2013-11-13 Christophe Lyon <christophe.lyon@linaro.org>
[official-gcc.git] / gcc / graphite-scop-detection.c
blobe73a349803a823ea1c1596a1ded8854884f834b2
1 /* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009-2013 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
24 #ifdef HAVE_cloog
25 #include <isl/set.h>
26 #include <isl/map.h>
27 #include <isl/union_map.h>
28 #include <cloog/cloog.h>
29 #include <cloog/isl/domain.h>
30 #endif
32 #include "system.h"
33 #include "coretypes.h"
34 #include "tree.h"
35 #include "gimple.h"
36 #include "gimple-ssa.h"
37 #include "tree-phinodes.h"
38 #include "ssa-iterators.h"
39 #include "tree-ssa-loop-manip.h"
40 #include "tree-ssa-loop-niter.h"
41 #include "tree-ssa-loop.h"
42 #include "tree-into-ssa.h"
43 #include "tree-ssa.h"
44 #include "cfgloop.h"
45 #include "tree-chrec.h"
46 #include "tree-data-ref.h"
47 #include "tree-scalar-evolution.h"
48 #include "tree-pass.h"
49 #include "sese.h"
50 #include "tree-ssa-propagate.h"
52 #ifdef HAVE_cloog
53 #include "graphite-poly.h"
54 #include "graphite-scop-detection.h"
56 /* Forward declarations. */
57 static void make_close_phi_nodes_unique (basic_block);
59 /* The type of the analyzed basic block. */
61 typedef enum gbb_type {
62 GBB_UNKNOWN,
63 GBB_LOOP_SING_EXIT_HEADER,
64 GBB_LOOP_MULT_EXIT_HEADER,
65 GBB_LOOP_EXIT,
66 GBB_COND_HEADER,
67 GBB_SIMPLE,
68 GBB_LAST
69 } gbb_type;
71 /* Detect the type of BB. Loop headers are only marked, if they are
72 new. This means their loop_father is different to LAST_LOOP.
73 Otherwise they are treated like any other bb and their type can be
74 any other type. */
76 static gbb_type
77 get_bb_type (basic_block bb, struct loop *last_loop)
79 vec<basic_block> dom;
80 int nb_dom;
81 struct loop *loop = bb->loop_father;
83 /* Check, if we entry into a new loop. */
84 if (loop != last_loop)
86 if (single_exit (loop) != NULL)
87 return GBB_LOOP_SING_EXIT_HEADER;
88 else if (loop->num != 0)
89 return GBB_LOOP_MULT_EXIT_HEADER;
90 else
91 return GBB_COND_HEADER;
94 dom = get_dominated_by (CDI_DOMINATORS, bb);
95 nb_dom = dom.length ();
96 dom.release ();
98 if (nb_dom == 0)
99 return GBB_LAST;
101 if (nb_dom == 1 && single_succ_p (bb))
102 return GBB_SIMPLE;
104 return GBB_COND_HEADER;
107 /* A SCoP detection region, defined using bbs as borders.
109 All control flow touching this region, comes in passing basic_block
110 ENTRY and leaves passing basic_block EXIT. By using bbs instead of
111 edges for the borders we are able to represent also regions that do
112 not have a single entry or exit edge.
114 But as they have a single entry basic_block and a single exit
115 basic_block, we are able to generate for every sd_region a single
116 entry and exit edge.
120 3 <- entry
123 / \ This region contains: {3, 4, 5, 6, 7, 8}
128 9 <- exit */
131 typedef struct sd_region_p
133 /* The entry bb dominates all bbs in the sd_region. It is part of
134 the region. */
135 basic_block entry;
137 /* The exit bb postdominates all bbs in the sd_region, but is not
138 part of the region. */
139 basic_block exit;
140 } sd_region;
144 /* Moves the scops from SOURCE to TARGET and clean up SOURCE. */
146 static void
147 move_sd_regions (vec<sd_region> *source, vec<sd_region> *target)
149 sd_region *s;
150 int i;
152 FOR_EACH_VEC_ELT (*source, i, s)
153 target->safe_push (*s);
155 source->release ();
158 /* Something like "n * m" is not allowed. */
160 static bool
161 graphite_can_represent_init (tree e)
163 switch (TREE_CODE (e))
165 case POLYNOMIAL_CHREC:
166 return graphite_can_represent_init (CHREC_LEFT (e))
167 && graphite_can_represent_init (CHREC_RIGHT (e));
169 case MULT_EXPR:
170 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
171 return graphite_can_represent_init (TREE_OPERAND (e, 0))
172 && host_integerp (TREE_OPERAND (e, 1), 0);
173 else
174 return graphite_can_represent_init (TREE_OPERAND (e, 1))
175 && host_integerp (TREE_OPERAND (e, 0), 0);
177 case PLUS_EXPR:
178 case POINTER_PLUS_EXPR:
179 case MINUS_EXPR:
180 return graphite_can_represent_init (TREE_OPERAND (e, 0))
181 && graphite_can_represent_init (TREE_OPERAND (e, 1));
183 case NEGATE_EXPR:
184 case BIT_NOT_EXPR:
185 CASE_CONVERT:
186 case NON_LVALUE_EXPR:
187 return graphite_can_represent_init (TREE_OPERAND (e, 0));
189 default:
190 break;
193 return true;
196 /* Return true when SCEV can be represented in the polyhedral model.
198 An expression can be represented, if it can be expressed as an
199 affine expression. For loops (i, j) and parameters (m, n) all
200 affine expressions are of the form:
202 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
204 1 i + 20 j + (-2) m + 25
206 Something like "i * n" or "n * m" is not allowed. */
208 static bool
209 graphite_can_represent_scev (tree scev)
211 if (chrec_contains_undetermined (scev))
212 return false;
214 switch (TREE_CODE (scev))
216 case PLUS_EXPR:
217 case MINUS_EXPR:
218 return graphite_can_represent_scev (TREE_OPERAND (scev, 0))
219 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
221 case MULT_EXPR:
222 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
223 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
224 && !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
225 && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
226 && graphite_can_represent_init (scev)
227 && graphite_can_represent_scev (TREE_OPERAND (scev, 0))
228 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
230 case POLYNOMIAL_CHREC:
231 /* Check for constant strides. With a non constant stride of
232 'n' we would have a value of 'iv * n'. Also check that the
233 initial value can represented: for example 'n * m' cannot be
234 represented. */
235 if (!evolution_function_right_is_integer_cst (scev)
236 || !graphite_can_represent_init (scev))
237 return false;
239 default:
240 break;
243 /* Only affine functions can be represented. */
244 if (!scev_is_linear_expression (scev))
245 return false;
247 return true;
251 /* Return true when EXPR can be represented in the polyhedral model.
253 This means an expression can be represented, if it is linear with
254 respect to the loops and the strides are non parametric.
255 LOOP is the place where the expr will be evaluated. SCOP_ENTRY defines the
256 entry of the region we analyse. */
258 static bool
259 graphite_can_represent_expr (basic_block scop_entry, loop_p loop,
260 tree expr)
262 tree scev = analyze_scalar_evolution (loop, expr);
264 scev = instantiate_scev (scop_entry, loop, scev);
266 return graphite_can_represent_scev (scev);
269 /* Return true if the data references of STMT can be represented by
270 Graphite. */
272 static bool
273 stmt_has_simple_data_refs_p (loop_p outermost_loop ATTRIBUTE_UNUSED,
274 gimple stmt)
276 data_reference_p dr;
277 unsigned i;
278 int j;
279 bool res = true;
280 vec<data_reference_p> drs = vNULL;
281 loop_p outer;
283 for (outer = loop_containing_stmt (stmt); outer; outer = loop_outer (outer))
285 graphite_find_data_references_in_stmt (outer,
286 loop_containing_stmt (stmt),
287 stmt, &drs);
289 FOR_EACH_VEC_ELT (drs, j, dr)
290 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
291 if (!graphite_can_represent_scev (DR_ACCESS_FN (dr, i)))
293 res = false;
294 goto done;
297 free_data_refs (drs);
298 drs.create (0);
301 done:
302 free_data_refs (drs);
303 return res;
306 /* Return true only when STMT is simple enough for being handled by
307 Graphite. This depends on SCOP_ENTRY, as the parameters are
308 initialized relatively to this basic block, the linear functions
309 are initialized to OUTERMOST_LOOP and BB is the place where we try
310 to evaluate the STMT. */
312 static bool
313 stmt_simple_for_scop_p (basic_block scop_entry, loop_p outermost_loop,
314 gimple stmt, basic_block bb)
316 loop_p loop = bb->loop_father;
318 gcc_assert (scop_entry);
320 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
321 Calls have side-effects, except those to const or pure
322 functions. */
323 if (gimple_has_volatile_ops (stmt)
324 || (gimple_code (stmt) == GIMPLE_CALL
325 && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
326 || (gimple_code (stmt) == GIMPLE_ASM))
327 return false;
329 if (is_gimple_debug (stmt))
330 return true;
332 if (!stmt_has_simple_data_refs_p (outermost_loop, stmt))
333 return false;
335 switch (gimple_code (stmt))
337 case GIMPLE_RETURN:
338 case GIMPLE_LABEL:
339 return true;
341 case GIMPLE_COND:
343 tree op;
344 ssa_op_iter op_iter;
345 enum tree_code code = gimple_cond_code (stmt);
347 /* We can handle all binary comparisons. Inequalities are
348 also supported as they can be represented with union of
349 polyhedra. */
350 if (!(code == LT_EXPR
351 || code == GT_EXPR
352 || code == LE_EXPR
353 || code == GE_EXPR
354 || code == EQ_EXPR
355 || code == NE_EXPR))
356 return false;
358 FOR_EACH_SSA_TREE_OPERAND (op, stmt, op_iter, SSA_OP_ALL_USES)
359 if (!graphite_can_represent_expr (scop_entry, loop, op)
360 /* We can not handle REAL_TYPE. Failed for pr39260. */
361 || TREE_CODE (TREE_TYPE (op)) == REAL_TYPE)
362 return false;
364 return true;
367 case GIMPLE_ASSIGN:
368 case GIMPLE_CALL:
369 return true;
371 default:
372 /* These nodes cut a new scope. */
373 return false;
376 return false;
379 /* Returns the statement of BB that contains a harmful operation: that
380 can be a function call with side effects, the induction variables
381 are not linear with respect to SCOP_ENTRY, etc. The current open
382 scop should end before this statement. The evaluation is limited using
383 OUTERMOST_LOOP as outermost loop that may change. */
385 static gimple
386 harmful_stmt_in_bb (basic_block scop_entry, loop_p outer_loop, basic_block bb)
388 gimple_stmt_iterator gsi;
390 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
391 if (!stmt_simple_for_scop_p (scop_entry, outer_loop, gsi_stmt (gsi), bb))
392 return gsi_stmt (gsi);
394 return NULL;
397 /* Return true if LOOP can be represented in the polyhedral
398 representation. This is evaluated taking SCOP_ENTRY and
399 OUTERMOST_LOOP in mind. */
401 static bool
402 graphite_can_represent_loop (basic_block scop_entry, loop_p loop)
404 tree niter;
405 struct tree_niter_desc niter_desc;
407 /* FIXME: For the moment, graphite cannot be used on loops that
408 iterate using induction variables that wrap. */
410 return number_of_iterations_exit (loop, single_exit (loop), &niter_desc, false)
411 && niter_desc.control.no_overflow
412 && (niter = number_of_latch_executions (loop))
413 && !chrec_contains_undetermined (niter)
414 && graphite_can_represent_expr (scop_entry, loop, niter);
417 /* Store information needed by scopdet_* functions. */
419 struct scopdet_info
421 /* Exit of the open scop would stop if the current BB is harmful. */
422 basic_block exit;
424 /* Where the next scop would start if the current BB is harmful. */
425 basic_block next;
427 /* The bb or one of its children contains open loop exits. That means
428 loop exit nodes that are not surrounded by a loop dominated by bb. */
429 bool exits;
431 /* The bb or one of its children contains only structures we can handle. */
432 bool difficult;
435 static struct scopdet_info build_scops_1 (basic_block, loop_p,
436 vec<sd_region> *, loop_p);
438 /* Calculates BB infos. If bb is difficult we add valid SCoPs dominated by BB
439 to SCOPS. TYPE is the gbb_type of BB. */
441 static struct scopdet_info
442 scopdet_basic_block_info (basic_block bb, loop_p outermost_loop,
443 vec<sd_region> *scops, gbb_type type)
445 loop_p loop = bb->loop_father;
446 struct scopdet_info result;
447 gimple stmt;
449 /* XXX: ENTRY_BLOCK_PTR could be optimized in later steps. */
450 basic_block entry_block = ENTRY_BLOCK_PTR;
451 stmt = harmful_stmt_in_bb (entry_block, outermost_loop, bb);
452 result.difficult = (stmt != NULL);
453 result.exit = NULL;
455 switch (type)
457 case GBB_LAST:
458 result.next = NULL;
459 result.exits = false;
461 /* Mark bbs terminating a SESE region difficult, if they start
462 a condition. */
463 if (!single_succ_p (bb))
464 result.difficult = true;
465 else
466 result.exit = single_succ (bb);
468 break;
470 case GBB_SIMPLE:
471 result.next = single_succ (bb);
472 result.exits = false;
473 result.exit = single_succ (bb);
474 break;
476 case GBB_LOOP_SING_EXIT_HEADER:
478 stack_vec<sd_region, 3> regions;
479 struct scopdet_info sinfo;
480 edge exit_e = single_exit (loop);
482 sinfo = build_scops_1 (bb, outermost_loop, &regions, loop);
484 if (!graphite_can_represent_loop (entry_block, loop))
485 result.difficult = true;
487 result.difficult |= sinfo.difficult;
489 /* Try again with another loop level. */
490 if (result.difficult
491 && loop_depth (outermost_loop) + 1 == loop_depth (loop))
493 outermost_loop = loop;
495 regions.release ();
496 regions.create (3);
498 sinfo = scopdet_basic_block_info (bb, outermost_loop, scops, type);
500 result = sinfo;
501 result.difficult = true;
503 if (sinfo.difficult)
504 move_sd_regions (&regions, scops);
505 else
507 sd_region open_scop;
508 open_scop.entry = bb;
509 open_scop.exit = exit_e->dest;
510 scops->safe_push (open_scop);
511 regions.release ();
514 else
516 result.exit = exit_e->dest;
517 result.next = exit_e->dest;
519 /* If we do not dominate result.next, remove it. It's either
520 the EXIT_BLOCK_PTR, or another bb dominates it and will
521 call the scop detection for this bb. */
522 if (!dominated_by_p (CDI_DOMINATORS, result.next, bb))
523 result.next = NULL;
525 if (exit_e->src->loop_father != loop)
526 result.next = NULL;
528 result.exits = false;
530 if (result.difficult)
531 move_sd_regions (&regions, scops);
532 else
533 regions.release ();
536 break;
539 case GBB_LOOP_MULT_EXIT_HEADER:
541 /* XXX: For now we just do not join loops with multiple exits. If the
542 exits lead to the same bb it may be possible to join the loop. */
543 stack_vec<sd_region, 3> regions;
544 vec<edge> exits = get_loop_exit_edges (loop);
545 edge e;
546 int i;
547 build_scops_1 (bb, loop, &regions, loop);
549 /* Scan the code dominated by this loop. This means all bbs, that are
550 are dominated by a bb in this loop, but are not part of this loop.
552 The easiest case:
553 - The loop exit destination is dominated by the exit sources.
555 TODO: We miss here the more complex cases:
556 - The exit destinations are dominated by another bb inside
557 the loop.
558 - The loop dominates bbs, that are not exit destinations. */
559 FOR_EACH_VEC_ELT (exits, i, e)
560 if (e->src->loop_father == loop
561 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src))
563 if (loop_outer (outermost_loop))
564 outermost_loop = loop_outer (outermost_loop);
566 /* Pass loop_outer to recognize e->dest as loop header in
567 build_scops_1. */
568 if (e->dest->loop_father->header == e->dest)
569 build_scops_1 (e->dest, outermost_loop, &regions,
570 loop_outer (e->dest->loop_father));
571 else
572 build_scops_1 (e->dest, outermost_loop, &regions,
573 e->dest->loop_father);
576 result.next = NULL;
577 result.exit = NULL;
578 result.difficult = true;
579 result.exits = false;
580 move_sd_regions (&regions, scops);
581 exits.release ();
582 break;
584 case GBB_COND_HEADER:
586 stack_vec<sd_region, 3> regions;
587 struct scopdet_info sinfo;
588 vec<basic_block> dominated;
589 int i;
590 basic_block dom_bb;
591 basic_block last_exit = NULL;
592 edge e;
593 result.exits = false;
595 /* First check the successors of BB, and check if it is
596 possible to join the different branches. */
597 FOR_EACH_VEC_SAFE_ELT (bb->succs, i, e)
599 /* Ignore loop exits. They will be handled after the loop
600 body. */
601 if (loop_exits_to_bb_p (loop, e->dest))
603 result.exits = true;
604 continue;
607 /* Do not follow edges that lead to the end of the
608 conditions block. For example, in
611 | /|\
612 | 1 2 |
613 | | | |
614 | 3 4 |
615 | \|/
618 the edge from 0 => 6. Only check if all paths lead to
619 the same node 6. */
621 if (!single_pred_p (e->dest))
623 /* Check, if edge leads directly to the end of this
624 condition. */
625 if (!last_exit)
626 last_exit = e->dest;
628 if (e->dest != last_exit)
629 result.difficult = true;
631 continue;
634 if (!dominated_by_p (CDI_DOMINATORS, e->dest, bb))
636 result.difficult = true;
637 continue;
640 sinfo = build_scops_1 (e->dest, outermost_loop, &regions, loop);
642 result.exits |= sinfo.exits;
643 result.difficult |= sinfo.difficult;
645 /* Checks, if all branches end at the same point.
646 If that is true, the condition stays joinable.
647 Have a look at the example above. */
648 if (sinfo.exit)
650 if (!last_exit)
651 last_exit = sinfo.exit;
653 if (sinfo.exit != last_exit)
654 result.difficult = true;
656 else
657 result.difficult = true;
660 if (!last_exit)
661 result.difficult = true;
663 /* Join the branches of the condition if possible. */
664 if (!result.exits && !result.difficult)
666 /* Only return a next pointer if we dominate this pointer.
667 Otherwise it will be handled by the bb dominating it. */
668 if (dominated_by_p (CDI_DOMINATORS, last_exit, bb)
669 && last_exit != bb)
670 result.next = last_exit;
671 else
672 result.next = NULL;
674 result.exit = last_exit;
676 regions.release ();
677 break;
680 /* Scan remaining bbs dominated by BB. */
681 dominated = get_dominated_by (CDI_DOMINATORS, bb);
683 FOR_EACH_VEC_ELT (dominated, i, dom_bb)
685 /* Ignore loop exits: they will be handled after the loop body. */
686 if (loop_depth (find_common_loop (loop, dom_bb->loop_father))
687 < loop_depth (loop))
689 result.exits = true;
690 continue;
693 /* Ignore the bbs processed above. */
694 if (single_pred_p (dom_bb) && single_pred (dom_bb) == bb)
695 continue;
697 if (loop_depth (loop) > loop_depth (dom_bb->loop_father))
698 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions,
699 loop_outer (loop));
700 else
701 sinfo = build_scops_1 (dom_bb, outermost_loop, &regions, loop);
703 result.exits |= sinfo.exits;
704 result.difficult = true;
705 result.exit = NULL;
708 dominated.release ();
710 result.next = NULL;
711 move_sd_regions (&regions, scops);
713 break;
716 default:
717 gcc_unreachable ();
720 return result;
723 /* Starting from CURRENT we walk the dominance tree and add new sd_regions to
724 SCOPS. The analyse if a sd_region can be handled is based on the value
725 of OUTERMOST_LOOP. Only loops inside OUTERMOST loops may change. LOOP
726 is the loop in which CURRENT is handled.
728 TODO: These functions got a little bit big. They definitely should be cleaned
729 up. */
731 static struct scopdet_info
732 build_scops_1 (basic_block current, loop_p outermost_loop,
733 vec<sd_region> *scops, loop_p loop)
735 bool in_scop = false;
736 sd_region open_scop;
737 struct scopdet_info sinfo;
739 /* Initialize result. */
740 struct scopdet_info result;
741 result.exits = false;
742 result.difficult = false;
743 result.next = NULL;
744 result.exit = NULL;
745 open_scop.entry = NULL;
746 open_scop.exit = NULL;
747 sinfo.exit = NULL;
749 /* Loop over the dominance tree. If we meet a difficult bb, close
750 the current SCoP. Loop and condition header start a new layer,
751 and can only be added if all bbs in deeper layers are simple. */
752 while (current != NULL)
754 sinfo = scopdet_basic_block_info (current, outermost_loop, scops,
755 get_bb_type (current, loop));
757 if (!in_scop && !(sinfo.exits || sinfo.difficult))
759 open_scop.entry = current;
760 open_scop.exit = NULL;
761 in_scop = true;
763 else if (in_scop && (sinfo.exits || sinfo.difficult))
765 open_scop.exit = current;
766 scops->safe_push (open_scop);
767 in_scop = false;
770 result.difficult |= sinfo.difficult;
771 result.exits |= sinfo.exits;
773 current = sinfo.next;
776 /* Try to close open_scop, if we are still in an open SCoP. */
777 if (in_scop)
779 open_scop.exit = sinfo.exit;
780 gcc_assert (open_scop.exit);
781 scops->safe_push (open_scop);
784 result.exit = sinfo.exit;
785 return result;
788 /* Checks if a bb is contained in REGION. */
790 static bool
791 bb_in_sd_region (basic_block bb, sd_region *region)
793 return bb_in_region (bb, region->entry, region->exit);
796 /* Returns the single entry edge of REGION, if it does not exits NULL. */
798 static edge
799 find_single_entry_edge (sd_region *region)
801 edge e;
802 edge_iterator ei;
803 edge entry = NULL;
805 FOR_EACH_EDGE (e, ei, region->entry->preds)
806 if (!bb_in_sd_region (e->src, region))
808 if (entry)
810 entry = NULL;
811 break;
814 else
815 entry = e;
818 return entry;
821 /* Returns the single exit edge of REGION, if it does not exits NULL. */
823 static edge
824 find_single_exit_edge (sd_region *region)
826 edge e;
827 edge_iterator ei;
828 edge exit = NULL;
830 FOR_EACH_EDGE (e, ei, region->exit->preds)
831 if (bb_in_sd_region (e->src, region))
833 if (exit)
835 exit = NULL;
836 break;
839 else
840 exit = e;
843 return exit;
846 /* Create a single entry edge for REGION. */
848 static void
849 create_single_entry_edge (sd_region *region)
851 if (find_single_entry_edge (region))
852 return;
854 /* There are multiple predecessors for bb_3
856 | 1 2
857 | | /
858 | |/
859 | 3 <- entry
860 | |\
861 | | |
862 | 4 ^
863 | | |
864 | |/
867 There are two edges (1->3, 2->3), that point from outside into the region,
868 and another one (5->3), a loop latch, lead to bb_3.
870 We split bb_3.
872 | 1 2
873 | | /
874 | |/
875 |3.0
876 | |\ (3.0 -> 3.1) = single entry edge
877 |3.1 | <- entry
878 | | |
879 | | |
880 | 4 ^
881 | | |
882 | |/
885 If the loop is part of the SCoP, we have to redirect the loop latches.
887 | 1 2
888 | | /
889 | |/
890 |3.0
891 | | (3.0 -> 3.1) = entry edge
892 |3.1 <- entry
893 | |\
894 | | |
895 | 4 ^
896 | | |
897 | |/
898 | 5 */
900 if (region->entry->loop_father->header != region->entry
901 || dominated_by_p (CDI_DOMINATORS,
902 loop_latch_edge (region->entry->loop_father)->src,
903 region->exit))
905 edge forwarder = split_block_after_labels (region->entry);
906 region->entry = forwarder->dest;
908 else
909 /* This case is never executed, as the loop headers seem always to have a
910 single edge pointing from outside into the loop. */
911 gcc_unreachable ();
913 gcc_checking_assert (find_single_entry_edge (region));
916 /* Check if the sd_region, mentioned in EDGE, has no exit bb. */
918 static bool
919 sd_region_without_exit (edge e)
921 sd_region *r = (sd_region *) e->aux;
923 if (r)
924 return r->exit == NULL;
925 else
926 return false;
929 /* Create a single exit edge for REGION. */
931 static void
932 create_single_exit_edge (sd_region *region)
934 edge e;
935 edge_iterator ei;
936 edge forwarder = NULL;
937 basic_block exit;
939 /* We create a forwarder bb (5) for all edges leaving this region
940 (3->5, 4->5). All other edges leading to the same bb, are moved
941 to a new bb (6). If these edges where part of another region (2->5)
942 we update the region->exit pointer, of this region.
944 To identify which edge belongs to which region we depend on the e->aux
945 pointer in every edge. It points to the region of the edge or to NULL,
946 if the edge is not part of any region.
948 1 2 3 4 1->5 no region, 2->5 region->exit = 5,
949 \| |/ 3->5 region->exit = NULL, 4->5 region->exit = NULL
950 5 <- exit
952 changes to
954 1 2 3 4 1->6 no region, 2->6 region->exit = 6,
955 | | \/ 3->5 no region, 4->5 no region,
956 | | 5
957 \| / 5->6 region->exit = 6
960 Now there is only a single exit edge (5->6). */
961 exit = region->exit;
962 region->exit = NULL;
963 forwarder = make_forwarder_block (exit, &sd_region_without_exit, NULL);
965 /* Unmark the edges, that are no longer exit edges. */
966 FOR_EACH_EDGE (e, ei, forwarder->src->preds)
967 if (e->aux)
968 e->aux = NULL;
970 /* Mark the new exit edge. */
971 single_succ_edge (forwarder->src)->aux = region;
973 /* Update the exit bb of all regions, where exit edges lead to
974 forwarder->dest. */
975 FOR_EACH_EDGE (e, ei, forwarder->dest->preds)
976 if (e->aux)
977 ((sd_region *) e->aux)->exit = forwarder->dest;
979 gcc_checking_assert (find_single_exit_edge (region));
982 /* Unmark the exit edges of all REGIONS.
983 See comment in "create_single_exit_edge". */
985 static void
986 unmark_exit_edges (vec<sd_region> regions)
988 int i;
989 sd_region *s;
990 edge e;
991 edge_iterator ei;
993 FOR_EACH_VEC_ELT (regions, i, s)
994 FOR_EACH_EDGE (e, ei, s->exit->preds)
995 e->aux = NULL;
999 /* Mark the exit edges of all REGIONS.
1000 See comment in "create_single_exit_edge". */
1002 static void
1003 mark_exit_edges (vec<sd_region> regions)
1005 int i;
1006 sd_region *s;
1007 edge e;
1008 edge_iterator ei;
1010 FOR_EACH_VEC_ELT (regions, i, s)
1011 FOR_EACH_EDGE (e, ei, s->exit->preds)
1012 if (bb_in_sd_region (e->src, s))
1013 e->aux = s;
1016 /* Create for all scop regions a single entry and a single exit edge. */
1018 static void
1019 create_sese_edges (vec<sd_region> regions)
1021 int i;
1022 sd_region *s;
1024 FOR_EACH_VEC_ELT (regions, i, s)
1025 create_single_entry_edge (s);
1027 mark_exit_edges (regions);
1029 FOR_EACH_VEC_ELT (regions, i, s)
1030 /* Don't handle multiple edges exiting the function. */
1031 if (!find_single_exit_edge (s)
1032 && s->exit != EXIT_BLOCK_PTR)
1033 create_single_exit_edge (s);
1035 unmark_exit_edges (regions);
1037 calculate_dominance_info (CDI_DOMINATORS);
1038 fix_loop_structure (NULL);
1040 #ifdef ENABLE_CHECKING
1041 verify_loop_structure ();
1042 verify_ssa (false);
1043 #endif
1046 /* Create graphite SCoPs from an array of scop detection REGIONS. */
1048 static void
1049 build_graphite_scops (vec<sd_region> regions,
1050 vec<scop_p> *scops)
1052 int i;
1053 sd_region *s;
1055 FOR_EACH_VEC_ELT (regions, i, s)
1057 edge entry = find_single_entry_edge (s);
1058 edge exit = find_single_exit_edge (s);
1059 scop_p scop;
1061 if (!exit)
1062 continue;
1064 scop = new_scop (new_sese (entry, exit));
1065 scops->safe_push (scop);
1067 /* Are there overlapping SCoPs? */
1068 #ifdef ENABLE_CHECKING
1070 int j;
1071 sd_region *s2;
1073 FOR_EACH_VEC_ELT (regions, j, s2)
1074 if (s != s2)
1075 gcc_assert (!bb_in_sd_region (s->entry, s2));
1077 #endif
1081 /* Returns true when BB contains only close phi nodes. */
1083 static bool
1084 contains_only_close_phi_nodes (basic_block bb)
1086 gimple_stmt_iterator gsi;
1088 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1089 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_LABEL)
1090 return false;
1092 return true;
1095 /* Print statistics for SCOP to FILE. */
1097 static void
1098 print_graphite_scop_statistics (FILE* file, scop_p scop)
1100 long n_bbs = 0;
1101 long n_loops = 0;
1102 long n_stmts = 0;
1103 long n_conditions = 0;
1104 long n_p_bbs = 0;
1105 long n_p_loops = 0;
1106 long n_p_stmts = 0;
1107 long n_p_conditions = 0;
1109 basic_block bb;
1111 FOR_ALL_BB (bb)
1113 gimple_stmt_iterator psi;
1114 loop_p loop = bb->loop_father;
1116 if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
1117 continue;
1119 n_bbs++;
1120 n_p_bbs += bb->count;
1122 if (EDGE_COUNT (bb->succs) > 1)
1124 n_conditions++;
1125 n_p_conditions += bb->count;
1128 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
1130 n_stmts++;
1131 n_p_stmts += bb->count;
1134 if (loop->header == bb && loop_in_sese_p (loop, SCOP_REGION (scop)))
1136 n_loops++;
1137 n_p_loops += bb->count;
1142 fprintf (file, "\nBefore limit_scops SCoP statistics (");
1143 fprintf (file, "BBS:%ld, ", n_bbs);
1144 fprintf (file, "LOOPS:%ld, ", n_loops);
1145 fprintf (file, "CONDITIONS:%ld, ", n_conditions);
1146 fprintf (file, "STMTS:%ld)\n", n_stmts);
1147 fprintf (file, "\nBefore limit_scops SCoP profiling statistics (");
1148 fprintf (file, "BBS:%ld, ", n_p_bbs);
1149 fprintf (file, "LOOPS:%ld, ", n_p_loops);
1150 fprintf (file, "CONDITIONS:%ld, ", n_p_conditions);
1151 fprintf (file, "STMTS:%ld)\n", n_p_stmts);
1154 /* Print statistics for SCOPS to FILE. */
1156 static void
1157 print_graphite_statistics (FILE* file, vec<scop_p> scops)
1159 int i;
1160 scop_p scop;
1162 FOR_EACH_VEC_ELT (scops, i, scop)
1163 print_graphite_scop_statistics (file, scop);
1166 /* We limit all SCoPs to SCoPs, that are completely surrounded by a loop.
1168 Example:
1170 for (i |
1172 for (j | SCoP 1
1173 for (k |
1176 * SCoP frontier, as this line is not surrounded by any loop. *
1178 for (l | SCoP 2
1180 This is necessary as scalar evolution and parameter detection need a
1181 outermost loop to initialize parameters correctly.
1183 TODO: FIX scalar evolution and parameter detection to allow more flexible
1184 SCoP frontiers. */
1186 static void
1187 limit_scops (vec<scop_p> *scops)
1189 stack_vec<sd_region, 3> regions;
1191 int i;
1192 scop_p scop;
1194 FOR_EACH_VEC_ELT (*scops, i, scop)
1196 int j;
1197 loop_p loop;
1198 sese region = SCOP_REGION (scop);
1199 build_sese_loop_nests (region);
1201 FOR_EACH_VEC_ELT (SESE_LOOP_NEST (region), j, loop)
1202 if (!loop_in_sese_p (loop_outer (loop), region)
1203 && single_exit (loop))
1205 sd_region open_scop;
1206 open_scop.entry = loop->header;
1207 open_scop.exit = single_exit (loop)->dest;
1209 /* This is a hack on top of the limit_scops hack. The
1210 limit_scops hack should disappear all together. */
1211 if (single_succ_p (open_scop.exit)
1212 && contains_only_close_phi_nodes (open_scop.exit))
1213 open_scop.exit = single_succ_edge (open_scop.exit)->dest;
1215 regions.safe_push (open_scop);
1219 free_scops (*scops);
1220 scops->create (3);
1222 create_sese_edges (regions);
1223 build_graphite_scops (regions, scops);
1226 /* Returns true when P1 and P2 are close phis with the same
1227 argument. */
1229 static inline bool
1230 same_close_phi_node (gimple p1, gimple p2)
1232 return operand_equal_p (gimple_phi_arg_def (p1, 0),
1233 gimple_phi_arg_def (p2, 0), 0);
1236 /* Remove the close phi node at GSI and replace its rhs with the rhs
1237 of PHI. */
1239 static void
1240 remove_duplicate_close_phi (gimple phi, gimple_stmt_iterator *gsi)
1242 gimple use_stmt;
1243 use_operand_p use_p;
1244 imm_use_iterator imm_iter;
1245 tree res = gimple_phi_result (phi);
1246 tree def = gimple_phi_result (gsi_stmt (*gsi));
1248 gcc_assert (same_close_phi_node (phi, gsi_stmt (*gsi)));
1250 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
1252 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1253 SET_USE (use_p, res);
1255 update_stmt (use_stmt);
1257 /* It is possible that we just created a duplicate close-phi
1258 for an already-processed containing loop. Check for this
1259 case and clean it up. */
1260 if (gimple_code (use_stmt) == GIMPLE_PHI
1261 && gimple_phi_num_args (use_stmt) == 1)
1262 make_close_phi_nodes_unique (gimple_bb (use_stmt));
1265 remove_phi_node (gsi, true);
1268 /* Removes all the close phi duplicates from BB. */
1270 static void
1271 make_close_phi_nodes_unique (basic_block bb)
1273 gimple_stmt_iterator psi;
1275 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1277 gimple_stmt_iterator gsi = psi;
1278 gimple phi = gsi_stmt (psi);
1280 /* At this point, PHI should be a close phi in normal form. */
1281 gcc_assert (gimple_phi_num_args (phi) == 1);
1283 /* Iterate over the next phis and remove duplicates. */
1284 gsi_next (&gsi);
1285 while (!gsi_end_p (gsi))
1286 if (same_close_phi_node (phi, gsi_stmt (gsi)))
1287 remove_duplicate_close_phi (phi, &gsi);
1288 else
1289 gsi_next (&gsi);
1293 /* Transforms LOOP to the canonical loop closed SSA form. */
1295 static void
1296 canonicalize_loop_closed_ssa (loop_p loop)
1298 edge e = single_exit (loop);
1299 basic_block bb;
1301 if (!e || e->flags & EDGE_ABNORMAL)
1302 return;
1304 bb = e->dest;
1306 if (single_pred_p (bb))
1308 e = split_block_after_labels (bb);
1309 make_close_phi_nodes_unique (e->src);
1311 else
1313 gimple_stmt_iterator psi;
1314 basic_block close = split_edge (e);
1316 e = single_succ_edge (close);
1318 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1320 gimple phi = gsi_stmt (psi);
1321 unsigned i;
1323 for (i = 0; i < gimple_phi_num_args (phi); i++)
1324 if (gimple_phi_arg_edge (phi, i) == e)
1326 tree res, arg = gimple_phi_arg_def (phi, i);
1327 use_operand_p use_p;
1328 gimple close_phi;
1330 if (TREE_CODE (arg) != SSA_NAME)
1331 continue;
1333 close_phi = create_phi_node (NULL_TREE, close);
1334 res = create_new_def_for (arg, close_phi,
1335 gimple_phi_result_ptr (close_phi));
1336 add_phi_arg (close_phi, arg,
1337 gimple_phi_arg_edge (close_phi, 0),
1338 UNKNOWN_LOCATION);
1339 use_p = gimple_phi_arg_imm_use_ptr (phi, i);
1340 replace_exp (use_p, res);
1341 update_stmt (phi);
1345 make_close_phi_nodes_unique (close);
1348 /* The code above does not properly handle changes in the post dominance
1349 information (yet). */
1350 free_dominance_info (CDI_POST_DOMINATORS);
1353 /* Converts the current loop closed SSA form to a canonical form
1354 expected by the Graphite code generation.
1356 The loop closed SSA form has the following invariant: a variable
1357 defined in a loop that is used outside the loop appears only in the
1358 phi nodes in the destination of the loop exit. These phi nodes are
1359 called close phi nodes.
1361 The canonical loop closed SSA form contains the extra invariants:
1363 - when the loop contains only one exit, the close phi nodes contain
1364 only one argument. That implies that the basic block that contains
1365 the close phi nodes has only one predecessor, that is a basic block
1366 in the loop.
1368 - the basic block containing the close phi nodes does not contain
1369 other statements.
1371 - there exist only one phi node per definition in the loop.
1374 static void
1375 canonicalize_loop_closed_ssa_form (void)
1377 loop_iterator li;
1378 loop_p loop;
1380 #ifdef ENABLE_CHECKING
1381 verify_loop_closed_ssa (true);
1382 #endif
1384 FOR_EACH_LOOP (li, loop, 0)
1385 canonicalize_loop_closed_ssa (loop);
1387 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1388 update_ssa (TODO_update_ssa);
1390 #ifdef ENABLE_CHECKING
1391 verify_loop_closed_ssa (true);
1392 #endif
1395 /* Find Static Control Parts (SCoP) in the current function and pushes
1396 them to SCOPS. */
1398 void
1399 build_scops (vec<scop_p> *scops)
1401 struct loop *loop = current_loops->tree_root;
1402 stack_vec<sd_region, 3> regions;
1404 canonicalize_loop_closed_ssa_form ();
1405 build_scops_1 (single_succ (ENTRY_BLOCK_PTR), ENTRY_BLOCK_PTR->loop_father,
1406 &regions, loop);
1407 create_sese_edges (regions);
1408 build_graphite_scops (regions, scops);
1410 if (dump_file && (dump_flags & TDF_DETAILS))
1411 print_graphite_statistics (dump_file, *scops);
1413 limit_scops (scops);
1414 regions.release ();
1416 if (dump_file && (dump_flags & TDF_DETAILS))
1417 fprintf (dump_file, "\nnumber of SCoPs: %d\n",
1418 scops ? scops->length () : 0);
1421 /* Pretty print to FILE all the SCoPs in DOT format and mark them with
1422 different colors. If there are not enough colors, paint the
1423 remaining SCoPs in gray.
1425 Special nodes:
1426 - "*" after the node number denotes the entry of a SCoP,
1427 - "#" after the node number denotes the exit of a SCoP,
1428 - "()" around the node number denotes the entry or the
1429 exit nodes of the SCOP. These are not part of SCoP. */
1431 static void
1432 dot_all_scops_1 (FILE *file, vec<scop_p> scops)
1434 basic_block bb;
1435 edge e;
1436 edge_iterator ei;
1437 scop_p scop;
1438 const char* color;
1439 int i;
1441 /* Disable debugging while printing graph. */
1442 int tmp_dump_flags = dump_flags;
1443 dump_flags = 0;
1445 fprintf (file, "digraph all {\n");
1447 FOR_ALL_BB (bb)
1449 int part_of_scop = false;
1451 /* Use HTML for every bb label. So we are able to print bbs
1452 which are part of two different SCoPs, with two different
1453 background colors. */
1454 fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
1455 bb->index);
1456 fprintf (file, "CELLSPACING=\"0\">\n");
1458 /* Select color for SCoP. */
1459 FOR_EACH_VEC_ELT (scops, i, scop)
1461 sese region = SCOP_REGION (scop);
1462 if (bb_in_sese_p (bb, region)
1463 || (SESE_EXIT_BB (region) == bb)
1464 || (SESE_ENTRY_BB (region) == bb))
1466 switch (i % 17)
1468 case 0: /* red */
1469 color = "#e41a1c";
1470 break;
1471 case 1: /* blue */
1472 color = "#377eb8";
1473 break;
1474 case 2: /* green */
1475 color = "#4daf4a";
1476 break;
1477 case 3: /* purple */
1478 color = "#984ea3";
1479 break;
1480 case 4: /* orange */
1481 color = "#ff7f00";
1482 break;
1483 case 5: /* yellow */
1484 color = "#ffff33";
1485 break;
1486 case 6: /* brown */
1487 color = "#a65628";
1488 break;
1489 case 7: /* rose */
1490 color = "#f781bf";
1491 break;
1492 case 8:
1493 color = "#8dd3c7";
1494 break;
1495 case 9:
1496 color = "#ffffb3";
1497 break;
1498 case 10:
1499 color = "#bebada";
1500 break;
1501 case 11:
1502 color = "#fb8072";
1503 break;
1504 case 12:
1505 color = "#80b1d3";
1506 break;
1507 case 13:
1508 color = "#fdb462";
1509 break;
1510 case 14:
1511 color = "#b3de69";
1512 break;
1513 case 15:
1514 color = "#fccde5";
1515 break;
1516 case 16:
1517 color = "#bc80bd";
1518 break;
1519 default: /* gray */
1520 color = "#999999";
1523 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color);
1525 if (!bb_in_sese_p (bb, region))
1526 fprintf (file, " (");
1528 if (bb == SESE_ENTRY_BB (region)
1529 && bb == SESE_EXIT_BB (region))
1530 fprintf (file, " %d*# ", bb->index);
1531 else if (bb == SESE_ENTRY_BB (region))
1532 fprintf (file, " %d* ", bb->index);
1533 else if (bb == SESE_EXIT_BB (region))
1534 fprintf (file, " %d# ", bb->index);
1535 else
1536 fprintf (file, " %d ", bb->index);
1538 if (!bb_in_sese_p (bb,region))
1539 fprintf (file, ")");
1541 fprintf (file, "</TD></TR>\n");
1542 part_of_scop = true;
1546 if (!part_of_scop)
1548 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
1549 fprintf (file, " %d </TD></TR>\n", bb->index);
1551 fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
1554 FOR_ALL_BB (bb)
1556 FOR_EACH_EDGE (e, ei, bb->succs)
1557 fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
1560 fputs ("}\n\n", file);
1562 /* Enable debugging again. */
1563 dump_flags = tmp_dump_flags;
1566 /* Display all SCoPs using dotty. */
1568 DEBUG_FUNCTION void
1569 dot_all_scops (vec<scop_p> scops)
1571 /* When debugging, enable the following code. This cannot be used
1572 in production compilers because it calls "system". */
1573 #if 0
1574 int x;
1575 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1576 gcc_assert (stream);
1578 dot_all_scops_1 (stream, scops);
1579 fclose (stream);
1581 x = system ("dotty /tmp/allscops.dot &");
1582 #else
1583 dot_all_scops_1 (stderr, scops);
1584 #endif
1587 /* Display all SCoPs using dotty. */
1589 DEBUG_FUNCTION void
1590 dot_scop (scop_p scop)
1592 stack_vec<scop_p, 1> scops;
1594 if (scop)
1595 scops.safe_push (scop);
1597 /* When debugging, enable the following code. This cannot be used
1598 in production compilers because it calls "system". */
1599 #if 0
1601 int x;
1602 FILE *stream = fopen ("/tmp/allscops.dot", "w");
1603 gcc_assert (stream);
1605 dot_all_scops_1 (stream, scops);
1606 fclose (stream);
1607 x = system ("dotty /tmp/allscops.dot &");
1609 #else
1610 dot_all_scops_1 (stderr, scops);
1611 #endif
1614 #endif