* gimplify.c (nonlocal_vlas): Delete.
[official-gcc.git] / gcc / config / arm / arm926ejs.md
blob2d1d530af2122bc935fe78efb6e7d559bcffbe6c
1 ;; ARM 926EJ-S Pipeline Description
2 ;; Copyright (C) 2003-2018 Free Software Foundation, Inc.
3 ;; Written by CodeSourcery, LLC.
4 ;;
5 ;; This file is part of GCC.
6 ;;
7 ;; GCC is free software; you can redistribute it and/or modify it
8 ;; under the terms of the GNU General Public License as published by
9 ;; the Free Software Foundation; either version 3, or (at your option)
10 ;; any later version.
12 ;; GCC is distributed in the hope that it will be useful, but
13 ;; WITHOUT ANY WARRANTY; without even the implied warranty of
14 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 ;; General Public License for more details.
17 ;; You should have received a copy of the GNU General Public License
18 ;; along with GCC; see the file COPYING3.  If not see
19 ;; <http://www.gnu.org/licenses/>.  */
21 ;; These descriptions are based on the information contained in the
22 ;; ARM926EJ-S Technical Reference Manual, Copyright (c) 2002 ARM
23 ;; Limited.
26 ;; This automaton provides a pipeline description for the ARM
27 ;; 926EJ-S core.
29 ;; The model given here assumes that the condition for all conditional
30 ;; instructions is "true", i.e., that all of the instructions are
31 ;; actually executed.
33 (define_automaton "arm926ejs")
35 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
36 ;; Pipelines
37 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
39 ;; There is a single pipeline
41 ;;   The ALU pipeline has fetch, decode, execute, memory, and
42 ;;   write stages. We only need to model the execute, memory and write
43 ;;   stages.
45 (define_cpu_unit "e,m,w" "arm926ejs")
47 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
48 ;; ALU Instructions
49 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
51 ;; ALU instructions require three cycles to execute, and use the ALU
52 ;; pipeline in each of the three stages.  The results are available
53 ;; after the execute stage has finished.
55 ;; If the destination register is the PC, the pipelines are stalled
56 ;; for several cycles.  That case is not modeled here.
58 ;; ALU operations with no shifted operand
59 (define_insn_reservation "9_alu_op" 1 
60  (and (eq_attr "tune" "arm926ejs")
61       (eq_attr "type" "alu_imm,alus_imm,logic_imm,logics_imm,\
62                        alu_sreg,alus_sreg,logic_reg,logics_reg,\
63                        adc_imm,adcs_imm,adc_reg,adcs_reg,\
64                        adr,bfm,rev,\
65                        alu_shift_imm,alus_shift_imm,\
66                        logic_shift_imm,logics_shift_imm,\
67                        shift_imm,shift_reg,extend,\
68                        mov_imm,mov_reg,mov_shift,\
69                        mvn_imm,mvn_reg,mvn_shift,\
70                        multiple,no_insn"))
71  "e,m,w")
73 ;; ALU operations with a shift-by-register operand
74 ;; These really stall in the decoder, in order to read
75 ;; the shift value in a second cycle. Pretend we take two cycles in
76 ;; the execute stage.
77 (define_insn_reservation "9_alu_shift_reg_op" 2 
78  (and (eq_attr "tune" "arm926ejs")
79       (eq_attr "type" "alu_shift_reg,alus_shift_reg,\
80                        logic_shift_reg,logics_shift_reg,\
81                        mov_shift_reg,mvn_shift_reg"))
82  "e*2,m,w")
84 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
85 ;; Multiplication Instructions
86 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
88 ;; Multiplication instructions loop in the execute stage until the
89 ;; instruction has been passed through the multiplier array enough
90 ;; times. Multiply operations occur in both the execute and memory
91 ;; stages of the pipeline
93 (define_insn_reservation "9_mult1" 3
94  (and (eq_attr "tune" "arm926ejs")
95       (eq_attr "type" "smlalxy,mul,mla"))
96  "e*2,m,w")
98 (define_insn_reservation "9_mult2" 4
99  (and (eq_attr "tune" "arm926ejs")
100       (eq_attr "type" "muls,mlas"))
101  "e*3,m,w")
103 (define_insn_reservation "9_mult3" 4
104  (and (eq_attr "tune" "arm926ejs")
105       (eq_attr "type" "umull,umlal,smull,smlal"))
106  "e*3,m,w")
108 (define_insn_reservation "9_mult4" 5
109  (and (eq_attr "tune" "arm926ejs")
110       (eq_attr "type" "umulls,umlals,smulls,smlals"))
111  "e*4,m,w")
113 (define_insn_reservation "9_mult5" 2
114  (and (eq_attr "tune" "arm926ejs")
115       (eq_attr "type" "smulxy,smlaxy,smlawx"))
116  "e,m,w")
118 (define_insn_reservation "9_mult6" 3
119  (and (eq_attr "tune" "arm926ejs")
120       (eq_attr "type" "smlalxy"))
121  "e*2,m,w")
123 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
124 ;; Load/Store Instructions
125 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
127 ;; The models for load/store instructions do not accurately describe
128 ;; the difference between operations with a base register writeback
129 ;; (such as "ldm!").  These models assume that all memory references
130 ;; hit in dcache.
132 ;; Loads with a shifted offset take 3 cycles, and are (a) probably the
133 ;; most common and (b) the pessimistic assumption will lead to fewer stalls.
134 (define_insn_reservation "9_load1_op" 3
135  (and (eq_attr "tune" "arm926ejs")
136       (eq_attr "type" "load_4,load_byte"))
137  "e*2,m,w")
139 (define_insn_reservation "9_store1_op" 0
140  (and (eq_attr "tune" "arm926ejs")
141       (eq_attr "type" "store_4"))
142  "e,m,w")
144 ;; multiple word loads and stores
145 (define_insn_reservation "9_load2_op" 3
146  (and (eq_attr "tune" "arm926ejs")
147       (eq_attr "type" "load_8"))
148  "e,m*2,w")
150 (define_insn_reservation "9_load3_op" 4
151  (and (eq_attr "tune" "arm926ejs")
152       (eq_attr "type" "load_12"))
153  "e,m*3,w")
155 (define_insn_reservation "9_load4_op" 5
156  (and (eq_attr "tune" "arm926ejs")
157       (eq_attr "type" "load_16"))
158  "e,m*4,w")
160 (define_insn_reservation "9_store2_op" 0
161  (and (eq_attr "tune" "arm926ejs")
162       (eq_attr "type" "store_8"))
163  "e,m*2,w")
165 (define_insn_reservation "9_store3_op" 0
166  (and (eq_attr "tune" "arm926ejs")
167       (eq_attr "type" "store_12"))
168  "e,m*3,w")
170 (define_insn_reservation "9_store4_op" 0
171  (and (eq_attr "tune" "arm926ejs")
172       (eq_attr "type" "store_16"))
173  "e,m*4,w")
175 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
176 ;; Branch and Call Instructions
177 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
179 ;; Branch instructions are difficult to model accurately.  The ARM
180 ;; core can predict most branches.  If the branch is predicted
181 ;; correctly, and predicted early enough, the branch can be completely
182 ;; eliminated from the instruction stream.  Some branches can
183 ;; therefore appear to require zero cycles to execute.  We assume that
184 ;; all branches are predicted correctly, and that the latency is
185 ;; therefore the minimum value.
187 (define_insn_reservation "9_branch_op" 0
188  (and (eq_attr "tune" "arm926ejs")
189       (eq_attr "type" "branch"))
190  "nothing")
192 ;; The latency for a call is not predictable.  Therefore, we use 32 as
193 ;; roughly equivalent to positive infinity.
195 (define_insn_reservation "9_call_op" 32
196  (and (eq_attr "tune" "arm926ejs")
197       (eq_attr "type" "call"))
198  "nothing")