[ARM] Fix cmse_nonsecure_entry return insn size
[official-gcc.git] / gcc / fortran / resolve.c
blob1dde0d3ce1a63569cf98def63fdff48b4c0c1871
1 /* Perform type resolution on the various structures.
2 Copyright (C) 2001-2017 Free Software Foundation, Inc.
3 Contributed by Andy Vaught
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "options.h"
25 #include "bitmap.h"
26 #include "gfortran.h"
27 #include "arith.h" /* For gfc_compare_expr(). */
28 #include "dependency.h"
29 #include "data.h"
30 #include "target-memory.h" /* for gfc_simplify_transfer */
31 #include "constructor.h"
33 /* Types used in equivalence statements. */
35 enum seq_type
37 SEQ_NONDEFAULT, SEQ_NUMERIC, SEQ_CHARACTER, SEQ_MIXED
40 /* Stack to keep track of the nesting of blocks as we move through the
41 code. See resolve_branch() and gfc_resolve_code(). */
43 typedef struct code_stack
45 struct gfc_code *head, *current;
46 struct code_stack *prev;
48 /* This bitmap keeps track of the targets valid for a branch from
49 inside this block except for END {IF|SELECT}s of enclosing
50 blocks. */
51 bitmap reachable_labels;
53 code_stack;
55 static code_stack *cs_base = NULL;
58 /* Nonzero if we're inside a FORALL or DO CONCURRENT block. */
60 static int forall_flag;
61 int gfc_do_concurrent_flag;
63 /* True when we are resolving an expression that is an actual argument to
64 a procedure. */
65 static bool actual_arg = false;
66 /* True when we are resolving an expression that is the first actual argument
67 to a procedure. */
68 static bool first_actual_arg = false;
71 /* Nonzero if we're inside a OpenMP WORKSHARE or PARALLEL WORKSHARE block. */
73 static int omp_workshare_flag;
75 /* True if we are processing a formal arglist. The corresponding function
76 resets the flag each time that it is read. */
77 static bool formal_arg_flag = false;
79 /* True if we are resolving a specification expression. */
80 static bool specification_expr = false;
82 /* The id of the last entry seen. */
83 static int current_entry_id;
85 /* We use bitmaps to determine if a branch target is valid. */
86 static bitmap_obstack labels_obstack;
88 /* True when simplifying a EXPR_VARIABLE argument to an inquiry function. */
89 static bool inquiry_argument = false;
92 bool
93 gfc_is_formal_arg (void)
95 return formal_arg_flag;
98 /* Is the symbol host associated? */
99 static bool
100 is_sym_host_assoc (gfc_symbol *sym, gfc_namespace *ns)
102 for (ns = ns->parent; ns; ns = ns->parent)
104 if (sym->ns == ns)
105 return true;
108 return false;
111 /* Ensure a typespec used is valid; for instance, TYPE(t) is invalid if t is
112 an ABSTRACT derived-type. If where is not NULL, an error message with that
113 locus is printed, optionally using name. */
115 static bool
116 resolve_typespec_used (gfc_typespec* ts, locus* where, const char* name)
118 if (ts->type == BT_DERIVED && ts->u.derived->attr.abstract)
120 if (where)
122 if (name)
123 gfc_error ("%qs at %L is of the ABSTRACT type %qs",
124 name, where, ts->u.derived->name);
125 else
126 gfc_error ("ABSTRACT type %qs used at %L",
127 ts->u.derived->name, where);
130 return false;
133 return true;
137 static bool
138 check_proc_interface (gfc_symbol *ifc, locus *where)
140 /* Several checks for F08:C1216. */
141 if (ifc->attr.procedure)
143 gfc_error ("Interface %qs at %L is declared "
144 "in a later PROCEDURE statement", ifc->name, where);
145 return false;
147 if (ifc->generic)
149 /* For generic interfaces, check if there is
150 a specific procedure with the same name. */
151 gfc_interface *gen = ifc->generic;
152 while (gen && strcmp (gen->sym->name, ifc->name) != 0)
153 gen = gen->next;
154 if (!gen)
156 gfc_error ("Interface %qs at %L may not be generic",
157 ifc->name, where);
158 return false;
161 if (ifc->attr.proc == PROC_ST_FUNCTION)
163 gfc_error ("Interface %qs at %L may not be a statement function",
164 ifc->name, where);
165 return false;
167 if (gfc_is_intrinsic (ifc, 0, ifc->declared_at)
168 || gfc_is_intrinsic (ifc, 1, ifc->declared_at))
169 ifc->attr.intrinsic = 1;
170 if (ifc->attr.intrinsic && !gfc_intrinsic_actual_ok (ifc->name, 0))
172 gfc_error ("Intrinsic procedure %qs not allowed in "
173 "PROCEDURE statement at %L", ifc->name, where);
174 return false;
176 if (!ifc->attr.if_source && !ifc->attr.intrinsic && ifc->name[0] != '\0')
178 gfc_error ("Interface %qs at %L must be explicit", ifc->name, where);
179 return false;
181 return true;
185 static void resolve_symbol (gfc_symbol *sym);
188 /* Resolve the interface for a PROCEDURE declaration or procedure pointer. */
190 static bool
191 resolve_procedure_interface (gfc_symbol *sym)
193 gfc_symbol *ifc = sym->ts.interface;
195 if (!ifc)
196 return true;
198 if (ifc == sym)
200 gfc_error ("PROCEDURE %qs at %L may not be used as its own interface",
201 sym->name, &sym->declared_at);
202 return false;
204 if (!check_proc_interface (ifc, &sym->declared_at))
205 return false;
207 if (ifc->attr.if_source || ifc->attr.intrinsic)
209 /* Resolve interface and copy attributes. */
210 resolve_symbol (ifc);
211 if (ifc->attr.intrinsic)
212 gfc_resolve_intrinsic (ifc, &ifc->declared_at);
214 if (ifc->result)
216 sym->ts = ifc->result->ts;
217 sym->attr.allocatable = ifc->result->attr.allocatable;
218 sym->attr.pointer = ifc->result->attr.pointer;
219 sym->attr.dimension = ifc->result->attr.dimension;
220 sym->attr.class_ok = ifc->result->attr.class_ok;
221 sym->as = gfc_copy_array_spec (ifc->result->as);
222 sym->result = sym;
224 else
226 sym->ts = ifc->ts;
227 sym->attr.allocatable = ifc->attr.allocatable;
228 sym->attr.pointer = ifc->attr.pointer;
229 sym->attr.dimension = ifc->attr.dimension;
230 sym->attr.class_ok = ifc->attr.class_ok;
231 sym->as = gfc_copy_array_spec (ifc->as);
233 sym->ts.interface = ifc;
234 sym->attr.function = ifc->attr.function;
235 sym->attr.subroutine = ifc->attr.subroutine;
237 sym->attr.pure = ifc->attr.pure;
238 sym->attr.elemental = ifc->attr.elemental;
239 sym->attr.contiguous = ifc->attr.contiguous;
240 sym->attr.recursive = ifc->attr.recursive;
241 sym->attr.always_explicit = ifc->attr.always_explicit;
242 sym->attr.ext_attr |= ifc->attr.ext_attr;
243 sym->attr.is_bind_c = ifc->attr.is_bind_c;
244 /* Copy char length. */
245 if (ifc->ts.type == BT_CHARACTER && ifc->ts.u.cl)
247 sym->ts.u.cl = gfc_new_charlen (sym->ns, ifc->ts.u.cl);
248 if (sym->ts.u.cl->length && !sym->ts.u.cl->resolved
249 && !gfc_resolve_expr (sym->ts.u.cl->length))
250 return false;
254 return true;
258 /* Resolve types of formal argument lists. These have to be done early so that
259 the formal argument lists of module procedures can be copied to the
260 containing module before the individual procedures are resolved
261 individually. We also resolve argument lists of procedures in interface
262 blocks because they are self-contained scoping units.
264 Since a dummy argument cannot be a non-dummy procedure, the only
265 resort left for untyped names are the IMPLICIT types. */
267 static void
268 resolve_formal_arglist (gfc_symbol *proc)
270 gfc_formal_arglist *f;
271 gfc_symbol *sym;
272 bool saved_specification_expr;
273 int i;
275 if (proc->result != NULL)
276 sym = proc->result;
277 else
278 sym = proc;
280 if (gfc_elemental (proc)
281 || sym->attr.pointer || sym->attr.allocatable
282 || (sym->as && sym->as->rank != 0))
284 proc->attr.always_explicit = 1;
285 sym->attr.always_explicit = 1;
288 formal_arg_flag = true;
290 for (f = proc->formal; f; f = f->next)
292 gfc_array_spec *as;
294 sym = f->sym;
296 if (sym == NULL)
298 /* Alternate return placeholder. */
299 if (gfc_elemental (proc))
300 gfc_error ("Alternate return specifier in elemental subroutine "
301 "%qs at %L is not allowed", proc->name,
302 &proc->declared_at);
303 if (proc->attr.function)
304 gfc_error ("Alternate return specifier in function "
305 "%qs at %L is not allowed", proc->name,
306 &proc->declared_at);
307 continue;
309 else if (sym->attr.procedure && sym->attr.if_source != IFSRC_DECL
310 && !resolve_procedure_interface (sym))
311 return;
313 if (strcmp (proc->name, sym->name) == 0)
315 gfc_error ("Self-referential argument "
316 "%qs at %L is not allowed", sym->name,
317 &proc->declared_at);
318 return;
321 if (sym->attr.if_source != IFSRC_UNKNOWN)
322 resolve_formal_arglist (sym);
324 if (sym->attr.subroutine || sym->attr.external)
326 if (sym->attr.flavor == FL_UNKNOWN)
327 gfc_add_flavor (&sym->attr, FL_PROCEDURE, sym->name, &sym->declared_at);
329 else
331 if (sym->ts.type == BT_UNKNOWN && !proc->attr.intrinsic
332 && (!sym->attr.function || sym->result == sym))
333 gfc_set_default_type (sym, 1, sym->ns);
336 as = sym->ts.type == BT_CLASS && sym->attr.class_ok
337 ? CLASS_DATA (sym)->as : sym->as;
339 saved_specification_expr = specification_expr;
340 specification_expr = true;
341 gfc_resolve_array_spec (as, 0);
342 specification_expr = saved_specification_expr;
344 /* We can't tell if an array with dimension (:) is assumed or deferred
345 shape until we know if it has the pointer or allocatable attributes.
347 if (as && as->rank > 0 && as->type == AS_DEFERRED
348 && ((sym->ts.type != BT_CLASS
349 && !(sym->attr.pointer || sym->attr.allocatable))
350 || (sym->ts.type == BT_CLASS
351 && !(CLASS_DATA (sym)->attr.class_pointer
352 || CLASS_DATA (sym)->attr.allocatable)))
353 && sym->attr.flavor != FL_PROCEDURE)
355 as->type = AS_ASSUMED_SHAPE;
356 for (i = 0; i < as->rank; i++)
357 as->lower[i] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
360 if ((as && as->rank > 0 && as->type == AS_ASSUMED_SHAPE)
361 || (as && as->type == AS_ASSUMED_RANK)
362 || sym->attr.pointer || sym->attr.allocatable || sym->attr.target
363 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
364 && (CLASS_DATA (sym)->attr.class_pointer
365 || CLASS_DATA (sym)->attr.allocatable
366 || CLASS_DATA (sym)->attr.target))
367 || sym->attr.optional)
369 proc->attr.always_explicit = 1;
370 if (proc->result)
371 proc->result->attr.always_explicit = 1;
374 /* If the flavor is unknown at this point, it has to be a variable.
375 A procedure specification would have already set the type. */
377 if (sym->attr.flavor == FL_UNKNOWN)
378 gfc_add_flavor (&sym->attr, FL_VARIABLE, sym->name, &sym->declared_at);
380 if (gfc_pure (proc))
382 if (sym->attr.flavor == FL_PROCEDURE)
384 /* F08:C1279. */
385 if (!gfc_pure (sym))
387 gfc_error ("Dummy procedure %qs of PURE procedure at %L must "
388 "also be PURE", sym->name, &sym->declared_at);
389 continue;
392 else if (!sym->attr.pointer)
394 if (proc->attr.function && sym->attr.intent != INTENT_IN)
396 if (sym->attr.value)
397 gfc_notify_std (GFC_STD_F2008, "Argument %qs"
398 " of pure function %qs at %L with VALUE "
399 "attribute but without INTENT(IN)",
400 sym->name, proc->name, &sym->declared_at);
401 else
402 gfc_error ("Argument %qs of pure function %qs at %L must "
403 "be INTENT(IN) or VALUE", sym->name, proc->name,
404 &sym->declared_at);
407 if (proc->attr.subroutine && sym->attr.intent == INTENT_UNKNOWN)
409 if (sym->attr.value)
410 gfc_notify_std (GFC_STD_F2008, "Argument %qs"
411 " of pure subroutine %qs at %L with VALUE "
412 "attribute but without INTENT", sym->name,
413 proc->name, &sym->declared_at);
414 else
415 gfc_error ("Argument %qs of pure subroutine %qs at %L "
416 "must have its INTENT specified or have the "
417 "VALUE attribute", sym->name, proc->name,
418 &sym->declared_at);
422 /* F08:C1278a. */
423 if (sym->ts.type == BT_CLASS && sym->attr.intent == INTENT_OUT)
425 gfc_error ("INTENT(OUT) argument %qs of pure procedure %qs at %L"
426 " may not be polymorphic", sym->name, proc->name,
427 &sym->declared_at);
428 continue;
432 if (proc->attr.implicit_pure)
434 if (sym->attr.flavor == FL_PROCEDURE)
436 if (!gfc_pure (sym))
437 proc->attr.implicit_pure = 0;
439 else if (!sym->attr.pointer)
441 if (proc->attr.function && sym->attr.intent != INTENT_IN
442 && !sym->value)
443 proc->attr.implicit_pure = 0;
445 if (proc->attr.subroutine && sym->attr.intent == INTENT_UNKNOWN
446 && !sym->value)
447 proc->attr.implicit_pure = 0;
451 if (gfc_elemental (proc))
453 /* F08:C1289. */
454 if (sym->attr.codimension
455 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
456 && CLASS_DATA (sym)->attr.codimension))
458 gfc_error ("Coarray dummy argument %qs at %L to elemental "
459 "procedure", sym->name, &sym->declared_at);
460 continue;
463 if (sym->as || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
464 && CLASS_DATA (sym)->as))
466 gfc_error ("Argument %qs of elemental procedure at %L must "
467 "be scalar", sym->name, &sym->declared_at);
468 continue;
471 if (sym->attr.allocatable
472 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
473 && CLASS_DATA (sym)->attr.allocatable))
475 gfc_error ("Argument %qs of elemental procedure at %L cannot "
476 "have the ALLOCATABLE attribute", sym->name,
477 &sym->declared_at);
478 continue;
481 if (sym->attr.pointer
482 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
483 && CLASS_DATA (sym)->attr.class_pointer))
485 gfc_error ("Argument %qs of elemental procedure at %L cannot "
486 "have the POINTER attribute", sym->name,
487 &sym->declared_at);
488 continue;
491 if (sym->attr.flavor == FL_PROCEDURE)
493 gfc_error ("Dummy procedure %qs not allowed in elemental "
494 "procedure %qs at %L", sym->name, proc->name,
495 &sym->declared_at);
496 continue;
499 /* Fortran 2008 Corrigendum 1, C1290a. */
500 if (sym->attr.intent == INTENT_UNKNOWN && !sym->attr.value)
502 gfc_error ("Argument %qs of elemental procedure %qs at %L must "
503 "have its INTENT specified or have the VALUE "
504 "attribute", sym->name, proc->name,
505 &sym->declared_at);
506 continue;
510 /* Each dummy shall be specified to be scalar. */
511 if (proc->attr.proc == PROC_ST_FUNCTION)
513 if (sym->as != NULL)
515 gfc_error ("Argument %qs of statement function at %L must "
516 "be scalar", sym->name, &sym->declared_at);
517 continue;
520 if (sym->ts.type == BT_CHARACTER)
522 gfc_charlen *cl = sym->ts.u.cl;
523 if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
525 gfc_error ("Character-valued argument %qs of statement "
526 "function at %L must have constant length",
527 sym->name, &sym->declared_at);
528 continue;
533 formal_arg_flag = false;
537 /* Work function called when searching for symbols that have argument lists
538 associated with them. */
540 static void
541 find_arglists (gfc_symbol *sym)
543 if (sym->attr.if_source == IFSRC_UNKNOWN || sym->ns != gfc_current_ns
544 || gfc_fl_struct (sym->attr.flavor) || sym->attr.intrinsic)
545 return;
547 resolve_formal_arglist (sym);
551 /* Given a namespace, resolve all formal argument lists within the namespace.
554 static void
555 resolve_formal_arglists (gfc_namespace *ns)
557 if (ns == NULL)
558 return;
560 gfc_traverse_ns (ns, find_arglists);
564 static void
565 resolve_contained_fntype (gfc_symbol *sym, gfc_namespace *ns)
567 bool t;
569 if (sym && sym->attr.flavor == FL_PROCEDURE
570 && sym->ns->parent
571 && sym->ns->parent->proc_name
572 && sym->ns->parent->proc_name->attr.flavor == FL_PROCEDURE
573 && !strcmp (sym->name, sym->ns->parent->proc_name->name))
574 gfc_error ("Contained procedure %qs at %L has the same name as its "
575 "encompassing procedure", sym->name, &sym->declared_at);
577 /* If this namespace is not a function or an entry master function,
578 ignore it. */
579 if (! sym || !(sym->attr.function || sym->attr.flavor == FL_VARIABLE)
580 || sym->attr.entry_master)
581 return;
583 /* Try to find out of what the return type is. */
584 if (sym->result->ts.type == BT_UNKNOWN && sym->result->ts.interface == NULL)
586 t = gfc_set_default_type (sym->result, 0, ns);
588 if (!t && !sym->result->attr.untyped)
590 if (sym->result == sym)
591 gfc_error ("Contained function %qs at %L has no IMPLICIT type",
592 sym->name, &sym->declared_at);
593 else if (!sym->result->attr.proc_pointer)
594 gfc_error ("Result %qs of contained function %qs at %L has "
595 "no IMPLICIT type", sym->result->name, sym->name,
596 &sym->result->declared_at);
597 sym->result->attr.untyped = 1;
601 /* Fortran 95 Draft Standard, page 51, Section 5.1.1.5, on the Character
602 type, lists the only ways a character length value of * can be used:
603 dummy arguments of procedures, named constants, and function results
604 in external functions. Internal function results and results of module
605 procedures are not on this list, ergo, not permitted. */
607 if (sym->result->ts.type == BT_CHARACTER)
609 gfc_charlen *cl = sym->result->ts.u.cl;
610 if ((!cl || !cl->length) && !sym->result->ts.deferred)
612 /* See if this is a module-procedure and adapt error message
613 accordingly. */
614 bool module_proc;
615 gcc_assert (ns->parent && ns->parent->proc_name);
616 module_proc = (ns->parent->proc_name->attr.flavor == FL_MODULE);
618 gfc_error (module_proc
619 ? G_("Character-valued module procedure %qs at %L"
620 " must not be assumed length")
621 : G_("Character-valued internal function %qs at %L"
622 " must not be assumed length"),
623 sym->name, &sym->declared_at);
629 /* Add NEW_ARGS to the formal argument list of PROC, taking care not to
630 introduce duplicates. */
632 static void
633 merge_argument_lists (gfc_symbol *proc, gfc_formal_arglist *new_args)
635 gfc_formal_arglist *f, *new_arglist;
636 gfc_symbol *new_sym;
638 for (; new_args != NULL; new_args = new_args->next)
640 new_sym = new_args->sym;
641 /* See if this arg is already in the formal argument list. */
642 for (f = proc->formal; f; f = f->next)
644 if (new_sym == f->sym)
645 break;
648 if (f)
649 continue;
651 /* Add a new argument. Argument order is not important. */
652 new_arglist = gfc_get_formal_arglist ();
653 new_arglist->sym = new_sym;
654 new_arglist->next = proc->formal;
655 proc->formal = new_arglist;
660 /* Flag the arguments that are not present in all entries. */
662 static void
663 check_argument_lists (gfc_symbol *proc, gfc_formal_arglist *new_args)
665 gfc_formal_arglist *f, *head;
666 head = new_args;
668 for (f = proc->formal; f; f = f->next)
670 if (f->sym == NULL)
671 continue;
673 for (new_args = head; new_args; new_args = new_args->next)
675 if (new_args->sym == f->sym)
676 break;
679 if (new_args)
680 continue;
682 f->sym->attr.not_always_present = 1;
687 /* Resolve alternate entry points. If a symbol has multiple entry points we
688 create a new master symbol for the main routine, and turn the existing
689 symbol into an entry point. */
691 static void
692 resolve_entries (gfc_namespace *ns)
694 gfc_namespace *old_ns;
695 gfc_code *c;
696 gfc_symbol *proc;
697 gfc_entry_list *el;
698 char name[GFC_MAX_SYMBOL_LEN + 1];
699 static int master_count = 0;
701 if (ns->proc_name == NULL)
702 return;
704 /* No need to do anything if this procedure doesn't have alternate entry
705 points. */
706 if (!ns->entries)
707 return;
709 /* We may already have resolved alternate entry points. */
710 if (ns->proc_name->attr.entry_master)
711 return;
713 /* If this isn't a procedure something has gone horribly wrong. */
714 gcc_assert (ns->proc_name->attr.flavor == FL_PROCEDURE);
716 /* Remember the current namespace. */
717 old_ns = gfc_current_ns;
719 gfc_current_ns = ns;
721 /* Add the main entry point to the list of entry points. */
722 el = gfc_get_entry_list ();
723 el->sym = ns->proc_name;
724 el->id = 0;
725 el->next = ns->entries;
726 ns->entries = el;
727 ns->proc_name->attr.entry = 1;
729 /* If it is a module function, it needs to be in the right namespace
730 so that gfc_get_fake_result_decl can gather up the results. The
731 need for this arose in get_proc_name, where these beasts were
732 left in their own namespace, to keep prior references linked to
733 the entry declaration.*/
734 if (ns->proc_name->attr.function
735 && ns->parent && ns->parent->proc_name->attr.flavor == FL_MODULE)
736 el->sym->ns = ns;
738 /* Do the same for entries where the master is not a module
739 procedure. These are retained in the module namespace because
740 of the module procedure declaration. */
741 for (el = el->next; el; el = el->next)
742 if (el->sym->ns->proc_name->attr.flavor == FL_MODULE
743 && el->sym->attr.mod_proc)
744 el->sym->ns = ns;
745 el = ns->entries;
747 /* Add an entry statement for it. */
748 c = gfc_get_code (EXEC_ENTRY);
749 c->ext.entry = el;
750 c->next = ns->code;
751 ns->code = c;
753 /* Create a new symbol for the master function. */
754 /* Give the internal function a unique name (within this file).
755 Also include the function name so the user has some hope of figuring
756 out what is going on. */
757 snprintf (name, GFC_MAX_SYMBOL_LEN, "master.%d.%s",
758 master_count++, ns->proc_name->name);
759 gfc_get_ha_symbol (name, &proc);
760 gcc_assert (proc != NULL);
762 gfc_add_procedure (&proc->attr, PROC_INTERNAL, proc->name, NULL);
763 if (ns->proc_name->attr.subroutine)
764 gfc_add_subroutine (&proc->attr, proc->name, NULL);
765 else
767 gfc_symbol *sym;
768 gfc_typespec *ts, *fts;
769 gfc_array_spec *as, *fas;
770 gfc_add_function (&proc->attr, proc->name, NULL);
771 proc->result = proc;
772 fas = ns->entries->sym->as;
773 fas = fas ? fas : ns->entries->sym->result->as;
774 fts = &ns->entries->sym->result->ts;
775 if (fts->type == BT_UNKNOWN)
776 fts = gfc_get_default_type (ns->entries->sym->result->name, NULL);
777 for (el = ns->entries->next; el; el = el->next)
779 ts = &el->sym->result->ts;
780 as = el->sym->as;
781 as = as ? as : el->sym->result->as;
782 if (ts->type == BT_UNKNOWN)
783 ts = gfc_get_default_type (el->sym->result->name, NULL);
785 if (! gfc_compare_types (ts, fts)
786 || (el->sym->result->attr.dimension
787 != ns->entries->sym->result->attr.dimension)
788 || (el->sym->result->attr.pointer
789 != ns->entries->sym->result->attr.pointer))
790 break;
791 else if (as && fas && ns->entries->sym->result != el->sym->result
792 && gfc_compare_array_spec (as, fas) == 0)
793 gfc_error ("Function %s at %L has entries with mismatched "
794 "array specifications", ns->entries->sym->name,
795 &ns->entries->sym->declared_at);
796 /* The characteristics need to match and thus both need to have
797 the same string length, i.e. both len=*, or both len=4.
798 Having both len=<variable> is also possible, but difficult to
799 check at compile time. */
800 else if (ts->type == BT_CHARACTER && ts->u.cl && fts->u.cl
801 && (((ts->u.cl->length && !fts->u.cl->length)
802 ||(!ts->u.cl->length && fts->u.cl->length))
803 || (ts->u.cl->length
804 && ts->u.cl->length->expr_type
805 != fts->u.cl->length->expr_type)
806 || (ts->u.cl->length
807 && ts->u.cl->length->expr_type == EXPR_CONSTANT
808 && mpz_cmp (ts->u.cl->length->value.integer,
809 fts->u.cl->length->value.integer) != 0)))
810 gfc_notify_std (GFC_STD_GNU, "Function %s at %L with "
811 "entries returning variables of different "
812 "string lengths", ns->entries->sym->name,
813 &ns->entries->sym->declared_at);
816 if (el == NULL)
818 sym = ns->entries->sym->result;
819 /* All result types the same. */
820 proc->ts = *fts;
821 if (sym->attr.dimension)
822 gfc_set_array_spec (proc, gfc_copy_array_spec (sym->as), NULL);
823 if (sym->attr.pointer)
824 gfc_add_pointer (&proc->attr, NULL);
826 else
828 /* Otherwise the result will be passed through a union by
829 reference. */
830 proc->attr.mixed_entry_master = 1;
831 for (el = ns->entries; el; el = el->next)
833 sym = el->sym->result;
834 if (sym->attr.dimension)
836 if (el == ns->entries)
837 gfc_error ("FUNCTION result %s can't be an array in "
838 "FUNCTION %s at %L", sym->name,
839 ns->entries->sym->name, &sym->declared_at);
840 else
841 gfc_error ("ENTRY result %s can't be an array in "
842 "FUNCTION %s at %L", sym->name,
843 ns->entries->sym->name, &sym->declared_at);
845 else if (sym->attr.pointer)
847 if (el == ns->entries)
848 gfc_error ("FUNCTION result %s can't be a POINTER in "
849 "FUNCTION %s at %L", sym->name,
850 ns->entries->sym->name, &sym->declared_at);
851 else
852 gfc_error ("ENTRY result %s can't be a POINTER in "
853 "FUNCTION %s at %L", sym->name,
854 ns->entries->sym->name, &sym->declared_at);
856 else
858 ts = &sym->ts;
859 if (ts->type == BT_UNKNOWN)
860 ts = gfc_get_default_type (sym->name, NULL);
861 switch (ts->type)
863 case BT_INTEGER:
864 if (ts->kind == gfc_default_integer_kind)
865 sym = NULL;
866 break;
867 case BT_REAL:
868 if (ts->kind == gfc_default_real_kind
869 || ts->kind == gfc_default_double_kind)
870 sym = NULL;
871 break;
872 case BT_COMPLEX:
873 if (ts->kind == gfc_default_complex_kind)
874 sym = NULL;
875 break;
876 case BT_LOGICAL:
877 if (ts->kind == gfc_default_logical_kind)
878 sym = NULL;
879 break;
880 case BT_UNKNOWN:
881 /* We will issue error elsewhere. */
882 sym = NULL;
883 break;
884 default:
885 break;
887 if (sym)
889 if (el == ns->entries)
890 gfc_error ("FUNCTION result %s can't be of type %s "
891 "in FUNCTION %s at %L", sym->name,
892 gfc_typename (ts), ns->entries->sym->name,
893 &sym->declared_at);
894 else
895 gfc_error ("ENTRY result %s can't be of type %s "
896 "in FUNCTION %s at %L", sym->name,
897 gfc_typename (ts), ns->entries->sym->name,
898 &sym->declared_at);
904 proc->attr.access = ACCESS_PRIVATE;
905 proc->attr.entry_master = 1;
907 /* Merge all the entry point arguments. */
908 for (el = ns->entries; el; el = el->next)
909 merge_argument_lists (proc, el->sym->formal);
911 /* Check the master formal arguments for any that are not
912 present in all entry points. */
913 for (el = ns->entries; el; el = el->next)
914 check_argument_lists (proc, el->sym->formal);
916 /* Use the master function for the function body. */
917 ns->proc_name = proc;
919 /* Finalize the new symbols. */
920 gfc_commit_symbols ();
922 /* Restore the original namespace. */
923 gfc_current_ns = old_ns;
927 /* Resolve common variables. */
928 static void
929 resolve_common_vars (gfc_common_head *common_block, bool named_common)
931 gfc_symbol *csym = common_block->head;
933 for (; csym; csym = csym->common_next)
935 /* gfc_add_in_common may have been called before, but the reported errors
936 have been ignored to continue parsing.
937 We do the checks again here. */
938 if (!csym->attr.use_assoc)
939 gfc_add_in_common (&csym->attr, csym->name, &common_block->where);
941 if (csym->value || csym->attr.data)
943 if (!csym->ns->is_block_data)
944 gfc_notify_std (GFC_STD_GNU, "Variable %qs at %L is in COMMON "
945 "but only in BLOCK DATA initialization is "
946 "allowed", csym->name, &csym->declared_at);
947 else if (!named_common)
948 gfc_notify_std (GFC_STD_GNU, "Initialized variable %qs at %L is "
949 "in a blank COMMON but initialization is only "
950 "allowed in named common blocks", csym->name,
951 &csym->declared_at);
954 if (UNLIMITED_POLY (csym))
955 gfc_error_now ("%qs in cannot appear in COMMON at %L "
956 "[F2008:C5100]", csym->name, &csym->declared_at);
958 if (csym->ts.type != BT_DERIVED)
959 continue;
961 if (!(csym->ts.u.derived->attr.sequence
962 || csym->ts.u.derived->attr.is_bind_c))
963 gfc_error_now ("Derived type variable %qs in COMMON at %L "
964 "has neither the SEQUENCE nor the BIND(C) "
965 "attribute", csym->name, &csym->declared_at);
966 if (csym->ts.u.derived->attr.alloc_comp)
967 gfc_error_now ("Derived type variable %qs in COMMON at %L "
968 "has an ultimate component that is "
969 "allocatable", csym->name, &csym->declared_at);
970 if (gfc_has_default_initializer (csym->ts.u.derived))
971 gfc_error_now ("Derived type variable %qs in COMMON at %L "
972 "may not have default initializer", csym->name,
973 &csym->declared_at);
975 if (csym->attr.flavor == FL_UNKNOWN && !csym->attr.proc_pointer)
976 gfc_add_flavor (&csym->attr, FL_VARIABLE, csym->name, &csym->declared_at);
980 /* Resolve common blocks. */
981 static void
982 resolve_common_blocks (gfc_symtree *common_root)
984 gfc_symbol *sym;
985 gfc_gsymbol * gsym;
987 if (common_root == NULL)
988 return;
990 if (common_root->left)
991 resolve_common_blocks (common_root->left);
992 if (common_root->right)
993 resolve_common_blocks (common_root->right);
995 resolve_common_vars (common_root->n.common, true);
997 /* The common name is a global name - in Fortran 2003 also if it has a
998 C binding name, since Fortran 2008 only the C binding name is a global
999 identifier. */
1000 if (!common_root->n.common->binding_label
1001 || gfc_notification_std (GFC_STD_F2008))
1003 gsym = gfc_find_gsymbol (gfc_gsym_root,
1004 common_root->n.common->name);
1006 if (gsym && gfc_notification_std (GFC_STD_F2008)
1007 && gsym->type == GSYM_COMMON
1008 && ((common_root->n.common->binding_label
1009 && (!gsym->binding_label
1010 || strcmp (common_root->n.common->binding_label,
1011 gsym->binding_label) != 0))
1012 || (!common_root->n.common->binding_label
1013 && gsym->binding_label)))
1015 gfc_error ("In Fortran 2003 COMMON %qs block at %L is a global "
1016 "identifier and must thus have the same binding name "
1017 "as the same-named COMMON block at %L: %s vs %s",
1018 common_root->n.common->name, &common_root->n.common->where,
1019 &gsym->where,
1020 common_root->n.common->binding_label
1021 ? common_root->n.common->binding_label : "(blank)",
1022 gsym->binding_label ? gsym->binding_label : "(blank)");
1023 return;
1026 if (gsym && gsym->type != GSYM_COMMON
1027 && !common_root->n.common->binding_label)
1029 gfc_error ("COMMON block %qs at %L uses the same global identifier "
1030 "as entity at %L",
1031 common_root->n.common->name, &common_root->n.common->where,
1032 &gsym->where);
1033 return;
1035 if (gsym && gsym->type != GSYM_COMMON)
1037 gfc_error ("Fortran 2008: COMMON block %qs with binding label at "
1038 "%L sharing the identifier with global non-COMMON-block "
1039 "entity at %L", common_root->n.common->name,
1040 &common_root->n.common->where, &gsym->where);
1041 return;
1043 if (!gsym)
1045 gsym = gfc_get_gsymbol (common_root->n.common->name);
1046 gsym->type = GSYM_COMMON;
1047 gsym->where = common_root->n.common->where;
1048 gsym->defined = 1;
1050 gsym->used = 1;
1053 if (common_root->n.common->binding_label)
1055 gsym = gfc_find_gsymbol (gfc_gsym_root,
1056 common_root->n.common->binding_label);
1057 if (gsym && gsym->type != GSYM_COMMON)
1059 gfc_error ("COMMON block at %L with binding label %s uses the same "
1060 "global identifier as entity at %L",
1061 &common_root->n.common->where,
1062 common_root->n.common->binding_label, &gsym->where);
1063 return;
1065 if (!gsym)
1067 gsym = gfc_get_gsymbol (common_root->n.common->binding_label);
1068 gsym->type = GSYM_COMMON;
1069 gsym->where = common_root->n.common->where;
1070 gsym->defined = 1;
1072 gsym->used = 1;
1075 gfc_find_symbol (common_root->name, gfc_current_ns, 0, &sym);
1076 if (sym == NULL)
1077 return;
1079 if (sym->attr.flavor == FL_PARAMETER)
1080 gfc_error ("COMMON block %qs at %L is used as PARAMETER at %L",
1081 sym->name, &common_root->n.common->where, &sym->declared_at);
1083 if (sym->attr.external)
1084 gfc_error ("COMMON block %qs at %L can not have the EXTERNAL attribute",
1085 sym->name, &common_root->n.common->where);
1087 if (sym->attr.intrinsic)
1088 gfc_error ("COMMON block %qs at %L is also an intrinsic procedure",
1089 sym->name, &common_root->n.common->where);
1090 else if (sym->attr.result
1091 || gfc_is_function_return_value (sym, gfc_current_ns))
1092 gfc_notify_std (GFC_STD_F2003, "COMMON block %qs at %L "
1093 "that is also a function result", sym->name,
1094 &common_root->n.common->where);
1095 else if (sym->attr.flavor == FL_PROCEDURE && sym->attr.proc != PROC_INTERNAL
1096 && sym->attr.proc != PROC_ST_FUNCTION)
1097 gfc_notify_std (GFC_STD_F2003, "COMMON block %qs at %L "
1098 "that is also a global procedure", sym->name,
1099 &common_root->n.common->where);
1103 /* Resolve contained function types. Because contained functions can call one
1104 another, they have to be worked out before any of the contained procedures
1105 can be resolved.
1107 The good news is that if a function doesn't already have a type, the only
1108 way it can get one is through an IMPLICIT type or a RESULT variable, because
1109 by definition contained functions are contained namespace they're contained
1110 in, not in a sibling or parent namespace. */
1112 static void
1113 resolve_contained_functions (gfc_namespace *ns)
1115 gfc_namespace *child;
1116 gfc_entry_list *el;
1118 resolve_formal_arglists (ns);
1120 for (child = ns->contained; child; child = child->sibling)
1122 /* Resolve alternate entry points first. */
1123 resolve_entries (child);
1125 /* Then check function return types. */
1126 resolve_contained_fntype (child->proc_name, child);
1127 for (el = child->entries; el; el = el->next)
1128 resolve_contained_fntype (el->sym, child);
1134 /* A Parameterized Derived Type constructor must contain values for
1135 the PDT KIND parameters or they must have a default initializer.
1136 Go through the constructor picking out the KIND expressions,
1137 storing them in 'param_list' and then call gfc_get_pdt_instance
1138 to obtain the PDT instance. */
1140 static gfc_actual_arglist *param_list, *param_tail, *param;
1142 static bool
1143 get_pdt_spec_expr (gfc_component *c, gfc_expr *expr)
1145 param = gfc_get_actual_arglist ();
1146 if (!param_list)
1147 param_list = param_tail = param;
1148 else
1150 param_tail->next = param;
1151 param_tail = param_tail->next;
1154 param_tail->name = c->name;
1155 if (expr)
1156 param_tail->expr = gfc_copy_expr (expr);
1157 else if (c->initializer)
1158 param_tail->expr = gfc_copy_expr (c->initializer);
1159 else
1161 param_tail->spec_type = SPEC_ASSUMED;
1162 if (c->attr.pdt_kind)
1164 gfc_error ("The KIND parameter %qs in the PDT constructor "
1165 "at %C has no value", param->name);
1166 return false;
1170 return true;
1173 static bool
1174 get_pdt_constructor (gfc_expr *expr, gfc_constructor **constr,
1175 gfc_symbol *derived)
1177 gfc_constructor *cons;
1178 gfc_component *comp;
1179 bool t = true;
1181 if (expr && expr->expr_type == EXPR_STRUCTURE)
1182 cons = gfc_constructor_first (expr->value.constructor);
1183 else if (constr)
1184 cons = *constr;
1185 gcc_assert (cons);
1187 comp = derived->components;
1189 for (; comp && cons; comp = comp->next, cons = gfc_constructor_next (cons))
1191 if (cons->expr
1192 && cons->expr->expr_type == EXPR_STRUCTURE
1193 && comp->ts.type == BT_DERIVED)
1195 t = get_pdt_constructor (cons->expr, NULL, comp->ts.u.derived);
1196 if (!t)
1197 return t;
1199 else if (comp->ts.type == BT_DERIVED)
1201 t = get_pdt_constructor (NULL, &cons, comp->ts.u.derived);
1202 if (!t)
1203 return t;
1205 else if ((comp->attr.pdt_kind || comp->attr.pdt_len)
1206 && derived->attr.pdt_template)
1208 t = get_pdt_spec_expr (comp, cons->expr);
1209 if (!t)
1210 return t;
1213 return t;
1217 static bool resolve_fl_derived0 (gfc_symbol *sym);
1218 static bool resolve_fl_struct (gfc_symbol *sym);
1221 /* Resolve all of the elements of a structure constructor and make sure that
1222 the types are correct. The 'init' flag indicates that the given
1223 constructor is an initializer. */
1225 static bool
1226 resolve_structure_cons (gfc_expr *expr, int init)
1228 gfc_constructor *cons;
1229 gfc_component *comp;
1230 bool t;
1231 symbol_attribute a;
1233 t = true;
1235 if (expr->ts.type == BT_DERIVED || expr->ts.type == BT_UNION)
1237 if (expr->ts.u.derived->attr.flavor == FL_DERIVED)
1238 resolve_fl_derived0 (expr->ts.u.derived);
1239 else
1240 resolve_fl_struct (expr->ts.u.derived);
1242 /* If this is a Parameterized Derived Type template, find the
1243 instance corresponding to the PDT kind parameters. */
1244 if (expr->ts.u.derived->attr.pdt_template)
1246 param_list = NULL;
1247 t = get_pdt_constructor (expr, NULL, expr->ts.u.derived);
1248 if (!t)
1249 return t;
1250 gfc_get_pdt_instance (param_list, &expr->ts.u.derived, NULL);
1252 expr->param_list = gfc_copy_actual_arglist (param_list);
1254 if (param_list)
1255 gfc_free_actual_arglist (param_list);
1257 if (!expr->ts.u.derived->attr.pdt_type)
1258 return false;
1262 cons = gfc_constructor_first (expr->value.constructor);
1264 /* A constructor may have references if it is the result of substituting a
1265 parameter variable. In this case we just pull out the component we
1266 want. */
1267 if (expr->ref)
1268 comp = expr->ref->u.c.sym->components;
1269 else
1270 comp = expr->ts.u.derived->components;
1272 for (; comp && cons; comp = comp->next, cons = gfc_constructor_next (cons))
1274 int rank;
1276 if (!cons->expr)
1277 continue;
1279 /* Unions use an EXPR_NULL contrived expression to tell the translation
1280 phase to generate an initializer of the appropriate length.
1281 Ignore it here. */
1282 if (cons->expr->ts.type == BT_UNION && cons->expr->expr_type == EXPR_NULL)
1283 continue;
1285 if (!gfc_resolve_expr (cons->expr))
1287 t = false;
1288 continue;
1291 rank = comp->as ? comp->as->rank : 0;
1292 if (comp->ts.type == BT_CLASS && CLASS_DATA (comp)->as)
1293 rank = CLASS_DATA (comp)->as->rank;
1295 if (cons->expr->expr_type != EXPR_NULL && rank != cons->expr->rank
1296 && (comp->attr.allocatable || cons->expr->rank))
1298 gfc_error ("The rank of the element in the structure "
1299 "constructor at %L does not match that of the "
1300 "component (%d/%d)", &cons->expr->where,
1301 cons->expr->rank, rank);
1302 t = false;
1305 /* If we don't have the right type, try to convert it. */
1307 if (!comp->attr.proc_pointer &&
1308 !gfc_compare_types (&cons->expr->ts, &comp->ts))
1310 if (strcmp (comp->name, "_extends") == 0)
1312 /* Can afford to be brutal with the _extends initializer.
1313 The derived type can get lost because it is PRIVATE
1314 but it is not usage constrained by the standard. */
1315 cons->expr->ts = comp->ts;
1317 else if (comp->attr.pointer && cons->expr->ts.type != BT_UNKNOWN)
1319 gfc_error ("The element in the structure constructor at %L, "
1320 "for pointer component %qs, is %s but should be %s",
1321 &cons->expr->where, comp->name,
1322 gfc_basic_typename (cons->expr->ts.type),
1323 gfc_basic_typename (comp->ts.type));
1324 t = false;
1326 else
1328 bool t2 = gfc_convert_type (cons->expr, &comp->ts, 1);
1329 if (t)
1330 t = t2;
1334 /* For strings, the length of the constructor should be the same as
1335 the one of the structure, ensure this if the lengths are known at
1336 compile time and when we are dealing with PARAMETER or structure
1337 constructors. */
1338 if (cons->expr->ts.type == BT_CHARACTER && comp->ts.u.cl
1339 && comp->ts.u.cl->length
1340 && comp->ts.u.cl->length->expr_type == EXPR_CONSTANT
1341 && cons->expr->ts.u.cl && cons->expr->ts.u.cl->length
1342 && cons->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT
1343 && cons->expr->rank != 0
1344 && mpz_cmp (cons->expr->ts.u.cl->length->value.integer,
1345 comp->ts.u.cl->length->value.integer) != 0)
1347 if (cons->expr->expr_type == EXPR_VARIABLE
1348 && cons->expr->symtree->n.sym->attr.flavor == FL_PARAMETER)
1350 /* Wrap the parameter in an array constructor (EXPR_ARRAY)
1351 to make use of the gfc_resolve_character_array_constructor
1352 machinery. The expression is later simplified away to
1353 an array of string literals. */
1354 gfc_expr *para = cons->expr;
1355 cons->expr = gfc_get_expr ();
1356 cons->expr->ts = para->ts;
1357 cons->expr->where = para->where;
1358 cons->expr->expr_type = EXPR_ARRAY;
1359 cons->expr->rank = para->rank;
1360 cons->expr->shape = gfc_copy_shape (para->shape, para->rank);
1361 gfc_constructor_append_expr (&cons->expr->value.constructor,
1362 para, &cons->expr->where);
1365 if (cons->expr->expr_type == EXPR_ARRAY)
1367 /* Rely on the cleanup of the namespace to deal correctly with
1368 the old charlen. (There was a block here that attempted to
1369 remove the charlen but broke the chain in so doing.) */
1370 cons->expr->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
1371 cons->expr->ts.u.cl->length_from_typespec = true;
1372 cons->expr->ts.u.cl->length = gfc_copy_expr (comp->ts.u.cl->length);
1373 gfc_resolve_character_array_constructor (cons->expr);
1377 if (cons->expr->expr_type == EXPR_NULL
1378 && !(comp->attr.pointer || comp->attr.allocatable
1379 || comp->attr.proc_pointer || comp->ts.f90_type == BT_VOID
1380 || (comp->ts.type == BT_CLASS
1381 && (CLASS_DATA (comp)->attr.class_pointer
1382 || CLASS_DATA (comp)->attr.allocatable))))
1384 t = false;
1385 gfc_error ("The NULL in the structure constructor at %L is "
1386 "being applied to component %qs, which is neither "
1387 "a POINTER nor ALLOCATABLE", &cons->expr->where,
1388 comp->name);
1391 if (comp->attr.proc_pointer && comp->ts.interface)
1393 /* Check procedure pointer interface. */
1394 gfc_symbol *s2 = NULL;
1395 gfc_component *c2;
1396 const char *name;
1397 char err[200];
1399 c2 = gfc_get_proc_ptr_comp (cons->expr);
1400 if (c2)
1402 s2 = c2->ts.interface;
1403 name = c2->name;
1405 else if (cons->expr->expr_type == EXPR_FUNCTION)
1407 s2 = cons->expr->symtree->n.sym->result;
1408 name = cons->expr->symtree->n.sym->result->name;
1410 else if (cons->expr->expr_type != EXPR_NULL)
1412 s2 = cons->expr->symtree->n.sym;
1413 name = cons->expr->symtree->n.sym->name;
1416 if (s2 && !gfc_compare_interfaces (comp->ts.interface, s2, name, 0, 1,
1417 err, sizeof (err), NULL, NULL))
1419 gfc_error_opt (OPT_Wargument_mismatch,
1420 "Interface mismatch for procedure-pointer "
1421 "component %qs in structure constructor at %L:"
1422 " %s", comp->name, &cons->expr->where, err);
1423 return false;
1427 if (!comp->attr.pointer || comp->attr.proc_pointer
1428 || cons->expr->expr_type == EXPR_NULL)
1429 continue;
1431 a = gfc_expr_attr (cons->expr);
1433 if (!a.pointer && !a.target)
1435 t = false;
1436 gfc_error ("The element in the structure constructor at %L, "
1437 "for pointer component %qs should be a POINTER or "
1438 "a TARGET", &cons->expr->where, comp->name);
1441 if (init)
1443 /* F08:C461. Additional checks for pointer initialization. */
1444 if (a.allocatable)
1446 t = false;
1447 gfc_error ("Pointer initialization target at %L "
1448 "must not be ALLOCATABLE", &cons->expr->where);
1450 if (!a.save)
1452 t = false;
1453 gfc_error ("Pointer initialization target at %L "
1454 "must have the SAVE attribute", &cons->expr->where);
1458 /* F2003, C1272 (3). */
1459 bool impure = cons->expr->expr_type == EXPR_VARIABLE
1460 && (gfc_impure_variable (cons->expr->symtree->n.sym)
1461 || gfc_is_coindexed (cons->expr));
1462 if (impure && gfc_pure (NULL))
1464 t = false;
1465 gfc_error ("Invalid expression in the structure constructor for "
1466 "pointer component %qs at %L in PURE procedure",
1467 comp->name, &cons->expr->where);
1470 if (impure)
1471 gfc_unset_implicit_pure (NULL);
1474 return t;
1478 /****************** Expression name resolution ******************/
1480 /* Returns 0 if a symbol was not declared with a type or
1481 attribute declaration statement, nonzero otherwise. */
1483 static int
1484 was_declared (gfc_symbol *sym)
1486 symbol_attribute a;
1488 a = sym->attr;
1490 if (!a.implicit_type && sym->ts.type != BT_UNKNOWN)
1491 return 1;
1493 if (a.allocatable || a.dimension || a.dummy || a.external || a.intrinsic
1494 || a.optional || a.pointer || a.save || a.target || a.volatile_
1495 || a.value || a.access != ACCESS_UNKNOWN || a.intent != INTENT_UNKNOWN
1496 || a.asynchronous || a.codimension)
1497 return 1;
1499 return 0;
1503 /* Determine if a symbol is generic or not. */
1505 static int
1506 generic_sym (gfc_symbol *sym)
1508 gfc_symbol *s;
1510 if (sym->attr.generic ||
1511 (sym->attr.intrinsic && gfc_generic_intrinsic (sym->name)))
1512 return 1;
1514 if (was_declared (sym) || sym->ns->parent == NULL)
1515 return 0;
1517 gfc_find_symbol (sym->name, sym->ns->parent, 1, &s);
1519 if (s != NULL)
1521 if (s == sym)
1522 return 0;
1523 else
1524 return generic_sym (s);
1527 return 0;
1531 /* Determine if a symbol is specific or not. */
1533 static int
1534 specific_sym (gfc_symbol *sym)
1536 gfc_symbol *s;
1538 if (sym->attr.if_source == IFSRC_IFBODY
1539 || sym->attr.proc == PROC_MODULE
1540 || sym->attr.proc == PROC_INTERNAL
1541 || sym->attr.proc == PROC_ST_FUNCTION
1542 || (sym->attr.intrinsic && gfc_specific_intrinsic (sym->name))
1543 || sym->attr.external)
1544 return 1;
1546 if (was_declared (sym) || sym->ns->parent == NULL)
1547 return 0;
1549 gfc_find_symbol (sym->name, sym->ns->parent, 1, &s);
1551 return (s == NULL) ? 0 : specific_sym (s);
1555 /* Figure out if the procedure is specific, generic or unknown. */
1557 enum proc_type
1558 { PTYPE_GENERIC = 1, PTYPE_SPECIFIC, PTYPE_UNKNOWN };
1560 static proc_type
1561 procedure_kind (gfc_symbol *sym)
1563 if (generic_sym (sym))
1564 return PTYPE_GENERIC;
1566 if (specific_sym (sym))
1567 return PTYPE_SPECIFIC;
1569 return PTYPE_UNKNOWN;
1572 /* Check references to assumed size arrays. The flag need_full_assumed_size
1573 is nonzero when matching actual arguments. */
1575 static int need_full_assumed_size = 0;
1577 static bool
1578 check_assumed_size_reference (gfc_symbol *sym, gfc_expr *e)
1580 if (need_full_assumed_size || !(sym->as && sym->as->type == AS_ASSUMED_SIZE))
1581 return false;
1583 /* FIXME: The comparison "e->ref->u.ar.type == AR_FULL" is wrong.
1584 What should it be? */
1585 if (e->ref && (e->ref->u.ar.end[e->ref->u.ar.as->rank - 1] == NULL)
1586 && (e->ref->u.ar.as->type == AS_ASSUMED_SIZE)
1587 && (e->ref->u.ar.type == AR_FULL))
1589 gfc_error ("The upper bound in the last dimension must "
1590 "appear in the reference to the assumed size "
1591 "array %qs at %L", sym->name, &e->where);
1592 return true;
1594 return false;
1598 /* Look for bad assumed size array references in argument expressions
1599 of elemental and array valued intrinsic procedures. Since this is
1600 called from procedure resolution functions, it only recurses at
1601 operators. */
1603 static bool
1604 resolve_assumed_size_actual (gfc_expr *e)
1606 if (e == NULL)
1607 return false;
1609 switch (e->expr_type)
1611 case EXPR_VARIABLE:
1612 if (e->symtree && check_assumed_size_reference (e->symtree->n.sym, e))
1613 return true;
1614 break;
1616 case EXPR_OP:
1617 if (resolve_assumed_size_actual (e->value.op.op1)
1618 || resolve_assumed_size_actual (e->value.op.op2))
1619 return true;
1620 break;
1622 default:
1623 break;
1625 return false;
1629 /* Check a generic procedure, passed as an actual argument, to see if
1630 there is a matching specific name. If none, it is an error, and if
1631 more than one, the reference is ambiguous. */
1632 static int
1633 count_specific_procs (gfc_expr *e)
1635 int n;
1636 gfc_interface *p;
1637 gfc_symbol *sym;
1639 n = 0;
1640 sym = e->symtree->n.sym;
1642 for (p = sym->generic; p; p = p->next)
1643 if (strcmp (sym->name, p->sym->name) == 0)
1645 e->symtree = gfc_find_symtree (p->sym->ns->sym_root,
1646 sym->name);
1647 n++;
1650 if (n > 1)
1651 gfc_error ("%qs at %L is ambiguous", e->symtree->n.sym->name,
1652 &e->where);
1654 if (n == 0)
1655 gfc_error ("GENERIC procedure %qs is not allowed as an actual "
1656 "argument at %L", sym->name, &e->where);
1658 return n;
1662 /* See if a call to sym could possibly be a not allowed RECURSION because of
1663 a missing RECURSIVE declaration. This means that either sym is the current
1664 context itself, or sym is the parent of a contained procedure calling its
1665 non-RECURSIVE containing procedure.
1666 This also works if sym is an ENTRY. */
1668 static bool
1669 is_illegal_recursion (gfc_symbol* sym, gfc_namespace* context)
1671 gfc_symbol* proc_sym;
1672 gfc_symbol* context_proc;
1673 gfc_namespace* real_context;
1675 if (sym->attr.flavor == FL_PROGRAM
1676 || gfc_fl_struct (sym->attr.flavor))
1677 return false;
1679 gcc_assert (sym->attr.flavor == FL_PROCEDURE);
1681 /* If we've got an ENTRY, find real procedure. */
1682 if (sym->attr.entry && sym->ns->entries)
1683 proc_sym = sym->ns->entries->sym;
1684 else
1685 proc_sym = sym;
1687 /* If sym is RECURSIVE, all is well of course. */
1688 if (proc_sym->attr.recursive || flag_recursive)
1689 return false;
1691 /* Find the context procedure's "real" symbol if it has entries.
1692 We look for a procedure symbol, so recurse on the parents if we don't
1693 find one (like in case of a BLOCK construct). */
1694 for (real_context = context; ; real_context = real_context->parent)
1696 /* We should find something, eventually! */
1697 gcc_assert (real_context);
1699 context_proc = (real_context->entries ? real_context->entries->sym
1700 : real_context->proc_name);
1702 /* In some special cases, there may not be a proc_name, like for this
1703 invalid code:
1704 real(bad_kind()) function foo () ...
1705 when checking the call to bad_kind ().
1706 In these cases, we simply return here and assume that the
1707 call is ok. */
1708 if (!context_proc)
1709 return false;
1711 if (context_proc->attr.flavor != FL_LABEL)
1712 break;
1715 /* A call from sym's body to itself is recursion, of course. */
1716 if (context_proc == proc_sym)
1717 return true;
1719 /* The same is true if context is a contained procedure and sym the
1720 containing one. */
1721 if (context_proc->attr.contained)
1723 gfc_symbol* parent_proc;
1725 gcc_assert (context->parent);
1726 parent_proc = (context->parent->entries ? context->parent->entries->sym
1727 : context->parent->proc_name);
1729 if (parent_proc == proc_sym)
1730 return true;
1733 return false;
1737 /* Resolve an intrinsic procedure: Set its function/subroutine attribute,
1738 its typespec and formal argument list. */
1740 bool
1741 gfc_resolve_intrinsic (gfc_symbol *sym, locus *loc)
1743 gfc_intrinsic_sym* isym = NULL;
1744 const char* symstd;
1746 if (sym->formal)
1747 return true;
1749 /* Already resolved. */
1750 if (sym->from_intmod && sym->ts.type != BT_UNKNOWN)
1751 return true;
1753 /* We already know this one is an intrinsic, so we don't call
1754 gfc_is_intrinsic for full checking but rather use gfc_find_function and
1755 gfc_find_subroutine directly to check whether it is a function or
1756 subroutine. */
1758 if (sym->intmod_sym_id && sym->attr.subroutine)
1760 gfc_isym_id id = gfc_isym_id_by_intmod_sym (sym);
1761 isym = gfc_intrinsic_subroutine_by_id (id);
1763 else if (sym->intmod_sym_id)
1765 gfc_isym_id id = gfc_isym_id_by_intmod_sym (sym);
1766 isym = gfc_intrinsic_function_by_id (id);
1768 else if (!sym->attr.subroutine)
1769 isym = gfc_find_function (sym->name);
1771 if (isym && !sym->attr.subroutine)
1773 if (sym->ts.type != BT_UNKNOWN && warn_surprising
1774 && !sym->attr.implicit_type)
1775 gfc_warning (OPT_Wsurprising,
1776 "Type specified for intrinsic function %qs at %L is"
1777 " ignored", sym->name, &sym->declared_at);
1779 if (!sym->attr.function &&
1780 !gfc_add_function(&sym->attr, sym->name, loc))
1781 return false;
1783 sym->ts = isym->ts;
1785 else if (isym || (isym = gfc_find_subroutine (sym->name)))
1787 if (sym->ts.type != BT_UNKNOWN && !sym->attr.implicit_type)
1789 gfc_error ("Intrinsic subroutine %qs at %L shall not have a type"
1790 " specifier", sym->name, &sym->declared_at);
1791 return false;
1794 if (!sym->attr.subroutine &&
1795 !gfc_add_subroutine(&sym->attr, sym->name, loc))
1796 return false;
1798 else
1800 gfc_error ("%qs declared INTRINSIC at %L does not exist", sym->name,
1801 &sym->declared_at);
1802 return false;
1805 gfc_copy_formal_args_intr (sym, isym, NULL);
1807 sym->attr.pure = isym->pure;
1808 sym->attr.elemental = isym->elemental;
1810 /* Check it is actually available in the standard settings. */
1811 if (!gfc_check_intrinsic_standard (isym, &symstd, false, sym->declared_at))
1813 gfc_error ("The intrinsic %qs declared INTRINSIC at %L is not "
1814 "available in the current standard settings but %s. Use "
1815 "an appropriate %<-std=*%> option or enable "
1816 "%<-fall-intrinsics%> in order to use it.",
1817 sym->name, &sym->declared_at, symstd);
1818 return false;
1821 return true;
1825 /* Resolve a procedure expression, like passing it to a called procedure or as
1826 RHS for a procedure pointer assignment. */
1828 static bool
1829 resolve_procedure_expression (gfc_expr* expr)
1831 gfc_symbol* sym;
1833 if (expr->expr_type != EXPR_VARIABLE)
1834 return true;
1835 gcc_assert (expr->symtree);
1837 sym = expr->symtree->n.sym;
1839 if (sym->attr.intrinsic)
1840 gfc_resolve_intrinsic (sym, &expr->where);
1842 if (sym->attr.flavor != FL_PROCEDURE
1843 || (sym->attr.function && sym->result == sym))
1844 return true;
1846 /* A non-RECURSIVE procedure that is used as procedure expression within its
1847 own body is in danger of being called recursively. */
1848 if (is_illegal_recursion (sym, gfc_current_ns))
1849 gfc_warning (0, "Non-RECURSIVE procedure %qs at %L is possibly calling"
1850 " itself recursively. Declare it RECURSIVE or use"
1851 " %<-frecursive%>", sym->name, &expr->where);
1853 return true;
1857 /* Resolve an actual argument list. Most of the time, this is just
1858 resolving the expressions in the list.
1859 The exception is that we sometimes have to decide whether arguments
1860 that look like procedure arguments are really simple variable
1861 references. */
1863 static bool
1864 resolve_actual_arglist (gfc_actual_arglist *arg, procedure_type ptype,
1865 bool no_formal_args)
1867 gfc_symbol *sym;
1868 gfc_symtree *parent_st;
1869 gfc_expr *e;
1870 gfc_component *comp;
1871 int save_need_full_assumed_size;
1872 bool return_value = false;
1873 bool actual_arg_sav = actual_arg, first_actual_arg_sav = first_actual_arg;
1875 actual_arg = true;
1876 first_actual_arg = true;
1878 for (; arg; arg = arg->next)
1880 e = arg->expr;
1881 if (e == NULL)
1883 /* Check the label is a valid branching target. */
1884 if (arg->label)
1886 if (arg->label->defined == ST_LABEL_UNKNOWN)
1888 gfc_error ("Label %d referenced at %L is never defined",
1889 arg->label->value, &arg->label->where);
1890 goto cleanup;
1893 first_actual_arg = false;
1894 continue;
1897 if (e->expr_type == EXPR_VARIABLE
1898 && e->symtree->n.sym->attr.generic
1899 && no_formal_args
1900 && count_specific_procs (e) != 1)
1901 goto cleanup;
1903 if (e->ts.type != BT_PROCEDURE)
1905 save_need_full_assumed_size = need_full_assumed_size;
1906 if (e->expr_type != EXPR_VARIABLE)
1907 need_full_assumed_size = 0;
1908 if (!gfc_resolve_expr (e))
1909 goto cleanup;
1910 need_full_assumed_size = save_need_full_assumed_size;
1911 goto argument_list;
1914 /* See if the expression node should really be a variable reference. */
1916 sym = e->symtree->n.sym;
1918 if (sym->attr.flavor == FL_PROCEDURE
1919 || sym->attr.intrinsic
1920 || sym->attr.external)
1922 int actual_ok;
1924 /* If a procedure is not already determined to be something else
1925 check if it is intrinsic. */
1926 if (gfc_is_intrinsic (sym, sym->attr.subroutine, e->where))
1927 sym->attr.intrinsic = 1;
1929 if (sym->attr.proc == PROC_ST_FUNCTION)
1931 gfc_error ("Statement function %qs at %L is not allowed as an "
1932 "actual argument", sym->name, &e->where);
1935 actual_ok = gfc_intrinsic_actual_ok (sym->name,
1936 sym->attr.subroutine);
1937 if (sym->attr.intrinsic && actual_ok == 0)
1939 gfc_error ("Intrinsic %qs at %L is not allowed as an "
1940 "actual argument", sym->name, &e->where);
1943 if (sym->attr.contained && !sym->attr.use_assoc
1944 && sym->ns->proc_name->attr.flavor != FL_MODULE)
1946 if (!gfc_notify_std (GFC_STD_F2008, "Internal procedure %qs is"
1947 " used as actual argument at %L",
1948 sym->name, &e->where))
1949 goto cleanup;
1952 if (sym->attr.elemental && !sym->attr.intrinsic)
1954 gfc_error ("ELEMENTAL non-INTRINSIC procedure %qs is not "
1955 "allowed as an actual argument at %L", sym->name,
1956 &e->where);
1959 /* Check if a generic interface has a specific procedure
1960 with the same name before emitting an error. */
1961 if (sym->attr.generic && count_specific_procs (e) != 1)
1962 goto cleanup;
1964 /* Just in case a specific was found for the expression. */
1965 sym = e->symtree->n.sym;
1967 /* If the symbol is the function that names the current (or
1968 parent) scope, then we really have a variable reference. */
1970 if (gfc_is_function_return_value (sym, sym->ns))
1971 goto got_variable;
1973 /* If all else fails, see if we have a specific intrinsic. */
1974 if (sym->ts.type == BT_UNKNOWN && sym->attr.intrinsic)
1976 gfc_intrinsic_sym *isym;
1978 isym = gfc_find_function (sym->name);
1979 if (isym == NULL || !isym->specific)
1981 gfc_error ("Unable to find a specific INTRINSIC procedure "
1982 "for the reference %qs at %L", sym->name,
1983 &e->where);
1984 goto cleanup;
1986 sym->ts = isym->ts;
1987 sym->attr.intrinsic = 1;
1988 sym->attr.function = 1;
1991 if (!gfc_resolve_expr (e))
1992 goto cleanup;
1993 goto argument_list;
1996 /* See if the name is a module procedure in a parent unit. */
1998 if (was_declared (sym) || sym->ns->parent == NULL)
1999 goto got_variable;
2001 if (gfc_find_sym_tree (sym->name, sym->ns->parent, 1, &parent_st))
2003 gfc_error ("Symbol %qs at %L is ambiguous", sym->name, &e->where);
2004 goto cleanup;
2007 if (parent_st == NULL)
2008 goto got_variable;
2010 sym = parent_st->n.sym;
2011 e->symtree = parent_st; /* Point to the right thing. */
2013 if (sym->attr.flavor == FL_PROCEDURE
2014 || sym->attr.intrinsic
2015 || sym->attr.external)
2017 if (!gfc_resolve_expr (e))
2018 goto cleanup;
2019 goto argument_list;
2022 got_variable:
2023 e->expr_type = EXPR_VARIABLE;
2024 e->ts = sym->ts;
2025 if ((sym->as != NULL && sym->ts.type != BT_CLASS)
2026 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
2027 && CLASS_DATA (sym)->as))
2029 e->rank = sym->ts.type == BT_CLASS
2030 ? CLASS_DATA (sym)->as->rank : sym->as->rank;
2031 e->ref = gfc_get_ref ();
2032 e->ref->type = REF_ARRAY;
2033 e->ref->u.ar.type = AR_FULL;
2034 e->ref->u.ar.as = sym->ts.type == BT_CLASS
2035 ? CLASS_DATA (sym)->as : sym->as;
2038 /* Expressions are assigned a default ts.type of BT_PROCEDURE in
2039 primary.c (match_actual_arg). If above code determines that it
2040 is a variable instead, it needs to be resolved as it was not
2041 done at the beginning of this function. */
2042 save_need_full_assumed_size = need_full_assumed_size;
2043 if (e->expr_type != EXPR_VARIABLE)
2044 need_full_assumed_size = 0;
2045 if (!gfc_resolve_expr (e))
2046 goto cleanup;
2047 need_full_assumed_size = save_need_full_assumed_size;
2049 argument_list:
2050 /* Check argument list functions %VAL, %LOC and %REF. There is
2051 nothing to do for %REF. */
2052 if (arg->name && arg->name[0] == '%')
2054 if (strncmp ("%VAL", arg->name, 4) == 0)
2056 if (e->ts.type == BT_CHARACTER || e->ts.type == BT_DERIVED)
2058 gfc_error ("By-value argument at %L is not of numeric "
2059 "type", &e->where);
2060 goto cleanup;
2063 if (e->rank)
2065 gfc_error ("By-value argument at %L cannot be an array or "
2066 "an array section", &e->where);
2067 goto cleanup;
2070 /* Intrinsics are still PROC_UNKNOWN here. However,
2071 since same file external procedures are not resolvable
2072 in gfortran, it is a good deal easier to leave them to
2073 intrinsic.c. */
2074 if (ptype != PROC_UNKNOWN
2075 && ptype != PROC_DUMMY
2076 && ptype != PROC_EXTERNAL
2077 && ptype != PROC_MODULE)
2079 gfc_error ("By-value argument at %L is not allowed "
2080 "in this context", &e->where);
2081 goto cleanup;
2085 /* Statement functions have already been excluded above. */
2086 else if (strncmp ("%LOC", arg->name, 4) == 0
2087 && e->ts.type == BT_PROCEDURE)
2089 if (e->symtree->n.sym->attr.proc == PROC_INTERNAL)
2091 gfc_error ("Passing internal procedure at %L by location "
2092 "not allowed", &e->where);
2093 goto cleanup;
2098 comp = gfc_get_proc_ptr_comp(e);
2099 if (e->expr_type == EXPR_VARIABLE
2100 && comp && comp->attr.elemental)
2102 gfc_error ("ELEMENTAL procedure pointer component %qs is not "
2103 "allowed as an actual argument at %L", comp->name,
2104 &e->where);
2107 /* Fortran 2008, C1237. */
2108 if (e->expr_type == EXPR_VARIABLE && gfc_is_coindexed (e)
2109 && gfc_has_ultimate_pointer (e))
2111 gfc_error ("Coindexed actual argument at %L with ultimate pointer "
2112 "component", &e->where);
2113 goto cleanup;
2116 first_actual_arg = false;
2119 return_value = true;
2121 cleanup:
2122 actual_arg = actual_arg_sav;
2123 first_actual_arg = first_actual_arg_sav;
2125 return return_value;
2129 /* Do the checks of the actual argument list that are specific to elemental
2130 procedures. If called with c == NULL, we have a function, otherwise if
2131 expr == NULL, we have a subroutine. */
2133 static bool
2134 resolve_elemental_actual (gfc_expr *expr, gfc_code *c)
2136 gfc_actual_arglist *arg0;
2137 gfc_actual_arglist *arg;
2138 gfc_symbol *esym = NULL;
2139 gfc_intrinsic_sym *isym = NULL;
2140 gfc_expr *e = NULL;
2141 gfc_intrinsic_arg *iformal = NULL;
2142 gfc_formal_arglist *eformal = NULL;
2143 bool formal_optional = false;
2144 bool set_by_optional = false;
2145 int i;
2146 int rank = 0;
2148 /* Is this an elemental procedure? */
2149 if (expr && expr->value.function.actual != NULL)
2151 if (expr->value.function.esym != NULL
2152 && expr->value.function.esym->attr.elemental)
2154 arg0 = expr->value.function.actual;
2155 esym = expr->value.function.esym;
2157 else if (expr->value.function.isym != NULL
2158 && expr->value.function.isym->elemental)
2160 arg0 = expr->value.function.actual;
2161 isym = expr->value.function.isym;
2163 else
2164 return true;
2166 else if (c && c->ext.actual != NULL)
2168 arg0 = c->ext.actual;
2170 if (c->resolved_sym)
2171 esym = c->resolved_sym;
2172 else
2173 esym = c->symtree->n.sym;
2174 gcc_assert (esym);
2176 if (!esym->attr.elemental)
2177 return true;
2179 else
2180 return true;
2182 /* The rank of an elemental is the rank of its array argument(s). */
2183 for (arg = arg0; arg; arg = arg->next)
2185 if (arg->expr != NULL && arg->expr->rank != 0)
2187 rank = arg->expr->rank;
2188 if (arg->expr->expr_type == EXPR_VARIABLE
2189 && arg->expr->symtree->n.sym->attr.optional)
2190 set_by_optional = true;
2192 /* Function specific; set the result rank and shape. */
2193 if (expr)
2195 expr->rank = rank;
2196 if (!expr->shape && arg->expr->shape)
2198 expr->shape = gfc_get_shape (rank);
2199 for (i = 0; i < rank; i++)
2200 mpz_init_set (expr->shape[i], arg->expr->shape[i]);
2203 break;
2207 /* If it is an array, it shall not be supplied as an actual argument
2208 to an elemental procedure unless an array of the same rank is supplied
2209 as an actual argument corresponding to a nonoptional dummy argument of
2210 that elemental procedure(12.4.1.5). */
2211 formal_optional = false;
2212 if (isym)
2213 iformal = isym->formal;
2214 else
2215 eformal = esym->formal;
2217 for (arg = arg0; arg; arg = arg->next)
2219 if (eformal)
2221 if (eformal->sym && eformal->sym->attr.optional)
2222 formal_optional = true;
2223 eformal = eformal->next;
2225 else if (isym && iformal)
2227 if (iformal->optional)
2228 formal_optional = true;
2229 iformal = iformal->next;
2231 else if (isym)
2232 formal_optional = true;
2234 if (pedantic && arg->expr != NULL
2235 && arg->expr->expr_type == EXPR_VARIABLE
2236 && arg->expr->symtree->n.sym->attr.optional
2237 && formal_optional
2238 && arg->expr->rank
2239 && (set_by_optional || arg->expr->rank != rank)
2240 && !(isym && isym->id == GFC_ISYM_CONVERSION))
2242 gfc_warning (OPT_Wpedantic,
2243 "%qs at %L is an array and OPTIONAL; IF IT IS "
2244 "MISSING, it cannot be the actual argument of an "
2245 "ELEMENTAL procedure unless there is a non-optional "
2246 "argument with the same rank (12.4.1.5)",
2247 arg->expr->symtree->n.sym->name, &arg->expr->where);
2251 for (arg = arg0; arg; arg = arg->next)
2253 if (arg->expr == NULL || arg->expr->rank == 0)
2254 continue;
2256 /* Being elemental, the last upper bound of an assumed size array
2257 argument must be present. */
2258 if (resolve_assumed_size_actual (arg->expr))
2259 return false;
2261 /* Elemental procedure's array actual arguments must conform. */
2262 if (e != NULL)
2264 if (!gfc_check_conformance (arg->expr, e, "elemental procedure"))
2265 return false;
2267 else
2268 e = arg->expr;
2271 /* INTENT(OUT) is only allowed for subroutines; if any actual argument
2272 is an array, the intent inout/out variable needs to be also an array. */
2273 if (rank > 0 && esym && expr == NULL)
2274 for (eformal = esym->formal, arg = arg0; arg && eformal;
2275 arg = arg->next, eformal = eformal->next)
2276 if ((eformal->sym->attr.intent == INTENT_OUT
2277 || eformal->sym->attr.intent == INTENT_INOUT)
2278 && arg->expr && arg->expr->rank == 0)
2280 gfc_error ("Actual argument at %L for INTENT(%s) dummy %qs of "
2281 "ELEMENTAL subroutine %qs is a scalar, but another "
2282 "actual argument is an array", &arg->expr->where,
2283 (eformal->sym->attr.intent == INTENT_OUT) ? "OUT"
2284 : "INOUT", eformal->sym->name, esym->name);
2285 return false;
2287 return true;
2291 /* This function does the checking of references to global procedures
2292 as defined in sections 18.1 and 14.1, respectively, of the Fortran
2293 77 and 95 standards. It checks for a gsymbol for the name, making
2294 one if it does not already exist. If it already exists, then the
2295 reference being resolved must correspond to the type of gsymbol.
2296 Otherwise, the new symbol is equipped with the attributes of the
2297 reference. The corresponding code that is called in creating
2298 global entities is parse.c.
2300 In addition, for all but -std=legacy, the gsymbols are used to
2301 check the interfaces of external procedures from the same file.
2302 The namespace of the gsymbol is resolved and then, once this is
2303 done the interface is checked. */
2306 static bool
2307 not_in_recursive (gfc_symbol *sym, gfc_namespace *gsym_ns)
2309 if (!gsym_ns->proc_name->attr.recursive)
2310 return true;
2312 if (sym->ns == gsym_ns)
2313 return false;
2315 if (sym->ns->parent && sym->ns->parent == gsym_ns)
2316 return false;
2318 return true;
2321 static bool
2322 not_entry_self_reference (gfc_symbol *sym, gfc_namespace *gsym_ns)
2324 if (gsym_ns->entries)
2326 gfc_entry_list *entry = gsym_ns->entries;
2328 for (; entry; entry = entry->next)
2330 if (strcmp (sym->name, entry->sym->name) == 0)
2332 if (strcmp (gsym_ns->proc_name->name,
2333 sym->ns->proc_name->name) == 0)
2334 return false;
2336 if (sym->ns->parent
2337 && strcmp (gsym_ns->proc_name->name,
2338 sym->ns->parent->proc_name->name) == 0)
2339 return false;
2343 return true;
2347 /* Check for the requirement of an explicit interface. F08:12.4.2.2. */
2349 bool
2350 gfc_explicit_interface_required (gfc_symbol *sym, char *errmsg, int err_len)
2352 gfc_formal_arglist *arg = gfc_sym_get_dummy_args (sym);
2354 for ( ; arg; arg = arg->next)
2356 if (!arg->sym)
2357 continue;
2359 if (arg->sym->attr.allocatable) /* (2a) */
2361 strncpy (errmsg, _("allocatable argument"), err_len);
2362 return true;
2364 else if (arg->sym->attr.asynchronous)
2366 strncpy (errmsg, _("asynchronous argument"), err_len);
2367 return true;
2369 else if (arg->sym->attr.optional)
2371 strncpy (errmsg, _("optional argument"), err_len);
2372 return true;
2374 else if (arg->sym->attr.pointer)
2376 strncpy (errmsg, _("pointer argument"), err_len);
2377 return true;
2379 else if (arg->sym->attr.target)
2381 strncpy (errmsg, _("target argument"), err_len);
2382 return true;
2384 else if (arg->sym->attr.value)
2386 strncpy (errmsg, _("value argument"), err_len);
2387 return true;
2389 else if (arg->sym->attr.volatile_)
2391 strncpy (errmsg, _("volatile argument"), err_len);
2392 return true;
2394 else if (arg->sym->as && arg->sym->as->type == AS_ASSUMED_SHAPE) /* (2b) */
2396 strncpy (errmsg, _("assumed-shape argument"), err_len);
2397 return true;
2399 else if (arg->sym->as && arg->sym->as->type == AS_ASSUMED_RANK) /* TS 29113, 6.2. */
2401 strncpy (errmsg, _("assumed-rank argument"), err_len);
2402 return true;
2404 else if (arg->sym->attr.codimension) /* (2c) */
2406 strncpy (errmsg, _("coarray argument"), err_len);
2407 return true;
2409 else if (false) /* (2d) TODO: parametrized derived type */
2411 strncpy (errmsg, _("parametrized derived type argument"), err_len);
2412 return true;
2414 else if (arg->sym->ts.type == BT_CLASS) /* (2e) */
2416 strncpy (errmsg, _("polymorphic argument"), err_len);
2417 return true;
2419 else if (arg->sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
2421 strncpy (errmsg, _("NO_ARG_CHECK attribute"), err_len);
2422 return true;
2424 else if (arg->sym->ts.type == BT_ASSUMED)
2426 /* As assumed-type is unlimited polymorphic (cf. above).
2427 See also TS 29113, Note 6.1. */
2428 strncpy (errmsg, _("assumed-type argument"), err_len);
2429 return true;
2433 if (sym->attr.function)
2435 gfc_symbol *res = sym->result ? sym->result : sym;
2437 if (res->attr.dimension) /* (3a) */
2439 strncpy (errmsg, _("array result"), err_len);
2440 return true;
2442 else if (res->attr.pointer || res->attr.allocatable) /* (3b) */
2444 strncpy (errmsg, _("pointer or allocatable result"), err_len);
2445 return true;
2447 else if (res->ts.type == BT_CHARACTER && res->ts.u.cl
2448 && res->ts.u.cl->length
2449 && res->ts.u.cl->length->expr_type != EXPR_CONSTANT) /* (3c) */
2451 strncpy (errmsg, _("result with non-constant character length"), err_len);
2452 return true;
2456 if (sym->attr.elemental && !sym->attr.intrinsic) /* (4) */
2458 strncpy (errmsg, _("elemental procedure"), err_len);
2459 return true;
2461 else if (sym->attr.is_bind_c) /* (5) */
2463 strncpy (errmsg, _("bind(c) procedure"), err_len);
2464 return true;
2467 return false;
2471 static void
2472 resolve_global_procedure (gfc_symbol *sym, locus *where,
2473 gfc_actual_arglist **actual, int sub)
2475 gfc_gsymbol * gsym;
2476 gfc_namespace *ns;
2477 enum gfc_symbol_type type;
2478 char reason[200];
2480 type = sub ? GSYM_SUBROUTINE : GSYM_FUNCTION;
2482 gsym = gfc_get_gsymbol (sym->binding_label ? sym->binding_label : sym->name);
2484 if ((gsym->type != GSYM_UNKNOWN && gsym->type != type))
2485 gfc_global_used (gsym, where);
2487 if ((sym->attr.if_source == IFSRC_UNKNOWN
2488 || sym->attr.if_source == IFSRC_IFBODY)
2489 && gsym->type != GSYM_UNKNOWN
2490 && !gsym->binding_label
2491 && gsym->ns
2492 && gsym->ns->resolved != -1
2493 && gsym->ns->proc_name
2494 && not_in_recursive (sym, gsym->ns)
2495 && not_entry_self_reference (sym, gsym->ns))
2497 gfc_symbol *def_sym;
2499 /* Resolve the gsymbol namespace if needed. */
2500 if (!gsym->ns->resolved)
2502 gfc_dt_list *old_dt_list;
2504 /* Stash away derived types so that the backend_decls do not
2505 get mixed up. */
2506 old_dt_list = gfc_derived_types;
2507 gfc_derived_types = NULL;
2509 gfc_resolve (gsym->ns);
2511 /* Store the new derived types with the global namespace. */
2512 if (gfc_derived_types)
2513 gsym->ns->derived_types = gfc_derived_types;
2515 /* Restore the derived types of this namespace. */
2516 gfc_derived_types = old_dt_list;
2519 /* Make sure that translation for the gsymbol occurs before
2520 the procedure currently being resolved. */
2521 ns = gfc_global_ns_list;
2522 for (; ns && ns != gsym->ns; ns = ns->sibling)
2524 if (ns->sibling == gsym->ns)
2526 ns->sibling = gsym->ns->sibling;
2527 gsym->ns->sibling = gfc_global_ns_list;
2528 gfc_global_ns_list = gsym->ns;
2529 break;
2533 def_sym = gsym->ns->proc_name;
2535 /* This can happen if a binding name has been specified. */
2536 if (gsym->binding_label && gsym->sym_name != def_sym->name)
2537 gfc_find_symbol (gsym->sym_name, gsym->ns, 0, &def_sym);
2539 if (def_sym->attr.entry_master)
2541 gfc_entry_list *entry;
2542 for (entry = gsym->ns->entries; entry; entry = entry->next)
2543 if (strcmp (entry->sym->name, sym->name) == 0)
2545 def_sym = entry->sym;
2546 break;
2550 if (sym->attr.function && !gfc_compare_types (&sym->ts, &def_sym->ts))
2552 gfc_error ("Return type mismatch of function %qs at %L (%s/%s)",
2553 sym->name, &sym->declared_at, gfc_typename (&sym->ts),
2554 gfc_typename (&def_sym->ts));
2555 goto done;
2558 if (sym->attr.if_source == IFSRC_UNKNOWN
2559 && gfc_explicit_interface_required (def_sym, reason, sizeof(reason)))
2561 gfc_error ("Explicit interface required for %qs at %L: %s",
2562 sym->name, &sym->declared_at, reason);
2563 goto done;
2566 if (!pedantic && (gfc_option.allow_std & GFC_STD_GNU))
2567 /* Turn erros into warnings with -std=gnu and -std=legacy. */
2568 gfc_errors_to_warnings (true);
2570 if (!gfc_compare_interfaces (sym, def_sym, sym->name, 0, 1,
2571 reason, sizeof(reason), NULL, NULL))
2573 gfc_error_opt (OPT_Wargument_mismatch,
2574 "Interface mismatch in global procedure %qs at %L:"
2575 " %s", sym->name, &sym->declared_at, reason);
2576 goto done;
2579 if (!pedantic
2580 || ((gfc_option.warn_std & GFC_STD_LEGACY)
2581 && !(gfc_option.warn_std & GFC_STD_GNU)))
2582 gfc_errors_to_warnings (true);
2584 if (sym->attr.if_source != IFSRC_IFBODY)
2585 gfc_procedure_use (def_sym, actual, where);
2588 done:
2589 gfc_errors_to_warnings (false);
2591 if (gsym->type == GSYM_UNKNOWN)
2593 gsym->type = type;
2594 gsym->where = *where;
2597 gsym->used = 1;
2601 /************* Function resolution *************/
2603 /* Resolve a function call known to be generic.
2604 Section 14.1.2.4.1. */
2606 static match
2607 resolve_generic_f0 (gfc_expr *expr, gfc_symbol *sym)
2609 gfc_symbol *s;
2611 if (sym->attr.generic)
2613 s = gfc_search_interface (sym->generic, 0, &expr->value.function.actual);
2614 if (s != NULL)
2616 expr->value.function.name = s->name;
2617 expr->value.function.esym = s;
2619 if (s->ts.type != BT_UNKNOWN)
2620 expr->ts = s->ts;
2621 else if (s->result != NULL && s->result->ts.type != BT_UNKNOWN)
2622 expr->ts = s->result->ts;
2624 if (s->as != NULL)
2625 expr->rank = s->as->rank;
2626 else if (s->result != NULL && s->result->as != NULL)
2627 expr->rank = s->result->as->rank;
2629 gfc_set_sym_referenced (expr->value.function.esym);
2631 return MATCH_YES;
2634 /* TODO: Need to search for elemental references in generic
2635 interface. */
2638 if (sym->attr.intrinsic)
2639 return gfc_intrinsic_func_interface (expr, 0);
2641 return MATCH_NO;
2645 static bool
2646 resolve_generic_f (gfc_expr *expr)
2648 gfc_symbol *sym;
2649 match m;
2650 gfc_interface *intr = NULL;
2652 sym = expr->symtree->n.sym;
2654 for (;;)
2656 m = resolve_generic_f0 (expr, sym);
2657 if (m == MATCH_YES)
2658 return true;
2659 else if (m == MATCH_ERROR)
2660 return false;
2662 generic:
2663 if (!intr)
2664 for (intr = sym->generic; intr; intr = intr->next)
2665 if (gfc_fl_struct (intr->sym->attr.flavor))
2666 break;
2668 if (sym->ns->parent == NULL)
2669 break;
2670 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
2672 if (sym == NULL)
2673 break;
2674 if (!generic_sym (sym))
2675 goto generic;
2678 /* Last ditch attempt. See if the reference is to an intrinsic
2679 that possesses a matching interface. 14.1.2.4 */
2680 if (sym && !intr && !gfc_is_intrinsic (sym, 0, expr->where))
2682 if (gfc_init_expr_flag)
2683 gfc_error ("Function %qs in initialization expression at %L "
2684 "must be an intrinsic function",
2685 expr->symtree->n.sym->name, &expr->where);
2686 else
2687 gfc_error ("There is no specific function for the generic %qs "
2688 "at %L", expr->symtree->n.sym->name, &expr->where);
2689 return false;
2692 if (intr)
2694 if (!gfc_convert_to_structure_constructor (expr, intr->sym, NULL,
2695 NULL, false))
2696 return false;
2697 if (!gfc_use_derived (expr->ts.u.derived))
2698 return false;
2699 return resolve_structure_cons (expr, 0);
2702 m = gfc_intrinsic_func_interface (expr, 0);
2703 if (m == MATCH_YES)
2704 return true;
2706 if (m == MATCH_NO)
2707 gfc_error ("Generic function %qs at %L is not consistent with a "
2708 "specific intrinsic interface", expr->symtree->n.sym->name,
2709 &expr->where);
2711 return false;
2715 /* Resolve a function call known to be specific. */
2717 static match
2718 resolve_specific_f0 (gfc_symbol *sym, gfc_expr *expr)
2720 match m;
2722 if (sym->attr.external || sym->attr.if_source == IFSRC_IFBODY)
2724 if (sym->attr.dummy)
2726 sym->attr.proc = PROC_DUMMY;
2727 goto found;
2730 sym->attr.proc = PROC_EXTERNAL;
2731 goto found;
2734 if (sym->attr.proc == PROC_MODULE
2735 || sym->attr.proc == PROC_ST_FUNCTION
2736 || sym->attr.proc == PROC_INTERNAL)
2737 goto found;
2739 if (sym->attr.intrinsic)
2741 m = gfc_intrinsic_func_interface (expr, 1);
2742 if (m == MATCH_YES)
2743 return MATCH_YES;
2744 if (m == MATCH_NO)
2745 gfc_error ("Function %qs at %L is INTRINSIC but is not compatible "
2746 "with an intrinsic", sym->name, &expr->where);
2748 return MATCH_ERROR;
2751 return MATCH_NO;
2753 found:
2754 gfc_procedure_use (sym, &expr->value.function.actual, &expr->where);
2756 if (sym->result)
2757 expr->ts = sym->result->ts;
2758 else
2759 expr->ts = sym->ts;
2760 expr->value.function.name = sym->name;
2761 expr->value.function.esym = sym;
2762 /* Prevent crash when sym->ts.u.derived->components is not set due to previous
2763 error(s). */
2764 if (sym->ts.type == BT_CLASS && !CLASS_DATA (sym))
2765 return MATCH_ERROR;
2766 if (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->as)
2767 expr->rank = CLASS_DATA (sym)->as->rank;
2768 else if (sym->as != NULL)
2769 expr->rank = sym->as->rank;
2771 return MATCH_YES;
2775 static bool
2776 resolve_specific_f (gfc_expr *expr)
2778 gfc_symbol *sym;
2779 match m;
2781 sym = expr->symtree->n.sym;
2783 for (;;)
2785 m = resolve_specific_f0 (sym, expr);
2786 if (m == MATCH_YES)
2787 return true;
2788 if (m == MATCH_ERROR)
2789 return false;
2791 if (sym->ns->parent == NULL)
2792 break;
2794 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
2796 if (sym == NULL)
2797 break;
2800 gfc_error ("Unable to resolve the specific function %qs at %L",
2801 expr->symtree->n.sym->name, &expr->where);
2803 return true;
2806 /* Recursively append candidate SYM to CANDIDATES. Store the number of
2807 candidates in CANDIDATES_LEN. */
2809 static void
2810 lookup_function_fuzzy_find_candidates (gfc_symtree *sym,
2811 char **&candidates,
2812 size_t &candidates_len)
2814 gfc_symtree *p;
2816 if (sym == NULL)
2817 return;
2818 if ((sym->n.sym->ts.type != BT_UNKNOWN || sym->n.sym->attr.external)
2819 && sym->n.sym->attr.flavor == FL_PROCEDURE)
2820 vec_push (candidates, candidates_len, sym->name);
2822 p = sym->left;
2823 if (p)
2824 lookup_function_fuzzy_find_candidates (p, candidates, candidates_len);
2826 p = sym->right;
2827 if (p)
2828 lookup_function_fuzzy_find_candidates (p, candidates, candidates_len);
2832 /* Lookup function FN fuzzily, taking names in SYMROOT into account. */
2834 const char*
2835 gfc_lookup_function_fuzzy (const char *fn, gfc_symtree *symroot)
2837 char **candidates = NULL;
2838 size_t candidates_len = 0;
2839 lookup_function_fuzzy_find_candidates (symroot, candidates, candidates_len);
2840 return gfc_closest_fuzzy_match (fn, candidates);
2844 /* Resolve a procedure call not known to be generic nor specific. */
2846 static bool
2847 resolve_unknown_f (gfc_expr *expr)
2849 gfc_symbol *sym;
2850 gfc_typespec *ts;
2852 sym = expr->symtree->n.sym;
2854 if (sym->attr.dummy)
2856 sym->attr.proc = PROC_DUMMY;
2857 expr->value.function.name = sym->name;
2858 goto set_type;
2861 /* See if we have an intrinsic function reference. */
2863 if (gfc_is_intrinsic (sym, 0, expr->where))
2865 if (gfc_intrinsic_func_interface (expr, 1) == MATCH_YES)
2866 return true;
2867 return false;
2870 /* The reference is to an external name. */
2872 sym->attr.proc = PROC_EXTERNAL;
2873 expr->value.function.name = sym->name;
2874 expr->value.function.esym = expr->symtree->n.sym;
2876 if (sym->as != NULL)
2877 expr->rank = sym->as->rank;
2879 /* Type of the expression is either the type of the symbol or the
2880 default type of the symbol. */
2882 set_type:
2883 gfc_procedure_use (sym, &expr->value.function.actual, &expr->where);
2885 if (sym->ts.type != BT_UNKNOWN)
2886 expr->ts = sym->ts;
2887 else
2889 ts = gfc_get_default_type (sym->name, sym->ns);
2891 if (ts->type == BT_UNKNOWN)
2893 const char *guessed
2894 = gfc_lookup_function_fuzzy (sym->name, sym->ns->sym_root);
2895 if (guessed)
2896 gfc_error ("Function %qs at %L has no IMPLICIT type"
2897 "; did you mean %qs?",
2898 sym->name, &expr->where, guessed);
2899 else
2900 gfc_error ("Function %qs at %L has no IMPLICIT type",
2901 sym->name, &expr->where);
2902 return false;
2904 else
2905 expr->ts = *ts;
2908 return true;
2912 /* Return true, if the symbol is an external procedure. */
2913 static bool
2914 is_external_proc (gfc_symbol *sym)
2916 if (!sym->attr.dummy && !sym->attr.contained
2917 && !gfc_is_intrinsic (sym, sym->attr.subroutine, sym->declared_at)
2918 && sym->attr.proc != PROC_ST_FUNCTION
2919 && !sym->attr.proc_pointer
2920 && !sym->attr.use_assoc
2921 && sym->name)
2922 return true;
2924 return false;
2928 /* Figure out if a function reference is pure or not. Also set the name
2929 of the function for a potential error message. Return nonzero if the
2930 function is PURE, zero if not. */
2931 static int
2932 pure_stmt_function (gfc_expr *, gfc_symbol *);
2934 static int
2935 pure_function (gfc_expr *e, const char **name)
2937 int pure;
2938 gfc_component *comp;
2940 *name = NULL;
2942 if (e->symtree != NULL
2943 && e->symtree->n.sym != NULL
2944 && e->symtree->n.sym->attr.proc == PROC_ST_FUNCTION)
2945 return pure_stmt_function (e, e->symtree->n.sym);
2947 comp = gfc_get_proc_ptr_comp (e);
2948 if (comp)
2950 pure = gfc_pure (comp->ts.interface);
2951 *name = comp->name;
2953 else if (e->value.function.esym)
2955 pure = gfc_pure (e->value.function.esym);
2956 *name = e->value.function.esym->name;
2958 else if (e->value.function.isym)
2960 pure = e->value.function.isym->pure
2961 || e->value.function.isym->elemental;
2962 *name = e->value.function.isym->name;
2964 else
2966 /* Implicit functions are not pure. */
2967 pure = 0;
2968 *name = e->value.function.name;
2971 return pure;
2975 static bool
2976 impure_stmt_fcn (gfc_expr *e, gfc_symbol *sym,
2977 int *f ATTRIBUTE_UNUSED)
2979 const char *name;
2981 /* Don't bother recursing into other statement functions
2982 since they will be checked individually for purity. */
2983 if (e->expr_type != EXPR_FUNCTION
2984 || !e->symtree
2985 || e->symtree->n.sym == sym
2986 || e->symtree->n.sym->attr.proc == PROC_ST_FUNCTION)
2987 return false;
2989 return pure_function (e, &name) ? false : true;
2993 static int
2994 pure_stmt_function (gfc_expr *e, gfc_symbol *sym)
2996 return gfc_traverse_expr (e, sym, impure_stmt_fcn, 0) ? 0 : 1;
3000 /* Check if an impure function is allowed in the current context. */
3002 static bool check_pure_function (gfc_expr *e)
3004 const char *name = NULL;
3005 if (!pure_function (e, &name) && name)
3007 if (forall_flag)
3009 gfc_error ("Reference to impure function %qs at %L inside a "
3010 "FORALL %s", name, &e->where,
3011 forall_flag == 2 ? "mask" : "block");
3012 return false;
3014 else if (gfc_do_concurrent_flag)
3016 gfc_error ("Reference to impure function %qs at %L inside a "
3017 "DO CONCURRENT %s", name, &e->where,
3018 gfc_do_concurrent_flag == 2 ? "mask" : "block");
3019 return false;
3021 else if (gfc_pure (NULL))
3023 gfc_error ("Reference to impure function %qs at %L "
3024 "within a PURE procedure", name, &e->where);
3025 return false;
3027 gfc_unset_implicit_pure (NULL);
3029 return true;
3033 /* Update current procedure's array_outer_dependency flag, considering
3034 a call to procedure SYM. */
3036 static void
3037 update_current_proc_array_outer_dependency (gfc_symbol *sym)
3039 /* Check to see if this is a sibling function that has not yet
3040 been resolved. */
3041 gfc_namespace *sibling = gfc_current_ns->sibling;
3042 for (; sibling; sibling = sibling->sibling)
3044 if (sibling->proc_name == sym)
3046 gfc_resolve (sibling);
3047 break;
3051 /* If SYM has references to outer arrays, so has the procedure calling
3052 SYM. If SYM is a procedure pointer, we can assume the worst. */
3053 if (sym->attr.array_outer_dependency
3054 || sym->attr.proc_pointer)
3055 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3059 /* Resolve a function call, which means resolving the arguments, then figuring
3060 out which entity the name refers to. */
3062 static bool
3063 resolve_function (gfc_expr *expr)
3065 gfc_actual_arglist *arg;
3066 gfc_symbol *sym;
3067 bool t;
3068 int temp;
3069 procedure_type p = PROC_INTRINSIC;
3070 bool no_formal_args;
3072 sym = NULL;
3073 if (expr->symtree)
3074 sym = expr->symtree->n.sym;
3076 /* If this is a procedure pointer component, it has already been resolved. */
3077 if (gfc_is_proc_ptr_comp (expr))
3078 return true;
3080 /* Avoid re-resolving the arguments of caf_get, which can lead to inserting
3081 another caf_get. */
3082 if (sym && sym->attr.intrinsic
3083 && (sym->intmod_sym_id == GFC_ISYM_CAF_GET
3084 || sym->intmod_sym_id == GFC_ISYM_CAF_SEND))
3085 return true;
3087 if (sym && sym->attr.intrinsic
3088 && !gfc_resolve_intrinsic (sym, &expr->where))
3089 return false;
3091 if (sym && (sym->attr.flavor == FL_VARIABLE || sym->attr.subroutine))
3093 gfc_error ("%qs at %L is not a function", sym->name, &expr->where);
3094 return false;
3097 /* If this ia a deferred TBP with an abstract interface (which may
3098 of course be referenced), expr->value.function.esym will be set. */
3099 if (sym && sym->attr.abstract && !expr->value.function.esym)
3101 gfc_error ("ABSTRACT INTERFACE %qs must not be referenced at %L",
3102 sym->name, &expr->where);
3103 return false;
3106 /* Switch off assumed size checking and do this again for certain kinds
3107 of procedure, once the procedure itself is resolved. */
3108 need_full_assumed_size++;
3110 if (expr->symtree && expr->symtree->n.sym)
3111 p = expr->symtree->n.sym->attr.proc;
3113 if (expr->value.function.isym && expr->value.function.isym->inquiry)
3114 inquiry_argument = true;
3115 no_formal_args = sym && is_external_proc (sym)
3116 && gfc_sym_get_dummy_args (sym) == NULL;
3118 if (!resolve_actual_arglist (expr->value.function.actual,
3119 p, no_formal_args))
3121 inquiry_argument = false;
3122 return false;
3125 inquiry_argument = false;
3127 /* Resume assumed_size checking. */
3128 need_full_assumed_size--;
3130 /* If the procedure is external, check for usage. */
3131 if (sym && is_external_proc (sym))
3132 resolve_global_procedure (sym, &expr->where,
3133 &expr->value.function.actual, 0);
3135 if (sym && sym->ts.type == BT_CHARACTER
3136 && sym->ts.u.cl
3137 && sym->ts.u.cl->length == NULL
3138 && !sym->attr.dummy
3139 && !sym->ts.deferred
3140 && expr->value.function.esym == NULL
3141 && !sym->attr.contained)
3143 /* Internal procedures are taken care of in resolve_contained_fntype. */
3144 gfc_error ("Function %qs is declared CHARACTER(*) and cannot "
3145 "be used at %L since it is not a dummy argument",
3146 sym->name, &expr->where);
3147 return false;
3150 /* See if function is already resolved. */
3152 if (expr->value.function.name != NULL
3153 || expr->value.function.isym != NULL)
3155 if (expr->ts.type == BT_UNKNOWN)
3156 expr->ts = sym->ts;
3157 t = true;
3159 else
3161 /* Apply the rules of section 14.1.2. */
3163 switch (procedure_kind (sym))
3165 case PTYPE_GENERIC:
3166 t = resolve_generic_f (expr);
3167 break;
3169 case PTYPE_SPECIFIC:
3170 t = resolve_specific_f (expr);
3171 break;
3173 case PTYPE_UNKNOWN:
3174 t = resolve_unknown_f (expr);
3175 break;
3177 default:
3178 gfc_internal_error ("resolve_function(): bad function type");
3182 /* If the expression is still a function (it might have simplified),
3183 then we check to see if we are calling an elemental function. */
3185 if (expr->expr_type != EXPR_FUNCTION)
3186 return t;
3188 temp = need_full_assumed_size;
3189 need_full_assumed_size = 0;
3191 if (!resolve_elemental_actual (expr, NULL))
3192 return false;
3194 if (omp_workshare_flag
3195 && expr->value.function.esym
3196 && ! gfc_elemental (expr->value.function.esym))
3198 gfc_error ("User defined non-ELEMENTAL function %qs at %L not allowed "
3199 "in WORKSHARE construct", expr->value.function.esym->name,
3200 &expr->where);
3201 t = false;
3204 #define GENERIC_ID expr->value.function.isym->id
3205 else if (expr->value.function.actual != NULL
3206 && expr->value.function.isym != NULL
3207 && GENERIC_ID != GFC_ISYM_LBOUND
3208 && GENERIC_ID != GFC_ISYM_LCOBOUND
3209 && GENERIC_ID != GFC_ISYM_UCOBOUND
3210 && GENERIC_ID != GFC_ISYM_LEN
3211 && GENERIC_ID != GFC_ISYM_LOC
3212 && GENERIC_ID != GFC_ISYM_C_LOC
3213 && GENERIC_ID != GFC_ISYM_PRESENT)
3215 /* Array intrinsics must also have the last upper bound of an
3216 assumed size array argument. UBOUND and SIZE have to be
3217 excluded from the check if the second argument is anything
3218 than a constant. */
3220 for (arg = expr->value.function.actual; arg; arg = arg->next)
3222 if ((GENERIC_ID == GFC_ISYM_UBOUND || GENERIC_ID == GFC_ISYM_SIZE)
3223 && arg == expr->value.function.actual
3224 && arg->next != NULL && arg->next->expr)
3226 if (arg->next->expr->expr_type != EXPR_CONSTANT)
3227 break;
3229 if (arg->next->name && strncmp (arg->next->name, "kind", 4) == 0)
3230 break;
3232 if ((int)mpz_get_si (arg->next->expr->value.integer)
3233 < arg->expr->rank)
3234 break;
3237 if (arg->expr != NULL
3238 && arg->expr->rank > 0
3239 && resolve_assumed_size_actual (arg->expr))
3240 return false;
3243 #undef GENERIC_ID
3245 need_full_assumed_size = temp;
3247 if (!check_pure_function(expr))
3248 t = false;
3250 /* Functions without the RECURSIVE attribution are not allowed to
3251 * call themselves. */
3252 if (expr->value.function.esym && !expr->value.function.esym->attr.recursive)
3254 gfc_symbol *esym;
3255 esym = expr->value.function.esym;
3257 if (is_illegal_recursion (esym, gfc_current_ns))
3259 if (esym->attr.entry && esym->ns->entries)
3260 gfc_error ("ENTRY %qs at %L cannot be called recursively, as"
3261 " function %qs is not RECURSIVE",
3262 esym->name, &expr->where, esym->ns->entries->sym->name);
3263 else
3264 gfc_error ("Function %qs at %L cannot be called recursively, as it"
3265 " is not RECURSIVE", esym->name, &expr->where);
3267 t = false;
3271 /* Character lengths of use associated functions may contains references to
3272 symbols not referenced from the current program unit otherwise. Make sure
3273 those symbols are marked as referenced. */
3275 if (expr->ts.type == BT_CHARACTER && expr->value.function.esym
3276 && expr->value.function.esym->attr.use_assoc)
3278 gfc_expr_set_symbols_referenced (expr->ts.u.cl->length);
3281 /* Make sure that the expression has a typespec that works. */
3282 if (expr->ts.type == BT_UNKNOWN)
3284 if (expr->symtree->n.sym->result
3285 && expr->symtree->n.sym->result->ts.type != BT_UNKNOWN
3286 && !expr->symtree->n.sym->result->attr.proc_pointer)
3287 expr->ts = expr->symtree->n.sym->result->ts;
3290 if (!expr->ref && !expr->value.function.isym)
3292 if (expr->value.function.esym)
3293 update_current_proc_array_outer_dependency (expr->value.function.esym);
3294 else
3295 update_current_proc_array_outer_dependency (sym);
3297 else if (expr->ref)
3298 /* typebound procedure: Assume the worst. */
3299 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3301 return t;
3305 /************* Subroutine resolution *************/
3307 static bool
3308 pure_subroutine (gfc_symbol *sym, const char *name, locus *loc)
3310 if (gfc_pure (sym))
3311 return true;
3313 if (forall_flag)
3315 gfc_error ("Subroutine call to %qs in FORALL block at %L is not PURE",
3316 name, loc);
3317 return false;
3319 else if (gfc_do_concurrent_flag)
3321 gfc_error ("Subroutine call to %qs in DO CONCURRENT block at %L is not "
3322 "PURE", name, loc);
3323 return false;
3325 else if (gfc_pure (NULL))
3327 gfc_error ("Subroutine call to %qs at %L is not PURE", name, loc);
3328 return false;
3331 gfc_unset_implicit_pure (NULL);
3332 return true;
3336 static match
3337 resolve_generic_s0 (gfc_code *c, gfc_symbol *sym)
3339 gfc_symbol *s;
3341 if (sym->attr.generic)
3343 s = gfc_search_interface (sym->generic, 1, &c->ext.actual);
3344 if (s != NULL)
3346 c->resolved_sym = s;
3347 if (!pure_subroutine (s, s->name, &c->loc))
3348 return MATCH_ERROR;
3349 return MATCH_YES;
3352 /* TODO: Need to search for elemental references in generic interface. */
3355 if (sym->attr.intrinsic)
3356 return gfc_intrinsic_sub_interface (c, 0);
3358 return MATCH_NO;
3362 static bool
3363 resolve_generic_s (gfc_code *c)
3365 gfc_symbol *sym;
3366 match m;
3368 sym = c->symtree->n.sym;
3370 for (;;)
3372 m = resolve_generic_s0 (c, sym);
3373 if (m == MATCH_YES)
3374 return true;
3375 else if (m == MATCH_ERROR)
3376 return false;
3378 generic:
3379 if (sym->ns->parent == NULL)
3380 break;
3381 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
3383 if (sym == NULL)
3384 break;
3385 if (!generic_sym (sym))
3386 goto generic;
3389 /* Last ditch attempt. See if the reference is to an intrinsic
3390 that possesses a matching interface. 14.1.2.4 */
3391 sym = c->symtree->n.sym;
3393 if (!gfc_is_intrinsic (sym, 1, c->loc))
3395 gfc_error ("There is no specific subroutine for the generic %qs at %L",
3396 sym->name, &c->loc);
3397 return false;
3400 m = gfc_intrinsic_sub_interface (c, 0);
3401 if (m == MATCH_YES)
3402 return true;
3403 if (m == MATCH_NO)
3404 gfc_error ("Generic subroutine %qs at %L is not consistent with an "
3405 "intrinsic subroutine interface", sym->name, &c->loc);
3407 return false;
3411 /* Resolve a subroutine call known to be specific. */
3413 static match
3414 resolve_specific_s0 (gfc_code *c, gfc_symbol *sym)
3416 match m;
3418 if (sym->attr.external || sym->attr.if_source == IFSRC_IFBODY)
3420 if (sym->attr.dummy)
3422 sym->attr.proc = PROC_DUMMY;
3423 goto found;
3426 sym->attr.proc = PROC_EXTERNAL;
3427 goto found;
3430 if (sym->attr.proc == PROC_MODULE || sym->attr.proc == PROC_INTERNAL)
3431 goto found;
3433 if (sym->attr.intrinsic)
3435 m = gfc_intrinsic_sub_interface (c, 1);
3436 if (m == MATCH_YES)
3437 return MATCH_YES;
3438 if (m == MATCH_NO)
3439 gfc_error ("Subroutine %qs at %L is INTRINSIC but is not compatible "
3440 "with an intrinsic", sym->name, &c->loc);
3442 return MATCH_ERROR;
3445 return MATCH_NO;
3447 found:
3448 gfc_procedure_use (sym, &c->ext.actual, &c->loc);
3450 c->resolved_sym = sym;
3451 if (!pure_subroutine (sym, sym->name, &c->loc))
3452 return MATCH_ERROR;
3454 return MATCH_YES;
3458 static bool
3459 resolve_specific_s (gfc_code *c)
3461 gfc_symbol *sym;
3462 match m;
3464 sym = c->symtree->n.sym;
3466 for (;;)
3468 m = resolve_specific_s0 (c, sym);
3469 if (m == MATCH_YES)
3470 return true;
3471 if (m == MATCH_ERROR)
3472 return false;
3474 if (sym->ns->parent == NULL)
3475 break;
3477 gfc_find_symbol (sym->name, sym->ns->parent, 1, &sym);
3479 if (sym == NULL)
3480 break;
3483 sym = c->symtree->n.sym;
3484 gfc_error ("Unable to resolve the specific subroutine %qs at %L",
3485 sym->name, &c->loc);
3487 return false;
3491 /* Resolve a subroutine call not known to be generic nor specific. */
3493 static bool
3494 resolve_unknown_s (gfc_code *c)
3496 gfc_symbol *sym;
3498 sym = c->symtree->n.sym;
3500 if (sym->attr.dummy)
3502 sym->attr.proc = PROC_DUMMY;
3503 goto found;
3506 /* See if we have an intrinsic function reference. */
3508 if (gfc_is_intrinsic (sym, 1, c->loc))
3510 if (gfc_intrinsic_sub_interface (c, 1) == MATCH_YES)
3511 return true;
3512 return false;
3515 /* The reference is to an external name. */
3517 found:
3518 gfc_procedure_use (sym, &c->ext.actual, &c->loc);
3520 c->resolved_sym = sym;
3522 return pure_subroutine (sym, sym->name, &c->loc);
3526 /* Resolve a subroutine call. Although it was tempting to use the same code
3527 for functions, subroutines and functions are stored differently and this
3528 makes things awkward. */
3530 static bool
3531 resolve_call (gfc_code *c)
3533 bool t;
3534 procedure_type ptype = PROC_INTRINSIC;
3535 gfc_symbol *csym, *sym;
3536 bool no_formal_args;
3538 csym = c->symtree ? c->symtree->n.sym : NULL;
3540 if (csym && csym->ts.type != BT_UNKNOWN)
3542 gfc_error ("%qs at %L has a type, which is not consistent with "
3543 "the CALL at %L", csym->name, &csym->declared_at, &c->loc);
3544 return false;
3547 if (csym && gfc_current_ns->parent && csym->ns != gfc_current_ns)
3549 gfc_symtree *st;
3550 gfc_find_sym_tree (c->symtree->name, gfc_current_ns, 1, &st);
3551 sym = st ? st->n.sym : NULL;
3552 if (sym && csym != sym
3553 && sym->ns == gfc_current_ns
3554 && sym->attr.flavor == FL_PROCEDURE
3555 && sym->attr.contained)
3557 sym->refs++;
3558 if (csym->attr.generic)
3559 c->symtree->n.sym = sym;
3560 else
3561 c->symtree = st;
3562 csym = c->symtree->n.sym;
3566 /* If this ia a deferred TBP, c->expr1 will be set. */
3567 if (!c->expr1 && csym)
3569 if (csym->attr.abstract)
3571 gfc_error ("ABSTRACT INTERFACE %qs must not be referenced at %L",
3572 csym->name, &c->loc);
3573 return false;
3576 /* Subroutines without the RECURSIVE attribution are not allowed to
3577 call themselves. */
3578 if (is_illegal_recursion (csym, gfc_current_ns))
3580 if (csym->attr.entry && csym->ns->entries)
3581 gfc_error ("ENTRY %qs at %L cannot be called recursively, "
3582 "as subroutine %qs is not RECURSIVE",
3583 csym->name, &c->loc, csym->ns->entries->sym->name);
3584 else
3585 gfc_error ("SUBROUTINE %qs at %L cannot be called recursively, "
3586 "as it is not RECURSIVE", csym->name, &c->loc);
3588 t = false;
3592 /* Switch off assumed size checking and do this again for certain kinds
3593 of procedure, once the procedure itself is resolved. */
3594 need_full_assumed_size++;
3596 if (csym)
3597 ptype = csym->attr.proc;
3599 no_formal_args = csym && is_external_proc (csym)
3600 && gfc_sym_get_dummy_args (csym) == NULL;
3601 if (!resolve_actual_arglist (c->ext.actual, ptype, no_formal_args))
3602 return false;
3604 /* Resume assumed_size checking. */
3605 need_full_assumed_size--;
3607 /* If external, check for usage. */
3608 if (csym && is_external_proc (csym))
3609 resolve_global_procedure (csym, &c->loc, &c->ext.actual, 1);
3611 t = true;
3612 if (c->resolved_sym == NULL)
3614 c->resolved_isym = NULL;
3615 switch (procedure_kind (csym))
3617 case PTYPE_GENERIC:
3618 t = resolve_generic_s (c);
3619 break;
3621 case PTYPE_SPECIFIC:
3622 t = resolve_specific_s (c);
3623 break;
3625 case PTYPE_UNKNOWN:
3626 t = resolve_unknown_s (c);
3627 break;
3629 default:
3630 gfc_internal_error ("resolve_subroutine(): bad function type");
3634 /* Some checks of elemental subroutine actual arguments. */
3635 if (!resolve_elemental_actual (NULL, c))
3636 return false;
3638 if (!c->expr1)
3639 update_current_proc_array_outer_dependency (csym);
3640 else
3641 /* Typebound procedure: Assume the worst. */
3642 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
3644 return t;
3648 /* Compare the shapes of two arrays that have non-NULL shapes. If both
3649 op1->shape and op2->shape are non-NULL return true if their shapes
3650 match. If both op1->shape and op2->shape are non-NULL return false
3651 if their shapes do not match. If either op1->shape or op2->shape is
3652 NULL, return true. */
3654 static bool
3655 compare_shapes (gfc_expr *op1, gfc_expr *op2)
3657 bool t;
3658 int i;
3660 t = true;
3662 if (op1->shape != NULL && op2->shape != NULL)
3664 for (i = 0; i < op1->rank; i++)
3666 if (mpz_cmp (op1->shape[i], op2->shape[i]) != 0)
3668 gfc_error ("Shapes for operands at %L and %L are not conformable",
3669 &op1->where, &op2->where);
3670 t = false;
3671 break;
3676 return t;
3679 /* Convert a logical operator to the corresponding bitwise intrinsic call.
3680 For example A .AND. B becomes IAND(A, B). */
3681 static gfc_expr *
3682 logical_to_bitwise (gfc_expr *e)
3684 gfc_expr *tmp, *op1, *op2;
3685 gfc_isym_id isym;
3686 gfc_actual_arglist *args = NULL;
3688 gcc_assert (e->expr_type == EXPR_OP);
3690 isym = GFC_ISYM_NONE;
3691 op1 = e->value.op.op1;
3692 op2 = e->value.op.op2;
3694 switch (e->value.op.op)
3696 case INTRINSIC_NOT:
3697 isym = GFC_ISYM_NOT;
3698 break;
3699 case INTRINSIC_AND:
3700 isym = GFC_ISYM_IAND;
3701 break;
3702 case INTRINSIC_OR:
3703 isym = GFC_ISYM_IOR;
3704 break;
3705 case INTRINSIC_NEQV:
3706 isym = GFC_ISYM_IEOR;
3707 break;
3708 case INTRINSIC_EQV:
3709 /* "Bitwise eqv" is just the complement of NEQV === IEOR.
3710 Change the old expression to NEQV, which will get replaced by IEOR,
3711 and wrap it in NOT. */
3712 tmp = gfc_copy_expr (e);
3713 tmp->value.op.op = INTRINSIC_NEQV;
3714 tmp = logical_to_bitwise (tmp);
3715 isym = GFC_ISYM_NOT;
3716 op1 = tmp;
3717 op2 = NULL;
3718 break;
3719 default:
3720 gfc_internal_error ("logical_to_bitwise(): Bad intrinsic");
3723 /* Inherit the original operation's operands as arguments. */
3724 args = gfc_get_actual_arglist ();
3725 args->expr = op1;
3726 if (op2)
3728 args->next = gfc_get_actual_arglist ();
3729 args->next->expr = op2;
3732 /* Convert the expression to a function call. */
3733 e->expr_type = EXPR_FUNCTION;
3734 e->value.function.actual = args;
3735 e->value.function.isym = gfc_intrinsic_function_by_id (isym);
3736 e->value.function.name = e->value.function.isym->name;
3737 e->value.function.esym = NULL;
3739 /* Make up a pre-resolved function call symtree if we need to. */
3740 if (!e->symtree || !e->symtree->n.sym)
3742 gfc_symbol *sym;
3743 gfc_get_ha_sym_tree (e->value.function.isym->name, &e->symtree);
3744 sym = e->symtree->n.sym;
3745 sym->result = sym;
3746 sym->attr.flavor = FL_PROCEDURE;
3747 sym->attr.function = 1;
3748 sym->attr.elemental = 1;
3749 sym->attr.pure = 1;
3750 sym->attr.referenced = 1;
3751 gfc_intrinsic_symbol (sym);
3752 gfc_commit_symbol (sym);
3755 args->name = e->value.function.isym->formal->name;
3756 if (e->value.function.isym->formal->next)
3757 args->next->name = e->value.function.isym->formal->next->name;
3759 return e;
3762 /* Recursively append candidate UOP to CANDIDATES. Store the number of
3763 candidates in CANDIDATES_LEN. */
3764 static void
3765 lookup_uop_fuzzy_find_candidates (gfc_symtree *uop,
3766 char **&candidates,
3767 size_t &candidates_len)
3769 gfc_symtree *p;
3771 if (uop == NULL)
3772 return;
3774 /* Not sure how to properly filter here. Use all for a start.
3775 n.uop.op is NULL for empty interface operators (is that legal?) disregard
3776 these as i suppose they don't make terribly sense. */
3778 if (uop->n.uop->op != NULL)
3779 vec_push (candidates, candidates_len, uop->name);
3781 p = uop->left;
3782 if (p)
3783 lookup_uop_fuzzy_find_candidates (p, candidates, candidates_len);
3785 p = uop->right;
3786 if (p)
3787 lookup_uop_fuzzy_find_candidates (p, candidates, candidates_len);
3790 /* Lookup user-operator OP fuzzily, taking names in UOP into account. */
3792 static const char*
3793 lookup_uop_fuzzy (const char *op, gfc_symtree *uop)
3795 char **candidates = NULL;
3796 size_t candidates_len = 0;
3797 lookup_uop_fuzzy_find_candidates (uop, candidates, candidates_len);
3798 return gfc_closest_fuzzy_match (op, candidates);
3802 /* Resolve an operator expression node. This can involve replacing the
3803 operation with a user defined function call. */
3805 static bool
3806 resolve_operator (gfc_expr *e)
3808 gfc_expr *op1, *op2;
3809 char msg[200];
3810 bool dual_locus_error;
3811 bool t;
3813 /* Resolve all subnodes-- give them types. */
3815 switch (e->value.op.op)
3817 default:
3818 if (!gfc_resolve_expr (e->value.op.op2))
3819 return false;
3821 /* Fall through. */
3823 case INTRINSIC_NOT:
3824 case INTRINSIC_UPLUS:
3825 case INTRINSIC_UMINUS:
3826 case INTRINSIC_PARENTHESES:
3827 if (!gfc_resolve_expr (e->value.op.op1))
3828 return false;
3829 break;
3832 /* Typecheck the new node. */
3834 op1 = e->value.op.op1;
3835 op2 = e->value.op.op2;
3836 dual_locus_error = false;
3838 if ((op1 && op1->expr_type == EXPR_NULL)
3839 || (op2 && op2->expr_type == EXPR_NULL))
3841 sprintf (msg, _("Invalid context for NULL() pointer at %%L"));
3842 goto bad_op;
3845 switch (e->value.op.op)
3847 case INTRINSIC_UPLUS:
3848 case INTRINSIC_UMINUS:
3849 if (op1->ts.type == BT_INTEGER
3850 || op1->ts.type == BT_REAL
3851 || op1->ts.type == BT_COMPLEX)
3853 e->ts = op1->ts;
3854 break;
3857 sprintf (msg, _("Operand of unary numeric operator %%<%s%%> at %%L is %s"),
3858 gfc_op2string (e->value.op.op), gfc_typename (&e->ts));
3859 goto bad_op;
3861 case INTRINSIC_PLUS:
3862 case INTRINSIC_MINUS:
3863 case INTRINSIC_TIMES:
3864 case INTRINSIC_DIVIDE:
3865 case INTRINSIC_POWER:
3866 if (gfc_numeric_ts (&op1->ts) && gfc_numeric_ts (&op2->ts))
3868 gfc_type_convert_binary (e, 1);
3869 break;
3872 sprintf (msg,
3873 _("Operands of binary numeric operator %%<%s%%> at %%L are %s/%s"),
3874 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
3875 gfc_typename (&op2->ts));
3876 goto bad_op;
3878 case INTRINSIC_CONCAT:
3879 if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
3880 && op1->ts.kind == op2->ts.kind)
3882 e->ts.type = BT_CHARACTER;
3883 e->ts.kind = op1->ts.kind;
3884 break;
3887 sprintf (msg,
3888 _("Operands of string concatenation operator at %%L are %s/%s"),
3889 gfc_typename (&op1->ts), gfc_typename (&op2->ts));
3890 goto bad_op;
3892 case INTRINSIC_AND:
3893 case INTRINSIC_OR:
3894 case INTRINSIC_EQV:
3895 case INTRINSIC_NEQV:
3896 if (op1->ts.type == BT_LOGICAL && op2->ts.type == BT_LOGICAL)
3898 e->ts.type = BT_LOGICAL;
3899 e->ts.kind = gfc_kind_max (op1, op2);
3900 if (op1->ts.kind < e->ts.kind)
3901 gfc_convert_type (op1, &e->ts, 2);
3902 else if (op2->ts.kind < e->ts.kind)
3903 gfc_convert_type (op2, &e->ts, 2);
3904 break;
3907 /* Logical ops on integers become bitwise ops with -fdec. */
3908 else if (flag_dec
3909 && (op1->ts.type == BT_INTEGER || op2->ts.type == BT_INTEGER))
3911 e->ts.type = BT_INTEGER;
3912 e->ts.kind = gfc_kind_max (op1, op2);
3913 if (op1->ts.type != e->ts.type || op1->ts.kind != e->ts.kind)
3914 gfc_convert_type (op1, &e->ts, 1);
3915 if (op2->ts.type != e->ts.type || op2->ts.kind != e->ts.kind)
3916 gfc_convert_type (op2, &e->ts, 1);
3917 e = logical_to_bitwise (e);
3918 return resolve_function (e);
3921 sprintf (msg, _("Operands of logical operator %%<%s%%> at %%L are %s/%s"),
3922 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
3923 gfc_typename (&op2->ts));
3925 goto bad_op;
3927 case INTRINSIC_NOT:
3928 /* Logical ops on integers become bitwise ops with -fdec. */
3929 if (flag_dec && op1->ts.type == BT_INTEGER)
3931 e->ts.type = BT_INTEGER;
3932 e->ts.kind = op1->ts.kind;
3933 e = logical_to_bitwise (e);
3934 return resolve_function (e);
3937 if (op1->ts.type == BT_LOGICAL)
3939 e->ts.type = BT_LOGICAL;
3940 e->ts.kind = op1->ts.kind;
3941 break;
3944 sprintf (msg, _("Operand of .not. operator at %%L is %s"),
3945 gfc_typename (&op1->ts));
3946 goto bad_op;
3948 case INTRINSIC_GT:
3949 case INTRINSIC_GT_OS:
3950 case INTRINSIC_GE:
3951 case INTRINSIC_GE_OS:
3952 case INTRINSIC_LT:
3953 case INTRINSIC_LT_OS:
3954 case INTRINSIC_LE:
3955 case INTRINSIC_LE_OS:
3956 if (op1->ts.type == BT_COMPLEX || op2->ts.type == BT_COMPLEX)
3958 strcpy (msg, _("COMPLEX quantities cannot be compared at %L"));
3959 goto bad_op;
3962 /* Fall through. */
3964 case INTRINSIC_EQ:
3965 case INTRINSIC_EQ_OS:
3966 case INTRINSIC_NE:
3967 case INTRINSIC_NE_OS:
3968 if (op1->ts.type == BT_CHARACTER && op2->ts.type == BT_CHARACTER
3969 && op1->ts.kind == op2->ts.kind)
3971 e->ts.type = BT_LOGICAL;
3972 e->ts.kind = gfc_default_logical_kind;
3973 break;
3976 if (gfc_numeric_ts (&op1->ts) && gfc_numeric_ts (&op2->ts))
3978 gfc_type_convert_binary (e, 1);
3980 e->ts.type = BT_LOGICAL;
3981 e->ts.kind = gfc_default_logical_kind;
3983 if (warn_compare_reals)
3985 gfc_intrinsic_op op = e->value.op.op;
3987 /* Type conversion has made sure that the types of op1 and op2
3988 agree, so it is only necessary to check the first one. */
3989 if ((op1->ts.type == BT_REAL || op1->ts.type == BT_COMPLEX)
3990 && (op == INTRINSIC_EQ || op == INTRINSIC_EQ_OS
3991 || op == INTRINSIC_NE || op == INTRINSIC_NE_OS))
3993 const char *msg;
3995 if (op == INTRINSIC_EQ || op == INTRINSIC_EQ_OS)
3996 msg = "Equality comparison for %s at %L";
3997 else
3998 msg = "Inequality comparison for %s at %L";
4000 gfc_warning (OPT_Wcompare_reals, msg,
4001 gfc_typename (&op1->ts), &op1->where);
4005 break;
4008 if (op1->ts.type == BT_LOGICAL && op2->ts.type == BT_LOGICAL)
4009 sprintf (msg,
4010 _("Logicals at %%L must be compared with %s instead of %s"),
4011 (e->value.op.op == INTRINSIC_EQ
4012 || e->value.op.op == INTRINSIC_EQ_OS)
4013 ? ".eqv." : ".neqv.", gfc_op2string (e->value.op.op));
4014 else
4015 sprintf (msg,
4016 _("Operands of comparison operator %%<%s%%> at %%L are %s/%s"),
4017 gfc_op2string (e->value.op.op), gfc_typename (&op1->ts),
4018 gfc_typename (&op2->ts));
4020 goto bad_op;
4022 case INTRINSIC_USER:
4023 if (e->value.op.uop->op == NULL)
4025 const char *name = e->value.op.uop->name;
4026 const char *guessed;
4027 guessed = lookup_uop_fuzzy (name, e->value.op.uop->ns->uop_root);
4028 if (guessed)
4029 sprintf (msg, _("Unknown operator %%<%s%%> at %%L; did you mean '%s'?"),
4030 name, guessed);
4031 else
4032 sprintf (msg, _("Unknown operator %%<%s%%> at %%L"), name);
4034 else if (op2 == NULL)
4035 sprintf (msg, _("Operand of user operator %%<%s%%> at %%L is %s"),
4036 e->value.op.uop->name, gfc_typename (&op1->ts));
4037 else
4039 sprintf (msg, _("Operands of user operator %%<%s%%> at %%L are %s/%s"),
4040 e->value.op.uop->name, gfc_typename (&op1->ts),
4041 gfc_typename (&op2->ts));
4042 e->value.op.uop->op->sym->attr.referenced = 1;
4045 goto bad_op;
4047 case INTRINSIC_PARENTHESES:
4048 e->ts = op1->ts;
4049 if (e->ts.type == BT_CHARACTER)
4050 e->ts.u.cl = op1->ts.u.cl;
4051 break;
4053 default:
4054 gfc_internal_error ("resolve_operator(): Bad intrinsic");
4057 /* Deal with arrayness of an operand through an operator. */
4059 t = true;
4061 switch (e->value.op.op)
4063 case INTRINSIC_PLUS:
4064 case INTRINSIC_MINUS:
4065 case INTRINSIC_TIMES:
4066 case INTRINSIC_DIVIDE:
4067 case INTRINSIC_POWER:
4068 case INTRINSIC_CONCAT:
4069 case INTRINSIC_AND:
4070 case INTRINSIC_OR:
4071 case INTRINSIC_EQV:
4072 case INTRINSIC_NEQV:
4073 case INTRINSIC_EQ:
4074 case INTRINSIC_EQ_OS:
4075 case INTRINSIC_NE:
4076 case INTRINSIC_NE_OS:
4077 case INTRINSIC_GT:
4078 case INTRINSIC_GT_OS:
4079 case INTRINSIC_GE:
4080 case INTRINSIC_GE_OS:
4081 case INTRINSIC_LT:
4082 case INTRINSIC_LT_OS:
4083 case INTRINSIC_LE:
4084 case INTRINSIC_LE_OS:
4086 if (op1->rank == 0 && op2->rank == 0)
4087 e->rank = 0;
4089 if (op1->rank == 0 && op2->rank != 0)
4091 e->rank = op2->rank;
4093 if (e->shape == NULL)
4094 e->shape = gfc_copy_shape (op2->shape, op2->rank);
4097 if (op1->rank != 0 && op2->rank == 0)
4099 e->rank = op1->rank;
4101 if (e->shape == NULL)
4102 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4105 if (op1->rank != 0 && op2->rank != 0)
4107 if (op1->rank == op2->rank)
4109 e->rank = op1->rank;
4110 if (e->shape == NULL)
4112 t = compare_shapes (op1, op2);
4113 if (!t)
4114 e->shape = NULL;
4115 else
4116 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4119 else
4121 /* Allow higher level expressions to work. */
4122 e->rank = 0;
4124 /* Try user-defined operators, and otherwise throw an error. */
4125 dual_locus_error = true;
4126 sprintf (msg,
4127 _("Inconsistent ranks for operator at %%L and %%L"));
4128 goto bad_op;
4132 break;
4134 case INTRINSIC_PARENTHESES:
4135 case INTRINSIC_NOT:
4136 case INTRINSIC_UPLUS:
4137 case INTRINSIC_UMINUS:
4138 /* Simply copy arrayness attribute */
4139 e->rank = op1->rank;
4141 if (e->shape == NULL)
4142 e->shape = gfc_copy_shape (op1->shape, op1->rank);
4144 break;
4146 default:
4147 break;
4150 /* Attempt to simplify the expression. */
4151 if (t)
4153 t = gfc_simplify_expr (e, 0);
4154 /* Some calls do not succeed in simplification and return false
4155 even though there is no error; e.g. variable references to
4156 PARAMETER arrays. */
4157 if (!gfc_is_constant_expr (e))
4158 t = true;
4160 return t;
4162 bad_op:
4165 match m = gfc_extend_expr (e);
4166 if (m == MATCH_YES)
4167 return true;
4168 if (m == MATCH_ERROR)
4169 return false;
4172 if (dual_locus_error)
4173 gfc_error (msg, &op1->where, &op2->where);
4174 else
4175 gfc_error (msg, &e->where);
4177 return false;
4181 /************** Array resolution subroutines **************/
4183 enum compare_result
4184 { CMP_LT, CMP_EQ, CMP_GT, CMP_UNKNOWN };
4186 /* Compare two integer expressions. */
4188 static compare_result
4189 compare_bound (gfc_expr *a, gfc_expr *b)
4191 int i;
4193 if (a == NULL || a->expr_type != EXPR_CONSTANT
4194 || b == NULL || b->expr_type != EXPR_CONSTANT)
4195 return CMP_UNKNOWN;
4197 /* If either of the types isn't INTEGER, we must have
4198 raised an error earlier. */
4200 if (a->ts.type != BT_INTEGER || b->ts.type != BT_INTEGER)
4201 return CMP_UNKNOWN;
4203 i = mpz_cmp (a->value.integer, b->value.integer);
4205 if (i < 0)
4206 return CMP_LT;
4207 if (i > 0)
4208 return CMP_GT;
4209 return CMP_EQ;
4213 /* Compare an integer expression with an integer. */
4215 static compare_result
4216 compare_bound_int (gfc_expr *a, int b)
4218 int i;
4220 if (a == NULL || a->expr_type != EXPR_CONSTANT)
4221 return CMP_UNKNOWN;
4223 if (a->ts.type != BT_INTEGER)
4224 gfc_internal_error ("compare_bound_int(): Bad expression");
4226 i = mpz_cmp_si (a->value.integer, b);
4228 if (i < 0)
4229 return CMP_LT;
4230 if (i > 0)
4231 return CMP_GT;
4232 return CMP_EQ;
4236 /* Compare an integer expression with a mpz_t. */
4238 static compare_result
4239 compare_bound_mpz_t (gfc_expr *a, mpz_t b)
4241 int i;
4243 if (a == NULL || a->expr_type != EXPR_CONSTANT)
4244 return CMP_UNKNOWN;
4246 if (a->ts.type != BT_INTEGER)
4247 gfc_internal_error ("compare_bound_int(): Bad expression");
4249 i = mpz_cmp (a->value.integer, b);
4251 if (i < 0)
4252 return CMP_LT;
4253 if (i > 0)
4254 return CMP_GT;
4255 return CMP_EQ;
4259 /* Compute the last value of a sequence given by a triplet.
4260 Return 0 if it wasn't able to compute the last value, or if the
4261 sequence if empty, and 1 otherwise. */
4263 static int
4264 compute_last_value_for_triplet (gfc_expr *start, gfc_expr *end,
4265 gfc_expr *stride, mpz_t last)
4267 mpz_t rem;
4269 if (start == NULL || start->expr_type != EXPR_CONSTANT
4270 || end == NULL || end->expr_type != EXPR_CONSTANT
4271 || (stride != NULL && stride->expr_type != EXPR_CONSTANT))
4272 return 0;
4274 if (start->ts.type != BT_INTEGER || end->ts.type != BT_INTEGER
4275 || (stride != NULL && stride->ts.type != BT_INTEGER))
4276 return 0;
4278 if (stride == NULL || compare_bound_int (stride, 1) == CMP_EQ)
4280 if (compare_bound (start, end) == CMP_GT)
4281 return 0;
4282 mpz_set (last, end->value.integer);
4283 return 1;
4286 if (compare_bound_int (stride, 0) == CMP_GT)
4288 /* Stride is positive */
4289 if (mpz_cmp (start->value.integer, end->value.integer) > 0)
4290 return 0;
4292 else
4294 /* Stride is negative */
4295 if (mpz_cmp (start->value.integer, end->value.integer) < 0)
4296 return 0;
4299 mpz_init (rem);
4300 mpz_sub (rem, end->value.integer, start->value.integer);
4301 mpz_tdiv_r (rem, rem, stride->value.integer);
4302 mpz_sub (last, end->value.integer, rem);
4303 mpz_clear (rem);
4305 return 1;
4309 /* Compare a single dimension of an array reference to the array
4310 specification. */
4312 static bool
4313 check_dimension (int i, gfc_array_ref *ar, gfc_array_spec *as)
4315 mpz_t last_value;
4317 if (ar->dimen_type[i] == DIMEN_STAR)
4319 gcc_assert (ar->stride[i] == NULL);
4320 /* This implies [*] as [*:] and [*:3] are not possible. */
4321 if (ar->start[i] == NULL)
4323 gcc_assert (ar->end[i] == NULL);
4324 return true;
4328 /* Given start, end and stride values, calculate the minimum and
4329 maximum referenced indexes. */
4331 switch (ar->dimen_type[i])
4333 case DIMEN_VECTOR:
4334 case DIMEN_THIS_IMAGE:
4335 break;
4337 case DIMEN_STAR:
4338 case DIMEN_ELEMENT:
4339 if (compare_bound (ar->start[i], as->lower[i]) == CMP_LT)
4341 if (i < as->rank)
4342 gfc_warning (0, "Array reference at %L is out of bounds "
4343 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4344 mpz_get_si (ar->start[i]->value.integer),
4345 mpz_get_si (as->lower[i]->value.integer), i+1);
4346 else
4347 gfc_warning (0, "Array reference at %L is out of bounds "
4348 "(%ld < %ld) in codimension %d", &ar->c_where[i],
4349 mpz_get_si (ar->start[i]->value.integer),
4350 mpz_get_si (as->lower[i]->value.integer),
4351 i + 1 - as->rank);
4352 return true;
4354 if (compare_bound (ar->start[i], as->upper[i]) == CMP_GT)
4356 if (i < as->rank)
4357 gfc_warning (0, "Array reference at %L is out of bounds "
4358 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4359 mpz_get_si (ar->start[i]->value.integer),
4360 mpz_get_si (as->upper[i]->value.integer), i+1);
4361 else
4362 gfc_warning (0, "Array reference at %L is out of bounds "
4363 "(%ld > %ld) in codimension %d", &ar->c_where[i],
4364 mpz_get_si (ar->start[i]->value.integer),
4365 mpz_get_si (as->upper[i]->value.integer),
4366 i + 1 - as->rank);
4367 return true;
4370 break;
4372 case DIMEN_RANGE:
4374 #define AR_START (ar->start[i] ? ar->start[i] : as->lower[i])
4375 #define AR_END (ar->end[i] ? ar->end[i] : as->upper[i])
4377 compare_result comp_start_end = compare_bound (AR_START, AR_END);
4379 /* Check for zero stride, which is not allowed. */
4380 if (compare_bound_int (ar->stride[i], 0) == CMP_EQ)
4382 gfc_error ("Illegal stride of zero at %L", &ar->c_where[i]);
4383 return false;
4386 /* if start == len || (stride > 0 && start < len)
4387 || (stride < 0 && start > len),
4388 then the array section contains at least one element. In this
4389 case, there is an out-of-bounds access if
4390 (start < lower || start > upper). */
4391 if (compare_bound (AR_START, AR_END) == CMP_EQ
4392 || ((compare_bound_int (ar->stride[i], 0) == CMP_GT
4393 || ar->stride[i] == NULL) && comp_start_end == CMP_LT)
4394 || (compare_bound_int (ar->stride[i], 0) == CMP_LT
4395 && comp_start_end == CMP_GT))
4397 if (compare_bound (AR_START, as->lower[i]) == CMP_LT)
4399 gfc_warning (0, "Lower array reference at %L is out of bounds "
4400 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4401 mpz_get_si (AR_START->value.integer),
4402 mpz_get_si (as->lower[i]->value.integer), i+1);
4403 return true;
4405 if (compare_bound (AR_START, as->upper[i]) == CMP_GT)
4407 gfc_warning (0, "Lower array reference at %L is out of bounds "
4408 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4409 mpz_get_si (AR_START->value.integer),
4410 mpz_get_si (as->upper[i]->value.integer), i+1);
4411 return true;
4415 /* If we can compute the highest index of the array section,
4416 then it also has to be between lower and upper. */
4417 mpz_init (last_value);
4418 if (compute_last_value_for_triplet (AR_START, AR_END, ar->stride[i],
4419 last_value))
4421 if (compare_bound_mpz_t (as->lower[i], last_value) == CMP_GT)
4423 gfc_warning (0, "Upper array reference at %L is out of bounds "
4424 "(%ld < %ld) in dimension %d", &ar->c_where[i],
4425 mpz_get_si (last_value),
4426 mpz_get_si (as->lower[i]->value.integer), i+1);
4427 mpz_clear (last_value);
4428 return true;
4430 if (compare_bound_mpz_t (as->upper[i], last_value) == CMP_LT)
4432 gfc_warning (0, "Upper array reference at %L is out of bounds "
4433 "(%ld > %ld) in dimension %d", &ar->c_where[i],
4434 mpz_get_si (last_value),
4435 mpz_get_si (as->upper[i]->value.integer), i+1);
4436 mpz_clear (last_value);
4437 return true;
4440 mpz_clear (last_value);
4442 #undef AR_START
4443 #undef AR_END
4445 break;
4447 default:
4448 gfc_internal_error ("check_dimension(): Bad array reference");
4451 return true;
4455 /* Compare an array reference with an array specification. */
4457 static bool
4458 compare_spec_to_ref (gfc_array_ref *ar)
4460 gfc_array_spec *as;
4461 int i;
4463 as = ar->as;
4464 i = as->rank - 1;
4465 /* TODO: Full array sections are only allowed as actual parameters. */
4466 if (as->type == AS_ASSUMED_SIZE
4467 && (/*ar->type == AR_FULL
4468 ||*/ (ar->type == AR_SECTION
4469 && ar->dimen_type[i] == DIMEN_RANGE && ar->end[i] == NULL)))
4471 gfc_error ("Rightmost upper bound of assumed size array section "
4472 "not specified at %L", &ar->where);
4473 return false;
4476 if (ar->type == AR_FULL)
4477 return true;
4479 if (as->rank != ar->dimen)
4481 gfc_error ("Rank mismatch in array reference at %L (%d/%d)",
4482 &ar->where, ar->dimen, as->rank);
4483 return false;
4486 /* ar->codimen == 0 is a local array. */
4487 if (as->corank != ar->codimen && ar->codimen != 0)
4489 gfc_error ("Coindex rank mismatch in array reference at %L (%d/%d)",
4490 &ar->where, ar->codimen, as->corank);
4491 return false;
4494 for (i = 0; i < as->rank; i++)
4495 if (!check_dimension (i, ar, as))
4496 return false;
4498 /* Local access has no coarray spec. */
4499 if (ar->codimen != 0)
4500 for (i = as->rank; i < as->rank + as->corank; i++)
4502 if (ar->dimen_type[i] != DIMEN_ELEMENT && !ar->in_allocate
4503 && ar->dimen_type[i] != DIMEN_THIS_IMAGE)
4505 gfc_error ("Coindex of codimension %d must be a scalar at %L",
4506 i + 1 - as->rank, &ar->where);
4507 return false;
4509 if (!check_dimension (i, ar, as))
4510 return false;
4513 return true;
4517 /* Resolve one part of an array index. */
4519 static bool
4520 gfc_resolve_index_1 (gfc_expr *index, int check_scalar,
4521 int force_index_integer_kind)
4523 gfc_typespec ts;
4525 if (index == NULL)
4526 return true;
4528 if (!gfc_resolve_expr (index))
4529 return false;
4531 if (check_scalar && index->rank != 0)
4533 gfc_error ("Array index at %L must be scalar", &index->where);
4534 return false;
4537 if (index->ts.type != BT_INTEGER && index->ts.type != BT_REAL)
4539 gfc_error ("Array index at %L must be of INTEGER type, found %s",
4540 &index->where, gfc_basic_typename (index->ts.type));
4541 return false;
4544 if (index->ts.type == BT_REAL)
4545 if (!gfc_notify_std (GFC_STD_LEGACY, "REAL array index at %L",
4546 &index->where))
4547 return false;
4549 if ((index->ts.kind != gfc_index_integer_kind
4550 && force_index_integer_kind)
4551 || index->ts.type != BT_INTEGER)
4553 gfc_clear_ts (&ts);
4554 ts.type = BT_INTEGER;
4555 ts.kind = gfc_index_integer_kind;
4557 gfc_convert_type_warn (index, &ts, 2, 0);
4560 return true;
4563 /* Resolve one part of an array index. */
4565 bool
4566 gfc_resolve_index (gfc_expr *index, int check_scalar)
4568 return gfc_resolve_index_1 (index, check_scalar, 1);
4571 /* Resolve a dim argument to an intrinsic function. */
4573 bool
4574 gfc_resolve_dim_arg (gfc_expr *dim)
4576 if (dim == NULL)
4577 return true;
4579 if (!gfc_resolve_expr (dim))
4580 return false;
4582 if (dim->rank != 0)
4584 gfc_error ("Argument dim at %L must be scalar", &dim->where);
4585 return false;
4589 if (dim->ts.type != BT_INTEGER)
4591 gfc_error ("Argument dim at %L must be of INTEGER type", &dim->where);
4592 return false;
4595 if (dim->ts.kind != gfc_index_integer_kind)
4597 gfc_typespec ts;
4599 gfc_clear_ts (&ts);
4600 ts.type = BT_INTEGER;
4601 ts.kind = gfc_index_integer_kind;
4603 gfc_convert_type_warn (dim, &ts, 2, 0);
4606 return true;
4609 /* Given an expression that contains array references, update those array
4610 references to point to the right array specifications. While this is
4611 filled in during matching, this information is difficult to save and load
4612 in a module, so we take care of it here.
4614 The idea here is that the original array reference comes from the
4615 base symbol. We traverse the list of reference structures, setting
4616 the stored reference to references. Component references can
4617 provide an additional array specification. */
4619 static void
4620 find_array_spec (gfc_expr *e)
4622 gfc_array_spec *as;
4623 gfc_component *c;
4624 gfc_ref *ref;
4626 if (e->symtree->n.sym->ts.type == BT_CLASS)
4627 as = CLASS_DATA (e->symtree->n.sym)->as;
4628 else
4629 as = e->symtree->n.sym->as;
4631 for (ref = e->ref; ref; ref = ref->next)
4632 switch (ref->type)
4634 case REF_ARRAY:
4635 if (as == NULL)
4636 gfc_internal_error ("find_array_spec(): Missing spec");
4638 ref->u.ar.as = as;
4639 as = NULL;
4640 break;
4642 case REF_COMPONENT:
4643 c = ref->u.c.component;
4644 if (c->attr.dimension)
4646 if (as != NULL)
4647 gfc_internal_error ("find_array_spec(): unused as(1)");
4648 as = c->as;
4651 break;
4653 case REF_SUBSTRING:
4654 break;
4657 if (as != NULL)
4658 gfc_internal_error ("find_array_spec(): unused as(2)");
4662 /* Resolve an array reference. */
4664 static bool
4665 resolve_array_ref (gfc_array_ref *ar)
4667 int i, check_scalar;
4668 gfc_expr *e;
4670 for (i = 0; i < ar->dimen + ar->codimen; i++)
4672 check_scalar = ar->dimen_type[i] == DIMEN_RANGE;
4674 /* Do not force gfc_index_integer_kind for the start. We can
4675 do fine with any integer kind. This avoids temporary arrays
4676 created for indexing with a vector. */
4677 if (!gfc_resolve_index_1 (ar->start[i], check_scalar, 0))
4678 return false;
4679 if (!gfc_resolve_index (ar->end[i], check_scalar))
4680 return false;
4681 if (!gfc_resolve_index (ar->stride[i], check_scalar))
4682 return false;
4684 e = ar->start[i];
4686 if (ar->dimen_type[i] == DIMEN_UNKNOWN)
4687 switch (e->rank)
4689 case 0:
4690 ar->dimen_type[i] = DIMEN_ELEMENT;
4691 break;
4693 case 1:
4694 ar->dimen_type[i] = DIMEN_VECTOR;
4695 if (e->expr_type == EXPR_VARIABLE
4696 && e->symtree->n.sym->ts.type == BT_DERIVED)
4697 ar->start[i] = gfc_get_parentheses (e);
4698 break;
4700 default:
4701 gfc_error ("Array index at %L is an array of rank %d",
4702 &ar->c_where[i], e->rank);
4703 return false;
4706 /* Fill in the upper bound, which may be lower than the
4707 specified one for something like a(2:10:5), which is
4708 identical to a(2:7:5). Only relevant for strides not equal
4709 to one. Don't try a division by zero. */
4710 if (ar->dimen_type[i] == DIMEN_RANGE
4711 && ar->stride[i] != NULL && ar->stride[i]->expr_type == EXPR_CONSTANT
4712 && mpz_cmp_si (ar->stride[i]->value.integer, 1L) != 0
4713 && mpz_cmp_si (ar->stride[i]->value.integer, 0L) != 0)
4715 mpz_t size, end;
4717 if (gfc_ref_dimen_size (ar, i, &size, &end))
4719 if (ar->end[i] == NULL)
4721 ar->end[i] =
4722 gfc_get_constant_expr (BT_INTEGER, gfc_index_integer_kind,
4723 &ar->where);
4724 mpz_set (ar->end[i]->value.integer, end);
4726 else if (ar->end[i]->ts.type == BT_INTEGER
4727 && ar->end[i]->expr_type == EXPR_CONSTANT)
4729 mpz_set (ar->end[i]->value.integer, end);
4731 else
4732 gcc_unreachable ();
4734 mpz_clear (size);
4735 mpz_clear (end);
4740 if (ar->type == AR_FULL)
4742 if (ar->as->rank == 0)
4743 ar->type = AR_ELEMENT;
4745 /* Make sure array is the same as array(:,:), this way
4746 we don't need to special case all the time. */
4747 ar->dimen = ar->as->rank;
4748 for (i = 0; i < ar->dimen; i++)
4750 ar->dimen_type[i] = DIMEN_RANGE;
4752 gcc_assert (ar->start[i] == NULL);
4753 gcc_assert (ar->end[i] == NULL);
4754 gcc_assert (ar->stride[i] == NULL);
4758 /* If the reference type is unknown, figure out what kind it is. */
4760 if (ar->type == AR_UNKNOWN)
4762 ar->type = AR_ELEMENT;
4763 for (i = 0; i < ar->dimen; i++)
4764 if (ar->dimen_type[i] == DIMEN_RANGE
4765 || ar->dimen_type[i] == DIMEN_VECTOR)
4767 ar->type = AR_SECTION;
4768 break;
4772 if (!ar->as->cray_pointee && !compare_spec_to_ref (ar))
4773 return false;
4775 if (ar->as->corank && ar->codimen == 0)
4777 int n;
4778 ar->codimen = ar->as->corank;
4779 for (n = ar->dimen; n < ar->dimen + ar->codimen; n++)
4780 ar->dimen_type[n] = DIMEN_THIS_IMAGE;
4783 return true;
4787 static bool
4788 resolve_substring (gfc_ref *ref)
4790 int k = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
4792 if (ref->u.ss.start != NULL)
4794 if (!gfc_resolve_expr (ref->u.ss.start))
4795 return false;
4797 if (ref->u.ss.start->ts.type != BT_INTEGER)
4799 gfc_error ("Substring start index at %L must be of type INTEGER",
4800 &ref->u.ss.start->where);
4801 return false;
4804 if (ref->u.ss.start->rank != 0)
4806 gfc_error ("Substring start index at %L must be scalar",
4807 &ref->u.ss.start->where);
4808 return false;
4811 if (compare_bound_int (ref->u.ss.start, 1) == CMP_LT
4812 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
4813 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
4815 gfc_error ("Substring start index at %L is less than one",
4816 &ref->u.ss.start->where);
4817 return false;
4821 if (ref->u.ss.end != NULL)
4823 if (!gfc_resolve_expr (ref->u.ss.end))
4824 return false;
4826 if (ref->u.ss.end->ts.type != BT_INTEGER)
4828 gfc_error ("Substring end index at %L must be of type INTEGER",
4829 &ref->u.ss.end->where);
4830 return false;
4833 if (ref->u.ss.end->rank != 0)
4835 gfc_error ("Substring end index at %L must be scalar",
4836 &ref->u.ss.end->where);
4837 return false;
4840 if (ref->u.ss.length != NULL
4841 && compare_bound (ref->u.ss.end, ref->u.ss.length->length) == CMP_GT
4842 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
4843 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
4845 gfc_error ("Substring end index at %L exceeds the string length",
4846 &ref->u.ss.start->where);
4847 return false;
4850 if (compare_bound_mpz_t (ref->u.ss.end,
4851 gfc_integer_kinds[k].huge) == CMP_GT
4852 && (compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_EQ
4853 || compare_bound (ref->u.ss.end, ref->u.ss.start) == CMP_GT))
4855 gfc_error ("Substring end index at %L is too large",
4856 &ref->u.ss.end->where);
4857 return false;
4861 return true;
4865 /* This function supplies missing substring charlens. */
4867 void
4868 gfc_resolve_substring_charlen (gfc_expr *e)
4870 gfc_ref *char_ref;
4871 gfc_expr *start, *end;
4872 gfc_typespec *ts = NULL;
4874 for (char_ref = e->ref; char_ref; char_ref = char_ref->next)
4876 if (char_ref->type == REF_SUBSTRING)
4877 break;
4878 if (char_ref->type == REF_COMPONENT)
4879 ts = &char_ref->u.c.component->ts;
4882 if (!char_ref)
4883 return;
4885 gcc_assert (char_ref->next == NULL);
4887 if (e->ts.u.cl)
4889 if (e->ts.u.cl->length)
4890 gfc_free_expr (e->ts.u.cl->length);
4891 else if (e->expr_type == EXPR_VARIABLE && e->symtree->n.sym->attr.dummy)
4892 return;
4895 e->ts.type = BT_CHARACTER;
4896 e->ts.kind = gfc_default_character_kind;
4898 if (!e->ts.u.cl)
4899 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
4901 if (char_ref->u.ss.start)
4902 start = gfc_copy_expr (char_ref->u.ss.start);
4903 else
4904 start = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
4906 if (char_ref->u.ss.end)
4907 end = gfc_copy_expr (char_ref->u.ss.end);
4908 else if (e->expr_type == EXPR_VARIABLE)
4910 if (!ts)
4911 ts = &e->symtree->n.sym->ts;
4912 end = gfc_copy_expr (ts->u.cl->length);
4914 else
4915 end = NULL;
4917 if (!start || !end)
4919 gfc_free_expr (start);
4920 gfc_free_expr (end);
4921 return;
4924 /* Length = (end - start + 1). */
4925 e->ts.u.cl->length = gfc_subtract (end, start);
4926 e->ts.u.cl->length = gfc_add (e->ts.u.cl->length,
4927 gfc_get_int_expr (gfc_default_integer_kind,
4928 NULL, 1));
4930 /* F2008, 6.4.1: Both the starting point and the ending point shall
4931 be within the range 1, 2, ..., n unless the starting point exceeds
4932 the ending point, in which case the substring has length zero. */
4934 if (mpz_cmp_si (e->ts.u.cl->length->value.integer, 0) < 0)
4935 mpz_set_si (e->ts.u.cl->length->value.integer, 0);
4937 e->ts.u.cl->length->ts.type = BT_INTEGER;
4938 e->ts.u.cl->length->ts.kind = gfc_charlen_int_kind;
4940 /* Make sure that the length is simplified. */
4941 gfc_simplify_expr (e->ts.u.cl->length, 1);
4942 gfc_resolve_expr (e->ts.u.cl->length);
4946 /* Resolve subtype references. */
4948 static bool
4949 resolve_ref (gfc_expr *expr)
4951 int current_part_dimension, n_components, seen_part_dimension;
4952 gfc_ref *ref;
4954 for (ref = expr->ref; ref; ref = ref->next)
4955 if (ref->type == REF_ARRAY && ref->u.ar.as == NULL)
4957 find_array_spec (expr);
4958 break;
4961 for (ref = expr->ref; ref; ref = ref->next)
4962 switch (ref->type)
4964 case REF_ARRAY:
4965 if (!resolve_array_ref (&ref->u.ar))
4966 return false;
4967 break;
4969 case REF_COMPONENT:
4970 break;
4972 case REF_SUBSTRING:
4973 if (!resolve_substring (ref))
4974 return false;
4975 break;
4978 /* Check constraints on part references. */
4980 current_part_dimension = 0;
4981 seen_part_dimension = 0;
4982 n_components = 0;
4984 for (ref = expr->ref; ref; ref = ref->next)
4986 switch (ref->type)
4988 case REF_ARRAY:
4989 switch (ref->u.ar.type)
4991 case AR_FULL:
4992 /* Coarray scalar. */
4993 if (ref->u.ar.as->rank == 0)
4995 current_part_dimension = 0;
4996 break;
4998 /* Fall through. */
4999 case AR_SECTION:
5000 current_part_dimension = 1;
5001 break;
5003 case AR_ELEMENT:
5004 current_part_dimension = 0;
5005 break;
5007 case AR_UNKNOWN:
5008 gfc_internal_error ("resolve_ref(): Bad array reference");
5011 break;
5013 case REF_COMPONENT:
5014 if (current_part_dimension || seen_part_dimension)
5016 /* F03:C614. */
5017 if (ref->u.c.component->attr.pointer
5018 || ref->u.c.component->attr.proc_pointer
5019 || (ref->u.c.component->ts.type == BT_CLASS
5020 && CLASS_DATA (ref->u.c.component)->attr.pointer))
5022 gfc_error ("Component to the right of a part reference "
5023 "with nonzero rank must not have the POINTER "
5024 "attribute at %L", &expr->where);
5025 return false;
5027 else if (ref->u.c.component->attr.allocatable
5028 || (ref->u.c.component->ts.type == BT_CLASS
5029 && CLASS_DATA (ref->u.c.component)->attr.allocatable))
5032 gfc_error ("Component to the right of a part reference "
5033 "with nonzero rank must not have the ALLOCATABLE "
5034 "attribute at %L", &expr->where);
5035 return false;
5039 n_components++;
5040 break;
5042 case REF_SUBSTRING:
5043 break;
5046 if (((ref->type == REF_COMPONENT && n_components > 1)
5047 || ref->next == NULL)
5048 && current_part_dimension
5049 && seen_part_dimension)
5051 gfc_error ("Two or more part references with nonzero rank must "
5052 "not be specified at %L", &expr->where);
5053 return false;
5056 if (ref->type == REF_COMPONENT)
5058 if (current_part_dimension)
5059 seen_part_dimension = 1;
5061 /* reset to make sure */
5062 current_part_dimension = 0;
5066 return true;
5070 /* Given an expression, determine its shape. This is easier than it sounds.
5071 Leaves the shape array NULL if it is not possible to determine the shape. */
5073 static void
5074 expression_shape (gfc_expr *e)
5076 mpz_t array[GFC_MAX_DIMENSIONS];
5077 int i;
5079 if (e->rank <= 0 || e->shape != NULL)
5080 return;
5082 for (i = 0; i < e->rank; i++)
5083 if (!gfc_array_dimen_size (e, i, &array[i]))
5084 goto fail;
5086 e->shape = gfc_get_shape (e->rank);
5088 memcpy (e->shape, array, e->rank * sizeof (mpz_t));
5090 return;
5092 fail:
5093 for (i--; i >= 0; i--)
5094 mpz_clear (array[i]);
5098 /* Given a variable expression node, compute the rank of the expression by
5099 examining the base symbol and any reference structures it may have. */
5101 void
5102 expression_rank (gfc_expr *e)
5104 gfc_ref *ref;
5105 int i, rank;
5107 /* Just to make sure, because EXPR_COMPCALL's also have an e->ref and that
5108 could lead to serious confusion... */
5109 gcc_assert (e->expr_type != EXPR_COMPCALL);
5111 if (e->ref == NULL)
5113 if (e->expr_type == EXPR_ARRAY)
5114 goto done;
5115 /* Constructors can have a rank different from one via RESHAPE(). */
5117 if (e->symtree == NULL)
5119 e->rank = 0;
5120 goto done;
5123 e->rank = (e->symtree->n.sym->as == NULL)
5124 ? 0 : e->symtree->n.sym->as->rank;
5125 goto done;
5128 rank = 0;
5130 for (ref = e->ref; ref; ref = ref->next)
5132 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.proc_pointer
5133 && ref->u.c.component->attr.function && !ref->next)
5134 rank = ref->u.c.component->as ? ref->u.c.component->as->rank : 0;
5136 if (ref->type != REF_ARRAY)
5137 continue;
5139 if (ref->u.ar.type == AR_FULL)
5141 rank = ref->u.ar.as->rank;
5142 break;
5145 if (ref->u.ar.type == AR_SECTION)
5147 /* Figure out the rank of the section. */
5148 if (rank != 0)
5149 gfc_internal_error ("expression_rank(): Two array specs");
5151 for (i = 0; i < ref->u.ar.dimen; i++)
5152 if (ref->u.ar.dimen_type[i] == DIMEN_RANGE
5153 || ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
5154 rank++;
5156 break;
5160 e->rank = rank;
5162 done:
5163 expression_shape (e);
5167 static void
5168 add_caf_get_intrinsic (gfc_expr *e)
5170 gfc_expr *wrapper, *tmp_expr;
5171 gfc_ref *ref;
5172 int n;
5174 for (ref = e->ref; ref; ref = ref->next)
5175 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
5176 break;
5177 if (ref == NULL)
5178 return;
5180 for (n = ref->u.ar.dimen; n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
5181 if (ref->u.ar.dimen_type[n] != DIMEN_ELEMENT)
5182 return;
5184 tmp_expr = XCNEW (gfc_expr);
5185 *tmp_expr = *e;
5186 wrapper = gfc_build_intrinsic_call (gfc_current_ns, GFC_ISYM_CAF_GET,
5187 "caf_get", tmp_expr->where, 1, tmp_expr);
5188 wrapper->ts = e->ts;
5189 wrapper->rank = e->rank;
5190 if (e->rank)
5191 wrapper->shape = gfc_copy_shape (e->shape, e->rank);
5192 *e = *wrapper;
5193 free (wrapper);
5197 static void
5198 remove_caf_get_intrinsic (gfc_expr *e)
5200 gcc_assert (e->expr_type == EXPR_FUNCTION && e->value.function.isym
5201 && e->value.function.isym->id == GFC_ISYM_CAF_GET);
5202 gfc_expr *e2 = e->value.function.actual->expr;
5203 e->value.function.actual->expr = NULL;
5204 gfc_free_actual_arglist (e->value.function.actual);
5205 gfc_free_shape (&e->shape, e->rank);
5206 *e = *e2;
5207 free (e2);
5211 /* Resolve a variable expression. */
5213 static bool
5214 resolve_variable (gfc_expr *e)
5216 gfc_symbol *sym;
5217 bool t;
5219 t = true;
5221 if (e->symtree == NULL)
5222 return false;
5223 sym = e->symtree->n.sym;
5225 /* Use same check as for TYPE(*) below; this check has to be before TYPE(*)
5226 as ts.type is set to BT_ASSUMED in resolve_symbol. */
5227 if (sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
5229 if (!actual_arg || inquiry_argument)
5231 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may only "
5232 "be used as actual argument", sym->name, &e->where);
5233 return false;
5236 /* TS 29113, 407b. */
5237 else if (e->ts.type == BT_ASSUMED)
5239 if (!actual_arg)
5241 gfc_error ("Assumed-type variable %s at %L may only be used "
5242 "as actual argument", sym->name, &e->where);
5243 return false;
5245 else if (inquiry_argument && !first_actual_arg)
5247 /* FIXME: It doesn't work reliably as inquiry_argument is not set
5248 for all inquiry functions in resolve_function; the reason is
5249 that the function-name resolution happens too late in that
5250 function. */
5251 gfc_error ("Assumed-type variable %s at %L as actual argument to "
5252 "an inquiry function shall be the first argument",
5253 sym->name, &e->where);
5254 return false;
5257 /* TS 29113, C535b. */
5258 else if ((sym->ts.type == BT_CLASS && sym->attr.class_ok
5259 && CLASS_DATA (sym)->as
5260 && CLASS_DATA (sym)->as->type == AS_ASSUMED_RANK)
5261 || (sym->ts.type != BT_CLASS && sym->as
5262 && sym->as->type == AS_ASSUMED_RANK))
5264 if (!actual_arg)
5266 gfc_error ("Assumed-rank variable %s at %L may only be used as "
5267 "actual argument", sym->name, &e->where);
5268 return false;
5270 else if (inquiry_argument && !first_actual_arg)
5272 /* FIXME: It doesn't work reliably as inquiry_argument is not set
5273 for all inquiry functions in resolve_function; the reason is
5274 that the function-name resolution happens too late in that
5275 function. */
5276 gfc_error ("Assumed-rank variable %s at %L as actual argument "
5277 "to an inquiry function shall be the first argument",
5278 sym->name, &e->where);
5279 return false;
5283 if ((sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK)) && e->ref
5284 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5285 && e->ref->next == NULL))
5287 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall not have "
5288 "a subobject reference", sym->name, &e->ref->u.ar.where);
5289 return false;
5291 /* TS 29113, 407b. */
5292 else if (e->ts.type == BT_ASSUMED && e->ref
5293 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5294 && e->ref->next == NULL))
5296 gfc_error ("Assumed-type variable %s at %L shall not have a subobject "
5297 "reference", sym->name, &e->ref->u.ar.where);
5298 return false;
5301 /* TS 29113, C535b. */
5302 if (((sym->ts.type == BT_CLASS && sym->attr.class_ok
5303 && CLASS_DATA (sym)->as
5304 && CLASS_DATA (sym)->as->type == AS_ASSUMED_RANK)
5305 || (sym->ts.type != BT_CLASS && sym->as
5306 && sym->as->type == AS_ASSUMED_RANK))
5307 && e->ref
5308 && !(e->ref->type == REF_ARRAY && e->ref->u.ar.type == AR_FULL
5309 && e->ref->next == NULL))
5311 gfc_error ("Assumed-rank variable %s at %L shall not have a subobject "
5312 "reference", sym->name, &e->ref->u.ar.where);
5313 return false;
5316 /* For variables that are used in an associate (target => object) where
5317 the object's basetype is array valued while the target is scalar,
5318 the ts' type of the component refs is still array valued, which
5319 can't be translated that way. */
5320 if (sym->assoc && e->rank == 0 && e->ref && sym->ts.type == BT_CLASS
5321 && sym->assoc->target->ts.type == BT_CLASS
5322 && CLASS_DATA (sym->assoc->target)->as)
5324 gfc_ref *ref = e->ref;
5325 while (ref)
5327 switch (ref->type)
5329 case REF_COMPONENT:
5330 ref->u.c.sym = sym->ts.u.derived;
5331 /* Stop the loop. */
5332 ref = NULL;
5333 break;
5334 default:
5335 ref = ref->next;
5336 break;
5341 /* If this is an associate-name, it may be parsed with an array reference
5342 in error even though the target is scalar. Fail directly in this case.
5343 TODO Understand why class scalar expressions must be excluded. */
5344 if (sym->assoc && !(sym->ts.type == BT_CLASS && e->rank == 0))
5346 if (sym->ts.type == BT_CLASS)
5347 gfc_fix_class_refs (e);
5348 if (!sym->attr.dimension && e->ref && e->ref->type == REF_ARRAY)
5349 return false;
5352 if (sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.generic)
5353 sym->ts.u.derived = gfc_find_dt_in_generic (sym->ts.u.derived);
5355 /* On the other hand, the parser may not have known this is an array;
5356 in this case, we have to add a FULL reference. */
5357 if (sym->assoc && sym->attr.dimension && !e->ref)
5359 e->ref = gfc_get_ref ();
5360 e->ref->type = REF_ARRAY;
5361 e->ref->u.ar.type = AR_FULL;
5362 e->ref->u.ar.dimen = 0;
5365 /* Like above, but for class types, where the checking whether an array
5366 ref is present is more complicated. Furthermore make sure not to add
5367 the full array ref to _vptr or _len refs. */
5368 if (sym->assoc && sym->ts.type == BT_CLASS
5369 && CLASS_DATA (sym)->attr.dimension
5370 && (e->ts.type != BT_DERIVED || !e->ts.u.derived->attr.vtype))
5372 gfc_ref *ref, *newref;
5374 newref = gfc_get_ref ();
5375 newref->type = REF_ARRAY;
5376 newref->u.ar.type = AR_FULL;
5377 newref->u.ar.dimen = 0;
5378 /* Because this is an associate var and the first ref either is a ref to
5379 the _data component or not, no traversal of the ref chain is
5380 needed. The array ref needs to be inserted after the _data ref,
5381 or when that is not present, which may happend for polymorphic
5382 types, then at the first position. */
5383 ref = e->ref;
5384 if (!ref)
5385 e->ref = newref;
5386 else if (ref->type == REF_COMPONENT
5387 && strcmp ("_data", ref->u.c.component->name) == 0)
5389 if (!ref->next || ref->next->type != REF_ARRAY)
5391 newref->next = ref->next;
5392 ref->next = newref;
5394 else
5395 /* Array ref present already. */
5396 gfc_free_ref_list (newref);
5398 else if (ref->type == REF_ARRAY)
5399 /* Array ref present already. */
5400 gfc_free_ref_list (newref);
5401 else
5403 newref->next = ref;
5404 e->ref = newref;
5408 if (e->ref && !resolve_ref (e))
5409 return false;
5411 if (sym->attr.flavor == FL_PROCEDURE
5412 && (!sym->attr.function
5413 || (sym->attr.function && sym->result
5414 && sym->result->attr.proc_pointer
5415 && !sym->result->attr.function)))
5417 e->ts.type = BT_PROCEDURE;
5418 goto resolve_procedure;
5421 if (sym->ts.type != BT_UNKNOWN)
5422 gfc_variable_attr (e, &e->ts);
5423 else if (sym->attr.flavor == FL_PROCEDURE
5424 && sym->attr.function && sym->result
5425 && sym->result->ts.type != BT_UNKNOWN
5426 && sym->result->attr.proc_pointer)
5427 e->ts = sym->result->ts;
5428 else
5430 /* Must be a simple variable reference. */
5431 if (!gfc_set_default_type (sym, 1, sym->ns))
5432 return false;
5433 e->ts = sym->ts;
5436 if (check_assumed_size_reference (sym, e))
5437 return false;
5439 /* Deal with forward references to entries during gfc_resolve_code, to
5440 satisfy, at least partially, 12.5.2.5. */
5441 if (gfc_current_ns->entries
5442 && current_entry_id == sym->entry_id
5443 && cs_base
5444 && cs_base->current
5445 && cs_base->current->op != EXEC_ENTRY)
5447 gfc_entry_list *entry;
5448 gfc_formal_arglist *formal;
5449 int n;
5450 bool seen, saved_specification_expr;
5452 /* If the symbol is a dummy... */
5453 if (sym->attr.dummy && sym->ns == gfc_current_ns)
5455 entry = gfc_current_ns->entries;
5456 seen = false;
5458 /* ...test if the symbol is a parameter of previous entries. */
5459 for (; entry && entry->id <= current_entry_id; entry = entry->next)
5460 for (formal = entry->sym->formal; formal; formal = formal->next)
5462 if (formal->sym && sym->name == formal->sym->name)
5464 seen = true;
5465 break;
5469 /* If it has not been seen as a dummy, this is an error. */
5470 if (!seen)
5472 if (specification_expr)
5473 gfc_error ("Variable %qs, used in a specification expression"
5474 ", is referenced at %L before the ENTRY statement "
5475 "in which it is a parameter",
5476 sym->name, &cs_base->current->loc);
5477 else
5478 gfc_error ("Variable %qs is used at %L before the ENTRY "
5479 "statement in which it is a parameter",
5480 sym->name, &cs_base->current->loc);
5481 t = false;
5485 /* Now do the same check on the specification expressions. */
5486 saved_specification_expr = specification_expr;
5487 specification_expr = true;
5488 if (sym->ts.type == BT_CHARACTER
5489 && !gfc_resolve_expr (sym->ts.u.cl->length))
5490 t = false;
5492 if (sym->as)
5493 for (n = 0; n < sym->as->rank; n++)
5495 if (!gfc_resolve_expr (sym->as->lower[n]))
5496 t = false;
5497 if (!gfc_resolve_expr (sym->as->upper[n]))
5498 t = false;
5500 specification_expr = saved_specification_expr;
5502 if (t)
5503 /* Update the symbol's entry level. */
5504 sym->entry_id = current_entry_id + 1;
5507 /* If a symbol has been host_associated mark it. This is used latter,
5508 to identify if aliasing is possible via host association. */
5509 if (sym->attr.flavor == FL_VARIABLE
5510 && gfc_current_ns->parent
5511 && (gfc_current_ns->parent == sym->ns
5512 || (gfc_current_ns->parent->parent
5513 && gfc_current_ns->parent->parent == sym->ns)))
5514 sym->attr.host_assoc = 1;
5516 if (gfc_current_ns->proc_name
5517 && sym->attr.dimension
5518 && (sym->ns != gfc_current_ns
5519 || sym->attr.use_assoc
5520 || sym->attr.in_common))
5521 gfc_current_ns->proc_name->attr.array_outer_dependency = 1;
5523 resolve_procedure:
5524 if (t && !resolve_procedure_expression (e))
5525 t = false;
5527 /* F2008, C617 and C1229. */
5528 if (!inquiry_argument && (e->ts.type == BT_CLASS || e->ts.type == BT_DERIVED)
5529 && gfc_is_coindexed (e))
5531 gfc_ref *ref, *ref2 = NULL;
5533 for (ref = e->ref; ref; ref = ref->next)
5535 if (ref->type == REF_COMPONENT)
5536 ref2 = ref;
5537 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
5538 break;
5541 for ( ; ref; ref = ref->next)
5542 if (ref->type == REF_COMPONENT)
5543 break;
5545 /* Expression itself is not coindexed object. */
5546 if (ref && e->ts.type == BT_CLASS)
5548 gfc_error ("Polymorphic subobject of coindexed object at %L",
5549 &e->where);
5550 t = false;
5553 /* Expression itself is coindexed object. */
5554 if (ref == NULL)
5556 gfc_component *c;
5557 c = ref2 ? ref2->u.c.component : e->symtree->n.sym->components;
5558 for ( ; c; c = c->next)
5559 if (c->attr.allocatable && c->ts.type == BT_CLASS)
5561 gfc_error ("Coindexed object with polymorphic allocatable "
5562 "subcomponent at %L", &e->where);
5563 t = false;
5564 break;
5569 if (t)
5570 expression_rank (e);
5572 if (t && flag_coarray == GFC_FCOARRAY_LIB && gfc_is_coindexed (e))
5573 add_caf_get_intrinsic (e);
5575 return t;
5579 /* Checks to see that the correct symbol has been host associated.
5580 The only situation where this arises is that in which a twice
5581 contained function is parsed after the host association is made.
5582 Therefore, on detecting this, change the symbol in the expression
5583 and convert the array reference into an actual arglist if the old
5584 symbol is a variable. */
5585 static bool
5586 check_host_association (gfc_expr *e)
5588 gfc_symbol *sym, *old_sym;
5589 gfc_symtree *st;
5590 int n;
5591 gfc_ref *ref;
5592 gfc_actual_arglist *arg, *tail = NULL;
5593 bool retval = e->expr_type == EXPR_FUNCTION;
5595 /* If the expression is the result of substitution in
5596 interface.c(gfc_extend_expr) because there is no way in
5597 which the host association can be wrong. */
5598 if (e->symtree == NULL
5599 || e->symtree->n.sym == NULL
5600 || e->user_operator)
5601 return retval;
5603 old_sym = e->symtree->n.sym;
5605 if (gfc_current_ns->parent
5606 && old_sym->ns != gfc_current_ns)
5608 /* Use the 'USE' name so that renamed module symbols are
5609 correctly handled. */
5610 gfc_find_symbol (e->symtree->name, gfc_current_ns, 1, &sym);
5612 if (sym && old_sym != sym
5613 && sym->ts.type == old_sym->ts.type
5614 && sym->attr.flavor == FL_PROCEDURE
5615 && sym->attr.contained)
5617 /* Clear the shape, since it might not be valid. */
5618 gfc_free_shape (&e->shape, e->rank);
5620 /* Give the expression the right symtree! */
5621 gfc_find_sym_tree (e->symtree->name, NULL, 1, &st);
5622 gcc_assert (st != NULL);
5624 if (old_sym->attr.flavor == FL_PROCEDURE
5625 || e->expr_type == EXPR_FUNCTION)
5627 /* Original was function so point to the new symbol, since
5628 the actual argument list is already attached to the
5629 expression. */
5630 e->value.function.esym = NULL;
5631 e->symtree = st;
5633 else
5635 /* Original was variable so convert array references into
5636 an actual arglist. This does not need any checking now
5637 since resolve_function will take care of it. */
5638 e->value.function.actual = NULL;
5639 e->expr_type = EXPR_FUNCTION;
5640 e->symtree = st;
5642 /* Ambiguity will not arise if the array reference is not
5643 the last reference. */
5644 for (ref = e->ref; ref; ref = ref->next)
5645 if (ref->type == REF_ARRAY && ref->next == NULL)
5646 break;
5648 gcc_assert (ref->type == REF_ARRAY);
5650 /* Grab the start expressions from the array ref and
5651 copy them into actual arguments. */
5652 for (n = 0; n < ref->u.ar.dimen; n++)
5654 arg = gfc_get_actual_arglist ();
5655 arg->expr = gfc_copy_expr (ref->u.ar.start[n]);
5656 if (e->value.function.actual == NULL)
5657 tail = e->value.function.actual = arg;
5658 else
5660 tail->next = arg;
5661 tail = arg;
5665 /* Dump the reference list and set the rank. */
5666 gfc_free_ref_list (e->ref);
5667 e->ref = NULL;
5668 e->rank = sym->as ? sym->as->rank : 0;
5671 gfc_resolve_expr (e);
5672 sym->refs++;
5675 /* This might have changed! */
5676 return e->expr_type == EXPR_FUNCTION;
5680 static void
5681 gfc_resolve_character_operator (gfc_expr *e)
5683 gfc_expr *op1 = e->value.op.op1;
5684 gfc_expr *op2 = e->value.op.op2;
5685 gfc_expr *e1 = NULL;
5686 gfc_expr *e2 = NULL;
5688 gcc_assert (e->value.op.op == INTRINSIC_CONCAT);
5690 if (op1->ts.u.cl && op1->ts.u.cl->length)
5691 e1 = gfc_copy_expr (op1->ts.u.cl->length);
5692 else if (op1->expr_type == EXPR_CONSTANT)
5693 e1 = gfc_get_int_expr (gfc_default_integer_kind, NULL,
5694 op1->value.character.length);
5696 if (op2->ts.u.cl && op2->ts.u.cl->length)
5697 e2 = gfc_copy_expr (op2->ts.u.cl->length);
5698 else if (op2->expr_type == EXPR_CONSTANT)
5699 e2 = gfc_get_int_expr (gfc_default_integer_kind, NULL,
5700 op2->value.character.length);
5702 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
5704 if (!e1 || !e2)
5706 gfc_free_expr (e1);
5707 gfc_free_expr (e2);
5709 return;
5712 e->ts.u.cl->length = gfc_add (e1, e2);
5713 e->ts.u.cl->length->ts.type = BT_INTEGER;
5714 e->ts.u.cl->length->ts.kind = gfc_charlen_int_kind;
5715 gfc_simplify_expr (e->ts.u.cl->length, 0);
5716 gfc_resolve_expr (e->ts.u.cl->length);
5718 return;
5722 /* Ensure that an character expression has a charlen and, if possible, a
5723 length expression. */
5725 static void
5726 fixup_charlen (gfc_expr *e)
5728 /* The cases fall through so that changes in expression type and the need
5729 for multiple fixes are picked up. In all circumstances, a charlen should
5730 be available for the middle end to hang a backend_decl on. */
5731 switch (e->expr_type)
5733 case EXPR_OP:
5734 gfc_resolve_character_operator (e);
5735 /* FALLTHRU */
5737 case EXPR_ARRAY:
5738 if (e->expr_type == EXPR_ARRAY)
5739 gfc_resolve_character_array_constructor (e);
5740 /* FALLTHRU */
5742 case EXPR_SUBSTRING:
5743 if (!e->ts.u.cl && e->ref)
5744 gfc_resolve_substring_charlen (e);
5745 /* FALLTHRU */
5747 default:
5748 if (!e->ts.u.cl)
5749 e->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
5751 break;
5756 /* Update an actual argument to include the passed-object for type-bound
5757 procedures at the right position. */
5759 static gfc_actual_arglist*
5760 update_arglist_pass (gfc_actual_arglist* lst, gfc_expr* po, unsigned argpos,
5761 const char *name)
5763 gcc_assert (argpos > 0);
5765 if (argpos == 1)
5767 gfc_actual_arglist* result;
5769 result = gfc_get_actual_arglist ();
5770 result->expr = po;
5771 result->next = lst;
5772 if (name)
5773 result->name = name;
5775 return result;
5778 if (lst)
5779 lst->next = update_arglist_pass (lst->next, po, argpos - 1, name);
5780 else
5781 lst = update_arglist_pass (NULL, po, argpos - 1, name);
5782 return lst;
5786 /* Extract the passed-object from an EXPR_COMPCALL (a copy of it). */
5788 static gfc_expr*
5789 extract_compcall_passed_object (gfc_expr* e)
5791 gfc_expr* po;
5793 gcc_assert (e->expr_type == EXPR_COMPCALL);
5795 if (e->value.compcall.base_object)
5796 po = gfc_copy_expr (e->value.compcall.base_object);
5797 else
5799 po = gfc_get_expr ();
5800 po->expr_type = EXPR_VARIABLE;
5801 po->symtree = e->symtree;
5802 po->ref = gfc_copy_ref (e->ref);
5803 po->where = e->where;
5806 if (!gfc_resolve_expr (po))
5807 return NULL;
5809 return po;
5813 /* Update the arglist of an EXPR_COMPCALL expression to include the
5814 passed-object. */
5816 static bool
5817 update_compcall_arglist (gfc_expr* e)
5819 gfc_expr* po;
5820 gfc_typebound_proc* tbp;
5822 tbp = e->value.compcall.tbp;
5824 if (tbp->error)
5825 return false;
5827 po = extract_compcall_passed_object (e);
5828 if (!po)
5829 return false;
5831 if (tbp->nopass || e->value.compcall.ignore_pass)
5833 gfc_free_expr (po);
5834 return true;
5837 gcc_assert (tbp->pass_arg_num > 0);
5838 e->value.compcall.actual = update_arglist_pass (e->value.compcall.actual, po,
5839 tbp->pass_arg_num,
5840 tbp->pass_arg);
5842 return true;
5846 /* Extract the passed object from a PPC call (a copy of it). */
5848 static gfc_expr*
5849 extract_ppc_passed_object (gfc_expr *e)
5851 gfc_expr *po;
5852 gfc_ref **ref;
5854 po = gfc_get_expr ();
5855 po->expr_type = EXPR_VARIABLE;
5856 po->symtree = e->symtree;
5857 po->ref = gfc_copy_ref (e->ref);
5858 po->where = e->where;
5860 /* Remove PPC reference. */
5861 ref = &po->ref;
5862 while ((*ref)->next)
5863 ref = &(*ref)->next;
5864 gfc_free_ref_list (*ref);
5865 *ref = NULL;
5867 if (!gfc_resolve_expr (po))
5868 return NULL;
5870 return po;
5874 /* Update the actual arglist of a procedure pointer component to include the
5875 passed-object. */
5877 static bool
5878 update_ppc_arglist (gfc_expr* e)
5880 gfc_expr* po;
5881 gfc_component *ppc;
5882 gfc_typebound_proc* tb;
5884 ppc = gfc_get_proc_ptr_comp (e);
5885 if (!ppc)
5886 return false;
5888 tb = ppc->tb;
5890 if (tb->error)
5891 return false;
5892 else if (tb->nopass)
5893 return true;
5895 po = extract_ppc_passed_object (e);
5896 if (!po)
5897 return false;
5899 /* F08:R739. */
5900 if (po->rank != 0)
5902 gfc_error ("Passed-object at %L must be scalar", &e->where);
5903 return false;
5906 /* F08:C611. */
5907 if (po->ts.type == BT_DERIVED && po->ts.u.derived->attr.abstract)
5909 gfc_error ("Base object for procedure-pointer component call at %L is of"
5910 " ABSTRACT type %qs", &e->where, po->ts.u.derived->name);
5911 return false;
5914 gcc_assert (tb->pass_arg_num > 0);
5915 e->value.compcall.actual = update_arglist_pass (e->value.compcall.actual, po,
5916 tb->pass_arg_num,
5917 tb->pass_arg);
5919 return true;
5923 /* Check that the object a TBP is called on is valid, i.e. it must not be
5924 of ABSTRACT type (as in subobject%abstract_parent%tbp()). */
5926 static bool
5927 check_typebound_baseobject (gfc_expr* e)
5929 gfc_expr* base;
5930 bool return_value = false;
5932 base = extract_compcall_passed_object (e);
5933 if (!base)
5934 return false;
5936 gcc_assert (base->ts.type == BT_DERIVED || base->ts.type == BT_CLASS);
5938 if (base->ts.type == BT_CLASS && !gfc_expr_attr (base).class_ok)
5939 return false;
5941 /* F08:C611. */
5942 if (base->ts.type == BT_DERIVED && base->ts.u.derived->attr.abstract)
5944 gfc_error ("Base object for type-bound procedure call at %L is of"
5945 " ABSTRACT type %qs", &e->where, base->ts.u.derived->name);
5946 goto cleanup;
5949 /* F08:C1230. If the procedure called is NOPASS,
5950 the base object must be scalar. */
5951 if (e->value.compcall.tbp->nopass && base->rank != 0)
5953 gfc_error ("Base object for NOPASS type-bound procedure call at %L must"
5954 " be scalar", &e->where);
5955 goto cleanup;
5958 return_value = true;
5960 cleanup:
5961 gfc_free_expr (base);
5962 return return_value;
5966 /* Resolve a call to a type-bound procedure, either function or subroutine,
5967 statically from the data in an EXPR_COMPCALL expression. The adapted
5968 arglist and the target-procedure symtree are returned. */
5970 static bool
5971 resolve_typebound_static (gfc_expr* e, gfc_symtree** target,
5972 gfc_actual_arglist** actual)
5974 gcc_assert (e->expr_type == EXPR_COMPCALL);
5975 gcc_assert (!e->value.compcall.tbp->is_generic);
5977 /* Update the actual arglist for PASS. */
5978 if (!update_compcall_arglist (e))
5979 return false;
5981 *actual = e->value.compcall.actual;
5982 *target = e->value.compcall.tbp->u.specific;
5984 gfc_free_ref_list (e->ref);
5985 e->ref = NULL;
5986 e->value.compcall.actual = NULL;
5988 /* If we find a deferred typebound procedure, check for derived types
5989 that an overriding typebound procedure has not been missed. */
5990 if (e->value.compcall.name
5991 && !e->value.compcall.tbp->non_overridable
5992 && e->value.compcall.base_object
5993 && e->value.compcall.base_object->ts.type == BT_DERIVED)
5995 gfc_symtree *st;
5996 gfc_symbol *derived;
5998 /* Use the derived type of the base_object. */
5999 derived = e->value.compcall.base_object->ts.u.derived;
6000 st = NULL;
6002 /* If necessary, go through the inheritance chain. */
6003 while (!st && derived)
6005 /* Look for the typebound procedure 'name'. */
6006 if (derived->f2k_derived && derived->f2k_derived->tb_sym_root)
6007 st = gfc_find_symtree (derived->f2k_derived->tb_sym_root,
6008 e->value.compcall.name);
6009 if (!st)
6010 derived = gfc_get_derived_super_type (derived);
6013 /* Now find the specific name in the derived type namespace. */
6014 if (st && st->n.tb && st->n.tb->u.specific)
6015 gfc_find_sym_tree (st->n.tb->u.specific->name,
6016 derived->ns, 1, &st);
6017 if (st)
6018 *target = st;
6020 return true;
6024 /* Get the ultimate declared type from an expression. In addition,
6025 return the last class/derived type reference and the copy of the
6026 reference list. If check_types is set true, derived types are
6027 identified as well as class references. */
6028 static gfc_symbol*
6029 get_declared_from_expr (gfc_ref **class_ref, gfc_ref **new_ref,
6030 gfc_expr *e, bool check_types)
6032 gfc_symbol *declared;
6033 gfc_ref *ref;
6035 declared = NULL;
6036 if (class_ref)
6037 *class_ref = NULL;
6038 if (new_ref)
6039 *new_ref = gfc_copy_ref (e->ref);
6041 for (ref = e->ref; ref; ref = ref->next)
6043 if (ref->type != REF_COMPONENT)
6044 continue;
6046 if ((ref->u.c.component->ts.type == BT_CLASS
6047 || (check_types && gfc_bt_struct (ref->u.c.component->ts.type)))
6048 && ref->u.c.component->attr.flavor != FL_PROCEDURE)
6050 declared = ref->u.c.component->ts.u.derived;
6051 if (class_ref)
6052 *class_ref = ref;
6056 if (declared == NULL)
6057 declared = e->symtree->n.sym->ts.u.derived;
6059 return declared;
6063 /* Given an EXPR_COMPCALL calling a GENERIC typebound procedure, figure out
6064 which of the specific bindings (if any) matches the arglist and transform
6065 the expression into a call of that binding. */
6067 static bool
6068 resolve_typebound_generic_call (gfc_expr* e, const char **name)
6070 gfc_typebound_proc* genproc;
6071 const char* genname;
6072 gfc_symtree *st;
6073 gfc_symbol *derived;
6075 gcc_assert (e->expr_type == EXPR_COMPCALL);
6076 genname = e->value.compcall.name;
6077 genproc = e->value.compcall.tbp;
6079 if (!genproc->is_generic)
6080 return true;
6082 /* Try the bindings on this type and in the inheritance hierarchy. */
6083 for (; genproc; genproc = genproc->overridden)
6085 gfc_tbp_generic* g;
6087 gcc_assert (genproc->is_generic);
6088 for (g = genproc->u.generic; g; g = g->next)
6090 gfc_symbol* target;
6091 gfc_actual_arglist* args;
6092 bool matches;
6094 gcc_assert (g->specific);
6096 if (g->specific->error)
6097 continue;
6099 target = g->specific->u.specific->n.sym;
6101 /* Get the right arglist by handling PASS/NOPASS. */
6102 args = gfc_copy_actual_arglist (e->value.compcall.actual);
6103 if (!g->specific->nopass)
6105 gfc_expr* po;
6106 po = extract_compcall_passed_object (e);
6107 if (!po)
6109 gfc_free_actual_arglist (args);
6110 return false;
6113 gcc_assert (g->specific->pass_arg_num > 0);
6114 gcc_assert (!g->specific->error);
6115 args = update_arglist_pass (args, po, g->specific->pass_arg_num,
6116 g->specific->pass_arg);
6118 resolve_actual_arglist (args, target->attr.proc,
6119 is_external_proc (target)
6120 && gfc_sym_get_dummy_args (target) == NULL);
6122 /* Check if this arglist matches the formal. */
6123 matches = gfc_arglist_matches_symbol (&args, target);
6125 /* Clean up and break out of the loop if we've found it. */
6126 gfc_free_actual_arglist (args);
6127 if (matches)
6129 e->value.compcall.tbp = g->specific;
6130 genname = g->specific_st->name;
6131 /* Pass along the name for CLASS methods, where the vtab
6132 procedure pointer component has to be referenced. */
6133 if (name)
6134 *name = genname;
6135 goto success;
6140 /* Nothing matching found! */
6141 gfc_error ("Found no matching specific binding for the call to the GENERIC"
6142 " %qs at %L", genname, &e->where);
6143 return false;
6145 success:
6146 /* Make sure that we have the right specific instance for the name. */
6147 derived = get_declared_from_expr (NULL, NULL, e, true);
6149 st = gfc_find_typebound_proc (derived, NULL, genname, true, &e->where);
6150 if (st)
6151 e->value.compcall.tbp = st->n.tb;
6153 return true;
6157 /* Resolve a call to a type-bound subroutine. */
6159 static bool
6160 resolve_typebound_call (gfc_code* c, const char **name, bool *overridable)
6162 gfc_actual_arglist* newactual;
6163 gfc_symtree* target;
6165 /* Check that's really a SUBROUTINE. */
6166 if (!c->expr1->value.compcall.tbp->subroutine)
6168 gfc_error ("%qs at %L should be a SUBROUTINE",
6169 c->expr1->value.compcall.name, &c->loc);
6170 return false;
6173 if (!check_typebound_baseobject (c->expr1))
6174 return false;
6176 /* Pass along the name for CLASS methods, where the vtab
6177 procedure pointer component has to be referenced. */
6178 if (name)
6179 *name = c->expr1->value.compcall.name;
6181 if (!resolve_typebound_generic_call (c->expr1, name))
6182 return false;
6184 /* Pass along the NON_OVERRIDABLE attribute of the specific TBP. */
6185 if (overridable)
6186 *overridable = !c->expr1->value.compcall.tbp->non_overridable;
6188 /* Transform into an ordinary EXEC_CALL for now. */
6190 if (!resolve_typebound_static (c->expr1, &target, &newactual))
6191 return false;
6193 c->ext.actual = newactual;
6194 c->symtree = target;
6195 c->op = (c->expr1->value.compcall.assign ? EXEC_ASSIGN_CALL : EXEC_CALL);
6197 gcc_assert (!c->expr1->ref && !c->expr1->value.compcall.actual);
6199 gfc_free_expr (c->expr1);
6200 c->expr1 = gfc_get_expr ();
6201 c->expr1->expr_type = EXPR_FUNCTION;
6202 c->expr1->symtree = target;
6203 c->expr1->where = c->loc;
6205 return resolve_call (c);
6209 /* Resolve a component-call expression. */
6210 static bool
6211 resolve_compcall (gfc_expr* e, const char **name)
6213 gfc_actual_arglist* newactual;
6214 gfc_symtree* target;
6216 /* Check that's really a FUNCTION. */
6217 if (!e->value.compcall.tbp->function)
6219 gfc_error ("%qs at %L should be a FUNCTION",
6220 e->value.compcall.name, &e->where);
6221 return false;
6224 /* These must not be assign-calls! */
6225 gcc_assert (!e->value.compcall.assign);
6227 if (!check_typebound_baseobject (e))
6228 return false;
6230 /* Pass along the name for CLASS methods, where the vtab
6231 procedure pointer component has to be referenced. */
6232 if (name)
6233 *name = e->value.compcall.name;
6235 if (!resolve_typebound_generic_call (e, name))
6236 return false;
6237 gcc_assert (!e->value.compcall.tbp->is_generic);
6239 /* Take the rank from the function's symbol. */
6240 if (e->value.compcall.tbp->u.specific->n.sym->as)
6241 e->rank = e->value.compcall.tbp->u.specific->n.sym->as->rank;
6243 /* For now, we simply transform it into an EXPR_FUNCTION call with the same
6244 arglist to the TBP's binding target. */
6246 if (!resolve_typebound_static (e, &target, &newactual))
6247 return false;
6249 e->value.function.actual = newactual;
6250 e->value.function.name = NULL;
6251 e->value.function.esym = target->n.sym;
6252 e->value.function.isym = NULL;
6253 e->symtree = target;
6254 e->ts = target->n.sym->ts;
6255 e->expr_type = EXPR_FUNCTION;
6257 /* Resolution is not necessary if this is a class subroutine; this
6258 function only has to identify the specific proc. Resolution of
6259 the call will be done next in resolve_typebound_call. */
6260 return gfc_resolve_expr (e);
6264 static bool resolve_fl_derived (gfc_symbol *sym);
6267 /* Resolve a typebound function, or 'method'. First separate all
6268 the non-CLASS references by calling resolve_compcall directly. */
6270 static bool
6271 resolve_typebound_function (gfc_expr* e)
6273 gfc_symbol *declared;
6274 gfc_component *c;
6275 gfc_ref *new_ref;
6276 gfc_ref *class_ref;
6277 gfc_symtree *st;
6278 const char *name;
6279 gfc_typespec ts;
6280 gfc_expr *expr;
6281 bool overridable;
6283 st = e->symtree;
6285 /* Deal with typebound operators for CLASS objects. */
6286 expr = e->value.compcall.base_object;
6287 overridable = !e->value.compcall.tbp->non_overridable;
6288 if (expr && expr->ts.type == BT_CLASS && e->value.compcall.name)
6290 /* If the base_object is not a variable, the corresponding actual
6291 argument expression must be stored in e->base_expression so
6292 that the corresponding tree temporary can be used as the base
6293 object in gfc_conv_procedure_call. */
6294 if (expr->expr_type != EXPR_VARIABLE)
6296 gfc_actual_arglist *args;
6298 for (args= e->value.function.actual; args; args = args->next)
6300 if (expr == args->expr)
6301 expr = args->expr;
6305 /* Since the typebound operators are generic, we have to ensure
6306 that any delays in resolution are corrected and that the vtab
6307 is present. */
6308 ts = expr->ts;
6309 declared = ts.u.derived;
6310 c = gfc_find_component (declared, "_vptr", true, true, NULL);
6311 if (c->ts.u.derived == NULL)
6312 c->ts.u.derived = gfc_find_derived_vtab (declared);
6314 if (!resolve_compcall (e, &name))
6315 return false;
6317 /* Use the generic name if it is there. */
6318 name = name ? name : e->value.function.esym->name;
6319 e->symtree = expr->symtree;
6320 e->ref = gfc_copy_ref (expr->ref);
6321 get_declared_from_expr (&class_ref, NULL, e, false);
6323 /* Trim away the extraneous references that emerge from nested
6324 use of interface.c (extend_expr). */
6325 if (class_ref && class_ref->next)
6327 gfc_free_ref_list (class_ref->next);
6328 class_ref->next = NULL;
6330 else if (e->ref && !class_ref && expr->ts.type != BT_CLASS)
6332 gfc_free_ref_list (e->ref);
6333 e->ref = NULL;
6336 gfc_add_vptr_component (e);
6337 gfc_add_component_ref (e, name);
6338 e->value.function.esym = NULL;
6339 if (expr->expr_type != EXPR_VARIABLE)
6340 e->base_expr = expr;
6341 return true;
6344 if (st == NULL)
6345 return resolve_compcall (e, NULL);
6347 if (!resolve_ref (e))
6348 return false;
6350 /* Get the CLASS declared type. */
6351 declared = get_declared_from_expr (&class_ref, &new_ref, e, true);
6353 if (!resolve_fl_derived (declared))
6354 return false;
6356 /* Weed out cases of the ultimate component being a derived type. */
6357 if ((class_ref && gfc_bt_struct (class_ref->u.c.component->ts.type))
6358 || (!class_ref && st->n.sym->ts.type != BT_CLASS))
6360 gfc_free_ref_list (new_ref);
6361 return resolve_compcall (e, NULL);
6364 c = gfc_find_component (declared, "_data", true, true, NULL);
6365 declared = c->ts.u.derived;
6367 /* Treat the call as if it is a typebound procedure, in order to roll
6368 out the correct name for the specific function. */
6369 if (!resolve_compcall (e, &name))
6371 gfc_free_ref_list (new_ref);
6372 return false;
6374 ts = e->ts;
6376 if (overridable)
6378 /* Convert the expression to a procedure pointer component call. */
6379 e->value.function.esym = NULL;
6380 e->symtree = st;
6382 if (new_ref)
6383 e->ref = new_ref;
6385 /* '_vptr' points to the vtab, which contains the procedure pointers. */
6386 gfc_add_vptr_component (e);
6387 gfc_add_component_ref (e, name);
6389 /* Recover the typespec for the expression. This is really only
6390 necessary for generic procedures, where the additional call
6391 to gfc_add_component_ref seems to throw the collection of the
6392 correct typespec. */
6393 e->ts = ts;
6395 else if (new_ref)
6396 gfc_free_ref_list (new_ref);
6398 return true;
6401 /* Resolve a typebound subroutine, or 'method'. First separate all
6402 the non-CLASS references by calling resolve_typebound_call
6403 directly. */
6405 static bool
6406 resolve_typebound_subroutine (gfc_code *code)
6408 gfc_symbol *declared;
6409 gfc_component *c;
6410 gfc_ref *new_ref;
6411 gfc_ref *class_ref;
6412 gfc_symtree *st;
6413 const char *name;
6414 gfc_typespec ts;
6415 gfc_expr *expr;
6416 bool overridable;
6418 st = code->expr1->symtree;
6420 /* Deal with typebound operators for CLASS objects. */
6421 expr = code->expr1->value.compcall.base_object;
6422 overridable = !code->expr1->value.compcall.tbp->non_overridable;
6423 if (expr && expr->ts.type == BT_CLASS && code->expr1->value.compcall.name)
6425 /* If the base_object is not a variable, the corresponding actual
6426 argument expression must be stored in e->base_expression so
6427 that the corresponding tree temporary can be used as the base
6428 object in gfc_conv_procedure_call. */
6429 if (expr->expr_type != EXPR_VARIABLE)
6431 gfc_actual_arglist *args;
6433 args= code->expr1->value.function.actual;
6434 for (; args; args = args->next)
6435 if (expr == args->expr)
6436 expr = args->expr;
6439 /* Since the typebound operators are generic, we have to ensure
6440 that any delays in resolution are corrected and that the vtab
6441 is present. */
6442 declared = expr->ts.u.derived;
6443 c = gfc_find_component (declared, "_vptr", true, true, NULL);
6444 if (c->ts.u.derived == NULL)
6445 c->ts.u.derived = gfc_find_derived_vtab (declared);
6447 if (!resolve_typebound_call (code, &name, NULL))
6448 return false;
6450 /* Use the generic name if it is there. */
6451 name = name ? name : code->expr1->value.function.esym->name;
6452 code->expr1->symtree = expr->symtree;
6453 code->expr1->ref = gfc_copy_ref (expr->ref);
6455 /* Trim away the extraneous references that emerge from nested
6456 use of interface.c (extend_expr). */
6457 get_declared_from_expr (&class_ref, NULL, code->expr1, false);
6458 if (class_ref && class_ref->next)
6460 gfc_free_ref_list (class_ref->next);
6461 class_ref->next = NULL;
6463 else if (code->expr1->ref && !class_ref)
6465 gfc_free_ref_list (code->expr1->ref);
6466 code->expr1->ref = NULL;
6469 /* Now use the procedure in the vtable. */
6470 gfc_add_vptr_component (code->expr1);
6471 gfc_add_component_ref (code->expr1, name);
6472 code->expr1->value.function.esym = NULL;
6473 if (expr->expr_type != EXPR_VARIABLE)
6474 code->expr1->base_expr = expr;
6475 return true;
6478 if (st == NULL)
6479 return resolve_typebound_call (code, NULL, NULL);
6481 if (!resolve_ref (code->expr1))
6482 return false;
6484 /* Get the CLASS declared type. */
6485 get_declared_from_expr (&class_ref, &new_ref, code->expr1, true);
6487 /* Weed out cases of the ultimate component being a derived type. */
6488 if ((class_ref && gfc_bt_struct (class_ref->u.c.component->ts.type))
6489 || (!class_ref && st->n.sym->ts.type != BT_CLASS))
6491 gfc_free_ref_list (new_ref);
6492 return resolve_typebound_call (code, NULL, NULL);
6495 if (!resolve_typebound_call (code, &name, &overridable))
6497 gfc_free_ref_list (new_ref);
6498 return false;
6500 ts = code->expr1->ts;
6502 if (overridable)
6504 /* Convert the expression to a procedure pointer component call. */
6505 code->expr1->value.function.esym = NULL;
6506 code->expr1->symtree = st;
6508 if (new_ref)
6509 code->expr1->ref = new_ref;
6511 /* '_vptr' points to the vtab, which contains the procedure pointers. */
6512 gfc_add_vptr_component (code->expr1);
6513 gfc_add_component_ref (code->expr1, name);
6515 /* Recover the typespec for the expression. This is really only
6516 necessary for generic procedures, where the additional call
6517 to gfc_add_component_ref seems to throw the collection of the
6518 correct typespec. */
6519 code->expr1->ts = ts;
6521 else if (new_ref)
6522 gfc_free_ref_list (new_ref);
6524 return true;
6528 /* Resolve a CALL to a Procedure Pointer Component (Subroutine). */
6530 static bool
6531 resolve_ppc_call (gfc_code* c)
6533 gfc_component *comp;
6535 comp = gfc_get_proc_ptr_comp (c->expr1);
6536 gcc_assert (comp != NULL);
6538 c->resolved_sym = c->expr1->symtree->n.sym;
6539 c->expr1->expr_type = EXPR_VARIABLE;
6541 if (!comp->attr.subroutine)
6542 gfc_add_subroutine (&comp->attr, comp->name, &c->expr1->where);
6544 if (!resolve_ref (c->expr1))
6545 return false;
6547 if (!update_ppc_arglist (c->expr1))
6548 return false;
6550 c->ext.actual = c->expr1->value.compcall.actual;
6552 if (!resolve_actual_arglist (c->ext.actual, comp->attr.proc,
6553 !(comp->ts.interface
6554 && comp->ts.interface->formal)))
6555 return false;
6557 if (!pure_subroutine (comp->ts.interface, comp->name, &c->expr1->where))
6558 return false;
6560 gfc_ppc_use (comp, &c->expr1->value.compcall.actual, &c->expr1->where);
6562 return true;
6566 /* Resolve a Function Call to a Procedure Pointer Component (Function). */
6568 static bool
6569 resolve_expr_ppc (gfc_expr* e)
6571 gfc_component *comp;
6573 comp = gfc_get_proc_ptr_comp (e);
6574 gcc_assert (comp != NULL);
6576 /* Convert to EXPR_FUNCTION. */
6577 e->expr_type = EXPR_FUNCTION;
6578 e->value.function.isym = NULL;
6579 e->value.function.actual = e->value.compcall.actual;
6580 e->ts = comp->ts;
6581 if (comp->as != NULL)
6582 e->rank = comp->as->rank;
6584 if (!comp->attr.function)
6585 gfc_add_function (&comp->attr, comp->name, &e->where);
6587 if (!resolve_ref (e))
6588 return false;
6590 if (!resolve_actual_arglist (e->value.function.actual, comp->attr.proc,
6591 !(comp->ts.interface
6592 && comp->ts.interface->formal)))
6593 return false;
6595 if (!update_ppc_arglist (e))
6596 return false;
6598 if (!check_pure_function(e))
6599 return false;
6601 gfc_ppc_use (comp, &e->value.compcall.actual, &e->where);
6603 return true;
6607 static bool
6608 gfc_is_expandable_expr (gfc_expr *e)
6610 gfc_constructor *con;
6612 if (e->expr_type == EXPR_ARRAY)
6614 /* Traverse the constructor looking for variables that are flavor
6615 parameter. Parameters must be expanded since they are fully used at
6616 compile time. */
6617 con = gfc_constructor_first (e->value.constructor);
6618 for (; con; con = gfc_constructor_next (con))
6620 if (con->expr->expr_type == EXPR_VARIABLE
6621 && con->expr->symtree
6622 && (con->expr->symtree->n.sym->attr.flavor == FL_PARAMETER
6623 || con->expr->symtree->n.sym->attr.flavor == FL_VARIABLE))
6624 return true;
6625 if (con->expr->expr_type == EXPR_ARRAY
6626 && gfc_is_expandable_expr (con->expr))
6627 return true;
6631 return false;
6635 /* Sometimes variables in specification expressions of the result
6636 of module procedures in submodules wind up not being the 'real'
6637 dummy. Find this, if possible, in the namespace of the first
6638 formal argument. */
6640 static void
6641 fixup_unique_dummy (gfc_expr *e)
6643 gfc_symtree *st = NULL;
6644 gfc_symbol *s = NULL;
6646 if (e->symtree->n.sym->ns->proc_name
6647 && e->symtree->n.sym->ns->proc_name->formal)
6648 s = e->symtree->n.sym->ns->proc_name->formal->sym;
6650 if (s != NULL)
6651 st = gfc_find_symtree (s->ns->sym_root, e->symtree->n.sym->name);
6653 if (st != NULL
6654 && st->n.sym != NULL
6655 && st->n.sym->attr.dummy)
6656 e->symtree = st;
6659 /* Resolve an expression. That is, make sure that types of operands agree
6660 with their operators, intrinsic operators are converted to function calls
6661 for overloaded types and unresolved function references are resolved. */
6663 bool
6664 gfc_resolve_expr (gfc_expr *e)
6666 bool t;
6667 bool inquiry_save, actual_arg_save, first_actual_arg_save;
6669 if (e == NULL)
6670 return true;
6672 /* inquiry_argument only applies to variables. */
6673 inquiry_save = inquiry_argument;
6674 actual_arg_save = actual_arg;
6675 first_actual_arg_save = first_actual_arg;
6677 if (e->expr_type != EXPR_VARIABLE)
6679 inquiry_argument = false;
6680 actual_arg = false;
6681 first_actual_arg = false;
6683 else if (e->symtree != NULL
6684 && *e->symtree->name == '@'
6685 && e->symtree->n.sym->attr.dummy)
6687 /* Deal with submodule specification expressions that are not
6688 found to be referenced in module.c(read_cleanup). */
6689 fixup_unique_dummy (e);
6692 switch (e->expr_type)
6694 case EXPR_OP:
6695 t = resolve_operator (e);
6696 break;
6698 case EXPR_FUNCTION:
6699 case EXPR_VARIABLE:
6701 if (check_host_association (e))
6702 t = resolve_function (e);
6703 else
6704 t = resolve_variable (e);
6706 if (e->ts.type == BT_CHARACTER && e->ts.u.cl == NULL && e->ref
6707 && e->ref->type != REF_SUBSTRING)
6708 gfc_resolve_substring_charlen (e);
6710 break;
6712 case EXPR_COMPCALL:
6713 t = resolve_typebound_function (e);
6714 break;
6716 case EXPR_SUBSTRING:
6717 t = resolve_ref (e);
6718 break;
6720 case EXPR_CONSTANT:
6721 case EXPR_NULL:
6722 t = true;
6723 break;
6725 case EXPR_PPC:
6726 t = resolve_expr_ppc (e);
6727 break;
6729 case EXPR_ARRAY:
6730 t = false;
6731 if (!resolve_ref (e))
6732 break;
6734 t = gfc_resolve_array_constructor (e);
6735 /* Also try to expand a constructor. */
6736 if (t)
6738 expression_rank (e);
6739 if (gfc_is_constant_expr (e) || gfc_is_expandable_expr (e))
6740 gfc_expand_constructor (e, false);
6743 /* This provides the opportunity for the length of constructors with
6744 character valued function elements to propagate the string length
6745 to the expression. */
6746 if (t && e->ts.type == BT_CHARACTER)
6748 /* For efficiency, we call gfc_expand_constructor for BT_CHARACTER
6749 here rather then add a duplicate test for it above. */
6750 gfc_expand_constructor (e, false);
6751 t = gfc_resolve_character_array_constructor (e);
6754 break;
6756 case EXPR_STRUCTURE:
6757 t = resolve_ref (e);
6758 if (!t)
6759 break;
6761 t = resolve_structure_cons (e, 0);
6762 if (!t)
6763 break;
6765 t = gfc_simplify_expr (e, 0);
6766 break;
6768 default:
6769 gfc_internal_error ("gfc_resolve_expr(): Bad expression type");
6772 if (e->ts.type == BT_CHARACTER && t && !e->ts.u.cl)
6773 fixup_charlen (e);
6775 inquiry_argument = inquiry_save;
6776 actual_arg = actual_arg_save;
6777 first_actual_arg = first_actual_arg_save;
6779 return t;
6783 /* Resolve an expression from an iterator. They must be scalar and have
6784 INTEGER or (optionally) REAL type. */
6786 static bool
6787 gfc_resolve_iterator_expr (gfc_expr *expr, bool real_ok,
6788 const char *name_msgid)
6790 if (!gfc_resolve_expr (expr))
6791 return false;
6793 if (expr->rank != 0)
6795 gfc_error ("%s at %L must be a scalar", _(name_msgid), &expr->where);
6796 return false;
6799 if (expr->ts.type != BT_INTEGER)
6801 if (expr->ts.type == BT_REAL)
6803 if (real_ok)
6804 return gfc_notify_std (GFC_STD_F95_DEL,
6805 "%s at %L must be integer",
6806 _(name_msgid), &expr->where);
6807 else
6809 gfc_error ("%s at %L must be INTEGER", _(name_msgid),
6810 &expr->where);
6811 return false;
6814 else
6816 gfc_error ("%s at %L must be INTEGER", _(name_msgid), &expr->where);
6817 return false;
6820 return true;
6824 /* Resolve the expressions in an iterator structure. If REAL_OK is
6825 false allow only INTEGER type iterators, otherwise allow REAL types.
6826 Set own_scope to true for ac-implied-do and data-implied-do as those
6827 have a separate scope such that, e.g., a INTENT(IN) doesn't apply. */
6829 bool
6830 gfc_resolve_iterator (gfc_iterator *iter, bool real_ok, bool own_scope)
6832 if (!gfc_resolve_iterator_expr (iter->var, real_ok, "Loop variable"))
6833 return false;
6835 if (!gfc_check_vardef_context (iter->var, false, false, own_scope,
6836 _("iterator variable")))
6837 return false;
6839 if (!gfc_resolve_iterator_expr (iter->start, real_ok,
6840 "Start expression in DO loop"))
6841 return false;
6843 if (!gfc_resolve_iterator_expr (iter->end, real_ok,
6844 "End expression in DO loop"))
6845 return false;
6847 if (!gfc_resolve_iterator_expr (iter->step, real_ok,
6848 "Step expression in DO loop"))
6849 return false;
6851 if (iter->step->expr_type == EXPR_CONSTANT)
6853 if ((iter->step->ts.type == BT_INTEGER
6854 && mpz_cmp_ui (iter->step->value.integer, 0) == 0)
6855 || (iter->step->ts.type == BT_REAL
6856 && mpfr_sgn (iter->step->value.real) == 0))
6858 gfc_error ("Step expression in DO loop at %L cannot be zero",
6859 &iter->step->where);
6860 return false;
6864 /* Convert start, end, and step to the same type as var. */
6865 if (iter->start->ts.kind != iter->var->ts.kind
6866 || iter->start->ts.type != iter->var->ts.type)
6867 gfc_convert_type (iter->start, &iter->var->ts, 1);
6869 if (iter->end->ts.kind != iter->var->ts.kind
6870 || iter->end->ts.type != iter->var->ts.type)
6871 gfc_convert_type (iter->end, &iter->var->ts, 1);
6873 if (iter->step->ts.kind != iter->var->ts.kind
6874 || iter->step->ts.type != iter->var->ts.type)
6875 gfc_convert_type (iter->step, &iter->var->ts, 1);
6877 if (iter->start->expr_type == EXPR_CONSTANT
6878 && iter->end->expr_type == EXPR_CONSTANT
6879 && iter->step->expr_type == EXPR_CONSTANT)
6881 int sgn, cmp;
6882 if (iter->start->ts.type == BT_INTEGER)
6884 sgn = mpz_cmp_ui (iter->step->value.integer, 0);
6885 cmp = mpz_cmp (iter->end->value.integer, iter->start->value.integer);
6887 else
6889 sgn = mpfr_sgn (iter->step->value.real);
6890 cmp = mpfr_cmp (iter->end->value.real, iter->start->value.real);
6892 if (warn_zerotrip && ((sgn > 0 && cmp < 0) || (sgn < 0 && cmp > 0)))
6893 gfc_warning (OPT_Wzerotrip,
6894 "DO loop at %L will be executed zero times",
6895 &iter->step->where);
6898 if (iter->end->expr_type == EXPR_CONSTANT
6899 && iter->end->ts.type == BT_INTEGER
6900 && iter->step->expr_type == EXPR_CONSTANT
6901 && iter->step->ts.type == BT_INTEGER
6902 && (mpz_cmp_si (iter->step->value.integer, -1L) == 0
6903 || mpz_cmp_si (iter->step->value.integer, 1L) == 0))
6905 bool is_step_positive = mpz_cmp_ui (iter->step->value.integer, 1) == 0;
6906 int k = gfc_validate_kind (BT_INTEGER, iter->end->ts.kind, false);
6908 if (is_step_positive
6909 && mpz_cmp (iter->end->value.integer, gfc_integer_kinds[k].huge) == 0)
6910 gfc_warning (OPT_Wundefined_do_loop,
6911 "DO loop at %L is undefined as it overflows",
6912 &iter->step->where);
6913 else if (!is_step_positive
6914 && mpz_cmp (iter->end->value.integer,
6915 gfc_integer_kinds[k].min_int) == 0)
6916 gfc_warning (OPT_Wundefined_do_loop,
6917 "DO loop at %L is undefined as it underflows",
6918 &iter->step->where);
6921 return true;
6925 /* Traversal function for find_forall_index. f == 2 signals that
6926 that variable itself is not to be checked - only the references. */
6928 static bool
6929 forall_index (gfc_expr *expr, gfc_symbol *sym, int *f)
6931 if (expr->expr_type != EXPR_VARIABLE)
6932 return false;
6934 /* A scalar assignment */
6935 if (!expr->ref || *f == 1)
6937 if (expr->symtree->n.sym == sym)
6938 return true;
6939 else
6940 return false;
6943 if (*f == 2)
6944 *f = 1;
6945 return false;
6949 /* Check whether the FORALL index appears in the expression or not.
6950 Returns true if SYM is found in EXPR. */
6952 bool
6953 find_forall_index (gfc_expr *expr, gfc_symbol *sym, int f)
6955 if (gfc_traverse_expr (expr, sym, forall_index, f))
6956 return true;
6957 else
6958 return false;
6962 /* Resolve a list of FORALL iterators. The FORALL index-name is constrained
6963 to be a scalar INTEGER variable. The subscripts and stride are scalar
6964 INTEGERs, and if stride is a constant it must be nonzero.
6965 Furthermore "A subscript or stride in a forall-triplet-spec shall
6966 not contain a reference to any index-name in the
6967 forall-triplet-spec-list in which it appears." (7.5.4.1) */
6969 static void
6970 resolve_forall_iterators (gfc_forall_iterator *it)
6972 gfc_forall_iterator *iter, *iter2;
6974 for (iter = it; iter; iter = iter->next)
6976 if (gfc_resolve_expr (iter->var)
6977 && (iter->var->ts.type != BT_INTEGER || iter->var->rank != 0))
6978 gfc_error ("FORALL index-name at %L must be a scalar INTEGER",
6979 &iter->var->where);
6981 if (gfc_resolve_expr (iter->start)
6982 && (iter->start->ts.type != BT_INTEGER || iter->start->rank != 0))
6983 gfc_error ("FORALL start expression at %L must be a scalar INTEGER",
6984 &iter->start->where);
6985 if (iter->var->ts.kind != iter->start->ts.kind)
6986 gfc_convert_type (iter->start, &iter->var->ts, 1);
6988 if (gfc_resolve_expr (iter->end)
6989 && (iter->end->ts.type != BT_INTEGER || iter->end->rank != 0))
6990 gfc_error ("FORALL end expression at %L must be a scalar INTEGER",
6991 &iter->end->where);
6992 if (iter->var->ts.kind != iter->end->ts.kind)
6993 gfc_convert_type (iter->end, &iter->var->ts, 1);
6995 if (gfc_resolve_expr (iter->stride))
6997 if (iter->stride->ts.type != BT_INTEGER || iter->stride->rank != 0)
6998 gfc_error ("FORALL stride expression at %L must be a scalar %s",
6999 &iter->stride->where, "INTEGER");
7001 if (iter->stride->expr_type == EXPR_CONSTANT
7002 && mpz_cmp_ui (iter->stride->value.integer, 0) == 0)
7003 gfc_error ("FORALL stride expression at %L cannot be zero",
7004 &iter->stride->where);
7006 if (iter->var->ts.kind != iter->stride->ts.kind)
7007 gfc_convert_type (iter->stride, &iter->var->ts, 1);
7010 for (iter = it; iter; iter = iter->next)
7011 for (iter2 = iter; iter2; iter2 = iter2->next)
7013 if (find_forall_index (iter2->start, iter->var->symtree->n.sym, 0)
7014 || find_forall_index (iter2->end, iter->var->symtree->n.sym, 0)
7015 || find_forall_index (iter2->stride, iter->var->symtree->n.sym, 0))
7016 gfc_error ("FORALL index %qs may not appear in triplet "
7017 "specification at %L", iter->var->symtree->name,
7018 &iter2->start->where);
7023 /* Given a pointer to a symbol that is a derived type, see if it's
7024 inaccessible, i.e. if it's defined in another module and the components are
7025 PRIVATE. The search is recursive if necessary. Returns zero if no
7026 inaccessible components are found, nonzero otherwise. */
7028 static int
7029 derived_inaccessible (gfc_symbol *sym)
7031 gfc_component *c;
7033 if (sym->attr.use_assoc && sym->attr.private_comp)
7034 return 1;
7036 for (c = sym->components; c; c = c->next)
7038 /* Prevent an infinite loop through this function. */
7039 if (c->ts.type == BT_DERIVED && c->attr.pointer
7040 && sym == c->ts.u.derived)
7041 continue;
7043 if (c->ts.type == BT_DERIVED && derived_inaccessible (c->ts.u.derived))
7044 return 1;
7047 return 0;
7051 /* Resolve the argument of a deallocate expression. The expression must be
7052 a pointer or a full array. */
7054 static bool
7055 resolve_deallocate_expr (gfc_expr *e)
7057 symbol_attribute attr;
7058 int allocatable, pointer;
7059 gfc_ref *ref;
7060 gfc_symbol *sym;
7061 gfc_component *c;
7062 bool unlimited;
7064 if (!gfc_resolve_expr (e))
7065 return false;
7067 if (e->expr_type != EXPR_VARIABLE)
7068 goto bad;
7070 sym = e->symtree->n.sym;
7071 unlimited = UNLIMITED_POLY(sym);
7073 if (sym->ts.type == BT_CLASS)
7075 allocatable = CLASS_DATA (sym)->attr.allocatable;
7076 pointer = CLASS_DATA (sym)->attr.class_pointer;
7078 else
7080 allocatable = sym->attr.allocatable;
7081 pointer = sym->attr.pointer;
7083 for (ref = e->ref; ref; ref = ref->next)
7085 switch (ref->type)
7087 case REF_ARRAY:
7088 if (ref->u.ar.type != AR_FULL
7089 && !(ref->u.ar.type == AR_ELEMENT && ref->u.ar.as->rank == 0
7090 && ref->u.ar.codimen && gfc_ref_this_image (ref)))
7091 allocatable = 0;
7092 break;
7094 case REF_COMPONENT:
7095 c = ref->u.c.component;
7096 if (c->ts.type == BT_CLASS)
7098 allocatable = CLASS_DATA (c)->attr.allocatable;
7099 pointer = CLASS_DATA (c)->attr.class_pointer;
7101 else
7103 allocatable = c->attr.allocatable;
7104 pointer = c->attr.pointer;
7106 break;
7108 case REF_SUBSTRING:
7109 allocatable = 0;
7110 break;
7114 attr = gfc_expr_attr (e);
7116 if (allocatable == 0 && attr.pointer == 0 && !unlimited)
7118 bad:
7119 gfc_error ("Allocate-object at %L must be ALLOCATABLE or a POINTER",
7120 &e->where);
7121 return false;
7124 /* F2008, C644. */
7125 if (gfc_is_coindexed (e))
7127 gfc_error ("Coindexed allocatable object at %L", &e->where);
7128 return false;
7131 if (pointer
7132 && !gfc_check_vardef_context (e, true, true, false,
7133 _("DEALLOCATE object")))
7134 return false;
7135 if (!gfc_check_vardef_context (e, false, true, false,
7136 _("DEALLOCATE object")))
7137 return false;
7139 return true;
7143 /* Returns true if the expression e contains a reference to the symbol sym. */
7144 static bool
7145 sym_in_expr (gfc_expr *e, gfc_symbol *sym, int *f ATTRIBUTE_UNUSED)
7147 if (e->expr_type == EXPR_VARIABLE && e->symtree->n.sym == sym)
7148 return true;
7150 return false;
7153 bool
7154 gfc_find_sym_in_expr (gfc_symbol *sym, gfc_expr *e)
7156 return gfc_traverse_expr (e, sym, sym_in_expr, 0);
7160 /* Given the expression node e for an allocatable/pointer of derived type to be
7161 allocated, get the expression node to be initialized afterwards (needed for
7162 derived types with default initializers, and derived types with allocatable
7163 components that need nullification.) */
7165 gfc_expr *
7166 gfc_expr_to_initialize (gfc_expr *e)
7168 gfc_expr *result;
7169 gfc_ref *ref;
7170 int i;
7172 result = gfc_copy_expr (e);
7174 /* Change the last array reference from AR_ELEMENT to AR_FULL. */
7175 for (ref = result->ref; ref; ref = ref->next)
7176 if (ref->type == REF_ARRAY && ref->next == NULL)
7178 ref->u.ar.type = AR_FULL;
7180 for (i = 0; i < ref->u.ar.dimen; i++)
7181 ref->u.ar.start[i] = ref->u.ar.end[i] = ref->u.ar.stride[i] = NULL;
7183 break;
7186 gfc_free_shape (&result->shape, result->rank);
7188 /* Recalculate rank, shape, etc. */
7189 gfc_resolve_expr (result);
7190 return result;
7194 /* If the last ref of an expression is an array ref, return a copy of the
7195 expression with that one removed. Otherwise, a copy of the original
7196 expression. This is used for allocate-expressions and pointer assignment
7197 LHS, where there may be an array specification that needs to be stripped
7198 off when using gfc_check_vardef_context. */
7200 static gfc_expr*
7201 remove_last_array_ref (gfc_expr* e)
7203 gfc_expr* e2;
7204 gfc_ref** r;
7206 e2 = gfc_copy_expr (e);
7207 for (r = &e2->ref; *r; r = &(*r)->next)
7208 if ((*r)->type == REF_ARRAY && !(*r)->next)
7210 gfc_free_ref_list (*r);
7211 *r = NULL;
7212 break;
7215 return e2;
7219 /* Used in resolve_allocate_expr to check that a allocation-object and
7220 a source-expr are conformable. This does not catch all possible
7221 cases; in particular a runtime checking is needed. */
7223 static bool
7224 conformable_arrays (gfc_expr *e1, gfc_expr *e2)
7226 gfc_ref *tail;
7227 for (tail = e2->ref; tail && tail->next; tail = tail->next);
7229 /* First compare rank. */
7230 if ((tail && e1->rank != tail->u.ar.as->rank)
7231 || (!tail && e1->rank != e2->rank))
7233 gfc_error ("Source-expr at %L must be scalar or have the "
7234 "same rank as the allocate-object at %L",
7235 &e1->where, &e2->where);
7236 return false;
7239 if (e1->shape)
7241 int i;
7242 mpz_t s;
7244 mpz_init (s);
7246 for (i = 0; i < e1->rank; i++)
7248 if (tail->u.ar.start[i] == NULL)
7249 break;
7251 if (tail->u.ar.end[i])
7253 mpz_set (s, tail->u.ar.end[i]->value.integer);
7254 mpz_sub (s, s, tail->u.ar.start[i]->value.integer);
7255 mpz_add_ui (s, s, 1);
7257 else
7259 mpz_set (s, tail->u.ar.start[i]->value.integer);
7262 if (mpz_cmp (e1->shape[i], s) != 0)
7264 gfc_error ("Source-expr at %L and allocate-object at %L must "
7265 "have the same shape", &e1->where, &e2->where);
7266 mpz_clear (s);
7267 return false;
7271 mpz_clear (s);
7274 return true;
7278 /* Resolve the expression in an ALLOCATE statement, doing the additional
7279 checks to see whether the expression is OK or not. The expression must
7280 have a trailing array reference that gives the size of the array. */
7282 static bool
7283 resolve_allocate_expr (gfc_expr *e, gfc_code *code, bool *array_alloc_wo_spec)
7285 int i, pointer, allocatable, dimension, is_abstract;
7286 int codimension;
7287 bool coindexed;
7288 bool unlimited;
7289 symbol_attribute attr;
7290 gfc_ref *ref, *ref2;
7291 gfc_expr *e2;
7292 gfc_array_ref *ar;
7293 gfc_symbol *sym = NULL;
7294 gfc_alloc *a;
7295 gfc_component *c;
7296 bool t;
7298 /* Mark the utmost array component as being in allocate to allow DIMEN_STAR
7299 checking of coarrays. */
7300 for (ref = e->ref; ref; ref = ref->next)
7301 if (ref->next == NULL)
7302 break;
7304 if (ref && ref->type == REF_ARRAY)
7305 ref->u.ar.in_allocate = true;
7307 if (!gfc_resolve_expr (e))
7308 goto failure;
7310 /* Make sure the expression is allocatable or a pointer. If it is
7311 pointer, the next-to-last reference must be a pointer. */
7313 ref2 = NULL;
7314 if (e->symtree)
7315 sym = e->symtree->n.sym;
7317 /* Check whether ultimate component is abstract and CLASS. */
7318 is_abstract = 0;
7320 /* Is the allocate-object unlimited polymorphic? */
7321 unlimited = UNLIMITED_POLY(e);
7323 if (e->expr_type != EXPR_VARIABLE)
7325 allocatable = 0;
7326 attr = gfc_expr_attr (e);
7327 pointer = attr.pointer;
7328 dimension = attr.dimension;
7329 codimension = attr.codimension;
7331 else
7333 if (sym->ts.type == BT_CLASS && CLASS_DATA (sym))
7335 allocatable = CLASS_DATA (sym)->attr.allocatable;
7336 pointer = CLASS_DATA (sym)->attr.class_pointer;
7337 dimension = CLASS_DATA (sym)->attr.dimension;
7338 codimension = CLASS_DATA (sym)->attr.codimension;
7339 is_abstract = CLASS_DATA (sym)->attr.abstract;
7341 else
7343 allocatable = sym->attr.allocatable;
7344 pointer = sym->attr.pointer;
7345 dimension = sym->attr.dimension;
7346 codimension = sym->attr.codimension;
7349 coindexed = false;
7351 for (ref = e->ref; ref; ref2 = ref, ref = ref->next)
7353 switch (ref->type)
7355 case REF_ARRAY:
7356 if (ref->u.ar.codimen > 0)
7358 int n;
7359 for (n = ref->u.ar.dimen;
7360 n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
7361 if (ref->u.ar.dimen_type[n] != DIMEN_THIS_IMAGE)
7363 coindexed = true;
7364 break;
7368 if (ref->next != NULL)
7369 pointer = 0;
7370 break;
7372 case REF_COMPONENT:
7373 /* F2008, C644. */
7374 if (coindexed)
7376 gfc_error ("Coindexed allocatable object at %L",
7377 &e->where);
7378 goto failure;
7381 c = ref->u.c.component;
7382 if (c->ts.type == BT_CLASS)
7384 allocatable = CLASS_DATA (c)->attr.allocatable;
7385 pointer = CLASS_DATA (c)->attr.class_pointer;
7386 dimension = CLASS_DATA (c)->attr.dimension;
7387 codimension = CLASS_DATA (c)->attr.codimension;
7388 is_abstract = CLASS_DATA (c)->attr.abstract;
7390 else
7392 allocatable = c->attr.allocatable;
7393 pointer = c->attr.pointer;
7394 dimension = c->attr.dimension;
7395 codimension = c->attr.codimension;
7396 is_abstract = c->attr.abstract;
7398 break;
7400 case REF_SUBSTRING:
7401 allocatable = 0;
7402 pointer = 0;
7403 break;
7408 /* Check for F08:C628. */
7409 if (allocatable == 0 && pointer == 0 && !unlimited)
7411 gfc_error ("Allocate-object at %L must be ALLOCATABLE or a POINTER",
7412 &e->where);
7413 goto failure;
7416 /* Some checks for the SOURCE tag. */
7417 if (code->expr3)
7419 /* Check F03:C631. */
7420 if (!gfc_type_compatible (&e->ts, &code->expr3->ts))
7422 gfc_error ("Type of entity at %L is type incompatible with "
7423 "source-expr at %L", &e->where, &code->expr3->where);
7424 goto failure;
7427 /* Check F03:C632 and restriction following Note 6.18. */
7428 if (code->expr3->rank > 0 && !conformable_arrays (code->expr3, e))
7429 goto failure;
7431 /* Check F03:C633. */
7432 if (code->expr3->ts.kind != e->ts.kind && !unlimited)
7434 gfc_error ("The allocate-object at %L and the source-expr at %L "
7435 "shall have the same kind type parameter",
7436 &e->where, &code->expr3->where);
7437 goto failure;
7440 /* Check F2008, C642. */
7441 if (code->expr3->ts.type == BT_DERIVED
7442 && ((codimension && gfc_expr_attr (code->expr3).lock_comp)
7443 || (code->expr3->ts.u.derived->from_intmod
7444 == INTMOD_ISO_FORTRAN_ENV
7445 && code->expr3->ts.u.derived->intmod_sym_id
7446 == ISOFORTRAN_LOCK_TYPE)))
7448 gfc_error ("The source-expr at %L shall neither be of type "
7449 "LOCK_TYPE nor have a LOCK_TYPE component if "
7450 "allocate-object at %L is a coarray",
7451 &code->expr3->where, &e->where);
7452 goto failure;
7455 /* Check TS18508, C702/C703. */
7456 if (code->expr3->ts.type == BT_DERIVED
7457 && ((codimension && gfc_expr_attr (code->expr3).event_comp)
7458 || (code->expr3->ts.u.derived->from_intmod
7459 == INTMOD_ISO_FORTRAN_ENV
7460 && code->expr3->ts.u.derived->intmod_sym_id
7461 == ISOFORTRAN_EVENT_TYPE)))
7463 gfc_error ("The source-expr at %L shall neither be of type "
7464 "EVENT_TYPE nor have a EVENT_TYPE component if "
7465 "allocate-object at %L is a coarray",
7466 &code->expr3->where, &e->where);
7467 goto failure;
7471 /* Check F08:C629. */
7472 if (is_abstract && code->ext.alloc.ts.type == BT_UNKNOWN
7473 && !code->expr3)
7475 gcc_assert (e->ts.type == BT_CLASS);
7476 gfc_error ("Allocating %s of ABSTRACT base type at %L requires a "
7477 "type-spec or source-expr", sym->name, &e->where);
7478 goto failure;
7481 /* Check F08:C632. */
7482 if (code->ext.alloc.ts.type == BT_CHARACTER && !e->ts.deferred
7483 && !UNLIMITED_POLY (e))
7485 int cmp = gfc_dep_compare_expr (e->ts.u.cl->length,
7486 code->ext.alloc.ts.u.cl->length);
7487 if (cmp == 1 || cmp == -1 || cmp == -3)
7489 gfc_error ("Allocating %s at %L with type-spec requires the same "
7490 "character-length parameter as in the declaration",
7491 sym->name, &e->where);
7492 goto failure;
7496 /* In the variable definition context checks, gfc_expr_attr is used
7497 on the expression. This is fooled by the array specification
7498 present in e, thus we have to eliminate that one temporarily. */
7499 e2 = remove_last_array_ref (e);
7500 t = true;
7501 if (t && pointer)
7502 t = gfc_check_vardef_context (e2, true, true, false,
7503 _("ALLOCATE object"));
7504 if (t)
7505 t = gfc_check_vardef_context (e2, false, true, false,
7506 _("ALLOCATE object"));
7507 gfc_free_expr (e2);
7508 if (!t)
7509 goto failure;
7511 if (e->ts.type == BT_CLASS && CLASS_DATA (e)->attr.dimension
7512 && !code->expr3 && code->ext.alloc.ts.type == BT_DERIVED)
7514 /* For class arrays, the initialization with SOURCE is done
7515 using _copy and trans_call. It is convenient to exploit that
7516 when the allocated type is different from the declared type but
7517 no SOURCE exists by setting expr3. */
7518 code->expr3 = gfc_default_initializer (&code->ext.alloc.ts);
7520 else if (flag_coarray != GFC_FCOARRAY_LIB && e->ts.type == BT_DERIVED
7521 && e->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
7522 && e->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)
7524 /* We have to zero initialize the integer variable. */
7525 code->expr3 = gfc_get_int_expr (gfc_default_integer_kind, &e->where, 0);
7528 if (e->ts.type == BT_CLASS && !unlimited && !UNLIMITED_POLY (code->expr3))
7530 /* Make sure the vtab symbol is present when
7531 the module variables are generated. */
7532 gfc_typespec ts = e->ts;
7533 if (code->expr3)
7534 ts = code->expr3->ts;
7535 else if (code->ext.alloc.ts.type == BT_DERIVED)
7536 ts = code->ext.alloc.ts;
7538 /* Finding the vtab also publishes the type's symbol. Therefore this
7539 statement is necessary. */
7540 gfc_find_derived_vtab (ts.u.derived);
7542 else if (unlimited && !UNLIMITED_POLY (code->expr3))
7544 /* Again, make sure the vtab symbol is present when
7545 the module variables are generated. */
7546 gfc_typespec *ts = NULL;
7547 if (code->expr3)
7548 ts = &code->expr3->ts;
7549 else
7550 ts = &code->ext.alloc.ts;
7552 gcc_assert (ts);
7554 /* Finding the vtab also publishes the type's symbol. Therefore this
7555 statement is necessary. */
7556 gfc_find_vtab (ts);
7559 if (dimension == 0 && codimension == 0)
7560 goto success;
7562 /* Make sure the last reference node is an array specification. */
7564 if (!ref2 || ref2->type != REF_ARRAY || ref2->u.ar.type == AR_FULL
7565 || (dimension && ref2->u.ar.dimen == 0))
7567 /* F08:C633. */
7568 if (code->expr3)
7570 if (!gfc_notify_std (GFC_STD_F2008, "Array specification required "
7571 "in ALLOCATE statement at %L", &e->where))
7572 goto failure;
7573 if (code->expr3->rank != 0)
7574 *array_alloc_wo_spec = true;
7575 else
7577 gfc_error ("Array specification or array-valued SOURCE= "
7578 "expression required in ALLOCATE statement at %L",
7579 &e->where);
7580 goto failure;
7583 else
7585 gfc_error ("Array specification required in ALLOCATE statement "
7586 "at %L", &e->where);
7587 goto failure;
7591 /* Make sure that the array section reference makes sense in the
7592 context of an ALLOCATE specification. */
7594 ar = &ref2->u.ar;
7596 if (codimension)
7597 for (i = ar->dimen; i < ar->dimen + ar->codimen; i++)
7598 if (ar->dimen_type[i] == DIMEN_THIS_IMAGE)
7600 gfc_error ("Coarray specification required in ALLOCATE statement "
7601 "at %L", &e->where);
7602 goto failure;
7605 for (i = 0; i < ar->dimen; i++)
7607 if (ar->type == AR_ELEMENT || ar->type == AR_FULL)
7608 goto check_symbols;
7610 switch (ar->dimen_type[i])
7612 case DIMEN_ELEMENT:
7613 break;
7615 case DIMEN_RANGE:
7616 if (ar->start[i] != NULL
7617 && ar->end[i] != NULL
7618 && ar->stride[i] == NULL)
7619 break;
7621 /* Fall through. */
7623 case DIMEN_UNKNOWN:
7624 case DIMEN_VECTOR:
7625 case DIMEN_STAR:
7626 case DIMEN_THIS_IMAGE:
7627 gfc_error ("Bad array specification in ALLOCATE statement at %L",
7628 &e->where);
7629 goto failure;
7632 check_symbols:
7633 for (a = code->ext.alloc.list; a; a = a->next)
7635 sym = a->expr->symtree->n.sym;
7637 /* TODO - check derived type components. */
7638 if (gfc_bt_struct (sym->ts.type) || sym->ts.type == BT_CLASS)
7639 continue;
7641 if ((ar->start[i] != NULL
7642 && gfc_find_sym_in_expr (sym, ar->start[i]))
7643 || (ar->end[i] != NULL
7644 && gfc_find_sym_in_expr (sym, ar->end[i])))
7646 gfc_error ("%qs must not appear in the array specification at "
7647 "%L in the same ALLOCATE statement where it is "
7648 "itself allocated", sym->name, &ar->where);
7649 goto failure;
7654 for (i = ar->dimen; i < ar->codimen + ar->dimen; i++)
7656 if (ar->dimen_type[i] == DIMEN_ELEMENT
7657 || ar->dimen_type[i] == DIMEN_RANGE)
7659 if (i == (ar->dimen + ar->codimen - 1))
7661 gfc_error ("Expected '*' in coindex specification in ALLOCATE "
7662 "statement at %L", &e->where);
7663 goto failure;
7665 continue;
7668 if (ar->dimen_type[i] == DIMEN_STAR && i == (ar->dimen + ar->codimen - 1)
7669 && ar->stride[i] == NULL)
7670 break;
7672 gfc_error ("Bad coarray specification in ALLOCATE statement at %L",
7673 &e->where);
7674 goto failure;
7677 success:
7678 return true;
7680 failure:
7681 return false;
7685 static void
7686 resolve_allocate_deallocate (gfc_code *code, const char *fcn)
7688 gfc_expr *stat, *errmsg, *pe, *qe;
7689 gfc_alloc *a, *p, *q;
7691 stat = code->expr1;
7692 errmsg = code->expr2;
7694 /* Check the stat variable. */
7695 if (stat)
7697 gfc_check_vardef_context (stat, false, false, false,
7698 _("STAT variable"));
7700 if ((stat->ts.type != BT_INTEGER
7701 && !(stat->ref && (stat->ref->type == REF_ARRAY
7702 || stat->ref->type == REF_COMPONENT)))
7703 || stat->rank > 0)
7704 gfc_error ("Stat-variable at %L must be a scalar INTEGER "
7705 "variable", &stat->where);
7707 for (p = code->ext.alloc.list; p; p = p->next)
7708 if (p->expr->symtree->n.sym->name == stat->symtree->n.sym->name)
7710 gfc_ref *ref1, *ref2;
7711 bool found = true;
7713 for (ref1 = p->expr->ref, ref2 = stat->ref; ref1 && ref2;
7714 ref1 = ref1->next, ref2 = ref2->next)
7716 if (ref1->type != REF_COMPONENT || ref2->type != REF_COMPONENT)
7717 continue;
7718 if (ref1->u.c.component->name != ref2->u.c.component->name)
7720 found = false;
7721 break;
7725 if (found)
7727 gfc_error ("Stat-variable at %L shall not be %sd within "
7728 "the same %s statement", &stat->where, fcn, fcn);
7729 break;
7734 /* Check the errmsg variable. */
7735 if (errmsg)
7737 if (!stat)
7738 gfc_warning (0, "ERRMSG at %L is useless without a STAT tag",
7739 &errmsg->where);
7741 gfc_check_vardef_context (errmsg, false, false, false,
7742 _("ERRMSG variable"));
7744 if ((errmsg->ts.type != BT_CHARACTER
7745 && !(errmsg->ref
7746 && (errmsg->ref->type == REF_ARRAY
7747 || errmsg->ref->type == REF_COMPONENT)))
7748 || errmsg->rank > 0 )
7749 gfc_error ("Errmsg-variable at %L must be a scalar CHARACTER "
7750 "variable", &errmsg->where);
7752 for (p = code->ext.alloc.list; p; p = p->next)
7753 if (p->expr->symtree->n.sym->name == errmsg->symtree->n.sym->name)
7755 gfc_ref *ref1, *ref2;
7756 bool found = true;
7758 for (ref1 = p->expr->ref, ref2 = errmsg->ref; ref1 && ref2;
7759 ref1 = ref1->next, ref2 = ref2->next)
7761 if (ref1->type != REF_COMPONENT || ref2->type != REF_COMPONENT)
7762 continue;
7763 if (ref1->u.c.component->name != ref2->u.c.component->name)
7765 found = false;
7766 break;
7770 if (found)
7772 gfc_error ("Errmsg-variable at %L shall not be %sd within "
7773 "the same %s statement", &errmsg->where, fcn, fcn);
7774 break;
7779 /* Check that an allocate-object appears only once in the statement. */
7781 for (p = code->ext.alloc.list; p; p = p->next)
7783 pe = p->expr;
7784 for (q = p->next; q; q = q->next)
7786 qe = q->expr;
7787 if (pe->symtree->n.sym->name == qe->symtree->n.sym->name)
7789 /* This is a potential collision. */
7790 gfc_ref *pr = pe->ref;
7791 gfc_ref *qr = qe->ref;
7793 /* Follow the references until
7794 a) They start to differ, in which case there is no error;
7795 you can deallocate a%b and a%c in a single statement
7796 b) Both of them stop, which is an error
7797 c) One of them stops, which is also an error. */
7798 while (1)
7800 if (pr == NULL && qr == NULL)
7802 gfc_error ("Allocate-object at %L also appears at %L",
7803 &pe->where, &qe->where);
7804 break;
7806 else if (pr != NULL && qr == NULL)
7808 gfc_error ("Allocate-object at %L is subobject of"
7809 " object at %L", &pe->where, &qe->where);
7810 break;
7812 else if (pr == NULL && qr != NULL)
7814 gfc_error ("Allocate-object at %L is subobject of"
7815 " object at %L", &qe->where, &pe->where);
7816 break;
7818 /* Here, pr != NULL && qr != NULL */
7819 gcc_assert(pr->type == qr->type);
7820 if (pr->type == REF_ARRAY)
7822 /* Handle cases like allocate(v(3)%x(3), v(2)%x(3)),
7823 which are legal. */
7824 gcc_assert (qr->type == REF_ARRAY);
7826 if (pr->next && qr->next)
7828 int i;
7829 gfc_array_ref *par = &(pr->u.ar);
7830 gfc_array_ref *qar = &(qr->u.ar);
7832 for (i=0; i<par->dimen; i++)
7834 if ((par->start[i] != NULL
7835 || qar->start[i] != NULL)
7836 && gfc_dep_compare_expr (par->start[i],
7837 qar->start[i]) != 0)
7838 goto break_label;
7842 else
7844 if (pr->u.c.component->name != qr->u.c.component->name)
7845 break;
7848 pr = pr->next;
7849 qr = qr->next;
7851 break_label:
7857 if (strcmp (fcn, "ALLOCATE") == 0)
7859 bool arr_alloc_wo_spec = false;
7861 /* Resolving the expr3 in the loop over all objects to allocate would
7862 execute loop invariant code for each loop item. Therefore do it just
7863 once here. */
7864 if (code->expr3 && code->expr3->mold
7865 && code->expr3->ts.type == BT_DERIVED)
7867 /* Default initialization via MOLD (non-polymorphic). */
7868 gfc_expr *rhs = gfc_default_initializer (&code->expr3->ts);
7869 if (rhs != NULL)
7871 gfc_resolve_expr (rhs);
7872 gfc_free_expr (code->expr3);
7873 code->expr3 = rhs;
7876 for (a = code->ext.alloc.list; a; a = a->next)
7877 resolve_allocate_expr (a->expr, code, &arr_alloc_wo_spec);
7879 if (arr_alloc_wo_spec && code->expr3)
7881 /* Mark the allocate to have to take the array specification
7882 from the expr3. */
7883 code->ext.alloc.arr_spec_from_expr3 = 1;
7886 else
7888 for (a = code->ext.alloc.list; a; a = a->next)
7889 resolve_deallocate_expr (a->expr);
7894 /************ SELECT CASE resolution subroutines ************/
7896 /* Callback function for our mergesort variant. Determines interval
7897 overlaps for CASEs. Return <0 if op1 < op2, 0 for overlap, >0 for
7898 op1 > op2. Assumes we're not dealing with the default case.
7899 We have op1 = (:L), (K:L) or (K:) and op2 = (:N), (M:N) or (M:).
7900 There are nine situations to check. */
7902 static int
7903 compare_cases (const gfc_case *op1, const gfc_case *op2)
7905 int retval;
7907 if (op1->low == NULL) /* op1 = (:L) */
7909 /* op2 = (:N), so overlap. */
7910 retval = 0;
7911 /* op2 = (M:) or (M:N), L < M */
7912 if (op2->low != NULL
7913 && gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
7914 retval = -1;
7916 else if (op1->high == NULL) /* op1 = (K:) */
7918 /* op2 = (M:), so overlap. */
7919 retval = 0;
7920 /* op2 = (:N) or (M:N), K > N */
7921 if (op2->high != NULL
7922 && gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
7923 retval = 1;
7925 else /* op1 = (K:L) */
7927 if (op2->low == NULL) /* op2 = (:N), K > N */
7928 retval = (gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
7929 ? 1 : 0;
7930 else if (op2->high == NULL) /* op2 = (M:), L < M */
7931 retval = (gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
7932 ? -1 : 0;
7933 else /* op2 = (M:N) */
7935 retval = 0;
7936 /* L < M */
7937 if (gfc_compare_expr (op1->high, op2->low, INTRINSIC_LT) < 0)
7938 retval = -1;
7939 /* K > N */
7940 else if (gfc_compare_expr (op1->low, op2->high, INTRINSIC_GT) > 0)
7941 retval = 1;
7945 return retval;
7949 /* Merge-sort a double linked case list, detecting overlap in the
7950 process. LIST is the head of the double linked case list before it
7951 is sorted. Returns the head of the sorted list if we don't see any
7952 overlap, or NULL otherwise. */
7954 static gfc_case *
7955 check_case_overlap (gfc_case *list)
7957 gfc_case *p, *q, *e, *tail;
7958 int insize, nmerges, psize, qsize, cmp, overlap_seen;
7960 /* If the passed list was empty, return immediately. */
7961 if (!list)
7962 return NULL;
7964 overlap_seen = 0;
7965 insize = 1;
7967 /* Loop unconditionally. The only exit from this loop is a return
7968 statement, when we've finished sorting the case list. */
7969 for (;;)
7971 p = list;
7972 list = NULL;
7973 tail = NULL;
7975 /* Count the number of merges we do in this pass. */
7976 nmerges = 0;
7978 /* Loop while there exists a merge to be done. */
7979 while (p)
7981 int i;
7983 /* Count this merge. */
7984 nmerges++;
7986 /* Cut the list in two pieces by stepping INSIZE places
7987 forward in the list, starting from P. */
7988 psize = 0;
7989 q = p;
7990 for (i = 0; i < insize; i++)
7992 psize++;
7993 q = q->right;
7994 if (!q)
7995 break;
7997 qsize = insize;
7999 /* Now we have two lists. Merge them! */
8000 while (psize > 0 || (qsize > 0 && q != NULL))
8002 /* See from which the next case to merge comes from. */
8003 if (psize == 0)
8005 /* P is empty so the next case must come from Q. */
8006 e = q;
8007 q = q->right;
8008 qsize--;
8010 else if (qsize == 0 || q == NULL)
8012 /* Q is empty. */
8013 e = p;
8014 p = p->right;
8015 psize--;
8017 else
8019 cmp = compare_cases (p, q);
8020 if (cmp < 0)
8022 /* The whole case range for P is less than the
8023 one for Q. */
8024 e = p;
8025 p = p->right;
8026 psize--;
8028 else if (cmp > 0)
8030 /* The whole case range for Q is greater than
8031 the case range for P. */
8032 e = q;
8033 q = q->right;
8034 qsize--;
8036 else
8038 /* The cases overlap, or they are the same
8039 element in the list. Either way, we must
8040 issue an error and get the next case from P. */
8041 /* FIXME: Sort P and Q by line number. */
8042 gfc_error ("CASE label at %L overlaps with CASE "
8043 "label at %L", &p->where, &q->where);
8044 overlap_seen = 1;
8045 e = p;
8046 p = p->right;
8047 psize--;
8051 /* Add the next element to the merged list. */
8052 if (tail)
8053 tail->right = e;
8054 else
8055 list = e;
8056 e->left = tail;
8057 tail = e;
8060 /* P has now stepped INSIZE places along, and so has Q. So
8061 they're the same. */
8062 p = q;
8064 tail->right = NULL;
8066 /* If we have done only one merge or none at all, we've
8067 finished sorting the cases. */
8068 if (nmerges <= 1)
8070 if (!overlap_seen)
8071 return list;
8072 else
8073 return NULL;
8076 /* Otherwise repeat, merging lists twice the size. */
8077 insize *= 2;
8082 /* Check to see if an expression is suitable for use in a CASE statement.
8083 Makes sure that all case expressions are scalar constants of the same
8084 type. Return false if anything is wrong. */
8086 static bool
8087 validate_case_label_expr (gfc_expr *e, gfc_expr *case_expr)
8089 if (e == NULL) return true;
8091 if (e->ts.type != case_expr->ts.type)
8093 gfc_error ("Expression in CASE statement at %L must be of type %s",
8094 &e->where, gfc_basic_typename (case_expr->ts.type));
8095 return false;
8098 /* C805 (R808) For a given case-construct, each case-value shall be of
8099 the same type as case-expr. For character type, length differences
8100 are allowed, but the kind type parameters shall be the same. */
8102 if (case_expr->ts.type == BT_CHARACTER && e->ts.kind != case_expr->ts.kind)
8104 gfc_error ("Expression in CASE statement at %L must be of kind %d",
8105 &e->where, case_expr->ts.kind);
8106 return false;
8109 /* Convert the case value kind to that of case expression kind,
8110 if needed */
8112 if (e->ts.kind != case_expr->ts.kind)
8113 gfc_convert_type_warn (e, &case_expr->ts, 2, 0);
8115 if (e->rank != 0)
8117 gfc_error ("Expression in CASE statement at %L must be scalar",
8118 &e->where);
8119 return false;
8122 return true;
8126 /* Given a completely parsed select statement, we:
8128 - Validate all expressions and code within the SELECT.
8129 - Make sure that the selection expression is not of the wrong type.
8130 - Make sure that no case ranges overlap.
8131 - Eliminate unreachable cases and unreachable code resulting from
8132 removing case labels.
8134 The standard does allow unreachable cases, e.g. CASE (5:3). But
8135 they are a hassle for code generation, and to prevent that, we just
8136 cut them out here. This is not necessary for overlapping cases
8137 because they are illegal and we never even try to generate code.
8139 We have the additional caveat that a SELECT construct could have
8140 been a computed GOTO in the source code. Fortunately we can fairly
8141 easily work around that here: The case_expr for a "real" SELECT CASE
8142 is in code->expr1, but for a computed GOTO it is in code->expr2. All
8143 we have to do is make sure that the case_expr is a scalar integer
8144 expression. */
8146 static void
8147 resolve_select (gfc_code *code, bool select_type)
8149 gfc_code *body;
8150 gfc_expr *case_expr;
8151 gfc_case *cp, *default_case, *tail, *head;
8152 int seen_unreachable;
8153 int seen_logical;
8154 int ncases;
8155 bt type;
8156 bool t;
8158 if (code->expr1 == NULL)
8160 /* This was actually a computed GOTO statement. */
8161 case_expr = code->expr2;
8162 if (case_expr->ts.type != BT_INTEGER|| case_expr->rank != 0)
8163 gfc_error ("Selection expression in computed GOTO statement "
8164 "at %L must be a scalar integer expression",
8165 &case_expr->where);
8167 /* Further checking is not necessary because this SELECT was built
8168 by the compiler, so it should always be OK. Just move the
8169 case_expr from expr2 to expr so that we can handle computed
8170 GOTOs as normal SELECTs from here on. */
8171 code->expr1 = code->expr2;
8172 code->expr2 = NULL;
8173 return;
8176 case_expr = code->expr1;
8177 type = case_expr->ts.type;
8179 /* F08:C830. */
8180 if (type != BT_LOGICAL && type != BT_INTEGER && type != BT_CHARACTER)
8182 gfc_error ("Argument of SELECT statement at %L cannot be %s",
8183 &case_expr->where, gfc_typename (&case_expr->ts));
8185 /* Punt. Going on here just produce more garbage error messages. */
8186 return;
8189 /* F08:R842. */
8190 if (!select_type && case_expr->rank != 0)
8192 gfc_error ("Argument of SELECT statement at %L must be a scalar "
8193 "expression", &case_expr->where);
8195 /* Punt. */
8196 return;
8199 /* Raise a warning if an INTEGER case value exceeds the range of
8200 the case-expr. Later, all expressions will be promoted to the
8201 largest kind of all case-labels. */
8203 if (type == BT_INTEGER)
8204 for (body = code->block; body; body = body->block)
8205 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8207 if (cp->low
8208 && gfc_check_integer_range (cp->low->value.integer,
8209 case_expr->ts.kind) != ARITH_OK)
8210 gfc_warning (0, "Expression in CASE statement at %L is "
8211 "not in the range of %s", &cp->low->where,
8212 gfc_typename (&case_expr->ts));
8214 if (cp->high
8215 && cp->low != cp->high
8216 && gfc_check_integer_range (cp->high->value.integer,
8217 case_expr->ts.kind) != ARITH_OK)
8218 gfc_warning (0, "Expression in CASE statement at %L is "
8219 "not in the range of %s", &cp->high->where,
8220 gfc_typename (&case_expr->ts));
8223 /* PR 19168 has a long discussion concerning a mismatch of the kinds
8224 of the SELECT CASE expression and its CASE values. Walk the lists
8225 of case values, and if we find a mismatch, promote case_expr to
8226 the appropriate kind. */
8228 if (type == BT_LOGICAL || type == BT_INTEGER)
8230 for (body = code->block; body; body = body->block)
8232 /* Walk the case label list. */
8233 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8235 /* Intercept the DEFAULT case. It does not have a kind. */
8236 if (cp->low == NULL && cp->high == NULL)
8237 continue;
8239 /* Unreachable case ranges are discarded, so ignore. */
8240 if (cp->low != NULL && cp->high != NULL
8241 && cp->low != cp->high
8242 && gfc_compare_expr (cp->low, cp->high, INTRINSIC_GT) > 0)
8243 continue;
8245 if (cp->low != NULL
8246 && case_expr->ts.kind != gfc_kind_max(case_expr, cp->low))
8247 gfc_convert_type_warn (case_expr, &cp->low->ts, 2, 0);
8249 if (cp->high != NULL
8250 && case_expr->ts.kind != gfc_kind_max(case_expr, cp->high))
8251 gfc_convert_type_warn (case_expr, &cp->high->ts, 2, 0);
8256 /* Assume there is no DEFAULT case. */
8257 default_case = NULL;
8258 head = tail = NULL;
8259 ncases = 0;
8260 seen_logical = 0;
8262 for (body = code->block; body; body = body->block)
8264 /* Assume the CASE list is OK, and all CASE labels can be matched. */
8265 t = true;
8266 seen_unreachable = 0;
8268 /* Walk the case label list, making sure that all case labels
8269 are legal. */
8270 for (cp = body->ext.block.case_list; cp; cp = cp->next)
8272 /* Count the number of cases in the whole construct. */
8273 ncases++;
8275 /* Intercept the DEFAULT case. */
8276 if (cp->low == NULL && cp->high == NULL)
8278 if (default_case != NULL)
8280 gfc_error ("The DEFAULT CASE at %L cannot be followed "
8281 "by a second DEFAULT CASE at %L",
8282 &default_case->where, &cp->where);
8283 t = false;
8284 break;
8286 else
8288 default_case = cp;
8289 continue;
8293 /* Deal with single value cases and case ranges. Errors are
8294 issued from the validation function. */
8295 if (!validate_case_label_expr (cp->low, case_expr)
8296 || !validate_case_label_expr (cp->high, case_expr))
8298 t = false;
8299 break;
8302 if (type == BT_LOGICAL
8303 && ((cp->low == NULL || cp->high == NULL)
8304 || cp->low != cp->high))
8306 gfc_error ("Logical range in CASE statement at %L is not "
8307 "allowed", &cp->low->where);
8308 t = false;
8309 break;
8312 if (type == BT_LOGICAL && cp->low->expr_type == EXPR_CONSTANT)
8314 int value;
8315 value = cp->low->value.logical == 0 ? 2 : 1;
8316 if (value & seen_logical)
8318 gfc_error ("Constant logical value in CASE statement "
8319 "is repeated at %L",
8320 &cp->low->where);
8321 t = false;
8322 break;
8324 seen_logical |= value;
8327 if (cp->low != NULL && cp->high != NULL
8328 && cp->low != cp->high
8329 && gfc_compare_expr (cp->low, cp->high, INTRINSIC_GT) > 0)
8331 if (warn_surprising)
8332 gfc_warning (OPT_Wsurprising,
8333 "Range specification at %L can never be matched",
8334 &cp->where);
8336 cp->unreachable = 1;
8337 seen_unreachable = 1;
8339 else
8341 /* If the case range can be matched, it can also overlap with
8342 other cases. To make sure it does not, we put it in a
8343 double linked list here. We sort that with a merge sort
8344 later on to detect any overlapping cases. */
8345 if (!head)
8347 head = tail = cp;
8348 head->right = head->left = NULL;
8350 else
8352 tail->right = cp;
8353 tail->right->left = tail;
8354 tail = tail->right;
8355 tail->right = NULL;
8360 /* It there was a failure in the previous case label, give up
8361 for this case label list. Continue with the next block. */
8362 if (!t)
8363 continue;
8365 /* See if any case labels that are unreachable have been seen.
8366 If so, we eliminate them. This is a bit of a kludge because
8367 the case lists for a single case statement (label) is a
8368 single forward linked lists. */
8369 if (seen_unreachable)
8371 /* Advance until the first case in the list is reachable. */
8372 while (body->ext.block.case_list != NULL
8373 && body->ext.block.case_list->unreachable)
8375 gfc_case *n = body->ext.block.case_list;
8376 body->ext.block.case_list = body->ext.block.case_list->next;
8377 n->next = NULL;
8378 gfc_free_case_list (n);
8381 /* Strip all other unreachable cases. */
8382 if (body->ext.block.case_list)
8384 for (cp = body->ext.block.case_list; cp && cp->next; cp = cp->next)
8386 if (cp->next->unreachable)
8388 gfc_case *n = cp->next;
8389 cp->next = cp->next->next;
8390 n->next = NULL;
8391 gfc_free_case_list (n);
8398 /* See if there were overlapping cases. If the check returns NULL,
8399 there was overlap. In that case we don't do anything. If head
8400 is non-NULL, we prepend the DEFAULT case. The sorted list can
8401 then used during code generation for SELECT CASE constructs with
8402 a case expression of a CHARACTER type. */
8403 if (head)
8405 head = check_case_overlap (head);
8407 /* Prepend the default_case if it is there. */
8408 if (head != NULL && default_case)
8410 default_case->left = NULL;
8411 default_case->right = head;
8412 head->left = default_case;
8416 /* Eliminate dead blocks that may be the result if we've seen
8417 unreachable case labels for a block. */
8418 for (body = code; body && body->block; body = body->block)
8420 if (body->block->ext.block.case_list == NULL)
8422 /* Cut the unreachable block from the code chain. */
8423 gfc_code *c = body->block;
8424 body->block = c->block;
8426 /* Kill the dead block, but not the blocks below it. */
8427 c->block = NULL;
8428 gfc_free_statements (c);
8432 /* More than two cases is legal but insane for logical selects.
8433 Issue a warning for it. */
8434 if (warn_surprising && type == BT_LOGICAL && ncases > 2)
8435 gfc_warning (OPT_Wsurprising,
8436 "Logical SELECT CASE block at %L has more that two cases",
8437 &code->loc);
8441 /* Check if a derived type is extensible. */
8443 bool
8444 gfc_type_is_extensible (gfc_symbol *sym)
8446 return !(sym->attr.is_bind_c || sym->attr.sequence
8447 || (sym->attr.is_class
8448 && sym->components->ts.u.derived->attr.unlimited_polymorphic));
8452 static void
8453 resolve_types (gfc_namespace *ns);
8455 /* Resolve an associate-name: Resolve target and ensure the type-spec is
8456 correct as well as possibly the array-spec. */
8458 static void
8459 resolve_assoc_var (gfc_symbol* sym, bool resolve_target)
8461 gfc_expr* target;
8463 gcc_assert (sym->assoc);
8464 gcc_assert (sym->attr.flavor == FL_VARIABLE);
8466 /* If this is for SELECT TYPE, the target may not yet be set. In that
8467 case, return. Resolution will be called later manually again when
8468 this is done. */
8469 target = sym->assoc->target;
8470 if (!target)
8471 return;
8472 gcc_assert (!sym->assoc->dangling);
8474 if (resolve_target && !gfc_resolve_expr (target))
8475 return;
8477 /* For variable targets, we get some attributes from the target. */
8478 if (target->expr_type == EXPR_VARIABLE)
8480 gfc_symbol* tsym;
8482 gcc_assert (target->symtree);
8483 tsym = target->symtree->n.sym;
8485 sym->attr.asynchronous = tsym->attr.asynchronous;
8486 sym->attr.volatile_ = tsym->attr.volatile_;
8488 sym->attr.target = tsym->attr.target
8489 || gfc_expr_attr (target).pointer;
8490 if (is_subref_array (target))
8491 sym->attr.subref_array_pointer = 1;
8494 if (target->expr_type == EXPR_NULL)
8496 gfc_error ("Selector at %L cannot be NULL()", &target->where);
8497 return;
8499 else if (target->ts.type == BT_UNKNOWN)
8501 gfc_error ("Selector at %L has no type", &target->where);
8502 return;
8505 /* Get type if this was not already set. Note that it can be
8506 some other type than the target in case this is a SELECT TYPE
8507 selector! So we must not update when the type is already there. */
8508 if (sym->ts.type == BT_UNKNOWN)
8509 sym->ts = target->ts;
8511 gcc_assert (sym->ts.type != BT_UNKNOWN);
8513 /* See if this is a valid association-to-variable. */
8514 sym->assoc->variable = (target->expr_type == EXPR_VARIABLE
8515 && !gfc_has_vector_subscript (target));
8517 /* Finally resolve if this is an array or not. */
8518 if (sym->attr.dimension && target->rank == 0)
8520 /* primary.c makes the assumption that a reference to an associate
8521 name followed by a left parenthesis is an array reference. */
8522 if (sym->ts.type != BT_CHARACTER)
8523 gfc_error ("Associate-name %qs at %L is used as array",
8524 sym->name, &sym->declared_at);
8525 sym->attr.dimension = 0;
8526 return;
8530 /* We cannot deal with class selectors that need temporaries. */
8531 if (target->ts.type == BT_CLASS
8532 && gfc_ref_needs_temporary_p (target->ref))
8534 gfc_error ("CLASS selector at %L needs a temporary which is not "
8535 "yet implemented", &target->where);
8536 return;
8539 if (target->ts.type == BT_CLASS)
8540 gfc_fix_class_refs (target);
8542 if (target->rank != 0)
8544 gfc_array_spec *as;
8545 /* The rank may be incorrectly guessed at parsing, therefore make sure
8546 it is corrected now. */
8547 if (sym->ts.type != BT_CLASS && (!sym->as || sym->assoc->rankguessed))
8549 if (!sym->as)
8550 sym->as = gfc_get_array_spec ();
8551 as = sym->as;
8552 as->rank = target->rank;
8553 as->type = AS_DEFERRED;
8554 as->corank = gfc_get_corank (target);
8555 sym->attr.dimension = 1;
8556 if (as->corank != 0)
8557 sym->attr.codimension = 1;
8560 else
8562 /* target's rank is 0, but the type of the sym is still array valued,
8563 which has to be corrected. */
8564 if (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->as)
8566 gfc_array_spec *as;
8567 symbol_attribute attr;
8568 /* The associated variable's type is still the array type
8569 correct this now. */
8570 gfc_typespec *ts = &target->ts;
8571 gfc_ref *ref;
8572 gfc_component *c;
8573 for (ref = target->ref; ref != NULL; ref = ref->next)
8575 switch (ref->type)
8577 case REF_COMPONENT:
8578 ts = &ref->u.c.component->ts;
8579 break;
8580 case REF_ARRAY:
8581 if (ts->type == BT_CLASS)
8582 ts = &ts->u.derived->components->ts;
8583 break;
8584 default:
8585 break;
8588 /* Create a scalar instance of the current class type. Because the
8589 rank of a class array goes into its name, the type has to be
8590 rebuild. The alternative of (re-)setting just the attributes
8591 and as in the current type, destroys the type also in other
8592 places. */
8593 as = NULL;
8594 sym->ts = *ts;
8595 sym->ts.type = BT_CLASS;
8596 attr = CLASS_DATA (sym)->attr;
8597 attr.class_ok = 0;
8598 attr.associate_var = 1;
8599 attr.dimension = attr.codimension = 0;
8600 attr.class_pointer = 1;
8601 if (!gfc_build_class_symbol (&sym->ts, &attr, &as))
8602 gcc_unreachable ();
8603 /* Make sure the _vptr is set. */
8604 c = gfc_find_component (sym->ts.u.derived, "_vptr", true, true, NULL);
8605 if (c->ts.u.derived == NULL)
8606 c->ts.u.derived = gfc_find_derived_vtab (sym->ts.u.derived);
8607 CLASS_DATA (sym)->attr.pointer = 1;
8608 CLASS_DATA (sym)->attr.class_pointer = 1;
8609 gfc_set_sym_referenced (sym->ts.u.derived);
8610 gfc_commit_symbol (sym->ts.u.derived);
8611 /* _vptr now has the _vtab in it, change it to the _vtype. */
8612 if (c->ts.u.derived->attr.vtab)
8613 c->ts.u.derived = c->ts.u.derived->ts.u.derived;
8614 c->ts.u.derived->ns->types_resolved = 0;
8615 resolve_types (c->ts.u.derived->ns);
8619 /* Mark this as an associate variable. */
8620 sym->attr.associate_var = 1;
8622 /* Fix up the type-spec for CHARACTER types. */
8623 if (sym->ts.type == BT_CHARACTER && !sym->attr.select_type_temporary)
8625 if (!sym->ts.u.cl)
8626 sym->ts.u.cl = target->ts.u.cl;
8628 if (!sym->ts.u.cl->length && !sym->ts.deferred)
8629 sym->ts.u.cl->length
8630 = gfc_get_int_expr (gfc_default_integer_kind,
8631 NULL, target->value.character.length);
8634 /* If the target is a good class object, so is the associate variable. */
8635 if (sym->ts.type == BT_CLASS && gfc_expr_attr (target).class_ok)
8636 sym->attr.class_ok = 1;
8640 /* Ensure that SELECT TYPE expressions have the correct rank and a full
8641 array reference, where necessary. The symbols are artificial and so
8642 the dimension attribute and arrayspec can also be set. In addition,
8643 sometimes the expr1 arrives as BT_DERIVED, when the symbol is BT_CLASS.
8644 This is corrected here as well.*/
8646 static void
8647 fixup_array_ref (gfc_expr **expr1, gfc_expr *expr2,
8648 int rank, gfc_ref *ref)
8650 gfc_ref *nref = (*expr1)->ref;
8651 gfc_symbol *sym1 = (*expr1)->symtree->n.sym;
8652 gfc_symbol *sym2 = expr2 ? expr2->symtree->n.sym : NULL;
8653 (*expr1)->rank = rank;
8654 if (sym1->ts.type == BT_CLASS)
8656 if ((*expr1)->ts.type != BT_CLASS)
8657 (*expr1)->ts = sym1->ts;
8659 CLASS_DATA (sym1)->attr.dimension = 1;
8660 if (CLASS_DATA (sym1)->as == NULL && sym2)
8661 CLASS_DATA (sym1)->as
8662 = gfc_copy_array_spec (CLASS_DATA (sym2)->as);
8664 else
8666 sym1->attr.dimension = 1;
8667 if (sym1->as == NULL && sym2)
8668 sym1->as = gfc_copy_array_spec (sym2->as);
8671 for (; nref; nref = nref->next)
8672 if (nref->next == NULL)
8673 break;
8675 if (ref && nref && nref->type != REF_ARRAY)
8676 nref->next = gfc_copy_ref (ref);
8677 else if (ref && !nref)
8678 (*expr1)->ref = gfc_copy_ref (ref);
8682 static gfc_expr *
8683 build_loc_call (gfc_expr *sym_expr)
8685 gfc_expr *loc_call;
8686 loc_call = gfc_get_expr ();
8687 loc_call->expr_type = EXPR_FUNCTION;
8688 gfc_get_sym_tree ("loc", gfc_current_ns, &loc_call->symtree, false);
8689 loc_call->symtree->n.sym->attr.flavor = FL_PROCEDURE;
8690 loc_call->symtree->n.sym->attr.intrinsic = 1;
8691 loc_call->symtree->n.sym->result = loc_call->symtree->n.sym;
8692 gfc_commit_symbol (loc_call->symtree->n.sym);
8693 loc_call->ts.type = BT_INTEGER;
8694 loc_call->ts.kind = gfc_index_integer_kind;
8695 loc_call->value.function.isym = gfc_intrinsic_function_by_id (GFC_ISYM_LOC);
8696 loc_call->value.function.actual = gfc_get_actual_arglist ();
8697 loc_call->value.function.actual->expr = sym_expr;
8698 loc_call->where = sym_expr->where;
8699 return loc_call;
8702 /* Resolve a SELECT TYPE statement. */
8704 static void
8705 resolve_select_type (gfc_code *code, gfc_namespace *old_ns)
8707 gfc_symbol *selector_type;
8708 gfc_code *body, *new_st, *if_st, *tail;
8709 gfc_code *class_is = NULL, *default_case = NULL;
8710 gfc_case *c;
8711 gfc_symtree *st;
8712 char name[GFC_MAX_SYMBOL_LEN];
8713 gfc_namespace *ns;
8714 int error = 0;
8715 int charlen = 0;
8716 int rank = 0;
8717 gfc_ref* ref = NULL;
8718 gfc_expr *selector_expr = NULL;
8720 ns = code->ext.block.ns;
8721 gfc_resolve (ns);
8723 /* Check for F03:C813. */
8724 if (code->expr1->ts.type != BT_CLASS
8725 && !(code->expr2 && code->expr2->ts.type == BT_CLASS))
8727 gfc_error ("Selector shall be polymorphic in SELECT TYPE statement "
8728 "at %L", &code->loc);
8729 return;
8732 if (!code->expr1->symtree->n.sym->attr.class_ok)
8733 return;
8735 if (code->expr2)
8737 if (code->expr1->symtree->n.sym->attr.untyped)
8738 code->expr1->symtree->n.sym->ts = code->expr2->ts;
8739 selector_type = CLASS_DATA (code->expr2)->ts.u.derived;
8741 /* F2008: C803 The selector expression must not be coindexed. */
8742 if (gfc_is_coindexed (code->expr2))
8744 gfc_error ("Selector at %L must not be coindexed",
8745 &code->expr2->where);
8746 return;
8750 else
8752 selector_type = CLASS_DATA (code->expr1)->ts.u.derived;
8754 if (gfc_is_coindexed (code->expr1))
8756 gfc_error ("Selector at %L must not be coindexed",
8757 &code->expr1->where);
8758 return;
8762 /* Loop over TYPE IS / CLASS IS cases. */
8763 for (body = code->block; body; body = body->block)
8765 c = body->ext.block.case_list;
8767 if (!error)
8769 /* Check for repeated cases. */
8770 for (tail = code->block; tail; tail = tail->block)
8772 gfc_case *d = tail->ext.block.case_list;
8773 if (tail == body)
8774 break;
8776 if (c->ts.type == d->ts.type
8777 && ((c->ts.type == BT_DERIVED
8778 && c->ts.u.derived && d->ts.u.derived
8779 && !strcmp (c->ts.u.derived->name,
8780 d->ts.u.derived->name))
8781 || c->ts.type == BT_UNKNOWN
8782 || (!(c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
8783 && c->ts.kind == d->ts.kind)))
8785 gfc_error ("TYPE IS at %L overlaps with TYPE IS at %L",
8786 &c->where, &d->where);
8787 return;
8792 /* Check F03:C815. */
8793 if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
8794 && !selector_type->attr.unlimited_polymorphic
8795 && !gfc_type_is_extensible (c->ts.u.derived))
8797 gfc_error ("Derived type %qs at %L must be extensible",
8798 c->ts.u.derived->name, &c->where);
8799 error++;
8800 continue;
8803 /* Check F03:C816. */
8804 if (c->ts.type != BT_UNKNOWN && !selector_type->attr.unlimited_polymorphic
8805 && ((c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
8806 || !gfc_type_is_extension_of (selector_type, c->ts.u.derived)))
8808 if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
8809 gfc_error ("Derived type %qs at %L must be an extension of %qs",
8810 c->ts.u.derived->name, &c->where, selector_type->name);
8811 else
8812 gfc_error ("Unexpected intrinsic type %qs at %L",
8813 gfc_basic_typename (c->ts.type), &c->where);
8814 error++;
8815 continue;
8818 /* Check F03:C814. */
8819 if (c->ts.type == BT_CHARACTER
8820 && (c->ts.u.cl->length != NULL || c->ts.deferred))
8822 gfc_error ("The type-spec at %L shall specify that each length "
8823 "type parameter is assumed", &c->where);
8824 error++;
8825 continue;
8828 /* Intercept the DEFAULT case. */
8829 if (c->ts.type == BT_UNKNOWN)
8831 /* Check F03:C818. */
8832 if (default_case)
8834 gfc_error ("The DEFAULT CASE at %L cannot be followed "
8835 "by a second DEFAULT CASE at %L",
8836 &default_case->ext.block.case_list->where, &c->where);
8837 error++;
8838 continue;
8841 default_case = body;
8845 if (error > 0)
8846 return;
8848 /* Transform SELECT TYPE statement to BLOCK and associate selector to
8849 target if present. If there are any EXIT statements referring to the
8850 SELECT TYPE construct, this is no problem because the gfc_code
8851 reference stays the same and EXIT is equally possible from the BLOCK
8852 it is changed to. */
8853 code->op = EXEC_BLOCK;
8854 if (code->expr2)
8856 gfc_association_list* assoc;
8858 assoc = gfc_get_association_list ();
8859 assoc->st = code->expr1->symtree;
8860 assoc->target = gfc_copy_expr (code->expr2);
8861 assoc->target->where = code->expr2->where;
8862 /* assoc->variable will be set by resolve_assoc_var. */
8864 code->ext.block.assoc = assoc;
8865 code->expr1->symtree->n.sym->assoc = assoc;
8867 resolve_assoc_var (code->expr1->symtree->n.sym, false);
8869 else
8870 code->ext.block.assoc = NULL;
8872 /* Ensure that the selector rank and arrayspec are available to
8873 correct expressions in which they might be missing. */
8874 if (code->expr2 && code->expr2->rank)
8876 rank = code->expr2->rank;
8877 for (ref = code->expr2->ref; ref; ref = ref->next)
8878 if (ref->next == NULL)
8879 break;
8880 if (ref && ref->type == REF_ARRAY)
8881 ref = gfc_copy_ref (ref);
8883 /* Fixup expr1 if necessary. */
8884 if (rank)
8885 fixup_array_ref (&code->expr1, code->expr2, rank, ref);
8887 else if (code->expr1->rank)
8889 rank = code->expr1->rank;
8890 for (ref = code->expr1->ref; ref; ref = ref->next)
8891 if (ref->next == NULL)
8892 break;
8893 if (ref && ref->type == REF_ARRAY)
8894 ref = gfc_copy_ref (ref);
8897 /* Add EXEC_SELECT to switch on type. */
8898 new_st = gfc_get_code (code->op);
8899 new_st->expr1 = code->expr1;
8900 new_st->expr2 = code->expr2;
8901 new_st->block = code->block;
8902 code->expr1 = code->expr2 = NULL;
8903 code->block = NULL;
8904 if (!ns->code)
8905 ns->code = new_st;
8906 else
8907 ns->code->next = new_st;
8908 code = new_st;
8909 code->op = EXEC_SELECT_TYPE;
8911 /* Use the intrinsic LOC function to generate an integer expression
8912 for the vtable of the selector. Note that the rank of the selector
8913 expression has to be set to zero. */
8914 gfc_add_vptr_component (code->expr1);
8915 code->expr1->rank = 0;
8916 code->expr1 = build_loc_call (code->expr1);
8917 selector_expr = code->expr1->value.function.actual->expr;
8919 /* Loop over TYPE IS / CLASS IS cases. */
8920 for (body = code->block; body; body = body->block)
8922 gfc_symbol *vtab;
8923 gfc_expr *e;
8924 c = body->ext.block.case_list;
8926 /* Generate an index integer expression for address of the
8927 TYPE/CLASS vtable and store it in c->low. The hash expression
8928 is stored in c->high and is used to resolve intrinsic cases. */
8929 if (c->ts.type != BT_UNKNOWN)
8931 if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
8933 vtab = gfc_find_derived_vtab (c->ts.u.derived);
8934 gcc_assert (vtab);
8935 c->high = gfc_get_int_expr (gfc_default_integer_kind, NULL,
8936 c->ts.u.derived->hash_value);
8938 else
8940 vtab = gfc_find_vtab (&c->ts);
8941 gcc_assert (vtab && CLASS_DATA (vtab)->initializer);
8942 e = CLASS_DATA (vtab)->initializer;
8943 c->high = gfc_copy_expr (e);
8946 e = gfc_lval_expr_from_sym (vtab);
8947 c->low = build_loc_call (e);
8949 else
8950 continue;
8952 /* Associate temporary to selector. This should only be done
8953 when this case is actually true, so build a new ASSOCIATE
8954 that does precisely this here (instead of using the
8955 'global' one). */
8957 if (c->ts.type == BT_CLASS)
8958 sprintf (name, "__tmp_class_%s", c->ts.u.derived->name);
8959 else if (c->ts.type == BT_DERIVED)
8960 sprintf (name, "__tmp_type_%s", c->ts.u.derived->name);
8961 else if (c->ts.type == BT_CHARACTER)
8963 if (c->ts.u.cl && c->ts.u.cl->length
8964 && c->ts.u.cl->length->expr_type == EXPR_CONSTANT)
8965 charlen = mpz_get_si (c->ts.u.cl->length->value.integer);
8966 sprintf (name, "__tmp_%s_%d_%d", gfc_basic_typename (c->ts.type),
8967 charlen, c->ts.kind);
8969 else
8970 sprintf (name, "__tmp_%s_%d", gfc_basic_typename (c->ts.type),
8971 c->ts.kind);
8973 st = gfc_find_symtree (ns->sym_root, name);
8974 gcc_assert (st->n.sym->assoc);
8975 st->n.sym->assoc->target = gfc_get_variable_expr (selector_expr->symtree);
8976 st->n.sym->assoc->target->where = selector_expr->where;
8977 if (c->ts.type != BT_CLASS && c->ts.type != BT_UNKNOWN)
8979 gfc_add_data_component (st->n.sym->assoc->target);
8980 /* Fixup the target expression if necessary. */
8981 if (rank)
8982 fixup_array_ref (&st->n.sym->assoc->target, NULL, rank, ref);
8985 new_st = gfc_get_code (EXEC_BLOCK);
8986 new_st->ext.block.ns = gfc_build_block_ns (ns);
8987 new_st->ext.block.ns->code = body->next;
8988 body->next = new_st;
8990 /* Chain in the new list only if it is marked as dangling. Otherwise
8991 there is a CASE label overlap and this is already used. Just ignore,
8992 the error is diagnosed elsewhere. */
8993 if (st->n.sym->assoc->dangling)
8995 new_st->ext.block.assoc = st->n.sym->assoc;
8996 st->n.sym->assoc->dangling = 0;
8999 resolve_assoc_var (st->n.sym, false);
9002 /* Take out CLASS IS cases for separate treatment. */
9003 body = code;
9004 while (body && body->block)
9006 if (body->block->ext.block.case_list->ts.type == BT_CLASS)
9008 /* Add to class_is list. */
9009 if (class_is == NULL)
9011 class_is = body->block;
9012 tail = class_is;
9014 else
9016 for (tail = class_is; tail->block; tail = tail->block) ;
9017 tail->block = body->block;
9018 tail = tail->block;
9020 /* Remove from EXEC_SELECT list. */
9021 body->block = body->block->block;
9022 tail->block = NULL;
9024 else
9025 body = body->block;
9028 if (class_is)
9030 gfc_symbol *vtab;
9032 if (!default_case)
9034 /* Add a default case to hold the CLASS IS cases. */
9035 for (tail = code; tail->block; tail = tail->block) ;
9036 tail->block = gfc_get_code (EXEC_SELECT_TYPE);
9037 tail = tail->block;
9038 tail->ext.block.case_list = gfc_get_case ();
9039 tail->ext.block.case_list->ts.type = BT_UNKNOWN;
9040 tail->next = NULL;
9041 default_case = tail;
9044 /* More than one CLASS IS block? */
9045 if (class_is->block)
9047 gfc_code **c1,*c2;
9048 bool swapped;
9049 /* Sort CLASS IS blocks by extension level. */
9052 swapped = false;
9053 for (c1 = &class_is; (*c1) && (*c1)->block; c1 = &((*c1)->block))
9055 c2 = (*c1)->block;
9056 /* F03:C817 (check for doubles). */
9057 if ((*c1)->ext.block.case_list->ts.u.derived->hash_value
9058 == c2->ext.block.case_list->ts.u.derived->hash_value)
9060 gfc_error ("Double CLASS IS block in SELECT TYPE "
9061 "statement at %L",
9062 &c2->ext.block.case_list->where);
9063 return;
9065 if ((*c1)->ext.block.case_list->ts.u.derived->attr.extension
9066 < c2->ext.block.case_list->ts.u.derived->attr.extension)
9068 /* Swap. */
9069 (*c1)->block = c2->block;
9070 c2->block = *c1;
9071 *c1 = c2;
9072 swapped = true;
9076 while (swapped);
9079 /* Generate IF chain. */
9080 if_st = gfc_get_code (EXEC_IF);
9081 new_st = if_st;
9082 for (body = class_is; body; body = body->block)
9084 new_st->block = gfc_get_code (EXEC_IF);
9085 new_st = new_st->block;
9086 /* Set up IF condition: Call _gfortran_is_extension_of. */
9087 new_st->expr1 = gfc_get_expr ();
9088 new_st->expr1->expr_type = EXPR_FUNCTION;
9089 new_st->expr1->ts.type = BT_LOGICAL;
9090 new_st->expr1->ts.kind = 4;
9091 new_st->expr1->value.function.name = gfc_get_string (PREFIX ("is_extension_of"));
9092 new_st->expr1->value.function.isym = XCNEW (gfc_intrinsic_sym);
9093 new_st->expr1->value.function.isym->id = GFC_ISYM_EXTENDS_TYPE_OF;
9094 /* Set up arguments. */
9095 new_st->expr1->value.function.actual = gfc_get_actual_arglist ();
9096 new_st->expr1->value.function.actual->expr = gfc_get_variable_expr (selector_expr->symtree);
9097 new_st->expr1->value.function.actual->expr->where = code->loc;
9098 new_st->expr1->where = code->loc;
9099 gfc_add_vptr_component (new_st->expr1->value.function.actual->expr);
9100 vtab = gfc_find_derived_vtab (body->ext.block.case_list->ts.u.derived);
9101 st = gfc_find_symtree (vtab->ns->sym_root, vtab->name);
9102 new_st->expr1->value.function.actual->next = gfc_get_actual_arglist ();
9103 new_st->expr1->value.function.actual->next->expr = gfc_get_variable_expr (st);
9104 new_st->expr1->value.function.actual->next->expr->where = code->loc;
9105 new_st->next = body->next;
9107 if (default_case->next)
9109 new_st->block = gfc_get_code (EXEC_IF);
9110 new_st = new_st->block;
9111 new_st->next = default_case->next;
9114 /* Replace CLASS DEFAULT code by the IF chain. */
9115 default_case->next = if_st;
9118 /* Resolve the internal code. This can not be done earlier because
9119 it requires that the sym->assoc of selectors is set already. */
9120 gfc_current_ns = ns;
9121 gfc_resolve_blocks (code->block, gfc_current_ns);
9122 gfc_current_ns = old_ns;
9124 if (ref)
9125 free (ref);
9129 /* Resolve a transfer statement. This is making sure that:
9130 -- a derived type being transferred has only non-pointer components
9131 -- a derived type being transferred doesn't have private components, unless
9132 it's being transferred from the module where the type was defined
9133 -- we're not trying to transfer a whole assumed size array. */
9135 static void
9136 resolve_transfer (gfc_code *code)
9138 gfc_typespec *ts;
9139 gfc_symbol *sym, *derived;
9140 gfc_ref *ref;
9141 gfc_expr *exp;
9142 bool write = false;
9143 bool formatted = false;
9144 gfc_dt *dt = code->ext.dt;
9145 gfc_symbol *dtio_sub = NULL;
9147 exp = code->expr1;
9149 while (exp != NULL && exp->expr_type == EXPR_OP
9150 && exp->value.op.op == INTRINSIC_PARENTHESES)
9151 exp = exp->value.op.op1;
9153 if (exp && exp->expr_type == EXPR_NULL
9154 && code->ext.dt)
9156 gfc_error ("Invalid context for NULL () intrinsic at %L",
9157 &exp->where);
9158 return;
9161 if (exp == NULL || (exp->expr_type != EXPR_VARIABLE
9162 && exp->expr_type != EXPR_FUNCTION
9163 && exp->expr_type != EXPR_STRUCTURE))
9164 return;
9166 /* If we are reading, the variable will be changed. Note that
9167 code->ext.dt may be NULL if the TRANSFER is related to
9168 an INQUIRE statement -- but in this case, we are not reading, either. */
9169 if (dt && dt->dt_io_kind->value.iokind == M_READ
9170 && !gfc_check_vardef_context (exp, false, false, false,
9171 _("item in READ")))
9172 return;
9174 ts = exp->expr_type == EXPR_STRUCTURE ? &exp->ts : &exp->symtree->n.sym->ts;
9176 /* Go to actual component transferred. */
9177 for (ref = exp->ref; ref; ref = ref->next)
9178 if (ref->type == REF_COMPONENT)
9179 ts = &ref->u.c.component->ts;
9181 if (dt && dt->dt_io_kind->value.iokind != M_INQUIRE
9182 && (ts->type == BT_DERIVED || ts->type == BT_CLASS))
9184 if (ts->type == BT_DERIVED || ts->type == BT_CLASS)
9185 derived = ts->u.derived;
9186 else
9187 derived = ts->u.derived->components->ts.u.derived;
9189 if (dt->format_expr)
9191 char *fmt;
9192 fmt = gfc_widechar_to_char (dt->format_expr->value.character.string,
9193 -1);
9194 if (strtok (fmt, "DT") != NULL)
9195 formatted = true;
9197 else if (dt->format_label == &format_asterisk)
9199 /* List directed io must call the formatted DTIO procedure. */
9200 formatted = true;
9203 write = dt->dt_io_kind->value.iokind == M_WRITE
9204 || dt->dt_io_kind->value.iokind == M_PRINT;
9205 dtio_sub = gfc_find_specific_dtio_proc (derived, write, formatted);
9207 if (dtio_sub != NULL && exp->expr_type == EXPR_VARIABLE)
9209 dt->udtio = exp;
9210 sym = exp->symtree->n.sym->ns->proc_name;
9211 /* Check to see if this is a nested DTIO call, with the
9212 dummy as the io-list object. */
9213 if (sym && sym == dtio_sub && sym->formal
9214 && sym->formal->sym == exp->symtree->n.sym
9215 && exp->ref == NULL)
9217 if (!sym->attr.recursive)
9219 gfc_error ("DTIO %s procedure at %L must be recursive",
9220 sym->name, &sym->declared_at);
9221 return;
9227 if (ts->type == BT_CLASS && dtio_sub == NULL)
9229 gfc_error ("Data transfer element at %L cannot be polymorphic unless "
9230 "it is processed by a defined input/output procedure",
9231 &code->loc);
9232 return;
9235 if (ts->type == BT_DERIVED)
9237 /* Check that transferred derived type doesn't contain POINTER
9238 components unless it is processed by a defined input/output
9239 procedure". */
9240 if (ts->u.derived->attr.pointer_comp && dtio_sub == NULL)
9242 gfc_error ("Data transfer element at %L cannot have POINTER "
9243 "components unless it is processed by a defined "
9244 "input/output procedure", &code->loc);
9245 return;
9248 /* F08:C935. */
9249 if (ts->u.derived->attr.proc_pointer_comp)
9251 gfc_error ("Data transfer element at %L cannot have "
9252 "procedure pointer components", &code->loc);
9253 return;
9256 if (ts->u.derived->attr.alloc_comp && dtio_sub == NULL)
9258 gfc_error ("Data transfer element at %L cannot have ALLOCATABLE "
9259 "components unless it is processed by a defined "
9260 "input/output procedure", &code->loc);
9261 return;
9264 /* C_PTR and C_FUNPTR have private components which means they can not
9265 be printed. However, if -std=gnu and not -pedantic, allow
9266 the component to be printed to help debugging. */
9267 if (ts->u.derived->ts.f90_type == BT_VOID)
9269 if (!gfc_notify_std (GFC_STD_GNU, "Data transfer element at %L "
9270 "cannot have PRIVATE components", &code->loc))
9271 return;
9273 else if (derived_inaccessible (ts->u.derived) && dtio_sub == NULL)
9275 gfc_error ("Data transfer element at %L cannot have "
9276 "PRIVATE components unless it is processed by "
9277 "a defined input/output procedure", &code->loc);
9278 return;
9282 if (exp->expr_type == EXPR_STRUCTURE)
9283 return;
9285 sym = exp->symtree->n.sym;
9287 if (sym->as != NULL && sym->as->type == AS_ASSUMED_SIZE && exp->ref
9288 && exp->ref->type == REF_ARRAY && exp->ref->u.ar.type == AR_FULL)
9290 gfc_error ("Data transfer element at %L cannot be a full reference to "
9291 "an assumed-size array", &code->loc);
9292 return;
9295 if (async_io_dt && exp->expr_type == EXPR_VARIABLE)
9296 exp->symtree->n.sym->attr.asynchronous = 1;
9300 /*********** Toplevel code resolution subroutines ***********/
9302 /* Find the set of labels that are reachable from this block. We also
9303 record the last statement in each block. */
9305 static void
9306 find_reachable_labels (gfc_code *block)
9308 gfc_code *c;
9310 if (!block)
9311 return;
9313 cs_base->reachable_labels = bitmap_alloc (&labels_obstack);
9315 /* Collect labels in this block. We don't keep those corresponding
9316 to END {IF|SELECT}, these are checked in resolve_branch by going
9317 up through the code_stack. */
9318 for (c = block; c; c = c->next)
9320 if (c->here && c->op != EXEC_END_NESTED_BLOCK)
9321 bitmap_set_bit (cs_base->reachable_labels, c->here->value);
9324 /* Merge with labels from parent block. */
9325 if (cs_base->prev)
9327 gcc_assert (cs_base->prev->reachable_labels);
9328 bitmap_ior_into (cs_base->reachable_labels,
9329 cs_base->prev->reachable_labels);
9334 static void
9335 resolve_lock_unlock_event (gfc_code *code)
9337 if (code->expr1->expr_type == EXPR_FUNCTION
9338 && code->expr1->value.function.isym
9339 && code->expr1->value.function.isym->id == GFC_ISYM_CAF_GET)
9340 remove_caf_get_intrinsic (code->expr1);
9342 if ((code->op == EXEC_LOCK || code->op == EXEC_UNLOCK)
9343 && (code->expr1->ts.type != BT_DERIVED
9344 || code->expr1->expr_type != EXPR_VARIABLE
9345 || code->expr1->ts.u.derived->from_intmod != INTMOD_ISO_FORTRAN_ENV
9346 || code->expr1->ts.u.derived->intmod_sym_id != ISOFORTRAN_LOCK_TYPE
9347 || code->expr1->rank != 0
9348 || (!gfc_is_coarray (code->expr1) &&
9349 !gfc_is_coindexed (code->expr1))))
9350 gfc_error ("Lock variable at %L must be a scalar of type LOCK_TYPE",
9351 &code->expr1->where);
9352 else if ((code->op == EXEC_EVENT_POST || code->op == EXEC_EVENT_WAIT)
9353 && (code->expr1->ts.type != BT_DERIVED
9354 || code->expr1->expr_type != EXPR_VARIABLE
9355 || code->expr1->ts.u.derived->from_intmod
9356 != INTMOD_ISO_FORTRAN_ENV
9357 || code->expr1->ts.u.derived->intmod_sym_id
9358 != ISOFORTRAN_EVENT_TYPE
9359 || code->expr1->rank != 0))
9360 gfc_error ("Event variable at %L must be a scalar of type EVENT_TYPE",
9361 &code->expr1->where);
9362 else if (code->op == EXEC_EVENT_POST && !gfc_is_coarray (code->expr1)
9363 && !gfc_is_coindexed (code->expr1))
9364 gfc_error ("Event variable argument at %L must be a coarray or coindexed",
9365 &code->expr1->where);
9366 else if (code->op == EXEC_EVENT_WAIT && !gfc_is_coarray (code->expr1))
9367 gfc_error ("Event variable argument at %L must be a coarray but not "
9368 "coindexed", &code->expr1->where);
9370 /* Check STAT. */
9371 if (code->expr2
9372 && (code->expr2->ts.type != BT_INTEGER || code->expr2->rank != 0
9373 || code->expr2->expr_type != EXPR_VARIABLE))
9374 gfc_error ("STAT= argument at %L must be a scalar INTEGER variable",
9375 &code->expr2->where);
9377 if (code->expr2
9378 && !gfc_check_vardef_context (code->expr2, false, false, false,
9379 _("STAT variable")))
9380 return;
9382 /* Check ERRMSG. */
9383 if (code->expr3
9384 && (code->expr3->ts.type != BT_CHARACTER || code->expr3->rank != 0
9385 || code->expr3->expr_type != EXPR_VARIABLE))
9386 gfc_error ("ERRMSG= argument at %L must be a scalar CHARACTER variable",
9387 &code->expr3->where);
9389 if (code->expr3
9390 && !gfc_check_vardef_context (code->expr3, false, false, false,
9391 _("ERRMSG variable")))
9392 return;
9394 /* Check for LOCK the ACQUIRED_LOCK. */
9395 if (code->op != EXEC_EVENT_WAIT && code->expr4
9396 && (code->expr4->ts.type != BT_LOGICAL || code->expr4->rank != 0
9397 || code->expr4->expr_type != EXPR_VARIABLE))
9398 gfc_error ("ACQUIRED_LOCK= argument at %L must be a scalar LOGICAL "
9399 "variable", &code->expr4->where);
9401 if (code->op != EXEC_EVENT_WAIT && code->expr4
9402 && !gfc_check_vardef_context (code->expr4, false, false, false,
9403 _("ACQUIRED_LOCK variable")))
9404 return;
9406 /* Check for EVENT WAIT the UNTIL_COUNT. */
9407 if (code->op == EXEC_EVENT_WAIT && code->expr4)
9409 if (!gfc_resolve_expr (code->expr4) || code->expr4->ts.type != BT_INTEGER
9410 || code->expr4->rank != 0)
9411 gfc_error ("UNTIL_COUNT= argument at %L must be a scalar INTEGER "
9412 "expression", &code->expr4->where);
9417 static void
9418 resolve_critical (gfc_code *code)
9420 gfc_symtree *symtree;
9421 gfc_symbol *lock_type;
9422 char name[GFC_MAX_SYMBOL_LEN];
9423 static int serial = 0;
9425 if (flag_coarray != GFC_FCOARRAY_LIB)
9426 return;
9428 symtree = gfc_find_symtree (gfc_current_ns->sym_root,
9429 GFC_PREFIX ("lock_type"));
9430 if (symtree)
9431 lock_type = symtree->n.sym;
9432 else
9434 if (gfc_get_sym_tree (GFC_PREFIX ("lock_type"), gfc_current_ns, &symtree,
9435 false) != 0)
9436 gcc_unreachable ();
9437 lock_type = symtree->n.sym;
9438 lock_type->attr.flavor = FL_DERIVED;
9439 lock_type->attr.zero_comp = 1;
9440 lock_type->from_intmod = INTMOD_ISO_FORTRAN_ENV;
9441 lock_type->intmod_sym_id = ISOFORTRAN_LOCK_TYPE;
9444 sprintf(name, GFC_PREFIX ("lock_var") "%d",serial++);
9445 if (gfc_get_sym_tree (name, gfc_current_ns, &symtree, false) != 0)
9446 gcc_unreachable ();
9448 code->resolved_sym = symtree->n.sym;
9449 symtree->n.sym->attr.flavor = FL_VARIABLE;
9450 symtree->n.sym->attr.referenced = 1;
9451 symtree->n.sym->attr.artificial = 1;
9452 symtree->n.sym->attr.codimension = 1;
9453 symtree->n.sym->ts.type = BT_DERIVED;
9454 symtree->n.sym->ts.u.derived = lock_type;
9455 symtree->n.sym->as = gfc_get_array_spec ();
9456 symtree->n.sym->as->corank = 1;
9457 symtree->n.sym->as->type = AS_EXPLICIT;
9458 symtree->n.sym->as->cotype = AS_EXPLICIT;
9459 symtree->n.sym->as->lower[0] = gfc_get_int_expr (gfc_default_integer_kind,
9460 NULL, 1);
9461 gfc_commit_symbols();
9465 static void
9466 resolve_sync (gfc_code *code)
9468 /* Check imageset. The * case matches expr1 == NULL. */
9469 if (code->expr1)
9471 if (code->expr1->ts.type != BT_INTEGER || code->expr1->rank > 1)
9472 gfc_error ("Imageset argument at %L must be a scalar or rank-1 "
9473 "INTEGER expression", &code->expr1->where);
9474 if (code->expr1->expr_type == EXPR_CONSTANT && code->expr1->rank == 0
9475 && mpz_cmp_si (code->expr1->value.integer, 1) < 0)
9476 gfc_error ("Imageset argument at %L must between 1 and num_images()",
9477 &code->expr1->where);
9478 else if (code->expr1->expr_type == EXPR_ARRAY
9479 && gfc_simplify_expr (code->expr1, 0))
9481 gfc_constructor *cons;
9482 cons = gfc_constructor_first (code->expr1->value.constructor);
9483 for (; cons; cons = gfc_constructor_next (cons))
9484 if (cons->expr->expr_type == EXPR_CONSTANT
9485 && mpz_cmp_si (cons->expr->value.integer, 1) < 0)
9486 gfc_error ("Imageset argument at %L must between 1 and "
9487 "num_images()", &cons->expr->where);
9491 /* Check STAT. */
9492 if (code->expr2
9493 && (code->expr2->ts.type != BT_INTEGER || code->expr2->rank != 0
9494 || code->expr2->expr_type != EXPR_VARIABLE))
9495 gfc_error ("STAT= argument at %L must be a scalar INTEGER variable",
9496 &code->expr2->where);
9498 /* Check ERRMSG. */
9499 if (code->expr3
9500 && (code->expr3->ts.type != BT_CHARACTER || code->expr3->rank != 0
9501 || code->expr3->expr_type != EXPR_VARIABLE))
9502 gfc_error ("ERRMSG= argument at %L must be a scalar CHARACTER variable",
9503 &code->expr3->where);
9507 /* Given a branch to a label, see if the branch is conforming.
9508 The code node describes where the branch is located. */
9510 static void
9511 resolve_branch (gfc_st_label *label, gfc_code *code)
9513 code_stack *stack;
9515 if (label == NULL)
9516 return;
9518 /* Step one: is this a valid branching target? */
9520 if (label->defined == ST_LABEL_UNKNOWN)
9522 gfc_error ("Label %d referenced at %L is never defined", label->value,
9523 &code->loc);
9524 return;
9527 if (label->defined != ST_LABEL_TARGET && label->defined != ST_LABEL_DO_TARGET)
9529 gfc_error ("Statement at %L is not a valid branch target statement "
9530 "for the branch statement at %L", &label->where, &code->loc);
9531 return;
9534 /* Step two: make sure this branch is not a branch to itself ;-) */
9536 if (code->here == label)
9538 gfc_warning (0,
9539 "Branch at %L may result in an infinite loop", &code->loc);
9540 return;
9543 /* Step three: See if the label is in the same block as the
9544 branching statement. The hard work has been done by setting up
9545 the bitmap reachable_labels. */
9547 if (bitmap_bit_p (cs_base->reachable_labels, label->value))
9549 /* Check now whether there is a CRITICAL construct; if so, check
9550 whether the label is still visible outside of the CRITICAL block,
9551 which is invalid. */
9552 for (stack = cs_base; stack; stack = stack->prev)
9554 if (stack->current->op == EXEC_CRITICAL
9555 && bitmap_bit_p (stack->reachable_labels, label->value))
9556 gfc_error ("GOTO statement at %L leaves CRITICAL construct for "
9557 "label at %L", &code->loc, &label->where);
9558 else if (stack->current->op == EXEC_DO_CONCURRENT
9559 && bitmap_bit_p (stack->reachable_labels, label->value))
9560 gfc_error ("GOTO statement at %L leaves DO CONCURRENT construct "
9561 "for label at %L", &code->loc, &label->where);
9564 return;
9567 /* Step four: If we haven't found the label in the bitmap, it may
9568 still be the label of the END of the enclosing block, in which
9569 case we find it by going up the code_stack. */
9571 for (stack = cs_base; stack; stack = stack->prev)
9573 if (stack->current->next && stack->current->next->here == label)
9574 break;
9575 if (stack->current->op == EXEC_CRITICAL)
9577 /* Note: A label at END CRITICAL does not leave the CRITICAL
9578 construct as END CRITICAL is still part of it. */
9579 gfc_error ("GOTO statement at %L leaves CRITICAL construct for label"
9580 " at %L", &code->loc, &label->where);
9581 return;
9583 else if (stack->current->op == EXEC_DO_CONCURRENT)
9585 gfc_error ("GOTO statement at %L leaves DO CONCURRENT construct for "
9586 "label at %L", &code->loc, &label->where);
9587 return;
9591 if (stack)
9593 gcc_assert (stack->current->next->op == EXEC_END_NESTED_BLOCK);
9594 return;
9597 /* The label is not in an enclosing block, so illegal. This was
9598 allowed in Fortran 66, so we allow it as extension. No
9599 further checks are necessary in this case. */
9600 gfc_notify_std (GFC_STD_LEGACY, "Label at %L is not in the same block "
9601 "as the GOTO statement at %L", &label->where,
9602 &code->loc);
9603 return;
9607 /* Check whether EXPR1 has the same shape as EXPR2. */
9609 static bool
9610 resolve_where_shape (gfc_expr *expr1, gfc_expr *expr2)
9612 mpz_t shape[GFC_MAX_DIMENSIONS];
9613 mpz_t shape2[GFC_MAX_DIMENSIONS];
9614 bool result = false;
9615 int i;
9617 /* Compare the rank. */
9618 if (expr1->rank != expr2->rank)
9619 return result;
9621 /* Compare the size of each dimension. */
9622 for (i=0; i<expr1->rank; i++)
9624 if (!gfc_array_dimen_size (expr1, i, &shape[i]))
9625 goto ignore;
9627 if (!gfc_array_dimen_size (expr2, i, &shape2[i]))
9628 goto ignore;
9630 if (mpz_cmp (shape[i], shape2[i]))
9631 goto over;
9634 /* When either of the two expression is an assumed size array, we
9635 ignore the comparison of dimension sizes. */
9636 ignore:
9637 result = true;
9639 over:
9640 gfc_clear_shape (shape, i);
9641 gfc_clear_shape (shape2, i);
9642 return result;
9646 /* Check whether a WHERE assignment target or a WHERE mask expression
9647 has the same shape as the outmost WHERE mask expression. */
9649 static void
9650 resolve_where (gfc_code *code, gfc_expr *mask)
9652 gfc_code *cblock;
9653 gfc_code *cnext;
9654 gfc_expr *e = NULL;
9656 cblock = code->block;
9658 /* Store the first WHERE mask-expr of the WHERE statement or construct.
9659 In case of nested WHERE, only the outmost one is stored. */
9660 if (mask == NULL) /* outmost WHERE */
9661 e = cblock->expr1;
9662 else /* inner WHERE */
9663 e = mask;
9665 while (cblock)
9667 if (cblock->expr1)
9669 /* Check if the mask-expr has a consistent shape with the
9670 outmost WHERE mask-expr. */
9671 if (!resolve_where_shape (cblock->expr1, e))
9672 gfc_error ("WHERE mask at %L has inconsistent shape",
9673 &cblock->expr1->where);
9676 /* the assignment statement of a WHERE statement, or the first
9677 statement in where-body-construct of a WHERE construct */
9678 cnext = cblock->next;
9679 while (cnext)
9681 switch (cnext->op)
9683 /* WHERE assignment statement */
9684 case EXEC_ASSIGN:
9686 /* Check shape consistent for WHERE assignment target. */
9687 if (e && !resolve_where_shape (cnext->expr1, e))
9688 gfc_error ("WHERE assignment target at %L has "
9689 "inconsistent shape", &cnext->expr1->where);
9690 break;
9693 case EXEC_ASSIGN_CALL:
9694 resolve_call (cnext);
9695 if (!cnext->resolved_sym->attr.elemental)
9696 gfc_error("Non-ELEMENTAL user-defined assignment in WHERE at %L",
9697 &cnext->ext.actual->expr->where);
9698 break;
9700 /* WHERE or WHERE construct is part of a where-body-construct */
9701 case EXEC_WHERE:
9702 resolve_where (cnext, e);
9703 break;
9705 default:
9706 gfc_error ("Unsupported statement inside WHERE at %L",
9707 &cnext->loc);
9709 /* the next statement within the same where-body-construct */
9710 cnext = cnext->next;
9712 /* the next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt */
9713 cblock = cblock->block;
9718 /* Resolve assignment in FORALL construct.
9719 NVAR is the number of FORALL index variables, and VAR_EXPR records the
9720 FORALL index variables. */
9722 static void
9723 gfc_resolve_assign_in_forall (gfc_code *code, int nvar, gfc_expr **var_expr)
9725 int n;
9727 for (n = 0; n < nvar; n++)
9729 gfc_symbol *forall_index;
9731 forall_index = var_expr[n]->symtree->n.sym;
9733 /* Check whether the assignment target is one of the FORALL index
9734 variable. */
9735 if ((code->expr1->expr_type == EXPR_VARIABLE)
9736 && (code->expr1->symtree->n.sym == forall_index))
9737 gfc_error ("Assignment to a FORALL index variable at %L",
9738 &code->expr1->where);
9739 else
9741 /* If one of the FORALL index variables doesn't appear in the
9742 assignment variable, then there could be a many-to-one
9743 assignment. Emit a warning rather than an error because the
9744 mask could be resolving this problem. */
9745 if (!find_forall_index (code->expr1, forall_index, 0))
9746 gfc_warning (0, "The FORALL with index %qs is not used on the "
9747 "left side of the assignment at %L and so might "
9748 "cause multiple assignment to this object",
9749 var_expr[n]->symtree->name, &code->expr1->where);
9755 /* Resolve WHERE statement in FORALL construct. */
9757 static void
9758 gfc_resolve_where_code_in_forall (gfc_code *code, int nvar,
9759 gfc_expr **var_expr)
9761 gfc_code *cblock;
9762 gfc_code *cnext;
9764 cblock = code->block;
9765 while (cblock)
9767 /* the assignment statement of a WHERE statement, or the first
9768 statement in where-body-construct of a WHERE construct */
9769 cnext = cblock->next;
9770 while (cnext)
9772 switch (cnext->op)
9774 /* WHERE assignment statement */
9775 case EXEC_ASSIGN:
9776 gfc_resolve_assign_in_forall (cnext, nvar, var_expr);
9777 break;
9779 /* WHERE operator assignment statement */
9780 case EXEC_ASSIGN_CALL:
9781 resolve_call (cnext);
9782 if (!cnext->resolved_sym->attr.elemental)
9783 gfc_error("Non-ELEMENTAL user-defined assignment in WHERE at %L",
9784 &cnext->ext.actual->expr->where);
9785 break;
9787 /* WHERE or WHERE construct is part of a where-body-construct */
9788 case EXEC_WHERE:
9789 gfc_resolve_where_code_in_forall (cnext, nvar, var_expr);
9790 break;
9792 default:
9793 gfc_error ("Unsupported statement inside WHERE at %L",
9794 &cnext->loc);
9796 /* the next statement within the same where-body-construct */
9797 cnext = cnext->next;
9799 /* the next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt */
9800 cblock = cblock->block;
9805 /* Traverse the FORALL body to check whether the following errors exist:
9806 1. For assignment, check if a many-to-one assignment happens.
9807 2. For WHERE statement, check the WHERE body to see if there is any
9808 many-to-one assignment. */
9810 static void
9811 gfc_resolve_forall_body (gfc_code *code, int nvar, gfc_expr **var_expr)
9813 gfc_code *c;
9815 c = code->block->next;
9816 while (c)
9818 switch (c->op)
9820 case EXEC_ASSIGN:
9821 case EXEC_POINTER_ASSIGN:
9822 gfc_resolve_assign_in_forall (c, nvar, var_expr);
9823 break;
9825 case EXEC_ASSIGN_CALL:
9826 resolve_call (c);
9827 break;
9829 /* Because the gfc_resolve_blocks() will handle the nested FORALL,
9830 there is no need to handle it here. */
9831 case EXEC_FORALL:
9832 break;
9833 case EXEC_WHERE:
9834 gfc_resolve_where_code_in_forall(c, nvar, var_expr);
9835 break;
9836 default:
9837 break;
9839 /* The next statement in the FORALL body. */
9840 c = c->next;
9845 /* Counts the number of iterators needed inside a forall construct, including
9846 nested forall constructs. This is used to allocate the needed memory
9847 in gfc_resolve_forall. */
9849 static int
9850 gfc_count_forall_iterators (gfc_code *code)
9852 int max_iters, sub_iters, current_iters;
9853 gfc_forall_iterator *fa;
9855 gcc_assert(code->op == EXEC_FORALL);
9856 max_iters = 0;
9857 current_iters = 0;
9859 for (fa = code->ext.forall_iterator; fa; fa = fa->next)
9860 current_iters ++;
9862 code = code->block->next;
9864 while (code)
9866 if (code->op == EXEC_FORALL)
9868 sub_iters = gfc_count_forall_iterators (code);
9869 if (sub_iters > max_iters)
9870 max_iters = sub_iters;
9872 code = code->next;
9875 return current_iters + max_iters;
9879 /* Given a FORALL construct, first resolve the FORALL iterator, then call
9880 gfc_resolve_forall_body to resolve the FORALL body. */
9882 static void
9883 gfc_resolve_forall (gfc_code *code, gfc_namespace *ns, int forall_save)
9885 static gfc_expr **var_expr;
9886 static int total_var = 0;
9887 static int nvar = 0;
9888 int i, old_nvar, tmp;
9889 gfc_forall_iterator *fa;
9891 old_nvar = nvar;
9893 /* Start to resolve a FORALL construct */
9894 if (forall_save == 0)
9896 /* Count the total number of FORALL indices in the nested FORALL
9897 construct in order to allocate the VAR_EXPR with proper size. */
9898 total_var = gfc_count_forall_iterators (code);
9900 /* Allocate VAR_EXPR with NUMBER_OF_FORALL_INDEX elements. */
9901 var_expr = XCNEWVEC (gfc_expr *, total_var);
9904 /* The information about FORALL iterator, including FORALL indices start, end
9905 and stride. An outer FORALL indice cannot appear in start, end or stride. */
9906 for (fa = code->ext.forall_iterator; fa; fa = fa->next)
9908 /* Fortran 20008: C738 (R753). */
9909 if (fa->var->ref && fa->var->ref->type == REF_ARRAY)
9911 gfc_error ("FORALL index-name at %L must be a scalar variable "
9912 "of type integer", &fa->var->where);
9913 continue;
9916 /* Check if any outer FORALL index name is the same as the current
9917 one. */
9918 for (i = 0; i < nvar; i++)
9920 if (fa->var->symtree->n.sym == var_expr[i]->symtree->n.sym)
9921 gfc_error ("An outer FORALL construct already has an index "
9922 "with this name %L", &fa->var->where);
9925 /* Record the current FORALL index. */
9926 var_expr[nvar] = gfc_copy_expr (fa->var);
9928 nvar++;
9930 /* No memory leak. */
9931 gcc_assert (nvar <= total_var);
9934 /* Resolve the FORALL body. */
9935 gfc_resolve_forall_body (code, nvar, var_expr);
9937 /* May call gfc_resolve_forall to resolve the inner FORALL loop. */
9938 gfc_resolve_blocks (code->block, ns);
9940 tmp = nvar;
9941 nvar = old_nvar;
9942 /* Free only the VAR_EXPRs allocated in this frame. */
9943 for (i = nvar; i < tmp; i++)
9944 gfc_free_expr (var_expr[i]);
9946 if (nvar == 0)
9948 /* We are in the outermost FORALL construct. */
9949 gcc_assert (forall_save == 0);
9951 /* VAR_EXPR is not needed any more. */
9952 free (var_expr);
9953 total_var = 0;
9958 /* Resolve a BLOCK construct statement. */
9960 static void
9961 resolve_block_construct (gfc_code* code)
9963 /* Resolve the BLOCK's namespace. */
9964 gfc_resolve (code->ext.block.ns);
9966 /* For an ASSOCIATE block, the associations (and their targets) are already
9967 resolved during resolve_symbol. */
9971 /* Resolve lists of blocks found in IF, SELECT CASE, WHERE, FORALL, GOTO and
9972 DO code nodes. */
9974 void
9975 gfc_resolve_blocks (gfc_code *b, gfc_namespace *ns)
9977 bool t;
9979 for (; b; b = b->block)
9981 t = gfc_resolve_expr (b->expr1);
9982 if (!gfc_resolve_expr (b->expr2))
9983 t = false;
9985 switch (b->op)
9987 case EXEC_IF:
9988 if (t && b->expr1 != NULL
9989 && (b->expr1->ts.type != BT_LOGICAL || b->expr1->rank != 0))
9990 gfc_error ("IF clause at %L requires a scalar LOGICAL expression",
9991 &b->expr1->where);
9992 break;
9994 case EXEC_WHERE:
9995 if (t
9996 && b->expr1 != NULL
9997 && (b->expr1->ts.type != BT_LOGICAL || b->expr1->rank == 0))
9998 gfc_error ("WHERE/ELSEWHERE clause at %L requires a LOGICAL array",
9999 &b->expr1->where);
10000 break;
10002 case EXEC_GOTO:
10003 resolve_branch (b->label1, b);
10004 break;
10006 case EXEC_BLOCK:
10007 resolve_block_construct (b);
10008 break;
10010 case EXEC_SELECT:
10011 case EXEC_SELECT_TYPE:
10012 case EXEC_FORALL:
10013 case EXEC_DO:
10014 case EXEC_DO_WHILE:
10015 case EXEC_DO_CONCURRENT:
10016 case EXEC_CRITICAL:
10017 case EXEC_READ:
10018 case EXEC_WRITE:
10019 case EXEC_IOLENGTH:
10020 case EXEC_WAIT:
10021 break;
10023 case EXEC_OMP_ATOMIC:
10024 case EXEC_OACC_ATOMIC:
10026 gfc_omp_atomic_op aop
10027 = (gfc_omp_atomic_op) (b->ext.omp_atomic & GFC_OMP_ATOMIC_MASK);
10029 /* Verify this before calling gfc_resolve_code, which might
10030 change it. */
10031 gcc_assert (b->next && b->next->op == EXEC_ASSIGN);
10032 gcc_assert (((aop != GFC_OMP_ATOMIC_CAPTURE)
10033 && b->next->next == NULL)
10034 || ((aop == GFC_OMP_ATOMIC_CAPTURE)
10035 && b->next->next != NULL
10036 && b->next->next->op == EXEC_ASSIGN
10037 && b->next->next->next == NULL));
10039 break;
10041 case EXEC_OACC_PARALLEL_LOOP:
10042 case EXEC_OACC_PARALLEL:
10043 case EXEC_OACC_KERNELS_LOOP:
10044 case EXEC_OACC_KERNELS:
10045 case EXEC_OACC_DATA:
10046 case EXEC_OACC_HOST_DATA:
10047 case EXEC_OACC_LOOP:
10048 case EXEC_OACC_UPDATE:
10049 case EXEC_OACC_WAIT:
10050 case EXEC_OACC_CACHE:
10051 case EXEC_OACC_ENTER_DATA:
10052 case EXEC_OACC_EXIT_DATA:
10053 case EXEC_OACC_ROUTINE:
10054 case EXEC_OMP_CRITICAL:
10055 case EXEC_OMP_DISTRIBUTE:
10056 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
10057 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
10058 case EXEC_OMP_DISTRIBUTE_SIMD:
10059 case EXEC_OMP_DO:
10060 case EXEC_OMP_DO_SIMD:
10061 case EXEC_OMP_MASTER:
10062 case EXEC_OMP_ORDERED:
10063 case EXEC_OMP_PARALLEL:
10064 case EXEC_OMP_PARALLEL_DO:
10065 case EXEC_OMP_PARALLEL_DO_SIMD:
10066 case EXEC_OMP_PARALLEL_SECTIONS:
10067 case EXEC_OMP_PARALLEL_WORKSHARE:
10068 case EXEC_OMP_SECTIONS:
10069 case EXEC_OMP_SIMD:
10070 case EXEC_OMP_SINGLE:
10071 case EXEC_OMP_TARGET:
10072 case EXEC_OMP_TARGET_DATA:
10073 case EXEC_OMP_TARGET_ENTER_DATA:
10074 case EXEC_OMP_TARGET_EXIT_DATA:
10075 case EXEC_OMP_TARGET_PARALLEL:
10076 case EXEC_OMP_TARGET_PARALLEL_DO:
10077 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
10078 case EXEC_OMP_TARGET_SIMD:
10079 case EXEC_OMP_TARGET_TEAMS:
10080 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
10081 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
10082 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
10083 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
10084 case EXEC_OMP_TARGET_UPDATE:
10085 case EXEC_OMP_TASK:
10086 case EXEC_OMP_TASKGROUP:
10087 case EXEC_OMP_TASKLOOP:
10088 case EXEC_OMP_TASKLOOP_SIMD:
10089 case EXEC_OMP_TASKWAIT:
10090 case EXEC_OMP_TASKYIELD:
10091 case EXEC_OMP_TEAMS:
10092 case EXEC_OMP_TEAMS_DISTRIBUTE:
10093 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
10094 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
10095 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
10096 case EXEC_OMP_WORKSHARE:
10097 break;
10099 default:
10100 gfc_internal_error ("gfc_resolve_blocks(): Bad block type");
10103 gfc_resolve_code (b->next, ns);
10108 /* Does everything to resolve an ordinary assignment. Returns true
10109 if this is an interface assignment. */
10110 static bool
10111 resolve_ordinary_assign (gfc_code *code, gfc_namespace *ns)
10113 bool rval = false;
10114 gfc_expr *lhs;
10115 gfc_expr *rhs;
10116 int llen = 0;
10117 int rlen = 0;
10118 int n;
10119 gfc_ref *ref;
10120 symbol_attribute attr;
10122 if (gfc_extend_assign (code, ns))
10124 gfc_expr** rhsptr;
10126 if (code->op == EXEC_ASSIGN_CALL)
10128 lhs = code->ext.actual->expr;
10129 rhsptr = &code->ext.actual->next->expr;
10131 else
10133 gfc_actual_arglist* args;
10134 gfc_typebound_proc* tbp;
10136 gcc_assert (code->op == EXEC_COMPCALL);
10138 args = code->expr1->value.compcall.actual;
10139 lhs = args->expr;
10140 rhsptr = &args->next->expr;
10142 tbp = code->expr1->value.compcall.tbp;
10143 gcc_assert (!tbp->is_generic);
10146 /* Make a temporary rhs when there is a default initializer
10147 and rhs is the same symbol as the lhs. */
10148 if ((*rhsptr)->expr_type == EXPR_VARIABLE
10149 && (*rhsptr)->symtree->n.sym->ts.type == BT_DERIVED
10150 && gfc_has_default_initializer ((*rhsptr)->symtree->n.sym->ts.u.derived)
10151 && (lhs->symtree->n.sym == (*rhsptr)->symtree->n.sym))
10152 *rhsptr = gfc_get_parentheses (*rhsptr);
10154 return true;
10157 lhs = code->expr1;
10158 rhs = code->expr2;
10160 if (rhs->is_boz
10161 && !gfc_notify_std (GFC_STD_GNU, "BOZ literal at %L outside "
10162 "a DATA statement and outside INT/REAL/DBLE/CMPLX",
10163 &code->loc))
10164 return false;
10166 /* Handle the case of a BOZ literal on the RHS. */
10167 if (rhs->is_boz && lhs->ts.type != BT_INTEGER)
10169 int rc;
10170 if (warn_surprising)
10171 gfc_warning (OPT_Wsurprising,
10172 "BOZ literal at %L is bitwise transferred "
10173 "non-integer symbol %qs", &code->loc,
10174 lhs->symtree->n.sym->name);
10176 if (!gfc_convert_boz (rhs, &lhs->ts))
10177 return false;
10178 if ((rc = gfc_range_check (rhs)) != ARITH_OK)
10180 if (rc == ARITH_UNDERFLOW)
10181 gfc_error ("Arithmetic underflow of bit-wise transferred BOZ at %L"
10182 ". This check can be disabled with the option "
10183 "%<-fno-range-check%>", &rhs->where);
10184 else if (rc == ARITH_OVERFLOW)
10185 gfc_error ("Arithmetic overflow of bit-wise transferred BOZ at %L"
10186 ". This check can be disabled with the option "
10187 "%<-fno-range-check%>", &rhs->where);
10188 else if (rc == ARITH_NAN)
10189 gfc_error ("Arithmetic NaN of bit-wise transferred BOZ at %L"
10190 ". This check can be disabled with the option "
10191 "%<-fno-range-check%>", &rhs->where);
10192 return false;
10196 if (lhs->ts.type == BT_CHARACTER
10197 && warn_character_truncation)
10199 if (lhs->ts.u.cl != NULL
10200 && lhs->ts.u.cl->length != NULL
10201 && lhs->ts.u.cl->length->expr_type == EXPR_CONSTANT)
10202 llen = mpz_get_si (lhs->ts.u.cl->length->value.integer);
10204 if (rhs->expr_type == EXPR_CONSTANT)
10205 rlen = rhs->value.character.length;
10207 else if (rhs->ts.u.cl != NULL
10208 && rhs->ts.u.cl->length != NULL
10209 && rhs->ts.u.cl->length->expr_type == EXPR_CONSTANT)
10210 rlen = mpz_get_si (rhs->ts.u.cl->length->value.integer);
10212 if (rlen && llen && rlen > llen)
10213 gfc_warning_now (OPT_Wcharacter_truncation,
10214 "CHARACTER expression will be truncated "
10215 "in assignment (%d/%d) at %L",
10216 llen, rlen, &code->loc);
10219 /* Ensure that a vector index expression for the lvalue is evaluated
10220 to a temporary if the lvalue symbol is referenced in it. */
10221 if (lhs->rank)
10223 for (ref = lhs->ref; ref; ref= ref->next)
10224 if (ref->type == REF_ARRAY)
10226 for (n = 0; n < ref->u.ar.dimen; n++)
10227 if (ref->u.ar.dimen_type[n] == DIMEN_VECTOR
10228 && gfc_find_sym_in_expr (lhs->symtree->n.sym,
10229 ref->u.ar.start[n]))
10230 ref->u.ar.start[n]
10231 = gfc_get_parentheses (ref->u.ar.start[n]);
10235 if (gfc_pure (NULL))
10237 if (lhs->ts.type == BT_DERIVED
10238 && lhs->expr_type == EXPR_VARIABLE
10239 && lhs->ts.u.derived->attr.pointer_comp
10240 && rhs->expr_type == EXPR_VARIABLE
10241 && (gfc_impure_variable (rhs->symtree->n.sym)
10242 || gfc_is_coindexed (rhs)))
10244 /* F2008, C1283. */
10245 if (gfc_is_coindexed (rhs))
10246 gfc_error ("Coindexed expression at %L is assigned to "
10247 "a derived type variable with a POINTER "
10248 "component in a PURE procedure",
10249 &rhs->where);
10250 else
10251 gfc_error ("The impure variable at %L is assigned to "
10252 "a derived type variable with a POINTER "
10253 "component in a PURE procedure (12.6)",
10254 &rhs->where);
10255 return rval;
10258 /* Fortran 2008, C1283. */
10259 if (gfc_is_coindexed (lhs))
10261 gfc_error ("Assignment to coindexed variable at %L in a PURE "
10262 "procedure", &rhs->where);
10263 return rval;
10267 if (gfc_implicit_pure (NULL))
10269 if (lhs->expr_type == EXPR_VARIABLE
10270 && lhs->symtree->n.sym != gfc_current_ns->proc_name
10271 && lhs->symtree->n.sym->ns != gfc_current_ns)
10272 gfc_unset_implicit_pure (NULL);
10274 if (lhs->ts.type == BT_DERIVED
10275 && lhs->expr_type == EXPR_VARIABLE
10276 && lhs->ts.u.derived->attr.pointer_comp
10277 && rhs->expr_type == EXPR_VARIABLE
10278 && (gfc_impure_variable (rhs->symtree->n.sym)
10279 || gfc_is_coindexed (rhs)))
10280 gfc_unset_implicit_pure (NULL);
10282 /* Fortran 2008, C1283. */
10283 if (gfc_is_coindexed (lhs))
10284 gfc_unset_implicit_pure (NULL);
10287 /* F2008, 7.2.1.2. */
10288 attr = gfc_expr_attr (lhs);
10289 if (lhs->ts.type == BT_CLASS && attr.allocatable)
10291 if (attr.codimension)
10293 gfc_error ("Assignment to polymorphic coarray at %L is not "
10294 "permitted", &lhs->where);
10295 return false;
10297 if (!gfc_notify_std (GFC_STD_F2008, "Assignment to an allocatable "
10298 "polymorphic variable at %L", &lhs->where))
10299 return false;
10300 if (!flag_realloc_lhs)
10302 gfc_error ("Assignment to an allocatable polymorphic variable at %L "
10303 "requires %<-frealloc-lhs%>", &lhs->where);
10304 return false;
10307 else if (lhs->ts.type == BT_CLASS)
10309 gfc_error ("Nonallocatable variable must not be polymorphic in intrinsic "
10310 "assignment at %L - check that there is a matching specific "
10311 "subroutine for '=' operator", &lhs->where);
10312 return false;
10315 bool lhs_coindexed = gfc_is_coindexed (lhs);
10317 /* F2008, Section 7.2.1.2. */
10318 if (lhs_coindexed && gfc_has_ultimate_allocatable (lhs))
10320 gfc_error ("Coindexed variable must not have an allocatable ultimate "
10321 "component in assignment at %L", &lhs->where);
10322 return false;
10325 /* Assign the 'data' of a class object to a derived type. */
10326 if (lhs->ts.type == BT_DERIVED
10327 && rhs->ts.type == BT_CLASS
10328 && rhs->expr_type != EXPR_ARRAY)
10329 gfc_add_data_component (rhs);
10331 bool caf_convert_to_send = flag_coarray == GFC_FCOARRAY_LIB
10332 && (lhs_coindexed
10333 || (code->expr2->expr_type == EXPR_FUNCTION
10334 && code->expr2->value.function.isym
10335 && code->expr2->value.function.isym->id == GFC_ISYM_CAF_GET
10336 && (code->expr1->rank == 0 || code->expr2->rank != 0)
10337 && !gfc_expr_attr (rhs).allocatable
10338 && !gfc_has_vector_subscript (rhs)));
10340 gfc_check_assign (lhs, rhs, 1, !caf_convert_to_send);
10342 /* Insert a GFC_ISYM_CAF_SEND intrinsic, when the LHS is a coindexed variable.
10343 Additionally, insert this code when the RHS is a CAF as we then use the
10344 GFC_ISYM_CAF_SEND intrinsic just to avoid a temporary; but do not do so if
10345 the LHS is (re)allocatable or has a vector subscript. If the LHS is a
10346 noncoindexed array and the RHS is a coindexed scalar, use the normal code
10347 path. */
10348 if (caf_convert_to_send)
10350 if (code->expr2->expr_type == EXPR_FUNCTION
10351 && code->expr2->value.function.isym
10352 && code->expr2->value.function.isym->id == GFC_ISYM_CAF_GET)
10353 remove_caf_get_intrinsic (code->expr2);
10354 code->op = EXEC_CALL;
10355 gfc_get_sym_tree (GFC_PREFIX ("caf_send"), ns, &code->symtree, true);
10356 code->resolved_sym = code->symtree->n.sym;
10357 code->resolved_sym->attr.flavor = FL_PROCEDURE;
10358 code->resolved_sym->attr.intrinsic = 1;
10359 code->resolved_sym->attr.subroutine = 1;
10360 code->resolved_isym = gfc_intrinsic_subroutine_by_id (GFC_ISYM_CAF_SEND);
10361 gfc_commit_symbol (code->resolved_sym);
10362 code->ext.actual = gfc_get_actual_arglist ();
10363 code->ext.actual->expr = lhs;
10364 code->ext.actual->next = gfc_get_actual_arglist ();
10365 code->ext.actual->next->expr = rhs;
10366 code->expr1 = NULL;
10367 code->expr2 = NULL;
10370 return false;
10374 /* Add a component reference onto an expression. */
10376 static void
10377 add_comp_ref (gfc_expr *e, gfc_component *c)
10379 gfc_ref **ref;
10380 ref = &(e->ref);
10381 while (*ref)
10382 ref = &((*ref)->next);
10383 *ref = gfc_get_ref ();
10384 (*ref)->type = REF_COMPONENT;
10385 (*ref)->u.c.sym = e->ts.u.derived;
10386 (*ref)->u.c.component = c;
10387 e->ts = c->ts;
10389 /* Add a full array ref, as necessary. */
10390 if (c->as)
10392 gfc_add_full_array_ref (e, c->as);
10393 e->rank = c->as->rank;
10398 /* Build an assignment. Keep the argument 'op' for future use, so that
10399 pointer assignments can be made. */
10401 static gfc_code *
10402 build_assignment (gfc_exec_op op, gfc_expr *expr1, gfc_expr *expr2,
10403 gfc_component *comp1, gfc_component *comp2, locus loc)
10405 gfc_code *this_code;
10407 this_code = gfc_get_code (op);
10408 this_code->next = NULL;
10409 this_code->expr1 = gfc_copy_expr (expr1);
10410 this_code->expr2 = gfc_copy_expr (expr2);
10411 this_code->loc = loc;
10412 if (comp1 && comp2)
10414 add_comp_ref (this_code->expr1, comp1);
10415 add_comp_ref (this_code->expr2, comp2);
10418 return this_code;
10422 /* Makes a temporary variable expression based on the characteristics of
10423 a given variable expression. */
10425 static gfc_expr*
10426 get_temp_from_expr (gfc_expr *e, gfc_namespace *ns)
10428 static int serial = 0;
10429 char name[GFC_MAX_SYMBOL_LEN];
10430 gfc_symtree *tmp;
10431 gfc_array_spec *as;
10432 gfc_array_ref *aref;
10433 gfc_ref *ref;
10435 sprintf (name, GFC_PREFIX("DA%d"), serial++);
10436 gfc_get_sym_tree (name, ns, &tmp, false);
10437 gfc_add_type (tmp->n.sym, &e->ts, NULL);
10439 as = NULL;
10440 ref = NULL;
10441 aref = NULL;
10443 /* Obtain the arrayspec for the temporary. */
10444 if (e->rank && e->expr_type != EXPR_ARRAY
10445 && e->expr_type != EXPR_FUNCTION
10446 && e->expr_type != EXPR_OP)
10448 aref = gfc_find_array_ref (e);
10449 if (e->expr_type == EXPR_VARIABLE
10450 && e->symtree->n.sym->as == aref->as)
10451 as = aref->as;
10452 else
10454 for (ref = e->ref; ref; ref = ref->next)
10455 if (ref->type == REF_COMPONENT
10456 && ref->u.c.component->as == aref->as)
10458 as = aref->as;
10459 break;
10464 /* Add the attributes and the arrayspec to the temporary. */
10465 tmp->n.sym->attr = gfc_expr_attr (e);
10466 tmp->n.sym->attr.function = 0;
10467 tmp->n.sym->attr.result = 0;
10468 tmp->n.sym->attr.flavor = FL_VARIABLE;
10470 if (as)
10472 tmp->n.sym->as = gfc_copy_array_spec (as);
10473 if (!ref)
10474 ref = e->ref;
10475 if (as->type == AS_DEFERRED)
10476 tmp->n.sym->attr.allocatable = 1;
10478 else if (e->rank && (e->expr_type == EXPR_ARRAY
10479 || e->expr_type == EXPR_FUNCTION
10480 || e->expr_type == EXPR_OP))
10482 tmp->n.sym->as = gfc_get_array_spec ();
10483 tmp->n.sym->as->type = AS_DEFERRED;
10484 tmp->n.sym->as->rank = e->rank;
10485 tmp->n.sym->attr.allocatable = 1;
10486 tmp->n.sym->attr.dimension = 1;
10488 else
10489 tmp->n.sym->attr.dimension = 0;
10491 gfc_set_sym_referenced (tmp->n.sym);
10492 gfc_commit_symbol (tmp->n.sym);
10493 e = gfc_lval_expr_from_sym (tmp->n.sym);
10495 /* Should the lhs be a section, use its array ref for the
10496 temporary expression. */
10497 if (aref && aref->type != AR_FULL)
10499 gfc_free_ref_list (e->ref);
10500 e->ref = gfc_copy_ref (ref);
10502 return e;
10506 /* Add one line of code to the code chain, making sure that 'head' and
10507 'tail' are appropriately updated. */
10509 static void
10510 add_code_to_chain (gfc_code **this_code, gfc_code **head, gfc_code **tail)
10512 gcc_assert (this_code);
10513 if (*head == NULL)
10514 *head = *tail = *this_code;
10515 else
10516 *tail = gfc_append_code (*tail, *this_code);
10517 *this_code = NULL;
10521 /* Counts the potential number of part array references that would
10522 result from resolution of typebound defined assignments. */
10524 static int
10525 nonscalar_typebound_assign (gfc_symbol *derived, int depth)
10527 gfc_component *c;
10528 int c_depth = 0, t_depth;
10530 for (c= derived->components; c; c = c->next)
10532 if ((!gfc_bt_struct (c->ts.type)
10533 || c->attr.pointer
10534 || c->attr.allocatable
10535 || c->attr.proc_pointer_comp
10536 || c->attr.class_pointer
10537 || c->attr.proc_pointer)
10538 && !c->attr.defined_assign_comp)
10539 continue;
10541 if (c->as && c_depth == 0)
10542 c_depth = 1;
10544 if (c->ts.u.derived->attr.defined_assign_comp)
10545 t_depth = nonscalar_typebound_assign (c->ts.u.derived,
10546 c->as ? 1 : 0);
10547 else
10548 t_depth = 0;
10550 c_depth = t_depth > c_depth ? t_depth : c_depth;
10552 return depth + c_depth;
10556 /* Implement 7.2.1.3 of the F08 standard:
10557 "An intrinsic assignment where the variable is of derived type is
10558 performed as if each component of the variable were assigned from the
10559 corresponding component of expr using pointer assignment (7.2.2) for
10560 each pointer component, defined assignment for each nonpointer
10561 nonallocatable component of a type that has a type-bound defined
10562 assignment consistent with the component, intrinsic assignment for
10563 each other nonpointer nonallocatable component, ..."
10565 The pointer assignments are taken care of by the intrinsic
10566 assignment of the structure itself. This function recursively adds
10567 defined assignments where required. The recursion is accomplished
10568 by calling gfc_resolve_code.
10570 When the lhs in a defined assignment has intent INOUT, we need a
10571 temporary for the lhs. In pseudo-code:
10573 ! Only call function lhs once.
10574 if (lhs is not a constant or an variable)
10575 temp_x = expr2
10576 expr2 => temp_x
10577 ! Do the intrinsic assignment
10578 expr1 = expr2
10579 ! Now do the defined assignments
10580 do over components with typebound defined assignment [%cmp]
10581 #if one component's assignment procedure is INOUT
10582 t1 = expr1
10583 #if expr2 non-variable
10584 temp_x = expr2
10585 expr2 => temp_x
10586 # endif
10587 expr1 = expr2
10588 # for each cmp
10589 t1%cmp {defined=} expr2%cmp
10590 expr1%cmp = t1%cmp
10591 #else
10592 expr1 = expr2
10594 # for each cmp
10595 expr1%cmp {defined=} expr2%cmp
10596 #endif
10599 /* The temporary assignments have to be put on top of the additional
10600 code to avoid the result being changed by the intrinsic assignment.
10602 static int component_assignment_level = 0;
10603 static gfc_code *tmp_head = NULL, *tmp_tail = NULL;
10605 static void
10606 generate_component_assignments (gfc_code **code, gfc_namespace *ns)
10608 gfc_component *comp1, *comp2;
10609 gfc_code *this_code = NULL, *head = NULL, *tail = NULL;
10610 gfc_expr *t1;
10611 int error_count, depth;
10613 gfc_get_errors (NULL, &error_count);
10615 /* Filter out continuing processing after an error. */
10616 if (error_count
10617 || (*code)->expr1->ts.type != BT_DERIVED
10618 || (*code)->expr2->ts.type != BT_DERIVED)
10619 return;
10621 /* TODO: Handle more than one part array reference in assignments. */
10622 depth = nonscalar_typebound_assign ((*code)->expr1->ts.u.derived,
10623 (*code)->expr1->rank ? 1 : 0);
10624 if (depth > 1)
10626 gfc_warning (0, "TODO: type-bound defined assignment(s) at %L not "
10627 "done because multiple part array references would "
10628 "occur in intermediate expressions.", &(*code)->loc);
10629 return;
10632 component_assignment_level++;
10634 /* Create a temporary so that functions get called only once. */
10635 if ((*code)->expr2->expr_type != EXPR_VARIABLE
10636 && (*code)->expr2->expr_type != EXPR_CONSTANT)
10638 gfc_expr *tmp_expr;
10640 /* Assign the rhs to the temporary. */
10641 tmp_expr = get_temp_from_expr ((*code)->expr1, ns);
10642 this_code = build_assignment (EXEC_ASSIGN,
10643 tmp_expr, (*code)->expr2,
10644 NULL, NULL, (*code)->loc);
10645 /* Add the code and substitute the rhs expression. */
10646 add_code_to_chain (&this_code, &tmp_head, &tmp_tail);
10647 gfc_free_expr ((*code)->expr2);
10648 (*code)->expr2 = tmp_expr;
10651 /* Do the intrinsic assignment. This is not needed if the lhs is one
10652 of the temporaries generated here, since the intrinsic assignment
10653 to the final result already does this. */
10654 if ((*code)->expr1->symtree->n.sym->name[2] != '@')
10656 this_code = build_assignment (EXEC_ASSIGN,
10657 (*code)->expr1, (*code)->expr2,
10658 NULL, NULL, (*code)->loc);
10659 add_code_to_chain (&this_code, &head, &tail);
10662 comp1 = (*code)->expr1->ts.u.derived->components;
10663 comp2 = (*code)->expr2->ts.u.derived->components;
10665 t1 = NULL;
10666 for (; comp1; comp1 = comp1->next, comp2 = comp2->next)
10668 bool inout = false;
10670 /* The intrinsic assignment does the right thing for pointers
10671 of all kinds and allocatable components. */
10672 if (!gfc_bt_struct (comp1->ts.type)
10673 || comp1->attr.pointer
10674 || comp1->attr.allocatable
10675 || comp1->attr.proc_pointer_comp
10676 || comp1->attr.class_pointer
10677 || comp1->attr.proc_pointer)
10678 continue;
10680 /* Make an assigment for this component. */
10681 this_code = build_assignment (EXEC_ASSIGN,
10682 (*code)->expr1, (*code)->expr2,
10683 comp1, comp2, (*code)->loc);
10685 /* Convert the assignment if there is a defined assignment for
10686 this type. Otherwise, using the call from gfc_resolve_code,
10687 recurse into its components. */
10688 gfc_resolve_code (this_code, ns);
10690 if (this_code->op == EXEC_ASSIGN_CALL)
10692 gfc_formal_arglist *dummy_args;
10693 gfc_symbol *rsym;
10694 /* Check that there is a typebound defined assignment. If not,
10695 then this must be a module defined assignment. We cannot
10696 use the defined_assign_comp attribute here because it must
10697 be this derived type that has the defined assignment and not
10698 a parent type. */
10699 if (!(comp1->ts.u.derived->f2k_derived
10700 && comp1->ts.u.derived->f2k_derived
10701 ->tb_op[INTRINSIC_ASSIGN]))
10703 gfc_free_statements (this_code);
10704 this_code = NULL;
10705 continue;
10708 /* If the first argument of the subroutine has intent INOUT
10709 a temporary must be generated and used instead. */
10710 rsym = this_code->resolved_sym;
10711 dummy_args = gfc_sym_get_dummy_args (rsym);
10712 if (dummy_args
10713 && dummy_args->sym->attr.intent == INTENT_INOUT)
10715 gfc_code *temp_code;
10716 inout = true;
10718 /* Build the temporary required for the assignment and put
10719 it at the head of the generated code. */
10720 if (!t1)
10722 t1 = get_temp_from_expr ((*code)->expr1, ns);
10723 temp_code = build_assignment (EXEC_ASSIGN,
10724 t1, (*code)->expr1,
10725 NULL, NULL, (*code)->loc);
10727 /* For allocatable LHS, check whether it is allocated. Note
10728 that allocatable components with defined assignment are
10729 not yet support. See PR 57696. */
10730 if ((*code)->expr1->symtree->n.sym->attr.allocatable)
10732 gfc_code *block;
10733 gfc_expr *e =
10734 gfc_lval_expr_from_sym ((*code)->expr1->symtree->n.sym);
10735 block = gfc_get_code (EXEC_IF);
10736 block->block = gfc_get_code (EXEC_IF);
10737 block->block->expr1
10738 = gfc_build_intrinsic_call (ns,
10739 GFC_ISYM_ALLOCATED, "allocated",
10740 (*code)->loc, 1, e);
10741 block->block->next = temp_code;
10742 temp_code = block;
10744 add_code_to_chain (&temp_code, &tmp_head, &tmp_tail);
10747 /* Replace the first actual arg with the component of the
10748 temporary. */
10749 gfc_free_expr (this_code->ext.actual->expr);
10750 this_code->ext.actual->expr = gfc_copy_expr (t1);
10751 add_comp_ref (this_code->ext.actual->expr, comp1);
10753 /* If the LHS variable is allocatable and wasn't allocated and
10754 the temporary is allocatable, pointer assign the address of
10755 the freshly allocated LHS to the temporary. */
10756 if ((*code)->expr1->symtree->n.sym->attr.allocatable
10757 && gfc_expr_attr ((*code)->expr1).allocatable)
10759 gfc_code *block;
10760 gfc_expr *cond;
10762 cond = gfc_get_expr ();
10763 cond->ts.type = BT_LOGICAL;
10764 cond->ts.kind = gfc_default_logical_kind;
10765 cond->expr_type = EXPR_OP;
10766 cond->where = (*code)->loc;
10767 cond->value.op.op = INTRINSIC_NOT;
10768 cond->value.op.op1 = gfc_build_intrinsic_call (ns,
10769 GFC_ISYM_ALLOCATED, "allocated",
10770 (*code)->loc, 1, gfc_copy_expr (t1));
10771 block = gfc_get_code (EXEC_IF);
10772 block->block = gfc_get_code (EXEC_IF);
10773 block->block->expr1 = cond;
10774 block->block->next = build_assignment (EXEC_POINTER_ASSIGN,
10775 t1, (*code)->expr1,
10776 NULL, NULL, (*code)->loc);
10777 add_code_to_chain (&block, &head, &tail);
10781 else if (this_code->op == EXEC_ASSIGN && !this_code->next)
10783 /* Don't add intrinsic assignments since they are already
10784 effected by the intrinsic assignment of the structure. */
10785 gfc_free_statements (this_code);
10786 this_code = NULL;
10787 continue;
10790 add_code_to_chain (&this_code, &head, &tail);
10792 if (t1 && inout)
10794 /* Transfer the value to the final result. */
10795 this_code = build_assignment (EXEC_ASSIGN,
10796 (*code)->expr1, t1,
10797 comp1, comp2, (*code)->loc);
10798 add_code_to_chain (&this_code, &head, &tail);
10802 /* Put the temporary assignments at the top of the generated code. */
10803 if (tmp_head && component_assignment_level == 1)
10805 gfc_append_code (tmp_head, head);
10806 head = tmp_head;
10807 tmp_head = tmp_tail = NULL;
10810 // If we did a pointer assignment - thus, we need to ensure that the LHS is
10811 // not accidentally deallocated. Hence, nullify t1.
10812 if (t1 && (*code)->expr1->symtree->n.sym->attr.allocatable
10813 && gfc_expr_attr ((*code)->expr1).allocatable)
10815 gfc_code *block;
10816 gfc_expr *cond;
10817 gfc_expr *e;
10819 e = gfc_lval_expr_from_sym ((*code)->expr1->symtree->n.sym);
10820 cond = gfc_build_intrinsic_call (ns, GFC_ISYM_ASSOCIATED, "associated",
10821 (*code)->loc, 2, gfc_copy_expr (t1), e);
10822 block = gfc_get_code (EXEC_IF);
10823 block->block = gfc_get_code (EXEC_IF);
10824 block->block->expr1 = cond;
10825 block->block->next = build_assignment (EXEC_POINTER_ASSIGN,
10826 t1, gfc_get_null_expr (&(*code)->loc),
10827 NULL, NULL, (*code)->loc);
10828 gfc_append_code (tail, block);
10829 tail = block;
10832 /* Now attach the remaining code chain to the input code. Step on
10833 to the end of the new code since resolution is complete. */
10834 gcc_assert ((*code)->op == EXEC_ASSIGN);
10835 tail->next = (*code)->next;
10836 /* Overwrite 'code' because this would place the intrinsic assignment
10837 before the temporary for the lhs is created. */
10838 gfc_free_expr ((*code)->expr1);
10839 gfc_free_expr ((*code)->expr2);
10840 **code = *head;
10841 if (head != tail)
10842 free (head);
10843 *code = tail;
10845 component_assignment_level--;
10849 /* F2008: Pointer function assignments are of the form:
10850 ptr_fcn (args) = expr
10851 This function breaks these assignments into two statements:
10852 temporary_pointer => ptr_fcn(args)
10853 temporary_pointer = expr */
10855 static bool
10856 resolve_ptr_fcn_assign (gfc_code **code, gfc_namespace *ns)
10858 gfc_expr *tmp_ptr_expr;
10859 gfc_code *this_code;
10860 gfc_component *comp;
10861 gfc_symbol *s;
10863 if ((*code)->expr1->expr_type != EXPR_FUNCTION)
10864 return false;
10866 /* Even if standard does not support this feature, continue to build
10867 the two statements to avoid upsetting frontend_passes.c. */
10868 gfc_notify_std (GFC_STD_F2008, "Pointer procedure assignment at "
10869 "%L", &(*code)->loc);
10871 comp = gfc_get_proc_ptr_comp ((*code)->expr1);
10873 if (comp)
10874 s = comp->ts.interface;
10875 else
10876 s = (*code)->expr1->symtree->n.sym;
10878 if (s == NULL || !s->result->attr.pointer)
10880 gfc_error ("The function result on the lhs of the assignment at "
10881 "%L must have the pointer attribute.",
10882 &(*code)->expr1->where);
10883 (*code)->op = EXEC_NOP;
10884 return false;
10887 tmp_ptr_expr = get_temp_from_expr ((*code)->expr2, ns);
10889 /* get_temp_from_expression is set up for ordinary assignments. To that
10890 end, where array bounds are not known, arrays are made allocatable.
10891 Change the temporary to a pointer here. */
10892 tmp_ptr_expr->symtree->n.sym->attr.pointer = 1;
10893 tmp_ptr_expr->symtree->n.sym->attr.allocatable = 0;
10894 tmp_ptr_expr->where = (*code)->loc;
10896 this_code = build_assignment (EXEC_ASSIGN,
10897 tmp_ptr_expr, (*code)->expr2,
10898 NULL, NULL, (*code)->loc);
10899 this_code->next = (*code)->next;
10900 (*code)->next = this_code;
10901 (*code)->op = EXEC_POINTER_ASSIGN;
10902 (*code)->expr2 = (*code)->expr1;
10903 (*code)->expr1 = tmp_ptr_expr;
10905 return true;
10909 /* Deferred character length assignments from an operator expression
10910 require a temporary because the character length of the lhs can
10911 change in the course of the assignment. */
10913 static bool
10914 deferred_op_assign (gfc_code **code, gfc_namespace *ns)
10916 gfc_expr *tmp_expr;
10917 gfc_code *this_code;
10919 if (!((*code)->expr1->ts.type == BT_CHARACTER
10920 && (*code)->expr1->ts.deferred && (*code)->expr1->rank
10921 && (*code)->expr2->expr_type == EXPR_OP))
10922 return false;
10924 if (!gfc_check_dependency ((*code)->expr1, (*code)->expr2, 1))
10925 return false;
10927 tmp_expr = get_temp_from_expr ((*code)->expr1, ns);
10928 tmp_expr->where = (*code)->loc;
10930 /* A new charlen is required to ensure that the variable string
10931 length is different to that of the original lhs. */
10932 tmp_expr->ts.u.cl = gfc_get_charlen();
10933 tmp_expr->symtree->n.sym->ts.u.cl = tmp_expr->ts.u.cl;
10934 tmp_expr->ts.u.cl->next = (*code)->expr2->ts.u.cl->next;
10935 (*code)->expr2->ts.u.cl->next = tmp_expr->ts.u.cl;
10937 tmp_expr->symtree->n.sym->ts.deferred = 1;
10939 this_code = build_assignment (EXEC_ASSIGN,
10940 (*code)->expr1,
10941 gfc_copy_expr (tmp_expr),
10942 NULL, NULL, (*code)->loc);
10944 (*code)->expr1 = tmp_expr;
10946 this_code->next = (*code)->next;
10947 (*code)->next = this_code;
10949 return true;
10953 /* Given a block of code, recursively resolve everything pointed to by this
10954 code block. */
10956 void
10957 gfc_resolve_code (gfc_code *code, gfc_namespace *ns)
10959 int omp_workshare_save;
10960 int forall_save, do_concurrent_save;
10961 code_stack frame;
10962 bool t;
10964 frame.prev = cs_base;
10965 frame.head = code;
10966 cs_base = &frame;
10968 find_reachable_labels (code);
10970 for (; code; code = code->next)
10972 frame.current = code;
10973 forall_save = forall_flag;
10974 do_concurrent_save = gfc_do_concurrent_flag;
10976 if (code->op == EXEC_FORALL)
10978 forall_flag = 1;
10979 gfc_resolve_forall (code, ns, forall_save);
10980 forall_flag = 2;
10982 else if (code->block)
10984 omp_workshare_save = -1;
10985 switch (code->op)
10987 case EXEC_OACC_PARALLEL_LOOP:
10988 case EXEC_OACC_PARALLEL:
10989 case EXEC_OACC_KERNELS_LOOP:
10990 case EXEC_OACC_KERNELS:
10991 case EXEC_OACC_DATA:
10992 case EXEC_OACC_HOST_DATA:
10993 case EXEC_OACC_LOOP:
10994 gfc_resolve_oacc_blocks (code, ns);
10995 break;
10996 case EXEC_OMP_PARALLEL_WORKSHARE:
10997 omp_workshare_save = omp_workshare_flag;
10998 omp_workshare_flag = 1;
10999 gfc_resolve_omp_parallel_blocks (code, ns);
11000 break;
11001 case EXEC_OMP_PARALLEL:
11002 case EXEC_OMP_PARALLEL_DO:
11003 case EXEC_OMP_PARALLEL_DO_SIMD:
11004 case EXEC_OMP_PARALLEL_SECTIONS:
11005 case EXEC_OMP_TARGET_PARALLEL:
11006 case EXEC_OMP_TARGET_PARALLEL_DO:
11007 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
11008 case EXEC_OMP_TARGET_TEAMS:
11009 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
11010 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
11011 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11012 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
11013 case EXEC_OMP_TASK:
11014 case EXEC_OMP_TASKLOOP:
11015 case EXEC_OMP_TASKLOOP_SIMD:
11016 case EXEC_OMP_TEAMS:
11017 case EXEC_OMP_TEAMS_DISTRIBUTE:
11018 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
11019 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11020 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
11021 omp_workshare_save = omp_workshare_flag;
11022 omp_workshare_flag = 0;
11023 gfc_resolve_omp_parallel_blocks (code, ns);
11024 break;
11025 case EXEC_OMP_DISTRIBUTE:
11026 case EXEC_OMP_DISTRIBUTE_SIMD:
11027 case EXEC_OMP_DO:
11028 case EXEC_OMP_DO_SIMD:
11029 case EXEC_OMP_SIMD:
11030 case EXEC_OMP_TARGET_SIMD:
11031 gfc_resolve_omp_do_blocks (code, ns);
11032 break;
11033 case EXEC_SELECT_TYPE:
11034 /* Blocks are handled in resolve_select_type because we have
11035 to transform the SELECT TYPE into ASSOCIATE first. */
11036 break;
11037 case EXEC_DO_CONCURRENT:
11038 gfc_do_concurrent_flag = 1;
11039 gfc_resolve_blocks (code->block, ns);
11040 gfc_do_concurrent_flag = 2;
11041 break;
11042 case EXEC_OMP_WORKSHARE:
11043 omp_workshare_save = omp_workshare_flag;
11044 omp_workshare_flag = 1;
11045 /* FALL THROUGH */
11046 default:
11047 gfc_resolve_blocks (code->block, ns);
11048 break;
11051 if (omp_workshare_save != -1)
11052 omp_workshare_flag = omp_workshare_save;
11054 start:
11055 t = true;
11056 if (code->op != EXEC_COMPCALL && code->op != EXEC_CALL_PPC)
11057 t = gfc_resolve_expr (code->expr1);
11058 forall_flag = forall_save;
11059 gfc_do_concurrent_flag = do_concurrent_save;
11061 if (!gfc_resolve_expr (code->expr2))
11062 t = false;
11064 if (code->op == EXEC_ALLOCATE
11065 && !gfc_resolve_expr (code->expr3))
11066 t = false;
11068 switch (code->op)
11070 case EXEC_NOP:
11071 case EXEC_END_BLOCK:
11072 case EXEC_END_NESTED_BLOCK:
11073 case EXEC_CYCLE:
11074 case EXEC_PAUSE:
11075 case EXEC_STOP:
11076 case EXEC_ERROR_STOP:
11077 case EXEC_EXIT:
11078 case EXEC_CONTINUE:
11079 case EXEC_DT_END:
11080 case EXEC_ASSIGN_CALL:
11081 break;
11083 case EXEC_CRITICAL:
11084 resolve_critical (code);
11085 break;
11087 case EXEC_SYNC_ALL:
11088 case EXEC_SYNC_IMAGES:
11089 case EXEC_SYNC_MEMORY:
11090 resolve_sync (code);
11091 break;
11093 case EXEC_LOCK:
11094 case EXEC_UNLOCK:
11095 case EXEC_EVENT_POST:
11096 case EXEC_EVENT_WAIT:
11097 resolve_lock_unlock_event (code);
11098 break;
11100 case EXEC_FAIL_IMAGE:
11101 break;
11103 case EXEC_ENTRY:
11104 /* Keep track of which entry we are up to. */
11105 current_entry_id = code->ext.entry->id;
11106 break;
11108 case EXEC_WHERE:
11109 resolve_where (code, NULL);
11110 break;
11112 case EXEC_GOTO:
11113 if (code->expr1 != NULL)
11115 if (code->expr1->ts.type != BT_INTEGER)
11116 gfc_error ("ASSIGNED GOTO statement at %L requires an "
11117 "INTEGER variable", &code->expr1->where);
11118 else if (code->expr1->symtree->n.sym->attr.assign != 1)
11119 gfc_error ("Variable %qs has not been assigned a target "
11120 "label at %L", code->expr1->symtree->n.sym->name,
11121 &code->expr1->where);
11123 else
11124 resolve_branch (code->label1, code);
11125 break;
11127 case EXEC_RETURN:
11128 if (code->expr1 != NULL
11129 && (code->expr1->ts.type != BT_INTEGER || code->expr1->rank))
11130 gfc_error ("Alternate RETURN statement at %L requires a SCALAR-"
11131 "INTEGER return specifier", &code->expr1->where);
11132 break;
11134 case EXEC_INIT_ASSIGN:
11135 case EXEC_END_PROCEDURE:
11136 break;
11138 case EXEC_ASSIGN:
11139 if (!t)
11140 break;
11142 /* Remove a GFC_ISYM_CAF_GET inserted for a coindexed variable on
11143 the LHS. */
11144 if (code->expr1->expr_type == EXPR_FUNCTION
11145 && code->expr1->value.function.isym
11146 && code->expr1->value.function.isym->id == GFC_ISYM_CAF_GET)
11147 remove_caf_get_intrinsic (code->expr1);
11149 /* If this is a pointer function in an lvalue variable context,
11150 the new code will have to be resolved afresh. This is also the
11151 case with an error, where the code is transformed into NOP to
11152 prevent ICEs downstream. */
11153 if (resolve_ptr_fcn_assign (&code, ns)
11154 || code->op == EXEC_NOP)
11155 goto start;
11157 if (!gfc_check_vardef_context (code->expr1, false, false, false,
11158 _("assignment")))
11159 break;
11161 if (resolve_ordinary_assign (code, ns))
11163 if (code->op == EXEC_COMPCALL)
11164 goto compcall;
11165 else
11166 goto call;
11169 /* Check for dependencies in deferred character length array
11170 assignments and generate a temporary, if necessary. */
11171 if (code->op == EXEC_ASSIGN && deferred_op_assign (&code, ns))
11172 break;
11174 /* F03 7.4.1.3 for non-allocatable, non-pointer components. */
11175 if (code->op != EXEC_CALL && code->expr1->ts.type == BT_DERIVED
11176 && code->expr1->ts.u.derived
11177 && code->expr1->ts.u.derived->attr.defined_assign_comp)
11178 generate_component_assignments (&code, ns);
11180 break;
11182 case EXEC_LABEL_ASSIGN:
11183 if (code->label1->defined == ST_LABEL_UNKNOWN)
11184 gfc_error ("Label %d referenced at %L is never defined",
11185 code->label1->value, &code->label1->where);
11186 if (t
11187 && (code->expr1->expr_type != EXPR_VARIABLE
11188 || code->expr1->symtree->n.sym->ts.type != BT_INTEGER
11189 || code->expr1->symtree->n.sym->ts.kind
11190 != gfc_default_integer_kind
11191 || code->expr1->symtree->n.sym->as != NULL))
11192 gfc_error ("ASSIGN statement at %L requires a scalar "
11193 "default INTEGER variable", &code->expr1->where);
11194 break;
11196 case EXEC_POINTER_ASSIGN:
11198 gfc_expr* e;
11200 if (!t)
11201 break;
11203 /* This is both a variable definition and pointer assignment
11204 context, so check both of them. For rank remapping, a final
11205 array ref may be present on the LHS and fool gfc_expr_attr
11206 used in gfc_check_vardef_context. Remove it. */
11207 e = remove_last_array_ref (code->expr1);
11208 t = gfc_check_vardef_context (e, true, false, false,
11209 _("pointer assignment"));
11210 if (t)
11211 t = gfc_check_vardef_context (e, false, false, false,
11212 _("pointer assignment"));
11213 gfc_free_expr (e);
11214 if (!t)
11215 break;
11217 gfc_check_pointer_assign (code->expr1, code->expr2);
11219 /* Assigning a class object always is a regular assign. */
11220 if (code->expr2->ts.type == BT_CLASS
11221 && code->expr1->ts.type == BT_CLASS
11222 && !CLASS_DATA (code->expr2)->attr.dimension
11223 && !(gfc_expr_attr (code->expr1).proc_pointer
11224 && code->expr2->expr_type == EXPR_VARIABLE
11225 && code->expr2->symtree->n.sym->attr.flavor
11226 == FL_PROCEDURE))
11227 code->op = EXEC_ASSIGN;
11228 break;
11231 case EXEC_ARITHMETIC_IF:
11233 gfc_expr *e = code->expr1;
11235 gfc_resolve_expr (e);
11236 if (e->expr_type == EXPR_NULL)
11237 gfc_error ("Invalid NULL at %L", &e->where);
11239 if (t && (e->rank > 0
11240 || !(e->ts.type == BT_REAL || e->ts.type == BT_INTEGER)))
11241 gfc_error ("Arithmetic IF statement at %L requires a scalar "
11242 "REAL or INTEGER expression", &e->where);
11244 resolve_branch (code->label1, code);
11245 resolve_branch (code->label2, code);
11246 resolve_branch (code->label3, code);
11248 break;
11250 case EXEC_IF:
11251 if (t && code->expr1 != NULL
11252 && (code->expr1->ts.type != BT_LOGICAL
11253 || code->expr1->rank != 0))
11254 gfc_error ("IF clause at %L requires a scalar LOGICAL expression",
11255 &code->expr1->where);
11256 break;
11258 case EXEC_CALL:
11259 call:
11260 resolve_call (code);
11261 break;
11263 case EXEC_COMPCALL:
11264 compcall:
11265 resolve_typebound_subroutine (code);
11266 break;
11268 case EXEC_CALL_PPC:
11269 resolve_ppc_call (code);
11270 break;
11272 case EXEC_SELECT:
11273 /* Select is complicated. Also, a SELECT construct could be
11274 a transformed computed GOTO. */
11275 resolve_select (code, false);
11276 break;
11278 case EXEC_SELECT_TYPE:
11279 resolve_select_type (code, ns);
11280 break;
11282 case EXEC_BLOCK:
11283 resolve_block_construct (code);
11284 break;
11286 case EXEC_DO:
11287 if (code->ext.iterator != NULL)
11289 gfc_iterator *iter = code->ext.iterator;
11290 if (gfc_resolve_iterator (iter, true, false))
11291 gfc_resolve_do_iterator (code, iter->var->symtree->n.sym,
11292 true);
11294 break;
11296 case EXEC_DO_WHILE:
11297 if (code->expr1 == NULL)
11298 gfc_internal_error ("gfc_resolve_code(): No expression on "
11299 "DO WHILE");
11300 if (t
11301 && (code->expr1->rank != 0
11302 || code->expr1->ts.type != BT_LOGICAL))
11303 gfc_error ("Exit condition of DO WHILE loop at %L must be "
11304 "a scalar LOGICAL expression", &code->expr1->where);
11305 break;
11307 case EXEC_ALLOCATE:
11308 if (t)
11309 resolve_allocate_deallocate (code, "ALLOCATE");
11311 break;
11313 case EXEC_DEALLOCATE:
11314 if (t)
11315 resolve_allocate_deallocate (code, "DEALLOCATE");
11317 break;
11319 case EXEC_OPEN:
11320 if (!gfc_resolve_open (code->ext.open))
11321 break;
11323 resolve_branch (code->ext.open->err, code);
11324 break;
11326 case EXEC_CLOSE:
11327 if (!gfc_resolve_close (code->ext.close))
11328 break;
11330 resolve_branch (code->ext.close->err, code);
11331 break;
11333 case EXEC_BACKSPACE:
11334 case EXEC_ENDFILE:
11335 case EXEC_REWIND:
11336 case EXEC_FLUSH:
11337 if (!gfc_resolve_filepos (code->ext.filepos))
11338 break;
11340 resolve_branch (code->ext.filepos->err, code);
11341 break;
11343 case EXEC_INQUIRE:
11344 if (!gfc_resolve_inquire (code->ext.inquire))
11345 break;
11347 resolve_branch (code->ext.inquire->err, code);
11348 break;
11350 case EXEC_IOLENGTH:
11351 gcc_assert (code->ext.inquire != NULL);
11352 if (!gfc_resolve_inquire (code->ext.inquire))
11353 break;
11355 resolve_branch (code->ext.inquire->err, code);
11356 break;
11358 case EXEC_WAIT:
11359 if (!gfc_resolve_wait (code->ext.wait))
11360 break;
11362 resolve_branch (code->ext.wait->err, code);
11363 resolve_branch (code->ext.wait->end, code);
11364 resolve_branch (code->ext.wait->eor, code);
11365 break;
11367 case EXEC_READ:
11368 case EXEC_WRITE:
11369 if (!gfc_resolve_dt (code->ext.dt, &code->loc))
11370 break;
11372 resolve_branch (code->ext.dt->err, code);
11373 resolve_branch (code->ext.dt->end, code);
11374 resolve_branch (code->ext.dt->eor, code);
11375 break;
11377 case EXEC_TRANSFER:
11378 resolve_transfer (code);
11379 break;
11381 case EXEC_DO_CONCURRENT:
11382 case EXEC_FORALL:
11383 resolve_forall_iterators (code->ext.forall_iterator);
11385 if (code->expr1 != NULL
11386 && (code->expr1->ts.type != BT_LOGICAL || code->expr1->rank))
11387 gfc_error ("FORALL mask clause at %L requires a scalar LOGICAL "
11388 "expression", &code->expr1->where);
11389 break;
11391 case EXEC_OACC_PARALLEL_LOOP:
11392 case EXEC_OACC_PARALLEL:
11393 case EXEC_OACC_KERNELS_LOOP:
11394 case EXEC_OACC_KERNELS:
11395 case EXEC_OACC_DATA:
11396 case EXEC_OACC_HOST_DATA:
11397 case EXEC_OACC_LOOP:
11398 case EXEC_OACC_UPDATE:
11399 case EXEC_OACC_WAIT:
11400 case EXEC_OACC_CACHE:
11401 case EXEC_OACC_ENTER_DATA:
11402 case EXEC_OACC_EXIT_DATA:
11403 case EXEC_OACC_ATOMIC:
11404 case EXEC_OACC_DECLARE:
11405 gfc_resolve_oacc_directive (code, ns);
11406 break;
11408 case EXEC_OMP_ATOMIC:
11409 case EXEC_OMP_BARRIER:
11410 case EXEC_OMP_CANCEL:
11411 case EXEC_OMP_CANCELLATION_POINT:
11412 case EXEC_OMP_CRITICAL:
11413 case EXEC_OMP_FLUSH:
11414 case EXEC_OMP_DISTRIBUTE:
11415 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO:
11416 case EXEC_OMP_DISTRIBUTE_PARALLEL_DO_SIMD:
11417 case EXEC_OMP_DISTRIBUTE_SIMD:
11418 case EXEC_OMP_DO:
11419 case EXEC_OMP_DO_SIMD:
11420 case EXEC_OMP_MASTER:
11421 case EXEC_OMP_ORDERED:
11422 case EXEC_OMP_SECTIONS:
11423 case EXEC_OMP_SIMD:
11424 case EXEC_OMP_SINGLE:
11425 case EXEC_OMP_TARGET:
11426 case EXEC_OMP_TARGET_DATA:
11427 case EXEC_OMP_TARGET_ENTER_DATA:
11428 case EXEC_OMP_TARGET_EXIT_DATA:
11429 case EXEC_OMP_TARGET_PARALLEL:
11430 case EXEC_OMP_TARGET_PARALLEL_DO:
11431 case EXEC_OMP_TARGET_PARALLEL_DO_SIMD:
11432 case EXEC_OMP_TARGET_SIMD:
11433 case EXEC_OMP_TARGET_TEAMS:
11434 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE:
11435 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO:
11436 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11437 case EXEC_OMP_TARGET_TEAMS_DISTRIBUTE_SIMD:
11438 case EXEC_OMP_TARGET_UPDATE:
11439 case EXEC_OMP_TASK:
11440 case EXEC_OMP_TASKGROUP:
11441 case EXEC_OMP_TASKLOOP:
11442 case EXEC_OMP_TASKLOOP_SIMD:
11443 case EXEC_OMP_TASKWAIT:
11444 case EXEC_OMP_TASKYIELD:
11445 case EXEC_OMP_TEAMS:
11446 case EXEC_OMP_TEAMS_DISTRIBUTE:
11447 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO:
11448 case EXEC_OMP_TEAMS_DISTRIBUTE_PARALLEL_DO_SIMD:
11449 case EXEC_OMP_TEAMS_DISTRIBUTE_SIMD:
11450 case EXEC_OMP_WORKSHARE:
11451 gfc_resolve_omp_directive (code, ns);
11452 break;
11454 case EXEC_OMP_PARALLEL:
11455 case EXEC_OMP_PARALLEL_DO:
11456 case EXEC_OMP_PARALLEL_DO_SIMD:
11457 case EXEC_OMP_PARALLEL_SECTIONS:
11458 case EXEC_OMP_PARALLEL_WORKSHARE:
11459 omp_workshare_save = omp_workshare_flag;
11460 omp_workshare_flag = 0;
11461 gfc_resolve_omp_directive (code, ns);
11462 omp_workshare_flag = omp_workshare_save;
11463 break;
11465 default:
11466 gfc_internal_error ("gfc_resolve_code(): Bad statement code");
11470 cs_base = frame.prev;
11474 /* Resolve initial values and make sure they are compatible with
11475 the variable. */
11477 static void
11478 resolve_values (gfc_symbol *sym)
11480 bool t;
11482 if (sym->value == NULL)
11483 return;
11485 if (sym->value->expr_type == EXPR_STRUCTURE)
11486 t= resolve_structure_cons (sym->value, 1);
11487 else
11488 t = gfc_resolve_expr (sym->value);
11490 if (!t)
11491 return;
11493 gfc_check_assign_symbol (sym, NULL, sym->value);
11497 /* Verify any BIND(C) derived types in the namespace so we can report errors
11498 for them once, rather than for each variable declared of that type. */
11500 static void
11501 resolve_bind_c_derived_types (gfc_symbol *derived_sym)
11503 if (derived_sym != NULL && derived_sym->attr.flavor == FL_DERIVED
11504 && derived_sym->attr.is_bind_c == 1)
11505 verify_bind_c_derived_type (derived_sym);
11507 return;
11511 /* Check the interfaces of DTIO procedures associated with derived
11512 type 'sym'. These procedures can either have typebound bindings or
11513 can appear in DTIO generic interfaces. */
11515 static void
11516 gfc_verify_DTIO_procedures (gfc_symbol *sym)
11518 if (!sym || sym->attr.flavor != FL_DERIVED)
11519 return;
11521 gfc_check_dtio_interfaces (sym);
11523 return;
11526 /* Verify that any binding labels used in a given namespace do not collide
11527 with the names or binding labels of any global symbols. Multiple INTERFACE
11528 for the same procedure are permitted. */
11530 static void
11531 gfc_verify_binding_labels (gfc_symbol *sym)
11533 gfc_gsymbol *gsym;
11534 const char *module;
11536 if (!sym || !sym->attr.is_bind_c || sym->attr.is_iso_c
11537 || sym->attr.flavor == FL_DERIVED || !sym->binding_label)
11538 return;
11540 gsym = gfc_find_gsymbol (gfc_gsym_root, sym->binding_label);
11542 if (sym->module)
11543 module = sym->module;
11544 else if (sym->ns && sym->ns->proc_name
11545 && sym->ns->proc_name->attr.flavor == FL_MODULE)
11546 module = sym->ns->proc_name->name;
11547 else if (sym->ns && sym->ns->parent
11548 && sym->ns && sym->ns->parent->proc_name
11549 && sym->ns->parent->proc_name->attr.flavor == FL_MODULE)
11550 module = sym->ns->parent->proc_name->name;
11551 else
11552 module = NULL;
11554 if (!gsym
11555 || (!gsym->defined
11556 && (gsym->type == GSYM_FUNCTION || gsym->type == GSYM_SUBROUTINE)))
11558 if (!gsym)
11559 gsym = gfc_get_gsymbol (sym->binding_label);
11560 gsym->where = sym->declared_at;
11561 gsym->sym_name = sym->name;
11562 gsym->binding_label = sym->binding_label;
11563 gsym->ns = sym->ns;
11564 gsym->mod_name = module;
11565 if (sym->attr.function)
11566 gsym->type = GSYM_FUNCTION;
11567 else if (sym->attr.subroutine)
11568 gsym->type = GSYM_SUBROUTINE;
11569 /* Mark as variable/procedure as defined, unless its an INTERFACE. */
11570 gsym->defined = sym->attr.if_source != IFSRC_IFBODY;
11571 return;
11574 if (sym->attr.flavor == FL_VARIABLE && gsym->type != GSYM_UNKNOWN)
11576 gfc_error ("Variable %s with binding label %s at %L uses the same global "
11577 "identifier as entity at %L", sym->name,
11578 sym->binding_label, &sym->declared_at, &gsym->where);
11579 /* Clear the binding label to prevent checking multiple times. */
11580 sym->binding_label = NULL;
11583 else if (sym->attr.flavor == FL_VARIABLE && module
11584 && (strcmp (module, gsym->mod_name) != 0
11585 || strcmp (sym->name, gsym->sym_name) != 0))
11587 /* This can only happen if the variable is defined in a module - if it
11588 isn't the same module, reject it. */
11589 gfc_error ("Variable %s from module %s with binding label %s at %L uses "
11590 "the same global identifier as entity at %L from module %s",
11591 sym->name, module, sym->binding_label,
11592 &sym->declared_at, &gsym->where, gsym->mod_name);
11593 sym->binding_label = NULL;
11595 else if ((sym->attr.function || sym->attr.subroutine)
11596 && ((gsym->type != GSYM_SUBROUTINE && gsym->type != GSYM_FUNCTION)
11597 || (gsym->defined && sym->attr.if_source != IFSRC_IFBODY))
11598 && sym != gsym->ns->proc_name
11599 && (module != gsym->mod_name
11600 || strcmp (gsym->sym_name, sym->name) != 0
11601 || (module && strcmp (module, gsym->mod_name) != 0)))
11603 /* Print an error if the procedure is defined multiple times; we have to
11604 exclude references to the same procedure via module association or
11605 multiple checks for the same procedure. */
11606 gfc_error ("Procedure %s with binding label %s at %L uses the same "
11607 "global identifier as entity at %L", sym->name,
11608 sym->binding_label, &sym->declared_at, &gsym->where);
11609 sym->binding_label = NULL;
11614 /* Resolve an index expression. */
11616 static bool
11617 resolve_index_expr (gfc_expr *e)
11619 if (!gfc_resolve_expr (e))
11620 return false;
11622 if (!gfc_simplify_expr (e, 0))
11623 return false;
11625 if (!gfc_specification_expr (e))
11626 return false;
11628 return true;
11632 /* Resolve a charlen structure. */
11634 static bool
11635 resolve_charlen (gfc_charlen *cl)
11637 int i, k;
11638 bool saved_specification_expr;
11640 if (cl->resolved)
11641 return true;
11643 cl->resolved = 1;
11644 saved_specification_expr = specification_expr;
11645 specification_expr = true;
11647 if (cl->length_from_typespec)
11649 if (!gfc_resolve_expr (cl->length))
11651 specification_expr = saved_specification_expr;
11652 return false;
11655 if (!gfc_simplify_expr (cl->length, 0))
11657 specification_expr = saved_specification_expr;
11658 return false;
11661 else
11664 if (!resolve_index_expr (cl->length))
11666 specification_expr = saved_specification_expr;
11667 return false;
11671 /* F2008, 4.4.3.2: If the character length parameter value evaluates to
11672 a negative value, the length of character entities declared is zero. */
11673 if (cl->length && !gfc_extract_int (cl->length, &i) && i < 0)
11674 gfc_replace_expr (cl->length,
11675 gfc_get_int_expr (gfc_default_integer_kind, NULL, 0));
11677 /* Check that the character length is not too large. */
11678 k = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
11679 if (cl->length && cl->length->expr_type == EXPR_CONSTANT
11680 && cl->length->ts.type == BT_INTEGER
11681 && mpz_cmp (cl->length->value.integer, gfc_integer_kinds[k].huge) > 0)
11683 gfc_error ("String length at %L is too large", &cl->length->where);
11684 specification_expr = saved_specification_expr;
11685 return false;
11688 specification_expr = saved_specification_expr;
11689 return true;
11693 /* Test for non-constant shape arrays. */
11695 static bool
11696 is_non_constant_shape_array (gfc_symbol *sym)
11698 gfc_expr *e;
11699 int i;
11700 bool not_constant;
11702 not_constant = false;
11703 if (sym->as != NULL)
11705 /* Unfortunately, !gfc_is_compile_time_shape hits a legal case that
11706 has not been simplified; parameter array references. Do the
11707 simplification now. */
11708 for (i = 0; i < sym->as->rank + sym->as->corank; i++)
11710 e = sym->as->lower[i];
11711 if (e && (!resolve_index_expr(e)
11712 || !gfc_is_constant_expr (e)))
11713 not_constant = true;
11714 e = sym->as->upper[i];
11715 if (e && (!resolve_index_expr(e)
11716 || !gfc_is_constant_expr (e)))
11717 not_constant = true;
11720 return not_constant;
11723 /* Given a symbol and an initialization expression, add code to initialize
11724 the symbol to the function entry. */
11725 static void
11726 build_init_assign (gfc_symbol *sym, gfc_expr *init)
11728 gfc_expr *lval;
11729 gfc_code *init_st;
11730 gfc_namespace *ns = sym->ns;
11732 /* Search for the function namespace if this is a contained
11733 function without an explicit result. */
11734 if (sym->attr.function && sym == sym->result
11735 && sym->name != sym->ns->proc_name->name)
11737 ns = ns->contained;
11738 for (;ns; ns = ns->sibling)
11739 if (strcmp (ns->proc_name->name, sym->name) == 0)
11740 break;
11743 if (ns == NULL)
11745 gfc_free_expr (init);
11746 return;
11749 /* Build an l-value expression for the result. */
11750 lval = gfc_lval_expr_from_sym (sym);
11752 /* Add the code at scope entry. */
11753 init_st = gfc_get_code (EXEC_INIT_ASSIGN);
11754 init_st->next = ns->code;
11755 ns->code = init_st;
11757 /* Assign the default initializer to the l-value. */
11758 init_st->loc = sym->declared_at;
11759 init_st->expr1 = lval;
11760 init_st->expr2 = init;
11764 /* Whether or not we can generate a default initializer for a symbol. */
11766 static bool
11767 can_generate_init (gfc_symbol *sym)
11769 symbol_attribute *a;
11770 if (!sym)
11771 return false;
11772 a = &sym->attr;
11774 /* These symbols should never have a default initialization. */
11775 return !(
11776 a->allocatable
11777 || a->external
11778 || a->pointer
11779 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)
11780 && (CLASS_DATA (sym)->attr.class_pointer
11781 || CLASS_DATA (sym)->attr.proc_pointer))
11782 || a->in_equivalence
11783 || a->in_common
11784 || a->data
11785 || sym->module
11786 || a->cray_pointee
11787 || a->cray_pointer
11788 || sym->assoc
11789 || (!a->referenced && !a->result)
11790 || (a->dummy && a->intent != INTENT_OUT)
11791 || (a->function && sym != sym->result)
11796 /* Assign the default initializer to a derived type variable or result. */
11798 static void
11799 apply_default_init (gfc_symbol *sym)
11801 gfc_expr *init = NULL;
11803 if (sym->attr.flavor != FL_VARIABLE && !sym->attr.function)
11804 return;
11806 if (sym->ts.type == BT_DERIVED && sym->ts.u.derived)
11807 init = gfc_generate_initializer (&sym->ts, can_generate_init (sym));
11809 if (init == NULL && sym->ts.type != BT_CLASS)
11810 return;
11812 build_init_assign (sym, init);
11813 sym->attr.referenced = 1;
11817 /* Build an initializer for a local. Returns null if the symbol should not have
11818 a default initialization. */
11820 static gfc_expr *
11821 build_default_init_expr (gfc_symbol *sym)
11823 /* These symbols should never have a default initialization. */
11824 if (sym->attr.allocatable
11825 || sym->attr.external
11826 || sym->attr.dummy
11827 || sym->attr.pointer
11828 || sym->attr.in_equivalence
11829 || sym->attr.in_common
11830 || sym->attr.data
11831 || sym->module
11832 || sym->attr.cray_pointee
11833 || sym->attr.cray_pointer
11834 || sym->assoc)
11835 return NULL;
11837 /* Get the appropriate init expression. */
11838 return gfc_build_default_init_expr (&sym->ts, &sym->declared_at);
11841 /* Add an initialization expression to a local variable. */
11842 static void
11843 apply_default_init_local (gfc_symbol *sym)
11845 gfc_expr *init = NULL;
11847 /* The symbol should be a variable or a function return value. */
11848 if ((sym->attr.flavor != FL_VARIABLE && !sym->attr.function)
11849 || (sym->attr.function && sym->result != sym))
11850 return;
11852 /* Try to build the initializer expression. If we can't initialize
11853 this symbol, then init will be NULL. */
11854 init = build_default_init_expr (sym);
11855 if (init == NULL)
11856 return;
11858 /* For saved variables, we don't want to add an initializer at function
11859 entry, so we just add a static initializer. Note that automatic variables
11860 are stack allocated even with -fno-automatic; we have also to exclude
11861 result variable, which are also nonstatic. */
11862 if (!sym->attr.automatic
11863 && (sym->attr.save || sym->ns->save_all
11864 || (flag_max_stack_var_size == 0 && !sym->attr.result
11865 && (sym->ns->proc_name && !sym->ns->proc_name->attr.recursive)
11866 && (!sym->attr.dimension || !is_non_constant_shape_array (sym)))))
11868 /* Don't clobber an existing initializer! */
11869 gcc_assert (sym->value == NULL);
11870 sym->value = init;
11871 return;
11874 build_init_assign (sym, init);
11878 /* Resolution of common features of flavors variable and procedure. */
11880 static bool
11881 resolve_fl_var_and_proc (gfc_symbol *sym, int mp_flag)
11883 gfc_array_spec *as;
11885 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
11886 as = CLASS_DATA (sym)->as;
11887 else
11888 as = sym->as;
11890 /* Constraints on deferred shape variable. */
11891 if (as == NULL || as->type != AS_DEFERRED)
11893 bool pointer, allocatable, dimension;
11895 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
11897 pointer = CLASS_DATA (sym)->attr.class_pointer;
11898 allocatable = CLASS_DATA (sym)->attr.allocatable;
11899 dimension = CLASS_DATA (sym)->attr.dimension;
11901 else
11903 pointer = sym->attr.pointer && !sym->attr.select_type_temporary;
11904 allocatable = sym->attr.allocatable;
11905 dimension = sym->attr.dimension;
11908 if (allocatable)
11910 if (dimension && as->type != AS_ASSUMED_RANK)
11912 gfc_error ("Allocatable array %qs at %L must have a deferred "
11913 "shape or assumed rank", sym->name, &sym->declared_at);
11914 return false;
11916 else if (!gfc_notify_std (GFC_STD_F2003, "Scalar object "
11917 "%qs at %L may not be ALLOCATABLE",
11918 sym->name, &sym->declared_at))
11919 return false;
11922 if (pointer && dimension && as->type != AS_ASSUMED_RANK)
11924 gfc_error ("Array pointer %qs at %L must have a deferred shape or "
11925 "assumed rank", sym->name, &sym->declared_at);
11926 return false;
11929 else
11931 if (!mp_flag && !sym->attr.allocatable && !sym->attr.pointer
11932 && sym->ts.type != BT_CLASS && !sym->assoc)
11934 gfc_error ("Array %qs at %L cannot have a deferred shape",
11935 sym->name, &sym->declared_at);
11936 return false;
11940 /* Constraints on polymorphic variables. */
11941 if (sym->ts.type == BT_CLASS && !(sym->result && sym->result != sym))
11943 /* F03:C502. */
11944 if (sym->attr.class_ok
11945 && !sym->attr.select_type_temporary
11946 && !UNLIMITED_POLY (sym)
11947 && !gfc_type_is_extensible (CLASS_DATA (sym)->ts.u.derived))
11949 gfc_error ("Type %qs of CLASS variable %qs at %L is not extensible",
11950 CLASS_DATA (sym)->ts.u.derived->name, sym->name,
11951 &sym->declared_at);
11952 return false;
11955 /* F03:C509. */
11956 /* Assume that use associated symbols were checked in the module ns.
11957 Class-variables that are associate-names are also something special
11958 and excepted from the test. */
11959 if (!sym->attr.class_ok && !sym->attr.use_assoc && !sym->assoc)
11961 gfc_error ("CLASS variable %qs at %L must be dummy, allocatable "
11962 "or pointer", sym->name, &sym->declared_at);
11963 return false;
11967 return true;
11971 /* Additional checks for symbols with flavor variable and derived
11972 type. To be called from resolve_fl_variable. */
11974 static bool
11975 resolve_fl_variable_derived (gfc_symbol *sym, int no_init_flag)
11977 gcc_assert (sym->ts.type == BT_DERIVED || sym->ts.type == BT_CLASS);
11979 /* Check to see if a derived type is blocked from being host
11980 associated by the presence of another class I symbol in the same
11981 namespace. 14.6.1.3 of the standard and the discussion on
11982 comp.lang.fortran. */
11983 if (sym->ns != sym->ts.u.derived->ns
11984 && sym->ns->proc_name->attr.if_source != IFSRC_IFBODY)
11986 gfc_symbol *s;
11987 gfc_find_symbol (sym->ts.u.derived->name, sym->ns, 0, &s);
11988 if (s && s->attr.generic)
11989 s = gfc_find_dt_in_generic (s);
11990 if (s && !gfc_fl_struct (s->attr.flavor))
11992 gfc_error ("The type %qs cannot be host associated at %L "
11993 "because it is blocked by an incompatible object "
11994 "of the same name declared at %L",
11995 sym->ts.u.derived->name, &sym->declared_at,
11996 &s->declared_at);
11997 return false;
12001 /* 4th constraint in section 11.3: "If an object of a type for which
12002 component-initialization is specified (R429) appears in the
12003 specification-part of a module and does not have the ALLOCATABLE
12004 or POINTER attribute, the object shall have the SAVE attribute."
12006 The check for initializers is performed with
12007 gfc_has_default_initializer because gfc_default_initializer generates
12008 a hidden default for allocatable components. */
12009 if (!(sym->value || no_init_flag) && sym->ns->proc_name
12010 && sym->ns->proc_name->attr.flavor == FL_MODULE
12011 && !(sym->ns->save_all && !sym->attr.automatic) && !sym->attr.save
12012 && !sym->attr.pointer && !sym->attr.allocatable
12013 && gfc_has_default_initializer (sym->ts.u.derived)
12014 && !gfc_notify_std (GFC_STD_F2008, "Implied SAVE for module variable "
12015 "%qs at %L, needed due to the default "
12016 "initialization", sym->name, &sym->declared_at))
12017 return false;
12019 /* Assign default initializer. */
12020 if (!(sym->value || sym->attr.pointer || sym->attr.allocatable)
12021 && (!no_init_flag || sym->attr.intent == INTENT_OUT))
12022 sym->value = gfc_generate_initializer (&sym->ts, can_generate_init (sym));
12024 return true;
12028 /* F2008, C402 (R401): A colon shall not be used as a type-param-value
12029 except in the declaration of an entity or component that has the POINTER
12030 or ALLOCATABLE attribute. */
12032 static bool
12033 deferred_requirements (gfc_symbol *sym)
12035 if (sym->ts.deferred
12036 && !(sym->attr.pointer
12037 || sym->attr.allocatable
12038 || sym->attr.associate_var
12039 || sym->attr.omp_udr_artificial_var))
12041 gfc_error ("Entity %qs at %L has a deferred type parameter and "
12042 "requires either the POINTER or ALLOCATABLE attribute",
12043 sym->name, &sym->declared_at);
12044 return false;
12046 return true;
12050 /* Resolve symbols with flavor variable. */
12052 static bool
12053 resolve_fl_variable (gfc_symbol *sym, int mp_flag)
12055 int no_init_flag, automatic_flag;
12056 gfc_expr *e;
12057 const char *auto_save_msg;
12058 bool saved_specification_expr;
12060 auto_save_msg = "Automatic object %qs at %L cannot have the "
12061 "SAVE attribute";
12063 if (!resolve_fl_var_and_proc (sym, mp_flag))
12064 return false;
12066 /* Set this flag to check that variables are parameters of all entries.
12067 This check is effected by the call to gfc_resolve_expr through
12068 is_non_constant_shape_array. */
12069 saved_specification_expr = specification_expr;
12070 specification_expr = true;
12072 if (sym->ns->proc_name
12073 && (sym->ns->proc_name->attr.flavor == FL_MODULE
12074 || sym->ns->proc_name->attr.is_main_program)
12075 && !sym->attr.use_assoc
12076 && !sym->attr.allocatable
12077 && !sym->attr.pointer
12078 && is_non_constant_shape_array (sym))
12080 /* F08:C541. The shape of an array defined in a main program or module
12081 * needs to be constant. */
12082 gfc_error ("The module or main program array %qs at %L must "
12083 "have constant shape", sym->name, &sym->declared_at);
12084 specification_expr = saved_specification_expr;
12085 return false;
12088 /* Constraints on deferred type parameter. */
12089 if (!deferred_requirements (sym))
12090 return false;
12092 if (sym->ts.type == BT_CHARACTER && !sym->attr.associate_var)
12094 /* Make sure that character string variables with assumed length are
12095 dummy arguments. */
12096 e = sym->ts.u.cl->length;
12097 if (e == NULL && !sym->attr.dummy && !sym->attr.result
12098 && !sym->ts.deferred && !sym->attr.select_type_temporary
12099 && !sym->attr.omp_udr_artificial_var)
12101 gfc_error ("Entity with assumed character length at %L must be a "
12102 "dummy argument or a PARAMETER", &sym->declared_at);
12103 specification_expr = saved_specification_expr;
12104 return false;
12107 if (e && sym->attr.save == SAVE_EXPLICIT && !gfc_is_constant_expr (e))
12109 gfc_error (auto_save_msg, sym->name, &sym->declared_at);
12110 specification_expr = saved_specification_expr;
12111 return false;
12114 if (!gfc_is_constant_expr (e)
12115 && !(e->expr_type == EXPR_VARIABLE
12116 && e->symtree->n.sym->attr.flavor == FL_PARAMETER))
12118 if (!sym->attr.use_assoc && sym->ns->proc_name
12119 && (sym->ns->proc_name->attr.flavor == FL_MODULE
12120 || sym->ns->proc_name->attr.is_main_program))
12122 gfc_error ("%qs at %L must have constant character length "
12123 "in this context", sym->name, &sym->declared_at);
12124 specification_expr = saved_specification_expr;
12125 return false;
12127 if (sym->attr.in_common)
12129 gfc_error ("COMMON variable %qs at %L must have constant "
12130 "character length", sym->name, &sym->declared_at);
12131 specification_expr = saved_specification_expr;
12132 return false;
12137 if (sym->value == NULL && sym->attr.referenced)
12138 apply_default_init_local (sym); /* Try to apply a default initialization. */
12140 /* Determine if the symbol may not have an initializer. */
12141 no_init_flag = automatic_flag = 0;
12142 if (sym->attr.allocatable || sym->attr.external || sym->attr.dummy
12143 || sym->attr.intrinsic || sym->attr.result)
12144 no_init_flag = 1;
12145 else if ((sym->attr.dimension || sym->attr.codimension) && !sym->attr.pointer
12146 && is_non_constant_shape_array (sym))
12148 no_init_flag = automatic_flag = 1;
12150 /* Also, they must not have the SAVE attribute.
12151 SAVE_IMPLICIT is checked below. */
12152 if (sym->as && sym->attr.codimension)
12154 int corank = sym->as->corank;
12155 sym->as->corank = 0;
12156 no_init_flag = automatic_flag = is_non_constant_shape_array (sym);
12157 sym->as->corank = corank;
12159 if (automatic_flag && sym->attr.save == SAVE_EXPLICIT)
12161 gfc_error (auto_save_msg, sym->name, &sym->declared_at);
12162 specification_expr = saved_specification_expr;
12163 return false;
12167 /* Ensure that any initializer is simplified. */
12168 if (sym->value)
12169 gfc_simplify_expr (sym->value, 1);
12171 /* Reject illegal initializers. */
12172 if (!sym->mark && sym->value)
12174 if (sym->attr.allocatable || (sym->ts.type == BT_CLASS
12175 && CLASS_DATA (sym)->attr.allocatable))
12176 gfc_error ("Allocatable %qs at %L cannot have an initializer",
12177 sym->name, &sym->declared_at);
12178 else if (sym->attr.external)
12179 gfc_error ("External %qs at %L cannot have an initializer",
12180 sym->name, &sym->declared_at);
12181 else if (sym->attr.dummy
12182 && !(sym->ts.type == BT_DERIVED && sym->attr.intent == INTENT_OUT))
12183 gfc_error ("Dummy %qs at %L cannot have an initializer",
12184 sym->name, &sym->declared_at);
12185 else if (sym->attr.intrinsic)
12186 gfc_error ("Intrinsic %qs at %L cannot have an initializer",
12187 sym->name, &sym->declared_at);
12188 else if (sym->attr.result)
12189 gfc_error ("Function result %qs at %L cannot have an initializer",
12190 sym->name, &sym->declared_at);
12191 else if (automatic_flag)
12192 gfc_error ("Automatic array %qs at %L cannot have an initializer",
12193 sym->name, &sym->declared_at);
12194 else
12195 goto no_init_error;
12196 specification_expr = saved_specification_expr;
12197 return false;
12200 no_init_error:
12201 if (sym->ts.type == BT_DERIVED || sym->ts.type == BT_CLASS)
12203 bool res = resolve_fl_variable_derived (sym, no_init_flag);
12204 specification_expr = saved_specification_expr;
12205 return res;
12208 specification_expr = saved_specification_expr;
12209 return true;
12213 /* Compare the dummy characteristics of a module procedure interface
12214 declaration with the corresponding declaration in a submodule. */
12215 static gfc_formal_arglist *new_formal;
12216 static char errmsg[200];
12218 static void
12219 compare_fsyms (gfc_symbol *sym)
12221 gfc_symbol *fsym;
12223 if (sym == NULL || new_formal == NULL)
12224 return;
12226 fsym = new_formal->sym;
12228 if (sym == fsym)
12229 return;
12231 if (strcmp (sym->name, fsym->name) == 0)
12233 if (!gfc_check_dummy_characteristics (fsym, sym, true, errmsg, 200))
12234 gfc_error ("%s at %L", errmsg, &fsym->declared_at);
12239 /* Resolve a procedure. */
12241 static bool
12242 resolve_fl_procedure (gfc_symbol *sym, int mp_flag)
12244 gfc_formal_arglist *arg;
12246 if (sym->attr.function
12247 && !resolve_fl_var_and_proc (sym, mp_flag))
12248 return false;
12250 if (sym->ts.type == BT_CHARACTER)
12252 gfc_charlen *cl = sym->ts.u.cl;
12254 if (cl && cl->length && gfc_is_constant_expr (cl->length)
12255 && !resolve_charlen (cl))
12256 return false;
12258 if ((!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
12259 && sym->attr.proc == PROC_ST_FUNCTION)
12261 gfc_error ("Character-valued statement function %qs at %L must "
12262 "have constant length", sym->name, &sym->declared_at);
12263 return false;
12267 /* Ensure that derived type for are not of a private type. Internal
12268 module procedures are excluded by 2.2.3.3 - i.e., they are not
12269 externally accessible and can access all the objects accessible in
12270 the host. */
12271 if (!(sym->ns->parent
12272 && sym->ns->parent->proc_name->attr.flavor == FL_MODULE)
12273 && gfc_check_symbol_access (sym))
12275 gfc_interface *iface;
12277 for (arg = gfc_sym_get_dummy_args (sym); arg; arg = arg->next)
12279 if (arg->sym
12280 && arg->sym->ts.type == BT_DERIVED
12281 && !arg->sym->ts.u.derived->attr.use_assoc
12282 && !gfc_check_symbol_access (arg->sym->ts.u.derived)
12283 && !gfc_notify_std (GFC_STD_F2003, "%qs is of a PRIVATE type "
12284 "and cannot be a dummy argument"
12285 " of %qs, which is PUBLIC at %L",
12286 arg->sym->name, sym->name,
12287 &sym->declared_at))
12289 /* Stop this message from recurring. */
12290 arg->sym->ts.u.derived->attr.access = ACCESS_PUBLIC;
12291 return false;
12295 /* PUBLIC interfaces may expose PRIVATE procedures that take types
12296 PRIVATE to the containing module. */
12297 for (iface = sym->generic; iface; iface = iface->next)
12299 for (arg = gfc_sym_get_dummy_args (iface->sym); arg; arg = arg->next)
12301 if (arg->sym
12302 && arg->sym->ts.type == BT_DERIVED
12303 && !arg->sym->ts.u.derived->attr.use_assoc
12304 && !gfc_check_symbol_access (arg->sym->ts.u.derived)
12305 && !gfc_notify_std (GFC_STD_F2003, "Procedure %qs in "
12306 "PUBLIC interface %qs at %L "
12307 "takes dummy arguments of %qs which "
12308 "is PRIVATE", iface->sym->name,
12309 sym->name, &iface->sym->declared_at,
12310 gfc_typename(&arg->sym->ts)))
12312 /* Stop this message from recurring. */
12313 arg->sym->ts.u.derived->attr.access = ACCESS_PUBLIC;
12314 return false;
12320 if (sym->attr.function && sym->value && sym->attr.proc != PROC_ST_FUNCTION
12321 && !sym->attr.proc_pointer)
12323 gfc_error ("Function %qs at %L cannot have an initializer",
12324 sym->name, &sym->declared_at);
12325 return false;
12328 /* An external symbol may not have an initializer because it is taken to be
12329 a procedure. Exception: Procedure Pointers. */
12330 if (sym->attr.external && sym->value && !sym->attr.proc_pointer)
12332 gfc_error ("External object %qs at %L may not have an initializer",
12333 sym->name, &sym->declared_at);
12334 return false;
12337 /* An elemental function is required to return a scalar 12.7.1 */
12338 if (sym->attr.elemental && sym->attr.function && sym->as)
12340 gfc_error ("ELEMENTAL function %qs at %L must have a scalar "
12341 "result", sym->name, &sym->declared_at);
12342 /* Reset so that the error only occurs once. */
12343 sym->attr.elemental = 0;
12344 return false;
12347 if (sym->attr.proc == PROC_ST_FUNCTION
12348 && (sym->attr.allocatable || sym->attr.pointer))
12350 gfc_error ("Statement function %qs at %L may not have pointer or "
12351 "allocatable attribute", sym->name, &sym->declared_at);
12352 return false;
12355 /* 5.1.1.5 of the Standard: A function name declared with an asterisk
12356 char-len-param shall not be array-valued, pointer-valued, recursive
12357 or pure. ....snip... A character value of * may only be used in the
12358 following ways: (i) Dummy arg of procedure - dummy associates with
12359 actual length; (ii) To declare a named constant; or (iii) External
12360 function - but length must be declared in calling scoping unit. */
12361 if (sym->attr.function
12362 && sym->ts.type == BT_CHARACTER && !sym->ts.deferred
12363 && sym->ts.u.cl && sym->ts.u.cl->length == NULL)
12365 if ((sym->as && sym->as->rank) || (sym->attr.pointer)
12366 || (sym->attr.recursive) || (sym->attr.pure))
12368 if (sym->as && sym->as->rank)
12369 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12370 "array-valued", sym->name, &sym->declared_at);
12372 if (sym->attr.pointer)
12373 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12374 "pointer-valued", sym->name, &sym->declared_at);
12376 if (sym->attr.pure)
12377 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12378 "pure", sym->name, &sym->declared_at);
12380 if (sym->attr.recursive)
12381 gfc_error ("CHARACTER(*) function %qs at %L cannot be "
12382 "recursive", sym->name, &sym->declared_at);
12384 return false;
12387 /* Appendix B.2 of the standard. Contained functions give an
12388 error anyway. Deferred character length is an F2003 feature.
12389 Don't warn on intrinsic conversion functions, which start
12390 with two underscores. */
12391 if (!sym->attr.contained && !sym->ts.deferred
12392 && (sym->name[0] != '_' || sym->name[1] != '_'))
12393 gfc_notify_std (GFC_STD_F95_OBS,
12394 "CHARACTER(*) function %qs at %L",
12395 sym->name, &sym->declared_at);
12398 /* F2008, C1218. */
12399 if (sym->attr.elemental)
12401 if (sym->attr.proc_pointer)
12403 gfc_error ("Procedure pointer %qs at %L shall not be elemental",
12404 sym->name, &sym->declared_at);
12405 return false;
12407 if (sym->attr.dummy)
12409 gfc_error ("Dummy procedure %qs at %L shall not be elemental",
12410 sym->name, &sym->declared_at);
12411 return false;
12415 if (sym->attr.is_bind_c && sym->attr.is_c_interop != 1)
12417 gfc_formal_arglist *curr_arg;
12418 int has_non_interop_arg = 0;
12420 if (!verify_bind_c_sym (sym, &(sym->ts), sym->attr.in_common,
12421 sym->common_block))
12423 /* Clear these to prevent looking at them again if there was an
12424 error. */
12425 sym->attr.is_bind_c = 0;
12426 sym->attr.is_c_interop = 0;
12427 sym->ts.is_c_interop = 0;
12429 else
12431 /* So far, no errors have been found. */
12432 sym->attr.is_c_interop = 1;
12433 sym->ts.is_c_interop = 1;
12436 curr_arg = gfc_sym_get_dummy_args (sym);
12437 while (curr_arg != NULL)
12439 /* Skip implicitly typed dummy args here. */
12440 if (curr_arg->sym->attr.implicit_type == 0)
12441 if (!gfc_verify_c_interop_param (curr_arg->sym))
12442 /* If something is found to fail, record the fact so we
12443 can mark the symbol for the procedure as not being
12444 BIND(C) to try and prevent multiple errors being
12445 reported. */
12446 has_non_interop_arg = 1;
12448 curr_arg = curr_arg->next;
12451 /* See if any of the arguments were not interoperable and if so, clear
12452 the procedure symbol to prevent duplicate error messages. */
12453 if (has_non_interop_arg != 0)
12455 sym->attr.is_c_interop = 0;
12456 sym->ts.is_c_interop = 0;
12457 sym->attr.is_bind_c = 0;
12461 if (!sym->attr.proc_pointer)
12463 if (sym->attr.save == SAVE_EXPLICIT)
12465 gfc_error ("PROCEDURE attribute conflicts with SAVE attribute "
12466 "in %qs at %L", sym->name, &sym->declared_at);
12467 return false;
12469 if (sym->attr.intent)
12471 gfc_error ("PROCEDURE attribute conflicts with INTENT attribute "
12472 "in %qs at %L", sym->name, &sym->declared_at);
12473 return false;
12475 if (sym->attr.subroutine && sym->attr.result)
12477 gfc_error ("PROCEDURE attribute conflicts with RESULT attribute "
12478 "in %qs at %L", sym->name, &sym->declared_at);
12479 return false;
12481 if (sym->attr.external && sym->attr.function && !sym->attr.module_procedure
12482 && ((sym->attr.if_source == IFSRC_DECL && !sym->attr.procedure)
12483 || sym->attr.contained))
12485 gfc_error ("EXTERNAL attribute conflicts with FUNCTION attribute "
12486 "in %qs at %L", sym->name, &sym->declared_at);
12487 return false;
12489 if (strcmp ("ppr@", sym->name) == 0)
12491 gfc_error ("Procedure pointer result %qs at %L "
12492 "is missing the pointer attribute",
12493 sym->ns->proc_name->name, &sym->declared_at);
12494 return false;
12498 /* Assume that a procedure whose body is not known has references
12499 to external arrays. */
12500 if (sym->attr.if_source != IFSRC_DECL)
12501 sym->attr.array_outer_dependency = 1;
12503 /* Compare the characteristics of a module procedure with the
12504 interface declaration. Ideally this would be done with
12505 gfc_compare_interfaces but, at present, the formal interface
12506 cannot be copied to the ts.interface. */
12507 if (sym->attr.module_procedure
12508 && sym->attr.if_source == IFSRC_DECL)
12510 gfc_symbol *iface;
12511 char name[2*GFC_MAX_SYMBOL_LEN + 1];
12512 char *module_name;
12513 char *submodule_name;
12514 strcpy (name, sym->ns->proc_name->name);
12515 module_name = strtok (name, ".");
12516 submodule_name = strtok (NULL, ".");
12518 iface = sym->tlink;
12519 sym->tlink = NULL;
12521 /* Make sure that the result uses the correct charlen for deferred
12522 length results. */
12523 if (iface && sym->result
12524 && iface->ts.type == BT_CHARACTER
12525 && iface->ts.deferred)
12526 sym->result->ts.u.cl = iface->ts.u.cl;
12528 if (iface == NULL)
12529 goto check_formal;
12531 /* Check the procedure characteristics. */
12532 if (sym->attr.elemental != iface->attr.elemental)
12534 gfc_error ("Mismatch in ELEMENTAL attribute between MODULE "
12535 "PROCEDURE at %L and its interface in %s",
12536 &sym->declared_at, module_name);
12537 return false;
12540 if (sym->attr.pure != iface->attr.pure)
12542 gfc_error ("Mismatch in PURE attribute between MODULE "
12543 "PROCEDURE at %L and its interface in %s",
12544 &sym->declared_at, module_name);
12545 return false;
12548 if (sym->attr.recursive != iface->attr.recursive)
12550 gfc_error ("Mismatch in RECURSIVE attribute between MODULE "
12551 "PROCEDURE at %L and its interface in %s",
12552 &sym->declared_at, module_name);
12553 return false;
12556 /* Check the result characteristics. */
12557 if (!gfc_check_result_characteristics (sym, iface, errmsg, 200))
12559 gfc_error ("%s between the MODULE PROCEDURE declaration "
12560 "in MODULE %qs and the declaration at %L in "
12561 "(SUB)MODULE %qs",
12562 errmsg, module_name, &sym->declared_at,
12563 submodule_name ? submodule_name : module_name);
12564 return false;
12567 check_formal:
12568 /* Check the characteristics of the formal arguments. */
12569 if (sym->formal && sym->formal_ns)
12571 for (arg = sym->formal; arg && arg->sym; arg = arg->next)
12573 new_formal = arg;
12574 gfc_traverse_ns (sym->formal_ns, compare_fsyms);
12578 return true;
12582 /* Resolve a list of finalizer procedures. That is, after they have hopefully
12583 been defined and we now know their defined arguments, check that they fulfill
12584 the requirements of the standard for procedures used as finalizers. */
12586 static bool
12587 gfc_resolve_finalizers (gfc_symbol* derived, bool *finalizable)
12589 gfc_finalizer* list;
12590 gfc_finalizer** prev_link; /* For removing wrong entries from the list. */
12591 bool result = true;
12592 bool seen_scalar = false;
12593 gfc_symbol *vtab;
12594 gfc_component *c;
12595 gfc_symbol *parent = gfc_get_derived_super_type (derived);
12597 if (parent)
12598 gfc_resolve_finalizers (parent, finalizable);
12600 /* Ensure that derived-type components have a their finalizers resolved. */
12601 bool has_final = derived->f2k_derived && derived->f2k_derived->finalizers;
12602 for (c = derived->components; c; c = c->next)
12603 if (c->ts.type == BT_DERIVED
12604 && !c->attr.pointer && !c->attr.proc_pointer && !c->attr.allocatable)
12606 bool has_final2 = false;
12607 if (!gfc_resolve_finalizers (c->ts.u.derived, &has_final2))
12608 return false; /* Error. */
12609 has_final = has_final || has_final2;
12611 /* Return early if not finalizable. */
12612 if (!has_final)
12614 if (finalizable)
12615 *finalizable = false;
12616 return true;
12619 /* Walk over the list of finalizer-procedures, check them, and if any one
12620 does not fit in with the standard's definition, print an error and remove
12621 it from the list. */
12622 prev_link = &derived->f2k_derived->finalizers;
12623 for (list = derived->f2k_derived->finalizers; list; list = *prev_link)
12625 gfc_formal_arglist *dummy_args;
12626 gfc_symbol* arg;
12627 gfc_finalizer* i;
12628 int my_rank;
12630 /* Skip this finalizer if we already resolved it. */
12631 if (list->proc_tree)
12633 if (list->proc_tree->n.sym->formal->sym->as == NULL
12634 || list->proc_tree->n.sym->formal->sym->as->rank == 0)
12635 seen_scalar = true;
12636 prev_link = &(list->next);
12637 continue;
12640 /* Check this exists and is a SUBROUTINE. */
12641 if (!list->proc_sym->attr.subroutine)
12643 gfc_error ("FINAL procedure %qs at %L is not a SUBROUTINE",
12644 list->proc_sym->name, &list->where);
12645 goto error;
12648 /* We should have exactly one argument. */
12649 dummy_args = gfc_sym_get_dummy_args (list->proc_sym);
12650 if (!dummy_args || dummy_args->next)
12652 gfc_error ("FINAL procedure at %L must have exactly one argument",
12653 &list->where);
12654 goto error;
12656 arg = dummy_args->sym;
12658 /* This argument must be of our type. */
12659 if (arg->ts.type != BT_DERIVED || arg->ts.u.derived != derived)
12661 gfc_error ("Argument of FINAL procedure at %L must be of type %qs",
12662 &arg->declared_at, derived->name);
12663 goto error;
12666 /* It must neither be a pointer nor allocatable nor optional. */
12667 if (arg->attr.pointer)
12669 gfc_error ("Argument of FINAL procedure at %L must not be a POINTER",
12670 &arg->declared_at);
12671 goto error;
12673 if (arg->attr.allocatable)
12675 gfc_error ("Argument of FINAL procedure at %L must not be"
12676 " ALLOCATABLE", &arg->declared_at);
12677 goto error;
12679 if (arg->attr.optional)
12681 gfc_error ("Argument of FINAL procedure at %L must not be OPTIONAL",
12682 &arg->declared_at);
12683 goto error;
12686 /* It must not be INTENT(OUT). */
12687 if (arg->attr.intent == INTENT_OUT)
12689 gfc_error ("Argument of FINAL procedure at %L must not be"
12690 " INTENT(OUT)", &arg->declared_at);
12691 goto error;
12694 /* Warn if the procedure is non-scalar and not assumed shape. */
12695 if (warn_surprising && arg->as && arg->as->rank != 0
12696 && arg->as->type != AS_ASSUMED_SHAPE)
12697 gfc_warning (OPT_Wsurprising,
12698 "Non-scalar FINAL procedure at %L should have assumed"
12699 " shape argument", &arg->declared_at);
12701 /* Check that it does not match in kind and rank with a FINAL procedure
12702 defined earlier. To really loop over the *earlier* declarations,
12703 we need to walk the tail of the list as new ones were pushed at the
12704 front. */
12705 /* TODO: Handle kind parameters once they are implemented. */
12706 my_rank = (arg->as ? arg->as->rank : 0);
12707 for (i = list->next; i; i = i->next)
12709 gfc_formal_arglist *dummy_args;
12711 /* Argument list might be empty; that is an error signalled earlier,
12712 but we nevertheless continued resolving. */
12713 dummy_args = gfc_sym_get_dummy_args (i->proc_sym);
12714 if (dummy_args)
12716 gfc_symbol* i_arg = dummy_args->sym;
12717 const int i_rank = (i_arg->as ? i_arg->as->rank : 0);
12718 if (i_rank == my_rank)
12720 gfc_error ("FINAL procedure %qs declared at %L has the same"
12721 " rank (%d) as %qs",
12722 list->proc_sym->name, &list->where, my_rank,
12723 i->proc_sym->name);
12724 goto error;
12729 /* Is this the/a scalar finalizer procedure? */
12730 if (my_rank == 0)
12731 seen_scalar = true;
12733 /* Find the symtree for this procedure. */
12734 gcc_assert (!list->proc_tree);
12735 list->proc_tree = gfc_find_sym_in_symtree (list->proc_sym);
12737 prev_link = &list->next;
12738 continue;
12740 /* Remove wrong nodes immediately from the list so we don't risk any
12741 troubles in the future when they might fail later expectations. */
12742 error:
12743 i = list;
12744 *prev_link = list->next;
12745 gfc_free_finalizer (i);
12746 result = false;
12749 if (result == false)
12750 return false;
12752 /* Warn if we haven't seen a scalar finalizer procedure (but we know there
12753 were nodes in the list, must have been for arrays. It is surely a good
12754 idea to have a scalar version there if there's something to finalize. */
12755 if (warn_surprising && derived->f2k_derived->finalizers && !seen_scalar)
12756 gfc_warning (OPT_Wsurprising,
12757 "Only array FINAL procedures declared for derived type %qs"
12758 " defined at %L, suggest also scalar one",
12759 derived->name, &derived->declared_at);
12761 vtab = gfc_find_derived_vtab (derived);
12762 c = vtab->ts.u.derived->components->next->next->next->next->next;
12763 gfc_set_sym_referenced (c->initializer->symtree->n.sym);
12765 if (finalizable)
12766 *finalizable = true;
12768 return true;
12772 /* Check if two GENERIC targets are ambiguous and emit an error is they are. */
12774 static bool
12775 check_generic_tbp_ambiguity (gfc_tbp_generic* t1, gfc_tbp_generic* t2,
12776 const char* generic_name, locus where)
12778 gfc_symbol *sym1, *sym2;
12779 const char *pass1, *pass2;
12780 gfc_formal_arglist *dummy_args;
12782 gcc_assert (t1->specific && t2->specific);
12783 gcc_assert (!t1->specific->is_generic);
12784 gcc_assert (!t2->specific->is_generic);
12785 gcc_assert (t1->is_operator == t2->is_operator);
12787 sym1 = t1->specific->u.specific->n.sym;
12788 sym2 = t2->specific->u.specific->n.sym;
12790 if (sym1 == sym2)
12791 return true;
12793 /* Both must be SUBROUTINEs or both must be FUNCTIONs. */
12794 if (sym1->attr.subroutine != sym2->attr.subroutine
12795 || sym1->attr.function != sym2->attr.function)
12797 gfc_error ("%qs and %qs can't be mixed FUNCTION/SUBROUTINE for"
12798 " GENERIC %qs at %L",
12799 sym1->name, sym2->name, generic_name, &where);
12800 return false;
12803 /* Determine PASS arguments. */
12804 if (t1->specific->nopass)
12805 pass1 = NULL;
12806 else if (t1->specific->pass_arg)
12807 pass1 = t1->specific->pass_arg;
12808 else
12810 dummy_args = gfc_sym_get_dummy_args (t1->specific->u.specific->n.sym);
12811 if (dummy_args)
12812 pass1 = dummy_args->sym->name;
12813 else
12814 pass1 = NULL;
12816 if (t2->specific->nopass)
12817 pass2 = NULL;
12818 else if (t2->specific->pass_arg)
12819 pass2 = t2->specific->pass_arg;
12820 else
12822 dummy_args = gfc_sym_get_dummy_args (t2->specific->u.specific->n.sym);
12823 if (dummy_args)
12824 pass2 = dummy_args->sym->name;
12825 else
12826 pass2 = NULL;
12829 /* Compare the interfaces. */
12830 if (gfc_compare_interfaces (sym1, sym2, sym2->name, !t1->is_operator, 0,
12831 NULL, 0, pass1, pass2))
12833 gfc_error ("%qs and %qs for GENERIC %qs at %L are ambiguous",
12834 sym1->name, sym2->name, generic_name, &where);
12835 return false;
12838 return true;
12842 /* Worker function for resolving a generic procedure binding; this is used to
12843 resolve GENERIC as well as user and intrinsic OPERATOR typebound procedures.
12845 The difference between those cases is finding possible inherited bindings
12846 that are overridden, as one has to look for them in tb_sym_root,
12847 tb_uop_root or tb_op, respectively. Thus the caller must already find
12848 the super-type and set p->overridden correctly. */
12850 static bool
12851 resolve_tb_generic_targets (gfc_symbol* super_type,
12852 gfc_typebound_proc* p, const char* name)
12854 gfc_tbp_generic* target;
12855 gfc_symtree* first_target;
12856 gfc_symtree* inherited;
12858 gcc_assert (p && p->is_generic);
12860 /* Try to find the specific bindings for the symtrees in our target-list. */
12861 gcc_assert (p->u.generic);
12862 for (target = p->u.generic; target; target = target->next)
12863 if (!target->specific)
12865 gfc_typebound_proc* overridden_tbp;
12866 gfc_tbp_generic* g;
12867 const char* target_name;
12869 target_name = target->specific_st->name;
12871 /* Defined for this type directly. */
12872 if (target->specific_st->n.tb && !target->specific_st->n.tb->error)
12874 target->specific = target->specific_st->n.tb;
12875 goto specific_found;
12878 /* Look for an inherited specific binding. */
12879 if (super_type)
12881 inherited = gfc_find_typebound_proc (super_type, NULL, target_name,
12882 true, NULL);
12884 if (inherited)
12886 gcc_assert (inherited->n.tb);
12887 target->specific = inherited->n.tb;
12888 goto specific_found;
12892 gfc_error ("Undefined specific binding %qs as target of GENERIC %qs"
12893 " at %L", target_name, name, &p->where);
12894 return false;
12896 /* Once we've found the specific binding, check it is not ambiguous with
12897 other specifics already found or inherited for the same GENERIC. */
12898 specific_found:
12899 gcc_assert (target->specific);
12901 /* This must really be a specific binding! */
12902 if (target->specific->is_generic)
12904 gfc_error ("GENERIC %qs at %L must target a specific binding,"
12905 " %qs is GENERIC, too", name, &p->where, target_name);
12906 return false;
12909 /* Check those already resolved on this type directly. */
12910 for (g = p->u.generic; g; g = g->next)
12911 if (g != target && g->specific
12912 && !check_generic_tbp_ambiguity (target, g, name, p->where))
12913 return false;
12915 /* Check for ambiguity with inherited specific targets. */
12916 for (overridden_tbp = p->overridden; overridden_tbp;
12917 overridden_tbp = overridden_tbp->overridden)
12918 if (overridden_tbp->is_generic)
12920 for (g = overridden_tbp->u.generic; g; g = g->next)
12922 gcc_assert (g->specific);
12923 if (!check_generic_tbp_ambiguity (target, g, name, p->where))
12924 return false;
12929 /* If we attempt to "overwrite" a specific binding, this is an error. */
12930 if (p->overridden && !p->overridden->is_generic)
12932 gfc_error ("GENERIC %qs at %L can't overwrite specific binding with"
12933 " the same name", name, &p->where);
12934 return false;
12937 /* Take the SUBROUTINE/FUNCTION attributes of the first specific target, as
12938 all must have the same attributes here. */
12939 first_target = p->u.generic->specific->u.specific;
12940 gcc_assert (first_target);
12941 p->subroutine = first_target->n.sym->attr.subroutine;
12942 p->function = first_target->n.sym->attr.function;
12944 return true;
12948 /* Resolve a GENERIC procedure binding for a derived type. */
12950 static bool
12951 resolve_typebound_generic (gfc_symbol* derived, gfc_symtree* st)
12953 gfc_symbol* super_type;
12955 /* Find the overridden binding if any. */
12956 st->n.tb->overridden = NULL;
12957 super_type = gfc_get_derived_super_type (derived);
12958 if (super_type)
12960 gfc_symtree* overridden;
12961 overridden = gfc_find_typebound_proc (super_type, NULL, st->name,
12962 true, NULL);
12964 if (overridden && overridden->n.tb)
12965 st->n.tb->overridden = overridden->n.tb;
12968 /* Resolve using worker function. */
12969 return resolve_tb_generic_targets (super_type, st->n.tb, st->name);
12973 /* Retrieve the target-procedure of an operator binding and do some checks in
12974 common for intrinsic and user-defined type-bound operators. */
12976 static gfc_symbol*
12977 get_checked_tb_operator_target (gfc_tbp_generic* target, locus where)
12979 gfc_symbol* target_proc;
12981 gcc_assert (target->specific && !target->specific->is_generic);
12982 target_proc = target->specific->u.specific->n.sym;
12983 gcc_assert (target_proc);
12985 /* F08:C468. All operator bindings must have a passed-object dummy argument. */
12986 if (target->specific->nopass)
12988 gfc_error ("Type-bound operator at %L can't be NOPASS", &where);
12989 return NULL;
12992 return target_proc;
12996 /* Resolve a type-bound intrinsic operator. */
12998 static bool
12999 resolve_typebound_intrinsic_op (gfc_symbol* derived, gfc_intrinsic_op op,
13000 gfc_typebound_proc* p)
13002 gfc_symbol* super_type;
13003 gfc_tbp_generic* target;
13005 /* If there's already an error here, do nothing (but don't fail again). */
13006 if (p->error)
13007 return true;
13009 /* Operators should always be GENERIC bindings. */
13010 gcc_assert (p->is_generic);
13012 /* Look for an overridden binding. */
13013 super_type = gfc_get_derived_super_type (derived);
13014 if (super_type && super_type->f2k_derived)
13015 p->overridden = gfc_find_typebound_intrinsic_op (super_type, NULL,
13016 op, true, NULL);
13017 else
13018 p->overridden = NULL;
13020 /* Resolve general GENERIC properties using worker function. */
13021 if (!resolve_tb_generic_targets (super_type, p, gfc_op2string(op)))
13022 goto error;
13024 /* Check the targets to be procedures of correct interface. */
13025 for (target = p->u.generic; target; target = target->next)
13027 gfc_symbol* target_proc;
13029 target_proc = get_checked_tb_operator_target (target, p->where);
13030 if (!target_proc)
13031 goto error;
13033 if (!gfc_check_operator_interface (target_proc, op, p->where))
13034 goto error;
13036 /* Add target to non-typebound operator list. */
13037 if (!target->specific->deferred && !derived->attr.use_assoc
13038 && p->access != ACCESS_PRIVATE && derived->ns == gfc_current_ns)
13040 gfc_interface *head, *intr;
13042 /* Preempt 'gfc_check_new_interface' for submodules, where the
13043 mechanism for handling module procedures winds up resolving
13044 operator interfaces twice and would otherwise cause an error. */
13045 for (intr = derived->ns->op[op]; intr; intr = intr->next)
13046 if (intr->sym == target_proc
13047 && target_proc->attr.used_in_submodule)
13048 return true;
13050 if (!gfc_check_new_interface (derived->ns->op[op],
13051 target_proc, p->where))
13052 return false;
13053 head = derived->ns->op[op];
13054 intr = gfc_get_interface ();
13055 intr->sym = target_proc;
13056 intr->where = p->where;
13057 intr->next = head;
13058 derived->ns->op[op] = intr;
13062 return true;
13064 error:
13065 p->error = 1;
13066 return false;
13070 /* Resolve a type-bound user operator (tree-walker callback). */
13072 static gfc_symbol* resolve_bindings_derived;
13073 static bool resolve_bindings_result;
13075 static bool check_uop_procedure (gfc_symbol* sym, locus where);
13077 static void
13078 resolve_typebound_user_op (gfc_symtree* stree)
13080 gfc_symbol* super_type;
13081 gfc_tbp_generic* target;
13083 gcc_assert (stree && stree->n.tb);
13085 if (stree->n.tb->error)
13086 return;
13088 /* Operators should always be GENERIC bindings. */
13089 gcc_assert (stree->n.tb->is_generic);
13091 /* Find overridden procedure, if any. */
13092 super_type = gfc_get_derived_super_type (resolve_bindings_derived);
13093 if (super_type && super_type->f2k_derived)
13095 gfc_symtree* overridden;
13096 overridden = gfc_find_typebound_user_op (super_type, NULL,
13097 stree->name, true, NULL);
13099 if (overridden && overridden->n.tb)
13100 stree->n.tb->overridden = overridden->n.tb;
13102 else
13103 stree->n.tb->overridden = NULL;
13105 /* Resolve basically using worker function. */
13106 if (!resolve_tb_generic_targets (super_type, stree->n.tb, stree->name))
13107 goto error;
13109 /* Check the targets to be functions of correct interface. */
13110 for (target = stree->n.tb->u.generic; target; target = target->next)
13112 gfc_symbol* target_proc;
13114 target_proc = get_checked_tb_operator_target (target, stree->n.tb->where);
13115 if (!target_proc)
13116 goto error;
13118 if (!check_uop_procedure (target_proc, stree->n.tb->where))
13119 goto error;
13122 return;
13124 error:
13125 resolve_bindings_result = false;
13126 stree->n.tb->error = 1;
13130 /* Resolve the type-bound procedures for a derived type. */
13132 static void
13133 resolve_typebound_procedure (gfc_symtree* stree)
13135 gfc_symbol* proc;
13136 locus where;
13137 gfc_symbol* me_arg;
13138 gfc_symbol* super_type;
13139 gfc_component* comp;
13141 gcc_assert (stree);
13143 /* Undefined specific symbol from GENERIC target definition. */
13144 if (!stree->n.tb)
13145 return;
13147 if (stree->n.tb->error)
13148 return;
13150 /* If this is a GENERIC binding, use that routine. */
13151 if (stree->n.tb->is_generic)
13153 if (!resolve_typebound_generic (resolve_bindings_derived, stree))
13154 goto error;
13155 return;
13158 /* Get the target-procedure to check it. */
13159 gcc_assert (!stree->n.tb->is_generic);
13160 gcc_assert (stree->n.tb->u.specific);
13161 proc = stree->n.tb->u.specific->n.sym;
13162 where = stree->n.tb->where;
13164 /* Default access should already be resolved from the parser. */
13165 gcc_assert (stree->n.tb->access != ACCESS_UNKNOWN);
13167 if (stree->n.tb->deferred)
13169 if (!check_proc_interface (proc, &where))
13170 goto error;
13172 else
13174 /* Check for F08:C465. */
13175 if ((!proc->attr.subroutine && !proc->attr.function)
13176 || (proc->attr.proc != PROC_MODULE
13177 && proc->attr.if_source != IFSRC_IFBODY)
13178 || proc->attr.abstract)
13180 gfc_error ("%qs must be a module procedure or an external procedure with"
13181 " an explicit interface at %L", proc->name, &where);
13182 goto error;
13186 stree->n.tb->subroutine = proc->attr.subroutine;
13187 stree->n.tb->function = proc->attr.function;
13189 /* Find the super-type of the current derived type. We could do this once and
13190 store in a global if speed is needed, but as long as not I believe this is
13191 more readable and clearer. */
13192 super_type = gfc_get_derived_super_type (resolve_bindings_derived);
13194 /* If PASS, resolve and check arguments if not already resolved / loaded
13195 from a .mod file. */
13196 if (!stree->n.tb->nopass && stree->n.tb->pass_arg_num == 0)
13198 gfc_formal_arglist *dummy_args;
13200 dummy_args = gfc_sym_get_dummy_args (proc);
13201 if (stree->n.tb->pass_arg)
13203 gfc_formal_arglist *i;
13205 /* If an explicit passing argument name is given, walk the arg-list
13206 and look for it. */
13208 me_arg = NULL;
13209 stree->n.tb->pass_arg_num = 1;
13210 for (i = dummy_args; i; i = i->next)
13212 if (!strcmp (i->sym->name, stree->n.tb->pass_arg))
13214 me_arg = i->sym;
13215 break;
13217 ++stree->n.tb->pass_arg_num;
13220 if (!me_arg)
13222 gfc_error ("Procedure %qs with PASS(%s) at %L has no"
13223 " argument %qs",
13224 proc->name, stree->n.tb->pass_arg, &where,
13225 stree->n.tb->pass_arg);
13226 goto error;
13229 else
13231 /* Otherwise, take the first one; there should in fact be at least
13232 one. */
13233 stree->n.tb->pass_arg_num = 1;
13234 if (!dummy_args)
13236 gfc_error ("Procedure %qs with PASS at %L must have at"
13237 " least one argument", proc->name, &where);
13238 goto error;
13240 me_arg = dummy_args->sym;
13243 /* Now check that the argument-type matches and the passed-object
13244 dummy argument is generally fine. */
13246 gcc_assert (me_arg);
13248 if (me_arg->ts.type != BT_CLASS)
13250 gfc_error ("Non-polymorphic passed-object dummy argument of %qs"
13251 " at %L", proc->name, &where);
13252 goto error;
13255 if (CLASS_DATA (me_arg)->ts.u.derived
13256 != resolve_bindings_derived)
13258 gfc_error ("Argument %qs of %qs with PASS(%s) at %L must be of"
13259 " the derived-type %qs", me_arg->name, proc->name,
13260 me_arg->name, &where, resolve_bindings_derived->name);
13261 goto error;
13264 gcc_assert (me_arg->ts.type == BT_CLASS);
13265 if (CLASS_DATA (me_arg)->as && CLASS_DATA (me_arg)->as->rank != 0)
13267 gfc_error ("Passed-object dummy argument of %qs at %L must be"
13268 " scalar", proc->name, &where);
13269 goto error;
13271 if (CLASS_DATA (me_arg)->attr.allocatable)
13273 gfc_error ("Passed-object dummy argument of %qs at %L must not"
13274 " be ALLOCATABLE", proc->name, &where);
13275 goto error;
13277 if (CLASS_DATA (me_arg)->attr.class_pointer)
13279 gfc_error ("Passed-object dummy argument of %qs at %L must not"
13280 " be POINTER", proc->name, &where);
13281 goto error;
13285 /* If we are extending some type, check that we don't override a procedure
13286 flagged NON_OVERRIDABLE. */
13287 stree->n.tb->overridden = NULL;
13288 if (super_type)
13290 gfc_symtree* overridden;
13291 overridden = gfc_find_typebound_proc (super_type, NULL,
13292 stree->name, true, NULL);
13294 if (overridden)
13296 if (overridden->n.tb)
13297 stree->n.tb->overridden = overridden->n.tb;
13299 if (!gfc_check_typebound_override (stree, overridden))
13300 goto error;
13304 /* See if there's a name collision with a component directly in this type. */
13305 for (comp = resolve_bindings_derived->components; comp; comp = comp->next)
13306 if (!strcmp (comp->name, stree->name))
13308 gfc_error ("Procedure %qs at %L has the same name as a component of"
13309 " %qs",
13310 stree->name, &where, resolve_bindings_derived->name);
13311 goto error;
13314 /* Try to find a name collision with an inherited component. */
13315 if (super_type && gfc_find_component (super_type, stree->name, true, true,
13316 NULL))
13318 gfc_error ("Procedure %qs at %L has the same name as an inherited"
13319 " component of %qs",
13320 stree->name, &where, resolve_bindings_derived->name);
13321 goto error;
13324 stree->n.tb->error = 0;
13325 return;
13327 error:
13328 resolve_bindings_result = false;
13329 stree->n.tb->error = 1;
13333 static bool
13334 resolve_typebound_procedures (gfc_symbol* derived)
13336 int op;
13337 gfc_symbol* super_type;
13339 if (!derived->f2k_derived || !derived->f2k_derived->tb_sym_root)
13340 return true;
13342 super_type = gfc_get_derived_super_type (derived);
13343 if (super_type)
13344 resolve_symbol (super_type);
13346 resolve_bindings_derived = derived;
13347 resolve_bindings_result = true;
13349 if (derived->f2k_derived->tb_sym_root)
13350 gfc_traverse_symtree (derived->f2k_derived->tb_sym_root,
13351 &resolve_typebound_procedure);
13353 if (derived->f2k_derived->tb_uop_root)
13354 gfc_traverse_symtree (derived->f2k_derived->tb_uop_root,
13355 &resolve_typebound_user_op);
13357 for (op = 0; op != GFC_INTRINSIC_OPS; ++op)
13359 gfc_typebound_proc* p = derived->f2k_derived->tb_op[op];
13360 if (p && !resolve_typebound_intrinsic_op (derived,
13361 (gfc_intrinsic_op)op, p))
13362 resolve_bindings_result = false;
13365 return resolve_bindings_result;
13369 /* Add a derived type to the dt_list. The dt_list is used in trans-types.c
13370 to give all identical derived types the same backend_decl. */
13371 static void
13372 add_dt_to_dt_list (gfc_symbol *derived)
13374 gfc_dt_list *dt_list;
13376 for (dt_list = gfc_derived_types; dt_list; dt_list = dt_list->next)
13377 if (derived == dt_list->derived)
13378 return;
13380 dt_list = gfc_get_dt_list ();
13381 dt_list->next = gfc_derived_types;
13382 dt_list->derived = derived;
13383 gfc_derived_types = dt_list;
13387 /* Ensure that a derived-type is really not abstract, meaning that every
13388 inherited DEFERRED binding is overridden by a non-DEFERRED one. */
13390 static bool
13391 ensure_not_abstract_walker (gfc_symbol* sub, gfc_symtree* st)
13393 if (!st)
13394 return true;
13396 if (!ensure_not_abstract_walker (sub, st->left))
13397 return false;
13398 if (!ensure_not_abstract_walker (sub, st->right))
13399 return false;
13401 if (st->n.tb && st->n.tb->deferred)
13403 gfc_symtree* overriding;
13404 overriding = gfc_find_typebound_proc (sub, NULL, st->name, true, NULL);
13405 if (!overriding)
13406 return false;
13407 gcc_assert (overriding->n.tb);
13408 if (overriding->n.tb->deferred)
13410 gfc_error ("Derived-type %qs declared at %L must be ABSTRACT because"
13411 " %qs is DEFERRED and not overridden",
13412 sub->name, &sub->declared_at, st->name);
13413 return false;
13417 return true;
13420 static bool
13421 ensure_not_abstract (gfc_symbol* sub, gfc_symbol* ancestor)
13423 /* The algorithm used here is to recursively travel up the ancestry of sub
13424 and for each ancestor-type, check all bindings. If any of them is
13425 DEFERRED, look it up starting from sub and see if the found (overriding)
13426 binding is not DEFERRED.
13427 This is not the most efficient way to do this, but it should be ok and is
13428 clearer than something sophisticated. */
13430 gcc_assert (ancestor && !sub->attr.abstract);
13432 if (!ancestor->attr.abstract)
13433 return true;
13435 /* Walk bindings of this ancestor. */
13436 if (ancestor->f2k_derived)
13438 bool t;
13439 t = ensure_not_abstract_walker (sub, ancestor->f2k_derived->tb_sym_root);
13440 if (!t)
13441 return false;
13444 /* Find next ancestor type and recurse on it. */
13445 ancestor = gfc_get_derived_super_type (ancestor);
13446 if (ancestor)
13447 return ensure_not_abstract (sub, ancestor);
13449 return true;
13453 /* This check for typebound defined assignments is done recursively
13454 since the order in which derived types are resolved is not always in
13455 order of the declarations. */
13457 static void
13458 check_defined_assignments (gfc_symbol *derived)
13460 gfc_component *c;
13462 for (c = derived->components; c; c = c->next)
13464 if (!gfc_bt_struct (c->ts.type)
13465 || c->attr.pointer
13466 || c->attr.allocatable
13467 || c->attr.proc_pointer_comp
13468 || c->attr.class_pointer
13469 || c->attr.proc_pointer)
13470 continue;
13472 if (c->ts.u.derived->attr.defined_assign_comp
13473 || (c->ts.u.derived->f2k_derived
13474 && c->ts.u.derived->f2k_derived->tb_op[INTRINSIC_ASSIGN]))
13476 derived->attr.defined_assign_comp = 1;
13477 return;
13480 check_defined_assignments (c->ts.u.derived);
13481 if (c->ts.u.derived->attr.defined_assign_comp)
13483 derived->attr.defined_assign_comp = 1;
13484 return;
13490 /* Resolve a single component of a derived type or structure. */
13492 static bool
13493 resolve_component (gfc_component *c, gfc_symbol *sym)
13495 gfc_symbol *super_type;
13497 if (c->attr.artificial)
13498 return true;
13500 if (sym->attr.vtype && sym->attr.use_assoc)
13501 return true;
13503 /* F2008, C442. */
13504 if ((!sym->attr.is_class || c != sym->components)
13505 && c->attr.codimension
13506 && (!c->attr.allocatable || (c->as && c->as->type != AS_DEFERRED)))
13508 gfc_error ("Coarray component %qs at %L must be allocatable with "
13509 "deferred shape", c->name, &c->loc);
13510 return false;
13513 /* F2008, C443. */
13514 if (c->attr.codimension && c->ts.type == BT_DERIVED
13515 && c->ts.u.derived->ts.is_iso_c)
13517 gfc_error ("Component %qs at %L of TYPE(C_PTR) or TYPE(C_FUNPTR) "
13518 "shall not be a coarray", c->name, &c->loc);
13519 return false;
13522 /* F2008, C444. */
13523 if (gfc_bt_struct (c->ts.type) && c->ts.u.derived->attr.coarray_comp
13524 && (c->attr.codimension || c->attr.pointer || c->attr.dimension
13525 || c->attr.allocatable))
13527 gfc_error ("Component %qs at %L with coarray component "
13528 "shall be a nonpointer, nonallocatable scalar",
13529 c->name, &c->loc);
13530 return false;
13533 /* F2008, C448. */
13534 if (c->attr.contiguous && (!c->attr.dimension || !c->attr.pointer))
13536 gfc_error ("Component %qs at %L has the CONTIGUOUS attribute but "
13537 "is not an array pointer", c->name, &c->loc);
13538 return false;
13541 if (c->attr.proc_pointer && c->ts.interface)
13543 gfc_symbol *ifc = c->ts.interface;
13545 if (!sym->attr.vtype && !check_proc_interface (ifc, &c->loc))
13547 c->tb->error = 1;
13548 return false;
13551 if (ifc->attr.if_source || ifc->attr.intrinsic)
13553 /* Resolve interface and copy attributes. */
13554 if (ifc->formal && !ifc->formal_ns)
13555 resolve_symbol (ifc);
13556 if (ifc->attr.intrinsic)
13557 gfc_resolve_intrinsic (ifc, &ifc->declared_at);
13559 if (ifc->result)
13561 c->ts = ifc->result->ts;
13562 c->attr.allocatable = ifc->result->attr.allocatable;
13563 c->attr.pointer = ifc->result->attr.pointer;
13564 c->attr.dimension = ifc->result->attr.dimension;
13565 c->as = gfc_copy_array_spec (ifc->result->as);
13566 c->attr.class_ok = ifc->result->attr.class_ok;
13568 else
13570 c->ts = ifc->ts;
13571 c->attr.allocatable = ifc->attr.allocatable;
13572 c->attr.pointer = ifc->attr.pointer;
13573 c->attr.dimension = ifc->attr.dimension;
13574 c->as = gfc_copy_array_spec (ifc->as);
13575 c->attr.class_ok = ifc->attr.class_ok;
13577 c->ts.interface = ifc;
13578 c->attr.function = ifc->attr.function;
13579 c->attr.subroutine = ifc->attr.subroutine;
13581 c->attr.pure = ifc->attr.pure;
13582 c->attr.elemental = ifc->attr.elemental;
13583 c->attr.recursive = ifc->attr.recursive;
13584 c->attr.always_explicit = ifc->attr.always_explicit;
13585 c->attr.ext_attr |= ifc->attr.ext_attr;
13586 /* Copy char length. */
13587 if (ifc->ts.type == BT_CHARACTER && ifc->ts.u.cl)
13589 gfc_charlen *cl = gfc_new_charlen (sym->ns, ifc->ts.u.cl);
13590 if (cl->length && !cl->resolved
13591 && !gfc_resolve_expr (cl->length))
13593 c->tb->error = 1;
13594 return false;
13596 c->ts.u.cl = cl;
13600 else if (c->attr.proc_pointer && c->ts.type == BT_UNKNOWN)
13602 /* Since PPCs are not implicitly typed, a PPC without an explicit
13603 interface must be a subroutine. */
13604 gfc_add_subroutine (&c->attr, c->name, &c->loc);
13607 /* Procedure pointer components: Check PASS arg. */
13608 if (c->attr.proc_pointer && !c->tb->nopass && c->tb->pass_arg_num == 0
13609 && !sym->attr.vtype)
13611 gfc_symbol* me_arg;
13613 if (c->tb->pass_arg)
13615 gfc_formal_arglist* i;
13617 /* If an explicit passing argument name is given, walk the arg-list
13618 and look for it. */
13620 me_arg = NULL;
13621 c->tb->pass_arg_num = 1;
13622 for (i = c->ts.interface->formal; i; i = i->next)
13624 if (!strcmp (i->sym->name, c->tb->pass_arg))
13626 me_arg = i->sym;
13627 break;
13629 c->tb->pass_arg_num++;
13632 if (!me_arg)
13634 gfc_error ("Procedure pointer component %qs with PASS(%s) "
13635 "at %L has no argument %qs", c->name,
13636 c->tb->pass_arg, &c->loc, c->tb->pass_arg);
13637 c->tb->error = 1;
13638 return false;
13641 else
13643 /* Otherwise, take the first one; there should in fact be at least
13644 one. */
13645 c->tb->pass_arg_num = 1;
13646 if (!c->ts.interface->formal)
13648 gfc_error ("Procedure pointer component %qs with PASS at %L "
13649 "must have at least one argument",
13650 c->name, &c->loc);
13651 c->tb->error = 1;
13652 return false;
13654 me_arg = c->ts.interface->formal->sym;
13657 /* Now check that the argument-type matches. */
13658 gcc_assert (me_arg);
13659 if ((me_arg->ts.type != BT_DERIVED && me_arg->ts.type != BT_CLASS)
13660 || (me_arg->ts.type == BT_DERIVED && me_arg->ts.u.derived != sym)
13661 || (me_arg->ts.type == BT_CLASS
13662 && CLASS_DATA (me_arg)->ts.u.derived != sym))
13664 gfc_error ("Argument %qs of %qs with PASS(%s) at %L must be of"
13665 " the derived type %qs", me_arg->name, c->name,
13666 me_arg->name, &c->loc, sym->name);
13667 c->tb->error = 1;
13668 return false;
13671 /* Check for C453. */
13672 if (me_arg->attr.dimension)
13674 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
13675 "must be scalar", me_arg->name, c->name, me_arg->name,
13676 &c->loc);
13677 c->tb->error = 1;
13678 return false;
13681 if (me_arg->attr.pointer)
13683 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
13684 "may not have the POINTER attribute", me_arg->name,
13685 c->name, me_arg->name, &c->loc);
13686 c->tb->error = 1;
13687 return false;
13690 if (me_arg->attr.allocatable)
13692 gfc_error ("Argument %qs of %qs with PASS(%s) at %L "
13693 "may not be ALLOCATABLE", me_arg->name, c->name,
13694 me_arg->name, &c->loc);
13695 c->tb->error = 1;
13696 return false;
13699 if (gfc_type_is_extensible (sym) && me_arg->ts.type != BT_CLASS)
13701 gfc_error ("Non-polymorphic passed-object dummy argument of %qs"
13702 " at %L", c->name, &c->loc);
13703 return false;
13708 /* Check type-spec if this is not the parent-type component. */
13709 if (((sym->attr.is_class
13710 && (!sym->components->ts.u.derived->attr.extension
13711 || c != sym->components->ts.u.derived->components))
13712 || (!sym->attr.is_class
13713 && (!sym->attr.extension || c != sym->components)))
13714 && !sym->attr.vtype
13715 && !resolve_typespec_used (&c->ts, &c->loc, c->name))
13716 return false;
13718 super_type = gfc_get_derived_super_type (sym);
13720 /* If this type is an extension, set the accessibility of the parent
13721 component. */
13722 if (super_type
13723 && ((sym->attr.is_class
13724 && c == sym->components->ts.u.derived->components)
13725 || (!sym->attr.is_class && c == sym->components))
13726 && strcmp (super_type->name, c->name) == 0)
13727 c->attr.access = super_type->attr.access;
13729 /* If this type is an extension, see if this component has the same name
13730 as an inherited type-bound procedure. */
13731 if (super_type && !sym->attr.is_class
13732 && gfc_find_typebound_proc (super_type, NULL, c->name, true, NULL))
13734 gfc_error ("Component %qs of %qs at %L has the same name as an"
13735 " inherited type-bound procedure",
13736 c->name, sym->name, &c->loc);
13737 return false;
13740 if (c->ts.type == BT_CHARACTER && !c->attr.proc_pointer
13741 && !c->ts.deferred)
13743 if (c->ts.u.cl->length == NULL
13744 || (!resolve_charlen(c->ts.u.cl))
13745 || !gfc_is_constant_expr (c->ts.u.cl->length))
13747 gfc_error ("Character length of component %qs needs to "
13748 "be a constant specification expression at %L",
13749 c->name,
13750 c->ts.u.cl->length ? &c->ts.u.cl->length->where : &c->loc);
13751 return false;
13755 if (c->ts.type == BT_CHARACTER && c->ts.deferred
13756 && !c->attr.pointer && !c->attr.allocatable)
13758 gfc_error ("Character component %qs of %qs at %L with deferred "
13759 "length must be a POINTER or ALLOCATABLE",
13760 c->name, sym->name, &c->loc);
13761 return false;
13764 /* Add the hidden deferred length field. */
13765 if (c->ts.type == BT_CHARACTER
13766 && (c->ts.deferred || c->attr.pdt_string)
13767 && !c->attr.function
13768 && !sym->attr.is_class)
13770 char name[GFC_MAX_SYMBOL_LEN+9];
13771 gfc_component *strlen;
13772 sprintf (name, "_%s_length", c->name);
13773 strlen = gfc_find_component (sym, name, true, true, NULL);
13774 if (strlen == NULL)
13776 if (!gfc_add_component (sym, name, &strlen))
13777 return false;
13778 strlen->ts.type = BT_INTEGER;
13779 strlen->ts.kind = gfc_charlen_int_kind;
13780 strlen->attr.access = ACCESS_PRIVATE;
13781 strlen->attr.artificial = 1;
13785 if (c->ts.type == BT_DERIVED
13786 && sym->component_access != ACCESS_PRIVATE
13787 && gfc_check_symbol_access (sym)
13788 && !is_sym_host_assoc (c->ts.u.derived, sym->ns)
13789 && !c->ts.u.derived->attr.use_assoc
13790 && !gfc_check_symbol_access (c->ts.u.derived)
13791 && !gfc_notify_std (GFC_STD_F2003, "the component %qs is a "
13792 "PRIVATE type and cannot be a component of "
13793 "%qs, which is PUBLIC at %L", c->name,
13794 sym->name, &sym->declared_at))
13795 return false;
13797 if ((sym->attr.sequence || sym->attr.is_bind_c) && c->ts.type == BT_CLASS)
13799 gfc_error ("Polymorphic component %s at %L in SEQUENCE or BIND(C) "
13800 "type %s", c->name, &c->loc, sym->name);
13801 return false;
13804 if (sym->attr.sequence)
13806 if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.sequence == 0)
13808 gfc_error ("Component %s of SEQUENCE type declared at %L does "
13809 "not have the SEQUENCE attribute",
13810 c->ts.u.derived->name, &sym->declared_at);
13811 return false;
13815 if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.generic)
13816 c->ts.u.derived = gfc_find_dt_in_generic (c->ts.u.derived);
13817 else if (c->ts.type == BT_CLASS && c->attr.class_ok
13818 && CLASS_DATA (c)->ts.u.derived->attr.generic)
13819 CLASS_DATA (c)->ts.u.derived
13820 = gfc_find_dt_in_generic (CLASS_DATA (c)->ts.u.derived);
13822 if (!sym->attr.is_class && c->ts.type == BT_DERIVED && !sym->attr.vtype
13823 && c->attr.pointer && c->ts.u.derived->components == NULL
13824 && !c->ts.u.derived->attr.zero_comp)
13826 gfc_error ("The pointer component %qs of %qs at %L is a type "
13827 "that has not been declared", c->name, sym->name,
13828 &c->loc);
13829 return false;
13832 if (c->ts.type == BT_CLASS && c->attr.class_ok
13833 && CLASS_DATA (c)->attr.class_pointer
13834 && CLASS_DATA (c)->ts.u.derived->components == NULL
13835 && !CLASS_DATA (c)->ts.u.derived->attr.zero_comp
13836 && !UNLIMITED_POLY (c))
13838 gfc_error ("The pointer component %qs of %qs at %L is a type "
13839 "that has not been declared", c->name, sym->name,
13840 &c->loc);
13841 return false;
13844 /* If an allocatable component derived type is of the same type as
13845 the enclosing derived type, we need a vtable generating so that
13846 the __deallocate procedure is created. */
13847 if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
13848 && c->ts.u.derived == sym && c->attr.allocatable == 1)
13849 gfc_find_vtab (&c->ts);
13851 /* Ensure that all the derived type components are put on the
13852 derived type list; even in formal namespaces, where derived type
13853 pointer components might not have been declared. */
13854 if (c->ts.type == BT_DERIVED
13855 && c->ts.u.derived
13856 && c->ts.u.derived->components
13857 && c->attr.pointer
13858 && sym != c->ts.u.derived)
13859 add_dt_to_dt_list (c->ts.u.derived);
13861 if (!gfc_resolve_array_spec (c->as,
13862 !(c->attr.pointer || c->attr.proc_pointer
13863 || c->attr.allocatable)))
13864 return false;
13866 if (c->initializer && !sym->attr.vtype
13867 && !c->attr.pdt_kind && !c->attr.pdt_len
13868 && !gfc_check_assign_symbol (sym, c, c->initializer))
13869 return false;
13871 return true;
13875 /* Be nice about the locus for a structure expression - show the locus of the
13876 first non-null sub-expression if we can. */
13878 static locus *
13879 cons_where (gfc_expr *struct_expr)
13881 gfc_constructor *cons;
13883 gcc_assert (struct_expr && struct_expr->expr_type == EXPR_STRUCTURE);
13885 cons = gfc_constructor_first (struct_expr->value.constructor);
13886 for (; cons; cons = gfc_constructor_next (cons))
13888 if (cons->expr && cons->expr->expr_type != EXPR_NULL)
13889 return &cons->expr->where;
13892 return &struct_expr->where;
13895 /* Resolve the components of a structure type. Much less work than derived
13896 types. */
13898 static bool
13899 resolve_fl_struct (gfc_symbol *sym)
13901 gfc_component *c;
13902 gfc_expr *init = NULL;
13903 bool success;
13905 /* Make sure UNIONs do not have overlapping initializers. */
13906 if (sym->attr.flavor == FL_UNION)
13908 for (c = sym->components; c; c = c->next)
13910 if (init && c->initializer)
13912 gfc_error ("Conflicting initializers in union at %L and %L",
13913 cons_where (init), cons_where (c->initializer));
13914 gfc_free_expr (c->initializer);
13915 c->initializer = NULL;
13917 if (init == NULL)
13918 init = c->initializer;
13922 success = true;
13923 for (c = sym->components; c; c = c->next)
13924 if (!resolve_component (c, sym))
13925 success = false;
13927 if (!success)
13928 return false;
13930 if (sym->components)
13931 add_dt_to_dt_list (sym);
13933 return true;
13937 /* Resolve the components of a derived type. This does not have to wait until
13938 resolution stage, but can be done as soon as the dt declaration has been
13939 parsed. */
13941 static bool
13942 resolve_fl_derived0 (gfc_symbol *sym)
13944 gfc_symbol* super_type;
13945 gfc_component *c;
13946 gfc_formal_arglist *f;
13947 bool success;
13949 if (sym->attr.unlimited_polymorphic)
13950 return true;
13952 super_type = gfc_get_derived_super_type (sym);
13954 /* F2008, C432. */
13955 if (super_type && sym->attr.coarray_comp && !super_type->attr.coarray_comp)
13957 gfc_error ("As extending type %qs at %L has a coarray component, "
13958 "parent type %qs shall also have one", sym->name,
13959 &sym->declared_at, super_type->name);
13960 return false;
13963 /* Ensure the extended type gets resolved before we do. */
13964 if (super_type && !resolve_fl_derived0 (super_type))
13965 return false;
13967 /* An ABSTRACT type must be extensible. */
13968 if (sym->attr.abstract && !gfc_type_is_extensible (sym))
13970 gfc_error ("Non-extensible derived-type %qs at %L must not be ABSTRACT",
13971 sym->name, &sym->declared_at);
13972 return false;
13975 c = (sym->attr.is_class) ? sym->components->ts.u.derived->components
13976 : sym->components;
13978 success = true;
13979 for ( ; c != NULL; c = c->next)
13980 if (!resolve_component (c, sym))
13981 success = false;
13983 if (!success)
13984 return false;
13986 check_defined_assignments (sym);
13988 if (!sym->attr.defined_assign_comp && super_type)
13989 sym->attr.defined_assign_comp
13990 = super_type->attr.defined_assign_comp;
13992 /* If this is a non-ABSTRACT type extending an ABSTRACT one, ensure that
13993 all DEFERRED bindings are overridden. */
13994 if (super_type && super_type->attr.abstract && !sym->attr.abstract
13995 && !sym->attr.is_class
13996 && !ensure_not_abstract (sym, super_type))
13997 return false;
13999 /* Check that there is a component for every PDT parameter. */
14000 if (sym->attr.pdt_template)
14002 for (f = sym->formal; f; f = f->next)
14004 c = gfc_find_component (sym, f->sym->name, true, true, NULL);
14005 if (c == NULL)
14007 gfc_error ("Parameterized type %qs does not have a component "
14008 "corresponding to parameter %qs at %L", sym->name,
14009 f->sym->name, &sym->declared_at);
14010 break;
14015 /* Add derived type to the derived type list. */
14016 add_dt_to_dt_list (sym);
14018 return true;
14022 /* The following procedure does the full resolution of a derived type,
14023 including resolution of all type-bound procedures (if present). In contrast
14024 to 'resolve_fl_derived0' this can only be done after the module has been
14025 parsed completely. */
14027 static bool
14028 resolve_fl_derived (gfc_symbol *sym)
14030 gfc_symbol *gen_dt = NULL;
14032 if (sym->attr.unlimited_polymorphic)
14033 return true;
14035 if (!sym->attr.is_class)
14036 gfc_find_symbol (sym->name, sym->ns, 0, &gen_dt);
14037 if (gen_dt && gen_dt->generic && gen_dt->generic->next
14038 && (!gen_dt->generic->sym->attr.use_assoc
14039 || gen_dt->generic->sym->module != gen_dt->generic->next->sym->module)
14040 && !gfc_notify_std (GFC_STD_F2003, "Generic name %qs of function "
14041 "%qs at %L being the same name as derived "
14042 "type at %L", sym->name,
14043 gen_dt->generic->sym == sym
14044 ? gen_dt->generic->next->sym->name
14045 : gen_dt->generic->sym->name,
14046 gen_dt->generic->sym == sym
14047 ? &gen_dt->generic->next->sym->declared_at
14048 : &gen_dt->generic->sym->declared_at,
14049 &sym->declared_at))
14050 return false;
14052 /* Resolve the finalizer procedures. */
14053 if (!gfc_resolve_finalizers (sym, NULL))
14054 return false;
14056 if (sym->attr.is_class && sym->ts.u.derived == NULL)
14058 /* Fix up incomplete CLASS symbols. */
14059 gfc_component *data = gfc_find_component (sym, "_data", true, true, NULL);
14060 gfc_component *vptr = gfc_find_component (sym, "_vptr", true, true, NULL);
14062 /* Nothing more to do for unlimited polymorphic entities. */
14063 if (data->ts.u.derived->attr.unlimited_polymorphic)
14064 return true;
14065 else if (vptr->ts.u.derived == NULL)
14067 gfc_symbol *vtab = gfc_find_derived_vtab (data->ts.u.derived);
14068 gcc_assert (vtab);
14069 vptr->ts.u.derived = vtab->ts.u.derived;
14070 if (!resolve_fl_derived0 (vptr->ts.u.derived))
14071 return false;
14075 if (!resolve_fl_derived0 (sym))
14076 return false;
14078 /* Resolve the type-bound procedures. */
14079 if (!resolve_typebound_procedures (sym))
14080 return false;
14082 /* Generate module vtables subject to their accessibility and their not
14083 being vtables or pdt templates. If this is not done class declarations
14084 in external procedures wind up with their own version and so SELECT TYPE
14085 fails because the vptrs do not have the same address. */
14086 if (gfc_option.allow_std & GFC_STD_F2003
14087 && sym->ns->proc_name
14088 && sym->ns->proc_name->attr.flavor == FL_MODULE
14089 && sym->attr.access != ACCESS_PRIVATE
14090 && !(sym->attr.use_assoc || sym->attr.vtype || sym->attr.pdt_template))
14092 gfc_symbol *vtab = gfc_find_derived_vtab (sym);
14093 gfc_set_sym_referenced (vtab);
14096 return true;
14100 static bool
14101 resolve_fl_namelist (gfc_symbol *sym)
14103 gfc_namelist *nl;
14104 gfc_symbol *nlsym;
14106 for (nl = sym->namelist; nl; nl = nl->next)
14108 /* Check again, the check in match only works if NAMELIST comes
14109 after the decl. */
14110 if (nl->sym->as && nl->sym->as->type == AS_ASSUMED_SIZE)
14112 gfc_error ("Assumed size array %qs in namelist %qs at %L is not "
14113 "allowed", nl->sym->name, sym->name, &sym->declared_at);
14114 return false;
14117 if (nl->sym->as && nl->sym->as->type == AS_ASSUMED_SHAPE
14118 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST array object %qs "
14119 "with assumed shape in namelist %qs at %L",
14120 nl->sym->name, sym->name, &sym->declared_at))
14121 return false;
14123 if (is_non_constant_shape_array (nl->sym)
14124 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST array object %qs "
14125 "with nonconstant shape in namelist %qs at %L",
14126 nl->sym->name, sym->name, &sym->declared_at))
14127 return false;
14129 if (nl->sym->ts.type == BT_CHARACTER
14130 && (nl->sym->ts.u.cl->length == NULL
14131 || !gfc_is_constant_expr (nl->sym->ts.u.cl->length))
14132 && !gfc_notify_std (GFC_STD_F2003, "NAMELIST object %qs with "
14133 "nonconstant character length in "
14134 "namelist %qs at %L", nl->sym->name,
14135 sym->name, &sym->declared_at))
14136 return false;
14140 /* Reject PRIVATE objects in a PUBLIC namelist. */
14141 if (gfc_check_symbol_access (sym))
14143 for (nl = sym->namelist; nl; nl = nl->next)
14145 if (!nl->sym->attr.use_assoc
14146 && !is_sym_host_assoc (nl->sym, sym->ns)
14147 && !gfc_check_symbol_access (nl->sym))
14149 gfc_error ("NAMELIST object %qs was declared PRIVATE and "
14150 "cannot be member of PUBLIC namelist %qs at %L",
14151 nl->sym->name, sym->name, &sym->declared_at);
14152 return false;
14155 if (nl->sym->ts.type == BT_DERIVED
14156 && (nl->sym->ts.u.derived->attr.alloc_comp
14157 || nl->sym->ts.u.derived->attr.pointer_comp))
14159 if (!gfc_notify_std (GFC_STD_F2003, "NAMELIST object %qs in "
14160 "namelist %qs at %L with ALLOCATABLE "
14161 "or POINTER components", nl->sym->name,
14162 sym->name, &sym->declared_at))
14163 return false;
14164 return true;
14167 /* Types with private components that came here by USE-association. */
14168 if (nl->sym->ts.type == BT_DERIVED
14169 && derived_inaccessible (nl->sym->ts.u.derived))
14171 gfc_error ("NAMELIST object %qs has use-associated PRIVATE "
14172 "components and cannot be member of namelist %qs at %L",
14173 nl->sym->name, sym->name, &sym->declared_at);
14174 return false;
14177 /* Types with private components that are defined in the same module. */
14178 if (nl->sym->ts.type == BT_DERIVED
14179 && !is_sym_host_assoc (nl->sym->ts.u.derived, sym->ns)
14180 && nl->sym->ts.u.derived->attr.private_comp)
14182 gfc_error ("NAMELIST object %qs has PRIVATE components and "
14183 "cannot be a member of PUBLIC namelist %qs at %L",
14184 nl->sym->name, sym->name, &sym->declared_at);
14185 return false;
14191 /* 14.1.2 A module or internal procedure represent local entities
14192 of the same type as a namelist member and so are not allowed. */
14193 for (nl = sym->namelist; nl; nl = nl->next)
14195 if (nl->sym->ts.kind != 0 && nl->sym->attr.flavor == FL_VARIABLE)
14196 continue;
14198 if (nl->sym->attr.function && nl->sym == nl->sym->result)
14199 if ((nl->sym == sym->ns->proc_name)
14201 (sym->ns->parent && nl->sym == sym->ns->parent->proc_name))
14202 continue;
14204 nlsym = NULL;
14205 if (nl->sym->name)
14206 gfc_find_symbol (nl->sym->name, sym->ns, 1, &nlsym);
14207 if (nlsym && nlsym->attr.flavor == FL_PROCEDURE)
14209 gfc_error ("PROCEDURE attribute conflicts with NAMELIST "
14210 "attribute in %qs at %L", nlsym->name,
14211 &sym->declared_at);
14212 return false;
14216 if (async_io_dt)
14218 for (nl = sym->namelist; nl; nl = nl->next)
14219 nl->sym->attr.asynchronous = 1;
14221 return true;
14225 static bool
14226 resolve_fl_parameter (gfc_symbol *sym)
14228 /* A parameter array's shape needs to be constant. */
14229 if (sym->as != NULL
14230 && (sym->as->type == AS_DEFERRED
14231 || is_non_constant_shape_array (sym)))
14233 gfc_error ("Parameter array %qs at %L cannot be automatic "
14234 "or of deferred shape", sym->name, &sym->declared_at);
14235 return false;
14238 /* Constraints on deferred type parameter. */
14239 if (!deferred_requirements (sym))
14240 return false;
14242 /* Make sure a parameter that has been implicitly typed still
14243 matches the implicit type, since PARAMETER statements can precede
14244 IMPLICIT statements. */
14245 if (sym->attr.implicit_type
14246 && !gfc_compare_types (&sym->ts, gfc_get_default_type (sym->name,
14247 sym->ns)))
14249 gfc_error ("Implicitly typed PARAMETER %qs at %L doesn't match a "
14250 "later IMPLICIT type", sym->name, &sym->declared_at);
14251 return false;
14254 /* Make sure the types of derived parameters are consistent. This
14255 type checking is deferred until resolution because the type may
14256 refer to a derived type from the host. */
14257 if (sym->ts.type == BT_DERIVED
14258 && !gfc_compare_types (&sym->ts, &sym->value->ts))
14260 gfc_error ("Incompatible derived type in PARAMETER at %L",
14261 &sym->value->where);
14262 return false;
14265 /* F03:C509,C514. */
14266 if (sym->ts.type == BT_CLASS)
14268 gfc_error ("CLASS variable %qs at %L cannot have the PARAMETER attribute",
14269 sym->name, &sym->declared_at);
14270 return false;
14273 return true;
14277 /* Called by resolve_symbol to chack PDTs. */
14279 static void
14280 resolve_pdt (gfc_symbol* sym)
14282 gfc_symbol *derived = NULL;
14283 gfc_actual_arglist *param;
14284 gfc_component *c;
14285 bool const_len_exprs = true;
14286 bool assumed_len_exprs = false;
14288 if (sym->ts.type == BT_DERIVED)
14289 derived = sym->ts.u.derived;
14290 else if (sym->ts.type == BT_CLASS)
14291 derived = CLASS_DATA (sym)->ts.u.derived;
14292 else
14293 gcc_unreachable ();
14295 gcc_assert (derived->attr.pdt_type);
14297 for (param = sym->param_list; param; param = param->next)
14299 c = gfc_find_component (derived, param->name, false, true, NULL);
14300 gcc_assert (c);
14301 if (c->attr.pdt_kind)
14302 continue;
14304 if (param->expr && !gfc_is_constant_expr (param->expr)
14305 && c->attr.pdt_len)
14306 const_len_exprs = false;
14307 else if (param->spec_type == SPEC_ASSUMED)
14308 assumed_len_exprs = true;
14311 if (!const_len_exprs
14312 && (sym->ns->proc_name->attr.is_main_program
14313 || sym->ns->proc_name->attr.flavor == FL_MODULE
14314 || sym->attr.save != SAVE_NONE))
14315 gfc_error ("The AUTOMATIC object %qs at %L must not have the "
14316 "SAVE attribute or be a variable declared in the "
14317 "main program, a module or a submodule(F08/C513)",
14318 sym->name, &sym->declared_at);
14320 if (assumed_len_exprs && !(sym->attr.dummy
14321 || sym->attr.select_type_temporary || sym->attr.associate_var))
14322 gfc_error ("The object %qs at %L with ASSUMED type parameters "
14323 "must be a dummy or a SELECT TYPE selector(F08/4.2)",
14324 sym->name, &sym->declared_at);
14328 /* Do anything necessary to resolve a symbol. Right now, we just
14329 assume that an otherwise unknown symbol is a variable. This sort
14330 of thing commonly happens for symbols in module. */
14332 static void
14333 resolve_symbol (gfc_symbol *sym)
14335 int check_constant, mp_flag;
14336 gfc_symtree *symtree;
14337 gfc_symtree *this_symtree;
14338 gfc_namespace *ns;
14339 gfc_component *c;
14340 symbol_attribute class_attr;
14341 gfc_array_spec *as;
14342 bool saved_specification_expr;
14344 if (sym->resolved)
14345 return;
14346 sym->resolved = 1;
14348 /* No symbol will ever have union type; only components can be unions.
14349 Union type declaration symbols have type BT_UNKNOWN but flavor FL_UNION
14350 (just like derived type declaration symbols have flavor FL_DERIVED). */
14351 gcc_assert (sym->ts.type != BT_UNION);
14353 /* Coarrayed polymorphic objects with allocatable or pointer components are
14354 yet unsupported for -fcoarray=lib. */
14355 if (flag_coarray == GFC_FCOARRAY_LIB && sym->ts.type == BT_CLASS
14356 && sym->ts.u.derived && CLASS_DATA (sym)
14357 && CLASS_DATA (sym)->attr.codimension
14358 && (CLASS_DATA (sym)->ts.u.derived->attr.alloc_comp
14359 || CLASS_DATA (sym)->ts.u.derived->attr.pointer_comp))
14361 gfc_error ("Sorry, allocatable/pointer components in polymorphic (CLASS) "
14362 "type coarrays at %L are unsupported", &sym->declared_at);
14363 return;
14366 if (sym->attr.artificial)
14367 return;
14369 if (sym->attr.unlimited_polymorphic)
14370 return;
14372 if (sym->attr.flavor == FL_UNKNOWN
14373 || (sym->attr.flavor == FL_PROCEDURE && !sym->attr.intrinsic
14374 && !sym->attr.generic && !sym->attr.external
14375 && sym->attr.if_source == IFSRC_UNKNOWN
14376 && sym->ts.type == BT_UNKNOWN))
14379 /* If we find that a flavorless symbol is an interface in one of the
14380 parent namespaces, find its symtree in this namespace, free the
14381 symbol and set the symtree to point to the interface symbol. */
14382 for (ns = gfc_current_ns->parent; ns; ns = ns->parent)
14384 symtree = gfc_find_symtree (ns->sym_root, sym->name);
14385 if (symtree && (symtree->n.sym->generic ||
14386 (symtree->n.sym->attr.flavor == FL_PROCEDURE
14387 && sym->ns->construct_entities)))
14389 this_symtree = gfc_find_symtree (gfc_current_ns->sym_root,
14390 sym->name);
14391 if (this_symtree->n.sym == sym)
14393 symtree->n.sym->refs++;
14394 gfc_release_symbol (sym);
14395 this_symtree->n.sym = symtree->n.sym;
14396 return;
14401 /* Otherwise give it a flavor according to such attributes as
14402 it has. */
14403 if (sym->attr.flavor == FL_UNKNOWN && sym->attr.external == 0
14404 && sym->attr.intrinsic == 0)
14405 sym->attr.flavor = FL_VARIABLE;
14406 else if (sym->attr.flavor == FL_UNKNOWN)
14408 sym->attr.flavor = FL_PROCEDURE;
14409 if (sym->attr.dimension)
14410 sym->attr.function = 1;
14414 if (sym->attr.external && sym->ts.type != BT_UNKNOWN && !sym->attr.function)
14415 gfc_add_function (&sym->attr, sym->name, &sym->declared_at);
14417 if (sym->attr.procedure && sym->attr.if_source != IFSRC_DECL
14418 && !resolve_procedure_interface (sym))
14419 return;
14421 if (sym->attr.is_protected && !sym->attr.proc_pointer
14422 && (sym->attr.procedure || sym->attr.external))
14424 if (sym->attr.external)
14425 gfc_error ("PROTECTED attribute conflicts with EXTERNAL attribute "
14426 "at %L", &sym->declared_at);
14427 else
14428 gfc_error ("PROCEDURE attribute conflicts with PROTECTED attribute "
14429 "at %L", &sym->declared_at);
14431 return;
14434 if (sym->attr.flavor == FL_DERIVED && !resolve_fl_derived (sym))
14435 return;
14437 else if ((sym->attr.flavor == FL_STRUCT || sym->attr.flavor == FL_UNION)
14438 && !resolve_fl_struct (sym))
14439 return;
14441 /* Symbols that are module procedures with results (functions) have
14442 the types and array specification copied for type checking in
14443 procedures that call them, as well as for saving to a module
14444 file. These symbols can't stand the scrutiny that their results
14445 can. */
14446 mp_flag = (sym->result != NULL && sym->result != sym);
14448 /* Make sure that the intrinsic is consistent with its internal
14449 representation. This needs to be done before assigning a default
14450 type to avoid spurious warnings. */
14451 if (sym->attr.flavor != FL_MODULE && sym->attr.intrinsic
14452 && !gfc_resolve_intrinsic (sym, &sym->declared_at))
14453 return;
14455 /* Resolve associate names. */
14456 if (sym->assoc)
14457 resolve_assoc_var (sym, true);
14459 /* Assign default type to symbols that need one and don't have one. */
14460 if (sym->ts.type == BT_UNKNOWN)
14462 if (sym->attr.flavor == FL_VARIABLE || sym->attr.flavor == FL_PARAMETER)
14464 gfc_set_default_type (sym, 1, NULL);
14467 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.external
14468 && !sym->attr.function && !sym->attr.subroutine
14469 && gfc_get_default_type (sym->name, sym->ns)->type == BT_UNKNOWN)
14470 gfc_add_subroutine (&sym->attr, sym->name, &sym->declared_at);
14472 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.function)
14474 /* The specific case of an external procedure should emit an error
14475 in the case that there is no implicit type. */
14476 if (!mp_flag)
14478 if (!sym->attr.mixed_entry_master)
14479 gfc_set_default_type (sym, sym->attr.external, NULL);
14481 else
14483 /* Result may be in another namespace. */
14484 resolve_symbol (sym->result);
14486 if (!sym->result->attr.proc_pointer)
14488 sym->ts = sym->result->ts;
14489 sym->as = gfc_copy_array_spec (sym->result->as);
14490 sym->attr.dimension = sym->result->attr.dimension;
14491 sym->attr.pointer = sym->result->attr.pointer;
14492 sym->attr.allocatable = sym->result->attr.allocatable;
14493 sym->attr.contiguous = sym->result->attr.contiguous;
14498 else if (mp_flag && sym->attr.flavor == FL_PROCEDURE && sym->attr.function)
14500 bool saved_specification_expr = specification_expr;
14501 specification_expr = true;
14502 gfc_resolve_array_spec (sym->result->as, false);
14503 specification_expr = saved_specification_expr;
14506 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
14508 as = CLASS_DATA (sym)->as;
14509 class_attr = CLASS_DATA (sym)->attr;
14510 class_attr.pointer = class_attr.class_pointer;
14512 else
14514 class_attr = sym->attr;
14515 as = sym->as;
14518 /* F2008, C530. */
14519 if (sym->attr.contiguous
14520 && (!class_attr.dimension
14521 || (as->type != AS_ASSUMED_SHAPE && as->type != AS_ASSUMED_RANK
14522 && !class_attr.pointer)))
14524 gfc_error ("%qs at %L has the CONTIGUOUS attribute but is not an "
14525 "array pointer or an assumed-shape or assumed-rank array",
14526 sym->name, &sym->declared_at);
14527 return;
14530 /* Assumed size arrays and assumed shape arrays must be dummy
14531 arguments. Array-spec's of implied-shape should have been resolved to
14532 AS_EXPLICIT already. */
14534 if (as)
14536 /* If AS_IMPLIED_SHAPE makes it to here, it must be a bad
14537 specification expression. */
14538 if (as->type == AS_IMPLIED_SHAPE)
14540 int i;
14541 for (i=0; i<as->rank; i++)
14543 if (as->lower[i] != NULL && as->upper[i] == NULL)
14545 gfc_error ("Bad specification for assumed size array at %L",
14546 &as->lower[i]->where);
14547 return;
14550 gcc_unreachable();
14553 if (((as->type == AS_ASSUMED_SIZE && !as->cp_was_assumed)
14554 || as->type == AS_ASSUMED_SHAPE)
14555 && !sym->attr.dummy && !sym->attr.select_type_temporary)
14557 if (as->type == AS_ASSUMED_SIZE)
14558 gfc_error ("Assumed size array at %L must be a dummy argument",
14559 &sym->declared_at);
14560 else
14561 gfc_error ("Assumed shape array at %L must be a dummy argument",
14562 &sym->declared_at);
14563 return;
14565 /* TS 29113, C535a. */
14566 if (as->type == AS_ASSUMED_RANK && !sym->attr.dummy
14567 && !sym->attr.select_type_temporary)
14569 gfc_error ("Assumed-rank array at %L must be a dummy argument",
14570 &sym->declared_at);
14571 return;
14573 if (as->type == AS_ASSUMED_RANK
14574 && (sym->attr.codimension || sym->attr.value))
14576 gfc_error ("Assumed-rank array at %L may not have the VALUE or "
14577 "CODIMENSION attribute", &sym->declared_at);
14578 return;
14582 /* Make sure symbols with known intent or optional are really dummy
14583 variable. Because of ENTRY statement, this has to be deferred
14584 until resolution time. */
14586 if (!sym->attr.dummy
14587 && (sym->attr.optional || sym->attr.intent != INTENT_UNKNOWN))
14589 gfc_error ("Symbol at %L is not a DUMMY variable", &sym->declared_at);
14590 return;
14593 if (sym->attr.value && !sym->attr.dummy)
14595 gfc_error ("%qs at %L cannot have the VALUE attribute because "
14596 "it is not a dummy argument", sym->name, &sym->declared_at);
14597 return;
14600 if (sym->attr.value && sym->ts.type == BT_CHARACTER)
14602 gfc_charlen *cl = sym->ts.u.cl;
14603 if (!cl || !cl->length || cl->length->expr_type != EXPR_CONSTANT)
14605 gfc_error ("Character dummy variable %qs at %L with VALUE "
14606 "attribute must have constant length",
14607 sym->name, &sym->declared_at);
14608 return;
14611 if (sym->ts.is_c_interop
14612 && mpz_cmp_si (cl->length->value.integer, 1) != 0)
14614 gfc_error ("C interoperable character dummy variable %qs at %L "
14615 "with VALUE attribute must have length one",
14616 sym->name, &sym->declared_at);
14617 return;
14621 if (sym->ts.type == BT_DERIVED && !sym->attr.is_iso_c
14622 && sym->ts.u.derived->attr.generic)
14624 sym->ts.u.derived = gfc_find_dt_in_generic (sym->ts.u.derived);
14625 if (!sym->ts.u.derived)
14627 gfc_error ("The derived type %qs at %L is of type %qs, "
14628 "which has not been defined", sym->name,
14629 &sym->declared_at, sym->ts.u.derived->name);
14630 sym->ts.type = BT_UNKNOWN;
14631 return;
14635 /* Use the same constraints as TYPE(*), except for the type check
14636 and that only scalars and assumed-size arrays are permitted. */
14637 if (sym->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
14639 if (!sym->attr.dummy)
14641 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall be "
14642 "a dummy argument", sym->name, &sym->declared_at);
14643 return;
14646 if (sym->ts.type != BT_ASSUMED && sym->ts.type != BT_INTEGER
14647 && sym->ts.type != BT_REAL && sym->ts.type != BT_LOGICAL
14648 && sym->ts.type != BT_COMPLEX)
14650 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall be "
14651 "of type TYPE(*) or of an numeric intrinsic type",
14652 sym->name, &sym->declared_at);
14653 return;
14656 if (sym->attr.allocatable || sym->attr.codimension
14657 || sym->attr.pointer || sym->attr.value)
14659 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may not "
14660 "have the ALLOCATABLE, CODIMENSION, POINTER or VALUE "
14661 "attribute", sym->name, &sym->declared_at);
14662 return;
14665 if (sym->attr.intent == INTENT_OUT)
14667 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute may not "
14668 "have the INTENT(OUT) attribute",
14669 sym->name, &sym->declared_at);
14670 return;
14672 if (sym->attr.dimension && sym->as->type != AS_ASSUMED_SIZE)
14674 gfc_error ("Variable %s at %L with NO_ARG_CHECK attribute shall "
14675 "either be a scalar or an assumed-size array",
14676 sym->name, &sym->declared_at);
14677 return;
14680 /* Set the type to TYPE(*) and add a dimension(*) to ensure
14681 NO_ARG_CHECK is correctly handled in trans*.c, e.g. with
14682 packing. */
14683 sym->ts.type = BT_ASSUMED;
14684 sym->as = gfc_get_array_spec ();
14685 sym->as->type = AS_ASSUMED_SIZE;
14686 sym->as->rank = 1;
14687 sym->as->lower[0] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
14689 else if (sym->ts.type == BT_ASSUMED)
14691 /* TS 29113, C407a. */
14692 if (!sym->attr.dummy)
14694 gfc_error ("Assumed type of variable %s at %L is only permitted "
14695 "for dummy variables", sym->name, &sym->declared_at);
14696 return;
14698 if (sym->attr.allocatable || sym->attr.codimension
14699 || sym->attr.pointer || sym->attr.value)
14701 gfc_error ("Assumed-type variable %s at %L may not have the "
14702 "ALLOCATABLE, CODIMENSION, POINTER or VALUE attribute",
14703 sym->name, &sym->declared_at);
14704 return;
14706 if (sym->attr.intent == INTENT_OUT)
14708 gfc_error ("Assumed-type variable %s at %L may not have the "
14709 "INTENT(OUT) attribute",
14710 sym->name, &sym->declared_at);
14711 return;
14713 if (sym->attr.dimension && sym->as->type == AS_EXPLICIT)
14715 gfc_error ("Assumed-type variable %s at %L shall not be an "
14716 "explicit-shape array", sym->name, &sym->declared_at);
14717 return;
14721 /* If the symbol is marked as bind(c), that it is declared at module level
14722 scope and verify its type and kind. Do not do the latter for symbols
14723 that are implicitly typed because that is handled in
14724 gfc_set_default_type. Handle dummy arguments and procedure definitions
14725 separately. Also, anything that is use associated is not handled here
14726 but instead is handled in the module it is declared in. Finally, derived
14727 type definitions are allowed to be BIND(C) since that only implies that
14728 they're interoperable, and they are checked fully for interoperability
14729 when a variable is declared of that type. */
14730 if (sym->attr.is_bind_c && sym->attr.use_assoc == 0
14731 && sym->attr.dummy == 0 && sym->attr.flavor != FL_PROCEDURE
14732 && sym->attr.flavor != FL_DERIVED)
14734 bool t = true;
14736 /* First, make sure the variable is declared at the
14737 module-level scope (J3/04-007, Section 15.3). */
14738 if (sym->ns->proc_name->attr.flavor != FL_MODULE &&
14739 sym->attr.in_common == 0)
14741 gfc_error ("Variable %qs at %L cannot be BIND(C) because it "
14742 "is neither a COMMON block nor declared at the "
14743 "module level scope", sym->name, &(sym->declared_at));
14744 t = false;
14746 else if (sym->common_head != NULL && sym->attr.implicit_type == 0)
14748 t = verify_com_block_vars_c_interop (sym->common_head);
14750 else if (sym->attr.implicit_type == 0)
14752 /* If type() declaration, we need to verify that the components
14753 of the given type are all C interoperable, etc. */
14754 if (sym->ts.type == BT_DERIVED &&
14755 sym->ts.u.derived->attr.is_c_interop != 1)
14757 /* Make sure the user marked the derived type as BIND(C). If
14758 not, call the verify routine. This could print an error
14759 for the derived type more than once if multiple variables
14760 of that type are declared. */
14761 if (sym->ts.u.derived->attr.is_bind_c != 1)
14762 verify_bind_c_derived_type (sym->ts.u.derived);
14763 t = false;
14766 /* Verify the variable itself as C interoperable if it
14767 is BIND(C). It is not possible for this to succeed if
14768 the verify_bind_c_derived_type failed, so don't have to handle
14769 any error returned by verify_bind_c_derived_type. */
14770 t = verify_bind_c_sym (sym, &(sym->ts), sym->attr.in_common,
14771 sym->common_block);
14774 if (!t)
14776 /* clear the is_bind_c flag to prevent reporting errors more than
14777 once if something failed. */
14778 sym->attr.is_bind_c = 0;
14779 return;
14783 /* If a derived type symbol has reached this point, without its
14784 type being declared, we have an error. Notice that most
14785 conditions that produce undefined derived types have already
14786 been dealt with. However, the likes of:
14787 implicit type(t) (t) ..... call foo (t) will get us here if
14788 the type is not declared in the scope of the implicit
14789 statement. Change the type to BT_UNKNOWN, both because it is so
14790 and to prevent an ICE. */
14791 if (sym->ts.type == BT_DERIVED && !sym->attr.is_iso_c
14792 && sym->ts.u.derived->components == NULL
14793 && !sym->ts.u.derived->attr.zero_comp)
14795 gfc_error ("The derived type %qs at %L is of type %qs, "
14796 "which has not been defined", sym->name,
14797 &sym->declared_at, sym->ts.u.derived->name);
14798 sym->ts.type = BT_UNKNOWN;
14799 return;
14802 /* Make sure that the derived type has been resolved and that the
14803 derived type is visible in the symbol's namespace, if it is a
14804 module function and is not PRIVATE. */
14805 if (sym->ts.type == BT_DERIVED
14806 && sym->ts.u.derived->attr.use_assoc
14807 && sym->ns->proc_name
14808 && sym->ns->proc_name->attr.flavor == FL_MODULE
14809 && !resolve_fl_derived (sym->ts.u.derived))
14810 return;
14812 /* Unless the derived-type declaration is use associated, Fortran 95
14813 does not allow public entries of private derived types.
14814 See 4.4.1 (F95) and 4.5.1.1 (F2003); and related interpretation
14815 161 in 95-006r3. */
14816 if (sym->ts.type == BT_DERIVED
14817 && sym->ns->proc_name && sym->ns->proc_name->attr.flavor == FL_MODULE
14818 && !sym->ts.u.derived->attr.use_assoc
14819 && gfc_check_symbol_access (sym)
14820 && !gfc_check_symbol_access (sym->ts.u.derived)
14821 && !gfc_notify_std (GFC_STD_F2003, "PUBLIC %s %qs at %L of PRIVATE "
14822 "derived type %qs",
14823 (sym->attr.flavor == FL_PARAMETER)
14824 ? "parameter" : "variable",
14825 sym->name, &sym->declared_at,
14826 sym->ts.u.derived->name))
14827 return;
14829 /* F2008, C1302. */
14830 if (sym->ts.type == BT_DERIVED
14831 && ((sym->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
14832 && sym->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
14833 || sym->ts.u.derived->attr.lock_comp)
14834 && !sym->attr.codimension && !sym->ts.u.derived->attr.coarray_comp)
14836 gfc_error ("Variable %s at %L of type LOCK_TYPE or with subcomponent of "
14837 "type LOCK_TYPE must be a coarray", sym->name,
14838 &sym->declared_at);
14839 return;
14842 /* TS18508, C702/C703. */
14843 if (sym->ts.type == BT_DERIVED
14844 && ((sym->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
14845 && sym->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)
14846 || sym->ts.u.derived->attr.event_comp)
14847 && !sym->attr.codimension && !sym->ts.u.derived->attr.coarray_comp)
14849 gfc_error ("Variable %s at %L of type EVENT_TYPE or with subcomponent of "
14850 "type EVENT_TYPE must be a coarray", sym->name,
14851 &sym->declared_at);
14852 return;
14855 /* An assumed-size array with INTENT(OUT) shall not be of a type for which
14856 default initialization is defined (5.1.2.4.4). */
14857 if (sym->ts.type == BT_DERIVED
14858 && sym->attr.dummy
14859 && sym->attr.intent == INTENT_OUT
14860 && sym->as
14861 && sym->as->type == AS_ASSUMED_SIZE)
14863 for (c = sym->ts.u.derived->components; c; c = c->next)
14865 if (c->initializer)
14867 gfc_error ("The INTENT(OUT) dummy argument %qs at %L is "
14868 "ASSUMED SIZE and so cannot have a default initializer",
14869 sym->name, &sym->declared_at);
14870 return;
14875 /* F2008, C542. */
14876 if (sym->ts.type == BT_DERIVED && sym->attr.dummy
14877 && sym->attr.intent == INTENT_OUT && sym->attr.lock_comp)
14879 gfc_error ("Dummy argument %qs at %L of LOCK_TYPE shall not be "
14880 "INTENT(OUT)", sym->name, &sym->declared_at);
14881 return;
14884 /* TS18508. */
14885 if (sym->ts.type == BT_DERIVED && sym->attr.dummy
14886 && sym->attr.intent == INTENT_OUT && sym->attr.event_comp)
14888 gfc_error ("Dummy argument %qs at %L of EVENT_TYPE shall not be "
14889 "INTENT(OUT)", sym->name, &sym->declared_at);
14890 return;
14893 /* F2008, C525. */
14894 if ((((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
14895 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
14896 && CLASS_DATA (sym)->attr.coarray_comp))
14897 || class_attr.codimension)
14898 && (sym->attr.result || sym->result == sym))
14900 gfc_error ("Function result %qs at %L shall not be a coarray or have "
14901 "a coarray component", sym->name, &sym->declared_at);
14902 return;
14905 /* F2008, C524. */
14906 if (sym->attr.codimension && sym->ts.type == BT_DERIVED
14907 && sym->ts.u.derived->ts.is_iso_c)
14909 gfc_error ("Variable %qs at %L of TYPE(C_PTR) or TYPE(C_FUNPTR) "
14910 "shall not be a coarray", sym->name, &sym->declared_at);
14911 return;
14914 /* F2008, C525. */
14915 if (((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
14916 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
14917 && CLASS_DATA (sym)->attr.coarray_comp))
14918 && (class_attr.codimension || class_attr.pointer || class_attr.dimension
14919 || class_attr.allocatable))
14921 gfc_error ("Variable %qs at %L with coarray component shall be a "
14922 "nonpointer, nonallocatable scalar, which is not a coarray",
14923 sym->name, &sym->declared_at);
14924 return;
14927 /* F2008, C526. The function-result case was handled above. */
14928 if (class_attr.codimension
14929 && !(class_attr.allocatable || sym->attr.dummy || sym->attr.save
14930 || sym->attr.select_type_temporary
14931 || sym->attr.associate_var
14932 || (sym->ns->save_all && !sym->attr.automatic)
14933 || sym->ns->proc_name->attr.flavor == FL_MODULE
14934 || sym->ns->proc_name->attr.is_main_program
14935 || sym->attr.function || sym->attr.result || sym->attr.use_assoc))
14937 gfc_error ("Variable %qs at %L is a coarray and is not ALLOCATABLE, SAVE "
14938 "nor a dummy argument", sym->name, &sym->declared_at);
14939 return;
14941 /* F2008, C528. */
14942 else if (class_attr.codimension && !sym->attr.select_type_temporary
14943 && !class_attr.allocatable && as && as->cotype == AS_DEFERRED)
14945 gfc_error ("Coarray variable %qs at %L shall not have codimensions with "
14946 "deferred shape", sym->name, &sym->declared_at);
14947 return;
14949 else if (class_attr.codimension && class_attr.allocatable && as
14950 && (as->cotype != AS_DEFERRED || as->type != AS_DEFERRED))
14952 gfc_error ("Allocatable coarray variable %qs at %L must have "
14953 "deferred shape", sym->name, &sym->declared_at);
14954 return;
14957 /* F2008, C541. */
14958 if ((((sym->ts.type == BT_DERIVED && sym->ts.u.derived->attr.coarray_comp)
14959 || (sym->ts.type == BT_CLASS && sym->attr.class_ok
14960 && CLASS_DATA (sym)->attr.coarray_comp))
14961 || (class_attr.codimension && class_attr.allocatable))
14962 && sym->attr.dummy && sym->attr.intent == INTENT_OUT)
14964 gfc_error ("Variable %qs at %L is INTENT(OUT) and can thus not be an "
14965 "allocatable coarray or have coarray components",
14966 sym->name, &sym->declared_at);
14967 return;
14970 if (class_attr.codimension && sym->attr.dummy
14971 && sym->ns->proc_name && sym->ns->proc_name->attr.is_bind_c)
14973 gfc_error ("Coarray dummy variable %qs at %L not allowed in BIND(C) "
14974 "procedure %qs", sym->name, &sym->declared_at,
14975 sym->ns->proc_name->name);
14976 return;
14979 if (sym->ts.type == BT_LOGICAL
14980 && ((sym->attr.function && sym->attr.is_bind_c && sym->result == sym)
14981 || ((sym->attr.dummy || sym->attr.result) && sym->ns->proc_name
14982 && sym->ns->proc_name->attr.is_bind_c)))
14984 int i;
14985 for (i = 0; gfc_logical_kinds[i].kind; i++)
14986 if (gfc_logical_kinds[i].kind == sym->ts.kind)
14987 break;
14988 if (!gfc_logical_kinds[i].c_bool && sym->attr.dummy
14989 && !gfc_notify_std (GFC_STD_GNU, "LOGICAL dummy argument %qs at "
14990 "%L with non-C_Bool kind in BIND(C) procedure "
14991 "%qs", sym->name, &sym->declared_at,
14992 sym->ns->proc_name->name))
14993 return;
14994 else if (!gfc_logical_kinds[i].c_bool
14995 && !gfc_notify_std (GFC_STD_GNU, "LOGICAL result variable "
14996 "%qs at %L with non-C_Bool kind in "
14997 "BIND(C) procedure %qs", sym->name,
14998 &sym->declared_at,
14999 sym->attr.function ? sym->name
15000 : sym->ns->proc_name->name))
15001 return;
15004 switch (sym->attr.flavor)
15006 case FL_VARIABLE:
15007 if (!resolve_fl_variable (sym, mp_flag))
15008 return;
15009 break;
15011 case FL_PROCEDURE:
15012 if (sym->formal && !sym->formal_ns)
15014 /* Check that none of the arguments are a namelist. */
15015 gfc_formal_arglist *formal = sym->formal;
15017 for (; formal; formal = formal->next)
15018 if (formal->sym && formal->sym->attr.flavor == FL_NAMELIST)
15020 gfc_error ("Namelist %qs can not be an argument to "
15021 "subroutine or function at %L",
15022 formal->sym->name, &sym->declared_at);
15023 return;
15027 if (!resolve_fl_procedure (sym, mp_flag))
15028 return;
15029 break;
15031 case FL_NAMELIST:
15032 if (!resolve_fl_namelist (sym))
15033 return;
15034 break;
15036 case FL_PARAMETER:
15037 if (!resolve_fl_parameter (sym))
15038 return;
15039 break;
15041 default:
15042 break;
15045 /* Resolve array specifier. Check as well some constraints
15046 on COMMON blocks. */
15048 check_constant = sym->attr.in_common && !sym->attr.pointer;
15050 /* Set the formal_arg_flag so that check_conflict will not throw
15051 an error for host associated variables in the specification
15052 expression for an array_valued function. */
15053 if (sym->attr.function && sym->as)
15054 formal_arg_flag = true;
15056 saved_specification_expr = specification_expr;
15057 specification_expr = true;
15058 gfc_resolve_array_spec (sym->as, check_constant);
15059 specification_expr = saved_specification_expr;
15061 formal_arg_flag = false;
15063 /* Resolve formal namespaces. */
15064 if (sym->formal_ns && sym->formal_ns != gfc_current_ns
15065 && !sym->attr.contained && !sym->attr.intrinsic)
15066 gfc_resolve (sym->formal_ns);
15068 /* Make sure the formal namespace is present. */
15069 if (sym->formal && !sym->formal_ns)
15071 gfc_formal_arglist *formal = sym->formal;
15072 while (formal && !formal->sym)
15073 formal = formal->next;
15075 if (formal)
15077 sym->formal_ns = formal->sym->ns;
15078 if (sym->ns != formal->sym->ns)
15079 sym->formal_ns->refs++;
15083 /* Check threadprivate restrictions. */
15084 if (sym->attr.threadprivate && !sym->attr.save
15085 && !(sym->ns->save_all && !sym->attr.automatic)
15086 && (!sym->attr.in_common
15087 && sym->module == NULL
15088 && (sym->ns->proc_name == NULL
15089 || sym->ns->proc_name->attr.flavor != FL_MODULE)))
15090 gfc_error ("Threadprivate at %L isn't SAVEd", &sym->declared_at);
15092 /* Check omp declare target restrictions. */
15093 if (sym->attr.omp_declare_target
15094 && sym->attr.flavor == FL_VARIABLE
15095 && !sym->attr.save
15096 && !(sym->ns->save_all && !sym->attr.automatic)
15097 && (!sym->attr.in_common
15098 && sym->module == NULL
15099 && (sym->ns->proc_name == NULL
15100 || sym->ns->proc_name->attr.flavor != FL_MODULE)))
15101 gfc_error ("!$OMP DECLARE TARGET variable %qs at %L isn't SAVEd",
15102 sym->name, &sym->declared_at);
15104 /* If we have come this far we can apply default-initializers, as
15105 described in 14.7.5, to those variables that have not already
15106 been assigned one. */
15107 if (sym->ts.type == BT_DERIVED
15108 && !sym->value
15109 && !sym->attr.allocatable
15110 && !sym->attr.alloc_comp)
15112 symbol_attribute *a = &sym->attr;
15114 if ((!a->save && !a->dummy && !a->pointer
15115 && !a->in_common && !a->use_assoc
15116 && a->referenced
15117 && !((a->function || a->result)
15118 && (!a->dimension
15119 || sym->ts.u.derived->attr.alloc_comp
15120 || sym->ts.u.derived->attr.pointer_comp))
15121 && !(a->function && sym != sym->result))
15122 || (a->dummy && a->intent == INTENT_OUT && !a->pointer))
15123 apply_default_init (sym);
15124 else if (a->function && sym->result && a->access != ACCESS_PRIVATE
15125 && (sym->ts.u.derived->attr.alloc_comp
15126 || sym->ts.u.derived->attr.pointer_comp))
15127 /* Mark the result symbol to be referenced, when it has allocatable
15128 components. */
15129 sym->result->attr.referenced = 1;
15132 if (sym->ts.type == BT_CLASS && sym->ns == gfc_current_ns
15133 && sym->attr.dummy && sym->attr.intent == INTENT_OUT
15134 && !CLASS_DATA (sym)->attr.class_pointer
15135 && !CLASS_DATA (sym)->attr.allocatable)
15136 apply_default_init (sym);
15138 /* If this symbol has a type-spec, check it. */
15139 if (sym->attr.flavor == FL_VARIABLE || sym->attr.flavor == FL_PARAMETER
15140 || (sym->attr.flavor == FL_PROCEDURE && sym->attr.function))
15141 if (!resolve_typespec_used (&sym->ts, &sym->declared_at, sym->name))
15142 return;
15144 if (sym->param_list)
15145 resolve_pdt (sym);
15149 /************* Resolve DATA statements *************/
15151 static struct
15153 gfc_data_value *vnode;
15154 mpz_t left;
15156 values;
15159 /* Advance the values structure to point to the next value in the data list. */
15161 static bool
15162 next_data_value (void)
15164 while (mpz_cmp_ui (values.left, 0) == 0)
15167 if (values.vnode->next == NULL)
15168 return false;
15170 values.vnode = values.vnode->next;
15171 mpz_set (values.left, values.vnode->repeat);
15174 return true;
15178 static bool
15179 check_data_variable (gfc_data_variable *var, locus *where)
15181 gfc_expr *e;
15182 mpz_t size;
15183 mpz_t offset;
15184 bool t;
15185 ar_type mark = AR_UNKNOWN;
15186 int i;
15187 mpz_t section_index[GFC_MAX_DIMENSIONS];
15188 gfc_ref *ref;
15189 gfc_array_ref *ar;
15190 gfc_symbol *sym;
15191 int has_pointer;
15193 if (!gfc_resolve_expr (var->expr))
15194 return false;
15196 ar = NULL;
15197 mpz_init_set_si (offset, 0);
15198 e = var->expr;
15200 if (e->expr_type == EXPR_FUNCTION && e->value.function.isym
15201 && e->value.function.isym->id == GFC_ISYM_CAF_GET)
15202 e = e->value.function.actual->expr;
15204 if (e->expr_type != EXPR_VARIABLE)
15205 gfc_internal_error ("check_data_variable(): Bad expression");
15207 sym = e->symtree->n.sym;
15209 if (sym->ns->is_block_data && !sym->attr.in_common)
15211 gfc_error ("BLOCK DATA element %qs at %L must be in COMMON",
15212 sym->name, &sym->declared_at);
15215 if (e->ref == NULL && sym->as)
15217 gfc_error ("DATA array %qs at %L must be specified in a previous"
15218 " declaration", sym->name, where);
15219 return false;
15222 has_pointer = sym->attr.pointer;
15224 if (gfc_is_coindexed (e))
15226 gfc_error ("DATA element %qs at %L cannot have a coindex", sym->name,
15227 where);
15228 return false;
15231 for (ref = e->ref; ref; ref = ref->next)
15233 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
15234 has_pointer = 1;
15236 if (has_pointer
15237 && ref->type == REF_ARRAY
15238 && ref->u.ar.type != AR_FULL)
15240 gfc_error ("DATA element %qs at %L is a pointer and so must "
15241 "be a full array", sym->name, where);
15242 return false;
15246 if (e->rank == 0 || has_pointer)
15248 mpz_init_set_ui (size, 1);
15249 ref = NULL;
15251 else
15253 ref = e->ref;
15255 /* Find the array section reference. */
15256 for (ref = e->ref; ref; ref = ref->next)
15258 if (ref->type != REF_ARRAY)
15259 continue;
15260 if (ref->u.ar.type == AR_ELEMENT)
15261 continue;
15262 break;
15264 gcc_assert (ref);
15266 /* Set marks according to the reference pattern. */
15267 switch (ref->u.ar.type)
15269 case AR_FULL:
15270 mark = AR_FULL;
15271 break;
15273 case AR_SECTION:
15274 ar = &ref->u.ar;
15275 /* Get the start position of array section. */
15276 gfc_get_section_index (ar, section_index, &offset);
15277 mark = AR_SECTION;
15278 break;
15280 default:
15281 gcc_unreachable ();
15284 if (!gfc_array_size (e, &size))
15286 gfc_error ("Nonconstant array section at %L in DATA statement",
15287 &e->where);
15288 mpz_clear (offset);
15289 return false;
15293 t = true;
15295 while (mpz_cmp_ui (size, 0) > 0)
15297 if (!next_data_value ())
15299 gfc_error ("DATA statement at %L has more variables than values",
15300 where);
15301 t = false;
15302 break;
15305 t = gfc_check_assign (var->expr, values.vnode->expr, 0);
15306 if (!t)
15307 break;
15309 /* If we have more than one element left in the repeat count,
15310 and we have more than one element left in the target variable,
15311 then create a range assignment. */
15312 /* FIXME: Only done for full arrays for now, since array sections
15313 seem tricky. */
15314 if (mark == AR_FULL && ref && ref->next == NULL
15315 && mpz_cmp_ui (values.left, 1) > 0 && mpz_cmp_ui (size, 1) > 0)
15317 mpz_t range;
15319 if (mpz_cmp (size, values.left) >= 0)
15321 mpz_init_set (range, values.left);
15322 mpz_sub (size, size, values.left);
15323 mpz_set_ui (values.left, 0);
15325 else
15327 mpz_init_set (range, size);
15328 mpz_sub (values.left, values.left, size);
15329 mpz_set_ui (size, 0);
15332 t = gfc_assign_data_value (var->expr, values.vnode->expr,
15333 offset, &range);
15335 mpz_add (offset, offset, range);
15336 mpz_clear (range);
15338 if (!t)
15339 break;
15342 /* Assign initial value to symbol. */
15343 else
15345 mpz_sub_ui (values.left, values.left, 1);
15346 mpz_sub_ui (size, size, 1);
15348 t = gfc_assign_data_value (var->expr, values.vnode->expr,
15349 offset, NULL);
15350 if (!t)
15351 break;
15353 if (mark == AR_FULL)
15354 mpz_add_ui (offset, offset, 1);
15356 /* Modify the array section indexes and recalculate the offset
15357 for next element. */
15358 else if (mark == AR_SECTION)
15359 gfc_advance_section (section_index, ar, &offset);
15363 if (mark == AR_SECTION)
15365 for (i = 0; i < ar->dimen; i++)
15366 mpz_clear (section_index[i]);
15369 mpz_clear (size);
15370 mpz_clear (offset);
15372 return t;
15376 static bool traverse_data_var (gfc_data_variable *, locus *);
15378 /* Iterate over a list of elements in a DATA statement. */
15380 static bool
15381 traverse_data_list (gfc_data_variable *var, locus *where)
15383 mpz_t trip;
15384 iterator_stack frame;
15385 gfc_expr *e, *start, *end, *step;
15386 bool retval = true;
15388 mpz_init (frame.value);
15389 mpz_init (trip);
15391 start = gfc_copy_expr (var->iter.start);
15392 end = gfc_copy_expr (var->iter.end);
15393 step = gfc_copy_expr (var->iter.step);
15395 if (!gfc_simplify_expr (start, 1)
15396 || start->expr_type != EXPR_CONSTANT)
15398 gfc_error ("start of implied-do loop at %L could not be "
15399 "simplified to a constant value", &start->where);
15400 retval = false;
15401 goto cleanup;
15403 if (!gfc_simplify_expr (end, 1)
15404 || end->expr_type != EXPR_CONSTANT)
15406 gfc_error ("end of implied-do loop at %L could not be "
15407 "simplified to a constant value", &start->where);
15408 retval = false;
15409 goto cleanup;
15411 if (!gfc_simplify_expr (step, 1)
15412 || step->expr_type != EXPR_CONSTANT)
15414 gfc_error ("step of implied-do loop at %L could not be "
15415 "simplified to a constant value", &start->where);
15416 retval = false;
15417 goto cleanup;
15420 mpz_set (trip, end->value.integer);
15421 mpz_sub (trip, trip, start->value.integer);
15422 mpz_add (trip, trip, step->value.integer);
15424 mpz_div (trip, trip, step->value.integer);
15426 mpz_set (frame.value, start->value.integer);
15428 frame.prev = iter_stack;
15429 frame.variable = var->iter.var->symtree;
15430 iter_stack = &frame;
15432 while (mpz_cmp_ui (trip, 0) > 0)
15434 if (!traverse_data_var (var->list, where))
15436 retval = false;
15437 goto cleanup;
15440 e = gfc_copy_expr (var->expr);
15441 if (!gfc_simplify_expr (e, 1))
15443 gfc_free_expr (e);
15444 retval = false;
15445 goto cleanup;
15448 mpz_add (frame.value, frame.value, step->value.integer);
15450 mpz_sub_ui (trip, trip, 1);
15453 cleanup:
15454 mpz_clear (frame.value);
15455 mpz_clear (trip);
15457 gfc_free_expr (start);
15458 gfc_free_expr (end);
15459 gfc_free_expr (step);
15461 iter_stack = frame.prev;
15462 return retval;
15466 /* Type resolve variables in the variable list of a DATA statement. */
15468 static bool
15469 traverse_data_var (gfc_data_variable *var, locus *where)
15471 bool t;
15473 for (; var; var = var->next)
15475 if (var->expr == NULL)
15476 t = traverse_data_list (var, where);
15477 else
15478 t = check_data_variable (var, where);
15480 if (!t)
15481 return false;
15484 return true;
15488 /* Resolve the expressions and iterators associated with a data statement.
15489 This is separate from the assignment checking because data lists should
15490 only be resolved once. */
15492 static bool
15493 resolve_data_variables (gfc_data_variable *d)
15495 for (; d; d = d->next)
15497 if (d->list == NULL)
15499 if (!gfc_resolve_expr (d->expr))
15500 return false;
15502 else
15504 if (!gfc_resolve_iterator (&d->iter, false, true))
15505 return false;
15507 if (!resolve_data_variables (d->list))
15508 return false;
15512 return true;
15516 /* Resolve a single DATA statement. We implement this by storing a pointer to
15517 the value list into static variables, and then recursively traversing the
15518 variables list, expanding iterators and such. */
15520 static void
15521 resolve_data (gfc_data *d)
15524 if (!resolve_data_variables (d->var))
15525 return;
15527 values.vnode = d->value;
15528 if (d->value == NULL)
15529 mpz_set_ui (values.left, 0);
15530 else
15531 mpz_set (values.left, d->value->repeat);
15533 if (!traverse_data_var (d->var, &d->where))
15534 return;
15536 /* At this point, we better not have any values left. */
15538 if (next_data_value ())
15539 gfc_error ("DATA statement at %L has more values than variables",
15540 &d->where);
15544 /* 12.6 Constraint: In a pure subprogram any variable which is in common or
15545 accessed by host or use association, is a dummy argument to a pure function,
15546 is a dummy argument with INTENT (IN) to a pure subroutine, or an object that
15547 is storage associated with any such variable, shall not be used in the
15548 following contexts: (clients of this function). */
15550 /* Determines if a variable is not 'pure', i.e., not assignable within a pure
15551 procedure. Returns zero if assignment is OK, nonzero if there is a
15552 problem. */
15554 gfc_impure_variable (gfc_symbol *sym)
15556 gfc_symbol *proc;
15557 gfc_namespace *ns;
15559 if (sym->attr.use_assoc || sym->attr.in_common)
15560 return 1;
15562 /* Check if the symbol's ns is inside the pure procedure. */
15563 for (ns = gfc_current_ns; ns; ns = ns->parent)
15565 if (ns == sym->ns)
15566 break;
15567 if (ns->proc_name->attr.flavor == FL_PROCEDURE && !sym->attr.function)
15568 return 1;
15571 proc = sym->ns->proc_name;
15572 if (sym->attr.dummy
15573 && ((proc->attr.subroutine && sym->attr.intent == INTENT_IN)
15574 || proc->attr.function))
15575 return 1;
15577 /* TODO: Sort out what can be storage associated, if anything, and include
15578 it here. In principle equivalences should be scanned but it does not
15579 seem to be possible to storage associate an impure variable this way. */
15580 return 0;
15584 /* Test whether a symbol is pure or not. For a NULL pointer, checks if the
15585 current namespace is inside a pure procedure. */
15588 gfc_pure (gfc_symbol *sym)
15590 symbol_attribute attr;
15591 gfc_namespace *ns;
15593 if (sym == NULL)
15595 /* Check if the current namespace or one of its parents
15596 belongs to a pure procedure. */
15597 for (ns = gfc_current_ns; ns; ns = ns->parent)
15599 sym = ns->proc_name;
15600 if (sym == NULL)
15601 return 0;
15602 attr = sym->attr;
15603 if (attr.flavor == FL_PROCEDURE && attr.pure)
15604 return 1;
15606 return 0;
15609 attr = sym->attr;
15611 return attr.flavor == FL_PROCEDURE && attr.pure;
15615 /* Test whether a symbol is implicitly pure or not. For a NULL pointer,
15616 checks if the current namespace is implicitly pure. Note that this
15617 function returns false for a PURE procedure. */
15620 gfc_implicit_pure (gfc_symbol *sym)
15622 gfc_namespace *ns;
15624 if (sym == NULL)
15626 /* Check if the current procedure is implicit_pure. Walk up
15627 the procedure list until we find a procedure. */
15628 for (ns = gfc_current_ns; ns; ns = ns->parent)
15630 sym = ns->proc_name;
15631 if (sym == NULL)
15632 return 0;
15634 if (sym->attr.flavor == FL_PROCEDURE)
15635 break;
15639 return sym->attr.flavor == FL_PROCEDURE && sym->attr.implicit_pure
15640 && !sym->attr.pure;
15644 void
15645 gfc_unset_implicit_pure (gfc_symbol *sym)
15647 gfc_namespace *ns;
15649 if (sym == NULL)
15651 /* Check if the current procedure is implicit_pure. Walk up
15652 the procedure list until we find a procedure. */
15653 for (ns = gfc_current_ns; ns; ns = ns->parent)
15655 sym = ns->proc_name;
15656 if (sym == NULL)
15657 return;
15659 if (sym->attr.flavor == FL_PROCEDURE)
15660 break;
15664 if (sym->attr.flavor == FL_PROCEDURE)
15665 sym->attr.implicit_pure = 0;
15666 else
15667 sym->attr.pure = 0;
15671 /* Test whether the current procedure is elemental or not. */
15674 gfc_elemental (gfc_symbol *sym)
15676 symbol_attribute attr;
15678 if (sym == NULL)
15679 sym = gfc_current_ns->proc_name;
15680 if (sym == NULL)
15681 return 0;
15682 attr = sym->attr;
15684 return attr.flavor == FL_PROCEDURE && attr.elemental;
15688 /* Warn about unused labels. */
15690 static void
15691 warn_unused_fortran_label (gfc_st_label *label)
15693 if (label == NULL)
15694 return;
15696 warn_unused_fortran_label (label->left);
15698 if (label->defined == ST_LABEL_UNKNOWN)
15699 return;
15701 switch (label->referenced)
15703 case ST_LABEL_UNKNOWN:
15704 gfc_warning (OPT_Wunused_label, "Label %d at %L defined but not used",
15705 label->value, &label->where);
15706 break;
15708 case ST_LABEL_BAD_TARGET:
15709 gfc_warning (OPT_Wunused_label,
15710 "Label %d at %L defined but cannot be used",
15711 label->value, &label->where);
15712 break;
15714 default:
15715 break;
15718 warn_unused_fortran_label (label->right);
15722 /* Returns the sequence type of a symbol or sequence. */
15724 static seq_type
15725 sequence_type (gfc_typespec ts)
15727 seq_type result;
15728 gfc_component *c;
15730 switch (ts.type)
15732 case BT_DERIVED:
15734 if (ts.u.derived->components == NULL)
15735 return SEQ_NONDEFAULT;
15737 result = sequence_type (ts.u.derived->components->ts);
15738 for (c = ts.u.derived->components->next; c; c = c->next)
15739 if (sequence_type (c->ts) != result)
15740 return SEQ_MIXED;
15742 return result;
15744 case BT_CHARACTER:
15745 if (ts.kind != gfc_default_character_kind)
15746 return SEQ_NONDEFAULT;
15748 return SEQ_CHARACTER;
15750 case BT_INTEGER:
15751 if (ts.kind != gfc_default_integer_kind)
15752 return SEQ_NONDEFAULT;
15754 return SEQ_NUMERIC;
15756 case BT_REAL:
15757 if (!(ts.kind == gfc_default_real_kind
15758 || ts.kind == gfc_default_double_kind))
15759 return SEQ_NONDEFAULT;
15761 return SEQ_NUMERIC;
15763 case BT_COMPLEX:
15764 if (ts.kind != gfc_default_complex_kind)
15765 return SEQ_NONDEFAULT;
15767 return SEQ_NUMERIC;
15769 case BT_LOGICAL:
15770 if (ts.kind != gfc_default_logical_kind)
15771 return SEQ_NONDEFAULT;
15773 return SEQ_NUMERIC;
15775 default:
15776 return SEQ_NONDEFAULT;
15781 /* Resolve derived type EQUIVALENCE object. */
15783 static bool
15784 resolve_equivalence_derived (gfc_symbol *derived, gfc_symbol *sym, gfc_expr *e)
15786 gfc_component *c = derived->components;
15788 if (!derived)
15789 return true;
15791 /* Shall not be an object of nonsequence derived type. */
15792 if (!derived->attr.sequence)
15794 gfc_error ("Derived type variable %qs at %L must have SEQUENCE "
15795 "attribute to be an EQUIVALENCE object", sym->name,
15796 &e->where);
15797 return false;
15800 /* Shall not have allocatable components. */
15801 if (derived->attr.alloc_comp)
15803 gfc_error ("Derived type variable %qs at %L cannot have ALLOCATABLE "
15804 "components to be an EQUIVALENCE object",sym->name,
15805 &e->where);
15806 return false;
15809 if (sym->attr.in_common && gfc_has_default_initializer (sym->ts.u.derived))
15811 gfc_error ("Derived type variable %qs at %L with default "
15812 "initialization cannot be in EQUIVALENCE with a variable "
15813 "in COMMON", sym->name, &e->where);
15814 return false;
15817 for (; c ; c = c->next)
15819 if (gfc_bt_struct (c->ts.type)
15820 && (!resolve_equivalence_derived(c->ts.u.derived, sym, e)))
15821 return false;
15823 /* Shall not be an object of sequence derived type containing a pointer
15824 in the structure. */
15825 if (c->attr.pointer)
15827 gfc_error ("Derived type variable %qs at %L with pointer "
15828 "component(s) cannot be an EQUIVALENCE object",
15829 sym->name, &e->where);
15830 return false;
15833 return true;
15837 /* Resolve equivalence object.
15838 An EQUIVALENCE object shall not be a dummy argument, a pointer, a target,
15839 an allocatable array, an object of nonsequence derived type, an object of
15840 sequence derived type containing a pointer at any level of component
15841 selection, an automatic object, a function name, an entry name, a result
15842 name, a named constant, a structure component, or a subobject of any of
15843 the preceding objects. A substring shall not have length zero. A
15844 derived type shall not have components with default initialization nor
15845 shall two objects of an equivalence group be initialized.
15846 Either all or none of the objects shall have an protected attribute.
15847 The simple constraints are done in symbol.c(check_conflict) and the rest
15848 are implemented here. */
15850 static void
15851 resolve_equivalence (gfc_equiv *eq)
15853 gfc_symbol *sym;
15854 gfc_symbol *first_sym;
15855 gfc_expr *e;
15856 gfc_ref *r;
15857 locus *last_where = NULL;
15858 seq_type eq_type, last_eq_type;
15859 gfc_typespec *last_ts;
15860 int object, cnt_protected;
15861 const char *msg;
15863 last_ts = &eq->expr->symtree->n.sym->ts;
15865 first_sym = eq->expr->symtree->n.sym;
15867 cnt_protected = 0;
15869 for (object = 1; eq; eq = eq->eq, object++)
15871 e = eq->expr;
15873 e->ts = e->symtree->n.sym->ts;
15874 /* match_varspec might not know yet if it is seeing
15875 array reference or substring reference, as it doesn't
15876 know the types. */
15877 if (e->ref && e->ref->type == REF_ARRAY)
15879 gfc_ref *ref = e->ref;
15880 sym = e->symtree->n.sym;
15882 if (sym->attr.dimension)
15884 ref->u.ar.as = sym->as;
15885 ref = ref->next;
15888 /* For substrings, convert REF_ARRAY into REF_SUBSTRING. */
15889 if (e->ts.type == BT_CHARACTER
15890 && ref
15891 && ref->type == REF_ARRAY
15892 && ref->u.ar.dimen == 1
15893 && ref->u.ar.dimen_type[0] == DIMEN_RANGE
15894 && ref->u.ar.stride[0] == NULL)
15896 gfc_expr *start = ref->u.ar.start[0];
15897 gfc_expr *end = ref->u.ar.end[0];
15898 void *mem = NULL;
15900 /* Optimize away the (:) reference. */
15901 if (start == NULL && end == NULL)
15903 if (e->ref == ref)
15904 e->ref = ref->next;
15905 else
15906 e->ref->next = ref->next;
15907 mem = ref;
15909 else
15911 ref->type = REF_SUBSTRING;
15912 if (start == NULL)
15913 start = gfc_get_int_expr (gfc_default_integer_kind,
15914 NULL, 1);
15915 ref->u.ss.start = start;
15916 if (end == NULL && e->ts.u.cl)
15917 end = gfc_copy_expr (e->ts.u.cl->length);
15918 ref->u.ss.end = end;
15919 ref->u.ss.length = e->ts.u.cl;
15920 e->ts.u.cl = NULL;
15922 ref = ref->next;
15923 free (mem);
15926 /* Any further ref is an error. */
15927 if (ref)
15929 gcc_assert (ref->type == REF_ARRAY);
15930 gfc_error ("Syntax error in EQUIVALENCE statement at %L",
15931 &ref->u.ar.where);
15932 continue;
15936 if (!gfc_resolve_expr (e))
15937 continue;
15939 sym = e->symtree->n.sym;
15941 if (sym->attr.is_protected)
15942 cnt_protected++;
15943 if (cnt_protected > 0 && cnt_protected != object)
15945 gfc_error ("Either all or none of the objects in the "
15946 "EQUIVALENCE set at %L shall have the "
15947 "PROTECTED attribute",
15948 &e->where);
15949 break;
15952 /* Shall not equivalence common block variables in a PURE procedure. */
15953 if (sym->ns->proc_name
15954 && sym->ns->proc_name->attr.pure
15955 && sym->attr.in_common)
15957 /* Need to check for symbols that may have entered the pure
15958 procedure via a USE statement. */
15959 bool saw_sym = false;
15960 if (sym->ns->use_stmts)
15962 gfc_use_rename *r;
15963 for (r = sym->ns->use_stmts->rename; r; r = r->next)
15964 if (strcmp(r->use_name, sym->name) == 0) saw_sym = true;
15966 else
15967 saw_sym = true;
15969 if (saw_sym)
15970 gfc_error ("COMMON block member %qs at %L cannot be an "
15971 "EQUIVALENCE object in the pure procedure %qs",
15972 sym->name, &e->where, sym->ns->proc_name->name);
15973 break;
15976 /* Shall not be a named constant. */
15977 if (e->expr_type == EXPR_CONSTANT)
15979 gfc_error ("Named constant %qs at %L cannot be an EQUIVALENCE "
15980 "object", sym->name, &e->where);
15981 continue;
15984 if (e->ts.type == BT_DERIVED
15985 && !resolve_equivalence_derived (e->ts.u.derived, sym, e))
15986 continue;
15988 /* Check that the types correspond correctly:
15989 Note 5.28:
15990 A numeric sequence structure may be equivalenced to another sequence
15991 structure, an object of default integer type, default real type, double
15992 precision real type, default logical type such that components of the
15993 structure ultimately only become associated to objects of the same
15994 kind. A character sequence structure may be equivalenced to an object
15995 of default character kind or another character sequence structure.
15996 Other objects may be equivalenced only to objects of the same type and
15997 kind parameters. */
15999 /* Identical types are unconditionally OK. */
16000 if (object == 1 || gfc_compare_types (last_ts, &sym->ts))
16001 goto identical_types;
16003 last_eq_type = sequence_type (*last_ts);
16004 eq_type = sequence_type (sym->ts);
16006 /* Since the pair of objects is not of the same type, mixed or
16007 non-default sequences can be rejected. */
16009 msg = "Sequence %s with mixed components in EQUIVALENCE "
16010 "statement at %L with different type objects";
16011 if ((object ==2
16012 && last_eq_type == SEQ_MIXED
16013 && !gfc_notify_std (GFC_STD_GNU, msg, first_sym->name, last_where))
16014 || (eq_type == SEQ_MIXED
16015 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where)))
16016 continue;
16018 msg = "Non-default type object or sequence %s in EQUIVALENCE "
16019 "statement at %L with objects of different type";
16020 if ((object ==2
16021 && last_eq_type == SEQ_NONDEFAULT
16022 && !gfc_notify_std (GFC_STD_GNU, msg, first_sym->name, last_where))
16023 || (eq_type == SEQ_NONDEFAULT
16024 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where)))
16025 continue;
16027 msg ="Non-CHARACTER object %qs in default CHARACTER "
16028 "EQUIVALENCE statement at %L";
16029 if (last_eq_type == SEQ_CHARACTER
16030 && eq_type != SEQ_CHARACTER
16031 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where))
16032 continue;
16034 msg ="Non-NUMERIC object %qs in default NUMERIC "
16035 "EQUIVALENCE statement at %L";
16036 if (last_eq_type == SEQ_NUMERIC
16037 && eq_type != SEQ_NUMERIC
16038 && !gfc_notify_std (GFC_STD_GNU, msg, sym->name, &e->where))
16039 continue;
16041 identical_types:
16042 last_ts =&sym->ts;
16043 last_where = &e->where;
16045 if (!e->ref)
16046 continue;
16048 /* Shall not be an automatic array. */
16049 if (e->ref->type == REF_ARRAY
16050 && !gfc_resolve_array_spec (e->ref->u.ar.as, 1))
16052 gfc_error ("Array %qs at %L with non-constant bounds cannot be "
16053 "an EQUIVALENCE object", sym->name, &e->where);
16054 continue;
16057 r = e->ref;
16058 while (r)
16060 /* Shall not be a structure component. */
16061 if (r->type == REF_COMPONENT)
16063 gfc_error ("Structure component %qs at %L cannot be an "
16064 "EQUIVALENCE object",
16065 r->u.c.component->name, &e->where);
16066 break;
16069 /* A substring shall not have length zero. */
16070 if (r->type == REF_SUBSTRING)
16072 if (compare_bound (r->u.ss.start, r->u.ss.end) == CMP_GT)
16074 gfc_error ("Substring at %L has length zero",
16075 &r->u.ss.start->where);
16076 break;
16079 r = r->next;
16085 /* Function called by resolve_fntype to flag other symbol used in the
16086 length type parameter specification of function resuls. */
16088 static bool
16089 flag_fn_result_spec (gfc_expr *expr,
16090 gfc_symbol *sym ATTRIBUTE_UNUSED,
16091 int *f ATTRIBUTE_UNUSED)
16093 gfc_namespace *ns;
16094 gfc_symbol *s;
16096 if (expr->expr_type == EXPR_VARIABLE)
16098 s = expr->symtree->n.sym;
16099 for (ns = s->ns; ns; ns = ns->parent)
16100 if (!ns->parent)
16101 break;
16103 if (!s->fn_result_spec
16104 && s->attr.flavor == FL_PARAMETER)
16106 /* Function contained in a module.... */
16107 if (ns->proc_name && ns->proc_name->attr.flavor == FL_MODULE)
16109 gfc_symtree *st;
16110 s->fn_result_spec = 1;
16111 /* Make sure that this symbol is translated as a module
16112 variable. */
16113 st = gfc_get_unique_symtree (ns);
16114 st->n.sym = s;
16115 s->refs++;
16117 /* ... which is use associated and called. */
16118 else if (s->attr.use_assoc || s->attr.used_in_submodule
16120 /* External function matched with an interface. */
16121 (s->ns->proc_name
16122 && ((s->ns == ns
16123 && s->ns->proc_name->attr.if_source == IFSRC_DECL)
16124 || s->ns->proc_name->attr.if_source == IFSRC_IFBODY)
16125 && s->ns->proc_name->attr.function))
16126 s->fn_result_spec = 1;
16129 return false;
16133 /* Resolve function and ENTRY types, issue diagnostics if needed. */
16135 static void
16136 resolve_fntype (gfc_namespace *ns)
16138 gfc_entry_list *el;
16139 gfc_symbol *sym;
16141 if (ns->proc_name == NULL || !ns->proc_name->attr.function)
16142 return;
16144 /* If there are any entries, ns->proc_name is the entry master
16145 synthetic symbol and ns->entries->sym actual FUNCTION symbol. */
16146 if (ns->entries)
16147 sym = ns->entries->sym;
16148 else
16149 sym = ns->proc_name;
16150 if (sym->result == sym
16151 && sym->ts.type == BT_UNKNOWN
16152 && !gfc_set_default_type (sym, 0, NULL)
16153 && !sym->attr.untyped)
16155 gfc_error ("Function %qs at %L has no IMPLICIT type",
16156 sym->name, &sym->declared_at);
16157 sym->attr.untyped = 1;
16160 if (sym->ts.type == BT_DERIVED && !sym->ts.u.derived->attr.use_assoc
16161 && !sym->attr.contained
16162 && !gfc_check_symbol_access (sym->ts.u.derived)
16163 && gfc_check_symbol_access (sym))
16165 gfc_notify_std (GFC_STD_F2003, "PUBLIC function %qs at "
16166 "%L of PRIVATE type %qs", sym->name,
16167 &sym->declared_at, sym->ts.u.derived->name);
16170 if (ns->entries)
16171 for (el = ns->entries->next; el; el = el->next)
16173 if (el->sym->result == el->sym
16174 && el->sym->ts.type == BT_UNKNOWN
16175 && !gfc_set_default_type (el->sym, 0, NULL)
16176 && !el->sym->attr.untyped)
16178 gfc_error ("ENTRY %qs at %L has no IMPLICIT type",
16179 el->sym->name, &el->sym->declared_at);
16180 el->sym->attr.untyped = 1;
16184 if (sym->ts.type == BT_CHARACTER)
16185 gfc_traverse_expr (sym->ts.u.cl->length, NULL, flag_fn_result_spec, 0);
16189 /* 12.3.2.1.1 Defined operators. */
16191 static bool
16192 check_uop_procedure (gfc_symbol *sym, locus where)
16194 gfc_formal_arglist *formal;
16196 if (!sym->attr.function)
16198 gfc_error ("User operator procedure %qs at %L must be a FUNCTION",
16199 sym->name, &where);
16200 return false;
16203 if (sym->ts.type == BT_CHARACTER
16204 && !((sym->ts.u.cl && sym->ts.u.cl->length) || sym->ts.deferred)
16205 && !(sym->result && ((sym->result->ts.u.cl
16206 && sym->result->ts.u.cl->length) || sym->result->ts.deferred)))
16208 gfc_error ("User operator procedure %qs at %L cannot be assumed "
16209 "character length", sym->name, &where);
16210 return false;
16213 formal = gfc_sym_get_dummy_args (sym);
16214 if (!formal || !formal->sym)
16216 gfc_error ("User operator procedure %qs at %L must have at least "
16217 "one argument", sym->name, &where);
16218 return false;
16221 if (formal->sym->attr.intent != INTENT_IN)
16223 gfc_error ("First argument of operator interface at %L must be "
16224 "INTENT(IN)", &where);
16225 return false;
16228 if (formal->sym->attr.optional)
16230 gfc_error ("First argument of operator interface at %L cannot be "
16231 "optional", &where);
16232 return false;
16235 formal = formal->next;
16236 if (!formal || !formal->sym)
16237 return true;
16239 if (formal->sym->attr.intent != INTENT_IN)
16241 gfc_error ("Second argument of operator interface at %L must be "
16242 "INTENT(IN)", &where);
16243 return false;
16246 if (formal->sym->attr.optional)
16248 gfc_error ("Second argument of operator interface at %L cannot be "
16249 "optional", &where);
16250 return false;
16253 if (formal->next)
16255 gfc_error ("Operator interface at %L must have, at most, two "
16256 "arguments", &where);
16257 return false;
16260 return true;
16263 static void
16264 gfc_resolve_uops (gfc_symtree *symtree)
16266 gfc_interface *itr;
16268 if (symtree == NULL)
16269 return;
16271 gfc_resolve_uops (symtree->left);
16272 gfc_resolve_uops (symtree->right);
16274 for (itr = symtree->n.uop->op; itr; itr = itr->next)
16275 check_uop_procedure (itr->sym, itr->sym->declared_at);
16279 /* Examine all of the expressions associated with a program unit,
16280 assign types to all intermediate expressions, make sure that all
16281 assignments are to compatible types and figure out which names
16282 refer to which functions or subroutines. It doesn't check code
16283 block, which is handled by gfc_resolve_code. */
16285 static void
16286 resolve_types (gfc_namespace *ns)
16288 gfc_namespace *n;
16289 gfc_charlen *cl;
16290 gfc_data *d;
16291 gfc_equiv *eq;
16292 gfc_namespace* old_ns = gfc_current_ns;
16294 if (ns->types_resolved)
16295 return;
16297 /* Check that all IMPLICIT types are ok. */
16298 if (!ns->seen_implicit_none)
16300 unsigned letter;
16301 for (letter = 0; letter != GFC_LETTERS; ++letter)
16302 if (ns->set_flag[letter]
16303 && !resolve_typespec_used (&ns->default_type[letter],
16304 &ns->implicit_loc[letter], NULL))
16305 return;
16308 gfc_current_ns = ns;
16310 resolve_entries (ns);
16312 resolve_common_vars (&ns->blank_common, false);
16313 resolve_common_blocks (ns->common_root);
16315 resolve_contained_functions (ns);
16317 if (ns->proc_name && ns->proc_name->attr.flavor == FL_PROCEDURE
16318 && ns->proc_name->attr.if_source == IFSRC_IFBODY)
16319 resolve_formal_arglist (ns->proc_name);
16321 gfc_traverse_ns (ns, resolve_bind_c_derived_types);
16323 for (cl = ns->cl_list; cl; cl = cl->next)
16324 resolve_charlen (cl);
16326 gfc_traverse_ns (ns, resolve_symbol);
16328 resolve_fntype (ns);
16330 for (n = ns->contained; n; n = n->sibling)
16332 if (gfc_pure (ns->proc_name) && !gfc_pure (n->proc_name))
16333 gfc_error ("Contained procedure %qs at %L of a PURE procedure must "
16334 "also be PURE", n->proc_name->name,
16335 &n->proc_name->declared_at);
16337 resolve_types (n);
16340 forall_flag = 0;
16341 gfc_do_concurrent_flag = 0;
16342 gfc_check_interfaces (ns);
16344 gfc_traverse_ns (ns, resolve_values);
16346 if (ns->save_all)
16347 gfc_save_all (ns);
16349 iter_stack = NULL;
16350 for (d = ns->data; d; d = d->next)
16351 resolve_data (d);
16353 iter_stack = NULL;
16354 gfc_traverse_ns (ns, gfc_formalize_init_value);
16356 gfc_traverse_ns (ns, gfc_verify_binding_labels);
16358 for (eq = ns->equiv; eq; eq = eq->next)
16359 resolve_equivalence (eq);
16361 /* Warn about unused labels. */
16362 if (warn_unused_label)
16363 warn_unused_fortran_label (ns->st_labels);
16365 gfc_resolve_uops (ns->uop_root);
16367 gfc_traverse_ns (ns, gfc_verify_DTIO_procedures);
16369 gfc_resolve_omp_declare_simd (ns);
16371 gfc_resolve_omp_udrs (ns->omp_udr_root);
16373 ns->types_resolved = 1;
16375 gfc_current_ns = old_ns;
16379 /* Call gfc_resolve_code recursively. */
16381 static void
16382 resolve_codes (gfc_namespace *ns)
16384 gfc_namespace *n;
16385 bitmap_obstack old_obstack;
16387 if (ns->resolved == 1)
16388 return;
16390 for (n = ns->contained; n; n = n->sibling)
16391 resolve_codes (n);
16393 gfc_current_ns = ns;
16395 /* Don't clear 'cs_base' if this is the namespace of a BLOCK construct. */
16396 if (!(ns->proc_name && ns->proc_name->attr.flavor == FL_LABEL))
16397 cs_base = NULL;
16399 /* Set to an out of range value. */
16400 current_entry_id = -1;
16402 old_obstack = labels_obstack;
16403 bitmap_obstack_initialize (&labels_obstack);
16405 gfc_resolve_oacc_declare (ns);
16406 gfc_resolve_omp_local_vars (ns);
16407 gfc_resolve_code (ns->code, ns);
16409 bitmap_obstack_release (&labels_obstack);
16410 labels_obstack = old_obstack;
16414 /* This function is called after a complete program unit has been compiled.
16415 Its purpose is to examine all of the expressions associated with a program
16416 unit, assign types to all intermediate expressions, make sure that all
16417 assignments are to compatible types and figure out which names refer to
16418 which functions or subroutines. */
16420 void
16421 gfc_resolve (gfc_namespace *ns)
16423 gfc_namespace *old_ns;
16424 code_stack *old_cs_base;
16425 struct gfc_omp_saved_state old_omp_state;
16427 if (ns->resolved)
16428 return;
16430 ns->resolved = -1;
16431 old_ns = gfc_current_ns;
16432 old_cs_base = cs_base;
16434 /* As gfc_resolve can be called during resolution of an OpenMP construct
16435 body, we should clear any state associated to it, so that say NS's
16436 DO loops are not interpreted as OpenMP loops. */
16437 if (!ns->construct_entities)
16438 gfc_omp_save_and_clear_state (&old_omp_state);
16440 resolve_types (ns);
16441 component_assignment_level = 0;
16442 resolve_codes (ns);
16444 gfc_current_ns = old_ns;
16445 cs_base = old_cs_base;
16446 ns->resolved = 1;
16448 gfc_run_passes (ns);
16450 if (!ns->construct_entities)
16451 gfc_omp_restore_state (&old_omp_state);