
13482 FOR_EACH_SUBRTX_VAR (iter
, array
, *loc
, NONCONST
)
13483 if (record_truncated_value (*iter
))
13484 iter
.skip_subrtxes ();
13487 /* Scan X for promoted SUBREGs. For each one found,
13488 note what it implies to the registers used in it. */
13491 check_promoted_subreg (rtx_insn
*insn
, rtx x
)
13493 if (GET_CODE (x
) == SUBREG
13494 && SUBREG_PROMOTED_VAR_P (x
)
13495 && REG_P (SUBREG_REG (x
)))
13496 record_promoted_value (insn
, x
);
13499 const char *format
= GET_RTX_FORMAT (GET_CODE (x
));
13502 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (x
)); i
++)
13506 check_promoted_subreg (insn
, XEXP (x
, i
));
13510 if (XVEC (x
, i
) != 0)
13511 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13512 check_promoted_subreg (insn
, XVECEXP (x
, i
, j
));
13518 /* Verify that all the registers and memory references mentioned in *LOC are
13519 still valid. *LOC was part of a value set in INSN when label_tick was
13520 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13521 the invalid references with (clobber (const_int 0)) and return 1. This
13522 replacement is useful because we often can get useful information about
13523 the form of a value (e.g., if it was produced by a shift that always
13524 produces -1 or 0) even though we don't know exactly what registers it
13525 was produced from. */
13528 get_last_value_validate (rtx
*loc
, rtx_insn
*insn
, int tick
, int replace
)
13531 const char *fmt
= GET_RTX_FORMAT (GET_CODE (x
));
13532 int len
= GET_RTX_LENGTH (GET_CODE (x
));
13537 unsigned int regno
= REGNO (x
);
13538 unsigned int endregno
= END_REGNO (x
);
13541 for (j
= regno
; j
< endregno
; j
++)
13543 reg_stat_type
*rsp
= ®_stat
[j
];
13544 if (rsp
->last_set_invalid
13545 /* If this is a pseudo-register that was only set once and not
13546 live at the beginning of the function, it is always valid. */
13547 || (! (regno
>= FIRST_PSEUDO_REGISTER
13548 && regno
< reg_n_sets_max
13549 && REG_N_SETS (regno
) == 1
13550 && (!REGNO_REG_SET_P
13551 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
13553 && rsp
->last_set_label
> tick
))
13556 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
13563 /* If this is a memory reference, make sure that there were no stores after
13564 it that might have clobbered the value. We don't have alias info, so we
13565 assume any store invalidates it. Moreover, we only have local UIDs, so
13566 we also assume that there were stores in the intervening basic blocks. */
13567 else if (MEM_P (x
) && !MEM_READONLY_P (x
)
13568 && (tick
!= label_tick
|| DF_INSN_LUID (insn
) <= mem_last_set
))
13571 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
13575 for (i
= 0; i
< len
; i
++)
13579 /* Check for identical subexpressions. If x contains
13580 identical subexpression we only have to traverse one of
13582 if (i
== 1 && ARITHMETIC_P (x
))
13584 /* Note that at this point x0 has already been checked
13585 and found valid. */
13586 rtx x0
= XEXP (x
, 0);
13587 rtx x1
= XEXP (x
, 1);
13589 /* If x0 and x1 are identical then x is also valid. */
13593 /* If x1 is identical to a subexpression of x0 then
13594 while checking x0, x1 has already been checked. Thus
13595 it is valid and so as x. */
13596 if (ARITHMETIC_P (x0
)
13597 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
13600 /* If x0 is identical to a subexpression of x1 then x is
13601 valid iff the rest of x1 is valid. */
13602 if (ARITHMETIC_P (x1
)
13603 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
13605 get_last_value_validate (&XEXP (x1
,
13606 x0
== XEXP (x1
, 0) ? 1 : 0),
13607 insn
, tick
, replace
);
13610 if (get_last_value_validate (&XEXP (x
, i
), insn
, tick
,
13614 else if (fmt
[i
] == 'E')
13615 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13616 if (get_last_value_validate (&XVECEXP (x
, i
, j
),
13617 insn
, tick
, replace
) == 0)
13621 /* If we haven't found a reason for it to be invalid, it is valid. */
13625 /* Get the last value assigned to X, if known. Some registers
13626 in the value may be replaced with (clobber (const_int 0)) if their value
13627 is known longer known reliably. */
13630 get_last_value (const_rtx x
)
13632 unsigned int regno
;
13634 reg_stat_type
*rsp
;
13636 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13637 then convert it to the desired mode. If this is a paradoxical SUBREG,
13638 we cannot predict what values the "extra" bits might have. */
13639 if (GET_CODE (x
) == SUBREG
13640 && subreg_lowpart_p (x
)
13641 && !paradoxical_subreg_p (x
)
13642 && (value
= get_last_value (SUBREG_REG (x
))) != 0)
13643 return gen_lowpart (GET_MODE (x
), value
);
13649 rsp
= ®_stat
[regno
];
13650 value
= rsp
->last_set_value
;
13652 /* If we don't have a value, or if it isn't for this basic block and
13653 it's either a hard register, set more than once, or it's a live
13654 at the beginning of the function, return 0.
13656 Because if it's not live at the beginning of the function then the reg
13657 is always set before being used (is never used without being set).
13658 And, if it's set only once, and it's always set before use, then all
13659 uses must have the same last value, even if it's not from this basic
13663 || (rsp
->last_set_label
< label_tick_ebb_start
13664 && (regno
< FIRST_PSEUDO_REGISTER
13665 || regno
>= reg_n_sets_max
13666 || REG_N_SETS (regno
) != 1
13668 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
), regno
))))
13671 /* If the value was set in a later insn than the ones we are processing,
13672 we can't use it even if the register was only set once. */
13673 if (rsp
->last_set_label
== label_tick
13674 && DF_INSN_LUID (rsp
->last_set
) >= subst_low_luid
)
13677 /* If fewer bits were set than what we are asked for now, we cannot use
13679 if (maybe_lt (GET_MODE_PRECISION (rsp
->last_set_mode
),
13680 GET_MODE_PRECISION (GET_MODE (x
))))
13683 /* If the value has all its registers valid, return it. */
13684 if (get_last_value_validate (&value
, rsp
->last_set
, rsp
->last_set_label
, 0))
13687 /* Otherwise, make a copy and replace any invalid register with
13688 (clobber (const_int 0)). If that fails for some reason, return 0. */
13690 value
= copy_rtx (value
);
13691 if (get_last_value_validate (&value
, rsp
->last_set
, rsp
->last_set_label
, 1))
13697 /* Define three variables used for communication between the following
13700 static unsigned int reg_dead_regno
, reg_dead_endregno
;
13701 static int reg_dead_flag
;
13704 /* Function called via note_stores from reg_dead_at_p.
13706 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13707 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13710 reg_dead_at_p_1 (rtx dest
, const_rtx x
, void *data ATTRIBUTE_UNUSED
)
13712 unsigned int regno
, endregno
;
13717 regno
= REGNO (dest
);
13718 endregno
= END_REGNO (dest
);
13719 if (reg_dead_endregno
> regno
&& reg_dead_regno
< endregno
)
13720 reg_dead_flag
= (GET_CODE (x
) == CLOBBER
) ? 1 : -1;
13723 /* Return nonzero if REG is known to be dead at INSN.
13725 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13726 referencing REG, it is dead. If we hit a SET referencing REG, it is
13727 live. Otherwise, see if it is live or dead at the start of the basic
13728 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13729 must be assumed to be always live. */
13732 reg_dead_at_p (rtx reg
, rtx_insn
*insn
)
13737 /* Set variables for reg_dead_at_p_1. */
13738 reg_dead_regno
= REGNO (reg
);
13739 reg_dead_endregno
= END_REGNO (reg
);
13740 reg_dead_reg
= reg
;
13744 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13745 we allow the machine description to decide whether use-and-clobber
13746 patterns are OK. */
13747 if (reg_dead_regno
< FIRST_PSEUDO_REGISTER
)
13749 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
13750 if (!fixed_regs
[i
] && TEST_HARD_REG_BIT (newpat_used_regs
, i
))
13754 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13755 beginning of basic block. */
13756 block
= BLOCK_FOR_INSN (insn
);
13761 if (find_regno_note (insn
, REG_UNUSED
, reg_dead_regno
))
13764 note_stores (insn
, reg_dead_at_p_1
, NULL
);
13766 return reg_dead_flag
== 1 ? 1 : 0;
13768 if (find_regno_note (insn
, REG_DEAD
, reg_dead_regno
))
13772 if (insn
== BB_HEAD (block
))
13775 insn
= PREV_INSN (insn
);
13778 /* Look at live-in sets for the basic block that we were in. */
13779 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
13780 if (REGNO_REG_SET_P (df_get_live_in (block
), i
))
13786 /* Note hard registers in X that are used. */
13789 mark_used_regs_combine (rtx x
)
13791 RTX_CODE code
= GET_CODE (x
);
13792 unsigned int regno
;
13803 case ADDR_DIFF_VEC
:
13808 /* If we are clobbering a MEM, mark any hard registers inside the
13809 address as used. */
13810 if (MEM_P (XEXP (x
, 0)))
13811 mark_used_regs_combine (XEXP (XEXP (x
, 0), 0));
13816 /* A hard reg in a wide mode may really be multiple registers.
13817 If so, mark all of them just like the first. */
13818 if (regno
< FIRST_PSEUDO_REGISTER
)
13820 /* None of this applies to the stack, frame or arg pointers. */
13821 if (regno
== STACK_POINTER_REGNUM
13822 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13823 && regno
== HARD_FRAME_POINTER_REGNUM
)
13824 || (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
13825 && regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
13826 || regno
== FRAME_POINTER_REGNUM
)
13829 add_to_hard_reg_set (&newpat_used_regs
, GET_MODE (x
), regno
);
13835 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13837 rtx testreg
= SET_DEST (x
);
13839 while (GET_CODE (testreg
) == SUBREG
13840 || GET_CODE (testreg
) == ZERO_EXTRACT
13841 || GET_CODE (testreg
) == STRICT_LOW_PART
)
13842 testreg
= XEXP (testreg
, 0);
13844 if (MEM_P (testreg
))
13845 mark_used_regs_combine (XEXP (testreg
, 0));
13847 mark_used_regs_combine (SET_SRC (x
));
13855 /* Recursively scan the operands of this expression. */
13858 const char *fmt
= GET_RTX_FORMAT (code
);
13860 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
13863 mark_used_regs_combine (XEXP (x
, i
));
13864 else if (fmt
[i
] == 'E')
13868 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13869 mark_used_regs_combine (XVECEXP (x
, i
, j
));
13875 /* Remove register number REGNO from the dead registers list of INSN.
13877 Return the note used to record the death, if there was one. */
13880 remove_death (unsigned int regno
, rtx_insn
*insn
)
13882 rtx note
= find_regno_note (insn
, REG_DEAD
, regno
);
13885 remove_note (insn
, note
);
13890 /* For each register (hardware or pseudo) used within expression X, if its
13891 death is in an instruction with luid between FROM_LUID (inclusive) and
13892 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13893 list headed by PNOTES.
13895 That said, don't move registers killed by maybe_kill_insn.
13897 This is done when X is being merged by combination into TO_INSN. These
13898 notes will then be distributed as needed. */
13901 move_deaths (rtx x
, rtx maybe_kill_insn
, int from_luid
, rtx_insn
*to_insn
,
13906 enum rtx_code code
= GET_CODE (x
);
13910 unsigned int regno
= REGNO (x
);
13911 rtx_insn
*where_dead
= reg_stat
[regno
].last_death
;
13913 /* If we do not know where the register died, it may still die between
13914 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
13915 if (!where_dead
|| DF_INSN_LUID (where_dead
) >= DF_INSN_LUID (to_insn
))
13917 rtx_insn
*insn
= prev_real_nondebug_insn (to_insn
);
13919 && BLOCK_FOR_INSN (insn
) == BLOCK_FOR_INSN (to_insn
)
13920 && DF_INSN_LUID (insn
) >= from_luid
)
13922 if (dead_or_set_regno_p (insn
, regno
))
13924 if (find_regno_note (insn
, REG_DEAD
, regno
))
13929 insn
= prev_real_nondebug_insn (insn
);
13933 /* Don't move the register if it gets killed in between from and to. */
13934 if (maybe_kill_insn
&& reg_set_p (x
, maybe_kill_insn
)
13935 && ! reg_referenced_p (x
, maybe_kill_insn
))
13939 && BLOCK_FOR_INSN (where_dead
) == BLOCK_FOR_INSN (to_insn
)
13940 && DF_INSN_LUID (where_dead
) >= from_luid
13941 && DF_INSN_LUID (where_dead
) < DF_INSN_LUID (to_insn
))
13943 rtx note
= remove_death (regno
, where_dead
);
13945 /* It is possible for the call above to return 0. This can occur
13946 when last_death points to I2 or I1 that we combined with.
13947 In that case make a new note.
13949 We must also check for the case where X is a hard register
13950 and NOTE is a death note for a range of hard registers
13951 including X. In that case, we must put REG_DEAD notes for
13952 the remaining registers in place of NOTE. */
13954 if (note
!= 0 && regno
< FIRST_PSEUDO_REGISTER
13955 && partial_subreg_p (GET_MODE (x
), GET_MODE (XEXP (note
, 0))))
13957 unsigned int deadregno
= REGNO (XEXP (note
, 0));
13958 unsigned int deadend
= END_REGNO (XEXP (note
, 0));
13959 unsigned int ourend
= END_REGNO (x
);
13962 for (i
= deadregno
; i
< deadend
; i
++)
13963 if (i
< regno
|| i
>= ourend
)
13964 add_reg_note (where_dead
, REG_DEAD
, regno_reg_rtx
[i
]);
13967 /* If we didn't find any note, or if we found a REG_DEAD note that
13968 covers only part of the given reg, and we have a multi-reg hard
13969 register, then to be safe we must check for REG_DEAD notes
13970 for each register other than the first. They could have
13971 their own REG_DEAD notes lying around. */
13972 else if ((note
== 0
13974 && partial_subreg_p (GET_MODE (XEXP (note
, 0)),
13976 && regno
< FIRST_PSEUDO_REGISTER
13977 && REG_NREGS (x
) > 1)
13979 unsigned int ourend
= END_REGNO (x
);
13980 unsigned int i
, offset
;
13984 offset
= hard_regno_nregs (regno
, GET_MODE (XEXP (note
, 0)));
13988 for (i
= regno
+ offset
; i
< ourend
; i
++)
13989 move_deaths (regno_reg_rtx
[i
],
13990 maybe_kill_insn
, from_luid
, to_insn
, &oldnotes
);
13993 if (note
!= 0 && GET_MODE (XEXP (note
, 0)) == GET_MODE (x
))
13995 XEXP (note
, 1) = *pnotes
;
13999 *pnotes
= alloc_reg_note (REG_DEAD
, x
, *pnotes
);
14005 else if (GET_CODE (x
) == SET
)
14007 rtx dest
= SET_DEST (x
);
14009 move_deaths (SET_SRC (x
), maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
14011 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14012 that accesses one word of a multi-word item, some
14013 piece of everything register in the expression is used by
14014 this insn, so remove any old death. */
14015 /* ??? So why do we test for equality of the sizes? */
14017 if (GET_CODE (dest
) == ZERO_EXTRACT
14018 || GET_CODE (dest
) == STRICT_LOW_PART
14019 || (GET_CODE (dest
) == SUBREG
14020 && !read_modify_subreg_p (dest
)))
14022 move_deaths (dest
, maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
14026 /* If this is some other SUBREG, we know it replaces the entire
14027 value, so use that as the destination. */
14028 if (GET_CODE (dest
) == SUBREG
)
14029 dest
= SUBREG_REG (dest
);
14031 /* If this is a MEM, adjust deaths of anything used in the address.
14032 For a REG (the only other possibility), the entire value is
14033 being replaced so the old value is not used in this insn. */
14036 move_deaths (XEXP (dest
, 0), maybe_kill_insn
, from_luid
,
14041 else if (GET_CODE (x
) == CLOBBER
)
14044 len
= GET_RTX_LENGTH (code
);
14045 fmt
= GET_RTX_FORMAT (code
);
14047 for (i
= 0; i
< len
; i
++)
14052 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
14053 move_deaths (XVECEXP (x
, i
, j
), maybe_kill_insn
, from_luid
,
14056 else if (fmt
[i
] == 'e')
14057 move_deaths (XEXP (x
, i
), maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
14061 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14062 pattern of an insn. X must be a REG. */
14065 reg_bitfield_target_p (rtx x
, rtx body
)
14069 if (GET_CODE (body
) == SET
)
14071 rtx dest
= SET_DEST (body
);
14073 unsigned int regno
, tregno
, endregno
, endtregno
;
14075 if (GET_CODE (dest
) == ZERO_EXTRACT
)
14076 target
= XEXP (dest
, 0);
14077 else if (GET_CODE (dest
) == STRICT_LOW_PART
)
14078 target
= SUBREG_REG (XEXP (dest
, 0));
14082 if (GET_CODE (target
) == SUBREG
)
14083 target
= SUBREG_REG (target
);
14085 if (!REG_P (target
))
14088 tregno
= REGNO (target
), regno
= REGNO (x
);
14089 if (tregno
>= FIRST_PSEUDO_REGISTER
|| regno
>= FIRST_PSEUDO_REGISTER
)
14090 return target
== x
;
14092 endtregno
= end_hard_regno (GET_MODE (target
), tregno
);
14093 endregno
= end_hard_regno (GET_MODE (x
), regno
);
14095 return endregno
> tregno
&& regno
< endtregno
;
14098 else if (GET_CODE (body
) == PARALLEL
)
14099 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
14100 if (reg_bitfield_target_p (x
, XVECEXP (body
, 0, i
)))
14106 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14107 as appropriate. I3 and I2 are the insns resulting from the combination
14108 insns including FROM (I2 may be zero).
14110 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14111 not need REG_DEAD notes because they are being substituted for. This
14112 saves searching in the most common cases.
14114 Each note in the list is either ignored or placed on some insns, depending
14115 on the type of note. */
14118 distribute_notes (rtx notes
, rtx_insn
*from_insn
, rtx_insn
*i3
, rtx_insn
*i2
,
14119 rtx elim_i2
, rtx elim_i1
, rtx elim_i0
)
14121 rtx note
, next_note
;
14123 rtx_insn
*tem_insn
;
14125 for (note
= notes
; note
; note
= next_note
)
14127 rtx_insn
*place
= 0, *place2
= 0;
14129 next_note
= XEXP (note
, 1);
14130 switch (REG_NOTE_KIND (note
))
14134 /* Doesn't matter much where we put this, as long as it's somewhere.
14135 It is preferable to keep these notes on branches, which is most
14136 likely to be i3. */
14140 case REG_NON_LOCAL_GOTO
:
14145 gcc_assert (i2
&& JUMP_P (i2
));
14150 case REG_EH_REGION
:
14151 /* These notes must remain with the call or trapping instruction. */
14154 else if (i2
&& CALL_P (i2
))
14158 gcc_assert (cfun
->can_throw_non_call_exceptions
);
14159 if (may_trap_p (i3
))
14161 else if (i2
&& may_trap_p (i2
))
14163 /* ??? Otherwise assume we've combined things such that we
14164 can now prove that the instructions can't trap. Drop the
14165 note in this case. */
14169 case REG_ARGS_SIZE
:
14170 /* ??? How to distribute between i3-i1. Assume i3 contains the
14171 entire adjustment. Assert i3 contains at least some adjust. */
14172 if (!noop_move_p (i3
))
14174 poly_int64 old_size
, args_size
= get_args_size (note
);
14175 /* fixup_args_size_notes looks at REG_NORETURN note,
14176 so ensure the note is placed there first. */
14180 for (np
= &next_note
; *np
; np
= &XEXP (*np
, 1))
14181 if (REG_NOTE_KIND (*np
) == REG_NORETURN
)
14185 XEXP (n
, 1) = REG_NOTES (i3
);
14186 REG_NOTES (i3
) = n
;
14190 old_size
= fixup_args_size_notes (PREV_INSN (i3
), i3
, args_size
);
14191 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14192 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14193 gcc_assert (maybe_ne (old_size
, args_size
)
14195 && !ACCUMULATE_OUTGOING_ARGS
14196 && find_reg_note (i3
, REG_NORETURN
, NULL_RTX
)));
14203 case REG_CALL_DECL
:
14204 case REG_UNTYPED_CALL
:
14205 case REG_CALL_NOCF_CHECK
:
14206 /* These notes must remain with the call. It should not be
14207 possible for both I2 and I3 to be a call. */
14212 gcc_assert (i2
&& CALL_P (i2
));
14218 /* Any clobbers for i3 may still exist, and so we must process
14219 REG_UNUSED notes from that insn.
14221 Any clobbers from i2 or i1 can only exist if they were added by
14222 recog_for_combine. In that case, recog_for_combine created the
14223 necessary REG_UNUSED notes. Trying to keep any original
14224 REG_UNUSED notes from these insns can cause incorrect output
14225 if it is for the same register as the original i3 dest.
14226 In that case, we will notice that the register is set in i3,
14227 and then add a REG_UNUSED note for the destination of i3, which
14228 is wrong. However, it is possible to have REG_UNUSED notes from
14229 i2 or i1 for register which were both used and clobbered, so
14230 we keep notes from i2 or i1 if they will turn into REG_DEAD
14233 /* If this register is set or clobbered between FROM_INSN and I3,
14234 we should not create a note for it. */
14235 if (reg_set_between_p (XEXP (note
, 0), from_insn
, i3
))
14238 /* If this register is set or clobbered in I3, put the note there
14239 unless there is one already. */
14240 if (reg_set_p (XEXP (note
, 0), PATTERN (i3
)))
14242 if (from_insn
!= i3
)
14245 if (! (REG_P (XEXP (note
, 0))
14246 ? find_regno_note (i3
, REG_UNUSED
, REGNO (XEXP (note
, 0)))
14247 : find_reg_note (i3
, REG_UNUSED
, XEXP (note
, 0))))
14250 /* Otherwise, if this register is used by I3, then this register
14251 now dies here, so we must put a REG_DEAD note here unless there
14253 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
))
14254 && ! (REG_P (XEXP (note
, 0))
14255 ? find_regno_note (i3
, REG_DEAD
,
14256 REGNO (XEXP (note
, 0)))
14257 : find_reg_note (i3
, REG_DEAD
, XEXP (note
, 0))))
14259 PUT_REG_NOTE_KIND (note
, REG_DEAD
);
14263 /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14264 but we can't tell which at this point. We must reset any
14265 expectations we had about the value that was previously
14266 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
14267 and, if appropriate, restore its previous value, but we
14268 don't have enough information for that at this point. */
14271 record_value_for_reg (XEXP (note
, 0), NULL
, NULL_RTX
);
14273 /* Otherwise, if this register is now referenced in i2
14274 then the register used to be modified in one of the
14275 original insns. If it was i3 (say, in an unused
14276 parallel), it's now completely gone, so the note can
14277 be discarded. But if it was modified in i2, i1 or i0
14278 and we still reference it in i2, then we're
14279 referencing the previous value, and since the
14280 register was modified and REG_UNUSED, we know that
14281 the previous value is now dead. So, if we only
14282 reference the register in i2, we change the note to
14283 REG_DEAD, to reflect the previous value. However, if
14284 we're also setting or clobbering the register as
14285 scratch, we know (because the register was not
14286 referenced in i3) that it's unused, just as it was
14287 unused before, and we place the note in i2. */
14288 if (from_insn
!= i3
&& i2
&& INSN_P (i2
)
14289 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
14291 if (!reg_set_p (XEXP (note
, 0), PATTERN (i2
)))
14292 PUT_REG_NOTE_KIND (note
, REG_DEAD
);
14293 if (! (REG_P (XEXP (note
, 0))
14294 ? find_regno_note (i2
, REG_NOTE_KIND (note
),
14295 REGNO (XEXP (note
, 0)))
14296 : find_reg_note (i2
, REG_NOTE_KIND (note
),
14307 /* These notes say something about results of an insn. We can
14308 only support them if they used to be on I3 in which case they
14309 remain on I3. Otherwise they are ignored.
14311 If the note refers to an expression that is not a constant, we
14312 must also ignore the note since we cannot tell whether the
14313 equivalence is still true. It might be possible to do
14314 slightly better than this (we only have a problem if I2DEST
14315 or I1DEST is present in the expression), but it doesn't
14316 seem worth the trouble. */
14318 if (from_insn
== i3
14319 && (XEXP (note
, 0) == 0 || CONSTANT_P (XEXP (note
, 0))))
14324 /* These notes say something about how a register is used. They must
14325 be present on any use of the register in I2 or I3. */
14326 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
)))
14329 if (i2
&& reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
)))
14338 case REG_LABEL_TARGET
:
14339 case REG_LABEL_OPERAND
:
14340 /* This can show up in several ways -- either directly in the
14341 pattern, or hidden off in the constant pool with (or without?)
14342 a REG_EQUAL note. */
14343 /* ??? Ignore the without-reg_equal-note problem for now. */
14344 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
))
14345 || ((tem_note
= find_reg_note (i3
, REG_EQUAL
, NULL_RTX
))
14346 && GET_CODE (XEXP (tem_note
, 0)) == LABEL_REF
14347 && label_ref_label (XEXP (tem_note
, 0)) == XEXP (note
, 0)))
14351 && (reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
))
14352 || ((tem_note
= find_reg_note (i2
, REG_EQUAL
, NULL_RTX
))
14353 && GET_CODE (XEXP (tem_note
, 0)) == LABEL_REF
14354 && label_ref_label (XEXP (tem_note
, 0)) == XEXP (note
, 0))))
14362 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14363 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14365 if (place
&& JUMP_P (place
)
14366 && REG_NOTE_KIND (note
) == REG_LABEL_TARGET
14367 && (JUMP_LABEL (place
) == NULL
14368 || JUMP_LABEL (place
) == XEXP (note
, 0)))
14370 rtx label
= JUMP_LABEL (place
);
14373 JUMP_LABEL (place
) = XEXP (note
, 0);
14374 else if (LABEL_P (label
))
14375 LABEL_NUSES (label
)--;
14378 if (place2
&& JUMP_P (place2
)
14379 && REG_NOTE_KIND (note
) == REG_LABEL_TARGET
14380 && (JUMP_LABEL (place2
) == NULL
14381 || JUMP_LABEL (place2
) == XEXP (note
, 0)))
14383 rtx label
= JUMP_LABEL (place2
);
14386 JUMP_LABEL (place2
) = XEXP (note
, 0);
14387 else if (LABEL_P (label
))
14388 LABEL_NUSES (label
)--;
14394 /* This note says something about the value of a register prior
14395 to the execution of an insn. It is too much trouble to see
14396 if the note is still correct in all situations. It is better
14397 to simply delete it. */
14401 /* If we replaced the right hand side of FROM_INSN with a
14402 REG_EQUAL note, the original use of the dying register
14403 will not have been combined into I3 and I2. In such cases,
14404 FROM_INSN is guaranteed to be the first of the combined
14405 instructions, so we simply need to search back before
14406 FROM_INSN for the previous use or set of this register,
14407 then alter the notes there appropriately.
14409 If the register is used as an input in I3, it dies there.
14410 Similarly for I2, if it is nonzero and adjacent to I3.
14412 If the register is not used as an input in either I3 or I2
14413 and it is not one of the registers we were supposed to eliminate,
14414 there are two possibilities. We might have a non-adjacent I2
14415 or we might have somehow eliminated an additional register
14416 from a computation. For example, we might have had A & B where
14417 we discover that B will always be zero. In this case we will
14418 eliminate the reference to A.
14420 In both cases, we must search to see if we can find a previous
14421 use of A and put the death note there. */
14424 && from_insn
== i2mod
14425 && !reg_overlap_mentioned_p (XEXP (note
, 0), i2mod_new_rhs
))
14426 tem_insn
= from_insn
;
14430 && CALL_P (from_insn
)
14431 && find_reg_fusage (from_insn
, USE
, XEXP (note
, 0)))
14433 else if (i2
&& reg_set_p (XEXP (note
, 0), PATTERN (i2
)))
14435 /* If the new I2 sets the same register that is marked
14436 dead in the note, we do not in general know where to
14437 put the note. One important case we _can_ handle is
14438 when the note comes from I3. */
14439 if (from_insn
== i3
)
14444 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
)))
14446 else if (i2
!= 0 && next_nonnote_nondebug_insn (i2
) == i3
14447 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
14449 else if ((rtx_equal_p (XEXP (note
, 0), elim_i2
)
14451 && reg_overlap_mentioned_p (XEXP (note
, 0),
14453 || rtx_equal_p (XEXP (note
, 0), elim_i1
)
14454 || rtx_equal_p (XEXP (note
, 0), elim_i0
))
14461 basic_block bb
= this_basic_block
;
14463 for (tem_insn
= PREV_INSN (tem_insn
); place
== 0; tem_insn
= PREV_INSN (tem_insn
))
14465 if (!NONDEBUG_INSN_P (tem_insn
))
14467 if (tem_insn
== BB_HEAD (bb
))
14472 /* If the register is being set at TEM_INSN, see if that is all
14473 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14474 into a REG_UNUSED note instead. Don't delete sets to
14475 global register vars. */
14476 if ((REGNO (XEXP (note
, 0)) >= FIRST_PSEUDO_REGISTER
14477 || !global_regs
[REGNO (XEXP (note
, 0))])
14478 && reg_set_p (XEXP (note
, 0), PATTERN (tem_insn
)))
14480 rtx set
= single_set (tem_insn
);
14481 rtx inner_dest
= 0;
14484 for (inner_dest
= SET_DEST (set
);
14485 (GET_CODE (inner_dest
) == STRICT_LOW_PART
14486 || GET_CODE (inner_dest
) == SUBREG
14487 || GET_CODE (inner_dest
) == ZERO_EXTRACT
);
14488 inner_dest
= XEXP (inner_dest
, 0))
14491 /* Verify that it was the set, and not a clobber that
14492 modified the register.
14494 If we cannot delete the setter due to side
14495 effects, mark the user with an UNUSED note instead
14498 if (set
!= 0 && ! side_effects_p (SET_SRC (set
))
14499 && rtx_equal_p (XEXP (note
, 0), inner_dest
))
14501 /* Move the notes and links of TEM_INSN elsewhere.
14502 This might delete other dead insns recursively.
14503 First set the pattern to something that won't use
14505 rtx old_notes
= REG_NOTES (tem_insn
);
14507 PATTERN (tem_insn
) = pc_rtx
;
14508 REG_NOTES (tem_insn
) = NULL
;
14510 distribute_notes (old_notes
, tem_insn
, tem_insn
, NULL
,
14511 NULL_RTX
, NULL_RTX
, NULL_RTX
);
14512 distribute_links (LOG_LINKS (tem_insn
));
14514 unsigned int regno
= REGNO (XEXP (note
, 0));
14515 reg_stat_type
*rsp
= ®_stat
[regno
];
14516 if (rsp
->last_set
== tem_insn
)
14517 record_value_for_reg (XEXP (note
, 0), NULL
, NULL_RTX
);
14519 SET_INSN_DELETED (tem_insn
);
14520 if (tem_insn
== i2
)
14525 PUT_REG_NOTE_KIND (note
, REG_UNUSED
);
14527 /* If there isn't already a REG_UNUSED note, put one
14528 here. Do not place a REG_DEAD note, even if
14529 the register is also used here; that would not
14530 match the algorithm used in lifetime analysis
14531 and can cause the consistency check in the
14532 scheduler to fail. */
14533 if (! find_regno_note (tem_insn
, REG_UNUSED
,
14534 REGNO (XEXP (note
, 0))))
14539 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (tem_insn
))
14540 || (CALL_P (tem_insn
)
14541 && find_reg_fusage (tem_insn
, USE
, XEXP (note
, 0))))
14545 /* If we are doing a 3->2 combination, and we have a
14546 register which formerly died in i3 and was not used
14547 by i2, which now no longer dies in i3 and is used in
14548 i2 but does not die in i2, and place is between i2
14549 and i3, then we may need to move a link from place to
14551 if (i2
&& DF_INSN_LUID (place
) > DF_INSN_LUID (i2
)
14553 && DF_INSN_LUID (from_insn
) > DF_INSN_LUID (i2
)
14554 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
14556 struct insn_link
*links
= LOG_LINKS (place
);
14557 LOG_LINKS (place
) = NULL
;
14558 distribute_links (links
);
14563 if (tem_insn
== BB_HEAD (bb
))
14569 /* If the register is set or already dead at PLACE, we needn't do
14570 anything with this note if it is still a REG_DEAD note.
14571 We check here if it is set at all, not if is it totally replaced,
14572 which is what `dead_or_set_p' checks, so also check for it being
14575 if (place
&& REG_NOTE_KIND (note
) == REG_DEAD
)
14577 unsigned int regno
= REGNO (XEXP (note
, 0));
14578 reg_stat_type
*rsp
= ®_stat
[regno
];
14580 if (dead_or_set_p (place
, XEXP (note
, 0))
14581 || reg_bitfield_target_p (XEXP (note
, 0), PATTERN (place
)))
14583 /* Unless the register previously died in PLACE, clear
14584 last_death. [I no longer understand why this is
14586 if (rsp
->last_death
!= place
)
14587 rsp
->last_death
= 0;
14591 rsp
->last_death
= place
;
14593 /* If this is a death note for a hard reg that is occupying
14594 multiple registers, ensure that we are still using all
14595 parts of the object. If we find a piece of the object
14596 that is unused, we must arrange for an appropriate REG_DEAD
14597 note to be added for it. However, we can't just emit a USE
14598 and tag the note to it, since the register might actually
14599 be dead; so we recourse, and the recursive call then finds
14600 the previous insn that used this register. */
14602 if (place
&& REG_NREGS (XEXP (note
, 0)) > 1)
14604 unsigned int endregno
= END_REGNO (XEXP (note
, 0));
14605 bool all_used
= true;
14608 for (i
= regno
; i
< endregno
; i
++)
14609 if ((! refers_to_regno_p (i
, PATTERN (place
))
14610 && ! find_regno_fusage (place
, USE
, i
))
14611 || dead_or_set_regno_p (place
, i
))
14619 /* Put only REG_DEAD notes for pieces that are
14620 not already dead or set. */
14622 for (i
= regno
; i
< endregno
;
14623 i
+= hard_regno_nregs (i
, reg_raw_mode
[i
]))
14625 rtx piece
= regno_reg_rtx
[i
];
14626 basic_block bb
= this_basic_block
;
14628 if (! dead_or_set_p (place
, piece
)
14629 && ! reg_bitfield_target_p (piece
,
14632 rtx new_note
= alloc_reg_note (REG_DEAD
, piece
,
14635 distribute_notes (new_note
, place
, place
,
14636 NULL
, NULL_RTX
, NULL_RTX
,
14639 else if (! refers_to_regno_p (i
, PATTERN (place
))
14640 && ! find_regno_fusage (place
, USE
, i
))
14641 for (tem_insn
= PREV_INSN (place
); ;
14642 tem_insn
= PREV_INSN (tem_insn
))
14644 if (!NONDEBUG_INSN_P (tem_insn
))
14646 if (tem_insn
== BB_HEAD (bb
))
14650 if (dead_or_set_p (tem_insn
, piece
)
14651 || reg_bitfield_target_p (piece
,
14652 PATTERN (tem_insn
)))
14654 add_reg_note (tem_insn
, REG_UNUSED
, piece
);
14667 /* Any other notes should not be present at this point in the
14669 gcc_unreachable ();
14674 XEXP (note
, 1) = REG_NOTES (place
);
14675 REG_NOTES (place
) = note
;
14677 /* Set added_notes_insn to the earliest insn we added a note to. */
14678 if (added_notes_insn
== 0
14679 || DF_INSN_LUID (added_notes_insn
) > DF_INSN_LUID (place
))
14680 added_notes_insn
= place
;
14685 add_shallow_copy_of_reg_note (place2
, note
);
14687 /* Set added_notes_insn to the earliest insn we added a note to. */
14688 if (added_notes_insn
== 0
14689 || DF_INSN_LUID (added_notes_insn
) > DF_INSN_LUID (place2
))
14690 added_notes_insn
= place2
;
14695 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14696 I3, I2, and I1 to new locations. This is also called to add a link
14697 pointing at I3 when I3's destination is changed. */
14700 distribute_links (struct insn_link
*links
)
14702 struct insn_link
*link
, *next_link
;
14704 for (link
= links
; link
; link
= next_link
)
14706 rtx_insn
*place
= 0;
14710 next_link
= link
->next
;
14712 /* If the insn that this link points to is a NOTE, ignore it. */
14713 if (NOTE_P (link
->insn
))
14717 rtx pat
= PATTERN (link
->insn
);
14718 if (GET_CODE (pat
) == SET
)
14720 else if (GET_CODE (pat
) == PARALLEL
)
14723 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
14725 set
= XVECEXP (pat
, 0, i
);
14726 if (GET_CODE (set
) != SET
)
14729 reg
= SET_DEST (set
);
14730 while (GET_CODE (reg
) == ZERO_EXTRACT
14731 || GET_CODE (reg
) == STRICT_LOW_PART
14732 || GET_CODE (reg
) == SUBREG
)
14733 reg
= XEXP (reg
, 0);
14738 if (REGNO (reg
) == link
->regno
)
14741 if (i
== XVECLEN (pat
, 0))
14747 reg
= SET_DEST (set
);
14749 while (GET_CODE (reg
) == ZERO_EXTRACT
14750 || GET_CODE (reg
) == STRICT_LOW_PART
14751 || GET_CODE (reg
) == SUBREG
)
14752 reg
= XEXP (reg
, 0);
14757 /* A LOG_LINK is defined as being placed on the first insn that uses
14758 a register and points to the insn that sets the register. Start
14759 searching at the next insn after the target of the link and stop
14760 when we reach a set of the register or the end of the basic block.
14762 Note that this correctly handles the link that used to point from
14763 I3 to I2. Also note that not much searching is typically done here
14764 since most links don't point very far away. */
14766 for (insn
= NEXT_INSN (link
->insn
);
14767 (insn
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
14768 || BB_HEAD (this_basic_block
->next_bb
) != insn
));
14769 insn
= NEXT_INSN (insn
))
14770 if (DEBUG_INSN_P (insn
))
14772 else if (INSN_P (insn
) && reg_overlap_mentioned_p (reg
, PATTERN (insn
)))
14774 if (reg_referenced_p (reg
, PATTERN (insn
)))
14778 else if (CALL_P (insn
)
14779 && find_reg_fusage (insn
, USE
, reg
))
14784 else if (INSN_P (insn
) && reg_set_p (reg
, insn
))
14787 /* If we found a place to put the link, place it there unless there
14788 is already a link to the same insn as LINK at that point. */
14792 struct insn_link
*link2
;
14794 FOR_EACH_LOG_LINK (link2
, place
)
14795 if (link2
->insn
== link
->insn
&& link2
->regno
== link
->regno
)
14800 link
->next
= LOG_LINKS (place
);
14801 LOG_LINKS (place
) = link
;
14803 /* Set added_links_insn to the earliest insn we added a
14805 if (added_links_insn
== 0
14806 || DF_INSN_LUID (added_links_insn
) > DF_INSN_LUID (place
))
14807 added_links_insn
= place
;
14813 /* Check for any register or memory mentioned in EQUIV that is not
14814 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14815 of EXPR where some registers may have been replaced by constants. */
14818 unmentioned_reg_p (rtx equiv
, rtx expr
)
14820 subrtx_iterator::array_type array
;
14821 FOR_EACH_SUBRTX (iter
, array
, equiv
, NONCONST
)
14823 const_rtx x
= *iter
;
14824 if ((REG_P (x
) || MEM_P (x
))
14825 && !reg_mentioned_p (x
, expr
))
14831 DEBUG_FUNCTION
void
14832 dump_combine_stats (FILE *file
)
14836 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14837 combine_attempts
, combine_merges
, combine_extras
, combine_successes
);
14841 dump_combine_total_stats (FILE *file
)
14845 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14846 total_attempts
, total_merges
, total_extras
, total_successes
);
14849 /* Make pseudo-to-pseudo copies after every hard-reg-to-pseudo-copy, because
14850 the reg-to-reg copy can usefully combine with later instructions, but we
14851 do not want to combine the hard reg into later instructions, for that
14852 restricts register allocation. */
14854 make_more_copies (void)
14858 FOR_EACH_BB_FN (bb
, cfun
)
14862 FOR_BB_INSNS (bb
, insn
)
14864 if (!NONDEBUG_INSN_P (insn
))
14867 rtx set
= single_set (insn
);
14871 rtx dest
= SET_DEST (set
);
14872 if (!(REG_P (dest
) && !HARD_REGISTER_P (dest
)))
14875 rtx src
= SET_SRC (set
);
14876 if (!(REG_P (src
) && HARD_REGISTER_P (src
)))
14878 if (TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (src
)))
14881 rtx new_reg
= gen_reg_rtx (GET_MODE (dest
));
14882 rtx_insn
*new_insn
= gen_move_insn (new_reg
, src
);
14883 SET_SRC (set
) = new_reg
;
14884 emit_insn_before (new_insn
, insn
);
14885 df_insn_rescan (insn
);
14890 /* Try combining insns through substitution. */
14891 static unsigned int
14892 rest_of_handle_combine (void)
14894 make_more_copies ();
14896 df_set_flags (DF_LR_RUN_DCE
+ DF_DEFER_INSN_RESCAN
);
14897 df_note_add_problem ();
14900 regstat_init_n_sets_and_refs ();
14901 reg_n_sets_max
= max_reg_num ();
14903 int rebuild_jump_labels_after_combine
14904 = combine_instructions (get_insns (), max_reg_num ());
14906 /* Combining insns may have turned an indirect jump into a
14907 direct jump. Rebuild the JUMP_LABEL fields of jumping
14909 if (rebuild_jump_labels_after_combine
)
14911 if (dom_info_available_p (CDI_DOMINATORS
))
14912 free_dominance_info (CDI_DOMINATORS
);
14913 timevar_push (TV_JUMP
);
14914 rebuild_jump_labels (get_insns ());
14916 timevar_pop (TV_JUMP
);
14919 regstat_free_n_sets_and_refs ();
14925 const pass_data pass_data_combine
=
14927 RTL_PASS
, /* type */
14928 "combine", /* name */
14929 OPTGROUP_NONE
, /* optinfo_flags */
14930 TV_COMBINE
, /* tv_id */
14931 PROP_cfglayout
, /* properties_required */
14932 0, /* properties_provided */
14933 0, /* properties_destroyed */
14934 0, /* todo_flags_start */
14935 TODO_df_finish
, /* todo_flags_finish */
14938 class pass_combine
: public rtl_opt_pass
14941 pass_combine (gcc::context
*ctxt
)
14942 : rtl_opt_pass (pass_data_combine
, ctxt
)
14945 /* opt_pass methods: */
14946 virtual bool gate (function
*) { return (optimize
> 0); }
14947 virtual unsigned int execute (function
*)
14949 return rest_of_handle_combine ();
14952 }; // class pass_combine
14954 } // anon namespace
14957 make_pass_combine (gcc::context
*ctxt
)
14959 return new pass_combine (ctxt
);