1 /* Induction variable optimizations.
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This pass tries to find the optimal set of induction variables for the loop.
21 It optimizes just the basic linear induction variables (although adding
22 support for other types should not be too hard). It includes the
23 optimizations commonly known as strength reduction, induction variable
24 coalescing and induction variable elimination. It does it in the
27 1) The interesting uses of induction variables are found. This includes
29 -- uses of induction variables in non-linear expressions
30 -- addresses of arrays
31 -- comparisons of induction variables
33 2) Candidates for the induction variables are found. This includes
35 -- old induction variables
36 -- the variables defined by expressions derived from the "interesting
39 3) The optimal (w.r. to a cost function) set of variables is chosen. The
40 cost function assigns a cost to sets of induction variables and consists
43 -- The use costs. Each of the interesting uses chooses the best induction
44 variable in the set and adds its cost to the sum. The cost reflects
45 the time spent on modifying the induction variables value to be usable
46 for the given purpose (adding base and offset for arrays, etc.).
47 -- The variable costs. Each of the variables has a cost assigned that
48 reflects the costs associated with incrementing the value of the
49 variable. The original variables are somewhat preferred.
50 -- The set cost. Depending on the size of the set, extra cost may be
51 added to reflect register pressure.
53 All the costs are defined in a machine-specific way, using the target
54 hooks and machine descriptions to determine them.
56 4) The trees are transformed to use the new variables, the dead code is
59 All of this is done loop by loop. Doing it globally is theoretically
60 possible, it might give a better performance and it might enable us
61 to decide costs more precisely, but getting all the interactions right
62 would be complicated. */
66 #include "coretypes.h"
71 #include "fold-const.h"
72 #include "stor-layout.h"
75 #include "hard-reg-set.h"
77 #include "dominance.h"
79 #include "basic-block.h"
80 #include "gimple-pretty-print.h"
81 #include "tree-ssa-alias.h"
82 #include "internal-fn.h"
84 #include "gimple-expr.h"
87 #include "gimple-iterator.h"
88 #include "gimplify-me.h"
89 #include "gimple-ssa.h"
92 #include "tree-phinodes.h"
93 #include "ssa-iterators.h"
94 #include "stringpool.h"
95 #include "tree-ssanames.h"
96 #include "tree-ssa-loop-ivopts.h"
97 #include "tree-ssa-loop-manip.h"
98 #include "tree-ssa-loop-niter.h"
99 #include "tree-ssa-loop.h"
102 #include "insn-config.h"
107 #include "emit-rtl.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
114 #include "tree-pass.h"
115 #include "tree-chrec.h"
116 #include "tree-scalar-evolution.h"
118 #include "langhooks.h"
119 #include "tree-affine.h"
121 #include "tree-inline.h"
122 #include "tree-ssa-propagate.h"
123 #include "tree-ssa-address.h"
124 #include "builtins.h"
125 #include "tree-vectorizer.h"
127 /* FIXME: Expressions are expanded to RTL in this pass to determine the
128 cost of different addressing modes. This should be moved to a TBD
129 interface between the GIMPLE and RTL worlds. */
132 /* The infinite cost. */
133 #define INFTY 10000000
135 #define AVG_LOOP_NITER(LOOP) 5
137 /* Returns the expected number of loop iterations for LOOP.
138 The average trip count is computed from profile data if it
141 static inline HOST_WIDE_INT
142 avg_loop_niter (struct loop
*loop
)
144 HOST_WIDE_INT niter
= estimated_stmt_executions_int (loop
);
146 return AVG_LOOP_NITER (loop
);
151 /* Representation of the induction variable. */
154 tree base
; /* Initial value of the iv. */
155 tree base_object
; /* A memory object to that the induction variable points. */
156 tree step
; /* Step of the iv (constant only). */
157 tree ssa_name
; /* The ssa name with the value. */
158 unsigned use_id
; /* The identifier in the use if it is the case. */
159 bool biv_p
; /* Is it a biv? */
160 bool have_use_for
; /* Do we already have a use for it? */
161 bool no_overflow
; /* True if the iv doesn't overflow. */
164 /* Per-ssa version information (induction variable descriptions, etc.). */
167 tree name
; /* The ssa name. */
168 struct iv
*iv
; /* Induction variable description. */
169 bool has_nonlin_use
; /* For a loop-level invariant, whether it is used in
170 an expression that is not an induction variable. */
171 bool preserve_biv
; /* For the original biv, whether to preserve it. */
172 unsigned inv_id
; /* Id of an invariant. */
178 USE_NONLINEAR_EXPR
, /* Use in a nonlinear expression. */
179 USE_ADDRESS
, /* Use in an address. */
180 USE_COMPARE
/* Use is a compare. */
183 /* Cost of a computation. */
186 int cost
; /* The runtime cost. */
187 unsigned complexity
; /* The estimate of the complexity of the code for
188 the computation (in no concrete units --
189 complexity field should be larger for more
190 complex expressions and addressing modes). */
193 static const comp_cost no_cost
= {0, 0};
194 static const comp_cost infinite_cost
= {INFTY
, INFTY
};
196 /* The candidate - cost pair. */
199 struct iv_cand
*cand
; /* The candidate. */
200 comp_cost cost
; /* The cost. */
201 bitmap depends_on
; /* The list of invariants that have to be
203 tree value
; /* For final value elimination, the expression for
204 the final value of the iv. For iv elimination,
205 the new bound to compare with. */
206 enum tree_code comp
; /* For iv elimination, the comparison. */
207 int inv_expr_id
; /* Loop invariant expression id. */
213 unsigned id
; /* The id of the use. */
214 unsigned sub_id
; /* The id of the sub use. */
215 enum use_type type
; /* Type of the use. */
216 struct iv
*iv
; /* The induction variable it is based on. */
217 gimple stmt
; /* Statement in that it occurs. */
218 tree
*op_p
; /* The place where it occurs. */
219 bitmap related_cands
; /* The set of "related" iv candidates, plus the common
222 unsigned n_map_members
; /* Number of candidates in the cost_map list. */
223 struct cost_pair
*cost_map
;
224 /* The costs wrto the iv candidates. */
226 struct iv_cand
*selected
;
227 /* The selected candidate. */
229 struct iv_use
*next
; /* The next sub use. */
230 tree addr_base
; /* Base address with const offset stripped. */
231 unsigned HOST_WIDE_INT addr_offset
;
232 /* Const offset stripped from base address. */
235 /* The position where the iv is computed. */
238 IP_NORMAL
, /* At the end, just before the exit condition. */
239 IP_END
, /* At the end of the latch block. */
240 IP_BEFORE_USE
, /* Immediately before a specific use. */
241 IP_AFTER_USE
, /* Immediately after a specific use. */
242 IP_ORIGINAL
/* The original biv. */
245 /* The induction variable candidate. */
248 unsigned id
; /* The number of the candidate. */
249 bool important
; /* Whether this is an "important" candidate, i.e. such
250 that it should be considered by all uses. */
251 ENUM_BITFIELD(iv_position
) pos
: 8; /* Where it is computed. */
252 gimple incremented_at
;/* For original biv, the statement where it is
254 tree var_before
; /* The variable used for it before increment. */
255 tree var_after
; /* The variable used for it after increment. */
256 struct iv
*iv
; /* The value of the candidate. NULL for
257 "pseudocandidate" used to indicate the possibility
258 to replace the final value of an iv by direct
259 computation of the value. */
260 unsigned cost
; /* Cost of the candidate. */
261 unsigned cost_step
; /* Cost of the candidate's increment operation. */
262 struct iv_use
*ainc_use
; /* For IP_{BEFORE,AFTER}_USE candidates, the place
263 where it is incremented. */
264 bitmap depends_on
; /* The list of invariants that are used in step of the
268 /* Loop invariant expression hashtable entry. */
269 struct iv_inv_expr_ent
276 /* The data used by the induction variable optimizations. */
278 typedef struct iv_use
*iv_use_p
;
280 typedef struct iv_cand
*iv_cand_p
;
282 /* Hashtable helpers. */
284 struct iv_inv_expr_hasher
: free_ptr_hash
<iv_inv_expr_ent
>
286 static inline hashval_t
hash (const iv_inv_expr_ent
*);
287 static inline bool equal (const iv_inv_expr_ent
*, const iv_inv_expr_ent
*);
290 /* Hash function for loop invariant expressions. */
293 iv_inv_expr_hasher::hash (const iv_inv_expr_ent
*expr
)
298 /* Hash table equality function for expressions. */
301 iv_inv_expr_hasher::equal (const iv_inv_expr_ent
*expr1
,
302 const iv_inv_expr_ent
*expr2
)
304 return expr1
->hash
== expr2
->hash
305 && operand_equal_p (expr1
->expr
, expr2
->expr
, 0);
310 /* The currently optimized loop. */
311 struct loop
*current_loop
;
312 source_location loop_loc
;
314 /* Numbers of iterations for all exits of the current loop. */
315 hash_map
<edge
, tree_niter_desc
*> *niters
;
317 /* Number of registers used in it. */
320 /* The size of version_info array allocated. */
321 unsigned version_info_size
;
323 /* The array of information for the ssa names. */
324 struct version_info
*version_info
;
326 /* The hashtable of loop invariant expressions created
328 hash_table
<iv_inv_expr_hasher
> *inv_expr_tab
;
330 /* Loop invariant expression id. */
333 /* The bitmap of indices in version_info whose value was changed. */
336 /* The uses of induction variables. */
337 vec
<iv_use_p
> iv_uses
;
339 /* The candidates. */
340 vec
<iv_cand_p
> iv_candidates
;
342 /* A bitmap of important candidates. */
343 bitmap important_candidates
;
345 /* Cache used by tree_to_aff_combination_expand. */
346 hash_map
<tree
, name_expansion
*> *name_expansion_cache
;
348 /* The maximum invariant id. */
351 /* Obstack for iv structure. */
352 struct obstack iv_obstack
;
354 /* Whether to consider just related and important candidates when replacing a
356 bool consider_all_candidates
;
358 /* Are we optimizing for speed? */
361 /* Whether the loop body includes any function calls. */
362 bool body_includes_call
;
364 /* Whether the loop body can only be exited via single exit. */
365 bool loop_single_exit_p
;
368 /* An assignment of iv candidates to uses. */
372 /* The number of uses covered by the assignment. */
375 /* Number of uses that cannot be expressed by the candidates in the set. */
378 /* Candidate assigned to a use, together with the related costs. */
379 struct cost_pair
**cand_for_use
;
381 /* Number of times each candidate is used. */
382 unsigned *n_cand_uses
;
384 /* The candidates used. */
387 /* The number of candidates in the set. */
390 /* Total number of registers needed. */
393 /* Total cost of expressing uses. */
394 comp_cost cand_use_cost
;
396 /* Total cost of candidates. */
399 /* Number of times each invariant is used. */
400 unsigned *n_invariant_uses
;
402 /* The array holding the number of uses of each loop
403 invariant expressions created by ivopt. */
404 unsigned *used_inv_expr
;
406 /* The number of created loop invariants. */
407 unsigned num_used_inv_expr
;
409 /* Total cost of the assignment. */
413 /* Difference of two iv candidate assignments. */
420 /* An old assignment (for rollback purposes). */
421 struct cost_pair
*old_cp
;
423 /* A new assignment. */
424 struct cost_pair
*new_cp
;
426 /* Next change in the list. */
427 struct iv_ca_delta
*next_change
;
430 /* Bound on number of candidates below that all candidates are considered. */
432 #define CONSIDER_ALL_CANDIDATES_BOUND \
433 ((unsigned) PARAM_VALUE (PARAM_IV_CONSIDER_ALL_CANDIDATES_BOUND))
435 /* If there are more iv occurrences, we just give up (it is quite unlikely that
436 optimizing such a loop would help, and it would take ages). */
438 #define MAX_CONSIDERED_USES \
439 ((unsigned) PARAM_VALUE (PARAM_IV_MAX_CONSIDERED_USES))
441 /* If there are at most this number of ivs in the set, try removing unnecessary
442 ivs from the set always. */
444 #define ALWAYS_PRUNE_CAND_SET_BOUND \
445 ((unsigned) PARAM_VALUE (PARAM_IV_ALWAYS_PRUNE_CAND_SET_BOUND))
447 /* The list of trees for that the decl_rtl field must be reset is stored
450 static vec
<tree
> decl_rtl_to_reset
;
452 static comp_cost
force_expr_to_var_cost (tree
, bool);
454 /* Number of uses recorded in DATA. */
456 static inline unsigned
457 n_iv_uses (struct ivopts_data
*data
)
459 return data
->iv_uses
.length ();
462 /* Ith use recorded in DATA. */
464 static inline struct iv_use
*
465 iv_use (struct ivopts_data
*data
, unsigned i
)
467 return data
->iv_uses
[i
];
470 /* Number of candidates recorded in DATA. */
472 static inline unsigned
473 n_iv_cands (struct ivopts_data
*data
)
475 return data
->iv_candidates
.length ();
478 /* Ith candidate recorded in DATA. */
480 static inline struct iv_cand
*
481 iv_cand (struct ivopts_data
*data
, unsigned i
)
483 return data
->iv_candidates
[i
];
486 /* The single loop exit if it dominates the latch, NULL otherwise. */
489 single_dom_exit (struct loop
*loop
)
491 edge exit
= single_exit (loop
);
496 if (!just_once_each_iteration_p (loop
, exit
->src
))
502 /* Dumps information about the induction variable IV to FILE. */
505 dump_iv (FILE *file
, struct iv
*iv
, bool dump_name
)
507 if (iv
->ssa_name
&& dump_name
)
509 fprintf (file
, "ssa name ");
510 print_generic_expr (file
, iv
->ssa_name
, TDF_SLIM
);
511 fprintf (file
, "\n");
514 fprintf (file
, " type ");
515 print_generic_expr (file
, TREE_TYPE (iv
->base
), TDF_SLIM
);
516 fprintf (file
, "\n");
520 fprintf (file
, " base ");
521 print_generic_expr (file
, iv
->base
, TDF_SLIM
);
522 fprintf (file
, "\n");
524 fprintf (file
, " step ");
525 print_generic_expr (file
, iv
->step
, TDF_SLIM
);
526 fprintf (file
, "\n");
530 fprintf (file
, " invariant ");
531 print_generic_expr (file
, iv
->base
, TDF_SLIM
);
532 fprintf (file
, "\n");
537 fprintf (file
, " base object ");
538 print_generic_expr (file
, iv
->base_object
, TDF_SLIM
);
539 fprintf (file
, "\n");
543 fprintf (file
, " is a biv\n");
546 /* Dumps information about the USE to FILE. */
549 dump_use (FILE *file
, struct iv_use
*use
)
551 fprintf (file
, "use %d", use
->id
);
553 fprintf (file
, ".%d", use
->sub_id
);
555 fprintf (file
, "\n");
559 case USE_NONLINEAR_EXPR
:
560 fprintf (file
, " generic\n");
564 fprintf (file
, " address\n");
568 fprintf (file
, " compare\n");
575 fprintf (file
, " in statement ");
576 print_gimple_stmt (file
, use
->stmt
, 0, 0);
577 fprintf (file
, "\n");
579 fprintf (file
, " at position ");
581 print_generic_expr (file
, *use
->op_p
, TDF_SLIM
);
582 fprintf (file
, "\n");
584 dump_iv (file
, use
->iv
, false);
586 if (use
->related_cands
)
588 fprintf (file
, " related candidates ");
589 dump_bitmap (file
, use
->related_cands
);
593 /* Dumps information about the uses to FILE. */
596 dump_uses (FILE *file
, struct ivopts_data
*data
)
601 for (i
= 0; i
< n_iv_uses (data
); i
++)
603 use
= iv_use (data
, i
);
606 dump_use (file
, use
);
610 fprintf (file
, "\n");
614 /* Dumps information about induction variable candidate CAND to FILE. */
617 dump_cand (FILE *file
, struct iv_cand
*cand
)
619 struct iv
*iv
= cand
->iv
;
621 fprintf (file
, "candidate %d%s\n",
622 cand
->id
, cand
->important
? " (important)" : "");
624 if (cand
->depends_on
)
626 fprintf (file
, " depends on ");
627 dump_bitmap (file
, cand
->depends_on
);
632 fprintf (file
, " final value replacement\n");
636 if (cand
->var_before
)
638 fprintf (file
, " var_before ");
639 print_generic_expr (file
, cand
->var_before
, TDF_SLIM
);
640 fprintf (file
, "\n");
644 fprintf (file
, " var_after ");
645 print_generic_expr (file
, cand
->var_after
, TDF_SLIM
);
646 fprintf (file
, "\n");
652 fprintf (file
, " incremented before exit test\n");
656 fprintf (file
, " incremented before use %d\n", cand
->ainc_use
->id
);
660 fprintf (file
, " incremented after use %d\n", cand
->ainc_use
->id
);
664 fprintf (file
, " incremented at end\n");
668 fprintf (file
, " original biv\n");
672 dump_iv (file
, iv
, false);
675 /* Returns the info for ssa version VER. */
677 static inline struct version_info
*
678 ver_info (struct ivopts_data
*data
, unsigned ver
)
680 return data
->version_info
+ ver
;
683 /* Returns the info for ssa name NAME. */
685 static inline struct version_info
*
686 name_info (struct ivopts_data
*data
, tree name
)
688 return ver_info (data
, SSA_NAME_VERSION (name
));
691 /* Returns true if STMT is after the place where the IP_NORMAL ivs will be
695 stmt_after_ip_normal_pos (struct loop
*loop
, gimple stmt
)
697 basic_block bb
= ip_normal_pos (loop
), sbb
= gimple_bb (stmt
);
701 if (sbb
== loop
->latch
)
707 return stmt
== last_stmt (bb
);
710 /* Returns true if STMT if after the place where the original induction
711 variable CAND is incremented. If TRUE_IF_EQUAL is set, we return true
712 if the positions are identical. */
715 stmt_after_inc_pos (struct iv_cand
*cand
, gimple stmt
, bool true_if_equal
)
717 basic_block cand_bb
= gimple_bb (cand
->incremented_at
);
718 basic_block stmt_bb
= gimple_bb (stmt
);
720 if (!dominated_by_p (CDI_DOMINATORS
, stmt_bb
, cand_bb
))
723 if (stmt_bb
!= cand_bb
)
727 && gimple_uid (stmt
) == gimple_uid (cand
->incremented_at
))
729 return gimple_uid (stmt
) > gimple_uid (cand
->incremented_at
);
732 /* Returns true if STMT if after the place where the induction variable
733 CAND is incremented in LOOP. */
736 stmt_after_increment (struct loop
*loop
, struct iv_cand
*cand
, gimple stmt
)
744 return stmt_after_ip_normal_pos (loop
, stmt
);
748 return stmt_after_inc_pos (cand
, stmt
, false);
751 return stmt_after_inc_pos (cand
, stmt
, true);
758 /* Returns true if EXP is a ssa name that occurs in an abnormal phi node. */
761 abnormal_ssa_name_p (tree exp
)
766 if (TREE_CODE (exp
) != SSA_NAME
)
769 return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (exp
) != 0;
772 /* Returns false if BASE or INDEX contains a ssa name that occurs in an
773 abnormal phi node. Callback for for_each_index. */
776 idx_contains_abnormal_ssa_name_p (tree base
, tree
*index
,
777 void *data ATTRIBUTE_UNUSED
)
779 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
781 if (abnormal_ssa_name_p (TREE_OPERAND (base
, 2)))
783 if (abnormal_ssa_name_p (TREE_OPERAND (base
, 3)))
787 return !abnormal_ssa_name_p (*index
);
790 /* Returns true if EXPR contains a ssa name that occurs in an
791 abnormal phi node. */
794 contains_abnormal_ssa_name_p (tree expr
)
797 enum tree_code_class codeclass
;
802 code
= TREE_CODE (expr
);
803 codeclass
= TREE_CODE_CLASS (code
);
805 if (code
== SSA_NAME
)
806 return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr
) != 0;
808 if (code
== INTEGER_CST
809 || is_gimple_min_invariant (expr
))
812 if (code
== ADDR_EXPR
)
813 return !for_each_index (&TREE_OPERAND (expr
, 0),
814 idx_contains_abnormal_ssa_name_p
,
817 if (code
== COND_EXPR
)
818 return contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 0))
819 || contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 1))
820 || contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 2));
826 if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 1)))
831 if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr
, 0)))
843 /* Returns the structure describing number of iterations determined from
844 EXIT of DATA->current_loop, or NULL if something goes wrong. */
846 static struct tree_niter_desc
*
847 niter_for_exit (struct ivopts_data
*data
, edge exit
)
849 struct tree_niter_desc
*desc
;
850 tree_niter_desc
**slot
;
854 data
->niters
= new hash_map
<edge
, tree_niter_desc
*>;
858 slot
= data
->niters
->get (exit
);
862 /* Try to determine number of iterations. We cannot safely work with ssa
863 names that appear in phi nodes on abnormal edges, so that we do not
864 create overlapping life ranges for them (PR 27283). */
865 desc
= XNEW (struct tree_niter_desc
);
866 if (!number_of_iterations_exit (data
->current_loop
,
868 || contains_abnormal_ssa_name_p (desc
->niter
))
873 data
->niters
->put (exit
, desc
);
881 /* Returns the structure describing number of iterations determined from
882 single dominating exit of DATA->current_loop, or NULL if something
885 static struct tree_niter_desc
*
886 niter_for_single_dom_exit (struct ivopts_data
*data
)
888 edge exit
= single_dom_exit (data
->current_loop
);
893 return niter_for_exit (data
, exit
);
896 /* Initializes data structures used by the iv optimization pass, stored
900 tree_ssa_iv_optimize_init (struct ivopts_data
*data
)
902 data
->version_info_size
= 2 * num_ssa_names
;
903 data
->version_info
= XCNEWVEC (struct version_info
, data
->version_info_size
);
904 data
->relevant
= BITMAP_ALLOC (NULL
);
905 data
->important_candidates
= BITMAP_ALLOC (NULL
);
906 data
->max_inv_id
= 0;
908 data
->iv_uses
.create (20);
909 data
->iv_candidates
.create (20);
910 data
->inv_expr_tab
= new hash_table
<iv_inv_expr_hasher
> (10);
911 data
->inv_expr_id
= 0;
912 data
->name_expansion_cache
= NULL
;
913 decl_rtl_to_reset
.create (20);
914 gcc_obstack_init (&data
->iv_obstack
);
917 /* Returns a memory object to that EXPR points. In case we are able to
918 determine that it does not point to any such object, NULL is returned. */
921 determine_base_object (tree expr
)
923 enum tree_code code
= TREE_CODE (expr
);
926 /* If this is a pointer casted to any type, we need to determine
927 the base object for the pointer; so handle conversions before
928 throwing away non-pointer expressions. */
929 if (CONVERT_EXPR_P (expr
))
930 return determine_base_object (TREE_OPERAND (expr
, 0));
932 if (!POINTER_TYPE_P (TREE_TYPE (expr
)))
941 obj
= TREE_OPERAND (expr
, 0);
942 base
= get_base_address (obj
);
947 if (TREE_CODE (base
) == MEM_REF
)
948 return determine_base_object (TREE_OPERAND (base
, 0));
950 return fold_convert (ptr_type_node
,
951 build_fold_addr_expr (base
));
953 case POINTER_PLUS_EXPR
:
954 return determine_base_object (TREE_OPERAND (expr
, 0));
958 /* Pointer addition is done solely using POINTER_PLUS_EXPR. */
962 return fold_convert (ptr_type_node
, expr
);
966 /* Return true if address expression with non-DECL_P operand appears
970 contain_complex_addr_expr (tree expr
)
975 switch (TREE_CODE (expr
))
977 case POINTER_PLUS_EXPR
:
980 res
|= contain_complex_addr_expr (TREE_OPERAND (expr
, 0));
981 res
|= contain_complex_addr_expr (TREE_OPERAND (expr
, 1));
985 return (!DECL_P (TREE_OPERAND (expr
, 0)));
994 /* Allocates an induction variable with given initial value BASE and step STEP
995 for loop LOOP. NO_OVERFLOW implies the iv doesn't overflow. */
998 alloc_iv (struct ivopts_data
*data
, tree base
, tree step
,
999 bool no_overflow
= false)
1002 struct iv
*iv
= (struct iv
*) obstack_alloc (&data
->iv_obstack
,
1003 sizeof (struct iv
));
1004 gcc_assert (step
!= NULL_TREE
);
1006 /* Lower address expression in base except ones with DECL_P as operand.
1008 1) More accurate cost can be computed for address expressions;
1009 2) Duplicate candidates won't be created for bases in different
1010 forms, like &a[0] and &a. */
1012 if ((TREE_CODE (expr
) == ADDR_EXPR
&& !DECL_P (TREE_OPERAND (expr
, 0)))
1013 || contain_complex_addr_expr (expr
))
1016 tree_to_aff_combination (expr
, TREE_TYPE (base
), &comb
);
1017 base
= fold_convert (TREE_TYPE (base
), aff_combination_to_tree (&comb
));
1021 iv
->base_object
= determine_base_object (base
);
1024 iv
->have_use_for
= false;
1026 iv
->ssa_name
= NULL_TREE
;
1027 iv
->no_overflow
= no_overflow
;
1032 /* Sets STEP and BASE for induction variable IV. NO_OVERFLOW implies the IV
1033 doesn't overflow. */
1036 set_iv (struct ivopts_data
*data
, tree iv
, tree base
, tree step
,
1039 struct version_info
*info
= name_info (data
, iv
);
1041 gcc_assert (!info
->iv
);
1043 bitmap_set_bit (data
->relevant
, SSA_NAME_VERSION (iv
));
1044 info
->iv
= alloc_iv (data
, base
, step
, no_overflow
);
1045 info
->iv
->ssa_name
= iv
;
1048 /* Finds induction variable declaration for VAR. */
1051 get_iv (struct ivopts_data
*data
, tree var
)
1054 tree type
= TREE_TYPE (var
);
1056 if (!POINTER_TYPE_P (type
)
1057 && !INTEGRAL_TYPE_P (type
))
1060 if (!name_info (data
, var
)->iv
)
1062 bb
= gimple_bb (SSA_NAME_DEF_STMT (var
));
1065 || !flow_bb_inside_loop_p (data
->current_loop
, bb
))
1066 set_iv (data
, var
, var
, build_int_cst (type
, 0), true);
1069 return name_info (data
, var
)->iv
;
1072 /* Return the first non-invariant ssa var found in EXPR. */
1075 extract_single_var_from_expr (tree expr
)
1079 enum tree_code code
;
1081 if (!expr
|| is_gimple_min_invariant (expr
))
1084 code
= TREE_CODE (expr
);
1085 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code
)))
1087 n
= TREE_OPERAND_LENGTH (expr
);
1088 for (i
= 0; i
< n
; i
++)
1090 tmp
= extract_single_var_from_expr (TREE_OPERAND (expr
, i
));
1096 return (TREE_CODE (expr
) == SSA_NAME
) ? expr
: NULL
;
1099 /* Finds basic ivs. */
1102 find_bivs (struct ivopts_data
*data
)
1106 tree step
, type
, base
, stop
;
1108 struct loop
*loop
= data
->current_loop
;
1111 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1115 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi
)))
1118 if (virtual_operand_p (PHI_RESULT (phi
)))
1121 if (!simple_iv (loop
, loop
, PHI_RESULT (phi
), &iv
, true))
1124 if (integer_zerop (iv
.step
))
1128 base
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_preheader_edge (loop
));
1129 /* Stop expanding iv base at the first ssa var referred by iv step.
1130 Ideally we should stop at any ssa var, because that's expensive
1131 and unusual to happen, we just do it on the first one.
1133 See PR64705 for the rationale. */
1134 stop
= extract_single_var_from_expr (step
);
1135 base
= expand_simple_operations (base
, stop
);
1136 if (contains_abnormal_ssa_name_p (base
)
1137 || contains_abnormal_ssa_name_p (step
))
1140 type
= TREE_TYPE (PHI_RESULT (phi
));
1141 base
= fold_convert (type
, base
);
1144 if (POINTER_TYPE_P (type
))
1145 step
= convert_to_ptrofftype (step
);
1147 step
= fold_convert (type
, step
);
1150 set_iv (data
, PHI_RESULT (phi
), base
, step
, iv
.no_overflow
);
1157 /* Marks basic ivs. */
1160 mark_bivs (struct ivopts_data
*data
)
1165 struct iv
*iv
, *incr_iv
;
1166 struct loop
*loop
= data
->current_loop
;
1167 basic_block incr_bb
;
1170 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
1174 iv
= get_iv (data
, PHI_RESULT (phi
));
1178 var
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (loop
));
1179 def
= SSA_NAME_DEF_STMT (var
);
1180 /* Don't mark iv peeled from other one as biv. */
1182 && gimple_code (def
) == GIMPLE_PHI
1183 && gimple_bb (def
) == loop
->header
)
1186 incr_iv
= get_iv (data
, var
);
1190 /* If the increment is in the subloop, ignore it. */
1191 incr_bb
= gimple_bb (SSA_NAME_DEF_STMT (var
));
1192 if (incr_bb
->loop_father
!= data
->current_loop
1193 || (incr_bb
->flags
& BB_IRREDUCIBLE_LOOP
))
1197 incr_iv
->biv_p
= true;
1201 /* Checks whether STMT defines a linear induction variable and stores its
1202 parameters to IV. */
1205 find_givs_in_stmt_scev (struct ivopts_data
*data
, gimple stmt
, affine_iv
*iv
)
1208 struct loop
*loop
= data
->current_loop
;
1210 iv
->base
= NULL_TREE
;
1211 iv
->step
= NULL_TREE
;
1213 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
1216 lhs
= gimple_assign_lhs (stmt
);
1217 if (TREE_CODE (lhs
) != SSA_NAME
)
1220 if (!simple_iv (loop
, loop_containing_stmt (stmt
), lhs
, iv
, true))
1223 /* Stop expanding iv base at the first ssa var referred by iv step.
1224 Ideally we should stop at any ssa var, because that's expensive
1225 and unusual to happen, we just do it on the first one.
1227 See PR64705 for the rationale. */
1228 stop
= extract_single_var_from_expr (iv
->step
);
1229 iv
->base
= expand_simple_operations (iv
->base
, stop
);
1230 if (contains_abnormal_ssa_name_p (iv
->base
)
1231 || contains_abnormal_ssa_name_p (iv
->step
))
1234 /* If STMT could throw, then do not consider STMT as defining a GIV.
1235 While this will suppress optimizations, we can not safely delete this
1236 GIV and associated statements, even if it appears it is not used. */
1237 if (stmt_could_throw_p (stmt
))
1243 /* Finds general ivs in statement STMT. */
1246 find_givs_in_stmt (struct ivopts_data
*data
, gimple stmt
)
1250 if (!find_givs_in_stmt_scev (data
, stmt
, &iv
))
1253 set_iv (data
, gimple_assign_lhs (stmt
), iv
.base
, iv
.step
, iv
.no_overflow
);
1256 /* Finds general ivs in basic block BB. */
1259 find_givs_in_bb (struct ivopts_data
*data
, basic_block bb
)
1261 gimple_stmt_iterator bsi
;
1263 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
1264 find_givs_in_stmt (data
, gsi_stmt (bsi
));
1267 /* Finds general ivs. */
1270 find_givs (struct ivopts_data
*data
)
1272 struct loop
*loop
= data
->current_loop
;
1273 basic_block
*body
= get_loop_body_in_dom_order (loop
);
1276 for (i
= 0; i
< loop
->num_nodes
; i
++)
1277 find_givs_in_bb (data
, body
[i
]);
1281 /* For each ssa name defined in LOOP determines whether it is an induction
1282 variable and if so, its initial value and step. */
1285 find_induction_variables (struct ivopts_data
*data
)
1290 if (!find_bivs (data
))
1296 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1298 struct tree_niter_desc
*niter
= niter_for_single_dom_exit (data
);
1302 fprintf (dump_file
, " number of iterations ");
1303 print_generic_expr (dump_file
, niter
->niter
, TDF_SLIM
);
1304 if (!integer_zerop (niter
->may_be_zero
))
1306 fprintf (dump_file
, "; zero if ");
1307 print_generic_expr (dump_file
, niter
->may_be_zero
, TDF_SLIM
);
1309 fprintf (dump_file
, "\n\n");
1312 fprintf (dump_file
, "Induction variables:\n\n");
1314 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
1316 if (ver_info (data
, i
)->iv
)
1317 dump_iv (dump_file
, ver_info (data
, i
)->iv
, true);
1324 /* Records a use of type USE_TYPE at *USE_P in STMT whose value is IV.
1325 For address type use, ADDR_BASE is the stripped IV base, ADDR_OFFSET
1326 is the const offset stripped from IV base. For uses of other types,
1327 ADDR_BASE and ADDR_OFFSET are zero by default. */
1329 static struct iv_use
*
1330 record_use (struct ivopts_data
*data
, tree
*use_p
, struct iv
*iv
,
1331 gimple stmt
, enum use_type use_type
, tree addr_base
= NULL
,
1332 unsigned HOST_WIDE_INT addr_offset
= 0)
1334 struct iv_use
*use
= XCNEW (struct iv_use
);
1336 use
->id
= n_iv_uses (data
);
1338 use
->type
= use_type
;
1342 use
->related_cands
= BITMAP_ALLOC (NULL
);
1344 use
->addr_base
= addr_base
;
1345 use
->addr_offset
= addr_offset
;
1347 data
->iv_uses
.safe_push (use
);
1352 /* Records a sub use of type USE_TYPE at *USE_P in STMT whose value is IV.
1353 The sub use is recorded under the one whose use id is ID_GROUP. */
1355 static struct iv_use
*
1356 record_sub_use (struct ivopts_data
*data
, tree
*use_p
,
1357 struct iv
*iv
, gimple stmt
, enum use_type use_type
,
1358 tree addr_base
, unsigned HOST_WIDE_INT addr_offset
,
1359 unsigned int id_group
)
1361 struct iv_use
*use
= XCNEW (struct iv_use
);
1362 struct iv_use
*group
= iv_use (data
, id_group
);
1364 use
->id
= group
->id
;
1366 use
->type
= use_type
;
1370 use
->related_cands
= NULL
;
1371 use
->addr_base
= addr_base
;
1372 use
->addr_offset
= addr_offset
;
1374 /* Sub use list is maintained in offset ascending order. */
1375 if (addr_offset
<= group
->addr_offset
)
1377 use
->related_cands
= group
->related_cands
;
1378 group
->related_cands
= NULL
;
1380 data
->iv_uses
[id_group
] = use
;
1388 group
= group
->next
;
1390 while (group
&& addr_offset
> group
->addr_offset
);
1391 use
->next
= pre
->next
;
1398 /* Checks whether OP is a loop-level invariant and if so, records it.
1399 NONLINEAR_USE is true if the invariant is used in a way we do not
1400 handle specially. */
1403 record_invariant (struct ivopts_data
*data
, tree op
, bool nonlinear_use
)
1406 struct version_info
*info
;
1408 if (TREE_CODE (op
) != SSA_NAME
1409 || virtual_operand_p (op
))
1412 bb
= gimple_bb (SSA_NAME_DEF_STMT (op
));
1414 && flow_bb_inside_loop_p (data
->current_loop
, bb
))
1417 info
= name_info (data
, op
);
1419 info
->has_nonlin_use
|= nonlinear_use
;
1421 info
->inv_id
= ++data
->max_inv_id
;
1422 bitmap_set_bit (data
->relevant
, SSA_NAME_VERSION (op
));
1425 /* Checks whether the use OP is interesting and if so, records it. */
1427 static struct iv_use
*
1428 find_interesting_uses_op (struct ivopts_data
*data
, tree op
)
1434 if (TREE_CODE (op
) != SSA_NAME
)
1437 iv
= get_iv (data
, op
);
1441 if (iv
->have_use_for
)
1443 use
= iv_use (data
, iv
->use_id
);
1445 gcc_assert (use
->type
== USE_NONLINEAR_EXPR
);
1449 if (integer_zerop (iv
->step
))
1451 record_invariant (data
, op
, true);
1454 iv
->have_use_for
= true;
1456 stmt
= SSA_NAME_DEF_STMT (op
);
1457 gcc_assert (gimple_code (stmt
) == GIMPLE_PHI
1458 || is_gimple_assign (stmt
));
1460 use
= record_use (data
, NULL
, iv
, stmt
, USE_NONLINEAR_EXPR
);
1461 iv
->use_id
= use
->id
;
1466 /* Given a condition in statement STMT, checks whether it is a compare
1467 of an induction variable and an invariant. If this is the case,
1468 CONTROL_VAR is set to location of the iv, BOUND to the location of
1469 the invariant, IV_VAR and IV_BOUND are set to the corresponding
1470 induction variable descriptions, and true is returned. If this is not
1471 the case, CONTROL_VAR and BOUND are set to the arguments of the
1472 condition and false is returned. */
1475 extract_cond_operands (struct ivopts_data
*data
, gimple stmt
,
1476 tree
**control_var
, tree
**bound
,
1477 struct iv
**iv_var
, struct iv
**iv_bound
)
1479 /* The objects returned when COND has constant operands. */
1480 static struct iv const_iv
;
1482 tree
*op0
= &zero
, *op1
= &zero
;
1483 struct iv
*iv0
= &const_iv
, *iv1
= &const_iv
;
1486 if (gimple_code (stmt
) == GIMPLE_COND
)
1488 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
1489 op0
= gimple_cond_lhs_ptr (cond_stmt
);
1490 op1
= gimple_cond_rhs_ptr (cond_stmt
);
1494 op0
= gimple_assign_rhs1_ptr (stmt
);
1495 op1
= gimple_assign_rhs2_ptr (stmt
);
1498 zero
= integer_zero_node
;
1499 const_iv
.step
= integer_zero_node
;
1501 if (TREE_CODE (*op0
) == SSA_NAME
)
1502 iv0
= get_iv (data
, *op0
);
1503 if (TREE_CODE (*op1
) == SSA_NAME
)
1504 iv1
= get_iv (data
, *op1
);
1506 /* Exactly one of the compared values must be an iv, and the other one must
1511 if (integer_zerop (iv0
->step
))
1513 /* Control variable may be on the other side. */
1514 std::swap (op0
, op1
);
1515 std::swap (iv0
, iv1
);
1517 ret
= !integer_zerop (iv0
->step
) && integer_zerop (iv1
->step
);
1532 /* Checks whether the condition in STMT is interesting and if so,
1536 find_interesting_uses_cond (struct ivopts_data
*data
, gimple stmt
)
1538 tree
*var_p
, *bound_p
;
1541 if (!extract_cond_operands (data
, stmt
, &var_p
, &bound_p
, &var_iv
, NULL
))
1543 find_interesting_uses_op (data
, *var_p
);
1544 find_interesting_uses_op (data
, *bound_p
);
1548 record_use (data
, NULL
, var_iv
, stmt
, USE_COMPARE
);
1551 /* Returns the outermost loop EXPR is obviously invariant in
1552 relative to the loop LOOP, i.e. if all its operands are defined
1553 outside of the returned loop. Returns NULL if EXPR is not
1554 even obviously invariant in LOOP. */
1557 outermost_invariant_loop_for_expr (struct loop
*loop
, tree expr
)
1562 if (is_gimple_min_invariant (expr
))
1563 return current_loops
->tree_root
;
1565 if (TREE_CODE (expr
) == SSA_NAME
)
1567 def_bb
= gimple_bb (SSA_NAME_DEF_STMT (expr
));
1570 if (flow_bb_inside_loop_p (loop
, def_bb
))
1572 return superloop_at_depth (loop
,
1573 loop_depth (def_bb
->loop_father
) + 1);
1576 return current_loops
->tree_root
;
1582 unsigned maxdepth
= 0;
1583 len
= TREE_OPERAND_LENGTH (expr
);
1584 for (i
= 0; i
< len
; i
++)
1586 struct loop
*ivloop
;
1587 if (!TREE_OPERAND (expr
, i
))
1590 ivloop
= outermost_invariant_loop_for_expr (loop
, TREE_OPERAND (expr
, i
));
1593 maxdepth
= MAX (maxdepth
, loop_depth (ivloop
));
1596 return superloop_at_depth (loop
, maxdepth
);
1599 /* Returns true if expression EXPR is obviously invariant in LOOP,
1600 i.e. if all its operands are defined outside of the LOOP. LOOP
1601 should not be the function body. */
1604 expr_invariant_in_loop_p (struct loop
*loop
, tree expr
)
1609 gcc_assert (loop_depth (loop
) > 0);
1611 if (is_gimple_min_invariant (expr
))
1614 if (TREE_CODE (expr
) == SSA_NAME
)
1616 def_bb
= gimple_bb (SSA_NAME_DEF_STMT (expr
));
1618 && flow_bb_inside_loop_p (loop
, def_bb
))
1627 len
= TREE_OPERAND_LENGTH (expr
);
1628 for (i
= 0; i
< len
; i
++)
1629 if (TREE_OPERAND (expr
, i
)
1630 && !expr_invariant_in_loop_p (loop
, TREE_OPERAND (expr
, i
)))
1636 /* Cumulates the steps of indices into DATA and replaces their values with the
1637 initial ones. Returns false when the value of the index cannot be determined.
1638 Callback for for_each_index. */
1640 struct ifs_ivopts_data
1642 struct ivopts_data
*ivopts_data
;
1648 idx_find_step (tree base
, tree
*idx
, void *data
)
1650 struct ifs_ivopts_data
*dta
= (struct ifs_ivopts_data
*) data
;
1652 bool use_overflow_semantics
= false;
1653 tree step
, iv_base
, iv_step
, lbound
, off
;
1654 struct loop
*loop
= dta
->ivopts_data
->current_loop
;
1656 /* If base is a component ref, require that the offset of the reference
1658 if (TREE_CODE (base
) == COMPONENT_REF
)
1660 off
= component_ref_field_offset (base
);
1661 return expr_invariant_in_loop_p (loop
, off
);
1664 /* If base is array, first check whether we will be able to move the
1665 reference out of the loop (in order to take its address in strength
1666 reduction). In order for this to work we need both lower bound
1667 and step to be loop invariants. */
1668 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
1670 /* Moreover, for a range, the size needs to be invariant as well. */
1671 if (TREE_CODE (base
) == ARRAY_RANGE_REF
1672 && !expr_invariant_in_loop_p (loop
, TYPE_SIZE (TREE_TYPE (base
))))
1675 step
= array_ref_element_size (base
);
1676 lbound
= array_ref_low_bound (base
);
1678 if (!expr_invariant_in_loop_p (loop
, step
)
1679 || !expr_invariant_in_loop_p (loop
, lbound
))
1683 if (TREE_CODE (*idx
) != SSA_NAME
)
1686 iv
= get_iv (dta
->ivopts_data
, *idx
);
1690 /* XXX We produce for a base of *D42 with iv->base being &x[0]
1691 *&x[0], which is not folded and does not trigger the
1692 ARRAY_REF path below. */
1695 if (integer_zerop (iv
->step
))
1698 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
1700 step
= array_ref_element_size (base
);
1702 /* We only handle addresses whose step is an integer constant. */
1703 if (TREE_CODE (step
) != INTEGER_CST
)
1707 /* The step for pointer arithmetics already is 1 byte. */
1708 step
= size_one_node
;
1712 if (iv
->no_overflow
&& nowrap_type_p (TREE_TYPE (iv_step
)))
1713 use_overflow_semantics
= true;
1715 if (!convert_affine_scev (dta
->ivopts_data
->current_loop
,
1716 sizetype
, &iv_base
, &iv_step
, dta
->stmt
,
1717 use_overflow_semantics
))
1719 /* The index might wrap. */
1723 step
= fold_build2 (MULT_EXPR
, sizetype
, step
, iv_step
);
1724 dta
->step
= fold_build2 (PLUS_EXPR
, sizetype
, dta
->step
, step
);
1729 /* Records use in index IDX. Callback for for_each_index. Ivopts data
1730 object is passed to it in DATA. */
1733 idx_record_use (tree base
, tree
*idx
,
1736 struct ivopts_data
*data
= (struct ivopts_data
*) vdata
;
1737 find_interesting_uses_op (data
, *idx
);
1738 if (TREE_CODE (base
) == ARRAY_REF
|| TREE_CODE (base
) == ARRAY_RANGE_REF
)
1740 find_interesting_uses_op (data
, array_ref_element_size (base
));
1741 find_interesting_uses_op (data
, array_ref_low_bound (base
));
1746 /* If we can prove that TOP = cst * BOT for some constant cst,
1747 store cst to MUL and return true. Otherwise return false.
1748 The returned value is always sign-extended, regardless of the
1749 signedness of TOP and BOT. */
1752 constant_multiple_of (tree top
, tree bot
, widest_int
*mul
)
1755 enum tree_code code
;
1756 unsigned precision
= TYPE_PRECISION (TREE_TYPE (top
));
1757 widest_int res
, p0
, p1
;
1762 if (operand_equal_p (top
, bot
, 0))
1768 code
= TREE_CODE (top
);
1772 mby
= TREE_OPERAND (top
, 1);
1773 if (TREE_CODE (mby
) != INTEGER_CST
)
1776 if (!constant_multiple_of (TREE_OPERAND (top
, 0), bot
, &res
))
1779 *mul
= wi::sext (res
* wi::to_widest (mby
), precision
);
1784 if (!constant_multiple_of (TREE_OPERAND (top
, 0), bot
, &p0
)
1785 || !constant_multiple_of (TREE_OPERAND (top
, 1), bot
, &p1
))
1788 if (code
== MINUS_EXPR
)
1790 *mul
= wi::sext (p0
+ p1
, precision
);
1794 if (TREE_CODE (bot
) != INTEGER_CST
)
1797 p0
= widest_int::from (top
, SIGNED
);
1798 p1
= widest_int::from (bot
, SIGNED
);
1801 *mul
= wi::sext (wi::divmod_trunc (p0
, p1
, SIGNED
, &res
), precision
);
1809 /* Return true if memory reference REF with step STEP may be unaligned. */
1812 may_be_unaligned_p (tree ref
, tree step
)
1814 /* TARGET_MEM_REFs are translated directly to valid MEMs on the target,
1815 thus they are not misaligned. */
1816 if (TREE_CODE (ref
) == TARGET_MEM_REF
)
1819 unsigned int align
= TYPE_ALIGN (TREE_TYPE (ref
));
1820 if (GET_MODE_ALIGNMENT (TYPE_MODE (TREE_TYPE (ref
))) > align
)
1821 align
= GET_MODE_ALIGNMENT (TYPE_MODE (TREE_TYPE (ref
)));
1823 unsigned HOST_WIDE_INT bitpos
;
1824 unsigned int ref_align
;
1825 get_object_alignment_1 (ref
, &ref_align
, &bitpos
);
1826 if (ref_align
< align
1827 || (bitpos
% align
) != 0
1828 || (bitpos
% BITS_PER_UNIT
) != 0)
1831 unsigned int trailing_zeros
= tree_ctz (step
);
1832 if (trailing_zeros
< HOST_BITS_PER_INT
1833 && (1U << trailing_zeros
) * BITS_PER_UNIT
< align
)
1839 /* Return true if EXPR may be non-addressable. */
1842 may_be_nonaddressable_p (tree expr
)
1844 switch (TREE_CODE (expr
))
1846 case TARGET_MEM_REF
:
1847 /* TARGET_MEM_REFs are translated directly to valid MEMs on the
1848 target, thus they are always addressable. */
1852 return DECL_NONADDRESSABLE_P (TREE_OPERAND (expr
, 1))
1853 || may_be_nonaddressable_p (TREE_OPERAND (expr
, 0));
1855 case VIEW_CONVERT_EXPR
:
1856 /* This kind of view-conversions may wrap non-addressable objects
1857 and make them look addressable. After some processing the
1858 non-addressability may be uncovered again, causing ADDR_EXPRs
1859 of inappropriate objects to be built. */
1860 if (is_gimple_reg (TREE_OPERAND (expr
, 0))
1861 || !is_gimple_addressable (TREE_OPERAND (expr
, 0)))
1864 /* ... fall through ... */
1867 case ARRAY_RANGE_REF
:
1868 return may_be_nonaddressable_p (TREE_OPERAND (expr
, 0));
1881 strip_offset (tree expr
, unsigned HOST_WIDE_INT
*offset
);
1883 /* Record a use of type USE_TYPE at *USE_P in STMT whose value is IV.
1884 If there is an existing use which has same stripped iv base and step,
1885 this function records this one as a sub use to that; otherwise records
1886 it as a normal one. */
1888 static struct iv_use
*
1889 record_group_use (struct ivopts_data
*data
, tree
*use_p
,
1890 struct iv
*iv
, gimple stmt
, enum use_type use_type
)
1895 unsigned HOST_WIDE_INT addr_offset
;
1897 /* Only support sub use for address type uses, that is, with base
1899 if (!iv
->base_object
)
1900 return record_use (data
, use_p
, iv
, stmt
, use_type
);
1902 addr_base
= strip_offset (iv
->base
, &addr_offset
);
1903 for (i
= 0; i
< n_iv_uses (data
); i
++)
1905 use
= iv_use (data
, i
);
1906 if (use
->type
!= USE_ADDRESS
|| !use
->iv
->base_object
)
1909 /* Check if it has the same stripped base and step. */
1910 if (operand_equal_p (iv
->base_object
, use
->iv
->base_object
, 0)
1911 && operand_equal_p (iv
->step
, use
->iv
->step
, 0)
1912 && operand_equal_p (addr_base
, use
->addr_base
, 0))
1916 if (i
== n_iv_uses (data
))
1917 return record_use (data
, use_p
, iv
, stmt
,
1918 use_type
, addr_base
, addr_offset
);
1920 return record_sub_use (data
, use_p
, iv
, stmt
,
1921 use_type
, addr_base
, addr_offset
, i
);
1924 /* Finds addresses in *OP_P inside STMT. */
1927 find_interesting_uses_address (struct ivopts_data
*data
, gimple stmt
, tree
*op_p
)
1929 tree base
= *op_p
, step
= size_zero_node
;
1931 struct ifs_ivopts_data ifs_ivopts_data
;
1933 /* Do not play with volatile memory references. A bit too conservative,
1934 perhaps, but safe. */
1935 if (gimple_has_volatile_ops (stmt
))
1938 /* Ignore bitfields for now. Not really something terribly complicated
1940 if (TREE_CODE (base
) == BIT_FIELD_REF
)
1943 base
= unshare_expr (base
);
1945 if (TREE_CODE (base
) == TARGET_MEM_REF
)
1947 tree type
= build_pointer_type (TREE_TYPE (base
));
1951 && TREE_CODE (TMR_BASE (base
)) == SSA_NAME
)
1953 civ
= get_iv (data
, TMR_BASE (base
));
1957 TMR_BASE (base
) = civ
->base
;
1960 if (TMR_INDEX2 (base
)
1961 && TREE_CODE (TMR_INDEX2 (base
)) == SSA_NAME
)
1963 civ
= get_iv (data
, TMR_INDEX2 (base
));
1967 TMR_INDEX2 (base
) = civ
->base
;
1970 if (TMR_INDEX (base
)
1971 && TREE_CODE (TMR_INDEX (base
)) == SSA_NAME
)
1973 civ
= get_iv (data
, TMR_INDEX (base
));
1977 TMR_INDEX (base
) = civ
->base
;
1982 if (TMR_STEP (base
))
1983 astep
= fold_build2 (MULT_EXPR
, type
, TMR_STEP (base
), astep
);
1985 step
= fold_build2 (PLUS_EXPR
, type
, step
, astep
);
1989 if (integer_zerop (step
))
1991 base
= tree_mem_ref_addr (type
, base
);
1995 ifs_ivopts_data
.ivopts_data
= data
;
1996 ifs_ivopts_data
.stmt
= stmt
;
1997 ifs_ivopts_data
.step
= size_zero_node
;
1998 if (!for_each_index (&base
, idx_find_step
, &ifs_ivopts_data
)
1999 || integer_zerop (ifs_ivopts_data
.step
))
2001 step
= ifs_ivopts_data
.step
;
2003 /* Check that the base expression is addressable. This needs
2004 to be done after substituting bases of IVs into it. */
2005 if (may_be_nonaddressable_p (base
))
2008 /* Moreover, on strict alignment platforms, check that it is
2009 sufficiently aligned. */
2010 if (STRICT_ALIGNMENT
&& may_be_unaligned_p (base
, step
))
2013 base
= build_fold_addr_expr (base
);
2015 /* Substituting bases of IVs into the base expression might
2016 have caused folding opportunities. */
2017 if (TREE_CODE (base
) == ADDR_EXPR
)
2019 tree
*ref
= &TREE_OPERAND (base
, 0);
2020 while (handled_component_p (*ref
))
2021 ref
= &TREE_OPERAND (*ref
, 0);
2022 if (TREE_CODE (*ref
) == MEM_REF
)
2024 tree tem
= fold_binary (MEM_REF
, TREE_TYPE (*ref
),
2025 TREE_OPERAND (*ref
, 0),
2026 TREE_OPERAND (*ref
, 1));
2033 civ
= alloc_iv (data
, base
, step
);
2034 record_group_use (data
, op_p
, civ
, stmt
, USE_ADDRESS
);
2038 for_each_index (op_p
, idx_record_use
, data
);
2041 /* Finds and records invariants used in STMT. */
2044 find_invariants_stmt (struct ivopts_data
*data
, gimple stmt
)
2047 use_operand_p use_p
;
2050 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, iter
, SSA_OP_USE
)
2052 op
= USE_FROM_PTR (use_p
);
2053 record_invariant (data
, op
, false);
2057 /* Finds interesting uses of induction variables in the statement STMT. */
2060 find_interesting_uses_stmt (struct ivopts_data
*data
, gimple stmt
)
2063 tree op
, *lhs
, *rhs
;
2065 use_operand_p use_p
;
2066 enum tree_code code
;
2068 find_invariants_stmt (data
, stmt
);
2070 if (gimple_code (stmt
) == GIMPLE_COND
)
2072 find_interesting_uses_cond (data
, stmt
);
2076 if (is_gimple_assign (stmt
))
2078 lhs
= gimple_assign_lhs_ptr (stmt
);
2079 rhs
= gimple_assign_rhs1_ptr (stmt
);
2081 if (TREE_CODE (*lhs
) == SSA_NAME
)
2083 /* If the statement defines an induction variable, the uses are not
2084 interesting by themselves. */
2086 iv
= get_iv (data
, *lhs
);
2088 if (iv
&& !integer_zerop (iv
->step
))
2092 code
= gimple_assign_rhs_code (stmt
);
2093 if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
2094 && (REFERENCE_CLASS_P (*rhs
)
2095 || is_gimple_val (*rhs
)))
2097 if (REFERENCE_CLASS_P (*rhs
))
2098 find_interesting_uses_address (data
, stmt
, rhs
);
2100 find_interesting_uses_op (data
, *rhs
);
2102 if (REFERENCE_CLASS_P (*lhs
))
2103 find_interesting_uses_address (data
, stmt
, lhs
);
2106 else if (TREE_CODE_CLASS (code
) == tcc_comparison
)
2108 find_interesting_uses_cond (data
, stmt
);
2112 /* TODO -- we should also handle address uses of type
2114 memory = call (whatever);
2121 if (gimple_code (stmt
) == GIMPLE_PHI
2122 && gimple_bb (stmt
) == data
->current_loop
->header
)
2124 iv
= get_iv (data
, PHI_RESULT (stmt
));
2126 if (iv
&& !integer_zerop (iv
->step
))
2130 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, iter
, SSA_OP_USE
)
2132 op
= USE_FROM_PTR (use_p
);
2134 if (TREE_CODE (op
) != SSA_NAME
)
2137 iv
= get_iv (data
, op
);
2141 find_interesting_uses_op (data
, op
);
2145 /* Finds interesting uses of induction variables outside of loops
2146 on loop exit edge EXIT. */
2149 find_interesting_uses_outside (struct ivopts_data
*data
, edge exit
)
2155 for (psi
= gsi_start_phis (exit
->dest
); !gsi_end_p (psi
); gsi_next (&psi
))
2158 def
= PHI_ARG_DEF_FROM_EDGE (phi
, exit
);
2159 if (!virtual_operand_p (def
))
2160 find_interesting_uses_op (data
, def
);
2164 /* Finds uses of the induction variables that are interesting. */
2167 find_interesting_uses (struct ivopts_data
*data
)
2170 gimple_stmt_iterator bsi
;
2171 basic_block
*body
= get_loop_body (data
->current_loop
);
2173 struct version_info
*info
;
2176 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2177 fprintf (dump_file
, "Uses:\n\n");
2179 for (i
= 0; i
< data
->current_loop
->num_nodes
; i
++)
2184 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2185 if (e
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
2186 && !flow_bb_inside_loop_p (data
->current_loop
, e
->dest
))
2187 find_interesting_uses_outside (data
, e
);
2189 for (bsi
= gsi_start_phis (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
2190 find_interesting_uses_stmt (data
, gsi_stmt (bsi
));
2191 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
2192 if (!is_gimple_debug (gsi_stmt (bsi
)))
2193 find_interesting_uses_stmt (data
, gsi_stmt (bsi
));
2196 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2200 fprintf (dump_file
, "\n");
2202 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
2204 info
= ver_info (data
, i
);
2207 fprintf (dump_file
, " ");
2208 print_generic_expr (dump_file
, info
->name
, TDF_SLIM
);
2209 fprintf (dump_file
, " is invariant (%d)%s\n",
2210 info
->inv_id
, info
->has_nonlin_use
? "" : ", eliminable");
2214 fprintf (dump_file
, "\n");
2220 /* Compute maximum offset of [base + offset] addressing mode
2221 for memory reference represented by USE. */
2223 static HOST_WIDE_INT
2224 compute_max_addr_offset (struct iv_use
*use
)
2228 HOST_WIDE_INT i
, off
;
2229 unsigned list_index
, num
;
2231 machine_mode mem_mode
, addr_mode
;
2232 static vec
<HOST_WIDE_INT
> max_offset_list
;
2234 as
= TYPE_ADDR_SPACE (TREE_TYPE (use
->iv
->base
));
2235 mem_mode
= TYPE_MODE (TREE_TYPE (*use
->op_p
));
2237 num
= max_offset_list
.length ();
2238 list_index
= (unsigned) as
* MAX_MACHINE_MODE
+ (unsigned) mem_mode
;
2239 if (list_index
>= num
)
2241 max_offset_list
.safe_grow (list_index
+ MAX_MACHINE_MODE
);
2242 for (; num
< max_offset_list
.length (); num
++)
2243 max_offset_list
[num
] = -1;
2246 off
= max_offset_list
[list_index
];
2250 addr_mode
= targetm
.addr_space
.address_mode (as
);
2251 reg
= gen_raw_REG (addr_mode
, LAST_VIRTUAL_REGISTER
+ 1);
2252 addr
= gen_rtx_fmt_ee (PLUS
, addr_mode
, reg
, NULL_RTX
);
2254 width
= GET_MODE_BITSIZE (addr_mode
) - 1;
2255 if (width
> (HOST_BITS_PER_WIDE_INT
- 1))
2256 width
= HOST_BITS_PER_WIDE_INT
- 1;
2258 for (i
= width
; i
> 0; i
--)
2260 off
= ((unsigned HOST_WIDE_INT
) 1 << i
) - 1;
2261 XEXP (addr
, 1) = gen_int_mode (off
, addr_mode
);
2262 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
2265 /* For some strict-alignment targets, the offset must be naturally
2266 aligned. Try an aligned offset if mem_mode is not QImode. */
2267 off
= ((unsigned HOST_WIDE_INT
) 1 << i
);
2268 if (off
> GET_MODE_SIZE (mem_mode
) && mem_mode
!= QImode
)
2270 off
-= GET_MODE_SIZE (mem_mode
);
2271 XEXP (addr
, 1) = gen_int_mode (off
, addr_mode
);
2272 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
2279 max_offset_list
[list_index
] = off
;
2283 /* Check if all small groups should be split. Return true if and
2286 1) At least one groups contain two uses with different offsets.
2287 2) No group contains more than two uses with different offsets.
2289 Return false otherwise. We want to split such groups because:
2291 1) Small groups don't have much benefit and may interfer with
2292 general candidate selection.
2293 2) Size for problem with only small groups is usually small and
2294 general algorithm can handle it well.
2296 TODO -- Above claim may not hold when auto increment is supported. */
2299 split_all_small_groups (struct ivopts_data
*data
)
2301 bool split_p
= false;
2302 unsigned int i
, n
, distinct
;
2303 struct iv_use
*pre
, *use
;
2305 n
= n_iv_uses (data
);
2306 for (i
= 0; i
< n
; i
++)
2308 use
= iv_use (data
, i
);
2313 gcc_assert (use
->type
== USE_ADDRESS
);
2314 for (pre
= use
, use
= use
->next
; use
; pre
= use
, use
= use
->next
)
2316 if (pre
->addr_offset
!= use
->addr_offset
)
2329 /* For each group of address type uses, this function further groups
2330 these uses according to the maximum offset supported by target's
2331 [base + offset] addressing mode. */
2334 group_address_uses (struct ivopts_data
*data
)
2336 HOST_WIDE_INT max_offset
= -1;
2337 unsigned int i
, n
, sub_id
;
2338 struct iv_use
*pre
, *use
;
2339 unsigned HOST_WIDE_INT addr_offset_first
;
2341 /* Reset max offset to split all small groups. */
2342 if (split_all_small_groups (data
))
2345 n
= n_iv_uses (data
);
2346 for (i
= 0; i
< n
; i
++)
2348 use
= iv_use (data
, i
);
2352 gcc_assert (use
->type
== USE_ADDRESS
);
2353 if (max_offset
!= 0)
2354 max_offset
= compute_max_addr_offset (use
);
2359 addr_offset_first
= use
->addr_offset
;
2360 /* Only uses with offset that can fit in offset part against
2361 the first use can be grouped together. */
2362 for (pre
= use
, use
= use
->next
;
2363 use
&& (use
->addr_offset
- addr_offset_first
2364 <= (unsigned HOST_WIDE_INT
) max_offset
);
2365 pre
= use
, use
= use
->next
)
2368 use
->sub_id
= ++sub_id
;
2371 /* Break the list and create new group. */
2375 use
->id
= n_iv_uses (data
);
2376 use
->related_cands
= BITMAP_ALLOC (NULL
);
2377 data
->iv_uses
.safe_push (use
);
2382 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2383 dump_uses (dump_file
, data
);
2386 /* Strips constant offsets from EXPR and stores them to OFFSET. If INSIDE_ADDR
2387 is true, assume we are inside an address. If TOP_COMPREF is true, assume
2388 we are at the top-level of the processed address. */
2391 strip_offset_1 (tree expr
, bool inside_addr
, bool top_compref
,
2392 HOST_WIDE_INT
*offset
)
2394 tree op0
= NULL_TREE
, op1
= NULL_TREE
, tmp
, step
;
2395 enum tree_code code
;
2396 tree type
, orig_type
= TREE_TYPE (expr
);
2397 HOST_WIDE_INT off0
, off1
, st
;
2398 tree orig_expr
= expr
;
2402 type
= TREE_TYPE (expr
);
2403 code
= TREE_CODE (expr
);
2409 if (!cst_and_fits_in_hwi (expr
)
2410 || integer_zerop (expr
))
2413 *offset
= int_cst_value (expr
);
2414 return build_int_cst (orig_type
, 0);
2416 case POINTER_PLUS_EXPR
:
2419 op0
= TREE_OPERAND (expr
, 0);
2420 op1
= TREE_OPERAND (expr
, 1);
2422 op0
= strip_offset_1 (op0
, false, false, &off0
);
2423 op1
= strip_offset_1 (op1
, false, false, &off1
);
2425 *offset
= (code
== MINUS_EXPR
? off0
- off1
: off0
+ off1
);
2426 if (op0
== TREE_OPERAND (expr
, 0)
2427 && op1
== TREE_OPERAND (expr
, 1))
2430 if (integer_zerop (op1
))
2432 else if (integer_zerop (op0
))
2434 if (code
== MINUS_EXPR
)
2435 expr
= fold_build1 (NEGATE_EXPR
, type
, op1
);
2440 expr
= fold_build2 (code
, type
, op0
, op1
);
2442 return fold_convert (orig_type
, expr
);
2445 op1
= TREE_OPERAND (expr
, 1);
2446 if (!cst_and_fits_in_hwi (op1
))
2449 op0
= TREE_OPERAND (expr
, 0);
2450 op0
= strip_offset_1 (op0
, false, false, &off0
);
2451 if (op0
== TREE_OPERAND (expr
, 0))
2454 *offset
= off0
* int_cst_value (op1
);
2455 if (integer_zerop (op0
))
2458 expr
= fold_build2 (MULT_EXPR
, type
, op0
, op1
);
2460 return fold_convert (orig_type
, expr
);
2463 case ARRAY_RANGE_REF
:
2467 step
= array_ref_element_size (expr
);
2468 if (!cst_and_fits_in_hwi (step
))
2471 st
= int_cst_value (step
);
2472 op1
= TREE_OPERAND (expr
, 1);
2473 op1
= strip_offset_1 (op1
, false, false, &off1
);
2474 *offset
= off1
* st
;
2477 && integer_zerop (op1
))
2479 /* Strip the component reference completely. */
2480 op0
= TREE_OPERAND (expr
, 0);
2481 op0
= strip_offset_1 (op0
, inside_addr
, top_compref
, &off0
);
2494 tmp
= component_ref_field_offset (expr
);
2495 field
= TREE_OPERAND (expr
, 1);
2497 && cst_and_fits_in_hwi (tmp
)
2498 && cst_and_fits_in_hwi (DECL_FIELD_BIT_OFFSET (field
)))
2500 HOST_WIDE_INT boffset
, abs_off
;
2502 /* Strip the component reference completely. */
2503 op0
= TREE_OPERAND (expr
, 0);
2504 op0
= strip_offset_1 (op0
, inside_addr
, top_compref
, &off0
);
2505 boffset
= int_cst_value (DECL_FIELD_BIT_OFFSET (field
));
2506 abs_off
= abs_hwi (boffset
) / BITS_PER_UNIT
;
2510 *offset
= off0
+ int_cst_value (tmp
) + abs_off
;
2517 op0
= TREE_OPERAND (expr
, 0);
2518 op0
= strip_offset_1 (op0
, true, true, &off0
);
2521 if (op0
== TREE_OPERAND (expr
, 0))
2524 expr
= build_fold_addr_expr (op0
);
2525 return fold_convert (orig_type
, expr
);
2528 /* ??? Offset operand? */
2529 inside_addr
= false;
2536 /* Default handling of expressions for that we want to recurse into
2537 the first operand. */
2538 op0
= TREE_OPERAND (expr
, 0);
2539 op0
= strip_offset_1 (op0
, inside_addr
, false, &off0
);
2542 if (op0
== TREE_OPERAND (expr
, 0)
2543 && (!op1
|| op1
== TREE_OPERAND (expr
, 1)))
2546 expr
= copy_node (expr
);
2547 TREE_OPERAND (expr
, 0) = op0
;
2549 TREE_OPERAND (expr
, 1) = op1
;
2551 /* Inside address, we might strip the top level component references,
2552 thus changing type of the expression. Handling of ADDR_EXPR
2554 expr
= fold_convert (orig_type
, expr
);
2559 /* Strips constant offsets from EXPR and stores them to OFFSET. */
2562 strip_offset (tree expr
, unsigned HOST_WIDE_INT
*offset
)
2565 tree core
= strip_offset_1 (expr
, false, false, &off
);
2570 /* Returns variant of TYPE that can be used as base for different uses.
2571 We return unsigned type with the same precision, which avoids problems
2575 generic_type_for (tree type
)
2577 if (POINTER_TYPE_P (type
))
2578 return unsigned_type_for (type
);
2580 if (TYPE_UNSIGNED (type
))
2583 return unsigned_type_for (type
);
2586 /* Records invariants in *EXPR_P. Callback for walk_tree. DATA contains
2587 the bitmap to that we should store it. */
2589 static struct ivopts_data
*fd_ivopts_data
;
2591 find_depends (tree
*expr_p
, int *ws ATTRIBUTE_UNUSED
, void *data
)
2593 bitmap
*depends_on
= (bitmap
*) data
;
2594 struct version_info
*info
;
2596 if (TREE_CODE (*expr_p
) != SSA_NAME
)
2598 info
= name_info (fd_ivopts_data
, *expr_p
);
2600 if (!info
->inv_id
|| info
->has_nonlin_use
)
2604 *depends_on
= BITMAP_ALLOC (NULL
);
2605 bitmap_set_bit (*depends_on
, info
->inv_id
);
2610 /* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
2611 position to POS. If USE is not NULL, the candidate is set as related to
2612 it. If both BASE and STEP are NULL, we add a pseudocandidate for the
2613 replacement of the final value of the iv by a direct computation. */
2615 static struct iv_cand
*
2616 add_candidate_1 (struct ivopts_data
*data
,
2617 tree base
, tree step
, bool important
, enum iv_position pos
,
2618 struct iv_use
*use
, gimple incremented_at
)
2621 struct iv_cand
*cand
= NULL
;
2622 tree type
, orig_type
;
2624 /* For non-original variables, make sure their values are computed in a type
2625 that does not invoke undefined behavior on overflows (since in general,
2626 we cannot prove that these induction variables are non-wrapping). */
2627 if (pos
!= IP_ORIGINAL
)
2629 orig_type
= TREE_TYPE (base
);
2630 type
= generic_type_for (orig_type
);
2631 if (type
!= orig_type
)
2633 base
= fold_convert (type
, base
);
2634 step
= fold_convert (type
, step
);
2638 for (i
= 0; i
< n_iv_cands (data
); i
++)
2640 cand
= iv_cand (data
, i
);
2642 if (cand
->pos
!= pos
)
2645 if (cand
->incremented_at
!= incremented_at
2646 || ((pos
== IP_AFTER_USE
|| pos
== IP_BEFORE_USE
)
2647 && cand
->ainc_use
!= use
))
2661 if (operand_equal_p (base
, cand
->iv
->base
, 0)
2662 && operand_equal_p (step
, cand
->iv
->step
, 0)
2663 && (TYPE_PRECISION (TREE_TYPE (base
))
2664 == TYPE_PRECISION (TREE_TYPE (cand
->iv
->base
))))
2668 if (i
== n_iv_cands (data
))
2670 cand
= XCNEW (struct iv_cand
);
2676 cand
->iv
= alloc_iv (data
, base
, step
);
2679 if (pos
!= IP_ORIGINAL
&& cand
->iv
)
2681 cand
->var_before
= create_tmp_var_raw (TREE_TYPE (base
), "ivtmp");
2682 cand
->var_after
= cand
->var_before
;
2684 cand
->important
= important
;
2685 cand
->incremented_at
= incremented_at
;
2686 data
->iv_candidates
.safe_push (cand
);
2689 && TREE_CODE (step
) != INTEGER_CST
)
2691 fd_ivopts_data
= data
;
2692 walk_tree (&step
, find_depends
, &cand
->depends_on
, NULL
);
2695 if (pos
== IP_AFTER_USE
|| pos
== IP_BEFORE_USE
)
2696 cand
->ainc_use
= use
;
2698 cand
->ainc_use
= NULL
;
2700 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2701 dump_cand (dump_file
, cand
);
2704 if (important
&& !cand
->important
)
2706 cand
->important
= true;
2707 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2708 fprintf (dump_file
, "Candidate %d is important\n", cand
->id
);
2713 bitmap_set_bit (use
->related_cands
, i
);
2714 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2715 fprintf (dump_file
, "Candidate %d is related to use %d\n",
2722 /* Returns true if incrementing the induction variable at the end of the LOOP
2725 The purpose is to avoid splitting latch edge with a biv increment, thus
2726 creating a jump, possibly confusing other optimization passes and leaving
2727 less freedom to scheduler. So we allow IP_END_POS only if IP_NORMAL_POS
2728 is not available (so we do not have a better alternative), or if the latch
2729 edge is already nonempty. */
2732 allow_ip_end_pos_p (struct loop
*loop
)
2734 if (!ip_normal_pos (loop
))
2737 if (!empty_block_p (ip_end_pos (loop
)))
2743 /* If possible, adds autoincrement candidates BASE + STEP * i based on use USE.
2744 Important field is set to IMPORTANT. */
2747 add_autoinc_candidates (struct ivopts_data
*data
, tree base
, tree step
,
2748 bool important
, struct iv_use
*use
)
2750 basic_block use_bb
= gimple_bb (use
->stmt
);
2751 machine_mode mem_mode
;
2752 unsigned HOST_WIDE_INT cstepi
;
2754 /* If we insert the increment in any position other than the standard
2755 ones, we must ensure that it is incremented once per iteration.
2756 It must not be in an inner nested loop, or one side of an if
2758 if (use_bb
->loop_father
!= data
->current_loop
2759 || !dominated_by_p (CDI_DOMINATORS
, data
->current_loop
->latch
, use_bb
)
2760 || stmt_could_throw_p (use
->stmt
)
2761 || !cst_and_fits_in_hwi (step
))
2764 cstepi
= int_cst_value (step
);
2766 mem_mode
= TYPE_MODE (TREE_TYPE (*use
->op_p
));
2767 if (((USE_LOAD_PRE_INCREMENT (mem_mode
)
2768 || USE_STORE_PRE_INCREMENT (mem_mode
))
2769 && GET_MODE_SIZE (mem_mode
) == cstepi
)
2770 || ((USE_LOAD_PRE_DECREMENT (mem_mode
)
2771 || USE_STORE_PRE_DECREMENT (mem_mode
))
2772 && GET_MODE_SIZE (mem_mode
) == -cstepi
))
2774 enum tree_code code
= MINUS_EXPR
;
2776 tree new_step
= step
;
2778 if (POINTER_TYPE_P (TREE_TYPE (base
)))
2780 new_step
= fold_build1 (NEGATE_EXPR
, TREE_TYPE (step
), step
);
2781 code
= POINTER_PLUS_EXPR
;
2784 new_step
= fold_convert (TREE_TYPE (base
), new_step
);
2785 new_base
= fold_build2 (code
, TREE_TYPE (base
), base
, new_step
);
2786 add_candidate_1 (data
, new_base
, step
, important
, IP_BEFORE_USE
, use
,
2789 if (((USE_LOAD_POST_INCREMENT (mem_mode
)
2790 || USE_STORE_POST_INCREMENT (mem_mode
))
2791 && GET_MODE_SIZE (mem_mode
) == cstepi
)
2792 || ((USE_LOAD_POST_DECREMENT (mem_mode
)
2793 || USE_STORE_POST_DECREMENT (mem_mode
))
2794 && GET_MODE_SIZE (mem_mode
) == -cstepi
))
2796 add_candidate_1 (data
, base
, step
, important
, IP_AFTER_USE
, use
,
2801 /* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
2802 position to POS. If USE is not NULL, the candidate is set as related to
2803 it. The candidate computation is scheduled on all available positions. */
2806 add_candidate (struct ivopts_data
*data
,
2807 tree base
, tree step
, bool important
, struct iv_use
*use
)
2809 gcc_assert (use
== NULL
|| use
->sub_id
== 0);
2811 if (ip_normal_pos (data
->current_loop
))
2812 add_candidate_1 (data
, base
, step
, important
, IP_NORMAL
, use
, NULL
);
2813 if (ip_end_pos (data
->current_loop
)
2814 && allow_ip_end_pos_p (data
->current_loop
))
2815 add_candidate_1 (data
, base
, step
, important
, IP_END
, use
, NULL
);
2817 if (use
!= NULL
&& use
->type
== USE_ADDRESS
)
2818 add_autoinc_candidates (data
, base
, step
, important
, use
);
2821 /* Adds standard iv candidates. */
2824 add_standard_iv_candidates (struct ivopts_data
*data
)
2826 add_candidate (data
, integer_zero_node
, integer_one_node
, true, NULL
);
2828 /* The same for a double-integer type if it is still fast enough. */
2830 (long_integer_type_node
) > TYPE_PRECISION (integer_type_node
)
2831 && TYPE_PRECISION (long_integer_type_node
) <= BITS_PER_WORD
)
2832 add_candidate (data
, build_int_cst (long_integer_type_node
, 0),
2833 build_int_cst (long_integer_type_node
, 1), true, NULL
);
2835 /* The same for a double-integer type if it is still fast enough. */
2837 (long_long_integer_type_node
) > TYPE_PRECISION (long_integer_type_node
)
2838 && TYPE_PRECISION (long_long_integer_type_node
) <= BITS_PER_WORD
)
2839 add_candidate (data
, build_int_cst (long_long_integer_type_node
, 0),
2840 build_int_cst (long_long_integer_type_node
, 1), true, NULL
);
2844 /* Adds candidates bases on the old induction variable IV. */
2847 add_old_iv_candidates (struct ivopts_data
*data
, struct iv
*iv
)
2851 struct iv_cand
*cand
;
2853 add_candidate (data
, iv
->base
, iv
->step
, true, NULL
);
2855 /* The same, but with initial value zero. */
2856 if (POINTER_TYPE_P (TREE_TYPE (iv
->base
)))
2857 add_candidate (data
, size_int (0), iv
->step
, true, NULL
);
2859 add_candidate (data
, build_int_cst (TREE_TYPE (iv
->base
), 0),
2860 iv
->step
, true, NULL
);
2862 phi
= SSA_NAME_DEF_STMT (iv
->ssa_name
);
2863 if (gimple_code (phi
) == GIMPLE_PHI
)
2865 /* Additionally record the possibility of leaving the original iv
2867 def
= PHI_ARG_DEF_FROM_EDGE (phi
, loop_latch_edge (data
->current_loop
));
2868 /* Don't add candidate if it's from another PHI node because
2869 it's an affine iv appearing in the form of PEELED_CHREC. */
2870 phi
= SSA_NAME_DEF_STMT (def
);
2871 if (gimple_code (phi
) != GIMPLE_PHI
)
2873 cand
= add_candidate_1 (data
,
2874 iv
->base
, iv
->step
, true, IP_ORIGINAL
, NULL
,
2875 SSA_NAME_DEF_STMT (def
));
2876 cand
->var_before
= iv
->ssa_name
;
2877 cand
->var_after
= def
;
2880 gcc_assert (gimple_bb (phi
) == data
->current_loop
->header
);
2884 /* Adds candidates based on the old induction variables. */
2887 add_old_ivs_candidates (struct ivopts_data
*data
)
2893 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
2895 iv
= ver_info (data
, i
)->iv
;
2896 if (iv
&& iv
->biv_p
&& !integer_zerop (iv
->step
))
2897 add_old_iv_candidates (data
, iv
);
2901 /* Adds candidates based on the value of the induction variable IV and USE. */
2904 add_iv_value_candidates (struct ivopts_data
*data
,
2905 struct iv
*iv
, struct iv_use
*use
)
2907 unsigned HOST_WIDE_INT offset
;
2911 add_candidate (data
, iv
->base
, iv
->step
, false, use
);
2913 /* The same, but with initial value zero. Make such variable important,
2914 since it is generic enough so that possibly many uses may be based
2916 basetype
= TREE_TYPE (iv
->base
);
2917 if (POINTER_TYPE_P (basetype
))
2918 basetype
= sizetype
;
2919 add_candidate (data
, build_int_cst (basetype
, 0),
2920 iv
->step
, true, use
);
2922 /* Third, try removing the constant offset. Make sure to even
2923 add a candidate for &a[0] vs. (T *)&a. */
2924 base
= strip_offset (iv
->base
, &offset
);
2926 || base
!= iv
->base
)
2927 add_candidate (data
, base
, iv
->step
, false, use
);
2930 /* Adds candidates based on the uses. */
2933 add_derived_ivs_candidates (struct ivopts_data
*data
)
2937 for (i
= 0; i
< n_iv_uses (data
); i
++)
2939 struct iv_use
*use
= iv_use (data
, i
);
2946 case USE_NONLINEAR_EXPR
:
2949 /* Just add the ivs based on the value of the iv used here. */
2950 add_iv_value_candidates (data
, use
->iv
, use
);
2959 /* Record important candidates and add them to related_cands bitmaps
2963 record_important_candidates (struct ivopts_data
*data
)
2968 for (i
= 0; i
< n_iv_cands (data
); i
++)
2970 struct iv_cand
*cand
= iv_cand (data
, i
);
2972 if (cand
->important
)
2973 bitmap_set_bit (data
->important_candidates
, i
);
2976 data
->consider_all_candidates
= (n_iv_cands (data
)
2977 <= CONSIDER_ALL_CANDIDATES_BOUND
);
2979 if (data
->consider_all_candidates
)
2981 /* We will not need "related_cands" bitmaps in this case,
2982 so release them to decrease peak memory consumption. */
2983 for (i
= 0; i
< n_iv_uses (data
); i
++)
2985 use
= iv_use (data
, i
);
2986 BITMAP_FREE (use
->related_cands
);
2991 /* Add important candidates to the related_cands bitmaps. */
2992 for (i
= 0; i
< n_iv_uses (data
); i
++)
2993 bitmap_ior_into (iv_use (data
, i
)->related_cands
,
2994 data
->important_candidates
);
2998 /* Allocates the data structure mapping the (use, candidate) pairs to costs.
2999 If consider_all_candidates is true, we use a two-dimensional array, otherwise
3000 we allocate a simple list to every use. */
3003 alloc_use_cost_map (struct ivopts_data
*data
)
3005 unsigned i
, size
, s
;
3007 for (i
= 0; i
< n_iv_uses (data
); i
++)
3009 struct iv_use
*use
= iv_use (data
, i
);
3011 if (data
->consider_all_candidates
)
3012 size
= n_iv_cands (data
);
3015 s
= bitmap_count_bits (use
->related_cands
);
3017 /* Round up to the power of two, so that moduling by it is fast. */
3018 size
= s
? (1 << ceil_log2 (s
)) : 1;
3021 use
->n_map_members
= size
;
3022 use
->cost_map
= XCNEWVEC (struct cost_pair
, size
);
3026 /* Returns description of computation cost of expression whose runtime
3027 cost is RUNTIME and complexity corresponds to COMPLEXITY. */
3030 new_cost (unsigned runtime
, unsigned complexity
)
3034 cost
.cost
= runtime
;
3035 cost
.complexity
= complexity
;
3040 /* Returns true if COST is infinite. */
3043 infinite_cost_p (comp_cost cost
)
3045 return cost
.cost
== INFTY
;
3048 /* Adds costs COST1 and COST2. */
3051 add_costs (comp_cost cost1
, comp_cost cost2
)
3053 if (infinite_cost_p (cost1
) || infinite_cost_p (cost2
))
3054 return infinite_cost
;
3056 cost1
.cost
+= cost2
.cost
;
3057 cost1
.complexity
+= cost2
.complexity
;
3061 /* Subtracts costs COST1 and COST2. */
3064 sub_costs (comp_cost cost1
, comp_cost cost2
)
3066 cost1
.cost
-= cost2
.cost
;
3067 cost1
.complexity
-= cost2
.complexity
;
3072 /* Returns a negative number if COST1 < COST2, a positive number if
3073 COST1 > COST2, and 0 if COST1 = COST2. */
3076 compare_costs (comp_cost cost1
, comp_cost cost2
)
3078 if (cost1
.cost
== cost2
.cost
)
3079 return cost1
.complexity
- cost2
.complexity
;
3081 return cost1
.cost
- cost2
.cost
;
3084 /* Sets cost of (USE, CANDIDATE) pair to COST and record that it depends
3085 on invariants DEPENDS_ON and that the value used in expressing it
3086 is VALUE, and in case of iv elimination the comparison operator is COMP. */
3089 set_use_iv_cost (struct ivopts_data
*data
,
3090 struct iv_use
*use
, struct iv_cand
*cand
,
3091 comp_cost cost
, bitmap depends_on
, tree value
,
3092 enum tree_code comp
, int inv_expr_id
)
3096 if (infinite_cost_p (cost
))
3098 BITMAP_FREE (depends_on
);
3102 if (data
->consider_all_candidates
)
3104 use
->cost_map
[cand
->id
].cand
= cand
;
3105 use
->cost_map
[cand
->id
].cost
= cost
;
3106 use
->cost_map
[cand
->id
].depends_on
= depends_on
;
3107 use
->cost_map
[cand
->id
].value
= value
;
3108 use
->cost_map
[cand
->id
].comp
= comp
;
3109 use
->cost_map
[cand
->id
].inv_expr_id
= inv_expr_id
;
3113 /* n_map_members is a power of two, so this computes modulo. */
3114 s
= cand
->id
& (use
->n_map_members
- 1);
3115 for (i
= s
; i
< use
->n_map_members
; i
++)
3116 if (!use
->cost_map
[i
].cand
)
3118 for (i
= 0; i
< s
; i
++)
3119 if (!use
->cost_map
[i
].cand
)
3125 use
->cost_map
[i
].cand
= cand
;
3126 use
->cost_map
[i
].cost
= cost
;
3127 use
->cost_map
[i
].depends_on
= depends_on
;
3128 use
->cost_map
[i
].value
= value
;
3129 use
->cost_map
[i
].comp
= comp
;
3130 use
->cost_map
[i
].inv_expr_id
= inv_expr_id
;
3133 /* Gets cost of (USE, CANDIDATE) pair. */
3135 static struct cost_pair
*
3136 get_use_iv_cost (struct ivopts_data
*data
, struct iv_use
*use
,
3137 struct iv_cand
*cand
)
3140 struct cost_pair
*ret
;
3145 if (data
->consider_all_candidates
)
3147 ret
= use
->cost_map
+ cand
->id
;
3154 /* n_map_members is a power of two, so this computes modulo. */
3155 s
= cand
->id
& (use
->n_map_members
- 1);
3156 for (i
= s
; i
< use
->n_map_members
; i
++)
3157 if (use
->cost_map
[i
].cand
== cand
)
3158 return use
->cost_map
+ i
;
3159 else if (use
->cost_map
[i
].cand
== NULL
)
3161 for (i
= 0; i
< s
; i
++)
3162 if (use
->cost_map
[i
].cand
== cand
)
3163 return use
->cost_map
+ i
;
3164 else if (use
->cost_map
[i
].cand
== NULL
)
3170 /* Produce DECL_RTL for object obj so it looks like it is stored in memory. */
3172 produce_memory_decl_rtl (tree obj
, int *regno
)
3174 addr_space_t as
= TYPE_ADDR_SPACE (TREE_TYPE (obj
));
3175 machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
3179 if (TREE_STATIC (obj
) || DECL_EXTERNAL (obj
))
3181 const char *name
= IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (obj
));
3182 x
= gen_rtx_SYMBOL_REF (address_mode
, name
);
3183 SET_SYMBOL_REF_DECL (x
, obj
);
3184 x
= gen_rtx_MEM (DECL_MODE (obj
), x
);
3185 set_mem_addr_space (x
, as
);
3186 targetm
.encode_section_info (obj
, x
, true);
3190 x
= gen_raw_REG (address_mode
, (*regno
)++);
3191 x
= gen_rtx_MEM (DECL_MODE (obj
), x
);
3192 set_mem_addr_space (x
, as
);
3198 /* Prepares decl_rtl for variables referred in *EXPR_P. Callback for
3199 walk_tree. DATA contains the actual fake register number. */
3202 prepare_decl_rtl (tree
*expr_p
, int *ws
, void *data
)
3204 tree obj
= NULL_TREE
;
3206 int *regno
= (int *) data
;
3208 switch (TREE_CODE (*expr_p
))
3211 for (expr_p
= &TREE_OPERAND (*expr_p
, 0);
3212 handled_component_p (*expr_p
);
3213 expr_p
= &TREE_OPERAND (*expr_p
, 0))
3216 if (DECL_P (obj
) && HAS_RTL_P (obj
) && !DECL_RTL_SET_P (obj
))
3217 x
= produce_memory_decl_rtl (obj
, regno
);
3222 obj
= SSA_NAME_VAR (*expr_p
);
3223 /* Defer handling of anonymous SSA_NAMEs to the expander. */
3226 if (!DECL_RTL_SET_P (obj
))
3227 x
= gen_raw_REG (DECL_MODE (obj
), (*regno
)++);
3236 if (DECL_RTL_SET_P (obj
))
3239 if (DECL_MODE (obj
) == BLKmode
)
3240 x
= produce_memory_decl_rtl (obj
, regno
);
3242 x
= gen_raw_REG (DECL_MODE (obj
), (*regno
)++);
3252 decl_rtl_to_reset
.safe_push (obj
);
3253 SET_DECL_RTL (obj
, x
);
3259 /* Determines cost of the computation of EXPR. */
3262 computation_cost (tree expr
, bool speed
)
3266 tree type
= TREE_TYPE (expr
);
3268 /* Avoid using hard regs in ways which may be unsupported. */
3269 int regno
= LAST_VIRTUAL_REGISTER
+ 1;
3270 struct cgraph_node
*node
= cgraph_node::get (current_function_decl
);
3271 enum node_frequency real_frequency
= node
->frequency
;
3273 node
->frequency
= NODE_FREQUENCY_NORMAL
;
3274 crtl
->maybe_hot_insn_p
= speed
;
3275 walk_tree (&expr
, prepare_decl_rtl
, ®no
, NULL
);
3277 rslt
= expand_expr (expr
, NULL_RTX
, TYPE_MODE (type
), EXPAND_NORMAL
);
3280 default_rtl_profile ();
3281 node
->frequency
= real_frequency
;
3283 cost
= seq_cost (seq
, speed
);
3285 cost
+= address_cost (XEXP (rslt
, 0), TYPE_MODE (type
),
3286 TYPE_ADDR_SPACE (type
), speed
);
3287 else if (!REG_P (rslt
))
3288 cost
+= set_src_cost (rslt
, speed
);
3293 /* Returns variable containing the value of candidate CAND at statement AT. */
3296 var_at_stmt (struct loop
*loop
, struct iv_cand
*cand
, gimple stmt
)
3298 if (stmt_after_increment (loop
, cand
, stmt
))
3299 return cand
->var_after
;
3301 return cand
->var_before
;
3304 /* If A is (TYPE) BA and B is (TYPE) BB, and the types of BA and BB have the
3305 same precision that is at least as wide as the precision of TYPE, stores
3306 BA to A and BB to B, and returns the type of BA. Otherwise, returns the
3310 determine_common_wider_type (tree
*a
, tree
*b
)
3312 tree wider_type
= NULL
;
3314 tree atype
= TREE_TYPE (*a
);
3316 if (CONVERT_EXPR_P (*a
))
3318 suba
= TREE_OPERAND (*a
, 0);
3319 wider_type
= TREE_TYPE (suba
);
3320 if (TYPE_PRECISION (wider_type
) < TYPE_PRECISION (atype
))
3326 if (CONVERT_EXPR_P (*b
))
3328 subb
= TREE_OPERAND (*b
, 0);
3329 if (TYPE_PRECISION (wider_type
) != TYPE_PRECISION (TREE_TYPE (subb
)))
3340 /* Determines the expression by that USE is expressed from induction variable
3341 CAND at statement AT in LOOP. The expression is stored in a decomposed
3342 form into AFF. Returns false if USE cannot be expressed using CAND. */
3345 get_computation_aff (struct loop
*loop
,
3346 struct iv_use
*use
, struct iv_cand
*cand
, gimple at
,
3347 struct aff_tree
*aff
)
3349 tree ubase
= use
->iv
->base
;
3350 tree ustep
= use
->iv
->step
;
3351 tree cbase
= cand
->iv
->base
;
3352 tree cstep
= cand
->iv
->step
, cstep_common
;
3353 tree utype
= TREE_TYPE (ubase
), ctype
= TREE_TYPE (cbase
);
3354 tree common_type
, var
;
3356 aff_tree cbase_aff
, var_aff
;
3359 if (TYPE_PRECISION (utype
) > TYPE_PRECISION (ctype
))
3361 /* We do not have a precision to express the values of use. */
3365 var
= var_at_stmt (loop
, cand
, at
);
3366 uutype
= unsigned_type_for (utype
);
3368 /* If the conversion is not noop, perform it. */
3369 if (TYPE_PRECISION (utype
) < TYPE_PRECISION (ctype
))
3371 cstep
= fold_convert (uutype
, cstep
);
3372 cbase
= fold_convert (uutype
, cbase
);
3373 var
= fold_convert (uutype
, var
);
3376 if (!constant_multiple_of (ustep
, cstep
, &rat
))
3379 /* In case both UBASE and CBASE are shortened to UUTYPE from some common
3380 type, we achieve better folding by computing their difference in this
3381 wider type, and cast the result to UUTYPE. We do not need to worry about
3382 overflows, as all the arithmetics will in the end be performed in UUTYPE
3384 common_type
= determine_common_wider_type (&ubase
, &cbase
);
3386 /* use = ubase - ratio * cbase + ratio * var. */
3387 tree_to_aff_combination (ubase
, common_type
, aff
);
3388 tree_to_aff_combination (cbase
, common_type
, &cbase_aff
);
3389 tree_to_aff_combination (var
, uutype
, &var_aff
);
3391 /* We need to shift the value if we are after the increment. */
3392 if (stmt_after_increment (loop
, cand
, at
))
3396 if (common_type
!= uutype
)
3397 cstep_common
= fold_convert (common_type
, cstep
);
3399 cstep_common
= cstep
;
3401 tree_to_aff_combination (cstep_common
, common_type
, &cstep_aff
);
3402 aff_combination_add (&cbase_aff
, &cstep_aff
);
3405 aff_combination_scale (&cbase_aff
, -rat
);
3406 aff_combination_add (aff
, &cbase_aff
);
3407 if (common_type
!= uutype
)
3408 aff_combination_convert (aff
, uutype
);
3410 aff_combination_scale (&var_aff
, rat
);
3411 aff_combination_add (aff
, &var_aff
);
3416 /* Return the type of USE. */
3419 get_use_type (struct iv_use
*use
)
3421 tree base_type
= TREE_TYPE (use
->iv
->base
);
3424 if (use
->type
== USE_ADDRESS
)
3426 /* The base_type may be a void pointer. Create a pointer type based on
3427 the mem_ref instead. */
3428 type
= build_pointer_type (TREE_TYPE (*use
->op_p
));
3429 gcc_assert (TYPE_ADDR_SPACE (TREE_TYPE (type
))
3430 == TYPE_ADDR_SPACE (TREE_TYPE (base_type
)));
3438 /* Determines the expression by that USE is expressed from induction variable
3439 CAND at statement AT in LOOP. The computation is unshared. */
3442 get_computation_at (struct loop
*loop
,
3443 struct iv_use
*use
, struct iv_cand
*cand
, gimple at
)
3446 tree type
= get_use_type (use
);
3448 if (!get_computation_aff (loop
, use
, cand
, at
, &aff
))
3450 unshare_aff_combination (&aff
);
3451 return fold_convert (type
, aff_combination_to_tree (&aff
));
3454 /* Determines the expression by that USE is expressed from induction variable
3455 CAND in LOOP. The computation is unshared. */
3458 get_computation (struct loop
*loop
, struct iv_use
*use
, struct iv_cand
*cand
)
3460 return get_computation_at (loop
, use
, cand
, use
->stmt
);
3463 /* Adjust the cost COST for being in loop setup rather than loop body.
3464 If we're optimizing for space, the loop setup overhead is constant;
3465 if we're optimizing for speed, amortize it over the per-iteration cost. */
3467 adjust_setup_cost (struct ivopts_data
*data
, unsigned cost
)
3471 else if (optimize_loop_for_speed_p (data
->current_loop
))
3472 return cost
/ avg_loop_niter (data
->current_loop
);
3477 /* Returns true if multiplying by RATIO is allowed in an address. Test the
3478 validity for a memory reference accessing memory of mode MODE in
3479 address space AS. */
3483 multiplier_allowed_in_address_p (HOST_WIDE_INT ratio
, machine_mode mode
,
3486 #define MAX_RATIO 128
3487 unsigned int data_index
= (int) as
* MAX_MACHINE_MODE
+ (int) mode
;
3488 static vec
<sbitmap
> valid_mult_list
;
3491 if (data_index
>= valid_mult_list
.length ())
3492 valid_mult_list
.safe_grow_cleared (data_index
+ 1);
3494 valid_mult
= valid_mult_list
[data_index
];
3497 machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
3498 rtx reg1
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 1);
3499 rtx reg2
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 2);
3503 valid_mult
= sbitmap_alloc (2 * MAX_RATIO
+ 1);
3504 bitmap_clear (valid_mult
);
3505 scaled
= gen_rtx_fmt_ee (MULT
, address_mode
, reg1
, NULL_RTX
);
3506 addr
= gen_rtx_fmt_ee (PLUS
, address_mode
, scaled
, reg2
);
3507 for (i
= -MAX_RATIO
; i
<= MAX_RATIO
; i
++)
3509 XEXP (scaled
, 1) = gen_int_mode (i
, address_mode
);
3510 if (memory_address_addr_space_p (mode
, addr
, as
)
3511 || memory_address_addr_space_p (mode
, scaled
, as
))
3512 bitmap_set_bit (valid_mult
, i
+ MAX_RATIO
);
3515 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3517 fprintf (dump_file
, " allowed multipliers:");
3518 for (i
= -MAX_RATIO
; i
<= MAX_RATIO
; i
++)
3519 if (bitmap_bit_p (valid_mult
, i
+ MAX_RATIO
))
3520 fprintf (dump_file
, " %d", (int) i
);
3521 fprintf (dump_file
, "\n");
3522 fprintf (dump_file
, "\n");
3525 valid_mult_list
[data_index
] = valid_mult
;
3528 if (ratio
> MAX_RATIO
|| ratio
< -MAX_RATIO
)
3531 return bitmap_bit_p (valid_mult
, ratio
+ MAX_RATIO
);
3534 /* Returns cost of address in shape symbol + var + OFFSET + RATIO * index.
3535 If SYMBOL_PRESENT is false, symbol is omitted. If VAR_PRESENT is false,
3536 variable is omitted. Compute the cost for a memory reference that accesses
3537 a memory location of mode MEM_MODE in address space AS.
3539 MAY_AUTOINC is set to true if the autoincrement (increasing index by
3540 size of MEM_MODE / RATIO) is available. To make this determination, we
3541 look at the size of the increment to be made, which is given in CSTEP.
3542 CSTEP may be zero if the step is unknown.
3543 STMT_AFTER_INC is true iff the statement we're looking at is after the
3544 increment of the original biv.
3546 TODO -- there must be some better way. This all is quite crude. */
3550 AINC_PRE_INC
, /* Pre increment. */
3551 AINC_PRE_DEC
, /* Pre decrement. */
3552 AINC_POST_INC
, /* Post increment. */
3553 AINC_POST_DEC
, /* Post decrement. */
3554 AINC_NONE
/* Also the number of auto increment types. */
3557 typedef struct address_cost_data_s
3559 HOST_WIDE_INT min_offset
, max_offset
;
3560 unsigned costs
[2][2][2][2];
3561 unsigned ainc_costs
[AINC_NONE
];
3562 } *address_cost_data
;
3566 get_address_cost (bool symbol_present
, bool var_present
,
3567 unsigned HOST_WIDE_INT offset
, HOST_WIDE_INT ratio
,
3568 HOST_WIDE_INT cstep
, machine_mode mem_mode
,
3569 addr_space_t as
, bool speed
,
3570 bool stmt_after_inc
, bool *may_autoinc
)
3572 machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
3573 static vec
<address_cost_data
> address_cost_data_list
;
3574 unsigned int data_index
= (int) as
* MAX_MACHINE_MODE
+ (int) mem_mode
;
3575 address_cost_data data
;
3576 static bool has_preinc
[MAX_MACHINE_MODE
], has_postinc
[MAX_MACHINE_MODE
];
3577 static bool has_predec
[MAX_MACHINE_MODE
], has_postdec
[MAX_MACHINE_MODE
];
3578 unsigned cost
, acost
, complexity
;
3579 enum ainc_type autoinc_type
;
3580 bool offset_p
, ratio_p
, autoinc
;
3581 HOST_WIDE_INT s_offset
, autoinc_offset
, msize
;
3582 unsigned HOST_WIDE_INT mask
;
3585 if (data_index
>= address_cost_data_list
.length ())
3586 address_cost_data_list
.safe_grow_cleared (data_index
+ 1);
3588 data
= address_cost_data_list
[data_index
];
3592 HOST_WIDE_INT rat
, off
= 0;
3593 int old_cse_not_expected
, width
;
3594 unsigned sym_p
, var_p
, off_p
, rat_p
, add_c
;
3599 data
= (address_cost_data
) xcalloc (1, sizeof (*data
));
3601 reg1
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 1);
3603 width
= GET_MODE_BITSIZE (address_mode
) - 1;
3604 if (width
> (HOST_BITS_PER_WIDE_INT
- 1))
3605 width
= HOST_BITS_PER_WIDE_INT
- 1;
3606 addr
= gen_rtx_fmt_ee (PLUS
, address_mode
, reg1
, NULL_RTX
);
3608 for (i
= width
; i
>= 0; i
--)
3610 off
= -((unsigned HOST_WIDE_INT
) 1 << i
);
3611 XEXP (addr
, 1) = gen_int_mode (off
, address_mode
);
3612 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
3615 data
->min_offset
= (i
== -1? 0 : off
);
3617 for (i
= width
; i
>= 0; i
--)
3619 off
= ((unsigned HOST_WIDE_INT
) 1 << i
) - 1;
3620 XEXP (addr
, 1) = gen_int_mode (off
, address_mode
);
3621 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
3623 /* For some strict-alignment targets, the offset must be naturally
3624 aligned. Try an aligned offset if mem_mode is not QImode. */
3625 off
= mem_mode
!= QImode
3626 ? ((unsigned HOST_WIDE_INT
) 1 << i
)
3627 - GET_MODE_SIZE (mem_mode
)
3631 XEXP (addr
, 1) = gen_int_mode (off
, address_mode
);
3632 if (memory_address_addr_space_p (mem_mode
, addr
, as
))
3638 data
->max_offset
= off
;
3640 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3642 fprintf (dump_file
, "get_address_cost:\n");
3643 fprintf (dump_file
, " min offset %s " HOST_WIDE_INT_PRINT_DEC
"\n",
3644 GET_MODE_NAME (mem_mode
),
3646 fprintf (dump_file
, " max offset %s " HOST_WIDE_INT_PRINT_DEC
"\n",
3647 GET_MODE_NAME (mem_mode
),
3652 for (i
= 2; i
<= MAX_RATIO
; i
++)
3653 if (multiplier_allowed_in_address_p (i
, mem_mode
, as
))
3659 /* Compute the cost of various addressing modes. */
3661 reg0
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 1);
3662 reg1
= gen_raw_REG (address_mode
, LAST_VIRTUAL_REGISTER
+ 2);
3664 if (USE_LOAD_PRE_DECREMENT (mem_mode
)
3665 || USE_STORE_PRE_DECREMENT (mem_mode
))
3667 addr
= gen_rtx_PRE_DEC (address_mode
, reg0
);
3668 has_predec
[mem_mode
]
3669 = memory_address_addr_space_p (mem_mode
, addr
, as
);
3671 if (has_predec
[mem_mode
])
3672 data
->ainc_costs
[AINC_PRE_DEC
]
3673 = address_cost (addr
, mem_mode
, as
, speed
);
3675 if (USE_LOAD_POST_DECREMENT (mem_mode
)
3676 || USE_STORE_POST_DECREMENT (mem_mode
))
3678 addr
= gen_rtx_POST_DEC (address_mode
, reg0
);
3679 has_postdec
[mem_mode
]
3680 = memory_address_addr_space_p (mem_mode
, addr
, as
);
3682 if (has_postdec
[mem_mode
])
3683 data
->ainc_costs
[AINC_POST_DEC
]
3684 = address_cost (addr
, mem_mode
, as
, speed
);
3686 if (USE_LOAD_PRE_INCREMENT (mem_mode
)
3687 || USE_STORE_PRE_DECREMENT (mem_mode
))
3689 addr
= gen_rtx_PRE_INC (address_mode
, reg0
);
3690 has_preinc
[mem_mode
]
3691 = memory_address_addr_space_p (mem_mode
, addr
, as
);
3693 if (has_preinc
[mem_mode
])
3694 data
->ainc_costs
[AINC_PRE_INC
]
3695 = address_cost (addr
, mem_mode
, as
, speed
);
3697 if (USE_LOAD_POST_INCREMENT (mem_mode
)
3698 || USE_STORE_POST_INCREMENT (mem_mode
))
3700 addr
= gen_rtx_POST_INC (address_mode
, reg0
);
3701 has_postinc
[mem_mode
]
3702 = memory_address_addr_space_p (mem_mode
, addr
, as
);
3704 if (has_postinc
[mem_mode
])
3705 data
->ainc_costs
[AINC_POST_INC
]
3706 = address_cost (addr
, mem_mode
, as
, speed
);
3708 for (i
= 0; i
< 16; i
++)
3711 var_p
= (i
>> 1) & 1;
3712 off_p
= (i
>> 2) & 1;
3713 rat_p
= (i
>> 3) & 1;
3717 addr
= gen_rtx_fmt_ee (MULT
, address_mode
, addr
,
3718 gen_int_mode (rat
, address_mode
));
3721 addr
= gen_rtx_fmt_ee (PLUS
, address_mode
, addr
, reg1
);
3725 base
= gen_rtx_SYMBOL_REF (address_mode
, ggc_strdup (""));
3726 /* ??? We can run into trouble with some backends by presenting
3727 it with symbols which haven't been properly passed through
3728 targetm.encode_section_info. By setting the local bit, we
3729 enhance the probability of things working. */
3730 SYMBOL_REF_FLAGS (base
) = SYMBOL_FLAG_LOCAL
;
3733 base
= gen_rtx_fmt_e (CONST
, address_mode
,
3735 (PLUS
, address_mode
, base
,
3736 gen_int_mode (off
, address_mode
)));
3739 base
= gen_int_mode (off
, address_mode
);
3744 addr
= gen_rtx_fmt_ee (PLUS
, address_mode
, addr
, base
);
3747 /* To avoid splitting addressing modes, pretend that no cse will
3749 old_cse_not_expected
= cse_not_expected
;
3750 cse_not_expected
= true;
3751 addr
= memory_address_addr_space (mem_mode
, addr
, as
);
3752 cse_not_expected
= old_cse_not_expected
;
3756 acost
= seq_cost (seq
, speed
);
3757 acost
+= address_cost (addr
, mem_mode
, as
, speed
);
3761 data
->costs
[sym_p
][var_p
][off_p
][rat_p
] = acost
;
3764 /* On some targets, it is quite expensive to load symbol to a register,
3765 which makes addresses that contain symbols look much more expensive.
3766 However, the symbol will have to be loaded in any case before the
3767 loop (and quite likely we have it in register already), so it does not
3768 make much sense to penalize them too heavily. So make some final
3769 tweaks for the SYMBOL_PRESENT modes:
3771 If VAR_PRESENT is false, and the mode obtained by changing symbol to
3772 var is cheaper, use this mode with small penalty.
3773 If VAR_PRESENT is true, try whether the mode with
3774 SYMBOL_PRESENT = false is cheaper even with cost of addition, and
3775 if this is the case, use it. */
3776 add_c
= add_cost (speed
, address_mode
);
3777 for (i
= 0; i
< 8; i
++)
3780 off_p
= (i
>> 1) & 1;
3781 rat_p
= (i
>> 2) & 1;
3783 acost
= data
->costs
[0][1][off_p
][rat_p
] + 1;
3787 if (acost
< data
->costs
[1][var_p
][off_p
][rat_p
])
3788 data
->costs
[1][var_p
][off_p
][rat_p
] = acost
;
3791 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3793 fprintf (dump_file
, "Address costs:\n");
3795 for (i
= 0; i
< 16; i
++)
3798 var_p
= (i
>> 1) & 1;
3799 off_p
= (i
>> 2) & 1;
3800 rat_p
= (i
>> 3) & 1;
3802 fprintf (dump_file
, " ");
3804 fprintf (dump_file
, "sym + ");
3806 fprintf (dump_file
, "var + ");
3808 fprintf (dump_file
, "cst + ");
3810 fprintf (dump_file
, "rat * ");
3812 acost
= data
->costs
[sym_p
][var_p
][off_p
][rat_p
];
3813 fprintf (dump_file
, "index costs %d\n", acost
);
3815 if (has_predec
[mem_mode
] || has_postdec
[mem_mode
]
3816 || has_preinc
[mem_mode
] || has_postinc
[mem_mode
])
3817 fprintf (dump_file
, " May include autoinc/dec\n");
3818 fprintf (dump_file
, "\n");
3821 address_cost_data_list
[data_index
] = data
;
3824 bits
= GET_MODE_BITSIZE (address_mode
);
3825 mask
= ~(~(unsigned HOST_WIDE_INT
) 0 << (bits
- 1) << 1);
3827 if ((offset
>> (bits
- 1) & 1))
3832 autoinc_type
= AINC_NONE
;
3833 msize
= GET_MODE_SIZE (mem_mode
);
3834 autoinc_offset
= offset
;
3836 autoinc_offset
+= ratio
* cstep
;
3837 if (symbol_present
|| var_present
|| ratio
!= 1)
3841 if (has_postinc
[mem_mode
] && autoinc_offset
== 0
3843 autoinc_type
= AINC_POST_INC
;
3844 else if (has_postdec
[mem_mode
] && autoinc_offset
== 0
3846 autoinc_type
= AINC_POST_DEC
;
3847 else if (has_preinc
[mem_mode
] && autoinc_offset
== msize
3849 autoinc_type
= AINC_PRE_INC
;
3850 else if (has_predec
[mem_mode
] && autoinc_offset
== -msize
3852 autoinc_type
= AINC_PRE_DEC
;
3854 if (autoinc_type
!= AINC_NONE
)
3859 offset_p
= (s_offset
!= 0
3860 && data
->min_offset
<= s_offset
3861 && s_offset
<= data
->max_offset
);
3862 ratio_p
= (ratio
!= 1
3863 && multiplier_allowed_in_address_p (ratio
, mem_mode
, as
));
3865 if (ratio
!= 1 && !ratio_p
)
3866 cost
+= mult_by_coeff_cost (ratio
, address_mode
, speed
);
3868 if (s_offset
&& !offset_p
&& !symbol_present
)
3869 cost
+= add_cost (speed
, address_mode
);
3872 *may_autoinc
= autoinc
;
3874 acost
= data
->ainc_costs
[autoinc_type
];
3876 acost
= data
->costs
[symbol_present
][var_present
][offset_p
][ratio_p
];
3877 complexity
= (symbol_present
!= 0) + (var_present
!= 0) + offset_p
+ ratio_p
;
3878 return new_cost (cost
+ acost
, complexity
);
3881 /* Calculate the SPEED or size cost of shiftadd EXPR in MODE. MULT is the
3882 the EXPR operand holding the shift. COST0 and COST1 are the costs for
3883 calculating the operands of EXPR. Returns true if successful, and returns
3884 the cost in COST. */
3887 get_shiftadd_cost (tree expr
, machine_mode mode
, comp_cost cost0
,
3888 comp_cost cost1
, tree mult
, bool speed
, comp_cost
*cost
)
3891 tree op1
= TREE_OPERAND (expr
, 1);
3892 tree cst
= TREE_OPERAND (mult
, 1);
3893 tree multop
= TREE_OPERAND (mult
, 0);
3894 int m
= exact_log2 (int_cst_value (cst
));
3895 int maxm
= MIN (BITS_PER_WORD
, GET_MODE_BITSIZE (mode
));
3896 int as_cost
, sa_cost
;
3899 if (!(m
>= 0 && m
< maxm
))
3902 mult_in_op1
= operand_equal_p (op1
, mult
, 0);
3904 as_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
3906 /* If the target has a cheap shift-and-add or shift-and-sub instruction,
3907 use that in preference to a shift insn followed by an add insn. */
3908 sa_cost
= (TREE_CODE (expr
) != MINUS_EXPR
3909 ? shiftadd_cost (speed
, mode
, m
)
3911 ? shiftsub1_cost (speed
, mode
, m
)
3912 : shiftsub0_cost (speed
, mode
, m
)));
3914 res
= new_cost (MIN (as_cost
, sa_cost
), 0);
3915 res
= add_costs (res
, mult_in_op1
? cost0
: cost1
);
3917 STRIP_NOPS (multop
);
3918 if (!is_gimple_val (multop
))
3919 res
= add_costs (res
, force_expr_to_var_cost (multop
, speed
));
3925 /* Estimates cost of forcing expression EXPR into a variable. */
3928 force_expr_to_var_cost (tree expr
, bool speed
)
3930 static bool costs_initialized
= false;
3931 static unsigned integer_cost
[2];
3932 static unsigned symbol_cost
[2];
3933 static unsigned address_cost
[2];
3935 comp_cost cost0
, cost1
, cost
;
3938 if (!costs_initialized
)
3940 tree type
= build_pointer_type (integer_type_node
);
3945 var
= create_tmp_var_raw (integer_type_node
, "test_var");
3946 TREE_STATIC (var
) = 1;
3947 x
= produce_memory_decl_rtl (var
, NULL
);
3948 SET_DECL_RTL (var
, x
);
3950 addr
= build1 (ADDR_EXPR
, type
, var
);
3953 for (i
= 0; i
< 2; i
++)
3955 integer_cost
[i
] = computation_cost (build_int_cst (integer_type_node
,
3958 symbol_cost
[i
] = computation_cost (addr
, i
) + 1;
3961 = computation_cost (fold_build_pointer_plus_hwi (addr
, 2000), i
) + 1;
3962 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3964 fprintf (dump_file
, "force_expr_to_var_cost %s costs:\n", i
? "speed" : "size");
3965 fprintf (dump_file
, " integer %d\n", (int) integer_cost
[i
]);
3966 fprintf (dump_file
, " symbol %d\n", (int) symbol_cost
[i
]);
3967 fprintf (dump_file
, " address %d\n", (int) address_cost
[i
]);
3968 fprintf (dump_file
, " other %d\n", (int) target_spill_cost
[i
]);
3969 fprintf (dump_file
, "\n");
3973 costs_initialized
= true;
3978 if (SSA_VAR_P (expr
))
3981 if (is_gimple_min_invariant (expr
))
3983 if (TREE_CODE (expr
) == INTEGER_CST
)
3984 return new_cost (integer_cost
[speed
], 0);
3986 if (TREE_CODE (expr
) == ADDR_EXPR
)
3988 tree obj
= TREE_OPERAND (expr
, 0);
3990 if (TREE_CODE (obj
) == VAR_DECL
3991 || TREE_CODE (obj
) == PARM_DECL
3992 || TREE_CODE (obj
) == RESULT_DECL
)
3993 return new_cost (symbol_cost
[speed
], 0);
3996 return new_cost (address_cost
[speed
], 0);
3999 switch (TREE_CODE (expr
))
4001 case POINTER_PLUS_EXPR
:
4005 op0
= TREE_OPERAND (expr
, 0);
4006 op1
= TREE_OPERAND (expr
, 1);
4013 op0
= TREE_OPERAND (expr
, 0);
4019 /* Just an arbitrary value, FIXME. */
4020 return new_cost (target_spill_cost
[speed
], 0);
4023 if (op0
== NULL_TREE
4024 || TREE_CODE (op0
) == SSA_NAME
|| CONSTANT_CLASS_P (op0
))
4027 cost0
= force_expr_to_var_cost (op0
, speed
);
4029 if (op1
== NULL_TREE
4030 || TREE_CODE (op1
) == SSA_NAME
|| CONSTANT_CLASS_P (op1
))
4033 cost1
= force_expr_to_var_cost (op1
, speed
);
4035 mode
= TYPE_MODE (TREE_TYPE (expr
));
4036 switch (TREE_CODE (expr
))
4038 case POINTER_PLUS_EXPR
:
4042 cost
= new_cost (add_cost (speed
, mode
), 0);
4043 if (TREE_CODE (expr
) != NEGATE_EXPR
)
4045 tree mult
= NULL_TREE
;
4047 if (TREE_CODE (op1
) == MULT_EXPR
)
4049 else if (TREE_CODE (op0
) == MULT_EXPR
)
4052 if (mult
!= NULL_TREE
4053 && cst_and_fits_in_hwi (TREE_OPERAND (mult
, 1))
4054 && get_shiftadd_cost (expr
, mode
, cost0
, cost1
, mult
,
4062 tree inner_mode
, outer_mode
;
4063 outer_mode
= TREE_TYPE (expr
);
4064 inner_mode
= TREE_TYPE (op0
);
4065 cost
= new_cost (convert_cost (TYPE_MODE (outer_mode
),
4066 TYPE_MODE (inner_mode
), speed
), 0);
4071 if (cst_and_fits_in_hwi (op0
))
4072 cost
= new_cost (mult_by_coeff_cost (int_cst_value (op0
),
4074 else if (cst_and_fits_in_hwi (op1
))
4075 cost
= new_cost (mult_by_coeff_cost (int_cst_value (op1
),
4078 return new_cost (target_spill_cost
[speed
], 0);
4085 cost
= add_costs (cost
, cost0
);
4086 cost
= add_costs (cost
, cost1
);
4088 /* Bound the cost by target_spill_cost. The parts of complicated
4089 computations often are either loop invariant or at least can
4090 be shared between several iv uses, so letting this grow without
4091 limits would not give reasonable results. */
4092 if (cost
.cost
> (int) target_spill_cost
[speed
])
4093 cost
.cost
= target_spill_cost
[speed
];
4098 /* Estimates cost of forcing EXPR into a variable. DEPENDS_ON is a set of the
4099 invariants the computation depends on. */
4102 force_var_cost (struct ivopts_data
*data
,
4103 tree expr
, bitmap
*depends_on
)
4107 fd_ivopts_data
= data
;
4108 walk_tree (&expr
, find_depends
, depends_on
, NULL
);
4111 return force_expr_to_var_cost (expr
, data
->speed
);
4114 /* Estimates cost of expressing address ADDR as var + symbol + offset. The
4115 value of offset is added to OFFSET, SYMBOL_PRESENT and VAR_PRESENT are set
4116 to false if the corresponding part is missing. DEPENDS_ON is a set of the
4117 invariants the computation depends on. */
4120 split_address_cost (struct ivopts_data
*data
,
4121 tree addr
, bool *symbol_present
, bool *var_present
,
4122 unsigned HOST_WIDE_INT
*offset
, bitmap
*depends_on
)
4125 HOST_WIDE_INT bitsize
;
4126 HOST_WIDE_INT bitpos
;
4129 int unsignedp
, volatilep
;
4131 core
= get_inner_reference (addr
, &bitsize
, &bitpos
, &toffset
, &mode
,
4132 &unsignedp
, &volatilep
, false);
4135 || bitpos
% BITS_PER_UNIT
!= 0
4136 || TREE_CODE (core
) != VAR_DECL
)
4138 *symbol_present
= false;
4139 *var_present
= true;
4140 fd_ivopts_data
= data
;
4141 walk_tree (&addr
, find_depends
, depends_on
, NULL
);
4142 return new_cost (target_spill_cost
[data
->speed
], 0);
4145 *offset
+= bitpos
/ BITS_PER_UNIT
;
4146 if (TREE_STATIC (core
)
4147 || DECL_EXTERNAL (core
))
4149 *symbol_present
= true;
4150 *var_present
= false;
4154 *symbol_present
= false;
4155 *var_present
= true;
4159 /* Estimates cost of expressing difference of addresses E1 - E2 as
4160 var + symbol + offset. The value of offset is added to OFFSET,
4161 SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
4162 part is missing. DEPENDS_ON is a set of the invariants the computation
4166 ptr_difference_cost (struct ivopts_data
*data
,
4167 tree e1
, tree e2
, bool *symbol_present
, bool *var_present
,
4168 unsigned HOST_WIDE_INT
*offset
, bitmap
*depends_on
)
4170 HOST_WIDE_INT diff
= 0;
4171 aff_tree aff_e1
, aff_e2
;
4174 gcc_assert (TREE_CODE (e1
) == ADDR_EXPR
);
4176 if (ptr_difference_const (e1
, e2
, &diff
))
4179 *symbol_present
= false;
4180 *var_present
= false;
4184 if (integer_zerop (e2
))
4185 return split_address_cost (data
, TREE_OPERAND (e1
, 0),
4186 symbol_present
, var_present
, offset
, depends_on
);
4188 *symbol_present
= false;
4189 *var_present
= true;
4191 type
= signed_type_for (TREE_TYPE (e1
));
4192 tree_to_aff_combination (e1
, type
, &aff_e1
);
4193 tree_to_aff_combination (e2
, type
, &aff_e2
);
4194 aff_combination_scale (&aff_e2
, -1);
4195 aff_combination_add (&aff_e1
, &aff_e2
);
4197 return force_var_cost (data
, aff_combination_to_tree (&aff_e1
), depends_on
);
4200 /* Estimates cost of expressing difference E1 - E2 as
4201 var + symbol + offset. The value of offset is added to OFFSET,
4202 SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
4203 part is missing. DEPENDS_ON is a set of the invariants the computation
4207 difference_cost (struct ivopts_data
*data
,
4208 tree e1
, tree e2
, bool *symbol_present
, bool *var_present
,
4209 unsigned HOST_WIDE_INT
*offset
, bitmap
*depends_on
)
4211 machine_mode mode
= TYPE_MODE (TREE_TYPE (e1
));
4212 unsigned HOST_WIDE_INT off1
, off2
;
4213 aff_tree aff_e1
, aff_e2
;
4216 e1
= strip_offset (e1
, &off1
);
4217 e2
= strip_offset (e2
, &off2
);
4218 *offset
+= off1
- off2
;
4223 if (TREE_CODE (e1
) == ADDR_EXPR
)
4224 return ptr_difference_cost (data
, e1
, e2
, symbol_present
, var_present
,
4225 offset
, depends_on
);
4226 *symbol_present
= false;
4228 if (operand_equal_p (e1
, e2
, 0))
4230 *var_present
= false;
4234 *var_present
= true;
4236 if (integer_zerop (e2
))
4237 return force_var_cost (data
, e1
, depends_on
);
4239 if (integer_zerop (e1
))
4241 comp_cost cost
= force_var_cost (data
, e2
, depends_on
);
4242 cost
.cost
+= mult_by_coeff_cost (-1, mode
, data
->speed
);
4246 type
= signed_type_for (TREE_TYPE (e1
));
4247 tree_to_aff_combination (e1
, type
, &aff_e1
);
4248 tree_to_aff_combination (e2
, type
, &aff_e2
);
4249 aff_combination_scale (&aff_e2
, -1);
4250 aff_combination_add (&aff_e1
, &aff_e2
);
4252 return force_var_cost (data
, aff_combination_to_tree (&aff_e1
), depends_on
);
4255 /* Returns true if AFF1 and AFF2 are identical. */
4258 compare_aff_trees (aff_tree
*aff1
, aff_tree
*aff2
)
4262 if (aff1
->n
!= aff2
->n
)
4265 for (i
= 0; i
< aff1
->n
; i
++)
4267 if (aff1
->elts
[i
].coef
!= aff2
->elts
[i
].coef
)
4270 if (!operand_equal_p (aff1
->elts
[i
].val
, aff2
->elts
[i
].val
, 0))
4276 /* Stores EXPR in DATA->inv_expr_tab, and assigns it an inv_expr_id. */
4279 get_expr_id (struct ivopts_data
*data
, tree expr
)
4281 struct iv_inv_expr_ent ent
;
4282 struct iv_inv_expr_ent
**slot
;
4285 ent
.hash
= iterative_hash_expr (expr
, 0);
4286 slot
= data
->inv_expr_tab
->find_slot (&ent
, INSERT
);
4290 *slot
= XNEW (struct iv_inv_expr_ent
);
4291 (*slot
)->expr
= expr
;
4292 (*slot
)->hash
= ent
.hash
;
4293 (*slot
)->id
= data
->inv_expr_id
++;
4297 /* Returns the pseudo expr id if expression UBASE - RATIO * CBASE
4298 requires a new compiler generated temporary. Returns -1 otherwise.
4299 ADDRESS_P is a flag indicating if the expression is for address
4303 get_loop_invariant_expr_id (struct ivopts_data
*data
, tree ubase
,
4304 tree cbase
, HOST_WIDE_INT ratio
,
4307 aff_tree ubase_aff
, cbase_aff
;
4315 if ((TREE_CODE (ubase
) == INTEGER_CST
)
4316 && (TREE_CODE (cbase
) == INTEGER_CST
))
4319 /* Strips the constant part. */
4320 if (TREE_CODE (ubase
) == PLUS_EXPR
4321 || TREE_CODE (ubase
) == MINUS_EXPR
4322 || TREE_CODE (ubase
) == POINTER_PLUS_EXPR
)
4324 if (TREE_CODE (TREE_OPERAND (ubase
, 1)) == INTEGER_CST
)
4325 ubase
= TREE_OPERAND (ubase
, 0);
4328 /* Strips the constant part. */
4329 if (TREE_CODE (cbase
) == PLUS_EXPR
4330 || TREE_CODE (cbase
) == MINUS_EXPR
4331 || TREE_CODE (cbase
) == POINTER_PLUS_EXPR
)
4333 if (TREE_CODE (TREE_OPERAND (cbase
, 1)) == INTEGER_CST
)
4334 cbase
= TREE_OPERAND (cbase
, 0);
4339 if (((TREE_CODE (ubase
) == SSA_NAME
)
4340 || (TREE_CODE (ubase
) == ADDR_EXPR
4341 && is_gimple_min_invariant (ubase
)))
4342 && (TREE_CODE (cbase
) == INTEGER_CST
))
4345 if (((TREE_CODE (cbase
) == SSA_NAME
)
4346 || (TREE_CODE (cbase
) == ADDR_EXPR
4347 && is_gimple_min_invariant (cbase
)))
4348 && (TREE_CODE (ubase
) == INTEGER_CST
))
4354 if (operand_equal_p (ubase
, cbase
, 0))
4357 if (TREE_CODE (ubase
) == ADDR_EXPR
4358 && TREE_CODE (cbase
) == ADDR_EXPR
)
4362 usym
= TREE_OPERAND (ubase
, 0);
4363 csym
= TREE_OPERAND (cbase
, 0);
4364 if (TREE_CODE (usym
) == ARRAY_REF
)
4366 tree ind
= TREE_OPERAND (usym
, 1);
4367 if (TREE_CODE (ind
) == INTEGER_CST
4368 && tree_fits_shwi_p (ind
)
4369 && tree_to_shwi (ind
) == 0)
4370 usym
= TREE_OPERAND (usym
, 0);
4372 if (TREE_CODE (csym
) == ARRAY_REF
)
4374 tree ind
= TREE_OPERAND (csym
, 1);
4375 if (TREE_CODE (ind
) == INTEGER_CST
4376 && tree_fits_shwi_p (ind
)
4377 && tree_to_shwi (ind
) == 0)
4378 csym
= TREE_OPERAND (csym
, 0);
4380 if (operand_equal_p (usym
, csym
, 0))
4383 /* Now do more complex comparison */
4384 tree_to_aff_combination (ubase
, TREE_TYPE (ubase
), &ubase_aff
);
4385 tree_to_aff_combination (cbase
, TREE_TYPE (cbase
), &cbase_aff
);
4386 if (compare_aff_trees (&ubase_aff
, &cbase_aff
))
4390 tree_to_aff_combination (ub
, TREE_TYPE (ub
), &ubase_aff
);
4391 tree_to_aff_combination (cb
, TREE_TYPE (cb
), &cbase_aff
);
4393 aff_combination_scale (&cbase_aff
, -1 * ratio
);
4394 aff_combination_add (&ubase_aff
, &cbase_aff
);
4395 expr
= aff_combination_to_tree (&ubase_aff
);
4396 return get_expr_id (data
, expr
);
4401 /* Determines the cost of the computation by that USE is expressed
4402 from induction variable CAND. If ADDRESS_P is true, we just need
4403 to create an address from it, otherwise we want to get it into
4404 register. A set of invariants we depend on is stored in
4405 DEPENDS_ON. AT is the statement at that the value is computed.
4406 If CAN_AUTOINC is nonnull, use it to record whether autoinc
4407 addressing is likely. */
4410 get_computation_cost_at (struct ivopts_data
*data
,
4411 struct iv_use
*use
, struct iv_cand
*cand
,
4412 bool address_p
, bitmap
*depends_on
, gimple at
,
4416 tree ubase
= use
->iv
->base
, ustep
= use
->iv
->step
;
4418 tree utype
= TREE_TYPE (ubase
), ctype
;
4419 unsigned HOST_WIDE_INT cstepi
, offset
= 0;
4420 HOST_WIDE_INT ratio
, aratio
;
4421 bool var_present
, symbol_present
, stmt_is_after_inc
;
4424 bool speed
= optimize_bb_for_speed_p (gimple_bb (at
));
4425 machine_mode mem_mode
= (address_p
4426 ? TYPE_MODE (TREE_TYPE (*use
->op_p
))
4431 /* Only consider real candidates. */
4433 return infinite_cost
;
4435 cbase
= cand
->iv
->base
;
4436 cstep
= cand
->iv
->step
;
4437 ctype
= TREE_TYPE (cbase
);
4439 if (TYPE_PRECISION (utype
) > TYPE_PRECISION (ctype
))
4441 /* We do not have a precision to express the values of use. */
4442 return infinite_cost
;
4446 || (use
->iv
->base_object
4447 && cand
->iv
->base_object
4448 && POINTER_TYPE_P (TREE_TYPE (use
->iv
->base_object
))
4449 && POINTER_TYPE_P (TREE_TYPE (cand
->iv
->base_object
))))
4451 /* Do not try to express address of an object with computation based
4452 on address of a different object. This may cause problems in rtl
4453 level alias analysis (that does not expect this to be happening,
4454 as this is illegal in C), and would be unlikely to be useful
4456 if (use
->iv
->base_object
4457 && cand
->iv
->base_object
4458 && !operand_equal_p (use
->iv
->base_object
, cand
->iv
->base_object
, 0))
4459 return infinite_cost
;
4462 if (TYPE_PRECISION (utype
) < TYPE_PRECISION (ctype
))
4464 /* TODO -- add direct handling of this case. */
4468 /* CSTEPI is removed from the offset in case statement is after the
4469 increment. If the step is not constant, we use zero instead.
4470 This is a bit imprecise (there is the extra addition), but
4471 redundancy elimination is likely to transform the code so that
4472 it uses value of the variable before increment anyway,
4473 so it is not that much unrealistic. */
4474 if (cst_and_fits_in_hwi (cstep
))
4475 cstepi
= int_cst_value (cstep
);
4479 if (!constant_multiple_of (ustep
, cstep
, &rat
))
4480 return infinite_cost
;
4482 if (wi::fits_shwi_p (rat
))
4483 ratio
= rat
.to_shwi ();
4485 return infinite_cost
;
4488 ctype
= TREE_TYPE (cbase
);
4490 stmt_is_after_inc
= stmt_after_increment (data
->current_loop
, cand
, at
);
4492 /* use = ubase + ratio * (var - cbase). If either cbase is a constant
4493 or ratio == 1, it is better to handle this like
4495 ubase - ratio * cbase + ratio * var
4497 (also holds in the case ratio == -1, TODO. */
4499 if (cst_and_fits_in_hwi (cbase
))
4501 offset
= - ratio
* (unsigned HOST_WIDE_INT
) int_cst_value (cbase
);
4502 cost
= difference_cost (data
,
4503 ubase
, build_int_cst (utype
, 0),
4504 &symbol_present
, &var_present
, &offset
,
4506 cost
.cost
/= avg_loop_niter (data
->current_loop
);
4508 else if (ratio
== 1)
4510 tree real_cbase
= cbase
;
4512 /* Check to see if any adjustment is needed. */
4513 if (cstepi
== 0 && stmt_is_after_inc
)
4515 aff_tree real_cbase_aff
;
4518 tree_to_aff_combination (cbase
, TREE_TYPE (real_cbase
),
4520 tree_to_aff_combination (cstep
, TREE_TYPE (cstep
), &cstep_aff
);
4522 aff_combination_add (&real_cbase_aff
, &cstep_aff
);
4523 real_cbase
= aff_combination_to_tree (&real_cbase_aff
);
4526 cost
= difference_cost (data
,
4528 &symbol_present
, &var_present
, &offset
,
4530 cost
.cost
/= avg_loop_niter (data
->current_loop
);
4533 && !POINTER_TYPE_P (ctype
)
4534 && multiplier_allowed_in_address_p
4536 TYPE_ADDR_SPACE (TREE_TYPE (utype
))))
4539 = fold_build2 (MULT_EXPR
, ctype
, cbase
, build_int_cst (ctype
, ratio
));
4540 cost
= difference_cost (data
,
4542 &symbol_present
, &var_present
, &offset
,
4544 cost
.cost
/= avg_loop_niter (data
->current_loop
);
4548 cost
= force_var_cost (data
, cbase
, depends_on
);
4549 cost
= add_costs (cost
,
4550 difference_cost (data
,
4551 ubase
, build_int_cst (utype
, 0),
4552 &symbol_present
, &var_present
,
4553 &offset
, depends_on
));
4554 cost
.cost
/= avg_loop_niter (data
->current_loop
);
4555 cost
.cost
+= add_cost (data
->speed
, TYPE_MODE (ctype
));
4558 /* Set of invariants depended on by sub use has already been computed
4559 for the first use in the group. */
4563 if (depends_on
&& *depends_on
)
4564 bitmap_clear (*depends_on
);
4566 else if (inv_expr_id
)
4569 get_loop_invariant_expr_id (data
, ubase
, cbase
, ratio
, address_p
);
4570 /* Clear depends on. */
4571 if (*inv_expr_id
!= -1 && depends_on
&& *depends_on
)
4572 bitmap_clear (*depends_on
);
4575 /* If we are after the increment, the value of the candidate is higher by
4577 if (stmt_is_after_inc
)
4578 offset
-= ratio
* cstepi
;
4580 /* Now the computation is in shape symbol + var1 + const + ratio * var2.
4581 (symbol/var1/const parts may be omitted). If we are looking for an
4582 address, find the cost of addressing this. */
4584 return add_costs (cost
,
4585 get_address_cost (symbol_present
, var_present
,
4586 offset
, ratio
, cstepi
,
4588 TYPE_ADDR_SPACE (TREE_TYPE (utype
)),
4589 speed
, stmt_is_after_inc
,
4592 /* Otherwise estimate the costs for computing the expression. */
4593 if (!symbol_present
&& !var_present
&& !offset
)
4596 cost
.cost
+= mult_by_coeff_cost (ratio
, TYPE_MODE (ctype
), speed
);
4600 /* Symbol + offset should be compile-time computable so consider that they
4601 are added once to the variable, if present. */
4602 if (var_present
&& (symbol_present
|| offset
))
4603 cost
.cost
+= adjust_setup_cost (data
,
4604 add_cost (speed
, TYPE_MODE (ctype
)));
4606 /* Having offset does not affect runtime cost in case it is added to
4607 symbol, but it increases complexity. */
4611 cost
.cost
+= add_cost (speed
, TYPE_MODE (ctype
));
4613 aratio
= ratio
> 0 ? ratio
: -ratio
;
4615 cost
.cost
+= mult_by_coeff_cost (aratio
, TYPE_MODE (ctype
), speed
);
4620 *can_autoinc
= false;
4623 /* Just get the expression, expand it and measure the cost. */
4624 tree comp
= get_computation_at (data
->current_loop
, use
, cand
, at
);
4627 return infinite_cost
;
4630 comp
= build_simple_mem_ref (comp
);
4632 return new_cost (computation_cost (comp
, speed
), 0);
4636 /* Determines the cost of the computation by that USE is expressed
4637 from induction variable CAND. If ADDRESS_P is true, we just need
4638 to create an address from it, otherwise we want to get it into
4639 register. A set of invariants we depend on is stored in
4640 DEPENDS_ON. If CAN_AUTOINC is nonnull, use it to record whether
4641 autoinc addressing is likely. */
4644 get_computation_cost (struct ivopts_data
*data
,
4645 struct iv_use
*use
, struct iv_cand
*cand
,
4646 bool address_p
, bitmap
*depends_on
,
4647 bool *can_autoinc
, int *inv_expr_id
)
4649 return get_computation_cost_at (data
,
4650 use
, cand
, address_p
, depends_on
, use
->stmt
,
4651 can_autoinc
, inv_expr_id
);
4654 /* Determines cost of basing replacement of USE on CAND in a generic
4658 determine_use_iv_cost_generic (struct ivopts_data
*data
,
4659 struct iv_use
*use
, struct iv_cand
*cand
)
4663 int inv_expr_id
= -1;
4665 /* The simple case first -- if we need to express value of the preserved
4666 original biv, the cost is 0. This also prevents us from counting the
4667 cost of increment twice -- once at this use and once in the cost of
4669 if (cand
->pos
== IP_ORIGINAL
4670 && cand
->incremented_at
== use
->stmt
)
4672 set_use_iv_cost (data
, use
, cand
, no_cost
, NULL
, NULL_TREE
,
4677 cost
= get_computation_cost (data
, use
, cand
, false, &depends_on
,
4678 NULL
, &inv_expr_id
);
4680 set_use_iv_cost (data
, use
, cand
, cost
, depends_on
, NULL_TREE
, ERROR_MARK
,
4683 return !infinite_cost_p (cost
);
4686 /* Determines cost of basing replacement of USE on CAND in an address. */
4689 determine_use_iv_cost_address (struct ivopts_data
*data
,
4690 struct iv_use
*use
, struct iv_cand
*cand
)
4694 int inv_expr_id
= -1;
4695 struct iv_use
*sub_use
;
4697 comp_cost cost
= get_computation_cost (data
, use
, cand
, true, &depends_on
,
4698 &can_autoinc
, &inv_expr_id
);
4700 if (cand
->ainc_use
== use
)
4703 cost
.cost
-= cand
->cost_step
;
4704 /* If we generated the candidate solely for exploiting autoincrement
4705 opportunities, and it turns out it can't be used, set the cost to
4706 infinity to make sure we ignore it. */
4707 else if (cand
->pos
== IP_AFTER_USE
|| cand
->pos
== IP_BEFORE_USE
)
4708 cost
= infinite_cost
;
4710 for (sub_use
= use
->next
;
4711 sub_use
&& !infinite_cost_p (cost
);
4712 sub_use
= sub_use
->next
)
4714 sub_cost
= get_computation_cost (data
, sub_use
, cand
, true, &depends_on
,
4715 &can_autoinc
, &inv_expr_id
);
4716 cost
= add_costs (cost
, sub_cost
);
4719 set_use_iv_cost (data
, use
, cand
, cost
, depends_on
, NULL_TREE
, ERROR_MARK
,
4722 return !infinite_cost_p (cost
);
4725 /* Computes value of candidate CAND at position AT in iteration NITER, and
4726 stores it to VAL. */
4729 cand_value_at (struct loop
*loop
, struct iv_cand
*cand
, gimple at
, tree niter
,
4732 aff_tree step
, delta
, nit
;
4733 struct iv
*iv
= cand
->iv
;
4734 tree type
= TREE_TYPE (iv
->base
);
4735 tree steptype
= type
;
4736 if (POINTER_TYPE_P (type
))
4737 steptype
= sizetype
;
4738 steptype
= unsigned_type_for (type
);
4740 tree_to_aff_combination (iv
->step
, TREE_TYPE (iv
->step
), &step
);
4741 aff_combination_convert (&step
, steptype
);
4742 tree_to_aff_combination (niter
, TREE_TYPE (niter
), &nit
);
4743 aff_combination_convert (&nit
, steptype
);
4744 aff_combination_mult (&nit
, &step
, &delta
);
4745 if (stmt_after_increment (loop
, cand
, at
))
4746 aff_combination_add (&delta
, &step
);
4748 tree_to_aff_combination (iv
->base
, type
, val
);
4749 if (!POINTER_TYPE_P (type
))
4750 aff_combination_convert (val
, steptype
);
4751 aff_combination_add (val
, &delta
);
4754 /* Returns period of induction variable iv. */
4757 iv_period (struct iv
*iv
)
4759 tree step
= iv
->step
, period
, type
;
4762 gcc_assert (step
&& TREE_CODE (step
) == INTEGER_CST
);
4764 type
= unsigned_type_for (TREE_TYPE (step
));
4765 /* Period of the iv is lcm (step, type_range)/step -1,
4766 i.e., N*type_range/step - 1. Since type range is power
4767 of two, N == (step >> num_of_ending_zeros_binary (step),
4768 so the final result is
4770 (type_range >> num_of_ending_zeros_binary (step)) - 1
4773 pow2div
= num_ending_zeros (step
);
4775 period
= build_low_bits_mask (type
,
4776 (TYPE_PRECISION (type
)
4777 - tree_to_uhwi (pow2div
)));
4782 /* Returns the comparison operator used when eliminating the iv USE. */
4784 static enum tree_code
4785 iv_elimination_compare (struct ivopts_data
*data
, struct iv_use
*use
)
4787 struct loop
*loop
= data
->current_loop
;
4791 ex_bb
= gimple_bb (use
->stmt
);
4792 exit
= EDGE_SUCC (ex_bb
, 0);
4793 if (flow_bb_inside_loop_p (loop
, exit
->dest
))
4794 exit
= EDGE_SUCC (ex_bb
, 1);
4796 return (exit
->flags
& EDGE_TRUE_VALUE
? EQ_EXPR
: NE_EXPR
);
4799 /* Returns true if we can prove that BASE - OFFSET does not overflow. For now,
4800 we only detect the situation that BASE = SOMETHING + OFFSET, where the
4801 calculation is performed in non-wrapping type.
4803 TODO: More generally, we could test for the situation that
4804 BASE = SOMETHING + OFFSET' and OFFSET is between OFFSET' and zero.
4805 This would require knowing the sign of OFFSET. */
4808 difference_cannot_overflow_p (struct ivopts_data
*data
, tree base
, tree offset
)
4810 enum tree_code code
;
4812 aff_tree aff_e1
, aff_e2
, aff_offset
;
4814 if (!nowrap_type_p (TREE_TYPE (base
)))
4817 base
= expand_simple_operations (base
);
4819 if (TREE_CODE (base
) == SSA_NAME
)
4821 gimple stmt
= SSA_NAME_DEF_STMT (base
);
4823 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
4826 code
= gimple_assign_rhs_code (stmt
);
4827 if (get_gimple_rhs_class (code
) != GIMPLE_BINARY_RHS
)
4830 e1
= gimple_assign_rhs1 (stmt
);
4831 e2
= gimple_assign_rhs2 (stmt
);
4835 code
= TREE_CODE (base
);
4836 if (get_gimple_rhs_class (code
) != GIMPLE_BINARY_RHS
)
4838 e1
= TREE_OPERAND (base
, 0);
4839 e2
= TREE_OPERAND (base
, 1);
4842 /* Use affine expansion as deeper inspection to prove the equality. */
4843 tree_to_aff_combination_expand (e2
, TREE_TYPE (e2
),
4844 &aff_e2
, &data
->name_expansion_cache
);
4845 tree_to_aff_combination_expand (offset
, TREE_TYPE (offset
),
4846 &aff_offset
, &data
->name_expansion_cache
);
4847 aff_combination_scale (&aff_offset
, -1);
4851 aff_combination_add (&aff_e2
, &aff_offset
);
4852 if (aff_combination_zero_p (&aff_e2
))
4855 tree_to_aff_combination_expand (e1
, TREE_TYPE (e1
),
4856 &aff_e1
, &data
->name_expansion_cache
);
4857 aff_combination_add (&aff_e1
, &aff_offset
);
4858 return aff_combination_zero_p (&aff_e1
);
4860 case POINTER_PLUS_EXPR
:
4861 aff_combination_add (&aff_e2
, &aff_offset
);
4862 return aff_combination_zero_p (&aff_e2
);
4869 /* Tries to replace loop exit by one formulated in terms of a LT_EXPR
4870 comparison with CAND. NITER describes the number of iterations of
4871 the loops. If successful, the comparison in COMP_P is altered accordingly.
4873 We aim to handle the following situation:
4889 Here, the number of iterations of the loop is (a + 1 > b) ? 0 : b - a - 1.
4890 We aim to optimize this to
4898 while (p < p_0 - a + b);
4900 This preserves the correctness, since the pointer arithmetics does not
4901 overflow. More precisely:
4903 1) if a + 1 <= b, then p_0 - a + b is the final value of p, hence there is no
4904 overflow in computing it or the values of p.
4905 2) if a + 1 > b, then we need to verify that the expression p_0 - a does not
4906 overflow. To prove this, we use the fact that p_0 = base + a. */
4909 iv_elimination_compare_lt (struct ivopts_data
*data
,
4910 struct iv_cand
*cand
, enum tree_code
*comp_p
,
4911 struct tree_niter_desc
*niter
)
4913 tree cand_type
, a
, b
, mbz
, nit_type
= TREE_TYPE (niter
->niter
), offset
;
4914 struct aff_tree nit
, tmpa
, tmpb
;
4915 enum tree_code comp
;
4918 /* We need to know that the candidate induction variable does not overflow.
4919 While more complex analysis may be used to prove this, for now just
4920 check that the variable appears in the original program and that it
4921 is computed in a type that guarantees no overflows. */
4922 cand_type
= TREE_TYPE (cand
->iv
->base
);
4923 if (cand
->pos
!= IP_ORIGINAL
|| !nowrap_type_p (cand_type
))
4926 /* Make sure that the loop iterates till the loop bound is hit, as otherwise
4927 the calculation of the BOUND could overflow, making the comparison
4929 if (!data
->loop_single_exit_p
)
4932 /* We need to be able to decide whether candidate is increasing or decreasing
4933 in order to choose the right comparison operator. */
4934 if (!cst_and_fits_in_hwi (cand
->iv
->step
))
4936 step
= int_cst_value (cand
->iv
->step
);
4938 /* Check that the number of iterations matches the expected pattern:
4939 a + 1 > b ? 0 : b - a - 1. */
4940 mbz
= niter
->may_be_zero
;
4941 if (TREE_CODE (mbz
) == GT_EXPR
)
4943 /* Handle a + 1 > b. */
4944 tree op0
= TREE_OPERAND (mbz
, 0);
4945 if (TREE_CODE (op0
) == PLUS_EXPR
&& integer_onep (TREE_OPERAND (op0
, 1)))
4947 a
= TREE_OPERAND (op0
, 0);
4948 b
= TREE_OPERAND (mbz
, 1);
4953 else if (TREE_CODE (mbz
) == LT_EXPR
)
4955 tree op1
= TREE_OPERAND (mbz
, 1);
4957 /* Handle b < a + 1. */
4958 if (TREE_CODE (op1
) == PLUS_EXPR
&& integer_onep (TREE_OPERAND (op1
, 1)))
4960 a
= TREE_OPERAND (op1
, 0);
4961 b
= TREE_OPERAND (mbz
, 0);
4969 /* Expected number of iterations is B - A - 1. Check that it matches
4970 the actual number, i.e., that B - A - NITER = 1. */
4971 tree_to_aff_combination (niter
->niter
, nit_type
, &nit
);
4972 tree_to_aff_combination (fold_convert (nit_type
, a
), nit_type
, &tmpa
);
4973 tree_to_aff_combination (fold_convert (nit_type
, b
), nit_type
, &tmpb
);
4974 aff_combination_scale (&nit
, -1);
4975 aff_combination_scale (&tmpa
, -1);
4976 aff_combination_add (&tmpb
, &tmpa
);
4977 aff_combination_add (&tmpb
, &nit
);
4978 if (tmpb
.n
!= 0 || tmpb
.offset
!= 1)
4981 /* Finally, check that CAND->IV->BASE - CAND->IV->STEP * A does not
4983 offset
= fold_build2 (MULT_EXPR
, TREE_TYPE (cand
->iv
->step
),
4985 fold_convert (TREE_TYPE (cand
->iv
->step
), a
));
4986 if (!difference_cannot_overflow_p (data
, cand
->iv
->base
, offset
))
4989 /* Determine the new comparison operator. */
4990 comp
= step
< 0 ? GT_EXPR
: LT_EXPR
;
4991 if (*comp_p
== NE_EXPR
)
4993 else if (*comp_p
== EQ_EXPR
)
4994 *comp_p
= invert_tree_comparison (comp
, false);
5001 /* Check whether it is possible to express the condition in USE by comparison
5002 of candidate CAND. If so, store the value compared with to BOUND, and the
5003 comparison operator to COMP. */
5006 may_eliminate_iv (struct ivopts_data
*data
,
5007 struct iv_use
*use
, struct iv_cand
*cand
, tree
*bound
,
5008 enum tree_code
*comp
)
5013 struct loop
*loop
= data
->current_loop
;
5015 struct tree_niter_desc
*desc
= NULL
;
5017 if (TREE_CODE (cand
->iv
->step
) != INTEGER_CST
)
5020 /* For now works only for exits that dominate the loop latch.
5021 TODO: extend to other conditions inside loop body. */
5022 ex_bb
= gimple_bb (use
->stmt
);
5023 if (use
->stmt
!= last_stmt (ex_bb
)
5024 || gimple_code (use
->stmt
) != GIMPLE_COND
5025 || !dominated_by_p (CDI_DOMINATORS
, loop
->latch
, ex_bb
))
5028 exit
= EDGE_SUCC (ex_bb
, 0);
5029 if (flow_bb_inside_loop_p (loop
, exit
->dest
))
5030 exit
= EDGE_SUCC (ex_bb
, 1);
5031 if (flow_bb_inside_loop_p (loop
, exit
->dest
))
5034 desc
= niter_for_exit (data
, exit
);
5038 /* Determine whether we can use the variable to test the exit condition.
5039 This is the case iff the period of the induction variable is greater
5040 than the number of iterations for which the exit condition is true. */
5041 period
= iv_period (cand
->iv
);
5043 /* If the number of iterations is constant, compare against it directly. */
5044 if (TREE_CODE (desc
->niter
) == INTEGER_CST
)
5046 /* See cand_value_at. */
5047 if (stmt_after_increment (loop
, cand
, use
->stmt
))
5049 if (!tree_int_cst_lt (desc
->niter
, period
))
5054 if (tree_int_cst_lt (period
, desc
->niter
))
5059 /* If not, and if this is the only possible exit of the loop, see whether
5060 we can get a conservative estimate on the number of iterations of the
5061 entire loop and compare against that instead. */
5064 widest_int period_value
, max_niter
;
5066 max_niter
= desc
->max
;
5067 if (stmt_after_increment (loop
, cand
, use
->stmt
))
5069 period_value
= wi::to_widest (period
);
5070 if (wi::gtu_p (max_niter
, period_value
))
5072 /* See if we can take advantage of inferred loop bound information. */
5073 if (data
->loop_single_exit_p
)
5075 if (!max_loop_iterations (loop
, &max_niter
))
5077 /* The loop bound is already adjusted by adding 1. */
5078 if (wi::gtu_p (max_niter
, period_value
))
5086 cand_value_at (loop
, cand
, use
->stmt
, desc
->niter
, &bnd
);
5088 *bound
= fold_convert (TREE_TYPE (cand
->iv
->base
),
5089 aff_combination_to_tree (&bnd
));
5090 *comp
= iv_elimination_compare (data
, use
);
5092 /* It is unlikely that computing the number of iterations using division
5093 would be more profitable than keeping the original induction variable. */
5094 if (expression_expensive_p (*bound
))
5097 /* Sometimes, it is possible to handle the situation that the number of
5098 iterations may be zero unless additional assumtions by using <
5099 instead of != in the exit condition.
5101 TODO: we could also calculate the value MAY_BE_ZERO ? 0 : NITER and
5102 base the exit condition on it. However, that is often too
5104 if (!integer_zerop (desc
->may_be_zero
))
5105 return iv_elimination_compare_lt (data
, cand
, comp
, desc
);
5110 /* Calculates the cost of BOUND, if it is a PARM_DECL. A PARM_DECL must
5111 be copied, if is is used in the loop body and DATA->body_includes_call. */
5114 parm_decl_cost (struct ivopts_data
*data
, tree bound
)
5116 tree sbound
= bound
;
5117 STRIP_NOPS (sbound
);
5119 if (TREE_CODE (sbound
) == SSA_NAME
5120 && SSA_NAME_IS_DEFAULT_DEF (sbound
)
5121 && TREE_CODE (SSA_NAME_VAR (sbound
)) == PARM_DECL
5122 && data
->body_includes_call
)
5123 return COSTS_N_INSNS (1);
5128 /* Determines cost of basing replacement of USE on CAND in a condition. */
5131 determine_use_iv_cost_condition (struct ivopts_data
*data
,
5132 struct iv_use
*use
, struct iv_cand
*cand
)
5134 tree bound
= NULL_TREE
;
5136 bitmap depends_on_elim
= NULL
, depends_on_express
= NULL
, depends_on
;
5137 comp_cost elim_cost
, express_cost
, cost
, bound_cost
;
5139 int elim_inv_expr_id
= -1, express_inv_expr_id
= -1, inv_expr_id
;
5140 tree
*control_var
, *bound_cst
;
5141 enum tree_code comp
= ERROR_MARK
;
5143 /* Only consider real candidates. */
5146 set_use_iv_cost (data
, use
, cand
, infinite_cost
, NULL
, NULL_TREE
,
5151 /* Try iv elimination. */
5152 if (may_eliminate_iv (data
, use
, cand
, &bound
, &comp
))
5154 elim_cost
= force_var_cost (data
, bound
, &depends_on_elim
);
5155 if (elim_cost
.cost
== 0)
5156 elim_cost
.cost
= parm_decl_cost (data
, bound
);
5157 else if (TREE_CODE (bound
) == INTEGER_CST
)
5159 /* If we replace a loop condition 'i < n' with 'p < base + n',
5160 depends_on_elim will have 'base' and 'n' set, which implies
5161 that both 'base' and 'n' will be live during the loop. More likely,
5162 'base + n' will be loop invariant, resulting in only one live value
5163 during the loop. So in that case we clear depends_on_elim and set
5164 elim_inv_expr_id instead. */
5165 if (depends_on_elim
&& bitmap_count_bits (depends_on_elim
) > 1)
5167 elim_inv_expr_id
= get_expr_id (data
, bound
);
5168 bitmap_clear (depends_on_elim
);
5170 /* The bound is a loop invariant, so it will be only computed
5172 elim_cost
.cost
= adjust_setup_cost (data
, elim_cost
.cost
);
5175 elim_cost
= infinite_cost
;
5177 /* Try expressing the original giv. If it is compared with an invariant,
5178 note that we cannot get rid of it. */
5179 ok
= extract_cond_operands (data
, use
->stmt
, &control_var
, &bound_cst
,
5183 /* When the condition is a comparison of the candidate IV against
5184 zero, prefer this IV.
5186 TODO: The constant that we're subtracting from the cost should
5187 be target-dependent. This information should be added to the
5188 target costs for each backend. */
5189 if (!infinite_cost_p (elim_cost
) /* Do not try to decrease infinite! */
5190 && integer_zerop (*bound_cst
)
5191 && (operand_equal_p (*control_var
, cand
->var_after
, 0)
5192 || operand_equal_p (*control_var
, cand
->var_before
, 0)))
5193 elim_cost
.cost
-= 1;
5195 express_cost
= get_computation_cost (data
, use
, cand
, false,
5196 &depends_on_express
, NULL
,
5197 &express_inv_expr_id
);
5198 fd_ivopts_data
= data
;
5199 walk_tree (&cmp_iv
->base
, find_depends
, &depends_on_express
, NULL
);
5201 /* Count the cost of the original bound as well. */
5202 bound_cost
= force_var_cost (data
, *bound_cst
, NULL
);
5203 if (bound_cost
.cost
== 0)
5204 bound_cost
.cost
= parm_decl_cost (data
, *bound_cst
);
5205 else if (TREE_CODE (*bound_cst
) == INTEGER_CST
)
5206 bound_cost
.cost
= 0;
5207 express_cost
.cost
+= bound_cost
.cost
;
5209 /* Choose the better approach, preferring the eliminated IV. */
5210 if (compare_costs (elim_cost
, express_cost
) <= 0)
5213 depends_on
= depends_on_elim
;
5214 depends_on_elim
= NULL
;
5215 inv_expr_id
= elim_inv_expr_id
;
5219 cost
= express_cost
;
5220 depends_on
= depends_on_express
;
5221 depends_on_express
= NULL
;
5224 inv_expr_id
= express_inv_expr_id
;
5227 set_use_iv_cost (data
, use
, cand
, cost
, depends_on
, bound
, comp
, inv_expr_id
);
5229 if (depends_on_elim
)
5230 BITMAP_FREE (depends_on_elim
);
5231 if (depends_on_express
)
5232 BITMAP_FREE (depends_on_express
);
5234 return !infinite_cost_p (cost
);
5237 /* Determines cost of basing replacement of USE on CAND. Returns false
5238 if USE cannot be based on CAND. */
5241 determine_use_iv_cost (struct ivopts_data
*data
,
5242 struct iv_use
*use
, struct iv_cand
*cand
)
5246 case USE_NONLINEAR_EXPR
:
5247 return determine_use_iv_cost_generic (data
, use
, cand
);
5250 return determine_use_iv_cost_address (data
, use
, cand
);
5253 return determine_use_iv_cost_condition (data
, use
, cand
);
5260 /* Return true if get_computation_cost indicates that autoincrement is
5261 a possibility for the pair of USE and CAND, false otherwise. */
5264 autoinc_possible_for_pair (struct ivopts_data
*data
, struct iv_use
*use
,
5265 struct iv_cand
*cand
)
5271 if (use
->type
!= USE_ADDRESS
)
5274 cost
= get_computation_cost (data
, use
, cand
, true, &depends_on
,
5275 &can_autoinc
, NULL
);
5277 BITMAP_FREE (depends_on
);
5279 return !infinite_cost_p (cost
) && can_autoinc
;
5282 /* Examine IP_ORIGINAL candidates to see if they are incremented next to a
5283 use that allows autoincrement, and set their AINC_USE if possible. */
5286 set_autoinc_for_original_candidates (struct ivopts_data
*data
)
5290 for (i
= 0; i
< n_iv_cands (data
); i
++)
5292 struct iv_cand
*cand
= iv_cand (data
, i
);
5293 struct iv_use
*closest_before
= NULL
;
5294 struct iv_use
*closest_after
= NULL
;
5295 if (cand
->pos
!= IP_ORIGINAL
)
5298 for (j
= 0; j
< n_iv_uses (data
); j
++)
5300 struct iv_use
*use
= iv_use (data
, j
);
5301 unsigned uid
= gimple_uid (use
->stmt
);
5303 if (gimple_bb (use
->stmt
) != gimple_bb (cand
->incremented_at
))
5306 if (uid
< gimple_uid (cand
->incremented_at
)
5307 && (closest_before
== NULL
5308 || uid
> gimple_uid (closest_before
->stmt
)))
5309 closest_before
= use
;
5311 if (uid
> gimple_uid (cand
->incremented_at
)
5312 && (closest_after
== NULL
5313 || uid
< gimple_uid (closest_after
->stmt
)))
5314 closest_after
= use
;
5317 if (closest_before
!= NULL
5318 && autoinc_possible_for_pair (data
, closest_before
, cand
))
5319 cand
->ainc_use
= closest_before
;
5320 else if (closest_after
!= NULL
5321 && autoinc_possible_for_pair (data
, closest_after
, cand
))
5322 cand
->ainc_use
= closest_after
;
5326 /* Finds the candidates for the induction variables. */
5329 find_iv_candidates (struct ivopts_data
*data
)
5331 /* Add commonly used ivs. */
5332 add_standard_iv_candidates (data
);
5334 /* Add old induction variables. */
5335 add_old_ivs_candidates (data
);
5337 /* Add induction variables derived from uses. */
5338 add_derived_ivs_candidates (data
);
5340 set_autoinc_for_original_candidates (data
);
5342 /* Record the important candidates. */
5343 record_important_candidates (data
);
5346 /* Determines costs of basing the use of the iv on an iv candidate. */
5349 determine_use_iv_costs (struct ivopts_data
*data
)
5353 struct iv_cand
*cand
;
5354 bitmap to_clear
= BITMAP_ALLOC (NULL
);
5356 alloc_use_cost_map (data
);
5358 for (i
= 0; i
< n_iv_uses (data
); i
++)
5360 use
= iv_use (data
, i
);
5362 if (data
->consider_all_candidates
)
5364 for (j
= 0; j
< n_iv_cands (data
); j
++)
5366 cand
= iv_cand (data
, j
);
5367 determine_use_iv_cost (data
, use
, cand
);
5374 EXECUTE_IF_SET_IN_BITMAP (use
->related_cands
, 0, j
, bi
)
5376 cand
= iv_cand (data
, j
);
5377 if (!determine_use_iv_cost (data
, use
, cand
))
5378 bitmap_set_bit (to_clear
, j
);
5381 /* Remove the candidates for that the cost is infinite from
5382 the list of related candidates. */
5383 bitmap_and_compl_into (use
->related_cands
, to_clear
);
5384 bitmap_clear (to_clear
);
5388 BITMAP_FREE (to_clear
);
5390 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5392 fprintf (dump_file
, "Use-candidate costs:\n");
5394 for (i
= 0; i
< n_iv_uses (data
); i
++)
5396 use
= iv_use (data
, i
);
5398 fprintf (dump_file
, "Use %d:\n", i
);
5399 fprintf (dump_file
, " cand\tcost\tcompl.\tdepends on\n");
5400 for (j
= 0; j
< use
->n_map_members
; j
++)
5402 if (!use
->cost_map
[j
].cand
5403 || infinite_cost_p (use
->cost_map
[j
].cost
))
5406 fprintf (dump_file
, " %d\t%d\t%d\t",
5407 use
->cost_map
[j
].cand
->id
,
5408 use
->cost_map
[j
].cost
.cost
,
5409 use
->cost_map
[j
].cost
.complexity
);
5410 if (use
->cost_map
[j
].depends_on
)
5411 bitmap_print (dump_file
,
5412 use
->cost_map
[j
].depends_on
, "","");
5413 if (use
->cost_map
[j
].inv_expr_id
!= -1)
5414 fprintf (dump_file
, " inv_expr:%d", use
->cost_map
[j
].inv_expr_id
);
5415 fprintf (dump_file
, "\n");
5418 fprintf (dump_file
, "\n");
5420 fprintf (dump_file
, "\n");
5424 /* Determines cost of the candidate CAND. */
5427 determine_iv_cost (struct ivopts_data
*data
, struct iv_cand
*cand
)
5429 comp_cost cost_base
;
5430 unsigned cost
, cost_step
;
5439 /* There are two costs associated with the candidate -- its increment
5440 and its initialization. The second is almost negligible for any loop
5441 that rolls enough, so we take it just very little into account. */
5443 base
= cand
->iv
->base
;
5444 cost_base
= force_var_cost (data
, base
, NULL
);
5445 /* It will be exceptional that the iv register happens to be initialized with
5446 the proper value at no cost. In general, there will at least be a regcopy
5448 if (cost_base
.cost
== 0)
5449 cost_base
.cost
= COSTS_N_INSNS (1);
5450 cost_step
= add_cost (data
->speed
, TYPE_MODE (TREE_TYPE (base
)));
5452 cost
= cost_step
+ adjust_setup_cost (data
, cost_base
.cost
);
5454 /* Prefer the original ivs unless we may gain something by replacing it.
5455 The reason is to make debugging simpler; so this is not relevant for
5456 artificial ivs created by other optimization passes. */
5457 if (cand
->pos
!= IP_ORIGINAL
5458 || !SSA_NAME_VAR (cand
->var_before
)
5459 || DECL_ARTIFICIAL (SSA_NAME_VAR (cand
->var_before
)))
5462 /* Prefer not to insert statements into latch unless there are some
5463 already (so that we do not create unnecessary jumps). */
5464 if (cand
->pos
== IP_END
5465 && empty_block_p (ip_end_pos (data
->current_loop
)))
5469 cand
->cost_step
= cost_step
;
5472 /* Determines costs of computation of the candidates. */
5475 determine_iv_costs (struct ivopts_data
*data
)
5479 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5481 fprintf (dump_file
, "Candidate costs:\n");
5482 fprintf (dump_file
, " cand\tcost\n");
5485 for (i
= 0; i
< n_iv_cands (data
); i
++)
5487 struct iv_cand
*cand
= iv_cand (data
, i
);
5489 determine_iv_cost (data
, cand
);
5491 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5492 fprintf (dump_file
, " %d\t%d\n", i
, cand
->cost
);
5495 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5496 fprintf (dump_file
, "\n");
5499 /* Calculates cost for having SIZE induction variables. */
5502 ivopts_global_cost_for_size (struct ivopts_data
*data
, unsigned size
)
5504 /* We add size to the cost, so that we prefer eliminating ivs
5506 return size
+ estimate_reg_pressure_cost (size
, data
->regs_used
, data
->speed
,
5507 data
->body_includes_call
);
5510 /* For each size of the induction variable set determine the penalty. */
5513 determine_set_costs (struct ivopts_data
*data
)
5519 struct loop
*loop
= data
->current_loop
;
5522 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5524 fprintf (dump_file
, "Global costs:\n");
5525 fprintf (dump_file
, " target_avail_regs %d\n", target_avail_regs
);
5526 fprintf (dump_file
, " target_clobbered_regs %d\n", target_clobbered_regs
);
5527 fprintf (dump_file
, " target_reg_cost %d\n", target_reg_cost
[data
->speed
]);
5528 fprintf (dump_file
, " target_spill_cost %d\n", target_spill_cost
[data
->speed
]);
5532 for (psi
= gsi_start_phis (loop
->header
); !gsi_end_p (psi
); gsi_next (&psi
))
5535 op
= PHI_RESULT (phi
);
5537 if (virtual_operand_p (op
))
5540 if (get_iv (data
, op
))
5546 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, j
, bi
)
5548 struct version_info
*info
= ver_info (data
, j
);
5550 if (info
->inv_id
&& info
->has_nonlin_use
)
5554 data
->regs_used
= n
;
5555 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5556 fprintf (dump_file
, " regs_used %d\n", n
);
5558 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
5560 fprintf (dump_file
, " cost for size:\n");
5561 fprintf (dump_file
, " ivs\tcost\n");
5562 for (j
= 0; j
<= 2 * target_avail_regs
; j
++)
5563 fprintf (dump_file
, " %d\t%d\n", j
,
5564 ivopts_global_cost_for_size (data
, j
));
5565 fprintf (dump_file
, "\n");
5569 /* Returns true if A is a cheaper cost pair than B. */
5572 cheaper_cost_pair (struct cost_pair
*a
, struct cost_pair
*b
)
5582 cmp
= compare_costs (a
->cost
, b
->cost
);
5589 /* In case the costs are the same, prefer the cheaper candidate. */
5590 if (a
->cand
->cost
< b
->cand
->cost
)
5597 /* Returns candidate by that USE is expressed in IVS. */
5599 static struct cost_pair
*
5600 iv_ca_cand_for_use (struct iv_ca
*ivs
, struct iv_use
*use
)
5602 return ivs
->cand_for_use
[use
->id
];
5605 /* Computes the cost field of IVS structure. */
5608 iv_ca_recount_cost (struct ivopts_data
*data
, struct iv_ca
*ivs
)
5610 comp_cost cost
= ivs
->cand_use_cost
;
5612 cost
.cost
+= ivs
->cand_cost
;
5614 cost
.cost
+= ivopts_global_cost_for_size (data
,
5615 ivs
->n_regs
+ ivs
->num_used_inv_expr
);
5620 /* Remove invariants in set INVS to set IVS. */
5623 iv_ca_set_remove_invariants (struct iv_ca
*ivs
, bitmap invs
)
5631 EXECUTE_IF_SET_IN_BITMAP (invs
, 0, iid
, bi
)
5633 ivs
->n_invariant_uses
[iid
]--;
5634 if (ivs
->n_invariant_uses
[iid
] == 0)
5639 /* Set USE not to be expressed by any candidate in IVS. */
5642 iv_ca_set_no_cp (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5645 unsigned uid
= use
->id
, cid
;
5646 struct cost_pair
*cp
;
5648 cp
= ivs
->cand_for_use
[uid
];
5654 ivs
->cand_for_use
[uid
] = NULL
;
5655 ivs
->n_cand_uses
[cid
]--;
5657 if (ivs
->n_cand_uses
[cid
] == 0)
5659 bitmap_clear_bit (ivs
->cands
, cid
);
5660 /* Do not count the pseudocandidates. */
5664 ivs
->cand_cost
-= cp
->cand
->cost
;
5666 iv_ca_set_remove_invariants (ivs
, cp
->cand
->depends_on
);
5669 ivs
->cand_use_cost
= sub_costs (ivs
->cand_use_cost
, cp
->cost
);
5671 iv_ca_set_remove_invariants (ivs
, cp
->depends_on
);
5673 if (cp
->inv_expr_id
!= -1)
5675 ivs
->used_inv_expr
[cp
->inv_expr_id
]--;
5676 if (ivs
->used_inv_expr
[cp
->inv_expr_id
] == 0)
5677 ivs
->num_used_inv_expr
--;
5679 iv_ca_recount_cost (data
, ivs
);
5682 /* Add invariants in set INVS to set IVS. */
5685 iv_ca_set_add_invariants (struct iv_ca
*ivs
, bitmap invs
)
5693 EXECUTE_IF_SET_IN_BITMAP (invs
, 0, iid
, bi
)
5695 ivs
->n_invariant_uses
[iid
]++;
5696 if (ivs
->n_invariant_uses
[iid
] == 1)
5701 /* Set cost pair for USE in set IVS to CP. */
5704 iv_ca_set_cp (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5705 struct iv_use
*use
, struct cost_pair
*cp
)
5707 unsigned uid
= use
->id
, cid
;
5709 if (ivs
->cand_for_use
[uid
] == cp
)
5712 if (ivs
->cand_for_use
[uid
])
5713 iv_ca_set_no_cp (data
, ivs
, use
);
5720 ivs
->cand_for_use
[uid
] = cp
;
5721 ivs
->n_cand_uses
[cid
]++;
5722 if (ivs
->n_cand_uses
[cid
] == 1)
5724 bitmap_set_bit (ivs
->cands
, cid
);
5725 /* Do not count the pseudocandidates. */
5729 ivs
->cand_cost
+= cp
->cand
->cost
;
5731 iv_ca_set_add_invariants (ivs
, cp
->cand
->depends_on
);
5734 ivs
->cand_use_cost
= add_costs (ivs
->cand_use_cost
, cp
->cost
);
5735 iv_ca_set_add_invariants (ivs
, cp
->depends_on
);
5737 if (cp
->inv_expr_id
!= -1)
5739 ivs
->used_inv_expr
[cp
->inv_expr_id
]++;
5740 if (ivs
->used_inv_expr
[cp
->inv_expr_id
] == 1)
5741 ivs
->num_used_inv_expr
++;
5743 iv_ca_recount_cost (data
, ivs
);
5747 /* Extend set IVS by expressing USE by some of the candidates in it
5748 if possible. Consider all important candidates if candidates in
5749 set IVS don't give any result. */
5752 iv_ca_add_use (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5755 struct cost_pair
*best_cp
= NULL
, *cp
;
5758 struct iv_cand
*cand
;
5760 gcc_assert (ivs
->upto
>= use
->id
);
5764 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, i
, bi
)
5766 cand
= iv_cand (data
, i
);
5767 cp
= get_use_iv_cost (data
, use
, cand
);
5768 if (cheaper_cost_pair (cp
, best_cp
))
5772 if (best_cp
== NULL
)
5774 EXECUTE_IF_SET_IN_BITMAP (data
->important_candidates
, 0, i
, bi
)
5776 cand
= iv_cand (data
, i
);
5777 cp
= get_use_iv_cost (data
, use
, cand
);
5778 if (cheaper_cost_pair (cp
, best_cp
))
5783 iv_ca_set_cp (data
, ivs
, use
, best_cp
);
5786 /* Get cost for assignment IVS. */
5789 iv_ca_cost (struct iv_ca
*ivs
)
5791 /* This was a conditional expression but it triggered a bug in
5794 return infinite_cost
;
5799 /* Returns true if all dependences of CP are among invariants in IVS. */
5802 iv_ca_has_deps (struct iv_ca
*ivs
, struct cost_pair
*cp
)
5807 if (!cp
->depends_on
)
5810 EXECUTE_IF_SET_IN_BITMAP (cp
->depends_on
, 0, i
, bi
)
5812 if (ivs
->n_invariant_uses
[i
] == 0)
5819 /* Creates change of expressing USE by NEW_CP instead of OLD_CP and chains
5820 it before NEXT_CHANGE. */
5822 static struct iv_ca_delta
*
5823 iv_ca_delta_add (struct iv_use
*use
, struct cost_pair
*old_cp
,
5824 struct cost_pair
*new_cp
, struct iv_ca_delta
*next_change
)
5826 struct iv_ca_delta
*change
= XNEW (struct iv_ca_delta
);
5829 change
->old_cp
= old_cp
;
5830 change
->new_cp
= new_cp
;
5831 change
->next_change
= next_change
;
5836 /* Joins two lists of changes L1 and L2. Destructive -- old lists
5839 static struct iv_ca_delta
*
5840 iv_ca_delta_join (struct iv_ca_delta
*l1
, struct iv_ca_delta
*l2
)
5842 struct iv_ca_delta
*last
;
5850 for (last
= l1
; last
->next_change
; last
= last
->next_change
)
5852 last
->next_change
= l2
;
5857 /* Reverse the list of changes DELTA, forming the inverse to it. */
5859 static struct iv_ca_delta
*
5860 iv_ca_delta_reverse (struct iv_ca_delta
*delta
)
5862 struct iv_ca_delta
*act
, *next
, *prev
= NULL
;
5864 for (act
= delta
; act
; act
= next
)
5866 next
= act
->next_change
;
5867 act
->next_change
= prev
;
5870 std::swap (act
->old_cp
, act
->new_cp
);
5876 /* Commit changes in DELTA to IVS. If FORWARD is false, the changes are
5877 reverted instead. */
5880 iv_ca_delta_commit (struct ivopts_data
*data
, struct iv_ca
*ivs
,
5881 struct iv_ca_delta
*delta
, bool forward
)
5883 struct cost_pair
*from
, *to
;
5884 struct iv_ca_delta
*act
;
5887 delta
= iv_ca_delta_reverse (delta
);
5889 for (act
= delta
; act
; act
= act
->next_change
)
5893 gcc_assert (iv_ca_cand_for_use (ivs
, act
->use
) == from
);
5894 iv_ca_set_cp (data
, ivs
, act
->use
, to
);
5898 iv_ca_delta_reverse (delta
);
5901 /* Returns true if CAND is used in IVS. */
5904 iv_ca_cand_used_p (struct iv_ca
*ivs
, struct iv_cand
*cand
)
5906 return ivs
->n_cand_uses
[cand
->id
] > 0;
5909 /* Returns number of induction variable candidates in the set IVS. */
5912 iv_ca_n_cands (struct iv_ca
*ivs
)
5914 return ivs
->n_cands
;
5917 /* Free the list of changes DELTA. */
5920 iv_ca_delta_free (struct iv_ca_delta
**delta
)
5922 struct iv_ca_delta
*act
, *next
;
5924 for (act
= *delta
; act
; act
= next
)
5926 next
= act
->next_change
;
5933 /* Allocates new iv candidates assignment. */
5935 static struct iv_ca
*
5936 iv_ca_new (struct ivopts_data
*data
)
5938 struct iv_ca
*nw
= XNEW (struct iv_ca
);
5942 nw
->cand_for_use
= XCNEWVEC (struct cost_pair
*, n_iv_uses (data
));
5943 nw
->n_cand_uses
= XCNEWVEC (unsigned, n_iv_cands (data
));
5944 nw
->cands
= BITMAP_ALLOC (NULL
);
5947 nw
->cand_use_cost
= no_cost
;
5949 nw
->n_invariant_uses
= XCNEWVEC (unsigned, data
->max_inv_id
+ 1);
5951 nw
->used_inv_expr
= XCNEWVEC (unsigned, data
->inv_expr_id
+ 1);
5952 nw
->num_used_inv_expr
= 0;
5957 /* Free memory occupied by the set IVS. */
5960 iv_ca_free (struct iv_ca
**ivs
)
5962 free ((*ivs
)->cand_for_use
);
5963 free ((*ivs
)->n_cand_uses
);
5964 BITMAP_FREE ((*ivs
)->cands
);
5965 free ((*ivs
)->n_invariant_uses
);
5966 free ((*ivs
)->used_inv_expr
);
5971 /* Dumps IVS to FILE. */
5974 iv_ca_dump (struct ivopts_data
*data
, FILE *file
, struct iv_ca
*ivs
)
5976 const char *pref
= " invariants ";
5978 comp_cost cost
= iv_ca_cost (ivs
);
5980 fprintf (file
, " cost: %d (complexity %d)\n", cost
.cost
, cost
.complexity
);
5981 fprintf (file
, " cand_cost: %d\n cand_use_cost: %d (complexity %d)\n",
5982 ivs
->cand_cost
, ivs
->cand_use_cost
.cost
, ivs
->cand_use_cost
.complexity
);
5983 bitmap_print (file
, ivs
->cands
, " candidates: ","\n");
5985 for (i
= 0; i
< ivs
->upto
; i
++)
5987 struct iv_use
*use
= iv_use (data
, i
);
5988 struct cost_pair
*cp
= iv_ca_cand_for_use (ivs
, use
);
5990 fprintf (file
, " use:%d --> iv_cand:%d, cost=(%d,%d)\n",
5991 use
->id
, cp
->cand
->id
, cp
->cost
.cost
, cp
->cost
.complexity
);
5993 fprintf (file
, " use:%d --> ??\n", use
->id
);
5996 for (i
= 1; i
<= data
->max_inv_id
; i
++)
5997 if (ivs
->n_invariant_uses
[i
])
5999 fprintf (file
, "%s%d", pref
, i
);
6002 fprintf (file
, "\n\n");
6005 /* Try changing candidate in IVS to CAND for each use. Return cost of the
6006 new set, and store differences in DELTA. Number of induction variables
6007 in the new set is stored to N_IVS. MIN_NCAND is a flag. When it is true
6008 the function will try to find a solution with mimimal iv candidates. */
6011 iv_ca_extend (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6012 struct iv_cand
*cand
, struct iv_ca_delta
**delta
,
6013 unsigned *n_ivs
, bool min_ncand
)
6018 struct cost_pair
*old_cp
, *new_cp
;
6021 for (i
= 0; i
< ivs
->upto
; i
++)
6023 use
= iv_use (data
, i
);
6024 old_cp
= iv_ca_cand_for_use (ivs
, use
);
6027 && old_cp
->cand
== cand
)
6030 new_cp
= get_use_iv_cost (data
, use
, cand
);
6034 if (!min_ncand
&& !iv_ca_has_deps (ivs
, new_cp
))
6037 if (!min_ncand
&& !cheaper_cost_pair (new_cp
, old_cp
))
6040 *delta
= iv_ca_delta_add (use
, old_cp
, new_cp
, *delta
);
6043 iv_ca_delta_commit (data
, ivs
, *delta
, true);
6044 cost
= iv_ca_cost (ivs
);
6046 *n_ivs
= iv_ca_n_cands (ivs
);
6047 iv_ca_delta_commit (data
, ivs
, *delta
, false);
6052 /* Try narrowing set IVS by removing CAND. Return the cost of
6053 the new set and store the differences in DELTA. START is
6054 the candidate with which we start narrowing. */
6057 iv_ca_narrow (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6058 struct iv_cand
*cand
, struct iv_cand
*start
,
6059 struct iv_ca_delta
**delta
)
6063 struct cost_pair
*old_cp
, *new_cp
, *cp
;
6065 struct iv_cand
*cnd
;
6066 comp_cost cost
, best_cost
, acost
;
6069 for (i
= 0; i
< n_iv_uses (data
); i
++)
6071 use
= iv_use (data
, i
);
6073 old_cp
= iv_ca_cand_for_use (ivs
, use
);
6074 if (old_cp
->cand
!= cand
)
6077 best_cost
= iv_ca_cost (ivs
);
6078 /* Start narrowing with START. */
6079 new_cp
= get_use_iv_cost (data
, use
, start
);
6081 if (data
->consider_all_candidates
)
6083 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, ci
, bi
)
6085 if (ci
== cand
->id
|| (start
&& ci
== start
->id
))
6088 cnd
= iv_cand (data
, ci
);
6090 cp
= get_use_iv_cost (data
, use
, cnd
);
6094 iv_ca_set_cp (data
, ivs
, use
, cp
);
6095 acost
= iv_ca_cost (ivs
);
6097 if (compare_costs (acost
, best_cost
) < 0)
6106 EXECUTE_IF_AND_IN_BITMAP (use
->related_cands
, ivs
->cands
, 0, ci
, bi
)
6108 if (ci
== cand
->id
|| (start
&& ci
== start
->id
))
6111 cnd
= iv_cand (data
, ci
);
6113 cp
= get_use_iv_cost (data
, use
, cnd
);
6117 iv_ca_set_cp (data
, ivs
, use
, cp
);
6118 acost
= iv_ca_cost (ivs
);
6120 if (compare_costs (acost
, best_cost
) < 0)
6127 /* Restore to old cp for use. */
6128 iv_ca_set_cp (data
, ivs
, use
, old_cp
);
6132 iv_ca_delta_free (delta
);
6133 return infinite_cost
;
6136 *delta
= iv_ca_delta_add (use
, old_cp
, new_cp
, *delta
);
6139 iv_ca_delta_commit (data
, ivs
, *delta
, true);
6140 cost
= iv_ca_cost (ivs
);
6141 iv_ca_delta_commit (data
, ivs
, *delta
, false);
6146 /* Try optimizing the set of candidates IVS by removing candidates different
6147 from to EXCEPT_CAND from it. Return cost of the new set, and store
6148 differences in DELTA. */
6151 iv_ca_prune (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6152 struct iv_cand
*except_cand
, struct iv_ca_delta
**delta
)
6155 struct iv_ca_delta
*act_delta
, *best_delta
;
6157 comp_cost best_cost
, acost
;
6158 struct iv_cand
*cand
;
6161 best_cost
= iv_ca_cost (ivs
);
6163 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, i
, bi
)
6165 cand
= iv_cand (data
, i
);
6167 if (cand
== except_cand
)
6170 acost
= iv_ca_narrow (data
, ivs
, cand
, except_cand
, &act_delta
);
6172 if (compare_costs (acost
, best_cost
) < 0)
6175 iv_ca_delta_free (&best_delta
);
6176 best_delta
= act_delta
;
6179 iv_ca_delta_free (&act_delta
);
6188 /* Recurse to possibly remove other unnecessary ivs. */
6189 iv_ca_delta_commit (data
, ivs
, best_delta
, true);
6190 best_cost
= iv_ca_prune (data
, ivs
, except_cand
, delta
);
6191 iv_ca_delta_commit (data
, ivs
, best_delta
, false);
6192 *delta
= iv_ca_delta_join (best_delta
, *delta
);
6196 /* Check if CAND_IDX is a candidate other than OLD_CAND and has
6197 cheaper local cost for USE than BEST_CP. Return pointer to
6198 the corresponding cost_pair, otherwise just return BEST_CP. */
6200 static struct cost_pair
*
6201 cheaper_cost_with_cand (struct ivopts_data
*data
, struct iv_use
*use
,
6202 unsigned int cand_idx
, struct iv_cand
*old_cand
,
6203 struct cost_pair
*best_cp
)
6205 struct iv_cand
*cand
;
6206 struct cost_pair
*cp
;
6208 gcc_assert (old_cand
!= NULL
&& best_cp
!= NULL
);
6209 if (cand_idx
== old_cand
->id
)
6212 cand
= iv_cand (data
, cand_idx
);
6213 cp
= get_use_iv_cost (data
, use
, cand
);
6214 if (cp
!= NULL
&& cheaper_cost_pair (cp
, best_cp
))
6220 /* Try breaking local optimal fixed-point for IVS by replacing candidates
6221 which are used by more than one iv uses. For each of those candidates,
6222 this function tries to represent iv uses under that candidate using
6223 other ones with lower local cost, then tries to prune the new set.
6224 If the new set has lower cost, It returns the new cost after recording
6225 candidate replacement in list DELTA. */
6228 iv_ca_replace (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6229 struct iv_ca_delta
**delta
)
6231 bitmap_iterator bi
, bj
;
6232 unsigned int i
, j
, k
;
6234 struct iv_cand
*cand
;
6235 comp_cost orig_cost
, acost
;
6236 struct iv_ca_delta
*act_delta
, *tmp_delta
;
6237 struct cost_pair
*old_cp
, *best_cp
= NULL
;
6240 orig_cost
= iv_ca_cost (ivs
);
6242 EXECUTE_IF_SET_IN_BITMAP (ivs
->cands
, 0, i
, bi
)
6244 if (ivs
->n_cand_uses
[i
] == 1
6245 || ivs
->n_cand_uses
[i
] > ALWAYS_PRUNE_CAND_SET_BOUND
)
6248 cand
= iv_cand (data
, i
);
6251 /* Represent uses under current candidate using other ones with
6252 lower local cost. */
6253 for (j
= 0; j
< ivs
->upto
; j
++)
6255 use
= iv_use (data
, j
);
6256 old_cp
= iv_ca_cand_for_use (ivs
, use
);
6258 if (old_cp
->cand
!= cand
)
6262 if (data
->consider_all_candidates
)
6263 for (k
= 0; k
< n_iv_cands (data
); k
++)
6264 best_cp
= cheaper_cost_with_cand (data
, use
, k
,
6265 old_cp
->cand
, best_cp
);
6267 EXECUTE_IF_SET_IN_BITMAP (use
->related_cands
, 0, k
, bj
)
6268 best_cp
= cheaper_cost_with_cand (data
, use
, k
,
6269 old_cp
->cand
, best_cp
);
6271 if (best_cp
== old_cp
)
6274 act_delta
= iv_ca_delta_add (use
, old_cp
, best_cp
, act_delta
);
6276 /* No need for further prune. */
6280 /* Prune the new candidate set. */
6281 iv_ca_delta_commit (data
, ivs
, act_delta
, true);
6282 acost
= iv_ca_prune (data
, ivs
, NULL
, &tmp_delta
);
6283 iv_ca_delta_commit (data
, ivs
, act_delta
, false);
6284 act_delta
= iv_ca_delta_join (act_delta
, tmp_delta
);
6286 if (compare_costs (acost
, orig_cost
) < 0)
6292 iv_ca_delta_free (&act_delta
);
6298 /* Tries to extend the sets IVS in the best possible way in order
6299 to express the USE. If ORIGINALP is true, prefer candidates from
6300 the original set of IVs, otherwise favor important candidates not
6301 based on any memory object. */
6304 try_add_cand_for (struct ivopts_data
*data
, struct iv_ca
*ivs
,
6305 struct iv_use
*use
, bool originalp
)
6307 comp_cost best_cost
, act_cost
;
6310 struct iv_cand
*cand
;
6311 struct iv_ca_delta
*best_delta
= NULL
, *act_delta
;
6312 struct cost_pair
*cp
;
6314 iv_ca_add_use (data
, ivs
, use
);
6315 best_cost
= iv_ca_cost (ivs
);
6316 cp
= iv_ca_cand_for_use (ivs
, use
);
6319 best_delta
= iv_ca_delta_add (use
, NULL
, cp
, NULL
);
6320 iv_ca_set_no_cp (data
, ivs
, use
);
6323 /* If ORIGINALP is true, try to find the original IV for the use. Otherwise
6324 first try important candidates not based on any memory object. Only if
6325 this fails, try the specific ones. Rationale -- in loops with many
6326 variables the best choice often is to use just one generic biv. If we
6327 added here many ivs specific to the uses, the optimization algorithm later
6328 would be likely to get stuck in a local minimum, thus causing us to create
6329 too many ivs. The approach from few ivs to more seems more likely to be
6330 successful -- starting from few ivs, replacing an expensive use by a
6331 specific iv should always be a win. */
6332 EXECUTE_IF_SET_IN_BITMAP (data
->important_candidates
, 0, i
, bi
)
6334 cand
= iv_cand (data
, i
);
6336 if (originalp
&& cand
->pos
!=IP_ORIGINAL
)
6339 if (!originalp
&& cand
->iv
->base_object
!= NULL_TREE
)
6342 if (iv_ca_cand_used_p (ivs
, cand
))
6345 cp
= get_use_iv_cost (data
, use
, cand
);
6349 iv_ca_set_cp (data
, ivs
, use
, cp
);
6350 act_cost
= iv_ca_extend (data
, ivs
, cand
, &act_delta
, NULL
,
6352 iv_ca_set_no_cp (data
, ivs
, use
);
6353 act_delta
= iv_ca_delta_add (use
, NULL
, cp
, act_delta
);
6355 if (compare_costs (act_cost
, best_cost
) < 0)
6357 best_cost
= act_cost
;
6359 iv_ca_delta_free (&best_delta
);
6360 best_delta
= act_delta
;
6363 iv_ca_delta_free (&act_delta
);
6366 if (infinite_cost_p (best_cost
))
6368 for (i
= 0; i
< use
->n_map_members
; i
++)
6370 cp
= use
->cost_map
+ i
;
6375 /* Already tried this. */
6376 if (cand
->important
)
6378 if (originalp
&& cand
->pos
== IP_ORIGINAL
)
6380 if (!originalp
&& cand
->iv
->base_object
== NULL_TREE
)
6384 if (iv_ca_cand_used_p (ivs
, cand
))
6388 iv_ca_set_cp (data
, ivs
, use
, cp
);
6389 act_cost
= iv_ca_extend (data
, ivs
, cand
, &act_delta
, NULL
, true);
6390 iv_ca_set_no_cp (data
, ivs
, use
);
6391 act_delta
= iv_ca_delta_add (use
, iv_ca_cand_for_use (ivs
, use
),
6394 if (compare_costs (act_cost
, best_cost
) < 0)
6396 best_cost
= act_cost
;
6399 iv_ca_delta_free (&best_delta
);
6400 best_delta
= act_delta
;
6403 iv_ca_delta_free (&act_delta
);
6407 iv_ca_delta_commit (data
, ivs
, best_delta
, true);
6408 iv_ca_delta_free (&best_delta
);
6410 return !infinite_cost_p (best_cost
);
6413 /* Finds an initial assignment of candidates to uses. */
6415 static struct iv_ca
*
6416 get_initial_solution (struct ivopts_data
*data
, bool originalp
)
6418 struct iv_ca
*ivs
= iv_ca_new (data
);
6421 for (i
= 0; i
< n_iv_uses (data
); i
++)
6422 if (!try_add_cand_for (data
, ivs
, iv_use (data
, i
), originalp
))
6431 /* Tries to improve set of induction variables IVS. TRY_REPLACE_P
6432 points to a bool variable, this function tries to break local
6433 optimal fixed-point by replacing candidates in IVS if it's true. */
6436 try_improve_iv_set (struct ivopts_data
*data
,
6437 struct iv_ca
*ivs
, bool *try_replace_p
)
6440 comp_cost acost
, best_cost
= iv_ca_cost (ivs
);
6441 struct iv_ca_delta
*best_delta
= NULL
, *act_delta
, *tmp_delta
;
6442 struct iv_cand
*cand
;
6444 /* Try extending the set of induction variables by one. */
6445 for (i
= 0; i
< n_iv_cands (data
); i
++)
6447 cand
= iv_cand (data
, i
);
6449 if (iv_ca_cand_used_p (ivs
, cand
))
6452 acost
= iv_ca_extend (data
, ivs
, cand
, &act_delta
, &n_ivs
, false);
6456 /* If we successfully added the candidate and the set is small enough,
6457 try optimizing it by removing other candidates. */
6458 if (n_ivs
<= ALWAYS_PRUNE_CAND_SET_BOUND
)
6460 iv_ca_delta_commit (data
, ivs
, act_delta
, true);
6461 acost
= iv_ca_prune (data
, ivs
, cand
, &tmp_delta
);
6462 iv_ca_delta_commit (data
, ivs
, act_delta
, false);
6463 act_delta
= iv_ca_delta_join (act_delta
, tmp_delta
);
6466 if (compare_costs (acost
, best_cost
) < 0)
6469 iv_ca_delta_free (&best_delta
);
6470 best_delta
= act_delta
;
6473 iv_ca_delta_free (&act_delta
);
6478 /* Try removing the candidates from the set instead. */
6479 best_cost
= iv_ca_prune (data
, ivs
, NULL
, &best_delta
);
6481 if (!best_delta
&& *try_replace_p
)
6483 *try_replace_p
= false;
6484 /* So far candidate selecting algorithm tends to choose fewer IVs
6485 so that it can handle cases in which loops have many variables
6486 but the best choice is often to use only one general biv. One
6487 weakness is it can't handle opposite cases, in which different
6488 candidates should be chosen with respect to each use. To solve
6489 the problem, we replace candidates in a manner described by the
6490 comments of iv_ca_replace, thus give general algorithm a chance
6491 to break local optimal fixed-point in these cases. */
6492 best_cost
= iv_ca_replace (data
, ivs
, &best_delta
);
6499 iv_ca_delta_commit (data
, ivs
, best_delta
, true);
6500 gcc_assert (compare_costs (best_cost
, iv_ca_cost (ivs
)) == 0);
6501 iv_ca_delta_free (&best_delta
);
6505 /* Attempts to find the optimal set of induction variables. We do simple
6506 greedy heuristic -- we try to replace at most one candidate in the selected
6507 solution and remove the unused ivs while this improves the cost. */
6509 static struct iv_ca
*
6510 find_optimal_iv_set_1 (struct ivopts_data
*data
, bool originalp
)
6513 bool try_replace_p
= true;
6515 /* Get the initial solution. */
6516 set
= get_initial_solution (data
, originalp
);
6519 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6520 fprintf (dump_file
, "Unable to substitute for ivs, failed.\n");
6524 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6526 fprintf (dump_file
, "Initial set of candidates:\n");
6527 iv_ca_dump (data
, dump_file
, set
);
6530 while (try_improve_iv_set (data
, set
, &try_replace_p
))
6532 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6534 fprintf (dump_file
, "Improved to:\n");
6535 iv_ca_dump (data
, dump_file
, set
);
6542 static struct iv_ca
*
6543 find_optimal_iv_set (struct ivopts_data
*data
)
6546 struct iv_ca
*set
, *origset
;
6548 comp_cost cost
, origcost
;
6550 /* Determine the cost based on a strategy that starts with original IVs,
6551 and try again using a strategy that prefers candidates not based
6553 origset
= find_optimal_iv_set_1 (data
, true);
6554 set
= find_optimal_iv_set_1 (data
, false);
6556 if (!origset
&& !set
)
6559 origcost
= origset
? iv_ca_cost (origset
) : infinite_cost
;
6560 cost
= set
? iv_ca_cost (set
) : infinite_cost
;
6562 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6564 fprintf (dump_file
, "Original cost %d (complexity %d)\n\n",
6565 origcost
.cost
, origcost
.complexity
);
6566 fprintf (dump_file
, "Final cost %d (complexity %d)\n\n",
6567 cost
.cost
, cost
.complexity
);
6570 /* Choose the one with the best cost. */
6571 if (compare_costs (origcost
, cost
) <= 0)
6578 iv_ca_free (&origset
);
6580 for (i
= 0; i
< n_iv_uses (data
); i
++)
6582 use
= iv_use (data
, i
);
6583 use
->selected
= iv_ca_cand_for_use (set
, use
)->cand
;
6589 /* Creates a new induction variable corresponding to CAND. */
6592 create_new_iv (struct ivopts_data
*data
, struct iv_cand
*cand
)
6594 gimple_stmt_iterator incr_pos
;
6604 incr_pos
= gsi_last_bb (ip_normal_pos (data
->current_loop
));
6608 incr_pos
= gsi_last_bb (ip_end_pos (data
->current_loop
));
6616 incr_pos
= gsi_for_stmt (cand
->incremented_at
);
6620 /* Mark that the iv is preserved. */
6621 name_info (data
, cand
->var_before
)->preserve_biv
= true;
6622 name_info (data
, cand
->var_after
)->preserve_biv
= true;
6624 /* Rewrite the increment so that it uses var_before directly. */
6625 find_interesting_uses_op (data
, cand
->var_after
)->selected
= cand
;
6629 gimple_add_tmp_var (cand
->var_before
);
6631 base
= unshare_expr (cand
->iv
->base
);
6633 create_iv (base
, unshare_expr (cand
->iv
->step
),
6634 cand
->var_before
, data
->current_loop
,
6635 &incr_pos
, after
, &cand
->var_before
, &cand
->var_after
);
6638 /* Creates new induction variables described in SET. */
6641 create_new_ivs (struct ivopts_data
*data
, struct iv_ca
*set
)
6644 struct iv_cand
*cand
;
6647 EXECUTE_IF_SET_IN_BITMAP (set
->cands
, 0, i
, bi
)
6649 cand
= iv_cand (data
, i
);
6650 create_new_iv (data
, cand
);
6653 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6655 fprintf (dump_file
, "Selected IV set for loop %d",
6656 data
->current_loop
->num
);
6657 if (data
->loop_loc
!= UNKNOWN_LOCATION
)
6658 fprintf (dump_file
, " at %s:%d", LOCATION_FILE (data
->loop_loc
),
6659 LOCATION_LINE (data
->loop_loc
));
6660 fprintf (dump_file
, ", %lu IVs:\n", bitmap_count_bits (set
->cands
));
6661 EXECUTE_IF_SET_IN_BITMAP (set
->cands
, 0, i
, bi
)
6663 cand
= iv_cand (data
, i
);
6664 dump_cand (dump_file
, cand
);
6666 fprintf (dump_file
, "\n");
6670 /* Rewrites USE (definition of iv used in a nonlinear expression)
6671 using candidate CAND. */
6674 rewrite_use_nonlinear_expr (struct ivopts_data
*data
,
6675 struct iv_use
*use
, struct iv_cand
*cand
)
6680 gimple_stmt_iterator bsi
;
6682 /* An important special case -- if we are asked to express value of
6683 the original iv by itself, just exit; there is no need to
6684 introduce a new computation (that might also need casting the
6685 variable to unsigned and back). */
6686 if (cand
->pos
== IP_ORIGINAL
6687 && cand
->incremented_at
== use
->stmt
)
6689 enum tree_code stmt_code
;
6691 gcc_assert (is_gimple_assign (use
->stmt
));
6692 gcc_assert (gimple_assign_lhs (use
->stmt
) == cand
->var_after
);
6694 /* Check whether we may leave the computation unchanged.
6695 This is the case only if it does not rely on other
6696 computations in the loop -- otherwise, the computation
6697 we rely upon may be removed in remove_unused_ivs,
6698 thus leading to ICE. */
6699 stmt_code
= gimple_assign_rhs_code (use
->stmt
);
6700 if (stmt_code
== PLUS_EXPR
6701 || stmt_code
== MINUS_EXPR
6702 || stmt_code
== POINTER_PLUS_EXPR
)
6704 if (gimple_assign_rhs1 (use
->stmt
) == cand
->var_before
)
6705 op
= gimple_assign_rhs2 (use
->stmt
);
6706 else if (gimple_assign_rhs2 (use
->stmt
) == cand
->var_before
)
6707 op
= gimple_assign_rhs1 (use
->stmt
);
6714 if (op
&& expr_invariant_in_loop_p (data
->current_loop
, op
))
6718 comp
= get_computation (data
->current_loop
, use
, cand
);
6719 gcc_assert (comp
!= NULL_TREE
);
6721 switch (gimple_code (use
->stmt
))
6724 tgt
= PHI_RESULT (use
->stmt
);
6726 /* If we should keep the biv, do not replace it. */
6727 if (name_info (data
, tgt
)->preserve_biv
)
6730 bsi
= gsi_after_labels (gimple_bb (use
->stmt
));
6734 tgt
= gimple_assign_lhs (use
->stmt
);
6735 bsi
= gsi_for_stmt (use
->stmt
);
6742 if (!valid_gimple_rhs_p (comp
)
6743 || (gimple_code (use
->stmt
) != GIMPLE_PHI
6744 /* We can't allow re-allocating the stmt as it might be pointed
6746 && (get_gimple_rhs_num_ops (TREE_CODE (comp
))
6747 >= gimple_num_ops (gsi_stmt (bsi
)))))
6749 comp
= force_gimple_operand_gsi (&bsi
, comp
, true, NULL_TREE
,
6750 true, GSI_SAME_STMT
);
6751 if (POINTER_TYPE_P (TREE_TYPE (tgt
)))
6753 duplicate_ssa_name_ptr_info (comp
, SSA_NAME_PTR_INFO (tgt
));
6754 /* As this isn't a plain copy we have to reset alignment
6756 if (SSA_NAME_PTR_INFO (comp
))
6757 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (comp
));
6761 if (gimple_code (use
->stmt
) == GIMPLE_PHI
)
6763 ass
= gimple_build_assign (tgt
, comp
);
6764 gsi_insert_before (&bsi
, ass
, GSI_SAME_STMT
);
6766 bsi
= gsi_for_stmt (use
->stmt
);
6767 remove_phi_node (&bsi
, false);
6771 gimple_assign_set_rhs_from_tree (&bsi
, comp
);
6772 use
->stmt
= gsi_stmt (bsi
);
6776 /* Performs a peephole optimization to reorder the iv update statement with
6777 a mem ref to enable instruction combining in later phases. The mem ref uses
6778 the iv value before the update, so the reordering transformation requires
6779 adjustment of the offset. CAND is the selected IV_CAND.
6783 t = MEM_REF (base, iv1, 8, 16); // base, index, stride, offset
6791 directly propagating t over to (1) will introduce overlapping live range
6792 thus increase register pressure. This peephole transform it into:
6796 t = MEM_REF (base, iv2, 8, 8);
6803 adjust_iv_update_pos (struct iv_cand
*cand
, struct iv_use
*use
)
6806 gimple iv_update
, stmt
;
6808 gimple_stmt_iterator gsi
, gsi_iv
;
6810 if (cand
->pos
!= IP_NORMAL
)
6813 var_after
= cand
->var_after
;
6814 iv_update
= SSA_NAME_DEF_STMT (var_after
);
6816 bb
= gimple_bb (iv_update
);
6817 gsi
= gsi_last_nondebug_bb (bb
);
6818 stmt
= gsi_stmt (gsi
);
6820 /* Only handle conditional statement for now. */
6821 if (gimple_code (stmt
) != GIMPLE_COND
)
6824 gsi_prev_nondebug (&gsi
);
6825 stmt
= gsi_stmt (gsi
);
6826 if (stmt
!= iv_update
)
6829 gsi_prev_nondebug (&gsi
);
6830 if (gsi_end_p (gsi
))
6833 stmt
= gsi_stmt (gsi
);
6834 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
6837 if (stmt
!= use
->stmt
)
6840 if (TREE_CODE (gimple_assign_lhs (stmt
)) != SSA_NAME
)
6843 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6845 fprintf (dump_file
, "Reordering \n");
6846 print_gimple_stmt (dump_file
, iv_update
, 0, 0);
6847 print_gimple_stmt (dump_file
, use
->stmt
, 0, 0);
6848 fprintf (dump_file
, "\n");
6851 gsi
= gsi_for_stmt (use
->stmt
);
6852 gsi_iv
= gsi_for_stmt (iv_update
);
6853 gsi_move_before (&gsi_iv
, &gsi
);
6855 cand
->pos
= IP_BEFORE_USE
;
6856 cand
->incremented_at
= use
->stmt
;
6859 /* Rewrites USE (address that is an iv) using candidate CAND. */
6862 rewrite_use_address_1 (struct ivopts_data
*data
,
6863 struct iv_use
*use
, struct iv_cand
*cand
)
6866 gimple_stmt_iterator bsi
= gsi_for_stmt (use
->stmt
);
6867 tree base_hint
= NULL_TREE
;
6871 adjust_iv_update_pos (cand
, use
);
6872 ok
= get_computation_aff (data
->current_loop
, use
, cand
, use
->stmt
, &aff
);
6874 unshare_aff_combination (&aff
);
6876 /* To avoid undefined overflow problems, all IV candidates use unsigned
6877 integer types. The drawback is that this makes it impossible for
6878 create_mem_ref to distinguish an IV that is based on a memory object
6879 from one that represents simply an offset.
6881 To work around this problem, we pass a hint to create_mem_ref that
6882 indicates which variable (if any) in aff is an IV based on a memory
6883 object. Note that we only consider the candidate. If this is not
6884 based on an object, the base of the reference is in some subexpression
6885 of the use -- but these will use pointer types, so they are recognized
6886 by the create_mem_ref heuristics anyway. */
6887 if (cand
->iv
->base_object
)
6888 base_hint
= var_at_stmt (data
->current_loop
, cand
, use
->stmt
);
6890 iv
= var_at_stmt (data
->current_loop
, cand
, use
->stmt
);
6891 ref
= create_mem_ref (&bsi
, TREE_TYPE (*use
->op_p
), &aff
,
6892 reference_alias_ptr_type (*use
->op_p
),
6893 iv
, base_hint
, data
->speed
);
6894 copy_ref_info (ref
, *use
->op_p
);
6898 /* Rewrites USE (address that is an iv) using candidate CAND. If it's the
6899 first use of a group, rewrites sub uses in the group too. */
6902 rewrite_use_address (struct ivopts_data
*data
,
6903 struct iv_use
*use
, struct iv_cand
*cand
)
6905 struct iv_use
*next
;
6907 gcc_assert (use
->sub_id
== 0);
6908 rewrite_use_address_1 (data
, use
, cand
);
6909 update_stmt (use
->stmt
);
6911 for (next
= use
->next
; next
!= NULL
; next
= next
->next
)
6913 rewrite_use_address_1 (data
, next
, cand
);
6914 update_stmt (next
->stmt
);
6920 /* Rewrites USE (the condition such that one of the arguments is an iv) using
6924 rewrite_use_compare (struct ivopts_data
*data
,
6925 struct iv_use
*use
, struct iv_cand
*cand
)
6927 tree comp
, *var_p
, op
, bound
;
6928 gimple_stmt_iterator bsi
= gsi_for_stmt (use
->stmt
);
6929 enum tree_code compare
;
6930 struct cost_pair
*cp
= get_use_iv_cost (data
, use
, cand
);
6936 tree var
= var_at_stmt (data
->current_loop
, cand
, use
->stmt
);
6937 tree var_type
= TREE_TYPE (var
);
6940 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6942 fprintf (dump_file
, "Replacing exit test: ");
6943 print_gimple_stmt (dump_file
, use
->stmt
, 0, TDF_SLIM
);
6946 bound
= unshare_expr (fold_convert (var_type
, bound
));
6947 op
= force_gimple_operand (bound
, &stmts
, true, NULL_TREE
);
6949 gsi_insert_seq_on_edge_immediate (
6950 loop_preheader_edge (data
->current_loop
),
6953 gcond
*cond_stmt
= as_a
<gcond
*> (use
->stmt
);
6954 gimple_cond_set_lhs (cond_stmt
, var
);
6955 gimple_cond_set_code (cond_stmt
, compare
);
6956 gimple_cond_set_rhs (cond_stmt
, op
);
6960 /* The induction variable elimination failed; just express the original
6962 comp
= get_computation (data
->current_loop
, use
, cand
);
6963 gcc_assert (comp
!= NULL_TREE
);
6965 ok
= extract_cond_operands (data
, use
->stmt
, &var_p
, NULL
, NULL
, NULL
);
6968 *var_p
= force_gimple_operand_gsi (&bsi
, comp
, true, SSA_NAME_VAR (*var_p
),
6969 true, GSI_SAME_STMT
);
6972 /* Rewrites USE using candidate CAND. */
6975 rewrite_use (struct ivopts_data
*data
, struct iv_use
*use
, struct iv_cand
*cand
)
6979 case USE_NONLINEAR_EXPR
:
6980 rewrite_use_nonlinear_expr (data
, use
, cand
);
6984 rewrite_use_address (data
, use
, cand
);
6988 rewrite_use_compare (data
, use
, cand
);
6995 update_stmt (use
->stmt
);
6998 /* Rewrite the uses using the selected induction variables. */
7001 rewrite_uses (struct ivopts_data
*data
)
7004 struct iv_cand
*cand
;
7007 for (i
= 0; i
< n_iv_uses (data
); i
++)
7009 use
= iv_use (data
, i
);
7010 cand
= use
->selected
;
7013 rewrite_use (data
, use
, cand
);
7017 /* Removes the ivs that are not used after rewriting. */
7020 remove_unused_ivs (struct ivopts_data
*data
)
7024 bitmap toremove
= BITMAP_ALLOC (NULL
);
7026 /* Figure out an order in which to release SSA DEFs so that we don't
7027 release something that we'd have to propagate into a debug stmt
7029 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, j
, bi
)
7031 struct version_info
*info
;
7033 info
= ver_info (data
, j
);
7035 && !integer_zerop (info
->iv
->step
)
7037 && !info
->iv
->have_use_for
7038 && !info
->preserve_biv
)
7040 bitmap_set_bit (toremove
, SSA_NAME_VERSION (info
->iv
->ssa_name
));
7042 tree def
= info
->iv
->ssa_name
;
7044 if (MAY_HAVE_DEBUG_STMTS
&& SSA_NAME_DEF_STMT (def
))
7046 imm_use_iterator imm_iter
;
7047 use_operand_p use_p
;
7051 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, def
)
7053 if (!gimple_debug_bind_p (stmt
))
7056 /* We just want to determine whether to do nothing
7057 (count == 0), to substitute the computed
7058 expression into a single use of the SSA DEF by
7059 itself (count == 1), or to use a debug temp
7060 because the SSA DEF is used multiple times or as
7061 part of a larger expression (count > 1). */
7063 if (gimple_debug_bind_get_value (stmt
) != def
)
7067 BREAK_FROM_IMM_USE_STMT (imm_iter
);
7073 struct iv_use dummy_use
;
7074 struct iv_cand
*best_cand
= NULL
, *cand
;
7075 unsigned i
, best_pref
= 0, cand_pref
;
7077 memset (&dummy_use
, 0, sizeof (dummy_use
));
7078 dummy_use
.iv
= info
->iv
;
7079 for (i
= 0; i
< n_iv_uses (data
) && i
< 64; i
++)
7081 cand
= iv_use (data
, i
)->selected
;
7082 if (cand
== best_cand
)
7084 cand_pref
= operand_equal_p (cand
->iv
->step
,
7088 += TYPE_MODE (TREE_TYPE (cand
->iv
->base
))
7089 == TYPE_MODE (TREE_TYPE (info
->iv
->base
))
7092 += TREE_CODE (cand
->iv
->base
) == INTEGER_CST
7094 if (best_cand
== NULL
|| best_pref
< cand_pref
)
7097 best_pref
= cand_pref
;
7104 tree comp
= get_computation_at (data
->current_loop
,
7105 &dummy_use
, best_cand
,
7106 SSA_NAME_DEF_STMT (def
));
7112 tree vexpr
= make_node (DEBUG_EXPR_DECL
);
7113 DECL_ARTIFICIAL (vexpr
) = 1;
7114 TREE_TYPE (vexpr
) = TREE_TYPE (comp
);
7115 if (SSA_NAME_VAR (def
))
7116 DECL_MODE (vexpr
) = DECL_MODE (SSA_NAME_VAR (def
));
7118 DECL_MODE (vexpr
) = TYPE_MODE (TREE_TYPE (vexpr
));
7120 = gimple_build_debug_bind (vexpr
, comp
, NULL
);
7121 gimple_stmt_iterator gsi
;
7123 if (gimple_code (SSA_NAME_DEF_STMT (def
)) == GIMPLE_PHI
)
7124 gsi
= gsi_after_labels (gimple_bb
7125 (SSA_NAME_DEF_STMT (def
)));
7127 gsi
= gsi_for_stmt (SSA_NAME_DEF_STMT (def
));
7129 gsi_insert_before (&gsi
, def_temp
, GSI_SAME_STMT
);
7133 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, def
)
7135 if (!gimple_debug_bind_p (stmt
))
7138 FOR_EACH_IMM_USE_ON_STMT (use_p
, imm_iter
)
7139 SET_USE (use_p
, comp
);
7147 release_defs_bitset (toremove
);
7149 BITMAP_FREE (toremove
);
7152 /* Frees memory occupied by struct tree_niter_desc in *VALUE. Callback
7153 for hash_map::traverse. */
7156 free_tree_niter_desc (edge
const &, tree_niter_desc
*const &value
, void *)
7162 /* Frees data allocated by the optimization of a single loop. */
7165 free_loop_data (struct ivopts_data
*data
)
7173 data
->niters
->traverse
<void *, free_tree_niter_desc
> (NULL
);
7174 delete data
->niters
;
7175 data
->niters
= NULL
;
7178 EXECUTE_IF_SET_IN_BITMAP (data
->relevant
, 0, i
, bi
)
7180 struct version_info
*info
;
7182 info
= ver_info (data
, i
);
7184 info
->has_nonlin_use
= false;
7185 info
->preserve_biv
= false;
7188 bitmap_clear (data
->relevant
);
7189 bitmap_clear (data
->important_candidates
);
7191 for (i
= 0; i
< n_iv_uses (data
); i
++)
7193 struct iv_use
*use
= iv_use (data
, i
);
7194 struct iv_use
*pre
= use
, *sub
= use
->next
;
7198 gcc_assert (sub
->related_cands
== NULL
);
7199 gcc_assert (sub
->n_map_members
== 0 && sub
->cost_map
== NULL
);
7206 BITMAP_FREE (use
->related_cands
);
7207 for (j
= 0; j
< use
->n_map_members
; j
++)
7208 if (use
->cost_map
[j
].depends_on
)
7209 BITMAP_FREE (use
->cost_map
[j
].depends_on
);
7210 free (use
->cost_map
);
7213 data
->iv_uses
.truncate (0);
7215 for (i
= 0; i
< n_iv_cands (data
); i
++)
7217 struct iv_cand
*cand
= iv_cand (data
, i
);
7219 if (cand
->depends_on
)
7220 BITMAP_FREE (cand
->depends_on
);
7223 data
->iv_candidates
.truncate (0);
7225 if (data
->version_info_size
< num_ssa_names
)
7227 data
->version_info_size
= 2 * num_ssa_names
;
7228 free (data
->version_info
);
7229 data
->version_info
= XCNEWVEC (struct version_info
, data
->version_info_size
);
7232 data
->max_inv_id
= 0;
7234 FOR_EACH_VEC_ELT (decl_rtl_to_reset
, i
, obj
)
7235 SET_DECL_RTL (obj
, NULL_RTX
);
7237 decl_rtl_to_reset
.truncate (0);
7239 data
->inv_expr_tab
->empty ();
7240 data
->inv_expr_id
= 0;
7243 /* Finalizes data structures used by the iv optimization pass. LOOPS is the
7247 tree_ssa_iv_optimize_finalize (struct ivopts_data
*data
)
7249 free_loop_data (data
);
7250 free (data
->version_info
);
7251 BITMAP_FREE (data
->relevant
);
7252 BITMAP_FREE (data
->important_candidates
);
7254 decl_rtl_to_reset
.release ();
7255 data
->iv_uses
.release ();
7256 data
->iv_candidates
.release ();
7257 delete data
->inv_expr_tab
;
7258 data
->inv_expr_tab
= NULL
;
7259 free_affine_expand_cache (&data
->name_expansion_cache
);
7260 obstack_free (&data
->iv_obstack
, NULL
);
7263 /* Returns true if the loop body BODY includes any function calls. */
7266 loop_body_includes_call (basic_block
*body
, unsigned num_nodes
)
7268 gimple_stmt_iterator gsi
;
7271 for (i
= 0; i
< num_nodes
; i
++)
7272 for (gsi
= gsi_start_bb (body
[i
]); !gsi_end_p (gsi
); gsi_next (&gsi
))
7274 gimple stmt
= gsi_stmt (gsi
);
7275 if (is_gimple_call (stmt
)
7276 && !is_inexpensive_builtin (gimple_call_fndecl (stmt
)))
7282 /* Optimizes the LOOP. Returns true if anything changed. */
7285 tree_ssa_iv_optimize_loop (struct ivopts_data
*data
, struct loop
*loop
)
7287 bool changed
= false;
7288 struct iv_ca
*iv_ca
;
7289 edge exit
= single_dom_exit (loop
);
7292 gcc_assert (!data
->niters
);
7293 data
->current_loop
= loop
;
7294 data
->loop_loc
= find_loop_location (loop
);
7295 data
->speed
= optimize_loop_for_speed_p (loop
);
7297 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7299 fprintf (dump_file
, "Processing loop %d", loop
->num
);
7300 if (data
->loop_loc
!= UNKNOWN_LOCATION
)
7301 fprintf (dump_file
, " at %s:%d", LOCATION_FILE (data
->loop_loc
),
7302 LOCATION_LINE (data
->loop_loc
));
7303 fprintf (dump_file
, "\n");
7307 fprintf (dump_file
, " single exit %d -> %d, exit condition ",
7308 exit
->src
->index
, exit
->dest
->index
);
7309 print_gimple_stmt (dump_file
, last_stmt (exit
->src
), 0, TDF_SLIM
);
7310 fprintf (dump_file
, "\n");
7313 fprintf (dump_file
, "\n");
7316 body
= get_loop_body (loop
);
7317 data
->body_includes_call
= loop_body_includes_call (body
, loop
->num_nodes
);
7318 renumber_gimple_stmt_uids_in_blocks (body
, loop
->num_nodes
);
7321 data
->loop_single_exit_p
= exit
!= NULL
&& loop_only_exit_p (loop
, exit
);
7323 /* For each ssa name determines whether it behaves as an induction variable
7325 if (!find_induction_variables (data
))
7328 /* Finds interesting uses (item 1). */
7329 find_interesting_uses (data
);
7330 group_address_uses (data
);
7331 if (n_iv_uses (data
) > MAX_CONSIDERED_USES
)
7334 /* Finds candidates for the induction variables (item 2). */
7335 find_iv_candidates (data
);
7337 /* Calculates the costs (item 3, part 1). */
7338 determine_iv_costs (data
);
7339 determine_use_iv_costs (data
);
7340 determine_set_costs (data
);
7342 /* Find the optimal set of induction variables (item 3, part 2). */
7343 iv_ca
= find_optimal_iv_set (data
);
7348 /* Create the new induction variables (item 4, part 1). */
7349 create_new_ivs (data
, iv_ca
);
7350 iv_ca_free (&iv_ca
);
7352 /* Rewrite the uses (item 4, part 2). */
7353 rewrite_uses (data
);
7355 /* Remove the ivs that are unused after rewriting. */
7356 remove_unused_ivs (data
);
7358 /* We have changed the structure of induction variables; it might happen
7359 that definitions in the scev database refer to some of them that were
7364 free_loop_data (data
);
7369 /* Main entry point. Optimizes induction variables in loops. */
7372 tree_ssa_iv_optimize (void)
7375 struct ivopts_data data
;
7377 tree_ssa_iv_optimize_init (&data
);
7379 /* Optimize the loops starting with the innermost ones. */
7380 FOR_EACH_LOOP (loop
, LI_FROM_INNERMOST
)
7382 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7383 flow_loop_dump (loop
, dump_file
, NULL
, 1);
7385 tree_ssa_iv_optimize_loop (&data
, loop
);
7388 tree_ssa_iv_optimize_finalize (&data
);