Mark ChangeLog
[official-gcc.git] / gcc / reload1.c
blob43849cba63c943b91004061696f8431e36879dd5
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "regs.h"
35 #include "basic-block.h"
36 #include "reload.h"
37 #include "recog.h"
38 #include "output.h"
39 #include "cselib.h"
40 #include "real.h"
41 #include "toplev.h"
43 #if !defined PREFERRED_STACK_BOUNDARY && defined STACK_BOUNDARY
44 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
45 #endif
47 /* This file contains the reload pass of the compiler, which is
48 run after register allocation has been done. It checks that
49 each insn is valid (operands required to be in registers really
50 are in registers of the proper class) and fixes up invalid ones
51 by copying values temporarily into registers for the insns
52 that need them.
54 The results of register allocation are described by the vector
55 reg_renumber; the insns still contain pseudo regs, but reg_renumber
56 can be used to find which hard reg, if any, a pseudo reg is in.
58 The technique we always use is to free up a few hard regs that are
59 called ``reload regs'', and for each place where a pseudo reg
60 must be in a hard reg, copy it temporarily into one of the reload regs.
62 Reload regs are allocated locally for every instruction that needs
63 reloads. When there are pseudos which are allocated to a register that
64 has been chosen as a reload reg, such pseudos must be ``spilled''.
65 This means that they go to other hard regs, or to stack slots if no other
66 available hard regs can be found. Spilling can invalidate more
67 insns, requiring additional need for reloads, so we must keep checking
68 until the process stabilizes.
70 For machines with different classes of registers, we must keep track
71 of the register class needed for each reload, and make sure that
72 we allocate enough reload registers of each class.
74 The file reload.c contains the code that checks one insn for
75 validity and reports the reloads that it needs. This file
76 is in charge of scanning the entire rtl code, accumulating the
77 reload needs, spilling, assigning reload registers to use for
78 fixing up each insn, and generating the new insns to copy values
79 into the reload registers. */
81 #ifndef REGISTER_MOVE_COST
82 #define REGISTER_MOVE_COST(m, x, y) 2
83 #endif
85 #ifndef LOCAL_REGNO
86 #define LOCAL_REGNO(REGNO) 0
87 #endif
89 /* During reload_as_needed, element N contains a REG rtx for the hard reg
90 into which reg N has been reloaded (perhaps for a previous insn). */
91 static rtx *reg_last_reload_reg;
93 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
94 for an output reload that stores into reg N. */
95 static char *reg_has_output_reload;
97 /* Indicates which hard regs are reload-registers for an output reload
98 in the current insn. */
99 static HARD_REG_SET reg_is_output_reload;
101 /* Element N is the constant value to which pseudo reg N is equivalent,
102 or zero if pseudo reg N is not equivalent to a constant.
103 find_reloads looks at this in order to replace pseudo reg N
104 with the constant it stands for. */
105 rtx *reg_equiv_constant;
107 /* Element N is a memory location to which pseudo reg N is equivalent,
108 prior to any register elimination (such as frame pointer to stack
109 pointer). Depending on whether or not it is a valid address, this value
110 is transferred to either reg_equiv_address or reg_equiv_mem. */
111 rtx *reg_equiv_memory_loc;
113 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
114 This is used when the address is not valid as a memory address
115 (because its displacement is too big for the machine.) */
116 rtx *reg_equiv_address;
118 /* Element N is the memory slot to which pseudo reg N is equivalent,
119 or zero if pseudo reg N is not equivalent to a memory slot. */
120 rtx *reg_equiv_mem;
122 /* Widest width in which each pseudo reg is referred to (via subreg). */
123 static unsigned int *reg_max_ref_width;
125 /* Element N is the list of insns that initialized reg N from its equivalent
126 constant or memory slot. */
127 static rtx *reg_equiv_init;
129 /* Vector to remember old contents of reg_renumber before spilling. */
130 static short *reg_old_renumber;
132 /* During reload_as_needed, element N contains the last pseudo regno reloaded
133 into hard register N. If that pseudo reg occupied more than one register,
134 reg_reloaded_contents points to that pseudo for each spill register in
135 use; all of these must remain set for an inheritance to occur. */
136 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
138 /* During reload_as_needed, element N contains the insn for which
139 hard register N was last used. Its contents are significant only
140 when reg_reloaded_valid is set for this register. */
141 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
143 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid */
144 static HARD_REG_SET reg_reloaded_valid;
145 /* Indicate if the register was dead at the end of the reload.
146 This is only valid if reg_reloaded_contents is set and valid. */
147 static HARD_REG_SET reg_reloaded_dead;
149 /* Number of spill-regs so far; number of valid elements of spill_regs. */
150 static int n_spills;
152 /* In parallel with spill_regs, contains REG rtx's for those regs.
153 Holds the last rtx used for any given reg, or 0 if it has never
154 been used for spilling yet. This rtx is reused, provided it has
155 the proper mode. */
156 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
158 /* In parallel with spill_regs, contains nonzero for a spill reg
159 that was stored after the last time it was used.
160 The precise value is the insn generated to do the store. */
161 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
163 /* This is the register that was stored with spill_reg_store. This is a
164 copy of reload_out / reload_out_reg when the value was stored; if
165 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
166 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
168 /* This table is the inverse mapping of spill_regs:
169 indexed by hard reg number,
170 it contains the position of that reg in spill_regs,
171 or -1 for something that is not in spill_regs.
173 ?!? This is no longer accurate. */
174 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
176 /* This reg set indicates registers that can't be used as spill registers for
177 the currently processed insn. These are the hard registers which are live
178 during the insn, but not allocated to pseudos, as well as fixed
179 registers. */
180 static HARD_REG_SET bad_spill_regs;
182 /* These are the hard registers that can't be used as spill register for any
183 insn. This includes registers used for user variables and registers that
184 we can't eliminate. A register that appears in this set also can't be used
185 to retry register allocation. */
186 static HARD_REG_SET bad_spill_regs_global;
188 /* Describes order of use of registers for reloading
189 of spilled pseudo-registers. `n_spills' is the number of
190 elements that are actually valid; new ones are added at the end.
192 Both spill_regs and spill_reg_order are used on two occasions:
193 once during find_reload_regs, where they keep track of the spill registers
194 for a single insn, but also during reload_as_needed where they show all
195 the registers ever used by reload. For the latter case, the information
196 is calculated during finish_spills. */
197 static short spill_regs[FIRST_PSEUDO_REGISTER];
199 /* This vector of reg sets indicates, for each pseudo, which hard registers
200 may not be used for retrying global allocation because the register was
201 formerly spilled from one of them. If we allowed reallocating a pseudo to
202 a register that it was already allocated to, reload might not
203 terminate. */
204 static HARD_REG_SET *pseudo_previous_regs;
206 /* This vector of reg sets indicates, for each pseudo, which hard
207 registers may not be used for retrying global allocation because they
208 are used as spill registers during one of the insns in which the
209 pseudo is live. */
210 static HARD_REG_SET *pseudo_forbidden_regs;
212 /* All hard regs that have been used as spill registers for any insn are
213 marked in this set. */
214 static HARD_REG_SET used_spill_regs;
216 /* Index of last register assigned as a spill register. We allocate in
217 a round-robin fashion. */
218 static int last_spill_reg;
220 /* Nonzero if indirect addressing is supported on the machine; this means
221 that spilling (REG n) does not require reloading it into a register in
222 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
223 value indicates the level of indirect addressing supported, e.g., two
224 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
225 a hard register. */
226 static char spill_indirect_levels;
228 /* Nonzero if indirect addressing is supported when the innermost MEM is
229 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
230 which these are valid is the same as spill_indirect_levels, above. */
231 char indirect_symref_ok;
233 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
234 char double_reg_address_ok;
236 /* Record the stack slot for each spilled hard register. */
237 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
239 /* Width allocated so far for that stack slot. */
240 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
242 /* Record which pseudos needed to be spilled. */
243 static regset_head spilled_pseudos;
245 /* Used for communication between order_regs_for_reload and count_pseudo.
246 Used to avoid counting one pseudo twice. */
247 static regset_head pseudos_counted;
249 /* First uid used by insns created by reload in this function.
250 Used in find_equiv_reg. */
251 int reload_first_uid;
253 /* Flag set by local-alloc or global-alloc if anything is live in
254 a call-clobbered reg across calls. */
255 int caller_save_needed;
257 /* Set to 1 while reload_as_needed is operating.
258 Required by some machines to handle any generated moves differently. */
259 int reload_in_progress = 0;
261 /* These arrays record the insn_code of insns that may be needed to
262 perform input and output reloads of special objects. They provide a
263 place to pass a scratch register. */
264 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
265 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
267 /* This obstack is used for allocation of rtl during register elimination.
268 The allocated storage can be freed once find_reloads has processed the
269 insn. */
270 struct obstack reload_obstack;
272 /* Points to the beginning of the reload_obstack. All insn_chain structures
273 are allocated first. */
274 char *reload_startobj;
276 /* The point after all insn_chain structures. Used to quickly deallocate
277 memory allocated in copy_reloads during calculate_needs_all_insns. */
278 char *reload_firstobj;
280 /* This points before all local rtl generated by register elimination.
281 Used to quickly free all memory after processing one insn. */
282 static char *reload_insn_firstobj;
284 #define obstack_chunk_alloc xmalloc
285 #define obstack_chunk_free free
287 /* List of insn_chain instructions, one for every insn that reload needs to
288 examine. */
289 struct insn_chain *reload_insn_chain;
291 #ifdef TREE_CODE
292 extern tree current_function_decl;
293 #else
294 extern union tree_node *current_function_decl;
295 #endif
297 /* List of all insns needing reloads. */
298 static struct insn_chain *insns_need_reload;
300 /* This structure is used to record information about register eliminations.
301 Each array entry describes one possible way of eliminating a register
302 in favor of another. If there is more than one way of eliminating a
303 particular register, the most preferred should be specified first. */
305 struct elim_table
307 int from; /* Register number to be eliminated. */
308 int to; /* Register number used as replacement. */
309 int initial_offset; /* Initial difference between values. */
310 int can_eliminate; /* Non-zero if this elimination can be done. */
311 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
312 insns made by reload. */
313 int offset; /* Current offset between the two regs. */
314 int previous_offset; /* Offset at end of previous insn. */
315 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
316 rtx from_rtx; /* REG rtx for the register to be eliminated.
317 We cannot simply compare the number since
318 we might then spuriously replace a hard
319 register corresponding to a pseudo
320 assigned to the reg to be eliminated. */
321 rtx to_rtx; /* REG rtx for the replacement. */
324 static struct elim_table *reg_eliminate = 0;
326 /* This is an intermediate structure to initialize the table. It has
327 exactly the members provided by ELIMINABLE_REGS. */
328 static struct elim_table_1
330 int from;
331 int to;
332 } reg_eliminate_1[] =
334 /* If a set of eliminable registers was specified, define the table from it.
335 Otherwise, default to the normal case of the frame pointer being
336 replaced by the stack pointer. */
338 #ifdef ELIMINABLE_REGS
339 ELIMINABLE_REGS;
340 #else
341 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
342 #endif
344 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
346 /* Record the number of pending eliminations that have an offset not equal
347 to their initial offset. If non-zero, we use a new copy of each
348 replacement result in any insns encountered. */
349 int num_not_at_initial_offset;
351 /* Count the number of registers that we may be able to eliminate. */
352 static int num_eliminable;
353 /* And the number of registers that are equivalent to a constant that
354 can be eliminated to frame_pointer / arg_pointer + constant. */
355 static int num_eliminable_invariants;
357 /* For each label, we record the offset of each elimination. If we reach
358 a label by more than one path and an offset differs, we cannot do the
359 elimination. This information is indexed by the number of the label.
360 The first table is an array of flags that records whether we have yet
361 encountered a label and the second table is an array of arrays, one
362 entry in the latter array for each elimination. */
364 static char *offsets_known_at;
365 static int (*offsets_at)[NUM_ELIMINABLE_REGS];
367 /* Number of labels in the current function. */
369 static int num_labels;
371 static void replace_pseudos_in_call_usage PARAMS((rtx *,
372 enum machine_mode,
373 rtx));
374 static void maybe_fix_stack_asms PARAMS ((void));
375 static void copy_reloads PARAMS ((struct insn_chain *));
376 static void calculate_needs_all_insns PARAMS ((int));
377 static int find_reg PARAMS ((struct insn_chain *, int));
378 static void find_reload_regs PARAMS ((struct insn_chain *));
379 static void select_reload_regs PARAMS ((void));
380 static void delete_caller_save_insns PARAMS ((void));
382 static void spill_failure PARAMS ((rtx, enum reg_class));
383 static void count_spilled_pseudo PARAMS ((int, int, int));
384 static void delete_dead_insn PARAMS ((rtx));
385 static void alter_reg PARAMS ((int, int));
386 static void set_label_offsets PARAMS ((rtx, rtx, int));
387 static void check_eliminable_occurrences PARAMS ((rtx));
388 static void elimination_effects PARAMS ((rtx, enum machine_mode));
389 static int eliminate_regs_in_insn PARAMS ((rtx, int));
390 static void update_eliminable_offsets PARAMS ((void));
391 static void mark_not_eliminable PARAMS ((rtx, rtx, void *));
392 static void set_initial_elim_offsets PARAMS ((void));
393 static void verify_initial_elim_offsets PARAMS ((void));
394 static void set_initial_label_offsets PARAMS ((void));
395 static void set_offsets_for_label PARAMS ((rtx));
396 static void init_elim_table PARAMS ((void));
397 static void update_eliminables PARAMS ((HARD_REG_SET *));
398 static void spill_hard_reg PARAMS ((unsigned int, int));
399 static int finish_spills PARAMS ((int));
400 static void ior_hard_reg_set PARAMS ((HARD_REG_SET *, HARD_REG_SET *));
401 static void scan_paradoxical_subregs PARAMS ((rtx));
402 static void count_pseudo PARAMS ((int));
403 static void order_regs_for_reload PARAMS ((struct insn_chain *));
404 static void reload_as_needed PARAMS ((int));
405 static void forget_old_reloads_1 PARAMS ((rtx, rtx, void *));
406 static int reload_reg_class_lower PARAMS ((const PTR, const PTR));
407 static void mark_reload_reg_in_use PARAMS ((unsigned int, int,
408 enum reload_type,
409 enum machine_mode));
410 static void clear_reload_reg_in_use PARAMS ((unsigned int, int,
411 enum reload_type,
412 enum machine_mode));
413 static int reload_reg_free_p PARAMS ((unsigned int, int,
414 enum reload_type));
415 static int reload_reg_free_for_value_p PARAMS ((int, int, int,
416 enum reload_type,
417 rtx, rtx, int, int));
418 static int free_for_value_p PARAMS ((int, enum machine_mode, int,
419 enum reload_type, rtx, rtx,
420 int, int));
421 static int reload_reg_reaches_end_p PARAMS ((unsigned int, int,
422 enum reload_type));
423 static int allocate_reload_reg PARAMS ((struct insn_chain *, int,
424 int));
425 static int conflicts_with_override PARAMS ((rtx));
426 static void failed_reload PARAMS ((rtx, int));
427 static int set_reload_reg PARAMS ((int, int));
428 static void choose_reload_regs_init PARAMS ((struct insn_chain *, rtx *));
429 static void choose_reload_regs PARAMS ((struct insn_chain *));
430 static void merge_assigned_reloads PARAMS ((rtx));
431 static void emit_input_reload_insns PARAMS ((struct insn_chain *,
432 struct reload *, rtx, int));
433 static void emit_output_reload_insns PARAMS ((struct insn_chain *,
434 struct reload *, int));
435 static void do_input_reload PARAMS ((struct insn_chain *,
436 struct reload *, int));
437 static void do_output_reload PARAMS ((struct insn_chain *,
438 struct reload *, int));
439 static void emit_reload_insns PARAMS ((struct insn_chain *));
440 static void delete_output_reload PARAMS ((rtx, int, int));
441 static void delete_address_reloads PARAMS ((rtx, rtx));
442 static void delete_address_reloads_1 PARAMS ((rtx, rtx, rtx));
443 static rtx inc_for_reload PARAMS ((rtx, rtx, rtx, int));
444 static int constraint_accepts_reg_p PARAMS ((const char *, rtx));
445 static void reload_cse_regs_1 PARAMS ((rtx));
446 static int reload_cse_noop_set_p PARAMS ((rtx));
447 static int reload_cse_simplify_set PARAMS ((rtx, rtx));
448 static int reload_cse_simplify_operands PARAMS ((rtx));
449 static void reload_combine PARAMS ((void));
450 static void reload_combine_note_use PARAMS ((rtx *, rtx));
451 static void reload_combine_note_store PARAMS ((rtx, rtx, void *));
452 static void reload_cse_move2add PARAMS ((rtx));
453 static void move2add_note_store PARAMS ((rtx, rtx, void *));
454 #ifdef AUTO_INC_DEC
455 static void add_auto_inc_notes PARAMS ((rtx, rtx));
456 #endif
457 static void copy_eh_notes PARAMS ((rtx, rtx));
458 static HOST_WIDE_INT sext_for_mode PARAMS ((enum machine_mode,
459 HOST_WIDE_INT));
460 static void failed_reload PARAMS ((rtx, int));
461 static int set_reload_reg PARAMS ((int, int));
462 static void reload_cse_delete_noop_set PARAMS ((rtx, rtx));
463 static void reload_cse_simplify PARAMS ((rtx));
464 extern void dump_needs PARAMS ((struct insn_chain *));
466 /* Initialize the reload pass once per compilation. */
468 void
469 init_reload ()
471 register int i;
473 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
474 Set spill_indirect_levels to the number of levels such addressing is
475 permitted, zero if it is not permitted at all. */
477 register rtx tem
478 = gen_rtx_MEM (Pmode,
479 gen_rtx_PLUS (Pmode,
480 gen_rtx_REG (Pmode,
481 LAST_VIRTUAL_REGISTER + 1),
482 GEN_INT (4)));
483 spill_indirect_levels = 0;
485 while (memory_address_p (QImode, tem))
487 spill_indirect_levels++;
488 tem = gen_rtx_MEM (Pmode, tem);
491 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
493 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
494 indirect_symref_ok = memory_address_p (QImode, tem);
496 /* See if reg+reg is a valid (and offsettable) address. */
498 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
500 tem = gen_rtx_PLUS (Pmode,
501 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
502 gen_rtx_REG (Pmode, i));
504 /* This way, we make sure that reg+reg is an offsettable address. */
505 tem = plus_constant (tem, 4);
507 if (memory_address_p (QImode, tem))
509 double_reg_address_ok = 1;
510 break;
514 /* Initialize obstack for our rtl allocation. */
515 gcc_obstack_init (&reload_obstack);
516 reload_startobj = (char *) obstack_alloc (&reload_obstack, 0);
518 INIT_REG_SET (&spilled_pseudos);
519 INIT_REG_SET (&pseudos_counted);
522 /* List of insn chains that are currently unused. */
523 static struct insn_chain *unused_insn_chains = 0;
525 /* Allocate an empty insn_chain structure. */
526 struct insn_chain *
527 new_insn_chain ()
529 struct insn_chain *c;
531 if (unused_insn_chains == 0)
533 c = (struct insn_chain *)
534 obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
535 INIT_REG_SET (&c->live_throughout);
536 INIT_REG_SET (&c->dead_or_set);
538 else
540 c = unused_insn_chains;
541 unused_insn_chains = c->next;
543 c->is_caller_save_insn = 0;
544 c->need_operand_change = 0;
545 c->need_reload = 0;
546 c->need_elim = 0;
547 return c;
550 /* Small utility function to set all regs in hard reg set TO which are
551 allocated to pseudos in regset FROM. */
553 void
554 compute_use_by_pseudos (to, from)
555 HARD_REG_SET *to;
556 regset from;
558 unsigned int regno;
560 EXECUTE_IF_SET_IN_REG_SET
561 (from, FIRST_PSEUDO_REGISTER, regno,
563 int r = reg_renumber[regno];
564 int nregs;
566 if (r < 0)
568 /* reload_combine uses the information from
569 BASIC_BLOCK->global_live_at_start, which might still
570 contain registers that have not actually been allocated
571 since they have an equivalence. */
572 if (! reload_completed)
573 abort ();
575 else
577 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
578 while (nregs-- > 0)
579 SET_HARD_REG_BIT (*to, r + nregs);
584 /* Replace all pseudos found in LOC with their corresponding
585 equivalences. */
587 static void
588 replace_pseudos_in_call_usage (loc, mem_mode, usage)
589 rtx *loc;
590 enum machine_mode mem_mode;
591 rtx usage;
593 rtx x = *loc;
594 enum rtx_code code;
595 const char *fmt;
596 int i, j;
598 if (! x)
599 return;
601 code = GET_CODE (x);
602 if (code == REG)
604 int regno = REGNO (x);
606 if (regno < FIRST_PSEUDO_REGISTER)
607 return;
609 x = eliminate_regs (x, mem_mode, usage);
610 if (x != *loc)
612 *loc = x;
613 replace_pseudos_in_call_usage (loc, mem_mode, usage);
614 return;
617 if (reg_equiv_constant[regno])
618 *loc = reg_equiv_constant[regno];
619 else if (reg_equiv_mem[regno])
620 *loc = reg_equiv_mem[regno];
621 else if (reg_equiv_address[regno])
622 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
623 else if (GET_CODE (regno_reg_rtx[regno]) != REG
624 || REGNO (regno_reg_rtx[regno]) != regno)
625 *loc = regno_reg_rtx[regno];
626 else
627 abort ();
629 return;
631 else if (code == MEM)
633 replace_pseudos_in_call_usage (& XEXP (x, 0), GET_MODE (x), usage);
634 return;
637 /* Process each of our operands recursively. */
638 fmt = GET_RTX_FORMAT (code);
639 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
640 if (*fmt == 'e')
641 replace_pseudos_in_call_usage (&XEXP (x, i), mem_mode, usage);
642 else if (*fmt == 'E')
643 for (j = 0; j < XVECLEN (x, i); j++)
644 replace_pseudos_in_call_usage (& XVECEXP (x, i, j), mem_mode, usage);
648 /* Global variables used by reload and its subroutines. */
650 /* Set during calculate_needs if an insn needs register elimination. */
651 static int something_needs_elimination;
652 /* Set during calculate_needs if an insn needs an operand changed. */
653 int something_needs_operands_changed;
655 /* Nonzero means we couldn't get enough spill regs. */
656 static int failure;
658 /* Main entry point for the reload pass.
660 FIRST is the first insn of the function being compiled.
662 GLOBAL nonzero means we were called from global_alloc
663 and should attempt to reallocate any pseudoregs that we
664 displace from hard regs we will use for reloads.
665 If GLOBAL is zero, we do not have enough information to do that,
666 so any pseudo reg that is spilled must go to the stack.
668 Return value is nonzero if reload failed
669 and we must not do any more for this function. */
672 reload (first, global)
673 rtx first;
674 int global;
676 register int i;
677 register rtx insn;
678 register struct elim_table *ep;
680 /* The two pointers used to track the true location of the memory used
681 for label offsets. */
682 char *real_known_ptr = NULL_PTR;
683 int (*real_at_ptr)[NUM_ELIMINABLE_REGS];
685 /* Make sure even insns with volatile mem refs are recognizable. */
686 init_recog ();
688 failure = 0;
690 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
692 /* Make sure that the last insn in the chain
693 is not something that needs reloading. */
694 emit_note (NULL_PTR, NOTE_INSN_DELETED);
696 /* Enable find_equiv_reg to distinguish insns made by reload. */
697 reload_first_uid = get_max_uid ();
699 #ifdef SECONDARY_MEMORY_NEEDED
700 /* Initialize the secondary memory table. */
701 clear_secondary_mem ();
702 #endif
704 /* We don't have a stack slot for any spill reg yet. */
705 memset ((char *) spill_stack_slot, 0, sizeof spill_stack_slot);
706 memset ((char *) spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
708 /* Initialize the save area information for caller-save, in case some
709 are needed. */
710 init_save_areas ();
712 /* Compute which hard registers are now in use
713 as homes for pseudo registers.
714 This is done here rather than (eg) in global_alloc
715 because this point is reached even if not optimizing. */
716 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
717 mark_home_live (i);
719 /* A function that receives a nonlocal goto must save all call-saved
720 registers. */
721 if (current_function_has_nonlocal_label)
722 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
723 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
724 regs_ever_live[i] = 1;
726 /* Find all the pseudo registers that didn't get hard regs
727 but do have known equivalent constants or memory slots.
728 These include parameters (known equivalent to parameter slots)
729 and cse'd or loop-moved constant memory addresses.
731 Record constant equivalents in reg_equiv_constant
732 so they will be substituted by find_reloads.
733 Record memory equivalents in reg_mem_equiv so they can
734 be substituted eventually by altering the REG-rtx's. */
736 reg_equiv_constant = (rtx *) xcalloc (max_regno, sizeof (rtx));
737 reg_equiv_memory_loc = (rtx *) xcalloc (max_regno, sizeof (rtx));
738 reg_equiv_mem = (rtx *) xcalloc (max_regno, sizeof (rtx));
739 reg_equiv_init = (rtx *) xcalloc (max_regno, sizeof (rtx));
740 reg_equiv_address = (rtx *) xcalloc (max_regno, sizeof (rtx));
741 reg_max_ref_width = (unsigned int *) xcalloc (max_regno, sizeof (int));
742 reg_old_renumber = (short *) xcalloc (max_regno, sizeof (short));
743 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
744 pseudo_forbidden_regs
745 = (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
746 pseudo_previous_regs
747 = (HARD_REG_SET *) xcalloc (max_regno, sizeof (HARD_REG_SET));
749 CLEAR_HARD_REG_SET (bad_spill_regs_global);
751 /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
752 Also find all paradoxical subregs and find largest such for each pseudo.
753 On machines with small register classes, record hard registers that
754 are used for user variables. These can never be used for spills.
755 Also look for a "constant" NOTE_INSN_SETJMP. This means that all
756 caller-saved registers must be marked live. */
758 num_eliminable_invariants = 0;
759 for (insn = first; insn; insn = NEXT_INSN (insn))
761 rtx set = single_set (insn);
763 if (GET_CODE (insn) == NOTE && CONST_CALL_P (insn)
764 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
765 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
766 if (! call_used_regs[i])
767 regs_ever_live[i] = 1;
769 if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
771 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
772 if (note
773 #ifdef LEGITIMATE_PIC_OPERAND_P
774 && (! function_invariant_p (XEXP (note, 0))
775 || ! flag_pic
776 || LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0)))
777 #endif
780 rtx x = XEXP (note, 0);
781 i = REGNO (SET_DEST (set));
782 if (i > LAST_VIRTUAL_REGISTER)
784 if (GET_CODE (x) == MEM)
786 /* If the operand is a PLUS, the MEM may be shared,
787 so make sure we have an unshared copy here. */
788 if (GET_CODE (XEXP (x, 0)) == PLUS)
789 x = copy_rtx (x);
791 reg_equiv_memory_loc[i] = x;
793 else if (function_invariant_p (x))
795 if (GET_CODE (x) == PLUS)
797 /* This is PLUS of frame pointer and a constant,
798 and might be shared. Unshare it. */
799 reg_equiv_constant[i] = copy_rtx (x);
800 num_eliminable_invariants++;
802 else if (x == frame_pointer_rtx
803 || x == arg_pointer_rtx)
805 reg_equiv_constant[i] = x;
806 num_eliminable_invariants++;
808 else if (LEGITIMATE_CONSTANT_P (x))
809 reg_equiv_constant[i] = x;
810 else
811 reg_equiv_memory_loc[i]
812 = force_const_mem (GET_MODE (SET_DEST (set)), x);
814 else
815 continue;
817 /* If this register is being made equivalent to a MEM
818 and the MEM is not SET_SRC, the equivalencing insn
819 is one with the MEM as a SET_DEST and it occurs later.
820 So don't mark this insn now. */
821 if (GET_CODE (x) != MEM
822 || rtx_equal_p (SET_SRC (set), x))
823 reg_equiv_init[i]
824 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
829 /* If this insn is setting a MEM from a register equivalent to it,
830 this is the equivalencing insn. */
831 else if (set && GET_CODE (SET_DEST (set)) == MEM
832 && GET_CODE (SET_SRC (set)) == REG
833 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
834 && rtx_equal_p (SET_DEST (set),
835 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
836 reg_equiv_init[REGNO (SET_SRC (set))]
837 = gen_rtx_INSN_LIST (VOIDmode, insn,
838 reg_equiv_init[REGNO (SET_SRC (set))]);
840 if (INSN_P (insn))
841 scan_paradoxical_subregs (PATTERN (insn));
844 init_elim_table ();
846 num_labels = max_label_num () - get_first_label_num ();
848 /* Allocate the tables used to store offset information at labels. */
849 /* We used to use alloca here, but the size of what it would try to
850 allocate would occasionally cause it to exceed the stack limit and
851 cause a core dump. */
852 real_known_ptr = xmalloc (num_labels);
853 real_at_ptr
854 = (int (*)[NUM_ELIMINABLE_REGS])
855 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
857 offsets_known_at = real_known_ptr - get_first_label_num ();
858 offsets_at
859 = (int (*)[NUM_ELIMINABLE_REGS]) (real_at_ptr - get_first_label_num ());
861 /* Alter each pseudo-reg rtx to contain its hard reg number.
862 Assign stack slots to the pseudos that lack hard regs or equivalents.
863 Do not touch virtual registers. */
865 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
866 alter_reg (i, -1);
868 /* If we have some registers we think can be eliminated, scan all insns to
869 see if there is an insn that sets one of these registers to something
870 other than itself plus a constant. If so, the register cannot be
871 eliminated. Doing this scan here eliminates an extra pass through the
872 main reload loop in the most common case where register elimination
873 cannot be done. */
874 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
875 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
876 || GET_CODE (insn) == CALL_INSN)
877 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
879 maybe_fix_stack_asms ();
881 insns_need_reload = 0;
882 something_needs_elimination = 0;
884 /* Initialize to -1, which means take the first spill register. */
885 last_spill_reg = -1;
887 /* Spill any hard regs that we know we can't eliminate. */
888 CLEAR_HARD_REG_SET (used_spill_regs);
889 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
890 if (! ep->can_eliminate)
891 spill_hard_reg (ep->from, 1);
893 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
894 if (frame_pointer_needed)
895 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
896 #endif
897 finish_spills (global);
899 /* From now on, we may need to generate moves differently. We may also
900 allow modifications of insns which cause them to not be recognized.
901 Any such modifications will be cleaned up during reload itself. */
902 reload_in_progress = 1;
904 /* This loop scans the entire function each go-round
905 and repeats until one repetition spills no additional hard regs. */
906 for (;;)
908 int something_changed;
909 int did_spill;
911 HOST_WIDE_INT starting_frame_size;
913 /* Round size of stack frame to stack_alignment_needed. This must be done
914 here because the stack size may be a part of the offset computation
915 for register elimination, and there might have been new stack slots
916 created in the last iteration of this loop. */
917 if (cfun->stack_alignment_needed)
918 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
920 starting_frame_size = get_frame_size ();
922 set_initial_elim_offsets ();
923 set_initial_label_offsets ();
925 /* For each pseudo register that has an equivalent location defined,
926 try to eliminate any eliminable registers (such as the frame pointer)
927 assuming initial offsets for the replacement register, which
928 is the normal case.
930 If the resulting location is directly addressable, substitute
931 the MEM we just got directly for the old REG.
933 If it is not addressable but is a constant or the sum of a hard reg
934 and constant, it is probably not addressable because the constant is
935 out of range, in that case record the address; we will generate
936 hairy code to compute the address in a register each time it is
937 needed. Similarly if it is a hard register, but one that is not
938 valid as an address register.
940 If the location is not addressable, but does not have one of the
941 above forms, assign a stack slot. We have to do this to avoid the
942 potential of producing lots of reloads if, e.g., a location involves
943 a pseudo that didn't get a hard register and has an equivalent memory
944 location that also involves a pseudo that didn't get a hard register.
946 Perhaps at some point we will improve reload_when_needed handling
947 so this problem goes away. But that's very hairy. */
949 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
950 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
952 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
954 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
955 XEXP (x, 0)))
956 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
957 else if (CONSTANT_P (XEXP (x, 0))
958 || (GET_CODE (XEXP (x, 0)) == REG
959 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
960 || (GET_CODE (XEXP (x, 0)) == PLUS
961 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
962 && (REGNO (XEXP (XEXP (x, 0), 0))
963 < FIRST_PSEUDO_REGISTER)
964 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
965 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
966 else
968 /* Make a new stack slot. Then indicate that something
969 changed so we go back and recompute offsets for
970 eliminable registers because the allocation of memory
971 below might change some offset. reg_equiv_{mem,address}
972 will be set up for this pseudo on the next pass around
973 the loop. */
974 reg_equiv_memory_loc[i] = 0;
975 reg_equiv_init[i] = 0;
976 alter_reg (i, -1);
980 if (caller_save_needed)
981 setup_save_areas ();
983 /* If we allocated another stack slot, redo elimination bookkeeping. */
984 if (starting_frame_size != get_frame_size ())
985 continue;
987 if (caller_save_needed)
989 save_call_clobbered_regs ();
990 /* That might have allocated new insn_chain structures. */
991 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
994 calculate_needs_all_insns (global);
996 CLEAR_REG_SET (&spilled_pseudos);
997 did_spill = 0;
999 something_changed = 0;
1001 /* If we allocated any new memory locations, make another pass
1002 since it might have changed elimination offsets. */
1003 if (starting_frame_size != get_frame_size ())
1004 something_changed = 1;
1007 HARD_REG_SET to_spill;
1008 CLEAR_HARD_REG_SET (to_spill);
1009 update_eliminables (&to_spill);
1010 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1011 if (TEST_HARD_REG_BIT (to_spill, i))
1013 spill_hard_reg (i, 1);
1014 did_spill = 1;
1016 /* Regardless of the state of spills, if we previously had
1017 a register that we thought we could eliminate, but no can
1018 not eliminate, we must run another pass.
1020 Consider pseudos which have an entry in reg_equiv_* which
1021 reference an eliminable register. We must make another pass
1022 to update reg_equiv_* so that we do not substitute in the
1023 old value from when we thought the elimination could be
1024 performed. */
1025 something_changed = 1;
1029 select_reload_regs ();
1030 if (failure)
1031 goto failed;
1033 if (insns_need_reload != 0 || did_spill)
1034 something_changed |= finish_spills (global);
1036 if (! something_changed)
1037 break;
1039 if (caller_save_needed)
1040 delete_caller_save_insns ();
1042 obstack_free (&reload_obstack, reload_firstobj);
1045 /* If global-alloc was run, notify it of any register eliminations we have
1046 done. */
1047 if (global)
1048 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1049 if (ep->can_eliminate)
1050 mark_elimination (ep->from, ep->to);
1052 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1053 If that insn didn't set the register (i.e., it copied the register to
1054 memory), just delete that insn instead of the equivalencing insn plus
1055 anything now dead. If we call delete_dead_insn on that insn, we may
1056 delete the insn that actually sets the register if the register dies
1057 there and that is incorrect. */
1059 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1061 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1063 rtx list;
1064 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1066 rtx equiv_insn = XEXP (list, 0);
1067 if (GET_CODE (equiv_insn) == NOTE)
1068 continue;
1069 if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1070 delete_dead_insn (equiv_insn);
1071 else
1073 PUT_CODE (equiv_insn, NOTE);
1074 NOTE_SOURCE_FILE (equiv_insn) = 0;
1075 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1081 /* Use the reload registers where necessary
1082 by generating move instructions to move the must-be-register
1083 values into or out of the reload registers. */
1085 if (insns_need_reload != 0 || something_needs_elimination
1086 || something_needs_operands_changed)
1088 HOST_WIDE_INT old_frame_size = get_frame_size ();
1090 reload_as_needed (global);
1092 if (old_frame_size != get_frame_size ())
1093 abort ();
1095 if (num_eliminable)
1096 verify_initial_elim_offsets ();
1099 /* If we were able to eliminate the frame pointer, show that it is no
1100 longer live at the start of any basic block. If it ls live by
1101 virtue of being in a pseudo, that pseudo will be marked live
1102 and hence the frame pointer will be known to be live via that
1103 pseudo. */
1105 if (! frame_pointer_needed)
1106 for (i = 0; i < n_basic_blocks; i++)
1107 CLEAR_REGNO_REG_SET (BASIC_BLOCK (i)->global_live_at_start,
1108 HARD_FRAME_POINTER_REGNUM);
1110 /* Come here (with failure set nonzero) if we can't get enough spill regs
1111 and we decide not to abort about it. */
1112 failed:
1114 CLEAR_REG_SET (&spilled_pseudos);
1115 reload_in_progress = 0;
1117 /* Now eliminate all pseudo regs by modifying them into
1118 their equivalent memory references.
1119 The REG-rtx's for the pseudos are modified in place,
1120 so all insns that used to refer to them now refer to memory.
1122 For a reg that has a reg_equiv_address, all those insns
1123 were changed by reloading so that no insns refer to it any longer;
1124 but the DECL_RTL of a variable decl may refer to it,
1125 and if so this causes the debugging info to mention the variable. */
1127 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1129 rtx addr = 0;
1130 int in_struct = 0;
1131 int is_scalar = 0;
1132 int is_readonly = 0;
1134 if (reg_equiv_memory_loc[i])
1136 in_struct = MEM_IN_STRUCT_P (reg_equiv_memory_loc[i]);
1137 is_scalar = MEM_SCALAR_P (reg_equiv_memory_loc[i]);
1138 is_readonly = RTX_UNCHANGING_P (reg_equiv_memory_loc[i]);
1141 if (reg_equiv_mem[i])
1142 addr = XEXP (reg_equiv_mem[i], 0);
1144 if (reg_equiv_address[i])
1145 addr = reg_equiv_address[i];
1147 if (addr)
1149 if (reg_renumber[i] < 0)
1151 rtx reg = regno_reg_rtx[i];
1152 PUT_CODE (reg, MEM);
1153 XEXP (reg, 0) = addr;
1154 REG_USERVAR_P (reg) = 0;
1155 RTX_UNCHANGING_P (reg) = is_readonly;
1156 MEM_IN_STRUCT_P (reg) = in_struct;
1157 MEM_SCALAR_P (reg) = is_scalar;
1158 /* We have no alias information about this newly created
1159 MEM. */
1160 MEM_ALIAS_SET (reg) = 0;
1162 else if (reg_equiv_mem[i])
1163 XEXP (reg_equiv_mem[i], 0) = addr;
1167 /* We must set reload_completed now since the cleanup_subreg_operands call
1168 below will re-recognize each insn and reload may have generated insns
1169 which are only valid during and after reload. */
1170 reload_completed = 1;
1172 /* Make a pass over all the insns and delete all USEs which we inserted
1173 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1174 notes. Delete all CLOBBER insns that don't refer to the return value
1175 and simplify (subreg (reg)) operands. Also remove all REG_RETVAL and
1176 REG_LIBCALL notes since they are no longer useful or accurate. Strip
1177 and regenerate REG_INC notes that may have been moved around. */
1179 for (insn = first; insn; insn = NEXT_INSN (insn))
1180 if (INSN_P (insn))
1182 rtx *pnote;
1184 if (GET_CODE (insn) == CALL_INSN)
1185 replace_pseudos_in_call_usage (& CALL_INSN_FUNCTION_USAGE (insn),
1186 VOIDmode,
1187 CALL_INSN_FUNCTION_USAGE (insn));
1189 if ((GET_CODE (PATTERN (insn)) == USE
1190 && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1191 || (GET_CODE (PATTERN (insn)) == CLOBBER
1192 && (GET_CODE (XEXP (PATTERN (insn), 0)) != REG
1193 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1195 PUT_CODE (insn, NOTE);
1196 NOTE_SOURCE_FILE (insn) = 0;
1197 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1198 continue;
1201 pnote = &REG_NOTES (insn);
1202 while (*pnote != 0)
1204 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1205 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1206 || REG_NOTE_KIND (*pnote) == REG_INC
1207 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1208 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1209 *pnote = XEXP (*pnote, 1);
1210 else
1211 pnote = &XEXP (*pnote, 1);
1214 #ifdef AUTO_INC_DEC
1215 add_auto_inc_notes (insn, PATTERN (insn));
1216 #endif
1218 /* And simplify (subreg (reg)) if it appears as an operand. */
1219 cleanup_subreg_operands (insn);
1222 /* If we are doing stack checking, give a warning if this function's
1223 frame size is larger than we expect. */
1224 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1226 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1227 static int verbose_warned = 0;
1229 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1230 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1231 size += UNITS_PER_WORD;
1233 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1235 warning ("frame size too large for reliable stack checking");
1236 if (! verbose_warned)
1238 warning ("try reducing the number of local variables");
1239 verbose_warned = 1;
1244 /* Indicate that we no longer have known memory locations or constants. */
1245 if (reg_equiv_constant)
1246 free (reg_equiv_constant);
1247 reg_equiv_constant = 0;
1248 if (reg_equiv_memory_loc)
1249 free (reg_equiv_memory_loc);
1250 reg_equiv_memory_loc = 0;
1252 if (real_known_ptr)
1253 free (real_known_ptr);
1254 if (real_at_ptr)
1255 free (real_at_ptr);
1257 free (reg_equiv_mem);
1258 free (reg_equiv_init);
1259 free (reg_equiv_address);
1260 free (reg_max_ref_width);
1261 free (reg_old_renumber);
1262 free (pseudo_previous_regs);
1263 free (pseudo_forbidden_regs);
1265 CLEAR_HARD_REG_SET (used_spill_regs);
1266 for (i = 0; i < n_spills; i++)
1267 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1269 /* Free all the insn_chain structures at once. */
1270 obstack_free (&reload_obstack, reload_startobj);
1271 unused_insn_chains = 0;
1273 return failure;
1276 /* Yet another special case. Unfortunately, reg-stack forces people to
1277 write incorrect clobbers in asm statements. These clobbers must not
1278 cause the register to appear in bad_spill_regs, otherwise we'll call
1279 fatal_insn later. We clear the corresponding regnos in the live
1280 register sets to avoid this.
1281 The whole thing is rather sick, I'm afraid. */
1283 static void
1284 maybe_fix_stack_asms ()
1286 #ifdef STACK_REGS
1287 const char *constraints[MAX_RECOG_OPERANDS];
1288 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1289 struct insn_chain *chain;
1291 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1293 int i, noperands;
1294 HARD_REG_SET clobbered, allowed;
1295 rtx pat;
1297 if (! INSN_P (chain->insn)
1298 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1299 continue;
1300 pat = PATTERN (chain->insn);
1301 if (GET_CODE (pat) != PARALLEL)
1302 continue;
1304 CLEAR_HARD_REG_SET (clobbered);
1305 CLEAR_HARD_REG_SET (allowed);
1307 /* First, make a mask of all stack regs that are clobbered. */
1308 for (i = 0; i < XVECLEN (pat, 0); i++)
1310 rtx t = XVECEXP (pat, 0, i);
1311 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1312 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1315 /* Get the operand values and constraints out of the insn. */
1316 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1317 constraints, operand_mode);
1319 /* For every operand, see what registers are allowed. */
1320 for (i = 0; i < noperands; i++)
1322 const char *p = constraints[i];
1323 /* For every alternative, we compute the class of registers allowed
1324 for reloading in CLS, and merge its contents into the reg set
1325 ALLOWED. */
1326 int cls = (int) NO_REGS;
1328 for (;;)
1330 char c = *p++;
1332 if (c == '\0' || c == ',' || c == '#')
1334 /* End of one alternative - mark the regs in the current
1335 class, and reset the class. */
1336 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1337 cls = NO_REGS;
1338 if (c == '#')
1339 do {
1340 c = *p++;
1341 } while (c != '\0' && c != ',');
1342 if (c == '\0')
1343 break;
1344 continue;
1347 switch (c)
1349 case '=': case '+': case '*': case '%': case '?': case '!':
1350 case '0': case '1': case '2': case '3': case '4': case 'm':
1351 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1352 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1353 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1354 case 'P':
1355 break;
1357 case 'p':
1358 cls = (int) reg_class_subunion[cls][(int) BASE_REG_CLASS];
1359 break;
1361 case 'g':
1362 case 'r':
1363 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1364 break;
1366 default:
1367 cls = (int) reg_class_subunion[cls][(int) REG_CLASS_FROM_LETTER (c)];
1372 /* Those of the registers which are clobbered, but allowed by the
1373 constraints, must be usable as reload registers. So clear them
1374 out of the life information. */
1375 AND_HARD_REG_SET (allowed, clobbered);
1376 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1377 if (TEST_HARD_REG_BIT (allowed, i))
1379 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1380 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1384 #endif
1387 /* Copy the global variables n_reloads and rld into the corresponding elts
1388 of CHAIN. */
1389 static void
1390 copy_reloads (chain)
1391 struct insn_chain *chain;
1393 chain->n_reloads = n_reloads;
1394 chain->rld
1395 = (struct reload *) obstack_alloc (&reload_obstack,
1396 n_reloads * sizeof (struct reload));
1397 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1398 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1401 /* Walk the chain of insns, and determine for each whether it needs reloads
1402 and/or eliminations. Build the corresponding insns_need_reload list, and
1403 set something_needs_elimination as appropriate. */
1404 static void
1405 calculate_needs_all_insns (global)
1406 int global;
1408 struct insn_chain **pprev_reload = &insns_need_reload;
1409 struct insn_chain *chain, *next = 0;
1411 something_needs_elimination = 0;
1413 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1414 for (chain = reload_insn_chain; chain != 0; chain = next)
1416 rtx insn = chain->insn;
1418 next = chain->next;
1420 /* Clear out the shortcuts. */
1421 chain->n_reloads = 0;
1422 chain->need_elim = 0;
1423 chain->need_reload = 0;
1424 chain->need_operand_change = 0;
1426 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1427 include REG_LABEL), we need to see what effects this has on the
1428 known offsets at labels. */
1430 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
1431 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1432 set_label_offsets (insn, insn, 0);
1434 if (INSN_P (insn))
1436 rtx old_body = PATTERN (insn);
1437 int old_code = INSN_CODE (insn);
1438 rtx old_notes = REG_NOTES (insn);
1439 int did_elimination = 0;
1440 int operands_changed = 0;
1441 rtx set = single_set (insn);
1443 /* Skip insns that only set an equivalence. */
1444 if (set && GET_CODE (SET_DEST (set)) == REG
1445 && reg_renumber[REGNO (SET_DEST (set))] < 0
1446 && reg_equiv_constant[REGNO (SET_DEST (set))])
1447 continue;
1449 /* If needed, eliminate any eliminable registers. */
1450 if (num_eliminable || num_eliminable_invariants)
1451 did_elimination = eliminate_regs_in_insn (insn, 0);
1453 /* Analyze the instruction. */
1454 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1455 global, spill_reg_order);
1457 /* If a no-op set needs more than one reload, this is likely
1458 to be something that needs input address reloads. We
1459 can't get rid of this cleanly later, and it is of no use
1460 anyway, so discard it now.
1461 We only do this when expensive_optimizations is enabled,
1462 since this complements reload inheritance / output
1463 reload deletion, and it can make debugging harder. */
1464 if (flag_expensive_optimizations && n_reloads > 1)
1466 rtx set = single_set (insn);
1467 if (set
1468 && SET_SRC (set) == SET_DEST (set)
1469 && GET_CODE (SET_SRC (set)) == REG
1470 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1472 PUT_CODE (insn, NOTE);
1473 NOTE_SOURCE_FILE (insn) = 0;
1474 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1475 /* Delete it from the reload chain */
1476 if (chain->prev)
1477 chain->prev->next = next;
1478 else
1479 reload_insn_chain = next;
1480 if (next)
1481 next->prev = chain->prev;
1482 chain->next = unused_insn_chains;
1483 unused_insn_chains = chain;
1484 continue;
1487 if (num_eliminable)
1488 update_eliminable_offsets ();
1490 /* Remember for later shortcuts which insns had any reloads or
1491 register eliminations. */
1492 chain->need_elim = did_elimination;
1493 chain->need_reload = n_reloads > 0;
1494 chain->need_operand_change = operands_changed;
1496 /* Discard any register replacements done. */
1497 if (did_elimination)
1499 obstack_free (&reload_obstack, reload_insn_firstobj);
1500 PATTERN (insn) = old_body;
1501 INSN_CODE (insn) = old_code;
1502 REG_NOTES (insn) = old_notes;
1503 something_needs_elimination = 1;
1506 something_needs_operands_changed |= operands_changed;
1508 if (n_reloads != 0)
1510 copy_reloads (chain);
1511 *pprev_reload = chain;
1512 pprev_reload = &chain->next_need_reload;
1516 *pprev_reload = 0;
1519 /* Comparison function for qsort to decide which of two reloads
1520 should be handled first. *P1 and *P2 are the reload numbers. */
1522 static int
1523 reload_reg_class_lower (r1p, r2p)
1524 const PTR r1p;
1525 const PTR r2p;
1527 register int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1528 register int t;
1530 /* Consider required reloads before optional ones. */
1531 t = rld[r1].optional - rld[r2].optional;
1532 if (t != 0)
1533 return t;
1535 /* Count all solitary classes before non-solitary ones. */
1536 t = ((reg_class_size[(int) rld[r2].class] == 1)
1537 - (reg_class_size[(int) rld[r1].class] == 1));
1538 if (t != 0)
1539 return t;
1541 /* Aside from solitaires, consider all multi-reg groups first. */
1542 t = rld[r2].nregs - rld[r1].nregs;
1543 if (t != 0)
1544 return t;
1546 /* Consider reloads in order of increasing reg-class number. */
1547 t = (int) rld[r1].class - (int) rld[r2].class;
1548 if (t != 0)
1549 return t;
1551 /* If reloads are equally urgent, sort by reload number,
1552 so that the results of qsort leave nothing to chance. */
1553 return r1 - r2;
1556 /* The cost of spilling each hard reg. */
1557 static int spill_cost[FIRST_PSEUDO_REGISTER];
1559 /* When spilling multiple hard registers, we use SPILL_COST for the first
1560 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1561 only the first hard reg for a multi-reg pseudo. */
1562 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1564 /* Update the spill cost arrays, considering that pseudo REG is live. */
1566 static void
1567 count_pseudo (reg)
1568 int reg;
1570 int n_refs = REG_N_REFS (reg);
1571 int r = reg_renumber[reg];
1572 int nregs;
1574 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1575 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1576 return;
1578 SET_REGNO_REG_SET (&pseudos_counted, reg);
1580 if (r < 0)
1581 abort ();
1583 spill_add_cost[r] += n_refs;
1585 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1586 while (nregs-- > 0)
1587 spill_cost[r + nregs] += n_refs;
1590 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1591 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1593 static void
1594 order_regs_for_reload (chain)
1595 struct insn_chain *chain;
1597 int i;
1598 HARD_REG_SET used_by_pseudos;
1599 HARD_REG_SET used_by_pseudos2;
1601 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1603 memset (spill_cost, 0, sizeof spill_cost);
1604 memset (spill_add_cost, 0, sizeof spill_add_cost);
1606 /* Count number of uses of each hard reg by pseudo regs allocated to it
1607 and then order them by decreasing use. First exclude hard registers
1608 that are live in or across this insn. */
1610 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1611 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1612 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1613 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1615 /* Now find out which pseudos are allocated to it, and update
1616 hard_reg_n_uses. */
1617 CLEAR_REG_SET (&pseudos_counted);
1619 EXECUTE_IF_SET_IN_REG_SET
1620 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
1622 count_pseudo (i);
1624 EXECUTE_IF_SET_IN_REG_SET
1625 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
1627 count_pseudo (i);
1629 CLEAR_REG_SET (&pseudos_counted);
1632 /* Vector of reload-numbers showing the order in which the reloads should
1633 be processed. */
1634 static short reload_order[MAX_RELOADS];
1636 /* This is used to keep track of the spill regs used in one insn. */
1637 static HARD_REG_SET used_spill_regs_local;
1639 /* We decided to spill hard register SPILLED, which has a size of
1640 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1641 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1642 update SPILL_COST/SPILL_ADD_COST. */
1644 static void
1645 count_spilled_pseudo (spilled, spilled_nregs, reg)
1646 int spilled, spilled_nregs, reg;
1648 int r = reg_renumber[reg];
1649 int nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1651 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1652 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1653 return;
1655 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1657 spill_add_cost[r] -= REG_N_REFS (reg);
1658 while (nregs-- > 0)
1659 spill_cost[r + nregs] -= REG_N_REFS (reg);
1662 /* Find reload register to use for reload number ORDER. */
1664 static int
1665 find_reg (chain, order)
1666 struct insn_chain *chain;
1667 int order;
1669 int rnum = reload_order[order];
1670 struct reload *rl = rld + rnum;
1671 int best_cost = INT_MAX;
1672 int best_reg = -1;
1673 unsigned int i, j;
1674 int k;
1675 HARD_REG_SET not_usable;
1676 HARD_REG_SET used_by_other_reload;
1678 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1679 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1680 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1682 CLEAR_HARD_REG_SET (used_by_other_reload);
1683 for (k = 0; k < order; k++)
1685 int other = reload_order[k];
1687 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1688 for (j = 0; j < rld[other].nregs; j++)
1689 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1692 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1694 unsigned int regno = i;
1696 if (! TEST_HARD_REG_BIT (not_usable, regno)
1697 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1698 && HARD_REGNO_MODE_OK (regno, rl->mode))
1700 int this_cost = spill_cost[regno];
1701 int ok = 1;
1702 unsigned int this_nregs = HARD_REGNO_NREGS (regno, rl->mode);
1704 for (j = 1; j < this_nregs; j++)
1706 this_cost += spill_add_cost[regno + j];
1707 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1708 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1709 ok = 0;
1711 if (! ok)
1712 continue;
1713 if (rl->in && GET_CODE (rl->in) == REG && REGNO (rl->in) == regno)
1714 this_cost--;
1715 if (rl->out && GET_CODE (rl->out) == REG && REGNO (rl->out) == regno)
1716 this_cost--;
1717 if (this_cost < best_cost
1718 /* Among registers with equal cost, prefer caller-saved ones, or
1719 use REG_ALLOC_ORDER if it is defined. */
1720 || (this_cost == best_cost
1721 #ifdef REG_ALLOC_ORDER
1722 && (inv_reg_alloc_order[regno]
1723 < inv_reg_alloc_order[best_reg])
1724 #else
1725 && call_used_regs[regno]
1726 && ! call_used_regs[best_reg]
1727 #endif
1730 best_reg = regno;
1731 best_cost = this_cost;
1735 if (best_reg == -1)
1736 return 0;
1738 if (rtl_dump_file)
1739 fprintf (rtl_dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1741 rl->nregs = HARD_REGNO_NREGS (best_reg, rl->mode);
1742 rl->regno = best_reg;
1744 EXECUTE_IF_SET_IN_REG_SET
1745 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j,
1747 count_spilled_pseudo (best_reg, rl->nregs, j);
1750 EXECUTE_IF_SET_IN_REG_SET
1751 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j,
1753 count_spilled_pseudo (best_reg, rl->nregs, j);
1756 for (i = 0; i < rl->nregs; i++)
1758 if (spill_cost[best_reg + i] != 0
1759 || spill_add_cost[best_reg + i] != 0)
1760 abort ();
1761 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1763 return 1;
1766 /* Find more reload regs to satisfy the remaining need of an insn, which
1767 is given by CHAIN.
1768 Do it by ascending class number, since otherwise a reg
1769 might be spilled for a big class and might fail to count
1770 for a smaller class even though it belongs to that class. */
1772 static void
1773 find_reload_regs (chain)
1774 struct insn_chain *chain;
1776 int i;
1778 /* In order to be certain of getting the registers we need,
1779 we must sort the reloads into order of increasing register class.
1780 Then our grabbing of reload registers will parallel the process
1781 that provided the reload registers. */
1782 for (i = 0; i < chain->n_reloads; i++)
1784 /* Show whether this reload already has a hard reg. */
1785 if (chain->rld[i].reg_rtx)
1787 int regno = REGNO (chain->rld[i].reg_rtx);
1788 chain->rld[i].regno = regno;
1789 chain->rld[i].nregs
1790 = HARD_REGNO_NREGS (regno, GET_MODE (chain->rld[i].reg_rtx));
1792 else
1793 chain->rld[i].regno = -1;
1794 reload_order[i] = i;
1797 n_reloads = chain->n_reloads;
1798 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1800 CLEAR_HARD_REG_SET (used_spill_regs_local);
1802 if (rtl_dump_file)
1803 fprintf (rtl_dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1805 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1807 /* Compute the order of preference for hard registers to spill. */
1809 order_regs_for_reload (chain);
1811 for (i = 0; i < n_reloads; i++)
1813 int r = reload_order[i];
1815 /* Ignore reloads that got marked inoperative. */
1816 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1817 && ! rld[r].optional
1818 && rld[r].regno == -1)
1819 if (! find_reg (chain, i))
1821 spill_failure (chain->insn, rld[r].class);
1822 failure = 1;
1823 return;
1827 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1828 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1830 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1833 static void
1834 select_reload_regs ()
1836 struct insn_chain *chain;
1838 /* Try to satisfy the needs for each insn. */
1839 for (chain = insns_need_reload; chain != 0;
1840 chain = chain->next_need_reload)
1841 find_reload_regs (chain);
1844 /* Delete all insns that were inserted by emit_caller_save_insns during
1845 this iteration. */
1846 static void
1847 delete_caller_save_insns ()
1849 struct insn_chain *c = reload_insn_chain;
1851 while (c != 0)
1853 while (c != 0 && c->is_caller_save_insn)
1855 struct insn_chain *next = c->next;
1856 rtx insn = c->insn;
1858 if (insn == BLOCK_HEAD (c->block))
1859 BLOCK_HEAD (c->block) = NEXT_INSN (insn);
1860 if (insn == BLOCK_END (c->block))
1861 BLOCK_END (c->block) = PREV_INSN (insn);
1862 if (c == reload_insn_chain)
1863 reload_insn_chain = next;
1865 if (NEXT_INSN (insn) != 0)
1866 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
1867 if (PREV_INSN (insn) != 0)
1868 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1870 if (next)
1871 next->prev = c->prev;
1872 if (c->prev)
1873 c->prev->next = next;
1874 c->next = unused_insn_chains;
1875 unused_insn_chains = c;
1876 c = next;
1878 if (c != 0)
1879 c = c->next;
1883 /* Handle the failure to find a register to spill.
1884 INSN should be one of the insns which needed this particular spill reg. */
1886 static void
1887 spill_failure (insn, class)
1888 rtx insn;
1889 enum reg_class class;
1891 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1892 if (asm_noperands (PATTERN (insn)) >= 0)
1893 error_for_asm (insn, "Can't find a register in class `%s' while reloading `asm'.",
1894 reg_class_names[class]);
1895 else
1897 error ("Unable to find a register to spill in class `%s'.",
1898 reg_class_names[class]);
1899 fatal_insn ("This is the insn:", insn);
1903 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1904 data that is dead in INSN. */
1906 static void
1907 delete_dead_insn (insn)
1908 rtx insn;
1910 rtx prev = prev_real_insn (insn);
1911 rtx prev_dest;
1913 /* If the previous insn sets a register that dies in our insn, delete it
1914 too. */
1915 if (prev && GET_CODE (PATTERN (prev)) == SET
1916 && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
1917 && reg_mentioned_p (prev_dest, PATTERN (insn))
1918 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1919 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1920 delete_dead_insn (prev);
1922 PUT_CODE (insn, NOTE);
1923 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1924 NOTE_SOURCE_FILE (insn) = 0;
1927 /* Modify the home of pseudo-reg I.
1928 The new home is present in reg_renumber[I].
1930 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1931 or it may be -1, meaning there is none or it is not relevant.
1932 This is used so that all pseudos spilled from a given hard reg
1933 can share one stack slot. */
1935 static void
1936 alter_reg (i, from_reg)
1937 register int i;
1938 int from_reg;
1940 /* When outputting an inline function, this can happen
1941 for a reg that isn't actually used. */
1942 if (regno_reg_rtx[i] == 0)
1943 return;
1945 /* If the reg got changed to a MEM at rtl-generation time,
1946 ignore it. */
1947 if (GET_CODE (regno_reg_rtx[i]) != REG)
1948 return;
1950 /* Modify the reg-rtx to contain the new hard reg
1951 number or else to contain its pseudo reg number. */
1952 REGNO (regno_reg_rtx[i])
1953 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1955 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1956 allocate a stack slot for it. */
1958 if (reg_renumber[i] < 0
1959 && REG_N_REFS (i) > 0
1960 && reg_equiv_constant[i] == 0
1961 && reg_equiv_memory_loc[i] == 0)
1963 register rtx x;
1964 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1965 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
1966 int adjust = 0;
1968 /* Each pseudo reg has an inherent size which comes from its own mode,
1969 and a total size which provides room for paradoxical subregs
1970 which refer to the pseudo reg in wider modes.
1972 We can use a slot already allocated if it provides both
1973 enough inherent space and enough total space.
1974 Otherwise, we allocate a new slot, making sure that it has no less
1975 inherent space, and no less total space, then the previous slot. */
1976 if (from_reg == -1)
1978 /* No known place to spill from => no slot to reuse. */
1979 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
1980 inherent_size == total_size ? 0 : -1);
1981 if (BYTES_BIG_ENDIAN)
1982 /* Cancel the big-endian correction done in assign_stack_local.
1983 Get the address of the beginning of the slot.
1984 This is so we can do a big-endian correction unconditionally
1985 below. */
1986 adjust = inherent_size - total_size;
1988 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
1990 /* Nothing can alias this slot except this pseudo. */
1991 MEM_ALIAS_SET (x) = new_alias_set ();
1994 /* Reuse a stack slot if possible. */
1995 else if (spill_stack_slot[from_reg] != 0
1996 && spill_stack_slot_width[from_reg] >= total_size
1997 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1998 >= inherent_size))
1999 x = spill_stack_slot[from_reg];
2001 /* Allocate a bigger slot. */
2002 else
2004 /* Compute maximum size needed, both for inherent size
2005 and for total size. */
2006 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2007 rtx stack_slot;
2009 if (spill_stack_slot[from_reg])
2011 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2012 > inherent_size)
2013 mode = GET_MODE (spill_stack_slot[from_reg]);
2014 if (spill_stack_slot_width[from_reg] > total_size)
2015 total_size = spill_stack_slot_width[from_reg];
2018 /* Make a slot with that size. */
2019 x = assign_stack_local (mode, total_size,
2020 inherent_size == total_size ? 0 : -1);
2021 stack_slot = x;
2023 /* All pseudos mapped to this slot can alias each other. */
2024 if (spill_stack_slot[from_reg])
2025 MEM_ALIAS_SET (x) = MEM_ALIAS_SET (spill_stack_slot[from_reg]);
2026 else
2027 MEM_ALIAS_SET (x) = new_alias_set ();
2029 if (BYTES_BIG_ENDIAN)
2031 /* Cancel the big-endian correction done in assign_stack_local.
2032 Get the address of the beginning of the slot.
2033 This is so we can do a big-endian correction unconditionally
2034 below. */
2035 adjust = GET_MODE_SIZE (mode) - total_size;
2036 if (adjust)
2037 stack_slot = gen_rtx_MEM (mode_for_size (total_size
2038 * BITS_PER_UNIT,
2039 MODE_INT, 1),
2040 plus_constant (XEXP (x, 0), adjust));
2043 spill_stack_slot[from_reg] = stack_slot;
2044 spill_stack_slot_width[from_reg] = total_size;
2047 /* On a big endian machine, the "address" of the slot
2048 is the address of the low part that fits its inherent mode. */
2049 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2050 adjust += (total_size - inherent_size);
2052 /* If we have any adjustment to make, or if the stack slot is the
2053 wrong mode, make a new stack slot. */
2054 if (adjust != 0 || GET_MODE (x) != GET_MODE (regno_reg_rtx[i]))
2056 rtx new = gen_rtx_MEM (GET_MODE (regno_reg_rtx[i]),
2057 plus_constant (XEXP (x, 0), adjust));
2059 MEM_COPY_ATTRIBUTES (new, x);
2060 x = new;
2063 /* Save the stack slot for later. */
2064 reg_equiv_memory_loc[i] = x;
2068 /* Mark the slots in regs_ever_live for the hard regs
2069 used by pseudo-reg number REGNO. */
2071 void
2072 mark_home_live (regno)
2073 int regno;
2075 register int i, lim;
2077 i = reg_renumber[regno];
2078 if (i < 0)
2079 return;
2080 lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
2081 while (i < lim)
2082 regs_ever_live[i++] = 1;
2085 /* This function handles the tracking of elimination offsets around branches.
2087 X is a piece of RTL being scanned.
2089 INSN is the insn that it came from, if any.
2091 INITIAL_P is non-zero if we are to set the offset to be the initial
2092 offset and zero if we are setting the offset of the label to be the
2093 current offset. */
2095 static void
2096 set_label_offsets (x, insn, initial_p)
2097 rtx x;
2098 rtx insn;
2099 int initial_p;
2101 enum rtx_code code = GET_CODE (x);
2102 rtx tem;
2103 unsigned int i;
2104 struct elim_table *p;
2106 switch (code)
2108 case LABEL_REF:
2109 if (LABEL_REF_NONLOCAL_P (x))
2110 return;
2112 x = XEXP (x, 0);
2114 /* ... fall through ... */
2116 case CODE_LABEL:
2117 /* If we know nothing about this label, set the desired offsets. Note
2118 that this sets the offset at a label to be the offset before a label
2119 if we don't know anything about the label. This is not correct for
2120 the label after a BARRIER, but is the best guess we can make. If
2121 we guessed wrong, we will suppress an elimination that might have
2122 been possible had we been able to guess correctly. */
2124 if (! offsets_known_at[CODE_LABEL_NUMBER (x)])
2126 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2127 offsets_at[CODE_LABEL_NUMBER (x)][i]
2128 = (initial_p ? reg_eliminate[i].initial_offset
2129 : reg_eliminate[i].offset);
2130 offsets_known_at[CODE_LABEL_NUMBER (x)] = 1;
2133 /* Otherwise, if this is the definition of a label and it is
2134 preceded by a BARRIER, set our offsets to the known offset of
2135 that label. */
2137 else if (x == insn
2138 && (tem = prev_nonnote_insn (insn)) != 0
2139 && GET_CODE (tem) == BARRIER)
2140 set_offsets_for_label (insn);
2141 else
2142 /* If neither of the above cases is true, compare each offset
2143 with those previously recorded and suppress any eliminations
2144 where the offsets disagree. */
2146 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2147 if (offsets_at[CODE_LABEL_NUMBER (x)][i]
2148 != (initial_p ? reg_eliminate[i].initial_offset
2149 : reg_eliminate[i].offset))
2150 reg_eliminate[i].can_eliminate = 0;
2152 return;
2154 case JUMP_INSN:
2155 set_label_offsets (PATTERN (insn), insn, initial_p);
2157 /* ... fall through ... */
2159 case INSN:
2160 case CALL_INSN:
2161 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2162 and hence must have all eliminations at their initial offsets. */
2163 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2164 if (REG_NOTE_KIND (tem) == REG_LABEL)
2165 set_label_offsets (XEXP (tem, 0), insn, 1);
2166 return;
2168 case PARALLEL:
2169 case ADDR_VEC:
2170 case ADDR_DIFF_VEC:
2171 /* Each of the labels in the parallel or address vector must be
2172 at their initial offsets. We want the first field for PARALLEL
2173 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2175 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2176 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2177 insn, initial_p);
2178 return;
2180 case SET:
2181 /* We only care about setting PC. If the source is not RETURN,
2182 IF_THEN_ELSE, or a label, disable any eliminations not at
2183 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2184 isn't one of those possibilities. For branches to a label,
2185 call ourselves recursively.
2187 Note that this can disable elimination unnecessarily when we have
2188 a non-local goto since it will look like a non-constant jump to
2189 someplace in the current function. This isn't a significant
2190 problem since such jumps will normally be when all elimination
2191 pairs are back to their initial offsets. */
2193 if (SET_DEST (x) != pc_rtx)
2194 return;
2196 switch (GET_CODE (SET_SRC (x)))
2198 case PC:
2199 case RETURN:
2200 return;
2202 case LABEL_REF:
2203 set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
2204 return;
2206 case IF_THEN_ELSE:
2207 tem = XEXP (SET_SRC (x), 1);
2208 if (GET_CODE (tem) == LABEL_REF)
2209 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2210 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2211 break;
2213 tem = XEXP (SET_SRC (x), 2);
2214 if (GET_CODE (tem) == LABEL_REF)
2215 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2216 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2217 break;
2218 return;
2220 default:
2221 break;
2224 /* If we reach here, all eliminations must be at their initial
2225 offset because we are doing a jump to a variable address. */
2226 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2227 if (p->offset != p->initial_offset)
2228 p->can_eliminate = 0;
2229 break;
2231 default:
2232 break;
2236 /* Scan X and replace any eliminable registers (such as fp) with a
2237 replacement (such as sp), plus an offset.
2239 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2240 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2241 MEM, we are allowed to replace a sum of a register and the constant zero
2242 with the register, which we cannot do outside a MEM. In addition, we need
2243 to record the fact that a register is referenced outside a MEM.
2245 If INSN is an insn, it is the insn containing X. If we replace a REG
2246 in a SET_DEST with an equivalent MEM and INSN is non-zero, write a
2247 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2248 the REG is being modified.
2250 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2251 That's used when we eliminate in expressions stored in notes.
2252 This means, do not set ref_outside_mem even if the reference
2253 is outside of MEMs.
2255 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2256 replacements done assuming all offsets are at their initial values. If
2257 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2258 encounter, return the actual location so that find_reloads will do
2259 the proper thing. */
2262 eliminate_regs (x, mem_mode, insn)
2263 rtx x;
2264 enum machine_mode mem_mode;
2265 rtx insn;
2267 enum rtx_code code = GET_CODE (x);
2268 struct elim_table *ep;
2269 int regno;
2270 rtx new;
2271 int i, j;
2272 const char *fmt;
2273 int copied = 0;
2275 if (! current_function_decl)
2276 return x;
2278 switch (code)
2280 case CONST_INT:
2281 case CONST_DOUBLE:
2282 case CONST:
2283 case SYMBOL_REF:
2284 case CODE_LABEL:
2285 case PC:
2286 case CC0:
2287 case ASM_INPUT:
2288 case ADDR_VEC:
2289 case ADDR_DIFF_VEC:
2290 case RETURN:
2291 return x;
2293 case ADDRESSOF:
2294 /* This is only for the benefit of the debugging backends, which call
2295 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2296 removed after CSE. */
2297 new = eliminate_regs (XEXP (x, 0), 0, insn);
2298 if (GET_CODE (new) == MEM)
2299 return XEXP (new, 0);
2300 return x;
2302 case REG:
2303 regno = REGNO (x);
2305 /* First handle the case where we encounter a bare register that
2306 is eliminable. Replace it with a PLUS. */
2307 if (regno < FIRST_PSEUDO_REGISTER)
2309 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2310 ep++)
2311 if (ep->from_rtx == x && ep->can_eliminate)
2312 return plus_constant (ep->to_rtx, ep->previous_offset);
2315 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2316 && reg_equiv_constant[regno]
2317 && ! CONSTANT_P (reg_equiv_constant[regno]))
2318 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2319 mem_mode, insn);
2320 return x;
2322 /* You might think handling MINUS in a manner similar to PLUS is a
2323 good idea. It is not. It has been tried multiple times and every
2324 time the change has had to have been reverted.
2326 Other parts of reload know a PLUS is special (gen_reload for example)
2327 and require special code to handle code a reloaded PLUS operand.
2329 Also consider backends where the flags register is clobbered by a
2330 MINUS, but we can emit a PLUS that does not clobber flags (ia32,
2331 lea instruction comes to mind). If we try to reload a MINUS, we
2332 may kill the flags register that was holding a useful value.
2334 So, please before trying to handle MINUS, consider reload as a
2335 whole instead of this little section as well as the backend issues. */
2336 case PLUS:
2337 /* If this is the sum of an eliminable register and a constant, rework
2338 the sum. */
2339 if (GET_CODE (XEXP (x, 0)) == REG
2340 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2341 && CONSTANT_P (XEXP (x, 1)))
2343 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2344 ep++)
2345 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2347 /* The only time we want to replace a PLUS with a REG (this
2348 occurs when the constant operand of the PLUS is the negative
2349 of the offset) is when we are inside a MEM. We won't want
2350 to do so at other times because that would change the
2351 structure of the insn in a way that reload can't handle.
2352 We special-case the commonest situation in
2353 eliminate_regs_in_insn, so just replace a PLUS with a
2354 PLUS here, unless inside a MEM. */
2355 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2356 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2357 return ep->to_rtx;
2358 else
2359 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2360 plus_constant (XEXP (x, 1),
2361 ep->previous_offset));
2364 /* If the register is not eliminable, we are done since the other
2365 operand is a constant. */
2366 return x;
2369 /* If this is part of an address, we want to bring any constant to the
2370 outermost PLUS. We will do this by doing register replacement in
2371 our operands and seeing if a constant shows up in one of them.
2373 Note that there is no risk of modifying the structure of the insn,
2374 since we only get called for its operands, thus we are either
2375 modifying the address inside a MEM, or something like an address
2376 operand of a load-address insn. */
2379 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2380 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2382 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2384 /* If one side is a PLUS and the other side is a pseudo that
2385 didn't get a hard register but has a reg_equiv_constant,
2386 we must replace the constant here since it may no longer
2387 be in the position of any operand. */
2388 if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
2389 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2390 && reg_renumber[REGNO (new1)] < 0
2391 && reg_equiv_constant != 0
2392 && reg_equiv_constant[REGNO (new1)] != 0)
2393 new1 = reg_equiv_constant[REGNO (new1)];
2394 else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
2395 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2396 && reg_renumber[REGNO (new0)] < 0
2397 && reg_equiv_constant[REGNO (new0)] != 0)
2398 new0 = reg_equiv_constant[REGNO (new0)];
2400 new = form_sum (new0, new1);
2402 /* As above, if we are not inside a MEM we do not want to
2403 turn a PLUS into something else. We might try to do so here
2404 for an addition of 0 if we aren't optimizing. */
2405 if (! mem_mode && GET_CODE (new) != PLUS)
2406 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2407 else
2408 return new;
2411 return x;
2413 case MULT:
2414 /* If this is the product of an eliminable register and a
2415 constant, apply the distribute law and move the constant out
2416 so that we have (plus (mult ..) ..). This is needed in order
2417 to keep load-address insns valid. This case is pathological.
2418 We ignore the possibility of overflow here. */
2419 if (GET_CODE (XEXP (x, 0)) == REG
2420 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2421 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2422 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2423 ep++)
2424 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2426 if (! mem_mode
2427 /* Refs inside notes don't count for this purpose. */
2428 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2429 || GET_CODE (insn) == INSN_LIST)))
2430 ep->ref_outside_mem = 1;
2432 return
2433 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2434 ep->previous_offset * INTVAL (XEXP (x, 1)));
2437 /* ... fall through ... */
2439 case CALL:
2440 case COMPARE:
2441 /* See comments before PLUS about handling MINUS. */
2442 case MINUS:
2443 case DIV: case UDIV:
2444 case MOD: case UMOD:
2445 case AND: case IOR: case XOR:
2446 case ROTATERT: case ROTATE:
2447 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2448 case NE: case EQ:
2449 case GE: case GT: case GEU: case GTU:
2450 case LE: case LT: case LEU: case LTU:
2452 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2453 rtx new1
2454 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
2456 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2457 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2459 return x;
2461 case EXPR_LIST:
2462 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2463 if (XEXP (x, 0))
2465 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2466 if (new != XEXP (x, 0))
2468 /* If this is a REG_DEAD note, it is not valid anymore.
2469 Using the eliminated version could result in creating a
2470 REG_DEAD note for the stack or frame pointer. */
2471 if (GET_MODE (x) == REG_DEAD)
2472 return (XEXP (x, 1)
2473 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2474 : NULL_RTX);
2476 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2480 /* ... fall through ... */
2482 case INSN_LIST:
2483 /* Now do eliminations in the rest of the chain. If this was
2484 an EXPR_LIST, this might result in allocating more memory than is
2485 strictly needed, but it simplifies the code. */
2486 if (XEXP (x, 1))
2488 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2489 if (new != XEXP (x, 1))
2490 return gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2492 return x;
2494 case PRE_INC:
2495 case POST_INC:
2496 case PRE_DEC:
2497 case POST_DEC:
2498 case STRICT_LOW_PART:
2499 case NEG: case NOT:
2500 case SIGN_EXTEND: case ZERO_EXTEND:
2501 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2502 case FLOAT: case FIX:
2503 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2504 case ABS:
2505 case SQRT:
2506 case FFS:
2507 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2508 if (new != XEXP (x, 0))
2509 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2510 return x;
2512 case SUBREG:
2513 /* Similar to above processing, but preserve SUBREG_WORD.
2514 Convert (subreg (mem)) to (mem) if not paradoxical.
2515 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2516 pseudo didn't get a hard reg, we must replace this with the
2517 eliminated version of the memory location because push_reloads
2518 may do the replacement in certain circumstances. */
2519 if (GET_CODE (SUBREG_REG (x)) == REG
2520 && (GET_MODE_SIZE (GET_MODE (x))
2521 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2522 && reg_equiv_memory_loc != 0
2523 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2525 new = SUBREG_REG (x);
2527 else
2528 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
2530 if (new != XEXP (x, 0))
2532 int x_size = GET_MODE_SIZE (GET_MODE (x));
2533 int new_size = GET_MODE_SIZE (GET_MODE (new));
2535 if (GET_CODE (new) == MEM
2536 && ((x_size < new_size
2537 #ifdef WORD_REGISTER_OPERATIONS
2538 /* On these machines, combine can create rtl of the form
2539 (set (subreg:m1 (reg:m2 R) 0) ...)
2540 where m1 < m2, and expects something interesting to
2541 happen to the entire word. Moreover, it will use the
2542 (reg:m2 R) later, expecting all bits to be preserved.
2543 So if the number of words is the same, preserve the
2544 subreg so that push_reloads can see it. */
2545 && ! ((x_size-1)/UNITS_PER_WORD == (new_size-1)/UNITS_PER_WORD)
2546 #endif
2548 || (x_size == new_size))
2551 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
2552 enum machine_mode mode = GET_MODE (x);
2554 if (BYTES_BIG_ENDIAN)
2555 offset += (MIN (UNITS_PER_WORD,
2556 GET_MODE_SIZE (GET_MODE (new)))
2557 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
2559 PUT_MODE (new, mode);
2560 XEXP (new, 0) = plus_constant (XEXP (new, 0), offset);
2561 return new;
2563 else
2564 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_WORD (x));
2567 return x;
2569 case MEM:
2570 /* This is only for the benefit of the debugging backends, which call
2571 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2572 removed after CSE. */
2573 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2574 return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
2576 /* Our only special processing is to pass the mode of the MEM to our
2577 recursive call and copy the flags. While we are here, handle this
2578 case more efficiently. */
2579 new = eliminate_regs (XEXP (x, 0), GET_MODE (x), insn);
2580 if (new != XEXP (x, 0))
2582 new = gen_rtx_MEM (GET_MODE (x), new);
2583 MEM_COPY_ATTRIBUTES (new, x);
2584 return new;
2586 else
2587 return x;
2589 case USE:
2590 /* Handle insn_list USE that a call to a pure function may generate. */
2591 new = eliminate_regs (XEXP (x, 0), 0, insn);
2592 if (new != XEXP (x, 0))
2593 return gen_rtx_USE (GET_MODE (x), new);
2594 return x;
2596 case CLOBBER:
2597 case ASM_OPERANDS:
2598 case SET:
2599 abort ();
2601 default:
2602 break;
2605 /* Process each of our operands recursively. If any have changed, make a
2606 copy of the rtx. */
2607 fmt = GET_RTX_FORMAT (code);
2608 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2610 if (*fmt == 'e')
2612 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
2613 if (new != XEXP (x, i) && ! copied)
2615 rtx new_x = rtx_alloc (code);
2616 memcpy (new_x, x,
2617 (sizeof (*new_x) - sizeof (new_x->fld)
2618 + sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code)));
2619 x = new_x;
2620 copied = 1;
2622 XEXP (x, i) = new;
2624 else if (*fmt == 'E')
2626 int copied_vec = 0;
2627 for (j = 0; j < XVECLEN (x, i); j++)
2629 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
2630 if (new != XVECEXP (x, i, j) && ! copied_vec)
2632 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2633 XVEC (x, i)->elem);
2634 if (! copied)
2636 rtx new_x = rtx_alloc (code);
2637 memcpy (new_x, x,
2638 (sizeof (*new_x) - sizeof (new_x->fld)
2639 + (sizeof (new_x->fld[0])
2640 * GET_RTX_LENGTH (code))));
2641 x = new_x;
2642 copied = 1;
2644 XVEC (x, i) = new_v;
2645 copied_vec = 1;
2647 XVECEXP (x, i, j) = new;
2652 return x;
2655 /* Scan rtx X for modifications of elimination target registers. Update
2656 the table of eliminables to reflect the changed state. MEM_MODE is
2657 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2659 static void
2660 elimination_effects (x, mem_mode)
2661 rtx x;
2662 enum machine_mode mem_mode;
2665 enum rtx_code code = GET_CODE (x);
2666 struct elim_table *ep;
2667 int regno;
2668 int i, j;
2669 const char *fmt;
2671 switch (code)
2673 case CONST_INT:
2674 case CONST_DOUBLE:
2675 case CONST:
2676 case SYMBOL_REF:
2677 case CODE_LABEL:
2678 case PC:
2679 case CC0:
2680 case ASM_INPUT:
2681 case ADDR_VEC:
2682 case ADDR_DIFF_VEC:
2683 case RETURN:
2684 return;
2686 case ADDRESSOF:
2687 abort ();
2689 case REG:
2690 regno = REGNO (x);
2692 /* First handle the case where we encounter a bare register that
2693 is eliminable. Replace it with a PLUS. */
2694 if (regno < FIRST_PSEUDO_REGISTER)
2696 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2697 ep++)
2698 if (ep->from_rtx == x && ep->can_eliminate)
2700 if (! mem_mode)
2701 ep->ref_outside_mem = 1;
2702 return;
2706 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2707 && reg_equiv_constant[regno]
2708 && ! CONSTANT_P (reg_equiv_constant[regno]))
2709 elimination_effects (reg_equiv_constant[regno], mem_mode);
2710 return;
2712 case PRE_INC:
2713 case POST_INC:
2714 case PRE_DEC:
2715 case POST_DEC:
2716 case POST_MODIFY:
2717 case PRE_MODIFY:
2718 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2719 if (ep->to_rtx == XEXP (x, 0))
2721 int size = GET_MODE_SIZE (mem_mode);
2723 /* If more bytes than MEM_MODE are pushed, account for them. */
2724 #ifdef PUSH_ROUNDING
2725 if (ep->to_rtx == stack_pointer_rtx)
2726 size = PUSH_ROUNDING (size);
2727 #endif
2728 if (code == PRE_DEC || code == POST_DEC)
2729 ep->offset += size;
2730 else if (code == PRE_INC || code == POST_INC)
2731 ep->offset -= size;
2732 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2733 && GET_CODE (XEXP (x, 1)) == PLUS
2734 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2735 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2736 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2739 /* These two aren't unary operators. */
2740 if (code == POST_MODIFY || code == PRE_MODIFY)
2741 break;
2743 /* Fall through to generic unary operation case. */
2744 case STRICT_LOW_PART:
2745 case NEG: case NOT:
2746 case SIGN_EXTEND: case ZERO_EXTEND:
2747 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2748 case FLOAT: case FIX:
2749 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2750 case ABS:
2751 case SQRT:
2752 case FFS:
2753 elimination_effects (XEXP (x, 0), mem_mode);
2754 return;
2756 case SUBREG:
2757 if (GET_CODE (SUBREG_REG (x)) == REG
2758 && (GET_MODE_SIZE (GET_MODE (x))
2759 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2760 && reg_equiv_memory_loc != 0
2761 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2762 return;
2764 elimination_effects (SUBREG_REG (x), mem_mode);
2765 return;
2767 case USE:
2768 /* If using a register that is the source of an eliminate we still
2769 think can be performed, note it cannot be performed since we don't
2770 know how this register is used. */
2771 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2772 if (ep->from_rtx == XEXP (x, 0))
2773 ep->can_eliminate = 0;
2775 elimination_effects (XEXP (x, 0), mem_mode);
2776 return;
2778 case CLOBBER:
2779 /* If clobbering a register that is the replacement register for an
2780 elimination we still think can be performed, note that it cannot
2781 be performed. Otherwise, we need not be concerned about it. */
2782 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2783 if (ep->to_rtx == XEXP (x, 0))
2784 ep->can_eliminate = 0;
2786 elimination_effects (XEXP (x, 0), mem_mode);
2787 return;
2789 case SET:
2790 /* Check for setting a register that we know about. */
2791 if (GET_CODE (SET_DEST (x)) == REG)
2793 /* See if this is setting the replacement register for an
2794 elimination.
2796 If DEST is the hard frame pointer, we do nothing because we
2797 assume that all assignments to the frame pointer are for
2798 non-local gotos and are being done at a time when they are valid
2799 and do not disturb anything else. Some machines want to
2800 eliminate a fake argument pointer (or even a fake frame pointer)
2801 with either the real frame or the stack pointer. Assignments to
2802 the hard frame pointer must not prevent this elimination. */
2804 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2805 ep++)
2806 if (ep->to_rtx == SET_DEST (x)
2807 && SET_DEST (x) != hard_frame_pointer_rtx)
2809 /* If it is being incremented, adjust the offset. Otherwise,
2810 this elimination can't be done. */
2811 rtx src = SET_SRC (x);
2813 if (GET_CODE (src) == PLUS
2814 && XEXP (src, 0) == SET_DEST (x)
2815 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2816 ep->offset -= INTVAL (XEXP (src, 1));
2817 else
2818 ep->can_eliminate = 0;
2822 elimination_effects (SET_DEST (x), 0);
2823 elimination_effects (SET_SRC (x), 0);
2824 return;
2826 case MEM:
2827 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2828 abort ();
2830 /* Our only special processing is to pass the mode of the MEM to our
2831 recursive call. */
2832 elimination_effects (XEXP (x, 0), GET_MODE (x));
2833 return;
2835 default:
2836 break;
2839 fmt = GET_RTX_FORMAT (code);
2840 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2842 if (*fmt == 'e')
2843 elimination_effects (XEXP (x, i), mem_mode);
2844 else if (*fmt == 'E')
2845 for (j = 0; j < XVECLEN (x, i); j++)
2846 elimination_effects (XVECEXP (x, i, j), mem_mode);
2850 /* Descend through rtx X and verify that no references to eliminable registers
2851 remain. If any do remain, mark the involved register as not
2852 eliminable. */
2854 static void
2855 check_eliminable_occurrences (x)
2856 rtx x;
2858 const char *fmt;
2859 int i;
2860 enum rtx_code code;
2862 if (x == 0)
2863 return;
2865 code = GET_CODE (x);
2867 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2869 struct elim_table *ep;
2871 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2872 if (ep->from_rtx == x && ep->can_eliminate)
2873 ep->can_eliminate = 0;
2874 return;
2877 fmt = GET_RTX_FORMAT (code);
2878 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2880 if (*fmt == 'e')
2881 check_eliminable_occurrences (XEXP (x, i));
2882 else if (*fmt == 'E')
2884 int j;
2885 for (j = 0; j < XVECLEN (x, i); j++)
2886 check_eliminable_occurrences (XVECEXP (x, i, j));
2891 /* Scan INSN and eliminate all eliminable registers in it.
2893 If REPLACE is nonzero, do the replacement destructively. Also
2894 delete the insn as dead it if it is setting an eliminable register.
2896 If REPLACE is zero, do all our allocations in reload_obstack.
2898 If no eliminations were done and this insn doesn't require any elimination
2899 processing (these are not identical conditions: it might be updating sp,
2900 but not referencing fp; this needs to be seen during reload_as_needed so
2901 that the offset between fp and sp can be taken into consideration), zero
2902 is returned. Otherwise, 1 is returned. */
2904 static int
2905 eliminate_regs_in_insn (insn, replace)
2906 rtx insn;
2907 int replace;
2909 int icode = recog_memoized (insn);
2910 rtx old_body = PATTERN (insn);
2911 int insn_is_asm = asm_noperands (old_body) >= 0;
2912 rtx old_set = single_set (insn);
2913 rtx new_body;
2914 int val = 0;
2915 int i, any_changes;
2916 rtx substed_operand[MAX_RECOG_OPERANDS];
2917 rtx orig_operand[MAX_RECOG_OPERANDS];
2918 struct elim_table *ep;
2920 if (! insn_is_asm && icode < 0)
2922 if (GET_CODE (PATTERN (insn)) == USE
2923 || GET_CODE (PATTERN (insn)) == CLOBBER
2924 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2925 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2926 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
2927 return 0;
2928 abort ();
2931 if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
2932 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2934 /* Check for setting an eliminable register. */
2935 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2936 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2938 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2939 /* If this is setting the frame pointer register to the
2940 hardware frame pointer register and this is an elimination
2941 that will be done (tested above), this insn is really
2942 adjusting the frame pointer downward to compensate for
2943 the adjustment done before a nonlocal goto. */
2944 if (ep->from == FRAME_POINTER_REGNUM
2945 && ep->to == HARD_FRAME_POINTER_REGNUM)
2947 rtx src = SET_SRC (old_set);
2948 int offset = 0, ok = 0;
2949 rtx prev_insn, prev_set;
2951 if (src == ep->to_rtx)
2952 offset = 0, ok = 1;
2953 else if (GET_CODE (src) == PLUS
2954 && GET_CODE (XEXP (src, 0)) == CONST_INT
2955 && XEXP (src, 1) == ep->to_rtx)
2956 offset = INTVAL (XEXP (src, 0)), ok = 1;
2957 else if (GET_CODE (src) == PLUS
2958 && GET_CODE (XEXP (src, 1)) == CONST_INT
2959 && XEXP (src, 0) == ep->to_rtx)
2960 offset = INTVAL (XEXP (src, 1)), ok = 1;
2961 else if ((prev_insn = prev_nonnote_insn (insn)) != 0
2962 && (prev_set = single_set (prev_insn)) != 0
2963 && rtx_equal_p (SET_DEST (prev_set), src))
2965 src = SET_SRC (prev_set);
2966 if (src == ep->to_rtx)
2967 offset = 0, ok = 1;
2968 else if (GET_CODE (src) == PLUS
2969 && GET_CODE (XEXP (src, 0)) == CONST_INT
2970 && XEXP (src, 1) == ep->to_rtx)
2971 offset = INTVAL (XEXP (src, 0)), ok = 1;
2972 else if (GET_CODE (src) == PLUS
2973 && GET_CODE (XEXP (src, 1)) == CONST_INT
2974 && XEXP (src, 0) == ep->to_rtx)
2975 offset = INTVAL (XEXP (src, 1)), ok = 1;
2978 if (ok)
2980 if (replace)
2982 rtx src
2983 = plus_constant (ep->to_rtx, offset - ep->offset);
2985 /* First see if this insn remains valid when we
2986 make the change. If not, keep the INSN_CODE
2987 the same and let reload fit it up. */
2988 validate_change (insn, &SET_SRC (old_set), src, 1);
2989 validate_change (insn, &SET_DEST (old_set),
2990 ep->to_rtx, 1);
2991 if (! apply_change_group ())
2993 SET_SRC (old_set) = src;
2994 SET_DEST (old_set) = ep->to_rtx;
2998 val = 1;
2999 goto done;
3002 #endif
3004 /* In this case this insn isn't serving a useful purpose. We
3005 will delete it in reload_as_needed once we know that this
3006 elimination is, in fact, being done.
3008 If REPLACE isn't set, we can't delete this insn, but needn't
3009 process it since it won't be used unless something changes. */
3010 if (replace)
3012 delete_dead_insn (insn);
3013 return 1;
3015 val = 1;
3016 goto done;
3020 /* We allow one special case which happens to work on all machines we
3021 currently support: a single set with the source being a PLUS of an
3022 eliminable register and a constant. */
3023 if (old_set
3024 && GET_CODE (SET_DEST (old_set)) == REG
3025 && GET_CODE (SET_SRC (old_set)) == PLUS
3026 && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
3027 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
3028 && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
3030 rtx reg = XEXP (SET_SRC (old_set), 0);
3031 int offset = INTVAL (XEXP (SET_SRC (old_set), 1));
3033 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3034 if (ep->from_rtx == reg && ep->can_eliminate)
3036 offset += ep->offset;
3038 if (offset == 0)
3040 int num_clobbers;
3041 /* We assume here that if we need a PARALLEL with
3042 CLOBBERs for this assignment, we can do with the
3043 MATCH_SCRATCHes that add_clobbers allocates.
3044 There's not much we can do if that doesn't work. */
3045 PATTERN (insn) = gen_rtx_SET (VOIDmode,
3046 SET_DEST (old_set),
3047 ep->to_rtx);
3048 num_clobbers = 0;
3049 INSN_CODE (insn) = recog (PATTERN (insn), insn, &num_clobbers);
3050 if (num_clobbers)
3052 rtvec vec = rtvec_alloc (num_clobbers + 1);
3054 vec->elem[0] = PATTERN (insn);
3055 PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
3056 add_clobbers (PATTERN (insn), INSN_CODE (insn));
3058 if (INSN_CODE (insn) < 0)
3059 abort ();
3061 else
3063 new_body = old_body;
3064 if (! replace)
3066 new_body = copy_insn (old_body);
3067 if (REG_NOTES (insn))
3068 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3070 PATTERN (insn) = new_body;
3071 old_set = single_set (insn);
3073 XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
3074 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
3076 val = 1;
3077 /* This can't have an effect on elimination offsets, so skip right
3078 to the end. */
3079 goto done;
3083 /* Determine the effects of this insn on elimination offsets. */
3084 elimination_effects (old_body, 0);
3086 /* Eliminate all eliminable registers occurring in operands that
3087 can be handled by reload. */
3088 extract_insn (insn);
3089 any_changes = 0;
3090 for (i = 0; i < recog_data.n_operands; i++)
3092 orig_operand[i] = recog_data.operand[i];
3093 substed_operand[i] = recog_data.operand[i];
3095 /* For an asm statement, every operand is eliminable. */
3096 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3098 /* Check for setting a register that we know about. */
3099 if (recog_data.operand_type[i] != OP_IN
3100 && GET_CODE (orig_operand[i]) == REG)
3102 /* If we are assigning to a register that can be eliminated, it
3103 must be as part of a PARALLEL, since the code above handles
3104 single SETs. We must indicate that we can no longer
3105 eliminate this reg. */
3106 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3107 ep++)
3108 if (ep->from_rtx == orig_operand[i] && ep->can_eliminate)
3109 ep->can_eliminate = 0;
3112 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3113 replace ? insn : NULL_RTX);
3114 if (substed_operand[i] != orig_operand[i])
3115 val = any_changes = 1;
3116 /* Terminate the search in check_eliminable_occurrences at
3117 this point. */
3118 *recog_data.operand_loc[i] = 0;
3120 /* If an output operand changed from a REG to a MEM and INSN is an
3121 insn, write a CLOBBER insn. */
3122 if (recog_data.operand_type[i] != OP_IN
3123 && GET_CODE (orig_operand[i]) == REG
3124 && GET_CODE (substed_operand[i]) == MEM
3125 && replace)
3126 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3127 insn);
3131 for (i = 0; i < recog_data.n_dups; i++)
3132 *recog_data.dup_loc[i]
3133 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3135 /* If any eliminable remain, they aren't eliminable anymore. */
3136 check_eliminable_occurrences (old_body);
3138 /* Substitute the operands; the new values are in the substed_operand
3139 array. */
3140 for (i = 0; i < recog_data.n_operands; i++)
3141 *recog_data.operand_loc[i] = substed_operand[i];
3142 for (i = 0; i < recog_data.n_dups; i++)
3143 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3145 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3146 re-recognize the insn. We do this in case we had a simple addition
3147 but now can do this as a load-address. This saves an insn in this
3148 common case.
3149 If re-recognition fails, the old insn code number will still be used,
3150 and some register operands may have changed into PLUS expressions.
3151 These will be handled by find_reloads by loading them into a register
3152 again. */
3154 if (val)
3156 /* If we aren't replacing things permanently and we changed something,
3157 make another copy to ensure that all the RTL is new. Otherwise
3158 things can go wrong if find_reload swaps commutative operands
3159 and one is inside RTL that has been copied while the other is not. */
3160 new_body = old_body;
3161 if (! replace)
3163 new_body = copy_insn (old_body);
3164 if (REG_NOTES (insn))
3165 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3167 PATTERN (insn) = new_body;
3169 /* If we had a move insn but now we don't, rerecognize it. This will
3170 cause spurious re-recognition if the old move had a PARALLEL since
3171 the new one still will, but we can't call single_set without
3172 having put NEW_BODY into the insn and the re-recognition won't
3173 hurt in this rare case. */
3174 /* ??? Why this huge if statement - why don't we just rerecognize the
3175 thing always? */
3176 if (! insn_is_asm
3177 && old_set != 0
3178 && ((GET_CODE (SET_SRC (old_set)) == REG
3179 && (GET_CODE (new_body) != SET
3180 || GET_CODE (SET_SRC (new_body)) != REG))
3181 /* If this was a load from or store to memory, compare
3182 the MEM in recog_data.operand to the one in the insn.
3183 If they are not equal, then rerecognize the insn. */
3184 || (old_set != 0
3185 && ((GET_CODE (SET_SRC (old_set)) == MEM
3186 && SET_SRC (old_set) != recog_data.operand[1])
3187 || (GET_CODE (SET_DEST (old_set)) == MEM
3188 && SET_DEST (old_set) != recog_data.operand[0])))
3189 /* If this was an add insn before, rerecognize. */
3190 || GET_CODE (SET_SRC (old_set)) == PLUS))
3192 int new_icode = recog (PATTERN (insn), insn, 0);
3193 if (new_icode < 0)
3194 INSN_CODE (insn) = icode;
3198 /* Restore the old body. If there were any changes to it, we made a copy
3199 of it while the changes were still in place, so we'll correctly return
3200 a modified insn below. */
3201 if (! replace)
3203 /* Restore the old body. */
3204 for (i = 0; i < recog_data.n_operands; i++)
3205 *recog_data.operand_loc[i] = orig_operand[i];
3206 for (i = 0; i < recog_data.n_dups; i++)
3207 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3210 /* Update all elimination pairs to reflect the status after the current
3211 insn. The changes we make were determined by the earlier call to
3212 elimination_effects.
3214 We also detect a cases where register elimination cannot be done,
3215 namely, if a register would be both changed and referenced outside a MEM
3216 in the resulting insn since such an insn is often undefined and, even if
3217 not, we cannot know what meaning will be given to it. Note that it is
3218 valid to have a register used in an address in an insn that changes it
3219 (presumably with a pre- or post-increment or decrement).
3221 If anything changes, return nonzero. */
3223 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3225 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3226 ep->can_eliminate = 0;
3228 ep->ref_outside_mem = 0;
3230 if (ep->previous_offset != ep->offset)
3231 val = 1;
3234 done:
3235 /* If we changed something, perform elimination in REG_NOTES. This is
3236 needed even when REPLACE is zero because a REG_DEAD note might refer
3237 to a register that we eliminate and could cause a different number
3238 of spill registers to be needed in the final reload pass than in
3239 the pre-passes. */
3240 if (val && REG_NOTES (insn) != 0)
3241 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
3243 return val;
3246 /* Loop through all elimination pairs.
3247 Recalculate the number not at initial offset.
3249 Compute the maximum offset (minimum offset if the stack does not
3250 grow downward) for each elimination pair. */
3252 static void
3253 update_eliminable_offsets ()
3255 struct elim_table *ep;
3257 num_not_at_initial_offset = 0;
3258 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3260 ep->previous_offset = ep->offset;
3261 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3262 num_not_at_initial_offset++;
3266 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3267 replacement we currently believe is valid, mark it as not eliminable if X
3268 modifies DEST in any way other than by adding a constant integer to it.
3270 If DEST is the frame pointer, we do nothing because we assume that
3271 all assignments to the hard frame pointer are nonlocal gotos and are being
3272 done at a time when they are valid and do not disturb anything else.
3273 Some machines want to eliminate a fake argument pointer with either the
3274 frame or stack pointer. Assignments to the hard frame pointer must not
3275 prevent this elimination.
3277 Called via note_stores from reload before starting its passes to scan
3278 the insns of the function. */
3280 static void
3281 mark_not_eliminable (dest, x, data)
3282 rtx dest;
3283 rtx x;
3284 void *data ATTRIBUTE_UNUSED;
3286 register unsigned int i;
3288 /* A SUBREG of a hard register here is just changing its mode. We should
3289 not see a SUBREG of an eliminable hard register, but check just in
3290 case. */
3291 if (GET_CODE (dest) == SUBREG)
3292 dest = SUBREG_REG (dest);
3294 if (dest == hard_frame_pointer_rtx)
3295 return;
3297 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3298 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3299 && (GET_CODE (x) != SET
3300 || GET_CODE (SET_SRC (x)) != PLUS
3301 || XEXP (SET_SRC (x), 0) != dest
3302 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3304 reg_eliminate[i].can_eliminate_previous
3305 = reg_eliminate[i].can_eliminate = 0;
3306 num_eliminable--;
3310 /* Verify that the initial elimination offsets did not change since the
3311 last call to set_initial_elim_offsets. This is used to catch cases
3312 where something illegal happened during reload_as_needed that could
3313 cause incorrect code to be generated if we did not check for it. */
3315 static void
3316 verify_initial_elim_offsets ()
3318 int t;
3320 #ifdef ELIMINABLE_REGS
3321 struct elim_table *ep;
3323 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3325 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3326 if (t != ep->initial_offset)
3327 abort ();
3329 #else
3330 INITIAL_FRAME_POINTER_OFFSET (t);
3331 if (t != reg_eliminate[0].initial_offset)
3332 abort ();
3333 #endif
3336 /* Reset all offsets on eliminable registers to their initial values. */
3338 static void
3339 set_initial_elim_offsets ()
3341 struct elim_table *ep = reg_eliminate;
3343 #ifdef ELIMINABLE_REGS
3344 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3346 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3347 ep->previous_offset = ep->offset = ep->initial_offset;
3349 #else
3350 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3351 ep->previous_offset = ep->offset = ep->initial_offset;
3352 #endif
3354 num_not_at_initial_offset = 0;
3357 /* Initialize the known label offsets.
3358 Set a known offset for each forced label to be at the initial offset
3359 of each elimination. We do this because we assume that all
3360 computed jumps occur from a location where each elimination is
3361 at its initial offset.
3362 For all other labels, show that we don't know the offsets. */
3364 static void
3365 set_initial_label_offsets ()
3367 rtx x;
3368 memset ((char *) &offsets_known_at[get_first_label_num ()], 0, num_labels);
3370 for (x = forced_labels; x; x = XEXP (x, 1))
3371 if (XEXP (x, 0))
3372 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3375 /* Set all elimination offsets to the known values for the code label given
3376 by INSN. */
3378 static void
3379 set_offsets_for_label (insn)
3380 rtx insn;
3382 unsigned int i;
3383 int label_nr = CODE_LABEL_NUMBER (insn);
3384 struct elim_table *ep;
3386 num_not_at_initial_offset = 0;
3387 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3389 ep->offset = ep->previous_offset = offsets_at[label_nr][i];
3390 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3391 num_not_at_initial_offset++;
3395 /* See if anything that happened changes which eliminations are valid.
3396 For example, on the Sparc, whether or not the frame pointer can
3397 be eliminated can depend on what registers have been used. We need
3398 not check some conditions again (such as flag_omit_frame_pointer)
3399 since they can't have changed. */
3401 static void
3402 update_eliminables (pset)
3403 HARD_REG_SET *pset;
3405 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3406 int previous_frame_pointer_needed = frame_pointer_needed;
3407 #endif
3408 struct elim_table *ep;
3410 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3411 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3412 #ifdef ELIMINABLE_REGS
3413 || ! CAN_ELIMINATE (ep->from, ep->to)
3414 #endif
3416 ep->can_eliminate = 0;
3418 /* Look for the case where we have discovered that we can't replace
3419 register A with register B and that means that we will now be
3420 trying to replace register A with register C. This means we can
3421 no longer replace register C with register B and we need to disable
3422 such an elimination, if it exists. This occurs often with A == ap,
3423 B == sp, and C == fp. */
3425 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3427 struct elim_table *op;
3428 register int new_to = -1;
3430 if (! ep->can_eliminate && ep->can_eliminate_previous)
3432 /* Find the current elimination for ep->from, if there is a
3433 new one. */
3434 for (op = reg_eliminate;
3435 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3436 if (op->from == ep->from && op->can_eliminate)
3438 new_to = op->to;
3439 break;
3442 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3443 disable it. */
3444 for (op = reg_eliminate;
3445 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3446 if (op->from == new_to && op->to == ep->to)
3447 op->can_eliminate = 0;
3451 /* See if any registers that we thought we could eliminate the previous
3452 time are no longer eliminable. If so, something has changed and we
3453 must spill the register. Also, recompute the number of eliminable
3454 registers and see if the frame pointer is needed; it is if there is
3455 no elimination of the frame pointer that we can perform. */
3457 frame_pointer_needed = 1;
3458 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3460 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3461 && ep->to != HARD_FRAME_POINTER_REGNUM)
3462 frame_pointer_needed = 0;
3464 if (! ep->can_eliminate && ep->can_eliminate_previous)
3466 ep->can_eliminate_previous = 0;
3467 SET_HARD_REG_BIT (*pset, ep->from);
3468 num_eliminable--;
3472 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3473 /* If we didn't need a frame pointer last time, but we do now, spill
3474 the hard frame pointer. */
3475 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3476 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3477 #endif
3480 /* Initialize the table of registers to eliminate. */
3482 static void
3483 init_elim_table ()
3485 struct elim_table *ep;
3486 #ifdef ELIMINABLE_REGS
3487 struct elim_table_1 *ep1;
3488 #endif
3490 if (!reg_eliminate)
3491 reg_eliminate = (struct elim_table *)
3492 xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3494 /* Does this function require a frame pointer? */
3496 frame_pointer_needed = (! flag_omit_frame_pointer
3497 #ifdef EXIT_IGNORE_STACK
3498 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3499 and restore sp for alloca. So we can't eliminate
3500 the frame pointer in that case. At some point,
3501 we should improve this by emitting the
3502 sp-adjusting insns for this case. */
3503 || (current_function_calls_alloca
3504 && EXIT_IGNORE_STACK)
3505 #endif
3506 || FRAME_POINTER_REQUIRED);
3508 num_eliminable = 0;
3510 #ifdef ELIMINABLE_REGS
3511 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3512 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3514 ep->from = ep1->from;
3515 ep->to = ep1->to;
3516 ep->can_eliminate = ep->can_eliminate_previous
3517 = (CAN_ELIMINATE (ep->from, ep->to)
3518 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3520 #else
3521 reg_eliminate[0].from = reg_eliminate_1[0].from;
3522 reg_eliminate[0].to = reg_eliminate_1[0].to;
3523 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3524 = ! frame_pointer_needed;
3525 #endif
3527 /* Count the number of eliminable registers and build the FROM and TO
3528 REG rtx's. Note that code in gen_rtx will cause, e.g.,
3529 gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3530 We depend on this. */
3531 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3533 num_eliminable += ep->can_eliminate;
3534 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3535 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3539 /* Kick all pseudos out of hard register REGNO.
3541 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3542 because we found we can't eliminate some register. In the case, no pseudos
3543 are allowed to be in the register, even if they are only in a block that
3544 doesn't require spill registers, unlike the case when we are spilling this
3545 hard reg to produce another spill register.
3547 Return nonzero if any pseudos needed to be kicked out. */
3549 static void
3550 spill_hard_reg (regno, cant_eliminate)
3551 unsigned int regno;
3552 int cant_eliminate;
3554 register int i;
3556 if (cant_eliminate)
3558 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3559 regs_ever_live[regno] = 1;
3562 /* Spill every pseudo reg that was allocated to this reg
3563 or to something that overlaps this reg. */
3565 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3566 if (reg_renumber[i] >= 0
3567 && (unsigned int) reg_renumber[i] <= regno
3568 && ((unsigned int) reg_renumber[i]
3569 + HARD_REGNO_NREGS ((unsigned int) reg_renumber[i],
3570 PSEUDO_REGNO_MODE (i))
3571 > regno))
3572 SET_REGNO_REG_SET (&spilled_pseudos, i);
3575 /* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
3576 from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
3578 static void
3579 ior_hard_reg_set (set1, set2)
3580 HARD_REG_SET *set1, *set2;
3582 IOR_HARD_REG_SET (*set1, *set2);
3585 /* After find_reload_regs has been run for all insn that need reloads,
3586 and/or spill_hard_regs was called, this function is used to actually
3587 spill pseudo registers and try to reallocate them. It also sets up the
3588 spill_regs array for use by choose_reload_regs. */
3590 static int
3591 finish_spills (global)
3592 int global;
3594 struct insn_chain *chain;
3595 int something_changed = 0;
3596 int i;
3598 /* Build the spill_regs array for the function. */
3599 /* If there are some registers still to eliminate and one of the spill regs
3600 wasn't ever used before, additional stack space may have to be
3601 allocated to store this register. Thus, we may have changed the offset
3602 between the stack and frame pointers, so mark that something has changed.
3604 One might think that we need only set VAL to 1 if this is a call-used
3605 register. However, the set of registers that must be saved by the
3606 prologue is not identical to the call-used set. For example, the
3607 register used by the call insn for the return PC is a call-used register,
3608 but must be saved by the prologue. */
3610 n_spills = 0;
3611 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3612 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3614 spill_reg_order[i] = n_spills;
3615 spill_regs[n_spills++] = i;
3616 if (num_eliminable && ! regs_ever_live[i])
3617 something_changed = 1;
3618 regs_ever_live[i] = 1;
3620 else
3621 spill_reg_order[i] = -1;
3623 EXECUTE_IF_SET_IN_REG_SET
3624 (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i,
3626 /* Record the current hard register the pseudo is allocated to in
3627 pseudo_previous_regs so we avoid reallocating it to the same
3628 hard reg in a later pass. */
3629 if (reg_renumber[i] < 0)
3630 abort ();
3632 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3633 /* Mark it as no longer having a hard register home. */
3634 reg_renumber[i] = -1;
3635 /* We will need to scan everything again. */
3636 something_changed = 1;
3639 /* Retry global register allocation if possible. */
3640 if (global)
3642 memset ((char *) pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3643 /* For every insn that needs reloads, set the registers used as spill
3644 regs in pseudo_forbidden_regs for every pseudo live across the
3645 insn. */
3646 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3648 EXECUTE_IF_SET_IN_REG_SET
3649 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
3651 ior_hard_reg_set (pseudo_forbidden_regs + i,
3652 &chain->used_spill_regs);
3654 EXECUTE_IF_SET_IN_REG_SET
3655 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
3657 ior_hard_reg_set (pseudo_forbidden_regs + i,
3658 &chain->used_spill_regs);
3662 /* Retry allocating the spilled pseudos. For each reg, merge the
3663 various reg sets that indicate which hard regs can't be used,
3664 and call retry_global_alloc.
3665 We change spill_pseudos here to only contain pseudos that did not
3666 get a new hard register. */
3667 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3668 if (reg_old_renumber[i] != reg_renumber[i])
3670 HARD_REG_SET forbidden;
3671 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3672 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3673 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3674 retry_global_alloc (i, forbidden);
3675 if (reg_renumber[i] >= 0)
3676 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3680 /* Fix up the register information in the insn chain.
3681 This involves deleting those of the spilled pseudos which did not get
3682 a new hard register home from the live_{before,after} sets. */
3683 for (chain = reload_insn_chain; chain; chain = chain->next)
3685 HARD_REG_SET used_by_pseudos;
3686 HARD_REG_SET used_by_pseudos2;
3688 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3689 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3691 /* Mark any unallocated hard regs as available for spills. That
3692 makes inheritance work somewhat better. */
3693 if (chain->need_reload)
3695 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3696 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3697 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3699 /* Save the old value for the sanity test below. */
3700 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3702 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3703 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3704 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3705 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3707 /* Make sure we only enlarge the set. */
3708 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3709 abort ();
3710 ok:;
3714 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3715 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3717 int regno = reg_renumber[i];
3718 if (reg_old_renumber[i] == regno)
3719 continue;
3721 alter_reg (i, reg_old_renumber[i]);
3722 reg_old_renumber[i] = regno;
3723 if (rtl_dump_file)
3725 if (regno == -1)
3726 fprintf (rtl_dump_file, " Register %d now on stack.\n\n", i);
3727 else
3728 fprintf (rtl_dump_file, " Register %d now in %d.\n\n",
3729 i, reg_renumber[i]);
3733 return something_changed;
3736 /* Find all paradoxical subregs within X and update reg_max_ref_width.
3737 Also mark any hard registers used to store user variables as
3738 forbidden from being used for spill registers. */
3740 static void
3741 scan_paradoxical_subregs (x)
3742 register rtx x;
3744 register int i;
3745 register const char *fmt;
3746 register enum rtx_code code = GET_CODE (x);
3748 switch (code)
3750 case REG:
3751 #if 0
3752 if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
3753 && REG_USERVAR_P (x))
3754 SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
3755 #endif
3756 return;
3758 case CONST_INT:
3759 case CONST:
3760 case SYMBOL_REF:
3761 case LABEL_REF:
3762 case CONST_DOUBLE:
3763 case CC0:
3764 case PC:
3765 case USE:
3766 case CLOBBER:
3767 return;
3769 case SUBREG:
3770 if (GET_CODE (SUBREG_REG (x)) == REG
3771 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3772 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3773 = GET_MODE_SIZE (GET_MODE (x));
3774 return;
3776 default:
3777 break;
3780 fmt = GET_RTX_FORMAT (code);
3781 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3783 if (fmt[i] == 'e')
3784 scan_paradoxical_subregs (XEXP (x, i));
3785 else if (fmt[i] == 'E')
3787 register int j;
3788 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3789 scan_paradoxical_subregs (XVECEXP (x, i, j));
3794 /* Reload pseudo-registers into hard regs around each insn as needed.
3795 Additional register load insns are output before the insn that needs it
3796 and perhaps store insns after insns that modify the reloaded pseudo reg.
3798 reg_last_reload_reg and reg_reloaded_contents keep track of
3799 which registers are already available in reload registers.
3800 We update these for the reloads that we perform,
3801 as the insns are scanned. */
3803 static void
3804 reload_as_needed (live_known)
3805 int live_known;
3807 struct insn_chain *chain;
3808 #if defined (AUTO_INC_DEC)
3809 register int i;
3810 #endif
3811 rtx x;
3813 memset ((char *) spill_reg_rtx, 0, sizeof spill_reg_rtx);
3814 memset ((char *) spill_reg_store, 0, sizeof spill_reg_store);
3815 reg_last_reload_reg = (rtx *) xcalloc (max_regno, sizeof (rtx));
3816 reg_has_output_reload = (char *) xmalloc (max_regno);
3817 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3819 set_initial_elim_offsets ();
3821 for (chain = reload_insn_chain; chain; chain = chain->next)
3823 rtx prev;
3824 rtx insn = chain->insn;
3825 rtx old_next = NEXT_INSN (insn);
3827 /* If we pass a label, copy the offsets from the label information
3828 into the current offsets of each elimination. */
3829 if (GET_CODE (insn) == CODE_LABEL)
3830 set_offsets_for_label (insn);
3832 else if (INSN_P (insn))
3834 rtx oldpat = PATTERN (insn);
3836 /* If this is a USE and CLOBBER of a MEM, ensure that any
3837 references to eliminable registers have been removed. */
3839 if ((GET_CODE (PATTERN (insn)) == USE
3840 || GET_CODE (PATTERN (insn)) == CLOBBER)
3841 && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
3842 XEXP (XEXP (PATTERN (insn), 0), 0)
3843 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3844 GET_MODE (XEXP (PATTERN (insn), 0)),
3845 NULL_RTX);
3847 /* If we need to do register elimination processing, do so.
3848 This might delete the insn, in which case we are done. */
3849 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3851 eliminate_regs_in_insn (insn, 1);
3852 if (GET_CODE (insn) == NOTE)
3854 update_eliminable_offsets ();
3855 continue;
3859 /* If need_elim is nonzero but need_reload is zero, one might think
3860 that we could simply set n_reloads to 0. However, find_reloads
3861 could have done some manipulation of the insn (such as swapping
3862 commutative operands), and these manipulations are lost during
3863 the first pass for every insn that needs register elimination.
3864 So the actions of find_reloads must be redone here. */
3866 if (! chain->need_elim && ! chain->need_reload
3867 && ! chain->need_operand_change)
3868 n_reloads = 0;
3869 /* First find the pseudo regs that must be reloaded for this insn.
3870 This info is returned in the tables reload_... (see reload.h).
3871 Also modify the body of INSN by substituting RELOAD
3872 rtx's for those pseudo regs. */
3873 else
3875 memset (reg_has_output_reload, 0, max_regno);
3876 CLEAR_HARD_REG_SET (reg_is_output_reload);
3878 find_reloads (insn, 1, spill_indirect_levels, live_known,
3879 spill_reg_order);
3882 if (n_reloads > 0)
3884 rtx next = NEXT_INSN (insn);
3885 rtx p;
3887 prev = PREV_INSN (insn);
3889 /* Now compute which reload regs to reload them into. Perhaps
3890 reusing reload regs from previous insns, or else output
3891 load insns to reload them. Maybe output store insns too.
3892 Record the choices of reload reg in reload_reg_rtx. */
3893 choose_reload_regs (chain);
3895 /* Merge any reloads that we didn't combine for fear of
3896 increasing the number of spill registers needed but now
3897 discover can be safely merged. */
3898 if (SMALL_REGISTER_CLASSES)
3899 merge_assigned_reloads (insn);
3901 /* Generate the insns to reload operands into or out of
3902 their reload regs. */
3903 emit_reload_insns (chain);
3905 /* Substitute the chosen reload regs from reload_reg_rtx
3906 into the insn's body (or perhaps into the bodies of other
3907 load and store insn that we just made for reloading
3908 and that we moved the structure into). */
3909 subst_reloads (insn);
3911 /* If this was an ASM, make sure that all the reload insns
3912 we have generated are valid. If not, give an error
3913 and delete them. */
3915 if (asm_noperands (PATTERN (insn)) >= 0)
3916 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
3917 if (p != insn && INSN_P (p)
3918 && (recog_memoized (p) < 0
3919 || (extract_insn (p), ! constrain_operands (1))))
3921 error_for_asm (insn,
3922 "`asm' operand requires impossible reload");
3923 PUT_CODE (p, NOTE);
3924 NOTE_SOURCE_FILE (p) = 0;
3925 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
3929 if (num_eliminable && chain->need_elim)
3930 update_eliminable_offsets ();
3932 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3933 is no longer validly lying around to save a future reload.
3934 Note that this does not detect pseudos that were reloaded
3935 for this insn in order to be stored in
3936 (obeying register constraints). That is correct; such reload
3937 registers ARE still valid. */
3938 note_stores (oldpat, forget_old_reloads_1, NULL);
3940 /* There may have been CLOBBER insns placed after INSN. So scan
3941 between INSN and NEXT and use them to forget old reloads. */
3942 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
3943 if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
3944 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
3946 #ifdef AUTO_INC_DEC
3947 /* Likewise for regs altered by auto-increment in this insn.
3948 REG_INC notes have been changed by reloading:
3949 find_reloads_address_1 records substitutions for them,
3950 which have been performed by subst_reloads above. */
3951 for (i = n_reloads - 1; i >= 0; i--)
3953 rtx in_reg = rld[i].in_reg;
3954 if (in_reg)
3956 enum rtx_code code = GET_CODE (in_reg);
3957 /* PRE_INC / PRE_DEC will have the reload register ending up
3958 with the same value as the stack slot, but that doesn't
3959 hold true for POST_INC / POST_DEC. Either we have to
3960 convert the memory access to a true POST_INC / POST_DEC,
3961 or we can't use the reload register for inheritance. */
3962 if ((code == POST_INC || code == POST_DEC)
3963 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3964 REGNO (rld[i].reg_rtx))
3965 /* Make sure it is the inc/dec pseudo, and not
3966 some other (e.g. output operand) pseudo. */
3967 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3968 == REGNO (XEXP (in_reg, 0))))
3971 rtx reload_reg = rld[i].reg_rtx;
3972 enum machine_mode mode = GET_MODE (reload_reg);
3973 int n = 0;
3974 rtx p;
3976 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
3978 /* We really want to ignore REG_INC notes here, so
3979 use PATTERN (p) as argument to reg_set_p . */
3980 if (reg_set_p (reload_reg, PATTERN (p)))
3981 break;
3982 n = count_occurrences (PATTERN (p), reload_reg, 0);
3983 if (! n)
3984 continue;
3985 if (n == 1)
3987 n = validate_replace_rtx (reload_reg,
3988 gen_rtx (code, mode,
3989 reload_reg),
3992 /* We must also verify that the constraints
3993 are met after the replacement. */
3994 extract_insn (p);
3995 if (n)
3996 n = constrain_operands (1);
3997 else
3998 break;
4000 /* If the constraints were not met, then
4001 undo the replacement. */
4002 if (!n)
4004 validate_replace_rtx (gen_rtx (code, mode,
4005 reload_reg),
4006 reload_reg, p);
4007 break;
4011 break;
4013 if (n == 1)
4015 REG_NOTES (p)
4016 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
4017 REG_NOTES (p));
4018 /* Mark this as having an output reload so that the
4019 REG_INC processing code below won't invalidate
4020 the reload for inheritance. */
4021 SET_HARD_REG_BIT (reg_is_output_reload,
4022 REGNO (reload_reg));
4023 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4025 else
4026 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4027 NULL);
4029 else if ((code == PRE_INC || code == PRE_DEC)
4030 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4031 REGNO (rld[i].reg_rtx))
4032 /* Make sure it is the inc/dec pseudo, and not
4033 some other (e.g. output operand) pseudo. */
4034 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4035 == REGNO (XEXP (in_reg, 0))))
4037 SET_HARD_REG_BIT (reg_is_output_reload,
4038 REGNO (rld[i].reg_rtx));
4039 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4043 /* If a pseudo that got a hard register is auto-incremented,
4044 we must purge records of copying it into pseudos without
4045 hard registers. */
4046 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4047 if (REG_NOTE_KIND (x) == REG_INC)
4049 /* See if this pseudo reg was reloaded in this insn.
4050 If so, its last-reload info is still valid
4051 because it is based on this insn's reload. */
4052 for (i = 0; i < n_reloads; i++)
4053 if (rld[i].out == XEXP (x, 0))
4054 break;
4056 if (i == n_reloads)
4057 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4059 #endif
4061 /* A reload reg's contents are unknown after a label. */
4062 if (GET_CODE (insn) == CODE_LABEL)
4063 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4065 /* Don't assume a reload reg is still good after a call insn
4066 if it is a call-used reg. */
4067 else if (GET_CODE (insn) == CALL_INSN)
4068 AND_COMPL_HARD_REG_SET(reg_reloaded_valid, call_used_reg_set);
4071 /* Clean up. */
4072 free (reg_last_reload_reg);
4073 free (reg_has_output_reload);
4076 /* Discard all record of any value reloaded from X,
4077 or reloaded in X from someplace else;
4078 unless X is an output reload reg of the current insn.
4080 X may be a hard reg (the reload reg)
4081 or it may be a pseudo reg that was reloaded from. */
4083 static void
4084 forget_old_reloads_1 (x, ignored, data)
4085 rtx x;
4086 rtx ignored ATTRIBUTE_UNUSED;
4087 void *data ATTRIBUTE_UNUSED;
4089 unsigned int regno;
4090 unsigned int nr;
4091 int offset = 0;
4093 /* note_stores does give us subregs of hard regs. */
4094 while (GET_CODE (x) == SUBREG)
4096 offset += SUBREG_WORD (x);
4097 x = SUBREG_REG (x);
4100 if (GET_CODE (x) != REG)
4101 return;
4103 regno = REGNO (x) + offset;
4105 if (regno >= FIRST_PSEUDO_REGISTER)
4106 nr = 1;
4107 else
4109 unsigned int i;
4111 nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
4112 /* Storing into a spilled-reg invalidates its contents.
4113 This can happen if a block-local pseudo is allocated to that reg
4114 and it wasn't spilled because this block's total need is 0.
4115 Then some insn might have an optional reload and use this reg. */
4116 for (i = 0; i < nr; i++)
4117 /* But don't do this if the reg actually serves as an output
4118 reload reg in the current instruction. */
4119 if (n_reloads == 0
4120 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4122 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4123 spill_reg_store[regno + i] = 0;
4127 /* Since value of X has changed,
4128 forget any value previously copied from it. */
4130 while (nr-- > 0)
4131 /* But don't forget a copy if this is the output reload
4132 that establishes the copy's validity. */
4133 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4134 reg_last_reload_reg[regno + nr] = 0;
4137 /* The following HARD_REG_SETs indicate when each hard register is
4138 used for a reload of various parts of the current insn. */
4140 /* If reg is unavailable for all reloads. */
4141 static HARD_REG_SET reload_reg_unavailable;
4142 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4143 static HARD_REG_SET reload_reg_used;
4144 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4145 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4146 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4147 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4148 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4149 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4150 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4151 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4152 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4153 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4154 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4155 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4156 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4157 static HARD_REG_SET reload_reg_used_in_op_addr;
4158 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4159 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4160 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4161 static HARD_REG_SET reload_reg_used_in_insn;
4162 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4163 static HARD_REG_SET reload_reg_used_in_other_addr;
4165 /* If reg is in use as a reload reg for any sort of reload. */
4166 static HARD_REG_SET reload_reg_used_at_all;
4168 /* If reg is use as an inherited reload. We just mark the first register
4169 in the group. */
4170 static HARD_REG_SET reload_reg_used_for_inherit;
4172 /* Records which hard regs are used in any way, either as explicit use or
4173 by being allocated to a pseudo during any point of the current insn. */
4174 static HARD_REG_SET reg_used_in_insn;
4176 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4177 TYPE. MODE is used to indicate how many consecutive regs are
4178 actually used. */
4180 static void
4181 mark_reload_reg_in_use (regno, opnum, type, mode)
4182 unsigned int regno;
4183 int opnum;
4184 enum reload_type type;
4185 enum machine_mode mode;
4187 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4188 unsigned int i;
4190 for (i = regno; i < nregs + regno; i++)
4192 switch (type)
4194 case RELOAD_OTHER:
4195 SET_HARD_REG_BIT (reload_reg_used, i);
4196 break;
4198 case RELOAD_FOR_INPUT_ADDRESS:
4199 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4200 break;
4202 case RELOAD_FOR_INPADDR_ADDRESS:
4203 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4204 break;
4206 case RELOAD_FOR_OUTPUT_ADDRESS:
4207 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4208 break;
4210 case RELOAD_FOR_OUTADDR_ADDRESS:
4211 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4212 break;
4214 case RELOAD_FOR_OPERAND_ADDRESS:
4215 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4216 break;
4218 case RELOAD_FOR_OPADDR_ADDR:
4219 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4220 break;
4222 case RELOAD_FOR_OTHER_ADDRESS:
4223 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4224 break;
4226 case RELOAD_FOR_INPUT:
4227 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4228 break;
4230 case RELOAD_FOR_OUTPUT:
4231 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4232 break;
4234 case RELOAD_FOR_INSN:
4235 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4236 break;
4239 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4243 /* Similarly, but show REGNO is no longer in use for a reload. */
4245 static void
4246 clear_reload_reg_in_use (regno, opnum, type, mode)
4247 unsigned int regno;
4248 int opnum;
4249 enum reload_type type;
4250 enum machine_mode mode;
4252 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4253 unsigned int start_regno, end_regno, r;
4254 int i;
4255 /* A complication is that for some reload types, inheritance might
4256 allow multiple reloads of the same types to share a reload register.
4257 We set check_opnum if we have to check only reloads with the same
4258 operand number, and check_any if we have to check all reloads. */
4259 int check_opnum = 0;
4260 int check_any = 0;
4261 HARD_REG_SET *used_in_set;
4263 switch (type)
4265 case RELOAD_OTHER:
4266 used_in_set = &reload_reg_used;
4267 break;
4269 case RELOAD_FOR_INPUT_ADDRESS:
4270 used_in_set = &reload_reg_used_in_input_addr[opnum];
4271 break;
4273 case RELOAD_FOR_INPADDR_ADDRESS:
4274 check_opnum = 1;
4275 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4276 break;
4278 case RELOAD_FOR_OUTPUT_ADDRESS:
4279 used_in_set = &reload_reg_used_in_output_addr[opnum];
4280 break;
4282 case RELOAD_FOR_OUTADDR_ADDRESS:
4283 check_opnum = 1;
4284 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4285 break;
4287 case RELOAD_FOR_OPERAND_ADDRESS:
4288 used_in_set = &reload_reg_used_in_op_addr;
4289 break;
4291 case RELOAD_FOR_OPADDR_ADDR:
4292 check_any = 1;
4293 used_in_set = &reload_reg_used_in_op_addr_reload;
4294 break;
4296 case RELOAD_FOR_OTHER_ADDRESS:
4297 used_in_set = &reload_reg_used_in_other_addr;
4298 check_any = 1;
4299 break;
4301 case RELOAD_FOR_INPUT:
4302 used_in_set = &reload_reg_used_in_input[opnum];
4303 break;
4305 case RELOAD_FOR_OUTPUT:
4306 used_in_set = &reload_reg_used_in_output[opnum];
4307 break;
4309 case RELOAD_FOR_INSN:
4310 used_in_set = &reload_reg_used_in_insn;
4311 break;
4312 default:
4313 abort ();
4315 /* We resolve conflicts with remaining reloads of the same type by
4316 excluding the intervals of of reload registers by them from the
4317 interval of freed reload registers. Since we only keep track of
4318 one set of interval bounds, we might have to exclude somewhat
4319 more then what would be necessary if we used a HARD_REG_SET here.
4320 But this should only happen very infrequently, so there should
4321 be no reason to worry about it. */
4323 start_regno = regno;
4324 end_regno = regno + nregs;
4325 if (check_opnum || check_any)
4327 for (i = n_reloads - 1; i >= 0; i--)
4329 if (rld[i].when_needed == type
4330 && (check_any || rld[i].opnum == opnum)
4331 && rld[i].reg_rtx)
4333 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4334 unsigned int conflict_end
4335 = (conflict_start
4336 + HARD_REGNO_NREGS (conflict_start, rld[i].mode));
4338 /* If there is an overlap with the first to-be-freed register,
4339 adjust the interval start. */
4340 if (conflict_start <= start_regno && conflict_end > start_regno)
4341 start_regno = conflict_end;
4342 /* Otherwise, if there is a conflict with one of the other
4343 to-be-freed registers, adjust the interval end. */
4344 if (conflict_start > start_regno && conflict_start < end_regno)
4345 end_regno = conflict_start;
4350 for (r = start_regno; r < end_regno; r++)
4351 CLEAR_HARD_REG_BIT (*used_in_set, r);
4354 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4355 specified by OPNUM and TYPE. */
4357 static int
4358 reload_reg_free_p (regno, opnum, type)
4359 unsigned int regno;
4360 int opnum;
4361 enum reload_type type;
4363 int i;
4365 /* In use for a RELOAD_OTHER means it's not available for anything. */
4366 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4367 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4368 return 0;
4370 switch (type)
4372 case RELOAD_OTHER:
4373 /* In use for anything means we can't use it for RELOAD_OTHER. */
4374 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4375 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4376 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4377 return 0;
4379 for (i = 0; i < reload_n_operands; i++)
4380 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4381 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4382 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4383 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4384 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4385 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4386 return 0;
4388 return 1;
4390 case RELOAD_FOR_INPUT:
4391 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4392 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4393 return 0;
4395 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4396 return 0;
4398 /* If it is used for some other input, can't use it. */
4399 for (i = 0; i < reload_n_operands; i++)
4400 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4401 return 0;
4403 /* If it is used in a later operand's address, can't use it. */
4404 for (i = opnum + 1; i < reload_n_operands; i++)
4405 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4406 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4407 return 0;
4409 return 1;
4411 case RELOAD_FOR_INPUT_ADDRESS:
4412 /* Can't use a register if it is used for an input address for this
4413 operand or used as an input in an earlier one. */
4414 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4415 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4416 return 0;
4418 for (i = 0; i < opnum; i++)
4419 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4420 return 0;
4422 return 1;
4424 case RELOAD_FOR_INPADDR_ADDRESS:
4425 /* Can't use a register if it is used for an input address
4426 for this operand or used as an input in an earlier
4427 one. */
4428 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4429 return 0;
4431 for (i = 0; i < opnum; i++)
4432 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4433 return 0;
4435 return 1;
4437 case RELOAD_FOR_OUTPUT_ADDRESS:
4438 /* Can't use a register if it is used for an output address for this
4439 operand or used as an output in this or a later operand. */
4440 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4441 return 0;
4443 for (i = opnum; i < reload_n_operands; i++)
4444 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4445 return 0;
4447 return 1;
4449 case RELOAD_FOR_OUTADDR_ADDRESS:
4450 /* Can't use a register if it is used for an output address
4451 for this operand or used as an output in this or a
4452 later operand. */
4453 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4454 return 0;
4456 for (i = opnum; i < reload_n_operands; i++)
4457 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4458 return 0;
4460 return 1;
4462 case RELOAD_FOR_OPERAND_ADDRESS:
4463 for (i = 0; i < reload_n_operands; i++)
4464 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4465 return 0;
4467 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4468 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4470 case RELOAD_FOR_OPADDR_ADDR:
4471 for (i = 0; i < reload_n_operands; i++)
4472 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4473 return 0;
4475 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4477 case RELOAD_FOR_OUTPUT:
4478 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4479 outputs, or an operand address for this or an earlier output. */
4480 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4481 return 0;
4483 for (i = 0; i < reload_n_operands; i++)
4484 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4485 return 0;
4487 for (i = 0; i <= opnum; i++)
4488 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4489 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4490 return 0;
4492 return 1;
4494 case RELOAD_FOR_INSN:
4495 for (i = 0; i < reload_n_operands; i++)
4496 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4497 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4498 return 0;
4500 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4501 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4503 case RELOAD_FOR_OTHER_ADDRESS:
4504 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4506 abort ();
4509 /* Return 1 if the value in reload reg REGNO, as used by a reload
4510 needed for the part of the insn specified by OPNUM and TYPE,
4511 is still available in REGNO at the end of the insn.
4513 We can assume that the reload reg was already tested for availability
4514 at the time it is needed, and we should not check this again,
4515 in case the reg has already been marked in use. */
4517 static int
4518 reload_reg_reaches_end_p (regno, opnum, type)
4519 unsigned int regno;
4520 int opnum;
4521 enum reload_type type;
4523 int i;
4525 switch (type)
4527 case RELOAD_OTHER:
4528 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4529 its value must reach the end. */
4530 return 1;
4532 /* If this use is for part of the insn,
4533 its value reaches if no subsequent part uses the same register.
4534 Just like the above function, don't try to do this with lots
4535 of fallthroughs. */
4537 case RELOAD_FOR_OTHER_ADDRESS:
4538 /* Here we check for everything else, since these don't conflict
4539 with anything else and everything comes later. */
4541 for (i = 0; i < reload_n_operands; i++)
4542 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4543 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4544 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4545 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4546 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4547 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4548 return 0;
4550 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4551 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4552 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4554 case RELOAD_FOR_INPUT_ADDRESS:
4555 case RELOAD_FOR_INPADDR_ADDRESS:
4556 /* Similar, except that we check only for this and subsequent inputs
4557 and the address of only subsequent inputs and we do not need
4558 to check for RELOAD_OTHER objects since they are known not to
4559 conflict. */
4561 for (i = opnum; i < reload_n_operands; i++)
4562 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4563 return 0;
4565 for (i = opnum + 1; i < reload_n_operands; i++)
4566 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4567 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4568 return 0;
4570 for (i = 0; i < reload_n_operands; i++)
4571 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4572 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4573 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4574 return 0;
4576 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4577 return 0;
4579 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4580 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4581 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4583 case RELOAD_FOR_INPUT:
4584 /* Similar to input address, except we start at the next operand for
4585 both input and input address and we do not check for
4586 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4587 would conflict. */
4589 for (i = opnum + 1; i < reload_n_operands; i++)
4590 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4591 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4592 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4593 return 0;
4595 /* ... fall through ... */
4597 case RELOAD_FOR_OPERAND_ADDRESS:
4598 /* Check outputs and their addresses. */
4600 for (i = 0; i < reload_n_operands; i++)
4601 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4602 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4603 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4604 return 0;
4606 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4608 case RELOAD_FOR_OPADDR_ADDR:
4609 for (i = 0; i < reload_n_operands; i++)
4610 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4611 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4612 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4613 return 0;
4615 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4616 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4617 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4619 case RELOAD_FOR_INSN:
4620 /* These conflict with other outputs with RELOAD_OTHER. So
4621 we need only check for output addresses. */
4623 opnum = -1;
4625 /* ... fall through ... */
4627 case RELOAD_FOR_OUTPUT:
4628 case RELOAD_FOR_OUTPUT_ADDRESS:
4629 case RELOAD_FOR_OUTADDR_ADDRESS:
4630 /* We already know these can't conflict with a later output. So the
4631 only thing to check are later output addresses. */
4632 for (i = opnum + 1; i < reload_n_operands; i++)
4633 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4634 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4635 return 0;
4637 return 1;
4640 abort ();
4643 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4644 Return 0 otherwise.
4646 This function uses the same algorithm as reload_reg_free_p above. */
4649 reloads_conflict (r1, r2)
4650 int r1, r2;
4652 enum reload_type r1_type = rld[r1].when_needed;
4653 enum reload_type r2_type = rld[r2].when_needed;
4654 int r1_opnum = rld[r1].opnum;
4655 int r2_opnum = rld[r2].opnum;
4657 /* RELOAD_OTHER conflicts with everything. */
4658 if (r2_type == RELOAD_OTHER)
4659 return 1;
4661 /* Otherwise, check conflicts differently for each type. */
4663 switch (r1_type)
4665 case RELOAD_FOR_INPUT:
4666 return (r2_type == RELOAD_FOR_INSN
4667 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4668 || r2_type == RELOAD_FOR_OPADDR_ADDR
4669 || r2_type == RELOAD_FOR_INPUT
4670 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4671 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4672 && r2_opnum > r1_opnum));
4674 case RELOAD_FOR_INPUT_ADDRESS:
4675 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4676 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4678 case RELOAD_FOR_INPADDR_ADDRESS:
4679 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4680 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4682 case RELOAD_FOR_OUTPUT_ADDRESS:
4683 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4684 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum));
4686 case RELOAD_FOR_OUTADDR_ADDRESS:
4687 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4688 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum));
4690 case RELOAD_FOR_OPERAND_ADDRESS:
4691 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4692 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4694 case RELOAD_FOR_OPADDR_ADDR:
4695 return (r2_type == RELOAD_FOR_INPUT
4696 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4698 case RELOAD_FOR_OUTPUT:
4699 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4700 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4701 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4702 && r2_opnum <= r1_opnum));
4704 case RELOAD_FOR_INSN:
4705 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4706 || r2_type == RELOAD_FOR_INSN
4707 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4709 case RELOAD_FOR_OTHER_ADDRESS:
4710 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4712 case RELOAD_OTHER:
4713 return 1;
4715 default:
4716 abort ();
4720 /* Indexed by reload number, 1 if incoming value
4721 inherited from previous insns. */
4722 char reload_inherited[MAX_RELOADS];
4724 /* For an inherited reload, this is the insn the reload was inherited from,
4725 if we know it. Otherwise, this is 0. */
4726 rtx reload_inheritance_insn[MAX_RELOADS];
4728 /* If non-zero, this is a place to get the value of the reload,
4729 rather than using reload_in. */
4730 rtx reload_override_in[MAX_RELOADS];
4732 /* For each reload, the hard register number of the register used,
4733 or -1 if we did not need a register for this reload. */
4734 int reload_spill_index[MAX_RELOADS];
4736 /* Subroutine of free_for_value_p, used to check a single register.
4737 START_REGNO is the starting regno of the full reload register
4738 (possibly comprising multiple hard registers) that we are considering. */
4740 static int
4741 reload_reg_free_for_value_p (start_regno, regno, opnum, type, value, out,
4742 reloadnum, ignore_address_reloads)
4743 int start_regno, regno;
4744 int opnum;
4745 enum reload_type type;
4746 rtx value, out;
4747 int reloadnum;
4748 int ignore_address_reloads;
4750 int time1;
4751 /* Set if we see an input reload that must not share its reload register
4752 with any new earlyclobber, but might otherwise share the reload
4753 register with an output or input-output reload. */
4754 int check_earlyclobber = 0;
4755 int i;
4756 int copy = 0;
4758 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4759 return 0;
4761 if (out == const0_rtx)
4763 copy = 1;
4764 out = NULL_RTX;
4767 /* We use some pseudo 'time' value to check if the lifetimes of the
4768 new register use would overlap with the one of a previous reload
4769 that is not read-only or uses a different value.
4770 The 'time' used doesn't have to be linear in any shape or form, just
4771 monotonic.
4772 Some reload types use different 'buckets' for each operand.
4773 So there are MAX_RECOG_OPERANDS different time values for each
4774 such reload type.
4775 We compute TIME1 as the time when the register for the prospective
4776 new reload ceases to be live, and TIME2 for each existing
4777 reload as the time when that the reload register of that reload
4778 becomes live.
4779 Where there is little to be gained by exact lifetime calculations,
4780 we just make conservative assumptions, i.e. a longer lifetime;
4781 this is done in the 'default:' cases. */
4782 switch (type)
4784 case RELOAD_FOR_OTHER_ADDRESS:
4785 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4786 time1 = copy ? 0 : 1;
4787 break;
4788 case RELOAD_OTHER:
4789 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4790 break;
4791 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4792 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4793 respectively, to the time values for these, we get distinct time
4794 values. To get distinct time values for each operand, we have to
4795 multiply opnum by at least three. We round that up to four because
4796 multiply by four is often cheaper. */
4797 case RELOAD_FOR_INPADDR_ADDRESS:
4798 time1 = opnum * 4 + 2;
4799 break;
4800 case RELOAD_FOR_INPUT_ADDRESS:
4801 time1 = opnum * 4 + 3;
4802 break;
4803 case RELOAD_FOR_INPUT:
4804 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4805 executes (inclusive). */
4806 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4807 break;
4808 case RELOAD_FOR_OPADDR_ADDR:
4809 /* opnum * 4 + 4
4810 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4811 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4812 break;
4813 case RELOAD_FOR_OPERAND_ADDRESS:
4814 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4815 is executed. */
4816 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4817 break;
4818 case RELOAD_FOR_OUTADDR_ADDRESS:
4819 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4820 break;
4821 case RELOAD_FOR_OUTPUT_ADDRESS:
4822 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4823 break;
4824 default:
4825 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4828 for (i = 0; i < n_reloads; i++)
4830 rtx reg = rld[i].reg_rtx;
4831 if (reg && GET_CODE (reg) == REG
4832 && ((unsigned) regno - true_regnum (reg)
4833 <= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned)1)
4834 && i != reloadnum)
4836 rtx other_input = rld[i].in;
4838 /* If the other reload loads the same input value, that
4839 will not cause a conflict only if it's loading it into
4840 the same register. */
4841 if (true_regnum (reg) != start_regno)
4842 other_input = NULL_RTX;
4843 if (! other_input || ! rtx_equal_p (other_input, value)
4844 || rld[i].out || out)
4846 int time2;
4847 switch (rld[i].when_needed)
4849 case RELOAD_FOR_OTHER_ADDRESS:
4850 time2 = 0;
4851 break;
4852 case RELOAD_FOR_INPADDR_ADDRESS:
4853 /* find_reloads makes sure that a
4854 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4855 by at most one - the first -
4856 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4857 address reload is inherited, the address address reload
4858 goes away, so we can ignore this conflict. */
4859 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4860 && ignore_address_reloads
4861 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4862 Then the address address is still needed to store
4863 back the new address. */
4864 && ! rld[reloadnum].out)
4865 continue;
4866 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4867 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4868 reloads go away. */
4869 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4870 && ignore_address_reloads
4871 /* Unless we are reloading an auto_inc expression. */
4872 && ! rld[reloadnum].out)
4873 continue;
4874 time2 = rld[i].opnum * 4 + 2;
4875 break;
4876 case RELOAD_FOR_INPUT_ADDRESS:
4877 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4878 && ignore_address_reloads
4879 && ! rld[reloadnum].out)
4880 continue;
4881 time2 = rld[i].opnum * 4 + 3;
4882 break;
4883 case RELOAD_FOR_INPUT:
4884 time2 = rld[i].opnum * 4 + 4;
4885 check_earlyclobber = 1;
4886 break;
4887 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
4888 == MAX_RECOG_OPERAND * 4 */
4889 case RELOAD_FOR_OPADDR_ADDR:
4890 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4891 && ignore_address_reloads
4892 && ! rld[reloadnum].out)
4893 continue;
4894 time2 = MAX_RECOG_OPERANDS * 4 + 1;
4895 break;
4896 case RELOAD_FOR_OPERAND_ADDRESS:
4897 time2 = MAX_RECOG_OPERANDS * 4 + 2;
4898 check_earlyclobber = 1;
4899 break;
4900 case RELOAD_FOR_INSN:
4901 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4902 break;
4903 case RELOAD_FOR_OUTPUT:
4904 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4905 instruction is executed. */
4906 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4907 break;
4908 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4909 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4910 value. */
4911 case RELOAD_FOR_OUTADDR_ADDRESS:
4912 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4913 && ignore_address_reloads
4914 && ! rld[reloadnum].out)
4915 continue;
4916 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
4917 break;
4918 case RELOAD_FOR_OUTPUT_ADDRESS:
4919 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
4920 break;
4921 case RELOAD_OTHER:
4922 /* If there is no conflict in the input part, handle this
4923 like an output reload. */
4924 if (! rld[i].in || rtx_equal_p (other_input, value))
4926 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4927 /* Earlyclobbered outputs must conflict with inputs. */
4928 if (earlyclobber_operand_p (rld[i].out))
4929 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4931 break;
4933 time2 = 1;
4934 /* RELOAD_OTHER might be live beyond instruction execution,
4935 but this is not obvious when we set time2 = 1. So check
4936 here if there might be a problem with the new reload
4937 clobbering the register used by the RELOAD_OTHER. */
4938 if (out)
4939 return 0;
4940 break;
4941 default:
4942 return 0;
4944 if ((time1 >= time2
4945 && (! rld[i].in || rld[i].out
4946 || ! rtx_equal_p (other_input, value)))
4947 || (out && rld[reloadnum].out_reg
4948 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
4949 return 0;
4954 /* Earlyclobbered outputs must conflict with inputs. */
4955 if (check_earlyclobber && out && earlyclobber_operand_p (out))
4956 return 0;
4958 return 1;
4961 /* Return 1 if the value in reload reg REGNO, as used by a reload
4962 needed for the part of the insn specified by OPNUM and TYPE,
4963 may be used to load VALUE into it.
4965 MODE is the mode in which the register is used, this is needed to
4966 determine how many hard regs to test.
4968 Other read-only reloads with the same value do not conflict
4969 unless OUT is non-zero and these other reloads have to live while
4970 output reloads live.
4971 If OUT is CONST0_RTX, this is a special case: it means that the
4972 test should not be for using register REGNO as reload register, but
4973 for copying from register REGNO into the reload register.
4975 RELOADNUM is the number of the reload we want to load this value for;
4976 a reload does not conflict with itself.
4978 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
4979 reloads that load an address for the very reload we are considering.
4981 The caller has to make sure that there is no conflict with the return
4982 register. */
4984 static int
4985 free_for_value_p (regno, mode, opnum, type, value, out, reloadnum,
4986 ignore_address_reloads)
4987 int regno;
4988 enum machine_mode mode;
4989 int opnum;
4990 enum reload_type type;
4991 rtx value, out;
4992 int reloadnum;
4993 int ignore_address_reloads;
4995 int nregs = HARD_REGNO_NREGS (regno, mode);
4996 while (nregs-- > 0)
4997 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
4998 value, out, reloadnum,
4999 ignore_address_reloads))
5000 return 0;
5001 return 1;
5004 /* Determine whether the reload reg X overlaps any rtx'es used for
5005 overriding inheritance. Return nonzero if so. */
5007 static int
5008 conflicts_with_override (x)
5009 rtx x;
5011 int i;
5012 for (i = 0; i < n_reloads; i++)
5013 if (reload_override_in[i]
5014 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5015 return 1;
5016 return 0;
5019 /* Give an error message saying we failed to find a reload for INSN,
5020 and clear out reload R. */
5021 static void
5022 failed_reload (insn, r)
5023 rtx insn;
5024 int r;
5026 if (asm_noperands (PATTERN (insn)) < 0)
5027 /* It's the compiler's fault. */
5028 fatal_insn ("Could not find a spill register", insn);
5030 /* It's the user's fault; the operand's mode and constraint
5031 don't match. Disable this reload so we don't crash in final. */
5032 error_for_asm (insn,
5033 "`asm' operand constraint incompatible with operand size");
5034 rld[r].in = 0;
5035 rld[r].out = 0;
5036 rld[r].reg_rtx = 0;
5037 rld[r].optional = 1;
5038 rld[r].secondary_p = 1;
5041 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5042 for reload R. If it's valid, get an rtx for it. Return nonzero if
5043 successful. */
5044 static int
5045 set_reload_reg (i, r)
5046 int i, r;
5048 int regno;
5049 rtx reg = spill_reg_rtx[i];
5051 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5052 spill_reg_rtx[i] = reg
5053 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5055 regno = true_regnum (reg);
5057 /* Detect when the reload reg can't hold the reload mode.
5058 This used to be one `if', but Sequent compiler can't handle that. */
5059 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5061 enum machine_mode test_mode = VOIDmode;
5062 if (rld[r].in)
5063 test_mode = GET_MODE (rld[r].in);
5064 /* If rld[r].in has VOIDmode, it means we will load it
5065 in whatever mode the reload reg has: to wit, rld[r].mode.
5066 We have already tested that for validity. */
5067 /* Aside from that, we need to test that the expressions
5068 to reload from or into have modes which are valid for this
5069 reload register. Otherwise the reload insns would be invalid. */
5070 if (! (rld[r].in != 0 && test_mode != VOIDmode
5071 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5072 if (! (rld[r].out != 0
5073 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5075 /* The reg is OK. */
5076 last_spill_reg = i;
5078 /* Mark as in use for this insn the reload regs we use
5079 for this. */
5080 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5081 rld[r].when_needed, rld[r].mode);
5083 rld[r].reg_rtx = reg;
5084 reload_spill_index[r] = spill_regs[i];
5085 return 1;
5088 return 0;
5091 /* Find a spill register to use as a reload register for reload R.
5092 LAST_RELOAD is non-zero if this is the last reload for the insn being
5093 processed.
5095 Set rld[R].reg_rtx to the register allocated.
5097 We return 1 if successful, or 0 if we couldn't find a spill reg and
5098 we didn't change anything. */
5100 static int
5101 allocate_reload_reg (chain, r, last_reload)
5102 struct insn_chain *chain ATTRIBUTE_UNUSED;
5103 int r;
5104 int last_reload;
5106 int i, pass, count;
5108 /* If we put this reload ahead, thinking it is a group,
5109 then insist on finding a group. Otherwise we can grab a
5110 reg that some other reload needs.
5111 (That can happen when we have a 68000 DATA_OR_FP_REG
5112 which is a group of data regs or one fp reg.)
5113 We need not be so restrictive if there are no more reloads
5114 for this insn.
5116 ??? Really it would be nicer to have smarter handling
5117 for that kind of reg class, where a problem like this is normal.
5118 Perhaps those classes should be avoided for reloading
5119 by use of more alternatives. */
5121 int force_group = rld[r].nregs > 1 && ! last_reload;
5123 /* If we want a single register and haven't yet found one,
5124 take any reg in the right class and not in use.
5125 If we want a consecutive group, here is where we look for it.
5127 We use two passes so we can first look for reload regs to
5128 reuse, which are already in use for other reloads in this insn,
5129 and only then use additional registers.
5130 I think that maximizing reuse is needed to make sure we don't
5131 run out of reload regs. Suppose we have three reloads, and
5132 reloads A and B can share regs. These need two regs.
5133 Suppose A and B are given different regs.
5134 That leaves none for C. */
5135 for (pass = 0; pass < 2; pass++)
5137 /* I is the index in spill_regs.
5138 We advance it round-robin between insns to use all spill regs
5139 equally, so that inherited reloads have a chance
5140 of leapfrogging each other. */
5142 i = last_spill_reg;
5144 for (count = 0; count < n_spills; count++)
5146 int class = (int) rld[r].class;
5147 int regnum;
5149 i++;
5150 if (i >= n_spills)
5151 i -= n_spills;
5152 regnum = spill_regs[i];
5154 if ((reload_reg_free_p (regnum, rld[r].opnum,
5155 rld[r].when_needed)
5156 || (rld[r].in
5157 /* We check reload_reg_used to make sure we
5158 don't clobber the return register. */
5159 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5160 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5161 rld[r].when_needed, rld[r].in,
5162 rld[r].out, r, 1)))
5163 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5164 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5165 /* Look first for regs to share, then for unshared. But
5166 don't share regs used for inherited reloads; they are
5167 the ones we want to preserve. */
5168 && (pass
5169 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5170 regnum)
5171 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5172 regnum))))
5174 int nr = HARD_REGNO_NREGS (regnum, rld[r].mode);
5175 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5176 (on 68000) got us two FP regs. If NR is 1,
5177 we would reject both of them. */
5178 if (force_group)
5179 nr = rld[r].nregs;
5180 /* If we need only one reg, we have already won. */
5181 if (nr == 1)
5183 /* But reject a single reg if we demand a group. */
5184 if (force_group)
5185 continue;
5186 break;
5188 /* Otherwise check that as many consecutive regs as we need
5189 are available here. */
5190 while (nr > 1)
5192 int regno = regnum + nr - 1;
5193 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5194 && spill_reg_order[regno] >= 0
5195 && reload_reg_free_p (regno, rld[r].opnum,
5196 rld[r].when_needed)))
5197 break;
5198 nr--;
5200 if (nr == 1)
5201 break;
5205 /* If we found something on pass 1, omit pass 2. */
5206 if (count < n_spills)
5207 break;
5210 /* We should have found a spill register by now. */
5211 if (count >= n_spills)
5212 return 0;
5214 /* I is the index in SPILL_REG_RTX of the reload register we are to
5215 allocate. Get an rtx for it and find its register number. */
5217 return set_reload_reg (i, r);
5220 /* Initialize all the tables needed to allocate reload registers.
5221 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5222 is the array we use to restore the reg_rtx field for every reload. */
5224 static void
5225 choose_reload_regs_init (chain, save_reload_reg_rtx)
5226 struct insn_chain *chain;
5227 rtx *save_reload_reg_rtx;
5229 int i;
5231 for (i = 0; i < n_reloads; i++)
5232 rld[i].reg_rtx = save_reload_reg_rtx[i];
5234 memset (reload_inherited, 0, MAX_RELOADS);
5235 memset ((char *) reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5236 memset ((char *) reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5238 CLEAR_HARD_REG_SET (reload_reg_used);
5239 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5240 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5241 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5242 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5243 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5245 CLEAR_HARD_REG_SET (reg_used_in_insn);
5247 HARD_REG_SET tmp;
5248 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5249 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5250 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5251 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5252 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5253 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5256 for (i = 0; i < reload_n_operands; i++)
5258 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5259 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5260 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5261 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5262 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5263 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5266 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5268 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5270 for (i = 0; i < n_reloads; i++)
5271 /* If we have already decided to use a certain register,
5272 don't use it in another way. */
5273 if (rld[i].reg_rtx)
5274 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5275 rld[i].when_needed, rld[i].mode);
5278 /* Assign hard reg targets for the pseudo-registers we must reload
5279 into hard regs for this insn.
5280 Also output the instructions to copy them in and out of the hard regs.
5282 For machines with register classes, we are responsible for
5283 finding a reload reg in the proper class. */
5285 static void
5286 choose_reload_regs (chain)
5287 struct insn_chain *chain;
5289 rtx insn = chain->insn;
5290 register int i, j;
5291 unsigned int max_group_size = 1;
5292 enum reg_class group_class = NO_REGS;
5293 int pass, win, inheritance;
5295 rtx save_reload_reg_rtx[MAX_RELOADS];
5297 /* In order to be certain of getting the registers we need,
5298 we must sort the reloads into order of increasing register class.
5299 Then our grabbing of reload registers will parallel the process
5300 that provided the reload registers.
5302 Also note whether any of the reloads wants a consecutive group of regs.
5303 If so, record the maximum size of the group desired and what
5304 register class contains all the groups needed by this insn. */
5306 for (j = 0; j < n_reloads; j++)
5308 reload_order[j] = j;
5309 reload_spill_index[j] = -1;
5311 if (rld[j].nregs > 1)
5313 max_group_size = MAX (rld[j].nregs, max_group_size);
5314 group_class
5315 = reg_class_superunion[(int) rld[j].class][(int)group_class];
5318 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5321 if (n_reloads > 1)
5322 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5324 /* If -O, try first with inheritance, then turning it off.
5325 If not -O, don't do inheritance.
5326 Using inheritance when not optimizing leads to paradoxes
5327 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5328 because one side of the comparison might be inherited. */
5329 win = 0;
5330 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5332 choose_reload_regs_init (chain, save_reload_reg_rtx);
5334 /* Process the reloads in order of preference just found.
5335 Beyond this point, subregs can be found in reload_reg_rtx.
5337 This used to look for an existing reloaded home for all of the
5338 reloads, and only then perform any new reloads. But that could lose
5339 if the reloads were done out of reg-class order because a later
5340 reload with a looser constraint might have an old home in a register
5341 needed by an earlier reload with a tighter constraint.
5343 To solve this, we make two passes over the reloads, in the order
5344 described above. In the first pass we try to inherit a reload
5345 from a previous insn. If there is a later reload that needs a
5346 class that is a proper subset of the class being processed, we must
5347 also allocate a spill register during the first pass.
5349 Then make a second pass over the reloads to allocate any reloads
5350 that haven't been given registers yet. */
5352 for (j = 0; j < n_reloads; j++)
5354 register int r = reload_order[j];
5355 rtx search_equiv = NULL_RTX;
5357 /* Ignore reloads that got marked inoperative. */
5358 if (rld[r].out == 0 && rld[r].in == 0
5359 && ! rld[r].secondary_p)
5360 continue;
5362 /* If find_reloads chose to use reload_in or reload_out as a reload
5363 register, we don't need to chose one. Otherwise, try even if it
5364 found one since we might save an insn if we find the value lying
5365 around.
5366 Try also when reload_in is a pseudo without a hard reg. */
5367 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5368 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5369 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5370 && GET_CODE (rld[r].in) != MEM
5371 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5372 continue;
5374 #if 0 /* No longer needed for correct operation.
5375 It might give better code, or might not; worth an experiment? */
5376 /* If this is an optional reload, we can't inherit from earlier insns
5377 until we are sure that any non-optional reloads have been allocated.
5378 The following code takes advantage of the fact that optional reloads
5379 are at the end of reload_order. */
5380 if (rld[r].optional != 0)
5381 for (i = 0; i < j; i++)
5382 if ((rld[reload_order[i]].out != 0
5383 || rld[reload_order[i]].in != 0
5384 || rld[reload_order[i]].secondary_p)
5385 && ! rld[reload_order[i]].optional
5386 && rld[reload_order[i]].reg_rtx == 0)
5387 allocate_reload_reg (chain, reload_order[i], 0);
5388 #endif
5390 /* First see if this pseudo is already available as reloaded
5391 for a previous insn. We cannot try to inherit for reloads
5392 that are smaller than the maximum number of registers needed
5393 for groups unless the register we would allocate cannot be used
5394 for the groups.
5396 We could check here to see if this is a secondary reload for
5397 an object that is already in a register of the desired class.
5398 This would avoid the need for the secondary reload register.
5399 But this is complex because we can't easily determine what
5400 objects might want to be loaded via this reload. So let a
5401 register be allocated here. In `emit_reload_insns' we suppress
5402 one of the loads in the case described above. */
5404 if (inheritance)
5406 int word = 0;
5407 register int regno = -1;
5408 enum machine_mode mode = VOIDmode;
5410 if (rld[r].in == 0)
5412 else if (GET_CODE (rld[r].in) == REG)
5414 regno = REGNO (rld[r].in);
5415 mode = GET_MODE (rld[r].in);
5417 else if (GET_CODE (rld[r].in_reg) == REG)
5419 regno = REGNO (rld[r].in_reg);
5420 mode = GET_MODE (rld[r].in_reg);
5422 else if (GET_CODE (rld[r].in_reg) == SUBREG
5423 && GET_CODE (SUBREG_REG (rld[r].in_reg)) == REG)
5425 word = SUBREG_WORD (rld[r].in_reg);
5426 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5427 if (regno < FIRST_PSEUDO_REGISTER)
5428 regno += word;
5429 mode = GET_MODE (rld[r].in_reg);
5431 #ifdef AUTO_INC_DEC
5432 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5433 || GET_CODE (rld[r].in_reg) == PRE_DEC
5434 || GET_CODE (rld[r].in_reg) == POST_INC
5435 || GET_CODE (rld[r].in_reg) == POST_DEC)
5436 && GET_CODE (XEXP (rld[r].in_reg, 0)) == REG)
5438 regno = REGNO (XEXP (rld[r].in_reg, 0));
5439 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5440 rld[r].out = rld[r].in;
5442 #endif
5443 #if 0
5444 /* This won't work, since REGNO can be a pseudo reg number.
5445 Also, it takes much more hair to keep track of all the things
5446 that can invalidate an inherited reload of part of a pseudoreg. */
5447 else if (GET_CODE (rld[r].in) == SUBREG
5448 && GET_CODE (SUBREG_REG (rld[r].in)) == REG)
5449 regno = REGNO (SUBREG_REG (rld[r].in)) + SUBREG_WORD (rld[r].in);
5450 #endif
5452 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5454 enum reg_class class = rld[r].class, last_class;
5455 rtx last_reg = reg_last_reload_reg[regno];
5456 enum machine_mode need_mode;
5458 i = REGNO (last_reg) + word;
5459 last_class = REGNO_REG_CLASS (i);
5461 if (word == 0)
5462 need_mode = mode;
5463 else
5464 need_mode
5465 = smallest_mode_for_size (GET_MODE_SIZE (mode)
5466 + word * UNITS_PER_WORD,
5467 GET_MODE_CLASS (mode));
5469 if (
5470 #ifdef CLASS_CANNOT_CHANGE_MODE
5471 (TEST_HARD_REG_BIT
5472 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE], i)
5473 ? ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (last_reg),
5474 need_mode)
5475 : (GET_MODE_SIZE (GET_MODE (last_reg))
5476 >= GET_MODE_SIZE (need_mode)))
5477 #else
5478 (GET_MODE_SIZE (GET_MODE (last_reg))
5479 >= GET_MODE_SIZE (need_mode))
5480 #endif
5481 && reg_reloaded_contents[i] == regno
5482 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5483 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5484 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5485 /* Even if we can't use this register as a reload
5486 register, we might use it for reload_override_in,
5487 if copying it to the desired class is cheap
5488 enough. */
5489 || ((REGISTER_MOVE_COST (mode, last_class, class)
5490 < MEMORY_MOVE_COST (mode, class, 1))
5491 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5492 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5493 last_reg)
5494 == NO_REGS)
5495 #endif
5496 #ifdef SECONDARY_MEMORY_NEEDED
5497 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5498 mode)
5499 #endif
5502 && (rld[r].nregs == max_group_size
5503 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5505 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5506 rld[r].when_needed, rld[r].in,
5507 const0_rtx, r, 1))
5509 /* If a group is needed, verify that all the subsequent
5510 registers still have their values intact. */
5511 int nr = HARD_REGNO_NREGS (i, rld[r].mode);
5512 int k;
5514 for (k = 1; k < nr; k++)
5515 if (reg_reloaded_contents[i + k] != regno
5516 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5517 break;
5519 if (k == nr)
5521 int i1;
5523 last_reg = (GET_MODE (last_reg) == mode
5524 ? last_reg : gen_rtx_REG (mode, i));
5526 /* We found a register that contains the
5527 value we need. If this register is the
5528 same as an `earlyclobber' operand of the
5529 current insn, just mark it as a place to
5530 reload from since we can't use it as the
5531 reload register itself. */
5533 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5534 if (reg_overlap_mentioned_for_reload_p
5535 (reg_last_reload_reg[regno],
5536 reload_earlyclobbers[i1]))
5537 break;
5539 if (i1 != n_earlyclobbers
5540 || ! (free_for_value_p (i, rld[r].mode,
5541 rld[r].opnum,
5542 rld[r].when_needed, rld[r].in,
5543 rld[r].out, r, 1))
5544 /* Don't use it if we'd clobber a pseudo reg. */
5545 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5546 && rld[r].out
5547 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5548 /* Don't clobber the frame pointer. */
5549 || (i == HARD_FRAME_POINTER_REGNUM
5550 && rld[r].out)
5551 /* Don't really use the inherited spill reg
5552 if we need it wider than we've got it. */
5553 || (GET_MODE_SIZE (rld[r].mode)
5554 > GET_MODE_SIZE (mode))
5555 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5558 /* If find_reloads chose reload_out as reload
5559 register, stay with it - that leaves the
5560 inherited register for subsequent reloads. */
5561 || (rld[r].out && rld[r].reg_rtx
5562 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5564 if (! rld[r].optional)
5566 reload_override_in[r] = last_reg;
5567 reload_inheritance_insn[r]
5568 = reg_reloaded_insn[i];
5571 else
5573 int k;
5574 /* We can use this as a reload reg. */
5575 /* Mark the register as in use for this part of
5576 the insn. */
5577 mark_reload_reg_in_use (i,
5578 rld[r].opnum,
5579 rld[r].when_needed,
5580 rld[r].mode);
5581 rld[r].reg_rtx = last_reg;
5582 reload_inherited[r] = 1;
5583 reload_inheritance_insn[r]
5584 = reg_reloaded_insn[i];
5585 reload_spill_index[r] = i;
5586 for (k = 0; k < nr; k++)
5587 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5588 i + k);
5595 /* Here's another way to see if the value is already lying around. */
5596 if (inheritance
5597 && rld[r].in != 0
5598 && ! reload_inherited[r]
5599 && rld[r].out == 0
5600 && (CONSTANT_P (rld[r].in)
5601 || GET_CODE (rld[r].in) == PLUS
5602 || GET_CODE (rld[r].in) == REG
5603 || GET_CODE (rld[r].in) == MEM)
5604 && (rld[r].nregs == max_group_size
5605 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5606 search_equiv = rld[r].in;
5607 /* If this is an output reload from a simple move insn, look
5608 if an equivalence for the input is available. */
5609 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5611 rtx set = single_set (insn);
5613 if (set
5614 && rtx_equal_p (rld[r].out, SET_DEST (set))
5615 && CONSTANT_P (SET_SRC (set)))
5616 search_equiv = SET_SRC (set);
5619 if (search_equiv)
5621 register rtx equiv
5622 = find_equiv_reg (search_equiv, insn, rld[r].class,
5623 -1, NULL_PTR, 0, rld[r].mode);
5624 int regno = 0;
5626 if (equiv != 0)
5628 if (GET_CODE (equiv) == REG)
5629 regno = REGNO (equiv);
5630 else if (GET_CODE (equiv) == SUBREG)
5632 /* This must be a SUBREG of a hard register.
5633 Make a new REG since this might be used in an
5634 address and not all machines support SUBREGs
5635 there. */
5636 regno = REGNO (SUBREG_REG (equiv)) + SUBREG_WORD (equiv);
5637 equiv = gen_rtx_REG (rld[r].mode, regno);
5639 else
5640 abort ();
5643 /* If we found a spill reg, reject it unless it is free
5644 and of the desired class. */
5645 if (equiv != 0
5646 && ((TEST_HARD_REG_BIT (reload_reg_used_at_all, regno)
5647 && ! free_for_value_p (regno, rld[r].mode,
5648 rld[r].opnum, rld[r].when_needed,
5649 rld[r].in, rld[r].out, r, 1))
5650 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5651 regno)))
5652 equiv = 0;
5654 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5655 equiv = 0;
5657 /* We found a register that contains the value we need.
5658 If this register is the same as an `earlyclobber' operand
5659 of the current insn, just mark it as a place to reload from
5660 since we can't use it as the reload register itself. */
5662 if (equiv != 0)
5663 for (i = 0; i < n_earlyclobbers; i++)
5664 if (reg_overlap_mentioned_for_reload_p (equiv,
5665 reload_earlyclobbers[i]))
5667 if (! rld[r].optional)
5668 reload_override_in[r] = equiv;
5669 equiv = 0;
5670 break;
5673 /* If the equiv register we have found is explicitly clobbered
5674 in the current insn, it depends on the reload type if we
5675 can use it, use it for reload_override_in, or not at all.
5676 In particular, we then can't use EQUIV for a
5677 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5679 if (equiv != 0)
5681 if (regno_clobbered_p (regno, insn, rld[r].mode, 0))
5682 switch (rld[r].when_needed)
5684 case RELOAD_FOR_OTHER_ADDRESS:
5685 case RELOAD_FOR_INPADDR_ADDRESS:
5686 case RELOAD_FOR_INPUT_ADDRESS:
5687 case RELOAD_FOR_OPADDR_ADDR:
5688 break;
5689 case RELOAD_OTHER:
5690 case RELOAD_FOR_INPUT:
5691 case RELOAD_FOR_OPERAND_ADDRESS:
5692 if (! rld[r].optional)
5693 reload_override_in[r] = equiv;
5694 /* Fall through. */
5695 default:
5696 equiv = 0;
5697 break;
5699 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5700 switch (rld[r].when_needed)
5702 case RELOAD_FOR_OTHER_ADDRESS:
5703 case RELOAD_FOR_INPADDR_ADDRESS:
5704 case RELOAD_FOR_INPUT_ADDRESS:
5705 case RELOAD_FOR_OPADDR_ADDR:
5706 case RELOAD_FOR_OPERAND_ADDRESS:
5707 case RELOAD_FOR_INPUT:
5708 break;
5709 case RELOAD_OTHER:
5710 if (! rld[r].optional)
5711 reload_override_in[r] = equiv;
5712 /* Fall through. */
5713 default:
5714 equiv = 0;
5715 break;
5719 /* If we found an equivalent reg, say no code need be generated
5720 to load it, and use it as our reload reg. */
5721 if (equiv != 0 && regno != HARD_FRAME_POINTER_REGNUM)
5723 int nr = HARD_REGNO_NREGS (regno, rld[r].mode);
5724 int k;
5725 rld[r].reg_rtx = equiv;
5726 reload_inherited[r] = 1;
5728 /* If reg_reloaded_valid is not set for this register,
5729 there might be a stale spill_reg_store lying around.
5730 We must clear it, since otherwise emit_reload_insns
5731 might delete the store. */
5732 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5733 spill_reg_store[regno] = NULL_RTX;
5734 /* If any of the hard registers in EQUIV are spill
5735 registers, mark them as in use for this insn. */
5736 for (k = 0; k < nr; k++)
5738 i = spill_reg_order[regno + k];
5739 if (i >= 0)
5741 mark_reload_reg_in_use (regno, rld[r].opnum,
5742 rld[r].when_needed,
5743 rld[r].mode);
5744 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5745 regno + k);
5751 /* If we found a register to use already, or if this is an optional
5752 reload, we are done. */
5753 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5754 continue;
5756 #if 0
5757 /* No longer needed for correct operation. Might or might
5758 not give better code on the average. Want to experiment? */
5760 /* See if there is a later reload that has a class different from our
5761 class that intersects our class or that requires less register
5762 than our reload. If so, we must allocate a register to this
5763 reload now, since that reload might inherit a previous reload
5764 and take the only available register in our class. Don't do this
5765 for optional reloads since they will force all previous reloads
5766 to be allocated. Also don't do this for reloads that have been
5767 turned off. */
5769 for (i = j + 1; i < n_reloads; i++)
5771 int s = reload_order[i];
5773 if ((rld[s].in == 0 && rld[s].out == 0
5774 && ! rld[s].secondary_p)
5775 || rld[s].optional)
5776 continue;
5778 if ((rld[s].class != rld[r].class
5779 && reg_classes_intersect_p (rld[r].class,
5780 rld[s].class))
5781 || rld[s].nregs < rld[r].nregs)
5782 break;
5785 if (i == n_reloads)
5786 continue;
5788 allocate_reload_reg (chain, r, j == n_reloads - 1);
5789 #endif
5792 /* Now allocate reload registers for anything non-optional that
5793 didn't get one yet. */
5794 for (j = 0; j < n_reloads; j++)
5796 register int r = reload_order[j];
5798 /* Ignore reloads that got marked inoperative. */
5799 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5800 continue;
5802 /* Skip reloads that already have a register allocated or are
5803 optional. */
5804 if (rld[r].reg_rtx != 0 || rld[r].optional)
5805 continue;
5807 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5808 break;
5811 /* If that loop got all the way, we have won. */
5812 if (j == n_reloads)
5814 win = 1;
5815 break;
5818 /* Loop around and try without any inheritance. */
5821 if (! win)
5823 /* First undo everything done by the failed attempt
5824 to allocate with inheritance. */
5825 choose_reload_regs_init (chain, save_reload_reg_rtx);
5827 /* Some sanity tests to verify that the reloads found in the first
5828 pass are identical to the ones we have now. */
5829 if (chain->n_reloads != n_reloads)
5830 abort ();
5832 for (i = 0; i < n_reloads; i++)
5834 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5835 continue;
5836 if (chain->rld[i].when_needed != rld[i].when_needed)
5837 abort ();
5838 for (j = 0; j < n_spills; j++)
5839 if (spill_regs[j] == chain->rld[i].regno)
5840 if (! set_reload_reg (j, i))
5841 failed_reload (chain->insn, i);
5845 /* If we thought we could inherit a reload, because it seemed that
5846 nothing else wanted the same reload register earlier in the insn,
5847 verify that assumption, now that all reloads have been assigned.
5848 Likewise for reloads where reload_override_in has been set. */
5850 /* If doing expensive optimizations, do one preliminary pass that doesn't
5851 cancel any inheritance, but removes reloads that have been needed only
5852 for reloads that we know can be inherited. */
5853 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
5855 for (j = 0; j < n_reloads; j++)
5857 register int r = reload_order[j];
5858 rtx check_reg;
5859 if (reload_inherited[r] && rld[r].reg_rtx)
5860 check_reg = rld[r].reg_rtx;
5861 else if (reload_override_in[r]
5862 && (GET_CODE (reload_override_in[r]) == REG
5863 || GET_CODE (reload_override_in[r]) == SUBREG))
5864 check_reg = reload_override_in[r];
5865 else
5866 continue;
5867 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
5868 rld[r].opnum, rld[r].when_needed, rld[r].in,
5869 (reload_inherited[r]
5870 ? rld[r].out : const0_rtx),
5871 r, 1))
5873 if (pass)
5874 continue;
5875 reload_inherited[r] = 0;
5876 reload_override_in[r] = 0;
5878 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5879 reload_override_in, then we do not need its related
5880 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5881 likewise for other reload types.
5882 We handle this by removing a reload when its only replacement
5883 is mentioned in reload_in of the reload we are going to inherit.
5884 A special case are auto_inc expressions; even if the input is
5885 inherited, we still need the address for the output. We can
5886 recognize them because they have RELOAD_OUT set to RELOAD_IN.
5887 If we suceeded removing some reload and we are doing a preliminary
5888 pass just to remove such reloads, make another pass, since the
5889 removal of one reload might allow us to inherit another one. */
5890 else if (rld[r].in
5891 && rld[r].out != rld[r].in
5892 && remove_address_replacements (rld[r].in) && pass)
5893 pass = 2;
5897 /* Now that reload_override_in is known valid,
5898 actually override reload_in. */
5899 for (j = 0; j < n_reloads; j++)
5900 if (reload_override_in[j])
5901 rld[j].in = reload_override_in[j];
5903 /* If this reload won't be done because it has been cancelled or is
5904 optional and not inherited, clear reload_reg_rtx so other
5905 routines (such as subst_reloads) don't get confused. */
5906 for (j = 0; j < n_reloads; j++)
5907 if (rld[j].reg_rtx != 0
5908 && ((rld[j].optional && ! reload_inherited[j])
5909 || (rld[j].in == 0 && rld[j].out == 0
5910 && ! rld[j].secondary_p)))
5912 int regno = true_regnum (rld[j].reg_rtx);
5914 if (spill_reg_order[regno] >= 0)
5915 clear_reload_reg_in_use (regno, rld[j].opnum,
5916 rld[j].when_needed, rld[j].mode);
5917 rld[j].reg_rtx = 0;
5918 reload_spill_index[j] = -1;
5921 /* Record which pseudos and which spill regs have output reloads. */
5922 for (j = 0; j < n_reloads; j++)
5924 register int r = reload_order[j];
5926 i = reload_spill_index[r];
5928 /* I is nonneg if this reload uses a register.
5929 If rld[r].reg_rtx is 0, this is an optional reload
5930 that we opted to ignore. */
5931 if (rld[r].out_reg != 0 && GET_CODE (rld[r].out_reg) == REG
5932 && rld[r].reg_rtx != 0)
5934 register int nregno = REGNO (rld[r].out_reg);
5935 int nr = 1;
5937 if (nregno < FIRST_PSEUDO_REGISTER)
5938 nr = HARD_REGNO_NREGS (nregno, rld[r].mode);
5940 while (--nr >= 0)
5941 reg_has_output_reload[nregno + nr] = 1;
5943 if (i >= 0)
5945 nr = HARD_REGNO_NREGS (i, rld[r].mode);
5946 while (--nr >= 0)
5947 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
5950 if (rld[r].when_needed != RELOAD_OTHER
5951 && rld[r].when_needed != RELOAD_FOR_OUTPUT
5952 && rld[r].when_needed != RELOAD_FOR_INSN)
5953 abort ();
5958 /* Deallocate the reload register for reload R. This is called from
5959 remove_address_replacements. */
5961 void
5962 deallocate_reload_reg (r)
5963 int r;
5965 int regno;
5967 if (! rld[r].reg_rtx)
5968 return;
5969 regno = true_regnum (rld[r].reg_rtx);
5970 rld[r].reg_rtx = 0;
5971 if (spill_reg_order[regno] >= 0)
5972 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
5973 rld[r].mode);
5974 reload_spill_index[r] = -1;
5977 /* If SMALL_REGISTER_CLASSES is non-zero, we may not have merged two
5978 reloads of the same item for fear that we might not have enough reload
5979 registers. However, normally they will get the same reload register
5980 and hence actually need not be loaded twice.
5982 Here we check for the most common case of this phenomenon: when we have
5983 a number of reloads for the same object, each of which were allocated
5984 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
5985 reload, and is not modified in the insn itself. If we find such,
5986 merge all the reloads and set the resulting reload to RELOAD_OTHER.
5987 This will not increase the number of spill registers needed and will
5988 prevent redundant code. */
5990 static void
5991 merge_assigned_reloads (insn)
5992 rtx insn;
5994 int i, j;
5996 /* Scan all the reloads looking for ones that only load values and
5997 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
5998 assigned and not modified by INSN. */
6000 for (i = 0; i < n_reloads; i++)
6002 int conflicting_input = 0;
6003 int max_input_address_opnum = -1;
6004 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6006 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6007 || rld[i].out != 0 || rld[i].reg_rtx == 0
6008 || reg_set_p (rld[i].reg_rtx, insn))
6009 continue;
6011 /* Look at all other reloads. Ensure that the only use of this
6012 reload_reg_rtx is in a reload that just loads the same value
6013 as we do. Note that any secondary reloads must be of the identical
6014 class since the values, modes, and result registers are the
6015 same, so we need not do anything with any secondary reloads. */
6017 for (j = 0; j < n_reloads; j++)
6019 if (i == j || rld[j].reg_rtx == 0
6020 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6021 rld[i].reg_rtx))
6022 continue;
6024 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6025 && rld[j].opnum > max_input_address_opnum)
6026 max_input_address_opnum = rld[j].opnum;
6028 /* If the reload regs aren't exactly the same (e.g, different modes)
6029 or if the values are different, we can't merge this reload.
6030 But if it is an input reload, we might still merge
6031 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6033 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6034 || rld[j].out != 0 || rld[j].in == 0
6035 || ! rtx_equal_p (rld[i].in, rld[j].in))
6037 if (rld[j].when_needed != RELOAD_FOR_INPUT
6038 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6039 || rld[i].opnum > rld[j].opnum)
6040 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6041 break;
6042 conflicting_input = 1;
6043 if (min_conflicting_input_opnum > rld[j].opnum)
6044 min_conflicting_input_opnum = rld[j].opnum;
6048 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6049 we, in fact, found any matching reloads. */
6051 if (j == n_reloads
6052 && max_input_address_opnum <= min_conflicting_input_opnum)
6054 for (j = 0; j < n_reloads; j++)
6055 if (i != j && rld[j].reg_rtx != 0
6056 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6057 && (! conflicting_input
6058 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6059 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6061 rld[i].when_needed = RELOAD_OTHER;
6062 rld[j].in = 0;
6063 reload_spill_index[j] = -1;
6064 transfer_replacements (i, j);
6067 /* If this is now RELOAD_OTHER, look for any reloads that load
6068 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6069 if they were for inputs, RELOAD_OTHER for outputs. Note that
6070 this test is equivalent to looking for reloads for this operand
6071 number. */
6073 if (rld[i].when_needed == RELOAD_OTHER)
6074 for (j = 0; j < n_reloads; j++)
6075 if (rld[j].in != 0
6076 && rld[i].when_needed != RELOAD_OTHER
6077 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6078 rld[i].in))
6079 rld[j].when_needed
6080 = ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
6081 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6082 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6087 /* These arrays are filled by emit_reload_insns and its subroutines. */
6088 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6089 static rtx other_input_address_reload_insns = 0;
6090 static rtx other_input_reload_insns = 0;
6091 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6092 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6093 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6094 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6095 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6096 static rtx operand_reload_insns = 0;
6097 static rtx other_operand_reload_insns = 0;
6098 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6100 /* Values to be put in spill_reg_store are put here first. */
6101 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6102 static HARD_REG_SET reg_reloaded_died;
6104 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6105 has the number J. OLD contains the value to be used as input. */
6107 static void
6108 emit_input_reload_insns (chain, rl, old, j)
6109 struct insn_chain *chain;
6110 struct reload *rl;
6111 rtx old;
6112 int j;
6114 rtx insn = chain->insn;
6115 register rtx reloadreg = rl->reg_rtx;
6116 rtx oldequiv_reg = 0;
6117 rtx oldequiv = 0;
6118 int special = 0;
6119 enum machine_mode mode;
6120 rtx *where;
6122 /* Determine the mode to reload in.
6123 This is very tricky because we have three to choose from.
6124 There is the mode the insn operand wants (rl->inmode).
6125 There is the mode of the reload register RELOADREG.
6126 There is the intrinsic mode of the operand, which we could find
6127 by stripping some SUBREGs.
6128 It turns out that RELOADREG's mode is irrelevant:
6129 we can change that arbitrarily.
6131 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6132 then the reload reg may not support QImode moves, so use SImode.
6133 If foo is in memory due to spilling a pseudo reg, this is safe,
6134 because the QImode value is in the least significant part of a
6135 slot big enough for a SImode. If foo is some other sort of
6136 memory reference, then it is impossible to reload this case,
6137 so previous passes had better make sure this never happens.
6139 Then consider a one-word union which has SImode and one of its
6140 members is a float, being fetched as (SUBREG:SF union:SI).
6141 We must fetch that as SFmode because we could be loading into
6142 a float-only register. In this case OLD's mode is correct.
6144 Consider an immediate integer: it has VOIDmode. Here we need
6145 to get a mode from something else.
6147 In some cases, there is a fourth mode, the operand's
6148 containing mode. If the insn specifies a containing mode for
6149 this operand, it overrides all others.
6151 I am not sure whether the algorithm here is always right,
6152 but it does the right things in those cases. */
6154 mode = GET_MODE (old);
6155 if (mode == VOIDmode)
6156 mode = rl->inmode;
6158 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6159 /* If we need a secondary register for this operation, see if
6160 the value is already in a register in that class. Don't
6161 do this if the secondary register will be used as a scratch
6162 register. */
6164 if (rl->secondary_in_reload >= 0
6165 && rl->secondary_in_icode == CODE_FOR_nothing
6166 && optimize)
6167 oldequiv
6168 = find_equiv_reg (old, insn,
6169 rld[rl->secondary_in_reload].class,
6170 -1, NULL_PTR, 0, mode);
6171 #endif
6173 /* If reloading from memory, see if there is a register
6174 that already holds the same value. If so, reload from there.
6175 We can pass 0 as the reload_reg_p argument because
6176 any other reload has either already been emitted,
6177 in which case find_equiv_reg will see the reload-insn,
6178 or has yet to be emitted, in which case it doesn't matter
6179 because we will use this equiv reg right away. */
6181 if (oldequiv == 0 && optimize
6182 && (GET_CODE (old) == MEM
6183 || (GET_CODE (old) == REG
6184 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6185 && reg_renumber[REGNO (old)] < 0)))
6186 oldequiv = find_equiv_reg (old, insn, ALL_REGS,
6187 -1, NULL_PTR, 0, mode);
6189 if (oldequiv)
6191 unsigned int regno = true_regnum (oldequiv);
6193 /* Don't use OLDEQUIV if any other reload changes it at an
6194 earlier stage of this insn or at this stage. */
6195 if (! free_for_value_p (regno, rl->mode, rl->opnum, rl->when_needed,
6196 rl->in, const0_rtx, j, 0))
6197 oldequiv = 0;
6199 /* If it is no cheaper to copy from OLDEQUIV into the
6200 reload register than it would be to move from memory,
6201 don't use it. Likewise, if we need a secondary register
6202 or memory. */
6204 if (oldequiv != 0
6205 && ((REGNO_REG_CLASS (regno) != rl->class
6206 && (REGISTER_MOVE_COST (mode, REGNO_REG_CLASS (regno),
6207 rl->class)
6208 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6209 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6210 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6211 mode, oldequiv)
6212 != NO_REGS)
6213 #endif
6214 #ifdef SECONDARY_MEMORY_NEEDED
6215 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6216 rl->class,
6217 mode)
6218 #endif
6220 oldequiv = 0;
6223 /* delete_output_reload is only invoked properly if old contains
6224 the original pseudo register. Since this is replaced with a
6225 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6226 find the pseudo in RELOAD_IN_REG. */
6227 if (oldequiv == 0
6228 && reload_override_in[j]
6229 && GET_CODE (rl->in_reg) == REG)
6231 oldequiv = old;
6232 old = rl->in_reg;
6234 if (oldequiv == 0)
6235 oldequiv = old;
6236 else if (GET_CODE (oldequiv) == REG)
6237 oldequiv_reg = oldequiv;
6238 else if (GET_CODE (oldequiv) == SUBREG)
6239 oldequiv_reg = SUBREG_REG (oldequiv);
6241 /* If we are reloading from a register that was recently stored in
6242 with an output-reload, see if we can prove there was
6243 actually no need to store the old value in it. */
6245 if (optimize && GET_CODE (oldequiv) == REG
6246 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6247 && spill_reg_store[REGNO (oldequiv)]
6248 && GET_CODE (old) == REG
6249 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6250 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6251 rl->out_reg)))
6252 delete_output_reload (insn, j, REGNO (oldequiv));
6254 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6255 then load RELOADREG from OLDEQUIV. Note that we cannot use
6256 gen_lowpart_common since it can do the wrong thing when
6257 RELOADREG has a multi-word mode. Note that RELOADREG
6258 must always be a REG here. */
6260 if (GET_MODE (reloadreg) != mode)
6261 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6262 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6263 oldequiv = SUBREG_REG (oldequiv);
6264 if (GET_MODE (oldequiv) != VOIDmode
6265 && mode != GET_MODE (oldequiv))
6266 oldequiv = gen_rtx_SUBREG (mode, oldequiv, 0);
6268 /* Switch to the right place to emit the reload insns. */
6269 switch (rl->when_needed)
6271 case RELOAD_OTHER:
6272 where = &other_input_reload_insns;
6273 break;
6274 case RELOAD_FOR_INPUT:
6275 where = &input_reload_insns[rl->opnum];
6276 break;
6277 case RELOAD_FOR_INPUT_ADDRESS:
6278 where = &input_address_reload_insns[rl->opnum];
6279 break;
6280 case RELOAD_FOR_INPADDR_ADDRESS:
6281 where = &inpaddr_address_reload_insns[rl->opnum];
6282 break;
6283 case RELOAD_FOR_OUTPUT_ADDRESS:
6284 where = &output_address_reload_insns[rl->opnum];
6285 break;
6286 case RELOAD_FOR_OUTADDR_ADDRESS:
6287 where = &outaddr_address_reload_insns[rl->opnum];
6288 break;
6289 case RELOAD_FOR_OPERAND_ADDRESS:
6290 where = &operand_reload_insns;
6291 break;
6292 case RELOAD_FOR_OPADDR_ADDR:
6293 where = &other_operand_reload_insns;
6294 break;
6295 case RELOAD_FOR_OTHER_ADDRESS:
6296 where = &other_input_address_reload_insns;
6297 break;
6298 default:
6299 abort ();
6302 push_to_sequence (*where);
6304 /* Auto-increment addresses must be reloaded in a special way. */
6305 if (rl->out && ! rl->out_reg)
6307 /* We are not going to bother supporting the case where a
6308 incremented register can't be copied directly from
6309 OLDEQUIV since this seems highly unlikely. */
6310 if (rl->secondary_in_reload >= 0)
6311 abort ();
6313 if (reload_inherited[j])
6314 oldequiv = reloadreg;
6316 old = XEXP (rl->in_reg, 0);
6318 if (optimize && GET_CODE (oldequiv) == REG
6319 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6320 && spill_reg_store[REGNO (oldequiv)]
6321 && GET_CODE (old) == REG
6322 && (dead_or_set_p (insn,
6323 spill_reg_stored_to[REGNO (oldequiv)])
6324 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6325 old)))
6326 delete_output_reload (insn, j, REGNO (oldequiv));
6328 /* Prevent normal processing of this reload. */
6329 special = 1;
6330 /* Output a special code sequence for this case. */
6331 new_spill_reg_store[REGNO (reloadreg)]
6332 = inc_for_reload (reloadreg, oldequiv, rl->out,
6333 rl->inc);
6336 /* If we are reloading a pseudo-register that was set by the previous
6337 insn, see if we can get rid of that pseudo-register entirely
6338 by redirecting the previous insn into our reload register. */
6340 else if (optimize && GET_CODE (old) == REG
6341 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6342 && dead_or_set_p (insn, old)
6343 /* This is unsafe if some other reload
6344 uses the same reg first. */
6345 && ! conflicts_with_override (reloadreg)
6346 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6347 rl->when_needed, old, rl->out, j, 0))
6349 rtx temp = PREV_INSN (insn);
6350 while (temp && GET_CODE (temp) == NOTE)
6351 temp = PREV_INSN (temp);
6352 if (temp
6353 && GET_CODE (temp) == INSN
6354 && GET_CODE (PATTERN (temp)) == SET
6355 && SET_DEST (PATTERN (temp)) == old
6356 /* Make sure we can access insn_operand_constraint. */
6357 && asm_noperands (PATTERN (temp)) < 0
6358 /* This is unsafe if prev insn rejects our reload reg. */
6359 && constraint_accepts_reg_p (insn_data[recog_memoized (temp)].operand[0].constraint,
6360 reloadreg)
6361 /* This is unsafe if operand occurs more than once in current
6362 insn. Perhaps some occurrences aren't reloaded. */
6363 && count_occurrences (PATTERN (insn), old, 0) == 1
6364 /* Don't risk splitting a matching pair of operands. */
6365 && ! reg_mentioned_p (old, SET_SRC (PATTERN (temp))))
6367 /* Store into the reload register instead of the pseudo. */
6368 SET_DEST (PATTERN (temp)) = reloadreg;
6370 /* If the previous insn is an output reload, the source is
6371 a reload register, and its spill_reg_store entry will
6372 contain the previous destination. This is now
6373 invalid. */
6374 if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
6375 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6377 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6378 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6381 /* If these are the only uses of the pseudo reg,
6382 pretend for GDB it lives in the reload reg we used. */
6383 if (REG_N_DEATHS (REGNO (old)) == 1
6384 && REG_N_SETS (REGNO (old)) == 1)
6386 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6387 alter_reg (REGNO (old), -1);
6389 special = 1;
6393 /* We can't do that, so output an insn to load RELOADREG. */
6395 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6396 /* If we have a secondary reload, pick up the secondary register
6397 and icode, if any. If OLDEQUIV and OLD are different or
6398 if this is an in-out reload, recompute whether or not we
6399 still need a secondary register and what the icode should
6400 be. If we still need a secondary register and the class or
6401 icode is different, go back to reloading from OLD if using
6402 OLDEQUIV means that we got the wrong type of register. We
6403 cannot have different class or icode due to an in-out reload
6404 because we don't make such reloads when both the input and
6405 output need secondary reload registers. */
6407 if (! special && rl->secondary_in_reload >= 0)
6409 rtx second_reload_reg = 0;
6410 int secondary_reload = rl->secondary_in_reload;
6411 rtx real_oldequiv = oldequiv;
6412 rtx real_old = old;
6413 rtx tmp;
6414 enum insn_code icode;
6416 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6417 and similarly for OLD.
6418 See comments in get_secondary_reload in reload.c. */
6419 /* If it is a pseudo that cannot be replaced with its
6420 equivalent MEM, we must fall back to reload_in, which
6421 will have all the necessary substitutions registered.
6422 Likewise for a pseudo that can't be replaced with its
6423 equivalent constant.
6425 Take extra care for subregs of such pseudos. Note that
6426 we cannot use reg_equiv_mem in this case because it is
6427 not in the right mode. */
6429 tmp = oldequiv;
6430 if (GET_CODE (tmp) == SUBREG)
6431 tmp = SUBREG_REG (tmp);
6432 if (GET_CODE (tmp) == REG
6433 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6434 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6435 || reg_equiv_constant[REGNO (tmp)] != 0))
6437 if (! reg_equiv_mem[REGNO (tmp)]
6438 || num_not_at_initial_offset
6439 || GET_CODE (oldequiv) == SUBREG)
6440 real_oldequiv = rl->in;
6441 else
6442 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6445 tmp = old;
6446 if (GET_CODE (tmp) == SUBREG)
6447 tmp = SUBREG_REG (tmp);
6448 if (GET_CODE (tmp) == REG
6449 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6450 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6451 || reg_equiv_constant[REGNO (tmp)] != 0))
6453 if (! reg_equiv_mem[REGNO (tmp)]
6454 || num_not_at_initial_offset
6455 || GET_CODE (old) == SUBREG)
6456 real_old = rl->in;
6457 else
6458 real_old = reg_equiv_mem[REGNO (tmp)];
6461 second_reload_reg = rld[secondary_reload].reg_rtx;
6462 icode = rl->secondary_in_icode;
6464 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6465 || (rl->in != 0 && rl->out != 0))
6467 enum reg_class new_class
6468 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6469 mode, real_oldequiv);
6471 if (new_class == NO_REGS)
6472 second_reload_reg = 0;
6473 else
6475 enum insn_code new_icode;
6476 enum machine_mode new_mode;
6478 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6479 REGNO (second_reload_reg)))
6480 oldequiv = old, real_oldequiv = real_old;
6481 else
6483 new_icode = reload_in_optab[(int) mode];
6484 if (new_icode != CODE_FOR_nothing
6485 && ((insn_data[(int) new_icode].operand[0].predicate
6486 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6487 (reloadreg, mode)))
6488 || (insn_data[(int) new_icode].operand[1].predicate
6489 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6490 (real_oldequiv, mode)))))
6491 new_icode = CODE_FOR_nothing;
6493 if (new_icode == CODE_FOR_nothing)
6494 new_mode = mode;
6495 else
6496 new_mode = insn_data[(int) new_icode].operand[2].mode;
6498 if (GET_MODE (second_reload_reg) != new_mode)
6500 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6501 new_mode))
6502 oldequiv = old, real_oldequiv = real_old;
6503 else
6504 second_reload_reg
6505 = gen_rtx_REG (new_mode,
6506 REGNO (second_reload_reg));
6512 /* If we still need a secondary reload register, check
6513 to see if it is being used as a scratch or intermediate
6514 register and generate code appropriately. If we need
6515 a scratch register, use REAL_OLDEQUIV since the form of
6516 the insn may depend on the actual address if it is
6517 a MEM. */
6519 if (second_reload_reg)
6521 if (icode != CODE_FOR_nothing)
6523 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6524 second_reload_reg));
6525 special = 1;
6527 else
6529 /* See if we need a scratch register to load the
6530 intermediate register (a tertiary reload). */
6531 enum insn_code tertiary_icode
6532 = rld[secondary_reload].secondary_in_icode;
6534 if (tertiary_icode != CODE_FOR_nothing)
6536 rtx third_reload_reg
6537 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
6539 emit_insn ((GEN_FCN (tertiary_icode)
6540 (second_reload_reg, real_oldequiv,
6541 third_reload_reg)));
6543 else
6544 gen_reload (second_reload_reg, real_oldequiv,
6545 rl->opnum,
6546 rl->when_needed);
6548 oldequiv = second_reload_reg;
6552 #endif
6554 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6556 rtx real_oldequiv = oldequiv;
6558 if ((GET_CODE (oldequiv) == REG
6559 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6560 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6561 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6562 || (GET_CODE (oldequiv) == SUBREG
6563 && GET_CODE (SUBREG_REG (oldequiv)) == REG
6564 && (REGNO (SUBREG_REG (oldequiv))
6565 >= FIRST_PSEUDO_REGISTER)
6566 && ((reg_equiv_memory_loc
6567 [REGNO (SUBREG_REG (oldequiv))] != 0)
6568 || (reg_equiv_constant
6569 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6570 || (CONSTANT_P (oldequiv)
6571 && PREFERRED_RELOAD_CLASS (oldequiv,
6572 REGNO_REG_CLASS (REGNO (reloadreg))) == NO_REGS))
6573 real_oldequiv = rl->in;
6574 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6575 rl->when_needed);
6578 if (flag_non_call_exceptions)
6579 copy_eh_notes (insn, get_insns ());
6581 /* End this sequence. */
6582 *where = get_insns ();
6583 end_sequence ();
6585 /* Update reload_override_in so that delete_address_reloads_1
6586 can see the actual register usage. */
6587 if (oldequiv_reg)
6588 reload_override_in[j] = oldequiv;
6591 /* Generate insns to for the output reload RL, which is for the insn described
6592 by CHAIN and has the number J. */
6593 static void
6594 emit_output_reload_insns (chain, rl, j)
6595 struct insn_chain *chain;
6596 struct reload *rl;
6597 int j;
6599 rtx reloadreg = rl->reg_rtx;
6600 rtx insn = chain->insn;
6601 int special = 0;
6602 rtx old = rl->out;
6603 enum machine_mode mode = GET_MODE (old);
6604 rtx p;
6606 if (rl->when_needed == RELOAD_OTHER)
6607 start_sequence ();
6608 else
6609 push_to_sequence (output_reload_insns[rl->opnum]);
6611 /* Determine the mode to reload in.
6612 See comments above (for input reloading). */
6614 if (mode == VOIDmode)
6616 /* VOIDmode should never happen for an output. */
6617 if (asm_noperands (PATTERN (insn)) < 0)
6618 /* It's the compiler's fault. */
6619 fatal_insn ("VOIDmode on an output", insn);
6620 error_for_asm (insn, "output operand is constant in `asm'");
6621 /* Prevent crash--use something we know is valid. */
6622 mode = word_mode;
6623 old = gen_rtx_REG (mode, REGNO (reloadreg));
6626 if (GET_MODE (reloadreg) != mode)
6627 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6629 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
6631 /* If we need two reload regs, set RELOADREG to the intermediate
6632 one, since it will be stored into OLD. We might need a secondary
6633 register only for an input reload, so check again here. */
6635 if (rl->secondary_out_reload >= 0)
6637 rtx real_old = old;
6639 if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
6640 && reg_equiv_mem[REGNO (old)] != 0)
6641 real_old = reg_equiv_mem[REGNO (old)];
6643 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6644 mode, real_old)
6645 != NO_REGS))
6647 rtx second_reloadreg = reloadreg;
6648 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
6650 /* See if RELOADREG is to be used as a scratch register
6651 or as an intermediate register. */
6652 if (rl->secondary_out_icode != CODE_FOR_nothing)
6654 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6655 (real_old, second_reloadreg, reloadreg)));
6656 special = 1;
6658 else
6660 /* See if we need both a scratch and intermediate reload
6661 register. */
6663 int secondary_reload = rl->secondary_out_reload;
6664 enum insn_code tertiary_icode
6665 = rld[secondary_reload].secondary_out_icode;
6667 if (GET_MODE (reloadreg) != mode)
6668 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6670 if (tertiary_icode != CODE_FOR_nothing)
6672 rtx third_reloadreg
6673 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6674 rtx tem;
6676 /* Copy primary reload reg to secondary reload reg.
6677 (Note that these have been swapped above, then
6678 secondary reload reg to OLD using our insn.) */
6680 /* If REAL_OLD is a paradoxical SUBREG, remove it
6681 and try to put the opposite SUBREG on
6682 RELOADREG. */
6683 if (GET_CODE (real_old) == SUBREG
6684 && (GET_MODE_SIZE (GET_MODE (real_old))
6685 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6686 && 0 != (tem = gen_lowpart_common
6687 (GET_MODE (SUBREG_REG (real_old)),
6688 reloadreg)))
6689 real_old = SUBREG_REG (real_old), reloadreg = tem;
6691 gen_reload (reloadreg, second_reloadreg,
6692 rl->opnum, rl->when_needed);
6693 emit_insn ((GEN_FCN (tertiary_icode)
6694 (real_old, reloadreg, third_reloadreg)));
6695 special = 1;
6698 else
6699 /* Copy between the reload regs here and then to
6700 OUT later. */
6702 gen_reload (reloadreg, second_reloadreg,
6703 rl->opnum, rl->when_needed);
6707 #endif
6709 /* Output the last reload insn. */
6710 if (! special)
6712 rtx set;
6714 /* Don't output the last reload if OLD is not the dest of
6715 INSN and is in the src and is clobbered by INSN. */
6716 if (! flag_expensive_optimizations
6717 || GET_CODE (old) != REG
6718 || !(set = single_set (insn))
6719 || rtx_equal_p (old, SET_DEST (set))
6720 || !reg_mentioned_p (old, SET_SRC (set))
6721 || !regno_clobbered_p (REGNO (old), insn, rl->mode, 0))
6722 gen_reload (old, reloadreg, rl->opnum,
6723 rl->when_needed);
6726 /* Look at all insns we emitted, just to be safe. */
6727 for (p = get_insns (); p; p = NEXT_INSN (p))
6728 if (INSN_P (p))
6730 rtx pat = PATTERN (p);
6732 /* If this output reload doesn't come from a spill reg,
6733 clear any memory of reloaded copies of the pseudo reg.
6734 If this output reload comes from a spill reg,
6735 reg_has_output_reload will make this do nothing. */
6736 note_stores (pat, forget_old_reloads_1, NULL);
6738 if (reg_mentioned_p (rl->reg_rtx, pat))
6740 rtx set = single_set (insn);
6741 if (reload_spill_index[j] < 0
6742 && set
6743 && SET_SRC (set) == rl->reg_rtx)
6745 int src = REGNO (SET_SRC (set));
6747 reload_spill_index[j] = src;
6748 SET_HARD_REG_BIT (reg_is_output_reload, src);
6749 if (find_regno_note (insn, REG_DEAD, src))
6750 SET_HARD_REG_BIT (reg_reloaded_died, src);
6752 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6754 int s = rl->secondary_out_reload;
6755 set = single_set (p);
6756 /* If this reload copies only to the secondary reload
6757 register, the secondary reload does the actual
6758 store. */
6759 if (s >= 0 && set == NULL_RTX)
6760 /* We can't tell what function the secondary reload
6761 has and where the actual store to the pseudo is
6762 made; leave new_spill_reg_store alone. */
6764 else if (s >= 0
6765 && SET_SRC (set) == rl->reg_rtx
6766 && SET_DEST (set) == rld[s].reg_rtx)
6768 /* Usually the next instruction will be the
6769 secondary reload insn; if we can confirm
6770 that it is, setting new_spill_reg_store to
6771 that insn will allow an extra optimization. */
6772 rtx s_reg = rld[s].reg_rtx;
6773 rtx next = NEXT_INSN (p);
6774 rld[s].out = rl->out;
6775 rld[s].out_reg = rl->out_reg;
6776 set = single_set (next);
6777 if (set && SET_SRC (set) == s_reg
6778 && ! new_spill_reg_store[REGNO (s_reg)])
6780 SET_HARD_REG_BIT (reg_is_output_reload,
6781 REGNO (s_reg));
6782 new_spill_reg_store[REGNO (s_reg)] = next;
6785 else
6786 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6791 if (rl->when_needed == RELOAD_OTHER)
6793 emit_insns (other_output_reload_insns[rl->opnum]);
6794 other_output_reload_insns[rl->opnum] = get_insns ();
6796 else
6797 output_reload_insns[rl->opnum] = get_insns ();
6799 if (flag_non_call_exceptions)
6800 copy_eh_notes (insn, get_insns ());
6802 end_sequence ();
6805 /* Do input reloading for reload RL, which is for the insn described by CHAIN
6806 and has the number J. */
6807 static void
6808 do_input_reload (chain, rl, j)
6809 struct insn_chain *chain;
6810 struct reload *rl;
6811 int j;
6813 int expect_occurrences = 1;
6814 rtx insn = chain->insn;
6815 rtx old = (rl->in && GET_CODE (rl->in) == MEM
6816 ? rl->in_reg : rl->in);
6818 if (old != 0
6819 /* AUTO_INC reloads need to be handled even if inherited. We got an
6820 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6821 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6822 && ! rtx_equal_p (rl->reg_rtx, old)
6823 && rl->reg_rtx != 0)
6824 emit_input_reload_insns (chain, rld + j, old, j);
6826 /* When inheriting a wider reload, we have a MEM in rl->in,
6827 e.g. inheriting a SImode output reload for
6828 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6829 if (optimize && reload_inherited[j] && rl->in
6830 && GET_CODE (rl->in) == MEM
6831 && GET_CODE (rl->in_reg) == MEM
6832 && reload_spill_index[j] >= 0
6833 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6835 expect_occurrences
6836 = count_occurrences (PATTERN (insn), rl->in, 0) == 1 ? 0 : -1;
6837 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
6840 /* If we are reloading a register that was recently stored in with an
6841 output-reload, see if we can prove there was
6842 actually no need to store the old value in it. */
6844 if (optimize
6845 && (reload_inherited[j] || reload_override_in[j])
6846 && rl->reg_rtx
6847 && GET_CODE (rl->reg_rtx) == REG
6848 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6849 #if 0
6850 /* There doesn't seem to be any reason to restrict this to pseudos
6851 and doing so loses in the case where we are copying from a
6852 register of the wrong class. */
6853 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6854 >= FIRST_PSEUDO_REGISTER)
6855 #endif
6856 /* The insn might have already some references to stackslots
6857 replaced by MEMs, while reload_out_reg still names the
6858 original pseudo. */
6859 && (dead_or_set_p (insn,
6860 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6861 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6862 rl->out_reg)))
6863 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6866 /* Do output reloading for reload RL, which is for the insn described by
6867 CHAIN and has the number J.
6868 ??? At some point we need to support handling output reloads of
6869 JUMP_INSNs or insns that set cc0. */
6870 static void
6871 do_output_reload (chain, rl, j)
6872 struct insn_chain *chain;
6873 struct reload *rl;
6874 int j;
6876 rtx note, old;
6877 rtx insn = chain->insn;
6878 /* If this is an output reload that stores something that is
6879 not loaded in this same reload, see if we can eliminate a previous
6880 store. */
6881 rtx pseudo = rl->out_reg;
6883 if (pseudo
6884 && GET_CODE (pseudo) == REG
6885 && ! rtx_equal_p (rl->in_reg, pseudo)
6886 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6887 && reg_last_reload_reg[REGNO (pseudo)])
6889 int pseudo_no = REGNO (pseudo);
6890 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
6892 /* We don't need to test full validity of last_regno for
6893 inherit here; we only want to know if the store actually
6894 matches the pseudo. */
6895 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
6896 && reg_reloaded_contents[last_regno] == pseudo_no
6897 && spill_reg_store[last_regno]
6898 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
6899 delete_output_reload (insn, j, last_regno);
6902 old = rl->out_reg;
6903 if (old == 0
6904 || rl->reg_rtx == old
6905 || rl->reg_rtx == 0)
6906 return;
6908 /* An output operand that dies right away does need a reload,
6909 but need not be copied from it. Show the new location in the
6910 REG_UNUSED note. */
6911 if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
6912 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
6914 XEXP (note, 0) = rl->reg_rtx;
6915 return;
6917 /* Likewise for a SUBREG of an operand that dies. */
6918 else if (GET_CODE (old) == SUBREG
6919 && GET_CODE (SUBREG_REG (old)) == REG
6920 && 0 != (note = find_reg_note (insn, REG_UNUSED,
6921 SUBREG_REG (old))))
6923 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
6924 rl->reg_rtx);
6925 return;
6927 else if (GET_CODE (old) == SCRATCH)
6928 /* If we aren't optimizing, there won't be a REG_UNUSED note,
6929 but we don't want to make an output reload. */
6930 return;
6932 /* If is a JUMP_INSN, we can't support output reloads yet. */
6933 if (GET_CODE (insn) == JUMP_INSN)
6934 abort ();
6936 emit_output_reload_insns (chain, rld + j, j);
6939 /* Output insns to reload values in and out of the chosen reload regs. */
6941 static void
6942 emit_reload_insns (chain)
6943 struct insn_chain *chain;
6945 rtx insn = chain->insn;
6947 register int j;
6948 rtx following_insn = NEXT_INSN (insn);
6949 rtx before_insn = PREV_INSN (insn);
6951 CLEAR_HARD_REG_SET (reg_reloaded_died);
6953 for (j = 0; j < reload_n_operands; j++)
6954 input_reload_insns[j] = input_address_reload_insns[j]
6955 = inpaddr_address_reload_insns[j]
6956 = output_reload_insns[j] = output_address_reload_insns[j]
6957 = outaddr_address_reload_insns[j]
6958 = other_output_reload_insns[j] = 0;
6959 other_input_address_reload_insns = 0;
6960 other_input_reload_insns = 0;
6961 operand_reload_insns = 0;
6962 other_operand_reload_insns = 0;
6964 /* Dump reloads into the dump file. */
6965 if (rtl_dump_file)
6967 fprintf (rtl_dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
6968 debug_reload_to_stream (rtl_dump_file);
6971 /* Now output the instructions to copy the data into and out of the
6972 reload registers. Do these in the order that the reloads were reported,
6973 since reloads of base and index registers precede reloads of operands
6974 and the operands may need the base and index registers reloaded. */
6976 for (j = 0; j < n_reloads; j++)
6978 if (rld[j].reg_rtx
6979 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
6980 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
6982 do_input_reload (chain, rld + j, j);
6983 do_output_reload (chain, rld + j, j);
6986 /* Now write all the insns we made for reloads in the order expected by
6987 the allocation functions. Prior to the insn being reloaded, we write
6988 the following reloads:
6990 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
6992 RELOAD_OTHER reloads.
6994 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
6995 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
6996 RELOAD_FOR_INPUT reload for the operand.
6998 RELOAD_FOR_OPADDR_ADDRS reloads.
7000 RELOAD_FOR_OPERAND_ADDRESS reloads.
7002 After the insn being reloaded, we write the following:
7004 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7005 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7006 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7007 reloads for the operand. The RELOAD_OTHER output reloads are
7008 output in descending order by reload number. */
7010 emit_insns_before (other_input_address_reload_insns, insn);
7011 emit_insns_before (other_input_reload_insns, insn);
7013 for (j = 0; j < reload_n_operands; j++)
7015 emit_insns_before (inpaddr_address_reload_insns[j], insn);
7016 emit_insns_before (input_address_reload_insns[j], insn);
7017 emit_insns_before (input_reload_insns[j], insn);
7020 emit_insns_before (other_operand_reload_insns, insn);
7021 emit_insns_before (operand_reload_insns, insn);
7023 for (j = 0; j < reload_n_operands; j++)
7025 emit_insns_before (outaddr_address_reload_insns[j], following_insn);
7026 emit_insns_before (output_address_reload_insns[j], following_insn);
7027 emit_insns_before (output_reload_insns[j], following_insn);
7028 emit_insns_before (other_output_reload_insns[j], following_insn);
7031 /* Keep basic block info up to date. */
7032 if (n_basic_blocks)
7034 if (BLOCK_HEAD (chain->block) == insn)
7035 BLOCK_HEAD (chain->block) = NEXT_INSN (before_insn);
7036 if (BLOCK_END (chain->block) == insn)
7037 BLOCK_END (chain->block) = PREV_INSN (following_insn);
7040 /* For all the spill regs newly reloaded in this instruction,
7041 record what they were reloaded from, so subsequent instructions
7042 can inherit the reloads.
7044 Update spill_reg_store for the reloads of this insn.
7045 Copy the elements that were updated in the loop above. */
7047 for (j = 0; j < n_reloads; j++)
7049 register int r = reload_order[j];
7050 register int i = reload_spill_index[r];
7052 /* If this is a non-inherited input reload from a pseudo, we must
7053 clear any memory of a previous store to the same pseudo. Only do
7054 something if there will not be an output reload for the pseudo
7055 being reloaded. */
7056 if (rld[r].in_reg != 0
7057 && ! (reload_inherited[r] || reload_override_in[r]))
7059 rtx reg = rld[r].in_reg;
7061 if (GET_CODE (reg) == SUBREG)
7062 reg = SUBREG_REG (reg);
7064 if (GET_CODE (reg) == REG
7065 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7066 && ! reg_has_output_reload[REGNO (reg)])
7068 int nregno = REGNO (reg);
7070 if (reg_last_reload_reg[nregno])
7072 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7074 if (reg_reloaded_contents[last_regno] == nregno)
7075 spill_reg_store[last_regno] = 0;
7080 /* I is nonneg if this reload used a register.
7081 If rld[r].reg_rtx is 0, this is an optional reload
7082 that we opted to ignore. */
7084 if (i >= 0 && rld[r].reg_rtx != 0)
7086 int nr = HARD_REGNO_NREGS (i, GET_MODE (rld[r].reg_rtx));
7087 int k;
7088 int part_reaches_end = 0;
7089 int all_reaches_end = 1;
7091 /* For a multi register reload, we need to check if all or part
7092 of the value lives to the end. */
7093 for (k = 0; k < nr; k++)
7095 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7096 rld[r].when_needed))
7097 part_reaches_end = 1;
7098 else
7099 all_reaches_end = 0;
7102 /* Ignore reloads that don't reach the end of the insn in
7103 entirety. */
7104 if (all_reaches_end)
7106 /* First, clear out memory of what used to be in this spill reg.
7107 If consecutive registers are used, clear them all. */
7109 for (k = 0; k < nr; k++)
7110 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7112 /* Maybe the spill reg contains a copy of reload_out. */
7113 if (rld[r].out != 0
7114 && (GET_CODE (rld[r].out) == REG
7115 #ifdef AUTO_INC_DEC
7116 || ! rld[r].out_reg
7117 #endif
7118 || GET_CODE (rld[r].out_reg) == REG))
7120 rtx out = (GET_CODE (rld[r].out) == REG
7121 ? rld[r].out
7122 : rld[r].out_reg
7123 ? rld[r].out_reg
7124 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7125 register int nregno = REGNO (out);
7126 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7127 : HARD_REGNO_NREGS (nregno,
7128 GET_MODE (rld[r].reg_rtx)));
7130 spill_reg_store[i] = new_spill_reg_store[i];
7131 spill_reg_stored_to[i] = out;
7132 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7134 /* If NREGNO is a hard register, it may occupy more than
7135 one register. If it does, say what is in the
7136 rest of the registers assuming that both registers
7137 agree on how many words the object takes. If not,
7138 invalidate the subsequent registers. */
7140 if (nregno < FIRST_PSEUDO_REGISTER)
7141 for (k = 1; k < nnr; k++)
7142 reg_last_reload_reg[nregno + k]
7143 = (nr == nnr
7144 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
7145 REGNO (rld[r].reg_rtx) + k)
7146 : 0);
7148 /* Now do the inverse operation. */
7149 for (k = 0; k < nr; k++)
7151 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7152 reg_reloaded_contents[i + k]
7153 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7154 ? nregno
7155 : nregno + k);
7156 reg_reloaded_insn[i + k] = insn;
7157 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7161 /* Maybe the spill reg contains a copy of reload_in. Only do
7162 something if there will not be an output reload for
7163 the register being reloaded. */
7164 else if (rld[r].out_reg == 0
7165 && rld[r].in != 0
7166 && ((GET_CODE (rld[r].in) == REG
7167 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7168 && ! reg_has_output_reload[REGNO (rld[r].in)])
7169 || (GET_CODE (rld[r].in_reg) == REG
7170 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
7171 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7173 register int nregno;
7174 int nnr;
7176 if (GET_CODE (rld[r].in) == REG
7177 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7178 nregno = REGNO (rld[r].in);
7179 else if (GET_CODE (rld[r].in_reg) == REG)
7180 nregno = REGNO (rld[r].in_reg);
7181 else
7182 nregno = REGNO (XEXP (rld[r].in_reg, 0));
7184 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7185 : HARD_REGNO_NREGS (nregno,
7186 GET_MODE (rld[r].reg_rtx)));
7188 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7190 if (nregno < FIRST_PSEUDO_REGISTER)
7191 for (k = 1; k < nnr; k++)
7192 reg_last_reload_reg[nregno + k]
7193 = (nr == nnr
7194 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
7195 REGNO (rld[r].reg_rtx) + k)
7196 : 0);
7198 /* Unless we inherited this reload, show we haven't
7199 recently done a store.
7200 Previous stores of inherited auto_inc expressions
7201 also have to be discarded. */
7202 if (! reload_inherited[r]
7203 || (rld[r].out && ! rld[r].out_reg))
7204 spill_reg_store[i] = 0;
7206 for (k = 0; k < nr; k++)
7208 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7209 reg_reloaded_contents[i + k]
7210 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7211 ? nregno
7212 : nregno + k);
7213 reg_reloaded_insn[i + k] = insn;
7214 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7219 /* However, if part of the reload reaches the end, then we must
7220 invalidate the old info for the part that survives to the end. */
7221 else if (part_reaches_end)
7223 for (k = 0; k < nr; k++)
7224 if (reload_reg_reaches_end_p (i + k,
7225 rld[r].opnum,
7226 rld[r].when_needed))
7227 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7231 /* The following if-statement was #if 0'd in 1.34 (or before...).
7232 It's reenabled in 1.35 because supposedly nothing else
7233 deals with this problem. */
7235 /* If a register gets output-reloaded from a non-spill register,
7236 that invalidates any previous reloaded copy of it.
7237 But forget_old_reloads_1 won't get to see it, because
7238 it thinks only about the original insn. So invalidate it here. */
7239 if (i < 0 && rld[r].out != 0
7240 && (GET_CODE (rld[r].out) == REG
7241 || (GET_CODE (rld[r].out) == MEM
7242 && GET_CODE (rld[r].out_reg) == REG)))
7244 rtx out = (GET_CODE (rld[r].out) == REG
7245 ? rld[r].out : rld[r].out_reg);
7246 register int nregno = REGNO (out);
7247 if (nregno >= FIRST_PSEUDO_REGISTER)
7249 rtx src_reg, store_insn = NULL_RTX;
7251 reg_last_reload_reg[nregno] = 0;
7253 /* If we can find a hard register that is stored, record
7254 the storing insn so that we may delete this insn with
7255 delete_output_reload. */
7256 src_reg = rld[r].reg_rtx;
7258 /* If this is an optional reload, try to find the source reg
7259 from an input reload. */
7260 if (! src_reg)
7262 rtx set = single_set (insn);
7263 if (set && SET_DEST (set) == rld[r].out)
7265 int k;
7267 src_reg = SET_SRC (set);
7268 store_insn = insn;
7269 for (k = 0; k < n_reloads; k++)
7271 if (rld[k].in == src_reg)
7273 src_reg = rld[k].reg_rtx;
7274 break;
7279 else
7280 store_insn = new_spill_reg_store[REGNO (src_reg)];
7281 if (src_reg && GET_CODE (src_reg) == REG
7282 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7284 int src_regno = REGNO (src_reg);
7285 int nr = HARD_REGNO_NREGS (src_regno, rld[r].mode);
7286 /* The place where to find a death note varies with
7287 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7288 necessarily checked exactly in the code that moves
7289 notes, so just check both locations. */
7290 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7291 if (! note)
7292 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7293 while (nr-- > 0)
7295 spill_reg_store[src_regno + nr] = store_insn;
7296 spill_reg_stored_to[src_regno + nr] = out;
7297 reg_reloaded_contents[src_regno + nr] = nregno;
7298 reg_reloaded_insn[src_regno + nr] = store_insn;
7299 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7300 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7301 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7302 if (note)
7303 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7304 else
7305 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7307 reg_last_reload_reg[nregno] = src_reg;
7310 else
7312 int num_regs = HARD_REGNO_NREGS (nregno, GET_MODE (rld[r].out));
7314 while (num_regs-- > 0)
7315 reg_last_reload_reg[nregno + num_regs] = 0;
7319 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7322 /* Emit code to perform a reload from IN (which may be a reload register) to
7323 OUT (which may also be a reload register). IN or OUT is from operand
7324 OPNUM with reload type TYPE.
7326 Returns first insn emitted. */
7329 gen_reload (out, in, opnum, type)
7330 rtx out;
7331 rtx in;
7332 int opnum;
7333 enum reload_type type;
7335 rtx last = get_last_insn ();
7336 rtx tem;
7338 /* If IN is a paradoxical SUBREG, remove it and try to put the
7339 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7340 if (GET_CODE (in) == SUBREG
7341 && (GET_MODE_SIZE (GET_MODE (in))
7342 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7343 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7344 in = SUBREG_REG (in), out = tem;
7345 else if (GET_CODE (out) == SUBREG
7346 && (GET_MODE_SIZE (GET_MODE (out))
7347 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7348 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7349 out = SUBREG_REG (out), in = tem;
7351 /* How to do this reload can get quite tricky. Normally, we are being
7352 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7353 register that didn't get a hard register. In that case we can just
7354 call emit_move_insn.
7356 We can also be asked to reload a PLUS that adds a register or a MEM to
7357 another register, constant or MEM. This can occur during frame pointer
7358 elimination and while reloading addresses. This case is handled by
7359 trying to emit a single insn to perform the add. If it is not valid,
7360 we use a two insn sequence.
7362 Finally, we could be called to handle an 'o' constraint by putting
7363 an address into a register. In that case, we first try to do this
7364 with a named pattern of "reload_load_address". If no such pattern
7365 exists, we just emit a SET insn and hope for the best (it will normally
7366 be valid on machines that use 'o').
7368 This entire process is made complex because reload will never
7369 process the insns we generate here and so we must ensure that
7370 they will fit their constraints and also by the fact that parts of
7371 IN might be being reloaded separately and replaced with spill registers.
7372 Because of this, we are, in some sense, just guessing the right approach
7373 here. The one listed above seems to work.
7375 ??? At some point, this whole thing needs to be rethought. */
7377 if (GET_CODE (in) == PLUS
7378 && (GET_CODE (XEXP (in, 0)) == REG
7379 || GET_CODE (XEXP (in, 0)) == SUBREG
7380 || GET_CODE (XEXP (in, 0)) == MEM)
7381 && (GET_CODE (XEXP (in, 1)) == REG
7382 || GET_CODE (XEXP (in, 1)) == SUBREG
7383 || CONSTANT_P (XEXP (in, 1))
7384 || GET_CODE (XEXP (in, 1)) == MEM))
7386 /* We need to compute the sum of a register or a MEM and another
7387 register, constant, or MEM, and put it into the reload
7388 register. The best possible way of doing this is if the machine
7389 has a three-operand ADD insn that accepts the required operands.
7391 The simplest approach is to try to generate such an insn and see if it
7392 is recognized and matches its constraints. If so, it can be used.
7394 It might be better not to actually emit the insn unless it is valid,
7395 but we need to pass the insn as an operand to `recog' and
7396 `extract_insn' and it is simpler to emit and then delete the insn if
7397 not valid than to dummy things up. */
7399 rtx op0, op1, tem, insn;
7400 int code;
7402 op0 = find_replacement (&XEXP (in, 0));
7403 op1 = find_replacement (&XEXP (in, 1));
7405 /* Since constraint checking is strict, commutativity won't be
7406 checked, so we need to do that here to avoid spurious failure
7407 if the add instruction is two-address and the second operand
7408 of the add is the same as the reload reg, which is frequently
7409 the case. If the insn would be A = B + A, rearrange it so
7410 it will be A = A + B as constrain_operands expects. */
7412 if (GET_CODE (XEXP (in, 1)) == REG
7413 && REGNO (out) == REGNO (XEXP (in, 1)))
7414 tem = op0, op0 = op1, op1 = tem;
7416 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7417 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7419 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
7420 code = recog_memoized (insn);
7422 if (code >= 0)
7424 extract_insn (insn);
7425 /* We want constrain operands to treat this insn strictly in
7426 its validity determination, i.e., the way it would after reload
7427 has completed. */
7428 if (constrain_operands (1))
7429 return insn;
7432 delete_insns_since (last);
7434 /* If that failed, we must use a conservative two-insn sequence.
7436 Use a move to copy one operand into the reload register. Prefer
7437 to reload a constant, MEM or pseudo since the move patterns can
7438 handle an arbitrary operand. If OP1 is not a constant, MEM or
7439 pseudo and OP1 is not a valid operand for an add instruction, then
7440 reload OP1.
7442 After reloading one of the operands into the reload register, add
7443 the reload register to the output register.
7445 If there is another way to do this for a specific machine, a
7446 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7447 we emit below. */
7449 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7451 if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
7452 || (GET_CODE (op1) == REG
7453 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7454 || (code != CODE_FOR_nothing
7455 && ! ((*insn_data[code].operand[2].predicate)
7456 (op1, insn_data[code].operand[2].mode))))
7457 tem = op0, op0 = op1, op1 = tem;
7459 gen_reload (out, op0, opnum, type);
7461 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7462 This fixes a problem on the 32K where the stack pointer cannot
7463 be used as an operand of an add insn. */
7465 if (rtx_equal_p (op0, op1))
7466 op1 = out;
7468 insn = emit_insn (gen_add2_insn (out, op1));
7470 /* If that failed, copy the address register to the reload register.
7471 Then add the constant to the reload register. */
7473 code = recog_memoized (insn);
7475 if (code >= 0)
7477 extract_insn (insn);
7478 /* We want constrain operands to treat this insn strictly in
7479 its validity determination, i.e., the way it would after reload
7480 has completed. */
7481 if (constrain_operands (1))
7483 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7484 REG_NOTES (insn)
7485 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7486 return insn;
7490 delete_insns_since (last);
7492 gen_reload (out, op1, opnum, type);
7493 insn = emit_insn (gen_add2_insn (out, op0));
7494 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7497 #ifdef SECONDARY_MEMORY_NEEDED
7498 /* If we need a memory location to do the move, do it that way. */
7499 else if (GET_CODE (in) == REG && REGNO (in) < FIRST_PSEUDO_REGISTER
7500 && GET_CODE (out) == REG && REGNO (out) < FIRST_PSEUDO_REGISTER
7501 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
7502 REGNO_REG_CLASS (REGNO (out)),
7503 GET_MODE (out)))
7505 /* Get the memory to use and rewrite both registers to its mode. */
7506 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7508 if (GET_MODE (loc) != GET_MODE (out))
7509 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7511 if (GET_MODE (loc) != GET_MODE (in))
7512 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7514 gen_reload (loc, in, opnum, type);
7515 gen_reload (out, loc, opnum, type);
7517 #endif
7519 /* If IN is a simple operand, use gen_move_insn. */
7520 else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
7521 emit_insn (gen_move_insn (out, in));
7523 #ifdef HAVE_reload_load_address
7524 else if (HAVE_reload_load_address)
7525 emit_insn (gen_reload_load_address (out, in));
7526 #endif
7528 /* Otherwise, just write (set OUT IN) and hope for the best. */
7529 else
7530 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7532 /* Return the first insn emitted.
7533 We can not just return get_last_insn, because there may have
7534 been multiple instructions emitted. Also note that gen_move_insn may
7535 emit more than one insn itself, so we can not assume that there is one
7536 insn emitted per emit_insn_before call. */
7538 return last ? NEXT_INSN (last) : get_insns ();
7541 /* Delete a previously made output-reload
7542 whose result we now believe is not needed.
7543 First we double-check.
7545 INSN is the insn now being processed.
7546 LAST_RELOAD_REG is the hard register number for which we want to delete
7547 the last output reload.
7548 J is the reload-number that originally used REG. The caller has made
7549 certain that reload J doesn't use REG any longer for input. */
7551 static void
7552 delete_output_reload (insn, j, last_reload_reg)
7553 rtx insn;
7554 int j;
7555 int last_reload_reg;
7557 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7558 rtx reg = spill_reg_stored_to[last_reload_reg];
7559 int k;
7560 int n_occurrences;
7561 int n_inherited = 0;
7562 register rtx i1;
7563 rtx substed;
7565 /* Get the raw pseudo-register referred to. */
7567 while (GET_CODE (reg) == SUBREG)
7568 reg = SUBREG_REG (reg);
7569 substed = reg_equiv_memory_loc[REGNO (reg)];
7571 /* This is unsafe if the operand occurs more often in the current
7572 insn than it is inherited. */
7573 for (k = n_reloads - 1; k >= 0; k--)
7575 rtx reg2 = rld[k].in;
7576 if (! reg2)
7577 continue;
7578 if (GET_CODE (reg2) == MEM || reload_override_in[k])
7579 reg2 = rld[k].in_reg;
7580 #ifdef AUTO_INC_DEC
7581 if (rld[k].out && ! rld[k].out_reg)
7582 reg2 = XEXP (rld[k].in_reg, 0);
7583 #endif
7584 while (GET_CODE (reg2) == SUBREG)
7585 reg2 = SUBREG_REG (reg2);
7586 if (rtx_equal_p (reg2, reg))
7588 if (reload_inherited[k] || reload_override_in[k] || k == j)
7590 n_inherited++;
7591 reg2 = rld[k].out_reg;
7592 if (! reg2)
7593 continue;
7594 while (GET_CODE (reg2) == SUBREG)
7595 reg2 = XEXP (reg2, 0);
7596 if (rtx_equal_p (reg2, reg))
7597 n_inherited++;
7599 else
7600 return;
7603 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7604 if (substed)
7605 n_occurrences += count_occurrences (PATTERN (insn),
7606 eliminate_regs (substed, 0,
7607 NULL_RTX), 0);
7608 if (n_occurrences > n_inherited)
7609 return;
7611 /* If the pseudo-reg we are reloading is no longer referenced
7612 anywhere between the store into it and here,
7613 and no jumps or labels intervene, then the value can get
7614 here through the reload reg alone.
7615 Otherwise, give up--return. */
7616 for (i1 = NEXT_INSN (output_reload_insn);
7617 i1 != insn; i1 = NEXT_INSN (i1))
7619 if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
7620 return;
7621 if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
7622 && reg_mentioned_p (reg, PATTERN (i1)))
7624 /* If this is USE in front of INSN, we only have to check that
7625 there are no more references than accounted for by inheritance. */
7626 while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
7628 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7629 i1 = NEXT_INSN (i1);
7631 if (n_occurrences <= n_inherited && i1 == insn)
7632 break;
7633 return;
7637 /* The caller has already checked that REG dies or is set in INSN.
7638 It has also checked that we are optimizing, and thus some inaccurancies
7639 in the debugging information are acceptable.
7640 So we could just delete output_reload_insn.
7641 But in some cases we can improve the debugging information without
7642 sacrificing optimization - maybe even improving the code:
7643 See if the pseudo reg has been completely replaced
7644 with reload regs. If so, delete the store insn
7645 and forget we had a stack slot for the pseudo. */
7646 if (rld[j].out != rld[j].in
7647 && REG_N_DEATHS (REGNO (reg)) == 1
7648 && REG_N_SETS (REGNO (reg)) == 1
7649 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7650 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7652 rtx i2;
7654 /* We know that it was used only between here
7655 and the beginning of the current basic block.
7656 (We also know that the last use before INSN was
7657 the output reload we are thinking of deleting, but never mind that.)
7658 Search that range; see if any ref remains. */
7659 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7661 rtx set = single_set (i2);
7663 /* Uses which just store in the pseudo don't count,
7664 since if they are the only uses, they are dead. */
7665 if (set != 0 && SET_DEST (set) == reg)
7666 continue;
7667 if (GET_CODE (i2) == CODE_LABEL
7668 || GET_CODE (i2) == JUMP_INSN)
7669 break;
7670 if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
7671 && reg_mentioned_p (reg, PATTERN (i2)))
7673 /* Some other ref remains; just delete the output reload we
7674 know to be dead. */
7675 delete_address_reloads (output_reload_insn, insn);
7676 PUT_CODE (output_reload_insn, NOTE);
7677 NOTE_SOURCE_FILE (output_reload_insn) = 0;
7678 NOTE_LINE_NUMBER (output_reload_insn) = NOTE_INSN_DELETED;
7679 return;
7683 /* Delete the now-dead stores into this pseudo. */
7684 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7686 rtx set = single_set (i2);
7688 if (set != 0 && SET_DEST (set) == reg)
7690 delete_address_reloads (i2, insn);
7691 /* This might be a basic block head,
7692 thus don't use delete_insn. */
7693 PUT_CODE (i2, NOTE);
7694 NOTE_SOURCE_FILE (i2) = 0;
7695 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
7697 if (GET_CODE (i2) == CODE_LABEL
7698 || GET_CODE (i2) == JUMP_INSN)
7699 break;
7702 /* For the debugging info,
7703 say the pseudo lives in this reload reg. */
7704 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
7705 alter_reg (REGNO (reg), -1);
7707 delete_address_reloads (output_reload_insn, insn);
7708 PUT_CODE (output_reload_insn, NOTE);
7709 NOTE_SOURCE_FILE (output_reload_insn) = 0;
7710 NOTE_LINE_NUMBER (output_reload_insn) = NOTE_INSN_DELETED;
7714 /* We are going to delete DEAD_INSN. Recursively delete loads of
7715 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7716 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7717 static void
7718 delete_address_reloads (dead_insn, current_insn)
7719 rtx dead_insn, current_insn;
7721 rtx set = single_set (dead_insn);
7722 rtx set2, dst, prev, next;
7723 if (set)
7725 rtx dst = SET_DEST (set);
7726 if (GET_CODE (dst) == MEM)
7727 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7729 /* If we deleted the store from a reloaded post_{in,de}c expression,
7730 we can delete the matching adds. */
7731 prev = PREV_INSN (dead_insn);
7732 next = NEXT_INSN (dead_insn);
7733 if (! prev || ! next)
7734 return;
7735 set = single_set (next);
7736 set2 = single_set (prev);
7737 if (! set || ! set2
7738 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7739 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7740 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7741 return;
7742 dst = SET_DEST (set);
7743 if (! rtx_equal_p (dst, SET_DEST (set2))
7744 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7745 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7746 || (INTVAL (XEXP (SET_SRC (set), 1))
7747 != -INTVAL (XEXP (SET_SRC (set2), 1))))
7748 return;
7749 delete_insn (prev);
7750 delete_insn (next);
7753 /* Subfunction of delete_address_reloads: process registers found in X. */
7754 static void
7755 delete_address_reloads_1 (dead_insn, x, current_insn)
7756 rtx dead_insn, x, current_insn;
7758 rtx prev, set, dst, i2;
7759 int i, j;
7760 enum rtx_code code = GET_CODE (x);
7762 if (code != REG)
7764 const char *fmt = GET_RTX_FORMAT (code);
7765 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7767 if (fmt[i] == 'e')
7768 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7769 else if (fmt[i] == 'E')
7771 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7772 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7773 current_insn);
7776 return;
7779 if (spill_reg_order[REGNO (x)] < 0)
7780 return;
7782 /* Scan backwards for the insn that sets x. This might be a way back due
7783 to inheritance. */
7784 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7786 code = GET_CODE (prev);
7787 if (code == CODE_LABEL || code == JUMP_INSN)
7788 return;
7789 if (GET_RTX_CLASS (code) != 'i')
7790 continue;
7791 if (reg_set_p (x, PATTERN (prev)))
7792 break;
7793 if (reg_referenced_p (x, PATTERN (prev)))
7794 return;
7796 if (! prev || INSN_UID (prev) < reload_first_uid)
7797 return;
7798 /* Check that PREV only sets the reload register. */
7799 set = single_set (prev);
7800 if (! set)
7801 return;
7802 dst = SET_DEST (set);
7803 if (GET_CODE (dst) != REG
7804 || ! rtx_equal_p (dst, x))
7805 return;
7806 if (! reg_set_p (dst, PATTERN (dead_insn)))
7808 /* Check if DST was used in a later insn -
7809 it might have been inherited. */
7810 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7812 if (GET_CODE (i2) == CODE_LABEL)
7813 break;
7814 if (! INSN_P (i2))
7815 continue;
7816 if (reg_referenced_p (dst, PATTERN (i2)))
7818 /* If there is a reference to the register in the current insn,
7819 it might be loaded in a non-inherited reload. If no other
7820 reload uses it, that means the register is set before
7821 referenced. */
7822 if (i2 == current_insn)
7824 for (j = n_reloads - 1; j >= 0; j--)
7825 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7826 || reload_override_in[j] == dst)
7827 return;
7828 for (j = n_reloads - 1; j >= 0; j--)
7829 if (rld[j].in && rld[j].reg_rtx == dst)
7830 break;
7831 if (j >= 0)
7832 break;
7834 return;
7836 if (GET_CODE (i2) == JUMP_INSN)
7837 break;
7838 /* If DST is still live at CURRENT_INSN, check if it is used for
7839 any reload. Note that even if CURRENT_INSN sets DST, we still
7840 have to check the reloads. */
7841 if (i2 == current_insn)
7843 for (j = n_reloads - 1; j >= 0; j--)
7844 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7845 || reload_override_in[j] == dst)
7846 return;
7847 /* ??? We can't finish the loop here, because dst might be
7848 allocated to a pseudo in this block if no reload in this
7849 block needs any of the clsses containing DST - see
7850 spill_hard_reg. There is no easy way to tell this, so we
7851 have to scan till the end of the basic block. */
7853 if (reg_set_p (dst, PATTERN (i2)))
7854 break;
7857 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
7858 reg_reloaded_contents[REGNO (dst)] = -1;
7859 /* Can't use delete_insn here because PREV might be a basic block head. */
7860 PUT_CODE (prev, NOTE);
7861 NOTE_LINE_NUMBER (prev) = NOTE_INSN_DELETED;
7862 NOTE_SOURCE_FILE (prev) = 0;
7865 /* Output reload-insns to reload VALUE into RELOADREG.
7866 VALUE is an autoincrement or autodecrement RTX whose operand
7867 is a register or memory location;
7868 so reloading involves incrementing that location.
7869 IN is either identical to VALUE, or some cheaper place to reload from.
7871 INC_AMOUNT is the number to increment or decrement by (always positive).
7872 This cannot be deduced from VALUE.
7874 Return the instruction that stores into RELOADREG. */
7876 static rtx
7877 inc_for_reload (reloadreg, in, value, inc_amount)
7878 rtx reloadreg;
7879 rtx in, value;
7880 int inc_amount;
7882 /* REG or MEM to be copied and incremented. */
7883 rtx incloc = XEXP (value, 0);
7884 /* Nonzero if increment after copying. */
7885 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
7886 rtx last;
7887 rtx inc;
7888 rtx add_insn;
7889 int code;
7890 rtx store;
7891 rtx real_in = in == value ? XEXP (in, 0) : in;
7893 /* No hard register is equivalent to this register after
7894 inc/dec operation. If REG_LAST_RELOAD_REG were non-zero,
7895 we could inc/dec that register as well (maybe even using it for
7896 the source), but I'm not sure it's worth worrying about. */
7897 if (GET_CODE (incloc) == REG)
7898 reg_last_reload_reg[REGNO (incloc)] = 0;
7900 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
7901 inc_amount = -inc_amount;
7903 inc = GEN_INT (inc_amount);
7905 /* If this is post-increment, first copy the location to the reload reg. */
7906 if (post && real_in != reloadreg)
7907 emit_insn (gen_move_insn (reloadreg, real_in));
7909 if (in == value)
7911 /* See if we can directly increment INCLOC. Use a method similar to
7912 that in gen_reload. */
7914 last = get_last_insn ();
7915 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
7916 gen_rtx_PLUS (GET_MODE (incloc),
7917 incloc, inc)));
7919 code = recog_memoized (add_insn);
7920 if (code >= 0)
7922 extract_insn (add_insn);
7923 if (constrain_operands (1))
7925 /* If this is a pre-increment and we have incremented the value
7926 where it lives, copy the incremented value to RELOADREG to
7927 be used as an address. */
7929 if (! post)
7930 emit_insn (gen_move_insn (reloadreg, incloc));
7932 return add_insn;
7935 delete_insns_since (last);
7938 /* If couldn't do the increment directly, must increment in RELOADREG.
7939 The way we do this depends on whether this is pre- or post-increment.
7940 For pre-increment, copy INCLOC to the reload register, increment it
7941 there, then save back. */
7943 if (! post)
7945 if (in != reloadreg)
7946 emit_insn (gen_move_insn (reloadreg, real_in));
7947 emit_insn (gen_add2_insn (reloadreg, inc));
7948 store = emit_insn (gen_move_insn (incloc, reloadreg));
7950 else
7952 /* Postincrement.
7953 Because this might be a jump insn or a compare, and because RELOADREG
7954 may not be available after the insn in an input reload, we must do
7955 the incrementation before the insn being reloaded for.
7957 We have already copied IN to RELOADREG. Increment the copy in
7958 RELOADREG, save that back, then decrement RELOADREG so it has
7959 the original value. */
7961 emit_insn (gen_add2_insn (reloadreg, inc));
7962 store = emit_insn (gen_move_insn (incloc, reloadreg));
7963 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
7966 return store;
7969 /* Return 1 if we are certain that the constraint-string STRING allows
7970 the hard register REG. Return 0 if we can't be sure of this. */
7972 static int
7973 constraint_accepts_reg_p (string, reg)
7974 const char *string;
7975 rtx reg;
7977 int value = 0;
7978 int regno = true_regnum (reg);
7979 int c;
7981 /* Initialize for first alternative. */
7982 value = 0;
7983 /* Check that each alternative contains `g' or `r'. */
7984 while (1)
7985 switch (c = *string++)
7987 case 0:
7988 /* If an alternative lacks `g' or `r', we lose. */
7989 return value;
7990 case ',':
7991 /* If an alternative lacks `g' or `r', we lose. */
7992 if (value == 0)
7993 return 0;
7994 /* Initialize for next alternative. */
7995 value = 0;
7996 break;
7997 case 'g':
7998 case 'r':
7999 /* Any general reg wins for this alternative. */
8000 if (TEST_HARD_REG_BIT (reg_class_contents[(int) GENERAL_REGS], regno))
8001 value = 1;
8002 break;
8003 default:
8004 /* Any reg in specified class wins for this alternative. */
8006 enum reg_class class = REG_CLASS_FROM_LETTER (c);
8008 if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno))
8009 value = 1;
8014 /* INSN is a no-op; delete it.
8015 If this sets the return value of the function, we must keep a USE around,
8016 in case this is in a different basic block than the final USE. Otherwise,
8017 we could loose important register lifeness information on
8018 SMALL_REGISTER_CLASSES machines, where return registers might be used as
8019 spills: subsequent passes assume that spill registers are dead at the end
8020 of a basic block.
8021 VALUE must be the return value in such a case, NULL otherwise. */
8022 static void
8023 reload_cse_delete_noop_set (insn, value)
8024 rtx insn, value;
8026 if (value)
8028 PATTERN (insn) = gen_rtx_USE (VOIDmode, value);
8029 INSN_CODE (insn) = -1;
8030 REG_NOTES (insn) = NULL_RTX;
8032 else
8034 PUT_CODE (insn, NOTE);
8035 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
8036 NOTE_SOURCE_FILE (insn) = 0;
8040 /* See whether a single set SET is a noop. */
8041 static int
8042 reload_cse_noop_set_p (set)
8043 rtx set;
8045 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
8048 /* Try to simplify INSN. */
8049 static void
8050 reload_cse_simplify (insn)
8051 rtx insn;
8053 rtx body = PATTERN (insn);
8055 if (GET_CODE (body) == SET)
8057 int count = 0;
8059 /* Simplify even if we may think it is a no-op.
8060 We may think a memory load of a value smaller than WORD_SIZE
8061 is redundant because we haven't taken into account possible
8062 implicit extension. reload_cse_simplify_set() will bring
8063 this out, so it's safer to simplify before we delete. */
8064 count += reload_cse_simplify_set (body, insn);
8066 if (!count && reload_cse_noop_set_p (body))
8068 rtx value = SET_DEST (body);
8069 if (! REG_FUNCTION_VALUE_P (SET_DEST (body)))
8070 value = 0;
8071 reload_cse_delete_noop_set (insn, value);
8072 return;
8075 if (count > 0)
8076 apply_change_group ();
8077 else
8078 reload_cse_simplify_operands (insn);
8080 else if (GET_CODE (body) == PARALLEL)
8082 int i;
8083 int count = 0;
8084 rtx value = NULL_RTX;
8086 /* If every action in a PARALLEL is a noop, we can delete
8087 the entire PARALLEL. */
8088 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8090 rtx part = XVECEXP (body, 0, i);
8091 if (GET_CODE (part) == SET)
8093 if (! reload_cse_noop_set_p (part))
8094 break;
8095 if (REG_FUNCTION_VALUE_P (SET_DEST (part)))
8097 if (value)
8098 break;
8099 value = SET_DEST (part);
8102 else if (GET_CODE (part) != CLOBBER)
8103 break;
8106 if (i < 0)
8108 reload_cse_delete_noop_set (insn, value);
8109 /* We're done with this insn. */
8110 return;
8113 /* It's not a no-op, but we can try to simplify it. */
8114 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8115 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
8116 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
8118 if (count > 0)
8119 apply_change_group ();
8120 else
8121 reload_cse_simplify_operands (insn);
8125 /* Do a very simple CSE pass over the hard registers.
8127 This function detects no-op moves where we happened to assign two
8128 different pseudo-registers to the same hard register, and then
8129 copied one to the other. Reload will generate a useless
8130 instruction copying a register to itself.
8132 This function also detects cases where we load a value from memory
8133 into two different registers, and (if memory is more expensive than
8134 registers) changes it to simply copy the first register into the
8135 second register.
8137 Another optimization is performed that scans the operands of each
8138 instruction to see whether the value is already available in a
8139 hard register. It then replaces the operand with the hard register
8140 if possible, much like an optional reload would. */
8142 static void
8143 reload_cse_regs_1 (first)
8144 rtx first;
8146 rtx insn;
8148 cselib_init ();
8149 init_alias_analysis ();
8151 for (insn = first; insn; insn = NEXT_INSN (insn))
8153 if (INSN_P (insn))
8154 reload_cse_simplify (insn);
8156 cselib_process_insn (insn);
8159 /* Clean up. */
8160 end_alias_analysis ();
8161 cselib_finish ();
8164 /* Call cse / combine like post-reload optimization phases.
8165 FIRST is the first instruction. */
8166 void
8167 reload_cse_regs (first)
8168 rtx first;
8170 reload_cse_regs_1 (first);
8171 reload_combine ();
8172 reload_cse_move2add (first);
8173 if (flag_expensive_optimizations)
8174 reload_cse_regs_1 (first);
8177 /* Try to simplify a single SET instruction. SET is the set pattern.
8178 INSN is the instruction it came from.
8179 This function only handles one case: if we set a register to a value
8180 which is not a register, we try to find that value in some other register
8181 and change the set into a register copy. */
8183 static int
8184 reload_cse_simplify_set (set, insn)
8185 rtx set;
8186 rtx insn;
8188 int did_change = 0;
8189 int dreg;
8190 rtx src;
8191 enum reg_class dclass;
8192 int old_cost;
8193 cselib_val *val;
8194 struct elt_loc_list *l;
8195 #ifdef LOAD_EXTEND_OP
8196 enum rtx_code extend_op = NIL;
8197 #endif
8199 dreg = true_regnum (SET_DEST (set));
8200 if (dreg < 0)
8201 return 0;
8203 src = SET_SRC (set);
8204 if (side_effects_p (src) || true_regnum (src) >= 0)
8205 return 0;
8207 dclass = REGNO_REG_CLASS (dreg);
8209 #ifdef LOAD_EXTEND_OP
8210 /* When replacing a memory with a register, we need to honor assumptions
8211 that combine made wrt the contents of sign bits. We'll do this by
8212 generating an extend instruction instead of a reg->reg copy. Thus
8213 the destination must be a register that we can widen. */
8214 if (GET_CODE (src) == MEM
8215 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
8216 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != NIL
8217 && GET_CODE (SET_DEST (set)) != REG)
8218 return 0;
8219 #endif
8221 /* If memory loads are cheaper than register copies, don't change them. */
8222 if (GET_CODE (src) == MEM)
8223 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
8224 else if (CONSTANT_P (src))
8225 old_cost = rtx_cost (src, SET);
8226 else if (GET_CODE (src) == REG)
8227 old_cost = REGISTER_MOVE_COST (GET_MODE (src),
8228 REGNO_REG_CLASS (REGNO (src)), dclass);
8229 else
8230 /* ??? */
8231 old_cost = rtx_cost (src, SET);
8233 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
8234 if (! val)
8235 return 0;
8236 for (l = val->locs; l; l = l->next)
8238 rtx this_rtx = l->loc;
8239 int this_cost;
8241 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
8243 #ifdef LOAD_EXTEND_OP
8244 if (extend_op != NIL)
8246 HOST_WIDE_INT this_val;
8248 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
8249 constants, such as SYMBOL_REF, cannot be extended. */
8250 if (GET_CODE (this_rtx) != CONST_INT)
8251 continue;
8253 this_val = INTVAL (this_rtx);
8254 switch (extend_op)
8256 case ZERO_EXTEND:
8257 this_val &= GET_MODE_MASK (GET_MODE (src));
8258 break;
8259 case SIGN_EXTEND:
8260 /* ??? In theory we're already extended. */
8261 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
8262 break;
8263 default:
8264 abort ();
8266 this_rtx = GEN_INT (this_val);
8268 #endif
8269 this_cost = rtx_cost (this_rtx, SET);
8271 else if (GET_CODE (this_rtx) == REG)
8273 #ifdef LOAD_EXTEND_OP
8274 if (extend_op != NIL)
8276 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
8277 this_cost = rtx_cost (this_rtx, SET);
8279 else
8280 #endif
8281 this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx),
8282 REGNO_REG_CLASS (REGNO (this_rtx)),
8283 dclass);
8285 else
8286 continue;
8288 /* If equal costs, prefer registers over anything else. That
8289 tends to lead to smaller instructions on some machines. */
8290 if (this_cost < old_cost
8291 || (this_cost == old_cost
8292 && GET_CODE (this_rtx) == REG
8293 && GET_CODE (SET_SRC (set)) != REG))
8295 #ifdef LOAD_EXTEND_OP
8296 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
8297 && extend_op != NIL)
8299 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
8300 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
8301 validate_change (insn, &SET_DEST (set), wide_dest, 1);
8303 #endif
8305 validate_change (insn, &SET_SRC (set), copy_rtx (this_rtx), 1);
8306 old_cost = this_cost, did_change = 1;
8310 return did_change;
8313 /* Try to replace operands in INSN with equivalent values that are already
8314 in registers. This can be viewed as optional reloading.
8316 For each non-register operand in the insn, see if any hard regs are
8317 known to be equivalent to that operand. Record the alternatives which
8318 can accept these hard registers. Among all alternatives, select the
8319 ones which are better or equal to the one currently matching, where
8320 "better" is in terms of '?' and '!' constraints. Among the remaining
8321 alternatives, select the one which replaces most operands with
8322 hard registers. */
8324 static int
8325 reload_cse_simplify_operands (insn)
8326 rtx insn;
8328 int i, j;
8330 /* For each operand, all registers that are equivalent to it. */
8331 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
8333 const char *constraints[MAX_RECOG_OPERANDS];
8335 /* Vector recording how bad an alternative is. */
8336 int *alternative_reject;
8337 /* Vector recording how many registers can be introduced by choosing
8338 this alternative. */
8339 int *alternative_nregs;
8340 /* Array of vectors recording, for each operand and each alternative,
8341 which hard register to substitute, or -1 if the operand should be
8342 left as it is. */
8343 int *op_alt_regno[MAX_RECOG_OPERANDS];
8344 /* Array of alternatives, sorted in order of decreasing desirability. */
8345 int *alternative_order;
8346 rtx reg = gen_rtx_REG (VOIDmode, -1);
8348 extract_insn (insn);
8350 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
8351 return 0;
8353 /* Figure out which alternative currently matches. */
8354 if (! constrain_operands (1))
8355 fatal_insn_not_found (insn);
8357 alternative_reject = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8358 alternative_nregs = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8359 alternative_order = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8360 memset ((char *)alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
8361 memset ((char *)alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
8363 /* For each operand, find out which regs are equivalent. */
8364 for (i = 0; i < recog_data.n_operands; i++)
8366 cselib_val *v;
8367 struct elt_loc_list *l;
8369 CLEAR_HARD_REG_SET (equiv_regs[i]);
8371 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
8372 right, so avoid the problem here. Likewise if we have a constant
8373 and the insn pattern doesn't tell us the mode we need. */
8374 if (GET_CODE (recog_data.operand[i]) == CODE_LABEL
8375 || (CONSTANT_P (recog_data.operand[i])
8376 && recog_data.operand_mode[i] == VOIDmode))
8377 continue;
8379 v = cselib_lookup (recog_data.operand[i], recog_data.operand_mode[i], 0);
8380 if (! v)
8381 continue;
8383 for (l = v->locs; l; l = l->next)
8384 if (GET_CODE (l->loc) == REG)
8385 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
8388 for (i = 0; i < recog_data.n_operands; i++)
8390 enum machine_mode mode;
8391 int regno;
8392 const char *p;
8394 op_alt_regno[i] = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8395 for (j = 0; j < recog_data.n_alternatives; j++)
8396 op_alt_regno[i][j] = -1;
8398 p = constraints[i] = recog_data.constraints[i];
8399 mode = recog_data.operand_mode[i];
8401 /* Add the reject values for each alternative given by the constraints
8402 for this operand. */
8403 j = 0;
8404 while (*p != '\0')
8406 char c = *p++;
8407 if (c == ',')
8408 j++;
8409 else if (c == '?')
8410 alternative_reject[j] += 3;
8411 else if (c == '!')
8412 alternative_reject[j] += 300;
8415 /* We won't change operands which are already registers. We
8416 also don't want to modify output operands. */
8417 regno = true_regnum (recog_data.operand[i]);
8418 if (regno >= 0
8419 || constraints[i][0] == '='
8420 || constraints[i][0] == '+')
8421 continue;
8423 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
8425 int class = (int) NO_REGS;
8427 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
8428 continue;
8430 REGNO (reg) = regno;
8431 PUT_MODE (reg, mode);
8433 /* We found a register equal to this operand. Now look for all
8434 alternatives that can accept this register and have not been
8435 assigned a register they can use yet. */
8436 j = 0;
8437 p = constraints[i];
8438 for (;;)
8440 char c = *p++;
8442 switch (c)
8444 case '=': case '+': case '?':
8445 case '#': case '&': case '!':
8446 case '*': case '%':
8447 case '0': case '1': case '2': case '3': case '4':
8448 case '5': case '6': case '7': case '8': case '9':
8449 case 'm': case '<': case '>': case 'V': case 'o':
8450 case 'E': case 'F': case 'G': case 'H':
8451 case 's': case 'i': case 'n':
8452 case 'I': case 'J': case 'K': case 'L':
8453 case 'M': case 'N': case 'O': case 'P':
8454 case 'p': case 'X':
8455 /* These don't say anything we care about. */
8456 break;
8458 case 'g': case 'r':
8459 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
8460 break;
8462 default:
8463 class
8464 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER ((unsigned char)c)];
8465 break;
8467 case ',': case '\0':
8468 /* See if REGNO fits this alternative, and set it up as the
8469 replacement register if we don't have one for this
8470 alternative yet and the operand being replaced is not
8471 a cheap CONST_INT. */
8472 if (op_alt_regno[i][j] == -1
8473 && reg_fits_class_p (reg, class, 0, mode)
8474 && (GET_CODE (recog_data.operand[i]) != CONST_INT
8475 || (rtx_cost (recog_data.operand[i], SET)
8476 > rtx_cost (reg, SET))))
8478 alternative_nregs[j]++;
8479 op_alt_regno[i][j] = regno;
8481 j++;
8482 break;
8485 if (c == '\0')
8486 break;
8491 /* Record all alternatives which are better or equal to the currently
8492 matching one in the alternative_order array. */
8493 for (i = j = 0; i < recog_data.n_alternatives; i++)
8494 if (alternative_reject[i] <= alternative_reject[which_alternative])
8495 alternative_order[j++] = i;
8496 recog_data.n_alternatives = j;
8498 /* Sort it. Given a small number of alternatives, a dumb algorithm
8499 won't hurt too much. */
8500 for (i = 0; i < recog_data.n_alternatives - 1; i++)
8502 int best = i;
8503 int best_reject = alternative_reject[alternative_order[i]];
8504 int best_nregs = alternative_nregs[alternative_order[i]];
8505 int tmp;
8507 for (j = i + 1; j < recog_data.n_alternatives; j++)
8509 int this_reject = alternative_reject[alternative_order[j]];
8510 int this_nregs = alternative_nregs[alternative_order[j]];
8512 if (this_reject < best_reject
8513 || (this_reject == best_reject && this_nregs < best_nregs))
8515 best = j;
8516 best_reject = this_reject;
8517 best_nregs = this_nregs;
8521 tmp = alternative_order[best];
8522 alternative_order[best] = alternative_order[i];
8523 alternative_order[i] = tmp;
8526 /* Substitute the operands as determined by op_alt_regno for the best
8527 alternative. */
8528 j = alternative_order[0];
8530 for (i = 0; i < recog_data.n_operands; i++)
8532 enum machine_mode mode = recog_data.operand_mode[i];
8533 if (op_alt_regno[i][j] == -1)
8534 continue;
8536 validate_change (insn, recog_data.operand_loc[i],
8537 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
8540 for (i = recog_data.n_dups - 1; i >= 0; i--)
8542 int op = recog_data.dup_num[i];
8543 enum machine_mode mode = recog_data.operand_mode[op];
8545 if (op_alt_regno[op][j] == -1)
8546 continue;
8548 validate_change (insn, recog_data.dup_loc[i],
8549 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
8552 return apply_change_group ();
8555 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
8556 addressing now.
8557 This code might also be useful when reload gave up on reg+reg addresssing
8558 because of clashes between the return register and INDEX_REG_CLASS. */
8560 /* The maximum number of uses of a register we can keep track of to
8561 replace them with reg+reg addressing. */
8562 #define RELOAD_COMBINE_MAX_USES 6
8564 /* INSN is the insn where a register has ben used, and USEP points to the
8565 location of the register within the rtl. */
8566 struct reg_use { rtx insn, *usep; };
8568 /* If the register is used in some unknown fashion, USE_INDEX is negative.
8569 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
8570 indicates where it becomes live again.
8571 Otherwise, USE_INDEX is the index of the last encountered use of the
8572 register (which is first among these we have seen since we scan backwards),
8573 OFFSET contains the constant offset that is added to the register in
8574 all encountered uses, and USE_RUID indicates the first encountered, i.e.
8575 last, of these uses.
8576 STORE_RUID is always meaningful if we only want to use a value in a
8577 register in a different place: it denotes the next insn in the insn
8578 stream (i.e. the last ecountered) that sets or clobbers the register. */
8579 static struct
8581 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
8582 int use_index;
8583 rtx offset;
8584 int store_ruid;
8585 int use_ruid;
8586 } reg_state[FIRST_PSEUDO_REGISTER];
8588 /* Reverse linear uid. This is increased in reload_combine while scanning
8589 the instructions from last to first. It is used to set last_label_ruid
8590 and the store_ruid / use_ruid fields in reg_state. */
8591 static int reload_combine_ruid;
8593 #define LABEL_LIVE(LABEL) \
8594 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
8596 static void
8597 reload_combine ()
8599 rtx insn, set;
8600 int first_index_reg = -1, last_index_reg;
8601 int i;
8602 unsigned int r;
8603 int last_label_ruid;
8604 int min_labelno, n_labels;
8605 HARD_REG_SET ever_live_at_start, *label_live;
8607 /* If reg+reg can be used in offsetable memory adresses, the main chunk of
8608 reload has already used it where appropriate, so there is no use in
8609 trying to generate it now. */
8610 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
8611 return;
8613 /* To avoid wasting too much time later searching for an index register,
8614 determine the minimum and maximum index register numbers. */
8615 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8616 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
8618 if (first_index_reg == -1)
8619 first_index_reg = r;
8621 last_index_reg = r;
8624 /* If no index register is available, we can quit now. */
8625 if (first_index_reg == -1)
8626 return;
8628 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
8629 information is a bit fuzzy immediately after reload, but it's
8630 still good enough to determine which registers are live at a jump
8631 destination. */
8632 min_labelno = get_first_label_num ();
8633 n_labels = max_label_num () - min_labelno;
8634 label_live = (HARD_REG_SET *) xmalloc (n_labels * sizeof (HARD_REG_SET));
8635 CLEAR_HARD_REG_SET (ever_live_at_start);
8637 for (i = n_basic_blocks - 1; i >= 0; i--)
8639 insn = BLOCK_HEAD (i);
8640 if (GET_CODE (insn) == CODE_LABEL)
8642 HARD_REG_SET live;
8644 REG_SET_TO_HARD_REG_SET (live,
8645 BASIC_BLOCK (i)->global_live_at_start);
8646 compute_use_by_pseudos (&live,
8647 BASIC_BLOCK (i)->global_live_at_start);
8648 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
8649 IOR_HARD_REG_SET (ever_live_at_start, live);
8653 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
8654 last_label_ruid = reload_combine_ruid = 0;
8655 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8657 reg_state[r].store_ruid = reload_combine_ruid;
8658 if (fixed_regs[r])
8659 reg_state[r].use_index = -1;
8660 else
8661 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8664 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
8666 rtx note;
8668 /* We cannot do our optimization across labels. Invalidating all the use
8669 information we have would be costly, so we just note where the label
8670 is and then later disable any optimization that would cross it. */
8671 if (GET_CODE (insn) == CODE_LABEL)
8672 last_label_ruid = reload_combine_ruid;
8673 else if (GET_CODE (insn) == BARRIER)
8674 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8675 if (! fixed_regs[r])
8676 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8678 if (! INSN_P (insn))
8679 continue;
8681 reload_combine_ruid++;
8683 /* Look for (set (REGX) (CONST_INT))
8684 (set (REGX) (PLUS (REGX) (REGY)))
8686 ... (MEM (REGX)) ...
8687 and convert it to
8688 (set (REGZ) (CONST_INT))
8690 ... (MEM (PLUS (REGZ) (REGY)))... .
8692 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
8693 and that we know all uses of REGX before it dies. */
8694 set = single_set (insn);
8695 if (set != NULL_RTX
8696 && GET_CODE (SET_DEST (set)) == REG
8697 && (HARD_REGNO_NREGS (REGNO (SET_DEST (set)),
8698 GET_MODE (SET_DEST (set)))
8699 == 1)
8700 && GET_CODE (SET_SRC (set)) == PLUS
8701 && GET_CODE (XEXP (SET_SRC (set), 1)) == REG
8702 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
8703 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
8705 rtx reg = SET_DEST (set);
8706 rtx plus = SET_SRC (set);
8707 rtx base = XEXP (plus, 1);
8708 rtx prev = prev_nonnote_insn (insn);
8709 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
8710 unsigned int regno = REGNO (reg);
8711 rtx const_reg = NULL_RTX;
8712 rtx reg_sum = NULL_RTX;
8714 /* Now, we need an index register.
8715 We'll set index_reg to this index register, const_reg to the
8716 register that is to be loaded with the constant
8717 (denoted as REGZ in the substitution illustration above),
8718 and reg_sum to the register-register that we want to use to
8719 substitute uses of REG (typically in MEMs) with.
8720 First check REG and BASE for being index registers;
8721 we can use them even if they are not dead. */
8722 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
8723 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8724 REGNO (base)))
8726 const_reg = reg;
8727 reg_sum = plus;
8729 else
8731 /* Otherwise, look for a free index register. Since we have
8732 checked above that neiter REG nor BASE are index registers,
8733 if we find anything at all, it will be different from these
8734 two registers. */
8735 for (i = first_index_reg; i <= last_index_reg; i++)
8737 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8739 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
8740 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
8741 && HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1)
8743 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
8745 const_reg = index_reg;
8746 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
8747 break;
8752 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
8753 (REGY), i.e. BASE, is not clobbered before the last use we'll
8754 create. */
8755 if (prev_set != 0
8756 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
8757 && rtx_equal_p (SET_DEST (prev_set), reg)
8758 && reg_state[regno].use_index >= 0
8759 && (reg_state[REGNO (base)].store_ruid
8760 <= reg_state[regno].use_ruid)
8761 && reg_sum != 0)
8763 int i;
8765 /* Change destination register and, if necessary, the
8766 constant value in PREV, the constant loading instruction. */
8767 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
8768 if (reg_state[regno].offset != const0_rtx)
8769 validate_change (prev,
8770 &SET_SRC (prev_set),
8771 GEN_INT (INTVAL (SET_SRC (prev_set))
8772 + INTVAL (reg_state[regno].offset)),
8775 /* Now for every use of REG that we have recorded, replace REG
8776 with REG_SUM. */
8777 for (i = reg_state[regno].use_index;
8778 i < RELOAD_COMBINE_MAX_USES; i++)
8779 validate_change (reg_state[regno].reg_use[i].insn,
8780 reg_state[regno].reg_use[i].usep,
8781 reg_sum, 1);
8783 if (apply_change_group ())
8785 rtx *np;
8787 /* Delete the reg-reg addition. */
8788 PUT_CODE (insn, NOTE);
8789 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
8790 NOTE_SOURCE_FILE (insn) = 0;
8792 if (reg_state[regno].offset != const0_rtx)
8793 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
8794 are now invalid. */
8795 for (np = &REG_NOTES (prev); *np;)
8797 if (REG_NOTE_KIND (*np) == REG_EQUAL
8798 || REG_NOTE_KIND (*np) == REG_EQUIV)
8799 *np = XEXP (*np, 1);
8800 else
8801 np = &XEXP (*np, 1);
8804 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
8805 reg_state[REGNO (const_reg)].store_ruid
8806 = reload_combine_ruid;
8807 continue;
8812 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
8814 if (GET_CODE (insn) == CALL_INSN)
8816 rtx link;
8818 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8819 if (call_used_regs[r])
8821 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8822 reg_state[r].store_ruid = reload_combine_ruid;
8825 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
8826 link = XEXP (link, 1))
8828 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
8829 if (GET_CODE (usage_rtx) == REG)
8831 int i;
8832 unsigned int start_reg = REGNO (usage_rtx);
8833 unsigned int num_regs =
8834 HARD_REGNO_NREGS (start_reg, GET_MODE (usage_rtx));
8835 unsigned int end_reg = start_reg + num_regs - 1;
8836 for (i = start_reg; i <= end_reg; i++)
8837 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
8839 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8840 reg_state[i].store_ruid = reload_combine_ruid;
8842 else
8843 reg_state[i].use_index = -1;
8848 else if (GET_CODE (insn) == JUMP_INSN
8849 && GET_CODE (PATTERN (insn)) != RETURN)
8851 /* Non-spill registers might be used at the call destination in
8852 some unknown fashion, so we have to mark the unknown use. */
8853 HARD_REG_SET *live;
8855 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
8856 && JUMP_LABEL (insn))
8857 live = &LABEL_LIVE (JUMP_LABEL (insn));
8858 else
8859 live = &ever_live_at_start;
8861 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
8862 if (TEST_HARD_REG_BIT (*live, i))
8863 reg_state[i].use_index = -1;
8866 reload_combine_note_use (&PATTERN (insn), insn);
8867 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
8869 if (REG_NOTE_KIND (note) == REG_INC
8870 && GET_CODE (XEXP (note, 0)) == REG)
8872 int regno = REGNO (XEXP (note, 0));
8874 reg_state[regno].store_ruid = reload_combine_ruid;
8875 reg_state[regno].use_index = -1;
8880 free (label_live);
8883 /* Check if DST is a register or a subreg of a register; if it is,
8884 update reg_state[regno].store_ruid and reg_state[regno].use_index
8885 accordingly. Called via note_stores from reload_combine. */
8887 static void
8888 reload_combine_note_store (dst, set, data)
8889 rtx dst, set;
8890 void *data ATTRIBUTE_UNUSED;
8892 int regno = 0;
8893 int i;
8894 enum machine_mode mode = GET_MODE (dst);
8896 if (GET_CODE (dst) == SUBREG)
8898 regno = SUBREG_WORD (dst);
8899 dst = SUBREG_REG (dst);
8901 if (GET_CODE (dst) != REG)
8902 return;
8903 regno += REGNO (dst);
8905 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
8906 careful with registers / register parts that are not full words.
8908 Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
8909 if (GET_CODE (set) != SET
8910 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
8911 || GET_CODE (SET_DEST (set)) == SIGN_EXTRACT
8912 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
8914 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8916 reg_state[i].use_index = -1;
8917 reg_state[i].store_ruid = reload_combine_ruid;
8920 else
8922 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8924 reg_state[i].store_ruid = reload_combine_ruid;
8925 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8930 /* XP points to a piece of rtl that has to be checked for any uses of
8931 registers.
8932 *XP is the pattern of INSN, or a part of it.
8933 Called from reload_combine, and recursively by itself. */
8934 static void
8935 reload_combine_note_use (xp, insn)
8936 rtx *xp, insn;
8938 rtx x = *xp;
8939 enum rtx_code code = x->code;
8940 const char *fmt;
8941 int i, j;
8942 rtx offset = const0_rtx; /* For the REG case below. */
8944 switch (code)
8946 case SET:
8947 if (GET_CODE (SET_DEST (x)) == REG)
8949 reload_combine_note_use (&SET_SRC (x), insn);
8950 return;
8952 break;
8954 case USE:
8955 /* If this is the USE of a return value, we can't change it. */
8956 if (GET_CODE (XEXP (x, 0)) == REG && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
8958 /* Mark the return register as used in an unknown fashion. */
8959 rtx reg = XEXP (x, 0);
8960 int regno = REGNO (reg);
8961 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
8963 while (--nregs >= 0)
8964 reg_state[regno + nregs].use_index = -1;
8965 return;
8967 break;
8969 case CLOBBER:
8970 if (GET_CODE (SET_DEST (x)) == REG)
8971 return;
8972 break;
8974 case PLUS:
8975 /* We are interested in (plus (reg) (const_int)) . */
8976 if (GET_CODE (XEXP (x, 0)) != REG
8977 || GET_CODE (XEXP (x, 1)) != CONST_INT)
8978 break;
8979 offset = XEXP (x, 1);
8980 x = XEXP (x, 0);
8981 /* Fall through. */
8982 case REG:
8984 int regno = REGNO (x);
8985 int use_index;
8986 int nregs;
8988 /* Some spurious USEs of pseudo registers might remain.
8989 Just ignore them. */
8990 if (regno >= FIRST_PSEUDO_REGISTER)
8991 return;
8993 nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
8995 /* We can't substitute into multi-hard-reg uses. */
8996 if (nregs > 1)
8998 while (--nregs >= 0)
8999 reg_state[regno + nregs].use_index = -1;
9000 return;
9003 /* If this register is already used in some unknown fashion, we
9004 can't do anything.
9005 If we decrement the index from zero to -1, we can't store more
9006 uses, so this register becomes used in an unknown fashion. */
9007 use_index = --reg_state[regno].use_index;
9008 if (use_index < 0)
9009 return;
9011 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
9013 /* We have found another use for a register that is already
9014 used later. Check if the offsets match; if not, mark the
9015 register as used in an unknown fashion. */
9016 if (! rtx_equal_p (offset, reg_state[regno].offset))
9018 reg_state[regno].use_index = -1;
9019 return;
9022 else
9024 /* This is the first use of this register we have seen since we
9025 marked it as dead. */
9026 reg_state[regno].offset = offset;
9027 reg_state[regno].use_ruid = reload_combine_ruid;
9029 reg_state[regno].reg_use[use_index].insn = insn;
9030 reg_state[regno].reg_use[use_index].usep = xp;
9031 return;
9034 default:
9035 break;
9038 /* Recursively process the components of X. */
9039 fmt = GET_RTX_FORMAT (code);
9040 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9042 if (fmt[i] == 'e')
9043 reload_combine_note_use (&XEXP (x, i), insn);
9044 else if (fmt[i] == 'E')
9046 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9047 reload_combine_note_use (&XVECEXP (x, i, j), insn);
9052 /* See if we can reduce the cost of a constant by replacing a move
9053 with an add. We track situations in which a register is set to a
9054 constant or to a register plus a constant. */
9055 /* We cannot do our optimization across labels. Invalidating all the
9056 information about register contents we have would be costly, so we
9057 use move2add_last_label_luid to note where the label is and then
9058 later disable any optimization that would cross it.
9059 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
9060 reg_set_luid[n] is greater than last_label_luid[n] . */
9061 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
9063 /* If reg_base_reg[n] is negative, register n has been set to
9064 reg_offset[n] in mode reg_mode[n] .
9065 If reg_base_reg[n] is non-negative, register n has been set to the
9066 sum of reg_offset[n] and the value of register reg_base_reg[n]
9067 before reg_set_luid[n], calculated in mode reg_mode[n] . */
9068 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
9069 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
9070 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
9072 /* move2add_luid is linearily increased while scanning the instructions
9073 from first to last. It is used to set reg_set_luid in
9074 reload_cse_move2add and move2add_note_store. */
9075 static int move2add_luid;
9077 /* move2add_last_label_luid is set whenever a label is found. Labels
9078 invalidate all previously collected reg_offset data. */
9079 static int move2add_last_label_luid;
9081 /* Generate a CONST_INT and force it in the range of MODE. */
9083 static HOST_WIDE_INT
9084 sext_for_mode (mode, value)
9085 enum machine_mode mode;
9086 HOST_WIDE_INT value;
9088 HOST_WIDE_INT cval = value & GET_MODE_MASK (mode);
9089 int width = GET_MODE_BITSIZE (mode);
9091 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative number,
9092 sign extend it. */
9093 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
9094 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
9095 cval |= (HOST_WIDE_INT) -1 << width;
9097 return cval;
9100 /* ??? We don't know how zero / sign extension is handled, hence we
9101 can't go from a narrower to a wider mode. */
9102 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
9103 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
9104 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
9105 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
9106 GET_MODE_BITSIZE (INMODE))))
9108 static void
9109 reload_cse_move2add (first)
9110 rtx first;
9112 int i;
9113 rtx insn;
9115 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
9116 reg_set_luid[i] = 0;
9118 move2add_last_label_luid = 0;
9119 move2add_luid = 2;
9120 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
9122 rtx pat, note;
9124 if (GET_CODE (insn) == CODE_LABEL)
9126 move2add_last_label_luid = move2add_luid;
9127 /* We're going to increment move2add_luid twice after a
9128 label, so that we can use move2add_last_label_luid + 1 as
9129 the luid for constants. */
9130 move2add_luid++;
9131 continue;
9133 if (! INSN_P (insn))
9134 continue;
9135 pat = PATTERN (insn);
9136 /* For simplicity, we only perform this optimization on
9137 straightforward SETs. */
9138 if (GET_CODE (pat) == SET
9139 && GET_CODE (SET_DEST (pat)) == REG)
9141 rtx reg = SET_DEST (pat);
9142 int regno = REGNO (reg);
9143 rtx src = SET_SRC (pat);
9145 /* Check if we have valid information on the contents of this
9146 register in the mode of REG. */
9147 if (reg_set_luid[regno] > move2add_last_label_luid
9148 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno]))
9150 /* Try to transform (set (REGX) (CONST_INT A))
9152 (set (REGX) (CONST_INT B))
9154 (set (REGX) (CONST_INT A))
9156 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9158 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
9160 int success = 0;
9161 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9162 INTVAL (src)
9163 - reg_offset[regno]));
9164 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
9165 use (set (reg) (reg)) instead.
9166 We don't delete this insn, nor do we convert it into a
9167 note, to avoid losing register notes or the return
9168 value flag. jump2 already knowns how to get rid of
9169 no-op moves. */
9170 if (new_src == const0_rtx)
9171 success = validate_change (insn, &SET_SRC (pat), reg, 0);
9172 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
9173 && have_add2_insn (GET_MODE (reg)))
9174 success = validate_change (insn, &PATTERN (insn),
9175 gen_add2_insn (reg, new_src), 0);
9176 reg_set_luid[regno] = move2add_luid;
9177 reg_mode[regno] = GET_MODE (reg);
9178 reg_offset[regno] = INTVAL (src);
9179 continue;
9182 /* Try to transform (set (REGX) (REGY))
9183 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9185 (set (REGX) (REGY))
9186 (set (REGX) (PLUS (REGX) (CONST_INT B)))
9188 (REGX) (REGY))
9189 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9191 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9192 else if (GET_CODE (src) == REG
9193 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
9194 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
9195 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
9196 reg_mode[REGNO (src)]))
9198 rtx next = next_nonnote_insn (insn);
9199 rtx set = NULL_RTX;
9200 if (next)
9201 set = single_set (next);
9202 if (set
9203 && SET_DEST (set) == reg
9204 && GET_CODE (SET_SRC (set)) == PLUS
9205 && XEXP (SET_SRC (set), 0) == reg
9206 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
9208 rtx src3 = XEXP (SET_SRC (set), 1);
9209 HOST_WIDE_INT added_offset = INTVAL (src3);
9210 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
9211 HOST_WIDE_INT regno_offset = reg_offset[regno];
9212 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9213 added_offset
9214 + base_offset
9215 - regno_offset));
9216 int success = 0;
9218 if (new_src == const0_rtx)
9219 /* See above why we create (set (reg) (reg)) here. */
9220 success
9221 = validate_change (next, &SET_SRC (set), reg, 0);
9222 else if ((rtx_cost (new_src, PLUS)
9223 < COSTS_N_INSNS (1) + rtx_cost (src3, SET))
9224 && have_add2_insn (GET_MODE (reg)))
9225 success
9226 = validate_change (next, &PATTERN (next),
9227 gen_add2_insn (reg, new_src), 0);
9228 if (success)
9230 /* INSN might be the first insn in a basic block
9231 if the preceding insn is a conditional jump
9232 or a possible-throwing call. */
9233 PUT_CODE (insn, NOTE);
9234 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
9235 NOTE_SOURCE_FILE (insn) = 0;
9237 insn = next;
9238 reg_mode[regno] = GET_MODE (reg);
9239 reg_offset[regno] = sext_for_mode (GET_MODE (reg),
9240 added_offset
9241 + base_offset);
9242 continue;
9248 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
9250 if (REG_NOTE_KIND (note) == REG_INC
9251 && GET_CODE (XEXP (note, 0)) == REG)
9253 /* Reset the information about this register. */
9254 int regno = REGNO (XEXP (note, 0));
9255 if (regno < FIRST_PSEUDO_REGISTER)
9256 reg_set_luid[regno] = 0;
9259 note_stores (PATTERN (insn), move2add_note_store, NULL);
9260 /* If this is a CALL_INSN, all call used registers are stored with
9261 unknown values. */
9262 if (GET_CODE (insn) == CALL_INSN)
9264 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
9266 if (call_used_regs[i])
9267 /* Reset the information about this register. */
9268 reg_set_luid[i] = 0;
9274 /* SET is a SET or CLOBBER that sets DST.
9275 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
9276 Called from reload_cse_move2add via note_stores. */
9278 static void
9279 move2add_note_store (dst, set, data)
9280 rtx dst, set;
9281 void *data ATTRIBUTE_UNUSED;
9283 unsigned int regno = 0;
9284 unsigned int i;
9285 enum machine_mode mode = GET_MODE (dst);
9287 if (GET_CODE (dst) == SUBREG)
9289 regno = SUBREG_WORD (dst);
9290 dst = SUBREG_REG (dst);
9293 /* Some targets do argument pushes without adding REG_INC notes. */
9295 if (GET_CODE (dst) == MEM)
9297 dst = XEXP (dst, 0);
9298 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_DEC
9299 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
9300 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
9301 return;
9303 if (GET_CODE (dst) != REG)
9304 return;
9306 regno += REGNO (dst);
9308 if (HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET
9309 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
9310 && GET_CODE (SET_DEST (set)) != SIGN_EXTRACT
9311 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
9313 rtx src = SET_SRC (set);
9314 rtx base_reg;
9315 HOST_WIDE_INT offset;
9316 int base_regno;
9317 /* This may be different from mode, if SET_DEST (set) is a
9318 SUBREG. */
9319 enum machine_mode dst_mode = GET_MODE (dst);
9321 switch (GET_CODE (src))
9323 case PLUS:
9324 if (GET_CODE (XEXP (src, 0)) == REG)
9326 base_reg = XEXP (src, 0);
9328 if (GET_CODE (XEXP (src, 1)) == CONST_INT)
9329 offset = INTVAL (XEXP (src, 1));
9330 else if (GET_CODE (XEXP (src, 1)) == REG
9331 && (reg_set_luid[REGNO (XEXP (src, 1))]
9332 > move2add_last_label_luid)
9333 && (MODES_OK_FOR_MOVE2ADD
9334 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
9336 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0)
9337 offset = reg_offset[REGNO (XEXP (src, 1))];
9338 /* Maybe the first register is known to be a
9339 constant. */
9340 else if (reg_set_luid[REGNO (base_reg)]
9341 > move2add_last_label_luid
9342 && (MODES_OK_FOR_MOVE2ADD
9343 (dst_mode, reg_mode[REGNO (XEXP (src, 1))]))
9344 && reg_base_reg[REGNO (base_reg)] < 0)
9346 offset = reg_offset[REGNO (base_reg)];
9347 base_reg = XEXP (src, 1);
9349 else
9350 goto invalidate;
9352 else
9353 goto invalidate;
9355 break;
9358 goto invalidate;
9360 case REG:
9361 base_reg = src;
9362 offset = 0;
9363 break;
9365 case CONST_INT:
9366 /* Start tracking the register as a constant. */
9367 reg_base_reg[regno] = -1;
9368 reg_offset[regno] = INTVAL (SET_SRC (set));
9369 /* We assign the same luid to all registers set to constants. */
9370 reg_set_luid[regno] = move2add_last_label_luid + 1;
9371 reg_mode[regno] = mode;
9372 return;
9374 default:
9375 invalidate:
9376 /* Invalidate the contents of the register. */
9377 reg_set_luid[regno] = 0;
9378 return;
9381 base_regno = REGNO (base_reg);
9382 /* If information about the base register is not valid, set it
9383 up as a new base register, pretending its value is known
9384 starting from the current insn. */
9385 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
9387 reg_base_reg[base_regno] = base_regno;
9388 reg_offset[base_regno] = 0;
9389 reg_set_luid[base_regno] = move2add_luid;
9390 reg_mode[base_regno] = mode;
9392 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
9393 reg_mode[base_regno]))
9394 goto invalidate;
9396 reg_mode[regno] = mode;
9398 /* Copy base information from our base register. */
9399 reg_set_luid[regno] = reg_set_luid[base_regno];
9400 reg_base_reg[regno] = reg_base_reg[base_regno];
9402 /* Compute the sum of the offsets or constants. */
9403 reg_offset[regno] = sext_for_mode (dst_mode,
9404 offset
9405 + reg_offset[base_regno]);
9407 else
9409 unsigned int endregno = regno + HARD_REGNO_NREGS (regno, mode);
9411 for (i = regno; i < endregno; i++)
9412 /* Reset the information about this register. */
9413 reg_set_luid[i] = 0;
9417 #ifdef AUTO_INC_DEC
9418 static void
9419 add_auto_inc_notes (insn, x)
9420 rtx insn;
9421 rtx x;
9423 enum rtx_code code = GET_CODE (x);
9424 const char *fmt;
9425 int i, j;
9427 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9429 REG_NOTES (insn)
9430 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
9431 return;
9434 /* Scan all the operand sub-expressions. */
9435 fmt = GET_RTX_FORMAT (code);
9436 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9438 if (fmt[i] == 'e')
9439 add_auto_inc_notes (insn, XEXP (x, i));
9440 else if (fmt[i] == 'E')
9441 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9442 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9445 #endif
9447 /* Copy EH notes from an insn to its reloads. */
9448 static void
9449 copy_eh_notes (insn, x)
9450 rtx insn;
9451 rtx x;
9453 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
9454 if (eh_note)
9456 for (; x != 0; x = NEXT_INSN (x))
9458 if (may_trap_p (PATTERN (x)))
9459 REG_NOTES (x)
9460 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
9461 REG_NOTES (x));