Daily bump.
[official-gcc.git] / gcc / tree-vect-patterns.c
blob1b6043cad337e325bd4a886f3a07a9e0397f8544
1 /* Analysis Utilities for Loop Vectorization.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3 Contributed by Dorit Nuzman <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "alias.h"
26 #include "symtab.h"
27 #include "tree.h"
28 #include "fold-const.h"
29 #include "stor-layout.h"
30 #include "target.h"
31 #include "predict.h"
32 #include "hard-reg-set.h"
33 #include "function.h"
34 #include "dominance.h"
35 #include "basic-block.h"
36 #include "gimple-pretty-print.h"
37 #include "tree-ssa-alias.h"
38 #include "internal-fn.h"
39 #include "tree-eh.h"
40 #include "gimple-expr.h"
41 #include "gimple.h"
42 #include "gimplify.h"
43 #include "gimple-iterator.h"
44 #include "gimple-ssa.h"
45 #include "tree-phinodes.h"
46 #include "ssa-iterators.h"
47 #include "stringpool.h"
48 #include "tree-ssanames.h"
49 #include "cfgloop.h"
50 #include "rtl.h"
51 #include "flags.h"
52 #include "insn-config.h"
53 #include "expmed.h"
54 #include "dojump.h"
55 #include "explow.h"
56 #include "calls.h"
57 #include "emit-rtl.h"
58 #include "varasm.h"
59 #include "stmt.h"
60 #include "expr.h"
61 #include "insn-codes.h"
62 #include "optabs.h"
63 #include "params.h"
64 #include "tree-data-ref.h"
65 #include "tree-vectorizer.h"
66 #include "recog.h" /* FIXME: for insn_data */
67 #include "diagnostic-core.h"
68 #include "dumpfile.h"
69 #include "builtins.h"
71 /* Pattern recognition functions */
72 static gimple vect_recog_widen_sum_pattern (vec<gimple> *, tree *,
73 tree *);
74 static gimple vect_recog_widen_mult_pattern (vec<gimple> *, tree *,
75 tree *);
76 static gimple vect_recog_dot_prod_pattern (vec<gimple> *, tree *,
77 tree *);
78 static gimple vect_recog_sad_pattern (vec<gimple> *, tree *,
79 tree *);
80 static gimple vect_recog_pow_pattern (vec<gimple> *, tree *, tree *);
81 static gimple vect_recog_over_widening_pattern (vec<gimple> *, tree *,
82 tree *);
83 static gimple vect_recog_widen_shift_pattern (vec<gimple> *,
84 tree *, tree *);
85 static gimple vect_recog_rotate_pattern (vec<gimple> *, tree *, tree *);
86 static gimple vect_recog_vector_vector_shift_pattern (vec<gimple> *,
87 tree *, tree *);
88 static gimple vect_recog_divmod_pattern (vec<gimple> *,
89 tree *, tree *);
90 static gimple vect_recog_mixed_size_cond_pattern (vec<gimple> *,
91 tree *, tree *);
92 static gimple vect_recog_bool_pattern (vec<gimple> *, tree *, tree *);
93 static vect_recog_func_ptr vect_vect_recog_func_ptrs[NUM_PATTERNS] = {
94 vect_recog_widen_mult_pattern,
95 vect_recog_widen_sum_pattern,
96 vect_recog_dot_prod_pattern,
97 vect_recog_sad_pattern,
98 vect_recog_pow_pattern,
99 vect_recog_widen_shift_pattern,
100 vect_recog_over_widening_pattern,
101 vect_recog_rotate_pattern,
102 vect_recog_vector_vector_shift_pattern,
103 vect_recog_divmod_pattern,
104 vect_recog_mixed_size_cond_pattern,
105 vect_recog_bool_pattern};
107 static inline void
108 append_pattern_def_seq (stmt_vec_info stmt_info, gimple stmt)
110 gimple_seq_add_stmt_without_update (&STMT_VINFO_PATTERN_DEF_SEQ (stmt_info),
111 stmt);
114 static inline void
115 new_pattern_def_seq (stmt_vec_info stmt_info, gimple stmt)
117 STMT_VINFO_PATTERN_DEF_SEQ (stmt_info) = NULL;
118 append_pattern_def_seq (stmt_info, stmt);
121 /* Check whether STMT2 is in the same loop or basic block as STMT1.
122 Which of the two applies depends on whether we're currently doing
123 loop-based or basic-block-based vectorization, as determined by
124 the vinfo_for_stmt for STMT1 (which must be defined).
126 If this returns true, vinfo_for_stmt for STMT2 is guaranteed
127 to be defined as well. */
129 static bool
130 vect_same_loop_or_bb_p (gimple stmt1, gimple stmt2)
132 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt1);
133 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
134 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_vinfo);
136 if (!gimple_bb (stmt2))
137 return false;
139 if (loop_vinfo)
141 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
142 if (!flow_bb_inside_loop_p (loop, gimple_bb (stmt2)))
143 return false;
145 else
147 if (gimple_bb (stmt2) != BB_VINFO_BB (bb_vinfo)
148 || gimple_code (stmt2) == GIMPLE_PHI)
149 return false;
152 gcc_assert (vinfo_for_stmt (stmt2));
153 return true;
156 /* If the LHS of DEF_STMT has a single use, and that statement is
157 in the same loop or basic block, return it. */
159 static gimple
160 vect_single_imm_use (gimple def_stmt)
162 tree lhs = gimple_assign_lhs (def_stmt);
163 use_operand_p use_p;
164 gimple use_stmt;
166 if (!single_imm_use (lhs, &use_p, &use_stmt))
167 return NULL;
169 if (!vect_same_loop_or_bb_p (def_stmt, use_stmt))
170 return NULL;
172 return use_stmt;
175 /* Check whether NAME, an ssa-name used in USE_STMT,
176 is a result of a type promotion, such that:
177 DEF_STMT: NAME = NOP (name0)
178 If CHECK_SIGN is TRUE, check that either both types are signed or both are
179 unsigned. */
181 static bool
182 type_conversion_p (tree name, gimple use_stmt, bool check_sign,
183 tree *orig_type, gimple *def_stmt, bool *promotion)
185 tree dummy;
186 gimple dummy_gimple;
187 loop_vec_info loop_vinfo;
188 stmt_vec_info stmt_vinfo;
189 tree type = TREE_TYPE (name);
190 tree oprnd0;
191 enum vect_def_type dt;
192 tree def;
193 bb_vec_info bb_vinfo;
195 stmt_vinfo = vinfo_for_stmt (use_stmt);
196 loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
197 bb_vinfo = STMT_VINFO_BB_VINFO (stmt_vinfo);
198 if (!vect_is_simple_use (name, use_stmt, loop_vinfo, bb_vinfo, def_stmt,
199 &def, &dt))
200 return false;
202 if (dt != vect_internal_def
203 && dt != vect_external_def && dt != vect_constant_def)
204 return false;
206 if (!*def_stmt)
207 return false;
209 if (!is_gimple_assign (*def_stmt))
210 return false;
212 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (*def_stmt)))
213 return false;
215 oprnd0 = gimple_assign_rhs1 (*def_stmt);
217 *orig_type = TREE_TYPE (oprnd0);
218 if (!INTEGRAL_TYPE_P (type) || !INTEGRAL_TYPE_P (*orig_type)
219 || ((TYPE_UNSIGNED (type) != TYPE_UNSIGNED (*orig_type)) && check_sign))
220 return false;
222 if (TYPE_PRECISION (type) >= (TYPE_PRECISION (*orig_type) * 2))
223 *promotion = true;
224 else
225 *promotion = false;
227 if (!vect_is_simple_use (oprnd0, *def_stmt, loop_vinfo,
228 bb_vinfo, &dummy_gimple, &dummy, &dt))
229 return false;
231 return true;
234 /* Helper to return a new temporary for pattern of TYPE for STMT. If STMT
235 is NULL, the caller must set SSA_NAME_DEF_STMT for the returned SSA var. */
237 static tree
238 vect_recog_temp_ssa_var (tree type, gimple stmt)
240 return make_temp_ssa_name (type, stmt, "patt");
243 /* Function vect_recog_dot_prod_pattern
245 Try to find the following pattern:
247 type x_t, y_t;
248 TYPE1 prod;
249 TYPE2 sum = init;
250 loop:
251 sum_0 = phi <init, sum_1>
252 S1 x_t = ...
253 S2 y_t = ...
254 S3 x_T = (TYPE1) x_t;
255 S4 y_T = (TYPE1) y_t;
256 S5 prod = x_T * y_T;
257 [S6 prod = (TYPE2) prod; #optional]
258 S7 sum_1 = prod + sum_0;
260 where 'TYPE1' is exactly double the size of type 'type', and 'TYPE2' is the
261 same size of 'TYPE1' or bigger. This is a special case of a reduction
262 computation.
264 Input:
266 * STMTS: Contains a stmt from which the pattern search begins. In the
267 example, when this function is called with S7, the pattern {S3,S4,S5,S6,S7}
268 will be detected.
270 Output:
272 * TYPE_IN: The type of the input arguments to the pattern.
274 * TYPE_OUT: The type of the output of this pattern.
276 * Return value: A new stmt that will be used to replace the sequence of
277 stmts that constitute the pattern. In this case it will be:
278 WIDEN_DOT_PRODUCT <x_t, y_t, sum_0>
280 Note: The dot-prod idiom is a widening reduction pattern that is
281 vectorized without preserving all the intermediate results. It
282 produces only N/2 (widened) results (by summing up pairs of
283 intermediate results) rather than all N results. Therefore, we
284 cannot allow this pattern when we want to get all the results and in
285 the correct order (as is the case when this computation is in an
286 inner-loop nested in an outer-loop that us being vectorized). */
288 static gimple
289 vect_recog_dot_prod_pattern (vec<gimple> *stmts, tree *type_in,
290 tree *type_out)
292 gimple stmt, last_stmt = (*stmts)[0];
293 tree oprnd0, oprnd1;
294 tree oprnd00, oprnd01;
295 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
296 tree type, half_type;
297 gimple pattern_stmt;
298 tree prod_type;
299 loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
300 struct loop *loop;
301 tree var;
302 bool promotion;
304 if (!loop_info)
305 return NULL;
307 loop = LOOP_VINFO_LOOP (loop_info);
309 /* We don't allow changing the order of the computation in the inner-loop
310 when doing outer-loop vectorization. */
311 if (loop && nested_in_vect_loop_p (loop, last_stmt))
312 return NULL;
314 if (!is_gimple_assign (last_stmt))
315 return NULL;
317 type = gimple_expr_type (last_stmt);
319 /* Look for the following pattern
320 DX = (TYPE1) X;
321 DY = (TYPE1) Y;
322 DPROD = DX * DY;
323 DDPROD = (TYPE2) DPROD;
324 sum_1 = DDPROD + sum_0;
325 In which
326 - DX is double the size of X
327 - DY is double the size of Y
328 - DX, DY, DPROD all have the same type
329 - sum is the same size of DPROD or bigger
330 - sum has been recognized as a reduction variable.
332 This is equivalent to:
333 DPROD = X w* Y; #widen mult
334 sum_1 = DPROD w+ sum_0; #widen summation
336 DPROD = X w* Y; #widen mult
337 sum_1 = DPROD + sum_0; #summation
340 /* Starting from LAST_STMT, follow the defs of its uses in search
341 of the above pattern. */
343 if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR)
344 return NULL;
346 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
348 /* Has been detected as widening-summation? */
350 stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
351 type = gimple_expr_type (stmt);
352 if (gimple_assign_rhs_code (stmt) != WIDEN_SUM_EXPR)
353 return NULL;
354 oprnd0 = gimple_assign_rhs1 (stmt);
355 oprnd1 = gimple_assign_rhs2 (stmt);
356 half_type = TREE_TYPE (oprnd0);
358 else
360 gimple def_stmt;
362 oprnd0 = gimple_assign_rhs1 (last_stmt);
363 oprnd1 = gimple_assign_rhs2 (last_stmt);
364 if (!types_compatible_p (TREE_TYPE (oprnd0), type)
365 || !types_compatible_p (TREE_TYPE (oprnd1), type))
366 return NULL;
367 stmt = last_stmt;
369 if (type_conversion_p (oprnd0, stmt, true, &half_type, &def_stmt,
370 &promotion)
371 && promotion)
373 stmt = def_stmt;
374 oprnd0 = gimple_assign_rhs1 (stmt);
376 else
377 half_type = type;
380 /* So far so good. Since last_stmt was detected as a (summation) reduction,
381 we know that oprnd1 is the reduction variable (defined by a loop-header
382 phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
383 Left to check that oprnd0 is defined by a (widen_)mult_expr */
384 if (TREE_CODE (oprnd0) != SSA_NAME)
385 return NULL;
387 prod_type = half_type;
388 stmt = SSA_NAME_DEF_STMT (oprnd0);
390 /* It could not be the dot_prod pattern if the stmt is outside the loop. */
391 if (!gimple_bb (stmt) || !flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
392 return NULL;
394 /* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
395 inside the loop (in case we are analyzing an outer-loop). */
396 if (!is_gimple_assign (stmt))
397 return NULL;
398 stmt_vinfo = vinfo_for_stmt (stmt);
399 gcc_assert (stmt_vinfo);
400 if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_internal_def)
401 return NULL;
402 if (gimple_assign_rhs_code (stmt) != MULT_EXPR)
403 return NULL;
404 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
406 /* Has been detected as a widening multiplication? */
408 stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
409 if (gimple_assign_rhs_code (stmt) != WIDEN_MULT_EXPR)
410 return NULL;
411 stmt_vinfo = vinfo_for_stmt (stmt);
412 gcc_assert (stmt_vinfo);
413 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_internal_def);
414 oprnd00 = gimple_assign_rhs1 (stmt);
415 oprnd01 = gimple_assign_rhs2 (stmt);
416 STMT_VINFO_PATTERN_DEF_SEQ (vinfo_for_stmt (last_stmt))
417 = STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo);
419 else
421 tree half_type0, half_type1;
422 gimple def_stmt;
423 tree oprnd0, oprnd1;
425 oprnd0 = gimple_assign_rhs1 (stmt);
426 oprnd1 = gimple_assign_rhs2 (stmt);
427 if (!types_compatible_p (TREE_TYPE (oprnd0), prod_type)
428 || !types_compatible_p (TREE_TYPE (oprnd1), prod_type))
429 return NULL;
430 if (!type_conversion_p (oprnd0, stmt, true, &half_type0, &def_stmt,
431 &promotion)
432 || !promotion)
433 return NULL;
434 oprnd00 = gimple_assign_rhs1 (def_stmt);
435 if (!type_conversion_p (oprnd1, stmt, true, &half_type1, &def_stmt,
436 &promotion)
437 || !promotion)
438 return NULL;
439 oprnd01 = gimple_assign_rhs1 (def_stmt);
440 if (!types_compatible_p (half_type0, half_type1))
441 return NULL;
442 if (TYPE_PRECISION (prod_type) != TYPE_PRECISION (half_type0) * 2)
443 return NULL;
446 half_type = TREE_TYPE (oprnd00);
447 *type_in = half_type;
448 *type_out = type;
450 /* Pattern detected. Create a stmt to be used to replace the pattern: */
451 var = vect_recog_temp_ssa_var (type, NULL);
452 pattern_stmt = gimple_build_assign (var, DOT_PROD_EXPR,
453 oprnd00, oprnd01, oprnd1);
455 if (dump_enabled_p ())
457 dump_printf_loc (MSG_NOTE, vect_location,
458 "vect_recog_dot_prod_pattern: detected: ");
459 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
460 dump_printf (MSG_NOTE, "\n");
463 return pattern_stmt;
467 /* Function vect_recog_sad_pattern
469 Try to find the following Sum of Absolute Difference (SAD) pattern:
471 type x_t, y_t;
472 signed TYPE1 diff, abs_diff;
473 TYPE2 sum = init;
474 loop:
475 sum_0 = phi <init, sum_1>
476 S1 x_t = ...
477 S2 y_t = ...
478 S3 x_T = (TYPE1) x_t;
479 S4 y_T = (TYPE1) y_t;
480 S5 diff = x_T - y_T;
481 S6 abs_diff = ABS_EXPR <diff>;
482 [S7 abs_diff = (TYPE2) abs_diff; #optional]
483 S8 sum_1 = abs_diff + sum_0;
485 where 'TYPE1' is at least double the size of type 'type', and 'TYPE2' is the
486 same size of 'TYPE1' or bigger. This is a special case of a reduction
487 computation.
489 Input:
491 * STMTS: Contains a stmt from which the pattern search begins. In the
492 example, when this function is called with S8, the pattern
493 {S3,S4,S5,S6,S7,S8} will be detected.
495 Output:
497 * TYPE_IN: The type of the input arguments to the pattern.
499 * TYPE_OUT: The type of the output of this pattern.
501 * Return value: A new stmt that will be used to replace the sequence of
502 stmts that constitute the pattern. In this case it will be:
503 SAD_EXPR <x_t, y_t, sum_0>
506 static gimple
507 vect_recog_sad_pattern (vec<gimple> *stmts, tree *type_in,
508 tree *type_out)
510 gimple last_stmt = (*stmts)[0];
511 tree sad_oprnd0, sad_oprnd1;
512 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
513 tree half_type;
514 loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
515 struct loop *loop;
516 bool promotion;
518 if (!loop_info)
519 return NULL;
521 loop = LOOP_VINFO_LOOP (loop_info);
523 /* We don't allow changing the order of the computation in the inner-loop
524 when doing outer-loop vectorization. */
525 if (loop && nested_in_vect_loop_p (loop, last_stmt))
526 return NULL;
528 if (!is_gimple_assign (last_stmt))
529 return NULL;
531 tree sum_type = gimple_expr_type (last_stmt);
533 /* Look for the following pattern
534 DX = (TYPE1) X;
535 DY = (TYPE1) Y;
536 DDIFF = DX - DY;
537 DAD = ABS_EXPR <DDIFF>;
538 DDPROD = (TYPE2) DPROD;
539 sum_1 = DAD + sum_0;
540 In which
541 - DX is at least double the size of X
542 - DY is at least double the size of Y
543 - DX, DY, DDIFF, DAD all have the same type
544 - sum is the same size of DAD or bigger
545 - sum has been recognized as a reduction variable.
547 This is equivalent to:
548 DDIFF = X w- Y; #widen sub
549 DAD = ABS_EXPR <DDIFF>;
550 sum_1 = DAD w+ sum_0; #widen summation
552 DDIFF = X w- Y; #widen sub
553 DAD = ABS_EXPR <DDIFF>;
554 sum_1 = DAD + sum_0; #summation
557 /* Starting from LAST_STMT, follow the defs of its uses in search
558 of the above pattern. */
560 if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR)
561 return NULL;
563 tree plus_oprnd0, plus_oprnd1;
565 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
567 /* Has been detected as widening-summation? */
569 gimple stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
570 sum_type = gimple_expr_type (stmt);
571 if (gimple_assign_rhs_code (stmt) != WIDEN_SUM_EXPR)
572 return NULL;
573 plus_oprnd0 = gimple_assign_rhs1 (stmt);
574 plus_oprnd1 = gimple_assign_rhs2 (stmt);
575 half_type = TREE_TYPE (plus_oprnd0);
577 else
579 gimple def_stmt;
581 plus_oprnd0 = gimple_assign_rhs1 (last_stmt);
582 plus_oprnd1 = gimple_assign_rhs2 (last_stmt);
583 if (!types_compatible_p (TREE_TYPE (plus_oprnd0), sum_type)
584 || !types_compatible_p (TREE_TYPE (plus_oprnd1), sum_type))
585 return NULL;
587 /* The type conversion could be promotion, demotion,
588 or just signed -> unsigned. */
589 if (type_conversion_p (plus_oprnd0, last_stmt, false,
590 &half_type, &def_stmt, &promotion))
591 plus_oprnd0 = gimple_assign_rhs1 (def_stmt);
592 else
593 half_type = sum_type;
596 /* So far so good. Since last_stmt was detected as a (summation) reduction,
597 we know that plus_oprnd1 is the reduction variable (defined by a loop-header
598 phi), and plus_oprnd0 is an ssa-name defined by a stmt in the loop body.
599 Then check that plus_oprnd0 is defined by an abs_expr. */
601 if (TREE_CODE (plus_oprnd0) != SSA_NAME)
602 return NULL;
604 tree abs_type = half_type;
605 gimple abs_stmt = SSA_NAME_DEF_STMT (plus_oprnd0);
607 /* It could not be the sad pattern if the abs_stmt is outside the loop. */
608 if (!gimple_bb (abs_stmt) || !flow_bb_inside_loop_p (loop, gimple_bb (abs_stmt)))
609 return NULL;
611 /* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
612 inside the loop (in case we are analyzing an outer-loop). */
613 if (!is_gimple_assign (abs_stmt))
614 return NULL;
616 stmt_vec_info abs_stmt_vinfo = vinfo_for_stmt (abs_stmt);
617 gcc_assert (abs_stmt_vinfo);
618 if (STMT_VINFO_DEF_TYPE (abs_stmt_vinfo) != vect_internal_def)
619 return NULL;
620 if (gimple_assign_rhs_code (abs_stmt) != ABS_EXPR)
621 return NULL;
623 tree abs_oprnd = gimple_assign_rhs1 (abs_stmt);
624 if (!types_compatible_p (TREE_TYPE (abs_oprnd), abs_type))
625 return NULL;
626 if (TYPE_UNSIGNED (abs_type))
627 return NULL;
629 /* We then detect if the operand of abs_expr is defined by a minus_expr. */
631 if (TREE_CODE (abs_oprnd) != SSA_NAME)
632 return NULL;
634 gimple diff_stmt = SSA_NAME_DEF_STMT (abs_oprnd);
636 /* It could not be the sad pattern if the diff_stmt is outside the loop. */
637 if (!gimple_bb (diff_stmt)
638 || !flow_bb_inside_loop_p (loop, gimple_bb (diff_stmt)))
639 return NULL;
641 /* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
642 inside the loop (in case we are analyzing an outer-loop). */
643 if (!is_gimple_assign (diff_stmt))
644 return NULL;
646 stmt_vec_info diff_stmt_vinfo = vinfo_for_stmt (diff_stmt);
647 gcc_assert (diff_stmt_vinfo);
648 if (STMT_VINFO_DEF_TYPE (diff_stmt_vinfo) != vect_internal_def)
649 return NULL;
650 if (gimple_assign_rhs_code (diff_stmt) != MINUS_EXPR)
651 return NULL;
653 tree half_type0, half_type1;
654 gimple def_stmt;
656 tree minus_oprnd0 = gimple_assign_rhs1 (diff_stmt);
657 tree minus_oprnd1 = gimple_assign_rhs2 (diff_stmt);
659 if (!types_compatible_p (TREE_TYPE (minus_oprnd0), abs_type)
660 || !types_compatible_p (TREE_TYPE (minus_oprnd1), abs_type))
661 return NULL;
662 if (!type_conversion_p (minus_oprnd0, diff_stmt, false,
663 &half_type0, &def_stmt, &promotion)
664 || !promotion)
665 return NULL;
666 sad_oprnd0 = gimple_assign_rhs1 (def_stmt);
668 if (!type_conversion_p (minus_oprnd1, diff_stmt, false,
669 &half_type1, &def_stmt, &promotion)
670 || !promotion)
671 return NULL;
672 sad_oprnd1 = gimple_assign_rhs1 (def_stmt);
674 if (!types_compatible_p (half_type0, half_type1))
675 return NULL;
676 if (TYPE_PRECISION (abs_type) < TYPE_PRECISION (half_type0) * 2
677 || TYPE_PRECISION (sum_type) < TYPE_PRECISION (half_type0) * 2)
678 return NULL;
680 *type_in = TREE_TYPE (sad_oprnd0);
681 *type_out = sum_type;
683 /* Pattern detected. Create a stmt to be used to replace the pattern: */
684 tree var = vect_recog_temp_ssa_var (sum_type, NULL);
685 gimple pattern_stmt = gimple_build_assign (var, SAD_EXPR, sad_oprnd0,
686 sad_oprnd1, plus_oprnd1);
688 if (dump_enabled_p ())
690 dump_printf_loc (MSG_NOTE, vect_location,
691 "vect_recog_sad_pattern: detected: ");
692 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
693 dump_printf (MSG_NOTE, "\n");
696 return pattern_stmt;
700 /* Handle widening operation by a constant. At the moment we support MULT_EXPR
701 and LSHIFT_EXPR.
703 For MULT_EXPR we check that CONST_OPRND fits HALF_TYPE, and for LSHIFT_EXPR
704 we check that CONST_OPRND is less or equal to the size of HALF_TYPE.
706 Otherwise, if the type of the result (TYPE) is at least 4 times bigger than
707 HALF_TYPE, and there is an intermediate type (2 times smaller than TYPE)
708 that satisfies the above restrictions, we can perform a widening opeartion
709 from the intermediate type to TYPE and replace a_T = (TYPE) a_t;
710 with a_it = (interm_type) a_t; Store such operation in *WSTMT. */
712 static bool
713 vect_handle_widen_op_by_const (gimple stmt, enum tree_code code,
714 tree const_oprnd, tree *oprnd,
715 gimple *wstmt, tree type,
716 tree *half_type, gimple def_stmt)
718 tree new_type, new_oprnd;
720 if (code != MULT_EXPR && code != LSHIFT_EXPR)
721 return false;
723 if (((code == MULT_EXPR && int_fits_type_p (const_oprnd, *half_type))
724 || (code == LSHIFT_EXPR
725 && compare_tree_int (const_oprnd, TYPE_PRECISION (*half_type))
726 != 1))
727 && TYPE_PRECISION (type) == (TYPE_PRECISION (*half_type) * 2))
729 /* CONST_OPRND is a constant of HALF_TYPE. */
730 *oprnd = gimple_assign_rhs1 (def_stmt);
731 return true;
734 if (TYPE_PRECISION (type) < (TYPE_PRECISION (*half_type) * 4))
735 return false;
737 if (!vect_same_loop_or_bb_p (stmt, def_stmt))
738 return false;
740 /* TYPE is 4 times bigger than HALF_TYPE, try widening operation for
741 a type 2 times bigger than HALF_TYPE. */
742 new_type = build_nonstandard_integer_type (TYPE_PRECISION (type) / 2,
743 TYPE_UNSIGNED (type));
744 if ((code == MULT_EXPR && !int_fits_type_p (const_oprnd, new_type))
745 || (code == LSHIFT_EXPR
746 && compare_tree_int (const_oprnd, TYPE_PRECISION (new_type)) == 1))
747 return false;
749 /* Use NEW_TYPE for widening operation and create a_T = (NEW_TYPE) a_t; */
750 *oprnd = gimple_assign_rhs1 (def_stmt);
751 new_oprnd = make_ssa_name (new_type);
752 *wstmt = gimple_build_assign (new_oprnd, NOP_EXPR, *oprnd);
753 *oprnd = new_oprnd;
755 *half_type = new_type;
756 return true;
760 /* Function vect_recog_widen_mult_pattern
762 Try to find the following pattern:
764 type1 a_t;
765 type2 b_t;
766 TYPE a_T, b_T, prod_T;
768 S1 a_t = ;
769 S2 b_t = ;
770 S3 a_T = (TYPE) a_t;
771 S4 b_T = (TYPE) b_t;
772 S5 prod_T = a_T * b_T;
774 where type 'TYPE' is at least double the size of type 'type1' and 'type2'.
776 Also detect unsigned cases:
778 unsigned type1 a_t;
779 unsigned type2 b_t;
780 unsigned TYPE u_prod_T;
781 TYPE a_T, b_T, prod_T;
783 S1 a_t = ;
784 S2 b_t = ;
785 S3 a_T = (TYPE) a_t;
786 S4 b_T = (TYPE) b_t;
787 S5 prod_T = a_T * b_T;
788 S6 u_prod_T = (unsigned TYPE) prod_T;
790 and multiplication by constants:
792 type a_t;
793 TYPE a_T, prod_T;
795 S1 a_t = ;
796 S3 a_T = (TYPE) a_t;
797 S5 prod_T = a_T * CONST;
799 A special case of multiplication by constants is when 'TYPE' is 4 times
800 bigger than 'type', but CONST fits an intermediate type 2 times smaller
801 than 'TYPE'. In that case we create an additional pattern stmt for S3
802 to create a variable of the intermediate type, and perform widen-mult
803 on the intermediate type as well:
805 type a_t;
806 interm_type a_it;
807 TYPE a_T, prod_T, prod_T';
809 S1 a_t = ;
810 S3 a_T = (TYPE) a_t;
811 '--> a_it = (interm_type) a_t;
812 S5 prod_T = a_T * CONST;
813 '--> prod_T' = a_it w* CONST;
815 Input/Output:
817 * STMTS: Contains a stmt from which the pattern search begins. In the
818 example, when this function is called with S5, the pattern {S3,S4,S5,(S6)}
819 is detected. In case of unsigned widen-mult, the original stmt (S5) is
820 replaced with S6 in STMTS. In case of multiplication by a constant
821 of an intermediate type (the last case above), STMTS also contains S3
822 (inserted before S5).
824 Output:
826 * TYPE_IN: The type of the input arguments to the pattern.
828 * TYPE_OUT: The type of the output of this pattern.
830 * Return value: A new stmt that will be used to replace the sequence of
831 stmts that constitute the pattern. In this case it will be:
832 WIDEN_MULT <a_t, b_t>
833 If the result of WIDEN_MULT needs to be converted to a larger type, the
834 returned stmt will be this type conversion stmt.
837 static gimple
838 vect_recog_widen_mult_pattern (vec<gimple> *stmts,
839 tree *type_in, tree *type_out)
841 gimple last_stmt = stmts->pop ();
842 gimple def_stmt0, def_stmt1;
843 tree oprnd0, oprnd1;
844 tree type, half_type0, half_type1;
845 gimple new_stmt = NULL, pattern_stmt = NULL;
846 tree vectype, vecitype;
847 tree var;
848 enum tree_code dummy_code;
849 int dummy_int;
850 vec<tree> dummy_vec;
851 bool op1_ok;
852 bool promotion;
854 if (!is_gimple_assign (last_stmt))
855 return NULL;
857 type = gimple_expr_type (last_stmt);
859 /* Starting from LAST_STMT, follow the defs of its uses in search
860 of the above pattern. */
862 if (gimple_assign_rhs_code (last_stmt) != MULT_EXPR)
863 return NULL;
865 oprnd0 = gimple_assign_rhs1 (last_stmt);
866 oprnd1 = gimple_assign_rhs2 (last_stmt);
867 if (!types_compatible_p (TREE_TYPE (oprnd0), type)
868 || !types_compatible_p (TREE_TYPE (oprnd1), type))
869 return NULL;
871 /* Check argument 0. */
872 if (!type_conversion_p (oprnd0, last_stmt, false, &half_type0, &def_stmt0,
873 &promotion)
874 || !promotion)
875 return NULL;
876 /* Check argument 1. */
877 op1_ok = type_conversion_p (oprnd1, last_stmt, false, &half_type1,
878 &def_stmt1, &promotion);
880 if (op1_ok && promotion)
882 oprnd0 = gimple_assign_rhs1 (def_stmt0);
883 oprnd1 = gimple_assign_rhs1 (def_stmt1);
885 else
887 if (TREE_CODE (oprnd1) == INTEGER_CST
888 && TREE_CODE (half_type0) == INTEGER_TYPE
889 && vect_handle_widen_op_by_const (last_stmt, MULT_EXPR, oprnd1,
890 &oprnd0, &new_stmt, type,
891 &half_type0, def_stmt0))
893 half_type1 = half_type0;
894 oprnd1 = fold_convert (half_type1, oprnd1);
896 else
897 return NULL;
900 /* If the two arguments have different sizes, convert the one with
901 the smaller type into the larger type. */
902 if (TYPE_PRECISION (half_type0) != TYPE_PRECISION (half_type1))
904 /* If we already used up the single-stmt slot give up. */
905 if (new_stmt)
906 return NULL;
908 tree* oprnd = NULL;
909 gimple def_stmt = NULL;
911 if (TYPE_PRECISION (half_type0) < TYPE_PRECISION (half_type1))
913 def_stmt = def_stmt0;
914 half_type0 = half_type1;
915 oprnd = &oprnd0;
917 else
919 def_stmt = def_stmt1;
920 half_type1 = half_type0;
921 oprnd = &oprnd1;
924 tree old_oprnd = gimple_assign_rhs1 (def_stmt);
925 tree new_oprnd = make_ssa_name (half_type0);
926 new_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, old_oprnd);
927 *oprnd = new_oprnd;
930 /* Handle unsigned case. Look for
931 S6 u_prod_T = (unsigned TYPE) prod_T;
932 Use unsigned TYPE as the type for WIDEN_MULT_EXPR. */
933 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (half_type0))
935 gimple use_stmt;
936 tree use_lhs;
937 tree use_type;
939 if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (half_type1))
940 return NULL;
942 use_stmt = vect_single_imm_use (last_stmt);
943 if (!use_stmt || !is_gimple_assign (use_stmt)
944 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt)))
945 return NULL;
947 use_lhs = gimple_assign_lhs (use_stmt);
948 use_type = TREE_TYPE (use_lhs);
949 if (!INTEGRAL_TYPE_P (use_type)
950 || (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (use_type))
951 || (TYPE_PRECISION (type) != TYPE_PRECISION (use_type)))
952 return NULL;
954 type = use_type;
955 last_stmt = use_stmt;
958 if (!types_compatible_p (half_type0, half_type1))
959 return NULL;
961 /* If TYPE is more than twice larger than HALF_TYPE, we use WIDEN_MULT
962 to get an intermediate result of type ITYPE. In this case we need
963 to build a statement to convert this intermediate result to type TYPE. */
964 tree itype = type;
965 if (TYPE_PRECISION (type) > TYPE_PRECISION (half_type0) * 2)
966 itype = build_nonstandard_integer_type
967 (GET_MODE_BITSIZE (TYPE_MODE (half_type0)) * 2,
968 TYPE_UNSIGNED (type));
970 /* Pattern detected. */
971 if (dump_enabled_p ())
972 dump_printf_loc (MSG_NOTE, vect_location,
973 "vect_recog_widen_mult_pattern: detected:\n");
975 /* Check target support */
976 vectype = get_vectype_for_scalar_type (half_type0);
977 vecitype = get_vectype_for_scalar_type (itype);
978 if (!vectype
979 || !vecitype
980 || !supportable_widening_operation (WIDEN_MULT_EXPR, last_stmt,
981 vecitype, vectype,
982 &dummy_code, &dummy_code,
983 &dummy_int, &dummy_vec))
984 return NULL;
986 *type_in = vectype;
987 *type_out = get_vectype_for_scalar_type (type);
989 /* Pattern supported. Create a stmt to be used to replace the pattern: */
990 var = vect_recog_temp_ssa_var (itype, NULL);
991 pattern_stmt = gimple_build_assign (var, WIDEN_MULT_EXPR, oprnd0, oprnd1);
993 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
994 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
995 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_vinfo);
996 STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) = NULL;
998 /* If the original two operands have different sizes, we may need to convert
999 the smaller one into the larget type. If this is the case, at this point
1000 the new stmt is already built. */
1001 if (new_stmt)
1003 append_pattern_def_seq (stmt_vinfo, new_stmt);
1004 stmt_vec_info new_stmt_info
1005 = new_stmt_vec_info (new_stmt, loop_vinfo, bb_vinfo);
1006 set_vinfo_for_stmt (new_stmt, new_stmt_info);
1007 STMT_VINFO_VECTYPE (new_stmt_info) = vectype;
1010 /* If ITYPE is not TYPE, we need to build a type convertion stmt to convert
1011 the result of the widen-mult operation into type TYPE. */
1012 if (itype != type)
1014 append_pattern_def_seq (stmt_vinfo, pattern_stmt);
1015 stmt_vec_info pattern_stmt_info
1016 = new_stmt_vec_info (pattern_stmt, loop_vinfo, bb_vinfo);
1017 set_vinfo_for_stmt (pattern_stmt, pattern_stmt_info);
1018 STMT_VINFO_VECTYPE (pattern_stmt_info) = vecitype;
1019 pattern_stmt = gimple_build_assign (vect_recog_temp_ssa_var (type, NULL),
1020 NOP_EXPR,
1021 gimple_assign_lhs (pattern_stmt));
1024 if (dump_enabled_p ())
1025 dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt, 0);
1027 stmts->safe_push (last_stmt);
1028 return pattern_stmt;
1032 /* Function vect_recog_pow_pattern
1034 Try to find the following pattern:
1036 x = POW (y, N);
1038 with POW being one of pow, powf, powi, powif and N being
1039 either 2 or 0.5.
1041 Input:
1043 * LAST_STMT: A stmt from which the pattern search begins.
1045 Output:
1047 * TYPE_IN: The type of the input arguments to the pattern.
1049 * TYPE_OUT: The type of the output of this pattern.
1051 * Return value: A new stmt that will be used to replace the sequence of
1052 stmts that constitute the pattern. In this case it will be:
1053 x = x * x
1055 x = sqrt (x)
1058 static gimple
1059 vect_recog_pow_pattern (vec<gimple> *stmts, tree *type_in,
1060 tree *type_out)
1062 gimple last_stmt = (*stmts)[0];
1063 tree fn, base, exp = NULL;
1064 gimple stmt;
1065 tree var;
1067 if (!is_gimple_call (last_stmt) || gimple_call_lhs (last_stmt) == NULL)
1068 return NULL;
1070 fn = gimple_call_fndecl (last_stmt);
1071 if (fn == NULL_TREE || DECL_BUILT_IN_CLASS (fn) != BUILT_IN_NORMAL)
1072 return NULL;
1074 switch (DECL_FUNCTION_CODE (fn))
1076 case BUILT_IN_POWIF:
1077 case BUILT_IN_POWI:
1078 case BUILT_IN_POWF:
1079 case BUILT_IN_POW:
1080 base = gimple_call_arg (last_stmt, 0);
1081 exp = gimple_call_arg (last_stmt, 1);
1082 if (TREE_CODE (exp) != REAL_CST
1083 && TREE_CODE (exp) != INTEGER_CST)
1084 return NULL;
1085 break;
1087 default:
1088 return NULL;
1091 /* We now have a pow or powi builtin function call with a constant
1092 exponent. */
1094 *type_out = NULL_TREE;
1096 /* Catch squaring. */
1097 if ((tree_fits_shwi_p (exp)
1098 && tree_to_shwi (exp) == 2)
1099 || (TREE_CODE (exp) == REAL_CST
1100 && REAL_VALUES_EQUAL (TREE_REAL_CST (exp), dconst2)))
1102 *type_in = TREE_TYPE (base);
1104 var = vect_recog_temp_ssa_var (TREE_TYPE (base), NULL);
1105 stmt = gimple_build_assign (var, MULT_EXPR, base, base);
1106 return stmt;
1109 /* Catch square root. */
1110 if (TREE_CODE (exp) == REAL_CST
1111 && REAL_VALUES_EQUAL (TREE_REAL_CST (exp), dconsthalf))
1113 tree newfn = mathfn_built_in (TREE_TYPE (base), BUILT_IN_SQRT);
1114 *type_in = get_vectype_for_scalar_type (TREE_TYPE (base));
1115 if (*type_in)
1117 gcall *stmt = gimple_build_call (newfn, 1, base);
1118 if (vectorizable_function (stmt, *type_in, *type_in)
1119 != NULL_TREE)
1121 var = vect_recog_temp_ssa_var (TREE_TYPE (base), stmt);
1122 gimple_call_set_lhs (stmt, var);
1123 return stmt;
1128 return NULL;
1132 /* Function vect_recog_widen_sum_pattern
1134 Try to find the following pattern:
1136 type x_t;
1137 TYPE x_T, sum = init;
1138 loop:
1139 sum_0 = phi <init, sum_1>
1140 S1 x_t = *p;
1141 S2 x_T = (TYPE) x_t;
1142 S3 sum_1 = x_T + sum_0;
1144 where type 'TYPE' is at least double the size of type 'type', i.e - we're
1145 summing elements of type 'type' into an accumulator of type 'TYPE'. This is
1146 a special case of a reduction computation.
1148 Input:
1150 * LAST_STMT: A stmt from which the pattern search begins. In the example,
1151 when this function is called with S3, the pattern {S2,S3} will be detected.
1153 Output:
1155 * TYPE_IN: The type of the input arguments to the pattern.
1157 * TYPE_OUT: The type of the output of this pattern.
1159 * Return value: A new stmt that will be used to replace the sequence of
1160 stmts that constitute the pattern. In this case it will be:
1161 WIDEN_SUM <x_t, sum_0>
1163 Note: The widening-sum idiom is a widening reduction pattern that is
1164 vectorized without preserving all the intermediate results. It
1165 produces only N/2 (widened) results (by summing up pairs of
1166 intermediate results) rather than all N results. Therefore, we
1167 cannot allow this pattern when we want to get all the results and in
1168 the correct order (as is the case when this computation is in an
1169 inner-loop nested in an outer-loop that us being vectorized). */
1171 static gimple
1172 vect_recog_widen_sum_pattern (vec<gimple> *stmts, tree *type_in,
1173 tree *type_out)
1175 gimple stmt, last_stmt = (*stmts)[0];
1176 tree oprnd0, oprnd1;
1177 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
1178 tree type, half_type;
1179 gimple pattern_stmt;
1180 loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
1181 struct loop *loop;
1182 tree var;
1183 bool promotion;
1185 if (!loop_info)
1186 return NULL;
1188 loop = LOOP_VINFO_LOOP (loop_info);
1190 /* We don't allow changing the order of the computation in the inner-loop
1191 when doing outer-loop vectorization. */
1192 if (loop && nested_in_vect_loop_p (loop, last_stmt))
1193 return NULL;
1195 if (!is_gimple_assign (last_stmt))
1196 return NULL;
1198 type = gimple_expr_type (last_stmt);
1200 /* Look for the following pattern
1201 DX = (TYPE) X;
1202 sum_1 = DX + sum_0;
1203 In which DX is at least double the size of X, and sum_1 has been
1204 recognized as a reduction variable.
1207 /* Starting from LAST_STMT, follow the defs of its uses in search
1208 of the above pattern. */
1210 if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR)
1211 return NULL;
1213 oprnd0 = gimple_assign_rhs1 (last_stmt);
1214 oprnd1 = gimple_assign_rhs2 (last_stmt);
1215 if (!types_compatible_p (TREE_TYPE (oprnd0), type)
1216 || !types_compatible_p (TREE_TYPE (oprnd1), type))
1217 return NULL;
1219 /* So far so good. Since last_stmt was detected as a (summation) reduction,
1220 we know that oprnd1 is the reduction variable (defined by a loop-header
1221 phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
1222 Left to check that oprnd0 is defined by a cast from type 'type' to type
1223 'TYPE'. */
1225 if (!type_conversion_p (oprnd0, last_stmt, true, &half_type, &stmt,
1226 &promotion)
1227 || !promotion)
1228 return NULL;
1230 oprnd0 = gimple_assign_rhs1 (stmt);
1231 *type_in = half_type;
1232 *type_out = type;
1234 /* Pattern detected. Create a stmt to be used to replace the pattern: */
1235 var = vect_recog_temp_ssa_var (type, NULL);
1236 pattern_stmt = gimple_build_assign (var, WIDEN_SUM_EXPR, oprnd0, oprnd1);
1238 if (dump_enabled_p ())
1240 dump_printf_loc (MSG_NOTE, vect_location,
1241 "vect_recog_widen_sum_pattern: detected: ");
1242 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
1243 dump_printf (MSG_NOTE, "\n");
1246 return pattern_stmt;
1250 /* Return TRUE if the operation in STMT can be performed on a smaller type.
1252 Input:
1253 STMT - a statement to check.
1254 DEF - we support operations with two operands, one of which is constant.
1255 The other operand can be defined by a demotion operation, or by a
1256 previous statement in a sequence of over-promoted operations. In the
1257 later case DEF is used to replace that operand. (It is defined by a
1258 pattern statement we created for the previous statement in the
1259 sequence).
1261 Input/output:
1262 NEW_TYPE - Output: a smaller type that we are trying to use. Input: if not
1263 NULL, it's the type of DEF.
1264 STMTS - additional pattern statements. If a pattern statement (type
1265 conversion) is created in this function, its original statement is
1266 added to STMTS.
1268 Output:
1269 OP0, OP1 - if the operation fits a smaller type, OP0 and OP1 are the new
1270 operands to use in the new pattern statement for STMT (will be created
1271 in vect_recog_over_widening_pattern ()).
1272 NEW_DEF_STMT - in case DEF has to be promoted, we create two pattern
1273 statements for STMT: the first one is a type promotion and the second
1274 one is the operation itself. We return the type promotion statement
1275 in NEW_DEF_STMT and further store it in STMT_VINFO_PATTERN_DEF_SEQ of
1276 the second pattern statement. */
1278 static bool
1279 vect_operation_fits_smaller_type (gimple stmt, tree def, tree *new_type,
1280 tree *op0, tree *op1, gimple *new_def_stmt,
1281 vec<gimple> *stmts)
1283 enum tree_code code;
1284 tree const_oprnd, oprnd;
1285 tree interm_type = NULL_TREE, half_type, new_oprnd, type;
1286 gimple def_stmt, new_stmt;
1287 bool first = false;
1288 bool promotion;
1290 *op0 = NULL_TREE;
1291 *op1 = NULL_TREE;
1292 *new_def_stmt = NULL;
1294 if (!is_gimple_assign (stmt))
1295 return false;
1297 code = gimple_assign_rhs_code (stmt);
1298 if (code != LSHIFT_EXPR && code != RSHIFT_EXPR
1299 && code != BIT_IOR_EXPR && code != BIT_XOR_EXPR && code != BIT_AND_EXPR)
1300 return false;
1302 oprnd = gimple_assign_rhs1 (stmt);
1303 const_oprnd = gimple_assign_rhs2 (stmt);
1304 type = gimple_expr_type (stmt);
1306 if (TREE_CODE (oprnd) != SSA_NAME
1307 || TREE_CODE (const_oprnd) != INTEGER_CST)
1308 return false;
1310 /* If oprnd has other uses besides that in stmt we cannot mark it
1311 as being part of a pattern only. */
1312 if (!has_single_use (oprnd))
1313 return false;
1315 /* If we are in the middle of a sequence, we use DEF from a previous
1316 statement. Otherwise, OPRND has to be a result of type promotion. */
1317 if (*new_type)
1319 half_type = *new_type;
1320 oprnd = def;
1322 else
1324 first = true;
1325 if (!type_conversion_p (oprnd, stmt, false, &half_type, &def_stmt,
1326 &promotion)
1327 || !promotion
1328 || !vect_same_loop_or_bb_p (stmt, def_stmt))
1329 return false;
1332 /* Can we perform the operation on a smaller type? */
1333 switch (code)
1335 case BIT_IOR_EXPR:
1336 case BIT_XOR_EXPR:
1337 case BIT_AND_EXPR:
1338 if (!int_fits_type_p (const_oprnd, half_type))
1340 /* HALF_TYPE is not enough. Try a bigger type if possible. */
1341 if (TYPE_PRECISION (type) < (TYPE_PRECISION (half_type) * 4))
1342 return false;
1344 interm_type = build_nonstandard_integer_type (
1345 TYPE_PRECISION (half_type) * 2, TYPE_UNSIGNED (type));
1346 if (!int_fits_type_p (const_oprnd, interm_type))
1347 return false;
1350 break;
1352 case LSHIFT_EXPR:
1353 /* Try intermediate type - HALF_TYPE is not enough for sure. */
1354 if (TYPE_PRECISION (type) < (TYPE_PRECISION (half_type) * 4))
1355 return false;
1357 /* Check that HALF_TYPE size + shift amount <= INTERM_TYPE size.
1358 (e.g., if the original value was char, the shift amount is at most 8
1359 if we want to use short). */
1360 if (compare_tree_int (const_oprnd, TYPE_PRECISION (half_type)) == 1)
1361 return false;
1363 interm_type = build_nonstandard_integer_type (
1364 TYPE_PRECISION (half_type) * 2, TYPE_UNSIGNED (type));
1366 if (!vect_supportable_shift (code, interm_type))
1367 return false;
1369 break;
1371 case RSHIFT_EXPR:
1372 if (vect_supportable_shift (code, half_type))
1373 break;
1375 /* Try intermediate type - HALF_TYPE is not supported. */
1376 if (TYPE_PRECISION (type) < (TYPE_PRECISION (half_type) * 4))
1377 return false;
1379 interm_type = build_nonstandard_integer_type (
1380 TYPE_PRECISION (half_type) * 2, TYPE_UNSIGNED (type));
1382 if (!vect_supportable_shift (code, interm_type))
1383 return false;
1385 break;
1387 default:
1388 gcc_unreachable ();
1391 /* There are four possible cases:
1392 1. OPRND is defined by a type promotion (in that case FIRST is TRUE, it's
1393 the first statement in the sequence)
1394 a. The original, HALF_TYPE, is not enough - we replace the promotion
1395 from HALF_TYPE to TYPE with a promotion to INTERM_TYPE.
1396 b. HALF_TYPE is sufficient, OPRND is set as the RHS of the original
1397 promotion.
1398 2. OPRND is defined by a pattern statement we created.
1399 a. Its type is not sufficient for the operation, we create a new stmt:
1400 a type conversion for OPRND from HALF_TYPE to INTERM_TYPE. We store
1401 this statement in NEW_DEF_STMT, and it is later put in
1402 STMT_VINFO_PATTERN_DEF_SEQ of the pattern statement for STMT.
1403 b. OPRND is good to use in the new statement. */
1404 if (first)
1406 if (interm_type)
1408 /* Replace the original type conversion HALF_TYPE->TYPE with
1409 HALF_TYPE->INTERM_TYPE. */
1410 if (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt)))
1412 new_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt));
1413 /* Check if the already created pattern stmt is what we need. */
1414 if (!is_gimple_assign (new_stmt)
1415 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (new_stmt))
1416 || TREE_TYPE (gimple_assign_lhs (new_stmt)) != interm_type)
1417 return false;
1419 stmts->safe_push (def_stmt);
1420 oprnd = gimple_assign_lhs (new_stmt);
1422 else
1424 /* Create NEW_OPRND = (INTERM_TYPE) OPRND. */
1425 oprnd = gimple_assign_rhs1 (def_stmt);
1426 new_oprnd = make_ssa_name (interm_type);
1427 new_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, oprnd);
1428 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt)) = new_stmt;
1429 stmts->safe_push (def_stmt);
1430 oprnd = new_oprnd;
1433 else
1435 /* Retrieve the operand before the type promotion. */
1436 oprnd = gimple_assign_rhs1 (def_stmt);
1439 else
1441 if (interm_type)
1443 /* Create a type conversion HALF_TYPE->INTERM_TYPE. */
1444 new_oprnd = make_ssa_name (interm_type);
1445 new_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, oprnd);
1446 oprnd = new_oprnd;
1447 *new_def_stmt = new_stmt;
1450 /* Otherwise, OPRND is already set. */
1453 if (interm_type)
1454 *new_type = interm_type;
1455 else
1456 *new_type = half_type;
1458 *op0 = oprnd;
1459 *op1 = fold_convert (*new_type, const_oprnd);
1461 return true;
1465 /* Try to find a statement or a sequence of statements that can be performed
1466 on a smaller type:
1468 type x_t;
1469 TYPE x_T, res0_T, res1_T;
1470 loop:
1471 S1 x_t = *p;
1472 S2 x_T = (TYPE) x_t;
1473 S3 res0_T = op (x_T, C0);
1474 S4 res1_T = op (res0_T, C1);
1475 S5 ... = () res1_T; - type demotion
1477 where type 'TYPE' is at least double the size of type 'type', C0 and C1 are
1478 constants.
1479 Check if S3 and S4 can be done on a smaller type than 'TYPE', it can either
1480 be 'type' or some intermediate type. For now, we expect S5 to be a type
1481 demotion operation. We also check that S3 and S4 have only one use. */
1483 static gimple
1484 vect_recog_over_widening_pattern (vec<gimple> *stmts,
1485 tree *type_in, tree *type_out)
1487 gimple stmt = stmts->pop ();
1488 gimple pattern_stmt = NULL, new_def_stmt, prev_stmt = NULL, use_stmt = NULL;
1489 tree op0, op1, vectype = NULL_TREE, use_lhs, use_type;
1490 tree var = NULL_TREE, new_type = NULL_TREE, new_oprnd;
1491 bool first;
1492 tree type = NULL;
1494 first = true;
1495 while (1)
1497 if (!vinfo_for_stmt (stmt)
1498 || STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (stmt)))
1499 return NULL;
1501 new_def_stmt = NULL;
1502 if (!vect_operation_fits_smaller_type (stmt, var, &new_type,
1503 &op0, &op1, &new_def_stmt,
1504 stmts))
1506 if (first)
1507 return NULL;
1508 else
1509 break;
1512 /* STMT can be performed on a smaller type. Check its uses. */
1513 use_stmt = vect_single_imm_use (stmt);
1514 if (!use_stmt || !is_gimple_assign (use_stmt))
1515 return NULL;
1517 /* Create pattern statement for STMT. */
1518 vectype = get_vectype_for_scalar_type (new_type);
1519 if (!vectype)
1520 return NULL;
1522 /* We want to collect all the statements for which we create pattern
1523 statetments, except for the case when the last statement in the
1524 sequence doesn't have a corresponding pattern statement. In such
1525 case we associate the last pattern statement with the last statement
1526 in the sequence. Therefore, we only add the original statement to
1527 the list if we know that it is not the last. */
1528 if (prev_stmt)
1529 stmts->safe_push (prev_stmt);
1531 var = vect_recog_temp_ssa_var (new_type, NULL);
1532 pattern_stmt
1533 = gimple_build_assign (var, gimple_assign_rhs_code (stmt), op0, op1);
1534 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt)) = pattern_stmt;
1535 new_pattern_def_seq (vinfo_for_stmt (stmt), new_def_stmt);
1537 if (dump_enabled_p ())
1539 dump_printf_loc (MSG_NOTE, vect_location,
1540 "created pattern stmt: ");
1541 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
1542 dump_printf (MSG_NOTE, "\n");
1545 type = gimple_expr_type (stmt);
1546 prev_stmt = stmt;
1547 stmt = use_stmt;
1549 first = false;
1552 /* We got a sequence. We expect it to end with a type demotion operation.
1553 Otherwise, we quit (for now). There are three possible cases: the
1554 conversion is to NEW_TYPE (we don't do anything), the conversion is to
1555 a type bigger than NEW_TYPE and/or the signedness of USE_TYPE and
1556 NEW_TYPE differs (we create a new conversion statement). */
1557 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt)))
1559 use_lhs = gimple_assign_lhs (use_stmt);
1560 use_type = TREE_TYPE (use_lhs);
1561 /* Support only type demotion or signedess change. */
1562 if (!INTEGRAL_TYPE_P (use_type)
1563 || TYPE_PRECISION (type) <= TYPE_PRECISION (use_type))
1564 return NULL;
1566 /* Check that NEW_TYPE is not bigger than the conversion result. */
1567 if (TYPE_PRECISION (new_type) > TYPE_PRECISION (use_type))
1568 return NULL;
1570 if (TYPE_UNSIGNED (new_type) != TYPE_UNSIGNED (use_type)
1571 || TYPE_PRECISION (new_type) != TYPE_PRECISION (use_type))
1573 /* Create NEW_TYPE->USE_TYPE conversion. */
1574 new_oprnd = make_ssa_name (use_type);
1575 pattern_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, var);
1576 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use_stmt)) = pattern_stmt;
1578 *type_in = get_vectype_for_scalar_type (new_type);
1579 *type_out = get_vectype_for_scalar_type (use_type);
1581 /* We created a pattern statement for the last statement in the
1582 sequence, so we don't need to associate it with the pattern
1583 statement created for PREV_STMT. Therefore, we add PREV_STMT
1584 to the list in order to mark it later in vect_pattern_recog_1. */
1585 if (prev_stmt)
1586 stmts->safe_push (prev_stmt);
1588 else
1590 if (prev_stmt)
1591 STMT_VINFO_PATTERN_DEF_SEQ (vinfo_for_stmt (use_stmt))
1592 = STMT_VINFO_PATTERN_DEF_SEQ (vinfo_for_stmt (prev_stmt));
1594 *type_in = vectype;
1595 *type_out = NULL_TREE;
1598 stmts->safe_push (use_stmt);
1600 else
1601 /* TODO: support general case, create a conversion to the correct type. */
1602 return NULL;
1604 /* Pattern detected. */
1605 if (dump_enabled_p ())
1607 dump_printf_loc (MSG_NOTE, vect_location,
1608 "vect_recog_over_widening_pattern: detected: ");
1609 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
1610 dump_printf (MSG_NOTE, "\n");
1613 return pattern_stmt;
1616 /* Detect widening shift pattern:
1618 type a_t;
1619 TYPE a_T, res_T;
1621 S1 a_t = ;
1622 S2 a_T = (TYPE) a_t;
1623 S3 res_T = a_T << CONST;
1625 where type 'TYPE' is at least double the size of type 'type'.
1627 Also detect cases where the shift result is immediately converted
1628 to another type 'result_type' that is no larger in size than 'TYPE'.
1629 In those cases we perform a widen-shift that directly results in
1630 'result_type', to avoid a possible over-widening situation:
1632 type a_t;
1633 TYPE a_T, res_T;
1634 result_type res_result;
1636 S1 a_t = ;
1637 S2 a_T = (TYPE) a_t;
1638 S3 res_T = a_T << CONST;
1639 S4 res_result = (result_type) res_T;
1640 '--> res_result' = a_t w<< CONST;
1642 And a case when 'TYPE' is 4 times bigger than 'type'. In that case we
1643 create an additional pattern stmt for S2 to create a variable of an
1644 intermediate type, and perform widen-shift on the intermediate type:
1646 type a_t;
1647 interm_type a_it;
1648 TYPE a_T, res_T, res_T';
1650 S1 a_t = ;
1651 S2 a_T = (TYPE) a_t;
1652 '--> a_it = (interm_type) a_t;
1653 S3 res_T = a_T << CONST;
1654 '--> res_T' = a_it <<* CONST;
1656 Input/Output:
1658 * STMTS: Contains a stmt from which the pattern search begins.
1659 In case of unsigned widen-shift, the original stmt (S3) is replaced with S4
1660 in STMTS. When an intermediate type is used and a pattern statement is
1661 created for S2, we also put S2 here (before S3).
1663 Output:
1665 * TYPE_IN: The type of the input arguments to the pattern.
1667 * TYPE_OUT: The type of the output of this pattern.
1669 * Return value: A new stmt that will be used to replace the sequence of
1670 stmts that constitute the pattern. In this case it will be:
1671 WIDEN_LSHIFT_EXPR <a_t, CONST>. */
1673 static gimple
1674 vect_recog_widen_shift_pattern (vec<gimple> *stmts,
1675 tree *type_in, tree *type_out)
1677 gimple last_stmt = stmts->pop ();
1678 gimple def_stmt0;
1679 tree oprnd0, oprnd1;
1680 tree type, half_type0;
1681 gimple pattern_stmt;
1682 tree vectype, vectype_out = NULL_TREE;
1683 tree var;
1684 enum tree_code dummy_code;
1685 int dummy_int;
1686 vec<tree> dummy_vec;
1687 gimple use_stmt;
1688 bool promotion;
1690 if (!is_gimple_assign (last_stmt) || !vinfo_for_stmt (last_stmt))
1691 return NULL;
1693 if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (last_stmt)))
1694 return NULL;
1696 if (gimple_assign_rhs_code (last_stmt) != LSHIFT_EXPR)
1697 return NULL;
1699 oprnd0 = gimple_assign_rhs1 (last_stmt);
1700 oprnd1 = gimple_assign_rhs2 (last_stmt);
1701 if (TREE_CODE (oprnd0) != SSA_NAME || TREE_CODE (oprnd1) != INTEGER_CST)
1702 return NULL;
1704 /* Check operand 0: it has to be defined by a type promotion. */
1705 if (!type_conversion_p (oprnd0, last_stmt, false, &half_type0, &def_stmt0,
1706 &promotion)
1707 || !promotion)
1708 return NULL;
1710 /* Check operand 1: has to be positive. We check that it fits the type
1711 in vect_handle_widen_op_by_const (). */
1712 if (tree_int_cst_compare (oprnd1, size_zero_node) <= 0)
1713 return NULL;
1715 oprnd0 = gimple_assign_rhs1 (def_stmt0);
1716 type = gimple_expr_type (last_stmt);
1718 /* Check for subsequent conversion to another type. */
1719 use_stmt = vect_single_imm_use (last_stmt);
1720 if (use_stmt && is_gimple_assign (use_stmt)
1721 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt))
1722 && !STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt)))
1724 tree use_lhs = gimple_assign_lhs (use_stmt);
1725 tree use_type = TREE_TYPE (use_lhs);
1727 if (INTEGRAL_TYPE_P (use_type)
1728 && TYPE_PRECISION (use_type) <= TYPE_PRECISION (type))
1730 last_stmt = use_stmt;
1731 type = use_type;
1735 /* Check if this a widening operation. */
1736 gimple wstmt = NULL;
1737 if (!vect_handle_widen_op_by_const (last_stmt, LSHIFT_EXPR, oprnd1,
1738 &oprnd0, &wstmt,
1739 type, &half_type0, def_stmt0))
1740 return NULL;
1742 /* Pattern detected. */
1743 if (dump_enabled_p ())
1744 dump_printf_loc (MSG_NOTE, vect_location,
1745 "vect_recog_widen_shift_pattern: detected:\n");
1747 /* Check target support. */
1748 vectype = get_vectype_for_scalar_type (half_type0);
1749 vectype_out = get_vectype_for_scalar_type (type);
1751 if (!vectype
1752 || !vectype_out
1753 || !supportable_widening_operation (WIDEN_LSHIFT_EXPR, last_stmt,
1754 vectype_out, vectype,
1755 &dummy_code, &dummy_code,
1756 &dummy_int, &dummy_vec))
1757 return NULL;
1759 *type_in = vectype;
1760 *type_out = vectype_out;
1762 /* Pattern supported. Create a stmt to be used to replace the pattern. */
1763 var = vect_recog_temp_ssa_var (type, NULL);
1764 pattern_stmt =
1765 gimple_build_assign (var, WIDEN_LSHIFT_EXPR, oprnd0, oprnd1);
1766 if (wstmt)
1768 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
1769 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
1770 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_vinfo);
1771 new_pattern_def_seq (stmt_vinfo, wstmt);
1772 stmt_vec_info new_stmt_info
1773 = new_stmt_vec_info (wstmt, loop_vinfo, bb_vinfo);
1774 set_vinfo_for_stmt (wstmt, new_stmt_info);
1775 STMT_VINFO_VECTYPE (new_stmt_info) = vectype;
1778 if (dump_enabled_p ())
1779 dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt, 0);
1781 stmts->safe_push (last_stmt);
1782 return pattern_stmt;
1785 /* Detect a rotate pattern wouldn't be otherwise vectorized:
1787 type a_t, b_t, c_t;
1789 S0 a_t = b_t r<< c_t;
1791 Input/Output:
1793 * STMTS: Contains a stmt from which the pattern search begins,
1794 i.e. the shift/rotate stmt. The original stmt (S0) is replaced
1795 with a sequence:
1797 S1 d_t = -c_t;
1798 S2 e_t = d_t & (B - 1);
1799 S3 f_t = b_t << c_t;
1800 S4 g_t = b_t >> e_t;
1801 S0 a_t = f_t | g_t;
1803 where B is element bitsize of type.
1805 Output:
1807 * TYPE_IN: The type of the input arguments to the pattern.
1809 * TYPE_OUT: The type of the output of this pattern.
1811 * Return value: A new stmt that will be used to replace the rotate
1812 S0 stmt. */
1814 static gimple
1815 vect_recog_rotate_pattern (vec<gimple> *stmts, tree *type_in, tree *type_out)
1817 gimple last_stmt = stmts->pop ();
1818 tree oprnd0, oprnd1, lhs, var, var1, var2, vectype, type, stype, def, def2;
1819 gimple pattern_stmt, def_stmt;
1820 enum tree_code rhs_code;
1821 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
1822 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
1823 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_vinfo);
1824 enum vect_def_type dt;
1825 optab optab1, optab2;
1826 edge ext_def = NULL;
1828 if (!is_gimple_assign (last_stmt))
1829 return NULL;
1831 rhs_code = gimple_assign_rhs_code (last_stmt);
1832 switch (rhs_code)
1834 case LROTATE_EXPR:
1835 case RROTATE_EXPR:
1836 break;
1837 default:
1838 return NULL;
1841 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
1842 return NULL;
1844 lhs = gimple_assign_lhs (last_stmt);
1845 oprnd0 = gimple_assign_rhs1 (last_stmt);
1846 type = TREE_TYPE (oprnd0);
1847 oprnd1 = gimple_assign_rhs2 (last_stmt);
1848 if (TREE_CODE (oprnd0) != SSA_NAME
1849 || TYPE_PRECISION (TREE_TYPE (lhs)) != TYPE_PRECISION (type)
1850 || !INTEGRAL_TYPE_P (type)
1851 || !TYPE_UNSIGNED (type))
1852 return NULL;
1854 if (!vect_is_simple_use (oprnd1, last_stmt, loop_vinfo, bb_vinfo, &def_stmt,
1855 &def, &dt))
1856 return NULL;
1858 if (dt != vect_internal_def
1859 && dt != vect_constant_def
1860 && dt != vect_external_def)
1861 return NULL;
1863 vectype = get_vectype_for_scalar_type (type);
1864 if (vectype == NULL_TREE)
1865 return NULL;
1867 /* If vector/vector or vector/scalar rotate is supported by the target,
1868 don't do anything here. */
1869 optab1 = optab_for_tree_code (rhs_code, vectype, optab_vector);
1870 if (optab1
1871 && optab_handler (optab1, TYPE_MODE (vectype)) != CODE_FOR_nothing)
1872 return NULL;
1874 if (bb_vinfo != NULL || dt != vect_internal_def)
1876 optab2 = optab_for_tree_code (rhs_code, vectype, optab_scalar);
1877 if (optab2
1878 && optab_handler (optab2, TYPE_MODE (vectype)) != CODE_FOR_nothing)
1879 return NULL;
1882 /* If vector/vector or vector/scalar shifts aren't supported by the target,
1883 don't do anything here either. */
1884 optab1 = optab_for_tree_code (LSHIFT_EXPR, vectype, optab_vector);
1885 optab2 = optab_for_tree_code (RSHIFT_EXPR, vectype, optab_vector);
1886 if (!optab1
1887 || optab_handler (optab1, TYPE_MODE (vectype)) == CODE_FOR_nothing
1888 || !optab2
1889 || optab_handler (optab2, TYPE_MODE (vectype)) == CODE_FOR_nothing)
1891 if (bb_vinfo == NULL && dt == vect_internal_def)
1892 return NULL;
1893 optab1 = optab_for_tree_code (LSHIFT_EXPR, vectype, optab_scalar);
1894 optab2 = optab_for_tree_code (RSHIFT_EXPR, vectype, optab_scalar);
1895 if (!optab1
1896 || optab_handler (optab1, TYPE_MODE (vectype)) == CODE_FOR_nothing
1897 || !optab2
1898 || optab_handler (optab2, TYPE_MODE (vectype)) == CODE_FOR_nothing)
1899 return NULL;
1902 *type_in = vectype;
1903 *type_out = vectype;
1904 if (*type_in == NULL_TREE)
1905 return NULL;
1907 if (dt == vect_external_def
1908 && TREE_CODE (oprnd1) == SSA_NAME
1909 && loop_vinfo)
1911 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1912 ext_def = loop_preheader_edge (loop);
1913 if (!SSA_NAME_IS_DEFAULT_DEF (oprnd1))
1915 basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (oprnd1));
1916 if (bb == NULL
1917 || !dominated_by_p (CDI_DOMINATORS, ext_def->dest, bb))
1918 ext_def = NULL;
1922 def = NULL_TREE;
1923 if (TREE_CODE (oprnd1) == INTEGER_CST
1924 || TYPE_MODE (TREE_TYPE (oprnd1)) == TYPE_MODE (type))
1925 def = oprnd1;
1926 else if (def_stmt && gimple_assign_cast_p (def_stmt))
1928 tree rhs1 = gimple_assign_rhs1 (def_stmt);
1929 if (TYPE_MODE (TREE_TYPE (rhs1)) == TYPE_MODE (type)
1930 && TYPE_PRECISION (TREE_TYPE (rhs1))
1931 == TYPE_PRECISION (type))
1932 def = rhs1;
1935 STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) = NULL;
1936 if (def == NULL_TREE)
1938 def = vect_recog_temp_ssa_var (type, NULL);
1939 def_stmt = gimple_build_assign (def, NOP_EXPR, oprnd1);
1940 if (ext_def)
1942 basic_block new_bb
1943 = gsi_insert_on_edge_immediate (ext_def, def_stmt);
1944 gcc_assert (!new_bb);
1946 else
1947 append_pattern_def_seq (stmt_vinfo, def_stmt);
1949 stype = TREE_TYPE (def);
1951 if (TREE_CODE (def) == INTEGER_CST)
1953 if (!tree_fits_uhwi_p (def)
1954 || tree_to_uhwi (def) >= GET_MODE_PRECISION (TYPE_MODE (type))
1955 || integer_zerop (def))
1956 return NULL;
1957 def2 = build_int_cst (stype,
1958 GET_MODE_PRECISION (TYPE_MODE (type))
1959 - tree_to_uhwi (def));
1961 else
1963 tree vecstype = get_vectype_for_scalar_type (stype);
1964 stmt_vec_info def_stmt_vinfo;
1966 if (vecstype == NULL_TREE)
1967 return NULL;
1968 def2 = vect_recog_temp_ssa_var (stype, NULL);
1969 def_stmt = gimple_build_assign (def2, NEGATE_EXPR, def);
1970 if (ext_def)
1972 basic_block new_bb
1973 = gsi_insert_on_edge_immediate (ext_def, def_stmt);
1974 gcc_assert (!new_bb);
1976 else
1978 def_stmt_vinfo = new_stmt_vec_info (def_stmt, loop_vinfo, bb_vinfo);
1979 set_vinfo_for_stmt (def_stmt, def_stmt_vinfo);
1980 STMT_VINFO_VECTYPE (def_stmt_vinfo) = vecstype;
1981 append_pattern_def_seq (stmt_vinfo, def_stmt);
1984 def2 = vect_recog_temp_ssa_var (stype, NULL);
1985 tree mask
1986 = build_int_cst (stype, GET_MODE_PRECISION (TYPE_MODE (stype)) - 1);
1987 def_stmt = gimple_build_assign (def2, BIT_AND_EXPR,
1988 gimple_assign_lhs (def_stmt), mask);
1989 if (ext_def)
1991 basic_block new_bb
1992 = gsi_insert_on_edge_immediate (ext_def, def_stmt);
1993 gcc_assert (!new_bb);
1995 else
1997 def_stmt_vinfo = new_stmt_vec_info (def_stmt, loop_vinfo, bb_vinfo);
1998 set_vinfo_for_stmt (def_stmt, def_stmt_vinfo);
1999 STMT_VINFO_VECTYPE (def_stmt_vinfo) = vecstype;
2000 append_pattern_def_seq (stmt_vinfo, def_stmt);
2004 var1 = vect_recog_temp_ssa_var (type, NULL);
2005 def_stmt = gimple_build_assign (var1, rhs_code == LROTATE_EXPR
2006 ? LSHIFT_EXPR : RSHIFT_EXPR,
2007 oprnd0, def);
2008 append_pattern_def_seq (stmt_vinfo, def_stmt);
2010 var2 = vect_recog_temp_ssa_var (type, NULL);
2011 def_stmt = gimple_build_assign (var2, rhs_code == LROTATE_EXPR
2012 ? RSHIFT_EXPR : LSHIFT_EXPR,
2013 oprnd0, def2);
2014 append_pattern_def_seq (stmt_vinfo, def_stmt);
2016 /* Pattern detected. */
2017 if (dump_enabled_p ())
2018 dump_printf_loc (MSG_NOTE, vect_location,
2019 "vect_recog_rotate_pattern: detected:\n");
2021 /* Pattern supported. Create a stmt to be used to replace the pattern. */
2022 var = vect_recog_temp_ssa_var (type, NULL);
2023 pattern_stmt = gimple_build_assign (var, BIT_IOR_EXPR, var1, var2);
2025 if (dump_enabled_p ())
2026 dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt, 0);
2028 stmts->safe_push (last_stmt);
2029 return pattern_stmt;
2032 /* Detect a vector by vector shift pattern that wouldn't be otherwise
2033 vectorized:
2035 type a_t;
2036 TYPE b_T, res_T;
2038 S1 a_t = ;
2039 S2 b_T = ;
2040 S3 res_T = b_T op a_t;
2042 where type 'TYPE' is a type with different size than 'type',
2043 and op is <<, >> or rotate.
2045 Also detect cases:
2047 type a_t;
2048 TYPE b_T, c_T, res_T;
2050 S0 c_T = ;
2051 S1 a_t = (type) c_T;
2052 S2 b_T = ;
2053 S3 res_T = b_T op a_t;
2055 Input/Output:
2057 * STMTS: Contains a stmt from which the pattern search begins,
2058 i.e. the shift/rotate stmt. The original stmt (S3) is replaced
2059 with a shift/rotate which has same type on both operands, in the
2060 second case just b_T op c_T, in the first case with added cast
2061 from a_t to c_T in STMT_VINFO_PATTERN_DEF_SEQ.
2063 Output:
2065 * TYPE_IN: The type of the input arguments to the pattern.
2067 * TYPE_OUT: The type of the output of this pattern.
2069 * Return value: A new stmt that will be used to replace the shift/rotate
2070 S3 stmt. */
2072 static gimple
2073 vect_recog_vector_vector_shift_pattern (vec<gimple> *stmts,
2074 tree *type_in, tree *type_out)
2076 gimple last_stmt = stmts->pop ();
2077 tree oprnd0, oprnd1, lhs, var;
2078 gimple pattern_stmt, def_stmt;
2079 enum tree_code rhs_code;
2080 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
2081 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
2082 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_vinfo);
2083 enum vect_def_type dt;
2084 tree def;
2086 if (!is_gimple_assign (last_stmt))
2087 return NULL;
2089 rhs_code = gimple_assign_rhs_code (last_stmt);
2090 switch (rhs_code)
2092 case LSHIFT_EXPR:
2093 case RSHIFT_EXPR:
2094 case LROTATE_EXPR:
2095 case RROTATE_EXPR:
2096 break;
2097 default:
2098 return NULL;
2101 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
2102 return NULL;
2104 lhs = gimple_assign_lhs (last_stmt);
2105 oprnd0 = gimple_assign_rhs1 (last_stmt);
2106 oprnd1 = gimple_assign_rhs2 (last_stmt);
2107 if (TREE_CODE (oprnd0) != SSA_NAME
2108 || TREE_CODE (oprnd1) != SSA_NAME
2109 || TYPE_MODE (TREE_TYPE (oprnd0)) == TYPE_MODE (TREE_TYPE (oprnd1))
2110 || TYPE_PRECISION (TREE_TYPE (oprnd1))
2111 != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (oprnd1)))
2112 || TYPE_PRECISION (TREE_TYPE (lhs))
2113 != TYPE_PRECISION (TREE_TYPE (oprnd0)))
2114 return NULL;
2116 if (!vect_is_simple_use (oprnd1, last_stmt, loop_vinfo, bb_vinfo, &def_stmt,
2117 &def, &dt))
2118 return NULL;
2120 if (dt != vect_internal_def)
2121 return NULL;
2123 *type_in = get_vectype_for_scalar_type (TREE_TYPE (oprnd0));
2124 *type_out = *type_in;
2125 if (*type_in == NULL_TREE)
2126 return NULL;
2128 def = NULL_TREE;
2129 if (gimple_assign_cast_p (def_stmt))
2131 tree rhs1 = gimple_assign_rhs1 (def_stmt);
2132 if (TYPE_MODE (TREE_TYPE (rhs1)) == TYPE_MODE (TREE_TYPE (oprnd0))
2133 && TYPE_PRECISION (TREE_TYPE (rhs1))
2134 == TYPE_PRECISION (TREE_TYPE (oprnd0)))
2135 def = rhs1;
2138 if (def == NULL_TREE)
2140 def = vect_recog_temp_ssa_var (TREE_TYPE (oprnd0), NULL);
2141 def_stmt = gimple_build_assign (def, NOP_EXPR, oprnd1);
2142 new_pattern_def_seq (stmt_vinfo, def_stmt);
2145 /* Pattern detected. */
2146 if (dump_enabled_p ())
2147 dump_printf_loc (MSG_NOTE, vect_location,
2148 "vect_recog_vector_vector_shift_pattern: detected:\n");
2150 /* Pattern supported. Create a stmt to be used to replace the pattern. */
2151 var = vect_recog_temp_ssa_var (TREE_TYPE (oprnd0), NULL);
2152 pattern_stmt = gimple_build_assign (var, rhs_code, oprnd0, def);
2154 if (dump_enabled_p ())
2155 dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt, 0);
2157 stmts->safe_push (last_stmt);
2158 return pattern_stmt;
2161 /* Detect a signed division by a constant that wouldn't be
2162 otherwise vectorized:
2164 type a_t, b_t;
2166 S1 a_t = b_t / N;
2168 where type 'type' is an integral type and N is a constant.
2170 Similarly handle modulo by a constant:
2172 S4 a_t = b_t % N;
2174 Input/Output:
2176 * STMTS: Contains a stmt from which the pattern search begins,
2177 i.e. the division stmt. S1 is replaced by if N is a power
2178 of two constant and type is signed:
2179 S3 y_t = b_t < 0 ? N - 1 : 0;
2180 S2 x_t = b_t + y_t;
2181 S1' a_t = x_t >> log2 (N);
2183 S4 is replaced if N is a power of two constant and
2184 type is signed by (where *_T temporaries have unsigned type):
2185 S9 y_T = b_t < 0 ? -1U : 0U;
2186 S8 z_T = y_T >> (sizeof (type_t) * CHAR_BIT - log2 (N));
2187 S7 z_t = (type) z_T;
2188 S6 w_t = b_t + z_t;
2189 S5 x_t = w_t & (N - 1);
2190 S4' a_t = x_t - z_t;
2192 Output:
2194 * TYPE_IN: The type of the input arguments to the pattern.
2196 * TYPE_OUT: The type of the output of this pattern.
2198 * Return value: A new stmt that will be used to replace the division
2199 S1 or modulo S4 stmt. */
2201 static gimple
2202 vect_recog_divmod_pattern (vec<gimple> *stmts,
2203 tree *type_in, tree *type_out)
2205 gimple last_stmt = stmts->pop ();
2206 tree oprnd0, oprnd1, vectype, itype, cond;
2207 gimple pattern_stmt, def_stmt;
2208 enum tree_code rhs_code;
2209 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
2210 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
2211 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_vinfo);
2212 optab optab;
2213 tree q;
2214 int dummy_int, prec;
2215 stmt_vec_info def_stmt_vinfo;
2217 if (!is_gimple_assign (last_stmt))
2218 return NULL;
2220 rhs_code = gimple_assign_rhs_code (last_stmt);
2221 switch (rhs_code)
2223 case TRUNC_DIV_EXPR:
2224 case TRUNC_MOD_EXPR:
2225 break;
2226 default:
2227 return NULL;
2230 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
2231 return NULL;
2233 oprnd0 = gimple_assign_rhs1 (last_stmt);
2234 oprnd1 = gimple_assign_rhs2 (last_stmt);
2235 itype = TREE_TYPE (oprnd0);
2236 if (TREE_CODE (oprnd0) != SSA_NAME
2237 || TREE_CODE (oprnd1) != INTEGER_CST
2238 || TREE_CODE (itype) != INTEGER_TYPE
2239 || TYPE_PRECISION (itype) != GET_MODE_PRECISION (TYPE_MODE (itype)))
2240 return NULL;
2242 vectype = get_vectype_for_scalar_type (itype);
2243 if (vectype == NULL_TREE)
2244 return NULL;
2246 /* If the target can handle vectorized division or modulo natively,
2247 don't attempt to optimize this. */
2248 optab = optab_for_tree_code (rhs_code, vectype, optab_default);
2249 if (optab != unknown_optab)
2251 machine_mode vec_mode = TYPE_MODE (vectype);
2252 int icode = (int) optab_handler (optab, vec_mode);
2253 if (icode != CODE_FOR_nothing)
2254 return NULL;
2257 prec = TYPE_PRECISION (itype);
2258 if (integer_pow2p (oprnd1))
2260 if (TYPE_UNSIGNED (itype) || tree_int_cst_sgn (oprnd1) != 1)
2261 return NULL;
2263 /* Pattern detected. */
2264 if (dump_enabled_p ())
2265 dump_printf_loc (MSG_NOTE, vect_location,
2266 "vect_recog_divmod_pattern: detected:\n");
2268 cond = build2 (LT_EXPR, boolean_type_node, oprnd0,
2269 build_int_cst (itype, 0));
2270 if (rhs_code == TRUNC_DIV_EXPR)
2272 tree var = vect_recog_temp_ssa_var (itype, NULL);
2273 tree shift;
2274 def_stmt
2275 = gimple_build_assign (var, COND_EXPR, cond,
2276 fold_build2 (MINUS_EXPR, itype, oprnd1,
2277 build_int_cst (itype, 1)),
2278 build_int_cst (itype, 0));
2279 new_pattern_def_seq (stmt_vinfo, def_stmt);
2280 var = vect_recog_temp_ssa_var (itype, NULL);
2281 def_stmt
2282 = gimple_build_assign (var, PLUS_EXPR, oprnd0,
2283 gimple_assign_lhs (def_stmt));
2284 append_pattern_def_seq (stmt_vinfo, def_stmt);
2286 shift = build_int_cst (itype, tree_log2 (oprnd1));
2287 pattern_stmt
2288 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
2289 RSHIFT_EXPR, var, shift);
2291 else
2293 tree signmask;
2294 STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) = NULL;
2295 if (compare_tree_int (oprnd1, 2) == 0)
2297 signmask = vect_recog_temp_ssa_var (itype, NULL);
2298 def_stmt = gimple_build_assign (signmask, COND_EXPR, cond,
2299 build_int_cst (itype, 1),
2300 build_int_cst (itype, 0));
2301 append_pattern_def_seq (stmt_vinfo, def_stmt);
2303 else
2305 tree utype
2306 = build_nonstandard_integer_type (prec, 1);
2307 tree vecutype = get_vectype_for_scalar_type (utype);
2308 tree shift
2309 = build_int_cst (utype, GET_MODE_BITSIZE (TYPE_MODE (itype))
2310 - tree_log2 (oprnd1));
2311 tree var = vect_recog_temp_ssa_var (utype, NULL);
2313 def_stmt = gimple_build_assign (var, COND_EXPR, cond,
2314 build_int_cst (utype, -1),
2315 build_int_cst (utype, 0));
2316 def_stmt_vinfo
2317 = new_stmt_vec_info (def_stmt, loop_vinfo, bb_vinfo);
2318 set_vinfo_for_stmt (def_stmt, def_stmt_vinfo);
2319 STMT_VINFO_VECTYPE (def_stmt_vinfo) = vecutype;
2320 append_pattern_def_seq (stmt_vinfo, def_stmt);
2321 var = vect_recog_temp_ssa_var (utype, NULL);
2322 def_stmt = gimple_build_assign (var, RSHIFT_EXPR,
2323 gimple_assign_lhs (def_stmt),
2324 shift);
2325 def_stmt_vinfo
2326 = new_stmt_vec_info (def_stmt, loop_vinfo, bb_vinfo);
2327 set_vinfo_for_stmt (def_stmt, def_stmt_vinfo);
2328 STMT_VINFO_VECTYPE (def_stmt_vinfo) = vecutype;
2329 append_pattern_def_seq (stmt_vinfo, def_stmt);
2330 signmask = vect_recog_temp_ssa_var (itype, NULL);
2331 def_stmt
2332 = gimple_build_assign (signmask, NOP_EXPR, var);
2333 append_pattern_def_seq (stmt_vinfo, def_stmt);
2335 def_stmt
2336 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
2337 PLUS_EXPR, oprnd0, signmask);
2338 append_pattern_def_seq (stmt_vinfo, def_stmt);
2339 def_stmt
2340 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
2341 BIT_AND_EXPR, gimple_assign_lhs (def_stmt),
2342 fold_build2 (MINUS_EXPR, itype, oprnd1,
2343 build_int_cst (itype, 1)));
2344 append_pattern_def_seq (stmt_vinfo, def_stmt);
2346 pattern_stmt
2347 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
2348 MINUS_EXPR, gimple_assign_lhs (def_stmt),
2349 signmask);
2352 if (dump_enabled_p ())
2353 dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt,
2356 stmts->safe_push (last_stmt);
2358 *type_in = vectype;
2359 *type_out = vectype;
2360 return pattern_stmt;
2363 if (prec > HOST_BITS_PER_WIDE_INT
2364 || integer_zerop (oprnd1))
2365 return NULL;
2367 if (!can_mult_highpart_p (TYPE_MODE (vectype), TYPE_UNSIGNED (itype)))
2368 return NULL;
2370 STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) = NULL;
2372 if (TYPE_UNSIGNED (itype))
2374 unsigned HOST_WIDE_INT mh, ml;
2375 int pre_shift, post_shift;
2376 unsigned HOST_WIDE_INT d = (TREE_INT_CST_LOW (oprnd1)
2377 & GET_MODE_MASK (TYPE_MODE (itype)));
2378 tree t1, t2, t3, t4;
2380 if (d >= ((unsigned HOST_WIDE_INT) 1 << (prec - 1)))
2381 /* FIXME: Can transform this into oprnd0 >= oprnd1 ? 1 : 0. */
2382 return NULL;
2384 /* Find a suitable multiplier and right shift count
2385 instead of multiplying with D. */
2386 mh = choose_multiplier (d, prec, prec, &ml, &post_shift, &dummy_int);
2388 /* If the suggested multiplier is more than SIZE bits, we can do better
2389 for even divisors, using an initial right shift. */
2390 if (mh != 0 && (d & 1) == 0)
2392 pre_shift = floor_log2 (d & -d);
2393 mh = choose_multiplier (d >> pre_shift, prec, prec - pre_shift,
2394 &ml, &post_shift, &dummy_int);
2395 gcc_assert (!mh);
2397 else
2398 pre_shift = 0;
2400 if (mh != 0)
2402 if (post_shift - 1 >= prec)
2403 return NULL;
2405 /* t1 = oprnd0 h* ml;
2406 t2 = oprnd0 - t1;
2407 t3 = t2 >> 1;
2408 t4 = t1 + t3;
2409 q = t4 >> (post_shift - 1); */
2410 t1 = vect_recog_temp_ssa_var (itype, NULL);
2411 def_stmt = gimple_build_assign (t1, MULT_HIGHPART_EXPR, oprnd0,
2412 build_int_cst (itype, ml));
2413 append_pattern_def_seq (stmt_vinfo, def_stmt);
2415 t2 = vect_recog_temp_ssa_var (itype, NULL);
2416 def_stmt
2417 = gimple_build_assign (t2, MINUS_EXPR, oprnd0, t1);
2418 append_pattern_def_seq (stmt_vinfo, def_stmt);
2420 t3 = vect_recog_temp_ssa_var (itype, NULL);
2421 def_stmt
2422 = gimple_build_assign (t3, RSHIFT_EXPR, t2, integer_one_node);
2423 append_pattern_def_seq (stmt_vinfo, def_stmt);
2425 t4 = vect_recog_temp_ssa_var (itype, NULL);
2426 def_stmt
2427 = gimple_build_assign (t4, PLUS_EXPR, t1, t3);
2429 if (post_shift != 1)
2431 append_pattern_def_seq (stmt_vinfo, def_stmt);
2433 q = vect_recog_temp_ssa_var (itype, NULL);
2434 pattern_stmt
2435 = gimple_build_assign (q, RSHIFT_EXPR, t4,
2436 build_int_cst (itype, post_shift - 1));
2438 else
2440 q = t4;
2441 pattern_stmt = def_stmt;
2444 else
2446 if (pre_shift >= prec || post_shift >= prec)
2447 return NULL;
2449 /* t1 = oprnd0 >> pre_shift;
2450 t2 = t1 h* ml;
2451 q = t2 >> post_shift; */
2452 if (pre_shift)
2454 t1 = vect_recog_temp_ssa_var (itype, NULL);
2455 def_stmt
2456 = gimple_build_assign (t1, RSHIFT_EXPR, oprnd0,
2457 build_int_cst (NULL, pre_shift));
2458 append_pattern_def_seq (stmt_vinfo, def_stmt);
2460 else
2461 t1 = oprnd0;
2463 t2 = vect_recog_temp_ssa_var (itype, NULL);
2464 def_stmt = gimple_build_assign (t2, MULT_HIGHPART_EXPR, t1,
2465 build_int_cst (itype, ml));
2467 if (post_shift)
2469 append_pattern_def_seq (stmt_vinfo, def_stmt);
2471 q = vect_recog_temp_ssa_var (itype, NULL);
2472 def_stmt
2473 = gimple_build_assign (q, RSHIFT_EXPR, t2,
2474 build_int_cst (itype, post_shift));
2476 else
2477 q = t2;
2479 pattern_stmt = def_stmt;
2482 else
2484 unsigned HOST_WIDE_INT ml;
2485 int post_shift;
2486 HOST_WIDE_INT d = TREE_INT_CST_LOW (oprnd1);
2487 unsigned HOST_WIDE_INT abs_d;
2488 bool add = false;
2489 tree t1, t2, t3, t4;
2491 /* Give up for -1. */
2492 if (d == -1)
2493 return NULL;
2495 /* Since d might be INT_MIN, we have to cast to
2496 unsigned HOST_WIDE_INT before negating to avoid
2497 undefined signed overflow. */
2498 abs_d = (d >= 0
2499 ? (unsigned HOST_WIDE_INT) d
2500 : - (unsigned HOST_WIDE_INT) d);
2502 /* n rem d = n rem -d */
2503 if (rhs_code == TRUNC_MOD_EXPR && d < 0)
2505 d = abs_d;
2506 oprnd1 = build_int_cst (itype, abs_d);
2508 else if (HOST_BITS_PER_WIDE_INT >= prec
2509 && abs_d == (unsigned HOST_WIDE_INT) 1 << (prec - 1))
2510 /* This case is not handled correctly below. */
2511 return NULL;
2513 choose_multiplier (abs_d, prec, prec - 1, &ml, &post_shift, &dummy_int);
2514 if (ml >= (unsigned HOST_WIDE_INT) 1 << (prec - 1))
2516 add = true;
2517 ml |= (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
2519 if (post_shift >= prec)
2520 return NULL;
2522 /* t1 = oprnd0 h* ml; */
2523 t1 = vect_recog_temp_ssa_var (itype, NULL);
2524 def_stmt = gimple_build_assign (t1, MULT_HIGHPART_EXPR, oprnd0,
2525 build_int_cst (itype, ml));
2527 if (add)
2529 /* t2 = t1 + oprnd0; */
2530 append_pattern_def_seq (stmt_vinfo, def_stmt);
2531 t2 = vect_recog_temp_ssa_var (itype, NULL);
2532 def_stmt = gimple_build_assign (t2, PLUS_EXPR, t1, oprnd0);
2534 else
2535 t2 = t1;
2537 if (post_shift)
2539 /* t3 = t2 >> post_shift; */
2540 append_pattern_def_seq (stmt_vinfo, def_stmt);
2541 t3 = vect_recog_temp_ssa_var (itype, NULL);
2542 def_stmt = gimple_build_assign (t3, RSHIFT_EXPR, t2,
2543 build_int_cst (itype, post_shift));
2545 else
2546 t3 = t2;
2548 wide_int oprnd0_min, oprnd0_max;
2549 int msb = 1;
2550 if (get_range_info (oprnd0, &oprnd0_min, &oprnd0_max) == VR_RANGE)
2552 if (!wi::neg_p (oprnd0_min, TYPE_SIGN (itype)))
2553 msb = 0;
2554 else if (wi::neg_p (oprnd0_max, TYPE_SIGN (itype)))
2555 msb = -1;
2558 if (msb == 0 && d >= 0)
2560 /* q = t3; */
2561 q = t3;
2562 pattern_stmt = def_stmt;
2564 else
2566 /* t4 = oprnd0 >> (prec - 1);
2567 or if we know from VRP that oprnd0 >= 0
2568 t4 = 0;
2569 or if we know from VRP that oprnd0 < 0
2570 t4 = -1; */
2571 append_pattern_def_seq (stmt_vinfo, def_stmt);
2572 t4 = vect_recog_temp_ssa_var (itype, NULL);
2573 if (msb != 1)
2574 def_stmt = gimple_build_assign (t4, INTEGER_CST,
2575 build_int_cst (itype, msb));
2576 else
2577 def_stmt = gimple_build_assign (t4, RSHIFT_EXPR, oprnd0,
2578 build_int_cst (itype, prec - 1));
2579 append_pattern_def_seq (stmt_vinfo, def_stmt);
2581 /* q = t3 - t4; or q = t4 - t3; */
2582 q = vect_recog_temp_ssa_var (itype, NULL);
2583 pattern_stmt = gimple_build_assign (q, MINUS_EXPR, d < 0 ? t4 : t3,
2584 d < 0 ? t3 : t4);
2588 if (rhs_code == TRUNC_MOD_EXPR)
2590 tree r, t1;
2592 /* We divided. Now finish by:
2593 t1 = q * oprnd1;
2594 r = oprnd0 - t1; */
2595 append_pattern_def_seq (stmt_vinfo, pattern_stmt);
2597 t1 = vect_recog_temp_ssa_var (itype, NULL);
2598 def_stmt = gimple_build_assign (t1, MULT_EXPR, q, oprnd1);
2599 append_pattern_def_seq (stmt_vinfo, def_stmt);
2601 r = vect_recog_temp_ssa_var (itype, NULL);
2602 pattern_stmt = gimple_build_assign (r, MINUS_EXPR, oprnd0, t1);
2605 /* Pattern detected. */
2606 if (dump_enabled_p ())
2608 dump_printf_loc (MSG_NOTE, vect_location,
2609 "vect_recog_divmod_pattern: detected: ");
2610 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
2611 dump_printf (MSG_NOTE, "\n");
2614 stmts->safe_push (last_stmt);
2616 *type_in = vectype;
2617 *type_out = vectype;
2618 return pattern_stmt;
2621 /* Function vect_recog_mixed_size_cond_pattern
2623 Try to find the following pattern:
2625 type x_t, y_t;
2626 TYPE a_T, b_T, c_T;
2627 loop:
2628 S1 a_T = x_t CMP y_t ? b_T : c_T;
2630 where type 'TYPE' is an integral type which has different size
2631 from 'type'. b_T and c_T are either constants (and if 'TYPE' is wider
2632 than 'type', the constants need to fit into an integer type
2633 with the same width as 'type') or results of conversion from 'type'.
2635 Input:
2637 * LAST_STMT: A stmt from which the pattern search begins.
2639 Output:
2641 * TYPE_IN: The type of the input arguments to the pattern.
2643 * TYPE_OUT: The type of the output of this pattern.
2645 * Return value: A new stmt that will be used to replace the pattern.
2646 Additionally a def_stmt is added.
2648 a_it = x_t CMP y_t ? b_it : c_it;
2649 a_T = (TYPE) a_it; */
2651 static gimple
2652 vect_recog_mixed_size_cond_pattern (vec<gimple> *stmts, tree *type_in,
2653 tree *type_out)
2655 gimple last_stmt = (*stmts)[0];
2656 tree cond_expr, then_clause, else_clause;
2657 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt), def_stmt_info;
2658 tree type, vectype, comp_vectype, itype = NULL_TREE, vecitype;
2659 machine_mode cmpmode;
2660 gimple pattern_stmt, def_stmt;
2661 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
2662 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_vinfo);
2663 tree orig_type0 = NULL_TREE, orig_type1 = NULL_TREE;
2664 gimple def_stmt0 = NULL, def_stmt1 = NULL;
2665 bool promotion;
2666 tree comp_scalar_type;
2668 if (!is_gimple_assign (last_stmt)
2669 || gimple_assign_rhs_code (last_stmt) != COND_EXPR
2670 || STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_internal_def)
2671 return NULL;
2673 cond_expr = gimple_assign_rhs1 (last_stmt);
2674 then_clause = gimple_assign_rhs2 (last_stmt);
2675 else_clause = gimple_assign_rhs3 (last_stmt);
2677 if (!COMPARISON_CLASS_P (cond_expr))
2678 return NULL;
2680 comp_scalar_type = TREE_TYPE (TREE_OPERAND (cond_expr, 0));
2681 comp_vectype = get_vectype_for_scalar_type (comp_scalar_type);
2682 if (comp_vectype == NULL_TREE)
2683 return NULL;
2685 type = gimple_expr_type (last_stmt);
2686 if (types_compatible_p (type, comp_scalar_type)
2687 || ((TREE_CODE (then_clause) != INTEGER_CST
2688 || TREE_CODE (else_clause) != INTEGER_CST)
2689 && !INTEGRAL_TYPE_P (comp_scalar_type))
2690 || !INTEGRAL_TYPE_P (type))
2691 return NULL;
2693 if ((TREE_CODE (then_clause) != INTEGER_CST
2694 && !type_conversion_p (then_clause, last_stmt, false, &orig_type0,
2695 &def_stmt0, &promotion))
2696 || (TREE_CODE (else_clause) != INTEGER_CST
2697 && !type_conversion_p (else_clause, last_stmt, false, &orig_type1,
2698 &def_stmt1, &promotion)))
2699 return NULL;
2701 if (orig_type0 && orig_type1
2702 && !types_compatible_p (orig_type0, orig_type1))
2703 return NULL;
2705 if (orig_type0)
2707 if (!types_compatible_p (orig_type0, comp_scalar_type))
2708 return NULL;
2709 then_clause = gimple_assign_rhs1 (def_stmt0);
2710 itype = orig_type0;
2713 if (orig_type1)
2715 if (!types_compatible_p (orig_type1, comp_scalar_type))
2716 return NULL;
2717 else_clause = gimple_assign_rhs1 (def_stmt1);
2718 itype = orig_type1;
2721 cmpmode = GET_MODE_INNER (TYPE_MODE (comp_vectype));
2723 if (GET_MODE_BITSIZE (TYPE_MODE (type)) == GET_MODE_BITSIZE (cmpmode))
2724 return NULL;
2726 vectype = get_vectype_for_scalar_type (type);
2727 if (vectype == NULL_TREE)
2728 return NULL;
2730 if (expand_vec_cond_expr_p (vectype, comp_vectype))
2731 return NULL;
2733 if (itype == NULL_TREE)
2734 itype = build_nonstandard_integer_type (GET_MODE_BITSIZE (cmpmode),
2735 TYPE_UNSIGNED (type));
2737 if (itype == NULL_TREE
2738 || GET_MODE_BITSIZE (TYPE_MODE (itype)) != GET_MODE_BITSIZE (cmpmode))
2739 return NULL;
2741 vecitype = get_vectype_for_scalar_type (itype);
2742 if (vecitype == NULL_TREE)
2743 return NULL;
2745 if (!expand_vec_cond_expr_p (vecitype, comp_vectype))
2746 return NULL;
2748 if (GET_MODE_BITSIZE (TYPE_MODE (type)) > GET_MODE_BITSIZE (cmpmode))
2750 if ((TREE_CODE (then_clause) == INTEGER_CST
2751 && !int_fits_type_p (then_clause, itype))
2752 || (TREE_CODE (else_clause) == INTEGER_CST
2753 && !int_fits_type_p (else_clause, itype)))
2754 return NULL;
2757 def_stmt = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
2758 COND_EXPR, unshare_expr (cond_expr),
2759 fold_convert (itype, then_clause),
2760 fold_convert (itype, else_clause));
2761 pattern_stmt = gimple_build_assign (vect_recog_temp_ssa_var (type, NULL),
2762 NOP_EXPR, gimple_assign_lhs (def_stmt));
2764 new_pattern_def_seq (stmt_vinfo, def_stmt);
2765 def_stmt_info = new_stmt_vec_info (def_stmt, loop_vinfo, bb_vinfo);
2766 set_vinfo_for_stmt (def_stmt, def_stmt_info);
2767 STMT_VINFO_VECTYPE (def_stmt_info) = vecitype;
2768 *type_in = vecitype;
2769 *type_out = vectype;
2771 if (dump_enabled_p ())
2772 dump_printf_loc (MSG_NOTE, vect_location,
2773 "vect_recog_mixed_size_cond_pattern: detected:\n");
2775 return pattern_stmt;
2779 /* Helper function of vect_recog_bool_pattern. Called recursively, return
2780 true if bool VAR can be optimized that way. */
2782 static bool
2783 check_bool_pattern (tree var, loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
2785 gimple def_stmt;
2786 enum vect_def_type dt;
2787 tree def, rhs1;
2788 enum tree_code rhs_code;
2790 if (!vect_is_simple_use (var, NULL, loop_vinfo, bb_vinfo, &def_stmt, &def,
2791 &dt))
2792 return false;
2794 if (dt != vect_internal_def)
2795 return false;
2797 if (!is_gimple_assign (def_stmt))
2798 return false;
2800 if (!has_single_use (def))
2801 return false;
2803 rhs1 = gimple_assign_rhs1 (def_stmt);
2804 rhs_code = gimple_assign_rhs_code (def_stmt);
2805 switch (rhs_code)
2807 case SSA_NAME:
2808 return check_bool_pattern (rhs1, loop_vinfo, bb_vinfo);
2810 CASE_CONVERT:
2811 if ((TYPE_PRECISION (TREE_TYPE (rhs1)) != 1
2812 || !TYPE_UNSIGNED (TREE_TYPE (rhs1)))
2813 && TREE_CODE (TREE_TYPE (rhs1)) != BOOLEAN_TYPE)
2814 return false;
2815 return check_bool_pattern (rhs1, loop_vinfo, bb_vinfo);
2817 case BIT_NOT_EXPR:
2818 return check_bool_pattern (rhs1, loop_vinfo, bb_vinfo);
2820 case BIT_AND_EXPR:
2821 case BIT_IOR_EXPR:
2822 case BIT_XOR_EXPR:
2823 if (!check_bool_pattern (rhs1, loop_vinfo, bb_vinfo))
2824 return false;
2825 return check_bool_pattern (gimple_assign_rhs2 (def_stmt), loop_vinfo,
2826 bb_vinfo);
2828 default:
2829 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
2831 tree vecitype, comp_vectype;
2833 /* If the comparison can throw, then is_gimple_condexpr will be
2834 false and we can't make a COND_EXPR/VEC_COND_EXPR out of it. */
2835 if (stmt_could_throw_p (def_stmt))
2836 return false;
2838 comp_vectype = get_vectype_for_scalar_type (TREE_TYPE (rhs1));
2839 if (comp_vectype == NULL_TREE)
2840 return false;
2842 if (TREE_CODE (TREE_TYPE (rhs1)) != INTEGER_TYPE)
2844 machine_mode mode = TYPE_MODE (TREE_TYPE (rhs1));
2845 tree itype
2846 = build_nonstandard_integer_type (GET_MODE_BITSIZE (mode), 1);
2847 vecitype = get_vectype_for_scalar_type (itype);
2848 if (vecitype == NULL_TREE)
2849 return false;
2851 else
2852 vecitype = comp_vectype;
2853 return expand_vec_cond_expr_p (vecitype, comp_vectype);
2855 return false;
2860 /* Helper function of adjust_bool_pattern. Add a cast to TYPE to a previous
2861 stmt (SSA_NAME_DEF_STMT of VAR) by moving the COND_EXPR from RELATED_STMT
2862 to PATTERN_DEF_SEQ and adding a cast as RELATED_STMT. */
2864 static tree
2865 adjust_bool_pattern_cast (tree type, tree var)
2867 stmt_vec_info stmt_vinfo = vinfo_for_stmt (SSA_NAME_DEF_STMT (var));
2868 gimple cast_stmt, pattern_stmt;
2870 gcc_assert (!STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo));
2871 pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
2872 new_pattern_def_seq (stmt_vinfo, pattern_stmt);
2873 cast_stmt = gimple_build_assign (vect_recog_temp_ssa_var (type, NULL),
2874 NOP_EXPR, gimple_assign_lhs (pattern_stmt));
2875 STMT_VINFO_RELATED_STMT (stmt_vinfo) = cast_stmt;
2876 return gimple_assign_lhs (cast_stmt);
2880 /* Helper function of vect_recog_bool_pattern. Do the actual transformations,
2881 recursively. VAR is an SSA_NAME that should be transformed from bool
2882 to a wider integer type, OUT_TYPE is the desired final integer type of
2883 the whole pattern, TRUEVAL should be NULL unless optimizing
2884 BIT_AND_EXPR into a COND_EXPR with one integer from one of the operands
2885 in the then_clause, STMTS is where statements with added pattern stmts
2886 should be pushed to. */
2888 static tree
2889 adjust_bool_pattern (tree var, tree out_type, tree trueval,
2890 vec<gimple> *stmts)
2892 gimple stmt = SSA_NAME_DEF_STMT (var);
2893 enum tree_code rhs_code, def_rhs_code;
2894 tree itype, cond_expr, rhs1, rhs2, irhs1, irhs2;
2895 location_t loc;
2896 gimple pattern_stmt, def_stmt;
2898 rhs1 = gimple_assign_rhs1 (stmt);
2899 rhs2 = gimple_assign_rhs2 (stmt);
2900 rhs_code = gimple_assign_rhs_code (stmt);
2901 loc = gimple_location (stmt);
2902 switch (rhs_code)
2904 case SSA_NAME:
2905 CASE_CONVERT:
2906 irhs1 = adjust_bool_pattern (rhs1, out_type, NULL_TREE, stmts);
2907 itype = TREE_TYPE (irhs1);
2908 pattern_stmt
2909 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
2910 SSA_NAME, irhs1);
2911 break;
2913 case BIT_NOT_EXPR:
2914 irhs1 = adjust_bool_pattern (rhs1, out_type, NULL_TREE, stmts);
2915 itype = TREE_TYPE (irhs1);
2916 pattern_stmt
2917 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
2918 BIT_XOR_EXPR, irhs1, build_int_cst (itype, 1));
2919 break;
2921 case BIT_AND_EXPR:
2922 /* Try to optimize x = y & (a < b ? 1 : 0); into
2923 x = (a < b ? y : 0);
2925 E.g. for:
2926 bool a_b, b_b, c_b;
2927 TYPE d_T;
2929 S1 a_b = x1 CMP1 y1;
2930 S2 b_b = x2 CMP2 y2;
2931 S3 c_b = a_b & b_b;
2932 S4 d_T = (TYPE) c_b;
2934 we would normally emit:
2936 S1' a_T = x1 CMP1 y1 ? 1 : 0;
2937 S2' b_T = x2 CMP2 y2 ? 1 : 0;
2938 S3' c_T = a_T & b_T;
2939 S4' d_T = c_T;
2941 but we can save one stmt by using the
2942 result of one of the COND_EXPRs in the other COND_EXPR and leave
2943 BIT_AND_EXPR stmt out:
2945 S1' a_T = x1 CMP1 y1 ? 1 : 0;
2946 S3' c_T = x2 CMP2 y2 ? a_T : 0;
2947 S4' f_T = c_T;
2949 At least when VEC_COND_EXPR is implemented using masks
2950 cond ? 1 : 0 is as expensive as cond ? var : 0, in both cases it
2951 computes the comparison masks and ands it, in one case with
2952 all ones vector, in the other case with a vector register.
2953 Don't do this for BIT_IOR_EXPR, because cond ? 1 : var; is
2954 often more expensive. */
2955 def_stmt = SSA_NAME_DEF_STMT (rhs2);
2956 def_rhs_code = gimple_assign_rhs_code (def_stmt);
2957 if (TREE_CODE_CLASS (def_rhs_code) == tcc_comparison)
2959 tree def_rhs1 = gimple_assign_rhs1 (def_stmt);
2960 irhs1 = adjust_bool_pattern (rhs1, out_type, NULL_TREE, stmts);
2961 if (TYPE_PRECISION (TREE_TYPE (irhs1))
2962 == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (def_rhs1))))
2964 gimple tstmt;
2965 stmt_vec_info stmt_def_vinfo = vinfo_for_stmt (def_stmt);
2966 irhs2 = adjust_bool_pattern (rhs2, out_type, irhs1, stmts);
2967 tstmt = stmts->pop ();
2968 gcc_assert (tstmt == def_stmt);
2969 stmts->quick_push (stmt);
2970 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt))
2971 = STMT_VINFO_RELATED_STMT (stmt_def_vinfo);
2972 gcc_assert (!STMT_VINFO_PATTERN_DEF_SEQ (stmt_def_vinfo));
2973 STMT_VINFO_RELATED_STMT (stmt_def_vinfo) = NULL;
2974 return irhs2;
2976 else
2977 irhs2 = adjust_bool_pattern (rhs2, out_type, NULL_TREE, stmts);
2978 goto and_ior_xor;
2980 def_stmt = SSA_NAME_DEF_STMT (rhs1);
2981 def_rhs_code = gimple_assign_rhs_code (def_stmt);
2982 if (TREE_CODE_CLASS (def_rhs_code) == tcc_comparison)
2984 tree def_rhs1 = gimple_assign_rhs1 (def_stmt);
2985 irhs2 = adjust_bool_pattern (rhs2, out_type, NULL_TREE, stmts);
2986 if (TYPE_PRECISION (TREE_TYPE (irhs2))
2987 == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (def_rhs1))))
2989 gimple tstmt;
2990 stmt_vec_info stmt_def_vinfo = vinfo_for_stmt (def_stmt);
2991 irhs1 = adjust_bool_pattern (rhs1, out_type, irhs2, stmts);
2992 tstmt = stmts->pop ();
2993 gcc_assert (tstmt == def_stmt);
2994 stmts->quick_push (stmt);
2995 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt))
2996 = STMT_VINFO_RELATED_STMT (stmt_def_vinfo);
2997 gcc_assert (!STMT_VINFO_PATTERN_DEF_SEQ (stmt_def_vinfo));
2998 STMT_VINFO_RELATED_STMT (stmt_def_vinfo) = NULL;
2999 return irhs1;
3001 else
3002 irhs1 = adjust_bool_pattern (rhs1, out_type, NULL_TREE, stmts);
3003 goto and_ior_xor;
3005 /* FALLTHRU */
3006 case BIT_IOR_EXPR:
3007 case BIT_XOR_EXPR:
3008 irhs1 = adjust_bool_pattern (rhs1, out_type, NULL_TREE, stmts);
3009 irhs2 = adjust_bool_pattern (rhs2, out_type, NULL_TREE, stmts);
3010 and_ior_xor:
3011 if (TYPE_PRECISION (TREE_TYPE (irhs1))
3012 != TYPE_PRECISION (TREE_TYPE (irhs2)))
3014 int prec1 = TYPE_PRECISION (TREE_TYPE (irhs1));
3015 int prec2 = TYPE_PRECISION (TREE_TYPE (irhs2));
3016 int out_prec = TYPE_PRECISION (out_type);
3017 if (absu_hwi (out_prec - prec1) < absu_hwi (out_prec - prec2))
3018 irhs2 = adjust_bool_pattern_cast (TREE_TYPE (irhs1), rhs2);
3019 else if (absu_hwi (out_prec - prec1) > absu_hwi (out_prec - prec2))
3020 irhs1 = adjust_bool_pattern_cast (TREE_TYPE (irhs2), rhs1);
3021 else
3023 irhs1 = adjust_bool_pattern_cast (out_type, rhs1);
3024 irhs2 = adjust_bool_pattern_cast (out_type, rhs2);
3027 itype = TREE_TYPE (irhs1);
3028 pattern_stmt
3029 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
3030 rhs_code, irhs1, irhs2);
3031 break;
3033 default:
3034 gcc_assert (TREE_CODE_CLASS (rhs_code) == tcc_comparison);
3035 if (TREE_CODE (TREE_TYPE (rhs1)) != INTEGER_TYPE
3036 || !TYPE_UNSIGNED (TREE_TYPE (rhs1))
3037 || (TYPE_PRECISION (TREE_TYPE (rhs1))
3038 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1)))))
3040 machine_mode mode = TYPE_MODE (TREE_TYPE (rhs1));
3041 itype
3042 = build_nonstandard_integer_type (GET_MODE_BITSIZE (mode), 1);
3044 else
3045 itype = TREE_TYPE (rhs1);
3046 cond_expr = build2_loc (loc, rhs_code, itype, rhs1, rhs2);
3047 if (trueval == NULL_TREE)
3048 trueval = build_int_cst (itype, 1);
3049 else
3050 gcc_checking_assert (useless_type_conversion_p (itype,
3051 TREE_TYPE (trueval)));
3052 pattern_stmt
3053 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
3054 COND_EXPR, cond_expr, trueval,
3055 build_int_cst (itype, 0));
3056 break;
3059 stmts->safe_push (stmt);
3060 gimple_set_location (pattern_stmt, loc);
3061 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt)) = pattern_stmt;
3062 return gimple_assign_lhs (pattern_stmt);
3066 /* Function vect_recog_bool_pattern
3068 Try to find pattern like following:
3070 bool a_b, b_b, c_b, d_b, e_b;
3071 TYPE f_T;
3072 loop:
3073 S1 a_b = x1 CMP1 y1;
3074 S2 b_b = x2 CMP2 y2;
3075 S3 c_b = a_b & b_b;
3076 S4 d_b = x3 CMP3 y3;
3077 S5 e_b = c_b | d_b;
3078 S6 f_T = (TYPE) e_b;
3080 where type 'TYPE' is an integral type. Or a similar pattern
3081 ending in
3083 S6 f_Y = e_b ? r_Y : s_Y;
3085 as results from if-conversion of a complex condition.
3087 Input:
3089 * LAST_STMT: A stmt at the end from which the pattern
3090 search begins, i.e. cast of a bool to
3091 an integer type.
3093 Output:
3095 * TYPE_IN: The type of the input arguments to the pattern.
3097 * TYPE_OUT: The type of the output of this pattern.
3099 * Return value: A new stmt that will be used to replace the pattern.
3101 Assuming size of TYPE is the same as size of all comparisons
3102 (otherwise some casts would be added where needed), the above
3103 sequence we create related pattern stmts:
3104 S1' a_T = x1 CMP1 y1 ? 1 : 0;
3105 S3' c_T = x2 CMP2 y2 ? a_T : 0;
3106 S4' d_T = x3 CMP3 y3 ? 1 : 0;
3107 S5' e_T = c_T | d_T;
3108 S6' f_T = e_T;
3110 Instead of the above S3' we could emit:
3111 S2' b_T = x2 CMP2 y2 ? 1 : 0;
3112 S3' c_T = a_T | b_T;
3113 but the above is more efficient. */
3115 static gimple
3116 vect_recog_bool_pattern (vec<gimple> *stmts, tree *type_in,
3117 tree *type_out)
3119 gimple last_stmt = stmts->pop ();
3120 enum tree_code rhs_code;
3121 tree var, lhs, rhs, vectype;
3122 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
3123 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3124 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_vinfo);
3125 gimple pattern_stmt;
3127 if (!is_gimple_assign (last_stmt))
3128 return NULL;
3130 var = gimple_assign_rhs1 (last_stmt);
3131 lhs = gimple_assign_lhs (last_stmt);
3133 if ((TYPE_PRECISION (TREE_TYPE (var)) != 1
3134 || !TYPE_UNSIGNED (TREE_TYPE (var)))
3135 && TREE_CODE (TREE_TYPE (var)) != BOOLEAN_TYPE)
3136 return NULL;
3138 rhs_code = gimple_assign_rhs_code (last_stmt);
3139 if (CONVERT_EXPR_CODE_P (rhs_code))
3141 if (TREE_CODE (TREE_TYPE (lhs)) != INTEGER_TYPE
3142 || TYPE_PRECISION (TREE_TYPE (lhs)) == 1)
3143 return NULL;
3144 vectype = get_vectype_for_scalar_type (TREE_TYPE (lhs));
3145 if (vectype == NULL_TREE)
3146 return NULL;
3148 if (!check_bool_pattern (var, loop_vinfo, bb_vinfo))
3149 return NULL;
3151 rhs = adjust_bool_pattern (var, TREE_TYPE (lhs), NULL_TREE, stmts);
3152 lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
3153 if (useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
3154 pattern_stmt = gimple_build_assign (lhs, SSA_NAME, rhs);
3155 else
3156 pattern_stmt
3157 = gimple_build_assign (lhs, NOP_EXPR, rhs);
3158 *type_out = vectype;
3159 *type_in = vectype;
3160 stmts->safe_push (last_stmt);
3161 if (dump_enabled_p ())
3162 dump_printf_loc (MSG_NOTE, vect_location,
3163 "vect_recog_bool_pattern: detected:\n");
3165 return pattern_stmt;
3167 else if (rhs_code == COND_EXPR
3168 && TREE_CODE (var) == SSA_NAME)
3170 vectype = get_vectype_for_scalar_type (TREE_TYPE (lhs));
3171 if (vectype == NULL_TREE)
3172 return NULL;
3174 /* Build a scalar type for the boolean result that when
3175 vectorized matches the vector type of the result in
3176 size and number of elements. */
3177 unsigned prec
3178 = wi::udiv_trunc (TYPE_SIZE (vectype),
3179 TYPE_VECTOR_SUBPARTS (vectype)).to_uhwi ();
3180 tree type
3181 = build_nonstandard_integer_type (prec,
3182 TYPE_UNSIGNED (TREE_TYPE (var)));
3183 if (get_vectype_for_scalar_type (type) == NULL_TREE)
3184 return NULL;
3186 if (!check_bool_pattern (var, loop_vinfo, bb_vinfo))
3187 return NULL;
3189 rhs = adjust_bool_pattern (var, type, NULL_TREE, stmts);
3190 lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
3191 pattern_stmt
3192 = gimple_build_assign (lhs, COND_EXPR,
3193 build2 (NE_EXPR, boolean_type_node,
3194 rhs, build_int_cst (type, 0)),
3195 gimple_assign_rhs2 (last_stmt),
3196 gimple_assign_rhs3 (last_stmt));
3197 *type_out = vectype;
3198 *type_in = vectype;
3199 stmts->safe_push (last_stmt);
3200 if (dump_enabled_p ())
3201 dump_printf_loc (MSG_NOTE, vect_location,
3202 "vect_recog_bool_pattern: detected:\n");
3204 return pattern_stmt;
3206 else if (rhs_code == SSA_NAME
3207 && STMT_VINFO_DATA_REF (stmt_vinfo))
3209 stmt_vec_info pattern_stmt_info;
3210 vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
3211 gcc_assert (vectype != NULL_TREE);
3212 if (!VECTOR_MODE_P (TYPE_MODE (vectype)))
3213 return NULL;
3214 if (!check_bool_pattern (var, loop_vinfo, bb_vinfo))
3215 return NULL;
3217 rhs = adjust_bool_pattern (var, TREE_TYPE (vectype), NULL_TREE, stmts);
3218 lhs = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (vectype), lhs);
3219 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
3221 tree rhs2 = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
3222 gimple cast_stmt = gimple_build_assign (rhs2, NOP_EXPR, rhs);
3223 new_pattern_def_seq (stmt_vinfo, cast_stmt);
3224 rhs = rhs2;
3226 pattern_stmt = gimple_build_assign (lhs, SSA_NAME, rhs);
3227 pattern_stmt_info = new_stmt_vec_info (pattern_stmt, loop_vinfo,
3228 bb_vinfo);
3229 set_vinfo_for_stmt (pattern_stmt, pattern_stmt_info);
3230 STMT_VINFO_DATA_REF (pattern_stmt_info)
3231 = STMT_VINFO_DATA_REF (stmt_vinfo);
3232 STMT_VINFO_DR_BASE_ADDRESS (pattern_stmt_info)
3233 = STMT_VINFO_DR_BASE_ADDRESS (stmt_vinfo);
3234 STMT_VINFO_DR_INIT (pattern_stmt_info) = STMT_VINFO_DR_INIT (stmt_vinfo);
3235 STMT_VINFO_DR_OFFSET (pattern_stmt_info)
3236 = STMT_VINFO_DR_OFFSET (stmt_vinfo);
3237 STMT_VINFO_DR_STEP (pattern_stmt_info) = STMT_VINFO_DR_STEP (stmt_vinfo);
3238 STMT_VINFO_DR_ALIGNED_TO (pattern_stmt_info)
3239 = STMT_VINFO_DR_ALIGNED_TO (stmt_vinfo);
3240 DR_STMT (STMT_VINFO_DATA_REF (stmt_vinfo)) = pattern_stmt;
3241 *type_out = vectype;
3242 *type_in = vectype;
3243 stmts->safe_push (last_stmt);
3244 if (dump_enabled_p ())
3245 dump_printf_loc (MSG_NOTE, vect_location,
3246 "vect_recog_bool_pattern: detected:\n");
3247 return pattern_stmt;
3249 else
3250 return NULL;
3254 /* Mark statements that are involved in a pattern. */
3256 static inline void
3257 vect_mark_pattern_stmts (gimple orig_stmt, gimple pattern_stmt,
3258 tree pattern_vectype)
3260 stmt_vec_info pattern_stmt_info, def_stmt_info;
3261 stmt_vec_info orig_stmt_info = vinfo_for_stmt (orig_stmt);
3262 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (orig_stmt_info);
3263 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (orig_stmt_info);
3264 gimple def_stmt;
3266 pattern_stmt_info = vinfo_for_stmt (pattern_stmt);
3267 if (pattern_stmt_info == NULL)
3269 pattern_stmt_info = new_stmt_vec_info (pattern_stmt, loop_vinfo,
3270 bb_vinfo);
3271 set_vinfo_for_stmt (pattern_stmt, pattern_stmt_info);
3273 gimple_set_bb (pattern_stmt, gimple_bb (orig_stmt));
3275 STMT_VINFO_RELATED_STMT (pattern_stmt_info) = orig_stmt;
3276 STMT_VINFO_DEF_TYPE (pattern_stmt_info)
3277 = STMT_VINFO_DEF_TYPE (orig_stmt_info);
3278 STMT_VINFO_VECTYPE (pattern_stmt_info) = pattern_vectype;
3279 STMT_VINFO_IN_PATTERN_P (orig_stmt_info) = true;
3280 STMT_VINFO_RELATED_STMT (orig_stmt_info) = pattern_stmt;
3281 STMT_VINFO_PATTERN_DEF_SEQ (pattern_stmt_info)
3282 = STMT_VINFO_PATTERN_DEF_SEQ (orig_stmt_info);
3283 if (STMT_VINFO_PATTERN_DEF_SEQ (pattern_stmt_info))
3285 gimple_stmt_iterator si;
3286 for (si = gsi_start (STMT_VINFO_PATTERN_DEF_SEQ (pattern_stmt_info));
3287 !gsi_end_p (si); gsi_next (&si))
3289 def_stmt = gsi_stmt (si);
3290 def_stmt_info = vinfo_for_stmt (def_stmt);
3291 if (def_stmt_info == NULL)
3293 def_stmt_info = new_stmt_vec_info (def_stmt, loop_vinfo,
3294 bb_vinfo);
3295 set_vinfo_for_stmt (def_stmt, def_stmt_info);
3297 gimple_set_bb (def_stmt, gimple_bb (orig_stmt));
3298 STMT_VINFO_RELATED_STMT (def_stmt_info) = orig_stmt;
3299 STMT_VINFO_DEF_TYPE (def_stmt_info) = vect_internal_def;
3300 if (STMT_VINFO_VECTYPE (def_stmt_info) == NULL_TREE)
3301 STMT_VINFO_VECTYPE (def_stmt_info) = pattern_vectype;
3306 /* Function vect_pattern_recog_1
3308 Input:
3309 PATTERN_RECOG_FUNC: A pointer to a function that detects a certain
3310 computation pattern.
3311 STMT: A stmt from which the pattern search should start.
3313 If PATTERN_RECOG_FUNC successfully detected the pattern, it creates an
3314 expression that computes the same functionality and can be used to
3315 replace the sequence of stmts that are involved in the pattern.
3317 Output:
3318 This function checks if the expression returned by PATTERN_RECOG_FUNC is
3319 supported in vector form by the target. We use 'TYPE_IN' to obtain the
3320 relevant vector type. If 'TYPE_IN' is already a vector type, then this
3321 indicates that target support had already been checked by PATTERN_RECOG_FUNC.
3322 If 'TYPE_OUT' is also returned by PATTERN_RECOG_FUNC, we check that it fits
3323 to the available target pattern.
3325 This function also does some bookkeeping, as explained in the documentation
3326 for vect_recog_pattern. */
3328 static void
3329 vect_pattern_recog_1 (vect_recog_func_ptr vect_recog_func,
3330 gimple_stmt_iterator si,
3331 vec<gimple> *stmts_to_replace)
3333 gimple stmt = gsi_stmt (si), pattern_stmt;
3334 stmt_vec_info stmt_info;
3335 loop_vec_info loop_vinfo;
3336 tree pattern_vectype;
3337 tree type_in, type_out;
3338 enum tree_code code;
3339 int i;
3340 gimple next;
3342 stmts_to_replace->truncate (0);
3343 stmts_to_replace->quick_push (stmt);
3344 pattern_stmt = (* vect_recog_func) (stmts_to_replace, &type_in, &type_out);
3345 if (!pattern_stmt)
3346 return;
3348 stmt = stmts_to_replace->last ();
3349 stmt_info = vinfo_for_stmt (stmt);
3350 loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3352 if (VECTOR_MODE_P (TYPE_MODE (type_in)))
3354 /* No need to check target support (already checked by the pattern
3355 recognition function). */
3356 pattern_vectype = type_out ? type_out : type_in;
3358 else
3360 machine_mode vec_mode;
3361 enum insn_code icode;
3362 optab optab;
3364 /* Check target support */
3365 type_in = get_vectype_for_scalar_type (type_in);
3366 if (!type_in)
3367 return;
3368 if (type_out)
3369 type_out = get_vectype_for_scalar_type (type_out);
3370 else
3371 type_out = type_in;
3372 if (!type_out)
3373 return;
3374 pattern_vectype = type_out;
3376 if (is_gimple_assign (pattern_stmt))
3377 code = gimple_assign_rhs_code (pattern_stmt);
3378 else
3380 gcc_assert (is_gimple_call (pattern_stmt));
3381 code = CALL_EXPR;
3384 optab = optab_for_tree_code (code, type_in, optab_default);
3385 vec_mode = TYPE_MODE (type_in);
3386 if (!optab
3387 || (icode = optab_handler (optab, vec_mode)) == CODE_FOR_nothing
3388 || (insn_data[icode].operand[0].mode != TYPE_MODE (type_out)))
3389 return;
3392 /* Found a vectorizable pattern. */
3393 if (dump_enabled_p ())
3395 dump_printf_loc (MSG_NOTE, vect_location,
3396 "pattern recognized: ");
3397 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
3400 /* Mark the stmts that are involved in the pattern. */
3401 vect_mark_pattern_stmts (stmt, pattern_stmt, pattern_vectype);
3403 /* Patterns cannot be vectorized using SLP, because they change the order of
3404 computation. */
3405 if (loop_vinfo)
3406 FOR_EACH_VEC_ELT (LOOP_VINFO_REDUCTIONS (loop_vinfo), i, next)
3407 if (next == stmt)
3408 LOOP_VINFO_REDUCTIONS (loop_vinfo).ordered_remove (i);
3410 /* It is possible that additional pattern stmts are created and inserted in
3411 STMTS_TO_REPLACE. We create a stmt_info for each of them, and mark the
3412 relevant statements. */
3413 for (i = 0; stmts_to_replace->iterate (i, &stmt)
3414 && (unsigned) i < (stmts_to_replace->length () - 1);
3415 i++)
3417 stmt_info = vinfo_for_stmt (stmt);
3418 pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3419 if (dump_enabled_p ())
3421 dump_printf_loc (MSG_NOTE, vect_location,
3422 "additional pattern stmt: ");
3423 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
3426 vect_mark_pattern_stmts (stmt, pattern_stmt, NULL_TREE);
3431 /* Function vect_pattern_recog
3433 Input:
3434 LOOP_VINFO - a struct_loop_info of a loop in which we want to look for
3435 computation idioms.
3437 Output - for each computation idiom that is detected we create a new stmt
3438 that provides the same functionality and that can be vectorized. We
3439 also record some information in the struct_stmt_info of the relevant
3440 stmts, as explained below:
3442 At the entry to this function we have the following stmts, with the
3443 following initial value in the STMT_VINFO fields:
3445 stmt in_pattern_p related_stmt vec_stmt
3446 S1: a_i = .... - - -
3447 S2: a_2 = ..use(a_i).. - - -
3448 S3: a_1 = ..use(a_2).. - - -
3449 S4: a_0 = ..use(a_1).. - - -
3450 S5: ... = ..use(a_0).. - - -
3452 Say the sequence {S1,S2,S3,S4} was detected as a pattern that can be
3453 represented by a single stmt. We then:
3454 - create a new stmt S6 equivalent to the pattern (the stmt is not
3455 inserted into the code)
3456 - fill in the STMT_VINFO fields as follows:
3458 in_pattern_p related_stmt vec_stmt
3459 S1: a_i = .... - - -
3460 S2: a_2 = ..use(a_i).. - - -
3461 S3: a_1 = ..use(a_2).. - - -
3462 S4: a_0 = ..use(a_1).. true S6 -
3463 '---> S6: a_new = .... - S4 -
3464 S5: ... = ..use(a_0).. - - -
3466 (the last stmt in the pattern (S4) and the new pattern stmt (S6) point
3467 to each other through the RELATED_STMT field).
3469 S6 will be marked as relevant in vect_mark_stmts_to_be_vectorized instead
3470 of S4 because it will replace all its uses. Stmts {S1,S2,S3} will
3471 remain irrelevant unless used by stmts other than S4.
3473 If vectorization succeeds, vect_transform_stmt will skip over {S1,S2,S3}
3474 (because they are marked as irrelevant). It will vectorize S6, and record
3475 a pointer to the new vector stmt VS6 from S6 (as usual).
3476 S4 will be skipped, and S5 will be vectorized as usual:
3478 in_pattern_p related_stmt vec_stmt
3479 S1: a_i = .... - - -
3480 S2: a_2 = ..use(a_i).. - - -
3481 S3: a_1 = ..use(a_2).. - - -
3482 > VS6: va_new = .... - - -
3483 S4: a_0 = ..use(a_1).. true S6 VS6
3484 '---> S6: a_new = .... - S4 VS6
3485 > VS5: ... = ..vuse(va_new).. - - -
3486 S5: ... = ..use(a_0).. - - -
3488 DCE could then get rid of {S1,S2,S3,S4,S5} (if their defs are not used
3489 elsewhere), and we'll end up with:
3491 VS6: va_new = ....
3492 VS5: ... = ..vuse(va_new)..
3494 In case of more than one pattern statements, e.g., widen-mult with
3495 intermediate type:
3497 S1 a_t = ;
3498 S2 a_T = (TYPE) a_t;
3499 '--> S3: a_it = (interm_type) a_t;
3500 S4 prod_T = a_T * CONST;
3501 '--> S5: prod_T' = a_it w* CONST;
3503 there may be other users of a_T outside the pattern. In that case S2 will
3504 be marked as relevant (as well as S3), and both S2 and S3 will be analyzed
3505 and vectorized. The vector stmt VS2 will be recorded in S2, and VS3 will
3506 be recorded in S3. */
3508 void
3509 vect_pattern_recog (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
3511 struct loop *loop;
3512 basic_block *bbs;
3513 unsigned int nbbs;
3514 gimple_stmt_iterator si;
3515 unsigned int i, j;
3516 vect_recog_func_ptr vect_recog_func;
3517 auto_vec<gimple, 1> stmts_to_replace;
3518 gimple stmt;
3520 if (dump_enabled_p ())
3521 dump_printf_loc (MSG_NOTE, vect_location,
3522 "=== vect_pattern_recog ===\n");
3524 if (loop_vinfo)
3526 loop = LOOP_VINFO_LOOP (loop_vinfo);
3527 bbs = LOOP_VINFO_BBS (loop_vinfo);
3528 nbbs = loop->num_nodes;
3530 else
3532 bbs = &BB_VINFO_BB (bb_vinfo);
3533 nbbs = 1;
3536 /* Scan through the loop stmts, applying the pattern recognition
3537 functions starting at each stmt visited: */
3538 for (i = 0; i < nbbs; i++)
3540 basic_block bb = bbs[i];
3541 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
3543 if (bb_vinfo && (stmt = gsi_stmt (si))
3544 && vinfo_for_stmt (stmt)
3545 && !STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (stmt)))
3546 continue;
3548 /* Scan over all generic vect_recog_xxx_pattern functions. */
3549 for (j = 0; j < NUM_PATTERNS; j++)
3551 vect_recog_func = vect_vect_recog_func_ptrs[j];
3552 vect_pattern_recog_1 (vect_recog_func, si,
3553 &stmts_to_replace);