Daily bump.
[official-gcc.git] / gcc / combine.c
blobb97aa10be0799ec53ce50f8a735959d58f3ab0c9
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "alias.h"
84 #include "symtab.h"
85 #include "tree.h"
86 #include "stor-layout.h"
87 #include "tm_p.h"
88 #include "flags.h"
89 #include "regs.h"
90 #include "hard-reg-set.h"
91 #include "predict.h"
92 #include "function.h"
93 #include "dominance.h"
94 #include "cfg.h"
95 #include "cfgrtl.h"
96 #include "cfgcleanup.h"
97 #include "basic-block.h"
98 #include "insn-config.h"
99 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
100 #include "expmed.h"
101 #include "dojump.h"
102 #include "explow.h"
103 #include "calls.h"
104 #include "emit-rtl.h"
105 #include "varasm.h"
106 #include "stmt.h"
107 #include "expr.h"
108 #include "insn-attr.h"
109 #include "recog.h"
110 #include "diagnostic-core.h"
111 #include "target.h"
112 #include "insn-codes.h"
113 #include "optabs.h"
114 #include "rtlhooks-def.h"
115 #include "params.h"
116 #include "tree-pass.h"
117 #include "df.h"
118 #include "valtrack.h"
119 #include "cgraph.h"
120 #include "obstack.h"
121 #include "rtl-iter.h"
123 /* Number of attempts to combine instructions in this function. */
125 static int combine_attempts;
127 /* Number of attempts that got as far as substitution in this function. */
129 static int combine_merges;
131 /* Number of instructions combined with added SETs in this function. */
133 static int combine_extras;
135 /* Number of instructions combined in this function. */
137 static int combine_successes;
139 /* Totals over entire compilation. */
141 static int total_attempts, total_merges, total_extras, total_successes;
143 /* combine_instructions may try to replace the right hand side of the
144 second instruction with the value of an associated REG_EQUAL note
145 before throwing it at try_combine. That is problematic when there
146 is a REG_DEAD note for a register used in the old right hand side
147 and can cause distribute_notes to do wrong things. This is the
148 second instruction if it has been so modified, null otherwise. */
150 static rtx_insn *i2mod;
152 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
154 static rtx i2mod_old_rhs;
156 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
158 static rtx i2mod_new_rhs;
160 typedef struct reg_stat_struct {
161 /* Record last point of death of (hard or pseudo) register n. */
162 rtx_insn *last_death;
164 /* Record last point of modification of (hard or pseudo) register n. */
165 rtx_insn *last_set;
167 /* The next group of fields allows the recording of the last value assigned
168 to (hard or pseudo) register n. We use this information to see if an
169 operation being processed is redundant given a prior operation performed
170 on the register. For example, an `and' with a constant is redundant if
171 all the zero bits are already known to be turned off.
173 We use an approach similar to that used by cse, but change it in the
174 following ways:
176 (1) We do not want to reinitialize at each label.
177 (2) It is useful, but not critical, to know the actual value assigned
178 to a register. Often just its form is helpful.
180 Therefore, we maintain the following fields:
182 last_set_value the last value assigned
183 last_set_label records the value of label_tick when the
184 register was assigned
185 last_set_table_tick records the value of label_tick when a
186 value using the register is assigned
187 last_set_invalid set to nonzero when it is not valid
188 to use the value of this register in some
189 register's value
191 To understand the usage of these tables, it is important to understand
192 the distinction between the value in last_set_value being valid and
193 the register being validly contained in some other expression in the
194 table.
196 (The next two parameters are out of date).
198 reg_stat[i].last_set_value is valid if it is nonzero, and either
199 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
201 Register I may validly appear in any expression returned for the value
202 of another register if reg_n_sets[i] is 1. It may also appear in the
203 value for register J if reg_stat[j].last_set_invalid is zero, or
204 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
206 If an expression is found in the table containing a register which may
207 not validly appear in an expression, the register is replaced by
208 something that won't match, (clobber (const_int 0)). */
210 /* Record last value assigned to (hard or pseudo) register n. */
212 rtx last_set_value;
214 /* Record the value of label_tick when an expression involving register n
215 is placed in last_set_value. */
217 int last_set_table_tick;
219 /* Record the value of label_tick when the value for register n is placed in
220 last_set_value. */
222 int last_set_label;
224 /* These fields are maintained in parallel with last_set_value and are
225 used to store the mode in which the register was last set, the bits
226 that were known to be zero when it was last set, and the number of
227 sign bits copies it was known to have when it was last set. */
229 unsigned HOST_WIDE_INT last_set_nonzero_bits;
230 char last_set_sign_bit_copies;
231 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
233 /* Set nonzero if references to register n in expressions should not be
234 used. last_set_invalid is set nonzero when this register is being
235 assigned to and last_set_table_tick == label_tick. */
237 char last_set_invalid;
239 /* Some registers that are set more than once and used in more than one
240 basic block are nevertheless always set in similar ways. For example,
241 a QImode register may be loaded from memory in two places on a machine
242 where byte loads zero extend.
244 We record in the following fields if a register has some leading bits
245 that are always equal to the sign bit, and what we know about the
246 nonzero bits of a register, specifically which bits are known to be
247 zero.
249 If an entry is zero, it means that we don't know anything special. */
251 unsigned char sign_bit_copies;
253 unsigned HOST_WIDE_INT nonzero_bits;
255 /* Record the value of the label_tick when the last truncation
256 happened. The field truncated_to_mode is only valid if
257 truncation_label == label_tick. */
259 int truncation_label;
261 /* Record the last truncation seen for this register. If truncation
262 is not a nop to this mode we might be able to save an explicit
263 truncation if we know that value already contains a truncated
264 value. */
266 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
267 } reg_stat_type;
270 static vec<reg_stat_type> reg_stat;
272 /* One plus the highest pseudo for which we track REG_N_SETS.
273 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
274 but during combine_split_insns new pseudos can be created. As we don't have
275 updated DF information in that case, it is hard to initialize the array
276 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
277 so instead of growing the arrays, just assume all newly created pseudos
278 during combine might be set multiple times. */
280 static unsigned int reg_n_sets_max;
282 /* Record the luid of the last insn that invalidated memory
283 (anything that writes memory, and subroutine calls, but not pushes). */
285 static int mem_last_set;
287 /* Record the luid of the last CALL_INSN
288 so we can tell whether a potential combination crosses any calls. */
290 static int last_call_luid;
292 /* When `subst' is called, this is the insn that is being modified
293 (by combining in a previous insn). The PATTERN of this insn
294 is still the old pattern partially modified and it should not be
295 looked at, but this may be used to examine the successors of the insn
296 to judge whether a simplification is valid. */
298 static rtx_insn *subst_insn;
300 /* This is the lowest LUID that `subst' is currently dealing with.
301 get_last_value will not return a value if the register was set at or
302 after this LUID. If not for this mechanism, we could get confused if
303 I2 or I1 in try_combine were an insn that used the old value of a register
304 to obtain a new value. In that case, we might erroneously get the
305 new value of the register when we wanted the old one. */
307 static int subst_low_luid;
309 /* This contains any hard registers that are used in newpat; reg_dead_at_p
310 must consider all these registers to be always live. */
312 static HARD_REG_SET newpat_used_regs;
314 /* This is an insn to which a LOG_LINKS entry has been added. If this
315 insn is the earlier than I2 or I3, combine should rescan starting at
316 that location. */
318 static rtx_insn *added_links_insn;
320 /* Basic block in which we are performing combines. */
321 static basic_block this_basic_block;
322 static bool optimize_this_for_speed_p;
325 /* Length of the currently allocated uid_insn_cost array. */
327 static int max_uid_known;
329 /* The following array records the insn_rtx_cost for every insn
330 in the instruction stream. */
332 static int *uid_insn_cost;
334 /* The following array records the LOG_LINKS for every insn in the
335 instruction stream as struct insn_link pointers. */
337 struct insn_link {
338 rtx_insn *insn;
339 unsigned int regno;
340 struct insn_link *next;
343 static struct insn_link **uid_log_links;
345 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
346 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
348 #define FOR_EACH_LOG_LINK(L, INSN) \
349 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
351 /* Links for LOG_LINKS are allocated from this obstack. */
353 static struct obstack insn_link_obstack;
355 /* Allocate a link. */
357 static inline struct insn_link *
358 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
360 struct insn_link *l
361 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
362 sizeof (struct insn_link));
363 l->insn = insn;
364 l->regno = regno;
365 l->next = next;
366 return l;
369 /* Incremented for each basic block. */
371 static int label_tick;
373 /* Reset to label_tick for each extended basic block in scanning order. */
375 static int label_tick_ebb_start;
377 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
378 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
380 static machine_mode nonzero_bits_mode;
382 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
383 be safely used. It is zero while computing them and after combine has
384 completed. This former test prevents propagating values based on
385 previously set values, which can be incorrect if a variable is modified
386 in a loop. */
388 static int nonzero_sign_valid;
391 /* Record one modification to rtl structure
392 to be undone by storing old_contents into *where. */
394 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
396 struct undo
398 struct undo *next;
399 enum undo_kind kind;
400 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
401 union { rtx *r; int *i; struct insn_link **l; } where;
404 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
405 num_undo says how many are currently recorded.
407 other_insn is nonzero if we have modified some other insn in the process
408 of working on subst_insn. It must be verified too. */
410 struct undobuf
412 struct undo *undos;
413 struct undo *frees;
414 rtx_insn *other_insn;
417 static struct undobuf undobuf;
419 /* Number of times the pseudo being substituted for
420 was found and replaced. */
422 static int n_occurrences;
424 static rtx reg_nonzero_bits_for_combine (const_rtx, machine_mode, const_rtx,
425 machine_mode,
426 unsigned HOST_WIDE_INT,
427 unsigned HOST_WIDE_INT *);
428 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, machine_mode, const_rtx,
429 machine_mode,
430 unsigned int, unsigned int *);
431 static void do_SUBST (rtx *, rtx);
432 static void do_SUBST_INT (int *, int);
433 static void init_reg_last (void);
434 static void setup_incoming_promotions (rtx_insn *);
435 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
436 static int cant_combine_insn_p (rtx_insn *);
437 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
438 rtx_insn *, rtx_insn *, rtx *, rtx *);
439 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
440 static int contains_muldiv (rtx);
441 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
442 int *, rtx_insn *);
443 static void undo_all (void);
444 static void undo_commit (void);
445 static rtx *find_split_point (rtx *, rtx_insn *, bool);
446 static rtx subst (rtx, rtx, rtx, int, int, int);
447 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
448 static rtx simplify_if_then_else (rtx);
449 static rtx simplify_set (rtx);
450 static rtx simplify_logical (rtx);
451 static rtx expand_compound_operation (rtx);
452 static const_rtx expand_field_assignment (const_rtx);
453 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
454 rtx, unsigned HOST_WIDE_INT, int, int, int);
455 static rtx extract_left_shift (rtx, int);
456 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
457 unsigned HOST_WIDE_INT *);
458 static rtx canon_reg_for_combine (rtx, rtx);
459 static rtx force_to_mode (rtx, machine_mode,
460 unsigned HOST_WIDE_INT, int);
461 static rtx if_then_else_cond (rtx, rtx *, rtx *);
462 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
463 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
464 static rtx make_field_assignment (rtx);
465 static rtx apply_distributive_law (rtx);
466 static rtx distribute_and_simplify_rtx (rtx, int);
467 static rtx simplify_and_const_int_1 (machine_mode, rtx,
468 unsigned HOST_WIDE_INT);
469 static rtx simplify_and_const_int (rtx, machine_mode, rtx,
470 unsigned HOST_WIDE_INT);
471 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
472 HOST_WIDE_INT, machine_mode, int *);
473 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
474 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
475 int);
476 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
477 static rtx gen_lowpart_for_combine (machine_mode, rtx);
478 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
479 rtx, rtx *);
480 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
481 static void update_table_tick (rtx);
482 static void record_value_for_reg (rtx, rtx_insn *, rtx);
483 static void check_promoted_subreg (rtx_insn *, rtx);
484 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
485 static void record_dead_and_set_regs (rtx_insn *);
486 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
487 static rtx get_last_value (const_rtx);
488 static int use_crosses_set_p (const_rtx, int);
489 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
490 static int reg_dead_at_p (rtx, rtx_insn *);
491 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
492 static int reg_bitfield_target_p (rtx, rtx);
493 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
494 static void distribute_links (struct insn_link *);
495 static void mark_used_regs_combine (rtx);
496 static void record_promoted_value (rtx_insn *, rtx);
497 static bool unmentioned_reg_p (rtx, rtx);
498 static void record_truncated_values (rtx *, void *);
499 static bool reg_truncated_to_mode (machine_mode, const_rtx);
500 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
503 /* It is not safe to use ordinary gen_lowpart in combine.
504 See comments in gen_lowpart_for_combine. */
505 #undef RTL_HOOKS_GEN_LOWPART
506 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
508 /* Our implementation of gen_lowpart never emits a new pseudo. */
509 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
510 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
512 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
513 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
515 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
516 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
518 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
519 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
521 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
524 /* Convenience wrapper for the canonicalize_comparison target hook.
525 Target hooks cannot use enum rtx_code. */
526 static inline void
527 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
528 bool op0_preserve_value)
530 int code_int = (int)*code;
531 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
532 *code = (enum rtx_code)code_int;
535 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
536 PATTERN can not be split. Otherwise, it returns an insn sequence.
537 This is a wrapper around split_insns which ensures that the
538 reg_stat vector is made larger if the splitter creates a new
539 register. */
541 static rtx_insn *
542 combine_split_insns (rtx pattern, rtx_insn *insn)
544 rtx_insn *ret;
545 unsigned int nregs;
547 ret = split_insns (pattern, insn);
548 nregs = max_reg_num ();
549 if (nregs > reg_stat.length ())
550 reg_stat.safe_grow_cleared (nregs);
551 return ret;
554 /* This is used by find_single_use to locate an rtx in LOC that
555 contains exactly one use of DEST, which is typically either a REG
556 or CC0. It returns a pointer to the innermost rtx expression
557 containing DEST. Appearances of DEST that are being used to
558 totally replace it are not counted. */
560 static rtx *
561 find_single_use_1 (rtx dest, rtx *loc)
563 rtx x = *loc;
564 enum rtx_code code = GET_CODE (x);
565 rtx *result = NULL;
566 rtx *this_result;
567 int i;
568 const char *fmt;
570 switch (code)
572 case CONST:
573 case LABEL_REF:
574 case SYMBOL_REF:
575 CASE_CONST_ANY:
576 case CLOBBER:
577 return 0;
579 case SET:
580 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
581 of a REG that occupies all of the REG, the insn uses DEST if
582 it is mentioned in the destination or the source. Otherwise, we
583 need just check the source. */
584 if (GET_CODE (SET_DEST (x)) != CC0
585 && GET_CODE (SET_DEST (x)) != PC
586 && !REG_P (SET_DEST (x))
587 && ! (GET_CODE (SET_DEST (x)) == SUBREG
588 && REG_P (SUBREG_REG (SET_DEST (x)))
589 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
590 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
591 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
592 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
593 break;
595 return find_single_use_1 (dest, &SET_SRC (x));
597 case MEM:
598 case SUBREG:
599 return find_single_use_1 (dest, &XEXP (x, 0));
601 default:
602 break;
605 /* If it wasn't one of the common cases above, check each expression and
606 vector of this code. Look for a unique usage of DEST. */
608 fmt = GET_RTX_FORMAT (code);
609 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
611 if (fmt[i] == 'e')
613 if (dest == XEXP (x, i)
614 || (REG_P (dest) && REG_P (XEXP (x, i))
615 && REGNO (dest) == REGNO (XEXP (x, i))))
616 this_result = loc;
617 else
618 this_result = find_single_use_1 (dest, &XEXP (x, i));
620 if (result == NULL)
621 result = this_result;
622 else if (this_result)
623 /* Duplicate usage. */
624 return NULL;
626 else if (fmt[i] == 'E')
628 int j;
630 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
632 if (XVECEXP (x, i, j) == dest
633 || (REG_P (dest)
634 && REG_P (XVECEXP (x, i, j))
635 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
636 this_result = loc;
637 else
638 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
640 if (result == NULL)
641 result = this_result;
642 else if (this_result)
643 return NULL;
648 return result;
652 /* See if DEST, produced in INSN, is used only a single time in the
653 sequel. If so, return a pointer to the innermost rtx expression in which
654 it is used.
656 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
658 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
659 care about REG_DEAD notes or LOG_LINKS.
661 Otherwise, we find the single use by finding an insn that has a
662 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
663 only referenced once in that insn, we know that it must be the first
664 and last insn referencing DEST. */
666 static rtx *
667 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
669 basic_block bb;
670 rtx_insn *next;
671 rtx *result;
672 struct insn_link *link;
674 if (dest == cc0_rtx)
676 next = NEXT_INSN (insn);
677 if (next == 0
678 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
679 return 0;
681 result = find_single_use_1 (dest, &PATTERN (next));
682 if (result && ploc)
683 *ploc = next;
684 return result;
687 if (!REG_P (dest))
688 return 0;
690 bb = BLOCK_FOR_INSN (insn);
691 for (next = NEXT_INSN (insn);
692 next && BLOCK_FOR_INSN (next) == bb;
693 next = NEXT_INSN (next))
694 if (INSN_P (next) && dead_or_set_p (next, dest))
696 FOR_EACH_LOG_LINK (link, next)
697 if (link->insn == insn && link->regno == REGNO (dest))
698 break;
700 if (link)
702 result = find_single_use_1 (dest, &PATTERN (next));
703 if (ploc)
704 *ploc = next;
705 return result;
709 return 0;
712 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
713 insn. The substitution can be undone by undo_all. If INTO is already
714 set to NEWVAL, do not record this change. Because computing NEWVAL might
715 also call SUBST, we have to compute it before we put anything into
716 the undo table. */
718 static void
719 do_SUBST (rtx *into, rtx newval)
721 struct undo *buf;
722 rtx oldval = *into;
724 if (oldval == newval)
725 return;
727 /* We'd like to catch as many invalid transformations here as
728 possible. Unfortunately, there are way too many mode changes
729 that are perfectly valid, so we'd waste too much effort for
730 little gain doing the checks here. Focus on catching invalid
731 transformations involving integer constants. */
732 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
733 && CONST_INT_P (newval))
735 /* Sanity check that we're replacing oldval with a CONST_INT
736 that is a valid sign-extension for the original mode. */
737 gcc_assert (INTVAL (newval)
738 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
740 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
741 CONST_INT is not valid, because after the replacement, the
742 original mode would be gone. Unfortunately, we can't tell
743 when do_SUBST is called to replace the operand thereof, so we
744 perform this test on oldval instead, checking whether an
745 invalid replacement took place before we got here. */
746 gcc_assert (!(GET_CODE (oldval) == SUBREG
747 && CONST_INT_P (SUBREG_REG (oldval))));
748 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
749 && CONST_INT_P (XEXP (oldval, 0))));
752 if (undobuf.frees)
753 buf = undobuf.frees, undobuf.frees = buf->next;
754 else
755 buf = XNEW (struct undo);
757 buf->kind = UNDO_RTX;
758 buf->where.r = into;
759 buf->old_contents.r = oldval;
760 *into = newval;
762 buf->next = undobuf.undos, undobuf.undos = buf;
765 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
767 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
768 for the value of a HOST_WIDE_INT value (including CONST_INT) is
769 not safe. */
771 static void
772 do_SUBST_INT (int *into, int newval)
774 struct undo *buf;
775 int oldval = *into;
777 if (oldval == newval)
778 return;
780 if (undobuf.frees)
781 buf = undobuf.frees, undobuf.frees = buf->next;
782 else
783 buf = XNEW (struct undo);
785 buf->kind = UNDO_INT;
786 buf->where.i = into;
787 buf->old_contents.i = oldval;
788 *into = newval;
790 buf->next = undobuf.undos, undobuf.undos = buf;
793 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
795 /* Similar to SUBST, but just substitute the mode. This is used when
796 changing the mode of a pseudo-register, so that any other
797 references to the entry in the regno_reg_rtx array will change as
798 well. */
800 static void
801 do_SUBST_MODE (rtx *into, machine_mode newval)
803 struct undo *buf;
804 machine_mode oldval = GET_MODE (*into);
806 if (oldval == newval)
807 return;
809 if (undobuf.frees)
810 buf = undobuf.frees, undobuf.frees = buf->next;
811 else
812 buf = XNEW (struct undo);
814 buf->kind = UNDO_MODE;
815 buf->where.r = into;
816 buf->old_contents.m = oldval;
817 adjust_reg_mode (*into, newval);
819 buf->next = undobuf.undos, undobuf.undos = buf;
822 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
824 #if !HAVE_cc0
825 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
827 static void
828 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
830 struct undo *buf;
831 struct insn_link * oldval = *into;
833 if (oldval == newval)
834 return;
836 if (undobuf.frees)
837 buf = undobuf.frees, undobuf.frees = buf->next;
838 else
839 buf = XNEW (struct undo);
841 buf->kind = UNDO_LINKS;
842 buf->where.l = into;
843 buf->old_contents.l = oldval;
844 *into = newval;
846 buf->next = undobuf.undos, undobuf.undos = buf;
849 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
850 #endif
852 /* Subroutine of try_combine. Determine whether the replacement patterns
853 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
854 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
855 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
856 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
857 of all the instructions can be estimated and the replacements are more
858 expensive than the original sequence. */
860 static bool
861 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
862 rtx newpat, rtx newi2pat, rtx newotherpat)
864 int i0_cost, i1_cost, i2_cost, i3_cost;
865 int new_i2_cost, new_i3_cost;
866 int old_cost, new_cost;
868 /* Lookup the original insn_rtx_costs. */
869 i2_cost = INSN_COST (i2);
870 i3_cost = INSN_COST (i3);
872 if (i1)
874 i1_cost = INSN_COST (i1);
875 if (i0)
877 i0_cost = INSN_COST (i0);
878 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
879 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
881 else
883 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
884 ? i1_cost + i2_cost + i3_cost : 0);
885 i0_cost = 0;
888 else
890 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
891 i1_cost = i0_cost = 0;
894 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
895 correct that. */
896 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
897 old_cost -= i1_cost;
900 /* Calculate the replacement insn_rtx_costs. */
901 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
902 if (newi2pat)
904 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
905 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
906 ? new_i2_cost + new_i3_cost : 0;
908 else
910 new_cost = new_i3_cost;
911 new_i2_cost = 0;
914 if (undobuf.other_insn)
916 int old_other_cost, new_other_cost;
918 old_other_cost = INSN_COST (undobuf.other_insn);
919 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
920 if (old_other_cost > 0 && new_other_cost > 0)
922 old_cost += old_other_cost;
923 new_cost += new_other_cost;
925 else
926 old_cost = 0;
929 /* Disallow this combination if both new_cost and old_cost are greater than
930 zero, and new_cost is greater than old cost. */
931 int reject = old_cost > 0 && new_cost > old_cost;
933 if (dump_file)
935 fprintf (dump_file, "%s combination of insns ",
936 reject ? "rejecting" : "allowing");
937 if (i0)
938 fprintf (dump_file, "%d, ", INSN_UID (i0));
939 if (i1 && INSN_UID (i1) != INSN_UID (i2))
940 fprintf (dump_file, "%d, ", INSN_UID (i1));
941 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
943 fprintf (dump_file, "original costs ");
944 if (i0)
945 fprintf (dump_file, "%d + ", i0_cost);
946 if (i1 && INSN_UID (i1) != INSN_UID (i2))
947 fprintf (dump_file, "%d + ", i1_cost);
948 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
950 if (newi2pat)
951 fprintf (dump_file, "replacement costs %d + %d = %d\n",
952 new_i2_cost, new_i3_cost, new_cost);
953 else
954 fprintf (dump_file, "replacement cost %d\n", new_cost);
957 if (reject)
958 return false;
960 /* Update the uid_insn_cost array with the replacement costs. */
961 INSN_COST (i2) = new_i2_cost;
962 INSN_COST (i3) = new_i3_cost;
963 if (i1)
965 INSN_COST (i1) = 0;
966 if (i0)
967 INSN_COST (i0) = 0;
970 return true;
974 /* Delete any insns that copy a register to itself. */
976 static void
977 delete_noop_moves (void)
979 rtx_insn *insn, *next;
980 basic_block bb;
982 FOR_EACH_BB_FN (bb, cfun)
984 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
986 next = NEXT_INSN (insn);
987 if (INSN_P (insn) && noop_move_p (insn))
989 if (dump_file)
990 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
992 delete_insn_and_edges (insn);
999 /* Return false if we do not want to (or cannot) combine DEF. */
1000 static bool
1001 can_combine_def_p (df_ref def)
1003 /* Do not consider if it is pre/post modification in MEM. */
1004 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1005 return false;
1007 unsigned int regno = DF_REF_REGNO (def);
1009 /* Do not combine frame pointer adjustments. */
1010 if ((regno == FRAME_POINTER_REGNUM
1011 && (!reload_completed || frame_pointer_needed))
1012 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1013 || (regno == HARD_FRAME_POINTER_REGNUM
1014 && (!reload_completed || frame_pointer_needed))
1015 #endif
1016 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1017 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1018 return false;
1020 return true;
1023 /* Return false if we do not want to (or cannot) combine USE. */
1024 static bool
1025 can_combine_use_p (df_ref use)
1027 /* Do not consider the usage of the stack pointer by function call. */
1028 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1029 return false;
1031 return true;
1034 /* Fill in log links field for all insns. */
1036 static void
1037 create_log_links (void)
1039 basic_block bb;
1040 rtx_insn **next_use;
1041 rtx_insn *insn;
1042 df_ref def, use;
1044 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1046 /* Pass through each block from the end, recording the uses of each
1047 register and establishing log links when def is encountered.
1048 Note that we do not clear next_use array in order to save time,
1049 so we have to test whether the use is in the same basic block as def.
1051 There are a few cases below when we do not consider the definition or
1052 usage -- these are taken from original flow.c did. Don't ask me why it is
1053 done this way; I don't know and if it works, I don't want to know. */
1055 FOR_EACH_BB_FN (bb, cfun)
1057 FOR_BB_INSNS_REVERSE (bb, insn)
1059 if (!NONDEBUG_INSN_P (insn))
1060 continue;
1062 /* Log links are created only once. */
1063 gcc_assert (!LOG_LINKS (insn));
1065 FOR_EACH_INSN_DEF (def, insn)
1067 unsigned int regno = DF_REF_REGNO (def);
1068 rtx_insn *use_insn;
1070 if (!next_use[regno])
1071 continue;
1073 if (!can_combine_def_p (def))
1074 continue;
1076 use_insn = next_use[regno];
1077 next_use[regno] = NULL;
1079 if (BLOCK_FOR_INSN (use_insn) != bb)
1080 continue;
1082 /* flow.c claimed:
1084 We don't build a LOG_LINK for hard registers contained
1085 in ASM_OPERANDs. If these registers get replaced,
1086 we might wind up changing the semantics of the insn,
1087 even if reload can make what appear to be valid
1088 assignments later. */
1089 if (regno < FIRST_PSEUDO_REGISTER
1090 && asm_noperands (PATTERN (use_insn)) >= 0)
1091 continue;
1093 /* Don't add duplicate links between instructions. */
1094 struct insn_link *links;
1095 FOR_EACH_LOG_LINK (links, use_insn)
1096 if (insn == links->insn && regno == links->regno)
1097 break;
1099 if (!links)
1100 LOG_LINKS (use_insn)
1101 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1104 FOR_EACH_INSN_USE (use, insn)
1105 if (can_combine_use_p (use))
1106 next_use[DF_REF_REGNO (use)] = insn;
1110 free (next_use);
1113 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1114 true if we found a LOG_LINK that proves that A feeds B. This only works
1115 if there are no instructions between A and B which could have a link
1116 depending on A, since in that case we would not record a link for B.
1117 We also check the implicit dependency created by a cc0 setter/user
1118 pair. */
1120 static bool
1121 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1123 struct insn_link *links;
1124 FOR_EACH_LOG_LINK (links, b)
1125 if (links->insn == a)
1126 return true;
1127 if (HAVE_cc0 && sets_cc0_p (a))
1128 return true;
1129 return false;
1132 /* Main entry point for combiner. F is the first insn of the function.
1133 NREGS is the first unused pseudo-reg number.
1135 Return nonzero if the combiner has turned an indirect jump
1136 instruction into a direct jump. */
1137 static int
1138 combine_instructions (rtx_insn *f, unsigned int nregs)
1140 rtx_insn *insn, *next;
1141 #if HAVE_cc0
1142 rtx_insn *prev;
1143 #endif
1144 struct insn_link *links, *nextlinks;
1145 rtx_insn *first;
1146 basic_block last_bb;
1148 int new_direct_jump_p = 0;
1150 for (first = f; first && !INSN_P (first); )
1151 first = NEXT_INSN (first);
1152 if (!first)
1153 return 0;
1155 combine_attempts = 0;
1156 combine_merges = 0;
1157 combine_extras = 0;
1158 combine_successes = 0;
1160 rtl_hooks = combine_rtl_hooks;
1162 reg_stat.safe_grow_cleared (nregs);
1164 init_recog_no_volatile ();
1166 /* Allocate array for insn info. */
1167 max_uid_known = get_max_uid ();
1168 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1169 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1170 gcc_obstack_init (&insn_link_obstack);
1172 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1174 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1175 problems when, for example, we have j <<= 1 in a loop. */
1177 nonzero_sign_valid = 0;
1178 label_tick = label_tick_ebb_start = 1;
1180 /* Scan all SETs and see if we can deduce anything about what
1181 bits are known to be zero for some registers and how many copies
1182 of the sign bit are known to exist for those registers.
1184 Also set any known values so that we can use it while searching
1185 for what bits are known to be set. */
1187 setup_incoming_promotions (first);
1188 /* Allow the entry block and the first block to fall into the same EBB.
1189 Conceptually the incoming promotions are assigned to the entry block. */
1190 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1192 create_log_links ();
1193 FOR_EACH_BB_FN (this_basic_block, cfun)
1195 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1196 last_call_luid = 0;
1197 mem_last_set = -1;
1199 label_tick++;
1200 if (!single_pred_p (this_basic_block)
1201 || single_pred (this_basic_block) != last_bb)
1202 label_tick_ebb_start = label_tick;
1203 last_bb = this_basic_block;
1205 FOR_BB_INSNS (this_basic_block, insn)
1206 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1208 #ifdef AUTO_INC_DEC
1209 rtx links;
1210 #endif
1212 subst_low_luid = DF_INSN_LUID (insn);
1213 subst_insn = insn;
1215 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1216 insn);
1217 record_dead_and_set_regs (insn);
1219 #ifdef AUTO_INC_DEC
1220 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1221 if (REG_NOTE_KIND (links) == REG_INC)
1222 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1223 insn);
1224 #endif
1226 /* Record the current insn_rtx_cost of this instruction. */
1227 if (NONJUMP_INSN_P (insn))
1228 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1229 optimize_this_for_speed_p);
1230 if (dump_file)
1231 fprintf (dump_file, "insn_cost %d: %d\n",
1232 INSN_UID (insn), INSN_COST (insn));
1236 nonzero_sign_valid = 1;
1238 /* Now scan all the insns in forward order. */
1239 label_tick = label_tick_ebb_start = 1;
1240 init_reg_last ();
1241 setup_incoming_promotions (first);
1242 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1243 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1245 FOR_EACH_BB_FN (this_basic_block, cfun)
1247 rtx_insn *last_combined_insn = NULL;
1248 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1249 last_call_luid = 0;
1250 mem_last_set = -1;
1252 label_tick++;
1253 if (!single_pred_p (this_basic_block)
1254 || single_pred (this_basic_block) != last_bb)
1255 label_tick_ebb_start = label_tick;
1256 last_bb = this_basic_block;
1258 rtl_profile_for_bb (this_basic_block);
1259 for (insn = BB_HEAD (this_basic_block);
1260 insn != NEXT_INSN (BB_END (this_basic_block));
1261 insn = next ? next : NEXT_INSN (insn))
1263 next = 0;
1264 if (!NONDEBUG_INSN_P (insn))
1265 continue;
1267 while (last_combined_insn
1268 && last_combined_insn->deleted ())
1269 last_combined_insn = PREV_INSN (last_combined_insn);
1270 if (last_combined_insn == NULL_RTX
1271 || BARRIER_P (last_combined_insn)
1272 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1273 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1274 last_combined_insn = insn;
1276 /* See if we know about function return values before this
1277 insn based upon SUBREG flags. */
1278 check_promoted_subreg (insn, PATTERN (insn));
1280 /* See if we can find hardregs and subreg of pseudos in
1281 narrower modes. This could help turning TRUNCATEs
1282 into SUBREGs. */
1283 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1285 /* Try this insn with each insn it links back to. */
1287 FOR_EACH_LOG_LINK (links, insn)
1288 if ((next = try_combine (insn, links->insn, NULL,
1289 NULL, &new_direct_jump_p,
1290 last_combined_insn)) != 0)
1292 statistics_counter_event (cfun, "two-insn combine", 1);
1293 goto retry;
1296 /* Try each sequence of three linked insns ending with this one. */
1298 if (max_combine >= 3)
1299 FOR_EACH_LOG_LINK (links, insn)
1301 rtx_insn *link = links->insn;
1303 /* If the linked insn has been replaced by a note, then there
1304 is no point in pursuing this chain any further. */
1305 if (NOTE_P (link))
1306 continue;
1308 FOR_EACH_LOG_LINK (nextlinks, link)
1309 if ((next = try_combine (insn, link, nextlinks->insn,
1310 NULL, &new_direct_jump_p,
1311 last_combined_insn)) != 0)
1313 statistics_counter_event (cfun, "three-insn combine", 1);
1314 goto retry;
1318 #if HAVE_cc0
1319 /* Try to combine a jump insn that uses CC0
1320 with a preceding insn that sets CC0, and maybe with its
1321 logical predecessor as well.
1322 This is how we make decrement-and-branch insns.
1323 We need this special code because data flow connections
1324 via CC0 do not get entered in LOG_LINKS. */
1326 if (JUMP_P (insn)
1327 && (prev = prev_nonnote_insn (insn)) != 0
1328 && NONJUMP_INSN_P (prev)
1329 && sets_cc0_p (PATTERN (prev)))
1331 if ((next = try_combine (insn, prev, NULL, NULL,
1332 &new_direct_jump_p,
1333 last_combined_insn)) != 0)
1334 goto retry;
1336 FOR_EACH_LOG_LINK (nextlinks, prev)
1337 if ((next = try_combine (insn, prev, nextlinks->insn,
1338 NULL, &new_direct_jump_p,
1339 last_combined_insn)) != 0)
1340 goto retry;
1343 /* Do the same for an insn that explicitly references CC0. */
1344 if (NONJUMP_INSN_P (insn)
1345 && (prev = prev_nonnote_insn (insn)) != 0
1346 && NONJUMP_INSN_P (prev)
1347 && sets_cc0_p (PATTERN (prev))
1348 && GET_CODE (PATTERN (insn)) == SET
1349 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1351 if ((next = try_combine (insn, prev, NULL, NULL,
1352 &new_direct_jump_p,
1353 last_combined_insn)) != 0)
1354 goto retry;
1356 FOR_EACH_LOG_LINK (nextlinks, prev)
1357 if ((next = try_combine (insn, prev, nextlinks->insn,
1358 NULL, &new_direct_jump_p,
1359 last_combined_insn)) != 0)
1360 goto retry;
1363 /* Finally, see if any of the insns that this insn links to
1364 explicitly references CC0. If so, try this insn, that insn,
1365 and its predecessor if it sets CC0. */
1366 FOR_EACH_LOG_LINK (links, insn)
1367 if (NONJUMP_INSN_P (links->insn)
1368 && GET_CODE (PATTERN (links->insn)) == SET
1369 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1370 && (prev = prev_nonnote_insn (links->insn)) != 0
1371 && NONJUMP_INSN_P (prev)
1372 && sets_cc0_p (PATTERN (prev))
1373 && (next = try_combine (insn, links->insn,
1374 prev, NULL, &new_direct_jump_p,
1375 last_combined_insn)) != 0)
1376 goto retry;
1377 #endif
1379 /* Try combining an insn with two different insns whose results it
1380 uses. */
1381 if (max_combine >= 3)
1382 FOR_EACH_LOG_LINK (links, insn)
1383 for (nextlinks = links->next; nextlinks;
1384 nextlinks = nextlinks->next)
1385 if ((next = try_combine (insn, links->insn,
1386 nextlinks->insn, NULL,
1387 &new_direct_jump_p,
1388 last_combined_insn)) != 0)
1391 statistics_counter_event (cfun, "three-insn combine", 1);
1392 goto retry;
1395 /* Try four-instruction combinations. */
1396 if (max_combine >= 4)
1397 FOR_EACH_LOG_LINK (links, insn)
1399 struct insn_link *next1;
1400 rtx_insn *link = links->insn;
1402 /* If the linked insn has been replaced by a note, then there
1403 is no point in pursuing this chain any further. */
1404 if (NOTE_P (link))
1405 continue;
1407 FOR_EACH_LOG_LINK (next1, link)
1409 rtx_insn *link1 = next1->insn;
1410 if (NOTE_P (link1))
1411 continue;
1412 /* I0 -> I1 -> I2 -> I3. */
1413 FOR_EACH_LOG_LINK (nextlinks, link1)
1414 if ((next = try_combine (insn, link, link1,
1415 nextlinks->insn,
1416 &new_direct_jump_p,
1417 last_combined_insn)) != 0)
1419 statistics_counter_event (cfun, "four-insn combine", 1);
1420 goto retry;
1422 /* I0, I1 -> I2, I2 -> I3. */
1423 for (nextlinks = next1->next; nextlinks;
1424 nextlinks = nextlinks->next)
1425 if ((next = try_combine (insn, link, link1,
1426 nextlinks->insn,
1427 &new_direct_jump_p,
1428 last_combined_insn)) != 0)
1430 statistics_counter_event (cfun, "four-insn combine", 1);
1431 goto retry;
1435 for (next1 = links->next; next1; next1 = next1->next)
1437 rtx_insn *link1 = next1->insn;
1438 if (NOTE_P (link1))
1439 continue;
1440 /* I0 -> I2; I1, I2 -> I3. */
1441 FOR_EACH_LOG_LINK (nextlinks, link)
1442 if ((next = try_combine (insn, link, link1,
1443 nextlinks->insn,
1444 &new_direct_jump_p,
1445 last_combined_insn)) != 0)
1447 statistics_counter_event (cfun, "four-insn combine", 1);
1448 goto retry;
1450 /* I0 -> I1; I1, I2 -> I3. */
1451 FOR_EACH_LOG_LINK (nextlinks, link1)
1452 if ((next = try_combine (insn, link, link1,
1453 nextlinks->insn,
1454 &new_direct_jump_p,
1455 last_combined_insn)) != 0)
1457 statistics_counter_event (cfun, "four-insn combine", 1);
1458 goto retry;
1463 /* Try this insn with each REG_EQUAL note it links back to. */
1464 FOR_EACH_LOG_LINK (links, insn)
1466 rtx set, note;
1467 rtx_insn *temp = links->insn;
1468 if ((set = single_set (temp)) != 0
1469 && (note = find_reg_equal_equiv_note (temp)) != 0
1470 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1471 /* Avoid using a register that may already been marked
1472 dead by an earlier instruction. */
1473 && ! unmentioned_reg_p (note, SET_SRC (set))
1474 && (GET_MODE (note) == VOIDmode
1475 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1476 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1478 /* Temporarily replace the set's source with the
1479 contents of the REG_EQUAL note. The insn will
1480 be deleted or recognized by try_combine. */
1481 rtx orig = SET_SRC (set);
1482 SET_SRC (set) = note;
1483 i2mod = temp;
1484 i2mod_old_rhs = copy_rtx (orig);
1485 i2mod_new_rhs = copy_rtx (note);
1486 next = try_combine (insn, i2mod, NULL, NULL,
1487 &new_direct_jump_p,
1488 last_combined_insn);
1489 i2mod = NULL;
1490 if (next)
1492 statistics_counter_event (cfun, "insn-with-note combine", 1);
1493 goto retry;
1495 SET_SRC (set) = orig;
1499 if (!NOTE_P (insn))
1500 record_dead_and_set_regs (insn);
1502 retry:
1507 default_rtl_profile ();
1508 clear_bb_flags ();
1509 new_direct_jump_p |= purge_all_dead_edges ();
1510 delete_noop_moves ();
1512 /* Clean up. */
1513 obstack_free (&insn_link_obstack, NULL);
1514 free (uid_log_links);
1515 free (uid_insn_cost);
1516 reg_stat.release ();
1519 struct undo *undo, *next;
1520 for (undo = undobuf.frees; undo; undo = next)
1522 next = undo->next;
1523 free (undo);
1525 undobuf.frees = 0;
1528 total_attempts += combine_attempts;
1529 total_merges += combine_merges;
1530 total_extras += combine_extras;
1531 total_successes += combine_successes;
1533 nonzero_sign_valid = 0;
1534 rtl_hooks = general_rtl_hooks;
1536 /* Make recognizer allow volatile MEMs again. */
1537 init_recog ();
1539 return new_direct_jump_p;
1542 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1544 static void
1545 init_reg_last (void)
1547 unsigned int i;
1548 reg_stat_type *p;
1550 FOR_EACH_VEC_ELT (reg_stat, i, p)
1551 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1554 /* Set up any promoted values for incoming argument registers. */
1556 static void
1557 setup_incoming_promotions (rtx_insn *first)
1559 tree arg;
1560 bool strictly_local = false;
1562 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1563 arg = DECL_CHAIN (arg))
1565 rtx x, reg = DECL_INCOMING_RTL (arg);
1566 int uns1, uns3;
1567 machine_mode mode1, mode2, mode3, mode4;
1569 /* Only continue if the incoming argument is in a register. */
1570 if (!REG_P (reg))
1571 continue;
1573 /* Determine, if possible, whether all call sites of the current
1574 function lie within the current compilation unit. (This does
1575 take into account the exporting of a function via taking its
1576 address, and so forth.) */
1577 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1579 /* The mode and signedness of the argument before any promotions happen
1580 (equal to the mode of the pseudo holding it at that stage). */
1581 mode1 = TYPE_MODE (TREE_TYPE (arg));
1582 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1584 /* The mode and signedness of the argument after any source language and
1585 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1586 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1587 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1589 /* The mode and signedness of the argument as it is actually passed,
1590 see assign_parm_setup_reg in function.c. */
1591 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1592 TREE_TYPE (cfun->decl), 0);
1594 /* The mode of the register in which the argument is being passed. */
1595 mode4 = GET_MODE (reg);
1597 /* Eliminate sign extensions in the callee when:
1598 (a) A mode promotion has occurred; */
1599 if (mode1 == mode3)
1600 continue;
1601 /* (b) The mode of the register is the same as the mode of
1602 the argument as it is passed; */
1603 if (mode3 != mode4)
1604 continue;
1605 /* (c) There's no language level extension; */
1606 if (mode1 == mode2)
1608 /* (c.1) All callers are from the current compilation unit. If that's
1609 the case we don't have to rely on an ABI, we only have to know
1610 what we're generating right now, and we know that we will do the
1611 mode1 to mode2 promotion with the given sign. */
1612 else if (!strictly_local)
1613 continue;
1614 /* (c.2) The combination of the two promotions is useful. This is
1615 true when the signs match, or if the first promotion is unsigned.
1616 In the later case, (sign_extend (zero_extend x)) is the same as
1617 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1618 else if (uns1)
1619 uns3 = true;
1620 else if (uns3)
1621 continue;
1623 /* Record that the value was promoted from mode1 to mode3,
1624 so that any sign extension at the head of the current
1625 function may be eliminated. */
1626 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1627 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1628 record_value_for_reg (reg, first, x);
1632 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1633 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1634 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1635 because some machines (maybe most) will actually do the sign-extension and
1636 this is the conservative approach.
1638 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1639 kludge. */
1641 static rtx
1642 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1644 if (GET_MODE_PRECISION (mode) < prec
1645 && CONST_INT_P (src)
1646 && INTVAL (src) > 0
1647 && val_signbit_known_set_p (mode, INTVAL (src)))
1648 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (mode));
1650 return src;
1652 #endif
1654 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1655 and SET. */
1657 static void
1658 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1659 rtx x)
1661 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1662 unsigned HOST_WIDE_INT bits = 0;
1663 rtx reg_equal = NULL, src = SET_SRC (set);
1664 unsigned int num = 0;
1666 if (reg_equal_note)
1667 reg_equal = XEXP (reg_equal_note, 0);
1669 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1670 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1671 if (reg_equal)
1672 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1673 #endif
1675 /* Don't call nonzero_bits if it cannot change anything. */
1676 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1678 bits = nonzero_bits (src, nonzero_bits_mode);
1679 if (reg_equal && bits)
1680 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1681 rsp->nonzero_bits |= bits;
1684 /* Don't call num_sign_bit_copies if it cannot change anything. */
1685 if (rsp->sign_bit_copies != 1)
1687 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1688 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1690 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1691 if (num == 0 || numeq > num)
1692 num = numeq;
1694 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1695 rsp->sign_bit_copies = num;
1699 /* Called via note_stores. If X is a pseudo that is narrower than
1700 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1702 If we are setting only a portion of X and we can't figure out what
1703 portion, assume all bits will be used since we don't know what will
1704 be happening.
1706 Similarly, set how many bits of X are known to be copies of the sign bit
1707 at all locations in the function. This is the smallest number implied
1708 by any set of X. */
1710 static void
1711 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1713 rtx_insn *insn = (rtx_insn *) data;
1715 if (REG_P (x)
1716 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1717 /* If this register is undefined at the start of the file, we can't
1718 say what its contents were. */
1719 && ! REGNO_REG_SET_P
1720 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1721 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1723 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1725 if (set == 0 || GET_CODE (set) == CLOBBER)
1727 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1728 rsp->sign_bit_copies = 1;
1729 return;
1732 /* If this register is being initialized using itself, and the
1733 register is uninitialized in this basic block, and there are
1734 no LOG_LINKS which set the register, then part of the
1735 register is uninitialized. In that case we can't assume
1736 anything about the number of nonzero bits.
1738 ??? We could do better if we checked this in
1739 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1740 could avoid making assumptions about the insn which initially
1741 sets the register, while still using the information in other
1742 insns. We would have to be careful to check every insn
1743 involved in the combination. */
1745 if (insn
1746 && reg_referenced_p (x, PATTERN (insn))
1747 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1748 REGNO (x)))
1750 struct insn_link *link;
1752 FOR_EACH_LOG_LINK (link, insn)
1753 if (dead_or_set_p (link->insn, x))
1754 break;
1755 if (!link)
1757 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1758 rsp->sign_bit_copies = 1;
1759 return;
1763 /* If this is a complex assignment, see if we can convert it into a
1764 simple assignment. */
1765 set = expand_field_assignment (set);
1767 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1768 set what we know about X. */
1770 if (SET_DEST (set) == x
1771 || (paradoxical_subreg_p (SET_DEST (set))
1772 && SUBREG_REG (SET_DEST (set)) == x))
1773 update_rsp_from_reg_equal (rsp, insn, set, x);
1774 else
1776 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1777 rsp->sign_bit_copies = 1;
1782 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1783 optionally insns that were previously combined into I3 or that will be
1784 combined into the merger of INSN and I3. The order is PRED, PRED2,
1785 INSN, SUCC, SUCC2, I3.
1787 Return 0 if the combination is not allowed for any reason.
1789 If the combination is allowed, *PDEST will be set to the single
1790 destination of INSN and *PSRC to the single source, and this function
1791 will return 1. */
1793 static int
1794 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1795 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1796 rtx *pdest, rtx *psrc)
1798 int i;
1799 const_rtx set = 0;
1800 rtx src, dest;
1801 rtx_insn *p;
1802 #ifdef AUTO_INC_DEC
1803 rtx link;
1804 #endif
1805 bool all_adjacent = true;
1806 int (*is_volatile_p) (const_rtx);
1808 if (succ)
1810 if (succ2)
1812 if (next_active_insn (succ2) != i3)
1813 all_adjacent = false;
1814 if (next_active_insn (succ) != succ2)
1815 all_adjacent = false;
1817 else if (next_active_insn (succ) != i3)
1818 all_adjacent = false;
1819 if (next_active_insn (insn) != succ)
1820 all_adjacent = false;
1822 else if (next_active_insn (insn) != i3)
1823 all_adjacent = false;
1825 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1826 or a PARALLEL consisting of such a SET and CLOBBERs.
1828 If INSN has CLOBBER parallel parts, ignore them for our processing.
1829 By definition, these happen during the execution of the insn. When it
1830 is merged with another insn, all bets are off. If they are, in fact,
1831 needed and aren't also supplied in I3, they may be added by
1832 recog_for_combine. Otherwise, it won't match.
1834 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1835 note.
1837 Get the source and destination of INSN. If more than one, can't
1838 combine. */
1840 if (GET_CODE (PATTERN (insn)) == SET)
1841 set = PATTERN (insn);
1842 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1843 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1845 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1847 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1849 switch (GET_CODE (elt))
1851 /* This is important to combine floating point insns
1852 for the SH4 port. */
1853 case USE:
1854 /* Combining an isolated USE doesn't make sense.
1855 We depend here on combinable_i3pat to reject them. */
1856 /* The code below this loop only verifies that the inputs of
1857 the SET in INSN do not change. We call reg_set_between_p
1858 to verify that the REG in the USE does not change between
1859 I3 and INSN.
1860 If the USE in INSN was for a pseudo register, the matching
1861 insn pattern will likely match any register; combining this
1862 with any other USE would only be safe if we knew that the
1863 used registers have identical values, or if there was
1864 something to tell them apart, e.g. different modes. For
1865 now, we forgo such complicated tests and simply disallow
1866 combining of USES of pseudo registers with any other USE. */
1867 if (REG_P (XEXP (elt, 0))
1868 && GET_CODE (PATTERN (i3)) == PARALLEL)
1870 rtx i3pat = PATTERN (i3);
1871 int i = XVECLEN (i3pat, 0) - 1;
1872 unsigned int regno = REGNO (XEXP (elt, 0));
1876 rtx i3elt = XVECEXP (i3pat, 0, i);
1878 if (GET_CODE (i3elt) == USE
1879 && REG_P (XEXP (i3elt, 0))
1880 && (REGNO (XEXP (i3elt, 0)) == regno
1881 ? reg_set_between_p (XEXP (elt, 0),
1882 PREV_INSN (insn), i3)
1883 : regno >= FIRST_PSEUDO_REGISTER))
1884 return 0;
1886 while (--i >= 0);
1888 break;
1890 /* We can ignore CLOBBERs. */
1891 case CLOBBER:
1892 break;
1894 case SET:
1895 /* Ignore SETs whose result isn't used but not those that
1896 have side-effects. */
1897 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1898 && insn_nothrow_p (insn)
1899 && !side_effects_p (elt))
1900 break;
1902 /* If we have already found a SET, this is a second one and
1903 so we cannot combine with this insn. */
1904 if (set)
1905 return 0;
1907 set = elt;
1908 break;
1910 default:
1911 /* Anything else means we can't combine. */
1912 return 0;
1916 if (set == 0
1917 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1918 so don't do anything with it. */
1919 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1920 return 0;
1922 else
1923 return 0;
1925 if (set == 0)
1926 return 0;
1928 /* The simplification in expand_field_assignment may call back to
1929 get_last_value, so set safe guard here. */
1930 subst_low_luid = DF_INSN_LUID (insn);
1932 set = expand_field_assignment (set);
1933 src = SET_SRC (set), dest = SET_DEST (set);
1935 /* Do not eliminate user-specified register if it is in an
1936 asm input because we may break the register asm usage defined
1937 in GCC manual if allow to do so.
1938 Be aware that this may cover more cases than we expect but this
1939 should be harmless. */
1940 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1941 && extract_asm_operands (PATTERN (i3)))
1942 return 0;
1944 /* Don't eliminate a store in the stack pointer. */
1945 if (dest == stack_pointer_rtx
1946 /* Don't combine with an insn that sets a register to itself if it has
1947 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1948 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1949 /* Can't merge an ASM_OPERANDS. */
1950 || GET_CODE (src) == ASM_OPERANDS
1951 /* Can't merge a function call. */
1952 || GET_CODE (src) == CALL
1953 /* Don't eliminate a function call argument. */
1954 || (CALL_P (i3)
1955 && (find_reg_fusage (i3, USE, dest)
1956 || (REG_P (dest)
1957 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1958 && global_regs[REGNO (dest)])))
1959 /* Don't substitute into an incremented register. */
1960 || FIND_REG_INC_NOTE (i3, dest)
1961 || (succ && FIND_REG_INC_NOTE (succ, dest))
1962 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1963 /* Don't substitute into a non-local goto, this confuses CFG. */
1964 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1965 /* Make sure that DEST is not used after SUCC but before I3. */
1966 || (!all_adjacent
1967 && ((succ2
1968 && (reg_used_between_p (dest, succ2, i3)
1969 || reg_used_between_p (dest, succ, succ2)))
1970 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1971 /* Make sure that the value that is to be substituted for the register
1972 does not use any registers whose values alter in between. However,
1973 If the insns are adjacent, a use can't cross a set even though we
1974 think it might (this can happen for a sequence of insns each setting
1975 the same destination; last_set of that register might point to
1976 a NOTE). If INSN has a REG_EQUIV note, the register is always
1977 equivalent to the memory so the substitution is valid even if there
1978 are intervening stores. Also, don't move a volatile asm or
1979 UNSPEC_VOLATILE across any other insns. */
1980 || (! all_adjacent
1981 && (((!MEM_P (src)
1982 || ! find_reg_note (insn, REG_EQUIV, src))
1983 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1984 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1985 || GET_CODE (src) == UNSPEC_VOLATILE))
1986 /* Don't combine across a CALL_INSN, because that would possibly
1987 change whether the life span of some REGs crosses calls or not,
1988 and it is a pain to update that information.
1989 Exception: if source is a constant, moving it later can't hurt.
1990 Accept that as a special case. */
1991 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1992 return 0;
1994 /* DEST must either be a REG or CC0. */
1995 if (REG_P (dest))
1997 /* If register alignment is being enforced for multi-word items in all
1998 cases except for parameters, it is possible to have a register copy
1999 insn referencing a hard register that is not allowed to contain the
2000 mode being copied and which would not be valid as an operand of most
2001 insns. Eliminate this problem by not combining with such an insn.
2003 Also, on some machines we don't want to extend the life of a hard
2004 register. */
2006 if (REG_P (src)
2007 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2008 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
2009 /* Don't extend the life of a hard register unless it is
2010 user variable (if we have few registers) or it can't
2011 fit into the desired register (meaning something special
2012 is going on).
2013 Also avoid substituting a return register into I3, because
2014 reload can't handle a conflict with constraints of other
2015 inputs. */
2016 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2017 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
2018 return 0;
2020 else if (GET_CODE (dest) != CC0)
2021 return 0;
2024 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2025 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2026 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2028 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2030 /* If the clobber represents an earlyclobber operand, we must not
2031 substitute an expression containing the clobbered register.
2032 As we do not analyze the constraint strings here, we have to
2033 make the conservative assumption. However, if the register is
2034 a fixed hard reg, the clobber cannot represent any operand;
2035 we leave it up to the machine description to either accept or
2036 reject use-and-clobber patterns. */
2037 if (!REG_P (reg)
2038 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2039 || !fixed_regs[REGNO (reg)])
2040 if (reg_overlap_mentioned_p (reg, src))
2041 return 0;
2044 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2045 or not), reject, unless nothing volatile comes between it and I3 */
2047 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2049 /* Make sure neither succ nor succ2 contains a volatile reference. */
2050 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2051 return 0;
2052 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2053 return 0;
2054 /* We'll check insns between INSN and I3 below. */
2057 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2058 to be an explicit register variable, and was chosen for a reason. */
2060 if (GET_CODE (src) == ASM_OPERANDS
2061 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2062 return 0;
2064 /* If INSN contains volatile references (specifically volatile MEMs),
2065 we cannot combine across any other volatile references.
2066 Even if INSN doesn't contain volatile references, any intervening
2067 volatile insn might affect machine state. */
2069 is_volatile_p = volatile_refs_p (PATTERN (insn))
2070 ? volatile_refs_p
2071 : volatile_insn_p;
2073 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2074 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2075 return 0;
2077 /* If INSN contains an autoincrement or autodecrement, make sure that
2078 register is not used between there and I3, and not already used in
2079 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2080 Also insist that I3 not be a jump; if it were one
2081 and the incremented register were spilled, we would lose. */
2083 #ifdef AUTO_INC_DEC
2084 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2085 if (REG_NOTE_KIND (link) == REG_INC
2086 && (JUMP_P (i3)
2087 || reg_used_between_p (XEXP (link, 0), insn, i3)
2088 || (pred != NULL_RTX
2089 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2090 || (pred2 != NULL_RTX
2091 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2092 || (succ != NULL_RTX
2093 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2094 || (succ2 != NULL_RTX
2095 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2096 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2097 return 0;
2098 #endif
2100 /* Don't combine an insn that follows a CC0-setting insn.
2101 An insn that uses CC0 must not be separated from the one that sets it.
2102 We do, however, allow I2 to follow a CC0-setting insn if that insn
2103 is passed as I1; in that case it will be deleted also.
2104 We also allow combining in this case if all the insns are adjacent
2105 because that would leave the two CC0 insns adjacent as well.
2106 It would be more logical to test whether CC0 occurs inside I1 or I2,
2107 but that would be much slower, and this ought to be equivalent. */
2109 if (HAVE_cc0)
2111 p = prev_nonnote_insn (insn);
2112 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2113 && ! all_adjacent)
2114 return 0;
2117 /* If we get here, we have passed all the tests and the combination is
2118 to be allowed. */
2120 *pdest = dest;
2121 *psrc = src;
2123 return 1;
2126 /* LOC is the location within I3 that contains its pattern or the component
2127 of a PARALLEL of the pattern. We validate that it is valid for combining.
2129 One problem is if I3 modifies its output, as opposed to replacing it
2130 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2131 doing so would produce an insn that is not equivalent to the original insns.
2133 Consider:
2135 (set (reg:DI 101) (reg:DI 100))
2136 (set (subreg:SI (reg:DI 101) 0) <foo>)
2138 This is NOT equivalent to:
2140 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2141 (set (reg:DI 101) (reg:DI 100))])
2143 Not only does this modify 100 (in which case it might still be valid
2144 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2146 We can also run into a problem if I2 sets a register that I1
2147 uses and I1 gets directly substituted into I3 (not via I2). In that
2148 case, we would be getting the wrong value of I2DEST into I3, so we
2149 must reject the combination. This case occurs when I2 and I1 both
2150 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2151 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2152 of a SET must prevent combination from occurring. The same situation
2153 can occur for I0, in which case I0_NOT_IN_SRC is set.
2155 Before doing the above check, we first try to expand a field assignment
2156 into a set of logical operations.
2158 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2159 we place a register that is both set and used within I3. If more than one
2160 such register is detected, we fail.
2162 Return 1 if the combination is valid, zero otherwise. */
2164 static int
2165 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2166 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2168 rtx x = *loc;
2170 if (GET_CODE (x) == SET)
2172 rtx set = x ;
2173 rtx dest = SET_DEST (set);
2174 rtx src = SET_SRC (set);
2175 rtx inner_dest = dest;
2176 rtx subdest;
2178 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2179 || GET_CODE (inner_dest) == SUBREG
2180 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2181 inner_dest = XEXP (inner_dest, 0);
2183 /* Check for the case where I3 modifies its output, as discussed
2184 above. We don't want to prevent pseudos from being combined
2185 into the address of a MEM, so only prevent the combination if
2186 i1 or i2 set the same MEM. */
2187 if ((inner_dest != dest &&
2188 (!MEM_P (inner_dest)
2189 || rtx_equal_p (i2dest, inner_dest)
2190 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2191 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2192 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2193 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2194 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2196 /* This is the same test done in can_combine_p except we can't test
2197 all_adjacent; we don't have to, since this instruction will stay
2198 in place, thus we are not considering increasing the lifetime of
2199 INNER_DEST.
2201 Also, if this insn sets a function argument, combining it with
2202 something that might need a spill could clobber a previous
2203 function argument; the all_adjacent test in can_combine_p also
2204 checks this; here, we do a more specific test for this case. */
2206 || (REG_P (inner_dest)
2207 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2208 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2209 GET_MODE (inner_dest))))
2210 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2211 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2212 return 0;
2214 /* If DEST is used in I3, it is being killed in this insn, so
2215 record that for later. We have to consider paradoxical
2216 subregs here, since they kill the whole register, but we
2217 ignore partial subregs, STRICT_LOW_PART, etc.
2218 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2219 STACK_POINTER_REGNUM, since these are always considered to be
2220 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2221 subdest = dest;
2222 if (GET_CODE (subdest) == SUBREG
2223 && (GET_MODE_SIZE (GET_MODE (subdest))
2224 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2225 subdest = SUBREG_REG (subdest);
2226 if (pi3dest_killed
2227 && REG_P (subdest)
2228 && reg_referenced_p (subdest, PATTERN (i3))
2229 && REGNO (subdest) != FRAME_POINTER_REGNUM
2230 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2231 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2232 #endif
2233 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2234 || (REGNO (subdest) != ARG_POINTER_REGNUM
2235 || ! fixed_regs [REGNO (subdest)]))
2236 && REGNO (subdest) != STACK_POINTER_REGNUM)
2238 if (*pi3dest_killed)
2239 return 0;
2241 *pi3dest_killed = subdest;
2245 else if (GET_CODE (x) == PARALLEL)
2247 int i;
2249 for (i = 0; i < XVECLEN (x, 0); i++)
2250 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2251 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2252 return 0;
2255 return 1;
2258 /* Return 1 if X is an arithmetic expression that contains a multiplication
2259 and division. We don't count multiplications by powers of two here. */
2261 static int
2262 contains_muldiv (rtx x)
2264 switch (GET_CODE (x))
2266 case MOD: case DIV: case UMOD: case UDIV:
2267 return 1;
2269 case MULT:
2270 return ! (CONST_INT_P (XEXP (x, 1))
2271 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2272 default:
2273 if (BINARY_P (x))
2274 return contains_muldiv (XEXP (x, 0))
2275 || contains_muldiv (XEXP (x, 1));
2277 if (UNARY_P (x))
2278 return contains_muldiv (XEXP (x, 0));
2280 return 0;
2284 /* Determine whether INSN can be used in a combination. Return nonzero if
2285 not. This is used in try_combine to detect early some cases where we
2286 can't perform combinations. */
2288 static int
2289 cant_combine_insn_p (rtx_insn *insn)
2291 rtx set;
2292 rtx src, dest;
2294 /* If this isn't really an insn, we can't do anything.
2295 This can occur when flow deletes an insn that it has merged into an
2296 auto-increment address. */
2297 if (! INSN_P (insn))
2298 return 1;
2300 /* Never combine loads and stores involving hard regs that are likely
2301 to be spilled. The register allocator can usually handle such
2302 reg-reg moves by tying. If we allow the combiner to make
2303 substitutions of likely-spilled regs, reload might die.
2304 As an exception, we allow combinations involving fixed regs; these are
2305 not available to the register allocator so there's no risk involved. */
2307 set = single_set (insn);
2308 if (! set)
2309 return 0;
2310 src = SET_SRC (set);
2311 dest = SET_DEST (set);
2312 if (GET_CODE (src) == SUBREG)
2313 src = SUBREG_REG (src);
2314 if (GET_CODE (dest) == SUBREG)
2315 dest = SUBREG_REG (dest);
2316 if (REG_P (src) && REG_P (dest)
2317 && ((HARD_REGISTER_P (src)
2318 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2319 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2320 || (HARD_REGISTER_P (dest)
2321 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2322 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2323 return 1;
2325 return 0;
2328 struct likely_spilled_retval_info
2330 unsigned regno, nregs;
2331 unsigned mask;
2334 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2335 hard registers that are known to be written to / clobbered in full. */
2336 static void
2337 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2339 struct likely_spilled_retval_info *const info =
2340 (struct likely_spilled_retval_info *) data;
2341 unsigned regno, nregs;
2342 unsigned new_mask;
2344 if (!REG_P (XEXP (set, 0)))
2345 return;
2346 regno = REGNO (x);
2347 if (regno >= info->regno + info->nregs)
2348 return;
2349 nregs = REG_NREGS (x);
2350 if (regno + nregs <= info->regno)
2351 return;
2352 new_mask = (2U << (nregs - 1)) - 1;
2353 if (regno < info->regno)
2354 new_mask >>= info->regno - regno;
2355 else
2356 new_mask <<= regno - info->regno;
2357 info->mask &= ~new_mask;
2360 /* Return nonzero iff part of the return value is live during INSN, and
2361 it is likely spilled. This can happen when more than one insn is needed
2362 to copy the return value, e.g. when we consider to combine into the
2363 second copy insn for a complex value. */
2365 static int
2366 likely_spilled_retval_p (rtx_insn *insn)
2368 rtx_insn *use = BB_END (this_basic_block);
2369 rtx reg;
2370 rtx_insn *p;
2371 unsigned regno, nregs;
2372 /* We assume here that no machine mode needs more than
2373 32 hard registers when the value overlaps with a register
2374 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2375 unsigned mask;
2376 struct likely_spilled_retval_info info;
2378 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2379 return 0;
2380 reg = XEXP (PATTERN (use), 0);
2381 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2382 return 0;
2383 regno = REGNO (reg);
2384 nregs = REG_NREGS (reg);
2385 if (nregs == 1)
2386 return 0;
2387 mask = (2U << (nregs - 1)) - 1;
2389 /* Disregard parts of the return value that are set later. */
2390 info.regno = regno;
2391 info.nregs = nregs;
2392 info.mask = mask;
2393 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2394 if (INSN_P (p))
2395 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2396 mask = info.mask;
2398 /* Check if any of the (probably) live return value registers is
2399 likely spilled. */
2400 nregs --;
2403 if ((mask & 1 << nregs)
2404 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2405 return 1;
2406 } while (nregs--);
2407 return 0;
2410 /* Adjust INSN after we made a change to its destination.
2412 Changing the destination can invalidate notes that say something about
2413 the results of the insn and a LOG_LINK pointing to the insn. */
2415 static void
2416 adjust_for_new_dest (rtx_insn *insn)
2418 /* For notes, be conservative and simply remove them. */
2419 remove_reg_equal_equiv_notes (insn);
2421 /* The new insn will have a destination that was previously the destination
2422 of an insn just above it. Call distribute_links to make a LOG_LINK from
2423 the next use of that destination. */
2425 rtx set = single_set (insn);
2426 gcc_assert (set);
2428 rtx reg = SET_DEST (set);
2430 while (GET_CODE (reg) == ZERO_EXTRACT
2431 || GET_CODE (reg) == STRICT_LOW_PART
2432 || GET_CODE (reg) == SUBREG)
2433 reg = XEXP (reg, 0);
2434 gcc_assert (REG_P (reg));
2436 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2438 df_insn_rescan (insn);
2441 /* Return TRUE if combine can reuse reg X in mode MODE.
2442 ADDED_SETS is nonzero if the original set is still required. */
2443 static bool
2444 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2446 unsigned int regno;
2448 if (!REG_P (x))
2449 return false;
2451 regno = REGNO (x);
2452 /* Allow hard registers if the new mode is legal, and occupies no more
2453 registers than the old mode. */
2454 if (regno < FIRST_PSEUDO_REGISTER)
2455 return (HARD_REGNO_MODE_OK (regno, mode)
2456 && REG_NREGS (x) >= hard_regno_nregs[regno][mode]);
2458 /* Or a pseudo that is only used once. */
2459 return (regno < reg_n_sets_max
2460 && REG_N_SETS (regno) == 1
2461 && !added_sets
2462 && !REG_USERVAR_P (x));
2466 /* Check whether X, the destination of a set, refers to part of
2467 the register specified by REG. */
2469 static bool
2470 reg_subword_p (rtx x, rtx reg)
2472 /* Check that reg is an integer mode register. */
2473 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2474 return false;
2476 if (GET_CODE (x) == STRICT_LOW_PART
2477 || GET_CODE (x) == ZERO_EXTRACT)
2478 x = XEXP (x, 0);
2480 return GET_CODE (x) == SUBREG
2481 && SUBREG_REG (x) == reg
2482 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2485 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2486 Note that the INSN should be deleted *after* removing dead edges, so
2487 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2488 but not for a (set (pc) (label_ref FOO)). */
2490 static void
2491 update_cfg_for_uncondjump (rtx_insn *insn)
2493 basic_block bb = BLOCK_FOR_INSN (insn);
2494 gcc_assert (BB_END (bb) == insn);
2496 purge_dead_edges (bb);
2498 delete_insn (insn);
2499 if (EDGE_COUNT (bb->succs) == 1)
2501 rtx_insn *insn;
2503 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2505 /* Remove barriers from the footer if there are any. */
2506 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2507 if (BARRIER_P (insn))
2509 if (PREV_INSN (insn))
2510 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2511 else
2512 BB_FOOTER (bb) = NEXT_INSN (insn);
2513 if (NEXT_INSN (insn))
2514 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2516 else if (LABEL_P (insn))
2517 break;
2521 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2522 by an arbitrary number of CLOBBERs. */
2523 static bool
2524 is_parallel_of_n_reg_sets (rtx pat, int n)
2526 if (GET_CODE (pat) != PARALLEL)
2527 return false;
2529 int len = XVECLEN (pat, 0);
2530 if (len < n)
2531 return false;
2533 int i;
2534 for (i = 0; i < n; i++)
2535 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2536 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2537 return false;
2538 for ( ; i < len; i++)
2539 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
2540 return false;
2542 return true;
2545 #if !HAVE_cc0
2546 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2547 CLOBBERs), can be split into individual SETs in that order, without
2548 changing semantics. */
2549 static bool
2550 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2552 if (!insn_nothrow_p (insn))
2553 return false;
2555 rtx pat = PATTERN (insn);
2557 int i, j;
2558 for (i = 0; i < n; i++)
2560 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2561 return false;
2563 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2565 for (j = i + 1; j < n; j++)
2566 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2567 return false;
2570 return true;
2572 #endif
2574 /* Try to combine the insns I0, I1 and I2 into I3.
2575 Here I0, I1 and I2 appear earlier than I3.
2576 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2579 If we are combining more than two insns and the resulting insn is not
2580 recognized, try splitting it into two insns. If that happens, I2 and I3
2581 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2582 Otherwise, I0, I1 and I2 are pseudo-deleted.
2584 Return 0 if the combination does not work. Then nothing is changed.
2585 If we did the combination, return the insn at which combine should
2586 resume scanning.
2588 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2589 new direct jump instruction.
2591 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2592 been I3 passed to an earlier try_combine within the same basic
2593 block. */
2595 static rtx_insn *
2596 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2597 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2599 /* New patterns for I3 and I2, respectively. */
2600 rtx newpat, newi2pat = 0;
2601 rtvec newpat_vec_with_clobbers = 0;
2602 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2603 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2604 dead. */
2605 int added_sets_0, added_sets_1, added_sets_2;
2606 /* Total number of SETs to put into I3. */
2607 int total_sets;
2608 /* Nonzero if I2's or I1's body now appears in I3. */
2609 int i2_is_used = 0, i1_is_used = 0;
2610 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2611 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2612 /* Contains I3 if the destination of I3 is used in its source, which means
2613 that the old life of I3 is being killed. If that usage is placed into
2614 I2 and not in I3, a REG_DEAD note must be made. */
2615 rtx i3dest_killed = 0;
2616 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2617 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2618 /* Copy of SET_SRC of I1 and I0, if needed. */
2619 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2620 /* Set if I2DEST was reused as a scratch register. */
2621 bool i2scratch = false;
2622 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2623 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2624 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2625 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2626 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2627 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2628 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2629 /* Notes that must be added to REG_NOTES in I3 and I2. */
2630 rtx new_i3_notes, new_i2_notes;
2631 /* Notes that we substituted I3 into I2 instead of the normal case. */
2632 int i3_subst_into_i2 = 0;
2633 /* Notes that I1, I2 or I3 is a MULT operation. */
2634 int have_mult = 0;
2635 int swap_i2i3 = 0;
2636 int changed_i3_dest = 0;
2638 int maxreg;
2639 rtx_insn *temp_insn;
2640 rtx temp_expr;
2641 struct insn_link *link;
2642 rtx other_pat = 0;
2643 rtx new_other_notes;
2644 int i;
2646 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2647 never be). */
2648 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2649 return 0;
2651 /* Only try four-insn combinations when there's high likelihood of
2652 success. Look for simple insns, such as loads of constants or
2653 binary operations involving a constant. */
2654 if (i0)
2656 int i;
2657 int ngood = 0;
2658 int nshift = 0;
2659 rtx set0, set3;
2661 if (!flag_expensive_optimizations)
2662 return 0;
2664 for (i = 0; i < 4; i++)
2666 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2667 rtx set = single_set (insn);
2668 rtx src;
2669 if (!set)
2670 continue;
2671 src = SET_SRC (set);
2672 if (CONSTANT_P (src))
2674 ngood += 2;
2675 break;
2677 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2678 ngood++;
2679 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2680 || GET_CODE (src) == LSHIFTRT)
2681 nshift++;
2684 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2685 are likely manipulating its value. Ideally we'll be able to combine
2686 all four insns into a bitfield insertion of some kind.
2688 Note the source in I0 might be inside a sign/zero extension and the
2689 memory modes in I0 and I3 might be different. So extract the address
2690 from the destination of I3 and search for it in the source of I0.
2692 In the event that there's a match but the source/dest do not actually
2693 refer to the same memory, the worst that happens is we try some
2694 combinations that we wouldn't have otherwise. */
2695 if ((set0 = single_set (i0))
2696 /* Ensure the source of SET0 is a MEM, possibly buried inside
2697 an extension. */
2698 && (GET_CODE (SET_SRC (set0)) == MEM
2699 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2700 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2701 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2702 && (set3 = single_set (i3))
2703 /* Ensure the destination of SET3 is a MEM. */
2704 && GET_CODE (SET_DEST (set3)) == MEM
2705 /* Would it be better to extract the base address for the MEM
2706 in SET3 and look for that? I don't have cases where it matters
2707 but I could envision such cases. */
2708 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2709 ngood += 2;
2711 if (ngood < 2 && nshift < 2)
2712 return 0;
2715 /* Exit early if one of the insns involved can't be used for
2716 combinations. */
2717 if (CALL_P (i2)
2718 || (i1 && CALL_P (i1))
2719 || (i0 && CALL_P (i0))
2720 || cant_combine_insn_p (i3)
2721 || cant_combine_insn_p (i2)
2722 || (i1 && cant_combine_insn_p (i1))
2723 || (i0 && cant_combine_insn_p (i0))
2724 || likely_spilled_retval_p (i3))
2725 return 0;
2727 combine_attempts++;
2728 undobuf.other_insn = 0;
2730 /* Reset the hard register usage information. */
2731 CLEAR_HARD_REG_SET (newpat_used_regs);
2733 if (dump_file && (dump_flags & TDF_DETAILS))
2735 if (i0)
2736 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2737 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2738 else if (i1)
2739 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2740 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2741 else
2742 fprintf (dump_file, "\nTrying %d -> %d:\n",
2743 INSN_UID (i2), INSN_UID (i3));
2746 /* If multiple insns feed into one of I2 or I3, they can be in any
2747 order. To simplify the code below, reorder them in sequence. */
2748 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2749 temp_insn = i2, i2 = i0, i0 = temp_insn;
2750 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2751 temp_insn = i1, i1 = i0, i0 = temp_insn;
2752 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2753 temp_insn = i1, i1 = i2, i2 = temp_insn;
2755 added_links_insn = 0;
2757 /* First check for one important special case that the code below will
2758 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2759 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2760 we may be able to replace that destination with the destination of I3.
2761 This occurs in the common code where we compute both a quotient and
2762 remainder into a structure, in which case we want to do the computation
2763 directly into the structure to avoid register-register copies.
2765 Note that this case handles both multiple sets in I2 and also cases
2766 where I2 has a number of CLOBBERs inside the PARALLEL.
2768 We make very conservative checks below and only try to handle the
2769 most common cases of this. For example, we only handle the case
2770 where I2 and I3 are adjacent to avoid making difficult register
2771 usage tests. */
2773 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2774 && REG_P (SET_SRC (PATTERN (i3)))
2775 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2776 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2777 && GET_CODE (PATTERN (i2)) == PARALLEL
2778 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2779 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2780 below would need to check what is inside (and reg_overlap_mentioned_p
2781 doesn't support those codes anyway). Don't allow those destinations;
2782 the resulting insn isn't likely to be recognized anyway. */
2783 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2784 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2785 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2786 SET_DEST (PATTERN (i3)))
2787 && next_active_insn (i2) == i3)
2789 rtx p2 = PATTERN (i2);
2791 /* Make sure that the destination of I3,
2792 which we are going to substitute into one output of I2,
2793 is not used within another output of I2. We must avoid making this:
2794 (parallel [(set (mem (reg 69)) ...)
2795 (set (reg 69) ...)])
2796 which is not well-defined as to order of actions.
2797 (Besides, reload can't handle output reloads for this.)
2799 The problem can also happen if the dest of I3 is a memory ref,
2800 if another dest in I2 is an indirect memory ref. */
2801 for (i = 0; i < XVECLEN (p2, 0); i++)
2802 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2803 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2804 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2805 SET_DEST (XVECEXP (p2, 0, i))))
2806 break;
2808 /* Make sure this PARALLEL is not an asm. We do not allow combining
2809 that usually (see can_combine_p), so do not here either. */
2810 for (i = 0; i < XVECLEN (p2, 0); i++)
2811 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2812 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2813 break;
2815 if (i == XVECLEN (p2, 0))
2816 for (i = 0; i < XVECLEN (p2, 0); i++)
2817 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2818 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2820 combine_merges++;
2822 subst_insn = i3;
2823 subst_low_luid = DF_INSN_LUID (i2);
2825 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2826 i2src = SET_SRC (XVECEXP (p2, 0, i));
2827 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2828 i2dest_killed = dead_or_set_p (i2, i2dest);
2830 /* Replace the dest in I2 with our dest and make the resulting
2831 insn the new pattern for I3. Then skip to where we validate
2832 the pattern. Everything was set up above. */
2833 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2834 newpat = p2;
2835 i3_subst_into_i2 = 1;
2836 goto validate_replacement;
2840 /* If I2 is setting a pseudo to a constant and I3 is setting some
2841 sub-part of it to another constant, merge them by making a new
2842 constant. */
2843 if (i1 == 0
2844 && (temp_expr = single_set (i2)) != 0
2845 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2846 && GET_CODE (PATTERN (i3)) == SET
2847 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2848 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2850 rtx dest = SET_DEST (PATTERN (i3));
2851 int offset = -1;
2852 int width = 0;
2854 if (GET_CODE (dest) == ZERO_EXTRACT)
2856 if (CONST_INT_P (XEXP (dest, 1))
2857 && CONST_INT_P (XEXP (dest, 2)))
2859 width = INTVAL (XEXP (dest, 1));
2860 offset = INTVAL (XEXP (dest, 2));
2861 dest = XEXP (dest, 0);
2862 if (BITS_BIG_ENDIAN)
2863 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2866 else
2868 if (GET_CODE (dest) == STRICT_LOW_PART)
2869 dest = XEXP (dest, 0);
2870 width = GET_MODE_PRECISION (GET_MODE (dest));
2871 offset = 0;
2874 if (offset >= 0)
2876 /* If this is the low part, we're done. */
2877 if (subreg_lowpart_p (dest))
2879 /* Handle the case where inner is twice the size of outer. */
2880 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr)))
2881 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2882 offset += GET_MODE_PRECISION (GET_MODE (dest));
2883 /* Otherwise give up for now. */
2884 else
2885 offset = -1;
2888 if (offset >= 0)
2890 rtx inner = SET_SRC (PATTERN (i3));
2891 rtx outer = SET_SRC (temp_expr);
2893 wide_int o
2894 = wi::insert (std::make_pair (outer, GET_MODE (SET_DEST (temp_expr))),
2895 std::make_pair (inner, GET_MODE (dest)),
2896 offset, width);
2898 combine_merges++;
2899 subst_insn = i3;
2900 subst_low_luid = DF_INSN_LUID (i2);
2901 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2902 i2dest = SET_DEST (temp_expr);
2903 i2dest_killed = dead_or_set_p (i2, i2dest);
2905 /* Replace the source in I2 with the new constant and make the
2906 resulting insn the new pattern for I3. Then skip to where we
2907 validate the pattern. Everything was set up above. */
2908 SUBST (SET_SRC (temp_expr),
2909 immed_wide_int_const (o, GET_MODE (SET_DEST (temp_expr))));
2911 newpat = PATTERN (i2);
2913 /* The dest of I3 has been replaced with the dest of I2. */
2914 changed_i3_dest = 1;
2915 goto validate_replacement;
2919 #if !HAVE_cc0
2920 /* If we have no I1 and I2 looks like:
2921 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2922 (set Y OP)])
2923 make up a dummy I1 that is
2924 (set Y OP)
2925 and change I2 to be
2926 (set (reg:CC X) (compare:CC Y (const_int 0)))
2928 (We can ignore any trailing CLOBBERs.)
2930 This undoes a previous combination and allows us to match a branch-and-
2931 decrement insn. */
2933 if (i1 == 0
2934 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2935 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2936 == MODE_CC)
2937 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2938 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2939 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2940 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2941 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2942 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2944 /* We make I1 with the same INSN_UID as I2. This gives it
2945 the same DF_INSN_LUID for value tracking. Our fake I1 will
2946 never appear in the insn stream so giving it the same INSN_UID
2947 as I2 will not cause a problem. */
2949 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2950 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2951 -1, NULL_RTX);
2952 INSN_UID (i1) = INSN_UID (i2);
2954 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2955 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2956 SET_DEST (PATTERN (i1)));
2957 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2958 SUBST_LINK (LOG_LINKS (i2),
2959 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2962 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2963 make those two SETs separate I1 and I2 insns, and make an I0 that is
2964 the original I1. */
2965 if (i0 == 0
2966 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2967 && can_split_parallel_of_n_reg_sets (i2, 2)
2968 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2969 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2971 /* If there is no I1, there is no I0 either. */
2972 i0 = i1;
2974 /* We make I1 with the same INSN_UID as I2. This gives it
2975 the same DF_INSN_LUID for value tracking. Our fake I1 will
2976 never appear in the insn stream so giving it the same INSN_UID
2977 as I2 will not cause a problem. */
2979 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2980 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2981 -1, NULL_RTX);
2982 INSN_UID (i1) = INSN_UID (i2);
2984 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2986 #endif
2988 /* Verify that I2 and I1 are valid for combining. */
2989 if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
2990 || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
2991 &i1dest, &i1src))
2992 || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
2993 &i0dest, &i0src)))
2995 undo_all ();
2996 return 0;
2999 /* Record whether I2DEST is used in I2SRC and similarly for the other
3000 cases. Knowing this will help in register status updating below. */
3001 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3002 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3003 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3004 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3005 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3006 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3007 i2dest_killed = dead_or_set_p (i2, i2dest);
3008 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3009 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3011 /* For the earlier insns, determine which of the subsequent ones they
3012 feed. */
3013 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3014 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3015 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3016 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3017 && reg_overlap_mentioned_p (i0dest, i2src))));
3019 /* Ensure that I3's pattern can be the destination of combines. */
3020 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3021 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3022 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3023 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3024 &i3dest_killed))
3026 undo_all ();
3027 return 0;
3030 /* See if any of the insns is a MULT operation. Unless one is, we will
3031 reject a combination that is, since it must be slower. Be conservative
3032 here. */
3033 if (GET_CODE (i2src) == MULT
3034 || (i1 != 0 && GET_CODE (i1src) == MULT)
3035 || (i0 != 0 && GET_CODE (i0src) == MULT)
3036 || (GET_CODE (PATTERN (i3)) == SET
3037 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3038 have_mult = 1;
3040 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3041 We used to do this EXCEPT in one case: I3 has a post-inc in an
3042 output operand. However, that exception can give rise to insns like
3043 mov r3,(r3)+
3044 which is a famous insn on the PDP-11 where the value of r3 used as the
3045 source was model-dependent. Avoid this sort of thing. */
3047 #if 0
3048 if (!(GET_CODE (PATTERN (i3)) == SET
3049 && REG_P (SET_SRC (PATTERN (i3)))
3050 && MEM_P (SET_DEST (PATTERN (i3)))
3051 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3052 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3053 /* It's not the exception. */
3054 #endif
3055 #ifdef AUTO_INC_DEC
3057 rtx link;
3058 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3059 if (REG_NOTE_KIND (link) == REG_INC
3060 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3061 || (i1 != 0
3062 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3064 undo_all ();
3065 return 0;
3068 #endif
3070 /* See if the SETs in I1 or I2 need to be kept around in the merged
3071 instruction: whenever the value set there is still needed past I3.
3072 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3074 For the SET in I1, we have two cases: if I1 and I2 independently feed
3075 into I3, the set in I1 needs to be kept around unless I1DEST dies
3076 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3077 in I1 needs to be kept around unless I1DEST dies or is set in either
3078 I2 or I3. The same considerations apply to I0. */
3080 added_sets_2 = !dead_or_set_p (i3, i2dest);
3082 if (i1)
3083 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3084 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3085 else
3086 added_sets_1 = 0;
3088 if (i0)
3089 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3090 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3091 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3092 && dead_or_set_p (i2, i0dest)));
3093 else
3094 added_sets_0 = 0;
3096 /* We are about to copy insns for the case where they need to be kept
3097 around. Check that they can be copied in the merged instruction. */
3099 if (targetm.cannot_copy_insn_p
3100 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3101 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3102 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3104 undo_all ();
3105 return 0;
3108 /* If the set in I2 needs to be kept around, we must make a copy of
3109 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3110 PATTERN (I2), we are only substituting for the original I1DEST, not into
3111 an already-substituted copy. This also prevents making self-referential
3112 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3113 I2DEST. */
3115 if (added_sets_2)
3117 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3118 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3119 else
3120 i2pat = copy_rtx (PATTERN (i2));
3123 if (added_sets_1)
3125 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3126 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3127 else
3128 i1pat = copy_rtx (PATTERN (i1));
3131 if (added_sets_0)
3133 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3134 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3135 else
3136 i0pat = copy_rtx (PATTERN (i0));
3139 combine_merges++;
3141 /* Substitute in the latest insn for the regs set by the earlier ones. */
3143 maxreg = max_reg_num ();
3145 subst_insn = i3;
3147 /* Many machines that don't use CC0 have insns that can both perform an
3148 arithmetic operation and set the condition code. These operations will
3149 be represented as a PARALLEL with the first element of the vector
3150 being a COMPARE of an arithmetic operation with the constant zero.
3151 The second element of the vector will set some pseudo to the result
3152 of the same arithmetic operation. If we simplify the COMPARE, we won't
3153 match such a pattern and so will generate an extra insn. Here we test
3154 for this case, where both the comparison and the operation result are
3155 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3156 I2SRC. Later we will make the PARALLEL that contains I2. */
3158 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3159 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3160 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3161 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3163 rtx newpat_dest;
3164 rtx *cc_use_loc = NULL;
3165 rtx_insn *cc_use_insn = NULL;
3166 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3167 machine_mode compare_mode, orig_compare_mode;
3168 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3170 newpat = PATTERN (i3);
3171 newpat_dest = SET_DEST (newpat);
3172 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3174 if (undobuf.other_insn == 0
3175 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3176 &cc_use_insn)))
3178 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3179 compare_code = simplify_compare_const (compare_code,
3180 GET_MODE (i2dest), op0, &op1);
3181 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3184 /* Do the rest only if op1 is const0_rtx, which may be the
3185 result of simplification. */
3186 if (op1 == const0_rtx)
3188 /* If a single use of the CC is found, prepare to modify it
3189 when SELECT_CC_MODE returns a new CC-class mode, or when
3190 the above simplify_compare_const() returned a new comparison
3191 operator. undobuf.other_insn is assigned the CC use insn
3192 when modifying it. */
3193 if (cc_use_loc)
3195 #ifdef SELECT_CC_MODE
3196 machine_mode new_mode
3197 = SELECT_CC_MODE (compare_code, op0, op1);
3198 if (new_mode != orig_compare_mode
3199 && can_change_dest_mode (SET_DEST (newpat),
3200 added_sets_2, new_mode))
3202 unsigned int regno = REGNO (newpat_dest);
3203 compare_mode = new_mode;
3204 if (regno < FIRST_PSEUDO_REGISTER)
3205 newpat_dest = gen_rtx_REG (compare_mode, regno);
3206 else
3208 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3209 newpat_dest = regno_reg_rtx[regno];
3212 #endif
3213 /* Cases for modifying the CC-using comparison. */
3214 if (compare_code != orig_compare_code
3215 /* ??? Do we need to verify the zero rtx? */
3216 && XEXP (*cc_use_loc, 1) == const0_rtx)
3218 /* Replace cc_use_loc with entire new RTX. */
3219 SUBST (*cc_use_loc,
3220 gen_rtx_fmt_ee (compare_code, compare_mode,
3221 newpat_dest, const0_rtx));
3222 undobuf.other_insn = cc_use_insn;
3224 else if (compare_mode != orig_compare_mode)
3226 /* Just replace the CC reg with a new mode. */
3227 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3228 undobuf.other_insn = cc_use_insn;
3232 /* Now we modify the current newpat:
3233 First, SET_DEST(newpat) is updated if the CC mode has been
3234 altered. For targets without SELECT_CC_MODE, this should be
3235 optimized away. */
3236 if (compare_mode != orig_compare_mode)
3237 SUBST (SET_DEST (newpat), newpat_dest);
3238 /* This is always done to propagate i2src into newpat. */
3239 SUBST (SET_SRC (newpat),
3240 gen_rtx_COMPARE (compare_mode, op0, op1));
3241 /* Create new version of i2pat if needed; the below PARALLEL
3242 creation needs this to work correctly. */
3243 if (! rtx_equal_p (i2src, op0))
3244 i2pat = gen_rtx_SET (i2dest, op0);
3245 i2_is_used = 1;
3249 if (i2_is_used == 0)
3251 /* It is possible that the source of I2 or I1 may be performing
3252 an unneeded operation, such as a ZERO_EXTEND of something
3253 that is known to have the high part zero. Handle that case
3254 by letting subst look at the inner insns.
3256 Another way to do this would be to have a function that tries
3257 to simplify a single insn instead of merging two or more
3258 insns. We don't do this because of the potential of infinite
3259 loops and because of the potential extra memory required.
3260 However, doing it the way we are is a bit of a kludge and
3261 doesn't catch all cases.
3263 But only do this if -fexpensive-optimizations since it slows
3264 things down and doesn't usually win.
3266 This is not done in the COMPARE case above because the
3267 unmodified I2PAT is used in the PARALLEL and so a pattern
3268 with a modified I2SRC would not match. */
3270 if (flag_expensive_optimizations)
3272 /* Pass pc_rtx so no substitutions are done, just
3273 simplifications. */
3274 if (i1)
3276 subst_low_luid = DF_INSN_LUID (i1);
3277 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3280 subst_low_luid = DF_INSN_LUID (i2);
3281 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3284 n_occurrences = 0; /* `subst' counts here */
3285 subst_low_luid = DF_INSN_LUID (i2);
3287 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3288 copy of I2SRC each time we substitute it, in order to avoid creating
3289 self-referential RTL when we will be substituting I1SRC for I1DEST
3290 later. Likewise if I0 feeds into I2, either directly or indirectly
3291 through I1, and I0DEST is in I0SRC. */
3292 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3293 (i1_feeds_i2_n && i1dest_in_i1src)
3294 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3295 && i0dest_in_i0src));
3296 substed_i2 = 1;
3298 /* Record whether I2's body now appears within I3's body. */
3299 i2_is_used = n_occurrences;
3302 /* If we already got a failure, don't try to do more. Otherwise, try to
3303 substitute I1 if we have it. */
3305 if (i1 && GET_CODE (newpat) != CLOBBER)
3307 /* Check that an autoincrement side-effect on I1 has not been lost.
3308 This happens if I1DEST is mentioned in I2 and dies there, and
3309 has disappeared from the new pattern. */
3310 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3311 && i1_feeds_i2_n
3312 && dead_or_set_p (i2, i1dest)
3313 && !reg_overlap_mentioned_p (i1dest, newpat))
3314 /* Before we can do this substitution, we must redo the test done
3315 above (see detailed comments there) that ensures I1DEST isn't
3316 mentioned in any SETs in NEWPAT that are field assignments. */
3317 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3318 0, 0, 0))
3320 undo_all ();
3321 return 0;
3324 n_occurrences = 0;
3325 subst_low_luid = DF_INSN_LUID (i1);
3327 /* If the following substitution will modify I1SRC, make a copy of it
3328 for the case where it is substituted for I1DEST in I2PAT later. */
3329 if (added_sets_2 && i1_feeds_i2_n)
3330 i1src_copy = copy_rtx (i1src);
3332 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3333 copy of I1SRC each time we substitute it, in order to avoid creating
3334 self-referential RTL when we will be substituting I0SRC for I0DEST
3335 later. */
3336 newpat = subst (newpat, i1dest, i1src, 0, 0,
3337 i0_feeds_i1_n && i0dest_in_i0src);
3338 substed_i1 = 1;
3340 /* Record whether I1's body now appears within I3's body. */
3341 i1_is_used = n_occurrences;
3344 /* Likewise for I0 if we have it. */
3346 if (i0 && GET_CODE (newpat) != CLOBBER)
3348 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3349 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3350 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3351 && !reg_overlap_mentioned_p (i0dest, newpat))
3352 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3353 0, 0, 0))
3355 undo_all ();
3356 return 0;
3359 /* If the following substitution will modify I0SRC, make a copy of it
3360 for the case where it is substituted for I0DEST in I1PAT later. */
3361 if (added_sets_1 && i0_feeds_i1_n)
3362 i0src_copy = copy_rtx (i0src);
3363 /* And a copy for I0DEST in I2PAT substitution. */
3364 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3365 || (i0_feeds_i2_n)))
3366 i0src_copy2 = copy_rtx (i0src);
3368 n_occurrences = 0;
3369 subst_low_luid = DF_INSN_LUID (i0);
3370 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3371 substed_i0 = 1;
3374 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3375 to count all the ways that I2SRC and I1SRC can be used. */
3376 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3377 && i2_is_used + added_sets_2 > 1)
3378 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3379 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3380 > 1))
3381 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3382 && (n_occurrences + added_sets_0
3383 + (added_sets_1 && i0_feeds_i1_n)
3384 + (added_sets_2 && i0_feeds_i2_n)
3385 > 1))
3386 /* Fail if we tried to make a new register. */
3387 || max_reg_num () != maxreg
3388 /* Fail if we couldn't do something and have a CLOBBER. */
3389 || GET_CODE (newpat) == CLOBBER
3390 /* Fail if this new pattern is a MULT and we didn't have one before
3391 at the outer level. */
3392 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3393 && ! have_mult))
3395 undo_all ();
3396 return 0;
3399 /* If the actions of the earlier insns must be kept
3400 in addition to substituting them into the latest one,
3401 we must make a new PARALLEL for the latest insn
3402 to hold additional the SETs. */
3404 if (added_sets_0 || added_sets_1 || added_sets_2)
3406 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3407 combine_extras++;
3409 if (GET_CODE (newpat) == PARALLEL)
3411 rtvec old = XVEC (newpat, 0);
3412 total_sets = XVECLEN (newpat, 0) + extra_sets;
3413 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3414 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3415 sizeof (old->elem[0]) * old->num_elem);
3417 else
3419 rtx old = newpat;
3420 total_sets = 1 + extra_sets;
3421 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3422 XVECEXP (newpat, 0, 0) = old;
3425 if (added_sets_0)
3426 XVECEXP (newpat, 0, --total_sets) = i0pat;
3428 if (added_sets_1)
3430 rtx t = i1pat;
3431 if (i0_feeds_i1_n)
3432 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3434 XVECEXP (newpat, 0, --total_sets) = t;
3436 if (added_sets_2)
3438 rtx t = i2pat;
3439 if (i1_feeds_i2_n)
3440 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3441 i0_feeds_i1_n && i0dest_in_i0src);
3442 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3443 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3445 XVECEXP (newpat, 0, --total_sets) = t;
3449 validate_replacement:
3451 /* Note which hard regs this insn has as inputs. */
3452 mark_used_regs_combine (newpat);
3454 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3455 consider splitting this pattern, we might need these clobbers. */
3456 if (i1 && GET_CODE (newpat) == PARALLEL
3457 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3459 int len = XVECLEN (newpat, 0);
3461 newpat_vec_with_clobbers = rtvec_alloc (len);
3462 for (i = 0; i < len; i++)
3463 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3466 /* We have recognized nothing yet. */
3467 insn_code_number = -1;
3469 /* See if this is a PARALLEL of two SETs where one SET's destination is
3470 a register that is unused and this isn't marked as an instruction that
3471 might trap in an EH region. In that case, we just need the other SET.
3472 We prefer this over the PARALLEL.
3474 This can occur when simplifying a divmod insn. We *must* test for this
3475 case here because the code below that splits two independent SETs doesn't
3476 handle this case correctly when it updates the register status.
3478 It's pointless doing this if we originally had two sets, one from
3479 i3, and one from i2. Combining then splitting the parallel results
3480 in the original i2 again plus an invalid insn (which we delete).
3481 The net effect is only to move instructions around, which makes
3482 debug info less accurate. */
3484 if (!(added_sets_2 && i1 == 0)
3485 && is_parallel_of_n_reg_sets (newpat, 2)
3486 && asm_noperands (newpat) < 0)
3488 rtx set0 = XVECEXP (newpat, 0, 0);
3489 rtx set1 = XVECEXP (newpat, 0, 1);
3490 rtx oldpat = newpat;
3492 if (((REG_P (SET_DEST (set1))
3493 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3494 || (GET_CODE (SET_DEST (set1)) == SUBREG
3495 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3496 && insn_nothrow_p (i3)
3497 && !side_effects_p (SET_SRC (set1)))
3499 newpat = set0;
3500 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3503 else if (((REG_P (SET_DEST (set0))
3504 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3505 || (GET_CODE (SET_DEST (set0)) == SUBREG
3506 && find_reg_note (i3, REG_UNUSED,
3507 SUBREG_REG (SET_DEST (set0)))))
3508 && insn_nothrow_p (i3)
3509 && !side_effects_p (SET_SRC (set0)))
3511 newpat = set1;
3512 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3514 if (insn_code_number >= 0)
3515 changed_i3_dest = 1;
3518 if (insn_code_number < 0)
3519 newpat = oldpat;
3522 /* Is the result of combination a valid instruction? */
3523 if (insn_code_number < 0)
3524 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3526 /* If we were combining three insns and the result is a simple SET
3527 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3528 insns. There are two ways to do this. It can be split using a
3529 machine-specific method (like when you have an addition of a large
3530 constant) or by combine in the function find_split_point. */
3532 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3533 && asm_noperands (newpat) < 0)
3535 rtx parallel, *split;
3536 rtx_insn *m_split_insn;
3538 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3539 use I2DEST as a scratch register will help. In the latter case,
3540 convert I2DEST to the mode of the source of NEWPAT if we can. */
3542 m_split_insn = combine_split_insns (newpat, i3);
3544 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3545 inputs of NEWPAT. */
3547 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3548 possible to try that as a scratch reg. This would require adding
3549 more code to make it work though. */
3551 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3553 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3555 /* First try to split using the original register as a
3556 scratch register. */
3557 parallel = gen_rtx_PARALLEL (VOIDmode,
3558 gen_rtvec (2, newpat,
3559 gen_rtx_CLOBBER (VOIDmode,
3560 i2dest)));
3561 m_split_insn = combine_split_insns (parallel, i3);
3563 /* If that didn't work, try changing the mode of I2DEST if
3564 we can. */
3565 if (m_split_insn == 0
3566 && new_mode != GET_MODE (i2dest)
3567 && new_mode != VOIDmode
3568 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3570 machine_mode old_mode = GET_MODE (i2dest);
3571 rtx ni2dest;
3573 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3574 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3575 else
3577 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3578 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3581 parallel = (gen_rtx_PARALLEL
3582 (VOIDmode,
3583 gen_rtvec (2, newpat,
3584 gen_rtx_CLOBBER (VOIDmode,
3585 ni2dest))));
3586 m_split_insn = combine_split_insns (parallel, i3);
3588 if (m_split_insn == 0
3589 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3591 struct undo *buf;
3593 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3594 buf = undobuf.undos;
3595 undobuf.undos = buf->next;
3596 buf->next = undobuf.frees;
3597 undobuf.frees = buf;
3601 i2scratch = m_split_insn != 0;
3604 /* If recog_for_combine has discarded clobbers, try to use them
3605 again for the split. */
3606 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3608 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3609 m_split_insn = combine_split_insns (parallel, i3);
3612 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3614 rtx m_split_pat = PATTERN (m_split_insn);
3615 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3616 if (insn_code_number >= 0)
3617 newpat = m_split_pat;
3619 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3620 && (next_nonnote_nondebug_insn (i2) == i3
3621 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3623 rtx i2set, i3set;
3624 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3625 newi2pat = PATTERN (m_split_insn);
3627 i3set = single_set (NEXT_INSN (m_split_insn));
3628 i2set = single_set (m_split_insn);
3630 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3632 /* If I2 or I3 has multiple SETs, we won't know how to track
3633 register status, so don't use these insns. If I2's destination
3634 is used between I2 and I3, we also can't use these insns. */
3636 if (i2_code_number >= 0 && i2set && i3set
3637 && (next_nonnote_nondebug_insn (i2) == i3
3638 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3639 insn_code_number = recog_for_combine (&newi3pat, i3,
3640 &new_i3_notes);
3641 if (insn_code_number >= 0)
3642 newpat = newi3pat;
3644 /* It is possible that both insns now set the destination of I3.
3645 If so, we must show an extra use of it. */
3647 if (insn_code_number >= 0)
3649 rtx new_i3_dest = SET_DEST (i3set);
3650 rtx new_i2_dest = SET_DEST (i2set);
3652 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3653 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3654 || GET_CODE (new_i3_dest) == SUBREG)
3655 new_i3_dest = XEXP (new_i3_dest, 0);
3657 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3658 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3659 || GET_CODE (new_i2_dest) == SUBREG)
3660 new_i2_dest = XEXP (new_i2_dest, 0);
3662 if (REG_P (new_i3_dest)
3663 && REG_P (new_i2_dest)
3664 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3665 && REGNO (new_i2_dest) < reg_n_sets_max)
3666 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3670 /* If we can split it and use I2DEST, go ahead and see if that
3671 helps things be recognized. Verify that none of the registers
3672 are set between I2 and I3. */
3673 if (insn_code_number < 0
3674 && (split = find_split_point (&newpat, i3, false)) != 0
3675 && (!HAVE_cc0 || REG_P (i2dest))
3676 /* We need I2DEST in the proper mode. If it is a hard register
3677 or the only use of a pseudo, we can change its mode.
3678 Make sure we don't change a hard register to have a mode that
3679 isn't valid for it, or change the number of registers. */
3680 && (GET_MODE (*split) == GET_MODE (i2dest)
3681 || GET_MODE (*split) == VOIDmode
3682 || can_change_dest_mode (i2dest, added_sets_2,
3683 GET_MODE (*split)))
3684 && (next_nonnote_nondebug_insn (i2) == i3
3685 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3686 /* We can't overwrite I2DEST if its value is still used by
3687 NEWPAT. */
3688 && ! reg_referenced_p (i2dest, newpat))
3690 rtx newdest = i2dest;
3691 enum rtx_code split_code = GET_CODE (*split);
3692 machine_mode split_mode = GET_MODE (*split);
3693 bool subst_done = false;
3694 newi2pat = NULL_RTX;
3696 i2scratch = true;
3698 /* *SPLIT may be part of I2SRC, so make sure we have the
3699 original expression around for later debug processing.
3700 We should not need I2SRC any more in other cases. */
3701 if (MAY_HAVE_DEBUG_INSNS)
3702 i2src = copy_rtx (i2src);
3703 else
3704 i2src = NULL;
3706 /* Get NEWDEST as a register in the proper mode. We have already
3707 validated that we can do this. */
3708 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3710 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3711 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3712 else
3714 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3715 newdest = regno_reg_rtx[REGNO (i2dest)];
3719 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3720 an ASHIFT. This can occur if it was inside a PLUS and hence
3721 appeared to be a memory address. This is a kludge. */
3722 if (split_code == MULT
3723 && CONST_INT_P (XEXP (*split, 1))
3724 && INTVAL (XEXP (*split, 1)) > 0
3725 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3727 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3728 XEXP (*split, 0), GEN_INT (i)));
3729 /* Update split_code because we may not have a multiply
3730 anymore. */
3731 split_code = GET_CODE (*split);
3734 /* Similarly for (plus (mult FOO (const_int pow2))). */
3735 if (split_code == PLUS
3736 && GET_CODE (XEXP (*split, 0)) == MULT
3737 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3738 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3739 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3741 rtx nsplit = XEXP (*split, 0);
3742 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3743 XEXP (nsplit, 0), GEN_INT (i)));
3744 /* Update split_code because we may not have a multiply
3745 anymore. */
3746 split_code = GET_CODE (*split);
3749 #ifdef INSN_SCHEDULING
3750 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3751 be written as a ZERO_EXTEND. */
3752 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3754 #ifdef LOAD_EXTEND_OP
3755 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3756 what it really is. */
3757 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3758 == SIGN_EXTEND)
3759 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3760 SUBREG_REG (*split)));
3761 else
3762 #endif
3763 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3764 SUBREG_REG (*split)));
3766 #endif
3768 /* Attempt to split binary operators using arithmetic identities. */
3769 if (BINARY_P (SET_SRC (newpat))
3770 && split_mode == GET_MODE (SET_SRC (newpat))
3771 && ! side_effects_p (SET_SRC (newpat)))
3773 rtx setsrc = SET_SRC (newpat);
3774 machine_mode mode = GET_MODE (setsrc);
3775 enum rtx_code code = GET_CODE (setsrc);
3776 rtx src_op0 = XEXP (setsrc, 0);
3777 rtx src_op1 = XEXP (setsrc, 1);
3779 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3780 if (rtx_equal_p (src_op0, src_op1))
3782 newi2pat = gen_rtx_SET (newdest, src_op0);
3783 SUBST (XEXP (setsrc, 0), newdest);
3784 SUBST (XEXP (setsrc, 1), newdest);
3785 subst_done = true;
3787 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3788 else if ((code == PLUS || code == MULT)
3789 && GET_CODE (src_op0) == code
3790 && GET_CODE (XEXP (src_op0, 0)) == code
3791 && (INTEGRAL_MODE_P (mode)
3792 || (FLOAT_MODE_P (mode)
3793 && flag_unsafe_math_optimizations)))
3795 rtx p = XEXP (XEXP (src_op0, 0), 0);
3796 rtx q = XEXP (XEXP (src_op0, 0), 1);
3797 rtx r = XEXP (src_op0, 1);
3798 rtx s = src_op1;
3800 /* Split both "((X op Y) op X) op Y" and
3801 "((X op Y) op Y) op X" as "T op T" where T is
3802 "X op Y". */
3803 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3804 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3806 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3807 SUBST (XEXP (setsrc, 0), newdest);
3808 SUBST (XEXP (setsrc, 1), newdest);
3809 subst_done = true;
3811 /* Split "((X op X) op Y) op Y)" as "T op T" where
3812 T is "X op Y". */
3813 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3815 rtx tmp = simplify_gen_binary (code, mode, p, r);
3816 newi2pat = gen_rtx_SET (newdest, tmp);
3817 SUBST (XEXP (setsrc, 0), newdest);
3818 SUBST (XEXP (setsrc, 1), newdest);
3819 subst_done = true;
3824 if (!subst_done)
3826 newi2pat = gen_rtx_SET (newdest, *split);
3827 SUBST (*split, newdest);
3830 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3832 /* recog_for_combine might have added CLOBBERs to newi2pat.
3833 Make sure NEWPAT does not depend on the clobbered regs. */
3834 if (GET_CODE (newi2pat) == PARALLEL)
3835 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3836 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3838 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3839 if (reg_overlap_mentioned_p (reg, newpat))
3841 undo_all ();
3842 return 0;
3846 /* If the split point was a MULT and we didn't have one before,
3847 don't use one now. */
3848 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3849 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3853 /* Check for a case where we loaded from memory in a narrow mode and
3854 then sign extended it, but we need both registers. In that case,
3855 we have a PARALLEL with both loads from the same memory location.
3856 We can split this into a load from memory followed by a register-register
3857 copy. This saves at least one insn, more if register allocation can
3858 eliminate the copy.
3860 We cannot do this if the destination of the first assignment is a
3861 condition code register or cc0. We eliminate this case by making sure
3862 the SET_DEST and SET_SRC have the same mode.
3864 We cannot do this if the destination of the second assignment is
3865 a register that we have already assumed is zero-extended. Similarly
3866 for a SUBREG of such a register. */
3868 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3869 && GET_CODE (newpat) == PARALLEL
3870 && XVECLEN (newpat, 0) == 2
3871 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3872 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3873 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3874 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3875 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3876 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3877 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3878 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3879 DF_INSN_LUID (i2))
3880 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3881 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3882 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3883 (REG_P (temp_expr)
3884 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3885 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3886 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3887 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3888 != GET_MODE_MASK (word_mode))))
3889 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3890 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3891 (REG_P (temp_expr)
3892 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3893 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3894 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3895 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3896 != GET_MODE_MASK (word_mode)))))
3897 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3898 SET_SRC (XVECEXP (newpat, 0, 1)))
3899 && ! find_reg_note (i3, REG_UNUSED,
3900 SET_DEST (XVECEXP (newpat, 0, 0))))
3902 rtx ni2dest;
3904 newi2pat = XVECEXP (newpat, 0, 0);
3905 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3906 newpat = XVECEXP (newpat, 0, 1);
3907 SUBST (SET_SRC (newpat),
3908 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3909 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3911 if (i2_code_number >= 0)
3912 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3914 if (insn_code_number >= 0)
3915 swap_i2i3 = 1;
3918 /* Similarly, check for a case where we have a PARALLEL of two independent
3919 SETs but we started with three insns. In this case, we can do the sets
3920 as two separate insns. This case occurs when some SET allows two
3921 other insns to combine, but the destination of that SET is still live.
3923 Also do this if we started with two insns and (at least) one of the
3924 resulting sets is a noop; this noop will be deleted later. */
3926 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3927 && GET_CODE (newpat) == PARALLEL
3928 && XVECLEN (newpat, 0) == 2
3929 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3930 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3931 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3932 || set_noop_p (XVECEXP (newpat, 0, 1)))
3933 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3934 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3935 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3936 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3937 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3938 XVECEXP (newpat, 0, 0))
3939 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3940 XVECEXP (newpat, 0, 1))
3941 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3942 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3944 rtx set0 = XVECEXP (newpat, 0, 0);
3945 rtx set1 = XVECEXP (newpat, 0, 1);
3947 /* Normally, it doesn't matter which of the two is done first,
3948 but the one that references cc0 can't be the second, and
3949 one which uses any regs/memory set in between i2 and i3 can't
3950 be first. The PARALLEL might also have been pre-existing in i3,
3951 so we need to make sure that we won't wrongly hoist a SET to i2
3952 that would conflict with a death note present in there. */
3953 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3954 && !(REG_P (SET_DEST (set1))
3955 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3956 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3957 && find_reg_note (i2, REG_DEAD,
3958 SUBREG_REG (SET_DEST (set1))))
3959 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
3960 /* If I3 is a jump, ensure that set0 is a jump so that
3961 we do not create invalid RTL. */
3962 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3965 newi2pat = set1;
3966 newpat = set0;
3968 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3969 && !(REG_P (SET_DEST (set0))
3970 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3971 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3972 && find_reg_note (i2, REG_DEAD,
3973 SUBREG_REG (SET_DEST (set0))))
3974 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
3975 /* If I3 is a jump, ensure that set1 is a jump so that
3976 we do not create invalid RTL. */
3977 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3980 newi2pat = set0;
3981 newpat = set1;
3983 else
3985 undo_all ();
3986 return 0;
3989 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3991 if (i2_code_number >= 0)
3993 /* recog_for_combine might have added CLOBBERs to newi2pat.
3994 Make sure NEWPAT does not depend on the clobbered regs. */
3995 if (GET_CODE (newi2pat) == PARALLEL)
3997 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3998 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4000 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4001 if (reg_overlap_mentioned_p (reg, newpat))
4003 undo_all ();
4004 return 0;
4009 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4013 /* If it still isn't recognized, fail and change things back the way they
4014 were. */
4015 if ((insn_code_number < 0
4016 /* Is the result a reasonable ASM_OPERANDS? */
4017 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4019 undo_all ();
4020 return 0;
4023 /* If we had to change another insn, make sure it is valid also. */
4024 if (undobuf.other_insn)
4026 CLEAR_HARD_REG_SET (newpat_used_regs);
4028 other_pat = PATTERN (undobuf.other_insn);
4029 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4030 &new_other_notes);
4032 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4034 undo_all ();
4035 return 0;
4039 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4040 they are adjacent to each other or not. */
4041 if (HAVE_cc0)
4043 rtx_insn *p = prev_nonnote_insn (i3);
4044 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4045 && sets_cc0_p (newi2pat))
4047 undo_all ();
4048 return 0;
4052 /* Only allow this combination if insn_rtx_costs reports that the
4053 replacement instructions are cheaper than the originals. */
4054 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4056 undo_all ();
4057 return 0;
4060 if (MAY_HAVE_DEBUG_INSNS)
4062 struct undo *undo;
4064 for (undo = undobuf.undos; undo; undo = undo->next)
4065 if (undo->kind == UNDO_MODE)
4067 rtx reg = *undo->where.r;
4068 machine_mode new_mode = GET_MODE (reg);
4069 machine_mode old_mode = undo->old_contents.m;
4071 /* Temporarily revert mode back. */
4072 adjust_reg_mode (reg, old_mode);
4074 if (reg == i2dest && i2scratch)
4076 /* If we used i2dest as a scratch register with a
4077 different mode, substitute it for the original
4078 i2src while its original mode is temporarily
4079 restored, and then clear i2scratch so that we don't
4080 do it again later. */
4081 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4082 this_basic_block);
4083 i2scratch = false;
4084 /* Put back the new mode. */
4085 adjust_reg_mode (reg, new_mode);
4087 else
4089 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4090 rtx_insn *first, *last;
4092 if (reg == i2dest)
4094 first = i2;
4095 last = last_combined_insn;
4097 else
4099 first = i3;
4100 last = undobuf.other_insn;
4101 gcc_assert (last);
4102 if (DF_INSN_LUID (last)
4103 < DF_INSN_LUID (last_combined_insn))
4104 last = last_combined_insn;
4107 /* We're dealing with a reg that changed mode but not
4108 meaning, so we want to turn it into a subreg for
4109 the new mode. However, because of REG sharing and
4110 because its mode had already changed, we have to do
4111 it in two steps. First, replace any debug uses of
4112 reg, with its original mode temporarily restored,
4113 with this copy we have created; then, replace the
4114 copy with the SUBREG of the original shared reg,
4115 once again changed to the new mode. */
4116 propagate_for_debug (first, last, reg, tempreg,
4117 this_basic_block);
4118 adjust_reg_mode (reg, new_mode);
4119 propagate_for_debug (first, last, tempreg,
4120 lowpart_subreg (old_mode, reg, new_mode),
4121 this_basic_block);
4126 /* If we will be able to accept this, we have made a
4127 change to the destination of I3. This requires us to
4128 do a few adjustments. */
4130 if (changed_i3_dest)
4132 PATTERN (i3) = newpat;
4133 adjust_for_new_dest (i3);
4136 /* We now know that we can do this combination. Merge the insns and
4137 update the status of registers and LOG_LINKS. */
4139 if (undobuf.other_insn)
4141 rtx note, next;
4143 PATTERN (undobuf.other_insn) = other_pat;
4145 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4146 ensure that they are still valid. Then add any non-duplicate
4147 notes added by recog_for_combine. */
4148 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4150 next = XEXP (note, 1);
4152 if ((REG_NOTE_KIND (note) == REG_DEAD
4153 && !reg_referenced_p (XEXP (note, 0),
4154 PATTERN (undobuf.other_insn)))
4155 ||(REG_NOTE_KIND (note) == REG_UNUSED
4156 && !reg_set_p (XEXP (note, 0),
4157 PATTERN (undobuf.other_insn))))
4158 remove_note (undobuf.other_insn, note);
4161 distribute_notes (new_other_notes, undobuf.other_insn,
4162 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4163 NULL_RTX);
4166 if (swap_i2i3)
4168 rtx_insn *insn;
4169 struct insn_link *link;
4170 rtx ni2dest;
4172 /* I3 now uses what used to be its destination and which is now
4173 I2's destination. This requires us to do a few adjustments. */
4174 PATTERN (i3) = newpat;
4175 adjust_for_new_dest (i3);
4177 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4178 so we still will.
4180 However, some later insn might be using I2's dest and have
4181 a LOG_LINK pointing at I3. We must remove this link.
4182 The simplest way to remove the link is to point it at I1,
4183 which we know will be a NOTE. */
4185 /* newi2pat is usually a SET here; however, recog_for_combine might
4186 have added some clobbers. */
4187 if (GET_CODE (newi2pat) == PARALLEL)
4188 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4189 else
4190 ni2dest = SET_DEST (newi2pat);
4192 for (insn = NEXT_INSN (i3);
4193 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4194 || insn != BB_HEAD (this_basic_block->next_bb));
4195 insn = NEXT_INSN (insn))
4197 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
4199 FOR_EACH_LOG_LINK (link, insn)
4200 if (link->insn == i3)
4201 link->insn = i1;
4203 break;
4209 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4210 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4211 rtx midnotes = 0;
4212 int from_luid;
4213 /* Compute which registers we expect to eliminate. newi2pat may be setting
4214 either i3dest or i2dest, so we must check it. */
4215 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4216 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4217 || !i2dest_killed
4218 ? 0 : i2dest);
4219 /* For i1, we need to compute both local elimination and global
4220 elimination information with respect to newi2pat because i1dest
4221 may be the same as i3dest, in which case newi2pat may be setting
4222 i1dest. Global information is used when distributing REG_DEAD
4223 note for i2 and i3, in which case it does matter if newi2pat sets
4224 i1dest or not.
4226 Local information is used when distributing REG_DEAD note for i1,
4227 in which case it doesn't matter if newi2pat sets i1dest or not.
4228 See PR62151, if we have four insns combination:
4229 i0: r0 <- i0src
4230 i1: r1 <- i1src (using r0)
4231 REG_DEAD (r0)
4232 i2: r0 <- i2src (using r1)
4233 i3: r3 <- i3src (using r0)
4234 ix: using r0
4235 From i1's point of view, r0 is eliminated, no matter if it is set
4236 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4237 should be discarded.
4239 Note local information only affects cases in forms like "I1->I2->I3",
4240 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4241 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4242 i0dest anyway. */
4243 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4244 || !i1dest_killed
4245 ? 0 : i1dest);
4246 rtx elim_i1 = (local_elim_i1 == 0
4247 || (newi2pat && reg_set_p (i1dest, newi2pat))
4248 ? 0 : i1dest);
4249 /* Same case as i1. */
4250 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4251 ? 0 : i0dest);
4252 rtx elim_i0 = (local_elim_i0 == 0
4253 || (newi2pat && reg_set_p (i0dest, newi2pat))
4254 ? 0 : i0dest);
4256 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4257 clear them. */
4258 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4259 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4260 if (i1)
4261 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4262 if (i0)
4263 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4265 /* Ensure that we do not have something that should not be shared but
4266 occurs multiple times in the new insns. Check this by first
4267 resetting all the `used' flags and then copying anything is shared. */
4269 reset_used_flags (i3notes);
4270 reset_used_flags (i2notes);
4271 reset_used_flags (i1notes);
4272 reset_used_flags (i0notes);
4273 reset_used_flags (newpat);
4274 reset_used_flags (newi2pat);
4275 if (undobuf.other_insn)
4276 reset_used_flags (PATTERN (undobuf.other_insn));
4278 i3notes = copy_rtx_if_shared (i3notes);
4279 i2notes = copy_rtx_if_shared (i2notes);
4280 i1notes = copy_rtx_if_shared (i1notes);
4281 i0notes = copy_rtx_if_shared (i0notes);
4282 newpat = copy_rtx_if_shared (newpat);
4283 newi2pat = copy_rtx_if_shared (newi2pat);
4284 if (undobuf.other_insn)
4285 reset_used_flags (PATTERN (undobuf.other_insn));
4287 INSN_CODE (i3) = insn_code_number;
4288 PATTERN (i3) = newpat;
4290 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4292 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4294 reset_used_flags (call_usage);
4295 call_usage = copy_rtx (call_usage);
4297 if (substed_i2)
4299 /* I2SRC must still be meaningful at this point. Some splitting
4300 operations can invalidate I2SRC, but those operations do not
4301 apply to calls. */
4302 gcc_assert (i2src);
4303 replace_rtx (call_usage, i2dest, i2src);
4306 if (substed_i1)
4307 replace_rtx (call_usage, i1dest, i1src);
4308 if (substed_i0)
4309 replace_rtx (call_usage, i0dest, i0src);
4311 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4314 if (undobuf.other_insn)
4315 INSN_CODE (undobuf.other_insn) = other_code_number;
4317 /* We had one special case above where I2 had more than one set and
4318 we replaced a destination of one of those sets with the destination
4319 of I3. In that case, we have to update LOG_LINKS of insns later
4320 in this basic block. Note that this (expensive) case is rare.
4322 Also, in this case, we must pretend that all REG_NOTEs for I2
4323 actually came from I3, so that REG_UNUSED notes from I2 will be
4324 properly handled. */
4326 if (i3_subst_into_i2)
4328 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4329 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4330 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4331 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4332 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4333 && ! find_reg_note (i2, REG_UNUSED,
4334 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4335 for (temp_insn = NEXT_INSN (i2);
4336 temp_insn
4337 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4338 || BB_HEAD (this_basic_block) != temp_insn);
4339 temp_insn = NEXT_INSN (temp_insn))
4340 if (temp_insn != i3 && INSN_P (temp_insn))
4341 FOR_EACH_LOG_LINK (link, temp_insn)
4342 if (link->insn == i2)
4343 link->insn = i3;
4345 if (i3notes)
4347 rtx link = i3notes;
4348 while (XEXP (link, 1))
4349 link = XEXP (link, 1);
4350 XEXP (link, 1) = i2notes;
4352 else
4353 i3notes = i2notes;
4354 i2notes = 0;
4357 LOG_LINKS (i3) = NULL;
4358 REG_NOTES (i3) = 0;
4359 LOG_LINKS (i2) = NULL;
4360 REG_NOTES (i2) = 0;
4362 if (newi2pat)
4364 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4365 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4366 this_basic_block);
4367 INSN_CODE (i2) = i2_code_number;
4368 PATTERN (i2) = newi2pat;
4370 else
4372 if (MAY_HAVE_DEBUG_INSNS && i2src)
4373 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4374 this_basic_block);
4375 SET_INSN_DELETED (i2);
4378 if (i1)
4380 LOG_LINKS (i1) = NULL;
4381 REG_NOTES (i1) = 0;
4382 if (MAY_HAVE_DEBUG_INSNS)
4383 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4384 this_basic_block);
4385 SET_INSN_DELETED (i1);
4388 if (i0)
4390 LOG_LINKS (i0) = NULL;
4391 REG_NOTES (i0) = 0;
4392 if (MAY_HAVE_DEBUG_INSNS)
4393 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4394 this_basic_block);
4395 SET_INSN_DELETED (i0);
4398 /* Get death notes for everything that is now used in either I3 or
4399 I2 and used to die in a previous insn. If we built two new
4400 patterns, move from I1 to I2 then I2 to I3 so that we get the
4401 proper movement on registers that I2 modifies. */
4403 if (i0)
4404 from_luid = DF_INSN_LUID (i0);
4405 else if (i1)
4406 from_luid = DF_INSN_LUID (i1);
4407 else
4408 from_luid = DF_INSN_LUID (i2);
4409 if (newi2pat)
4410 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4411 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4413 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4414 if (i3notes)
4415 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4416 elim_i2, elim_i1, elim_i0);
4417 if (i2notes)
4418 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4419 elim_i2, elim_i1, elim_i0);
4420 if (i1notes)
4421 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4422 elim_i2, local_elim_i1, local_elim_i0);
4423 if (i0notes)
4424 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4425 elim_i2, elim_i1, local_elim_i0);
4426 if (midnotes)
4427 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4428 elim_i2, elim_i1, elim_i0);
4430 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4431 know these are REG_UNUSED and want them to go to the desired insn,
4432 so we always pass it as i3. */
4434 if (newi2pat && new_i2_notes)
4435 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4436 NULL_RTX);
4438 if (new_i3_notes)
4439 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4440 NULL_RTX);
4442 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4443 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4444 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4445 in that case, it might delete I2. Similarly for I2 and I1.
4446 Show an additional death due to the REG_DEAD note we make here. If
4447 we discard it in distribute_notes, we will decrement it again. */
4449 if (i3dest_killed)
4451 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4452 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4453 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4454 elim_i1, elim_i0);
4455 else
4456 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4457 elim_i2, elim_i1, elim_i0);
4460 if (i2dest_in_i2src)
4462 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4463 if (newi2pat && reg_set_p (i2dest, newi2pat))
4464 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4465 NULL_RTX, NULL_RTX);
4466 else
4467 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4468 NULL_RTX, NULL_RTX, NULL_RTX);
4471 if (i1dest_in_i1src)
4473 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4474 if (newi2pat && reg_set_p (i1dest, newi2pat))
4475 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4476 NULL_RTX, NULL_RTX);
4477 else
4478 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4479 NULL_RTX, NULL_RTX, NULL_RTX);
4482 if (i0dest_in_i0src)
4484 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4485 if (newi2pat && reg_set_p (i0dest, newi2pat))
4486 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4487 NULL_RTX, NULL_RTX);
4488 else
4489 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4490 NULL_RTX, NULL_RTX, NULL_RTX);
4493 distribute_links (i3links);
4494 distribute_links (i2links);
4495 distribute_links (i1links);
4496 distribute_links (i0links);
4498 if (REG_P (i2dest))
4500 struct insn_link *link;
4501 rtx_insn *i2_insn = 0;
4502 rtx i2_val = 0, set;
4504 /* The insn that used to set this register doesn't exist, and
4505 this life of the register may not exist either. See if one of
4506 I3's links points to an insn that sets I2DEST. If it does,
4507 that is now the last known value for I2DEST. If we don't update
4508 this and I2 set the register to a value that depended on its old
4509 contents, we will get confused. If this insn is used, thing
4510 will be set correctly in combine_instructions. */
4511 FOR_EACH_LOG_LINK (link, i3)
4512 if ((set = single_set (link->insn)) != 0
4513 && rtx_equal_p (i2dest, SET_DEST (set)))
4514 i2_insn = link->insn, i2_val = SET_SRC (set);
4516 record_value_for_reg (i2dest, i2_insn, i2_val);
4518 /* If the reg formerly set in I2 died only once and that was in I3,
4519 zero its use count so it won't make `reload' do any work. */
4520 if (! added_sets_2
4521 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4522 && ! i2dest_in_i2src
4523 && REGNO (i2dest) < reg_n_sets_max)
4524 INC_REG_N_SETS (REGNO (i2dest), -1);
4527 if (i1 && REG_P (i1dest))
4529 struct insn_link *link;
4530 rtx_insn *i1_insn = 0;
4531 rtx i1_val = 0, set;
4533 FOR_EACH_LOG_LINK (link, i3)
4534 if ((set = single_set (link->insn)) != 0
4535 && rtx_equal_p (i1dest, SET_DEST (set)))
4536 i1_insn = link->insn, i1_val = SET_SRC (set);
4538 record_value_for_reg (i1dest, i1_insn, i1_val);
4540 if (! added_sets_1
4541 && ! i1dest_in_i1src
4542 && REGNO (i1dest) < reg_n_sets_max)
4543 INC_REG_N_SETS (REGNO (i1dest), -1);
4546 if (i0 && REG_P (i0dest))
4548 struct insn_link *link;
4549 rtx_insn *i0_insn = 0;
4550 rtx i0_val = 0, set;
4552 FOR_EACH_LOG_LINK (link, i3)
4553 if ((set = single_set (link->insn)) != 0
4554 && rtx_equal_p (i0dest, SET_DEST (set)))
4555 i0_insn = link->insn, i0_val = SET_SRC (set);
4557 record_value_for_reg (i0dest, i0_insn, i0_val);
4559 if (! added_sets_0
4560 && ! i0dest_in_i0src
4561 && REGNO (i0dest) < reg_n_sets_max)
4562 INC_REG_N_SETS (REGNO (i0dest), -1);
4565 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4566 been made to this insn. The order is important, because newi2pat
4567 can affect nonzero_bits of newpat. */
4568 if (newi2pat)
4569 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4570 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4573 if (undobuf.other_insn != NULL_RTX)
4575 if (dump_file)
4577 fprintf (dump_file, "modifying other_insn ");
4578 dump_insn_slim (dump_file, undobuf.other_insn);
4580 df_insn_rescan (undobuf.other_insn);
4583 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4585 if (dump_file)
4587 fprintf (dump_file, "modifying insn i0 ");
4588 dump_insn_slim (dump_file, i0);
4590 df_insn_rescan (i0);
4593 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4595 if (dump_file)
4597 fprintf (dump_file, "modifying insn i1 ");
4598 dump_insn_slim (dump_file, i1);
4600 df_insn_rescan (i1);
4603 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4605 if (dump_file)
4607 fprintf (dump_file, "modifying insn i2 ");
4608 dump_insn_slim (dump_file, i2);
4610 df_insn_rescan (i2);
4613 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4615 if (dump_file)
4617 fprintf (dump_file, "modifying insn i3 ");
4618 dump_insn_slim (dump_file, i3);
4620 df_insn_rescan (i3);
4623 /* Set new_direct_jump_p if a new return or simple jump instruction
4624 has been created. Adjust the CFG accordingly. */
4625 if (returnjump_p (i3) || any_uncondjump_p (i3))
4627 *new_direct_jump_p = 1;
4628 mark_jump_label (PATTERN (i3), i3, 0);
4629 update_cfg_for_uncondjump (i3);
4632 if (undobuf.other_insn != NULL_RTX
4633 && (returnjump_p (undobuf.other_insn)
4634 || any_uncondjump_p (undobuf.other_insn)))
4636 *new_direct_jump_p = 1;
4637 update_cfg_for_uncondjump (undobuf.other_insn);
4640 /* A noop might also need cleaning up of CFG, if it comes from the
4641 simplification of a jump. */
4642 if (JUMP_P (i3)
4643 && GET_CODE (newpat) == SET
4644 && SET_SRC (newpat) == pc_rtx
4645 && SET_DEST (newpat) == pc_rtx)
4647 *new_direct_jump_p = 1;
4648 update_cfg_for_uncondjump (i3);
4651 if (undobuf.other_insn != NULL_RTX
4652 && JUMP_P (undobuf.other_insn)
4653 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4654 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4655 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4657 *new_direct_jump_p = 1;
4658 update_cfg_for_uncondjump (undobuf.other_insn);
4661 combine_successes++;
4662 undo_commit ();
4664 if (added_links_insn
4665 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4666 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4667 return added_links_insn;
4668 else
4669 return newi2pat ? i2 : i3;
4672 /* Get a marker for undoing to the current state. */
4674 static void *
4675 get_undo_marker (void)
4677 return undobuf.undos;
4680 /* Undo the modifications up to the marker. */
4682 static void
4683 undo_to_marker (void *marker)
4685 struct undo *undo, *next;
4687 for (undo = undobuf.undos; undo != marker; undo = next)
4689 gcc_assert (undo);
4691 next = undo->next;
4692 switch (undo->kind)
4694 case UNDO_RTX:
4695 *undo->where.r = undo->old_contents.r;
4696 break;
4697 case UNDO_INT:
4698 *undo->where.i = undo->old_contents.i;
4699 break;
4700 case UNDO_MODE:
4701 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4702 break;
4703 case UNDO_LINKS:
4704 *undo->where.l = undo->old_contents.l;
4705 break;
4706 default:
4707 gcc_unreachable ();
4710 undo->next = undobuf.frees;
4711 undobuf.frees = undo;
4714 undobuf.undos = (struct undo *) marker;
4717 /* Undo all the modifications recorded in undobuf. */
4719 static void
4720 undo_all (void)
4722 undo_to_marker (0);
4725 /* We've committed to accepting the changes we made. Move all
4726 of the undos to the free list. */
4728 static void
4729 undo_commit (void)
4731 struct undo *undo, *next;
4733 for (undo = undobuf.undos; undo; undo = next)
4735 next = undo->next;
4736 undo->next = undobuf.frees;
4737 undobuf.frees = undo;
4739 undobuf.undos = 0;
4742 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4743 where we have an arithmetic expression and return that point. LOC will
4744 be inside INSN.
4746 try_combine will call this function to see if an insn can be split into
4747 two insns. */
4749 static rtx *
4750 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4752 rtx x = *loc;
4753 enum rtx_code code = GET_CODE (x);
4754 rtx *split;
4755 unsigned HOST_WIDE_INT len = 0;
4756 HOST_WIDE_INT pos = 0;
4757 int unsignedp = 0;
4758 rtx inner = NULL_RTX;
4760 /* First special-case some codes. */
4761 switch (code)
4763 case SUBREG:
4764 #ifdef INSN_SCHEDULING
4765 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4766 point. */
4767 if (MEM_P (SUBREG_REG (x)))
4768 return loc;
4769 #endif
4770 return find_split_point (&SUBREG_REG (x), insn, false);
4772 case MEM:
4773 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4774 using LO_SUM and HIGH. */
4775 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4776 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4778 machine_mode address_mode = get_address_mode (x);
4780 SUBST (XEXP (x, 0),
4781 gen_rtx_LO_SUM (address_mode,
4782 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4783 XEXP (x, 0)));
4784 return &XEXP (XEXP (x, 0), 0);
4787 /* If we have a PLUS whose second operand is a constant and the
4788 address is not valid, perhaps will can split it up using
4789 the machine-specific way to split large constants. We use
4790 the first pseudo-reg (one of the virtual regs) as a placeholder;
4791 it will not remain in the result. */
4792 if (GET_CODE (XEXP (x, 0)) == PLUS
4793 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4794 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4795 MEM_ADDR_SPACE (x)))
4797 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4798 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4799 subst_insn);
4801 /* This should have produced two insns, each of which sets our
4802 placeholder. If the source of the second is a valid address,
4803 we can make put both sources together and make a split point
4804 in the middle. */
4806 if (seq
4807 && NEXT_INSN (seq) != NULL_RTX
4808 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4809 && NONJUMP_INSN_P (seq)
4810 && GET_CODE (PATTERN (seq)) == SET
4811 && SET_DEST (PATTERN (seq)) == reg
4812 && ! reg_mentioned_p (reg,
4813 SET_SRC (PATTERN (seq)))
4814 && NONJUMP_INSN_P (NEXT_INSN (seq))
4815 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4816 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4817 && memory_address_addr_space_p
4818 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4819 MEM_ADDR_SPACE (x)))
4821 rtx src1 = SET_SRC (PATTERN (seq));
4822 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4824 /* Replace the placeholder in SRC2 with SRC1. If we can
4825 find where in SRC2 it was placed, that can become our
4826 split point and we can replace this address with SRC2.
4827 Just try two obvious places. */
4829 src2 = replace_rtx (src2, reg, src1);
4830 split = 0;
4831 if (XEXP (src2, 0) == src1)
4832 split = &XEXP (src2, 0);
4833 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4834 && XEXP (XEXP (src2, 0), 0) == src1)
4835 split = &XEXP (XEXP (src2, 0), 0);
4837 if (split)
4839 SUBST (XEXP (x, 0), src2);
4840 return split;
4844 /* If that didn't work, perhaps the first operand is complex and
4845 needs to be computed separately, so make a split point there.
4846 This will occur on machines that just support REG + CONST
4847 and have a constant moved through some previous computation. */
4849 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4850 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4851 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4852 return &XEXP (XEXP (x, 0), 0);
4855 /* If we have a PLUS whose first operand is complex, try computing it
4856 separately by making a split there. */
4857 if (GET_CODE (XEXP (x, 0)) == PLUS
4858 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4859 MEM_ADDR_SPACE (x))
4860 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4861 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4862 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4863 return &XEXP (XEXP (x, 0), 0);
4864 break;
4866 case SET:
4867 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4868 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4869 we need to put the operand into a register. So split at that
4870 point. */
4872 if (SET_DEST (x) == cc0_rtx
4873 && GET_CODE (SET_SRC (x)) != COMPARE
4874 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4875 && !OBJECT_P (SET_SRC (x))
4876 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4877 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4878 return &SET_SRC (x);
4880 /* See if we can split SET_SRC as it stands. */
4881 split = find_split_point (&SET_SRC (x), insn, true);
4882 if (split && split != &SET_SRC (x))
4883 return split;
4885 /* See if we can split SET_DEST as it stands. */
4886 split = find_split_point (&SET_DEST (x), insn, false);
4887 if (split && split != &SET_DEST (x))
4888 return split;
4890 /* See if this is a bitfield assignment with everything constant. If
4891 so, this is an IOR of an AND, so split it into that. */
4892 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4893 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4894 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4895 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4896 && CONST_INT_P (SET_SRC (x))
4897 && ((INTVAL (XEXP (SET_DEST (x), 1))
4898 + INTVAL (XEXP (SET_DEST (x), 2)))
4899 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4900 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4902 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4903 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4904 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4905 rtx dest = XEXP (SET_DEST (x), 0);
4906 machine_mode mode = GET_MODE (dest);
4907 unsigned HOST_WIDE_INT mask
4908 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4909 rtx or_mask;
4911 if (BITS_BIG_ENDIAN)
4912 pos = GET_MODE_PRECISION (mode) - len - pos;
4914 or_mask = gen_int_mode (src << pos, mode);
4915 if (src == mask)
4916 SUBST (SET_SRC (x),
4917 simplify_gen_binary (IOR, mode, dest, or_mask));
4918 else
4920 rtx negmask = gen_int_mode (~(mask << pos), mode);
4921 SUBST (SET_SRC (x),
4922 simplify_gen_binary (IOR, mode,
4923 simplify_gen_binary (AND, mode,
4924 dest, negmask),
4925 or_mask));
4928 SUBST (SET_DEST (x), dest);
4930 split = find_split_point (&SET_SRC (x), insn, true);
4931 if (split && split != &SET_SRC (x))
4932 return split;
4935 /* Otherwise, see if this is an operation that we can split into two.
4936 If so, try to split that. */
4937 code = GET_CODE (SET_SRC (x));
4939 switch (code)
4941 case AND:
4942 /* If we are AND'ing with a large constant that is only a single
4943 bit and the result is only being used in a context where we
4944 need to know if it is zero or nonzero, replace it with a bit
4945 extraction. This will avoid the large constant, which might
4946 have taken more than one insn to make. If the constant were
4947 not a valid argument to the AND but took only one insn to make,
4948 this is no worse, but if it took more than one insn, it will
4949 be better. */
4951 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4952 && REG_P (XEXP (SET_SRC (x), 0))
4953 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4954 && REG_P (SET_DEST (x))
4955 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
4956 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4957 && XEXP (*split, 0) == SET_DEST (x)
4958 && XEXP (*split, 1) == const0_rtx)
4960 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4961 XEXP (SET_SRC (x), 0),
4962 pos, NULL_RTX, 1, 1, 0, 0);
4963 if (extraction != 0)
4965 SUBST (SET_SRC (x), extraction);
4966 return find_split_point (loc, insn, false);
4969 break;
4971 case NE:
4972 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4973 is known to be on, this can be converted into a NEG of a shift. */
4974 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4975 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4976 && 1 <= (pos = exact_log2
4977 (nonzero_bits (XEXP (SET_SRC (x), 0),
4978 GET_MODE (XEXP (SET_SRC (x), 0))))))
4980 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4982 SUBST (SET_SRC (x),
4983 gen_rtx_NEG (mode,
4984 gen_rtx_LSHIFTRT (mode,
4985 XEXP (SET_SRC (x), 0),
4986 GEN_INT (pos))));
4988 split = find_split_point (&SET_SRC (x), insn, true);
4989 if (split && split != &SET_SRC (x))
4990 return split;
4992 break;
4994 case SIGN_EXTEND:
4995 inner = XEXP (SET_SRC (x), 0);
4997 /* We can't optimize if either mode is a partial integer
4998 mode as we don't know how many bits are significant
4999 in those modes. */
5000 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
5001 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5002 break;
5004 pos = 0;
5005 len = GET_MODE_PRECISION (GET_MODE (inner));
5006 unsignedp = 0;
5007 break;
5009 case SIGN_EXTRACT:
5010 case ZERO_EXTRACT:
5011 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5012 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5014 inner = XEXP (SET_SRC (x), 0);
5015 len = INTVAL (XEXP (SET_SRC (x), 1));
5016 pos = INTVAL (XEXP (SET_SRC (x), 2));
5018 if (BITS_BIG_ENDIAN)
5019 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
5020 unsignedp = (code == ZERO_EXTRACT);
5022 break;
5024 default:
5025 break;
5028 if (len && pos >= 0
5029 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
5031 machine_mode mode = GET_MODE (SET_SRC (x));
5033 /* For unsigned, we have a choice of a shift followed by an
5034 AND or two shifts. Use two shifts for field sizes where the
5035 constant might be too large. We assume here that we can
5036 always at least get 8-bit constants in an AND insn, which is
5037 true for every current RISC. */
5039 if (unsignedp && len <= 8)
5041 unsigned HOST_WIDE_INT mask
5042 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
5043 SUBST (SET_SRC (x),
5044 gen_rtx_AND (mode,
5045 gen_rtx_LSHIFTRT
5046 (mode, gen_lowpart (mode, inner),
5047 GEN_INT (pos)),
5048 gen_int_mode (mask, mode)));
5050 split = find_split_point (&SET_SRC (x), insn, true);
5051 if (split && split != &SET_SRC (x))
5052 return split;
5054 else
5056 SUBST (SET_SRC (x),
5057 gen_rtx_fmt_ee
5058 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5059 gen_rtx_ASHIFT (mode,
5060 gen_lowpart (mode, inner),
5061 GEN_INT (GET_MODE_PRECISION (mode)
5062 - len - pos)),
5063 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5065 split = find_split_point (&SET_SRC (x), insn, true);
5066 if (split && split != &SET_SRC (x))
5067 return split;
5071 /* See if this is a simple operation with a constant as the second
5072 operand. It might be that this constant is out of range and hence
5073 could be used as a split point. */
5074 if (BINARY_P (SET_SRC (x))
5075 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5076 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5077 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5078 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5079 return &XEXP (SET_SRC (x), 1);
5081 /* Finally, see if this is a simple operation with its first operand
5082 not in a register. The operation might require this operand in a
5083 register, so return it as a split point. We can always do this
5084 because if the first operand were another operation, we would have
5085 already found it as a split point. */
5086 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5087 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5088 return &XEXP (SET_SRC (x), 0);
5090 return 0;
5092 case AND:
5093 case IOR:
5094 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5095 it is better to write this as (not (ior A B)) so we can split it.
5096 Similarly for IOR. */
5097 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5099 SUBST (*loc,
5100 gen_rtx_NOT (GET_MODE (x),
5101 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5102 GET_MODE (x),
5103 XEXP (XEXP (x, 0), 0),
5104 XEXP (XEXP (x, 1), 0))));
5105 return find_split_point (loc, insn, set_src);
5108 /* Many RISC machines have a large set of logical insns. If the
5109 second operand is a NOT, put it first so we will try to split the
5110 other operand first. */
5111 if (GET_CODE (XEXP (x, 1)) == NOT)
5113 rtx tem = XEXP (x, 0);
5114 SUBST (XEXP (x, 0), XEXP (x, 1));
5115 SUBST (XEXP (x, 1), tem);
5117 break;
5119 case PLUS:
5120 case MINUS:
5121 /* Canonicalization can produce (minus A (mult B C)), where C is a
5122 constant. It may be better to try splitting (plus (mult B -C) A)
5123 instead if this isn't a multiply by a power of two. */
5124 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5125 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5126 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
5128 machine_mode mode = GET_MODE (x);
5129 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5130 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5131 SUBST (*loc, gen_rtx_PLUS (mode,
5132 gen_rtx_MULT (mode,
5133 XEXP (XEXP (x, 1), 0),
5134 gen_int_mode (other_int,
5135 mode)),
5136 XEXP (x, 0)));
5137 return find_split_point (loc, insn, set_src);
5140 /* Split at a multiply-accumulate instruction. However if this is
5141 the SET_SRC, we likely do not have such an instruction and it's
5142 worthless to try this split. */
5143 if (!set_src
5144 && (GET_CODE (XEXP (x, 0)) == MULT
5145 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5146 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5147 return loc;
5149 default:
5150 break;
5153 /* Otherwise, select our actions depending on our rtx class. */
5154 switch (GET_RTX_CLASS (code))
5156 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5157 case RTX_TERNARY:
5158 split = find_split_point (&XEXP (x, 2), insn, false);
5159 if (split)
5160 return split;
5161 /* ... fall through ... */
5162 case RTX_BIN_ARITH:
5163 case RTX_COMM_ARITH:
5164 case RTX_COMPARE:
5165 case RTX_COMM_COMPARE:
5166 split = find_split_point (&XEXP (x, 1), insn, false);
5167 if (split)
5168 return split;
5169 /* ... fall through ... */
5170 case RTX_UNARY:
5171 /* Some machines have (and (shift ...) ...) insns. If X is not
5172 an AND, but XEXP (X, 0) is, use it as our split point. */
5173 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5174 return &XEXP (x, 0);
5176 split = find_split_point (&XEXP (x, 0), insn, false);
5177 if (split)
5178 return split;
5179 return loc;
5181 default:
5182 /* Otherwise, we don't have a split point. */
5183 return 0;
5187 /* Throughout X, replace FROM with TO, and return the result.
5188 The result is TO if X is FROM;
5189 otherwise the result is X, but its contents may have been modified.
5190 If they were modified, a record was made in undobuf so that
5191 undo_all will (among other things) return X to its original state.
5193 If the number of changes necessary is too much to record to undo,
5194 the excess changes are not made, so the result is invalid.
5195 The changes already made can still be undone.
5196 undobuf.num_undo is incremented for such changes, so by testing that
5197 the caller can tell whether the result is valid.
5199 `n_occurrences' is incremented each time FROM is replaced.
5201 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5203 IN_COND is nonzero if we are at the top level of a condition.
5205 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5206 by copying if `n_occurrences' is nonzero. */
5208 static rtx
5209 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5211 enum rtx_code code = GET_CODE (x);
5212 machine_mode op0_mode = VOIDmode;
5213 const char *fmt;
5214 int len, i;
5215 rtx new_rtx;
5217 /* Two expressions are equal if they are identical copies of a shared
5218 RTX or if they are both registers with the same register number
5219 and mode. */
5221 #define COMBINE_RTX_EQUAL_P(X,Y) \
5222 ((X) == (Y) \
5223 || (REG_P (X) && REG_P (Y) \
5224 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5226 /* Do not substitute into clobbers of regs -- this will never result in
5227 valid RTL. */
5228 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5229 return x;
5231 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5233 n_occurrences++;
5234 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5237 /* If X and FROM are the same register but different modes, they
5238 will not have been seen as equal above. However, the log links code
5239 will make a LOG_LINKS entry for that case. If we do nothing, we
5240 will try to rerecognize our original insn and, when it succeeds,
5241 we will delete the feeding insn, which is incorrect.
5243 So force this insn not to match in this (rare) case. */
5244 if (! in_dest && code == REG && REG_P (from)
5245 && reg_overlap_mentioned_p (x, from))
5246 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5248 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5249 of which may contain things that can be combined. */
5250 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5251 return x;
5253 /* It is possible to have a subexpression appear twice in the insn.
5254 Suppose that FROM is a register that appears within TO.
5255 Then, after that subexpression has been scanned once by `subst',
5256 the second time it is scanned, TO may be found. If we were
5257 to scan TO here, we would find FROM within it and create a
5258 self-referent rtl structure which is completely wrong. */
5259 if (COMBINE_RTX_EQUAL_P (x, to))
5260 return to;
5262 /* Parallel asm_operands need special attention because all of the
5263 inputs are shared across the arms. Furthermore, unsharing the
5264 rtl results in recognition failures. Failure to handle this case
5265 specially can result in circular rtl.
5267 Solve this by doing a normal pass across the first entry of the
5268 parallel, and only processing the SET_DESTs of the subsequent
5269 entries. Ug. */
5271 if (code == PARALLEL
5272 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5273 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5275 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5277 /* If this substitution failed, this whole thing fails. */
5278 if (GET_CODE (new_rtx) == CLOBBER
5279 && XEXP (new_rtx, 0) == const0_rtx)
5280 return new_rtx;
5282 SUBST (XVECEXP (x, 0, 0), new_rtx);
5284 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5286 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5288 if (!REG_P (dest)
5289 && GET_CODE (dest) != CC0
5290 && GET_CODE (dest) != PC)
5292 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5294 /* If this substitution failed, this whole thing fails. */
5295 if (GET_CODE (new_rtx) == CLOBBER
5296 && XEXP (new_rtx, 0) == const0_rtx)
5297 return new_rtx;
5299 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5303 else
5305 len = GET_RTX_LENGTH (code);
5306 fmt = GET_RTX_FORMAT (code);
5308 /* We don't need to process a SET_DEST that is a register, CC0,
5309 or PC, so set up to skip this common case. All other cases
5310 where we want to suppress replacing something inside a
5311 SET_SRC are handled via the IN_DEST operand. */
5312 if (code == SET
5313 && (REG_P (SET_DEST (x))
5314 || GET_CODE (SET_DEST (x)) == CC0
5315 || GET_CODE (SET_DEST (x)) == PC))
5316 fmt = "ie";
5318 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5319 constant. */
5320 if (fmt[0] == 'e')
5321 op0_mode = GET_MODE (XEXP (x, 0));
5323 for (i = 0; i < len; i++)
5325 if (fmt[i] == 'E')
5327 int j;
5328 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5330 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5332 new_rtx = (unique_copy && n_occurrences
5333 ? copy_rtx (to) : to);
5334 n_occurrences++;
5336 else
5338 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5339 unique_copy);
5341 /* If this substitution failed, this whole thing
5342 fails. */
5343 if (GET_CODE (new_rtx) == CLOBBER
5344 && XEXP (new_rtx, 0) == const0_rtx)
5345 return new_rtx;
5348 SUBST (XVECEXP (x, i, j), new_rtx);
5351 else if (fmt[i] == 'e')
5353 /* If this is a register being set, ignore it. */
5354 new_rtx = XEXP (x, i);
5355 if (in_dest
5356 && i == 0
5357 && (((code == SUBREG || code == ZERO_EXTRACT)
5358 && REG_P (new_rtx))
5359 || code == STRICT_LOW_PART))
5362 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5364 /* In general, don't install a subreg involving two
5365 modes not tieable. It can worsen register
5366 allocation, and can even make invalid reload
5367 insns, since the reg inside may need to be copied
5368 from in the outside mode, and that may be invalid
5369 if it is an fp reg copied in integer mode.
5371 We allow two exceptions to this: It is valid if
5372 it is inside another SUBREG and the mode of that
5373 SUBREG and the mode of the inside of TO is
5374 tieable and it is valid if X is a SET that copies
5375 FROM to CC0. */
5377 if (GET_CODE (to) == SUBREG
5378 && ! MODES_TIEABLE_P (GET_MODE (to),
5379 GET_MODE (SUBREG_REG (to)))
5380 && ! (code == SUBREG
5381 && MODES_TIEABLE_P (GET_MODE (x),
5382 GET_MODE (SUBREG_REG (to))))
5383 #if HAVE_cc0
5384 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5385 #endif
5387 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5389 if (code == SUBREG
5390 && REG_P (to)
5391 && REGNO (to) < FIRST_PSEUDO_REGISTER
5392 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5393 SUBREG_BYTE (x),
5394 GET_MODE (x)) < 0)
5395 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5397 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5398 n_occurrences++;
5400 else
5401 /* If we are in a SET_DEST, suppress most cases unless we
5402 have gone inside a MEM, in which case we want to
5403 simplify the address. We assume here that things that
5404 are actually part of the destination have their inner
5405 parts in the first expression. This is true for SUBREG,
5406 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5407 things aside from REG and MEM that should appear in a
5408 SET_DEST. */
5409 new_rtx = subst (XEXP (x, i), from, to,
5410 (((in_dest
5411 && (code == SUBREG || code == STRICT_LOW_PART
5412 || code == ZERO_EXTRACT))
5413 || code == SET)
5414 && i == 0),
5415 code == IF_THEN_ELSE && i == 0,
5416 unique_copy);
5418 /* If we found that we will have to reject this combination,
5419 indicate that by returning the CLOBBER ourselves, rather than
5420 an expression containing it. This will speed things up as
5421 well as prevent accidents where two CLOBBERs are considered
5422 to be equal, thus producing an incorrect simplification. */
5424 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5425 return new_rtx;
5427 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5429 machine_mode mode = GET_MODE (x);
5431 x = simplify_subreg (GET_MODE (x), new_rtx,
5432 GET_MODE (SUBREG_REG (x)),
5433 SUBREG_BYTE (x));
5434 if (! x)
5435 x = gen_rtx_CLOBBER (mode, const0_rtx);
5437 else if (CONST_SCALAR_INT_P (new_rtx)
5438 && GET_CODE (x) == ZERO_EXTEND)
5440 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5441 new_rtx, GET_MODE (XEXP (x, 0)));
5442 gcc_assert (x);
5444 else
5445 SUBST (XEXP (x, i), new_rtx);
5450 /* Check if we are loading something from the constant pool via float
5451 extension; in this case we would undo compress_float_constant
5452 optimization and degenerate constant load to an immediate value. */
5453 if (GET_CODE (x) == FLOAT_EXTEND
5454 && MEM_P (XEXP (x, 0))
5455 && MEM_READONLY_P (XEXP (x, 0)))
5457 rtx tmp = avoid_constant_pool_reference (x);
5458 if (x != tmp)
5459 return x;
5462 /* Try to simplify X. If the simplification changed the code, it is likely
5463 that further simplification will help, so loop, but limit the number
5464 of repetitions that will be performed. */
5466 for (i = 0; i < 4; i++)
5468 /* If X is sufficiently simple, don't bother trying to do anything
5469 with it. */
5470 if (code != CONST_INT && code != REG && code != CLOBBER)
5471 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5473 if (GET_CODE (x) == code)
5474 break;
5476 code = GET_CODE (x);
5478 /* We no longer know the original mode of operand 0 since we
5479 have changed the form of X) */
5480 op0_mode = VOIDmode;
5483 return x;
5486 /* Simplify X, a piece of RTL. We just operate on the expression at the
5487 outer level; call `subst' to simplify recursively. Return the new
5488 expression.
5490 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5491 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5492 of a condition. */
5494 static rtx
5495 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5496 int in_cond)
5498 enum rtx_code code = GET_CODE (x);
5499 machine_mode mode = GET_MODE (x);
5500 rtx temp;
5501 int i;
5503 /* If this is a commutative operation, put a constant last and a complex
5504 expression first. We don't need to do this for comparisons here. */
5505 if (COMMUTATIVE_ARITH_P (x)
5506 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5508 temp = XEXP (x, 0);
5509 SUBST (XEXP (x, 0), XEXP (x, 1));
5510 SUBST (XEXP (x, 1), temp);
5513 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5514 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5515 things. Check for cases where both arms are testing the same
5516 condition.
5518 Don't do anything if all operands are very simple. */
5520 if ((BINARY_P (x)
5521 && ((!OBJECT_P (XEXP (x, 0))
5522 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5523 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5524 || (!OBJECT_P (XEXP (x, 1))
5525 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5526 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5527 || (UNARY_P (x)
5528 && (!OBJECT_P (XEXP (x, 0))
5529 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5530 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5532 rtx cond, true_rtx, false_rtx;
5534 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5535 if (cond != 0
5536 /* If everything is a comparison, what we have is highly unlikely
5537 to be simpler, so don't use it. */
5538 && ! (COMPARISON_P (x)
5539 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5541 rtx cop1 = const0_rtx;
5542 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5544 if (cond_code == NE && COMPARISON_P (cond))
5545 return x;
5547 /* Simplify the alternative arms; this may collapse the true and
5548 false arms to store-flag values. Be careful to use copy_rtx
5549 here since true_rtx or false_rtx might share RTL with x as a
5550 result of the if_then_else_cond call above. */
5551 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5552 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5554 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5555 is unlikely to be simpler. */
5556 if (general_operand (true_rtx, VOIDmode)
5557 && general_operand (false_rtx, VOIDmode))
5559 enum rtx_code reversed;
5561 /* Restarting if we generate a store-flag expression will cause
5562 us to loop. Just drop through in this case. */
5564 /* If the result values are STORE_FLAG_VALUE and zero, we can
5565 just make the comparison operation. */
5566 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5567 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5568 cond, cop1);
5569 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5570 && ((reversed = reversed_comparison_code_parts
5571 (cond_code, cond, cop1, NULL))
5572 != UNKNOWN))
5573 x = simplify_gen_relational (reversed, mode, VOIDmode,
5574 cond, cop1);
5576 /* Likewise, we can make the negate of a comparison operation
5577 if the result values are - STORE_FLAG_VALUE and zero. */
5578 else if (CONST_INT_P (true_rtx)
5579 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5580 && false_rtx == const0_rtx)
5581 x = simplify_gen_unary (NEG, mode,
5582 simplify_gen_relational (cond_code,
5583 mode, VOIDmode,
5584 cond, cop1),
5585 mode);
5586 else if (CONST_INT_P (false_rtx)
5587 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5588 && true_rtx == const0_rtx
5589 && ((reversed = reversed_comparison_code_parts
5590 (cond_code, cond, cop1, NULL))
5591 != UNKNOWN))
5592 x = simplify_gen_unary (NEG, mode,
5593 simplify_gen_relational (reversed,
5594 mode, VOIDmode,
5595 cond, cop1),
5596 mode);
5597 else
5598 return gen_rtx_IF_THEN_ELSE (mode,
5599 simplify_gen_relational (cond_code,
5600 mode,
5601 VOIDmode,
5602 cond,
5603 cop1),
5604 true_rtx, false_rtx);
5606 code = GET_CODE (x);
5607 op0_mode = VOIDmode;
5612 /* Try to fold this expression in case we have constants that weren't
5613 present before. */
5614 temp = 0;
5615 switch (GET_RTX_CLASS (code))
5617 case RTX_UNARY:
5618 if (op0_mode == VOIDmode)
5619 op0_mode = GET_MODE (XEXP (x, 0));
5620 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5621 break;
5622 case RTX_COMPARE:
5623 case RTX_COMM_COMPARE:
5625 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5626 if (cmp_mode == VOIDmode)
5628 cmp_mode = GET_MODE (XEXP (x, 1));
5629 if (cmp_mode == VOIDmode)
5630 cmp_mode = op0_mode;
5632 temp = simplify_relational_operation (code, mode, cmp_mode,
5633 XEXP (x, 0), XEXP (x, 1));
5635 break;
5636 case RTX_COMM_ARITH:
5637 case RTX_BIN_ARITH:
5638 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5639 break;
5640 case RTX_BITFIELD_OPS:
5641 case RTX_TERNARY:
5642 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5643 XEXP (x, 1), XEXP (x, 2));
5644 break;
5645 default:
5646 break;
5649 if (temp)
5651 x = temp;
5652 code = GET_CODE (temp);
5653 op0_mode = VOIDmode;
5654 mode = GET_MODE (temp);
5657 /* First see if we can apply the inverse distributive law. */
5658 if (code == PLUS || code == MINUS
5659 || code == AND || code == IOR || code == XOR)
5661 x = apply_distributive_law (x);
5662 code = GET_CODE (x);
5663 op0_mode = VOIDmode;
5666 /* If CODE is an associative operation not otherwise handled, see if we
5667 can associate some operands. This can win if they are constants or
5668 if they are logically related (i.e. (a & b) & a). */
5669 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5670 || code == AND || code == IOR || code == XOR
5671 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5672 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5673 || (flag_associative_math && FLOAT_MODE_P (mode))))
5675 if (GET_CODE (XEXP (x, 0)) == code)
5677 rtx other = XEXP (XEXP (x, 0), 0);
5678 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5679 rtx inner_op1 = XEXP (x, 1);
5680 rtx inner;
5682 /* Make sure we pass the constant operand if any as the second
5683 one if this is a commutative operation. */
5684 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5685 std::swap (inner_op0, inner_op1);
5686 inner = simplify_binary_operation (code == MINUS ? PLUS
5687 : code == DIV ? MULT
5688 : code,
5689 mode, inner_op0, inner_op1);
5691 /* For commutative operations, try the other pair if that one
5692 didn't simplify. */
5693 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5695 other = XEXP (XEXP (x, 0), 1);
5696 inner = simplify_binary_operation (code, mode,
5697 XEXP (XEXP (x, 0), 0),
5698 XEXP (x, 1));
5701 if (inner)
5702 return simplify_gen_binary (code, mode, other, inner);
5706 /* A little bit of algebraic simplification here. */
5707 switch (code)
5709 case MEM:
5710 /* Ensure that our address has any ASHIFTs converted to MULT in case
5711 address-recognizing predicates are called later. */
5712 temp = make_compound_operation (XEXP (x, 0), MEM);
5713 SUBST (XEXP (x, 0), temp);
5714 break;
5716 case SUBREG:
5717 if (op0_mode == VOIDmode)
5718 op0_mode = GET_MODE (SUBREG_REG (x));
5720 /* See if this can be moved to simplify_subreg. */
5721 if (CONSTANT_P (SUBREG_REG (x))
5722 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5723 /* Don't call gen_lowpart if the inner mode
5724 is VOIDmode and we cannot simplify it, as SUBREG without
5725 inner mode is invalid. */
5726 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5727 || gen_lowpart_common (mode, SUBREG_REG (x))))
5728 return gen_lowpart (mode, SUBREG_REG (x));
5730 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5731 break;
5733 rtx temp;
5734 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5735 SUBREG_BYTE (x));
5736 if (temp)
5737 return temp;
5739 /* If op is known to have all lower bits zero, the result is zero. */
5740 if (!in_dest
5741 && SCALAR_INT_MODE_P (mode)
5742 && SCALAR_INT_MODE_P (op0_mode)
5743 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5744 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5745 && HWI_COMPUTABLE_MODE_P (op0_mode)
5746 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5747 & GET_MODE_MASK (mode)) == 0)
5748 return CONST0_RTX (mode);
5751 /* Don't change the mode of the MEM if that would change the meaning
5752 of the address. */
5753 if (MEM_P (SUBREG_REG (x))
5754 && (MEM_VOLATILE_P (SUBREG_REG (x))
5755 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5756 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5757 return gen_rtx_CLOBBER (mode, const0_rtx);
5759 /* Note that we cannot do any narrowing for non-constants since
5760 we might have been counting on using the fact that some bits were
5761 zero. We now do this in the SET. */
5763 break;
5765 case NEG:
5766 temp = expand_compound_operation (XEXP (x, 0));
5768 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5769 replaced by (lshiftrt X C). This will convert
5770 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5772 if (GET_CODE (temp) == ASHIFTRT
5773 && CONST_INT_P (XEXP (temp, 1))
5774 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5775 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5776 INTVAL (XEXP (temp, 1)));
5778 /* If X has only a single bit that might be nonzero, say, bit I, convert
5779 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5780 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5781 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5782 or a SUBREG of one since we'd be making the expression more
5783 complex if it was just a register. */
5785 if (!REG_P (temp)
5786 && ! (GET_CODE (temp) == SUBREG
5787 && REG_P (SUBREG_REG (temp)))
5788 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5790 rtx temp1 = simplify_shift_const
5791 (NULL_RTX, ASHIFTRT, mode,
5792 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5793 GET_MODE_PRECISION (mode) - 1 - i),
5794 GET_MODE_PRECISION (mode) - 1 - i);
5796 /* If all we did was surround TEMP with the two shifts, we
5797 haven't improved anything, so don't use it. Otherwise,
5798 we are better off with TEMP1. */
5799 if (GET_CODE (temp1) != ASHIFTRT
5800 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5801 || XEXP (XEXP (temp1, 0), 0) != temp)
5802 return temp1;
5804 break;
5806 case TRUNCATE:
5807 /* We can't handle truncation to a partial integer mode here
5808 because we don't know the real bitsize of the partial
5809 integer mode. */
5810 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5811 break;
5813 if (HWI_COMPUTABLE_MODE_P (mode))
5814 SUBST (XEXP (x, 0),
5815 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5816 GET_MODE_MASK (mode), 0));
5818 /* We can truncate a constant value and return it. */
5819 if (CONST_INT_P (XEXP (x, 0)))
5820 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5822 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5823 whose value is a comparison can be replaced with a subreg if
5824 STORE_FLAG_VALUE permits. */
5825 if (HWI_COMPUTABLE_MODE_P (mode)
5826 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5827 && (temp = get_last_value (XEXP (x, 0)))
5828 && COMPARISON_P (temp))
5829 return gen_lowpart (mode, XEXP (x, 0));
5830 break;
5832 case CONST:
5833 /* (const (const X)) can become (const X). Do it this way rather than
5834 returning the inner CONST since CONST can be shared with a
5835 REG_EQUAL note. */
5836 if (GET_CODE (XEXP (x, 0)) == CONST)
5837 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5838 break;
5840 case LO_SUM:
5841 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5842 can add in an offset. find_split_point will split this address up
5843 again if it doesn't match. */
5844 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5845 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5846 return XEXP (x, 1);
5847 break;
5849 case PLUS:
5850 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5851 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5852 bit-field and can be replaced by either a sign_extend or a
5853 sign_extract. The `and' may be a zero_extend and the two
5854 <c>, -<c> constants may be reversed. */
5855 if (GET_CODE (XEXP (x, 0)) == XOR
5856 && CONST_INT_P (XEXP (x, 1))
5857 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5858 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5859 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5860 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5861 && HWI_COMPUTABLE_MODE_P (mode)
5862 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5863 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5864 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5865 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5866 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5867 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5868 == (unsigned int) i + 1))))
5869 return simplify_shift_const
5870 (NULL_RTX, ASHIFTRT, mode,
5871 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5872 XEXP (XEXP (XEXP (x, 0), 0), 0),
5873 GET_MODE_PRECISION (mode) - (i + 1)),
5874 GET_MODE_PRECISION (mode) - (i + 1));
5876 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5877 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5878 the bitsize of the mode - 1. This allows simplification of
5879 "a = (b & 8) == 0;" */
5880 if (XEXP (x, 1) == constm1_rtx
5881 && !REG_P (XEXP (x, 0))
5882 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5883 && REG_P (SUBREG_REG (XEXP (x, 0))))
5884 && nonzero_bits (XEXP (x, 0), mode) == 1)
5885 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5886 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5887 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5888 GET_MODE_PRECISION (mode) - 1),
5889 GET_MODE_PRECISION (mode) - 1);
5891 /* If we are adding two things that have no bits in common, convert
5892 the addition into an IOR. This will often be further simplified,
5893 for example in cases like ((a & 1) + (a & 2)), which can
5894 become a & 3. */
5896 if (HWI_COMPUTABLE_MODE_P (mode)
5897 && (nonzero_bits (XEXP (x, 0), mode)
5898 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5900 /* Try to simplify the expression further. */
5901 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5902 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5904 /* If we could, great. If not, do not go ahead with the IOR
5905 replacement, since PLUS appears in many special purpose
5906 address arithmetic instructions. */
5907 if (GET_CODE (temp) != CLOBBER
5908 && (GET_CODE (temp) != IOR
5909 || ((XEXP (temp, 0) != XEXP (x, 0)
5910 || XEXP (temp, 1) != XEXP (x, 1))
5911 && (XEXP (temp, 0) != XEXP (x, 1)
5912 || XEXP (temp, 1) != XEXP (x, 0)))))
5913 return temp;
5915 break;
5917 case MINUS:
5918 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5919 (and <foo> (const_int pow2-1)) */
5920 if (GET_CODE (XEXP (x, 1)) == AND
5921 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5922 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5923 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5924 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5925 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5926 break;
5928 case MULT:
5929 /* If we have (mult (plus A B) C), apply the distributive law and then
5930 the inverse distributive law to see if things simplify. This
5931 occurs mostly in addresses, often when unrolling loops. */
5933 if (GET_CODE (XEXP (x, 0)) == PLUS)
5935 rtx result = distribute_and_simplify_rtx (x, 0);
5936 if (result)
5937 return result;
5940 /* Try simplify a*(b/c) as (a*b)/c. */
5941 if (FLOAT_MODE_P (mode) && flag_associative_math
5942 && GET_CODE (XEXP (x, 0)) == DIV)
5944 rtx tem = simplify_binary_operation (MULT, mode,
5945 XEXP (XEXP (x, 0), 0),
5946 XEXP (x, 1));
5947 if (tem)
5948 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5950 break;
5952 case UDIV:
5953 /* If this is a divide by a power of two, treat it as a shift if
5954 its first operand is a shift. */
5955 if (CONST_INT_P (XEXP (x, 1))
5956 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5957 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5958 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5959 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5960 || GET_CODE (XEXP (x, 0)) == ROTATE
5961 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5962 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5963 break;
5965 case EQ: case NE:
5966 case GT: case GTU: case GE: case GEU:
5967 case LT: case LTU: case LE: case LEU:
5968 case UNEQ: case LTGT:
5969 case UNGT: case UNGE:
5970 case UNLT: case UNLE:
5971 case UNORDERED: case ORDERED:
5972 /* If the first operand is a condition code, we can't do anything
5973 with it. */
5974 if (GET_CODE (XEXP (x, 0)) == COMPARE
5975 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5976 && ! CC0_P (XEXP (x, 0))))
5978 rtx op0 = XEXP (x, 0);
5979 rtx op1 = XEXP (x, 1);
5980 enum rtx_code new_code;
5982 if (GET_CODE (op0) == COMPARE)
5983 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5985 /* Simplify our comparison, if possible. */
5986 new_code = simplify_comparison (code, &op0, &op1);
5988 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5989 if only the low-order bit is possibly nonzero in X (such as when
5990 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5991 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5992 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5993 (plus X 1).
5995 Remove any ZERO_EXTRACT we made when thinking this was a
5996 comparison. It may now be simpler to use, e.g., an AND. If a
5997 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5998 the call to make_compound_operation in the SET case.
6000 Don't apply these optimizations if the caller would
6001 prefer a comparison rather than a value.
6002 E.g., for the condition in an IF_THEN_ELSE most targets need
6003 an explicit comparison. */
6005 if (in_cond)
6008 else if (STORE_FLAG_VALUE == 1
6009 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6010 && op1 == const0_rtx
6011 && mode == GET_MODE (op0)
6012 && nonzero_bits (op0, mode) == 1)
6013 return gen_lowpart (mode,
6014 expand_compound_operation (op0));
6016 else if (STORE_FLAG_VALUE == 1
6017 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6018 && op1 == const0_rtx
6019 && mode == GET_MODE (op0)
6020 && (num_sign_bit_copies (op0, mode)
6021 == GET_MODE_PRECISION (mode)))
6023 op0 = expand_compound_operation (op0);
6024 return simplify_gen_unary (NEG, mode,
6025 gen_lowpart (mode, op0),
6026 mode);
6029 else if (STORE_FLAG_VALUE == 1
6030 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6031 && op1 == const0_rtx
6032 && mode == GET_MODE (op0)
6033 && nonzero_bits (op0, mode) == 1)
6035 op0 = expand_compound_operation (op0);
6036 return simplify_gen_binary (XOR, mode,
6037 gen_lowpart (mode, op0),
6038 const1_rtx);
6041 else if (STORE_FLAG_VALUE == 1
6042 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6043 && op1 == const0_rtx
6044 && mode == GET_MODE (op0)
6045 && (num_sign_bit_copies (op0, mode)
6046 == GET_MODE_PRECISION (mode)))
6048 op0 = expand_compound_operation (op0);
6049 return plus_constant (mode, gen_lowpart (mode, op0), 1);
6052 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6053 those above. */
6054 if (in_cond)
6057 else if (STORE_FLAG_VALUE == -1
6058 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6059 && op1 == const0_rtx
6060 && mode == GET_MODE (op0)
6061 && (num_sign_bit_copies (op0, mode)
6062 == GET_MODE_PRECISION (mode)))
6063 return gen_lowpart (mode,
6064 expand_compound_operation (op0));
6066 else if (STORE_FLAG_VALUE == -1
6067 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6068 && op1 == const0_rtx
6069 && mode == GET_MODE (op0)
6070 && nonzero_bits (op0, mode) == 1)
6072 op0 = expand_compound_operation (op0);
6073 return simplify_gen_unary (NEG, mode,
6074 gen_lowpart (mode, op0),
6075 mode);
6078 else if (STORE_FLAG_VALUE == -1
6079 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6080 && op1 == const0_rtx
6081 && mode == GET_MODE (op0)
6082 && (num_sign_bit_copies (op0, mode)
6083 == GET_MODE_PRECISION (mode)))
6085 op0 = expand_compound_operation (op0);
6086 return simplify_gen_unary (NOT, mode,
6087 gen_lowpart (mode, op0),
6088 mode);
6091 /* If X is 0/1, (eq X 0) is X-1. */
6092 else if (STORE_FLAG_VALUE == -1
6093 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6094 && op1 == const0_rtx
6095 && mode == GET_MODE (op0)
6096 && nonzero_bits (op0, mode) == 1)
6098 op0 = expand_compound_operation (op0);
6099 return plus_constant (mode, gen_lowpart (mode, op0), -1);
6102 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6103 one bit that might be nonzero, we can convert (ne x 0) to
6104 (ashift x c) where C puts the bit in the sign bit. Remove any
6105 AND with STORE_FLAG_VALUE when we are done, since we are only
6106 going to test the sign bit. */
6107 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6108 && HWI_COMPUTABLE_MODE_P (mode)
6109 && val_signbit_p (mode, STORE_FLAG_VALUE)
6110 && op1 == const0_rtx
6111 && mode == GET_MODE (op0)
6112 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
6114 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6115 expand_compound_operation (op0),
6116 GET_MODE_PRECISION (mode) - 1 - i);
6117 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6118 return XEXP (x, 0);
6119 else
6120 return x;
6123 /* If the code changed, return a whole new comparison.
6124 We also need to avoid using SUBST in cases where
6125 simplify_comparison has widened a comparison with a CONST_INT,
6126 since in that case the wider CONST_INT may fail the sanity
6127 checks in do_SUBST. */
6128 if (new_code != code
6129 || (CONST_INT_P (op1)
6130 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6131 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6132 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6134 /* Otherwise, keep this operation, but maybe change its operands.
6135 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6136 SUBST (XEXP (x, 0), op0);
6137 SUBST (XEXP (x, 1), op1);
6139 break;
6141 case IF_THEN_ELSE:
6142 return simplify_if_then_else (x);
6144 case ZERO_EXTRACT:
6145 case SIGN_EXTRACT:
6146 case ZERO_EXTEND:
6147 case SIGN_EXTEND:
6148 /* If we are processing SET_DEST, we are done. */
6149 if (in_dest)
6150 return x;
6152 return expand_compound_operation (x);
6154 case SET:
6155 return simplify_set (x);
6157 case AND:
6158 case IOR:
6159 return simplify_logical (x);
6161 case ASHIFT:
6162 case LSHIFTRT:
6163 case ASHIFTRT:
6164 case ROTATE:
6165 case ROTATERT:
6166 /* If this is a shift by a constant amount, simplify it. */
6167 if (CONST_INT_P (XEXP (x, 1)))
6168 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6169 INTVAL (XEXP (x, 1)));
6171 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6172 SUBST (XEXP (x, 1),
6173 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6174 ((unsigned HOST_WIDE_INT) 1
6175 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6176 - 1,
6177 0));
6178 break;
6180 default:
6181 break;
6184 return x;
6187 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6189 static rtx
6190 simplify_if_then_else (rtx x)
6192 machine_mode mode = GET_MODE (x);
6193 rtx cond = XEXP (x, 0);
6194 rtx true_rtx = XEXP (x, 1);
6195 rtx false_rtx = XEXP (x, 2);
6196 enum rtx_code true_code = GET_CODE (cond);
6197 int comparison_p = COMPARISON_P (cond);
6198 rtx temp;
6199 int i;
6200 enum rtx_code false_code;
6201 rtx reversed;
6203 /* Simplify storing of the truth value. */
6204 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6205 return simplify_gen_relational (true_code, mode, VOIDmode,
6206 XEXP (cond, 0), XEXP (cond, 1));
6208 /* Also when the truth value has to be reversed. */
6209 if (comparison_p
6210 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6211 && (reversed = reversed_comparison (cond, mode)))
6212 return reversed;
6214 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6215 in it is being compared against certain values. Get the true and false
6216 comparisons and see if that says anything about the value of each arm. */
6218 if (comparison_p
6219 && ((false_code = reversed_comparison_code (cond, NULL))
6220 != UNKNOWN)
6221 && REG_P (XEXP (cond, 0)))
6223 HOST_WIDE_INT nzb;
6224 rtx from = XEXP (cond, 0);
6225 rtx true_val = XEXP (cond, 1);
6226 rtx false_val = true_val;
6227 int swapped = 0;
6229 /* If FALSE_CODE is EQ, swap the codes and arms. */
6231 if (false_code == EQ)
6233 swapped = 1, true_code = EQ, false_code = NE;
6234 std::swap (true_rtx, false_rtx);
6237 /* If we are comparing against zero and the expression being tested has
6238 only a single bit that might be nonzero, that is its value when it is
6239 not equal to zero. Similarly if it is known to be -1 or 0. */
6241 if (true_code == EQ && true_val == const0_rtx
6242 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
6244 false_code = EQ;
6245 false_val = gen_int_mode (nzb, GET_MODE (from));
6247 else if (true_code == EQ && true_val == const0_rtx
6248 && (num_sign_bit_copies (from, GET_MODE (from))
6249 == GET_MODE_PRECISION (GET_MODE (from))))
6251 false_code = EQ;
6252 false_val = constm1_rtx;
6255 /* Now simplify an arm if we know the value of the register in the
6256 branch and it is used in the arm. Be careful due to the potential
6257 of locally-shared RTL. */
6259 if (reg_mentioned_p (from, true_rtx))
6260 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6261 from, true_val),
6262 pc_rtx, pc_rtx, 0, 0, 0);
6263 if (reg_mentioned_p (from, false_rtx))
6264 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6265 from, false_val),
6266 pc_rtx, pc_rtx, 0, 0, 0);
6268 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6269 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6271 true_rtx = XEXP (x, 1);
6272 false_rtx = XEXP (x, 2);
6273 true_code = GET_CODE (cond);
6276 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6277 reversed, do so to avoid needing two sets of patterns for
6278 subtract-and-branch insns. Similarly if we have a constant in the true
6279 arm, the false arm is the same as the first operand of the comparison, or
6280 the false arm is more complicated than the true arm. */
6282 if (comparison_p
6283 && reversed_comparison_code (cond, NULL) != UNKNOWN
6284 && (true_rtx == pc_rtx
6285 || (CONSTANT_P (true_rtx)
6286 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6287 || true_rtx == const0_rtx
6288 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6289 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6290 && !OBJECT_P (false_rtx))
6291 || reg_mentioned_p (true_rtx, false_rtx)
6292 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6294 true_code = reversed_comparison_code (cond, NULL);
6295 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6296 SUBST (XEXP (x, 1), false_rtx);
6297 SUBST (XEXP (x, 2), true_rtx);
6299 std::swap (true_rtx, false_rtx);
6300 cond = XEXP (x, 0);
6302 /* It is possible that the conditional has been simplified out. */
6303 true_code = GET_CODE (cond);
6304 comparison_p = COMPARISON_P (cond);
6307 /* If the two arms are identical, we don't need the comparison. */
6309 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6310 return true_rtx;
6312 /* Convert a == b ? b : a to "a". */
6313 if (true_code == EQ && ! side_effects_p (cond)
6314 && !HONOR_NANS (mode)
6315 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6316 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6317 return false_rtx;
6318 else if (true_code == NE && ! side_effects_p (cond)
6319 && !HONOR_NANS (mode)
6320 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6321 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6322 return true_rtx;
6324 /* Look for cases where we have (abs x) or (neg (abs X)). */
6326 if (GET_MODE_CLASS (mode) == MODE_INT
6327 && comparison_p
6328 && XEXP (cond, 1) == const0_rtx
6329 && GET_CODE (false_rtx) == NEG
6330 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6331 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6332 && ! side_effects_p (true_rtx))
6333 switch (true_code)
6335 case GT:
6336 case GE:
6337 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6338 case LT:
6339 case LE:
6340 return
6341 simplify_gen_unary (NEG, mode,
6342 simplify_gen_unary (ABS, mode, true_rtx, mode),
6343 mode);
6344 default:
6345 break;
6348 /* Look for MIN or MAX. */
6350 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6351 && comparison_p
6352 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6353 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6354 && ! side_effects_p (cond))
6355 switch (true_code)
6357 case GE:
6358 case GT:
6359 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6360 case LE:
6361 case LT:
6362 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6363 case GEU:
6364 case GTU:
6365 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6366 case LEU:
6367 case LTU:
6368 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6369 default:
6370 break;
6373 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6374 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6375 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6376 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6377 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6378 neither 1 or -1, but it isn't worth checking for. */
6380 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6381 && comparison_p
6382 && GET_MODE_CLASS (mode) == MODE_INT
6383 && ! side_effects_p (x))
6385 rtx t = make_compound_operation (true_rtx, SET);
6386 rtx f = make_compound_operation (false_rtx, SET);
6387 rtx cond_op0 = XEXP (cond, 0);
6388 rtx cond_op1 = XEXP (cond, 1);
6389 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6390 machine_mode m = mode;
6391 rtx z = 0, c1 = NULL_RTX;
6393 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6394 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6395 || GET_CODE (t) == ASHIFT
6396 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6397 && rtx_equal_p (XEXP (t, 0), f))
6398 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6400 /* If an identity-zero op is commutative, check whether there
6401 would be a match if we swapped the operands. */
6402 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6403 || GET_CODE (t) == XOR)
6404 && rtx_equal_p (XEXP (t, 1), f))
6405 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6406 else if (GET_CODE (t) == SIGN_EXTEND
6407 && (GET_CODE (XEXP (t, 0)) == PLUS
6408 || GET_CODE (XEXP (t, 0)) == MINUS
6409 || GET_CODE (XEXP (t, 0)) == IOR
6410 || GET_CODE (XEXP (t, 0)) == XOR
6411 || GET_CODE (XEXP (t, 0)) == ASHIFT
6412 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6413 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6414 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6415 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6416 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6417 && (num_sign_bit_copies (f, GET_MODE (f))
6418 > (unsigned int)
6419 (GET_MODE_PRECISION (mode)
6420 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6422 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6423 extend_op = SIGN_EXTEND;
6424 m = GET_MODE (XEXP (t, 0));
6426 else if (GET_CODE (t) == SIGN_EXTEND
6427 && (GET_CODE (XEXP (t, 0)) == PLUS
6428 || GET_CODE (XEXP (t, 0)) == IOR
6429 || GET_CODE (XEXP (t, 0)) == XOR)
6430 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6431 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6432 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6433 && (num_sign_bit_copies (f, GET_MODE (f))
6434 > (unsigned int)
6435 (GET_MODE_PRECISION (mode)
6436 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6438 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6439 extend_op = SIGN_EXTEND;
6440 m = GET_MODE (XEXP (t, 0));
6442 else if (GET_CODE (t) == ZERO_EXTEND
6443 && (GET_CODE (XEXP (t, 0)) == PLUS
6444 || GET_CODE (XEXP (t, 0)) == MINUS
6445 || GET_CODE (XEXP (t, 0)) == IOR
6446 || GET_CODE (XEXP (t, 0)) == XOR
6447 || GET_CODE (XEXP (t, 0)) == ASHIFT
6448 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6449 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6450 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6451 && HWI_COMPUTABLE_MODE_P (mode)
6452 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6453 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6454 && ((nonzero_bits (f, GET_MODE (f))
6455 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6456 == 0))
6458 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6459 extend_op = ZERO_EXTEND;
6460 m = GET_MODE (XEXP (t, 0));
6462 else if (GET_CODE (t) == ZERO_EXTEND
6463 && (GET_CODE (XEXP (t, 0)) == PLUS
6464 || GET_CODE (XEXP (t, 0)) == IOR
6465 || GET_CODE (XEXP (t, 0)) == XOR)
6466 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6467 && HWI_COMPUTABLE_MODE_P (mode)
6468 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6469 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6470 && ((nonzero_bits (f, GET_MODE (f))
6471 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6472 == 0))
6474 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6475 extend_op = ZERO_EXTEND;
6476 m = GET_MODE (XEXP (t, 0));
6479 if (z)
6481 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6482 cond_op0, cond_op1),
6483 pc_rtx, pc_rtx, 0, 0, 0);
6484 temp = simplify_gen_binary (MULT, m, temp,
6485 simplify_gen_binary (MULT, m, c1,
6486 const_true_rtx));
6487 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6488 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6490 if (extend_op != UNKNOWN)
6491 temp = simplify_gen_unary (extend_op, mode, temp, m);
6493 return temp;
6497 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6498 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6499 negation of a single bit, we can convert this operation to a shift. We
6500 can actually do this more generally, but it doesn't seem worth it. */
6502 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6503 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6504 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6505 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6506 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6507 == GET_MODE_PRECISION (mode))
6508 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6509 return
6510 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6511 gen_lowpart (mode, XEXP (cond, 0)), i);
6513 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6514 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6515 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6516 && GET_MODE (XEXP (cond, 0)) == mode
6517 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6518 == nonzero_bits (XEXP (cond, 0), mode)
6519 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6520 return XEXP (cond, 0);
6522 return x;
6525 /* Simplify X, a SET expression. Return the new expression. */
6527 static rtx
6528 simplify_set (rtx x)
6530 rtx src = SET_SRC (x);
6531 rtx dest = SET_DEST (x);
6532 machine_mode mode
6533 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6534 rtx_insn *other_insn;
6535 rtx *cc_use;
6537 /* (set (pc) (return)) gets written as (return). */
6538 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6539 return src;
6541 /* Now that we know for sure which bits of SRC we are using, see if we can
6542 simplify the expression for the object knowing that we only need the
6543 low-order bits. */
6545 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6547 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6548 SUBST (SET_SRC (x), src);
6551 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6552 the comparison result and try to simplify it unless we already have used
6553 undobuf.other_insn. */
6554 if ((GET_MODE_CLASS (mode) == MODE_CC
6555 || GET_CODE (src) == COMPARE
6556 || CC0_P (dest))
6557 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6558 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6559 && COMPARISON_P (*cc_use)
6560 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6562 enum rtx_code old_code = GET_CODE (*cc_use);
6563 enum rtx_code new_code;
6564 rtx op0, op1, tmp;
6565 int other_changed = 0;
6566 rtx inner_compare = NULL_RTX;
6567 machine_mode compare_mode = GET_MODE (dest);
6569 if (GET_CODE (src) == COMPARE)
6571 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6572 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6574 inner_compare = op0;
6575 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6578 else
6579 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6581 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6582 op0, op1);
6583 if (!tmp)
6584 new_code = old_code;
6585 else if (!CONSTANT_P (tmp))
6587 new_code = GET_CODE (tmp);
6588 op0 = XEXP (tmp, 0);
6589 op1 = XEXP (tmp, 1);
6591 else
6593 rtx pat = PATTERN (other_insn);
6594 undobuf.other_insn = other_insn;
6595 SUBST (*cc_use, tmp);
6597 /* Attempt to simplify CC user. */
6598 if (GET_CODE (pat) == SET)
6600 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6601 if (new_rtx != NULL_RTX)
6602 SUBST (SET_SRC (pat), new_rtx);
6605 /* Convert X into a no-op move. */
6606 SUBST (SET_DEST (x), pc_rtx);
6607 SUBST (SET_SRC (x), pc_rtx);
6608 return x;
6611 /* Simplify our comparison, if possible. */
6612 new_code = simplify_comparison (new_code, &op0, &op1);
6614 #ifdef SELECT_CC_MODE
6615 /* If this machine has CC modes other than CCmode, check to see if we
6616 need to use a different CC mode here. */
6617 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6618 compare_mode = GET_MODE (op0);
6619 else if (inner_compare
6620 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6621 && new_code == old_code
6622 && op0 == XEXP (inner_compare, 0)
6623 && op1 == XEXP (inner_compare, 1))
6624 compare_mode = GET_MODE (inner_compare);
6625 else
6626 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6628 /* If the mode changed, we have to change SET_DEST, the mode in the
6629 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6630 a hard register, just build new versions with the proper mode. If it
6631 is a pseudo, we lose unless it is only time we set the pseudo, in
6632 which case we can safely change its mode. */
6633 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6635 if (can_change_dest_mode (dest, 0, compare_mode))
6637 unsigned int regno = REGNO (dest);
6638 rtx new_dest;
6640 if (regno < FIRST_PSEUDO_REGISTER)
6641 new_dest = gen_rtx_REG (compare_mode, regno);
6642 else
6644 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6645 new_dest = regno_reg_rtx[regno];
6648 SUBST (SET_DEST (x), new_dest);
6649 SUBST (XEXP (*cc_use, 0), new_dest);
6650 other_changed = 1;
6652 dest = new_dest;
6655 #endif /* SELECT_CC_MODE */
6657 /* If the code changed, we have to build a new comparison in
6658 undobuf.other_insn. */
6659 if (new_code != old_code)
6661 int other_changed_previously = other_changed;
6662 unsigned HOST_WIDE_INT mask;
6663 rtx old_cc_use = *cc_use;
6665 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6666 dest, const0_rtx));
6667 other_changed = 1;
6669 /* If the only change we made was to change an EQ into an NE or
6670 vice versa, OP0 has only one bit that might be nonzero, and OP1
6671 is zero, check if changing the user of the condition code will
6672 produce a valid insn. If it won't, we can keep the original code
6673 in that insn by surrounding our operation with an XOR. */
6675 if (((old_code == NE && new_code == EQ)
6676 || (old_code == EQ && new_code == NE))
6677 && ! other_changed_previously && op1 == const0_rtx
6678 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6679 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6681 rtx pat = PATTERN (other_insn), note = 0;
6683 if ((recog_for_combine (&pat, other_insn, &note) < 0
6684 && ! check_asm_operands (pat)))
6686 *cc_use = old_cc_use;
6687 other_changed = 0;
6689 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6690 gen_int_mode (mask,
6691 GET_MODE (op0)));
6696 if (other_changed)
6697 undobuf.other_insn = other_insn;
6699 /* Don't generate a compare of a CC with 0, just use that CC. */
6700 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6702 SUBST (SET_SRC (x), op0);
6703 src = SET_SRC (x);
6705 /* Otherwise, if we didn't previously have the same COMPARE we
6706 want, create it from scratch. */
6707 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6708 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6710 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6711 src = SET_SRC (x);
6714 else
6716 /* Get SET_SRC in a form where we have placed back any
6717 compound expressions. Then do the checks below. */
6718 src = make_compound_operation (src, SET);
6719 SUBST (SET_SRC (x), src);
6722 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6723 and X being a REG or (subreg (reg)), we may be able to convert this to
6724 (set (subreg:m2 x) (op)).
6726 We can always do this if M1 is narrower than M2 because that means that
6727 we only care about the low bits of the result.
6729 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6730 perform a narrower operation than requested since the high-order bits will
6731 be undefined. On machine where it is defined, this transformation is safe
6732 as long as M1 and M2 have the same number of words. */
6734 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6735 && !OBJECT_P (SUBREG_REG (src))
6736 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6737 / UNITS_PER_WORD)
6738 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6739 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6740 #ifndef WORD_REGISTER_OPERATIONS
6741 && (GET_MODE_SIZE (GET_MODE (src))
6742 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6743 #endif
6744 #ifdef CANNOT_CHANGE_MODE_CLASS
6745 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6746 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6747 GET_MODE (SUBREG_REG (src)),
6748 GET_MODE (src)))
6749 #endif
6750 && (REG_P (dest)
6751 || (GET_CODE (dest) == SUBREG
6752 && REG_P (SUBREG_REG (dest)))))
6754 SUBST (SET_DEST (x),
6755 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6756 dest));
6757 SUBST (SET_SRC (x), SUBREG_REG (src));
6759 src = SET_SRC (x), dest = SET_DEST (x);
6762 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6763 in SRC. */
6764 if (dest == cc0_rtx
6765 && GET_CODE (src) == SUBREG
6766 && subreg_lowpart_p (src)
6767 && (GET_MODE_PRECISION (GET_MODE (src))
6768 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6770 rtx inner = SUBREG_REG (src);
6771 machine_mode inner_mode = GET_MODE (inner);
6773 /* Here we make sure that we don't have a sign bit on. */
6774 if (val_signbit_known_clear_p (GET_MODE (src),
6775 nonzero_bits (inner, inner_mode)))
6777 SUBST (SET_SRC (x), inner);
6778 src = SET_SRC (x);
6782 #ifdef LOAD_EXTEND_OP
6783 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6784 would require a paradoxical subreg. Replace the subreg with a
6785 zero_extend to avoid the reload that would otherwise be required. */
6787 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6788 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6789 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6790 && SUBREG_BYTE (src) == 0
6791 && paradoxical_subreg_p (src)
6792 && MEM_P (SUBREG_REG (src)))
6794 SUBST (SET_SRC (x),
6795 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6796 GET_MODE (src), SUBREG_REG (src)));
6798 src = SET_SRC (x);
6800 #endif
6802 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6803 are comparing an item known to be 0 or -1 against 0, use a logical
6804 operation instead. Check for one of the arms being an IOR of the other
6805 arm with some value. We compute three terms to be IOR'ed together. In
6806 practice, at most two will be nonzero. Then we do the IOR's. */
6808 if (GET_CODE (dest) != PC
6809 && GET_CODE (src) == IF_THEN_ELSE
6810 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6811 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6812 && XEXP (XEXP (src, 0), 1) == const0_rtx
6813 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6814 && (!HAVE_conditional_move
6815 || ! can_conditionally_move_p (GET_MODE (src)))
6816 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6817 GET_MODE (XEXP (XEXP (src, 0), 0)))
6818 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6819 && ! side_effects_p (src))
6821 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6822 ? XEXP (src, 1) : XEXP (src, 2));
6823 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6824 ? XEXP (src, 2) : XEXP (src, 1));
6825 rtx term1 = const0_rtx, term2, term3;
6827 if (GET_CODE (true_rtx) == IOR
6828 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6829 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6830 else if (GET_CODE (true_rtx) == IOR
6831 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6832 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6833 else if (GET_CODE (false_rtx) == IOR
6834 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6835 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6836 else if (GET_CODE (false_rtx) == IOR
6837 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6838 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6840 term2 = simplify_gen_binary (AND, GET_MODE (src),
6841 XEXP (XEXP (src, 0), 0), true_rtx);
6842 term3 = simplify_gen_binary (AND, GET_MODE (src),
6843 simplify_gen_unary (NOT, GET_MODE (src),
6844 XEXP (XEXP (src, 0), 0),
6845 GET_MODE (src)),
6846 false_rtx);
6848 SUBST (SET_SRC (x),
6849 simplify_gen_binary (IOR, GET_MODE (src),
6850 simplify_gen_binary (IOR, GET_MODE (src),
6851 term1, term2),
6852 term3));
6854 src = SET_SRC (x);
6857 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6858 whole thing fail. */
6859 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6860 return src;
6861 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6862 return dest;
6863 else
6864 /* Convert this into a field assignment operation, if possible. */
6865 return make_field_assignment (x);
6868 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6869 result. */
6871 static rtx
6872 simplify_logical (rtx x)
6874 machine_mode mode = GET_MODE (x);
6875 rtx op0 = XEXP (x, 0);
6876 rtx op1 = XEXP (x, 1);
6878 switch (GET_CODE (x))
6880 case AND:
6881 /* We can call simplify_and_const_int only if we don't lose
6882 any (sign) bits when converting INTVAL (op1) to
6883 "unsigned HOST_WIDE_INT". */
6884 if (CONST_INT_P (op1)
6885 && (HWI_COMPUTABLE_MODE_P (mode)
6886 || INTVAL (op1) > 0))
6888 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6889 if (GET_CODE (x) != AND)
6890 return x;
6892 op0 = XEXP (x, 0);
6893 op1 = XEXP (x, 1);
6896 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6897 apply the distributive law and then the inverse distributive
6898 law to see if things simplify. */
6899 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6901 rtx result = distribute_and_simplify_rtx (x, 0);
6902 if (result)
6903 return result;
6905 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6907 rtx result = distribute_and_simplify_rtx (x, 1);
6908 if (result)
6909 return result;
6911 break;
6913 case IOR:
6914 /* If we have (ior (and A B) C), apply the distributive law and then
6915 the inverse distributive law to see if things simplify. */
6917 if (GET_CODE (op0) == AND)
6919 rtx result = distribute_and_simplify_rtx (x, 0);
6920 if (result)
6921 return result;
6924 if (GET_CODE (op1) == AND)
6926 rtx result = distribute_and_simplify_rtx (x, 1);
6927 if (result)
6928 return result;
6930 break;
6932 default:
6933 gcc_unreachable ();
6936 return x;
6939 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6940 operations" because they can be replaced with two more basic operations.
6941 ZERO_EXTEND is also considered "compound" because it can be replaced with
6942 an AND operation, which is simpler, though only one operation.
6944 The function expand_compound_operation is called with an rtx expression
6945 and will convert it to the appropriate shifts and AND operations,
6946 simplifying at each stage.
6948 The function make_compound_operation is called to convert an expression
6949 consisting of shifts and ANDs into the equivalent compound expression.
6950 It is the inverse of this function, loosely speaking. */
6952 static rtx
6953 expand_compound_operation (rtx x)
6955 unsigned HOST_WIDE_INT pos = 0, len;
6956 int unsignedp = 0;
6957 unsigned int modewidth;
6958 rtx tem;
6960 switch (GET_CODE (x))
6962 case ZERO_EXTEND:
6963 unsignedp = 1;
6964 case SIGN_EXTEND:
6965 /* We can't necessarily use a const_int for a multiword mode;
6966 it depends on implicitly extending the value.
6967 Since we don't know the right way to extend it,
6968 we can't tell whether the implicit way is right.
6970 Even for a mode that is no wider than a const_int,
6971 we can't win, because we need to sign extend one of its bits through
6972 the rest of it, and we don't know which bit. */
6973 if (CONST_INT_P (XEXP (x, 0)))
6974 return x;
6976 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6977 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6978 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6979 reloaded. If not for that, MEM's would very rarely be safe.
6981 Reject MODEs bigger than a word, because we might not be able
6982 to reference a two-register group starting with an arbitrary register
6983 (and currently gen_lowpart might crash for a SUBREG). */
6985 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6986 return x;
6988 /* Reject MODEs that aren't scalar integers because turning vector
6989 or complex modes into shifts causes problems. */
6991 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6992 return x;
6994 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6995 /* If the inner object has VOIDmode (the only way this can happen
6996 is if it is an ASM_OPERANDS), we can't do anything since we don't
6997 know how much masking to do. */
6998 if (len == 0)
6999 return x;
7001 break;
7003 case ZERO_EXTRACT:
7004 unsignedp = 1;
7006 /* ... fall through ... */
7008 case SIGN_EXTRACT:
7009 /* If the operand is a CLOBBER, just return it. */
7010 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7011 return XEXP (x, 0);
7013 if (!CONST_INT_P (XEXP (x, 1))
7014 || !CONST_INT_P (XEXP (x, 2))
7015 || GET_MODE (XEXP (x, 0)) == VOIDmode)
7016 return x;
7018 /* Reject MODEs that aren't scalar integers because turning vector
7019 or complex modes into shifts causes problems. */
7021 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7022 return x;
7024 len = INTVAL (XEXP (x, 1));
7025 pos = INTVAL (XEXP (x, 2));
7027 /* This should stay within the object being extracted, fail otherwise. */
7028 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
7029 return x;
7031 if (BITS_BIG_ENDIAN)
7032 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
7034 break;
7036 default:
7037 return x;
7039 /* Convert sign extension to zero extension, if we know that the high
7040 bit is not set, as this is easier to optimize. It will be converted
7041 back to cheaper alternative in make_extraction. */
7042 if (GET_CODE (x) == SIGN_EXTEND
7043 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7044 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7045 & ~(((unsigned HOST_WIDE_INT)
7046 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
7047 >> 1))
7048 == 0)))
7050 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
7051 rtx temp2 = expand_compound_operation (temp);
7053 /* Make sure this is a profitable operation. */
7054 if (set_src_cost (x, optimize_this_for_speed_p)
7055 > set_src_cost (temp2, optimize_this_for_speed_p))
7056 return temp2;
7057 else if (set_src_cost (x, optimize_this_for_speed_p)
7058 > set_src_cost (temp, optimize_this_for_speed_p))
7059 return temp;
7060 else
7061 return x;
7064 /* We can optimize some special cases of ZERO_EXTEND. */
7065 if (GET_CODE (x) == ZERO_EXTEND)
7067 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7068 know that the last value didn't have any inappropriate bits
7069 set. */
7070 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7071 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7072 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7073 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
7074 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7075 return XEXP (XEXP (x, 0), 0);
7077 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7078 if (GET_CODE (XEXP (x, 0)) == SUBREG
7079 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7080 && subreg_lowpart_p (XEXP (x, 0))
7081 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7082 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
7083 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7084 return SUBREG_REG (XEXP (x, 0));
7086 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7087 is a comparison and STORE_FLAG_VALUE permits. This is like
7088 the first case, but it works even when GET_MODE (x) is larger
7089 than HOST_WIDE_INT. */
7090 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7091 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7092 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7093 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7094 <= HOST_BITS_PER_WIDE_INT)
7095 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7096 return XEXP (XEXP (x, 0), 0);
7098 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7099 if (GET_CODE (XEXP (x, 0)) == SUBREG
7100 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7101 && subreg_lowpart_p (XEXP (x, 0))
7102 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7103 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7104 <= HOST_BITS_PER_WIDE_INT)
7105 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7106 return SUBREG_REG (XEXP (x, 0));
7110 /* If we reach here, we want to return a pair of shifts. The inner
7111 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7112 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7113 logical depending on the value of UNSIGNEDP.
7115 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7116 converted into an AND of a shift.
7118 We must check for the case where the left shift would have a negative
7119 count. This can happen in a case like (x >> 31) & 255 on machines
7120 that can't shift by a constant. On those machines, we would first
7121 combine the shift with the AND to produce a variable-position
7122 extraction. Then the constant of 31 would be substituted in
7123 to produce such a position. */
7125 modewidth = GET_MODE_PRECISION (GET_MODE (x));
7126 if (modewidth >= pos + len)
7128 machine_mode mode = GET_MODE (x);
7129 tem = gen_lowpart (mode, XEXP (x, 0));
7130 if (!tem || GET_CODE (tem) == CLOBBER)
7131 return x;
7132 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7133 tem, modewidth - pos - len);
7134 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7135 mode, tem, modewidth - len);
7137 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7138 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
7139 simplify_shift_const (NULL_RTX, LSHIFTRT,
7140 GET_MODE (x),
7141 XEXP (x, 0), pos),
7142 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
7143 else
7144 /* Any other cases we can't handle. */
7145 return x;
7147 /* If we couldn't do this for some reason, return the original
7148 expression. */
7149 if (GET_CODE (tem) == CLOBBER)
7150 return x;
7152 return tem;
7155 /* X is a SET which contains an assignment of one object into
7156 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7157 or certain SUBREGS). If possible, convert it into a series of
7158 logical operations.
7160 We half-heartedly support variable positions, but do not at all
7161 support variable lengths. */
7163 static const_rtx
7164 expand_field_assignment (const_rtx x)
7166 rtx inner;
7167 rtx pos; /* Always counts from low bit. */
7168 int len;
7169 rtx mask, cleared, masked;
7170 machine_mode compute_mode;
7172 /* Loop until we find something we can't simplify. */
7173 while (1)
7175 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7176 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7178 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7179 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7180 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7182 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7183 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7185 inner = XEXP (SET_DEST (x), 0);
7186 len = INTVAL (XEXP (SET_DEST (x), 1));
7187 pos = XEXP (SET_DEST (x), 2);
7189 /* A constant position should stay within the width of INNER. */
7190 if (CONST_INT_P (pos)
7191 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7192 break;
7194 if (BITS_BIG_ENDIAN)
7196 if (CONST_INT_P (pos))
7197 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7198 - INTVAL (pos));
7199 else if (GET_CODE (pos) == MINUS
7200 && CONST_INT_P (XEXP (pos, 1))
7201 && (INTVAL (XEXP (pos, 1))
7202 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7203 /* If position is ADJUST - X, new position is X. */
7204 pos = XEXP (pos, 0);
7205 else
7207 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7208 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7209 gen_int_mode (prec - len,
7210 GET_MODE (pos)),
7211 pos);
7216 /* A SUBREG between two modes that occupy the same numbers of words
7217 can be done by moving the SUBREG to the source. */
7218 else if (GET_CODE (SET_DEST (x)) == SUBREG
7219 /* We need SUBREGs to compute nonzero_bits properly. */
7220 && nonzero_sign_valid
7221 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7222 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7223 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7224 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7226 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7227 gen_lowpart
7228 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7229 SET_SRC (x)));
7230 continue;
7232 else
7233 break;
7235 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7236 inner = SUBREG_REG (inner);
7238 compute_mode = GET_MODE (inner);
7240 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7241 if (! SCALAR_INT_MODE_P (compute_mode))
7243 machine_mode imode;
7245 /* Don't do anything for vector or complex integral types. */
7246 if (! FLOAT_MODE_P (compute_mode))
7247 break;
7249 /* Try to find an integral mode to pun with. */
7250 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7251 if (imode == BLKmode)
7252 break;
7254 compute_mode = imode;
7255 inner = gen_lowpart (imode, inner);
7258 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7259 if (len >= HOST_BITS_PER_WIDE_INT)
7260 break;
7262 /* Now compute the equivalent expression. Make a copy of INNER
7263 for the SET_DEST in case it is a MEM into which we will substitute;
7264 we don't want shared RTL in that case. */
7265 mask = gen_int_mode (((unsigned HOST_WIDE_INT) 1 << len) - 1,
7266 compute_mode);
7267 cleared = simplify_gen_binary (AND, compute_mode,
7268 simplify_gen_unary (NOT, compute_mode,
7269 simplify_gen_binary (ASHIFT,
7270 compute_mode,
7271 mask, pos),
7272 compute_mode),
7273 inner);
7274 masked = simplify_gen_binary (ASHIFT, compute_mode,
7275 simplify_gen_binary (
7276 AND, compute_mode,
7277 gen_lowpart (compute_mode, SET_SRC (x)),
7278 mask),
7279 pos);
7281 x = gen_rtx_SET (copy_rtx (inner),
7282 simplify_gen_binary (IOR, compute_mode,
7283 cleared, masked));
7286 return x;
7289 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7290 it is an RTX that represents the (variable) starting position; otherwise,
7291 POS is the (constant) starting bit position. Both are counted from the LSB.
7293 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7295 IN_DEST is nonzero if this is a reference in the destination of a SET.
7296 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7297 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7298 be used.
7300 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7301 ZERO_EXTRACT should be built even for bits starting at bit 0.
7303 MODE is the desired mode of the result (if IN_DEST == 0).
7305 The result is an RTX for the extraction or NULL_RTX if the target
7306 can't handle it. */
7308 static rtx
7309 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7310 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7311 int in_dest, int in_compare)
7313 /* This mode describes the size of the storage area
7314 to fetch the overall value from. Within that, we
7315 ignore the POS lowest bits, etc. */
7316 machine_mode is_mode = GET_MODE (inner);
7317 machine_mode inner_mode;
7318 machine_mode wanted_inner_mode;
7319 machine_mode wanted_inner_reg_mode = word_mode;
7320 machine_mode pos_mode = word_mode;
7321 machine_mode extraction_mode = word_mode;
7322 machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7323 rtx new_rtx = 0;
7324 rtx orig_pos_rtx = pos_rtx;
7325 HOST_WIDE_INT orig_pos;
7327 if (pos_rtx && CONST_INT_P (pos_rtx))
7328 pos = INTVAL (pos_rtx), pos_rtx = 0;
7330 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7332 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7333 consider just the QI as the memory to extract from.
7334 The subreg adds or removes high bits; its mode is
7335 irrelevant to the meaning of this extraction,
7336 since POS and LEN count from the lsb. */
7337 if (MEM_P (SUBREG_REG (inner)))
7338 is_mode = GET_MODE (SUBREG_REG (inner));
7339 inner = SUBREG_REG (inner);
7341 else if (GET_CODE (inner) == ASHIFT
7342 && CONST_INT_P (XEXP (inner, 1))
7343 && pos_rtx == 0 && pos == 0
7344 && len > UINTVAL (XEXP (inner, 1)))
7346 /* We're extracting the least significant bits of an rtx
7347 (ashift X (const_int C)), where LEN > C. Extract the
7348 least significant (LEN - C) bits of X, giving an rtx
7349 whose mode is MODE, then shift it left C times. */
7350 new_rtx = make_extraction (mode, XEXP (inner, 0),
7351 0, 0, len - INTVAL (XEXP (inner, 1)),
7352 unsignedp, in_dest, in_compare);
7353 if (new_rtx != 0)
7354 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7356 else if (GET_CODE (inner) == TRUNCATE)
7357 inner = XEXP (inner, 0);
7359 inner_mode = GET_MODE (inner);
7361 /* See if this can be done without an extraction. We never can if the
7362 width of the field is not the same as that of some integer mode. For
7363 registers, we can only avoid the extraction if the position is at the
7364 low-order bit and this is either not in the destination or we have the
7365 appropriate STRICT_LOW_PART operation available.
7367 For MEM, we can avoid an extract if the field starts on an appropriate
7368 boundary and we can change the mode of the memory reference. */
7370 if (tmode != BLKmode
7371 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7372 && !MEM_P (inner)
7373 && (inner_mode == tmode
7374 || !REG_P (inner)
7375 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7376 || reg_truncated_to_mode (tmode, inner))
7377 && (! in_dest
7378 || (REG_P (inner)
7379 && have_insn_for (STRICT_LOW_PART, tmode))))
7380 || (MEM_P (inner) && pos_rtx == 0
7381 && (pos
7382 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7383 : BITS_PER_UNIT)) == 0
7384 /* We can't do this if we are widening INNER_MODE (it
7385 may not be aligned, for one thing). */
7386 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7387 && (inner_mode == tmode
7388 || (! mode_dependent_address_p (XEXP (inner, 0),
7389 MEM_ADDR_SPACE (inner))
7390 && ! MEM_VOLATILE_P (inner))))))
7392 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7393 field. If the original and current mode are the same, we need not
7394 adjust the offset. Otherwise, we do if bytes big endian.
7396 If INNER is not a MEM, get a piece consisting of just the field
7397 of interest (in this case POS % BITS_PER_WORD must be 0). */
7399 if (MEM_P (inner))
7401 HOST_WIDE_INT offset;
7403 /* POS counts from lsb, but make OFFSET count in memory order. */
7404 if (BYTES_BIG_ENDIAN)
7405 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7406 else
7407 offset = pos / BITS_PER_UNIT;
7409 new_rtx = adjust_address_nv (inner, tmode, offset);
7411 else if (REG_P (inner))
7413 if (tmode != inner_mode)
7415 /* We can't call gen_lowpart in a DEST since we
7416 always want a SUBREG (see below) and it would sometimes
7417 return a new hard register. */
7418 if (pos || in_dest)
7420 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7422 if (WORDS_BIG_ENDIAN
7423 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7424 final_word = ((GET_MODE_SIZE (inner_mode)
7425 - GET_MODE_SIZE (tmode))
7426 / UNITS_PER_WORD) - final_word;
7428 final_word *= UNITS_PER_WORD;
7429 if (BYTES_BIG_ENDIAN &&
7430 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7431 final_word += (GET_MODE_SIZE (inner_mode)
7432 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7434 /* Avoid creating invalid subregs, for example when
7435 simplifying (x>>32)&255. */
7436 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7437 return NULL_RTX;
7439 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7441 else
7442 new_rtx = gen_lowpart (tmode, inner);
7444 else
7445 new_rtx = inner;
7447 else
7448 new_rtx = force_to_mode (inner, tmode,
7449 len >= HOST_BITS_PER_WIDE_INT
7450 ? ~(unsigned HOST_WIDE_INT) 0
7451 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7454 /* If this extraction is going into the destination of a SET,
7455 make a STRICT_LOW_PART unless we made a MEM. */
7457 if (in_dest)
7458 return (MEM_P (new_rtx) ? new_rtx
7459 : (GET_CODE (new_rtx) != SUBREG
7460 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7461 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7463 if (mode == tmode)
7464 return new_rtx;
7466 if (CONST_SCALAR_INT_P (new_rtx))
7467 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7468 mode, new_rtx, tmode);
7470 /* If we know that no extraneous bits are set, and that the high
7471 bit is not set, convert the extraction to the cheaper of
7472 sign and zero extension, that are equivalent in these cases. */
7473 if (flag_expensive_optimizations
7474 && (HWI_COMPUTABLE_MODE_P (tmode)
7475 && ((nonzero_bits (new_rtx, tmode)
7476 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7477 == 0)))
7479 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7480 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7482 /* Prefer ZERO_EXTENSION, since it gives more information to
7483 backends. */
7484 if (set_src_cost (temp, optimize_this_for_speed_p)
7485 <= set_src_cost (temp1, optimize_this_for_speed_p))
7486 return temp;
7487 return temp1;
7490 /* Otherwise, sign- or zero-extend unless we already are in the
7491 proper mode. */
7493 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7494 mode, new_rtx));
7497 /* Unless this is a COMPARE or we have a funny memory reference,
7498 don't do anything with zero-extending field extracts starting at
7499 the low-order bit since they are simple AND operations. */
7500 if (pos_rtx == 0 && pos == 0 && ! in_dest
7501 && ! in_compare && unsignedp)
7502 return 0;
7504 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7505 if the position is not a constant and the length is not 1. In all
7506 other cases, we would only be going outside our object in cases when
7507 an original shift would have been undefined. */
7508 if (MEM_P (inner)
7509 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7510 || (pos_rtx != 0 && len != 1)))
7511 return 0;
7513 enum extraction_pattern pattern = (in_dest ? EP_insv
7514 : unsignedp ? EP_extzv : EP_extv);
7516 /* If INNER is not from memory, we want it to have the mode of a register
7517 extraction pattern's structure operand, or word_mode if there is no
7518 such pattern. The same applies to extraction_mode and pos_mode
7519 and their respective operands.
7521 For memory, assume that the desired extraction_mode and pos_mode
7522 are the same as for a register operation, since at present we don't
7523 have named patterns for aligned memory structures. */
7524 struct extraction_insn insn;
7525 if (get_best_reg_extraction_insn (&insn, pattern,
7526 GET_MODE_BITSIZE (inner_mode), mode))
7528 wanted_inner_reg_mode = insn.struct_mode;
7529 pos_mode = insn.pos_mode;
7530 extraction_mode = insn.field_mode;
7533 /* Never narrow an object, since that might not be safe. */
7535 if (mode != VOIDmode
7536 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7537 extraction_mode = mode;
7539 if (!MEM_P (inner))
7540 wanted_inner_mode = wanted_inner_reg_mode;
7541 else
7543 /* Be careful not to go beyond the extracted object and maintain the
7544 natural alignment of the memory. */
7545 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7546 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7547 > GET_MODE_BITSIZE (wanted_inner_mode))
7549 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7550 gcc_assert (wanted_inner_mode != VOIDmode);
7554 orig_pos = pos;
7556 if (BITS_BIG_ENDIAN)
7558 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7559 BITS_BIG_ENDIAN style. If position is constant, compute new
7560 position. Otherwise, build subtraction.
7561 Note that POS is relative to the mode of the original argument.
7562 If it's a MEM we need to recompute POS relative to that.
7563 However, if we're extracting from (or inserting into) a register,
7564 we want to recompute POS relative to wanted_inner_mode. */
7565 int width = (MEM_P (inner)
7566 ? GET_MODE_BITSIZE (is_mode)
7567 : GET_MODE_BITSIZE (wanted_inner_mode));
7569 if (pos_rtx == 0)
7570 pos = width - len - pos;
7571 else
7572 pos_rtx
7573 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7574 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7575 pos_rtx);
7576 /* POS may be less than 0 now, but we check for that below.
7577 Note that it can only be less than 0 if !MEM_P (inner). */
7580 /* If INNER has a wider mode, and this is a constant extraction, try to
7581 make it smaller and adjust the byte to point to the byte containing
7582 the value. */
7583 if (wanted_inner_mode != VOIDmode
7584 && inner_mode != wanted_inner_mode
7585 && ! pos_rtx
7586 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7587 && MEM_P (inner)
7588 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7589 && ! MEM_VOLATILE_P (inner))
7591 int offset = 0;
7593 /* The computations below will be correct if the machine is big
7594 endian in both bits and bytes or little endian in bits and bytes.
7595 If it is mixed, we must adjust. */
7597 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7598 adjust OFFSET to compensate. */
7599 if (BYTES_BIG_ENDIAN
7600 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7601 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7603 /* We can now move to the desired byte. */
7604 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7605 * GET_MODE_SIZE (wanted_inner_mode);
7606 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7608 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7609 && is_mode != wanted_inner_mode)
7610 offset = (GET_MODE_SIZE (is_mode)
7611 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7613 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7616 /* If INNER is not memory, get it into the proper mode. If we are changing
7617 its mode, POS must be a constant and smaller than the size of the new
7618 mode. */
7619 else if (!MEM_P (inner))
7621 /* On the LHS, don't create paradoxical subregs implicitely truncating
7622 the register unless TRULY_NOOP_TRUNCATION. */
7623 if (in_dest
7624 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7625 wanted_inner_mode))
7626 return NULL_RTX;
7628 if (GET_MODE (inner) != wanted_inner_mode
7629 && (pos_rtx != 0
7630 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7631 return NULL_RTX;
7633 if (orig_pos < 0)
7634 return NULL_RTX;
7636 inner = force_to_mode (inner, wanted_inner_mode,
7637 pos_rtx
7638 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7639 ? ~(unsigned HOST_WIDE_INT) 0
7640 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7641 << orig_pos),
7645 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7646 have to zero extend. Otherwise, we can just use a SUBREG. */
7647 if (pos_rtx != 0
7648 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7650 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7651 GET_MODE (pos_rtx));
7653 /* If we know that no extraneous bits are set, and that the high
7654 bit is not set, convert extraction to cheaper one - either
7655 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7656 cases. */
7657 if (flag_expensive_optimizations
7658 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7659 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7660 & ~(((unsigned HOST_WIDE_INT)
7661 GET_MODE_MASK (GET_MODE (pos_rtx)))
7662 >> 1))
7663 == 0)))
7665 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7666 GET_MODE (pos_rtx));
7668 /* Prefer ZERO_EXTENSION, since it gives more information to
7669 backends. */
7670 if (set_src_cost (temp1, optimize_this_for_speed_p)
7671 < set_src_cost (temp, optimize_this_for_speed_p))
7672 temp = temp1;
7674 pos_rtx = temp;
7677 /* Make POS_RTX unless we already have it and it is correct. If we don't
7678 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7679 be a CONST_INT. */
7680 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7681 pos_rtx = orig_pos_rtx;
7683 else if (pos_rtx == 0)
7684 pos_rtx = GEN_INT (pos);
7686 /* Make the required operation. See if we can use existing rtx. */
7687 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7688 extraction_mode, inner, GEN_INT (len), pos_rtx);
7689 if (! in_dest)
7690 new_rtx = gen_lowpart (mode, new_rtx);
7692 return new_rtx;
7695 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7696 with any other operations in X. Return X without that shift if so. */
7698 static rtx
7699 extract_left_shift (rtx x, int count)
7701 enum rtx_code code = GET_CODE (x);
7702 machine_mode mode = GET_MODE (x);
7703 rtx tem;
7705 switch (code)
7707 case ASHIFT:
7708 /* This is the shift itself. If it is wide enough, we will return
7709 either the value being shifted if the shift count is equal to
7710 COUNT or a shift for the difference. */
7711 if (CONST_INT_P (XEXP (x, 1))
7712 && INTVAL (XEXP (x, 1)) >= count)
7713 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7714 INTVAL (XEXP (x, 1)) - count);
7715 break;
7717 case NEG: case NOT:
7718 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7719 return simplify_gen_unary (code, mode, tem, mode);
7721 break;
7723 case PLUS: case IOR: case XOR: case AND:
7724 /* If we can safely shift this constant and we find the inner shift,
7725 make a new operation. */
7726 if (CONST_INT_P (XEXP (x, 1))
7727 && (UINTVAL (XEXP (x, 1))
7728 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7729 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7731 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7732 return simplify_gen_binary (code, mode, tem,
7733 gen_int_mode (val, mode));
7735 break;
7737 default:
7738 break;
7741 return 0;
7744 /* Look at the expression rooted at X. Look for expressions
7745 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7746 Form these expressions.
7748 Return the new rtx, usually just X.
7750 Also, for machines like the VAX that don't have logical shift insns,
7751 try to convert logical to arithmetic shift operations in cases where
7752 they are equivalent. This undoes the canonicalizations to logical
7753 shifts done elsewhere.
7755 We try, as much as possible, to re-use rtl expressions to save memory.
7757 IN_CODE says what kind of expression we are processing. Normally, it is
7758 SET. In a memory address it is MEM. When processing the arguments of
7759 a comparison or a COMPARE against zero, it is COMPARE. */
7762 make_compound_operation (rtx x, enum rtx_code in_code)
7764 enum rtx_code code = GET_CODE (x);
7765 machine_mode mode = GET_MODE (x);
7766 int mode_width = GET_MODE_PRECISION (mode);
7767 rtx rhs, lhs;
7768 enum rtx_code next_code;
7769 int i, j;
7770 rtx new_rtx = 0;
7771 rtx tem;
7772 const char *fmt;
7774 /* Select the code to be used in recursive calls. Once we are inside an
7775 address, we stay there. If we have a comparison, set to COMPARE,
7776 but once inside, go back to our default of SET. */
7778 next_code = (code == MEM ? MEM
7779 : ((code == COMPARE || COMPARISON_P (x))
7780 && XEXP (x, 1) == const0_rtx) ? COMPARE
7781 : in_code == COMPARE ? SET : in_code);
7783 /* Process depending on the code of this operation. If NEW is set
7784 nonzero, it will be returned. */
7786 switch (code)
7788 case ASHIFT:
7789 /* Convert shifts by constants into multiplications if inside
7790 an address. */
7791 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7792 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7793 && INTVAL (XEXP (x, 1)) >= 0
7794 && SCALAR_INT_MODE_P (mode))
7796 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7797 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7799 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7800 if (GET_CODE (new_rtx) == NEG)
7802 new_rtx = XEXP (new_rtx, 0);
7803 multval = -multval;
7805 multval = trunc_int_for_mode (multval, mode);
7806 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7808 break;
7810 case PLUS:
7811 lhs = XEXP (x, 0);
7812 rhs = XEXP (x, 1);
7813 lhs = make_compound_operation (lhs, next_code);
7814 rhs = make_compound_operation (rhs, next_code);
7815 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7816 && SCALAR_INT_MODE_P (mode))
7818 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7819 XEXP (lhs, 1));
7820 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7822 else if (GET_CODE (lhs) == MULT
7823 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7825 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7826 simplify_gen_unary (NEG, mode,
7827 XEXP (lhs, 1),
7828 mode));
7829 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7831 else
7833 SUBST (XEXP (x, 0), lhs);
7834 SUBST (XEXP (x, 1), rhs);
7835 goto maybe_swap;
7837 x = gen_lowpart (mode, new_rtx);
7838 goto maybe_swap;
7840 case MINUS:
7841 lhs = XEXP (x, 0);
7842 rhs = XEXP (x, 1);
7843 lhs = make_compound_operation (lhs, next_code);
7844 rhs = make_compound_operation (rhs, next_code);
7845 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7846 && SCALAR_INT_MODE_P (mode))
7848 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7849 XEXP (rhs, 1));
7850 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7852 else if (GET_CODE (rhs) == MULT
7853 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7855 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7856 simplify_gen_unary (NEG, mode,
7857 XEXP (rhs, 1),
7858 mode));
7859 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7861 else
7863 SUBST (XEXP (x, 0), lhs);
7864 SUBST (XEXP (x, 1), rhs);
7865 return x;
7867 return gen_lowpart (mode, new_rtx);
7869 case AND:
7870 /* If the second operand is not a constant, we can't do anything
7871 with it. */
7872 if (!CONST_INT_P (XEXP (x, 1)))
7873 break;
7875 /* If the constant is a power of two minus one and the first operand
7876 is a logical right shift, make an extraction. */
7877 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7878 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7880 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7881 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7882 0, in_code == COMPARE);
7885 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7886 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7887 && subreg_lowpart_p (XEXP (x, 0))
7888 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7889 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7891 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7892 next_code);
7893 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7894 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7895 0, in_code == COMPARE);
7897 /* If that didn't give anything, see if the AND simplifies on
7898 its own. */
7899 if (!new_rtx && i >= 0)
7901 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7902 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
7903 0, in_code == COMPARE);
7906 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7907 else if ((GET_CODE (XEXP (x, 0)) == XOR
7908 || GET_CODE (XEXP (x, 0)) == IOR)
7909 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7910 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7911 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7913 /* Apply the distributive law, and then try to make extractions. */
7914 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7915 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7916 XEXP (x, 1)),
7917 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7918 XEXP (x, 1)));
7919 new_rtx = make_compound_operation (new_rtx, in_code);
7922 /* If we are have (and (rotate X C) M) and C is larger than the number
7923 of bits in M, this is an extraction. */
7925 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7926 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7927 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7928 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7930 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7931 new_rtx = make_extraction (mode, new_rtx,
7932 (GET_MODE_PRECISION (mode)
7933 - INTVAL (XEXP (XEXP (x, 0), 1))),
7934 NULL_RTX, i, 1, 0, in_code == COMPARE);
7937 /* On machines without logical shifts, if the operand of the AND is
7938 a logical shift and our mask turns off all the propagated sign
7939 bits, we can replace the logical shift with an arithmetic shift. */
7940 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7941 && !have_insn_for (LSHIFTRT, mode)
7942 && have_insn_for (ASHIFTRT, mode)
7943 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7944 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7945 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7946 && mode_width <= HOST_BITS_PER_WIDE_INT)
7948 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7950 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7951 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7952 SUBST (XEXP (x, 0),
7953 gen_rtx_ASHIFTRT (mode,
7954 make_compound_operation
7955 (XEXP (XEXP (x, 0), 0), next_code),
7956 XEXP (XEXP (x, 0), 1)));
7959 /* If the constant is one less than a power of two, this might be
7960 representable by an extraction even if no shift is present.
7961 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7962 we are in a COMPARE. */
7963 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7964 new_rtx = make_extraction (mode,
7965 make_compound_operation (XEXP (x, 0),
7966 next_code),
7967 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7969 /* If we are in a comparison and this is an AND with a power of two,
7970 convert this into the appropriate bit extract. */
7971 else if (in_code == COMPARE
7972 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7973 new_rtx = make_extraction (mode,
7974 make_compound_operation (XEXP (x, 0),
7975 next_code),
7976 i, NULL_RTX, 1, 1, 0, 1);
7978 break;
7980 case LSHIFTRT:
7981 /* If the sign bit is known to be zero, replace this with an
7982 arithmetic shift. */
7983 if (have_insn_for (ASHIFTRT, mode)
7984 && ! have_insn_for (LSHIFTRT, mode)
7985 && mode_width <= HOST_BITS_PER_WIDE_INT
7986 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7988 new_rtx = gen_rtx_ASHIFTRT (mode,
7989 make_compound_operation (XEXP (x, 0),
7990 next_code),
7991 XEXP (x, 1));
7992 break;
7995 /* ... fall through ... */
7997 case ASHIFTRT:
7998 lhs = XEXP (x, 0);
7999 rhs = XEXP (x, 1);
8001 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8002 this is a SIGN_EXTRACT. */
8003 if (CONST_INT_P (rhs)
8004 && GET_CODE (lhs) == ASHIFT
8005 && CONST_INT_P (XEXP (lhs, 1))
8006 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8007 && INTVAL (XEXP (lhs, 1)) >= 0
8008 && INTVAL (rhs) < mode_width)
8010 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8011 new_rtx = make_extraction (mode, new_rtx,
8012 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8013 NULL_RTX, mode_width - INTVAL (rhs),
8014 code == LSHIFTRT, 0, in_code == COMPARE);
8015 break;
8018 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8019 If so, try to merge the shifts into a SIGN_EXTEND. We could
8020 also do this for some cases of SIGN_EXTRACT, but it doesn't
8021 seem worth the effort; the case checked for occurs on Alpha. */
8023 if (!OBJECT_P (lhs)
8024 && ! (GET_CODE (lhs) == SUBREG
8025 && (OBJECT_P (SUBREG_REG (lhs))))
8026 && CONST_INT_P (rhs)
8027 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8028 && INTVAL (rhs) < mode_width
8029 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
8030 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
8031 0, NULL_RTX, mode_width - INTVAL (rhs),
8032 code == LSHIFTRT, 0, in_code == COMPARE);
8034 break;
8036 case SUBREG:
8037 /* Call ourselves recursively on the inner expression. If we are
8038 narrowing the object and it has a different RTL code from
8039 what it originally did, do this SUBREG as a force_to_mode. */
8041 rtx inner = SUBREG_REG (x), simplified;
8042 enum rtx_code subreg_code = in_code;
8044 /* If in_code is COMPARE, it isn't always safe to pass it through
8045 to the recursive make_compound_operation call. */
8046 if (subreg_code == COMPARE
8047 && (!subreg_lowpart_p (x)
8048 || GET_CODE (inner) == SUBREG
8049 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8050 is (const_int 0), rather than
8051 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
8052 || (GET_CODE (inner) == AND
8053 && CONST_INT_P (XEXP (inner, 1))
8054 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8055 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8056 >= GET_MODE_BITSIZE (mode))))
8057 subreg_code = SET;
8059 tem = make_compound_operation (inner, subreg_code);
8061 simplified
8062 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8063 if (simplified)
8064 tem = simplified;
8066 if (GET_CODE (tem) != GET_CODE (inner)
8067 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8068 && subreg_lowpart_p (x))
8070 rtx newer
8071 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
8073 /* If we have something other than a SUBREG, we might have
8074 done an expansion, so rerun ourselves. */
8075 if (GET_CODE (newer) != SUBREG)
8076 newer = make_compound_operation (newer, in_code);
8078 /* force_to_mode can expand compounds. If it just re-expanded the
8079 compound, use gen_lowpart to convert to the desired mode. */
8080 if (rtx_equal_p (newer, x)
8081 /* Likewise if it re-expanded the compound only partially.
8082 This happens for SUBREG of ZERO_EXTRACT if they extract
8083 the same number of bits. */
8084 || (GET_CODE (newer) == SUBREG
8085 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8086 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8087 && GET_CODE (inner) == AND
8088 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8089 return gen_lowpart (GET_MODE (x), tem);
8091 return newer;
8094 if (simplified)
8095 return tem;
8097 break;
8099 default:
8100 break;
8103 if (new_rtx)
8105 x = gen_lowpart (mode, new_rtx);
8106 code = GET_CODE (x);
8109 /* Now recursively process each operand of this operation. We need to
8110 handle ZERO_EXTEND specially so that we don't lose track of the
8111 inner mode. */
8112 if (GET_CODE (x) == ZERO_EXTEND)
8114 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8115 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8116 new_rtx, GET_MODE (XEXP (x, 0)));
8117 if (tem)
8118 return tem;
8119 SUBST (XEXP (x, 0), new_rtx);
8120 return x;
8123 fmt = GET_RTX_FORMAT (code);
8124 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8125 if (fmt[i] == 'e')
8127 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8128 SUBST (XEXP (x, i), new_rtx);
8130 else if (fmt[i] == 'E')
8131 for (j = 0; j < XVECLEN (x, i); j++)
8133 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8134 SUBST (XVECEXP (x, i, j), new_rtx);
8137 maybe_swap:
8138 /* If this is a commutative operation, the changes to the operands
8139 may have made it noncanonical. */
8140 if (COMMUTATIVE_ARITH_P (x)
8141 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
8143 tem = XEXP (x, 0);
8144 SUBST (XEXP (x, 0), XEXP (x, 1));
8145 SUBST (XEXP (x, 1), tem);
8148 return x;
8151 /* Given M see if it is a value that would select a field of bits
8152 within an item, but not the entire word. Return -1 if not.
8153 Otherwise, return the starting position of the field, where 0 is the
8154 low-order bit.
8156 *PLEN is set to the length of the field. */
8158 static int
8159 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8161 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8162 int pos = m ? ctz_hwi (m) : -1;
8163 int len = 0;
8165 if (pos >= 0)
8166 /* Now shift off the low-order zero bits and see if we have a
8167 power of two minus 1. */
8168 len = exact_log2 ((m >> pos) + 1);
8170 if (len <= 0)
8171 pos = -1;
8173 *plen = len;
8174 return pos;
8177 /* If X refers to a register that equals REG in value, replace these
8178 references with REG. */
8179 static rtx
8180 canon_reg_for_combine (rtx x, rtx reg)
8182 rtx op0, op1, op2;
8183 const char *fmt;
8184 int i;
8185 bool copied;
8187 enum rtx_code code = GET_CODE (x);
8188 switch (GET_RTX_CLASS (code))
8190 case RTX_UNARY:
8191 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8192 if (op0 != XEXP (x, 0))
8193 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8194 GET_MODE (reg));
8195 break;
8197 case RTX_BIN_ARITH:
8198 case RTX_COMM_ARITH:
8199 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8200 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8201 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8202 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8203 break;
8205 case RTX_COMPARE:
8206 case RTX_COMM_COMPARE:
8207 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8208 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8209 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8210 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8211 GET_MODE (op0), op0, op1);
8212 break;
8214 case RTX_TERNARY:
8215 case RTX_BITFIELD_OPS:
8216 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8217 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8218 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8219 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8220 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8221 GET_MODE (op0), op0, op1, op2);
8223 case RTX_OBJ:
8224 if (REG_P (x))
8226 if (rtx_equal_p (get_last_value (reg), x)
8227 || rtx_equal_p (reg, get_last_value (x)))
8228 return reg;
8229 else
8230 break;
8233 /* fall through */
8235 default:
8236 fmt = GET_RTX_FORMAT (code);
8237 copied = false;
8238 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8239 if (fmt[i] == 'e')
8241 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8242 if (op != XEXP (x, i))
8244 if (!copied)
8246 copied = true;
8247 x = copy_rtx (x);
8249 XEXP (x, i) = op;
8252 else if (fmt[i] == 'E')
8254 int j;
8255 for (j = 0; j < XVECLEN (x, i); j++)
8257 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8258 if (op != XVECEXP (x, i, j))
8260 if (!copied)
8262 copied = true;
8263 x = copy_rtx (x);
8265 XVECEXP (x, i, j) = op;
8270 break;
8273 return x;
8276 /* Return X converted to MODE. If the value is already truncated to
8277 MODE we can just return a subreg even though in the general case we
8278 would need an explicit truncation. */
8280 static rtx
8281 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8283 if (!CONST_INT_P (x)
8284 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8285 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8286 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8288 /* Bit-cast X into an integer mode. */
8289 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8290 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8291 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8292 x, GET_MODE (x));
8295 return gen_lowpart (mode, x);
8298 /* See if X can be simplified knowing that we will only refer to it in
8299 MODE and will only refer to those bits that are nonzero in MASK.
8300 If other bits are being computed or if masking operations are done
8301 that select a superset of the bits in MASK, they can sometimes be
8302 ignored.
8304 Return a possibly simplified expression, but always convert X to
8305 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8307 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8308 are all off in X. This is used when X will be complemented, by either
8309 NOT, NEG, or XOR. */
8311 static rtx
8312 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8313 int just_select)
8315 enum rtx_code code = GET_CODE (x);
8316 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8317 machine_mode op_mode;
8318 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8319 rtx op0, op1, temp;
8321 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8322 code below will do the wrong thing since the mode of such an
8323 expression is VOIDmode.
8325 Also do nothing if X is a CLOBBER; this can happen if X was
8326 the return value from a call to gen_lowpart. */
8327 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8328 return x;
8330 /* We want to perform the operation in its present mode unless we know
8331 that the operation is valid in MODE, in which case we do the operation
8332 in MODE. */
8333 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8334 && have_insn_for (code, mode))
8335 ? mode : GET_MODE (x));
8337 /* It is not valid to do a right-shift in a narrower mode
8338 than the one it came in with. */
8339 if ((code == LSHIFTRT || code == ASHIFTRT)
8340 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8341 op_mode = GET_MODE (x);
8343 /* Truncate MASK to fit OP_MODE. */
8344 if (op_mode)
8345 mask &= GET_MODE_MASK (op_mode);
8347 /* When we have an arithmetic operation, or a shift whose count we
8348 do not know, we need to assume that all bits up to the highest-order
8349 bit in MASK will be needed. This is how we form such a mask. */
8350 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8351 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8352 else
8353 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8354 - 1);
8356 /* Determine what bits of X are guaranteed to be (non)zero. */
8357 nonzero = nonzero_bits (x, mode);
8359 /* If none of the bits in X are needed, return a zero. */
8360 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8361 x = const0_rtx;
8363 /* If X is a CONST_INT, return a new one. Do this here since the
8364 test below will fail. */
8365 if (CONST_INT_P (x))
8367 if (SCALAR_INT_MODE_P (mode))
8368 return gen_int_mode (INTVAL (x) & mask, mode);
8369 else
8371 x = GEN_INT (INTVAL (x) & mask);
8372 return gen_lowpart_common (mode, x);
8376 /* If X is narrower than MODE and we want all the bits in X's mode, just
8377 get X in the proper mode. */
8378 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8379 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8380 return gen_lowpart (mode, x);
8382 /* We can ignore the effect of a SUBREG if it narrows the mode or
8383 if the constant masks to zero all the bits the mode doesn't have. */
8384 if (GET_CODE (x) == SUBREG
8385 && subreg_lowpart_p (x)
8386 && ((GET_MODE_SIZE (GET_MODE (x))
8387 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8388 || (0 == (mask
8389 & GET_MODE_MASK (GET_MODE (x))
8390 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8391 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8393 /* The arithmetic simplifications here only work for scalar integer modes. */
8394 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8395 return gen_lowpart_or_truncate (mode, x);
8397 switch (code)
8399 case CLOBBER:
8400 /* If X is a (clobber (const_int)), return it since we know we are
8401 generating something that won't match. */
8402 return x;
8404 case SIGN_EXTEND:
8405 case ZERO_EXTEND:
8406 case ZERO_EXTRACT:
8407 case SIGN_EXTRACT:
8408 x = expand_compound_operation (x);
8409 if (GET_CODE (x) != code)
8410 return force_to_mode (x, mode, mask, next_select);
8411 break;
8413 case TRUNCATE:
8414 /* Similarly for a truncate. */
8415 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8417 case AND:
8418 /* If this is an AND with a constant, convert it into an AND
8419 whose constant is the AND of that constant with MASK. If it
8420 remains an AND of MASK, delete it since it is redundant. */
8422 if (CONST_INT_P (XEXP (x, 1)))
8424 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8425 mask & INTVAL (XEXP (x, 1)));
8427 /* If X is still an AND, see if it is an AND with a mask that
8428 is just some low-order bits. If so, and it is MASK, we don't
8429 need it. */
8431 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8432 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8433 == mask))
8434 x = XEXP (x, 0);
8436 /* If it remains an AND, try making another AND with the bits
8437 in the mode mask that aren't in MASK turned on. If the
8438 constant in the AND is wide enough, this might make a
8439 cheaper constant. */
8441 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8442 && GET_MODE_MASK (GET_MODE (x)) != mask
8443 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8445 unsigned HOST_WIDE_INT cval
8446 = UINTVAL (XEXP (x, 1))
8447 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8448 rtx y;
8450 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8451 gen_int_mode (cval, GET_MODE (x)));
8452 if (set_src_cost (y, optimize_this_for_speed_p)
8453 < set_src_cost (x, optimize_this_for_speed_p))
8454 x = y;
8457 break;
8460 goto binop;
8462 case PLUS:
8463 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8464 low-order bits (as in an alignment operation) and FOO is already
8465 aligned to that boundary, mask C1 to that boundary as well.
8466 This may eliminate that PLUS and, later, the AND. */
8469 unsigned int width = GET_MODE_PRECISION (mode);
8470 unsigned HOST_WIDE_INT smask = mask;
8472 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8473 number, sign extend it. */
8475 if (width < HOST_BITS_PER_WIDE_INT
8476 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8477 smask |= HOST_WIDE_INT_M1U << width;
8479 if (CONST_INT_P (XEXP (x, 1))
8480 && exact_log2 (- smask) >= 0
8481 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8482 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8483 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8484 (INTVAL (XEXP (x, 1)) & smask)),
8485 mode, smask, next_select);
8488 /* ... fall through ... */
8490 case MULT:
8491 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8492 most significant bit in MASK since carries from those bits will
8493 affect the bits we are interested in. */
8494 mask = fuller_mask;
8495 goto binop;
8497 case MINUS:
8498 /* If X is (minus C Y) where C's least set bit is larger than any bit
8499 in the mask, then we may replace with (neg Y). */
8500 if (CONST_INT_P (XEXP (x, 0))
8501 && ((UINTVAL (XEXP (x, 0)) & -UINTVAL (XEXP (x, 0))) > mask))
8503 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8504 GET_MODE (x));
8505 return force_to_mode (x, mode, mask, next_select);
8508 /* Similarly, if C contains every bit in the fuller_mask, then we may
8509 replace with (not Y). */
8510 if (CONST_INT_P (XEXP (x, 0))
8511 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8513 x = simplify_gen_unary (NOT, GET_MODE (x),
8514 XEXP (x, 1), GET_MODE (x));
8515 return force_to_mode (x, mode, mask, next_select);
8518 mask = fuller_mask;
8519 goto binop;
8521 case IOR:
8522 case XOR:
8523 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8524 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8525 operation which may be a bitfield extraction. Ensure that the
8526 constant we form is not wider than the mode of X. */
8528 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8529 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8530 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8531 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8532 && CONST_INT_P (XEXP (x, 1))
8533 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8534 + floor_log2 (INTVAL (XEXP (x, 1))))
8535 < GET_MODE_PRECISION (GET_MODE (x)))
8536 && (UINTVAL (XEXP (x, 1))
8537 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8539 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8540 << INTVAL (XEXP (XEXP (x, 0), 1)),
8541 GET_MODE (x));
8542 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8543 XEXP (XEXP (x, 0), 0), temp);
8544 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8545 XEXP (XEXP (x, 0), 1));
8546 return force_to_mode (x, mode, mask, next_select);
8549 binop:
8550 /* For most binary operations, just propagate into the operation and
8551 change the mode if we have an operation of that mode. */
8553 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8554 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8556 /* If we ended up truncating both operands, truncate the result of the
8557 operation instead. */
8558 if (GET_CODE (op0) == TRUNCATE
8559 && GET_CODE (op1) == TRUNCATE)
8561 op0 = XEXP (op0, 0);
8562 op1 = XEXP (op1, 0);
8565 op0 = gen_lowpart_or_truncate (op_mode, op0);
8566 op1 = gen_lowpart_or_truncate (op_mode, op1);
8568 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8569 x = simplify_gen_binary (code, op_mode, op0, op1);
8570 break;
8572 case ASHIFT:
8573 /* For left shifts, do the same, but just for the first operand.
8574 However, we cannot do anything with shifts where we cannot
8575 guarantee that the counts are smaller than the size of the mode
8576 because such a count will have a different meaning in a
8577 wider mode. */
8579 if (! (CONST_INT_P (XEXP (x, 1))
8580 && INTVAL (XEXP (x, 1)) >= 0
8581 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8582 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8583 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8584 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8585 break;
8587 /* If the shift count is a constant and we can do arithmetic in
8588 the mode of the shift, refine which bits we need. Otherwise, use the
8589 conservative form of the mask. */
8590 if (CONST_INT_P (XEXP (x, 1))
8591 && INTVAL (XEXP (x, 1)) >= 0
8592 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8593 && HWI_COMPUTABLE_MODE_P (op_mode))
8594 mask >>= INTVAL (XEXP (x, 1));
8595 else
8596 mask = fuller_mask;
8598 op0 = gen_lowpart_or_truncate (op_mode,
8599 force_to_mode (XEXP (x, 0), op_mode,
8600 mask, next_select));
8602 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8603 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8604 break;
8606 case LSHIFTRT:
8607 /* Here we can only do something if the shift count is a constant,
8608 this shift constant is valid for the host, and we can do arithmetic
8609 in OP_MODE. */
8611 if (CONST_INT_P (XEXP (x, 1))
8612 && INTVAL (XEXP (x, 1)) >= 0
8613 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8614 && HWI_COMPUTABLE_MODE_P (op_mode))
8616 rtx inner = XEXP (x, 0);
8617 unsigned HOST_WIDE_INT inner_mask;
8619 /* Select the mask of the bits we need for the shift operand. */
8620 inner_mask = mask << INTVAL (XEXP (x, 1));
8622 /* We can only change the mode of the shift if we can do arithmetic
8623 in the mode of the shift and INNER_MASK is no wider than the
8624 width of X's mode. */
8625 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8626 op_mode = GET_MODE (x);
8628 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8630 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8631 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8634 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8635 shift and AND produces only copies of the sign bit (C2 is one less
8636 than a power of two), we can do this with just a shift. */
8638 if (GET_CODE (x) == LSHIFTRT
8639 && CONST_INT_P (XEXP (x, 1))
8640 /* The shift puts one of the sign bit copies in the least significant
8641 bit. */
8642 && ((INTVAL (XEXP (x, 1))
8643 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8644 >= GET_MODE_PRECISION (GET_MODE (x)))
8645 && exact_log2 (mask + 1) >= 0
8646 /* Number of bits left after the shift must be more than the mask
8647 needs. */
8648 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8649 <= GET_MODE_PRECISION (GET_MODE (x)))
8650 /* Must be more sign bit copies than the mask needs. */
8651 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8652 >= exact_log2 (mask + 1)))
8653 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8654 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8655 - exact_log2 (mask + 1)));
8657 goto shiftrt;
8659 case ASHIFTRT:
8660 /* If we are just looking for the sign bit, we don't need this shift at
8661 all, even if it has a variable count. */
8662 if (val_signbit_p (GET_MODE (x), mask))
8663 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8665 /* If this is a shift by a constant, get a mask that contains those bits
8666 that are not copies of the sign bit. We then have two cases: If
8667 MASK only includes those bits, this can be a logical shift, which may
8668 allow simplifications. If MASK is a single-bit field not within
8669 those bits, we are requesting a copy of the sign bit and hence can
8670 shift the sign bit to the appropriate location. */
8672 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8673 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8675 int i;
8677 /* If the considered data is wider than HOST_WIDE_INT, we can't
8678 represent a mask for all its bits in a single scalar.
8679 But we only care about the lower bits, so calculate these. */
8681 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8683 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8685 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8686 is the number of bits a full-width mask would have set.
8687 We need only shift if these are fewer than nonzero can
8688 hold. If not, we must keep all bits set in nonzero. */
8690 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8691 < HOST_BITS_PER_WIDE_INT)
8692 nonzero >>= INTVAL (XEXP (x, 1))
8693 + HOST_BITS_PER_WIDE_INT
8694 - GET_MODE_PRECISION (GET_MODE (x)) ;
8696 else
8698 nonzero = GET_MODE_MASK (GET_MODE (x));
8699 nonzero >>= INTVAL (XEXP (x, 1));
8702 if ((mask & ~nonzero) == 0)
8704 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8705 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8706 if (GET_CODE (x) != ASHIFTRT)
8707 return force_to_mode (x, mode, mask, next_select);
8710 else if ((i = exact_log2 (mask)) >= 0)
8712 x = simplify_shift_const
8713 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8714 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8716 if (GET_CODE (x) != ASHIFTRT)
8717 return force_to_mode (x, mode, mask, next_select);
8721 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8722 even if the shift count isn't a constant. */
8723 if (mask == 1)
8724 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8725 XEXP (x, 0), XEXP (x, 1));
8727 shiftrt:
8729 /* If this is a zero- or sign-extension operation that just affects bits
8730 we don't care about, remove it. Be sure the call above returned
8731 something that is still a shift. */
8733 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8734 && CONST_INT_P (XEXP (x, 1))
8735 && INTVAL (XEXP (x, 1)) >= 0
8736 && (INTVAL (XEXP (x, 1))
8737 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8738 && GET_CODE (XEXP (x, 0)) == ASHIFT
8739 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8740 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8741 next_select);
8743 break;
8745 case ROTATE:
8746 case ROTATERT:
8747 /* If the shift count is constant and we can do computations
8748 in the mode of X, compute where the bits we care about are.
8749 Otherwise, we can't do anything. Don't change the mode of
8750 the shift or propagate MODE into the shift, though. */
8751 if (CONST_INT_P (XEXP (x, 1))
8752 && INTVAL (XEXP (x, 1)) >= 0)
8754 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8755 GET_MODE (x),
8756 gen_int_mode (mask, GET_MODE (x)),
8757 XEXP (x, 1));
8758 if (temp && CONST_INT_P (temp))
8759 x = simplify_gen_binary (code, GET_MODE (x),
8760 force_to_mode (XEXP (x, 0), GET_MODE (x),
8761 INTVAL (temp), next_select),
8762 XEXP (x, 1));
8764 break;
8766 case NEG:
8767 /* If we just want the low-order bit, the NEG isn't needed since it
8768 won't change the low-order bit. */
8769 if (mask == 1)
8770 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8772 /* We need any bits less significant than the most significant bit in
8773 MASK since carries from those bits will affect the bits we are
8774 interested in. */
8775 mask = fuller_mask;
8776 goto unop;
8778 case NOT:
8779 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8780 same as the XOR case above. Ensure that the constant we form is not
8781 wider than the mode of X. */
8783 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8784 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8785 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8786 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8787 < GET_MODE_PRECISION (GET_MODE (x)))
8788 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8790 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8791 GET_MODE (x));
8792 temp = simplify_gen_binary (XOR, GET_MODE (x),
8793 XEXP (XEXP (x, 0), 0), temp);
8794 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8795 temp, XEXP (XEXP (x, 0), 1));
8797 return force_to_mode (x, mode, mask, next_select);
8800 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8801 use the full mask inside the NOT. */
8802 mask = fuller_mask;
8804 unop:
8805 op0 = gen_lowpart_or_truncate (op_mode,
8806 force_to_mode (XEXP (x, 0), mode, mask,
8807 next_select));
8808 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8809 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8810 break;
8812 case NE:
8813 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8814 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8815 which is equal to STORE_FLAG_VALUE. */
8816 if ((mask & ~STORE_FLAG_VALUE) == 0
8817 && XEXP (x, 1) == const0_rtx
8818 && GET_MODE (XEXP (x, 0)) == mode
8819 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8820 && (nonzero_bits (XEXP (x, 0), mode)
8821 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8822 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8824 break;
8826 case IF_THEN_ELSE:
8827 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8828 written in a narrower mode. We play it safe and do not do so. */
8830 op0 = gen_lowpart_or_truncate (GET_MODE (x),
8831 force_to_mode (XEXP (x, 1), mode,
8832 mask, next_select));
8833 op1 = gen_lowpart_or_truncate (GET_MODE (x),
8834 force_to_mode (XEXP (x, 2), mode,
8835 mask, next_select));
8836 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
8837 x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
8838 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
8839 op0, op1);
8840 break;
8842 default:
8843 break;
8846 /* Ensure we return a value of the proper mode. */
8847 return gen_lowpart_or_truncate (mode, x);
8850 /* Return nonzero if X is an expression that has one of two values depending on
8851 whether some other value is zero or nonzero. In that case, we return the
8852 value that is being tested, *PTRUE is set to the value if the rtx being
8853 returned has a nonzero value, and *PFALSE is set to the other alternative.
8855 If we return zero, we set *PTRUE and *PFALSE to X. */
8857 static rtx
8858 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8860 machine_mode mode = GET_MODE (x);
8861 enum rtx_code code = GET_CODE (x);
8862 rtx cond0, cond1, true0, true1, false0, false1;
8863 unsigned HOST_WIDE_INT nz;
8865 /* If we are comparing a value against zero, we are done. */
8866 if ((code == NE || code == EQ)
8867 && XEXP (x, 1) == const0_rtx)
8869 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8870 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8871 return XEXP (x, 0);
8874 /* If this is a unary operation whose operand has one of two values, apply
8875 our opcode to compute those values. */
8876 else if (UNARY_P (x)
8877 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8879 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8880 *pfalse = simplify_gen_unary (code, mode, false0,
8881 GET_MODE (XEXP (x, 0)));
8882 return cond0;
8885 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8886 make can't possibly match and would suppress other optimizations. */
8887 else if (code == COMPARE)
8890 /* If this is a binary operation, see if either side has only one of two
8891 values. If either one does or if both do and they are conditional on
8892 the same value, compute the new true and false values. */
8893 else if (BINARY_P (x))
8895 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8896 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8898 if ((cond0 != 0 || cond1 != 0)
8899 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8901 /* If if_then_else_cond returned zero, then true/false are the
8902 same rtl. We must copy one of them to prevent invalid rtl
8903 sharing. */
8904 if (cond0 == 0)
8905 true0 = copy_rtx (true0);
8906 else if (cond1 == 0)
8907 true1 = copy_rtx (true1);
8909 if (COMPARISON_P (x))
8911 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8912 true0, true1);
8913 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8914 false0, false1);
8916 else
8918 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8919 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8922 return cond0 ? cond0 : cond1;
8925 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8926 operands is zero when the other is nonzero, and vice-versa,
8927 and STORE_FLAG_VALUE is 1 or -1. */
8929 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8930 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8931 || code == UMAX)
8932 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8934 rtx op0 = XEXP (XEXP (x, 0), 1);
8935 rtx op1 = XEXP (XEXP (x, 1), 1);
8937 cond0 = XEXP (XEXP (x, 0), 0);
8938 cond1 = XEXP (XEXP (x, 1), 0);
8940 if (COMPARISON_P (cond0)
8941 && COMPARISON_P (cond1)
8942 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8943 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8944 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8945 || ((swap_condition (GET_CODE (cond0))
8946 == reversed_comparison_code (cond1, NULL))
8947 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8948 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8949 && ! side_effects_p (x))
8951 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8952 *pfalse = simplify_gen_binary (MULT, mode,
8953 (code == MINUS
8954 ? simplify_gen_unary (NEG, mode,
8955 op1, mode)
8956 : op1),
8957 const_true_rtx);
8958 return cond0;
8962 /* Similarly for MULT, AND and UMIN, except that for these the result
8963 is always zero. */
8964 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8965 && (code == MULT || code == AND || code == UMIN)
8966 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8968 cond0 = XEXP (XEXP (x, 0), 0);
8969 cond1 = XEXP (XEXP (x, 1), 0);
8971 if (COMPARISON_P (cond0)
8972 && COMPARISON_P (cond1)
8973 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8974 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8975 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8976 || ((swap_condition (GET_CODE (cond0))
8977 == reversed_comparison_code (cond1, NULL))
8978 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8979 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8980 && ! side_effects_p (x))
8982 *ptrue = *pfalse = const0_rtx;
8983 return cond0;
8988 else if (code == IF_THEN_ELSE)
8990 /* If we have IF_THEN_ELSE already, extract the condition and
8991 canonicalize it if it is NE or EQ. */
8992 cond0 = XEXP (x, 0);
8993 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8994 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8995 return XEXP (cond0, 0);
8996 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8998 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8999 return XEXP (cond0, 0);
9001 else
9002 return cond0;
9005 /* If X is a SUBREG, we can narrow both the true and false values
9006 if the inner expression, if there is a condition. */
9007 else if (code == SUBREG
9008 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9009 &true0, &false0)))
9011 true0 = simplify_gen_subreg (mode, true0,
9012 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9013 false0 = simplify_gen_subreg (mode, false0,
9014 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9015 if (true0 && false0)
9017 *ptrue = true0;
9018 *pfalse = false0;
9019 return cond0;
9023 /* If X is a constant, this isn't special and will cause confusions
9024 if we treat it as such. Likewise if it is equivalent to a constant. */
9025 else if (CONSTANT_P (x)
9026 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9029 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9030 will be least confusing to the rest of the compiler. */
9031 else if (mode == BImode)
9033 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9034 return x;
9037 /* If X is known to be either 0 or -1, those are the true and
9038 false values when testing X. */
9039 else if (x == constm1_rtx || x == const0_rtx
9040 || (mode != VOIDmode
9041 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
9043 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9044 return x;
9047 /* Likewise for 0 or a single bit. */
9048 else if (HWI_COMPUTABLE_MODE_P (mode)
9049 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
9051 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9052 return x;
9055 /* Otherwise fail; show no condition with true and false values the same. */
9056 *ptrue = *pfalse = x;
9057 return 0;
9060 /* Return the value of expression X given the fact that condition COND
9061 is known to be true when applied to REG as its first operand and VAL
9062 as its second. X is known to not be shared and so can be modified in
9063 place.
9065 We only handle the simplest cases, and specifically those cases that
9066 arise with IF_THEN_ELSE expressions. */
9068 static rtx
9069 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9071 enum rtx_code code = GET_CODE (x);
9072 const char *fmt;
9073 int i, j;
9075 if (side_effects_p (x))
9076 return x;
9078 /* If either operand of the condition is a floating point value,
9079 then we have to avoid collapsing an EQ comparison. */
9080 if (cond == EQ
9081 && rtx_equal_p (x, reg)
9082 && ! FLOAT_MODE_P (GET_MODE (x))
9083 && ! FLOAT_MODE_P (GET_MODE (val)))
9084 return val;
9086 if (cond == UNEQ && rtx_equal_p (x, reg))
9087 return val;
9089 /* If X is (abs REG) and we know something about REG's relationship
9090 with zero, we may be able to simplify this. */
9092 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9093 switch (cond)
9095 case GE: case GT: case EQ:
9096 return XEXP (x, 0);
9097 case LT: case LE:
9098 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9099 XEXP (x, 0),
9100 GET_MODE (XEXP (x, 0)));
9101 default:
9102 break;
9105 /* The only other cases we handle are MIN, MAX, and comparisons if the
9106 operands are the same as REG and VAL. */
9108 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9110 if (rtx_equal_p (XEXP (x, 0), val))
9112 std::swap (val, reg);
9113 cond = swap_condition (cond);
9116 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9118 if (COMPARISON_P (x))
9120 if (comparison_dominates_p (cond, code))
9121 return const_true_rtx;
9123 code = reversed_comparison_code (x, NULL);
9124 if (code != UNKNOWN
9125 && comparison_dominates_p (cond, code))
9126 return const0_rtx;
9127 else
9128 return x;
9130 else if (code == SMAX || code == SMIN
9131 || code == UMIN || code == UMAX)
9133 int unsignedp = (code == UMIN || code == UMAX);
9135 /* Do not reverse the condition when it is NE or EQ.
9136 This is because we cannot conclude anything about
9137 the value of 'SMAX (x, y)' when x is not equal to y,
9138 but we can when x equals y. */
9139 if ((code == SMAX || code == UMAX)
9140 && ! (cond == EQ || cond == NE))
9141 cond = reverse_condition (cond);
9143 switch (cond)
9145 case GE: case GT:
9146 return unsignedp ? x : XEXP (x, 1);
9147 case LE: case LT:
9148 return unsignedp ? x : XEXP (x, 0);
9149 case GEU: case GTU:
9150 return unsignedp ? XEXP (x, 1) : x;
9151 case LEU: case LTU:
9152 return unsignedp ? XEXP (x, 0) : x;
9153 default:
9154 break;
9159 else if (code == SUBREG)
9161 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9162 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9164 if (SUBREG_REG (x) != r)
9166 /* We must simplify subreg here, before we lose track of the
9167 original inner_mode. */
9168 new_rtx = simplify_subreg (GET_MODE (x), r,
9169 inner_mode, SUBREG_BYTE (x));
9170 if (new_rtx)
9171 return new_rtx;
9172 else
9173 SUBST (SUBREG_REG (x), r);
9176 return x;
9178 /* We don't have to handle SIGN_EXTEND here, because even in the
9179 case of replacing something with a modeless CONST_INT, a
9180 CONST_INT is already (supposed to be) a valid sign extension for
9181 its narrower mode, which implies it's already properly
9182 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9183 story is different. */
9184 else if (code == ZERO_EXTEND)
9186 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9187 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9189 if (XEXP (x, 0) != r)
9191 /* We must simplify the zero_extend here, before we lose
9192 track of the original inner_mode. */
9193 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9194 r, inner_mode);
9195 if (new_rtx)
9196 return new_rtx;
9197 else
9198 SUBST (XEXP (x, 0), r);
9201 return x;
9204 fmt = GET_RTX_FORMAT (code);
9205 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9207 if (fmt[i] == 'e')
9208 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9209 else if (fmt[i] == 'E')
9210 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9211 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9212 cond, reg, val));
9215 return x;
9218 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9219 assignment as a field assignment. */
9221 static int
9222 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9224 if (widen_x && GET_MODE (x) != GET_MODE (y))
9226 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (y)))
9227 return 0;
9228 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9229 return 0;
9230 /* For big endian, adjust the memory offset. */
9231 if (BYTES_BIG_ENDIAN)
9232 x = adjust_address_nv (x, GET_MODE (y),
9233 -subreg_lowpart_offset (GET_MODE (x),
9234 GET_MODE (y)));
9235 else
9236 x = adjust_address_nv (x, GET_MODE (y), 0);
9239 if (x == y || rtx_equal_p (x, y))
9240 return 1;
9242 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9243 return 0;
9245 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9246 Note that all SUBREGs of MEM are paradoxical; otherwise they
9247 would have been rewritten. */
9248 if (MEM_P (x) && GET_CODE (y) == SUBREG
9249 && MEM_P (SUBREG_REG (y))
9250 && rtx_equal_p (SUBREG_REG (y),
9251 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9252 return 1;
9254 if (MEM_P (y) && GET_CODE (x) == SUBREG
9255 && MEM_P (SUBREG_REG (x))
9256 && rtx_equal_p (SUBREG_REG (x),
9257 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9258 return 1;
9260 /* We used to see if get_last_value of X and Y were the same but that's
9261 not correct. In one direction, we'll cause the assignment to have
9262 the wrong destination and in the case, we'll import a register into this
9263 insn that might have already have been dead. So fail if none of the
9264 above cases are true. */
9265 return 0;
9268 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9269 Return that assignment if so.
9271 We only handle the most common cases. */
9273 static rtx
9274 make_field_assignment (rtx x)
9276 rtx dest = SET_DEST (x);
9277 rtx src = SET_SRC (x);
9278 rtx assign;
9279 rtx rhs, lhs;
9280 HOST_WIDE_INT c1;
9281 HOST_WIDE_INT pos;
9282 unsigned HOST_WIDE_INT len;
9283 rtx other;
9284 machine_mode mode;
9286 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9287 a clear of a one-bit field. We will have changed it to
9288 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9289 for a SUBREG. */
9291 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9292 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9293 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9294 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9296 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9297 1, 1, 1, 0);
9298 if (assign != 0)
9299 return gen_rtx_SET (assign, const0_rtx);
9300 return x;
9303 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9304 && subreg_lowpart_p (XEXP (src, 0))
9305 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9306 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9307 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9308 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9309 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9310 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9312 assign = make_extraction (VOIDmode, dest, 0,
9313 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9314 1, 1, 1, 0);
9315 if (assign != 0)
9316 return gen_rtx_SET (assign, const0_rtx);
9317 return x;
9320 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9321 one-bit field. */
9322 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9323 && XEXP (XEXP (src, 0), 0) == const1_rtx
9324 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9326 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9327 1, 1, 1, 0);
9328 if (assign != 0)
9329 return gen_rtx_SET (assign, const1_rtx);
9330 return x;
9333 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9334 SRC is an AND with all bits of that field set, then we can discard
9335 the AND. */
9336 if (GET_CODE (dest) == ZERO_EXTRACT
9337 && CONST_INT_P (XEXP (dest, 1))
9338 && GET_CODE (src) == AND
9339 && CONST_INT_P (XEXP (src, 1)))
9341 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9342 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9343 unsigned HOST_WIDE_INT ze_mask;
9345 if (width >= HOST_BITS_PER_WIDE_INT)
9346 ze_mask = -1;
9347 else
9348 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9350 /* Complete overlap. We can remove the source AND. */
9351 if ((and_mask & ze_mask) == ze_mask)
9352 return gen_rtx_SET (dest, XEXP (src, 0));
9354 /* Partial overlap. We can reduce the source AND. */
9355 if ((and_mask & ze_mask) != and_mask)
9357 mode = GET_MODE (src);
9358 src = gen_rtx_AND (mode, XEXP (src, 0),
9359 gen_int_mode (and_mask & ze_mask, mode));
9360 return gen_rtx_SET (dest, src);
9364 /* The other case we handle is assignments into a constant-position
9365 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9366 a mask that has all one bits except for a group of zero bits and
9367 OTHER is known to have zeros where C1 has ones, this is such an
9368 assignment. Compute the position and length from C1. Shift OTHER
9369 to the appropriate position, force it to the required mode, and
9370 make the extraction. Check for the AND in both operands. */
9372 /* One or more SUBREGs might obscure the constant-position field
9373 assignment. The first one we are likely to encounter is an outer
9374 narrowing SUBREG, which we can just strip for the purposes of
9375 identifying the constant-field assignment. */
9376 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src))
9377 src = SUBREG_REG (src);
9379 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9380 return x;
9382 rhs = expand_compound_operation (XEXP (src, 0));
9383 lhs = expand_compound_operation (XEXP (src, 1));
9385 if (GET_CODE (rhs) == AND
9386 && CONST_INT_P (XEXP (rhs, 1))
9387 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9388 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9389 /* The second SUBREG that might get in the way is a paradoxical
9390 SUBREG around the first operand of the AND. We want to
9391 pretend the operand is as wide as the destination here. We
9392 do this by adjusting the MEM to wider mode for the sole
9393 purpose of the call to rtx_equal_for_field_assignment_p. Also
9394 note this trick only works for MEMs. */
9395 else if (GET_CODE (rhs) == AND
9396 && paradoxical_subreg_p (XEXP (rhs, 0))
9397 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9398 && CONST_INT_P (XEXP (rhs, 1))
9399 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9400 dest, true))
9401 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9402 else if (GET_CODE (lhs) == AND
9403 && CONST_INT_P (XEXP (lhs, 1))
9404 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9405 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9406 /* The second SUBREG that might get in the way is a paradoxical
9407 SUBREG around the first operand of the AND. We want to
9408 pretend the operand is as wide as the destination here. We
9409 do this by adjusting the MEM to wider mode for the sole
9410 purpose of the call to rtx_equal_for_field_assignment_p. Also
9411 note this trick only works for MEMs. */
9412 else if (GET_CODE (lhs) == AND
9413 && paradoxical_subreg_p (XEXP (lhs, 0))
9414 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9415 && CONST_INT_P (XEXP (lhs, 1))
9416 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9417 dest, true))
9418 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9419 else
9420 return x;
9422 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9423 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9424 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9425 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9426 return x;
9428 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9429 if (assign == 0)
9430 return x;
9432 /* The mode to use for the source is the mode of the assignment, or of
9433 what is inside a possible STRICT_LOW_PART. */
9434 mode = (GET_CODE (assign) == STRICT_LOW_PART
9435 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9437 /* Shift OTHER right POS places and make it the source, restricting it
9438 to the proper length and mode. */
9440 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9441 GET_MODE (src),
9442 other, pos),
9443 dest);
9444 src = force_to_mode (src, mode,
9445 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9446 ? ~(unsigned HOST_WIDE_INT) 0
9447 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9450 /* If SRC is masked by an AND that does not make a difference in
9451 the value being stored, strip it. */
9452 if (GET_CODE (assign) == ZERO_EXTRACT
9453 && CONST_INT_P (XEXP (assign, 1))
9454 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9455 && GET_CODE (src) == AND
9456 && CONST_INT_P (XEXP (src, 1))
9457 && UINTVAL (XEXP (src, 1))
9458 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9459 src = XEXP (src, 0);
9461 return gen_rtx_SET (assign, src);
9464 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9465 if so. */
9467 static rtx
9468 apply_distributive_law (rtx x)
9470 enum rtx_code code = GET_CODE (x);
9471 enum rtx_code inner_code;
9472 rtx lhs, rhs, other;
9473 rtx tem;
9475 /* Distributivity is not true for floating point as it can change the
9476 value. So we don't do it unless -funsafe-math-optimizations. */
9477 if (FLOAT_MODE_P (GET_MODE (x))
9478 && ! flag_unsafe_math_optimizations)
9479 return x;
9481 /* The outer operation can only be one of the following: */
9482 if (code != IOR && code != AND && code != XOR
9483 && code != PLUS && code != MINUS)
9484 return x;
9486 lhs = XEXP (x, 0);
9487 rhs = XEXP (x, 1);
9489 /* If either operand is a primitive we can't do anything, so get out
9490 fast. */
9491 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9492 return x;
9494 lhs = expand_compound_operation (lhs);
9495 rhs = expand_compound_operation (rhs);
9496 inner_code = GET_CODE (lhs);
9497 if (inner_code != GET_CODE (rhs))
9498 return x;
9500 /* See if the inner and outer operations distribute. */
9501 switch (inner_code)
9503 case LSHIFTRT:
9504 case ASHIFTRT:
9505 case AND:
9506 case IOR:
9507 /* These all distribute except over PLUS. */
9508 if (code == PLUS || code == MINUS)
9509 return x;
9510 break;
9512 case MULT:
9513 if (code != PLUS && code != MINUS)
9514 return x;
9515 break;
9517 case ASHIFT:
9518 /* This is also a multiply, so it distributes over everything. */
9519 break;
9521 /* This used to handle SUBREG, but this turned out to be counter-
9522 productive, since (subreg (op ...)) usually is not handled by
9523 insn patterns, and this "optimization" therefore transformed
9524 recognizable patterns into unrecognizable ones. Therefore the
9525 SUBREG case was removed from here.
9527 It is possible that distributing SUBREG over arithmetic operations
9528 leads to an intermediate result than can then be optimized further,
9529 e.g. by moving the outer SUBREG to the other side of a SET as done
9530 in simplify_set. This seems to have been the original intent of
9531 handling SUBREGs here.
9533 However, with current GCC this does not appear to actually happen,
9534 at least on major platforms. If some case is found where removing
9535 the SUBREG case here prevents follow-on optimizations, distributing
9536 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9538 default:
9539 return x;
9542 /* Set LHS and RHS to the inner operands (A and B in the example
9543 above) and set OTHER to the common operand (C in the example).
9544 There is only one way to do this unless the inner operation is
9545 commutative. */
9546 if (COMMUTATIVE_ARITH_P (lhs)
9547 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9548 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9549 else if (COMMUTATIVE_ARITH_P (lhs)
9550 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9551 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9552 else if (COMMUTATIVE_ARITH_P (lhs)
9553 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9554 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9555 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9556 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9557 else
9558 return x;
9560 /* Form the new inner operation, seeing if it simplifies first. */
9561 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9563 /* There is one exception to the general way of distributing:
9564 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9565 if (code == XOR && inner_code == IOR)
9567 inner_code = AND;
9568 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9571 /* We may be able to continuing distributing the result, so call
9572 ourselves recursively on the inner operation before forming the
9573 outer operation, which we return. */
9574 return simplify_gen_binary (inner_code, GET_MODE (x),
9575 apply_distributive_law (tem), other);
9578 /* See if X is of the form (* (+ A B) C), and if so convert to
9579 (+ (* A C) (* B C)) and try to simplify.
9581 Most of the time, this results in no change. However, if some of
9582 the operands are the same or inverses of each other, simplifications
9583 will result.
9585 For example, (and (ior A B) (not B)) can occur as the result of
9586 expanding a bit field assignment. When we apply the distributive
9587 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9588 which then simplifies to (and (A (not B))).
9590 Note that no checks happen on the validity of applying the inverse
9591 distributive law. This is pointless since we can do it in the
9592 few places where this routine is called.
9594 N is the index of the term that is decomposed (the arithmetic operation,
9595 i.e. (+ A B) in the first example above). !N is the index of the term that
9596 is distributed, i.e. of C in the first example above. */
9597 static rtx
9598 distribute_and_simplify_rtx (rtx x, int n)
9600 machine_mode mode;
9601 enum rtx_code outer_code, inner_code;
9602 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9604 /* Distributivity is not true for floating point as it can change the
9605 value. So we don't do it unless -funsafe-math-optimizations. */
9606 if (FLOAT_MODE_P (GET_MODE (x))
9607 && ! flag_unsafe_math_optimizations)
9608 return NULL_RTX;
9610 decomposed = XEXP (x, n);
9611 if (!ARITHMETIC_P (decomposed))
9612 return NULL_RTX;
9614 mode = GET_MODE (x);
9615 outer_code = GET_CODE (x);
9616 distributed = XEXP (x, !n);
9618 inner_code = GET_CODE (decomposed);
9619 inner_op0 = XEXP (decomposed, 0);
9620 inner_op1 = XEXP (decomposed, 1);
9622 /* Special case (and (xor B C) (not A)), which is equivalent to
9623 (xor (ior A B) (ior A C)) */
9624 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9626 distributed = XEXP (distributed, 0);
9627 outer_code = IOR;
9630 if (n == 0)
9632 /* Distribute the second term. */
9633 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9634 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9636 else
9638 /* Distribute the first term. */
9639 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9640 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9643 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9644 new_op0, new_op1));
9645 if (GET_CODE (tmp) != outer_code
9646 && (set_src_cost (tmp, optimize_this_for_speed_p)
9647 < set_src_cost (x, optimize_this_for_speed_p)))
9648 return tmp;
9650 return NULL_RTX;
9653 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9654 in MODE. Return an equivalent form, if different from (and VAROP
9655 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9657 static rtx
9658 simplify_and_const_int_1 (machine_mode mode, rtx varop,
9659 unsigned HOST_WIDE_INT constop)
9661 unsigned HOST_WIDE_INT nonzero;
9662 unsigned HOST_WIDE_INT orig_constop;
9663 rtx orig_varop;
9664 int i;
9666 orig_varop = varop;
9667 orig_constop = constop;
9668 if (GET_CODE (varop) == CLOBBER)
9669 return NULL_RTX;
9671 /* Simplify VAROP knowing that we will be only looking at some of the
9672 bits in it.
9674 Note by passing in CONSTOP, we guarantee that the bits not set in
9675 CONSTOP are not significant and will never be examined. We must
9676 ensure that is the case by explicitly masking out those bits
9677 before returning. */
9678 varop = force_to_mode (varop, mode, constop, 0);
9680 /* If VAROP is a CLOBBER, we will fail so return it. */
9681 if (GET_CODE (varop) == CLOBBER)
9682 return varop;
9684 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9685 to VAROP and return the new constant. */
9686 if (CONST_INT_P (varop))
9687 return gen_int_mode (INTVAL (varop) & constop, mode);
9689 /* See what bits may be nonzero in VAROP. Unlike the general case of
9690 a call to nonzero_bits, here we don't care about bits outside
9691 MODE. */
9693 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9695 /* Turn off all bits in the constant that are known to already be zero.
9696 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9697 which is tested below. */
9699 constop &= nonzero;
9701 /* If we don't have any bits left, return zero. */
9702 if (constop == 0)
9703 return const0_rtx;
9705 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9706 a power of two, we can replace this with an ASHIFT. */
9707 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9708 && (i = exact_log2 (constop)) >= 0)
9709 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9711 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9712 or XOR, then try to apply the distributive law. This may eliminate
9713 operations if either branch can be simplified because of the AND.
9714 It may also make some cases more complex, but those cases probably
9715 won't match a pattern either with or without this. */
9717 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9718 return
9719 gen_lowpart
9720 (mode,
9721 apply_distributive_law
9722 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9723 simplify_and_const_int (NULL_RTX,
9724 GET_MODE (varop),
9725 XEXP (varop, 0),
9726 constop),
9727 simplify_and_const_int (NULL_RTX,
9728 GET_MODE (varop),
9729 XEXP (varop, 1),
9730 constop))));
9732 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9733 the AND and see if one of the operands simplifies to zero. If so, we
9734 may eliminate it. */
9736 if (GET_CODE (varop) == PLUS
9737 && exact_log2 (constop + 1) >= 0)
9739 rtx o0, o1;
9741 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9742 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9743 if (o0 == const0_rtx)
9744 return o1;
9745 if (o1 == const0_rtx)
9746 return o0;
9749 /* Make a SUBREG if necessary. If we can't make it, fail. */
9750 varop = gen_lowpart (mode, varop);
9751 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9752 return NULL_RTX;
9754 /* If we are only masking insignificant bits, return VAROP. */
9755 if (constop == nonzero)
9756 return varop;
9758 if (varop == orig_varop && constop == orig_constop)
9759 return NULL_RTX;
9761 /* Otherwise, return an AND. */
9762 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9766 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9767 in MODE.
9769 Return an equivalent form, if different from X. Otherwise, return X. If
9770 X is zero, we are to always construct the equivalent form. */
9772 static rtx
9773 simplify_and_const_int (rtx x, machine_mode mode, rtx varop,
9774 unsigned HOST_WIDE_INT constop)
9776 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9777 if (tem)
9778 return tem;
9780 if (!x)
9781 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9782 gen_int_mode (constop, mode));
9783 if (GET_MODE (x) != mode)
9784 x = gen_lowpart (mode, x);
9785 return x;
9788 /* Given a REG, X, compute which bits in X can be nonzero.
9789 We don't care about bits outside of those defined in MODE.
9791 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9792 a shift, AND, or zero_extract, we can do better. */
9794 static rtx
9795 reg_nonzero_bits_for_combine (const_rtx x, machine_mode mode,
9796 const_rtx known_x ATTRIBUTE_UNUSED,
9797 machine_mode known_mode ATTRIBUTE_UNUSED,
9798 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9799 unsigned HOST_WIDE_INT *nonzero)
9801 rtx tem;
9802 reg_stat_type *rsp;
9804 /* If X is a register whose nonzero bits value is current, use it.
9805 Otherwise, if X is a register whose value we can find, use that
9806 value. Otherwise, use the previously-computed global nonzero bits
9807 for this register. */
9809 rsp = &reg_stat[REGNO (x)];
9810 if (rsp->last_set_value != 0
9811 && (rsp->last_set_mode == mode
9812 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9813 && GET_MODE_CLASS (mode) == MODE_INT))
9814 && ((rsp->last_set_label >= label_tick_ebb_start
9815 && rsp->last_set_label < label_tick)
9816 || (rsp->last_set_label == label_tick
9817 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9818 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9819 && REGNO (x) < reg_n_sets_max
9820 && REG_N_SETS (REGNO (x)) == 1
9821 && !REGNO_REG_SET_P
9822 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9823 REGNO (x)))))
9825 unsigned HOST_WIDE_INT mask = rsp->last_set_nonzero_bits;
9827 if (GET_MODE_PRECISION (rsp->last_set_mode) < GET_MODE_PRECISION (mode))
9828 /* We don't know anything about the upper bits. */
9829 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (rsp->last_set_mode);
9831 *nonzero &= mask;
9832 return NULL;
9835 tem = get_last_value (x);
9837 if (tem)
9839 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9840 tem = sign_extend_short_imm (tem, GET_MODE (x),
9841 GET_MODE_PRECISION (mode));
9842 #endif
9843 return tem;
9845 else if (nonzero_sign_valid && rsp->nonzero_bits)
9847 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9849 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9850 /* We don't know anything about the upper bits. */
9851 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9853 *nonzero &= mask;
9856 return NULL;
9859 /* Return the number of bits at the high-order end of X that are known to
9860 be equal to the sign bit. X will be used in mode MODE; if MODE is
9861 VOIDmode, X will be used in its own mode. The returned value will always
9862 be between 1 and the number of bits in MODE. */
9864 static rtx
9865 reg_num_sign_bit_copies_for_combine (const_rtx x, machine_mode mode,
9866 const_rtx known_x ATTRIBUTE_UNUSED,
9867 machine_mode known_mode
9868 ATTRIBUTE_UNUSED,
9869 unsigned int known_ret ATTRIBUTE_UNUSED,
9870 unsigned int *result)
9872 rtx tem;
9873 reg_stat_type *rsp;
9875 rsp = &reg_stat[REGNO (x)];
9876 if (rsp->last_set_value != 0
9877 && rsp->last_set_mode == mode
9878 && ((rsp->last_set_label >= label_tick_ebb_start
9879 && rsp->last_set_label < label_tick)
9880 || (rsp->last_set_label == label_tick
9881 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9882 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9883 && REGNO (x) < reg_n_sets_max
9884 && REG_N_SETS (REGNO (x)) == 1
9885 && !REGNO_REG_SET_P
9886 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9887 REGNO (x)))))
9889 *result = rsp->last_set_sign_bit_copies;
9890 return NULL;
9893 tem = get_last_value (x);
9894 if (tem != 0)
9895 return tem;
9897 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9898 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9899 *result = rsp->sign_bit_copies;
9901 return NULL;
9904 /* Return the number of "extended" bits there are in X, when interpreted
9905 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9906 unsigned quantities, this is the number of high-order zero bits.
9907 For signed quantities, this is the number of copies of the sign bit
9908 minus 1. In both case, this function returns the number of "spare"
9909 bits. For example, if two quantities for which this function returns
9910 at least 1 are added, the addition is known not to overflow.
9912 This function will always return 0 unless called during combine, which
9913 implies that it must be called from a define_split. */
9915 unsigned int
9916 extended_count (const_rtx x, machine_mode mode, int unsignedp)
9918 if (nonzero_sign_valid == 0)
9919 return 0;
9921 return (unsignedp
9922 ? (HWI_COMPUTABLE_MODE_P (mode)
9923 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9924 - floor_log2 (nonzero_bits (x, mode)))
9925 : 0)
9926 : num_sign_bit_copies (x, mode) - 1);
9929 /* This function is called from `simplify_shift_const' to merge two
9930 outer operations. Specifically, we have already found that we need
9931 to perform operation *POP0 with constant *PCONST0 at the outermost
9932 position. We would now like to also perform OP1 with constant CONST1
9933 (with *POP0 being done last).
9935 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9936 the resulting operation. *PCOMP_P is set to 1 if we would need to
9937 complement the innermost operand, otherwise it is unchanged.
9939 MODE is the mode in which the operation will be done. No bits outside
9940 the width of this mode matter. It is assumed that the width of this mode
9941 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9943 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9944 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9945 result is simply *PCONST0.
9947 If the resulting operation cannot be expressed as one operation, we
9948 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9950 static int
9951 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
9953 enum rtx_code op0 = *pop0;
9954 HOST_WIDE_INT const0 = *pconst0;
9956 const0 &= GET_MODE_MASK (mode);
9957 const1 &= GET_MODE_MASK (mode);
9959 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9960 if (op0 == AND)
9961 const1 &= const0;
9963 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9964 if OP0 is SET. */
9966 if (op1 == UNKNOWN || op0 == SET)
9967 return 1;
9969 else if (op0 == UNKNOWN)
9970 op0 = op1, const0 = const1;
9972 else if (op0 == op1)
9974 switch (op0)
9976 case AND:
9977 const0 &= const1;
9978 break;
9979 case IOR:
9980 const0 |= const1;
9981 break;
9982 case XOR:
9983 const0 ^= const1;
9984 break;
9985 case PLUS:
9986 const0 += const1;
9987 break;
9988 case NEG:
9989 op0 = UNKNOWN;
9990 break;
9991 default:
9992 break;
9996 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9997 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9998 return 0;
10000 /* If the two constants aren't the same, we can't do anything. The
10001 remaining six cases can all be done. */
10002 else if (const0 != const1)
10003 return 0;
10005 else
10006 switch (op0)
10008 case IOR:
10009 if (op1 == AND)
10010 /* (a & b) | b == b */
10011 op0 = SET;
10012 else /* op1 == XOR */
10013 /* (a ^ b) | b == a | b */
10015 break;
10017 case XOR:
10018 if (op1 == AND)
10019 /* (a & b) ^ b == (~a) & b */
10020 op0 = AND, *pcomp_p = 1;
10021 else /* op1 == IOR */
10022 /* (a | b) ^ b == a & ~b */
10023 op0 = AND, const0 = ~const0;
10024 break;
10026 case AND:
10027 if (op1 == IOR)
10028 /* (a | b) & b == b */
10029 op0 = SET;
10030 else /* op1 == XOR */
10031 /* (a ^ b) & b) == (~a) & b */
10032 *pcomp_p = 1;
10033 break;
10034 default:
10035 break;
10038 /* Check for NO-OP cases. */
10039 const0 &= GET_MODE_MASK (mode);
10040 if (const0 == 0
10041 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10042 op0 = UNKNOWN;
10043 else if (const0 == 0 && op0 == AND)
10044 op0 = SET;
10045 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10046 && op0 == AND)
10047 op0 = UNKNOWN;
10049 *pop0 = op0;
10051 /* ??? Slightly redundant with the above mask, but not entirely.
10052 Moving this above means we'd have to sign-extend the mode mask
10053 for the final test. */
10054 if (op0 != UNKNOWN && op0 != NEG)
10055 *pconst0 = trunc_int_for_mode (const0, mode);
10057 return 1;
10060 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10061 the shift in. The original shift operation CODE is performed on OP in
10062 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10063 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10064 result of the shift is subject to operation OUTER_CODE with operand
10065 OUTER_CONST. */
10067 static machine_mode
10068 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10069 machine_mode orig_mode, machine_mode mode,
10070 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10072 if (orig_mode == mode)
10073 return mode;
10074 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10076 /* In general we can't perform in wider mode for right shift and rotate. */
10077 switch (code)
10079 case ASHIFTRT:
10080 /* We can still widen if the bits brought in from the left are identical
10081 to the sign bit of ORIG_MODE. */
10082 if (num_sign_bit_copies (op, mode)
10083 > (unsigned) (GET_MODE_PRECISION (mode)
10084 - GET_MODE_PRECISION (orig_mode)))
10085 return mode;
10086 return orig_mode;
10088 case LSHIFTRT:
10089 /* Similarly here but with zero bits. */
10090 if (HWI_COMPUTABLE_MODE_P (mode)
10091 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10092 return mode;
10094 /* We can also widen if the bits brought in will be masked off. This
10095 operation is performed in ORIG_MODE. */
10096 if (outer_code == AND)
10098 int care_bits = low_bitmask_len (orig_mode, outer_const);
10100 if (care_bits >= 0
10101 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10102 return mode;
10104 /* fall through */
10106 case ROTATE:
10107 return orig_mode;
10109 case ROTATERT:
10110 gcc_unreachable ();
10112 default:
10113 return mode;
10117 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10118 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10119 if we cannot simplify it. Otherwise, return a simplified value.
10121 The shift is normally computed in the widest mode we find in VAROP, as
10122 long as it isn't a different number of words than RESULT_MODE. Exceptions
10123 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10125 static rtx
10126 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10127 rtx varop, int orig_count)
10129 enum rtx_code orig_code = code;
10130 rtx orig_varop = varop;
10131 int count;
10132 machine_mode mode = result_mode;
10133 machine_mode shift_mode, tmode;
10134 unsigned int mode_words
10135 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10136 /* We form (outer_op (code varop count) (outer_const)). */
10137 enum rtx_code outer_op = UNKNOWN;
10138 HOST_WIDE_INT outer_const = 0;
10139 int complement_p = 0;
10140 rtx new_rtx, x;
10142 /* Make sure and truncate the "natural" shift on the way in. We don't
10143 want to do this inside the loop as it makes it more difficult to
10144 combine shifts. */
10145 if (SHIFT_COUNT_TRUNCATED)
10146 orig_count &= GET_MODE_BITSIZE (mode) - 1;
10148 /* If we were given an invalid count, don't do anything except exactly
10149 what was requested. */
10151 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
10152 return NULL_RTX;
10154 count = orig_count;
10156 /* Unless one of the branches of the `if' in this loop does a `continue',
10157 we will `break' the loop after the `if'. */
10159 while (count != 0)
10161 /* If we have an operand of (clobber (const_int 0)), fail. */
10162 if (GET_CODE (varop) == CLOBBER)
10163 return NULL_RTX;
10165 /* Convert ROTATERT to ROTATE. */
10166 if (code == ROTATERT)
10168 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
10169 code = ROTATE;
10170 if (VECTOR_MODE_P (result_mode))
10171 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
10172 else
10173 count = bitsize - count;
10176 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
10177 mode, outer_op, outer_const);
10179 /* Handle cases where the count is greater than the size of the mode
10180 minus 1. For ASHIFT, use the size minus one as the count (this can
10181 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10182 take the count modulo the size. For other shifts, the result is
10183 zero.
10185 Since these shifts are being produced by the compiler by combining
10186 multiple operations, each of which are defined, we know what the
10187 result is supposed to be. */
10189 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
10191 if (code == ASHIFTRT)
10192 count = GET_MODE_PRECISION (shift_mode) - 1;
10193 else if (code == ROTATE || code == ROTATERT)
10194 count %= GET_MODE_PRECISION (shift_mode);
10195 else
10197 /* We can't simply return zero because there may be an
10198 outer op. */
10199 varop = const0_rtx;
10200 count = 0;
10201 break;
10205 /* If we discovered we had to complement VAROP, leave. Making a NOT
10206 here would cause an infinite loop. */
10207 if (complement_p)
10208 break;
10210 /* An arithmetic right shift of a quantity known to be -1 or 0
10211 is a no-op. */
10212 if (code == ASHIFTRT
10213 && (num_sign_bit_copies (varop, shift_mode)
10214 == GET_MODE_PRECISION (shift_mode)))
10216 count = 0;
10217 break;
10220 /* If we are doing an arithmetic right shift and discarding all but
10221 the sign bit copies, this is equivalent to doing a shift by the
10222 bitsize minus one. Convert it into that shift because it will often
10223 allow other simplifications. */
10225 if (code == ASHIFTRT
10226 && (count + num_sign_bit_copies (varop, shift_mode)
10227 >= GET_MODE_PRECISION (shift_mode)))
10228 count = GET_MODE_PRECISION (shift_mode) - 1;
10230 /* We simplify the tests below and elsewhere by converting
10231 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10232 `make_compound_operation' will convert it to an ASHIFTRT for
10233 those machines (such as VAX) that don't have an LSHIFTRT. */
10234 if (code == ASHIFTRT
10235 && val_signbit_known_clear_p (shift_mode,
10236 nonzero_bits (varop, shift_mode)))
10237 code = LSHIFTRT;
10239 if (((code == LSHIFTRT
10240 && HWI_COMPUTABLE_MODE_P (shift_mode)
10241 && !(nonzero_bits (varop, shift_mode) >> count))
10242 || (code == ASHIFT
10243 && HWI_COMPUTABLE_MODE_P (shift_mode)
10244 && !((nonzero_bits (varop, shift_mode) << count)
10245 & GET_MODE_MASK (shift_mode))))
10246 && !side_effects_p (varop))
10247 varop = const0_rtx;
10249 switch (GET_CODE (varop))
10251 case SIGN_EXTEND:
10252 case ZERO_EXTEND:
10253 case SIGN_EXTRACT:
10254 case ZERO_EXTRACT:
10255 new_rtx = expand_compound_operation (varop);
10256 if (new_rtx != varop)
10258 varop = new_rtx;
10259 continue;
10261 break;
10263 case MEM:
10264 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10265 minus the width of a smaller mode, we can do this with a
10266 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10267 if ((code == ASHIFTRT || code == LSHIFTRT)
10268 && ! mode_dependent_address_p (XEXP (varop, 0),
10269 MEM_ADDR_SPACE (varop))
10270 && ! MEM_VOLATILE_P (varop)
10271 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10272 MODE_INT, 1)) != BLKmode)
10274 new_rtx = adjust_address_nv (varop, tmode,
10275 BYTES_BIG_ENDIAN ? 0
10276 : count / BITS_PER_UNIT);
10278 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10279 : ZERO_EXTEND, mode, new_rtx);
10280 count = 0;
10281 continue;
10283 break;
10285 case SUBREG:
10286 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10287 the same number of words as what we've seen so far. Then store
10288 the widest mode in MODE. */
10289 if (subreg_lowpart_p (varop)
10290 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10291 > GET_MODE_SIZE (GET_MODE (varop)))
10292 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10293 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10294 == mode_words
10295 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10296 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10298 varop = SUBREG_REG (varop);
10299 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10300 mode = GET_MODE (varop);
10301 continue;
10303 break;
10305 case MULT:
10306 /* Some machines use MULT instead of ASHIFT because MULT
10307 is cheaper. But it is still better on those machines to
10308 merge two shifts into one. */
10309 if (CONST_INT_P (XEXP (varop, 1))
10310 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10312 varop
10313 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10314 XEXP (varop, 0),
10315 GEN_INT (exact_log2 (
10316 UINTVAL (XEXP (varop, 1)))));
10317 continue;
10319 break;
10321 case UDIV:
10322 /* Similar, for when divides are cheaper. */
10323 if (CONST_INT_P (XEXP (varop, 1))
10324 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10326 varop
10327 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10328 XEXP (varop, 0),
10329 GEN_INT (exact_log2 (
10330 UINTVAL (XEXP (varop, 1)))));
10331 continue;
10333 break;
10335 case ASHIFTRT:
10336 /* If we are extracting just the sign bit of an arithmetic
10337 right shift, that shift is not needed. However, the sign
10338 bit of a wider mode may be different from what would be
10339 interpreted as the sign bit in a narrower mode, so, if
10340 the result is narrower, don't discard the shift. */
10341 if (code == LSHIFTRT
10342 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10343 && (GET_MODE_BITSIZE (result_mode)
10344 >= GET_MODE_BITSIZE (GET_MODE (varop))))
10346 varop = XEXP (varop, 0);
10347 continue;
10350 /* ... fall through ... */
10352 case LSHIFTRT:
10353 case ASHIFT:
10354 case ROTATE:
10355 /* Here we have two nested shifts. The result is usually the
10356 AND of a new shift with a mask. We compute the result below. */
10357 if (CONST_INT_P (XEXP (varop, 1))
10358 && INTVAL (XEXP (varop, 1)) >= 0
10359 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10360 && HWI_COMPUTABLE_MODE_P (result_mode)
10361 && HWI_COMPUTABLE_MODE_P (mode)
10362 && !VECTOR_MODE_P (result_mode))
10364 enum rtx_code first_code = GET_CODE (varop);
10365 unsigned int first_count = INTVAL (XEXP (varop, 1));
10366 unsigned HOST_WIDE_INT mask;
10367 rtx mask_rtx;
10369 /* We have one common special case. We can't do any merging if
10370 the inner code is an ASHIFTRT of a smaller mode. However, if
10371 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10372 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10373 we can convert it to
10374 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10375 This simplifies certain SIGN_EXTEND operations. */
10376 if (code == ASHIFT && first_code == ASHIFTRT
10377 && count == (GET_MODE_PRECISION (result_mode)
10378 - GET_MODE_PRECISION (GET_MODE (varop))))
10380 /* C3 has the low-order C1 bits zero. */
10382 mask = GET_MODE_MASK (mode)
10383 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10385 varop = simplify_and_const_int (NULL_RTX, result_mode,
10386 XEXP (varop, 0), mask);
10387 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10388 varop, count);
10389 count = first_count;
10390 code = ASHIFTRT;
10391 continue;
10394 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10395 than C1 high-order bits equal to the sign bit, we can convert
10396 this to either an ASHIFT or an ASHIFTRT depending on the
10397 two counts.
10399 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10401 if (code == ASHIFTRT && first_code == ASHIFT
10402 && GET_MODE (varop) == shift_mode
10403 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10404 > first_count))
10406 varop = XEXP (varop, 0);
10407 count -= first_count;
10408 if (count < 0)
10410 count = -count;
10411 code = ASHIFT;
10414 continue;
10417 /* There are some cases we can't do. If CODE is ASHIFTRT,
10418 we can only do this if FIRST_CODE is also ASHIFTRT.
10420 We can't do the case when CODE is ROTATE and FIRST_CODE is
10421 ASHIFTRT.
10423 If the mode of this shift is not the mode of the outer shift,
10424 we can't do this if either shift is a right shift or ROTATE.
10426 Finally, we can't do any of these if the mode is too wide
10427 unless the codes are the same.
10429 Handle the case where the shift codes are the same
10430 first. */
10432 if (code == first_code)
10434 if (GET_MODE (varop) != result_mode
10435 && (code == ASHIFTRT || code == LSHIFTRT
10436 || code == ROTATE))
10437 break;
10439 count += first_count;
10440 varop = XEXP (varop, 0);
10441 continue;
10444 if (code == ASHIFTRT
10445 || (code == ROTATE && first_code == ASHIFTRT)
10446 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10447 || (GET_MODE (varop) != result_mode
10448 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10449 || first_code == ROTATE
10450 || code == ROTATE)))
10451 break;
10453 /* To compute the mask to apply after the shift, shift the
10454 nonzero bits of the inner shift the same way the
10455 outer shift will. */
10457 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10458 result_mode);
10460 mask_rtx
10461 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10462 GEN_INT (count));
10464 /* Give up if we can't compute an outer operation to use. */
10465 if (mask_rtx == 0
10466 || !CONST_INT_P (mask_rtx)
10467 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10468 INTVAL (mask_rtx),
10469 result_mode, &complement_p))
10470 break;
10472 /* If the shifts are in the same direction, we add the
10473 counts. Otherwise, we subtract them. */
10474 if ((code == ASHIFTRT || code == LSHIFTRT)
10475 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10476 count += first_count;
10477 else
10478 count -= first_count;
10480 /* If COUNT is positive, the new shift is usually CODE,
10481 except for the two exceptions below, in which case it is
10482 FIRST_CODE. If the count is negative, FIRST_CODE should
10483 always be used */
10484 if (count > 0
10485 && ((first_code == ROTATE && code == ASHIFT)
10486 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10487 code = first_code;
10488 else if (count < 0)
10489 code = first_code, count = -count;
10491 varop = XEXP (varop, 0);
10492 continue;
10495 /* If we have (A << B << C) for any shift, we can convert this to
10496 (A << C << B). This wins if A is a constant. Only try this if
10497 B is not a constant. */
10499 else if (GET_CODE (varop) == code
10500 && CONST_INT_P (XEXP (varop, 0))
10501 && !CONST_INT_P (XEXP (varop, 1)))
10503 rtx new_rtx = simplify_const_binary_operation (code, mode,
10504 XEXP (varop, 0),
10505 GEN_INT (count));
10506 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10507 count = 0;
10508 continue;
10510 break;
10512 case NOT:
10513 if (VECTOR_MODE_P (mode))
10514 break;
10516 /* Make this fit the case below. */
10517 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10518 continue;
10520 case IOR:
10521 case AND:
10522 case XOR:
10523 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10524 with C the size of VAROP - 1 and the shift is logical if
10525 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10526 we have an (le X 0) operation. If we have an arithmetic shift
10527 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10528 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10530 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10531 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10532 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10533 && (code == LSHIFTRT || code == ASHIFTRT)
10534 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10535 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10537 count = 0;
10538 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10539 const0_rtx);
10541 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10542 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10544 continue;
10547 /* If we have (shift (logical)), move the logical to the outside
10548 to allow it to possibly combine with another logical and the
10549 shift to combine with another shift. This also canonicalizes to
10550 what a ZERO_EXTRACT looks like. Also, some machines have
10551 (and (shift)) insns. */
10553 if (CONST_INT_P (XEXP (varop, 1))
10554 /* We can't do this if we have (ashiftrt (xor)) and the
10555 constant has its sign bit set in shift_mode with shift_mode
10556 wider than result_mode. */
10557 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10558 && result_mode != shift_mode
10559 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10560 shift_mode))
10561 && (new_rtx = simplify_const_binary_operation
10562 (code, result_mode,
10563 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10564 GEN_INT (count))) != 0
10565 && CONST_INT_P (new_rtx)
10566 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10567 INTVAL (new_rtx), result_mode, &complement_p))
10569 varop = XEXP (varop, 0);
10570 continue;
10573 /* If we can't do that, try to simplify the shift in each arm of the
10574 logical expression, make a new logical expression, and apply
10575 the inverse distributive law. This also can't be done for
10576 (ashiftrt (xor)) where we've widened the shift and the constant
10577 changes the sign bit. */
10578 if (CONST_INT_P (XEXP (varop, 1))
10579 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10580 && result_mode != shift_mode
10581 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10582 shift_mode)))
10584 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10585 XEXP (varop, 0), count);
10586 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10587 XEXP (varop, 1), count);
10589 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10590 lhs, rhs);
10591 varop = apply_distributive_law (varop);
10593 count = 0;
10594 continue;
10596 break;
10598 case EQ:
10599 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10600 says that the sign bit can be tested, FOO has mode MODE, C is
10601 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10602 that may be nonzero. */
10603 if (code == LSHIFTRT
10604 && XEXP (varop, 1) == const0_rtx
10605 && GET_MODE (XEXP (varop, 0)) == result_mode
10606 && count == (GET_MODE_PRECISION (result_mode) - 1)
10607 && HWI_COMPUTABLE_MODE_P (result_mode)
10608 && STORE_FLAG_VALUE == -1
10609 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10610 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10611 &complement_p))
10613 varop = XEXP (varop, 0);
10614 count = 0;
10615 continue;
10617 break;
10619 case NEG:
10620 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10621 than the number of bits in the mode is equivalent to A. */
10622 if (code == LSHIFTRT
10623 && count == (GET_MODE_PRECISION (result_mode) - 1)
10624 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10626 varop = XEXP (varop, 0);
10627 count = 0;
10628 continue;
10631 /* NEG commutes with ASHIFT since it is multiplication. Move the
10632 NEG outside to allow shifts to combine. */
10633 if (code == ASHIFT
10634 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10635 &complement_p))
10637 varop = XEXP (varop, 0);
10638 continue;
10640 break;
10642 case PLUS:
10643 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10644 is one less than the number of bits in the mode is
10645 equivalent to (xor A 1). */
10646 if (code == LSHIFTRT
10647 && count == (GET_MODE_PRECISION (result_mode) - 1)
10648 && XEXP (varop, 1) == constm1_rtx
10649 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10650 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10651 &complement_p))
10653 count = 0;
10654 varop = XEXP (varop, 0);
10655 continue;
10658 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10659 that might be nonzero in BAR are those being shifted out and those
10660 bits are known zero in FOO, we can replace the PLUS with FOO.
10661 Similarly in the other operand order. This code occurs when
10662 we are computing the size of a variable-size array. */
10664 if ((code == ASHIFTRT || code == LSHIFTRT)
10665 && count < HOST_BITS_PER_WIDE_INT
10666 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10667 && (nonzero_bits (XEXP (varop, 1), result_mode)
10668 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10670 varop = XEXP (varop, 0);
10671 continue;
10673 else if ((code == ASHIFTRT || code == LSHIFTRT)
10674 && count < HOST_BITS_PER_WIDE_INT
10675 && HWI_COMPUTABLE_MODE_P (result_mode)
10676 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10677 >> count)
10678 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10679 & nonzero_bits (XEXP (varop, 1),
10680 result_mode)))
10682 varop = XEXP (varop, 1);
10683 continue;
10686 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10687 if (code == ASHIFT
10688 && CONST_INT_P (XEXP (varop, 1))
10689 && (new_rtx = simplify_const_binary_operation
10690 (ASHIFT, result_mode,
10691 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10692 GEN_INT (count))) != 0
10693 && CONST_INT_P (new_rtx)
10694 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10695 INTVAL (new_rtx), result_mode, &complement_p))
10697 varop = XEXP (varop, 0);
10698 continue;
10701 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10702 signbit', and attempt to change the PLUS to an XOR and move it to
10703 the outer operation as is done above in the AND/IOR/XOR case
10704 leg for shift(logical). See details in logical handling above
10705 for reasoning in doing so. */
10706 if (code == LSHIFTRT
10707 && CONST_INT_P (XEXP (varop, 1))
10708 && mode_signbit_p (result_mode, XEXP (varop, 1))
10709 && (new_rtx = simplify_const_binary_operation
10710 (code, result_mode,
10711 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10712 GEN_INT (count))) != 0
10713 && CONST_INT_P (new_rtx)
10714 && merge_outer_ops (&outer_op, &outer_const, XOR,
10715 INTVAL (new_rtx), result_mode, &complement_p))
10717 varop = XEXP (varop, 0);
10718 continue;
10721 break;
10723 case MINUS:
10724 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10725 with C the size of VAROP - 1 and the shift is logical if
10726 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10727 we have a (gt X 0) operation. If the shift is arithmetic with
10728 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10729 we have a (neg (gt X 0)) operation. */
10731 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10732 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10733 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10734 && (code == LSHIFTRT || code == ASHIFTRT)
10735 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10736 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10737 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10739 count = 0;
10740 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10741 const0_rtx);
10743 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10744 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10746 continue;
10748 break;
10750 case TRUNCATE:
10751 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10752 if the truncate does not affect the value. */
10753 if (code == LSHIFTRT
10754 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10755 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10756 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10757 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10758 - GET_MODE_PRECISION (GET_MODE (varop)))))
10760 rtx varop_inner = XEXP (varop, 0);
10762 varop_inner
10763 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10764 XEXP (varop_inner, 0),
10765 GEN_INT
10766 (count + INTVAL (XEXP (varop_inner, 1))));
10767 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10768 count = 0;
10769 continue;
10771 break;
10773 default:
10774 break;
10777 break;
10780 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10781 outer_op, outer_const);
10783 /* We have now finished analyzing the shift. The result should be
10784 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10785 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10786 to the result of the shift. OUTER_CONST is the relevant constant,
10787 but we must turn off all bits turned off in the shift. */
10789 if (outer_op == UNKNOWN
10790 && orig_code == code && orig_count == count
10791 && varop == orig_varop
10792 && shift_mode == GET_MODE (varop))
10793 return NULL_RTX;
10795 /* Make a SUBREG if necessary. If we can't make it, fail. */
10796 varop = gen_lowpart (shift_mode, varop);
10797 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10798 return NULL_RTX;
10800 /* If we have an outer operation and we just made a shift, it is
10801 possible that we could have simplified the shift were it not
10802 for the outer operation. So try to do the simplification
10803 recursively. */
10805 if (outer_op != UNKNOWN)
10806 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10807 else
10808 x = NULL_RTX;
10810 if (x == NULL_RTX)
10811 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10813 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10814 turn off all the bits that the shift would have turned off. */
10815 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10816 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10817 GET_MODE_MASK (result_mode) >> orig_count);
10819 /* Do the remainder of the processing in RESULT_MODE. */
10820 x = gen_lowpart_or_truncate (result_mode, x);
10822 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10823 operation. */
10824 if (complement_p)
10825 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10827 if (outer_op != UNKNOWN)
10829 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10830 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10831 outer_const = trunc_int_for_mode (outer_const, result_mode);
10833 if (outer_op == AND)
10834 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10835 else if (outer_op == SET)
10837 /* This means that we have determined that the result is
10838 equivalent to a constant. This should be rare. */
10839 if (!side_effects_p (x))
10840 x = GEN_INT (outer_const);
10842 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10843 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10844 else
10845 x = simplify_gen_binary (outer_op, result_mode, x,
10846 GEN_INT (outer_const));
10849 return x;
10852 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10853 The result of the shift is RESULT_MODE. If we cannot simplify it,
10854 return X or, if it is NULL, synthesize the expression with
10855 simplify_gen_binary. Otherwise, return a simplified value.
10857 The shift is normally computed in the widest mode we find in VAROP, as
10858 long as it isn't a different number of words than RESULT_MODE. Exceptions
10859 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10861 static rtx
10862 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
10863 rtx varop, int count)
10865 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10866 if (tem)
10867 return tem;
10869 if (!x)
10870 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10871 if (GET_MODE (x) != result_mode)
10872 x = gen_lowpart (result_mode, x);
10873 return x;
10877 /* A subroutine of recog_for_combine. See there for arguments and
10878 return value. */
10880 static int
10881 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
10883 rtx pat = *pnewpat;
10884 rtx pat_without_clobbers;
10885 int insn_code_number;
10886 int num_clobbers_to_add = 0;
10887 int i;
10888 rtx notes = NULL_RTX;
10889 rtx old_notes, old_pat;
10890 int old_icode;
10892 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10893 we use to indicate that something didn't match. If we find such a
10894 thing, force rejection. */
10895 if (GET_CODE (pat) == PARALLEL)
10896 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10897 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10898 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10899 return -1;
10901 old_pat = PATTERN (insn);
10902 old_notes = REG_NOTES (insn);
10903 PATTERN (insn) = pat;
10904 REG_NOTES (insn) = NULL_RTX;
10906 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10907 if (dump_file && (dump_flags & TDF_DETAILS))
10909 if (insn_code_number < 0)
10910 fputs ("Failed to match this instruction:\n", dump_file);
10911 else
10912 fputs ("Successfully matched this instruction:\n", dump_file);
10913 print_rtl_single (dump_file, pat);
10916 /* If it isn't, there is the possibility that we previously had an insn
10917 that clobbered some register as a side effect, but the combined
10918 insn doesn't need to do that. So try once more without the clobbers
10919 unless this represents an ASM insn. */
10921 if (insn_code_number < 0 && ! check_asm_operands (pat)
10922 && GET_CODE (pat) == PARALLEL)
10924 int pos;
10926 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10927 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10929 if (i != pos)
10930 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10931 pos++;
10934 SUBST_INT (XVECLEN (pat, 0), pos);
10936 if (pos == 1)
10937 pat = XVECEXP (pat, 0, 0);
10939 PATTERN (insn) = pat;
10940 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10941 if (dump_file && (dump_flags & TDF_DETAILS))
10943 if (insn_code_number < 0)
10944 fputs ("Failed to match this instruction:\n", dump_file);
10945 else
10946 fputs ("Successfully matched this instruction:\n", dump_file);
10947 print_rtl_single (dump_file, pat);
10951 pat_without_clobbers = pat;
10953 PATTERN (insn) = old_pat;
10954 REG_NOTES (insn) = old_notes;
10956 /* Recognize all noop sets, these will be killed by followup pass. */
10957 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10958 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10960 /* If we had any clobbers to add, make a new pattern than contains
10961 them. Then check to make sure that all of them are dead. */
10962 if (num_clobbers_to_add)
10964 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10965 rtvec_alloc (GET_CODE (pat) == PARALLEL
10966 ? (XVECLEN (pat, 0)
10967 + num_clobbers_to_add)
10968 : num_clobbers_to_add + 1));
10970 if (GET_CODE (pat) == PARALLEL)
10971 for (i = 0; i < XVECLEN (pat, 0); i++)
10972 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10973 else
10974 XVECEXP (newpat, 0, 0) = pat;
10976 add_clobbers (newpat, insn_code_number);
10978 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10979 i < XVECLEN (newpat, 0); i++)
10981 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10982 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10983 return -1;
10984 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10986 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10987 notes = alloc_reg_note (REG_UNUSED,
10988 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10991 pat = newpat;
10994 if (insn_code_number >= 0
10995 && insn_code_number != NOOP_MOVE_INSN_CODE)
10997 old_pat = PATTERN (insn);
10998 old_notes = REG_NOTES (insn);
10999 old_icode = INSN_CODE (insn);
11000 PATTERN (insn) = pat;
11001 REG_NOTES (insn) = notes;
11003 /* Allow targets to reject combined insn. */
11004 if (!targetm.legitimate_combined_insn (insn))
11006 if (dump_file && (dump_flags & TDF_DETAILS))
11007 fputs ("Instruction not appropriate for target.",
11008 dump_file);
11010 /* Callers expect recog_for_combine to strip
11011 clobbers from the pattern on failure. */
11012 pat = pat_without_clobbers;
11013 notes = NULL_RTX;
11015 insn_code_number = -1;
11018 PATTERN (insn) = old_pat;
11019 REG_NOTES (insn) = old_notes;
11020 INSN_CODE (insn) = old_icode;
11023 *pnewpat = pat;
11024 *pnotes = notes;
11026 return insn_code_number;
11029 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11030 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11031 Return whether anything was so changed. */
11033 static bool
11034 change_zero_ext (rtx *src)
11036 bool changed = false;
11038 subrtx_ptr_iterator::array_type array;
11039 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11041 rtx x = **iter;
11042 machine_mode mode = GET_MODE (x);
11043 int size;
11045 if (GET_CODE (x) == ZERO_EXTRACT
11046 && CONST_INT_P (XEXP (x, 1))
11047 && CONST_INT_P (XEXP (x, 2))
11048 && GET_MODE (XEXP (x, 0)) == mode)
11050 size = INTVAL (XEXP (x, 1));
11052 int start = INTVAL (XEXP (x, 2));
11053 if (BITS_BIG_ENDIAN)
11054 start = GET_MODE_PRECISION (mode) - size - start;
11056 x = gen_rtx_LSHIFTRT (mode, XEXP (x, 0), GEN_INT (start));
11058 else if (GET_CODE (x) == ZERO_EXTEND
11059 && GET_CODE (XEXP (x, 0)) == SUBREG
11060 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
11061 && subreg_lowpart_p (XEXP (x, 0)))
11063 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11064 x = SUBREG_REG (XEXP (x, 0));
11066 else
11067 continue;
11069 unsigned HOST_WIDE_INT mask = 1;
11070 mask <<= size;
11071 mask--;
11073 x = gen_rtx_AND (mode, x, GEN_INT (mask));
11075 SUBST (**iter, x);
11076 changed = true;
11079 return changed;
11082 /* Like recog, but we receive the address of a pointer to a new pattern.
11083 We try to match the rtx that the pointer points to.
11084 If that fails, we may try to modify or replace the pattern,
11085 storing the replacement into the same pointer object.
11087 Modifications include deletion or addition of CLOBBERs. If the
11088 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11089 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11090 (and undo if that fails).
11092 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11093 the CLOBBERs are placed.
11095 The value is the final insn code from the pattern ultimately matched,
11096 or -1. */
11098 static int
11099 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11101 rtx pat = PATTERN (insn);
11102 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11103 if (insn_code_number >= 0 || check_asm_operands (pat))
11104 return insn_code_number;
11106 void *marker = get_undo_marker ();
11107 bool changed = false;
11109 if (GET_CODE (pat) == SET)
11110 changed = change_zero_ext (&SET_SRC (pat));
11111 else if (GET_CODE (pat) == PARALLEL)
11113 int i;
11114 for (i = 0; i < XVECLEN (pat, 0); i++)
11116 rtx set = XVECEXP (pat, 0, i);
11117 if (GET_CODE (set) == SET)
11118 changed |= change_zero_ext (&SET_SRC (set));
11122 if (changed)
11124 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11126 if (insn_code_number < 0)
11127 undo_to_marker (marker);
11130 return insn_code_number;
11133 /* Like gen_lowpart_general but for use by combine. In combine it
11134 is not possible to create any new pseudoregs. However, it is
11135 safe to create invalid memory addresses, because combine will
11136 try to recognize them and all they will do is make the combine
11137 attempt fail.
11139 If for some reason this cannot do its job, an rtx
11140 (clobber (const_int 0)) is returned.
11141 An insn containing that will not be recognized. */
11143 static rtx
11144 gen_lowpart_for_combine (machine_mode omode, rtx x)
11146 machine_mode imode = GET_MODE (x);
11147 unsigned int osize = GET_MODE_SIZE (omode);
11148 unsigned int isize = GET_MODE_SIZE (imode);
11149 rtx result;
11151 if (omode == imode)
11152 return x;
11154 /* We can only support MODE being wider than a word if X is a
11155 constant integer or has a mode the same size. */
11156 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11157 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11158 goto fail;
11160 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11161 won't know what to do. So we will strip off the SUBREG here and
11162 process normally. */
11163 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11165 x = SUBREG_REG (x);
11167 /* For use in case we fall down into the address adjustments
11168 further below, we need to adjust the known mode and size of
11169 x; imode and isize, since we just adjusted x. */
11170 imode = GET_MODE (x);
11172 if (imode == omode)
11173 return x;
11175 isize = GET_MODE_SIZE (imode);
11178 result = gen_lowpart_common (omode, x);
11180 if (result)
11181 return result;
11183 if (MEM_P (x))
11185 int offset = 0;
11187 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11188 address. */
11189 if (MEM_VOLATILE_P (x)
11190 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11191 goto fail;
11193 /* If we want to refer to something bigger than the original memref,
11194 generate a paradoxical subreg instead. That will force a reload
11195 of the original memref X. */
11196 if (isize < osize)
11197 return gen_rtx_SUBREG (omode, x, 0);
11199 if (WORDS_BIG_ENDIAN)
11200 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11202 /* Adjust the address so that the address-after-the-data is
11203 unchanged. */
11204 if (BYTES_BIG_ENDIAN)
11205 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11207 return adjust_address_nv (x, omode, offset);
11210 /* If X is a comparison operator, rewrite it in a new mode. This
11211 probably won't match, but may allow further simplifications. */
11212 else if (COMPARISON_P (x))
11213 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11215 /* If we couldn't simplify X any other way, just enclose it in a
11216 SUBREG. Normally, this SUBREG won't match, but some patterns may
11217 include an explicit SUBREG or we may simplify it further in combine. */
11218 else
11220 int offset = 0;
11221 rtx res;
11223 offset = subreg_lowpart_offset (omode, imode);
11224 if (imode == VOIDmode)
11226 imode = int_mode_for_mode (omode);
11227 x = gen_lowpart_common (imode, x);
11228 if (x == NULL)
11229 goto fail;
11231 res = simplify_gen_subreg (omode, x, imode, offset);
11232 if (res)
11233 return res;
11236 fail:
11237 return gen_rtx_CLOBBER (omode, const0_rtx);
11240 /* Try to simplify a comparison between OP0 and a constant OP1,
11241 where CODE is the comparison code that will be tested, into a
11242 (CODE OP0 const0_rtx) form.
11244 The result is a possibly different comparison code to use.
11245 *POP1 may be updated. */
11247 static enum rtx_code
11248 simplify_compare_const (enum rtx_code code, machine_mode mode,
11249 rtx op0, rtx *pop1)
11251 unsigned int mode_width = GET_MODE_PRECISION (mode);
11252 HOST_WIDE_INT const_op = INTVAL (*pop1);
11254 /* Get the constant we are comparing against and turn off all bits
11255 not on in our mode. */
11256 if (mode != VOIDmode)
11257 const_op = trunc_int_for_mode (const_op, mode);
11259 /* If we are comparing against a constant power of two and the value
11260 being compared can only have that single bit nonzero (e.g., it was
11261 `and'ed with that bit), we can replace this with a comparison
11262 with zero. */
11263 if (const_op
11264 && (code == EQ || code == NE || code == GE || code == GEU
11265 || code == LT || code == LTU)
11266 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11267 && exact_log2 (const_op & GET_MODE_MASK (mode)) >= 0
11268 && (nonzero_bits (op0, mode)
11269 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
11271 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11272 const_op = 0;
11275 /* Similarly, if we are comparing a value known to be either -1 or
11276 0 with -1, change it to the opposite comparison against zero. */
11277 if (const_op == -1
11278 && (code == EQ || code == NE || code == GT || code == LE
11279 || code == GEU || code == LTU)
11280 && num_sign_bit_copies (op0, mode) == mode_width)
11282 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11283 const_op = 0;
11286 /* Do some canonicalizations based on the comparison code. We prefer
11287 comparisons against zero and then prefer equality comparisons.
11288 If we can reduce the size of a constant, we will do that too. */
11289 switch (code)
11291 case LT:
11292 /* < C is equivalent to <= (C - 1) */
11293 if (const_op > 0)
11295 const_op -= 1;
11296 code = LE;
11297 /* ... fall through to LE case below. */
11299 else
11300 break;
11302 case LE:
11303 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11304 if (const_op < 0)
11306 const_op += 1;
11307 code = LT;
11310 /* If we are doing a <= 0 comparison on a value known to have
11311 a zero sign bit, we can replace this with == 0. */
11312 else if (const_op == 0
11313 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11314 && (nonzero_bits (op0, mode)
11315 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11316 == 0)
11317 code = EQ;
11318 break;
11320 case GE:
11321 /* >= C is equivalent to > (C - 1). */
11322 if (const_op > 0)
11324 const_op -= 1;
11325 code = GT;
11326 /* ... fall through to GT below. */
11328 else
11329 break;
11331 case GT:
11332 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11333 if (const_op < 0)
11335 const_op += 1;
11336 code = GE;
11339 /* If we are doing a > 0 comparison on a value known to have
11340 a zero sign bit, we can replace this with != 0. */
11341 else if (const_op == 0
11342 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11343 && (nonzero_bits (op0, mode)
11344 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11345 == 0)
11346 code = NE;
11347 break;
11349 case LTU:
11350 /* < C is equivalent to <= (C - 1). */
11351 if (const_op > 0)
11353 const_op -= 1;
11354 code = LEU;
11355 /* ... fall through ... */
11357 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11358 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11359 && (unsigned HOST_WIDE_INT) const_op
11360 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11362 const_op = 0;
11363 code = GE;
11364 break;
11366 else
11367 break;
11369 case LEU:
11370 /* unsigned <= 0 is equivalent to == 0 */
11371 if (const_op == 0)
11372 code = EQ;
11373 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11374 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11375 && (unsigned HOST_WIDE_INT) const_op
11376 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11378 const_op = 0;
11379 code = GE;
11381 break;
11383 case GEU:
11384 /* >= C is equivalent to > (C - 1). */
11385 if (const_op > 1)
11387 const_op -= 1;
11388 code = GTU;
11389 /* ... fall through ... */
11392 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11393 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11394 && (unsigned HOST_WIDE_INT) const_op
11395 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11397 const_op = 0;
11398 code = LT;
11399 break;
11401 else
11402 break;
11404 case GTU:
11405 /* unsigned > 0 is equivalent to != 0 */
11406 if (const_op == 0)
11407 code = NE;
11408 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11409 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11410 && (unsigned HOST_WIDE_INT) const_op
11411 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11413 const_op = 0;
11414 code = LT;
11416 break;
11418 default:
11419 break;
11422 *pop1 = GEN_INT (const_op);
11423 return code;
11426 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11427 comparison code that will be tested.
11429 The result is a possibly different comparison code to use. *POP0 and
11430 *POP1 may be updated.
11432 It is possible that we might detect that a comparison is either always
11433 true or always false. However, we do not perform general constant
11434 folding in combine, so this knowledge isn't useful. Such tautologies
11435 should have been detected earlier. Hence we ignore all such cases. */
11437 static enum rtx_code
11438 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11440 rtx op0 = *pop0;
11441 rtx op1 = *pop1;
11442 rtx tem, tem1;
11443 int i;
11444 machine_mode mode, tmode;
11446 /* Try a few ways of applying the same transformation to both operands. */
11447 while (1)
11449 #ifndef WORD_REGISTER_OPERATIONS
11450 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11451 so check specially. */
11452 if (code != GTU && code != GEU && code != LTU && code != LEU
11453 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11454 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11455 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11456 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11457 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11458 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11459 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11460 && CONST_INT_P (XEXP (op0, 1))
11461 && XEXP (op0, 1) == XEXP (op1, 1)
11462 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11463 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11464 && (INTVAL (XEXP (op0, 1))
11465 == (GET_MODE_PRECISION (GET_MODE (op0))
11466 - (GET_MODE_PRECISION
11467 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11469 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11470 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11472 #endif
11474 /* If both operands are the same constant shift, see if we can ignore the
11475 shift. We can if the shift is a rotate or if the bits shifted out of
11476 this shift are known to be zero for both inputs and if the type of
11477 comparison is compatible with the shift. */
11478 if (GET_CODE (op0) == GET_CODE (op1)
11479 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11480 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11481 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11482 && (code != GT && code != LT && code != GE && code != LE))
11483 || (GET_CODE (op0) == ASHIFTRT
11484 && (code != GTU && code != LTU
11485 && code != GEU && code != LEU)))
11486 && CONST_INT_P (XEXP (op0, 1))
11487 && INTVAL (XEXP (op0, 1)) >= 0
11488 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11489 && XEXP (op0, 1) == XEXP (op1, 1))
11491 machine_mode mode = GET_MODE (op0);
11492 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11493 int shift_count = INTVAL (XEXP (op0, 1));
11495 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11496 mask &= (mask >> shift_count) << shift_count;
11497 else if (GET_CODE (op0) == ASHIFT)
11498 mask = (mask & (mask << shift_count)) >> shift_count;
11500 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11501 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11502 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11503 else
11504 break;
11507 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11508 SUBREGs are of the same mode, and, in both cases, the AND would
11509 be redundant if the comparison was done in the narrower mode,
11510 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11511 and the operand's possibly nonzero bits are 0xffffff01; in that case
11512 if we only care about QImode, we don't need the AND). This case
11513 occurs if the output mode of an scc insn is not SImode and
11514 STORE_FLAG_VALUE == 1 (e.g., the 386).
11516 Similarly, check for a case where the AND's are ZERO_EXTEND
11517 operations from some narrower mode even though a SUBREG is not
11518 present. */
11520 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11521 && CONST_INT_P (XEXP (op0, 1))
11522 && CONST_INT_P (XEXP (op1, 1)))
11524 rtx inner_op0 = XEXP (op0, 0);
11525 rtx inner_op1 = XEXP (op1, 0);
11526 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11527 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11528 int changed = 0;
11530 if (paradoxical_subreg_p (inner_op0)
11531 && GET_CODE (inner_op1) == SUBREG
11532 && (GET_MODE (SUBREG_REG (inner_op0))
11533 == GET_MODE (SUBREG_REG (inner_op1)))
11534 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11535 <= HOST_BITS_PER_WIDE_INT)
11536 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11537 GET_MODE (SUBREG_REG (inner_op0)))))
11538 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11539 GET_MODE (SUBREG_REG (inner_op1))))))
11541 op0 = SUBREG_REG (inner_op0);
11542 op1 = SUBREG_REG (inner_op1);
11544 /* The resulting comparison is always unsigned since we masked
11545 off the original sign bit. */
11546 code = unsigned_condition (code);
11548 changed = 1;
11551 else if (c0 == c1)
11552 for (tmode = GET_CLASS_NARROWEST_MODE
11553 (GET_MODE_CLASS (GET_MODE (op0)));
11554 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11555 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11557 op0 = gen_lowpart (tmode, inner_op0);
11558 op1 = gen_lowpart (tmode, inner_op1);
11559 code = unsigned_condition (code);
11560 changed = 1;
11561 break;
11564 if (! changed)
11565 break;
11568 /* If both operands are NOT, we can strip off the outer operation
11569 and adjust the comparison code for swapped operands; similarly for
11570 NEG, except that this must be an equality comparison. */
11571 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11572 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11573 && (code == EQ || code == NE)))
11574 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11576 else
11577 break;
11580 /* If the first operand is a constant, swap the operands and adjust the
11581 comparison code appropriately, but don't do this if the second operand
11582 is already a constant integer. */
11583 if (swap_commutative_operands_p (op0, op1))
11585 std::swap (op0, op1);
11586 code = swap_condition (code);
11589 /* We now enter a loop during which we will try to simplify the comparison.
11590 For the most part, we only are concerned with comparisons with zero,
11591 but some things may really be comparisons with zero but not start
11592 out looking that way. */
11594 while (CONST_INT_P (op1))
11596 machine_mode mode = GET_MODE (op0);
11597 unsigned int mode_width = GET_MODE_PRECISION (mode);
11598 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11599 int equality_comparison_p;
11600 int sign_bit_comparison_p;
11601 int unsigned_comparison_p;
11602 HOST_WIDE_INT const_op;
11604 /* We only want to handle integral modes. This catches VOIDmode,
11605 CCmode, and the floating-point modes. An exception is that we
11606 can handle VOIDmode if OP0 is a COMPARE or a comparison
11607 operation. */
11609 if (GET_MODE_CLASS (mode) != MODE_INT
11610 && ! (mode == VOIDmode
11611 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11612 break;
11614 /* Try to simplify the compare to constant, possibly changing the
11615 comparison op, and/or changing op1 to zero. */
11616 code = simplify_compare_const (code, mode, op0, &op1);
11617 const_op = INTVAL (op1);
11619 /* Compute some predicates to simplify code below. */
11621 equality_comparison_p = (code == EQ || code == NE);
11622 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11623 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11624 || code == GEU);
11626 /* If this is a sign bit comparison and we can do arithmetic in
11627 MODE, say that we will only be needing the sign bit of OP0. */
11628 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11629 op0 = force_to_mode (op0, mode,
11630 (unsigned HOST_WIDE_INT) 1
11631 << (GET_MODE_PRECISION (mode) - 1),
11634 /* Now try cases based on the opcode of OP0. If none of the cases
11635 does a "continue", we exit this loop immediately after the
11636 switch. */
11638 switch (GET_CODE (op0))
11640 case ZERO_EXTRACT:
11641 /* If we are extracting a single bit from a variable position in
11642 a constant that has only a single bit set and are comparing it
11643 with zero, we can convert this into an equality comparison
11644 between the position and the location of the single bit. */
11645 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11646 have already reduced the shift count modulo the word size. */
11647 if (!SHIFT_COUNT_TRUNCATED
11648 && CONST_INT_P (XEXP (op0, 0))
11649 && XEXP (op0, 1) == const1_rtx
11650 && equality_comparison_p && const_op == 0
11651 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11653 if (BITS_BIG_ENDIAN)
11654 i = BITS_PER_WORD - 1 - i;
11656 op0 = XEXP (op0, 2);
11657 op1 = GEN_INT (i);
11658 const_op = i;
11660 /* Result is nonzero iff shift count is equal to I. */
11661 code = reverse_condition (code);
11662 continue;
11665 /* ... fall through ... */
11667 case SIGN_EXTRACT:
11668 tem = expand_compound_operation (op0);
11669 if (tem != op0)
11671 op0 = tem;
11672 continue;
11674 break;
11676 case NOT:
11677 /* If testing for equality, we can take the NOT of the constant. */
11678 if (equality_comparison_p
11679 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11681 op0 = XEXP (op0, 0);
11682 op1 = tem;
11683 continue;
11686 /* If just looking at the sign bit, reverse the sense of the
11687 comparison. */
11688 if (sign_bit_comparison_p)
11690 op0 = XEXP (op0, 0);
11691 code = (code == GE ? LT : GE);
11692 continue;
11694 break;
11696 case NEG:
11697 /* If testing for equality, we can take the NEG of the constant. */
11698 if (equality_comparison_p
11699 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11701 op0 = XEXP (op0, 0);
11702 op1 = tem;
11703 continue;
11706 /* The remaining cases only apply to comparisons with zero. */
11707 if (const_op != 0)
11708 break;
11710 /* When X is ABS or is known positive,
11711 (neg X) is < 0 if and only if X != 0. */
11713 if (sign_bit_comparison_p
11714 && (GET_CODE (XEXP (op0, 0)) == ABS
11715 || (mode_width <= HOST_BITS_PER_WIDE_INT
11716 && (nonzero_bits (XEXP (op0, 0), mode)
11717 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11718 == 0)))
11720 op0 = XEXP (op0, 0);
11721 code = (code == LT ? NE : EQ);
11722 continue;
11725 /* If we have NEG of something whose two high-order bits are the
11726 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11727 if (num_sign_bit_copies (op0, mode) >= 2)
11729 op0 = XEXP (op0, 0);
11730 code = swap_condition (code);
11731 continue;
11733 break;
11735 case ROTATE:
11736 /* If we are testing equality and our count is a constant, we
11737 can perform the inverse operation on our RHS. */
11738 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11739 && (tem = simplify_binary_operation (ROTATERT, mode,
11740 op1, XEXP (op0, 1))) != 0)
11742 op0 = XEXP (op0, 0);
11743 op1 = tem;
11744 continue;
11747 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11748 a particular bit. Convert it to an AND of a constant of that
11749 bit. This will be converted into a ZERO_EXTRACT. */
11750 if (const_op == 0 && sign_bit_comparison_p
11751 && CONST_INT_P (XEXP (op0, 1))
11752 && mode_width <= HOST_BITS_PER_WIDE_INT)
11754 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11755 ((unsigned HOST_WIDE_INT) 1
11756 << (mode_width - 1
11757 - INTVAL (XEXP (op0, 1)))));
11758 code = (code == LT ? NE : EQ);
11759 continue;
11762 /* Fall through. */
11764 case ABS:
11765 /* ABS is ignorable inside an equality comparison with zero. */
11766 if (const_op == 0 && equality_comparison_p)
11768 op0 = XEXP (op0, 0);
11769 continue;
11771 break;
11773 case SIGN_EXTEND:
11774 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11775 (compare FOO CONST) if CONST fits in FOO's mode and we
11776 are either testing inequality or have an unsigned
11777 comparison with ZERO_EXTEND or a signed comparison with
11778 SIGN_EXTEND. But don't do it if we don't have a compare
11779 insn of the given mode, since we'd have to revert it
11780 later on, and then we wouldn't know whether to sign- or
11781 zero-extend. */
11782 mode = GET_MODE (XEXP (op0, 0));
11783 if (GET_MODE_CLASS (mode) == MODE_INT
11784 && ! unsigned_comparison_p
11785 && HWI_COMPUTABLE_MODE_P (mode)
11786 && trunc_int_for_mode (const_op, mode) == const_op
11787 && have_insn_for (COMPARE, mode))
11789 op0 = XEXP (op0, 0);
11790 continue;
11792 break;
11794 case SUBREG:
11795 /* Check for the case where we are comparing A - C1 with C2, that is
11797 (subreg:MODE (plus (A) (-C1))) op (C2)
11799 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11800 comparison in the wider mode. One of the following two conditions
11801 must be true in order for this to be valid:
11803 1. The mode extension results in the same bit pattern being added
11804 on both sides and the comparison is equality or unsigned. As
11805 C2 has been truncated to fit in MODE, the pattern can only be
11806 all 0s or all 1s.
11808 2. The mode extension results in the sign bit being copied on
11809 each side.
11811 The difficulty here is that we have predicates for A but not for
11812 (A - C1) so we need to check that C1 is within proper bounds so
11813 as to perturbate A as little as possible. */
11815 if (mode_width <= HOST_BITS_PER_WIDE_INT
11816 && subreg_lowpart_p (op0)
11817 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11818 && GET_CODE (SUBREG_REG (op0)) == PLUS
11819 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11821 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11822 rtx a = XEXP (SUBREG_REG (op0), 0);
11823 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11825 if ((c1 > 0
11826 && (unsigned HOST_WIDE_INT) c1
11827 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11828 && (equality_comparison_p || unsigned_comparison_p)
11829 /* (A - C1) zero-extends if it is positive and sign-extends
11830 if it is negative, C2 both zero- and sign-extends. */
11831 && ((0 == (nonzero_bits (a, inner_mode)
11832 & ~GET_MODE_MASK (mode))
11833 && const_op >= 0)
11834 /* (A - C1) sign-extends if it is positive and 1-extends
11835 if it is negative, C2 both sign- and 1-extends. */
11836 || (num_sign_bit_copies (a, inner_mode)
11837 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11838 - mode_width)
11839 && const_op < 0)))
11840 || ((unsigned HOST_WIDE_INT) c1
11841 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11842 /* (A - C1) always sign-extends, like C2. */
11843 && num_sign_bit_copies (a, inner_mode)
11844 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11845 - (mode_width - 1))))
11847 op0 = SUBREG_REG (op0);
11848 continue;
11852 /* If the inner mode is narrower and we are extracting the low part,
11853 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11854 if (subreg_lowpart_p (op0)
11855 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11856 /* Fall through */ ;
11857 else
11858 break;
11860 /* ... fall through ... */
11862 case ZERO_EXTEND:
11863 mode = GET_MODE (XEXP (op0, 0));
11864 if (GET_MODE_CLASS (mode) == MODE_INT
11865 && (unsigned_comparison_p || equality_comparison_p)
11866 && HWI_COMPUTABLE_MODE_P (mode)
11867 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11868 && const_op >= 0
11869 && have_insn_for (COMPARE, mode))
11871 op0 = XEXP (op0, 0);
11872 continue;
11874 break;
11876 case PLUS:
11877 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11878 this for equality comparisons due to pathological cases involving
11879 overflows. */
11880 if (equality_comparison_p
11881 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11882 op1, XEXP (op0, 1))))
11884 op0 = XEXP (op0, 0);
11885 op1 = tem;
11886 continue;
11889 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11890 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11891 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11893 op0 = XEXP (XEXP (op0, 0), 0);
11894 code = (code == LT ? EQ : NE);
11895 continue;
11897 break;
11899 case MINUS:
11900 /* We used to optimize signed comparisons against zero, but that
11901 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11902 arrive here as equality comparisons, or (GEU, LTU) are
11903 optimized away. No need to special-case them. */
11905 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11906 (eq B (minus A C)), whichever simplifies. We can only do
11907 this for equality comparisons due to pathological cases involving
11908 overflows. */
11909 if (equality_comparison_p
11910 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11911 XEXP (op0, 1), op1)))
11913 op0 = XEXP (op0, 0);
11914 op1 = tem;
11915 continue;
11918 if (equality_comparison_p
11919 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11920 XEXP (op0, 0), op1)))
11922 op0 = XEXP (op0, 1);
11923 op1 = tem;
11924 continue;
11927 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11928 of bits in X minus 1, is one iff X > 0. */
11929 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11930 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11931 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11932 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11934 op0 = XEXP (op0, 1);
11935 code = (code == GE ? LE : GT);
11936 continue;
11938 break;
11940 case XOR:
11941 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11942 if C is zero or B is a constant. */
11943 if (equality_comparison_p
11944 && 0 != (tem = simplify_binary_operation (XOR, mode,
11945 XEXP (op0, 1), op1)))
11947 op0 = XEXP (op0, 0);
11948 op1 = tem;
11949 continue;
11951 break;
11953 case EQ: case NE:
11954 case UNEQ: case LTGT:
11955 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11956 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11957 case UNORDERED: case ORDERED:
11958 /* We can't do anything if OP0 is a condition code value, rather
11959 than an actual data value. */
11960 if (const_op != 0
11961 || CC0_P (XEXP (op0, 0))
11962 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11963 break;
11965 /* Get the two operands being compared. */
11966 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11967 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11968 else
11969 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11971 /* Check for the cases where we simply want the result of the
11972 earlier test or the opposite of that result. */
11973 if (code == NE || code == EQ
11974 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11975 && (code == LT || code == GE)))
11977 enum rtx_code new_code;
11978 if (code == LT || code == NE)
11979 new_code = GET_CODE (op0);
11980 else
11981 new_code = reversed_comparison_code (op0, NULL);
11983 if (new_code != UNKNOWN)
11985 code = new_code;
11986 op0 = tem;
11987 op1 = tem1;
11988 continue;
11991 break;
11993 case IOR:
11994 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11995 iff X <= 0. */
11996 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11997 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11998 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12000 op0 = XEXP (op0, 1);
12001 code = (code == GE ? GT : LE);
12002 continue;
12004 break;
12006 case AND:
12007 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12008 will be converted to a ZERO_EXTRACT later. */
12009 if (const_op == 0 && equality_comparison_p
12010 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12011 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12013 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12014 XEXP (XEXP (op0, 0), 1));
12015 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12016 continue;
12019 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12020 zero and X is a comparison and C1 and C2 describe only bits set
12021 in STORE_FLAG_VALUE, we can compare with X. */
12022 if (const_op == 0 && equality_comparison_p
12023 && mode_width <= HOST_BITS_PER_WIDE_INT
12024 && CONST_INT_P (XEXP (op0, 1))
12025 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12026 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12027 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12028 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12030 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12031 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12032 if ((~STORE_FLAG_VALUE & mask) == 0
12033 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12034 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12035 && COMPARISON_P (tem))))
12037 op0 = XEXP (XEXP (op0, 0), 0);
12038 continue;
12042 /* If we are doing an equality comparison of an AND of a bit equal
12043 to the sign bit, replace this with a LT or GE comparison of
12044 the underlying value. */
12045 if (equality_comparison_p
12046 && const_op == 0
12047 && CONST_INT_P (XEXP (op0, 1))
12048 && mode_width <= HOST_BITS_PER_WIDE_INT
12049 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12050 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
12052 op0 = XEXP (op0, 0);
12053 code = (code == EQ ? GE : LT);
12054 continue;
12057 /* If this AND operation is really a ZERO_EXTEND from a narrower
12058 mode, the constant fits within that mode, and this is either an
12059 equality or unsigned comparison, try to do this comparison in
12060 the narrower mode.
12062 Note that in:
12064 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12065 -> (ne:DI (reg:SI 4) (const_int 0))
12067 unless TRULY_NOOP_TRUNCATION allows it or the register is
12068 known to hold a value of the required mode the
12069 transformation is invalid. */
12070 if ((equality_comparison_p || unsigned_comparison_p)
12071 && CONST_INT_P (XEXP (op0, 1))
12072 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12073 & GET_MODE_MASK (mode))
12074 + 1)) >= 0
12075 && const_op >> i == 0
12076 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
12077 && (TRULY_NOOP_TRUNCATION_MODES_P (tmode, GET_MODE (op0))
12078 || (REG_P (XEXP (op0, 0))
12079 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
12081 op0 = gen_lowpart (tmode, XEXP (op0, 0));
12082 continue;
12085 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
12086 fits in both M1 and M2 and the SUBREG is either paradoxical
12087 or represents the low part, permute the SUBREG and the AND
12088 and try again. */
12089 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
12091 unsigned HOST_WIDE_INT c1;
12092 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
12093 /* Require an integral mode, to avoid creating something like
12094 (AND:SF ...). */
12095 if (SCALAR_INT_MODE_P (tmode)
12096 /* It is unsafe to commute the AND into the SUBREG if the
12097 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12098 not defined. As originally written the upper bits
12099 have a defined value due to the AND operation.
12100 However, if we commute the AND inside the SUBREG then
12101 they no longer have defined values and the meaning of
12102 the code has been changed. */
12103 && (0
12104 #ifdef WORD_REGISTER_OPERATIONS
12105 || (mode_width > GET_MODE_PRECISION (tmode)
12106 && mode_width <= BITS_PER_WORD)
12107 #endif
12108 || (mode_width <= GET_MODE_PRECISION (tmode)
12109 && subreg_lowpart_p (XEXP (op0, 0))))
12110 && CONST_INT_P (XEXP (op0, 1))
12111 && mode_width <= HOST_BITS_PER_WIDE_INT
12112 && HWI_COMPUTABLE_MODE_P (tmode)
12113 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
12114 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12115 && c1 != mask
12116 && c1 != GET_MODE_MASK (tmode))
12118 op0 = simplify_gen_binary (AND, tmode,
12119 SUBREG_REG (XEXP (op0, 0)),
12120 gen_int_mode (c1, tmode));
12121 op0 = gen_lowpart (mode, op0);
12122 continue;
12126 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12127 if (const_op == 0 && equality_comparison_p
12128 && XEXP (op0, 1) == const1_rtx
12129 && GET_CODE (XEXP (op0, 0)) == NOT)
12131 op0 = simplify_and_const_int (NULL_RTX, mode,
12132 XEXP (XEXP (op0, 0), 0), 1);
12133 code = (code == NE ? EQ : NE);
12134 continue;
12137 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12138 (eq (and (lshiftrt X) 1) 0).
12139 Also handle the case where (not X) is expressed using xor. */
12140 if (const_op == 0 && equality_comparison_p
12141 && XEXP (op0, 1) == const1_rtx
12142 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12144 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12145 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12147 if (GET_CODE (shift_op) == NOT
12148 || (GET_CODE (shift_op) == XOR
12149 && CONST_INT_P (XEXP (shift_op, 1))
12150 && CONST_INT_P (shift_count)
12151 && HWI_COMPUTABLE_MODE_P (mode)
12152 && (UINTVAL (XEXP (shift_op, 1))
12153 == (unsigned HOST_WIDE_INT) 1
12154 << INTVAL (shift_count))))
12157 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12158 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12159 code = (code == NE ? EQ : NE);
12160 continue;
12163 break;
12165 case ASHIFT:
12166 /* If we have (compare (ashift FOO N) (const_int C)) and
12167 the high order N bits of FOO (N+1 if an inequality comparison)
12168 are known to be zero, we can do this by comparing FOO with C
12169 shifted right N bits so long as the low-order N bits of C are
12170 zero. */
12171 if (CONST_INT_P (XEXP (op0, 1))
12172 && INTVAL (XEXP (op0, 1)) >= 0
12173 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12174 < HOST_BITS_PER_WIDE_INT)
12175 && (((unsigned HOST_WIDE_INT) const_op
12176 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
12177 - 1)) == 0)
12178 && mode_width <= HOST_BITS_PER_WIDE_INT
12179 && (nonzero_bits (XEXP (op0, 0), mode)
12180 & ~(mask >> (INTVAL (XEXP (op0, 1))
12181 + ! equality_comparison_p))) == 0)
12183 /* We must perform a logical shift, not an arithmetic one,
12184 as we want the top N bits of C to be zero. */
12185 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12187 temp >>= INTVAL (XEXP (op0, 1));
12188 op1 = gen_int_mode (temp, mode);
12189 op0 = XEXP (op0, 0);
12190 continue;
12193 /* If we are doing a sign bit comparison, it means we are testing
12194 a particular bit. Convert it to the appropriate AND. */
12195 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12196 && mode_width <= HOST_BITS_PER_WIDE_INT)
12198 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12199 ((unsigned HOST_WIDE_INT) 1
12200 << (mode_width - 1
12201 - INTVAL (XEXP (op0, 1)))));
12202 code = (code == LT ? NE : EQ);
12203 continue;
12206 /* If this an equality comparison with zero and we are shifting
12207 the low bit to the sign bit, we can convert this to an AND of the
12208 low-order bit. */
12209 if (const_op == 0 && equality_comparison_p
12210 && CONST_INT_P (XEXP (op0, 1))
12211 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12213 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12214 continue;
12216 break;
12218 case ASHIFTRT:
12219 /* If this is an equality comparison with zero, we can do this
12220 as a logical shift, which might be much simpler. */
12221 if (equality_comparison_p && const_op == 0
12222 && CONST_INT_P (XEXP (op0, 1)))
12224 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12225 XEXP (op0, 0),
12226 INTVAL (XEXP (op0, 1)));
12227 continue;
12230 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12231 do the comparison in a narrower mode. */
12232 if (! unsigned_comparison_p
12233 && CONST_INT_P (XEXP (op0, 1))
12234 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12235 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12236 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12237 MODE_INT, 1)) != BLKmode
12238 && (((unsigned HOST_WIDE_INT) const_op
12239 + (GET_MODE_MASK (tmode) >> 1) + 1)
12240 <= GET_MODE_MASK (tmode)))
12242 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12243 continue;
12246 /* Likewise if OP0 is a PLUS of a sign extension with a
12247 constant, which is usually represented with the PLUS
12248 between the shifts. */
12249 if (! unsigned_comparison_p
12250 && CONST_INT_P (XEXP (op0, 1))
12251 && GET_CODE (XEXP (op0, 0)) == PLUS
12252 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12253 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12254 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12255 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12256 MODE_INT, 1)) != BLKmode
12257 && (((unsigned HOST_WIDE_INT) const_op
12258 + (GET_MODE_MASK (tmode) >> 1) + 1)
12259 <= GET_MODE_MASK (tmode)))
12261 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12262 rtx add_const = XEXP (XEXP (op0, 0), 1);
12263 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
12264 add_const, XEXP (op0, 1));
12266 op0 = simplify_gen_binary (PLUS, tmode,
12267 gen_lowpart (tmode, inner),
12268 new_const);
12269 continue;
12272 /* ... fall through ... */
12273 case LSHIFTRT:
12274 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12275 the low order N bits of FOO are known to be zero, we can do this
12276 by comparing FOO with C shifted left N bits so long as no
12277 overflow occurs. Even if the low order N bits of FOO aren't known
12278 to be zero, if the comparison is >= or < we can use the same
12279 optimization and for > or <= by setting all the low
12280 order N bits in the comparison constant. */
12281 if (CONST_INT_P (XEXP (op0, 1))
12282 && INTVAL (XEXP (op0, 1)) > 0
12283 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12284 && mode_width <= HOST_BITS_PER_WIDE_INT
12285 && (((unsigned HOST_WIDE_INT) const_op
12286 + (GET_CODE (op0) != LSHIFTRT
12287 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12288 + 1)
12289 : 0))
12290 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12292 unsigned HOST_WIDE_INT low_bits
12293 = (nonzero_bits (XEXP (op0, 0), mode)
12294 & (((unsigned HOST_WIDE_INT) 1
12295 << INTVAL (XEXP (op0, 1))) - 1));
12296 if (low_bits == 0 || !equality_comparison_p)
12298 /* If the shift was logical, then we must make the condition
12299 unsigned. */
12300 if (GET_CODE (op0) == LSHIFTRT)
12301 code = unsigned_condition (code);
12303 const_op <<= INTVAL (XEXP (op0, 1));
12304 if (low_bits != 0
12305 && (code == GT || code == GTU
12306 || code == LE || code == LEU))
12307 const_op
12308 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
12309 op1 = GEN_INT (const_op);
12310 op0 = XEXP (op0, 0);
12311 continue;
12315 /* If we are using this shift to extract just the sign bit, we
12316 can replace this with an LT or GE comparison. */
12317 if (const_op == 0
12318 && (equality_comparison_p || sign_bit_comparison_p)
12319 && CONST_INT_P (XEXP (op0, 1))
12320 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12322 op0 = XEXP (op0, 0);
12323 code = (code == NE || code == GT ? LT : GE);
12324 continue;
12326 break;
12328 default:
12329 break;
12332 break;
12335 /* Now make any compound operations involved in this comparison. Then,
12336 check for an outmost SUBREG on OP0 that is not doing anything or is
12337 paradoxical. The latter transformation must only be performed when
12338 it is known that the "extra" bits will be the same in op0 and op1 or
12339 that they don't matter. There are three cases to consider:
12341 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12342 care bits and we can assume they have any convenient value. So
12343 making the transformation is safe.
12345 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
12346 In this case the upper bits of op0 are undefined. We should not make
12347 the simplification in that case as we do not know the contents of
12348 those bits.
12350 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
12351 UNKNOWN. In that case we know those bits are zeros or ones. We must
12352 also be sure that they are the same as the upper bits of op1.
12354 We can never remove a SUBREG for a non-equality comparison because
12355 the sign bit is in a different place in the underlying object. */
12357 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
12358 op1 = make_compound_operation (op1, SET);
12360 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12361 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12362 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12363 && (code == NE || code == EQ))
12365 if (paradoxical_subreg_p (op0))
12367 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12368 implemented. */
12369 if (REG_P (SUBREG_REG (op0)))
12371 op0 = SUBREG_REG (op0);
12372 op1 = gen_lowpart (GET_MODE (op0), op1);
12375 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12376 <= HOST_BITS_PER_WIDE_INT)
12377 && (nonzero_bits (SUBREG_REG (op0),
12378 GET_MODE (SUBREG_REG (op0)))
12379 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12381 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12383 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12384 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12385 op0 = SUBREG_REG (op0), op1 = tem;
12389 /* We now do the opposite procedure: Some machines don't have compare
12390 insns in all modes. If OP0's mode is an integer mode smaller than a
12391 word and we can't do a compare in that mode, see if there is a larger
12392 mode for which we can do the compare. There are a number of cases in
12393 which we can use the wider mode. */
12395 mode = GET_MODE (op0);
12396 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12397 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12398 && ! have_insn_for (COMPARE, mode))
12399 for (tmode = GET_MODE_WIDER_MODE (mode);
12400 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12401 tmode = GET_MODE_WIDER_MODE (tmode))
12402 if (have_insn_for (COMPARE, tmode))
12404 int zero_extended;
12406 /* If this is a test for negative, we can make an explicit
12407 test of the sign bit. Test this first so we can use
12408 a paradoxical subreg to extend OP0. */
12410 if (op1 == const0_rtx && (code == LT || code == GE)
12411 && HWI_COMPUTABLE_MODE_P (mode))
12413 unsigned HOST_WIDE_INT sign
12414 = (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1);
12415 op0 = simplify_gen_binary (AND, tmode,
12416 gen_lowpart (tmode, op0),
12417 gen_int_mode (sign, tmode));
12418 code = (code == LT) ? NE : EQ;
12419 break;
12422 /* If the only nonzero bits in OP0 and OP1 are those in the
12423 narrower mode and this is an equality or unsigned comparison,
12424 we can use the wider mode. Similarly for sign-extended
12425 values, in which case it is true for all comparisons. */
12426 zero_extended = ((code == EQ || code == NE
12427 || code == GEU || code == GTU
12428 || code == LEU || code == LTU)
12429 && (nonzero_bits (op0, tmode)
12430 & ~GET_MODE_MASK (mode)) == 0
12431 && ((CONST_INT_P (op1)
12432 || (nonzero_bits (op1, tmode)
12433 & ~GET_MODE_MASK (mode)) == 0)));
12435 if (zero_extended
12436 || ((num_sign_bit_copies (op0, tmode)
12437 > (unsigned int) (GET_MODE_PRECISION (tmode)
12438 - GET_MODE_PRECISION (mode)))
12439 && (num_sign_bit_copies (op1, tmode)
12440 > (unsigned int) (GET_MODE_PRECISION (tmode)
12441 - GET_MODE_PRECISION (mode)))))
12443 /* If OP0 is an AND and we don't have an AND in MODE either,
12444 make a new AND in the proper mode. */
12445 if (GET_CODE (op0) == AND
12446 && !have_insn_for (AND, mode))
12447 op0 = simplify_gen_binary (AND, tmode,
12448 gen_lowpart (tmode,
12449 XEXP (op0, 0)),
12450 gen_lowpart (tmode,
12451 XEXP (op0, 1)));
12452 else
12454 if (zero_extended)
12456 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12457 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12459 else
12461 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12462 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12464 break;
12469 /* We may have changed the comparison operands. Re-canonicalize. */
12470 if (swap_commutative_operands_p (op0, op1))
12472 std::swap (op0, op1);
12473 code = swap_condition (code);
12476 /* If this machine only supports a subset of valid comparisons, see if we
12477 can convert an unsupported one into a supported one. */
12478 target_canonicalize_comparison (&code, &op0, &op1, 0);
12480 *pop0 = op0;
12481 *pop1 = op1;
12483 return code;
12486 /* Utility function for record_value_for_reg. Count number of
12487 rtxs in X. */
12488 static int
12489 count_rtxs (rtx x)
12491 enum rtx_code code = GET_CODE (x);
12492 const char *fmt;
12493 int i, j, ret = 1;
12495 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12496 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12498 rtx x0 = XEXP (x, 0);
12499 rtx x1 = XEXP (x, 1);
12501 if (x0 == x1)
12502 return 1 + 2 * count_rtxs (x0);
12504 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12505 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12506 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12507 return 2 + 2 * count_rtxs (x0)
12508 + count_rtxs (x == XEXP (x1, 0)
12509 ? XEXP (x1, 1) : XEXP (x1, 0));
12511 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12512 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12513 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12514 return 2 + 2 * count_rtxs (x1)
12515 + count_rtxs (x == XEXP (x0, 0)
12516 ? XEXP (x0, 1) : XEXP (x0, 0));
12519 fmt = GET_RTX_FORMAT (code);
12520 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12521 if (fmt[i] == 'e')
12522 ret += count_rtxs (XEXP (x, i));
12523 else if (fmt[i] == 'E')
12524 for (j = 0; j < XVECLEN (x, i); j++)
12525 ret += count_rtxs (XVECEXP (x, i, j));
12527 return ret;
12530 /* Utility function for following routine. Called when X is part of a value
12531 being stored into last_set_value. Sets last_set_table_tick
12532 for each register mentioned. Similar to mention_regs in cse.c */
12534 static void
12535 update_table_tick (rtx x)
12537 enum rtx_code code = GET_CODE (x);
12538 const char *fmt = GET_RTX_FORMAT (code);
12539 int i, j;
12541 if (code == REG)
12543 unsigned int regno = REGNO (x);
12544 unsigned int endregno = END_REGNO (x);
12545 unsigned int r;
12547 for (r = regno; r < endregno; r++)
12549 reg_stat_type *rsp = &reg_stat[r];
12550 rsp->last_set_table_tick = label_tick;
12553 return;
12556 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12557 if (fmt[i] == 'e')
12559 /* Check for identical subexpressions. If x contains
12560 identical subexpression we only have to traverse one of
12561 them. */
12562 if (i == 0 && ARITHMETIC_P (x))
12564 /* Note that at this point x1 has already been
12565 processed. */
12566 rtx x0 = XEXP (x, 0);
12567 rtx x1 = XEXP (x, 1);
12569 /* If x0 and x1 are identical then there is no need to
12570 process x0. */
12571 if (x0 == x1)
12572 break;
12574 /* If x0 is identical to a subexpression of x1 then while
12575 processing x1, x0 has already been processed. Thus we
12576 are done with x. */
12577 if (ARITHMETIC_P (x1)
12578 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12579 break;
12581 /* If x1 is identical to a subexpression of x0 then we
12582 still have to process the rest of x0. */
12583 if (ARITHMETIC_P (x0)
12584 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12586 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12587 break;
12591 update_table_tick (XEXP (x, i));
12593 else if (fmt[i] == 'E')
12594 for (j = 0; j < XVECLEN (x, i); j++)
12595 update_table_tick (XVECEXP (x, i, j));
12598 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12599 are saying that the register is clobbered and we no longer know its
12600 value. If INSN is zero, don't update reg_stat[].last_set; this is
12601 only permitted with VALUE also zero and is used to invalidate the
12602 register. */
12604 static void
12605 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
12607 unsigned int regno = REGNO (reg);
12608 unsigned int endregno = END_REGNO (reg);
12609 unsigned int i;
12610 reg_stat_type *rsp;
12612 /* If VALUE contains REG and we have a previous value for REG, substitute
12613 the previous value. */
12614 if (value && insn && reg_overlap_mentioned_p (reg, value))
12616 rtx tem;
12618 /* Set things up so get_last_value is allowed to see anything set up to
12619 our insn. */
12620 subst_low_luid = DF_INSN_LUID (insn);
12621 tem = get_last_value (reg);
12623 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12624 it isn't going to be useful and will take a lot of time to process,
12625 so just use the CLOBBER. */
12627 if (tem)
12629 if (ARITHMETIC_P (tem)
12630 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12631 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12632 tem = XEXP (tem, 0);
12633 else if (count_occurrences (value, reg, 1) >= 2)
12635 /* If there are two or more occurrences of REG in VALUE,
12636 prevent the value from growing too much. */
12637 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12638 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12641 value = replace_rtx (copy_rtx (value), reg, tem);
12645 /* For each register modified, show we don't know its value, that
12646 we don't know about its bitwise content, that its value has been
12647 updated, and that we don't know the location of the death of the
12648 register. */
12649 for (i = regno; i < endregno; i++)
12651 rsp = &reg_stat[i];
12653 if (insn)
12654 rsp->last_set = insn;
12656 rsp->last_set_value = 0;
12657 rsp->last_set_mode = VOIDmode;
12658 rsp->last_set_nonzero_bits = 0;
12659 rsp->last_set_sign_bit_copies = 0;
12660 rsp->last_death = 0;
12661 rsp->truncated_to_mode = VOIDmode;
12664 /* Mark registers that are being referenced in this value. */
12665 if (value)
12666 update_table_tick (value);
12668 /* Now update the status of each register being set.
12669 If someone is using this register in this block, set this register
12670 to invalid since we will get confused between the two lives in this
12671 basic block. This makes using this register always invalid. In cse, we
12672 scan the table to invalidate all entries using this register, but this
12673 is too much work for us. */
12675 for (i = regno; i < endregno; i++)
12677 rsp = &reg_stat[i];
12678 rsp->last_set_label = label_tick;
12679 if (!insn
12680 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12681 rsp->last_set_invalid = 1;
12682 else
12683 rsp->last_set_invalid = 0;
12686 /* The value being assigned might refer to X (like in "x++;"). In that
12687 case, we must replace it with (clobber (const_int 0)) to prevent
12688 infinite loops. */
12689 rsp = &reg_stat[regno];
12690 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12692 value = copy_rtx (value);
12693 if (!get_last_value_validate (&value, insn, label_tick, 1))
12694 value = 0;
12697 /* For the main register being modified, update the value, the mode, the
12698 nonzero bits, and the number of sign bit copies. */
12700 rsp->last_set_value = value;
12702 if (value)
12704 machine_mode mode = GET_MODE (reg);
12705 subst_low_luid = DF_INSN_LUID (insn);
12706 rsp->last_set_mode = mode;
12707 if (GET_MODE_CLASS (mode) == MODE_INT
12708 && HWI_COMPUTABLE_MODE_P (mode))
12709 mode = nonzero_bits_mode;
12710 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12711 rsp->last_set_sign_bit_copies
12712 = num_sign_bit_copies (value, GET_MODE (reg));
12716 /* Called via note_stores from record_dead_and_set_regs to handle one
12717 SET or CLOBBER in an insn. DATA is the instruction in which the
12718 set is occurring. */
12720 static void
12721 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12723 rtx_insn *record_dead_insn = (rtx_insn *) data;
12725 if (GET_CODE (dest) == SUBREG)
12726 dest = SUBREG_REG (dest);
12728 if (!record_dead_insn)
12730 if (REG_P (dest))
12731 record_value_for_reg (dest, NULL, NULL_RTX);
12732 return;
12735 if (REG_P (dest))
12737 /* If we are setting the whole register, we know its value. Otherwise
12738 show that we don't know the value. We can handle SUBREG in
12739 some cases. */
12740 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12741 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12742 else if (GET_CODE (setter) == SET
12743 && GET_CODE (SET_DEST (setter)) == SUBREG
12744 && SUBREG_REG (SET_DEST (setter)) == dest
12745 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12746 && subreg_lowpart_p (SET_DEST (setter)))
12747 record_value_for_reg (dest, record_dead_insn,
12748 gen_lowpart (GET_MODE (dest),
12749 SET_SRC (setter)));
12750 else
12751 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12753 else if (MEM_P (dest)
12754 /* Ignore pushes, they clobber nothing. */
12755 && ! push_operand (dest, GET_MODE (dest)))
12756 mem_last_set = DF_INSN_LUID (record_dead_insn);
12759 /* Update the records of when each REG was most recently set or killed
12760 for the things done by INSN. This is the last thing done in processing
12761 INSN in the combiner loop.
12763 We update reg_stat[], in particular fields last_set, last_set_value,
12764 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12765 last_death, and also the similar information mem_last_set (which insn
12766 most recently modified memory) and last_call_luid (which insn was the
12767 most recent subroutine call). */
12769 static void
12770 record_dead_and_set_regs (rtx_insn *insn)
12772 rtx link;
12773 unsigned int i;
12775 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12777 if (REG_NOTE_KIND (link) == REG_DEAD
12778 && REG_P (XEXP (link, 0)))
12780 unsigned int regno = REGNO (XEXP (link, 0));
12781 unsigned int endregno = END_REGNO (XEXP (link, 0));
12783 for (i = regno; i < endregno; i++)
12785 reg_stat_type *rsp;
12787 rsp = &reg_stat[i];
12788 rsp->last_death = insn;
12791 else if (REG_NOTE_KIND (link) == REG_INC)
12792 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12795 if (CALL_P (insn))
12797 hard_reg_set_iterator hrsi;
12798 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
12800 reg_stat_type *rsp;
12802 rsp = &reg_stat[i];
12803 rsp->last_set_invalid = 1;
12804 rsp->last_set = insn;
12805 rsp->last_set_value = 0;
12806 rsp->last_set_mode = VOIDmode;
12807 rsp->last_set_nonzero_bits = 0;
12808 rsp->last_set_sign_bit_copies = 0;
12809 rsp->last_death = 0;
12810 rsp->truncated_to_mode = VOIDmode;
12813 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12815 /* We can't combine into a call pattern. Remember, though, that
12816 the return value register is set at this LUID. We could
12817 still replace a register with the return value from the
12818 wrong subroutine call! */
12819 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12821 else
12822 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12825 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12826 register present in the SUBREG, so for each such SUBREG go back and
12827 adjust nonzero and sign bit information of the registers that are
12828 known to have some zero/sign bits set.
12830 This is needed because when combine blows the SUBREGs away, the
12831 information on zero/sign bits is lost and further combines can be
12832 missed because of that. */
12834 static void
12835 record_promoted_value (rtx_insn *insn, rtx subreg)
12837 struct insn_link *links;
12838 rtx set;
12839 unsigned int regno = REGNO (SUBREG_REG (subreg));
12840 machine_mode mode = GET_MODE (subreg);
12842 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12843 return;
12845 for (links = LOG_LINKS (insn); links;)
12847 reg_stat_type *rsp;
12849 insn = links->insn;
12850 set = single_set (insn);
12852 if (! set || !REG_P (SET_DEST (set))
12853 || REGNO (SET_DEST (set)) != regno
12854 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12856 links = links->next;
12857 continue;
12860 rsp = &reg_stat[regno];
12861 if (rsp->last_set == insn)
12863 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
12864 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12867 if (REG_P (SET_SRC (set)))
12869 regno = REGNO (SET_SRC (set));
12870 links = LOG_LINKS (insn);
12872 else
12873 break;
12877 /* Check if X, a register, is known to contain a value already
12878 truncated to MODE. In this case we can use a subreg to refer to
12879 the truncated value even though in the generic case we would need
12880 an explicit truncation. */
12882 static bool
12883 reg_truncated_to_mode (machine_mode mode, const_rtx x)
12885 reg_stat_type *rsp = &reg_stat[REGNO (x)];
12886 machine_mode truncated = rsp->truncated_to_mode;
12888 if (truncated == 0
12889 || rsp->truncation_label < label_tick_ebb_start)
12890 return false;
12891 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12892 return true;
12893 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12894 return true;
12895 return false;
12898 /* If X is a hard reg or a subreg record the mode that the register is
12899 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
12900 to turn a truncate into a subreg using this information. Return true
12901 if traversing X is complete. */
12903 static bool
12904 record_truncated_value (rtx x)
12906 machine_mode truncated_mode;
12907 reg_stat_type *rsp;
12909 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12911 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12912 truncated_mode = GET_MODE (x);
12914 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12915 return true;
12917 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12918 return true;
12920 x = SUBREG_REG (x);
12922 /* ??? For hard-regs we now record everything. We might be able to
12923 optimize this using last_set_mode. */
12924 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12925 truncated_mode = GET_MODE (x);
12926 else
12927 return false;
12929 rsp = &reg_stat[REGNO (x)];
12930 if (rsp->truncated_to_mode == 0
12931 || rsp->truncation_label < label_tick_ebb_start
12932 || (GET_MODE_SIZE (truncated_mode)
12933 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12935 rsp->truncated_to_mode = truncated_mode;
12936 rsp->truncation_label = label_tick;
12939 return true;
12942 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12943 the modes they are used in. This can help truning TRUNCATEs into
12944 SUBREGs. */
12946 static void
12947 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
12949 subrtx_var_iterator::array_type array;
12950 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
12951 if (record_truncated_value (*iter))
12952 iter.skip_subrtxes ();
12955 /* Scan X for promoted SUBREGs. For each one found,
12956 note what it implies to the registers used in it. */
12958 static void
12959 check_promoted_subreg (rtx_insn *insn, rtx x)
12961 if (GET_CODE (x) == SUBREG
12962 && SUBREG_PROMOTED_VAR_P (x)
12963 && REG_P (SUBREG_REG (x)))
12964 record_promoted_value (insn, x);
12965 else
12967 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12968 int i, j;
12970 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12971 switch (format[i])
12973 case 'e':
12974 check_promoted_subreg (insn, XEXP (x, i));
12975 break;
12976 case 'V':
12977 case 'E':
12978 if (XVEC (x, i) != 0)
12979 for (j = 0; j < XVECLEN (x, i); j++)
12980 check_promoted_subreg (insn, XVECEXP (x, i, j));
12981 break;
12986 /* Verify that all the registers and memory references mentioned in *LOC are
12987 still valid. *LOC was part of a value set in INSN when label_tick was
12988 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12989 the invalid references with (clobber (const_int 0)) and return 1. This
12990 replacement is useful because we often can get useful information about
12991 the form of a value (e.g., if it was produced by a shift that always
12992 produces -1 or 0) even though we don't know exactly what registers it
12993 was produced from. */
12995 static int
12996 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
12998 rtx x = *loc;
12999 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13000 int len = GET_RTX_LENGTH (GET_CODE (x));
13001 int i, j;
13003 if (REG_P (x))
13005 unsigned int regno = REGNO (x);
13006 unsigned int endregno = END_REGNO (x);
13007 unsigned int j;
13009 for (j = regno; j < endregno; j++)
13011 reg_stat_type *rsp = &reg_stat[j];
13012 if (rsp->last_set_invalid
13013 /* If this is a pseudo-register that was only set once and not
13014 live at the beginning of the function, it is always valid. */
13015 || (! (regno >= FIRST_PSEUDO_REGISTER
13016 && regno < reg_n_sets_max
13017 && REG_N_SETS (regno) == 1
13018 && (!REGNO_REG_SET_P
13019 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13020 regno)))
13021 && rsp->last_set_label > tick))
13023 if (replace)
13024 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13025 return replace;
13029 return 1;
13031 /* If this is a memory reference, make sure that there were no stores after
13032 it that might have clobbered the value. We don't have alias info, so we
13033 assume any store invalidates it. Moreover, we only have local UIDs, so
13034 we also assume that there were stores in the intervening basic blocks. */
13035 else if (MEM_P (x) && !MEM_READONLY_P (x)
13036 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13038 if (replace)
13039 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13040 return replace;
13043 for (i = 0; i < len; i++)
13045 if (fmt[i] == 'e')
13047 /* Check for identical subexpressions. If x contains
13048 identical subexpression we only have to traverse one of
13049 them. */
13050 if (i == 1 && ARITHMETIC_P (x))
13052 /* Note that at this point x0 has already been checked
13053 and found valid. */
13054 rtx x0 = XEXP (x, 0);
13055 rtx x1 = XEXP (x, 1);
13057 /* If x0 and x1 are identical then x is also valid. */
13058 if (x0 == x1)
13059 return 1;
13061 /* If x1 is identical to a subexpression of x0 then
13062 while checking x0, x1 has already been checked. Thus
13063 it is valid and so as x. */
13064 if (ARITHMETIC_P (x0)
13065 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13066 return 1;
13068 /* If x0 is identical to a subexpression of x1 then x is
13069 valid iff the rest of x1 is valid. */
13070 if (ARITHMETIC_P (x1)
13071 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13072 return
13073 get_last_value_validate (&XEXP (x1,
13074 x0 == XEXP (x1, 0) ? 1 : 0),
13075 insn, tick, replace);
13078 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13079 replace) == 0)
13080 return 0;
13082 else if (fmt[i] == 'E')
13083 for (j = 0; j < XVECLEN (x, i); j++)
13084 if (get_last_value_validate (&XVECEXP (x, i, j),
13085 insn, tick, replace) == 0)
13086 return 0;
13089 /* If we haven't found a reason for it to be invalid, it is valid. */
13090 return 1;
13093 /* Get the last value assigned to X, if known. Some registers
13094 in the value may be replaced with (clobber (const_int 0)) if their value
13095 is known longer known reliably. */
13097 static rtx
13098 get_last_value (const_rtx x)
13100 unsigned int regno;
13101 rtx value;
13102 reg_stat_type *rsp;
13104 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13105 then convert it to the desired mode. If this is a paradoxical SUBREG,
13106 we cannot predict what values the "extra" bits might have. */
13107 if (GET_CODE (x) == SUBREG
13108 && subreg_lowpart_p (x)
13109 && !paradoxical_subreg_p (x)
13110 && (value = get_last_value (SUBREG_REG (x))) != 0)
13111 return gen_lowpart (GET_MODE (x), value);
13113 if (!REG_P (x))
13114 return 0;
13116 regno = REGNO (x);
13117 rsp = &reg_stat[regno];
13118 value = rsp->last_set_value;
13120 /* If we don't have a value, or if it isn't for this basic block and
13121 it's either a hard register, set more than once, or it's a live
13122 at the beginning of the function, return 0.
13124 Because if it's not live at the beginning of the function then the reg
13125 is always set before being used (is never used without being set).
13126 And, if it's set only once, and it's always set before use, then all
13127 uses must have the same last value, even if it's not from this basic
13128 block. */
13130 if (value == 0
13131 || (rsp->last_set_label < label_tick_ebb_start
13132 && (regno < FIRST_PSEUDO_REGISTER
13133 || regno >= reg_n_sets_max
13134 || REG_N_SETS (regno) != 1
13135 || REGNO_REG_SET_P
13136 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13137 return 0;
13139 /* If the value was set in a later insn than the ones we are processing,
13140 we can't use it even if the register was only set once. */
13141 if (rsp->last_set_label == label_tick
13142 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13143 return 0;
13145 /* If the value has all its registers valid, return it. */
13146 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13147 return value;
13149 /* Otherwise, make a copy and replace any invalid register with
13150 (clobber (const_int 0)). If that fails for some reason, return 0. */
13152 value = copy_rtx (value);
13153 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13154 return value;
13156 return 0;
13159 /* Return nonzero if expression X refers to a REG or to memory
13160 that is set in an instruction more recent than FROM_LUID. */
13162 static int
13163 use_crosses_set_p (const_rtx x, int from_luid)
13165 const char *fmt;
13166 int i;
13167 enum rtx_code code = GET_CODE (x);
13169 if (code == REG)
13171 unsigned int regno = REGNO (x);
13172 unsigned endreg = END_REGNO (x);
13174 #ifdef PUSH_ROUNDING
13175 /* Don't allow uses of the stack pointer to be moved,
13176 because we don't know whether the move crosses a push insn. */
13177 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13178 return 1;
13179 #endif
13180 for (; regno < endreg; regno++)
13182 reg_stat_type *rsp = &reg_stat[regno];
13183 if (rsp->last_set
13184 && rsp->last_set_label == label_tick
13185 && DF_INSN_LUID (rsp->last_set) > from_luid)
13186 return 1;
13188 return 0;
13191 if (code == MEM && mem_last_set > from_luid)
13192 return 1;
13194 fmt = GET_RTX_FORMAT (code);
13196 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13198 if (fmt[i] == 'E')
13200 int j;
13201 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13202 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13203 return 1;
13205 else if (fmt[i] == 'e'
13206 && use_crosses_set_p (XEXP (x, i), from_luid))
13207 return 1;
13209 return 0;
13212 /* Define three variables used for communication between the following
13213 routines. */
13215 static unsigned int reg_dead_regno, reg_dead_endregno;
13216 static int reg_dead_flag;
13218 /* Function called via note_stores from reg_dead_at_p.
13220 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13221 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13223 static void
13224 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13226 unsigned int regno, endregno;
13228 if (!REG_P (dest))
13229 return;
13231 regno = REGNO (dest);
13232 endregno = END_REGNO (dest);
13233 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13234 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13237 /* Return nonzero if REG is known to be dead at INSN.
13239 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13240 referencing REG, it is dead. If we hit a SET referencing REG, it is
13241 live. Otherwise, see if it is live or dead at the start of the basic
13242 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13243 must be assumed to be always live. */
13245 static int
13246 reg_dead_at_p (rtx reg, rtx_insn *insn)
13248 basic_block block;
13249 unsigned int i;
13251 /* Set variables for reg_dead_at_p_1. */
13252 reg_dead_regno = REGNO (reg);
13253 reg_dead_endregno = END_REGNO (reg);
13255 reg_dead_flag = 0;
13257 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13258 we allow the machine description to decide whether use-and-clobber
13259 patterns are OK. */
13260 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13262 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13263 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13264 return 0;
13267 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13268 beginning of basic block. */
13269 block = BLOCK_FOR_INSN (insn);
13270 for (;;)
13272 if (INSN_P (insn))
13274 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13275 return 1;
13277 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13278 if (reg_dead_flag)
13279 return reg_dead_flag == 1 ? 1 : 0;
13281 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13282 return 1;
13285 if (insn == BB_HEAD (block))
13286 break;
13288 insn = PREV_INSN (insn);
13291 /* Look at live-in sets for the basic block that we were in. */
13292 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13293 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13294 return 0;
13296 return 1;
13299 /* Note hard registers in X that are used. */
13301 static void
13302 mark_used_regs_combine (rtx x)
13304 RTX_CODE code = GET_CODE (x);
13305 unsigned int regno;
13306 int i;
13308 switch (code)
13310 case LABEL_REF:
13311 case SYMBOL_REF:
13312 case CONST:
13313 CASE_CONST_ANY:
13314 case PC:
13315 case ADDR_VEC:
13316 case ADDR_DIFF_VEC:
13317 case ASM_INPUT:
13318 /* CC0 must die in the insn after it is set, so we don't need to take
13319 special note of it here. */
13320 case CC0:
13321 return;
13323 case CLOBBER:
13324 /* If we are clobbering a MEM, mark any hard registers inside the
13325 address as used. */
13326 if (MEM_P (XEXP (x, 0)))
13327 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13328 return;
13330 case REG:
13331 regno = REGNO (x);
13332 /* A hard reg in a wide mode may really be multiple registers.
13333 If so, mark all of them just like the first. */
13334 if (regno < FIRST_PSEUDO_REGISTER)
13336 /* None of this applies to the stack, frame or arg pointers. */
13337 if (regno == STACK_POINTER_REGNUM
13338 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
13339 || regno == HARD_FRAME_POINTER_REGNUM
13340 #endif
13341 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13342 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13343 || regno == FRAME_POINTER_REGNUM)
13344 return;
13346 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13348 return;
13350 case SET:
13352 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13353 the address. */
13354 rtx testreg = SET_DEST (x);
13356 while (GET_CODE (testreg) == SUBREG
13357 || GET_CODE (testreg) == ZERO_EXTRACT
13358 || GET_CODE (testreg) == STRICT_LOW_PART)
13359 testreg = XEXP (testreg, 0);
13361 if (MEM_P (testreg))
13362 mark_used_regs_combine (XEXP (testreg, 0));
13364 mark_used_regs_combine (SET_SRC (x));
13366 return;
13368 default:
13369 break;
13372 /* Recursively scan the operands of this expression. */
13375 const char *fmt = GET_RTX_FORMAT (code);
13377 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13379 if (fmt[i] == 'e')
13380 mark_used_regs_combine (XEXP (x, i));
13381 else if (fmt[i] == 'E')
13383 int j;
13385 for (j = 0; j < XVECLEN (x, i); j++)
13386 mark_used_regs_combine (XVECEXP (x, i, j));
13392 /* Remove register number REGNO from the dead registers list of INSN.
13394 Return the note used to record the death, if there was one. */
13397 remove_death (unsigned int regno, rtx_insn *insn)
13399 rtx note = find_regno_note (insn, REG_DEAD, regno);
13401 if (note)
13402 remove_note (insn, note);
13404 return note;
13407 /* For each register (hardware or pseudo) used within expression X, if its
13408 death is in an instruction with luid between FROM_LUID (inclusive) and
13409 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13410 list headed by PNOTES.
13412 That said, don't move registers killed by maybe_kill_insn.
13414 This is done when X is being merged by combination into TO_INSN. These
13415 notes will then be distributed as needed. */
13417 static void
13418 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13419 rtx *pnotes)
13421 const char *fmt;
13422 int len, i;
13423 enum rtx_code code = GET_CODE (x);
13425 if (code == REG)
13427 unsigned int regno = REGNO (x);
13428 rtx_insn *where_dead = reg_stat[regno].last_death;
13430 /* Don't move the register if it gets killed in between from and to. */
13431 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13432 && ! reg_referenced_p (x, maybe_kill_insn))
13433 return;
13435 if (where_dead
13436 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13437 && DF_INSN_LUID (where_dead) >= from_luid
13438 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13440 rtx note = remove_death (regno, where_dead);
13442 /* It is possible for the call above to return 0. This can occur
13443 when last_death points to I2 or I1 that we combined with.
13444 In that case make a new note.
13446 We must also check for the case where X is a hard register
13447 and NOTE is a death note for a range of hard registers
13448 including X. In that case, we must put REG_DEAD notes for
13449 the remaining registers in place of NOTE. */
13451 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13452 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13453 > GET_MODE_SIZE (GET_MODE (x))))
13455 unsigned int deadregno = REGNO (XEXP (note, 0));
13456 unsigned int deadend = END_REGNO (XEXP (note, 0));
13457 unsigned int ourend = END_REGNO (x);
13458 unsigned int i;
13460 for (i = deadregno; i < deadend; i++)
13461 if (i < regno || i >= ourend)
13462 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13465 /* If we didn't find any note, or if we found a REG_DEAD note that
13466 covers only part of the given reg, and we have a multi-reg hard
13467 register, then to be safe we must check for REG_DEAD notes
13468 for each register other than the first. They could have
13469 their own REG_DEAD notes lying around. */
13470 else if ((note == 0
13471 || (note != 0
13472 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13473 < GET_MODE_SIZE (GET_MODE (x)))))
13474 && regno < FIRST_PSEUDO_REGISTER
13475 && REG_NREGS (x) > 1)
13477 unsigned int ourend = END_REGNO (x);
13478 unsigned int i, offset;
13479 rtx oldnotes = 0;
13481 if (note)
13482 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13483 else
13484 offset = 1;
13486 for (i = regno + offset; i < ourend; i++)
13487 move_deaths (regno_reg_rtx[i],
13488 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13491 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13493 XEXP (note, 1) = *pnotes;
13494 *pnotes = note;
13496 else
13497 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13500 return;
13503 else if (GET_CODE (x) == SET)
13505 rtx dest = SET_DEST (x);
13507 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13509 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13510 that accesses one word of a multi-word item, some
13511 piece of everything register in the expression is used by
13512 this insn, so remove any old death. */
13513 /* ??? So why do we test for equality of the sizes? */
13515 if (GET_CODE (dest) == ZERO_EXTRACT
13516 || GET_CODE (dest) == STRICT_LOW_PART
13517 || (GET_CODE (dest) == SUBREG
13518 && (((GET_MODE_SIZE (GET_MODE (dest))
13519 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13520 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13521 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13523 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13524 return;
13527 /* If this is some other SUBREG, we know it replaces the entire
13528 value, so use that as the destination. */
13529 if (GET_CODE (dest) == SUBREG)
13530 dest = SUBREG_REG (dest);
13532 /* If this is a MEM, adjust deaths of anything used in the address.
13533 For a REG (the only other possibility), the entire value is
13534 being replaced so the old value is not used in this insn. */
13536 if (MEM_P (dest))
13537 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13538 to_insn, pnotes);
13539 return;
13542 else if (GET_CODE (x) == CLOBBER)
13543 return;
13545 len = GET_RTX_LENGTH (code);
13546 fmt = GET_RTX_FORMAT (code);
13548 for (i = 0; i < len; i++)
13550 if (fmt[i] == 'E')
13552 int j;
13553 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13554 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13555 to_insn, pnotes);
13557 else if (fmt[i] == 'e')
13558 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13562 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13563 pattern of an insn. X must be a REG. */
13565 static int
13566 reg_bitfield_target_p (rtx x, rtx body)
13568 int i;
13570 if (GET_CODE (body) == SET)
13572 rtx dest = SET_DEST (body);
13573 rtx target;
13574 unsigned int regno, tregno, endregno, endtregno;
13576 if (GET_CODE (dest) == ZERO_EXTRACT)
13577 target = XEXP (dest, 0);
13578 else if (GET_CODE (dest) == STRICT_LOW_PART)
13579 target = SUBREG_REG (XEXP (dest, 0));
13580 else
13581 return 0;
13583 if (GET_CODE (target) == SUBREG)
13584 target = SUBREG_REG (target);
13586 if (!REG_P (target))
13587 return 0;
13589 tregno = REGNO (target), regno = REGNO (x);
13590 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13591 return target == x;
13593 endtregno = end_hard_regno (GET_MODE (target), tregno);
13594 endregno = end_hard_regno (GET_MODE (x), regno);
13596 return endregno > tregno && regno < endtregno;
13599 else if (GET_CODE (body) == PARALLEL)
13600 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13601 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13602 return 1;
13604 return 0;
13607 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13608 as appropriate. I3 and I2 are the insns resulting from the combination
13609 insns including FROM (I2 may be zero).
13611 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13612 not need REG_DEAD notes because they are being substituted for. This
13613 saves searching in the most common cases.
13615 Each note in the list is either ignored or placed on some insns, depending
13616 on the type of note. */
13618 static void
13619 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
13620 rtx elim_i2, rtx elim_i1, rtx elim_i0)
13622 rtx note, next_note;
13623 rtx tem_note;
13624 rtx_insn *tem_insn;
13626 for (note = notes; note; note = next_note)
13628 rtx_insn *place = 0, *place2 = 0;
13630 next_note = XEXP (note, 1);
13631 switch (REG_NOTE_KIND (note))
13633 case REG_BR_PROB:
13634 case REG_BR_PRED:
13635 /* Doesn't matter much where we put this, as long as it's somewhere.
13636 It is preferable to keep these notes on branches, which is most
13637 likely to be i3. */
13638 place = i3;
13639 break;
13641 case REG_NON_LOCAL_GOTO:
13642 if (JUMP_P (i3))
13643 place = i3;
13644 else
13646 gcc_assert (i2 && JUMP_P (i2));
13647 place = i2;
13649 break;
13651 case REG_EH_REGION:
13652 /* These notes must remain with the call or trapping instruction. */
13653 if (CALL_P (i3))
13654 place = i3;
13655 else if (i2 && CALL_P (i2))
13656 place = i2;
13657 else
13659 gcc_assert (cfun->can_throw_non_call_exceptions);
13660 if (may_trap_p (i3))
13661 place = i3;
13662 else if (i2 && may_trap_p (i2))
13663 place = i2;
13664 /* ??? Otherwise assume we've combined things such that we
13665 can now prove that the instructions can't trap. Drop the
13666 note in this case. */
13668 break;
13670 case REG_ARGS_SIZE:
13671 /* ??? How to distribute between i3-i1. Assume i3 contains the
13672 entire adjustment. Assert i3 contains at least some adjust. */
13673 if (!noop_move_p (i3))
13675 int old_size, args_size = INTVAL (XEXP (note, 0));
13676 /* fixup_args_size_notes looks at REG_NORETURN note,
13677 so ensure the note is placed there first. */
13678 if (CALL_P (i3))
13680 rtx *np;
13681 for (np = &next_note; *np; np = &XEXP (*np, 1))
13682 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13684 rtx n = *np;
13685 *np = XEXP (n, 1);
13686 XEXP (n, 1) = REG_NOTES (i3);
13687 REG_NOTES (i3) = n;
13688 break;
13691 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13692 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13693 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13694 gcc_assert (old_size != args_size
13695 || (CALL_P (i3)
13696 && !ACCUMULATE_OUTGOING_ARGS
13697 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13699 break;
13701 case REG_NORETURN:
13702 case REG_SETJMP:
13703 case REG_TM:
13704 case REG_CALL_DECL:
13705 /* These notes must remain with the call. It should not be
13706 possible for both I2 and I3 to be a call. */
13707 if (CALL_P (i3))
13708 place = i3;
13709 else
13711 gcc_assert (i2 && CALL_P (i2));
13712 place = i2;
13714 break;
13716 case REG_UNUSED:
13717 /* Any clobbers for i3 may still exist, and so we must process
13718 REG_UNUSED notes from that insn.
13720 Any clobbers from i2 or i1 can only exist if they were added by
13721 recog_for_combine. In that case, recog_for_combine created the
13722 necessary REG_UNUSED notes. Trying to keep any original
13723 REG_UNUSED notes from these insns can cause incorrect output
13724 if it is for the same register as the original i3 dest.
13725 In that case, we will notice that the register is set in i3,
13726 and then add a REG_UNUSED note for the destination of i3, which
13727 is wrong. However, it is possible to have REG_UNUSED notes from
13728 i2 or i1 for register which were both used and clobbered, so
13729 we keep notes from i2 or i1 if they will turn into REG_DEAD
13730 notes. */
13732 /* If this register is set or clobbered in I3, put the note there
13733 unless there is one already. */
13734 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13736 if (from_insn != i3)
13737 break;
13739 if (! (REG_P (XEXP (note, 0))
13740 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13741 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13742 place = i3;
13744 /* Otherwise, if this register is used by I3, then this register
13745 now dies here, so we must put a REG_DEAD note here unless there
13746 is one already. */
13747 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13748 && ! (REG_P (XEXP (note, 0))
13749 ? find_regno_note (i3, REG_DEAD,
13750 REGNO (XEXP (note, 0)))
13751 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13753 PUT_REG_NOTE_KIND (note, REG_DEAD);
13754 place = i3;
13756 break;
13758 case REG_EQUAL:
13759 case REG_EQUIV:
13760 case REG_NOALIAS:
13761 /* These notes say something about results of an insn. We can
13762 only support them if they used to be on I3 in which case they
13763 remain on I3. Otherwise they are ignored.
13765 If the note refers to an expression that is not a constant, we
13766 must also ignore the note since we cannot tell whether the
13767 equivalence is still true. It might be possible to do
13768 slightly better than this (we only have a problem if I2DEST
13769 or I1DEST is present in the expression), but it doesn't
13770 seem worth the trouble. */
13772 if (from_insn == i3
13773 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13774 place = i3;
13775 break;
13777 case REG_INC:
13778 /* These notes say something about how a register is used. They must
13779 be present on any use of the register in I2 or I3. */
13780 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13781 place = i3;
13783 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13785 if (place)
13786 place2 = i2;
13787 else
13788 place = i2;
13790 break;
13792 case REG_LABEL_TARGET:
13793 case REG_LABEL_OPERAND:
13794 /* This can show up in several ways -- either directly in the
13795 pattern, or hidden off in the constant pool with (or without?)
13796 a REG_EQUAL note. */
13797 /* ??? Ignore the without-reg_equal-note problem for now. */
13798 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13799 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13800 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13801 && LABEL_REF_LABEL (XEXP (tem_note, 0)) == XEXP (note, 0)))
13802 place = i3;
13804 if (i2
13805 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13806 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13807 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13808 && LABEL_REF_LABEL (XEXP (tem_note, 0)) == XEXP (note, 0))))
13810 if (place)
13811 place2 = i2;
13812 else
13813 place = i2;
13816 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13817 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13818 there. */
13819 if (place && JUMP_P (place)
13820 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13821 && (JUMP_LABEL (place) == NULL
13822 || JUMP_LABEL (place) == XEXP (note, 0)))
13824 rtx label = JUMP_LABEL (place);
13826 if (!label)
13827 JUMP_LABEL (place) = XEXP (note, 0);
13828 else if (LABEL_P (label))
13829 LABEL_NUSES (label)--;
13832 if (place2 && JUMP_P (place2)
13833 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13834 && (JUMP_LABEL (place2) == NULL
13835 || JUMP_LABEL (place2) == XEXP (note, 0)))
13837 rtx label = JUMP_LABEL (place2);
13839 if (!label)
13840 JUMP_LABEL (place2) = XEXP (note, 0);
13841 else if (LABEL_P (label))
13842 LABEL_NUSES (label)--;
13843 place2 = 0;
13845 break;
13847 case REG_NONNEG:
13848 /* This note says something about the value of a register prior
13849 to the execution of an insn. It is too much trouble to see
13850 if the note is still correct in all situations. It is better
13851 to simply delete it. */
13852 break;
13854 case REG_DEAD:
13855 /* If we replaced the right hand side of FROM_INSN with a
13856 REG_EQUAL note, the original use of the dying register
13857 will not have been combined into I3 and I2. In such cases,
13858 FROM_INSN is guaranteed to be the first of the combined
13859 instructions, so we simply need to search back before
13860 FROM_INSN for the previous use or set of this register,
13861 then alter the notes there appropriately.
13863 If the register is used as an input in I3, it dies there.
13864 Similarly for I2, if it is nonzero and adjacent to I3.
13866 If the register is not used as an input in either I3 or I2
13867 and it is not one of the registers we were supposed to eliminate,
13868 there are two possibilities. We might have a non-adjacent I2
13869 or we might have somehow eliminated an additional register
13870 from a computation. For example, we might have had A & B where
13871 we discover that B will always be zero. In this case we will
13872 eliminate the reference to A.
13874 In both cases, we must search to see if we can find a previous
13875 use of A and put the death note there. */
13877 if (from_insn
13878 && from_insn == i2mod
13879 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13880 tem_insn = from_insn;
13881 else
13883 if (from_insn
13884 && CALL_P (from_insn)
13885 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13886 place = from_insn;
13887 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13888 place = i3;
13889 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13890 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13891 place = i2;
13892 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13893 && !(i2mod
13894 && reg_overlap_mentioned_p (XEXP (note, 0),
13895 i2mod_old_rhs)))
13896 || rtx_equal_p (XEXP (note, 0), elim_i1)
13897 || rtx_equal_p (XEXP (note, 0), elim_i0))
13898 break;
13899 tem_insn = i3;
13900 /* If the new I2 sets the same register that is marked dead
13901 in the note, the note now should not be put on I2, as the
13902 note refers to a previous incarnation of the reg. */
13903 if (i2 != 0 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
13904 tem_insn = i2;
13907 if (place == 0)
13909 basic_block bb = this_basic_block;
13911 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
13913 if (!NONDEBUG_INSN_P (tem_insn))
13915 if (tem_insn == BB_HEAD (bb))
13916 break;
13917 continue;
13920 /* If the register is being set at TEM_INSN, see if that is all
13921 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
13922 into a REG_UNUSED note instead. Don't delete sets to
13923 global register vars. */
13924 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13925 || !global_regs[REGNO (XEXP (note, 0))])
13926 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
13928 rtx set = single_set (tem_insn);
13929 rtx inner_dest = 0;
13930 rtx_insn *cc0_setter = NULL;
13932 if (set != 0)
13933 for (inner_dest = SET_DEST (set);
13934 (GET_CODE (inner_dest) == STRICT_LOW_PART
13935 || GET_CODE (inner_dest) == SUBREG
13936 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13937 inner_dest = XEXP (inner_dest, 0))
13940 /* Verify that it was the set, and not a clobber that
13941 modified the register.
13943 CC0 targets must be careful to maintain setter/user
13944 pairs. If we cannot delete the setter due to side
13945 effects, mark the user with an UNUSED note instead
13946 of deleting it. */
13948 if (set != 0 && ! side_effects_p (SET_SRC (set))
13949 && rtx_equal_p (XEXP (note, 0), inner_dest)
13950 #if HAVE_cc0
13951 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13952 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
13953 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13954 #endif
13957 /* Move the notes and links of TEM_INSN elsewhere.
13958 This might delete other dead insns recursively.
13959 First set the pattern to something that won't use
13960 any register. */
13961 rtx old_notes = REG_NOTES (tem_insn);
13963 PATTERN (tem_insn) = pc_rtx;
13964 REG_NOTES (tem_insn) = NULL;
13966 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
13967 NULL_RTX, NULL_RTX, NULL_RTX);
13968 distribute_links (LOG_LINKS (tem_insn));
13970 SET_INSN_DELETED (tem_insn);
13971 if (tem_insn == i2)
13972 i2 = NULL;
13974 /* Delete the setter too. */
13975 if (cc0_setter)
13977 PATTERN (cc0_setter) = pc_rtx;
13978 old_notes = REG_NOTES (cc0_setter);
13979 REG_NOTES (cc0_setter) = NULL;
13981 distribute_notes (old_notes, cc0_setter,
13982 cc0_setter, NULL,
13983 NULL_RTX, NULL_RTX, NULL_RTX);
13984 distribute_links (LOG_LINKS (cc0_setter));
13986 SET_INSN_DELETED (cc0_setter);
13987 if (cc0_setter == i2)
13988 i2 = NULL;
13991 else
13993 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13995 /* If there isn't already a REG_UNUSED note, put one
13996 here. Do not place a REG_DEAD note, even if
13997 the register is also used here; that would not
13998 match the algorithm used in lifetime analysis
13999 and can cause the consistency check in the
14000 scheduler to fail. */
14001 if (! find_regno_note (tem_insn, REG_UNUSED,
14002 REGNO (XEXP (note, 0))))
14003 place = tem_insn;
14004 break;
14007 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14008 || (CALL_P (tem_insn)
14009 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14011 place = tem_insn;
14013 /* If we are doing a 3->2 combination, and we have a
14014 register which formerly died in i3 and was not used
14015 by i2, which now no longer dies in i3 and is used in
14016 i2 but does not die in i2, and place is between i2
14017 and i3, then we may need to move a link from place to
14018 i2. */
14019 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14020 && from_insn
14021 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14022 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14024 struct insn_link *links = LOG_LINKS (place);
14025 LOG_LINKS (place) = NULL;
14026 distribute_links (links);
14028 break;
14031 if (tem_insn == BB_HEAD (bb))
14032 break;
14037 /* If the register is set or already dead at PLACE, we needn't do
14038 anything with this note if it is still a REG_DEAD note.
14039 We check here if it is set at all, not if is it totally replaced,
14040 which is what `dead_or_set_p' checks, so also check for it being
14041 set partially. */
14043 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14045 unsigned int regno = REGNO (XEXP (note, 0));
14046 reg_stat_type *rsp = &reg_stat[regno];
14048 if (dead_or_set_p (place, XEXP (note, 0))
14049 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14051 /* Unless the register previously died in PLACE, clear
14052 last_death. [I no longer understand why this is
14053 being done.] */
14054 if (rsp->last_death != place)
14055 rsp->last_death = 0;
14056 place = 0;
14058 else
14059 rsp->last_death = place;
14061 /* If this is a death note for a hard reg that is occupying
14062 multiple registers, ensure that we are still using all
14063 parts of the object. If we find a piece of the object
14064 that is unused, we must arrange for an appropriate REG_DEAD
14065 note to be added for it. However, we can't just emit a USE
14066 and tag the note to it, since the register might actually
14067 be dead; so we recourse, and the recursive call then finds
14068 the previous insn that used this register. */
14070 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14072 unsigned int endregno = END_REGNO (XEXP (note, 0));
14073 bool all_used = true;
14074 unsigned int i;
14076 for (i = regno; i < endregno; i++)
14077 if ((! refers_to_regno_p (i, PATTERN (place))
14078 && ! find_regno_fusage (place, USE, i))
14079 || dead_or_set_regno_p (place, i))
14081 all_used = false;
14082 break;
14085 if (! all_used)
14087 /* Put only REG_DEAD notes for pieces that are
14088 not already dead or set. */
14090 for (i = regno; i < endregno;
14091 i += hard_regno_nregs[i][reg_raw_mode[i]])
14093 rtx piece = regno_reg_rtx[i];
14094 basic_block bb = this_basic_block;
14096 if (! dead_or_set_p (place, piece)
14097 && ! reg_bitfield_target_p (piece,
14098 PATTERN (place)))
14100 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14101 NULL_RTX);
14103 distribute_notes (new_note, place, place,
14104 NULL, NULL_RTX, NULL_RTX,
14105 NULL_RTX);
14107 else if (! refers_to_regno_p (i, PATTERN (place))
14108 && ! find_regno_fusage (place, USE, i))
14109 for (tem_insn = PREV_INSN (place); ;
14110 tem_insn = PREV_INSN (tem_insn))
14112 if (!NONDEBUG_INSN_P (tem_insn))
14114 if (tem_insn == BB_HEAD (bb))
14115 break;
14116 continue;
14118 if (dead_or_set_p (tem_insn, piece)
14119 || reg_bitfield_target_p (piece,
14120 PATTERN (tem_insn)))
14122 add_reg_note (tem_insn, REG_UNUSED, piece);
14123 break;
14128 place = 0;
14132 break;
14134 default:
14135 /* Any other notes should not be present at this point in the
14136 compilation. */
14137 gcc_unreachable ();
14140 if (place)
14142 XEXP (note, 1) = REG_NOTES (place);
14143 REG_NOTES (place) = note;
14146 if (place2)
14147 add_shallow_copy_of_reg_note (place2, note);
14151 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14152 I3, I2, and I1 to new locations. This is also called to add a link
14153 pointing at I3 when I3's destination is changed. */
14155 static void
14156 distribute_links (struct insn_link *links)
14158 struct insn_link *link, *next_link;
14160 for (link = links; link; link = next_link)
14162 rtx_insn *place = 0;
14163 rtx_insn *insn;
14164 rtx set, reg;
14166 next_link = link->next;
14168 /* If the insn that this link points to is a NOTE, ignore it. */
14169 if (NOTE_P (link->insn))
14170 continue;
14172 set = 0;
14173 rtx pat = PATTERN (link->insn);
14174 if (GET_CODE (pat) == SET)
14175 set = pat;
14176 else if (GET_CODE (pat) == PARALLEL)
14178 int i;
14179 for (i = 0; i < XVECLEN (pat, 0); i++)
14181 set = XVECEXP (pat, 0, i);
14182 if (GET_CODE (set) != SET)
14183 continue;
14185 reg = SET_DEST (set);
14186 while (GET_CODE (reg) == ZERO_EXTRACT
14187 || GET_CODE (reg) == STRICT_LOW_PART
14188 || GET_CODE (reg) == SUBREG)
14189 reg = XEXP (reg, 0);
14191 if (!REG_P (reg))
14192 continue;
14194 if (REGNO (reg) == link->regno)
14195 break;
14197 if (i == XVECLEN (pat, 0))
14198 continue;
14200 else
14201 continue;
14203 reg = SET_DEST (set);
14205 while (GET_CODE (reg) == ZERO_EXTRACT
14206 || GET_CODE (reg) == STRICT_LOW_PART
14207 || GET_CODE (reg) == SUBREG)
14208 reg = XEXP (reg, 0);
14210 /* A LOG_LINK is defined as being placed on the first insn that uses
14211 a register and points to the insn that sets the register. Start
14212 searching at the next insn after the target of the link and stop
14213 when we reach a set of the register or the end of the basic block.
14215 Note that this correctly handles the link that used to point from
14216 I3 to I2. Also note that not much searching is typically done here
14217 since most links don't point very far away. */
14219 for (insn = NEXT_INSN (link->insn);
14220 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14221 || BB_HEAD (this_basic_block->next_bb) != insn));
14222 insn = NEXT_INSN (insn))
14223 if (DEBUG_INSN_P (insn))
14224 continue;
14225 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14227 if (reg_referenced_p (reg, PATTERN (insn)))
14228 place = insn;
14229 break;
14231 else if (CALL_P (insn)
14232 && find_reg_fusage (insn, USE, reg))
14234 place = insn;
14235 break;
14237 else if (INSN_P (insn) && reg_set_p (reg, insn))
14238 break;
14240 /* If we found a place to put the link, place it there unless there
14241 is already a link to the same insn as LINK at that point. */
14243 if (place)
14245 struct insn_link *link2;
14247 FOR_EACH_LOG_LINK (link2, place)
14248 if (link2->insn == link->insn && link2->regno == link->regno)
14249 break;
14251 if (link2 == NULL)
14253 link->next = LOG_LINKS (place);
14254 LOG_LINKS (place) = link;
14256 /* Set added_links_insn to the earliest insn we added a
14257 link to. */
14258 if (added_links_insn == 0
14259 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14260 added_links_insn = place;
14266 /* Check for any register or memory mentioned in EQUIV that is not
14267 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14268 of EXPR where some registers may have been replaced by constants. */
14270 static bool
14271 unmentioned_reg_p (rtx equiv, rtx expr)
14273 subrtx_iterator::array_type array;
14274 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14276 const_rtx x = *iter;
14277 if ((REG_P (x) || MEM_P (x))
14278 && !reg_mentioned_p (x, expr))
14279 return true;
14281 return false;
14284 DEBUG_FUNCTION void
14285 dump_combine_stats (FILE *file)
14287 fprintf
14288 (file,
14289 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14290 combine_attempts, combine_merges, combine_extras, combine_successes);
14293 void
14294 dump_combine_total_stats (FILE *file)
14296 fprintf
14297 (file,
14298 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14299 total_attempts, total_merges, total_extras, total_successes);
14302 /* Try combining insns through substitution. */
14303 static unsigned int
14304 rest_of_handle_combine (void)
14306 int rebuild_jump_labels_after_combine;
14308 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14309 df_note_add_problem ();
14310 df_analyze ();
14312 regstat_init_n_sets_and_refs ();
14313 reg_n_sets_max = max_reg_num ();
14315 rebuild_jump_labels_after_combine
14316 = combine_instructions (get_insns (), max_reg_num ());
14318 /* Combining insns may have turned an indirect jump into a
14319 direct jump. Rebuild the JUMP_LABEL fields of jumping
14320 instructions. */
14321 if (rebuild_jump_labels_after_combine)
14323 timevar_push (TV_JUMP);
14324 rebuild_jump_labels (get_insns ());
14325 cleanup_cfg (0);
14326 timevar_pop (TV_JUMP);
14329 regstat_free_n_sets_and_refs ();
14330 return 0;
14333 namespace {
14335 const pass_data pass_data_combine =
14337 RTL_PASS, /* type */
14338 "combine", /* name */
14339 OPTGROUP_NONE, /* optinfo_flags */
14340 TV_COMBINE, /* tv_id */
14341 PROP_cfglayout, /* properties_required */
14342 0, /* properties_provided */
14343 0, /* properties_destroyed */
14344 0, /* todo_flags_start */
14345 TODO_df_finish, /* todo_flags_finish */
14348 class pass_combine : public rtl_opt_pass
14350 public:
14351 pass_combine (gcc::context *ctxt)
14352 : rtl_opt_pass (pass_data_combine, ctxt)
14355 /* opt_pass methods: */
14356 virtual bool gate (function *) { return (optimize > 0); }
14357 virtual unsigned int execute (function *)
14359 return rest_of_handle_combine ();
14362 }; // class pass_combine
14364 } // anon namespace
14366 rtl_opt_pass *
14367 make_pass_combine (gcc::context *ctxt)
14369 return new pass_combine (ctxt);