Mark ChangeLog
[official-gcc.git] / gcc / optabs.c
blob053482aa6ca1c9e6f462b0975c670869116d4043
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "toplev.h"
27 /* Include insn-config.h before expr.h so that HAVE_conditional_move
28 is properly defined. */
29 #include "insn-config.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "except.h"
36 #include "expr.h"
37 #include "recog.h"
38 #include "reload.h"
39 #include "ggc.h"
40 #include "real.h"
42 /* Each optab contains info on how this target machine
43 can perform a particular operation
44 for all sizes and kinds of operands.
46 The operation to be performed is often specified
47 by passing one of these optabs as an argument.
49 See expr.h for documentation of these optabs. */
51 optab optab_table[OTI_MAX];
53 rtx libfunc_table[LTI_MAX];
55 /* Tables of patterns for extending one integer mode to another. */
56 enum insn_code extendtab[MAX_MACHINE_MODE][MAX_MACHINE_MODE][2];
58 /* Tables of patterns for converting between fixed and floating point. */
59 enum insn_code fixtab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
60 enum insn_code fixtrunctab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
61 enum insn_code floattab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
63 /* Contains the optab used for each rtx code. */
64 optab code_to_optab[NUM_RTX_CODE + 1];
66 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
67 gives the gen_function to make a branch to test that condition. */
69 rtxfun bcc_gen_fctn[NUM_RTX_CODE];
71 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
72 gives the insn code to make a store-condition insn
73 to test that condition. */
75 enum insn_code setcc_gen_code[NUM_RTX_CODE];
77 #ifdef HAVE_conditional_move
78 /* Indexed by the machine mode, gives the insn code to make a conditional
79 move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
80 setcc_gen_code to cut down on the number of named patterns. Consider a day
81 when a lot more rtx codes are conditional (eg: for the ARM). */
83 enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
84 #endif
86 static int add_equal_note PARAMS ((rtx, rtx, enum rtx_code, rtx, rtx));
87 static rtx widen_operand PARAMS ((rtx, enum machine_mode,
88 enum machine_mode, int, int));
89 static int expand_cmplxdiv_straight PARAMS ((rtx, rtx, rtx, rtx,
90 rtx, rtx, enum machine_mode,
91 int, enum optab_methods,
92 enum mode_class, optab));
93 static int expand_cmplxdiv_wide PARAMS ((rtx, rtx, rtx, rtx,
94 rtx, rtx, enum machine_mode,
95 int, enum optab_methods,
96 enum mode_class, optab));
97 static enum insn_code can_fix_p PARAMS ((enum machine_mode, enum machine_mode,
98 int, int *));
99 static enum insn_code can_float_p PARAMS ((enum machine_mode, enum machine_mode,
100 int));
101 static rtx ftruncify PARAMS ((rtx));
102 static optab init_optab PARAMS ((enum rtx_code));
103 static void init_libfuncs PARAMS ((optab, int, int, const char *, int));
104 static void init_integral_libfuncs PARAMS ((optab, const char *, int));
105 static void init_floating_libfuncs PARAMS ((optab, const char *, int));
106 #ifdef HAVE_conditional_trap
107 static void init_traps PARAMS ((void));
108 #endif
109 static void emit_cmp_and_jump_insn_1 PARAMS ((rtx, rtx, enum machine_mode,
110 enum rtx_code, int, rtx));
111 static void prepare_float_lib_cmp PARAMS ((rtx *, rtx *, enum rtx_code *,
112 enum machine_mode *, int *));
114 /* Add a REG_EQUAL note to the last insn in SEQ. TARGET is being set to
115 the result of operation CODE applied to OP0 (and OP1 if it is a binary
116 operation).
118 If the last insn does not set TARGET, don't do anything, but return 1.
120 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
121 don't add the REG_EQUAL note but return 0. Our caller can then try
122 again, ensuring that TARGET is not one of the operands. */
124 static int
125 add_equal_note (seq, target, code, op0, op1)
126 rtx seq;
127 rtx target;
128 enum rtx_code code;
129 rtx op0, op1;
131 rtx set;
132 int i;
133 rtx note;
135 if ((GET_RTX_CLASS (code) != '1' && GET_RTX_CLASS (code) != '2'
136 && GET_RTX_CLASS (code) != 'c' && GET_RTX_CLASS (code) != '<')
137 || GET_CODE (seq) != SEQUENCE
138 || (set = single_set (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))) == 0
139 || GET_CODE (target) == ZERO_EXTRACT
140 || (! rtx_equal_p (SET_DEST (set), target)
141 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside the
142 SUBREG. */
143 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
144 || ! rtx_equal_p (SUBREG_REG (XEXP (SET_DEST (set), 0)),
145 target))))
146 return 1;
148 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
149 besides the last insn. */
150 if (reg_overlap_mentioned_p (target, op0)
151 || (op1 && reg_overlap_mentioned_p (target, op1)))
152 for (i = XVECLEN (seq, 0) - 2; i >= 0; i--)
153 if (reg_set_p (target, XVECEXP (seq, 0, i)))
154 return 0;
156 if (GET_RTX_CLASS (code) == '1')
157 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
158 else
159 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
161 set_unique_reg_note (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1), REG_EQUAL, note);
163 return 1;
166 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
167 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
168 not actually do a sign-extend or zero-extend, but can leave the
169 higher-order bits of the result rtx undefined, for example, in the case
170 of logical operations, but not right shifts. */
172 static rtx
173 widen_operand (op, mode, oldmode, unsignedp, no_extend)
174 rtx op;
175 enum machine_mode mode, oldmode;
176 int unsignedp;
177 int no_extend;
179 rtx result;
181 /* If we must extend do so. If OP is either a constant or a SUBREG
182 for a promoted object, also extend since it will be more efficient to
183 do so. */
184 if (! no_extend
185 || GET_MODE (op) == VOIDmode
186 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)))
187 return convert_modes (mode, oldmode, op, unsignedp);
189 /* If MODE is no wider than a single word, we return a paradoxical
190 SUBREG. */
191 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
192 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
194 /* Otherwise, get an object of MODE, clobber it, and set the low-order
195 part to OP. */
197 result = gen_reg_rtx (mode);
198 emit_insn (gen_rtx_CLOBBER (VOIDmode, result));
199 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
200 return result;
203 /* Generate code to perform a straightforward complex divide. */
205 static int
206 expand_cmplxdiv_straight (real0, real1, imag0, imag1, realr, imagr, submode,
207 unsignedp, methods, class, binoptab)
208 rtx real0, real1, imag0, imag1, realr, imagr;
209 enum machine_mode submode;
210 int unsignedp;
211 enum optab_methods methods;
212 enum mode_class class;
213 optab binoptab;
215 rtx divisor;
216 rtx real_t, imag_t;
217 rtx temp1, temp2;
218 rtx res;
219 optab this_add_optab = add_optab;
220 optab this_sub_optab = sub_optab;
221 optab this_neg_optab = neg_optab;
222 optab this_mul_optab = smul_optab;
224 if (binoptab == sdivv_optab)
226 this_add_optab = addv_optab;
227 this_sub_optab = subv_optab;
228 this_neg_optab = negv_optab;
229 this_mul_optab = smulv_optab;
232 /* Don't fetch these from memory more than once. */
233 real0 = force_reg (submode, real0);
234 real1 = force_reg (submode, real1);
236 if (imag0 != 0)
237 imag0 = force_reg (submode, imag0);
239 imag1 = force_reg (submode, imag1);
241 /* Divisor: c*c + d*d. */
242 temp1 = expand_binop (submode, this_mul_optab, real1, real1,
243 NULL_RTX, unsignedp, methods);
245 temp2 = expand_binop (submode, this_mul_optab, imag1, imag1,
246 NULL_RTX, unsignedp, methods);
248 if (temp1 == 0 || temp2 == 0)
249 return 0;
251 divisor = expand_binop (submode, this_add_optab, temp1, temp2,
252 NULL_RTX, unsignedp, methods);
253 if (divisor == 0)
254 return 0;
256 if (imag0 == 0)
258 /* Mathematically, ((a)(c-id))/divisor. */
259 /* Computationally, (a+i0) / (c+id) = (ac/(cc+dd)) + i(-ad/(cc+dd)). */
261 /* Calculate the dividend. */
262 real_t = expand_binop (submode, this_mul_optab, real0, real1,
263 NULL_RTX, unsignedp, methods);
265 imag_t = expand_binop (submode, this_mul_optab, real0, imag1,
266 NULL_RTX, unsignedp, methods);
268 if (real_t == 0 || imag_t == 0)
269 return 0;
271 imag_t = expand_unop (submode, this_neg_optab, imag_t,
272 NULL_RTX, unsignedp);
274 else
276 /* Mathematically, ((a+ib)(c-id))/divider. */
277 /* Calculate the dividend. */
278 temp1 = expand_binop (submode, this_mul_optab, real0, real1,
279 NULL_RTX, unsignedp, methods);
281 temp2 = expand_binop (submode, this_mul_optab, imag0, imag1,
282 NULL_RTX, unsignedp, methods);
284 if (temp1 == 0 || temp2 == 0)
285 return 0;
287 real_t = expand_binop (submode, this_add_optab, temp1, temp2,
288 NULL_RTX, unsignedp, methods);
290 temp1 = expand_binop (submode, this_mul_optab, imag0, real1,
291 NULL_RTX, unsignedp, methods);
293 temp2 = expand_binop (submode, this_mul_optab, real0, imag1,
294 NULL_RTX, unsignedp, methods);
296 if (temp1 == 0 || temp2 == 0)
297 return 0;
299 imag_t = expand_binop (submode, this_sub_optab, temp1, temp2,
300 NULL_RTX, unsignedp, methods);
302 if (real_t == 0 || imag_t == 0)
303 return 0;
306 if (class == MODE_COMPLEX_FLOAT)
307 res = expand_binop (submode, binoptab, real_t, divisor,
308 realr, unsignedp, methods);
309 else
310 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
311 real_t, divisor, realr, unsignedp);
313 if (res == 0)
314 return 0;
316 if (res != realr)
317 emit_move_insn (realr, res);
319 if (class == MODE_COMPLEX_FLOAT)
320 res = expand_binop (submode, binoptab, imag_t, divisor,
321 imagr, unsignedp, methods);
322 else
323 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
324 imag_t, divisor, imagr, unsignedp);
326 if (res == 0)
327 return 0;
329 if (res != imagr)
330 emit_move_insn (imagr, res);
332 return 1;
335 /* Generate code to perform a wide-input-range-acceptable complex divide. */
337 static int
338 expand_cmplxdiv_wide (real0, real1, imag0, imag1, realr, imagr, submode,
339 unsignedp, methods, class, binoptab)
340 rtx real0, real1, imag0, imag1, realr, imagr;
341 enum machine_mode submode;
342 int unsignedp;
343 enum optab_methods methods;
344 enum mode_class class;
345 optab binoptab;
347 rtx ratio, divisor;
348 rtx real_t, imag_t;
349 rtx temp1, temp2, lab1, lab2;
350 enum machine_mode mode;
351 int align;
352 rtx res;
353 optab this_add_optab = add_optab;
354 optab this_sub_optab = sub_optab;
355 optab this_neg_optab = neg_optab;
356 optab this_mul_optab = smul_optab;
358 if (binoptab == sdivv_optab)
360 this_add_optab = addv_optab;
361 this_sub_optab = subv_optab;
362 this_neg_optab = negv_optab;
363 this_mul_optab = smulv_optab;
366 /* Don't fetch these from memory more than once. */
367 real0 = force_reg (submode, real0);
368 real1 = force_reg (submode, real1);
370 if (imag0 != 0)
371 imag0 = force_reg (submode, imag0);
373 imag1 = force_reg (submode, imag1);
375 /* XXX What's an "unsigned" complex number? */
376 if (unsignedp)
378 temp1 = real1;
379 temp2 = imag1;
381 else
383 temp1 = expand_abs (submode, real1, NULL_RTX, unsignedp, 1);
384 temp2 = expand_abs (submode, imag1, NULL_RTX, unsignedp, 1);
387 if (temp1 == 0 || temp2 == 0)
388 return 0;
390 mode = GET_MODE (temp1);
391 align = GET_MODE_ALIGNMENT (mode);
392 lab1 = gen_label_rtx ();
393 emit_cmp_and_jump_insns (temp1, temp2, LT, NULL_RTX,
394 mode, unsignedp, align, lab1);
396 /* |c| >= |d|; use ratio d/c to scale dividend and divisor. */
398 if (class == MODE_COMPLEX_FLOAT)
399 ratio = expand_binop (submode, binoptab, imag1, real1,
400 NULL_RTX, unsignedp, methods);
401 else
402 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
403 imag1, real1, NULL_RTX, unsignedp);
405 if (ratio == 0)
406 return 0;
408 /* Calculate divisor. */
410 temp1 = expand_binop (submode, this_mul_optab, imag1, ratio,
411 NULL_RTX, unsignedp, methods);
413 if (temp1 == 0)
414 return 0;
416 divisor = expand_binop (submode, this_add_optab, temp1, real1,
417 NULL_RTX, unsignedp, methods);
419 if (divisor == 0)
420 return 0;
422 /* Calculate dividend. */
424 if (imag0 == 0)
426 real_t = real0;
428 /* Compute a / (c+id) as a / (c+d(d/c)) + i (-a(d/c)) / (c+d(d/c)). */
430 imag_t = expand_binop (submode, this_mul_optab, real0, ratio,
431 NULL_RTX, unsignedp, methods);
433 if (imag_t == 0)
434 return 0;
436 imag_t = expand_unop (submode, this_neg_optab, imag_t,
437 NULL_RTX, unsignedp);
439 if (real_t == 0 || imag_t == 0)
440 return 0;
442 else
444 /* Compute (a+ib)/(c+id) as
445 (a+b(d/c))/(c+d(d/c) + i(b-a(d/c))/(c+d(d/c)). */
447 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
448 NULL_RTX, unsignedp, methods);
450 if (temp1 == 0)
451 return 0;
453 real_t = expand_binop (submode, this_add_optab, temp1, real0,
454 NULL_RTX, unsignedp, methods);
456 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
457 NULL_RTX, unsignedp, methods);
459 if (temp1 == 0)
460 return 0;
462 imag_t = expand_binop (submode, this_sub_optab, imag0, temp1,
463 NULL_RTX, unsignedp, methods);
465 if (real_t == 0 || imag_t == 0)
466 return 0;
469 if (class == MODE_COMPLEX_FLOAT)
470 res = expand_binop (submode, binoptab, real_t, divisor,
471 realr, unsignedp, methods);
472 else
473 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
474 real_t, divisor, realr, unsignedp);
476 if (res == 0)
477 return 0;
479 if (res != realr)
480 emit_move_insn (realr, res);
482 if (class == MODE_COMPLEX_FLOAT)
483 res = expand_binop (submode, binoptab, imag_t, divisor,
484 imagr, unsignedp, methods);
485 else
486 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
487 imag_t, divisor, imagr, unsignedp);
489 if (res == 0)
490 return 0;
492 if (res != imagr)
493 emit_move_insn (imagr, res);
495 lab2 = gen_label_rtx ();
496 emit_jump_insn (gen_jump (lab2));
497 emit_barrier ();
499 emit_label (lab1);
501 /* |d| > |c|; use ratio c/d to scale dividend and divisor. */
503 if (class == MODE_COMPLEX_FLOAT)
504 ratio = expand_binop (submode, binoptab, real1, imag1,
505 NULL_RTX, unsignedp, methods);
506 else
507 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
508 real1, imag1, NULL_RTX, unsignedp);
510 if (ratio == 0)
511 return 0;
513 /* Calculate divisor. */
515 temp1 = expand_binop (submode, this_mul_optab, real1, ratio,
516 NULL_RTX, unsignedp, methods);
518 if (temp1 == 0)
519 return 0;
521 divisor = expand_binop (submode, this_add_optab, temp1, imag1,
522 NULL_RTX, unsignedp, methods);
524 if (divisor == 0)
525 return 0;
527 /* Calculate dividend. */
529 if (imag0 == 0)
531 /* Compute a / (c+id) as a(c/d) / (c(c/d)+d) + i (-a) / (c(c/d)+d). */
533 real_t = expand_binop (submode, this_mul_optab, real0, ratio,
534 NULL_RTX, unsignedp, methods);
536 imag_t = expand_unop (submode, this_neg_optab, real0,
537 NULL_RTX, unsignedp);
539 if (real_t == 0 || imag_t == 0)
540 return 0;
542 else
544 /* Compute (a+ib)/(c+id) as
545 (a(c/d)+b)/(c(c/d)+d) + i (b(c/d)-a)/(c(c/d)+d). */
547 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
548 NULL_RTX, unsignedp, methods);
550 if (temp1 == 0)
551 return 0;
553 real_t = expand_binop (submode, this_add_optab, temp1, imag0,
554 NULL_RTX, unsignedp, methods);
556 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
557 NULL_RTX, unsignedp, methods);
559 if (temp1 == 0)
560 return 0;
562 imag_t = expand_binop (submode, this_sub_optab, temp1, real0,
563 NULL_RTX, unsignedp, methods);
565 if (real_t == 0 || imag_t == 0)
566 return 0;
569 if (class == MODE_COMPLEX_FLOAT)
570 res = expand_binop (submode, binoptab, real_t, divisor,
571 realr, unsignedp, methods);
572 else
573 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
574 real_t, divisor, realr, unsignedp);
576 if (res == 0)
577 return 0;
579 if (res != realr)
580 emit_move_insn (realr, res);
582 if (class == MODE_COMPLEX_FLOAT)
583 res = expand_binop (submode, binoptab, imag_t, divisor,
584 imagr, unsignedp, methods);
585 else
586 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
587 imag_t, divisor, imagr, unsignedp);
589 if (res == 0)
590 return 0;
592 if (res != imagr)
593 emit_move_insn (imagr, res);
595 emit_label (lab2);
597 return 1;
600 /* Generate code to perform an operation specified by BINOPTAB
601 on operands OP0 and OP1, with result having machine-mode MODE.
603 UNSIGNEDP is for the case where we have to widen the operands
604 to perform the operation. It says to use zero-extension.
606 If TARGET is nonzero, the value
607 is generated there, if it is convenient to do so.
608 In all cases an rtx is returned for the locus of the value;
609 this may or may not be TARGET. */
612 expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods)
613 enum machine_mode mode;
614 optab binoptab;
615 rtx op0, op1;
616 rtx target;
617 int unsignedp;
618 enum optab_methods methods;
620 enum optab_methods next_methods
621 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
622 ? OPTAB_WIDEN : methods);
623 enum mode_class class;
624 enum machine_mode wider_mode;
625 register rtx temp;
626 int commutative_op = 0;
627 int shift_op = (binoptab->code == ASHIFT
628 || binoptab->code == ASHIFTRT
629 || binoptab->code == LSHIFTRT
630 || binoptab->code == ROTATE
631 || binoptab->code == ROTATERT);
632 rtx entry_last = get_last_insn ();
633 rtx last;
635 class = GET_MODE_CLASS (mode);
637 op0 = protect_from_queue (op0, 0);
638 op1 = protect_from_queue (op1, 0);
639 if (target)
640 target = protect_from_queue (target, 1);
642 if (flag_force_mem)
644 op0 = force_not_mem (op0);
645 op1 = force_not_mem (op1);
648 /* If subtracting an integer constant, convert this into an addition of
649 the negated constant. */
651 if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
653 op1 = negate_rtx (mode, op1);
654 binoptab = add_optab;
657 /* If we are inside an appropriately-short loop and one operand is an
658 expensive constant, force it into a register. */
659 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
660 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
661 op0 = force_reg (mode, op0);
663 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
664 && ! shift_op && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
665 op1 = force_reg (mode, op1);
667 /* Record where to delete back to if we backtrack. */
668 last = get_last_insn ();
670 /* If operation is commutative,
671 try to make the first operand a register.
672 Even better, try to make it the same as the target.
673 Also try to make the last operand a constant. */
674 if (GET_RTX_CLASS (binoptab->code) == 'c'
675 || binoptab == smul_widen_optab
676 || binoptab == umul_widen_optab
677 || binoptab == smul_highpart_optab
678 || binoptab == umul_highpart_optab)
680 commutative_op = 1;
682 if (((target == 0 || GET_CODE (target) == REG)
683 ? ((GET_CODE (op1) == REG
684 && GET_CODE (op0) != REG)
685 || target == op1)
686 : rtx_equal_p (op1, target))
687 || GET_CODE (op0) == CONST_INT)
689 temp = op1;
690 op1 = op0;
691 op0 = temp;
695 /* If we can do it with a three-operand insn, do so. */
697 if (methods != OPTAB_MUST_WIDEN
698 && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
700 int icode = (int) binoptab->handlers[(int) mode].insn_code;
701 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
702 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
703 rtx pat;
704 rtx xop0 = op0, xop1 = op1;
706 if (target)
707 temp = target;
708 else
709 temp = gen_reg_rtx (mode);
711 /* If it is a commutative operator and the modes would match
712 if we would swap the operands, we can save the conversions. */
713 if (commutative_op)
715 if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
716 && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
718 register rtx tmp;
720 tmp = op0; op0 = op1; op1 = tmp;
721 tmp = xop0; xop0 = xop1; xop1 = tmp;
725 /* In case the insn wants input operands in modes different from
726 the result, convert the operands. */
728 if (GET_MODE (op0) != VOIDmode
729 && GET_MODE (op0) != mode0
730 && mode0 != VOIDmode)
731 xop0 = convert_to_mode (mode0, xop0, unsignedp);
733 if (GET_MODE (xop1) != VOIDmode
734 && GET_MODE (xop1) != mode1
735 && mode1 != VOIDmode)
736 xop1 = convert_to_mode (mode1, xop1, unsignedp);
738 /* Now, if insn's predicates don't allow our operands, put them into
739 pseudo regs. */
741 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0)
742 && mode0 != VOIDmode)
743 xop0 = copy_to_mode_reg (mode0, xop0);
745 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1)
746 && mode1 != VOIDmode)
747 xop1 = copy_to_mode_reg (mode1, xop1);
749 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
750 temp = gen_reg_rtx (mode);
752 pat = GEN_FCN (icode) (temp, xop0, xop1);
753 if (pat)
755 /* If PAT is a multi-insn sequence, try to add an appropriate
756 REG_EQUAL note to it. If we can't because TEMP conflicts with an
757 operand, call ourselves again, this time without a target. */
758 if (GET_CODE (pat) == SEQUENCE
759 && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
761 delete_insns_since (last);
762 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
763 unsignedp, methods);
766 emit_insn (pat);
767 return temp;
769 else
770 delete_insns_since (last);
773 /* If this is a multiply, see if we can do a widening operation that
774 takes operands of this mode and makes a wider mode. */
776 if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode
777 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
778 ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
779 != CODE_FOR_nothing))
781 temp = expand_binop (GET_MODE_WIDER_MODE (mode),
782 unsignedp ? umul_widen_optab : smul_widen_optab,
783 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
785 if (temp != 0)
787 if (GET_MODE_CLASS (mode) == MODE_INT)
788 return gen_lowpart (mode, temp);
789 else
790 return convert_to_mode (mode, temp, unsignedp);
794 /* Look for a wider mode of the same class for which we think we
795 can open-code the operation. Check for a widening multiply at the
796 wider mode as well. */
798 if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
799 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
800 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
801 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
803 if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
804 || (binoptab == smul_optab
805 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
806 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
807 ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
808 != CODE_FOR_nothing)))
810 rtx xop0 = op0, xop1 = op1;
811 int no_extend = 0;
813 /* For certain integer operations, we need not actually extend
814 the narrow operands, as long as we will truncate
815 the results to the same narrowness. */
817 if ((binoptab == ior_optab || binoptab == and_optab
818 || binoptab == xor_optab
819 || binoptab == add_optab || binoptab == sub_optab
820 || binoptab == smul_optab || binoptab == ashl_optab)
821 && class == MODE_INT)
822 no_extend = 1;
824 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
826 /* The second operand of a shift must always be extended. */
827 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
828 no_extend && binoptab != ashl_optab);
830 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
831 unsignedp, OPTAB_DIRECT);
832 if (temp)
834 if (class != MODE_INT)
836 if (target == 0)
837 target = gen_reg_rtx (mode);
838 convert_move (target, temp, 0);
839 return target;
841 else
842 return gen_lowpart (mode, temp);
844 else
845 delete_insns_since (last);
849 /* These can be done a word at a time. */
850 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
851 && class == MODE_INT
852 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
853 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
855 unsigned int i;
856 rtx insns;
857 rtx equiv_value;
859 /* If TARGET is the same as one of the operands, the REG_EQUAL note
860 won't be accurate, so use a new target. */
861 if (target == 0 || target == op0 || target == op1)
862 target = gen_reg_rtx (mode);
864 start_sequence ();
866 /* Do the actual arithmetic. */
867 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
869 rtx target_piece = operand_subword (target, i, 1, mode);
870 rtx x = expand_binop (word_mode, binoptab,
871 operand_subword_force (op0, i, mode),
872 operand_subword_force (op1, i, mode),
873 target_piece, unsignedp, next_methods);
875 if (x == 0)
876 break;
878 if (target_piece != x)
879 emit_move_insn (target_piece, x);
882 insns = get_insns ();
883 end_sequence ();
885 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
887 if (binoptab->code != UNKNOWN)
888 equiv_value
889 = gen_rtx_fmt_ee (binoptab->code, mode,
890 copy_rtx (op0), copy_rtx (op1));
891 else
892 equiv_value = 0;
894 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
895 return target;
899 /* Synthesize double word shifts from single word shifts. */
900 if ((binoptab == lshr_optab || binoptab == ashl_optab
901 || binoptab == ashr_optab)
902 && class == MODE_INT
903 && GET_CODE (op1) == CONST_INT
904 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
905 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
906 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
907 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
909 rtx insns, inter, equiv_value;
910 rtx into_target, outof_target;
911 rtx into_input, outof_input;
912 int shift_count, left_shift, outof_word;
914 /* If TARGET is the same as one of the operands, the REG_EQUAL note
915 won't be accurate, so use a new target. */
916 if (target == 0 || target == op0 || target == op1)
917 target = gen_reg_rtx (mode);
919 start_sequence ();
921 shift_count = INTVAL (op1);
923 /* OUTOF_* is the word we are shifting bits away from, and
924 INTO_* is the word that we are shifting bits towards, thus
925 they differ depending on the direction of the shift and
926 WORDS_BIG_ENDIAN. */
928 left_shift = binoptab == ashl_optab;
929 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
931 outof_target = operand_subword (target, outof_word, 1, mode);
932 into_target = operand_subword (target, 1 - outof_word, 1, mode);
934 outof_input = operand_subword_force (op0, outof_word, mode);
935 into_input = operand_subword_force (op0, 1 - outof_word, mode);
937 if (shift_count >= BITS_PER_WORD)
939 inter = expand_binop (word_mode, binoptab,
940 outof_input,
941 GEN_INT (shift_count - BITS_PER_WORD),
942 into_target, unsignedp, next_methods);
944 if (inter != 0 && inter != into_target)
945 emit_move_insn (into_target, inter);
947 /* For a signed right shift, we must fill the word we are shifting
948 out of with copies of the sign bit. Otherwise it is zeroed. */
949 if (inter != 0 && binoptab != ashr_optab)
950 inter = CONST0_RTX (word_mode);
951 else if (inter != 0)
952 inter = expand_binop (word_mode, binoptab,
953 outof_input,
954 GEN_INT (BITS_PER_WORD - 1),
955 outof_target, unsignedp, next_methods);
957 if (inter != 0 && inter != outof_target)
958 emit_move_insn (outof_target, inter);
960 else
962 rtx carries;
963 optab reverse_unsigned_shift, unsigned_shift;
965 /* For a shift of less then BITS_PER_WORD, to compute the carry,
966 we must do a logical shift in the opposite direction of the
967 desired shift. */
969 reverse_unsigned_shift = (left_shift ? lshr_optab : ashl_optab);
971 /* For a shift of less than BITS_PER_WORD, to compute the word
972 shifted towards, we need to unsigned shift the orig value of
973 that word. */
975 unsigned_shift = (left_shift ? ashl_optab : lshr_optab);
977 carries = expand_binop (word_mode, reverse_unsigned_shift,
978 outof_input,
979 GEN_INT (BITS_PER_WORD - shift_count),
980 0, unsignedp, next_methods);
982 if (carries == 0)
983 inter = 0;
984 else
985 inter = expand_binop (word_mode, unsigned_shift, into_input,
986 op1, 0, unsignedp, next_methods);
988 if (inter != 0)
989 inter = expand_binop (word_mode, ior_optab, carries, inter,
990 into_target, unsignedp, next_methods);
992 if (inter != 0 && inter != into_target)
993 emit_move_insn (into_target, inter);
995 if (inter != 0)
996 inter = expand_binop (word_mode, binoptab, outof_input,
997 op1, outof_target, unsignedp, next_methods);
999 if (inter != 0 && inter != outof_target)
1000 emit_move_insn (outof_target, inter);
1003 insns = get_insns ();
1004 end_sequence ();
1006 if (inter != 0)
1008 if (binoptab->code != UNKNOWN)
1009 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1010 else
1011 equiv_value = 0;
1013 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1014 return target;
1018 /* Synthesize double word rotates from single word shifts. */
1019 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1020 && class == MODE_INT
1021 && GET_CODE (op1) == CONST_INT
1022 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1023 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1024 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1026 rtx insns, equiv_value;
1027 rtx into_target, outof_target;
1028 rtx into_input, outof_input;
1029 rtx inter;
1030 int shift_count, left_shift, outof_word;
1032 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1033 won't be accurate, so use a new target. */
1034 if (target == 0 || target == op0 || target == op1)
1035 target = gen_reg_rtx (mode);
1037 start_sequence ();
1039 shift_count = INTVAL (op1);
1041 /* OUTOF_* is the word we are shifting bits away from, and
1042 INTO_* is the word that we are shifting bits towards, thus
1043 they differ depending on the direction of the shift and
1044 WORDS_BIG_ENDIAN. */
1046 left_shift = (binoptab == rotl_optab);
1047 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1049 outof_target = operand_subword (target, outof_word, 1, mode);
1050 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1052 outof_input = operand_subword_force (op0, outof_word, mode);
1053 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1055 if (shift_count == BITS_PER_WORD)
1057 /* This is just a word swap. */
1058 emit_move_insn (outof_target, into_input);
1059 emit_move_insn (into_target, outof_input);
1060 inter = const0_rtx;
1062 else
1064 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1065 rtx first_shift_count, second_shift_count;
1066 optab reverse_unsigned_shift, unsigned_shift;
1068 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1069 ? lshr_optab : ashl_optab);
1071 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1072 ? ashl_optab : lshr_optab);
1074 if (shift_count > BITS_PER_WORD)
1076 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1077 second_shift_count = GEN_INT (2*BITS_PER_WORD - shift_count);
1079 else
1081 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1082 second_shift_count = GEN_INT (shift_count);
1085 into_temp1 = expand_binop (word_mode, unsigned_shift,
1086 outof_input, first_shift_count,
1087 NULL_RTX, unsignedp, next_methods);
1088 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1089 into_input, second_shift_count,
1090 into_target, unsignedp, next_methods);
1092 if (into_temp1 != 0 && into_temp2 != 0)
1093 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1094 into_target, unsignedp, next_methods);
1095 else
1096 inter = 0;
1098 if (inter != 0 && inter != into_target)
1099 emit_move_insn (into_target, inter);
1101 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1102 into_input, first_shift_count,
1103 NULL_RTX, unsignedp, next_methods);
1104 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1105 outof_input, second_shift_count,
1106 outof_target, unsignedp, next_methods);
1108 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1109 inter = expand_binop (word_mode, ior_optab,
1110 outof_temp1, outof_temp2,
1111 outof_target, unsignedp, next_methods);
1113 if (inter != 0 && inter != outof_target)
1114 emit_move_insn (outof_target, inter);
1117 insns = get_insns ();
1118 end_sequence ();
1120 if (inter != 0)
1122 if (binoptab->code != UNKNOWN)
1123 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1124 else
1125 equiv_value = 0;
1127 /* We can't make this a no conflict block if this is a word swap,
1128 because the word swap case fails if the input and output values
1129 are in the same register. */
1130 if (shift_count != BITS_PER_WORD)
1131 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1132 else
1133 emit_insns (insns);
1136 return target;
1140 /* These can be done a word at a time by propagating carries. */
1141 if ((binoptab == add_optab || binoptab == sub_optab)
1142 && class == MODE_INT
1143 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1144 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1146 unsigned int i;
1147 rtx carry_tmp = gen_reg_rtx (word_mode);
1148 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1149 unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1150 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1151 rtx xop0, xop1;
1153 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1154 value is one of those, use it. Otherwise, use 1 since it is the
1155 one easiest to get. */
1156 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1157 int normalizep = STORE_FLAG_VALUE;
1158 #else
1159 int normalizep = 1;
1160 #endif
1162 /* Prepare the operands. */
1163 xop0 = force_reg (mode, op0);
1164 xop1 = force_reg (mode, op1);
1166 if (target == 0 || GET_CODE (target) != REG
1167 || target == xop0 || target == xop1)
1168 target = gen_reg_rtx (mode);
1170 /* Indicate for flow that the entire target reg is being set. */
1171 if (GET_CODE (target) == REG)
1172 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
1174 /* Do the actual arithmetic. */
1175 for (i = 0; i < nwords; i++)
1177 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1178 rtx target_piece = operand_subword (target, index, 1, mode);
1179 rtx op0_piece = operand_subword_force (xop0, index, mode);
1180 rtx op1_piece = operand_subword_force (xop1, index, mode);
1181 rtx x;
1183 /* Main add/subtract of the input operands. */
1184 x = expand_binop (word_mode, binoptab,
1185 op0_piece, op1_piece,
1186 target_piece, unsignedp, next_methods);
1187 if (x == 0)
1188 break;
1190 if (i + 1 < nwords)
1192 /* Store carry from main add/subtract. */
1193 carry_out = gen_reg_rtx (word_mode);
1194 carry_out = emit_store_flag_force (carry_out,
1195 (binoptab == add_optab
1196 ? LT : GT),
1197 x, op0_piece,
1198 word_mode, 1, normalizep);
1201 if (i > 0)
1203 /* Add/subtract previous carry to main result. */
1204 x = expand_binop (word_mode,
1205 normalizep == 1 ? binoptab : otheroptab,
1206 x, carry_in,
1207 target_piece, 1, next_methods);
1208 if (x == 0)
1209 break;
1210 else if (target_piece != x)
1211 emit_move_insn (target_piece, x);
1213 if (i + 1 < nwords)
1215 /* THIS CODE HAS NOT BEEN TESTED. */
1216 /* Get out carry from adding/subtracting carry in. */
1217 carry_tmp = emit_store_flag_force (carry_tmp,
1218 binoptab == add_optab
1219 ? LT : GT,
1220 x, carry_in,
1221 word_mode, 1, normalizep);
1223 /* Logical-ior the two poss. carry together. */
1224 carry_out = expand_binop (word_mode, ior_optab,
1225 carry_out, carry_tmp,
1226 carry_out, 0, next_methods);
1227 if (carry_out == 0)
1228 break;
1232 carry_in = carry_out;
1235 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1237 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1239 rtx temp = emit_move_insn (target, target);
1241 set_unique_reg_note (temp,
1242 REG_EQUAL,
1243 gen_rtx_fmt_ee (binoptab->code, mode,
1244 copy_rtx (xop0),
1245 copy_rtx (xop1)));
1248 return target;
1251 else
1252 delete_insns_since (last);
1255 /* If we want to multiply two two-word values and have normal and widening
1256 multiplies of single-word values, we can do this with three smaller
1257 multiplications. Note that we do not make a REG_NO_CONFLICT block here
1258 because we are not operating on one word at a time.
1260 The multiplication proceeds as follows:
1261 _______________________
1262 [__op0_high_|__op0_low__]
1263 _______________________
1264 * [__op1_high_|__op1_low__]
1265 _______________________________________________
1266 _______________________
1267 (1) [__op0_low__*__op1_low__]
1268 _______________________
1269 (2a) [__op0_low__*__op1_high_]
1270 _______________________
1271 (2b) [__op0_high_*__op1_low__]
1272 _______________________
1273 (3) [__op0_high_*__op1_high_]
1276 This gives a 4-word result. Since we are only interested in the
1277 lower 2 words, partial result (3) and the upper words of (2a) and
1278 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1279 calculated using non-widening multiplication.
1281 (1), however, needs to be calculated with an unsigned widening
1282 multiplication. If this operation is not directly supported we
1283 try using a signed widening multiplication and adjust the result.
1284 This adjustment works as follows:
1286 If both operands are positive then no adjustment is needed.
1288 If the operands have different signs, for example op0_low < 0 and
1289 op1_low >= 0, the instruction treats the most significant bit of
1290 op0_low as a sign bit instead of a bit with significance
1291 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1292 with 2**BITS_PER_WORD - op0_low, and two's complements the
1293 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1294 the result.
1296 Similarly, if both operands are negative, we need to add
1297 (op0_low + op1_low) * 2**BITS_PER_WORD.
1299 We use a trick to adjust quickly. We logically shift op0_low right
1300 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1301 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1302 logical shift exists, we do an arithmetic right shift and subtract
1303 the 0 or -1. */
1305 if (binoptab == smul_optab
1306 && class == MODE_INT
1307 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1308 && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1309 && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1310 && ((umul_widen_optab->handlers[(int) mode].insn_code
1311 != CODE_FOR_nothing)
1312 || (smul_widen_optab->handlers[(int) mode].insn_code
1313 != CODE_FOR_nothing)))
1315 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1316 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1317 rtx op0_high = operand_subword_force (op0, high, mode);
1318 rtx op0_low = operand_subword_force (op0, low, mode);
1319 rtx op1_high = operand_subword_force (op1, high, mode);
1320 rtx op1_low = operand_subword_force (op1, low, mode);
1321 rtx product = 0;
1322 rtx op0_xhigh = NULL_RTX;
1323 rtx op1_xhigh = NULL_RTX;
1325 /* If the target is the same as one of the inputs, don't use it. This
1326 prevents problems with the REG_EQUAL note. */
1327 if (target == op0 || target == op1
1328 || (target != 0 && GET_CODE (target) != REG))
1329 target = 0;
1331 /* Multiply the two lower words to get a double-word product.
1332 If unsigned widening multiplication is available, use that;
1333 otherwise use the signed form and compensate. */
1335 if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1337 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1338 target, 1, OPTAB_DIRECT);
1340 /* If we didn't succeed, delete everything we did so far. */
1341 if (product == 0)
1342 delete_insns_since (last);
1343 else
1344 op0_xhigh = op0_high, op1_xhigh = op1_high;
1347 if (product == 0
1348 && smul_widen_optab->handlers[(int) mode].insn_code
1349 != CODE_FOR_nothing)
1351 rtx wordm1 = GEN_INT (BITS_PER_WORD - 1);
1352 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1353 target, 1, OPTAB_DIRECT);
1354 op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1355 NULL_RTX, 1, next_methods);
1356 if (op0_xhigh)
1357 op0_xhigh = expand_binop (word_mode, add_optab, op0_high,
1358 op0_xhigh, op0_xhigh, 0, next_methods);
1359 else
1361 op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1362 NULL_RTX, 0, next_methods);
1363 if (op0_xhigh)
1364 op0_xhigh = expand_binop (word_mode, sub_optab, op0_high,
1365 op0_xhigh, op0_xhigh, 0,
1366 next_methods);
1369 op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1370 NULL_RTX, 1, next_methods);
1371 if (op1_xhigh)
1372 op1_xhigh = expand_binop (word_mode, add_optab, op1_high,
1373 op1_xhigh, op1_xhigh, 0, next_methods);
1374 else
1376 op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1377 NULL_RTX, 0, next_methods);
1378 if (op1_xhigh)
1379 op1_xhigh = expand_binop (word_mode, sub_optab, op1_high,
1380 op1_xhigh, op1_xhigh, 0,
1381 next_methods);
1385 /* If we have been able to directly compute the product of the
1386 low-order words of the operands and perform any required adjustments
1387 of the operands, we proceed by trying two more multiplications
1388 and then computing the appropriate sum.
1390 We have checked above that the required addition is provided.
1391 Full-word addition will normally always succeed, especially if
1392 it is provided at all, so we don't worry about its failure. The
1393 multiplication may well fail, however, so we do handle that. */
1395 if (product && op0_xhigh && op1_xhigh)
1397 rtx product_high = operand_subword (product, high, 1, mode);
1398 rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh,
1399 NULL_RTX, 0, OPTAB_DIRECT);
1401 if (temp != 0)
1402 temp = expand_binop (word_mode, add_optab, temp, product_high,
1403 product_high, 0, next_methods);
1405 if (temp != 0 && temp != product_high)
1406 emit_move_insn (product_high, temp);
1408 if (temp != 0)
1409 temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh,
1410 NULL_RTX, 0, OPTAB_DIRECT);
1412 if (temp != 0)
1413 temp = expand_binop (word_mode, add_optab, temp,
1414 product_high, product_high,
1415 0, next_methods);
1417 if (temp != 0 && temp != product_high)
1418 emit_move_insn (product_high, temp);
1420 if (temp != 0)
1422 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1424 temp = emit_move_insn (product, product);
1425 set_unique_reg_note (temp,
1426 REG_EQUAL,
1427 gen_rtx_fmt_ee (MULT, mode,
1428 copy_rtx (op0),
1429 copy_rtx (op1)));
1432 return product;
1436 /* If we get here, we couldn't do it for some reason even though we
1437 originally thought we could. Delete anything we've emitted in
1438 trying to do it. */
1440 delete_insns_since (last);
1443 /* We need to open-code the complex type operations: '+, -, * and /' */
1445 /* At this point we allow operations between two similar complex
1446 numbers, and also if one of the operands is not a complex number
1447 but rather of MODE_FLOAT or MODE_INT. However, the caller
1448 must make sure that the MODE of the non-complex operand matches
1449 the SUBMODE of the complex operand. */
1451 if (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
1453 rtx real0 = 0, imag0 = 0;
1454 rtx real1 = 0, imag1 = 0;
1455 rtx realr, imagr, res;
1456 rtx seq;
1457 rtx equiv_value;
1458 int ok = 0;
1460 /* Find the correct mode for the real and imaginary parts */
1461 enum machine_mode submode
1462 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
1463 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
1466 if (submode == BLKmode)
1467 abort ();
1469 if (! target)
1470 target = gen_reg_rtx (mode);
1472 start_sequence ();
1474 realr = gen_realpart (submode, target);
1475 imagr = gen_imagpart (submode, target);
1477 if (GET_MODE (op0) == mode)
1479 real0 = gen_realpart (submode, op0);
1480 imag0 = gen_imagpart (submode, op0);
1482 else
1483 real0 = op0;
1485 if (GET_MODE (op1) == mode)
1487 real1 = gen_realpart (submode, op1);
1488 imag1 = gen_imagpart (submode, op1);
1490 else
1491 real1 = op1;
1493 if (real0 == 0 || real1 == 0 || ! (imag0 != 0|| imag1 != 0))
1494 abort ();
1496 switch (binoptab->code)
1498 case PLUS:
1499 /* (a+ib) + (c+id) = (a+c) + i(b+d) */
1500 case MINUS:
1501 /* (a+ib) - (c+id) = (a-c) + i(b-d) */
1502 res = expand_binop (submode, binoptab, real0, real1,
1503 realr, unsignedp, methods);
1505 if (res == 0)
1506 break;
1507 else if (res != realr)
1508 emit_move_insn (realr, res);
1510 if (imag0 && imag1)
1511 res = expand_binop (submode, binoptab, imag0, imag1,
1512 imagr, unsignedp, methods);
1513 else if (imag0)
1514 res = imag0;
1515 else if (binoptab->code == MINUS)
1516 res = expand_unop (submode,
1517 binoptab == subv_optab ? negv_optab : neg_optab,
1518 imag1, imagr, unsignedp);
1519 else
1520 res = imag1;
1522 if (res == 0)
1523 break;
1524 else if (res != imagr)
1525 emit_move_insn (imagr, res);
1527 ok = 1;
1528 break;
1530 case MULT:
1531 /* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */
1533 if (imag0 && imag1)
1535 rtx temp1, temp2;
1537 /* Don't fetch these from memory more than once. */
1538 real0 = force_reg (submode, real0);
1539 real1 = force_reg (submode, real1);
1540 imag0 = force_reg (submode, imag0);
1541 imag1 = force_reg (submode, imag1);
1543 temp1 = expand_binop (submode, binoptab, real0, real1, NULL_RTX,
1544 unsignedp, methods);
1546 temp2 = expand_binop (submode, binoptab, imag0, imag1, NULL_RTX,
1547 unsignedp, methods);
1549 if (temp1 == 0 || temp2 == 0)
1550 break;
1552 res = (expand_binop
1553 (submode,
1554 binoptab == smulv_optab ? subv_optab : sub_optab,
1555 temp1, temp2, realr, unsignedp, methods));
1557 if (res == 0)
1558 break;
1559 else if (res != realr)
1560 emit_move_insn (realr, res);
1562 temp1 = expand_binop (submode, binoptab, real0, imag1,
1563 NULL_RTX, unsignedp, methods);
1565 temp2 = expand_binop (submode, binoptab, real1, imag0,
1566 NULL_RTX, unsignedp, methods);
1568 if (temp1 == 0 || temp2 == 0)
1569 break;
1571 res = (expand_binop
1572 (submode,
1573 binoptab == smulv_optab ? addv_optab : add_optab,
1574 temp1, temp2, imagr, unsignedp, methods));
1576 if (res == 0)
1577 break;
1578 else if (res != imagr)
1579 emit_move_insn (imagr, res);
1581 ok = 1;
1583 else
1585 /* Don't fetch these from memory more than once. */
1586 real0 = force_reg (submode, real0);
1587 real1 = force_reg (submode, real1);
1589 res = expand_binop (submode, binoptab, real0, real1,
1590 realr, unsignedp, methods);
1591 if (res == 0)
1592 break;
1593 else if (res != realr)
1594 emit_move_insn (realr, res);
1596 if (imag0 != 0)
1597 res = expand_binop (submode, binoptab,
1598 real1, imag0, imagr, unsignedp, methods);
1599 else
1600 res = expand_binop (submode, binoptab,
1601 real0, imag1, imagr, unsignedp, methods);
1603 if (res == 0)
1604 break;
1605 else if (res != imagr)
1606 emit_move_insn (imagr, res);
1608 ok = 1;
1610 break;
1612 case DIV:
1613 /* (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) */
1615 if (imag1 == 0)
1617 /* (a+ib) / (c+i0) = (a/c) + i(b/c) */
1619 /* Don't fetch these from memory more than once. */
1620 real1 = force_reg (submode, real1);
1622 /* Simply divide the real and imaginary parts by `c' */
1623 if (class == MODE_COMPLEX_FLOAT)
1624 res = expand_binop (submode, binoptab, real0, real1,
1625 realr, unsignedp, methods);
1626 else
1627 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1628 real0, real1, realr, unsignedp);
1630 if (res == 0)
1631 break;
1632 else if (res != realr)
1633 emit_move_insn (realr, res);
1635 if (class == MODE_COMPLEX_FLOAT)
1636 res = expand_binop (submode, binoptab, imag0, real1,
1637 imagr, unsignedp, methods);
1638 else
1639 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1640 imag0, real1, imagr, unsignedp);
1642 if (res == 0)
1643 break;
1644 else if (res != imagr)
1645 emit_move_insn (imagr, res);
1647 ok = 1;
1649 else
1651 switch (flag_complex_divide_method)
1653 case 0:
1654 ok = expand_cmplxdiv_straight (real0, real1, imag0, imag1,
1655 realr, imagr, submode,
1656 unsignedp, methods,
1657 class, binoptab);
1658 break;
1660 case 1:
1661 ok = expand_cmplxdiv_wide (real0, real1, imag0, imag1,
1662 realr, imagr, submode,
1663 unsignedp, methods,
1664 class, binoptab);
1665 break;
1667 default:
1668 abort ();
1671 break;
1673 default:
1674 abort ();
1677 seq = get_insns ();
1678 end_sequence ();
1680 if (ok)
1682 if (binoptab->code != UNKNOWN)
1683 equiv_value
1684 = gen_rtx_fmt_ee (binoptab->code, mode,
1685 copy_rtx (op0), copy_rtx (op1));
1686 else
1687 equiv_value = 0;
1689 emit_no_conflict_block (seq, target, op0, op1, equiv_value);
1691 return target;
1695 /* It can't be open-coded in this mode.
1696 Use a library call if one is available and caller says that's ok. */
1698 if (binoptab->handlers[(int) mode].libfunc
1699 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
1701 rtx insns;
1702 rtx op1x = op1;
1703 enum machine_mode op1_mode = mode;
1704 rtx value;
1706 start_sequence ();
1708 if (shift_op)
1710 op1_mode = word_mode;
1711 /* Specify unsigned here,
1712 since negative shift counts are meaningless. */
1713 op1x = convert_to_mode (word_mode, op1, 1);
1716 if (GET_MODE (op0) != VOIDmode
1717 && GET_MODE (op0) != mode)
1718 op0 = convert_to_mode (mode, op0, unsignedp);
1720 /* Pass 1 for NO_QUEUE so we don't lose any increments
1721 if the libcall is cse'd or moved. */
1722 value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
1723 NULL_RTX, LCT_CONST, mode, 2,
1724 op0, mode, op1x, op1_mode);
1726 insns = get_insns ();
1727 end_sequence ();
1729 target = gen_reg_rtx (mode);
1730 emit_libcall_block (insns, target, value,
1731 gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
1733 return target;
1736 delete_insns_since (last);
1738 /* It can't be done in this mode. Can we do it in a wider mode? */
1740 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
1741 || methods == OPTAB_MUST_WIDEN))
1743 /* Caller says, don't even try. */
1744 delete_insns_since (entry_last);
1745 return 0;
1748 /* Compute the value of METHODS to pass to recursive calls.
1749 Don't allow widening to be tried recursively. */
1751 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
1753 /* Look for a wider mode of the same class for which it appears we can do
1754 the operation. */
1756 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1758 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
1759 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1761 if ((binoptab->handlers[(int) wider_mode].insn_code
1762 != CODE_FOR_nothing)
1763 || (methods == OPTAB_LIB
1764 && binoptab->handlers[(int) wider_mode].libfunc))
1766 rtx xop0 = op0, xop1 = op1;
1767 int no_extend = 0;
1769 /* For certain integer operations, we need not actually extend
1770 the narrow operands, as long as we will truncate
1771 the results to the same narrowness. */
1773 if ((binoptab == ior_optab || binoptab == and_optab
1774 || binoptab == xor_optab
1775 || binoptab == add_optab || binoptab == sub_optab
1776 || binoptab == smul_optab || binoptab == ashl_optab)
1777 && class == MODE_INT)
1778 no_extend = 1;
1780 xop0 = widen_operand (xop0, wider_mode, mode,
1781 unsignedp, no_extend);
1783 /* The second operand of a shift must always be extended. */
1784 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1785 no_extend && binoptab != ashl_optab);
1787 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1788 unsignedp, methods);
1789 if (temp)
1791 if (class != MODE_INT)
1793 if (target == 0)
1794 target = gen_reg_rtx (mode);
1795 convert_move (target, temp, 0);
1796 return target;
1798 else
1799 return gen_lowpart (mode, temp);
1801 else
1802 delete_insns_since (last);
1807 delete_insns_since (entry_last);
1808 return 0;
1811 /* Expand a binary operator which has both signed and unsigned forms.
1812 UOPTAB is the optab for unsigned operations, and SOPTAB is for
1813 signed operations.
1815 If we widen unsigned operands, we may use a signed wider operation instead
1816 of an unsigned wider operation, since the result would be the same. */
1819 sign_expand_binop (mode, uoptab, soptab, op0, op1, target, unsignedp, methods)
1820 enum machine_mode mode;
1821 optab uoptab, soptab;
1822 rtx op0, op1, target;
1823 int unsignedp;
1824 enum optab_methods methods;
1826 register rtx temp;
1827 optab direct_optab = unsignedp ? uoptab : soptab;
1828 struct optab wide_soptab;
1830 /* Do it without widening, if possible. */
1831 temp = expand_binop (mode, direct_optab, op0, op1, target,
1832 unsignedp, OPTAB_DIRECT);
1833 if (temp || methods == OPTAB_DIRECT)
1834 return temp;
1836 /* Try widening to a signed int. Make a fake signed optab that
1837 hides any signed insn for direct use. */
1838 wide_soptab = *soptab;
1839 wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
1840 wide_soptab.handlers[(int) mode].libfunc = 0;
1842 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
1843 unsignedp, OPTAB_WIDEN);
1845 /* For unsigned operands, try widening to an unsigned int. */
1846 if (temp == 0 && unsignedp)
1847 temp = expand_binop (mode, uoptab, op0, op1, target,
1848 unsignedp, OPTAB_WIDEN);
1849 if (temp || methods == OPTAB_WIDEN)
1850 return temp;
1852 /* Use the right width lib call if that exists. */
1853 temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
1854 if (temp || methods == OPTAB_LIB)
1855 return temp;
1857 /* Must widen and use a lib call, use either signed or unsigned. */
1858 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
1859 unsignedp, methods);
1860 if (temp != 0)
1861 return temp;
1862 if (unsignedp)
1863 return expand_binop (mode, uoptab, op0, op1, target,
1864 unsignedp, methods);
1865 return 0;
1868 /* Generate code to perform an operation specified by BINOPTAB
1869 on operands OP0 and OP1, with two results to TARG1 and TARG2.
1870 We assume that the order of the operands for the instruction
1871 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
1872 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
1874 Either TARG0 or TARG1 may be zero, but what that means is that
1875 the result is not actually wanted. We will generate it into
1876 a dummy pseudo-reg and discard it. They may not both be zero.
1878 Returns 1 if this operation can be performed; 0 if not. */
1881 expand_twoval_binop (binoptab, op0, op1, targ0, targ1, unsignedp)
1882 optab binoptab;
1883 rtx op0, op1;
1884 rtx targ0, targ1;
1885 int unsignedp;
1887 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
1888 enum mode_class class;
1889 enum machine_mode wider_mode;
1890 rtx entry_last = get_last_insn ();
1891 rtx last;
1893 class = GET_MODE_CLASS (mode);
1895 op0 = protect_from_queue (op0, 0);
1896 op1 = protect_from_queue (op1, 0);
1898 if (flag_force_mem)
1900 op0 = force_not_mem (op0);
1901 op1 = force_not_mem (op1);
1904 /* If we are inside an appropriately-short loop and one operand is an
1905 expensive constant, force it into a register. */
1906 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
1907 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
1908 op0 = force_reg (mode, op0);
1910 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
1911 && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
1912 op1 = force_reg (mode, op1);
1914 if (targ0)
1915 targ0 = protect_from_queue (targ0, 1);
1916 else
1917 targ0 = gen_reg_rtx (mode);
1918 if (targ1)
1919 targ1 = protect_from_queue (targ1, 1);
1920 else
1921 targ1 = gen_reg_rtx (mode);
1923 /* Record where to go back to if we fail. */
1924 last = get_last_insn ();
1926 if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1928 int icode = (int) binoptab->handlers[(int) mode].insn_code;
1929 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
1930 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
1931 rtx pat;
1932 rtx xop0 = op0, xop1 = op1;
1934 /* In case this insn wants input operands in modes different from the
1935 result, convert the operands. */
1936 if (GET_MODE (op0) != VOIDmode && GET_MODE (op0) != mode0)
1937 xop0 = convert_to_mode (mode0, xop0, unsignedp);
1939 if (GET_MODE (op1) != VOIDmode && GET_MODE (op1) != mode1)
1940 xop1 = convert_to_mode (mode1, xop1, unsignedp);
1942 /* Now, if insn doesn't accept these operands, put them into pseudos. */
1943 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
1944 xop0 = copy_to_mode_reg (mode0, xop0);
1946 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1))
1947 xop1 = copy_to_mode_reg (mode1, xop1);
1949 /* We could handle this, but we should always be called with a pseudo
1950 for our targets and all insns should take them as outputs. */
1951 if (! (*insn_data[icode].operand[0].predicate) (targ0, mode)
1952 || ! (*insn_data[icode].operand[3].predicate) (targ1, mode))
1953 abort ();
1955 pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
1956 if (pat)
1958 emit_insn (pat);
1959 return 1;
1961 else
1962 delete_insns_since (last);
1965 /* It can't be done in this mode. Can we do it in a wider mode? */
1967 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1969 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
1970 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1972 if (binoptab->handlers[(int) wider_mode].insn_code
1973 != CODE_FOR_nothing)
1975 register rtx t0 = gen_reg_rtx (wider_mode);
1976 register rtx t1 = gen_reg_rtx (wider_mode);
1978 if (expand_twoval_binop (binoptab,
1979 convert_modes (wider_mode, mode, op0,
1980 unsignedp),
1981 convert_modes (wider_mode, mode, op1,
1982 unsignedp),
1983 t0, t1, unsignedp))
1985 convert_move (targ0, t0, unsignedp);
1986 convert_move (targ1, t1, unsignedp);
1987 return 1;
1989 else
1990 delete_insns_since (last);
1995 delete_insns_since (entry_last);
1996 return 0;
1999 /* Generate code to perform an operation specified by UNOPTAB
2000 on operand OP0, with result having machine-mode MODE.
2002 UNSIGNEDP is for the case where we have to widen the operands
2003 to perform the operation. It says to use zero-extension.
2005 If TARGET is nonzero, the value
2006 is generated there, if it is convenient to do so.
2007 In all cases an rtx is returned for the locus of the value;
2008 this may or may not be TARGET. */
2011 expand_unop (mode, unoptab, op0, target, unsignedp)
2012 enum machine_mode mode;
2013 optab unoptab;
2014 rtx op0;
2015 rtx target;
2016 int unsignedp;
2018 enum mode_class class;
2019 enum machine_mode wider_mode;
2020 register rtx temp;
2021 rtx last = get_last_insn ();
2022 rtx pat;
2024 class = GET_MODE_CLASS (mode);
2026 op0 = protect_from_queue (op0, 0);
2028 if (flag_force_mem)
2030 op0 = force_not_mem (op0);
2033 if (target)
2034 target = protect_from_queue (target, 1);
2036 if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2038 int icode = (int) unoptab->handlers[(int) mode].insn_code;
2039 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2040 rtx xop0 = op0;
2042 if (target)
2043 temp = target;
2044 else
2045 temp = gen_reg_rtx (mode);
2047 if (GET_MODE (xop0) != VOIDmode
2048 && GET_MODE (xop0) != mode0)
2049 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2051 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2053 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2054 xop0 = copy_to_mode_reg (mode0, xop0);
2056 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
2057 temp = gen_reg_rtx (mode);
2059 pat = GEN_FCN (icode) (temp, xop0);
2060 if (pat)
2062 if (GET_CODE (pat) == SEQUENCE
2063 && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
2065 delete_insns_since (last);
2066 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
2069 emit_insn (pat);
2071 return temp;
2073 else
2074 delete_insns_since (last);
2077 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2079 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2080 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2081 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2083 if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
2085 rtx xop0 = op0;
2087 /* For certain operations, we need not actually extend
2088 the narrow operand, as long as we will truncate the
2089 results to the same narrowness. */
2091 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2092 (unoptab == neg_optab
2093 || unoptab == one_cmpl_optab)
2094 && class == MODE_INT);
2096 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2097 unsignedp);
2099 if (temp)
2101 if (class != MODE_INT)
2103 if (target == 0)
2104 target = gen_reg_rtx (mode);
2105 convert_move (target, temp, 0);
2106 return target;
2108 else
2109 return gen_lowpart (mode, temp);
2111 else
2112 delete_insns_since (last);
2116 /* These can be done a word at a time. */
2117 if (unoptab == one_cmpl_optab
2118 && class == MODE_INT
2119 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
2120 && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
2122 unsigned int i;
2123 rtx insns;
2125 if (target == 0 || target == op0)
2126 target = gen_reg_rtx (mode);
2128 start_sequence ();
2130 /* Do the actual arithmetic. */
2131 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
2133 rtx target_piece = operand_subword (target, i, 1, mode);
2134 rtx x = expand_unop (word_mode, unoptab,
2135 operand_subword_force (op0, i, mode),
2136 target_piece, unsignedp);
2137 if (target_piece != x)
2138 emit_move_insn (target_piece, x);
2141 insns = get_insns ();
2142 end_sequence ();
2144 emit_no_conflict_block (insns, target, op0, NULL_RTX,
2145 gen_rtx_fmt_e (unoptab->code, mode,
2146 copy_rtx (op0)));
2147 return target;
2150 /* Open-code the complex negation operation. */
2151 else if (unoptab->code == NEG
2152 && (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT))
2154 rtx target_piece;
2155 rtx x;
2156 rtx seq;
2158 /* Find the correct mode for the real and imaginary parts */
2159 enum machine_mode submode
2160 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
2161 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
2164 if (submode == BLKmode)
2165 abort ();
2167 if (target == 0)
2168 target = gen_reg_rtx (mode);
2170 start_sequence ();
2172 target_piece = gen_imagpart (submode, target);
2173 x = expand_unop (submode, unoptab,
2174 gen_imagpart (submode, op0),
2175 target_piece, unsignedp);
2176 if (target_piece != x)
2177 emit_move_insn (target_piece, x);
2179 target_piece = gen_realpart (submode, target);
2180 x = expand_unop (submode, unoptab,
2181 gen_realpart (submode, op0),
2182 target_piece, unsignedp);
2183 if (target_piece != x)
2184 emit_move_insn (target_piece, x);
2186 seq = get_insns ();
2187 end_sequence ();
2189 emit_no_conflict_block (seq, target, op0, 0,
2190 gen_rtx_fmt_e (unoptab->code, mode,
2191 copy_rtx (op0)));
2192 return target;
2195 /* Now try a library call in this mode. */
2196 if (unoptab->handlers[(int) mode].libfunc)
2198 rtx insns;
2199 rtx value;
2201 start_sequence ();
2203 /* Pass 1 for NO_QUEUE so we don't lose any increments
2204 if the libcall is cse'd or moved. */
2205 value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
2206 NULL_RTX, LCT_CONST, mode, 1, op0, mode);
2207 insns = get_insns ();
2208 end_sequence ();
2210 target = gen_reg_rtx (mode);
2211 emit_libcall_block (insns, target, value,
2212 gen_rtx_fmt_e (unoptab->code, mode, op0));
2214 return target;
2217 /* It can't be done in this mode. Can we do it in a wider mode? */
2219 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2221 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2222 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2224 if ((unoptab->handlers[(int) wider_mode].insn_code
2225 != CODE_FOR_nothing)
2226 || unoptab->handlers[(int) wider_mode].libfunc)
2228 rtx xop0 = op0;
2230 /* For certain operations, we need not actually extend
2231 the narrow operand, as long as we will truncate the
2232 results to the same narrowness. */
2234 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2235 (unoptab == neg_optab
2236 || unoptab == one_cmpl_optab)
2237 && class == MODE_INT);
2239 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2240 unsignedp);
2242 if (temp)
2244 if (class != MODE_INT)
2246 if (target == 0)
2247 target = gen_reg_rtx (mode);
2248 convert_move (target, temp, 0);
2249 return target;
2251 else
2252 return gen_lowpart (mode, temp);
2254 else
2255 delete_insns_since (last);
2260 /* If there is no negate operation, try doing a subtract from zero.
2261 The US Software GOFAST library needs this. */
2262 if (unoptab->code == NEG)
2264 rtx temp;
2265 temp = expand_binop (mode,
2266 unoptab == negv_optab ? subv_optab : sub_optab,
2267 CONST0_RTX (mode), op0,
2268 target, unsignedp, OPTAB_LIB_WIDEN);
2269 if (temp)
2270 return temp;
2273 return 0;
2276 /* Emit code to compute the absolute value of OP0, with result to
2277 TARGET if convenient. (TARGET may be 0.) The return value says
2278 where the result actually is to be found.
2280 MODE is the mode of the operand; the mode of the result is
2281 different but can be deduced from MODE.
2286 expand_abs (mode, op0, target, result_unsignedp, safe)
2287 enum machine_mode mode;
2288 rtx op0;
2289 rtx target;
2290 int result_unsignedp;
2291 int safe;
2293 rtx temp, op1;
2295 if (! flag_trapv)
2296 result_unsignedp = 1;
2298 /* First try to do it with a special abs instruction. */
2299 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
2300 op0, target, 0);
2301 if (temp != 0)
2302 return temp;
2304 /* If we have a MAX insn, we can do this as MAX (x, -x). */
2305 if (smax_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2307 rtx last = get_last_insn ();
2309 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
2310 if (temp != 0)
2311 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
2312 OPTAB_WIDEN);
2314 if (temp != 0)
2315 return temp;
2317 delete_insns_since (last);
2320 /* If this machine has expensive jumps, we can do integer absolute
2321 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
2322 where W is the width of MODE. But don't do this if the machine has
2323 conditional arithmetic since the branches will be converted into
2324 a conditional negation insn. */
2326 #ifndef HAVE_conditional_arithmetic
2327 if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST >= 2)
2329 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
2330 size_int (GET_MODE_BITSIZE (mode) - 1),
2331 NULL_RTX, 0);
2333 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
2334 OPTAB_LIB_WIDEN);
2335 if (temp != 0)
2336 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
2337 temp, extended, target, 0, OPTAB_LIB_WIDEN);
2339 if (temp != 0)
2340 return temp;
2342 #endif
2344 /* If that does not win, use conditional jump and negate. */
2346 /* It is safe to use the target if it is the same
2347 as the source if this is also a pseudo register */
2348 if (op0 == target && GET_CODE (op0) == REG
2349 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
2350 safe = 1;
2352 op1 = gen_label_rtx ();
2353 if (target == 0 || ! safe
2354 || GET_MODE (target) != mode
2355 || (GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
2356 || (GET_CODE (target) == REG
2357 && REGNO (target) < FIRST_PSEUDO_REGISTER))
2358 target = gen_reg_rtx (mode);
2360 emit_move_insn (target, op0);
2361 NO_DEFER_POP;
2363 /* If this mode is an integer too wide to compare properly,
2364 compare word by word. Rely on CSE to optimize constant cases. */
2365 if (GET_MODE_CLASS (mode) == MODE_INT
2366 && ! can_compare_p (GE, mode, ccp_jump))
2367 do_jump_by_parts_greater_rtx (mode, 0, target, const0_rtx,
2368 NULL_RTX, op1);
2369 else
2370 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
2371 NULL_RTX, 0, NULL_RTX, op1);
2373 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
2374 target, target, 0);
2375 if (op0 != target)
2376 emit_move_insn (target, op0);
2377 emit_label (op1);
2378 OK_DEFER_POP;
2379 return target;
2382 /* Emit code to compute the absolute value of OP0, with result to
2383 TARGET if convenient. (TARGET may be 0.) The return value says
2384 where the result actually is to be found.
2386 MODE is the mode of the operand; the mode of the result is
2387 different but can be deduced from MODE.
2389 UNSIGNEDP is relevant for complex integer modes. */
2392 expand_complex_abs (mode, op0, target, unsignedp)
2393 enum machine_mode mode;
2394 rtx op0;
2395 rtx target;
2396 int unsignedp;
2398 enum mode_class class = GET_MODE_CLASS (mode);
2399 enum machine_mode wider_mode;
2400 register rtx temp;
2401 rtx entry_last = get_last_insn ();
2402 rtx last;
2403 rtx pat;
2404 optab this_abs_optab;
2406 /* Find the correct mode for the real and imaginary parts. */
2407 enum machine_mode submode
2408 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
2409 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
2412 if (submode == BLKmode)
2413 abort ();
2415 op0 = protect_from_queue (op0, 0);
2417 if (flag_force_mem)
2419 op0 = force_not_mem (op0);
2422 last = get_last_insn ();
2424 if (target)
2425 target = protect_from_queue (target, 1);
2427 this_abs_optab = ! unsignedp && flag_trapv
2428 && (GET_MODE_CLASS(mode) == MODE_INT)
2429 ? absv_optab : abs_optab;
2431 if (this_abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2433 int icode = (int) this_abs_optab->handlers[(int) mode].insn_code;
2434 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2435 rtx xop0 = op0;
2437 if (target)
2438 temp = target;
2439 else
2440 temp = gen_reg_rtx (submode);
2442 if (GET_MODE (xop0) != VOIDmode
2443 && GET_MODE (xop0) != mode0)
2444 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2446 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2448 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2449 xop0 = copy_to_mode_reg (mode0, xop0);
2451 if (! (*insn_data[icode].operand[0].predicate) (temp, submode))
2452 temp = gen_reg_rtx (submode);
2454 pat = GEN_FCN (icode) (temp, xop0);
2455 if (pat)
2457 if (GET_CODE (pat) == SEQUENCE
2458 && ! add_equal_note (pat, temp, this_abs_optab->code, xop0,
2459 NULL_RTX))
2461 delete_insns_since (last);
2462 return expand_unop (mode, this_abs_optab, op0, NULL_RTX,
2463 unsignedp);
2466 emit_insn (pat);
2468 return temp;
2470 else
2471 delete_insns_since (last);
2474 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2476 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2477 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2479 if (this_abs_optab->handlers[(int) wider_mode].insn_code
2480 != CODE_FOR_nothing)
2482 rtx xop0 = op0;
2484 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
2485 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
2487 if (temp)
2489 if (class != MODE_COMPLEX_INT)
2491 if (target == 0)
2492 target = gen_reg_rtx (submode);
2493 convert_move (target, temp, 0);
2494 return target;
2496 else
2497 return gen_lowpart (submode, temp);
2499 else
2500 delete_insns_since (last);
2504 /* Open-code the complex absolute-value operation
2505 if we can open-code sqrt. Otherwise it's not worth while. */
2506 if (sqrt_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing
2507 && ! flag_trapv)
2509 rtx real, imag, total;
2511 real = gen_realpart (submode, op0);
2512 imag = gen_imagpart (submode, op0);
2514 /* Square both parts. */
2515 real = expand_mult (submode, real, real, NULL_RTX, 0);
2516 imag = expand_mult (submode, imag, imag, NULL_RTX, 0);
2518 /* Sum the parts. */
2519 total = expand_binop (submode, add_optab, real, imag, NULL_RTX,
2520 0, OPTAB_LIB_WIDEN);
2522 /* Get sqrt in TARGET. Set TARGET to where the result is. */
2523 target = expand_unop (submode, sqrt_optab, total, target, 0);
2524 if (target == 0)
2525 delete_insns_since (last);
2526 else
2527 return target;
2530 /* Now try a library call in this mode. */
2531 if (this_abs_optab->handlers[(int) mode].libfunc)
2533 rtx insns;
2534 rtx value;
2536 start_sequence ();
2538 /* Pass 1 for NO_QUEUE so we don't lose any increments
2539 if the libcall is cse'd or moved. */
2540 value = emit_library_call_value (abs_optab->handlers[(int) mode].libfunc,
2541 NULL_RTX, LCT_CONST, submode, 1, op0, mode);
2542 insns = get_insns ();
2543 end_sequence ();
2545 target = gen_reg_rtx (submode);
2546 emit_libcall_block (insns, target, value,
2547 gen_rtx_fmt_e (this_abs_optab->code, mode, op0));
2549 return target;
2552 /* It can't be done in this mode. Can we do it in a wider mode? */
2554 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2555 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2557 if ((this_abs_optab->handlers[(int) wider_mode].insn_code
2558 != CODE_FOR_nothing)
2559 || this_abs_optab->handlers[(int) wider_mode].libfunc)
2561 rtx xop0 = op0;
2563 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
2565 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
2567 if (temp)
2569 if (class != MODE_COMPLEX_INT)
2571 if (target == 0)
2572 target = gen_reg_rtx (submode);
2573 convert_move (target, temp, 0);
2574 return target;
2576 else
2577 return gen_lowpart (submode, temp);
2579 else
2580 delete_insns_since (last);
2584 delete_insns_since (entry_last);
2585 return 0;
2588 /* Generate an instruction whose insn-code is INSN_CODE,
2589 with two operands: an output TARGET and an input OP0.
2590 TARGET *must* be nonzero, and the output is always stored there.
2591 CODE is an rtx code such that (CODE OP0) is an rtx that describes
2592 the value that is stored into TARGET. */
2594 void
2595 emit_unop_insn (icode, target, op0, code)
2596 int icode;
2597 rtx target;
2598 rtx op0;
2599 enum rtx_code code;
2601 register rtx temp;
2602 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2603 rtx pat;
2605 temp = target = protect_from_queue (target, 1);
2607 op0 = protect_from_queue (op0, 0);
2609 /* Sign and zero extension from memory is often done specially on
2610 RISC machines, so forcing into a register here can pessimize
2611 code. */
2612 if (flag_force_mem && code != SIGN_EXTEND && code != ZERO_EXTEND)
2613 op0 = force_not_mem (op0);
2615 /* Now, if insn does not accept our operands, put them into pseudos. */
2617 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
2618 op0 = copy_to_mode_reg (mode0, op0);
2620 if (! (*insn_data[icode].operand[0].predicate) (temp, GET_MODE (temp))
2621 || (flag_force_mem && GET_CODE (temp) == MEM))
2622 temp = gen_reg_rtx (GET_MODE (temp));
2624 pat = GEN_FCN (icode) (temp, op0);
2626 if (GET_CODE (pat) == SEQUENCE && code != UNKNOWN)
2627 add_equal_note (pat, temp, code, op0, NULL_RTX);
2629 emit_insn (pat);
2631 if (temp != target)
2632 emit_move_insn (target, temp);
2635 /* Emit code to perform a series of operations on a multi-word quantity, one
2636 word at a time.
2638 Such a block is preceded by a CLOBBER of the output, consists of multiple
2639 insns, each setting one word of the output, and followed by a SET copying
2640 the output to itself.
2642 Each of the insns setting words of the output receives a REG_NO_CONFLICT
2643 note indicating that it doesn't conflict with the (also multi-word)
2644 inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
2645 notes.
2647 INSNS is a block of code generated to perform the operation, not including
2648 the CLOBBER and final copy. All insns that compute intermediate values
2649 are first emitted, followed by the block as described above.
2651 TARGET, OP0, and OP1 are the output and inputs of the operations,
2652 respectively. OP1 may be zero for a unary operation.
2654 EQUIV, if non-zero, is an expression to be placed into a REG_EQUAL note
2655 on the last insn.
2657 If TARGET is not a register, INSNS is simply emitted with no special
2658 processing. Likewise if anything in INSNS is not an INSN or if
2659 there is a libcall block inside INSNS.
2661 The final insn emitted is returned. */
2664 emit_no_conflict_block (insns, target, op0, op1, equiv)
2665 rtx insns;
2666 rtx target;
2667 rtx op0, op1;
2668 rtx equiv;
2670 rtx prev, next, first, last, insn;
2672 if (GET_CODE (target) != REG || reload_in_progress)
2673 return emit_insns (insns);
2674 else
2675 for (insn = insns; insn; insn = NEXT_INSN (insn))
2676 if (GET_CODE (insn) != INSN
2677 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2678 return emit_insns (insns);
2680 /* First emit all insns that do not store into words of the output and remove
2681 these from the list. */
2682 for (insn = insns; insn; insn = next)
2684 rtx set = 0;
2685 int i;
2687 next = NEXT_INSN (insn);
2689 if (GET_CODE (PATTERN (insn)) == SET || GET_CODE (PATTERN (insn)) == USE
2690 || GET_CODE (PATTERN (insn)) == CLOBBER)
2691 set = PATTERN (insn);
2692 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2694 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2695 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
2697 set = XVECEXP (PATTERN (insn), 0, i);
2698 break;
2702 if (set == 0)
2703 abort ();
2705 if (! reg_overlap_mentioned_p (target, SET_DEST (set)))
2707 if (PREV_INSN (insn))
2708 NEXT_INSN (PREV_INSN (insn)) = next;
2709 else
2710 insns = next;
2712 if (next)
2713 PREV_INSN (next) = PREV_INSN (insn);
2715 add_insn (insn);
2719 prev = get_last_insn ();
2721 /* Now write the CLOBBER of the output, followed by the setting of each
2722 of the words, followed by the final copy. */
2723 if (target != op0 && target != op1)
2724 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
2726 for (insn = insns; insn; insn = next)
2728 next = NEXT_INSN (insn);
2729 add_insn (insn);
2731 if (op1 && GET_CODE (op1) == REG)
2732 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op1,
2733 REG_NOTES (insn));
2735 if (op0 && GET_CODE (op0) == REG)
2736 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op0,
2737 REG_NOTES (insn));
2740 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
2741 != CODE_FOR_nothing)
2743 last = emit_move_insn (target, target);
2744 if (equiv)
2745 set_unique_reg_note (last, REG_EQUAL, equiv);
2747 else
2749 last = get_last_insn ();
2751 /* Remove any existing REG_EQUAL note from "last", or else it will
2752 be mistaken for a note referring to the full contents of the
2753 alleged libcall value when found together with the REG_RETVAL
2754 note added below. An existing note can come from an insn
2755 expansion at "last". */
2756 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
2759 if (prev == 0)
2760 first = get_insns ();
2761 else
2762 first = NEXT_INSN (prev);
2764 /* Encapsulate the block so it gets manipulated as a unit. */
2765 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
2766 REG_NOTES (first));
2767 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, REG_NOTES (last));
2769 return last;
2772 /* Emit code to make a call to a constant function or a library call.
2774 INSNS is a list containing all insns emitted in the call.
2775 These insns leave the result in RESULT. Our block is to copy RESULT
2776 to TARGET, which is logically equivalent to EQUIV.
2778 We first emit any insns that set a pseudo on the assumption that these are
2779 loading constants into registers; doing so allows them to be safely cse'ed
2780 between blocks. Then we emit all the other insns in the block, followed by
2781 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
2782 note with an operand of EQUIV.
2784 Moving assignments to pseudos outside of the block is done to improve
2785 the generated code, but is not required to generate correct code,
2786 hence being unable to move an assignment is not grounds for not making
2787 a libcall block. There are two reasons why it is safe to leave these
2788 insns inside the block: First, we know that these pseudos cannot be
2789 used in generated RTL outside the block since they are created for
2790 temporary purposes within the block. Second, CSE will not record the
2791 values of anything set inside a libcall block, so we know they must
2792 be dead at the end of the block.
2794 Except for the first group of insns (the ones setting pseudos), the
2795 block is delimited by REG_RETVAL and REG_LIBCALL notes. */
2797 void
2798 emit_libcall_block (insns, target, result, equiv)
2799 rtx insns;
2800 rtx target;
2801 rtx result;
2802 rtx equiv;
2804 rtx final_dest = target;
2805 rtx prev, next, first, last, insn;
2807 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
2808 into a MEM later. Protect the libcall block from this change. */
2809 if (! REG_P (target) || REG_USERVAR_P (target))
2810 target = gen_reg_rtx (GET_MODE (target));
2812 /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
2813 reg note to indicate that this call cannot throw or execute a nonlocal
2814 goto (unless there is already a REG_EH_REGION note, in which case
2815 we update it). */
2817 for (insn = insns; insn; insn = NEXT_INSN (insn))
2818 if (GET_CODE (insn) == CALL_INSN)
2820 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2822 if (note != 0)
2823 XEXP (note, 0) = GEN_INT (-1);
2824 else
2825 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, GEN_INT (-1),
2826 REG_NOTES (insn));
2829 /* First emit all insns that set pseudos. Remove them from the list as
2830 we go. Avoid insns that set pseudos which were referenced in previous
2831 insns. These can be generated by move_by_pieces, for example,
2832 to update an address. Similarly, avoid insns that reference things
2833 set in previous insns. */
2835 for (insn = insns; insn; insn = next)
2837 rtx set = single_set (insn);
2839 next = NEXT_INSN (insn);
2841 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
2842 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
2843 && (insn == insns
2844 || ((! INSN_P(insns)
2845 || ! reg_mentioned_p (SET_DEST (set), PATTERN (insns)))
2846 && ! reg_used_between_p (SET_DEST (set), insns, insn)
2847 && ! modified_in_p (SET_SRC (set), insns)
2848 && ! modified_between_p (SET_SRC (set), insns, insn))))
2850 if (PREV_INSN (insn))
2851 NEXT_INSN (PREV_INSN (insn)) = next;
2852 else
2853 insns = next;
2855 if (next)
2856 PREV_INSN (next) = PREV_INSN (insn);
2858 add_insn (insn);
2862 prev = get_last_insn ();
2864 /* Write the remaining insns followed by the final copy. */
2866 for (insn = insns; insn; insn = next)
2868 next = NEXT_INSN (insn);
2870 add_insn (insn);
2873 last = emit_move_insn (target, result);
2874 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
2875 != CODE_FOR_nothing)
2876 set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
2877 else
2879 /* Remove any existing REG_EQUAL note from "last", or else it will
2880 be mistaken for a note referring to the full contents of the
2881 libcall value when found together with the REG_RETVAL note added
2882 below. An existing note can come from an insn expansion at
2883 "last". */
2884 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
2887 if (final_dest != target)
2888 emit_move_insn (final_dest, target);
2890 if (prev == 0)
2891 first = get_insns ();
2892 else
2893 first = NEXT_INSN (prev);
2895 /* Encapsulate the block so it gets manipulated as a unit. */
2896 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
2897 REG_NOTES (first));
2898 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, REG_NOTES (last));
2901 /* Generate code to store zero in X. */
2903 void
2904 emit_clr_insn (x)
2905 rtx x;
2907 emit_move_insn (x, const0_rtx);
2910 /* Generate code to store 1 in X
2911 assuming it contains zero beforehand. */
2913 void
2914 emit_0_to_1_insn (x)
2915 rtx x;
2917 emit_move_insn (x, const1_rtx);
2920 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
2921 PURPOSE describes how this comparison will be used. CODE is the rtx
2922 comparison code we will be using.
2924 ??? Actually, CODE is slightly weaker than that. A target is still
2925 required to implement all of the normal bcc operations, but not
2926 required to implement all (or any) of the unordered bcc operations. */
2929 can_compare_p (code, mode, purpose)
2930 enum rtx_code code;
2931 enum machine_mode mode;
2932 enum can_compare_purpose purpose;
2936 if (cmp_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
2938 if (purpose == ccp_jump)
2939 return bcc_gen_fctn[(int)code] != NULL;
2940 else if (purpose == ccp_store_flag)
2941 return setcc_gen_code[(int)code] != CODE_FOR_nothing;
2942 else
2943 /* There's only one cmov entry point, and it's allowed to fail. */
2944 return 1;
2946 if (purpose == ccp_jump
2947 && cbranch_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
2948 return 1;
2949 if (purpose == ccp_cmov
2950 && cmov_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
2951 return 1;
2952 if (purpose == ccp_store_flag
2953 && cstore_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
2954 return 1;
2956 mode = GET_MODE_WIDER_MODE (mode);
2958 while (mode != VOIDmode);
2960 return 0;
2963 /* This function is called when we are going to emit a compare instruction that
2964 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
2966 *PMODE is the mode of the inputs (in case they are const_int).
2967 *PUNSIGNEDP nonzero says that the operands are unsigned;
2968 this matters if they need to be widened.
2970 If they have mode BLKmode, then SIZE specifies the size of both operands,
2971 and ALIGN specifies the known shared alignment of the operands.
2973 This function performs all the setup necessary so that the caller only has
2974 to emit a single comparison insn. This setup can involve doing a BLKmode
2975 comparison or emitting a library call to perform the comparison if no insn
2976 is available to handle it.
2977 The values which are passed in through pointers can be modified; the caller
2978 should perform the comparison on the modified values. */
2980 void
2981 prepare_cmp_insn (px, py, pcomparison, size, pmode, punsignedp, align,
2982 purpose)
2983 rtx *px, *py;
2984 enum rtx_code *pcomparison;
2985 rtx size;
2986 enum machine_mode *pmode;
2987 int *punsignedp;
2988 int align ATTRIBUTE_UNUSED;
2989 enum can_compare_purpose purpose;
2991 enum machine_mode mode = *pmode;
2992 rtx x = *px, y = *py;
2993 int unsignedp = *punsignedp;
2994 enum mode_class class;
2995 rtx opalign ATTRIBUTE_UNUSED = GEN_INT (align / BITS_PER_UNIT);;
2997 class = GET_MODE_CLASS (mode);
2999 /* They could both be VOIDmode if both args are immediate constants,
3000 but we should fold that at an earlier stage.
3001 With no special code here, this will call abort,
3002 reminding the programmer to implement such folding. */
3004 if (mode != BLKmode && flag_force_mem)
3006 x = force_not_mem (x);
3007 y = force_not_mem (y);
3010 /* If we are inside an appropriately-short loop and one operand is an
3011 expensive constant, force it into a register. */
3012 if (CONSTANT_P (x) && preserve_subexpressions_p ()
3013 && rtx_cost (x, COMPARE) > COSTS_N_INSNS (1))
3014 x = force_reg (mode, x);
3016 if (CONSTANT_P (y) && preserve_subexpressions_p ()
3017 && rtx_cost (y, COMPARE) > COSTS_N_INSNS (1))
3018 y = force_reg (mode, y);
3020 #ifdef HAVE_cc0
3021 /* Abort if we have a non-canonical comparison. The RTL documentation
3022 states that canonical comparisons are required only for targets which
3023 have cc0. */
3024 if (CONSTANT_P (x) && ! CONSTANT_P (y))
3025 abort();
3026 #endif
3028 /* Don't let both operands fail to indicate the mode. */
3029 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
3030 x = force_reg (mode, x);
3032 /* Handle all BLKmode compares. */
3034 if (mode == BLKmode)
3036 rtx result;
3037 enum machine_mode result_mode;
3039 emit_queue ();
3040 x = protect_from_queue (x, 0);
3041 y = protect_from_queue (y, 0);
3043 if (size == 0)
3044 abort ();
3045 #ifdef HAVE_cmpstrqi
3046 if (HAVE_cmpstrqi
3047 && GET_CODE (size) == CONST_INT
3048 && INTVAL (size) < (1 << GET_MODE_BITSIZE (QImode)))
3050 result_mode = insn_data[(int) CODE_FOR_cmpstrqi].operand[0].mode;
3051 result = gen_reg_rtx (result_mode);
3052 emit_insn (gen_cmpstrqi (result, x, y, size, opalign));
3054 else
3055 #endif
3056 #ifdef HAVE_cmpstrhi
3057 if (HAVE_cmpstrhi
3058 && GET_CODE (size) == CONST_INT
3059 && INTVAL (size) < (1 << GET_MODE_BITSIZE (HImode)))
3061 result_mode = insn_data[(int) CODE_FOR_cmpstrhi].operand[0].mode;
3062 result = gen_reg_rtx (result_mode);
3063 emit_insn (gen_cmpstrhi (result, x, y, size, opalign));
3065 else
3066 #endif
3067 #ifdef HAVE_cmpstrsi
3068 if (HAVE_cmpstrsi)
3070 result_mode = insn_data[(int) CODE_FOR_cmpstrsi].operand[0].mode;
3071 result = gen_reg_rtx (result_mode);
3072 size = protect_from_queue (size, 0);
3073 emit_insn (gen_cmpstrsi (result, x, y,
3074 convert_to_mode (SImode, size, 1),
3075 opalign));
3077 else
3078 #endif
3080 #ifdef TARGET_MEM_FUNCTIONS
3081 emit_library_call (memcmp_libfunc, LCT_PURE_MAKE_BLOCK,
3082 TYPE_MODE (integer_type_node), 3,
3083 XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
3084 convert_to_mode (TYPE_MODE (sizetype), size,
3085 TREE_UNSIGNED (sizetype)),
3086 TYPE_MODE (sizetype));
3087 #else
3088 emit_library_call (bcmp_libfunc, LCT_PURE_MAKE_BLOCK,
3089 TYPE_MODE (integer_type_node), 3,
3090 XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
3091 convert_to_mode (TYPE_MODE (integer_type_node),
3092 size,
3093 TREE_UNSIGNED (integer_type_node)),
3094 TYPE_MODE (integer_type_node));
3095 #endif
3097 /* Immediately move the result of the libcall into a pseudo
3098 register so reload doesn't clobber the value if it needs
3099 the return register for a spill reg. */
3100 result = gen_reg_rtx (TYPE_MODE (integer_type_node));
3101 result_mode = TYPE_MODE (integer_type_node);
3102 emit_move_insn (result,
3103 hard_libcall_value (result_mode));
3105 *px = result;
3106 *py = const0_rtx;
3107 *pmode = result_mode;
3108 return;
3111 *px = x;
3112 *py = y;
3113 if (can_compare_p (*pcomparison, mode, purpose))
3114 return;
3116 /* Handle a lib call just for the mode we are using. */
3118 if (cmp_optab->handlers[(int) mode].libfunc && class != MODE_FLOAT)
3120 rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
3121 rtx result;
3123 /* If we want unsigned, and this mode has a distinct unsigned
3124 comparison routine, use that. */
3125 if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
3126 libfunc = ucmp_optab->handlers[(int) mode].libfunc;
3128 emit_library_call (libfunc, 1,
3129 word_mode, 2, x, mode, y, mode);
3131 /* Immediately move the result of the libcall into a pseudo
3132 register so reload doesn't clobber the value if it needs
3133 the return register for a spill reg. */
3134 result = gen_reg_rtx (word_mode);
3135 emit_move_insn (result, hard_libcall_value (word_mode));
3137 /* Integer comparison returns a result that must be compared against 1,
3138 so that even if we do an unsigned compare afterward,
3139 there is still a value that can represent the result "less than". */
3140 *px = result;
3141 *py = const1_rtx;
3142 *pmode = word_mode;
3143 return;
3146 if (class == MODE_FLOAT)
3147 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
3149 else
3150 abort ();
3153 /* Before emitting an insn with code ICODE, make sure that X, which is going
3154 to be used for operand OPNUM of the insn, is converted from mode MODE to
3155 WIDER_MODE (UNSIGNEDP determines whether it is a unsigned conversion), and
3156 that it is accepted by the operand predicate. Return the new value. */
3159 prepare_operand (icode, x, opnum, mode, wider_mode, unsignedp)
3160 int icode;
3161 rtx x;
3162 int opnum;
3163 enum machine_mode mode, wider_mode;
3164 int unsignedp;
3166 x = protect_from_queue (x, 0);
3168 if (mode != wider_mode)
3169 x = convert_modes (wider_mode, mode, x, unsignedp);
3171 if (! (*insn_data[icode].operand[opnum].predicate)
3172 (x, insn_data[icode].operand[opnum].mode))
3173 x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
3174 return x;
3177 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
3178 we can do the comparison.
3179 The arguments are the same as for emit_cmp_and_jump_insns; but LABEL may
3180 be NULL_RTX which indicates that only a comparison is to be generated. */
3182 static void
3183 emit_cmp_and_jump_insn_1 (x, y, mode, comparison, unsignedp, label)
3184 rtx x, y;
3185 enum machine_mode mode;
3186 enum rtx_code comparison;
3187 int unsignedp;
3188 rtx label;
3190 rtx test = gen_rtx_fmt_ee (comparison, mode, x, y);
3191 enum mode_class class = GET_MODE_CLASS (mode);
3192 enum machine_mode wider_mode = mode;
3194 /* Try combined insns first. */
3197 enum insn_code icode;
3198 PUT_MODE (test, wider_mode);
3200 if (label)
3202 icode = cbranch_optab->handlers[(int)wider_mode].insn_code;
3204 if (icode != CODE_FOR_nothing
3205 && (*insn_data[icode].operand[0].predicate) (test, wider_mode))
3207 x = prepare_operand (icode, x, 1, mode, wider_mode, unsignedp);
3208 y = prepare_operand (icode, y, 2, mode, wider_mode, unsignedp);
3209 emit_jump_insn (GEN_FCN (icode) (test, x, y, label));
3210 return;
3214 /* Handle some compares against zero. */
3215 icode = (int) tst_optab->handlers[(int) wider_mode].insn_code;
3216 if (y == CONST0_RTX (mode) && icode != CODE_FOR_nothing)
3218 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3219 emit_insn (GEN_FCN (icode) (x));
3220 if (label)
3221 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3222 return;
3225 /* Handle compares for which there is a directly suitable insn. */
3227 icode = (int) cmp_optab->handlers[(int) wider_mode].insn_code;
3228 if (icode != CODE_FOR_nothing)
3230 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3231 y = prepare_operand (icode, y, 1, mode, wider_mode, unsignedp);
3232 emit_insn (GEN_FCN (icode) (x, y));
3233 if (label)
3234 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3235 return;
3238 if (class != MODE_INT && class != MODE_FLOAT
3239 && class != MODE_COMPLEX_FLOAT)
3240 break;
3242 wider_mode = GET_MODE_WIDER_MODE (wider_mode);
3243 } while (wider_mode != VOIDmode);
3245 abort ();
3248 /* Generate code to compare X with Y so that the condition codes are
3249 set and to jump to LABEL if the condition is true. If X is a
3250 constant and Y is not a constant, then the comparison is swapped to
3251 ensure that the comparison RTL has the canonical form.
3253 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
3254 need to be widened by emit_cmp_insn. UNSIGNEDP is also used to select
3255 the proper branch condition code.
3257 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y,
3258 and ALIGN specifies the known shared alignment of X and Y.
3260 MODE is the mode of the inputs (in case they are const_int).
3262 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). It will
3263 be passed unchanged to emit_cmp_insn, then potentially converted into an
3264 unsigned variant based on UNSIGNEDP to select a proper jump instruction. */
3266 void
3267 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, align, label)
3268 rtx x, y;
3269 enum rtx_code comparison;
3270 rtx size;
3271 enum machine_mode mode;
3272 int unsignedp;
3273 unsigned int align;
3274 rtx label;
3276 rtx op0;
3277 rtx op1;
3279 if ((CONSTANT_P (x) && ! CONSTANT_P (y))
3280 || (GET_CODE (x) == CONST_INT && GET_CODE (y) != CONST_INT))
3282 /* Swap operands and condition to ensure canonical RTL. */
3283 op0 = y;
3284 op1 = x;
3285 comparison = swap_condition (comparison);
3287 else
3289 op0 = x;
3290 op1 = y;
3293 #ifdef HAVE_cc0
3294 /* If OP0 is still a constant, then both X and Y must be constants. Force
3295 X into a register to avoid aborting in emit_cmp_insn due to non-canonical
3296 RTL. */
3297 if (CONSTANT_P (op0))
3298 op0 = force_reg (mode, op0);
3299 #endif
3301 emit_queue ();
3302 if (unsignedp)
3303 comparison = unsigned_condition (comparison);
3304 prepare_cmp_insn (&op0, &op1, &comparison, size, &mode, &unsignedp, align,
3305 ccp_jump);
3306 emit_cmp_and_jump_insn_1 (op0, op1, mode, comparison, unsignedp, label);
3309 /* Like emit_cmp_and_jump_insns, but generate only the comparison. */
3311 void
3312 emit_cmp_insn (x, y, comparison, size, mode, unsignedp, align)
3313 rtx x, y;
3314 enum rtx_code comparison;
3315 rtx size;
3316 enum machine_mode mode;
3317 int unsignedp;
3318 unsigned int align;
3320 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, align, 0);
3323 /* Emit a library call comparison between floating point X and Y.
3324 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
3326 static void
3327 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp)
3328 rtx *px, *py;
3329 enum rtx_code *pcomparison;
3330 enum machine_mode *pmode;
3331 int *punsignedp;
3333 enum rtx_code comparison = *pcomparison;
3334 rtx x = *px = protect_from_queue (*px, 0);
3335 rtx y = *py = protect_from_queue (*py, 0);
3336 enum machine_mode mode = GET_MODE (x);
3337 rtx libfunc = 0;
3338 rtx result;
3340 if (mode == HFmode)
3341 switch (comparison)
3343 case EQ:
3344 libfunc = eqhf2_libfunc;
3345 break;
3347 case NE:
3348 libfunc = nehf2_libfunc;
3349 break;
3351 case GT:
3352 libfunc = gthf2_libfunc;
3353 break;
3355 case GE:
3356 libfunc = gehf2_libfunc;
3357 break;
3359 case LT:
3360 libfunc = lthf2_libfunc;
3361 break;
3363 case LE:
3364 libfunc = lehf2_libfunc;
3365 break;
3367 case UNORDERED:
3368 libfunc = unordhf2_libfunc;
3369 break;
3371 default:
3372 break;
3374 else if (mode == SFmode)
3375 switch (comparison)
3377 case EQ:
3378 libfunc = eqsf2_libfunc;
3379 break;
3381 case NE:
3382 libfunc = nesf2_libfunc;
3383 break;
3385 case GT:
3386 libfunc = gtsf2_libfunc;
3387 break;
3389 case GE:
3390 libfunc = gesf2_libfunc;
3391 break;
3393 case LT:
3394 libfunc = ltsf2_libfunc;
3395 break;
3397 case LE:
3398 libfunc = lesf2_libfunc;
3399 break;
3401 case UNORDERED:
3402 libfunc = unordsf2_libfunc;
3403 break;
3405 default:
3406 break;
3408 else if (mode == DFmode)
3409 switch (comparison)
3411 case EQ:
3412 libfunc = eqdf2_libfunc;
3413 break;
3415 case NE:
3416 libfunc = nedf2_libfunc;
3417 break;
3419 case GT:
3420 libfunc = gtdf2_libfunc;
3421 break;
3423 case GE:
3424 libfunc = gedf2_libfunc;
3425 break;
3427 case LT:
3428 libfunc = ltdf2_libfunc;
3429 break;
3431 case LE:
3432 libfunc = ledf2_libfunc;
3433 break;
3435 case UNORDERED:
3436 libfunc = unorddf2_libfunc;
3437 break;
3439 default:
3440 break;
3442 else if (mode == XFmode)
3443 switch (comparison)
3445 case EQ:
3446 libfunc = eqxf2_libfunc;
3447 break;
3449 case NE:
3450 libfunc = nexf2_libfunc;
3451 break;
3453 case GT:
3454 libfunc = gtxf2_libfunc;
3455 break;
3457 case GE:
3458 libfunc = gexf2_libfunc;
3459 break;
3461 case LT:
3462 libfunc = ltxf2_libfunc;
3463 break;
3465 case LE:
3466 libfunc = lexf2_libfunc;
3467 break;
3469 case UNORDERED:
3470 libfunc = unordxf2_libfunc;
3471 break;
3473 default:
3474 break;
3476 else if (mode == TFmode)
3477 switch (comparison)
3479 case EQ:
3480 libfunc = eqtf2_libfunc;
3481 break;
3483 case NE:
3484 libfunc = netf2_libfunc;
3485 break;
3487 case GT:
3488 libfunc = gttf2_libfunc;
3489 break;
3491 case GE:
3492 libfunc = getf2_libfunc;
3493 break;
3495 case LT:
3496 libfunc = lttf2_libfunc;
3497 break;
3499 case LE:
3500 libfunc = letf2_libfunc;
3501 break;
3503 case UNORDERED:
3504 libfunc = unordtf2_libfunc;
3505 break;
3507 default:
3508 break;
3510 else
3512 enum machine_mode wider_mode;
3514 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
3515 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3517 if ((cmp_optab->handlers[(int) wider_mode].insn_code
3518 != CODE_FOR_nothing)
3519 || (cmp_optab->handlers[(int) wider_mode].libfunc != 0))
3521 x = protect_from_queue (x, 0);
3522 y = protect_from_queue (y, 0);
3523 *px = convert_to_mode (wider_mode, x, 0);
3524 *py = convert_to_mode (wider_mode, y, 0);
3525 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
3526 return;
3529 abort ();
3532 if (libfunc == 0)
3533 abort ();
3535 emit_library_call (libfunc, LCT_CONST_MAKE_BLOCK, word_mode, 2, x, mode, y,
3536 mode);
3538 /* Immediately move the result of the libcall into a pseudo
3539 register so reload doesn't clobber the value if it needs
3540 the return register for a spill reg. */
3541 result = gen_reg_rtx (word_mode);
3542 emit_move_insn (result, hard_libcall_value (word_mode));
3543 *px = result;
3544 *py = const0_rtx;
3545 *pmode = word_mode;
3546 if (comparison == UNORDERED)
3547 *pcomparison = NE;
3548 #ifdef FLOAT_LIB_COMPARE_RETURNS_BOOL
3549 else if (FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
3550 *pcomparison = NE;
3551 #endif
3552 *punsignedp = 0;
3555 /* Generate code to indirectly jump to a location given in the rtx LOC. */
3557 void
3558 emit_indirect_jump (loc)
3559 rtx loc;
3561 if (! ((*insn_data[(int)CODE_FOR_indirect_jump].operand[0].predicate)
3562 (loc, Pmode)))
3563 loc = copy_to_mode_reg (Pmode, loc);
3565 emit_jump_insn (gen_indirect_jump (loc));
3566 emit_barrier ();
3569 #ifdef HAVE_conditional_move
3571 /* Emit a conditional move instruction if the machine supports one for that
3572 condition and machine mode.
3574 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
3575 the mode to use should they be constants. If it is VOIDmode, they cannot
3576 both be constants.
3578 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
3579 should be stored there. MODE is the mode to use should they be constants.
3580 If it is VOIDmode, they cannot both be constants.
3582 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
3583 is not supported. */
3586 emit_conditional_move (target, code, op0, op1, cmode, op2, op3, mode,
3587 unsignedp)
3588 rtx target;
3589 enum rtx_code code;
3590 rtx op0, op1;
3591 enum machine_mode cmode;
3592 rtx op2, op3;
3593 enum machine_mode mode;
3594 int unsignedp;
3596 rtx tem, subtarget, comparison, insn;
3597 enum insn_code icode;
3599 /* If one operand is constant, make it the second one. Only do this
3600 if the other operand is not constant as well. */
3602 if ((CONSTANT_P (op0) && ! CONSTANT_P (op1))
3603 || (GET_CODE (op0) == CONST_INT && GET_CODE (op1) != CONST_INT))
3605 tem = op0;
3606 op0 = op1;
3607 op1 = tem;
3608 code = swap_condition (code);
3611 /* get_condition will prefer to generate LT and GT even if the old
3612 comparison was against zero, so undo that canonicalization here since
3613 comparisons against zero are cheaper. */
3614 if (code == LT && GET_CODE (op1) == CONST_INT && INTVAL (op1) == 1)
3615 code = LE, op1 = const0_rtx;
3616 else if (code == GT && GET_CODE (op1) == CONST_INT && INTVAL (op1) == -1)
3617 code = GE, op1 = const0_rtx;
3619 if (cmode == VOIDmode)
3620 cmode = GET_MODE (op0);
3622 if (((CONSTANT_P (op2) && ! CONSTANT_P (op3))
3623 || (GET_CODE (op2) == CONST_INT && GET_CODE (op3) != CONST_INT))
3624 && (GET_MODE_CLASS (GET_MODE (op1)) != MODE_FLOAT
3625 || TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT || flag_fast_math))
3627 tem = op2;
3628 op2 = op3;
3629 op3 = tem;
3630 code = reverse_condition (code);
3633 if (mode == VOIDmode)
3634 mode = GET_MODE (op2);
3636 icode = movcc_gen_code[mode];
3638 if (icode == CODE_FOR_nothing)
3639 return 0;
3641 if (flag_force_mem)
3643 op2 = force_not_mem (op2);
3644 op3 = force_not_mem (op3);
3647 if (target)
3648 target = protect_from_queue (target, 1);
3649 else
3650 target = gen_reg_rtx (mode);
3652 subtarget = target;
3654 emit_queue ();
3656 op2 = protect_from_queue (op2, 0);
3657 op3 = protect_from_queue (op3, 0);
3659 /* If the insn doesn't accept these operands, put them in pseudos. */
3661 if (! (*insn_data[icode].operand[0].predicate)
3662 (subtarget, insn_data[icode].operand[0].mode))
3663 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
3665 if (! (*insn_data[icode].operand[2].predicate)
3666 (op2, insn_data[icode].operand[2].mode))
3667 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
3669 if (! (*insn_data[icode].operand[3].predicate)
3670 (op3, insn_data[icode].operand[3].mode))
3671 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
3673 /* Everything should now be in the suitable form, so emit the compare insn
3674 and then the conditional move. */
3676 comparison
3677 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX, 0);
3679 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
3680 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
3681 return NULL and let the caller figure out how best to deal with this
3682 situation. */
3683 if (GET_CODE (comparison) != code)
3684 return NULL_RTX;
3686 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
3688 /* If that failed, then give up. */
3689 if (insn == 0)
3690 return 0;
3692 emit_insn (insn);
3694 if (subtarget != target)
3695 convert_move (target, subtarget, 0);
3697 return target;
3700 /* Return non-zero if a conditional move of mode MODE is supported.
3702 This function is for combine so it can tell whether an insn that looks
3703 like a conditional move is actually supported by the hardware. If we
3704 guess wrong we lose a bit on optimization, but that's it. */
3705 /* ??? sparc64 supports conditionally moving integers values based on fp
3706 comparisons, and vice versa. How do we handle them? */
3709 can_conditionally_move_p (mode)
3710 enum machine_mode mode;
3712 if (movcc_gen_code[mode] != CODE_FOR_nothing)
3713 return 1;
3715 return 0;
3718 #endif /* HAVE_conditional_move */
3720 /* These three functions generate an insn body and return it
3721 rather than emitting the insn.
3723 They do not protect from queued increments,
3724 because they may be used 1) in protect_from_queue itself
3725 and 2) in other passes where there is no queue. */
3727 /* Generate and return an insn body to add Y to X. */
3730 gen_add2_insn (x, y)
3731 rtx x, y;
3733 int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
3735 if (! ((*insn_data[icode].operand[0].predicate)
3736 (x, insn_data[icode].operand[0].mode))
3737 || ! ((*insn_data[icode].operand[1].predicate)
3738 (x, insn_data[icode].operand[1].mode))
3739 || ! ((*insn_data[icode].operand[2].predicate)
3740 (y, insn_data[icode].operand[2].mode)))
3741 abort ();
3743 return (GEN_FCN (icode) (x, x, y));
3747 have_add2_insn (mode)
3748 enum machine_mode mode;
3750 return add_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing;
3753 /* Generate and return an insn body to subtract Y from X. */
3756 gen_sub2_insn (x, y)
3757 rtx x, y;
3759 int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
3761 if (! ((*insn_data[icode].operand[0].predicate)
3762 (x, insn_data[icode].operand[0].mode))
3763 || ! ((*insn_data[icode].operand[1].predicate)
3764 (x, insn_data[icode].operand[1].mode))
3765 || ! ((*insn_data[icode].operand[2].predicate)
3766 (y, insn_data[icode].operand[2].mode)))
3767 abort ();
3769 return (GEN_FCN (icode) (x, x, y));
3773 have_sub2_insn (mode)
3774 enum machine_mode mode;
3776 return sub_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing;
3779 /* Generate the body of an instruction to copy Y into X.
3780 It may be a SEQUENCE, if one insn isn't enough. */
3783 gen_move_insn (x, y)
3784 rtx x, y;
3786 register enum machine_mode mode = GET_MODE (x);
3787 enum insn_code insn_code;
3788 rtx seq;
3790 if (mode == VOIDmode)
3791 mode = GET_MODE (y);
3793 insn_code = mov_optab->handlers[(int) mode].insn_code;
3795 /* Handle MODE_CC modes: If we don't have a special move insn for this mode,
3796 find a mode to do it in. If we have a movcc, use it. Otherwise,
3797 find the MODE_INT mode of the same width. */
3799 if (GET_MODE_CLASS (mode) == MODE_CC && insn_code == CODE_FOR_nothing)
3801 enum machine_mode tmode = VOIDmode;
3802 rtx x1 = x, y1 = y;
3804 if (mode != CCmode
3805 && mov_optab->handlers[(int) CCmode].insn_code != CODE_FOR_nothing)
3806 tmode = CCmode;
3807 else
3808 for (tmode = QImode; tmode != VOIDmode;
3809 tmode = GET_MODE_WIDER_MODE (tmode))
3810 if (GET_MODE_SIZE (tmode) == GET_MODE_SIZE (mode))
3811 break;
3813 if (tmode == VOIDmode)
3814 abort ();
3816 /* Get X and Y in TMODE. We can't use gen_lowpart here because it
3817 may call change_address which is not appropriate if we were
3818 called when a reload was in progress. We don't have to worry
3819 about changing the address since the size in bytes is supposed to
3820 be the same. Copy the MEM to change the mode and move any
3821 substitutions from the old MEM to the new one. */
3823 if (reload_in_progress)
3825 x = gen_lowpart_common (tmode, x1);
3826 if (x == 0 && GET_CODE (x1) == MEM)
3828 x = gen_rtx_MEM (tmode, XEXP (x1, 0));
3829 MEM_COPY_ATTRIBUTES (x, x1);
3830 copy_replacements (x1, x);
3833 y = gen_lowpart_common (tmode, y1);
3834 if (y == 0 && GET_CODE (y1) == MEM)
3836 y = gen_rtx_MEM (tmode, XEXP (y1, 0));
3837 MEM_COPY_ATTRIBUTES (y, y1);
3838 copy_replacements (y1, y);
3841 else
3843 x = gen_lowpart (tmode, x);
3844 y = gen_lowpart (tmode, y);
3847 insn_code = mov_optab->handlers[(int) tmode].insn_code;
3848 return (GEN_FCN (insn_code) (x, y));
3851 start_sequence ();
3852 emit_move_insn_1 (x, y);
3853 seq = gen_sequence ();
3854 end_sequence ();
3855 return seq;
3858 /* Return the insn code used to extend FROM_MODE to TO_MODE.
3859 UNSIGNEDP specifies zero-extension instead of sign-extension. If
3860 no such operation exists, CODE_FOR_nothing will be returned. */
3862 enum insn_code
3863 can_extend_p (to_mode, from_mode, unsignedp)
3864 enum machine_mode to_mode, from_mode;
3865 int unsignedp;
3867 return extendtab[(int) to_mode][(int) from_mode][unsignedp != 0];
3870 /* Generate the body of an insn to extend Y (with mode MFROM)
3871 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
3874 gen_extend_insn (x, y, mto, mfrom, unsignedp)
3875 rtx x, y;
3876 enum machine_mode mto, mfrom;
3877 int unsignedp;
3879 return (GEN_FCN (extendtab[(int) mto][(int) mfrom][unsignedp != 0]) (x, y));
3882 /* can_fix_p and can_float_p say whether the target machine
3883 can directly convert a given fixed point type to
3884 a given floating point type, or vice versa.
3885 The returned value is the CODE_FOR_... value to use,
3886 or CODE_FOR_nothing if these modes cannot be directly converted.
3888 *TRUNCP_PTR is set to 1 if it is necessary to output
3889 an explicit FTRUNC insn before the fix insn; otherwise 0. */
3891 static enum insn_code
3892 can_fix_p (fixmode, fltmode, unsignedp, truncp_ptr)
3893 enum machine_mode fltmode, fixmode;
3894 int unsignedp;
3895 int *truncp_ptr;
3897 *truncp_ptr = 0;
3898 if (fixtrunctab[(int) fltmode][(int) fixmode][unsignedp != 0]
3899 != CODE_FOR_nothing)
3900 return fixtrunctab[(int) fltmode][(int) fixmode][unsignedp != 0];
3902 if (ftrunc_optab->handlers[(int) fltmode].insn_code != CODE_FOR_nothing)
3904 *truncp_ptr = 1;
3905 return fixtab[(int) fltmode][(int) fixmode][unsignedp != 0];
3907 return CODE_FOR_nothing;
3910 static enum insn_code
3911 can_float_p (fltmode, fixmode, unsignedp)
3912 enum machine_mode fixmode, fltmode;
3913 int unsignedp;
3915 return floattab[(int) fltmode][(int) fixmode][unsignedp != 0];
3918 /* Generate code to convert FROM to floating point
3919 and store in TO. FROM must be fixed point and not VOIDmode.
3920 UNSIGNEDP nonzero means regard FROM as unsigned.
3921 Normally this is done by correcting the final value
3922 if it is negative. */
3924 void
3925 expand_float (to, from, unsignedp)
3926 rtx to, from;
3927 int unsignedp;
3929 enum insn_code icode;
3930 register rtx target = to;
3931 enum machine_mode fmode, imode;
3933 /* Crash now, because we won't be able to decide which mode to use. */
3934 if (GET_MODE (from) == VOIDmode)
3935 abort ();
3937 /* Look for an insn to do the conversion. Do it in the specified
3938 modes if possible; otherwise convert either input, output or both to
3939 wider mode. If the integer mode is wider than the mode of FROM,
3940 we can do the conversion signed even if the input is unsigned. */
3942 for (imode = GET_MODE (from); imode != VOIDmode;
3943 imode = GET_MODE_WIDER_MODE (imode))
3944 for (fmode = GET_MODE (to); fmode != VOIDmode;
3945 fmode = GET_MODE_WIDER_MODE (fmode))
3947 int doing_unsigned = unsignedp;
3949 if (fmode != GET_MODE (to)
3950 && significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
3951 continue;
3953 icode = can_float_p (fmode, imode, unsignedp);
3954 if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp)
3955 icode = can_float_p (fmode, imode, 0), doing_unsigned = 0;
3957 if (icode != CODE_FOR_nothing)
3959 to = protect_from_queue (to, 1);
3960 from = protect_from_queue (from, 0);
3962 if (imode != GET_MODE (from))
3963 from = convert_to_mode (imode, from, unsignedp);
3965 if (fmode != GET_MODE (to))
3966 target = gen_reg_rtx (fmode);
3968 emit_unop_insn (icode, target, from,
3969 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
3971 if (target != to)
3972 convert_move (to, target, 0);
3973 return;
3977 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
3979 /* Unsigned integer, and no way to convert directly.
3980 Convert as signed, then conditionally adjust the result. */
3981 if (unsignedp)
3983 rtx label = gen_label_rtx ();
3984 rtx temp;
3985 REAL_VALUE_TYPE offset;
3987 emit_queue ();
3989 to = protect_from_queue (to, 1);
3990 from = protect_from_queue (from, 0);
3992 if (flag_force_mem)
3993 from = force_not_mem (from);
3995 /* Look for a usable floating mode FMODE wider than the source and at
3996 least as wide as the target. Using FMODE will avoid rounding woes
3997 with unsigned values greater than the signed maximum value. */
3999 for (fmode = GET_MODE (to); fmode != VOIDmode;
4000 fmode = GET_MODE_WIDER_MODE (fmode))
4001 if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
4002 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
4003 break;
4005 if (fmode == VOIDmode)
4007 /* There is no such mode. Pretend the target is wide enough. */
4008 fmode = GET_MODE (to);
4010 /* Avoid double-rounding when TO is narrower than FROM. */
4011 if ((significand_size (fmode) + 1)
4012 < GET_MODE_BITSIZE (GET_MODE (from)))
4014 rtx temp1;
4015 rtx neglabel = gen_label_rtx ();
4017 /* Don't use TARGET if it isn't a register, is a hard register,
4018 or is the wrong mode. */
4019 if (GET_CODE (target) != REG
4020 || REGNO (target) < FIRST_PSEUDO_REGISTER
4021 || GET_MODE (target) != fmode)
4022 target = gen_reg_rtx (fmode);
4024 imode = GET_MODE (from);
4025 do_pending_stack_adjust ();
4027 /* Test whether the sign bit is set. */
4028 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
4029 0, 0, neglabel);
4031 /* The sign bit is not set. Convert as signed. */
4032 expand_float (target, from, 0);
4033 emit_jump_insn (gen_jump (label));
4034 emit_barrier ();
4036 /* The sign bit is set.
4037 Convert to a usable (positive signed) value by shifting right
4038 one bit, while remembering if a nonzero bit was shifted
4039 out; i.e., compute (from & 1) | (from >> 1). */
4041 emit_label (neglabel);
4042 temp = expand_binop (imode, and_optab, from, const1_rtx,
4043 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4044 temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
4045 NULL_RTX, 1);
4046 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
4047 OPTAB_LIB_WIDEN);
4048 expand_float (target, temp, 0);
4050 /* Multiply by 2 to undo the shift above. */
4051 temp = expand_binop (fmode, add_optab, target, target,
4052 target, 0, OPTAB_LIB_WIDEN);
4053 if (temp != target)
4054 emit_move_insn (target, temp);
4056 do_pending_stack_adjust ();
4057 emit_label (label);
4058 goto done;
4062 /* If we are about to do some arithmetic to correct for an
4063 unsigned operand, do it in a pseudo-register. */
4065 if (GET_MODE (to) != fmode
4066 || GET_CODE (to) != REG || REGNO (to) < FIRST_PSEUDO_REGISTER)
4067 target = gen_reg_rtx (fmode);
4069 /* Convert as signed integer to floating. */
4070 expand_float (target, from, 0);
4072 /* If FROM is negative (and therefore TO is negative),
4073 correct its value by 2**bitwidth. */
4075 do_pending_stack_adjust ();
4076 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
4077 0, 0, label);
4079 /* On SCO 3.2.1, ldexp rejects values outside [0.5, 1).
4080 Rather than setting up a dconst_dot_5, let's hope SCO
4081 fixes the bug. */
4082 offset = REAL_VALUE_LDEXP (dconst1, GET_MODE_BITSIZE (GET_MODE (from)));
4083 temp = expand_binop (fmode, add_optab, target,
4084 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
4085 target, 0, OPTAB_LIB_WIDEN);
4086 if (temp != target)
4087 emit_move_insn (target, temp);
4089 do_pending_stack_adjust ();
4090 emit_label (label);
4091 goto done;
4093 #endif
4095 /* No hardware instruction available; call a library routine to convert from
4096 SImode, DImode, or TImode into SFmode, DFmode, XFmode, or TFmode. */
4098 rtx libfcn;
4099 rtx insns;
4100 rtx value;
4102 to = protect_from_queue (to, 1);
4103 from = protect_from_queue (from, 0);
4105 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
4106 from = convert_to_mode (SImode, from, unsignedp);
4108 if (flag_force_mem)
4109 from = force_not_mem (from);
4111 if (GET_MODE (to) == SFmode)
4113 if (GET_MODE (from) == SImode)
4114 libfcn = floatsisf_libfunc;
4115 else if (GET_MODE (from) == DImode)
4116 libfcn = floatdisf_libfunc;
4117 else if (GET_MODE (from) == TImode)
4118 libfcn = floattisf_libfunc;
4119 else
4120 abort ();
4122 else if (GET_MODE (to) == DFmode)
4124 if (GET_MODE (from) == SImode)
4125 libfcn = floatsidf_libfunc;
4126 else if (GET_MODE (from) == DImode)
4127 libfcn = floatdidf_libfunc;
4128 else if (GET_MODE (from) == TImode)
4129 libfcn = floattidf_libfunc;
4130 else
4131 abort ();
4133 else if (GET_MODE (to) == XFmode)
4135 if (GET_MODE (from) == SImode)
4136 libfcn = floatsixf_libfunc;
4137 else if (GET_MODE (from) == DImode)
4138 libfcn = floatdixf_libfunc;
4139 else if (GET_MODE (from) == TImode)
4140 libfcn = floattixf_libfunc;
4141 else
4142 abort ();
4144 else if (GET_MODE (to) == TFmode)
4146 if (GET_MODE (from) == SImode)
4147 libfcn = floatsitf_libfunc;
4148 else if (GET_MODE (from) == DImode)
4149 libfcn = floatditf_libfunc;
4150 else if (GET_MODE (from) == TImode)
4151 libfcn = floattitf_libfunc;
4152 else
4153 abort ();
4155 else
4156 abort ();
4158 start_sequence ();
4160 value = emit_library_call_value (libfcn, NULL_RTX, LCT_CONST,
4161 GET_MODE (to), 1, from,
4162 GET_MODE (from));
4163 insns = get_insns ();
4164 end_sequence ();
4166 emit_libcall_block (insns, target, value,
4167 gen_rtx_FLOAT (GET_MODE (to), from));
4170 done:
4172 /* Copy result to requested destination
4173 if we have been computing in a temp location. */
4175 if (target != to)
4177 if (GET_MODE (target) == GET_MODE (to))
4178 emit_move_insn (to, target);
4179 else
4180 convert_move (to, target, 0);
4184 /* expand_fix: generate code to convert FROM to fixed point
4185 and store in TO. FROM must be floating point. */
4187 static rtx
4188 ftruncify (x)
4189 rtx x;
4191 rtx temp = gen_reg_rtx (GET_MODE (x));
4192 return expand_unop (GET_MODE (x), ftrunc_optab, x, temp, 0);
4195 void
4196 expand_fix (to, from, unsignedp)
4197 register rtx to, from;
4198 int unsignedp;
4200 enum insn_code icode;
4201 register rtx target = to;
4202 enum machine_mode fmode, imode;
4203 int must_trunc = 0;
4204 rtx libfcn = 0;
4206 /* We first try to find a pair of modes, one real and one integer, at
4207 least as wide as FROM and TO, respectively, in which we can open-code
4208 this conversion. If the integer mode is wider than the mode of TO,
4209 we can do the conversion either signed or unsigned. */
4211 for (imode = GET_MODE (to); imode != VOIDmode;
4212 imode = GET_MODE_WIDER_MODE (imode))
4213 for (fmode = GET_MODE (from); fmode != VOIDmode;
4214 fmode = GET_MODE_WIDER_MODE (fmode))
4216 int doing_unsigned = unsignedp;
4218 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
4219 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
4220 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
4222 if (icode != CODE_FOR_nothing)
4224 to = protect_from_queue (to, 1);
4225 from = protect_from_queue (from, 0);
4227 if (fmode != GET_MODE (from))
4228 from = convert_to_mode (fmode, from, 0);
4230 if (must_trunc)
4231 from = ftruncify (from);
4233 if (imode != GET_MODE (to))
4234 target = gen_reg_rtx (imode);
4236 emit_unop_insn (icode, target, from,
4237 doing_unsigned ? UNSIGNED_FIX : FIX);
4238 if (target != to)
4239 convert_move (to, target, unsignedp);
4240 return;
4244 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
4245 /* For an unsigned conversion, there is one more way to do it.
4246 If we have a signed conversion, we generate code that compares
4247 the real value to the largest representable positive number. If if
4248 is smaller, the conversion is done normally. Otherwise, subtract
4249 one plus the highest signed number, convert, and add it back.
4251 We only need to check all real modes, since we know we didn't find
4252 anything with a wider integer mode. */
4254 if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
4255 for (fmode = GET_MODE (from); fmode != VOIDmode;
4256 fmode = GET_MODE_WIDER_MODE (fmode))
4257 /* Make sure we won't lose significant bits doing this. */
4258 if (GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to))
4259 && CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
4260 &must_trunc))
4262 int bitsize;
4263 REAL_VALUE_TYPE offset;
4264 rtx limit, lab1, lab2, insn;
4266 bitsize = GET_MODE_BITSIZE (GET_MODE (to));
4267 offset = REAL_VALUE_LDEXP (dconst1, bitsize - 1);
4268 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
4269 lab1 = gen_label_rtx ();
4270 lab2 = gen_label_rtx ();
4272 emit_queue ();
4273 to = protect_from_queue (to, 1);
4274 from = protect_from_queue (from, 0);
4276 if (flag_force_mem)
4277 from = force_not_mem (from);
4279 if (fmode != GET_MODE (from))
4280 from = convert_to_mode (fmode, from, 0);
4282 /* See if we need to do the subtraction. */
4283 do_pending_stack_adjust ();
4284 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
4285 0, 0, lab1);
4287 /* If not, do the signed "fix" and branch around fixup code. */
4288 expand_fix (to, from, 0);
4289 emit_jump_insn (gen_jump (lab2));
4290 emit_barrier ();
4292 /* Otherwise, subtract 2**(N-1), convert to signed number,
4293 then add 2**(N-1). Do the addition using XOR since this
4294 will often generate better code. */
4295 emit_label (lab1);
4296 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
4297 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4298 expand_fix (to, target, 0);
4299 target = expand_binop (GET_MODE (to), xor_optab, to,
4300 GEN_INT ((HOST_WIDE_INT) 1 << (bitsize - 1)),
4301 to, 1, OPTAB_LIB_WIDEN);
4303 if (target != to)
4304 emit_move_insn (to, target);
4306 emit_label (lab2);
4308 if (mov_optab->handlers[(int) GET_MODE (to)].insn_code
4309 != CODE_FOR_nothing)
4311 /* Make a place for a REG_NOTE and add it. */
4312 insn = emit_move_insn (to, to);
4313 set_unique_reg_note (insn,
4314 REG_EQUAL,
4315 gen_rtx_fmt_e (UNSIGNED_FIX,
4316 GET_MODE (to),
4317 copy_rtx (from)));
4320 return;
4322 #endif
4324 /* We can't do it with an insn, so use a library call. But first ensure
4325 that the mode of TO is at least as wide as SImode, since those are the
4326 only library calls we know about. */
4328 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
4330 target = gen_reg_rtx (SImode);
4332 expand_fix (target, from, unsignedp);
4334 else if (GET_MODE (from) == SFmode)
4336 if (GET_MODE (to) == SImode)
4337 libfcn = unsignedp ? fixunssfsi_libfunc : fixsfsi_libfunc;
4338 else if (GET_MODE (to) == DImode)
4339 libfcn = unsignedp ? fixunssfdi_libfunc : fixsfdi_libfunc;
4340 else if (GET_MODE (to) == TImode)
4341 libfcn = unsignedp ? fixunssfti_libfunc : fixsfti_libfunc;
4342 else
4343 abort ();
4345 else if (GET_MODE (from) == DFmode)
4347 if (GET_MODE (to) == SImode)
4348 libfcn = unsignedp ? fixunsdfsi_libfunc : fixdfsi_libfunc;
4349 else if (GET_MODE (to) == DImode)
4350 libfcn = unsignedp ? fixunsdfdi_libfunc : fixdfdi_libfunc;
4351 else if (GET_MODE (to) == TImode)
4352 libfcn = unsignedp ? fixunsdfti_libfunc : fixdfti_libfunc;
4353 else
4354 abort ();
4356 else if (GET_MODE (from) == XFmode)
4358 if (GET_MODE (to) == SImode)
4359 libfcn = unsignedp ? fixunsxfsi_libfunc : fixxfsi_libfunc;
4360 else if (GET_MODE (to) == DImode)
4361 libfcn = unsignedp ? fixunsxfdi_libfunc : fixxfdi_libfunc;
4362 else if (GET_MODE (to) == TImode)
4363 libfcn = unsignedp ? fixunsxfti_libfunc : fixxfti_libfunc;
4364 else
4365 abort ();
4367 else if (GET_MODE (from) == TFmode)
4369 if (GET_MODE (to) == SImode)
4370 libfcn = unsignedp ? fixunstfsi_libfunc : fixtfsi_libfunc;
4371 else if (GET_MODE (to) == DImode)
4372 libfcn = unsignedp ? fixunstfdi_libfunc : fixtfdi_libfunc;
4373 else if (GET_MODE (to) == TImode)
4374 libfcn = unsignedp ? fixunstfti_libfunc : fixtfti_libfunc;
4375 else
4376 abort ();
4378 else
4379 abort ();
4381 if (libfcn)
4383 rtx insns;
4384 rtx value;
4386 to = protect_from_queue (to, 1);
4387 from = protect_from_queue (from, 0);
4389 if (flag_force_mem)
4390 from = force_not_mem (from);
4392 start_sequence ();
4394 value = emit_library_call_value (libfcn, NULL_RTX, LCT_CONST,
4395 GET_MODE (to), 1, from,
4396 GET_MODE (from));
4397 insns = get_insns ();
4398 end_sequence ();
4400 emit_libcall_block (insns, target, value,
4401 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
4402 GET_MODE (to), from));
4405 if (target != to)
4407 if (GET_MODE (to) == GET_MODE (target))
4408 emit_move_insn (to, target);
4409 else
4410 convert_move (to, target, 0);
4414 static optab
4415 init_optab (code)
4416 enum rtx_code code;
4418 int i;
4419 optab op = (optab) xmalloc (sizeof (struct optab));
4420 op->code = code;
4421 for (i = 0; i < NUM_MACHINE_MODES; i++)
4423 op->handlers[i].insn_code = CODE_FOR_nothing;
4424 op->handlers[i].libfunc = 0;
4427 if (code != UNKNOWN)
4428 code_to_optab[(int) code] = op;
4430 return op;
4433 /* Initialize the libfunc fields of an entire group of entries in some
4434 optab. Each entry is set equal to a string consisting of a leading
4435 pair of underscores followed by a generic operation name followed by
4436 a mode name (downshifted to lower case) followed by a single character
4437 representing the number of operands for the given operation (which is
4438 usually one of the characters '2', '3', or '4').
4440 OPTABLE is the table in which libfunc fields are to be initialized.
4441 FIRST_MODE is the first machine mode index in the given optab to
4442 initialize.
4443 LAST_MODE is the last machine mode index in the given optab to
4444 initialize.
4445 OPNAME is the generic (string) name of the operation.
4446 SUFFIX is the character which specifies the number of operands for
4447 the given generic operation.
4450 static void
4451 init_libfuncs (optable, first_mode, last_mode, opname, suffix)
4452 register optab optable;
4453 register int first_mode;
4454 register int last_mode;
4455 register const char *opname;
4456 register int suffix;
4458 register int mode;
4459 register unsigned opname_len = strlen (opname);
4461 for (mode = first_mode; (int) mode <= (int) last_mode;
4462 mode = (enum machine_mode) ((int) mode + 1))
4464 register const char *mname = GET_MODE_NAME(mode);
4465 register unsigned mname_len = strlen (mname);
4466 register char *libfunc_name = alloca (2 + opname_len + mname_len + 1 + 1);
4467 register char *p;
4468 register const char *q;
4470 p = libfunc_name;
4471 *p++ = '_';
4472 *p++ = '_';
4473 for (q = opname; *q; )
4474 *p++ = *q++;
4475 for (q = mname; *q; q++)
4476 *p++ = TOLOWER (*q);
4477 *p++ = suffix;
4478 *p = '\0';
4480 optable->handlers[(int) mode].libfunc
4481 = gen_rtx_SYMBOL_REF (Pmode, ggc_alloc_string (libfunc_name,
4482 p - libfunc_name));
4486 /* Initialize the libfunc fields of an entire group of entries in some
4487 optab which correspond to all integer mode operations. The parameters
4488 have the same meaning as similarly named ones for the `init_libfuncs'
4489 routine. (See above). */
4491 static void
4492 init_integral_libfuncs (optable, opname, suffix)
4493 register optab optable;
4494 register const char *opname;
4495 register int suffix;
4497 init_libfuncs (optable, SImode, TImode, opname, suffix);
4500 /* Initialize the libfunc fields of an entire group of entries in some
4501 optab which correspond to all real mode operations. The parameters
4502 have the same meaning as similarly named ones for the `init_libfuncs'
4503 routine. (See above). */
4505 static void
4506 init_floating_libfuncs (optable, opname, suffix)
4507 register optab optable;
4508 register const char *opname;
4509 register int suffix;
4511 init_libfuncs (optable, SFmode, TFmode, opname, suffix);
4515 init_one_libfunc (name)
4516 register const char *name;
4518 name = ggc_strdup (name);
4520 return gen_rtx_SYMBOL_REF (Pmode, name);
4523 /* Mark ARG (which is really an OPTAB *) for GC. */
4525 void
4526 mark_optab (arg)
4527 void *arg;
4529 optab o = *(optab *) arg;
4530 int i;
4532 for (i = 0; i < NUM_MACHINE_MODES; ++i)
4533 ggc_mark_rtx (o->handlers[i].libfunc);
4536 /* Call this once to initialize the contents of the optabs
4537 appropriately for the current target machine. */
4539 void
4540 init_optabs ()
4542 unsigned int i, j, k;
4544 /* Start by initializing all tables to contain CODE_FOR_nothing. */
4546 for (i = 0; i < ARRAY_SIZE (fixtab); i++)
4547 for (j = 0; j < ARRAY_SIZE (fixtab[0]); j++)
4548 for (k = 0; k < ARRAY_SIZE (fixtab[0][0]); k++)
4549 fixtab[i][j][k] = CODE_FOR_nothing;
4551 for (i = 0; i < ARRAY_SIZE (fixtrunctab); i++)
4552 for (j = 0; j < ARRAY_SIZE (fixtrunctab[0]); j++)
4553 for (k = 0; k < ARRAY_SIZE (fixtrunctab[0][0]); k++)
4554 fixtrunctab[i][j][k] = CODE_FOR_nothing;
4556 for (i = 0; i < ARRAY_SIZE (floattab); i++)
4557 for (j = 0; j < ARRAY_SIZE (floattab[0]); j++)
4558 for (k = 0; k < ARRAY_SIZE (floattab[0][0]); k++)
4559 floattab[i][j][k] = CODE_FOR_nothing;
4561 for (i = 0; i < ARRAY_SIZE (extendtab); i++)
4562 for (j = 0; j < ARRAY_SIZE (extendtab[0]); j++)
4563 for (k = 0; k < ARRAY_SIZE (extendtab[0][0]); k++)
4564 extendtab[i][j][k] = CODE_FOR_nothing;
4566 for (i = 0; i < NUM_RTX_CODE; i++)
4567 setcc_gen_code[i] = CODE_FOR_nothing;
4569 #ifdef HAVE_conditional_move
4570 for (i = 0; i < NUM_MACHINE_MODES; i++)
4571 movcc_gen_code[i] = CODE_FOR_nothing;
4572 #endif
4574 add_optab = init_optab (PLUS);
4575 addv_optab = init_optab (PLUS);
4576 sub_optab = init_optab (MINUS);
4577 subv_optab = init_optab (MINUS);
4578 smul_optab = init_optab (MULT);
4579 smulv_optab = init_optab (MULT);
4580 smul_highpart_optab = init_optab (UNKNOWN);
4581 umul_highpart_optab = init_optab (UNKNOWN);
4582 smul_widen_optab = init_optab (UNKNOWN);
4583 umul_widen_optab = init_optab (UNKNOWN);
4584 sdiv_optab = init_optab (DIV);
4585 sdivv_optab = init_optab (DIV);
4586 sdivmod_optab = init_optab (UNKNOWN);
4587 udiv_optab = init_optab (UDIV);
4588 udivmod_optab = init_optab (UNKNOWN);
4589 smod_optab = init_optab (MOD);
4590 umod_optab = init_optab (UMOD);
4591 flodiv_optab = init_optab (DIV);
4592 ftrunc_optab = init_optab (UNKNOWN);
4593 and_optab = init_optab (AND);
4594 ior_optab = init_optab (IOR);
4595 xor_optab = init_optab (XOR);
4596 ashl_optab = init_optab (ASHIFT);
4597 ashr_optab = init_optab (ASHIFTRT);
4598 lshr_optab = init_optab (LSHIFTRT);
4599 rotl_optab = init_optab (ROTATE);
4600 rotr_optab = init_optab (ROTATERT);
4601 smin_optab = init_optab (SMIN);
4602 smax_optab = init_optab (SMAX);
4603 umin_optab = init_optab (UMIN);
4604 umax_optab = init_optab (UMAX);
4605 mov_optab = init_optab (UNKNOWN);
4606 movstrict_optab = init_optab (UNKNOWN);
4607 cmp_optab = init_optab (UNKNOWN);
4608 ucmp_optab = init_optab (UNKNOWN);
4609 tst_optab = init_optab (UNKNOWN);
4610 neg_optab = init_optab (NEG);
4611 negv_optab = init_optab (NEG);
4612 abs_optab = init_optab (ABS);
4613 absv_optab = init_optab (ABS);
4614 one_cmpl_optab = init_optab (NOT);
4615 ffs_optab = init_optab (FFS);
4616 sqrt_optab = init_optab (SQRT);
4617 sin_optab = init_optab (UNKNOWN);
4618 cos_optab = init_optab (UNKNOWN);
4619 strlen_optab = init_optab (UNKNOWN);
4620 cbranch_optab = init_optab (UNKNOWN);
4621 cmov_optab = init_optab (UNKNOWN);
4622 cstore_optab = init_optab (UNKNOWN);
4624 for (i = 0; i < NUM_MACHINE_MODES; i++)
4626 movstr_optab[i] = CODE_FOR_nothing;
4627 clrstr_optab[i] = CODE_FOR_nothing;
4629 #ifdef HAVE_SECONDARY_RELOADS
4630 reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
4631 #endif
4634 /* Fill in the optabs with the insns we support. */
4635 init_all_optabs ();
4637 #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC
4638 /* This flag says the same insns that convert to a signed fixnum
4639 also convert validly to an unsigned one. */
4640 for (i = 0; i < NUM_MACHINE_MODES; i++)
4641 for (j = 0; j < NUM_MACHINE_MODES; j++)
4642 fixtrunctab[i][j][1] = fixtrunctab[i][j][0];
4643 #endif
4645 /* Initialize the optabs with the names of the library functions. */
4646 init_integral_libfuncs (add_optab, "add", '3');
4647 init_floating_libfuncs (add_optab, "add", '3');
4648 init_integral_libfuncs (addv_optab, "addv", '3');
4649 init_floating_libfuncs (addv_optab, "add", '3');
4650 init_integral_libfuncs (sub_optab, "sub", '3');
4651 init_floating_libfuncs (sub_optab, "sub", '3');
4652 init_integral_libfuncs (subv_optab, "subv", '3');
4653 init_floating_libfuncs (subv_optab, "sub", '3');
4654 init_integral_libfuncs (smul_optab, "mul", '3');
4655 init_floating_libfuncs (smul_optab, "mul", '3');
4656 init_integral_libfuncs (smulv_optab, "mulv", '3');
4657 init_floating_libfuncs (smulv_optab, "mul", '3');
4658 init_integral_libfuncs (sdiv_optab, "div", '3');
4659 init_integral_libfuncs (sdivv_optab, "divv", '3');
4660 init_integral_libfuncs (udiv_optab, "udiv", '3');
4661 init_integral_libfuncs (sdivmod_optab, "divmod", '4');
4662 init_integral_libfuncs (udivmod_optab, "udivmod", '4');
4663 init_integral_libfuncs (smod_optab, "mod", '3');
4664 init_integral_libfuncs (umod_optab, "umod", '3');
4665 init_floating_libfuncs (flodiv_optab, "div", '3');
4666 init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
4667 init_integral_libfuncs (and_optab, "and", '3');
4668 init_integral_libfuncs (ior_optab, "ior", '3');
4669 init_integral_libfuncs (xor_optab, "xor", '3');
4670 init_integral_libfuncs (ashl_optab, "ashl", '3');
4671 init_integral_libfuncs (ashr_optab, "ashr", '3');
4672 init_integral_libfuncs (lshr_optab, "lshr", '3');
4673 init_integral_libfuncs (smin_optab, "min", '3');
4674 init_floating_libfuncs (smin_optab, "min", '3');
4675 init_integral_libfuncs (smax_optab, "max", '3');
4676 init_floating_libfuncs (smax_optab, "max", '3');
4677 init_integral_libfuncs (umin_optab, "umin", '3');
4678 init_integral_libfuncs (umax_optab, "umax", '3');
4679 init_integral_libfuncs (neg_optab, "neg", '2');
4680 init_floating_libfuncs (neg_optab, "neg", '2');
4681 init_integral_libfuncs (negv_optab, "negv", '2');
4682 init_floating_libfuncs (negv_optab, "neg", '2');
4683 init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
4684 init_integral_libfuncs (ffs_optab, "ffs", '2');
4686 /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */
4687 init_integral_libfuncs (cmp_optab, "cmp", '2');
4688 init_integral_libfuncs (ucmp_optab, "ucmp", '2');
4689 init_floating_libfuncs (cmp_optab, "cmp", '2');
4691 #ifdef MULSI3_LIBCALL
4692 smul_optab->handlers[(int) SImode].libfunc
4693 = init_one_libfunc (MULSI3_LIBCALL);
4694 #endif
4695 #ifdef MULDI3_LIBCALL
4696 smul_optab->handlers[(int) DImode].libfunc
4697 = init_one_libfunc (MULDI3_LIBCALL);
4698 #endif
4700 #ifdef DIVSI3_LIBCALL
4701 sdiv_optab->handlers[(int) SImode].libfunc
4702 = init_one_libfunc (DIVSI3_LIBCALL);
4703 #endif
4704 #ifdef DIVDI3_LIBCALL
4705 sdiv_optab->handlers[(int) DImode].libfunc
4706 = init_one_libfunc (DIVDI3_LIBCALL);
4707 #endif
4709 #ifdef UDIVSI3_LIBCALL
4710 udiv_optab->handlers[(int) SImode].libfunc
4711 = init_one_libfunc (UDIVSI3_LIBCALL);
4712 #endif
4713 #ifdef UDIVDI3_LIBCALL
4714 udiv_optab->handlers[(int) DImode].libfunc
4715 = init_one_libfunc (UDIVDI3_LIBCALL);
4716 #endif
4718 #ifdef MODSI3_LIBCALL
4719 smod_optab->handlers[(int) SImode].libfunc
4720 = init_one_libfunc (MODSI3_LIBCALL);
4721 #endif
4722 #ifdef MODDI3_LIBCALL
4723 smod_optab->handlers[(int) DImode].libfunc
4724 = init_one_libfunc (MODDI3_LIBCALL);
4725 #endif
4727 #ifdef UMODSI3_LIBCALL
4728 umod_optab->handlers[(int) SImode].libfunc
4729 = init_one_libfunc (UMODSI3_LIBCALL);
4730 #endif
4731 #ifdef UMODDI3_LIBCALL
4732 umod_optab->handlers[(int) DImode].libfunc
4733 = init_one_libfunc (UMODDI3_LIBCALL);
4734 #endif
4736 /* Use cabs for DC complex abs, since systems generally have cabs.
4737 Don't define any libcall for SCmode, so that cabs will be used. */
4738 abs_optab->handlers[(int) DCmode].libfunc
4739 = init_one_libfunc ("cabs");
4741 /* The ffs function operates on `int'. */
4742 ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)].libfunc
4743 = init_one_libfunc ("ffs");
4745 extendsfdf2_libfunc = init_one_libfunc ("__extendsfdf2");
4746 extendsfxf2_libfunc = init_one_libfunc ("__extendsfxf2");
4747 extendsftf2_libfunc = init_one_libfunc ("__extendsftf2");
4748 extenddfxf2_libfunc = init_one_libfunc ("__extenddfxf2");
4749 extenddftf2_libfunc = init_one_libfunc ("__extenddftf2");
4751 truncdfsf2_libfunc = init_one_libfunc ("__truncdfsf2");
4752 truncxfsf2_libfunc = init_one_libfunc ("__truncxfsf2");
4753 trunctfsf2_libfunc = init_one_libfunc ("__trunctfsf2");
4754 truncxfdf2_libfunc = init_one_libfunc ("__truncxfdf2");
4755 trunctfdf2_libfunc = init_one_libfunc ("__trunctfdf2");
4757 memcpy_libfunc = init_one_libfunc ("memcpy");
4758 memmove_libfunc = init_one_libfunc ("memmove");
4759 bcopy_libfunc = init_one_libfunc ("bcopy");
4760 memcmp_libfunc = init_one_libfunc ("memcmp");
4761 bcmp_libfunc = init_one_libfunc ("__gcc_bcmp");
4762 memset_libfunc = init_one_libfunc ("memset");
4763 bzero_libfunc = init_one_libfunc ("bzero");
4765 unwind_resume_libfunc = init_one_libfunc (USING_SJLJ_EXCEPTIONS
4766 ? "_Unwind_SjLj_Resume"
4767 : "_Unwind_Resume");
4768 #ifndef DONT_USE_BUILTIN_SETJMP
4769 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
4770 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
4771 #else
4772 setjmp_libfunc = init_one_libfunc ("setjmp");
4773 longjmp_libfunc = init_one_libfunc ("longjmp");
4774 #endif
4775 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
4776 unwind_sjlj_unregister_libfunc
4777 = init_one_libfunc ("_Unwind_SjLj_Unregister");
4779 eqhf2_libfunc = init_one_libfunc ("__eqhf2");
4780 nehf2_libfunc = init_one_libfunc ("__nehf2");
4781 gthf2_libfunc = init_one_libfunc ("__gthf2");
4782 gehf2_libfunc = init_one_libfunc ("__gehf2");
4783 lthf2_libfunc = init_one_libfunc ("__lthf2");
4784 lehf2_libfunc = init_one_libfunc ("__lehf2");
4785 unordhf2_libfunc = init_one_libfunc ("__unordhf2");
4787 eqsf2_libfunc = init_one_libfunc ("__eqsf2");
4788 nesf2_libfunc = init_one_libfunc ("__nesf2");
4789 gtsf2_libfunc = init_one_libfunc ("__gtsf2");
4790 gesf2_libfunc = init_one_libfunc ("__gesf2");
4791 ltsf2_libfunc = init_one_libfunc ("__ltsf2");
4792 lesf2_libfunc = init_one_libfunc ("__lesf2");
4793 unordsf2_libfunc = init_one_libfunc ("__unordsf2");
4795 eqdf2_libfunc = init_one_libfunc ("__eqdf2");
4796 nedf2_libfunc = init_one_libfunc ("__nedf2");
4797 gtdf2_libfunc = init_one_libfunc ("__gtdf2");
4798 gedf2_libfunc = init_one_libfunc ("__gedf2");
4799 ltdf2_libfunc = init_one_libfunc ("__ltdf2");
4800 ledf2_libfunc = init_one_libfunc ("__ledf2");
4801 unorddf2_libfunc = init_one_libfunc ("__unorddf2");
4803 eqxf2_libfunc = init_one_libfunc ("__eqxf2");
4804 nexf2_libfunc = init_one_libfunc ("__nexf2");
4805 gtxf2_libfunc = init_one_libfunc ("__gtxf2");
4806 gexf2_libfunc = init_one_libfunc ("__gexf2");
4807 ltxf2_libfunc = init_one_libfunc ("__ltxf2");
4808 lexf2_libfunc = init_one_libfunc ("__lexf2");
4809 unordxf2_libfunc = init_one_libfunc ("__unordxf2");
4811 eqtf2_libfunc = init_one_libfunc ("__eqtf2");
4812 netf2_libfunc = init_one_libfunc ("__netf2");
4813 gttf2_libfunc = init_one_libfunc ("__gttf2");
4814 getf2_libfunc = init_one_libfunc ("__getf2");
4815 lttf2_libfunc = init_one_libfunc ("__lttf2");
4816 letf2_libfunc = init_one_libfunc ("__letf2");
4817 unordtf2_libfunc = init_one_libfunc ("__unordtf2");
4819 floatsisf_libfunc = init_one_libfunc ("__floatsisf");
4820 floatdisf_libfunc = init_one_libfunc ("__floatdisf");
4821 floattisf_libfunc = init_one_libfunc ("__floattisf");
4823 floatsidf_libfunc = init_one_libfunc ("__floatsidf");
4824 floatdidf_libfunc = init_one_libfunc ("__floatdidf");
4825 floattidf_libfunc = init_one_libfunc ("__floattidf");
4827 floatsixf_libfunc = init_one_libfunc ("__floatsixf");
4828 floatdixf_libfunc = init_one_libfunc ("__floatdixf");
4829 floattixf_libfunc = init_one_libfunc ("__floattixf");
4831 floatsitf_libfunc = init_one_libfunc ("__floatsitf");
4832 floatditf_libfunc = init_one_libfunc ("__floatditf");
4833 floattitf_libfunc = init_one_libfunc ("__floattitf");
4835 fixsfsi_libfunc = init_one_libfunc ("__fixsfsi");
4836 fixsfdi_libfunc = init_one_libfunc ("__fixsfdi");
4837 fixsfti_libfunc = init_one_libfunc ("__fixsfti");
4839 fixdfsi_libfunc = init_one_libfunc ("__fixdfsi");
4840 fixdfdi_libfunc = init_one_libfunc ("__fixdfdi");
4841 fixdfti_libfunc = init_one_libfunc ("__fixdfti");
4843 fixxfsi_libfunc = init_one_libfunc ("__fixxfsi");
4844 fixxfdi_libfunc = init_one_libfunc ("__fixxfdi");
4845 fixxfti_libfunc = init_one_libfunc ("__fixxfti");
4847 fixtfsi_libfunc = init_one_libfunc ("__fixtfsi");
4848 fixtfdi_libfunc = init_one_libfunc ("__fixtfdi");
4849 fixtfti_libfunc = init_one_libfunc ("__fixtfti");
4851 fixunssfsi_libfunc = init_one_libfunc ("__fixunssfsi");
4852 fixunssfdi_libfunc = init_one_libfunc ("__fixunssfdi");
4853 fixunssfti_libfunc = init_one_libfunc ("__fixunssfti");
4855 fixunsdfsi_libfunc = init_one_libfunc ("__fixunsdfsi");
4856 fixunsdfdi_libfunc = init_one_libfunc ("__fixunsdfdi");
4857 fixunsdfti_libfunc = init_one_libfunc ("__fixunsdfti");
4859 fixunsxfsi_libfunc = init_one_libfunc ("__fixunsxfsi");
4860 fixunsxfdi_libfunc = init_one_libfunc ("__fixunsxfdi");
4861 fixunsxfti_libfunc = init_one_libfunc ("__fixunsxfti");
4863 fixunstfsi_libfunc = init_one_libfunc ("__fixunstfsi");
4864 fixunstfdi_libfunc = init_one_libfunc ("__fixunstfdi");
4865 fixunstfti_libfunc = init_one_libfunc ("__fixunstfti");
4867 /* For check-memory-usage. */
4868 chkr_check_addr_libfunc = init_one_libfunc ("chkr_check_addr");
4869 chkr_set_right_libfunc = init_one_libfunc ("chkr_set_right");
4870 chkr_copy_bitmap_libfunc = init_one_libfunc ("chkr_copy_bitmap");
4871 chkr_check_exec_libfunc = init_one_libfunc ("chkr_check_exec");
4872 chkr_check_str_libfunc = init_one_libfunc ("chkr_check_str");
4874 /* For function entry/exit instrumentation. */
4875 profile_function_entry_libfunc
4876 = init_one_libfunc ("__cyg_profile_func_enter");
4877 profile_function_exit_libfunc
4878 = init_one_libfunc ("__cyg_profile_func_exit");
4880 #ifdef HAVE_conditional_trap
4881 init_traps ();
4882 #endif
4884 #ifdef INIT_TARGET_OPTABS
4885 /* Allow the target to add more libcalls or rename some, etc. */
4886 INIT_TARGET_OPTABS;
4887 #endif
4889 /* Add these GC roots. */
4890 ggc_add_root (optab_table, OTI_MAX, sizeof(optab), mark_optab);
4891 ggc_add_rtx_root (libfunc_table, LTI_MAX);
4894 #ifdef BROKEN_LDEXP
4896 /* SCO 3.2 apparently has a broken ldexp. */
4898 double
4899 ldexp(x,n)
4900 double x;
4901 int n;
4903 if (n > 0)
4904 while (n--)
4905 x *= 2;
4907 return x;
4909 #endif /* BROKEN_LDEXP */
4911 #ifdef HAVE_conditional_trap
4912 /* The insn generating function can not take an rtx_code argument.
4913 TRAP_RTX is used as an rtx argument. Its code is replaced with
4914 the code to be used in the trap insn and all other fields are
4915 ignored. */
4916 static rtx trap_rtx;
4918 static void
4919 init_traps ()
4921 if (HAVE_conditional_trap)
4923 trap_rtx = gen_rtx_fmt_ee (EQ, VOIDmode, NULL_RTX, NULL_RTX);
4924 ggc_add_rtx_root (&trap_rtx, 1);
4927 #endif
4929 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
4930 CODE. Return 0 on failure. */
4933 gen_cond_trap (code, op1, op2, tcode)
4934 enum rtx_code code ATTRIBUTE_UNUSED;
4935 rtx op1, op2 ATTRIBUTE_UNUSED, tcode ATTRIBUTE_UNUSED;
4937 enum machine_mode mode = GET_MODE (op1);
4939 if (mode == VOIDmode)
4940 return 0;
4942 #ifdef HAVE_conditional_trap
4943 if (HAVE_conditional_trap
4944 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
4946 rtx insn;
4947 start_sequence();
4948 emit_insn (GEN_FCN (cmp_optab->handlers[(int) mode].insn_code) (op1, op2));
4949 PUT_CODE (trap_rtx, code);
4950 insn = gen_conditional_trap (trap_rtx, tcode);
4951 if (insn)
4953 emit_insn (insn);
4954 insn = gen_sequence ();
4956 end_sequence();
4957 return insn;
4959 #endif
4961 return 0;